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Abstract

The Vehicle Dynamic Model (VDM) based navigation of fixed-wing drones determines the

airborne trajectory in conjunction with Inertial Measurement Unit (IMU) sensors. With-

out Global Navigation Satellite Systems (GNSS) signals, this method estimates navigation

quantities with substantially better quality than the conventional kinematic inertial-based

approach. The research focuses on the following key aspects: i) determination/calibration

of aerodynamic model parameters using flight data only, ii) real-time implementation of the

estimation/navigation scheme during different flight phases, and iii) experimental evaluation

of two types of drones.

After the introduction related to aerodynamic modeling and estimation aspects, a novel cal-

ibration of aerodynamic coefficients from flight data is proposed for their coarse and fine

estimation. The first methodology is proposed as an original consecutive application of three

linear estimators for the wind, aerodynamic moments, and force parameters, respectively.

The information conveyed with each measurement is used within a Schmidt-Kalman filter

according to a heuristic approach to observability (Grammian). The most observable parame-

ters are thus updated, mostly in relation to dynamic maneuvers, to obtain a sufficiently good

estimate, which is further improved in the second stage. There, the parameters are refined

either via VDM-based filtering or with an optimal smoother. An off-line estimation is preferred

for a not-yet-calibrated drone, as it can benefit from precise GNSS observations and attitude

updates obtained either by a conventional combination of Inertial Navigation System (INS)

and GNSS and/or via photogrammetry.

The real-time model-based navigation is then implemented within a companion computer

embedded in the payload of a prototype drone. The information flow between sensors, au-

topilot, and computer is handled via nodes of the Robotic Operation System (ROS). Following

a sensitivity analysis on the quality of time-tagging between the sensors and the control

commands, the open-source autopilot is modified so that the required information on the

actuators is expressed in GNSS time to within less than 1 ms. The Schmidt-Kalman implemen-

tation is proposed to manage the different phases of flight, from initialization, to nominal, and

interrupted reception of GNSS signals.

The implementation and its navigation performance are validated in several flights using

MEMS-inertial sensors of different quality for the prototype drone with a conventional shape,
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and for a commercial delta-wing profiled drone. After a few minutes of navigation with

GNSS accounting for the possible re-estimation of parameters, autonomous VDM/IMU-based

navigation outperforms that based solely on IMU and pressure sensors by up to five times in

terms of absolute accuracy. These investigations and findings raise new directions for further

development and the use of model-based navigation for downstream applications, such as

wind estimation and operations in unstable GNSS-signal environments.

Keywords: Vehicle Dynamic Model, Autonomous Navigation, Real-Time, Schmidt-Kalman

Filter, Aerodynamic Coefficient Calibration
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Résumé

La navigation basée sur le modèle dynamique d’un véhicule (VDM) de drones à voilure

fixe est utilisée pour déterminer leur trajectoire aérienne en conjonction avec des centrale

inertielles (IMU). En l’absence de signaux GNSS (Global Navigation Satellite Systems), cette

méthode estime les solutions de navigation avec une qualité sensiblement meilleure que l’ap-

proche conventionnelle basée sur la cinématique inertielle. La recherche se concentre sur les

aspects clés suivants : i) détermination/calibrage des paramètres du modèle aérodynamique

en utilisant uniquement les données de vol, ii) mise en œuvre en temps réel d’un schéma d’es-

timation/navigation au cours des différentes phases de vol, et iii) évaluation expérimentale

sur deux types de drones.

Après un introduction liée aux aspects de modélisation et d’estimation aérodynamiques, une

calibration des coefficients aérodynamiques à partir des données de vol est proposée pour

leur estimation grossière et rafinée. La première méthodologie est proposée comme une

application consécutive originale de trois estimateurs linéaires pour les paramètres de vent, de

moments aérodynamiques et de force. L’information véhiculée avec chaque mesure est utilisée

au sein d’un filtre de Schmidt-Kalman selon une approche heuristique de l’observabilité

(Grammian). Les paramètres les plus observables sont ainsi mis à jour, le plus souvent en

relation avec des manœuvres dynamiques, pour obtenir une estimation suffisamment bonne,

qui est encore améliorée dans la seconde étape. Ensuite, les paramètres sont affinés soit via

un filtre basé sur VDM, soit avec un smoother optimal. Une estimation en post-traitement

est préférée pour un drone encore non calibré, car elle peut bénéficier d’observations GNSS

précises et de mises à jour d’attitude obtenues soit par combinaison conventionnelle du

système de navigation inertielle (INS) avec GNSS et / ou via photogrammétrie.

La navigation basée sur VDM est ensuite mise en œuvre en temps réel au sein d’un ordinateur

intégré dans la charge utile d’un drone prototype. Le flux d’informations entre les capteurs, le

pilote automatique et l’ordinateur est géré via des nœuds du Robotic Operation System (ROS).

Suite à une analyse de sensibilité sur la qualité du marquage du temps entre les capteurs

et les commandes de contrôle, le pilote automatique open source est modifié pour que les

informations requises sur les surfaces de contrôle du drone soient exprimées en temps GNSS

à moins de 1 ms près. L’implémentation de Schmidt-Kalman est proposée pour gérer les

différentes phases de vol, depuis l’initialisation, la réception nominale et interrompue des

signaux GNSS.
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La mise en œuvre et les performances de navigation sont validées sur plusieurs vols à l’aide

de capteurs MEMS-inertiel de qualité différente pour le drone prototype qui a une forme

conventionnelle, et pour un drone commercial profilé aile delta. Après quelques minutes de

navigation avec les signaux GNSS permettant d’éventuelles réestimations des paramètres, la

navigation autonome basée sur VDM/IMU surpasse celle basée uniquement sur les IMUs et

les capteurs de pression jusqu’à cinq fois en termes de précision absolue. Ces investigations

et découvertes ouvrent des directions pour de futures développements et l’utilisation de la

navigation basée sur des modèles dynamiques pour de nouvelles applications, telles que

l’estimation du vent et les opérations dans des environnements de signaux GNSS instables.

Mots clefs : Modèle Dynamique d’un Vehicle, Navigation Autonome, Temps Réel, Filtre de

Schmidt-Kalman, Calibration des Coefficients Aérodynamiques
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Zusammenfassung

Eine auf dem Vehicle Dynamic Model (VDM) basierende Navigation von Starrflügler-Drohnen

wird zur Bestimmung der Flugbahn in Verbindung mit Inertialsensoren eingesetzt. In Abwe-

senheit von Globales Navigationssatellitensystem (GNSS)-Signalen schätzt diese Methode die

Navigationsgrößen mit einer wesentlich besseren Qualität als der herkömmliche kinemati-

sche, auf Trägheitssensoren (IMU) basierende Ansatz. Diese Forschungsarbeit konzentriert

sich auf die folgenden Hauptaspekte: i) Bestimmung / Kalibrierung der aerodynamischen

Modellparameter ausschließlich anhand von Flugdaten, ii) Echtzeit-Implementierung des

Schätz-/Navigationsschemas während verschiedener Flugphasen und iii) experimentelle

Auswertung an zwei Drohnentypen.

Nach der einer Einführung in die aerodynamischen Modellierungs- und Schätzungsaspekte

wird eine neuartige Kalibrierung der aerodynamischen Koeffizienten aus Flugdaten für deren

Grob- und Feinschätzung vorgeschlagen. Die erste Methode wird als originelle, aufeinander-

folgende Anwendung von drei linearen Schätzern für die Parameter Wind, aerodynamisches

Moment bzw. Kraft vorgeschlagen. Die Informationen, die mit jeder Messung einhergehen,

werden in einem Schmidt-Kalman-Filter gemäß einer Heuristik zur Beobachtbarkeit (Grammi-

an) verwendet. Die am besten beobachtbaren Parameter werden auf diese Weise aktualisiert,

meist in Bezug auf dynamische Manöver, um eine ausreichend gute Schätzung zu erhalten, die

in einer zweiten Stufe weiter verbessert wird. Dort werden die Parameter entweder durch eine

VDMbasierte Filterung oder eine optimale Glättung verfeinert. Für eine noch nicht kalibrierte

Drohne wird eine Offline-Schätzung bevorzugt, da sie von den präzisen GNSS-Beobachtungen

und Lageaktualisierungen profitieren kann, die entweder durch herkömmliches INS/GNSS

und/oder durch Photogrammetrie gewonnen werden.

Die modellbasierte Echtzeit-Navigation wird dann in einem Begleitcomputer implementiert,

der in die Nutzlast einer Prototyp-Drohne eingebettet ist. Der Informationsfluss zwischen

Sensoren, Autopilot und Computer wird über Knotenpunkte des Robotic Operation System

(ROS) abgewickelt. Im Anschluss an eine Sensitivitätsanalyse zur Qualität des Time-Tagging

zwischen den Sensoren und den Steuerbefehlen wird der Open-Source-Autopilot so modifi-

ziert, dass die erforderlichen Informationen über die Aktoren in GNSS-Zeit besser als 1 ms

umgesetzt werden. Die Schmidt-Kalman-Implementierung wird vorgeschlagen, um die ver-

schiedenen Flugphasen zu kontrollieren, von der Initialisierung über den Nominalwert bis

hin zur Empfangsunterbrechung der GNSS-Signale.
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Die Implementierung und ihre Navigationsleistung werden in mehreren Flügen mit MEMS-

Inertialsensoren unterschiedlicher Qualität für den Prototyp-Drohne, der eine konventionelle

Form hat, und für eine kommerzielle Drohne mit Deltaflügel validiert. Nach einigen Minuten

der Navigation mit GNSS unter Berücksichtigung der möglichen Neuschätzung von Para-

metern ist die autonome VDM/IMU-basierte Navigation bis zu fünfmal besser als die allein

auf IMU und Drucksensoren basierende. Diese Untersuchungen und Erkenntnisse eröffnen

Wege für die weitere Entwicklung und den Einsatz der modellbasierten Navigation für neue

Anwendungen, wie z.B. die Windabschätzung und den Betrieb in einer GNSS-reduzierten

Umgebung.

Stichwörter: Dynamisches Modell eines Fahrzeugs, Autonome Navigation, Echtzeit, Schmidt-

Kalman Filter, Kalibrierung der Aerodynamischen Koeffizienten
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1 Introduction

1.1 Context

The expansion of applications utilizing small Unmanned Aerial Vehicle (UAV)s has been un-

precedented in the last few years. No aviation sector has experienced such rapid technological

evolution in both hardware and software. The drone industry is expected to reach 10% of the

aerial market in the next ten years, representing several tens of billion dollars annually [1].

Construction [2], building inspections [3], agriculture field monitoring [4], mapping opera-

tions [5], or emergency equipment delivery [6] are a few of the applications among many that

employ unmanned aerial vehicles. An increasing number of interdisciplinary research fields

are beginning to investigate the utility of drone technology, and the number of publications

related to drones or their application has increased by a factor of 10 between 2013 and 2018

and is still growing [7]. With an increase in UAV utilization comes the need to perform au-

tonomous missions during which navigation accuracy and safety are of great importance.

Most of the aircraft operated outdoors rely on Global Navigation Satellite System (GNSS) sig-

nals to guarantee positioning quality and their combination with Inertial Navigation System

(INS) to determine attitude. Critical situations arise when one of the two systems becomes

unavailable, compromising the safety and reliability of missions.

In addition, the increasing number of UAVs operated in public airspace has triggered the

adoption of new regulations to manage them effectively. These regulations consider many

factors, including safety features such as return-to-home options, which ensure secure landing

of UAV in compromised circumstances, for example, low battery, loss of communication, or

degradation of weather or navigation performance. Taking into account the latter, when a

UAV loses reception of a satellite signal due to interference, spoofing or jamming, or simply

physical obstructions, such security procedures are challenged in the absence of additional

sensors (such as cameras and lidars) or their reduced perception due to fog, darkness, or

absorption.

Due to the aforementioned reasons, the quality of autonomous navigation remains a dominant
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research topic, especially for methods aiming for its improvement without additional sensors.

A relatively new approach to autonomous navigation that uses a Vehicle Dynamic Model

(VDM) in a particular architecture has shown the potential to improve the positioning accuracy

of small fixed-wing UAV within GNSS denied or perturbed environments compared to inertial-

based navigation [8]. In mapping flights with precise (Real time Kinematic (RTK)/PPK) GNSS

positioning, this approach also aims to improve direct orientation (attitude estimation) [9].

This patented architecture [10] was defended in 2018 by Dr. Khaghani in his Ph.D. thesis [11].

A major challenge related to VDM-based navigation is its dependence on a priori knowledge

of the aerodynamic characteristics of the platform. The prerequisite for the system is a precise

knowledge of the coefficients of the aerodynamic model for each specific aircraft. Only with

“reasonably” correct values, will the dynamic process model represent the realistic flight

behavior of the platform for navigation (filter) to work correctly; otherwise, it may become

unstable and diverge [12].

The determination of some model parameters is straightforward, such as the weight of the

aircraft or the surface area of the wing. Wind tunnel tests or Computational Fluid Dynamic

(CFD) simulations can be conducted to determine other VDM parameters as presented in [13]

for a small UAV. However, these methods are expensive, time-consuming, do not provide all

parameters, and, for the latter, require an excellent physical model. Moreover, modification

of the platform or its payload requires adaptation of the coefficients. Therefore, a need to

obtain such parameters by other means arises. When the initial values for these parameters

are adapted from a similar type of aircraft, these can be further calibrated based on sensor

observations in flight. This method requires sensor data (IMU, GNSS, images, dynamic and

static air pressure) of sufficient quality, flight control commands from the autopilot within a

shared (GNSS) time frame, and some (e.g., state space) estimation procedures.

However, it is challenging to estimate the parameters individually due to their implicit corre-

lations [11]. The limitations of the in-flight estimation of VDM parameters during nominal

dynamics motivate the investigation of a dedicated calibration procedure.

In addition, a critical emerging challenge with an online calibration procedure is the need

to estimate many parameters. The apparent consequence of these characteristics is the

growth of computational resource requirements and an increased risk of potential numerical

instability. Due to the restricted processing power of an embedded system, a valuable needed

improvement is the reduction of the navigation filter’s computational overhead and the

implementation of safeguards to improve its numerical stability.

Previous research on VDM-based navigation using a MATLAB-based offline framework mo-

tivates the design of an embedded real-time solution that can be utilized to improve dead-

reckoning capacity within a GNSS-denied environment. However, such an implementation

raises several engineering questions related to real-time constraints e.g., global time syn-

chronization of sensor and flight control data, their real-time access, and system navigation

initialization, adaptation of the estimation scheme during GNSS outage to name a few.
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1.2 Research Objectives

After the analysis of the current state of the VDM-based navigation framework, the objectives

of this research are established as threefold:

Obj. 1: Numerical stability

Optimize the current navigation estimation scheme to a more stable version from a

real-time application perspective. The goal is mainly to improve the numerical stability

in the filter by (i) adapting factorization algorithms to the VDM-based navigation

system, (ii) conditioning the different elements of the filter to reduce the probability of

incorrect convergence and build-up of numerical errors, and (iii) reduce the filter size

to improve computational efficiency.

Obj. 2: Initialization and calibration

Elaborate on a multi-phase calibration procedure to estimate platform-specific aerody-

namic coefficients. The procedure explores the potential of obtaining such estimations

by using sensor measurements available in most UAV both in post-processing and

online estimation and without employing additional equipment or computer-aided

modeling tools (e.g., wind tunnel experiments or CFD). The first phase aims to provide

the VDM-based navigation software with the (finest possible) knowledge of initial

parameters that are further refined via state space in subsequent calibration phases.

Obj. 3: Real-time Implementation

Develop the concepts and realize their implementation of the first fully embedded

real-time prototype of a VDM-based navigation solution on a fixed-wing drone. This

involves setting up an environment to gather, synchronize, and time-tag all the re-

quired data, and develop support software to process them in the navigation solution

correctly. Such an estimation environment must be designed from a real-time per-

spective to cope with the asynchronous nature of the sensor measurements and flight

control commands.

1.3 Software Methodology

Fig. 1.1 illustrates the different frameworks (rectangles) representing a research environment

with the work packages (ellipses) describing the research objectives, the adapted and devel-

oped methods, the software implementations and the links between them.

Dr. Khaghani developed as part of his thesis [11] a MATLAB-based simulation and post-

processing environment. The first part of the software called Post-Processing (PP) VDM

in Fig. 1.1 has been adapted to include the development of the first two research objectives.

The module possesses a simulation environment and a VDM-based navigation estimator

based on Extended Kalman Filter (EKF). The simulator can emulate the flight trajectory of a

platform defined by its dynamic model. Furthermore, the simulator can produce and save
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ideal sensor measurements (IMU, GNSS, airspeed, barometer), as well as the corresponding

control commands, which can be corrupted by noise and used later in the estimator to assess

the quality of the VDM-based navigation system [14]. Modifications to the model and filter

optimization are first tested within this framework before being adapted to a C++ version.

The real-time aspect of the system (objective 3) requires the design of a complete soft-

PP VDM
Matlab

Algorithm Testing and
Validation

Data post-processing

Simulated RT VDM
Matlab / C++

Sofware Verifications

Performance Analysis

Real Time VDM
C++

HW & SW Testing

Real-Time Validation

Software Dev.


ROS
SW RT adaptations
Autopilot

Numerical stability

investigations

Optimization

Methods

Offline Calibration

Field works - Flights


Data gathering
RT VDM experiments

HW modification


Payload updates
Platform modifications

Flight phases


Initialization
Nominal + on-line calibration
Dead-reckoning

R. obj. 2

R. obj. 1

R. obj. 1, 2, 3

R. obj. 3

R. obj. 3

R. obj. 2, 3

Figure 1.1: Methodology for the development of the real-time VDM-based navigation system,
its calibration and optimizations

ware/hardware environment to acquire, label with the same global GNSS time reference,

and distribute the necessary sensors and platform flight control commands to the process-

ing software. To this end, Robot Operating System (ROS) [15] is chosen. The payload, the

aircraft autopilot and different software must be fully compatible and adapted to the ROS

structure. The software is tested in a Simulated RT VDM framework together with the MATLAB
environment, as mentioned above.

When the feasibility of the real-time framework is verified, the Real-Time VDM framework

can be investigated online through flight campaigns. The algorithms developed can be tested

and validated in real-time at this stage. The utility of field experiments is two-fold. First, it

permits the collection of the necessary flight data (sensors and autopilot data), which are used

in postprocessing to i) calibrate the dynamic models used in the navigation software both in

simulation and in real time, and ii) test the various modified algorithms with non-simulated

data. Second, it gives the possibility to assess the performance of VDM-based navigation in

real-time.

Transitions between flight campaigns, algorithm modifications, testing, and real-time adapta-

tions were made iteratively with the advancement of the findings.
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1.4 External Contributions

Realizing the research objectives requires numerous scientific and engineering aspects of

various complexity. To achieve these goals, the candidate has benefited from the sporadic

assistance of the EPFL-TOPO laboratory, which is greatly appreciated. Although the author

is the main contributor to most of the material presented in this thesis, several tasks were

accomplished through collaborative efforts and presented in joint publications. These topics

will be clearly stated at the beginning of the corresponding part, including the following:

• Parts of the first phase (off-line) calibration procedure to estimate the initial aerody-

namic coefficients from a given platform based on post-processed sensor data (Sec. 5.2)

• Hardware modifications of the platform, including sensor mounting and replacements

(GNSS receiver and antenna, Pitot tube), autopilot configuration (Sec. 6.3) and the flight

operation of the UAV (Sec. 6.4)

• The design and modifications of several versions of the payload, sensor mounting and

wiring, and the design of the dedicated sensor boards (Sec. 6.2).

1.5 Thesis Outline

The thesis is presented in five parts, covering ten chapters in total, the content of which is

summarized hereafter:

PART I: Preliminaries

Reviews the theoretical basis used in the thesis and recalls the VDM derivation for the two

fixed-wing drones used in this thesis.

• Chapter 2: Estimation Methods presents different estimation techniques such as least

squares and Kalman filtering with some of their extensions. This chapter aims to estab-

lish the semantics used in this document.

• Chapter 3: The background of Integrated Navigation with Vehicle Dynamic Model

recalls the fundamentals of integrated navigation with VDM, the definition of frames,

and the basics of geodesy.

PART II: VDM Navigation Enhancements

The second part of the thesis addresses the first two research objectives.

• Chapter 4: Numerical aspects develops means to improve the general state system

estimation scheme, reduces potential numerical errors, and simplifies aerodynamic

models based on highly correlated states.
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• Chapter 5: Calibration proposes a multiphase calibration procedure. The first phase

executed offline takes advantage of data collected during a high dynamic calibration

flight to identify the platform-dependent aerodynamic coefficients characterizing the

forces and moments, the so-called VDM parameters. The following online phases

exploit the capabilities to calibrate and fine-tune some states and weather-dependent

parameters using sensors present in the platform and, if not present, using a custom-

made weather station.

PART III: Real-Time Implementation

The third part aims to materialize the autonomous navigation system based on VDM in

real-time using a custom-made platform and covers the third objective of the investigation.

• Chapter 6: Experimental Components describes in detail the platforms used during

this thesis, together with the payloads carried during the flight campaigns, as well as the

characteristics of the devices and sensors that were integrated into each payload.

• Chapter 7: Systems and Software Architecture aims to provide a general understanding

of the embedded real-time system with its subelements and constraints. It describes

the numerous applications responsible for the correct data transfer and time-tagging

of sensor and flight control commands and the C++ adaptation of the (MATLAB) VDM

navigation estimator. The different flight phases of the VDM-based navigation system

identified in this thesis are also presented.

PART IV: Results

The fourth part of the thesis gathers and presents the most important results and analysis of

the different research objectives in three chapters.

• Chapter 8: Coefficient determination presents the two-phase calibration procedure

with the navigation improvements achieved in research objective two.

• Chapter 9: Real-time aspects covers the numerical elements of the filter formulated in

objective one and the details of the real-time implementation (objective three) and its

requirements.

• Chapter 10: Autonomous navigation details the performance of VDM-based autonomous

navigation using the improvements and methodologies proposed in this thesis.

PART V: Conclusion Remarks

The last part concludes the thesis by summarizing its main contributions and limitations and

providing recommendations for future work.
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2 Estimation Methods

Overview

Estimation principles are used in most parts of this research, and this chapter is dedicated

to briefly reviewing relevant estimation methods, the adopted mathematical notations, and

conventions. It should be noted that the chapter does not cover exhaustive derivations

and comprehensive proofs but should, however, give enough material to understand the

application of such tools in this thesis. Estimation theory aims to obtain values of specific

parameters of a model that are a priori unknown and need to be inferred from measured/ob-

served data. The model describes a functional relationship between these parameters and

observed empirical data. In the framework of this thesis, the aerodynamic model of the

fixed-wing drone is described by a set of coefficients, whose values are a priori unknown.

Similarly, the drone trajectory is represented by a number of parameters that vary in time

the value of which is conditioned by direct or indirect observations. In this context, the

estimators covered in this chapter are (i) Least Squares (LS), where the fundamentals are

introduced for the weighted and recursive versions; (ii) recursive estimators of quantities

governed by non-linear differential equations in time (e.g., EKF); (iii) its post-processing

variants, particularly the optimal recursive smoother. While filtering is suitable for real-time

applications, optimal smoothing is particularly useful for calibration as it maximizes all

the available information for the estimation of parameters over the whole duration of the

experiment (e.g., a flight). Most derivations are adapted from [16–18].

2.1 Linear Least Squares

2.1.1 Ordinary and Weighted Least Squares

The most well-known linear estimation method is the LS. This method uses a redundancy in

observations z ∈ Rl×1 with respect to the n number of parameters x ∈ Rn×1 to be identified,

9



Chapter 2. Estimation Methods

|z| = l > n = |x|. This defines the linear equation

z = Hx+ϵ (2.1)

where H ∈ Rl×n is a non random matrix called the measurement design matrix relating the

parameters x to the observations z, and ϵ ∈ Rl×1 is a noise vector of random normally dis-

tributed variables such that its realization has a mean of zero E [ϵi ] = 0, a constant variance

var [ϵi ] =σ2 ∀i = [1, l ], cov[ϵi ,ϵ j ] = 0 ∀i , j = [1, l ] for i ̸= j .

With a set of observations z, the goal is to fit the data to the linear model specified by H and

obtain the best estimate x̃ of the parameters x by minimizing the sum of squared residuals of

Eq. 2.1, z−Hx̃ = r . This leads to minimizing the objective function r

ar g mi nr = (r T r ) = (z−Hx̃)T (z−Hx̃) (2.2)

However, as it is the case in general, the measurements z have different uncertainties var [ϵi ] =

σ2
i and can be correlated ∃i , j with i ̸= j and cov[ϵi ,ϵ j ] ̸= 0. The Best Linear Unbiased Estimator

(BLUE) is achieved by weighting the measurements by their inverse variance [19]. Defining

R−1 = 1
var [ϵ] as the matrix of the inverse of the observation covariance R, the objective function

to be minimized is

ar g mi nr = (r T r ) = (z−Hx̃)T R−1 (z−Hx̃) (2.3)

developing Eq. 2.3, taking the Jacobian [20] with respect to x̃ and setting it to zero gives

x̃ =
(
HT R−1H

)−1
HT R−1z (2.4)

where(
HT R−1H

)−1
= P (2.5)

defines the covariance matrix of the parameters x.

2.1.2 Recursive Least Square

When the number of observations becomes large |z| = l ≫ n = |x| the design matrix H grows

proportionally and the computation of the estimated x̃ becomes a heavy operation. However,

if the observations z are uncorrelated and initial parameters can be computed with a subset

of observations, the estimation can be reformulated more efficiently. The Recursive Least

Squares (RLS) defines recursive steps to add new observations z to an existing estimate. The

essential steps are summarized hereafter.

Assuming that at step k, where k observations are available, the estimate x̃ with its covariance

10



2.2 Kalman Filter

P are given by (from Eq. 2.5 and Eq. 2.4)

x̃k = Pk HT
k R−1

k zk (2.6)

Pk =
(
HT

k R−1
k Hk

)−1
(2.7)

At time k +1 a new uncorrelated observation zk+1 is available with correlation matrix Rk+1

and design matrix Hk+1. Adapting the LS equation at step k +1 gives

x̃k+1 = Pk+1HT
k+1R−1

k+1zk+1 (2.8)

Pk+1 =
(
HT

k+1R−1
k+1Hk+1

)−1
(2.9)

It should be noted that the system of equations Eq. 2.8 and Eq. 2.9 are correctly defined only

when P is full rank. In a recursive way, Eq. 2.8 and Eq. 2.9 can be reformulated with respect to

the step k and new observations elements, zk+1, Rk+1, and Hk+1, yielding

x̃k+1 = x̃k +Pk+1H T
k+1R−1

k+1︸ ︷︷ ︸
gain

(zk+1 −Hk+1x̃k )︸ ︷︷ ︸
innovation

(2.10)

= x̃k +Kk+1 (zk+1 −Hk+1x̃k ) (2.11)

Kk+1 = Pk H T
k+1

(
Hk+1Pk H T

k+1 +R−1
k+1

)−1
(2.12)

(Pk+1)−1 = HT
k+1R−1

k+1Hk+1 = (Pk )−1 +H T
k+1R−1

k+1Hk+1 (2.13)

where matrix Kk+1 represents the weighted (gain) influence of the new observation zk+1 with

respect to the previous estimate x̃k . zk+1 − Hk+1x̃k tells how the estimate x̃k+1 needs to be

updated with the gain. Expressing the covariance Pk+1 as a function of the gain Kk+1, Eq. 2.13

can be expressed as

Pk+1 = (I−Kk+1Hk+1)Pk (2.14)

with the Eq. 2.11, 2.12, and 2.14 the RLS equations are defined.

2.2 Kalman Filter

state space methods are useful for recursive estimations of parameters x(t ) with time depen-

dency.

2.2.1 State Space Dynamic Systems

A brief introduction on continuous and discrete-time state space systems are given in the

sequels. The former defines the continuous elements which are discretized for the later system

used in the software implementation both in MATLAB and C++. The derivations are simplified

to assume zero input vector u(t ), as normally defined in [21].

11
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Continuous-Time Systems

The causal continuous-time state space system definition at time t ∈R+ is expressed as

ẋ(t ) = F(t )x(t )+G(t )w(t )+ L(t )u(t )︸ ︷︷ ︸
omitted for now

(2.15)

z(t ) = H(t )x(t )+v(t ) (2.16)

where in the first equation, x(t) is the system state, F(t) is the dynamic matrix changing the

state over time, G(t ) is the process noise shaping matrix, w(t ) is the process noise and L(t ) is

the input coupling matrix. The second equation is the same as Eq. 2.1, where z(t), H(t) and

v(t) are the measurements, the measurements design matrix and the measurements’ noise,

respectively. The noises of the dynamic system are assumed to be Gaussian, independently

and identically distributed (iid) with 0 mean and covariance Q(t ) and R(t ) for the noise vector

w(t ) and v(t ), respectively.

Discrete-Time Systems

The corresponding causal discrete-time state space system at step k ∈Z+ is expressed as

xk+1 =Φk xk +Gk wk (2.17)

zk = Hk xk +vk (2.18)

with Φk , Gk , Hk being the discrete-time correspondences of F(t ), G(t ), and H(t ) respectively.

For now, the system is considered linear, therefore Φk , Qk , Gk , and Hk are matrices. Their

derivations (approximations) are well known and not presented here (simplified derivations

are given in Appendix B.2.1). The estimated states xk at time (step) tk has covariance Pk =

E [xk xT
k ]. Therefore, the covariance at time tk+1 is given by

Pk+1 = E [xk+1xT
k+1] = E [(Φk xk +Gk wk )(xT

k Φ
T
k +GT

k wT
k )] =Φk PkΦ

T
k +Qk (2.19)

Kalman Filter Equations

The Kalman filter steps are regrouped in the Tab. 2.1 with the specific Eq. 2.17 and 2.19 for a

discrete time linear system which predicts (∼ upper script) the states and the measurement up-

dates (^ upper script) from the RLS derivation Eq. 2.12, 2.11 and 2.14. Note that the innovation

Table 2.1: Discrete Kalman Filter steps

Prediction steps Update steps
x̃k+1 =Φk x̂k Sk = Hk P̃k HT

k +Wk

P̃k+1 =Φk P̂kΦk
T +Qk Kk = P̃k HT

k Sk
−1

x̂k = x̃k +Kk (z−Hk x̃k )
P̂k = (I−Kk Hk ) P̃k
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equation (z−Hk x̃k ) was introduced in Eq. 2.11 and (z−Hk x̂k ) is called the residual.

2.3 Extended Kalman Filter

The RLS and Kalman filter methods are estimation algorithms for linear systems. However,

the system dynamics or the observation equations in navigation are generally non-linear and

the EKF is a sub-optimal estimation method to handle such equations. By (re)introducing the

deterministic input vector uk at time (step) tk , the discrete non-linear system dynamic and

observation equations are given by

xk+1 = f(xk ,uk )+Gk (w)k (2.20)

zk = h(xk )+ rk (2.21)

which give the EKF steps. The transition matrix Φk = ∂f(x̂k ,uk )
∂x

is the Jacobian matrix formed

with the partial derivative of f, and Hk = ∂h(x̃k )
∂x

is the Jacobian of the observation model func-

tion h with respect to the system states x. The computations of Qk is given in Appendix B.2.1.

2.3.1 Error State Extended Kalman Filter

The EKF is a nonlinear estimation method and is therefore sensitive to the approximation of x̃,

where otherwise the linearization of f will be far from the actual states and filter divergence can

occur [18]. Additionally, the accumulated errors in the states by numerous prediction steps,

without updates to the true states, can become large. Interestingly, state errors appear to have

less complex stochastic natures than the states themselves [22]. The error state equations are

better modeled with linear approximations than the state equations, and thus the motivation

to use the state errors over the states are manifold [23] and can be summarized as follows:

• They are close to the origin and thus avoid issues related to parameter singularities or

gimbal lock, ensuring the linearity of the system.

• The error-states are small step quantities and safely approximated as first-order values.

The state derivatives are therefore greatly simplified in terms of computational load and

complexity.

• The state updates can be applied at a lower rate than the predictions because the signal

dynamic in the error-states are smaller than in the states.

Before defining the steps for the Error State Extended Kalman Filter (ESEKF), the linearized

equations of the Kalman Filter (KF) are derived as follows.

The reference (true) states x = x̂+δx shall be defined as the addition of the estimated states x̂

and the error-states δx = x− x̂. To simplify the notation, the time argument is abandoned and
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the new system dynamic equation becomes

ẋ = ˙̂x+δẋ = f(x̂+δx,u)+w (2.22)

≈ f(x̂,u)+ ∂f(x,u)

∂x

∣∣∣
x=x̂
δx+w (2.23)

where Eq. 2.23 is the Taylor expansion with the first order term only. Note the difference

between the derivative argument ∂x and the error-state δx. The linearized dynamic equation

for the error-state is therefore

δẋ =
∂f(x,u)

∂x

∣∣∣
x=x̂
δx+w (2.24)

= F(x̂,u)δx+w (2.25)

The measurement Eq. 2.21 is linearized similarly to Eq. 2.22. By dropping the subscript k

specifying the step, it gives

z = h(x̂+δx)+ rk (2.26)

= h(x̂)+ ∂h(x)

∂x

∣∣∣
x=x̂
δx+ r (2.27)

Note that in the Kalman filter step, the measurement updates are done with respect to the

estimated x̃ and not the updated x̂ states. The upper script is kept for notation consistency.

The residual δz is the subtraction of Eq. 2.27 with Eq. 2.21 and yields

δz =
∂h(x)

∂x

∣∣∣
x=x̂
δx+ r (2.28)

= H(x̂)δx+ r (2.29)

The linearized error Eq. 2.25 and residual Eq. 2.29 form a new linear system

δẋ = F(x̂,u)δx+w (2.30)

δzk = H(x̂)δx+ rk (2.31)

and can be used in an optimal non-linear estimator such as the EKF, forming the ESEKF. For

the discrete-time equations, the matrix Φk and Qk , as well as the covariance propagation,

are derived in a similar way as for the linear KF presented in Sec. 2.2.1. The filter estimates

and updates the error-states and not the states themselves. In the EKF, the prediction of the

states x̃k is performed via the nonlinear function f() and not with the transition matrix Φ as

presented in Eq. 2.20. These states are considered as the reference error-less states. Therefore,

in the ESEKF, the prediction step of the error-states δx̃k+1 are based on the current residual

error δ̂xk which equal zero. The prediction of the error-states is therefore always null and

this operation is omitted in the ESEKF. In addition, the error-states updated x̂k+1 depends

on the correction of the predicted null-error-states δx̃k . The equation is thus simplified to

δx̂k = Kk (zk −h(x̃k )) = Kkδz̃k .
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Prediction:

Filtering:

Smoothing:

Time of estimationAvailable observations

time

Figure 2.1: Different estimation phases depending on the availability of observations

The filtering steps are summarized in Tab. 2.2.

Table 2.2: Discrete Error-State Extended Kalman Filter steps

Prediction steps Update steps
x̃k+1 = f(x̂k ,uk ,δt ) Sk = Hk P̃k HT

k +Wk

δx̃k+1 =Φk δ̂xk = 0 Kk = P̃k HT
k Sk

−1

P̃k+1 =Φk P̂kΦk
T +Qk δx̂k =��δx̃k +Kk (zk −h(x̃k )) = Kkδz̃k

x̂k+1 = x̂k +δx̂k

P̂k = (I−Kk Hk ) P̃k

2.4 Optimal Smoothing

Different estimation phases depend on when the observations are available and when the

state estimation needs to be performed. The prediction foresees the states in a future time,

based on the current states and dynamic models. When few observations are available at the

estimation time, the estimate is filtered (updated). When the observations are saved from

being treated in a post-processing manner, the estimation of the states at a particular time

of interest can benefit from the knowledge of future observations, in a technique known as

smoothing. The three phases can be seen in Fig. 2.1 at the time t of estimation interest.

While the prediction and filtering steps have been described above, the optimal smoothing

algorithm is presented hereafter. Some optimal smoothing algorithms are described in [24,

25], and these sources inspire the following summary. Smoothing principles are based on the

weighted combinations of several (at least 2) forward and backward filter phases. The fixed-

interval smoother is composed of a forward filtering phase, as described earlier in this section,

with a backward phase briefly summarized here. The states estimate and corresponding

covariance matrix in the forward filter phase are denoted with x f and P f , respectively. The

backward states estimate xb and covariance Pb are computed by reversing the sequence of

predictions and updated events, and the equations are summarized in Tab. 2.3 where the
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Chapter 2. Estimation Methods

Table 2.3: Backward Discrete Error-State Extended Kalman Filter steps

Prediction steps Update steps
x̃bk−1 = f(x̂k ,uk ,δt ) Sk = Hk P̃bk HT

k +Wk

P̃k−1 =Φk P̂kΦk
T +Qk Kk = P̃k HT

k Sk
−1

δx̂bk = Kkδzk

x̂bk−1 = x̂bk +δx̂bk

P̂bk = (I−Kk Hk ) P̃bk

integration time δt is now negative and Φ is computed as in Eq. B.7 with the negative dynamic

matrix −F reversing the propagation.

The smoothed estimate xs and covariance Ps are the combination of the two filtered sequences

(forward and backward) and are given by the following equation for each step k, with the

subscript k removed for readability

xs = x f +P f P−1
b

(
xb −x f

)
(2.32)

Ps =
(
P−1

f +P−1
b

)−1
(2.33)

Other optimal smoothing techniques exist, including the Modified Bryson-Frazier (MBF)

smoother [26] that uses two passes of filtering, where the main advantage is the non-requirement

of a covariance matrix inversion, and the Rauch-Tung-Striebel (RTS) [27] that requires only

one filtering sequence (forward or backward). The smoothing methodology is employed in

one proposed method to calibrate the aerodynamic coefficients (Sec. 5.3.1).

Summary

This chapter has covered an overview of the estimation methods that are used in this

research. It has summarized least squares and Kalman filter. These methods shall be later

used for VDM-based navigation and calibration. Subsequently, optimal smoothing was

reviewed as an enhancement for state estimation in a VDM-based framework. However, for

understanding model-based navigation, the knowledge of general geodetic principles and

inertial navigation aspects is of primary importance. These aspects will be reviewed in the

next chapter.
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with Vehicle Dynamic Model

Overview

This chapter introduces the fundamentals covering general inertial navigation and geodesy

as needed for the aspects of VDM-based navigation. These theoretical concepts are well

established from which several conventions and definitions are recalled as used throughout

the manuscript. The basics of rotational operations are introduced for the Euler angles

and quaternion representation. The benefits and limitations of the two representations

are discussed to understand why both are employed in the attitude of the drone. Then

the frames employed in this thesis are defined with the corresponding transformations

among them. These are: inertial, Earth, local-level, and body, as well as some sensor

frames. Afterward, the rigid body dynamics are expressed with respect to these frames via

differential equations for the position, linear and angular velocity, and attitude, respectively.

The equation parameters are employed as the navigation states in the estimation scheme

presented afterward. Contrary to inertial-based navigation, model-based navigation obtains

specific forces and angular velocities from the aerodynamic model of a drone rather than

from measurements. Separate aerodynamic models are presented for both platforms used

in this thesis: a fixed-wing and a delta-wind UAV, parameters of which are to be determined

from in-flight data. The observation models of the different sensors used in this context

are described, including an IMU, GNSS receiver, airspeed, and a barometer. All models are

linearized with respect to all parameters of interest using automatic tools to generate the

mandatory Jacobian matrices for the estimators presented in the previous chapter. The

manuscripts and internal teaching materials inspiring the presented mathematical relations

and illustrations are [11, 16, 17, 28, 29].
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3.1 Rotation Operations

3.1.1 Rotation Matrix

A vector xa represented in any Cartesian frame a can be expressed with respect to any other

Cartesian frame b with a specific rotation matrix denoted as Rb
a to obtain the same vector

expressed in the second frame as

xb = Rb
axa (3.1)

where the subscript indicates the initial and the superscript indicates the final frame. The

matrix Rb
a is called a Direct Cosine Matrix (DCM).

Euler Angles

The DCM can be divided into three rotations around each axis of the initial frame a where the

rotation quantities are given by Euler angles [30]. The order around which axis the sequence

of rotations is performed has to be defined. For the a frame with its axis xa
1 , xa

2 , and xa
3 , a

sequence of rotation can be given by first rotating around the xa
1 , then xa

2 and finally xa
3 by the

angles, α, β, and γ, respectively. The complete rotation is therefore given by

Rb
a = R3(γ)R2(β)R1(α) (3.2)

=

 cos(γ) si n(γ) 0

−si n(γ) cos(γ) 0

0 0 1


cos(β) 0 −si n(β)

0 1 0

si n(β) 0 cos(β)


1 0 0

0 cos(α) si n(α)

0 −si n(α) cos(α)

 (3.3)

The creation of the DCM from Euler angles will be referred to by the operation fdcm(α,β,γ). It

should be noted that the DCM is only dependent on the relative rotations between two frames.

3.1.2 Differential Rotations

An attitude representation using Euler angles follows the Special Orthogonal Group (SO(3))

manifold, meaning that two attitude vectors cannot be added element-wise together as in a

Euclidean space. In other words, an initial orientation xa to which the quantity δxa is added is

not equal to

xa
f i nal ! = xa +δxa (3.4)

with

δxa =

δαδβ
δγ

 (3.5)
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3.1 Rotation Operations

If δxa is composed of small angles, this approximation can be used for software implementa-

tion.

The vector xa can be transformed into a corresponding DCM Ra , following a sequence of

rotation as presented in Sec. 3.1.1. Similarly, the quantity δxa can be represented in another

DCM matrix. Then the two matrices can be multiplied to obtain the final orientation Ra
f i nal .

Ra
f i nal = Ra · fdcm(δxa) (3.6)

The Euler angles of xa
f i nal = f −1

dcm(Ra
f i nal ) can be recovered from the matrix Ra

f i nal with the

inverse transformation f −1
dcm() given without proof [31] by

α = at an

(
R21

R11

)
(3.7)

β = −asi n (R31) (3.8)

γ = at an

(
R32

R33

)
(3.9)

where Ri , j , i , j ∈ [1,2,3] are the column and raw indices, respectively, of Ra
f i nal .

Skew Matrix

For small rotation perturbations, the DCM differs from the identity matrix by only small

quantities when the approximation si n(x) ≈ x and cos(x) ≈ 1 is used. The rotation matrices

R1, R2 and R3 can be approximated as

R1 =

1 0 0

0 1 α

0 −α 1


︸ ︷︷ ︸

I3×3 −α

,R2 =

1 0 −β
0 1 0

β 0 1


︸ ︷︷ ︸

I3×3 −β

,R3 =

 1 γ 0

−γ 1 0

0 0 1


︸ ︷︷ ︸

I3×3 −γ

(3.10)

and the complete rotation matrix R = R1 ·R2 ·R3 can be rewritten as

R = (I3×3 −α)(I3×3 −β)(I3×3 −γ) = I3×3 −α−β−γ+γα+γβ+αβ−γαβ︸ ︷︷ ︸
values ≈ 0

(3.11)

= I3×3 −
(
γ,α,β

)
= I3×3 −Ψ (3.12)

where

Ψ
(
γ,α,β

)
=

 0 γ −β
−γ 0 α

β −α 0

≜ [Ψ]× (3.13)

19
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is the skew-symmetric matrix called an axiator [32] and [Ψ]× is the reduced representation.

The skew matrix [Ψ]× is useful when the time derivative of a rotation matrix Ṙb
a has to be

computed to describe the angular velocity or the rate of change of the attitude. Moreover,

a time dependant rotation matrix Rb
a (t) can be decomposed into an initial rotation matrix

Rb
a (t0) with t0 → t to which the infinitesimal angles are added I3×3 −Ψ(δt) where δt = t − t0

and δt → 0

Rb
a (t0 +δt ) = (I3×3 −Ψ)Rb

a (t0) (3.14)

With the definition to the derivative, the time-dependant rotation matrix Rb
a gives

Ṙb
a = lim

δt→0

Rb
a (t0 +δt )−Rb

a (t0)

δt
(3.15)

Using Eq. 3.14, the term Rb
a (t0 +δt ) can be replaced by (I3×3 −Ψ)Rb

a (t0).

Substituting, the term Rb
a (t0) cancels out once. The time derivative can be rewritten as

Ṙb
a = lim

δt→0

−Ψ
δt

Rb
a (t0) = −Ωb

abRb
a (t0) (3.16)

where term Ψ
δt can be written as Ωb

ab and correspond to the skew-symmetric matrix defined in

Eq. 3.12. The elements of the matrix Ωb
ab can be interpreted as the angular-rate in the a frame

with respect to the b frame (the two subscripts) and expressed in the b frame (superscript).

The derivation holds for any two arbitrary frames. The Eq. 3.16 can be further developed to

give Ṙb
a = Rb

a (t0)Ωa
ba where the rotation sense and the frame in which the rotation is expressed

have been inverted.

The skew-matrix will be used to derive the differential equations for the attitude in Sec. 3.4.

The skew-matrix does not involve trigonometric operations and can substitute the DCM

matrix for computational requirements but small angles should be assumed.

3.1.3 Quaternion

Euler angles are easy to interpret and widely used. However, when used to represent an

attitude in a Cartesian coordinate frame, they possess an intrinsic ambiguity when the angle

around the second axis approaches pi /2. This situation is known as gimbal lock [33] and sets

the attitude in an unstable state. A solution, instead of using the Euler angle, is to use another

attitude representation: the quaternion [34]. The advantages of the quaternion over the Euler

angles are manifold. One advantage is that it removes the gimbal lock situation such that the

quaternion operations are linear. However, the quaternions have setbacks as they are not

unique and are over-parameterized by their definitions. A combination of the two attitude

representations can be used for navigation (Sec. 3.2).

A description of the quaternion fundamentals are presented here. A detailed and thorough
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3.1 Rotation Operations

definition of the quaternion can be found in [35], pleasing introductions are given by [36, 37]

and a graceful presentation of the quaternions in photogrammetry and navigation can be

found in [38]. The following summary is inspired from these references.

A quaternion is composed of two complex numbers, C1 = x + yi and C2 = u + vi , where

{x, y,u, v} ∈R and {i , j } ∈C to obtain as q = C1 +C2 j . Developing the quaternion q gives

q = x + yi +u j + vk with k ≜ i j (3.17)

where q ∈H is the quaternion space.

The following relationship can be made

i j = k = − j i , j k = i = −k j ,ki = j = −i k (3.18)

where the order of the product operation matters (i.e., is not commutative).

Another representation of a quaternion omits the combination of real {q0, q1, q2, q3} and imag-

inary {1, i , j ,k} components as in Eq. 3.17, to form the sum of a real scalar and an imaginary

vector

q = q0+q1i +q2 j +q3k ⇐⇒ q = q0+q1+q2+q3 (3.19)

where q0 is the real part and {q1, q2, q3} is the imaginary vector.

Conventions

The definition with q0 as the real scalar follows the Hamilton [39] convention and is used in

the rest of this manuscript, as well as in the software implementations. I

3.1.4 Main Quaternion Properties

The main quaternion properties and mathematical operations are presented hereafter.

IThe JPL [40] convention has the real scalar at the fourth position ({q0, q1, q2,q3}) and the quaternion operations
have to be redefined accordingly.
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Chapter 3. Background of Integrated Navigation with Vehicle Dynamic Model

Sum

The sum follows the vectorial element-wise operation. Let p = [p0, p1, p2, p3] ∈ H and 1 =

[q0, q1, q2, q3] ∈H two quaternions, the summation is defined as

p±q =


p0

p1

p2

p3

±


q0

q1

q2

q3

 =


p0±q0

p1±q1

p2±q2

p3±q3

 (3.20)

By linearity of the sum operation, the rule of communicativity and associativity are valid.

Product

Using the definition in Eq. 3.18, the simplified quaternion representation in Eq.3.19 and

introducing the quaternion product ⊗, the operation is defined as

p⊗q =


p0

p1

p2

p3

⊗


q0

q1

q2

q3

 =


p0q0−p1q1−p2q2−p3q3

p0q1+p1q0+p2q3−p3q2

p0q2−p1q3+p2q0+p3q1

p0q3+p1q2−p2q1+p3q0

 (3.21)

The later equation with the proprieties in Eq. 3.18 expose that the commutativity does not

apply in the quaterion production. Therefore, p⊗q ̸= q⊗p in general.

Inverse, Norm and Unit Quaternion

A quaternion q times its inverse q−1 equals the identity, therefore q⊗q−1 = 1.

The quaternion norm is given by

∥∥q
∥∥ =

√
q⊗q∗ =

√
q∗⊗q =

√
q02 +q12q22q32 ∈R (3.22)

where q∗ is the quaternion conjugate and the sign of the complex elements in q, including

q1, q2, q3, are inverted. With the definition in Eq. 3.22, a unit quaterion is when
∥∥q

∥∥ = 1 and

by association, its conjugate equals the inverse, q∗ = q−1

Exponential of pure quaternions

A pure quaternion q possesses zero as the real value q0. Rewriting q = uθ where θ =
∥∥q

∥∥ ∈R
and u is a unit of pure quaternion, the exponential of a pure quaternion is given without proof
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3.1 Rotation Operations

by

eq =

[
cos(θ)

usi n(θ)

]
(3.23)

Note that when
∥∥eq

∥∥2 = cos(θ)2 + si n(θ)2 = 1, the exponential of a pure quaternion is one.

3.1.5 Differential Quaternion

With the unit quaternion q, the identity and conjugate proprieties give q ∗⊗q = 1. If during a

period of time d t the rotation rate is assumed to be constant, both sides can be differentiated

to obtain

0 =
d(q∗⊗q)

d t
= q̇∗⊗q+q∗⊗ q̇ =⇒ q∗⊗ q̇ = −(q∗⊗ q̇) = −(q∗⊗ q̇) (3.24)

The right side of the equation, q∗⊗ q̇, is pure quaternion. Thus, the pure quaternion can be

rewritten with Ω ∈H as

q∗⊗ q̇ =

[
0

Ω

]
≜Ω ∈H (3.25)

Left-multiplying both side of Eq. 3.24 by q gives

q̇ = q⊗Ω (3.26)

The space H of pure quaternions constitutes the tangent space (Lie Group [41]) of the unit

three dimensional sphere in SO(3) of quaternions in R4. This space covers only half of the

angular velocity quantity. Therefore, a rotation quantity v ∈R is mapped to half the rotation in

SO(3). Thus, the angular velocity can be rewritten as Ω = ω
2 in R. Then Eq 3.26 becomes

q̇ =
1

2
q⊗ [ω]q (3.27)

which forms the Ordinary Differential Equation (ODE) and will be used later on in Sec. 3.4 as

attitude equation in the navigation states. The symbol [ω]q uses the definition in Eq. 3.25 and

is defined as

[ω]q =


0

ω1

ω2

ω3

 (3.28)
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Chapter 3. Background of Integrated Navigation with Vehicle Dynamic Model

3.1.6 Rotation Uncertainty

The operations to convert Euler angles to quaterion and the reverse is given in Appendix. B.3.2.

The uncertainty in attitude can be converted from one representation to the other using the

covariance law and is repeated hereafter [42].

Covariance: Quaternion to Euler

The covariance from Quaternion to Euler angle is given by

Peuler = J3×4Pquat J4×3 (3.29)

where J is the Jacobian given from the partial derivatives of the Euler angle equations with

respect to the quaternion given in Eq B.22, Pquat is the covariance matrix for the quaternions

and PEuler is the equivalent covariance matrix for the Euler angle. The derivation details can

be found in [43].

Covariance: Euler to Quaternion

The covariance from Euler to quaternion is given by

Pquat = JT
4×3PEuler J3×4 (3.30)

and is derived in a similar manner than Eq 3.29 and the Jacobian J4×3 are obtained by the

partial derivation of Eq B.21 with respect to the Euler angle.

3.2 Quaternion-Euler Error State Extended Kalman Filter

As presented in Sec. 3.1.3, the attitude representation using quaternion has several advantages

with respect to the traditional Euler angles. However, the quaternion beauty comes with a

prize. By removing some of the Euler angle limitations, the addition of a fourth parameter to

represent an attitude, as seen in Eq. 3.17, creates a singularity in the covariance matrix Pk that

is no longer full rank. The covariance matrix Pk is used when the Kalman gain Kk is computed

and can lead to numerical errors from the inverse determinant of Sk . This occurrence sets the

Kalman Filter in an unstable state which eventually leads to slow convergence or even to the

divergence of the state estimation [44].

A solution to avoid numerical instability when Kk is computed is to use two different attitude

representations within the Kalman Filter: the use of the quaternion kinematics for the nominal

attitude states ql
b , while keeping the Euler representation for the attitude error state δθl

b

and uncertainty P. The KF steps have to be adapted accordingly. A detailed and thorough

formulation of the continuous and discrete error state Kalman filter employing the Euler-

quaterion attitude combination for a INS-derived navigation system can be found in [37]. The
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3.2 Quaternion-Euler Error State Extended Kalman Filter

following derivations are inspired from the aforementioned work and adapted to generalize

the formulation for any type of system states.

Prediction

The non-linear system dynamic function f used to computed the states prediction x̃k+1 =

f(x̂k ,uk ,δt) is formulated in quaternion following the differential equation given in Eq. 3.54

and does not need to be adapted. The discrete-time dynamic matrix Φk derived from f, has to

be adapted to be compatible with the dimension of the covariance matrix P in which attitude

uncertainties are represented with Euler angles. It is obtained by taking the Jacobians of the

function f with respect to the error states δx as presented in Eq. 2.25

The time propagation of the state covariance matrix Pk is given in Eq. 2.19. The process noise

matrix Qk contains the system dynamic noise of the states. The uncertainties for attitude

states are defined in quaternion and have to be propagated with Euler angles to have the same

units as the states covariance matrix Pk . The covariance propagation from/to quaternion

with respect to Euler angles are described in Eq. 3.29 and 3.30 with only the attitude states.

The difference now is the Jacobians are taken by partial derivatives with respect to the whole

augmented states x. Note that Qk is in general a block diagonal matrix and the transformation

can be seen as a simple change of units.

Update

The sensor observations serve to correct the states in the update steps of the filter. The sensor

observations models h() are in general a nonlinear function of the system states x using

quaternion parametrization. The matrix H is the Jacobians of h() with respect to the error

states δx, evaluated at x and yields

Hk =
∂h

∂δx

∣∣∣
x

=
∂h

∂xk

∣∣∣
x

∂xk

∂δx

∣∣∣
x

(3.31)

where the derivative chain rule is applied to obtain ∂h
∂xk

∣∣∣
x
, the partial derivative of h() with

respect of the true states x, and ∂xk

∂δx

∣∣∣
x

is the partial derivative of the true states x with respect

to the error states δx. Note that the matrix Hk is of size l ×n −1 where n is the number of true

states in x and l is the number of measurements in one observation (6 for the IMU, 3 for the

GNSS position or velocity, 1 for the airspeed and barometric updates for example). Similarly,

the gain matrix Kk is of size n −1× l .

The mixed quaternion-Euler ESEKF has the advantage that it avoids gimbal lock and guaran-

tees the non-singularity of the related covariance matrix Pk .
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Chapter 3. Background of Integrated Navigation with Vehicle Dynamic Model

3.3 Frames Definitions

The motion of objects is often materialized as points with three axes in a 3D space, which

is related to coordinates characterizing its position, velocity, and orientation. A reference or

coordinate frame is the materialization of a reference or coordinate system with rules to be

respected, e.g. orthogonality and direction of positive rotations. A number of frames are used

and their definitions are given in this section.

3.3.1 Inertial Frame

The inertial frame (i-frame) is a non-accelerated frame being either at rest or subject to uniform

translational motions. Newton’s second law F = m ·a can be written in an inertial frame as

Fi = m · ẍi (3.32)

where Fi represents the total forces applied to the mass m and ẍi the accelerations experienced.

Moreover, in the presence of a gravitational field and Einstein’s principle of equivalence,

Eq. 3.32 is modified as

Fi +Gi = m · ẍi (3.33)

Dividing both sides of Eq. 3.33 by m II gives

fi +gi = ẍi =⇒ ẍi = fi −gi (3.34)

here fi is the specific forces. The approximation of an inertial frame for navigation is depicted

in Fig. 3.1 in black. The origin of the frame is located at the center of the Earth with the first axis

xeci
1

vernal equinox

xece f
2

xece f
1

xece f
3

xeci
3

xeci
2

Figure 3.1: Inertial ECI frame in black, rotating ECEF frame in dashed-blue

xi
1 pointing towards the Vernal equinox, the third axis xi

3 in direction to the Earth rotation axis,

and the second axis xi
2 parallel to the equatorial plane to complete a right-handed Cartesian

IImass is the same whether inertial or gravitational [45]

26



3.3 Frames Definitions

coordinate frame. To consider this frame as inertial, the Earth is assumed not to be subject to

any acceleration apart from its rotation. The frame is called Earth Center Inertial (ECI). In this

approximation, accelerations due to ecliptic motion as well as solar system in the Milky Way

galaxy are ignored.

3.3.2 The Earth Frame

The terrestrial equatorial frame (e-frame) is a terrestrial frame defined with its origin as the

geocenter of the Earth and the third axis x3
e pointing toward the pole along the mean rotation

axis of the Earth similarly to the ECI frame. However, the first axis xe
1 points towards the

Greenwich meridian and therefore rotates together with the Earth, and the second axis xe
2

completes a right-handed Cartesian frame called Earth Center Earth Fixed (ECEF) frame. For

practical reasons, as well as for the definition of the local-level frame, it is useful to associate

an ellipsoid of (revolution) reference to this frame with latitude φ, longitude λ and height h.

The conversion from the two representations is given byxe
1

xe
2

xe
3

 =


(
Rp +h

)
cos(φ)cos(λ)(

Rp +h
)

cos(φ)si n(λ)[
Rp

(
1−e2

)]
si n(φ)

 (3.35)

where Rp is the radius of curvature in prime vertical [46] that corresponds to the normal

distance from the ellipsoid to the polar axis x3
e in an East-West direction. It is computed as

Rp =
a(

1−e2si n(φ)2
)1/2

(3.36)

where a is the semi-major axis of the ellipsoid and e is its eccentricity. The radius of curvature

in the meridian plane [46] Rm is given as

Rm =
a

(
1−e2

)(
1−e2si n(φ)2

)3/2
= Rp

1−e2

1−e2si n(φ)2 (3.37)

which corresponds to the Earth’s radius in a North-South direction and is used in the differen-

tial equation for the position states (Sec. 3.4).

Rotation from Inertial to Earth Frame

To transform the coordinates from the inertial i to the Earth frame e, a rotation around the

common third axis xi
3 = xe

3 of an angle ω needs to be performed. The ω is the angle between

the rotating first axis xe
1 (Greenwich) and the fixed Vernal equinox direction xi

1. To keep to the

right-handed Cartesian convention, the positive rotation is counter-clockwise. The rotation is

also symbolized by R3 (Sec. 3.3) as it is performed around the third axis of the reference frame.
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Chapter 3. Background of Integrated Navigation with Vehicle Dynamic Model

The transformation equations are therefore

xe = Re
i (ω) ·xi (3.38)

with

Re
i (ω) = R3(ω) =

 cos(ω) si n(ω) 0

−si n(ω) cos(ω) 0

0 0 1

 (3.39)

3.3.3 Local Level Frame

The local-(mapping) frame (l-frame) is a Cartesian frame, tangential to the ellipsoid (e.g.

corresponding to ellipsoid defined as part of World Geodetic System 84 (WGS84)) at an

arbitrary origin close to a working area. In the so called local North-East-Down (NED) frame,

which is used in navigation, the first axis x l
1 points towards the geographic North, the second

axis x l
2 towards the East and the third axis x l

3 points down in the direction of surface normal. In

the East-North-Up (ENU) definition, the first two axes are swapped while the direction of the

third is reversed. A representation of the ENU frame is depicted in Fig. 3.2 with an ellipsoidal

elevation of h and in Fig. 3.4 where the NED frame is used as a local-mapping frame.

xe
3

xN
xU

λ φ

xE

xe
2

RP

xe
1

G
re

en
w

ic
h

h

Figure 3.2: Earth e-frame and local (ENU) l-frame
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Rotation from Earth to Local Frame

Without proof, the rotation from a local NED l-frame as depicted in Fig. 3.2 to the e-frame is

given by the rotation matrix

Re
l =

[
ne ee de] =

−si n(φ)cos(λ) −si n(λ) −cos(φ)cos(λ)

−si n(φ)si n(λ) cos(λ) −cos(φ)si n(λ)

cos(λ) 0 −si n(λ)

 (3.40)

where the axes in the l-frame expressed in the e-frame are given by

de =

−cos(φ)cos(λ)

−cos(φ)si n(λ)

−si n(λ)

 ,ne =

−si n(φ)cos(λ)

−si n(φ)si n(λ)

cos(λ)

 ,ee =

−si n(λ)

cos(λ)

0

 (3.41)

From the skew-matrix definition (Sec. 3.12), we can derive

Ṙe
l = Re

l Ω
l
el =

[
ne ee de] cos(φ)λ̇

−φ̇
−si n(φ)λ̇

 (3.42)

where Ωl
el is used to compute the latitudinal and longitudinal rates in the strapown steps in

l-frame (Sec. 3.4).

3.3.4 Body Frame

The body frame (b-frame) is often used to express the relative attitude of an object with respect

to a local-level frame. Its origin is the same as the local-level frame from which an attitude

is defined. In inertial navigation, its location often coincides with the center of an IMU. In

VDM, the origin of the body frame is defined at the center of gravity of the platform. The

axes form a right-handed Cartesian frame with the first xb pointing forward, parallel to the

direction of motion, the second axis yb towards the right wing and the third zb downward. A

representation of the body frame is shown in Fig. 3.3.

Rotation from Local to Body Frame - Euler Parametrization

The rotation matrix from the local to body frame Rb
l using Euler parametrization is defined as

the sequence of three rotations around each axis. In aeronautics, these three angles are named

roll, pitch and yaw (or heading) and are depicted in Fig 3.3 The order of the rotation matters

and in this manuscript is defined with the rotation around the third axis first, following by the

second and the first axis at the end

Rb
l = R1(r ) ·R2(p) ·R3(y) (3.43)
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xb

yb

zb

Ob

Nl0

El0

Dl0

Roll

Pitch

Yaw

Figure 3.3: Rotation around the three body axes

The rotation is performed as a left matrix multiplication

xb = Rb
l xl. (3.44)

3.3.5 Wind Frame

The wind frame (w-frame) has its first axis in the direction of the airspeed vector V, and its

orientation with respect to the body frame is defined by two angles: the angle of attack α and

the side-slip angle β. The airflow velocity due to the UAV’s inertial velocity v and wind velocity

w is denoted by the airspeed vector and equals

V = v−w (3.45)

A representation of the frame is shown in Fig. 3.4 together with the body and local-mapping

frames (the latter in NED orientation).

Rotation from Body to Wind Frame

The rotation from the body to the wind frame is given by the matrix Rw
b

Rw
b =

 cosβ sinβ 0

−sinβ cosβ 0

0 0 1


 cosα 0 sinα

0 1 0

−sinα 0 cosα

 , (3.46)

3.3.6 Camera and IMU Frames

The camera frame (c-frame) origin is defined with the image sensor’s principal axes. A rep-

resentation of a camera as part of a payload is depicted in Fig. 3.5 The first axis xc points
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v
w

V α

βxb

yb

zb

Ob

xw

yw

zw

Nl0

El0

Dl0

Figure 3.4: Local level, body, and wind frames with airspeed V, wind velocity w, and UAV
velocity v, adapted from [47]
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Figure 3.5: Body, camera and IMU frames
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towards the UAV direction of motion while the third axis zc points in the opposite direction of

the camera optics. The yc axis realizes the right-hand Cartesian frame. When calibrating the

camera’s exterior and interior orientation parameters, the bore-sight Rb
c and the lever-arm

rb
c−b between the camera and the body can be determined. Accounting for these parameters

allows for the camera poses to be transformed to body-frame poses as

xb = Rb
c xc + rb

c−b (3.47)

The benefit of precise attitude observation obtained by photogrammetry for calibration is

presented in Sec. 5.3.2.

The IMU-frame coincides with the triplet of accelerometer and gyroscope axes in the sensor

assembly. A representation is given in Fig. 3.5. The origin, definition, and orientation of the

IMU-frame is generally given by the constructor and follow the internal placement of each

individual sensor. Its relation to the body frame is given by the bore-sight matrix Rb
i mu and

lever-arm rb
i mu−b .

xb = Rb
i muxi mu + rb

i mu−b (3.48)

Details about the IMUs used in this work are given in Sec. 6.2.

3.4 Navigation Equations

The principle of integrated navigation is based on the integration of measurements of an

orthogonal triplet of accelerometers and gyroscopes rigidly mounted on a moving object.

Usually, mounted together with supporting electronics, clocks, and communication, they

form an IMU that, according to the realization principle, provides the specific forces (or

velocity increments) and angular velocities (or angular changes) of the object. The steps

presented hereafter are inspired by [17, 48].

Position, Velocity in Local Frame l

Without derivations, the summary of the navigation equation in the l-frame for position and

velocity is given below.

Starting with the velocity vector vl
e = [v N , vE , vD ]T , its differential equation is given by

v̇l
e = Rl

bfb −
(
Ωl

l e +2Ωl
i e

)
vl

e +gl (3.49)

and defines the velocity dynamics. gl embeds the local gravity and centrifugal acceleration as

a function of the position of the local frame above the ellipsoid at height h and a global gravity
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model (WGS84) [49]. Ωl
i e =

[
ωl

i e

]
× is defined as

ωl
i e =ωi e

 cos(φ)

0

−si n(φ)

 (3.50)

with ωi e is the mean Earth angular velocityIII. Ωl
el =

[
ωl

l e

]
× represents the rotation of the l

frame with respect to the e-frame expressed in the l-frame and corresponds to the local frame

moving alongside a vehicle, and equals

ωl
el =

 λ̇cos(φ)

−φ̇
−λ̇si n(φ)

 (3.51)

The derivation of ωl
le is related to the time derivative of the rotation from l-frame to the

e-frame (Eq. 3.42).

Defining the position vector in the l-frame with respect to the ellipsoid gives r l
e =

[
φ,λ,h

]
. The

differential equation for the position is related to the velocity vector v l
e as

rl
e = D−1vl

e (3.52)

where the matrix D is defined as

D =

RM +h 0 0

0 (RP +h)cos(φ) 0

0 0 −1

 (3.53)

and RP and RM were defined in Eq. 3.36 and 3.37, respectively.

Attitude Equations in l-Frame

The attitude differential equations for Euler angles and quaternions are both used in this

research (Sec. 2.3.1). However, for simplicity, the attitude equation will be given here in

quaternion whereas the equations using Euler angles is given in Appendix B.3.1. The ODE for

quaternion was developed and given in Eq. 3.27. The derivative of the attitude of the vehicle

should be given in the l-frame with respect to the b-frame. The attitude is represented with

the vector ql
b . Therefore the differential equation is given by

q̇l
b =

1

2
ql

b ⊗
[
ωb

l b

]
q

(3.54)

IIIwi e 7292115.0×10−5 rad/s [50]
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ωb
lb is defined by

ωb
l b =ωb

i b −Rb
l ω

l
i l (3.55)

withωb
i b the rotation angle given by gyroscope measurements andωl

i l =ωl
i e +ωl

el where both

terms are defined in Eq. 3.50 and 3.51.

With Eq. 3.53, 3.49 and 3.54, the rigid body dynamic equations ẋn are defined: ṙl
e

v̇l
e

q̇l
b

 =


D−1vl

e

Rl
bfb −

(
2Ωl

i e +Ωl
el

)
vl

e +gl

1
2 ql

b ⊗
[
ωb

i b − (Rl
b)T

(
ωl

i e +ωl
el

)]
q

 (3.56)

VDM-based navigation uses another quantity: the angular velocity ωb
i b and is introduced in

Sec. 3.5.

3.5 Specificities via Vehicle Dynamic Model

A complete derivation of the VDM for a fixed-wing UAV is given in [11]. The main aspects are

synthesized here. In the VDM-based navigation, the angular velocity ωb
i b with ODE is defined

as

ω̇b
i b =

(
Ib

)−1 [
Mb −Ωb

i b(I bωb
i b)

]
, (3.57)

where Ib and Mb are the UAV matrix of inertia and specific moments. ω̇b
i b is added with the

position, velocity and attitude (Eq. 3.56) equations and completes the rigid body motion

definition.

In INS-based navigation, fb andωb
i b are observed with an IMU. In VDM, the specific forces fb

and moments Mb are defined as

fb =

F b
T

0

0

+ (Rw
b )T

F w
x

F w
y

F w
z

 (3.58)

and

Mb =

M b
x

M b
y

M b
z

 (3.59)

34



3.5 Specificities via Vehicle Dynamic Model

where

F b
T = ρn2D4 (

CFT 1 +CFT 2 J +CFT 3 J 2) (3.60)

F w
x = q̄SCFx (3.61)

F w
y = q̄SCFy (3.62)

F w
z = q̄SCFz (3.63)

M b
x = q̄SbCMx (3.64)

M b
y = q̄Sc̄CMy (3.65)

M b
z = q̄SbCMz (3.66)

and Rw
b is given in Eq. 3.46 and F b

T denotes the thrust force model. F w
x , F w

y , F w
z denote drag,

lateral and lift forces, respectively. M b
x , M b

y , M b
z denote aerodynamic moments. b, S, and c̄ are

the wing span, wing surface, and mean aerodynamic chord, respectively IV. The air density is

denoted by ρ, while q̄ is the dynamic pressure defined as

q̄ = ρ
V 2

2
(3.67)

where V denotes airspeed. The aerodynamic model-parameters represented by C...’s for the

moments and forces are different for the two platforms used in this thesis. They are given

in Tab. 3.1. The conventional fixed-wing UAV aerodynamic model is taken from [51] and is

Table 3.1: Aerodynamic coefficients for the forces and moments for the two platforms: TP2
and eBeeX

Coefs. TP2 eBeeX
CFx CFx 1 +CFxαα+CFxα2α

2 +CFxβ2β
2 CFx 0

+CFxα
α+CFxα2

α2+CFxβ
β+CFxδe

δe+CθAFx

CFy CFy 1β CFyβ
β+CFyβ2

β2+CFy δa
δa+CθAFy

CFz CFz 1 +CFzαα CFz 0
+CFzα

α+CFzα2
α2+CFzβ

β+CFzδe
δe+CθAFz

CMx CMx aδa+CMxββ+CMx ω̃x ω̃x+CMx ω̃z ω̃z CMxβ
β+CMxβ2

β2+CMxδa
δa+CθAMx

CMy CMy 1 +CMy eδe +CMy ω̃y ω̃y +CMyαα CMy 0
+CMyα

α+CMyα2
α2+CMy δe

δe+CθAMy

CMz CMzδr δr +CMz ω̃z ω̃z +CMzββ CMzβ
β+CMzβ2

β2+CMzδa
δa+CθAMz

referred to as TP2 in the remaining part of this work. The delta-wing UAV model, referred

as eBeeX, is designed to be as generic as possible. The platforms are depicted in Fig. 3.6 and

Fig. 3.7 for the TP2 and eBeeX, respectively.

The thrust model is similar for both platforms with different coefficients CF T ’s. J is defined

as V /(Dπn) with n denoting the propeller rotation speed and D is the propeller diameter.

The non-dimensional angular velocities are defined as ω̃x = bωx (2V )−1, ω̃y = c̄ωy (2V )−1, and

ω̃z = bωz (2V )−1, where
[
ωx ωy ωz

]T denotes the angular velocity of UAV with respect to the

b-frame. The deflections of control surfaces: aileron, elevator, and rudder are denoted by δa ,

IVDiscussion on these quantities is given in Appendix C.3.1, and a method to determine the wing surface S and
length via orthophoto is given in Appendix C.3.2
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Figure 3.6: TP2 control surfaces, positive angular rotations (black) around body frame axis,
forces (blue)

δe , and δr respectively.

For the eBeeX, δa = −δL+δR
2 , δe = δL+δR

2 . It should be noted that a delta wing UAV does not

have real elevators and ailerons, rather it has two independent control surfaces called elevons,

where the deflections are denoted by δL and δR , with the subscripts L, R represent the left and

right deflections, respectively. Additionally, Cθ is defined as

CθAi = C Ai ω̃x
ω̃x +C Ai ω̃y

ω̃y +C Ai ω̃z
ω̃z (3.68)

where A ∈ {F, M } distinguishes forces from moments, and i ∈ {x, y, z} defines the three axis.

3.5.1 Estimation Scheme

VDM serves as the main process model within the filter as shown in Fig. 3.8. An EKF is chosen

to estimate corrections to the states (δx) and the associated covariance matrix (P). As depicted

in Fig. 3.8, the VDM provides the navigation solution (xn), which is updated as part of the

augmented state vector x (introduced in Equation (3.69)) based on available observations.

As IMU data are treated as observations, the navigation system will stop using IMU data in the

case of an IMU failure, and instead provides the navigation solution using VDM. Other sensors

can be integrated into the navigation system, such as airspeed, optic flow, and magnetometer

data, or precise attitude reference, which provide observations when available.

The VDM is fed with the UAV control input (U) as commanded by the autopilot and is therefore

always available. Wind velocity (xw ) is also required as the equation for these forces are solved
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Figure 3.7: eBeeX control surfaces and positive angular rotations around body frame (black)

within this frame (Eq. 3.61 to 3.63). The required VDM parameters (xp ) are mainly composed

of the aerodynamic coefficients presented in Tab. 3.1. The actuator deflections are included as

states (xa). IMU errors (xe ) that are generalized as biases are included within the augmented

state vector to be estimated. The augmented state vector x therefore includes the navigation

states xn , the VDM parameters xp , the actuator deflections xa , the wind velocity components

xw and the sensor error states xe . More auxiliary states can be added as sensor misalignment

and lever-arm.

x = [xT
n ,xT

p ,xa ,xT
w ,xT

e ]T (3.69)

More details on these augmented states is given in Sec. 3.5.2. The mass (m) and moments of

inertia Ib are excluded from the VDM parameter auxiliary states xp since they appear as scaling

factors in the model, meaning that they are completely correlated with the aerodynamic

coefficients [47] that are already included. The platform-dependant geometric properties

(D, S, b, c̄) are also excluded, because they can be determined a priori with much lower

uncertainty compared to aerodynamic coefficients.

3.5.2 State Space

Details of state space and auxiliary states are given below.
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Figure 3.8: VDM-based navigation filter architecture (x̃k ≡ x̂k|k−1), adapted from [47]

Navigation States

The navigation state

xn = [rl
e , vl

e , ql
b , ωb

i b]T (3.70)

are composed of: the position rl
e = [φ,λ,h] in the e-frame in ellipsoidal coordinates in [r ad ]

for the horizontal position and in [m] for the height. The velocity vl
e = [v l

n , v l
e v l

d ] with respect

to the e-frame is expressed in the l -frame in [m/s], the attitude ql
b = [q0, q1, q2, q3] of the body

with respect to the l-frame, and the body angular velocityωb
i b = [wb

x , wb
y , wb

z ] with respect to

the i -frame, expressed in the b-frame in [r ad/s]. The dynamic model ẋn is given in Eq. 3.56

for position, velocity and attitude, and in Eq. 3.57 for the angular velocity. The VDM-based

navigation system works when the UAV is airborne. Thus, the initial navigation states xn(0) and

their covariances Pn(0) have to be initialized from another source, e.g an INS/GNSS navigation

software (Sec. 7.2) running in parallel.

Actuator States

The augmented actuator states are defined as

xa = [a, e, r, n]T (3.71)
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3.5 Specificities via Vehicle Dynamic Model

The UAV control surfaces deflections a, e and r with the propeller speed n, are arguments

of the VDM force and moment equations and are added as states. Two dynamic factors k1

and k2 with a time delay τ model a first order delay between the flight control input from the

autopilot Ci = [ac , ec , rc ] and nc , respectively, and the actual actuator deflection / states xa .

The dynamic equation ẋa is similar for the four actuators and reads

ẋai = xai =
k1i Ci +k2i +xai

τi
(3.72)

where i = [a,e,r,n]. The flight Control Commands (CC)s come from the Pulse-Width Modu-

lation (PWM) (values from 1000 to 2000) accessed from the autopilot. For a, e, and r c these

PWM are mapped to a normalized unit-less deflection value [−1;1] as specified in [51], and

to the unit-less values [0− 1000] for n. The dynamic factors k1i ,k2i and delays τi can be

modeled as additional augmented states with their own dynamic model, as proposed in [11].

However, these augmented states are not added in the state space in this research due to

poor observability of the actuator dynamics, and only little impact on the overall navigation

performance is observed when added as auxiliary states in simulations. Therefore, they are set

as constant parameters with values proposed in [11]. However, incorrect time-tagging of the

CCs has an impact in the navigation performance (Sec. 9.1.1).

The initial actuator state xa(0) is initialized with the flight CC given directly by the autopilot.

The initial uncertainty (1σ) Pa(0) for the control surfaces (a, e, r ) is set to 0.016 which relates

to ∼ 1[deg ] of uncertainty considering that the PWM maps from [−1;1] the control surface

deflection ranging between around +/− 45[deg ]. The uncertainty of the propeller speed

corresponds to 20[r ad/s] following the experiment from [11].

Wind velocities

The force and moment equations are solved with respect to the airspeed vector Vl
eb = vl

eb−wl
ew

composed of the wind velocity w and the platform inertial ground velocity v. The wind velocity

therefore needs to be estimated and is added as an augmented state vector

xl
w = [xN

w , xE
w , xD

w ]T (3.73)

The wind components are expressed in the local l-frame, in the same frame as the navigation

states. The wind airflow at cruising altitude and, in normal weather conditions V is assumed to

have a slow rate of change during a flight mission. No deterministic part is considered in the

dynamic model of the wind Ẋw = 0. However, variations in wind direction and magnitude are

captured with its process noise Qw as white noise; the higher the process noise, the higher the

bandwidth of the state changes. The resulting wind velocities are models as a random walk

with parameterized standard deviation as suggested in [52]. The initial wind velocities xw can

be either initialized to zeros or approximated if a local weather station (Sec. 6.3.4) or a close

Vwind less than 10 m/s. The 2.7 kg UAV will not be sent on a mission if the wind conditions are too severe
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Chapter 3. Background of Integrated Navigation with Vehicle Dynamic Model

Meteorological Aerodrome Report (METAR) is available. Their initial uncertainties (1σ) are set

to 0.5 [m/s] in horizontal and 0.1 [m/s] in vertical directions unless otherwise specified in a

specific experiment.

Aerodynamic Coefficients

Called the VDM parameters more generally, these coefficients characterize the physical be-

haviour of the platform though the air via the moment and force equations previously defined.

Some of these coefficients (parameters) can be easily determined as the weight of the plat-

form m, or the diameter of the propeller D . However, some other coefficients are partially or

completely unknown, are complex to obtain, and need to be estimated. In addition, some

coefficients can change slightly due to a modification of the payload, the position of the battery

in its bay, and the addition of a sensor, potentially modifying the UAV center of mass. The aug-

mented states xp consist of all the aerodynamic coefficients Ci ’s presented in Tab. 3.1 for the

TP2 or the eBeeX. The initial states xp (0) are either adapted from a similar platform, estimated

via a calibration procedure (Sec. 5.2) or refined (Sec. 5.3.2, Sec. 5.3.1) if an approximated set of

parameters is already known. These coefficients are assumed to be constant for a particular

UAV and therefore the differential equation for these states is null

ẋp = 0 (3.74)

However, small geometric variation between flights need to be taken into account, which will

be captured by the aerodynamic coefficients. Therefore, nonzero uncertainties P(0) are used

for these states and are set (1σ) to 1-2% of their initial values.

3.5.3 Observation Models

The different sensors used for this research are listed in the sequel with their observation

models.

IMU

IMUs provide high frequency updates of the navigation states as well as corrections for other

augmented ones. IMUs come in a wide range of quality, performance, stability and accuracy.

Yet, the observation model for all of them is the same, with the systematic and stochastic error

models to differentiate between them. Assuming that the system is rigidly attached to the

body, the observation model equations for the accelerometer is given by

Z fi mu = Ri mu
b

(
fb +

(
Ω̇

i
i b +Ωi

i bΩ
i
i b

)
rb

b−i mu

)
+x fi mu

e +ϵ fi mu (3.75)

The rotation matrix Ri mu
b corresponds to the boresight between the IMU-frame and b-frame

and, rb
b−i mu being the lever-arm between the position of the IMU and the origin of the b-frame
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(Fig. 3.5).

The two terms Ω̇
i
i b and Ωi

i bΩ
i
i b are the Coriolis and centrifugal accelerations experienced by

the rotating frames with respect to each other VI. Finally, x fi mu
e and ϵ fi mu are the sensor error

modeled by a choice of numerous processes (e.g. white, Gauss-Markov, random walk) and the

measurement noise, respectively.

For the gyroscope, the observation model equation is given by

Zg yr = Ri mu
b ωb

i b +xωi mu
e +ϵωi mu (3.76)

The lever-arm rb
b−i mu only affects the accelerometer measurements. The augmented IMU

error states are defined as

xi mu
e =

[
x fi mu

e , xωi mu
e

]T
(3.77)

and both sub-vectors xi
e , i ∈ [ fi mu ,ωi mu] are composed of three biases (random walk) for

each triplet of accelerometer and gyroscope xi
e =

[
e i 1

RW ,e i 2
RW ,e i 3

RW

]
. Therefore, ẋi mu

e = 0. The

initial values x fi mu
e (0), xωi mu

e (0) are set to zero using to a calibration procedure [53] removing

switch-on bias, and their strength and uncertainties are taken from the data-sheet of the

manufactures and a summary of the error statistics is given in Tab. C.2.1 for the different IMU

used in this work.

More complex error models can be used as suggested by [11], e.g. Auto-Regressive (AR), Gauss

Markov (GM) or quantization noise processes. For the MEMs-IMU used in the experiments

(Sec. 6.2), the presented model seems to be sufficient. The lever-arm rb
b−acc and boresight

Racc
b can also be added as an augmented state to be estimated. In the current implementation,

they are defined as constant parameters where the boresignt matrix is assumed to be close to

identity and the lever-arm is observed thanks to[54].

GNSS Position and Velocity

The GNSS receiver determines the position and velocity of the antenna using different tech-

niques (e.g. SPP, Precise Point Positioning (PPP), PPK, RTK), which will not be discussed

here. The solution can be expressed in different e-frames and datum, e.g. WGS84. The GNSS

position observation model is given by

ZGr = rl
eb +Re

brb
bG +ϵGr (3.78)

where rb
bG is the lever-arm from the b-frame origin and the GNSS antenna, Re

b = Re
l Rl

b is the

rotation matrix from the b-frame to the e-frame (Eq. 3.43 and 3.40), and ϵGr is the measurement

noise.

VIThe Coriolis accelerations and the varying direction of the gravity vector can accumulated an error of a several
hundreds of meters of inertial coasting over a period of 5 minutes if not taken into account [11]
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The GNSS velocity observation model is given by the derivative over time of the GNSS position

observation model ZGr and is given by

ZGv = vl
eb +

(
Rl

bΩ
b
i b −Ωl

i e Rl
b

)
rb

bG +ϵGv (3.79)

with the skew and rotation matrices already defined in Sec. 3.1. The observations noise ϵGv

depends on the GNSS. Typical noise levels are given in Tab. C.4 for SPP and PPK.

Airspeed Sensor

The Pitot tube or airspeed sensor measures the total moving air mass and estimates the

dynamic pressure q by removing the static pressure p

ptot = q +p (3.80)

The dynamic pressure q is transformed to a velocity as a parameters of the air density ρ. The

airspeed sensor (one-hole Pitot tube) relates the velocity Vb = vb −wb as defined in Sec. 3.5.2,

in the b-frame, reduced to the only direction to where the sensor points, ideally, the forward

direction of the UAV body axis xb
1 . A boresight, between the sensor and the toward axis xb

1 is

characterized by two angles αA and βA .The two angles can be used to project the airspeed

vector Vl in the 1D axis of the airspeed reference frame with

D =
[
cos(αa)cos(βa), cos(αa)si n(βa), si n(βa)

]T (3.81)

The Pitot tube is located with a lever-arm r b
b−A with respect to the origin of the b-frame. The

velocity of the sensor vl
e A with respect to the l-frame is expressed equivalently as Eq. 3.79.

Therefore, the observation equation gives

ZA = sA

(
vl

e A +
(
Rl

bΩ
b
i b −Ωl

i e Rl
b

)
rb

b−A −wl
eb

)
Rb

l D+ϵA (3.82)

where the only term left to be defined is the scale factor sA . Only a scale factor is assumed as

the error term because the initial bias can be removed via calibration. The modification of

atmospheric pressure within the UAV’s operational altitude (+/-150 m) can be approximated

as linear [55]. The scale factor also depends on the varying air density ρ and must be calibrated

before each flight as proposed in Sec. 9.2. The conversion between the different airspeed

indicators is given in Appendix B.1

3.5.4 Linearization

Each platform possesses its specific VDM and set of sensors. The models are implemented

as nonlinear functions in the navigation estimator. Most need to be linearized and their

respective Jacobian matrices created, e.g. the Jacobian of the dynamic matrix F () is needed

to obtain the transition matrix Φ or the linearized measurements matrix H() from the sensor
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model h(). The complex process (and possibly observation) models and the high number of

states render the linearization somewhat challenging if performed without automation. On

the other hand, numerical derivations are reliable, but their execution time is not suitable for

real-time operation. [11] proposed an automatic linearization scheme using the symbolic
toolbox [56] from MATLAB. The tool makes the modification and testing of models an easy task

(some model linearizations take several hours). Furthermore, the tool creates the matrices

needed by the estimation software to execute the ESEKF steps as presented in Tab. 2.2.

Although the current tool is useful, there is a need to generate the C++ source code of these

functions to ease real-time application. A second tool was developed and is detailed in

Sec. 7.3.3 when real-time VDM-based navigation software is introduced.

Summary

This chapter has covered different reference frames relevant to aerial navigation. Addi-

tionally, the differential equations governing the inertial and VDM-based navigation were

presented. The aspects improving the numerical stability of the solution are addressed in

the next chapter.
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4 Estimation Enhancements

Overview

This chapter focuses on improving the fusion between VDM and other sensors in terms

of numerical stability to obtain an optimal estimation of UAV’s trajectory. In the prior art,

trajectory estimation is carried by a recursive Bayes filter that sequentially calculates the

posterior probabilities of multiple beliefs to infer on position, velocity, and orientation of

the drone from observations - GNSS and IMU. As we are considering normally distributed

variables in linearized approximation around the previously corrected parameters (states),

the Bayes filter becomes equal to the EKF, the structure of which follows the original VDM-

based navigation filter described in [11].

The proposed enhancement brings in three aspects that improve the numerical stability of

estimation. First, the magnitude of error-state variables is homogenized by adapting their

scale (units). This decreases so-called conditioning number, in other words, diminishes

the sensitivity that small perturbations in innovation cause large changes in the estimated

quantities (through oscillating Kalman gain). Second, a numerically stable factorization

is implemented (Bierman-Thorthon) that prevents round-off errors and asymmetry in

covariance matrices. Third, the partial-Schmidt Kalman filter is proposed to be used in two

critical phases of VDM-based navigation: the initialization and the navigation during GNSS

outages. It is practically investigated that all together, this methodology i) prevents the

numerical instability of the filter, ii) reduces the correlations between estimated parameters

and, iii) avoids large variations in the estimated positions during the filtering of the two

most challenging phases of the flight (the initialization and GNSS outage). For these reasons

the proposed approach is favorable to be used for the drone’s guidance.

4.1 Numerical Stability

Starting in the 1960s, the numerical instability of the Kalman filter has been observed using

only 6 states [57]. The concept of constraining state space estimators using computers is not
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new [58], where this is well analyzed for inertial navigation [59]. Although the general fixes are

known [60], the potential numerical weaknesses of the VDM-based navigation implementation

needs to be identified and a strategy for their mitigation to be proposed. The two types of

problems leading to numerical instabilities are: a) ill-conditioning due to large differences in

state values (round-off error) and, b) asymmetry of the covariance matrix. While symmetry

can be forced using a simple yet redundant operation such as P = (P +P T )/2, round-off errors

are complex to avoid and correct as they occur during mathematical operations with limited

precision. Moreover, a large difference in state magnitudes can render the matrix singular,

where performing an error-free inversion is almost impossible [60][61].

4.1.1 Indicators

An ill-conditioned indicator proposed in [60] looks at the ratio of the largest (λmax ) and the

smallest (λmi n) eigenvalues of matrix S in the update KF equations (Tab. 2.1)

cond(S) =
|λmax |
|λmi n |

(4.1)

The following rule of thumb can be used to ensure a well-conditioned matrix [59]:

cond(S) << 1

2−N
(4.2)

where N is the number of bits used in the mantissa. The MATLAB simulation environment with

a 64-bit architecture uses 52 bits for its mantissa I and therefore, the condition number should

be below 1015 to guarantee numerical stability of the system. In the real-time prototype, the

VDM filter runs in a 64-bit architecture companion computer (Sec. 6.2) with a similar floating

representation. The round-off errors on the solution of the system Ax = b are bound by the

following formula [62]:

||(A−1b)− (A−1b)|| ≤ ϵ cond(A)||(A−1b)|| (4.3)

where || · || is the norm and A−1b is the exact solution of the system. The error in the resolution

of a linear system is directly proportional to the condition number of the inverted matrix as

shown in Eq. (4.3). Although numerical errors do not necessarily lead to filter divergence, the

filter can become momentarily unstable, resulting in a slower steady-state convergence [60]

or incorrect state estimation. In addition, small values in the matrices may be rounded to 0

during computations leading to a change in sign for the final result. In such situations, the

Kalman gain matrix K (Tab. 2.1) can incorrectly adjust certain states.

Ihttps://www.mathworks.com/help/matlab/matlab_prog/floating-point-numbers.html
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4.1 Numerical Stability

4.1.2 Scaling

In [63], the body frame is chosen as a local tangent plane with its origin fixed at the home

position of the drone. Later generalization considered navigation in the global frame (in

WGS84 ellipsoidal coordinates) while taking into account the Earth effects: Coriolis accelera-

tion, changes of gravitational force in direction and magnitude [11]. These changes induced

the expression of the navigation states in latitude and longitude in [r ad ] and, height in [m].

When using these units for their corrections within the filter states xn , the values come close

to machine precision. For example, a 30cm displacement will, in the case of a spherical

Earth approximation, be in the order of a few 10−8 radians. Furthermore, advances in GNSS

technology have enabled improved pose estimation, decreasing its corresponding variance.

For example, when kept in radians, the achievable centimeter accuracy in position with RTK

or PPK results in a standard deviation of approximately 10−9[r ad ], which creates a variance in

the corresponding covariance matrix P of 10−18[r ad 2].

The scaling process follows two steps. First, the reduction of the condition number needs

identification of the extreme (smallest and largest) variances in the initial covariance ma-

trix P(0). For the case of VDM, these are the position (10−18[r ad 2]) and the propeller speed

(102[r ad 2]). The initial condition number for P(0) is therefore large (≈ 1024), strongly exceed-

ing the aforementioned limit of 1015. Second, the chosen scaling factors D are applied to the

problematic states to reduce the condition number of the covariance matrix P0: D1 = 108

for latitude/longitude and D2 = 10−2 of the propeller speed. In practice, a scaled vector xs is

obtained from the initial state vector x multiplied by the scaling diagonal matrix Dx = [D1,D2]T .

This transformation can be seen as an arbitrary change of units for (a few) selected variables.

Scaling the problematic states is done by adapting related matrices as summarized in Tab. 4.1

and detailed below. As seen in Eq. (4.3), the propagation of round-off errors while performing

Table 4.1: Adapted scaled matrix for the discrete Extended Kalman filter steps

Prediction scaled matrices Update scaled matrices
xs = Dxx Zs = Dz Z
Ps = Dx PuDT

x Hs = Dz HuD−1
x

Φs = DxΦuD−1
x Rs = Dz RuDT

z

Qs = Dx QuDT
x Ss = Dz SuDT

z

the matrix inversion is proportional to the condition number. The inversion occurs in the

computation of the Kalman gain Kk , specifically when the expression S = HPHT +R is inverted.

By scaling the states only, the condition number of the inverted matrix Ss does not change.

Ss = Hs Ps HT
s +R = HuD−1

x Dx PuDT
x

(
HuD−1

x

)T +R = HuPuHT
u +Ru = Su (4.4)

The units of S are controlled by the measurement noise R and observation H matrices. Hence

in the third step, these matrices must also be scaled by the noise scaling diagonal matrix Dz

(note: if the noise and the states have the same units, Dz = di ag (Dx )) to correspond to the
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new state vector xs . They are obtained as:

Hs = Dz Hu (4.5)

Rs = Dz RuDT
z (4.6)

The potentially problematic matrix becomes:

Ss = Dz
(
HuPuHu

T +Ru
)

Dz
T (4.7)

By carefully selecting the elements of Dz , the magnitude of the elements of S can be adjusted

to be more homogeneous, which in turn lowers the condition number of the matrix. In the

same manner, the observations z related to the scaled states should be adapted to match the

corresponding scaled observation matrix to compute a meaningful innovation: z−Hx =⇒
Dz z−Hs xs .

An example of condition number reduction is given in Appendix A.1. The “scaled” version

of ESEKF is implemented and tested in MATLAB (post-processed). The C++ (real-time) envi-

ronments do not yet have the scaled version implemented. The modifications are not heavy:

they require only the definition of the new scaled VDM in Mathematica and the usage of the

automatic source files generation (Sec. 7.3.3).

The state space re-scaling improves the numerical stability during the state estimation. How-

ever, it does not improve the estimation stability when the observability is reduced (e.g. at

initialization or during a GNSS outage) or when it is not in a steady state. In the follow-

ing section, a combination of factorization with a modified KF is proposed to improve the

apprehensions mentioned above.

4.2 Factorization and Schmidt-Kalman

The classical KF may work well for situations in which only a few states are considered.

However, as the state space becomes large, filter divergence and non-positiveness of P can

occur due to nonlinear effects affecting the numerical aspects of the filter [64].

4.2.1 UDU Implementation

The first method exploits one particular form of factorization put forward by [65], also known

as U DU -factorization, which separates the covariance matrix as P(0) = UDUT , where U and D

are the upper triangular and diagonal matrices, respectively. The U DU algorithm is presented

in Alg. 1 with an extra verification step to ensure the positiveness of the decomposition. The

U DU decomposition is performed only once at the initialization of the KF. The ESEKF steps

have to be adapted to use the new matrices U and D , and are summarized in Tab. 4.2.
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Table 4.2: ESEKF with U DU factorization

Prediction steps Update steps
x̃k+1 = f(x̂k ,uk ,δt ) δz̃k = z̃k −h(x̃k+1)

Ũk+1,D̃k+1 = T hor.(Ûk ,D̂k ,Qk ,Gk ) Kk ,Ûk+1,D̂k+1 = Bi er.(Ũk+1,D̃k+1,Hk ,R)
δx̂k = Kkδz̃k

x̂k+1 = x̂k +δx̂k

The Thornton prediction time update (Thor. in Tab. 4.2) of the covariance Ũk+1 and D̃k+1

requires the updated covariance Ûk and D̂k at the previous filter step k and the discrete-time

process noise Qk and noise shaping matrix Gk (Eq.B.10, Eq.B.16) which already embedded

the discrete integrator δt . The Bierman measurement update (Bier. in Tab. 4.2) modifies the

covariance Ûk+1 and D̂k+1 at the same time as computing the KF gain Kk used to update the

states x̂k+1 in an iterative way with respect to the states. The operation is done sequentially

for each state, therefore a new KF gain Kk and an updated innovation δz̃k are computed at

each iteration. The measurement matrix Hk are linearized with respect to the new updated

states x̂k+1. The pseudo-code of the Thornton propagation and Bierman update are given in

Appendix D.3.10. This factorization reduces the dynamic ranges of the variables, leading to

more homogeneous scales in the computations and preserves the symmetry of the covariance

matrix P = UDU which is recomputed at the end of the estimation or for debugging.

For a filter with 47 states (as is the case for the default VDM system with the minimum of

auxiliary states (Eq. 3.69)) the standard time update of the covariance matrix as ΦPΦt requires

203228 addition operations and 207646 multiplications. For the Thornton implementations, it

requires 143585 summations and 146640 multiplications, representing approximately 30%

fewer mathematical operations. There is the possibility to reduce the number of operations

even further by separating the original states vector into “states” and “parameters”. When the

“states” have their process model, the “parameters” (xe , xw ) can be generally modeled as first-

order Gauss-Markov processed. The characteristics of these processes considerably reduce the

complexity of their covariance update, reducing the total number of operations. This method

is proposed in [64]. However, it is not explored here as the real-time computational load is

acceptable for the current implementation Sec. 9.2.2, but it could be an exciting extension to

add to a future version of the system.

4.2.2 Partial Updates

The second method employs the Schmidt-Kalman [66] or so-called “consider” filter. The

implementation is particularly advantageous when the estimated states are composed largely

of almost constant values such as sensor biases, or in the case of VDM, the aerodynamic

coefficients. The partial Schmidt-Kalman filter is principally defined as a weighted mean

between the updated and predicted covariance of the “consider” states with a weight factor
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γ ∈ [0−1] as

P̂
c
y y = γ2P̃y y + (1−γ2)P̂y y (4.8)

A practical issue with the U DU decomposition is that this factorization is not distributive on

additions. In a naive implementation, one can reconstruct the covariance matrix, apply the

partial reset, and factorize it again. However, it would lead to a large increase in computations

and partially defeat the purpose, which is to maintain the covariance in a numerically stable

form. [64] presents a method to apply to a classic Schmidt-Kalman in the case of U DU

factorized filters. This development can be adapted to carry out the aforementioned weighted

mean. Indeed, by using the symmetry of covariance matrices, Eq. 4.8 can be reformulated as:

P̂
c
y y = P̂y y + (1−γ2)KHP̃y y

= P̂y y + (1−γ2)K(HPHT +R)KT .
(4.9)

Defining S =

[
0 0

0 I

]
, the Partial-Schmidt update can be defined as:

P̂
c

= P̂+ (1−γ2)SK(HPHT +R)KT ST (4.10)

Since the Bierman-Thornton update step requires the scalar processing of the measurements,

the dimensions of K and (HPHT +R) = W are n×1 and 1×1, respectively. Therefore one obtains

the expression:

P̂
c

= P̂+ (1−γ2)(SK)W(SK)T

= P̂+ (1−γ2)vWvT
(4.11)

The updated equation reduces to a rank one, which in the case of U DU factorization, can be

applied by using the Agee-Turner method [64] for covariance propagation. In other words, an

update of rank one is applied directly to the decomposed matrices without recomposing them

to perform the partial reset. The factorization adds n2 additions, n2 +3n +2 multiplications,

and n −1 divisions for each scalar measurement. However, the covariance updates require, in

general, much fewer operations than its time update; therefore, these extra operations have

no real impact if the time required to perform these steps is inspected (Sec. 9.2.2).

Such a mixed implementation benefits several flight phases, i.e. during the filter initialization

and potential GNSS signal outages. Both phases are described in the following subsections. A

possibility of using the partial-Schmidt filter is within the aerodynamic coefficients calibration

phase (Sec.5.2).

For better clarity, the combination of the U DU factorization with the partial-Schmidt filter

implementation will be abbreviated as “partial-update” in the sequels.
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4.2 Factorization and Schmidt-Kalman

4.2.3 Initialization

At the beginning of the filtering process, the Kalman filter passes through a transient phase.

This is partly caused by: i) the level of uncertainty normally expressed by a quasi diagonal

matrix P0, as most of the correlations between the states are unknown, ii) the fact that most of

the initial states are unknown (set to zero) and iii) (some) have large uncertainties relative to

the measurement precision. During this phase, there is a high probability that some states

converge to a local minimum and remain either incorrectly estimated and/or correlated to

other states until the conditions on their observability improve (e.g., due to new dynamics

or additional measurements). This, in turn, limits the navigation quality. The “initialization”

employing a partial-Schmidt-Kalman filter is proposed to remedy this problem. To allow the

states to evolve more smoothly, a growing γ(t ), from 0 to 1 during an initialization period Ti ni

is defined as

γ(t ) =
1

Ti ni
(t − t0) (4.12)

where t0 is when the initialization period starts, and t is the current estimation time. Such

“initalization” is implemented for the VDM parameters xp (that are usually pre-calibrated), the

wind xw and the sensor error states xe . These are referenced as “consider” states later on. The

duration of Ti ni is experimentally investigated in Sec. 9.3.2 together with other benefits.

4.2.4 GNSS Outage

During a GNSS outage, the absence of position and velocity observations from a GNSS receiver

prevents the direct update of navigation states that are related to other auxiliary states via an

observation model, resulting in a constant increase in their uncertainties. On the other hand,

the IMU measurements that are still present, update all navigation states xn at high frequency.

Barometer observations are further present to restrain the vertical channel. Thus, after some

time, the elevated variance in horizontal position allows for strong corrections to be applied to

the navigation states when only influenced by IMUupdates, possibly leading to erratic jumps

in the estimation trajectory. Such corrections are even more exaggerated if the IMUbiases are

poorly estimated. To counter this effect, the partial update is performed by setting the states

related to aerodynamic coefficients (xp ) as “consider” states. These are indeed observable

only during the presence of GNSS positioning. The benefits of the presented combination of

filtering strategies are presented in Sec. 10.2 for the GNSS outage phases.

More details on the two methods and their implementations are described in [64, 67, 68]. The

partial update is implemented in the MATLAB and C++ framework.

State rescaling and factorization improve the numerical stability of the VDM-based navigation

filter during operation. In all cases, the large state space challenge inevitably the stability of

the filter. A reduction methodology is proposed in the next section to reduce the state space

using an unconventional approach by lumping the estimation of highly correlated states.
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4.3 State Space Reduction

The state corrections xp to aerodynamic coefficients (VDM parameters) are (possibly highly)

correlated. When the UAV performs highly dynamic maneuvers, as will be presented in

Sec. 8.1, the global observability of the system is increased, where the consequences of which

are twofold; on the one hand, correlations between the VDM parameters are accentuated,

and on the other, the Persistence of Excitement (PE) [69] allows for the de-correlation of other

states.

First, such correlations should be considered with confidence during filter initialization before

enabling them to be tuned, if required, while flying the UAV. Second, there is a need to combine

sets of highly correlated states to reduce the system to a size that is feasible for microcomputer

implementation, as the one used in this research and presented in Sec. 6.2. The time required

for the KF propagation and updating steps to be computed with the embedded computer

depends on different system state sizes presented in Sec. 9.2.2.

Rather than using well-known approaches of state reduction via suboptimal filtering [58],

some correlated parameters can be expressed as combinations. This reduces the number of

states used during estimation while maintaining them in the full model for application via

the re-projected and previously determined correlations. The goal is to maintain as much of

the system accuracy as possible while optimizing the system for real-time implementation. It

does this by suppressing some states to reduce the computational load required to update the

state vector (the number of multiplications increases with the cube of the state-vector size).

The candidate pairs of coefficients that can be put together are identified by analyzing the

evolution of the covariance matrix P in time. If the correlation between two states is high and

does not vary temporally, the updated values are expected to change similarly when refined

during the state estimation. Linear regression can be used to express one coefficient as a

function of the other using C j = si j ∗Ci +oi j where the coefficient C j is expressed as a scale

si j function of Ci , plus an offset oi j . The aerodynamic equations can be modified accordingly,

reducing the total VDM parameters in the augmented state Xp by the number of candidates

found. The choice of the aerodynamic coefficients to be paired and their linear expressions

are given in Sec. 5.3.1. The influence of the new aerodynamic model on the VDM navigation

performance in nominal flight conditions and under GNSS outage is explored in Sec. 10.4.
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Summary

The following enhancements within the estimation have been proposed in this chapter:

a rescaling of the states, a factorization technique combined with partial updates, and a

reduction of the aerodynamic model. These propositions have addressed: (i) the numerical

instability of the estimator; (ii) the oscillations of state variables during the (in-air) initializa-

tion; (iii) the prospect of maintaining the same filtering methodology during nominal and

autonomous operations. Yet, with these improvements, the correct VDM-based navigation

can only work if a set of (correct) aerodynamic coefficients is available. The next chapter

focuses on estimating these coefficients directly from the flight data, thereby avoiding the

need for additional tools such as expensive and time-consuming wind tunnel experiments,

CFD.
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5 Aerodynamic Coefficient Estimation

Overview

The performance of VDM-based navigation is largely dependent on the accuracy of the

model-dependant aerodynamic coefficients characterizing the behavior of the platform.

These coefficients can be either (i) known or determined in advance, for example, from

CFD analysis or via experiments in wind tunnel testing; (ii) approximated from a model

describing the platform of a similar shape that needs to be re-calibrated; (iii) completely

unknown and therefore they need to be first approximated for estimation/linearization

and later refined. This chapter covers the aspect of aerodynamic coefficient estimation

without prior approximation and subsequent calibration (e.g., non-linear estimation). It

describes a multistep methodology using the recorded sensor data from calibration flights.

The proposed procedure avoids the expensive and time-consuming experimental setup

(e.g., in a wind tunnel) and/or aerodynamic modeling software. The proposed methodology

allows estimating a set of aerodynamic coefficients independently of the platform type.

The methodology first proposes estimating an approximate set of coefficients using the

recorded sensor data and trajectory reference from a calibration flight. The procedure is

designed into three linear estimators to obtain first the wind, followed by the moment and

the force coefficients estimation. An observability criterion employing the Observability

Grammian matrix is used to limit the “artificial” decrease of the covariance matrix caused

by the relatively large number of observations - which does not necessarily increase the

system observability. This guarantees that the parameters for the three estimators are

only estimated when the system experiences sufficient excitation. Further or alternative

refinements are proposed within VDM-based state space estimation, employing either

precise attitude obtained via photogrammetry or precise IMU. The subsequent use of

optimal smoother permits decorrelating some coefficients while improving their estimation

(i.e., confidence levels). The resulting covariance matrix can be used as initial covariance for

navigation, possibly after scaling that allows for small adaptations between flights. Some of

the presented aspects are taken from [14, 28]
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Figure 5.1: Aerodynamic coefficient calibration flowchart

5.1 General Calibration Methodology

The flow chart presented in Fig. 5.1 explains the coefficient estimation/calibration procedure

with the different techniques based on their a priori “levels” of knowledge of the coefficients.

If the aerodynamic coefficients are unknown, separate least squares estimates are proposed

using observability analysis to select suitable data (Sec. 5.2). With this method, a set of co-

efficients can be obtained for further refinement using state space enhancement. Indeed,

calibration via state space augmentation can only be performed when the aerodynamic co-

efficients are known with some confidence. Otherwise, convergence is not guaranteed [18].

Monte Carlo simulations find the convergence threshold to be approximately within 30% of

their correct values. The results of this analysis are presented in Sec. 8.1.6. Then, methods

using state space augmentation are proposed: the first one uses ’pose’ references from suffi-

ciently precise INS/GNSS (Sec. 2.4); the second one employs precise attitude observation from

photogrammetry (Sec.5.3.2). When the aerodynamic coefficients are calibrated for a platform

with one of these methods, they can be further refined in real-time to cope with small changes

in the physical geometry of the UAV between flights (Sec. 8.1).

5.2 Approximate Coefficients Determination

Knowledge of the aerodynamic coefficients of the platform is needed to derive the navigation

states that are linearized in the EKF steps. If the linearized states are far from the true states,

the filter can diverge [18], and the VDM-based navigation approach cannot be used. Therefore,
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it is necessary to obtain an initial set of coefficients that is sufficiently close to reality. Special

setups can be used to determine most of them as wind tunnel experiments with a robotic

arm and load cells observing the applied forces and moments, CFD analysis when the 3D

model of the platform is available, or the coefficients with a similar known shaped-aircraft

can be adapted as an initial guess. The latter method is used in this investigation with the

model-based navigation described in [51]. However, to generalize the VDM-based navigation

method to any platform, a methodology is needed to determine a set of coefficients without

additional tools.

The proposed procedure utilizes a reference trajectory with its post-processed INS/GNSS

navigation solution with centimeter-level accuracy for the position, ∼ 0.02 [m/s] for velocity

and attitude below 0.1 [deg ]. This is needed to correct for the aerodynamic coefficients with

which the VDM process model is expected to produce a similar level of accuracy. Furthermore,

the autopilot logs the flight control commands, and all geometric parameters (including the

inertial tensor, where [70] proposes its addition in the state space to be estimated) are already

determined or assumed to be known. Airspeed measurements and raw inertial data are also

needed.

These data are then used in a cascade scheme of LS estimators to estimate the aerodynamic

coefficients (VDM parameters). Not all epochs of the calibration trajectory are used to de-

termine the parameters. Instead, an observability criterion based on the observation model

Grammian selects the regression points. A partial-Schmidt update is employed to determine

which of the available parameters should be updated. Wind velocities, moments, and forces

are then estimated sequentially.

5.2.1 Estimation Separation

The starting point for identifying the aerodynamic coefficients comes from the equation for

the accelerometer observation model given in Eq. 3.75 and provided again here as

Z fi mu = Ri mu
b

(
fb +

(
Ω̇

i
i b +Ωi

i bΩ
i
i b

)
rb

b−acc

)
+x fi mu

e +ϵacc

where fb and Ω̇
i
i b are functions of the coefficients to be estimated. Then, by rotating the IMU

measurement to be in the body frame (Ri mu
b ) and ignoring the remaining stochastic/time-

correlated error terms, the observation equation can be simplified as

Z fi mu +vi mu = fb +
(
Ω̇

i
i b +Ωi

i bΩ
i
i b

)
rb

b−i mu with v ∼ N (0,σacc ) (5.1)

The force specification via VDM is again given by

fb =


F b

T

0

0

+Cb
w

F w
x

F w
y

F w
z


 1

m
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with the force coefficients to be identified in F b
T and Fw . The skew matrix is Ω̇

b
i b =

[
ω̇i

i b

]
×,

where ω̇i
i b is defined in (Eq. 3.57) as

ω̇b
i b =

(
Ib

)−1 [
Mb −Ωb

i b

(
Ibωb

i b

)]
(5.2)

and Mb contains all moment terms. Furthermore, all forces and moments are directly pro-

portional to the dynamic pressure q̄ or airspeed magnitude V . With the equation of airspeed-

ground speed-wind as V = v−w, it is possible to determine wind velocity w knowing the

airspeed (e.g. via Pitot tube measurements) and the ground velocity v of the UAV. Therefore,

knowing the wind velocity w and by numerical derivation of the gyro data, the moment coeffi-

cients can be identified using Eq. 5.2. When the wind and the moments are known, the force

coefficients can be determined using Eq. 5.1. The three steps (wind, moments, and forces

estimation) are described hereafter.

The substitution of navigation states, control commands and geometric parameters in Eq. 5.1

results in a nonlinear observation model involving aerodynamic model parameters and wind

(21+ {3×number of observations} unknowns). Such a substitution does not have a decoupling

effect. Moreover, a similar substitution in Eq. 5.2 results in a nonlinear model involving

aerodynamic moment-parameters and wind (11+ {3×number of observations} unknowns).

For such a substitution to work, it is assumed that gyroscope measurements can be reasonably

differentiated. Though this substitution has no decoupling effect, it gives credible evidence

that if the wind is estimated a priori (thanks to [52]), the model Eq. 5.2 is linear in aerodynamic

moment-parameters. Consequently, if both wind and aerodynamic moment-parameters are

known, then the model 5.1 is linear in aerodynamic force-parameters. This results in three

linear and decoupled estimators to effectuate aerodynamic calibration of UAV using inertial

data and Pitot’s tube.

5.2.2 Generic Model Structure

The general calibration procedure is depicted in Fig. 5.2 and the process model for each

estimator is of the following form:

xk+1 =

[
xi

k+1
xc

k+1

]
=

[
xi

k
xc

k

]
= xk (5.3)

where the observation model is in the form of a recursive least squares equation as presented in

2.1.2. The previously reviewed works of [52, 71] have shown that observability of aerodynamic

model-parameters and wind is dependent on the trajectory, and hence they are only mildly

observable. Studies from [68] have shown that estimating nuisance states in a traditional

setting can affect filter accuracy and consistency. A Partial-update Schmidt Kalman Filter

(PSKF) [68] is used, effectively estimating constant and time-varying nuisance states. PSKF

facilitates a generalized estimation approach in which only a portion of the traditional full

filter update can be applied to selected states. According to observability conditions, the
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Figure 5.2: Calibration procedure as a sequence of three decoupled estimators

nuisance terms can sometimes be treated as full filter states and updated. Other times, they

can be considered and not updated. Such a framework has been proven to be unbiased and

consistent [68].

5.2.3 Estimator I -Wind

As highlighted in 5.4, wind serves as one of the forcing inputs of the differential equation

modelling the VDM state dynamics and is indispensable for linearizing Eq. 5.2; therefore its

estimation is important for a reliable navigation solution. The UAV-based wind estimation

methodology from [52] is adapted in discrete-time. It has been theoretically and practically

validated on three different platforms. The methodology makes use of Pitot’s tube as an

external measurement. Let xw ∈R3 be the wind velocity in the body-frame, and γ ∈R+ be the

scale factor of Pitot’s tube, then the process model is of the following form:[
xwk+1

γk+1

]
=

[
xwk

γk

]
+wk (5.4)

The observation model is of the following form:

zk = dT Rb
l xw + zakγk + vk , (5.5)

where d = [ 1 0 0 ], zak is the airspeed measured by Pitot’s tube, Rb
l is the rotation matrix from

local frame to body frame (Eq. 3.43) and zk is the longitudinal velocity of the aircraft, obtained

as a result of sensor fusion (INS/GNSS). The incorporation of Eq. (5.4) and (5.5) as the process

and observation model of KF, respectively, yields wind velocity.

To ensure observability, the fixed-wing drone must keep changing its attitude, as the related

states are estimated only when they are observable. This estimation is carried out using a
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PSKF, contrary to the standard KF proposed in [52] where the reported results showed that the

planar wind is estimated with a lower uncertainty compared to vertical wind.

Moreover, this methodology assumes that the wind will vary slowly over time. These variations

can be estimated because the Kalman gain effectively defines a cutoff frequency. Wind velocity

frequencies lower than this cut-off frequency are captured, whereas the others are filtered.

5.2.4 Estimator II - Moments

When the wind-related entities are substituted and Eq. (5.2) is rearranged, the following

observation models are obtained:

zm = HmCm with (5.6)

Hm = Dm

δa β ω̃x ω̃z 0 0 0 0 0 0 0

0 0 0 0 1 δe ω̃y α 0 0 0

0 0 0 0 0 0 0 0 δr ω̃z β



Dm =

b 0 0

0 c̄ 0

0 0 b

 , Cm =

[
CMx a CMxβ CMx ω̃x CMz ω̃z CMy 1 CMy e ...

...CMy ω̃y CMxα CMzδr CMz ω̃z CMzβ

]T

and

zm =
1

q̄S

(
Ibω̇b +Ωb

i b

(
Ibωb

i b

))
(5.7)

where ω̇b is obtained by employing a high-order (e.g. eight, in our case) differentiator on a

sequence of gyro observations with deterministic errors removed (during pre-calibration and

INS/GNSS integration), and α, β and V (used in the term q̄) are taken from Estimator I.

The process model as depicted in Eq. 5.3, however, results in an 11x11 process-noise covariance

matrix, which is extremely cumbersome to tune in a practical setting. Additionally, as the

model parameters associated with aerodynamic moments remain virtually constant [71], the

complexity can be reduced by setting this process noise to zero. This effectively turns the KF

to an RLS moment-parameter estimator. It should be noted that white noise can also be used.

However, choosing its form and strength is not straightforward and requires adaptation to the

stability of the meteorological conditions. In the end, a partial update framework addresses

the observability concerns.
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5.2.5 Estimator III - Forces

By substituting wind and moment parameters in Eq. 5.1 and subsequently rearranging the

model, the following observation model is obtained

z
′
f = H f C f with, H f =

1

m0

[
A33 (Rw

b )T A37

]
(5.8)

where m0 is the mass of UAV,

A33 = ρD4

n2 n2V
Dπ

( V
Dπ

)2

0 0 0

0 0 0

 , A37 = q̄S

1 α α2 β2 0 0 0

0 0 0 0 β 0 0

0 0 0 0 0 1 α


and

C f =
[
CFT 1 CFT 2 CFT 3 CFx 1 CFxα CFxα2CFxβ2 CFy 1 CFz 1 CFzα

]T

with the observation model

z
′
f = fb −Ωi

i bΩ
i
i brb

b−acc −
[

(Ib)−1
(
Mb −Ωb

i b

(
Ibωb

i b

))]
× rb

b−acc (5.9)

where fb and ωb
i b are the readings of the accelerometer and gyroscope, respectively, Mb =[

M b
x M b

y M b
z

]T
. The other terms were defined elsewhere. The process model is the same as in

Eq. (5.3). Following the same reasoning, the process noise is chosen to be zero, resulting in an

RLS force-parameter estimator based on a PSKF framework.

5.2.6 Observability and Uniqueness

A heuristic is presented to segregate the system state of these estimators into nuisanced and

observable states. It is inspired by [52], where the observability of the wind is evaluated only

at the end of the trajectory by computing the Observability Grammian and finding it to be of

full rank. This metric asserts that the system is observable at the end; however, it does not

convey any information regarding what and when states are observable (or not). The following

empirical approach evaluates these questions.

For the chosen generic model structure, applicable to all three estimators (wind, moments,

and forces), with F = I, the observability Grammian can be computed after each observation

by the following recursive summation of the normal equation:

W0(k) = W0(k −1)+HT
k Hk (5.10)

Let Vk =
[

vk
1 · · · vk

n

]
and Λk = diag[λk

1 , · · · ,λk
n] such that W0(k)Vk = VkΛk . (vk

j ,λk
j ) de-

notes the j th eigen-vector/eigenvalue pair of W0(k). These eigenvalues are sorted in as-

cending order (1 denoting the smallest value and n the largest). They are computed using the
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Chapter 5. Aerodynamic Coefficient Estimation

MATLAB function eig. Let k = K denote the last observation, a closeness matrix is defined:

Γq = VT
q VK ∀q ∈ {1,2, · · · ,K } =


(vq

1 )T vK
1 (vq

1 )T vK
2 · · · (vq

1 )T vK
n

(vq
2 )T vK

1 (vq
2 )T vK

2 · · · (vq
2 )T vK

n
...

(vq
n)T vK

1 (vq
n)T vK

2 · · · (vq
n)T vK

n

 (5.11)

(5.12)

Note that ΓK is an identity matrix. Moreover, each element of Γq is a scalar product between

the eigenvectors of W0(q) and W0(K ). Then, Γq is written in the following form :

Γq =
[

g1
q g2

q · · ·gn
q

]
(5.13)

Subsequently, the maximum value along each column vector is computed as g j
q ∀ j ∈ {1,2, · · · ,n}

max(Γq ) =
[

max(
∣∣∣g1

q

∣∣∣) max(
∣∣∣g2

q

∣∣∣) · · ·max(
∣∣∣gn

q

∣∣∣)] (5.14)

where
∣∣∣g j

q

∣∣∣ denotes element-wise absolute value of g j
q .

In other words, the ath eigenvector of W0(q) is closest to the first eigenvector of W0(K ) and

so on. In this way, it is numerically possible to approximately associate the eigenvalues of

observability-Grammian at each epoch with a chosen set of basis, which are the eigenvectors

of W0(K ).

At the end of this step, n time series (of length K ) of eigenvalues of W0 are obtained, and

each is characterized by one of the eigenvectors of W0(K ). Let λ j (k) be such a time series.

As the system satisfies the conditions of PE for uniform observability, there exists ϵ> 0 such

that W0(K ) > ϵ I [72]. This means that for some sufficiently large K , W0(K ) is positive definite.

Therefore, eigenvalues of observability Grammian tend to grow with each observation subject

to excitation/dynamics, and this behavior is presented for the wind estimator in Sec. 8.2.

To ascertain the uniqueness of information brought in by each observation, the difference

between adjacent elements of each time series is computed, which gives a feeling of the

observability evolution in time

∇λ j (k) =λ j (k)−λ j (k −1) (5.15)

If ∇λ j (k) > threshold, then new information is available, and some states are observable. To

use this heuristic for the generic model structure, it is imperative to first change the basis of

state space to the basis created with the eigenvectors of W0(K ). This leads to the update of the

states corresponding to a sufficiently large ∇λ j (k) and the other is considered.

For any of the three estimators, a general procedure is summarized in the form of an algorithm:
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5.2 Approximate Coefficients Determination

1. Build observability Grammian. For the epoch k ∈ {1,2, · · · ,K }

(a) Compute Hk and W0(k)

(b) Compute the eigenvalues (Λk ) and eigenvectors (Vk ) of W0(k)

2. Form the new basis. At the last epoch K

(a) With W0(K ), find the basis VK

(b) Compute the state-transformation matrix: T = VT
K

3. Compute the evolution in observability. For epoch k ∈ {1,2, · · · ,K }

(a) Compute Γk = VT
k VK

(b) Compute max(Γk )

(c) Re-arrange the eigenvalues into n time-series λ j (k) for j ∈ {1,2, · · · ,n}

(d) Compute the difference ∇λ j (k)

4. Initialize the state x estimator. For k ∈ {1}

(a) Transform the initial states, initial covariance and process noise (if non-zero).

x′ ←− Tx, P′ ←− TPTT ,Q′ ←− TQTT

5. Estimate the ”transformed” states x′. For k ∈ {2, · · · ,K }

(a) If ∇λ j (k) > threshold ∀ j ∈ {1,2, · · · ,n}, update the state else consider. This is where

partial update is applied.

6. Transform back to original basis. For k ∈ {1, · · · ,K }

(a) Invert the basis, to obtain the estimated states x ←− T−1x′ and covariance P ←−
TTP′T in their original set of basis

The partial update algorithm detailed above to effectuate aerodynamic calibration is carried

out sequentially for the three estimators in the order depicted in Fig 5.3: A similar procedure

Coefficients
estimation
algorithm

Wind & Pitot scale
estimation, Q ̸= 0

Moments esti-
mation, Q = 0

Forces esti-
mation, Q = 0

xw , γ Cm → Mb C f → Fb , FT

output input

Figure 5.3: Coefficient estimation algorithm flowchart with three estimators for the wind (plus
Pitot scale factor), moments, and forces

can be followed for the delta wing platform to effectuate its calibration. The coefficients

obtained are then considered sufficiently close for linearization in a compound estimation
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Chapter 5. Aerodynamic Coefficient Estimation

methodology for further fine-tuning as described in Sec. 5.3.1 and 5.3.2. This methodology will

be referred to as Wind Moments Forces (WMF) in the following sections. When an approximate

set of coefficients is available, it can be further refined using the techniques proposed in the

next sections.

5.3 Coefficients Refinement

Two methods for coefficient refinement are proposed here using post-processed methods and

precise observation inputs. It is important to note that the following techniques do not work

due to the augmented-states estimation method. The filter tends to diverge (Sec. 8.1.6) if the

initial coefficients to be refined (xp ) are not first approximated with a coarse method such as

WMF or adapted from a similar aircraft model.

5.3.1 Calibration with External ’pose’

If a set of coefficients are approximately known, either (i) after adaptation from a similar

platform or (ii) using an estimation method as proposed in Sec. 5.2 with a low-grade IMU, the

aerodynamic coefficients can be further tuned using the augmented system space with the

possibility of using of a ’pose’ sensor based on external/reference of INS/GNSS giving direct

updates to the navigation states xn . The observation model for this sensor is given by

Zpose +vpose =

 rnav

vpose

Ψpose

 =


xl

e +D−1Rpose
b rb

b−pose

vl
el +

(
Rb

l Ω
b
i b −Ωl

i e Rb
l )

)
rb

b−pose

Rpose
b Rb

l

 (5.16)

where Rpose
b = Ri mu

b is a potential boresight and rb
b−nav = rb

b−i mu is the lever-arm between the

b-frame origin and the ’pose’ sensor or the INS system, respectively. All other terms are defined

in Sec. 3.5.3.

The ’pose’ sensor injects reference post-processed navigation observations, including position,

velocity, and attitude observations, updating the states at different epochs. The frequency at

which these corrections are available is normally forced to be equal to the IMUobservations

being, in general, the sensor generating observations at the highest frequency. In addition, in

post-processing, the state estimation and in particular, the VDM parameters can be signifi-

cantly improved by filtering in a backward direction with respect to time and then combining

the results of the forward and backward solution by an optimal smoother as presented in

Sec. 2.4. The optimal smoother improves the estimation of the parameters, among them the

aerodynamic coefficients. For better results and fewer fluctuations, the optimal smoother is

implemented to combine the estimation states of the backward filter and the 2nd-forward

stage filter. The fixed-step smoother combines the forward and backward solutions in the
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5.3 Coefficients Refinement

least-square sense:

x N
k = (xb)k +

[
(P−1

b )k + (P−1
f )k

]−1
(P−1

f )k
[
(x f )k − (xb)k

]
(5.17)

where (P .)k and (x .)k are the covariance matrix and the state vector at time epoch k, re-

spectively. The indexes b and f show the results of the second stage backward and forward

filters.

The application of such a method is presented in Sec. 8.3.2 where a set of coefficients is

obtained for TP2 and in Appendix A.6 for eBeeX.

5.3.2 Attitude References from Photogrammetry

The method previously presented using state space augmentation has the advantage of not

requiring any additional sensors. Investigations of this approach address certain challenges in

separating estimates of aerodynamic coefficients related to specific forces or moments [47].

Moment estimation, in particular, proved to be especially difficult and required multiple

iterations [73] when the aerodynamic coefficients are adapted from a platform of similar

shape. The quality of the previous method is proportional to the IMU quality and cm-level

positioning. This may not always be available, which motivates the use of precise alternative

observations of absolute attitude, which can be used in an off-line coefficients calibration.

Photogrammetry represents one of the best options available to obtain such information at

0.01deg-level or better accuracy at an extra weight of ∼ 0.2kg for a relatively good camera [74]

and associated Bundle Adjustment (BA). In most situations, the camera attitude determination

when an image is taken via adjustment surpasses the accuracy of a small inertial system. The

camera-derived attitude can be used as an additional observation for calibration:

Zc +vc = Rb
c Rc

l (t ) (5.18)

with Rb
l the rotation matrix representing the rotation from the local l-frame to the camera

c-frame and Rb
c the boresight between the c-frame to the body b-frame. The latter is usually

derived concurrently with Zc within the BA. The camera is rigidly attached to the drone,

and the attitude solution is translation-independent. Therefore, a lever arm between the

camera and body frame origin is not needed here, but possibly in the BA using INS/GNSS

poses. As BA determines the camera rotation for some fixed-ground system, the rotation

from the position-dependent local-level frame l to the c-frame is obtained via successive

transformations.

The procedure to obtain the attitude reference of an IMU from camera data, camera External

Orientation (EO), IMUerrors calibration, and precise INS/GNSS integration with photogram-

metry treatments, is schematically depicted in Fig. 5.4. The superscript˜andˆare used to

specify estimated and updated results, respectively, and the procedure is described in more
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Figure 5.4: Steps required to obtain attitude updates in the body-frame using the precise
pre-processing trajectory treatment and photogrammetry

detail in the following.

Methodology

Four main steps are necessary to produce precise attitude observations from overlapping

images acquired by the UAV, which can later be used to improve the calibration of the UAV

aerodynamic coefficients:

1. First, the position and attitude (pose) of each image are approximately obtained from

the camera exposure times using onboard sensors and INS/GNSS integrated trajectory

with (if possible) cm-level (RTK/PPK) relative GNSS positioning and sufficient flight

geometry (overlap, altitude variation).

2. Second, the photogrammetry suite software analyses each image separately to detect

key points, the centroids of local image features. Then, with the help of approximated

pose and camera interior orientation values, the software determines correspondences

(matches) between some of these points on several images.

3. Third, the previously matched image observations are confronted with approximate

observations of camera poses in a bundle adjustment (BA). At this point, the observa-

tions of signalized points, called ground control points (Ground Control Point (GCP)s),
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5.3 Coefficients Refinement

can be added (both in the object and in the image space). This additional information

improves the simultaneous determination of camera poses and interior orientation, but

is not necessarily indispensable if the geometry of the image configuration is strong.

The aerial control during flight (via GNSS or INS/GNSS) is of sufficient accuracy [74].

4. The final step transforms the adjusted camera exterior orientation at these instances to

the IMU or body frame to use the absolute attitude references in the estimator. The last

step is subsequently detailed while its implementation on a particular flight is described

in Sec. 8.3.1.

Transformation back to IMU-Body (l) frame

Within one flight, the area covered by the UAV corresponds to a small portion of the Earth’s

surface. Thus, a local tangent frame (l0) with E NU axes orientation can be used (with negligi-

ble influences of Earth’s curvature) as the mapping frame. Its origin, denoted as E NUo , is set

either at the center of the mapping zone or at its extremity to maintain positive coordinates.

After running the photogrammetry process and its BA (with possibly INS/GNSS input), the

adjusted camera attitude Rc( j )
lo

is obtained for each photo j ∈ [ j = 1..J ] and possibly also Rc
b .

To obtain IMUattitudes R li

bu (i ) from oriented photos Rc( j =i )
l0

, the following sequence of transfor-

mations must be performed:

R li

bu
= R li

e
(
ϕi ,λi

) ·Re
l0

(
ϕ0,λ0

) ·T N ED
E NU ·

(
Rbu

c ·Rc(i )
l0

)T
(5.19)

The camera attitude is rotated from the mapping frame (here local-Cartesian system, ENU)

back to the body-frame (local-level on a reference ellipsoid, NED and expressed with respect

to IMU-frame bu). This process is somewhat subtle and needs to be modified when the

mapping-frame includes projection, and national reference frame [29].

The bore-sight between the camera and the IMU representing their orientation offset (Rb
c in

Eq.5.19) is also estimated within the BA, possibly in a different flight using INS/GNSS derived

orientation parameters [75].

The matrix T N ED
E NU in Eq. 5.19 defined as

T N ED
E NU =

0 1 0

1 0 0

0 0 −1


T

(5.20)

transforms the axis orientation between NED and ENU.
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The matrix

Re
lo

=

−si n(ϕ0) · cos(λ0) −si n(λ0) −cos(ϕ0) · cos(λ0)

−si n(ϕ0) · si n(λ0) cos(λ0) −cos(ϕ0) · si n(λ0)

cos(ϕ0) 0 −si n(ϕ0)

 (5.21)

is a constant rotation from the mapping-local frame to the e-frame and

RN EDi
e = Re

N ED

(
ϕi ,λi

)T (5.22)

where
(
ϕi ,λi

)
represent the IMU position at the time the image is taken.

Sec. 6.2 details the experimental setup used to investigate the methodology, and Sec. 8.3.1

exposes the practical results when using attitude references as observations and summarizes

the findings.

Summary

In this chapter, a methodology to estimate, calibrate and refine the platform-dependant

aerodynamic coefficients has been proposed. First, a coarse set of coefficients was obtained

via three separate estimators that did not require prior knowledge. In a second step, these

coefficients can be calibrated offline, benefiting state space augmentation with precise

attitude observations from photogrammetry, or high-quality reference trajectory from an

IMU of higher quality. These coefficients can be further refined in flight to absorb the

modification of the platform geometry between missions. To evaluate these coefficients,

they will be used as initial values for the real-time VDM-based navigation system whose

setup is detailed in the next chapter.

70



Part IIIReal-time framework and setup

71





6 Platforms and Experiments

Overview

Most of the current results regarding the proposed model-based navigation solution for

small UAV are either derived from simulations, or from recorded flight data replayed in post-

processing. Therefore, there is a need to demonstrate the feasibility of this new approach

to autonomous navigation in a real-time experimental setup. Its design, implementation,

and validation are one main research objectives of this thesis. Moreover, the real-time

implementation should be portable between platforms of different shapes, and also adapt-

able to inertial data of varying quality. To test the feasibility of the navigation system for

different platforms, conventional fixed-wing and delta-wing drones are used, weighing

less than 3kg . Their main physical characteristics are presented in this chapter, while

their respective aerodynamic models were introduced in Sec. 3.5. Alongside the platform

aerodynamic model that serves as a main process model within the estimation scheme,

sensor observations are needed in the estimation. In this work, IMU and GNSS sensors are

used for navigation. In contrast, the camera and the Pitot tube are used for the determina-

tion/calibration of aerodynamic coefficients and the validation of wind estimation. Most

of the sensors and devices are available on the market. These sensors are described with

their respective, placement, interfaces, and main characteristics. The used payloads were

developed internally to house the required sensors and fit the geometric specifications of

the UAVs. Furthermore, to operate the drone, ground equipment is also needed: a GCS

to plan and monitor the mission and a radio controller to switch rapidly between flight

modes and to manually control the aircraft. This equipment is briefly described here, while

more details about the GCS software are given in the next chapter. Finally, during this

research, multiple flight campaigns are conducted to validate the new theoretical additions

and the real-time aspects of the implementation (the latter are covered in the next chapter).

The selected set of flights is described with the relevant mission information on the used

platform and payload, the validation results obtained as well as related publications. Most

of the descriptions are based on project reports and published material [28, 76].
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6.1 Platforms

To implement and validate the different research objectives, three platforms are used, as

shown in Fig. 6.1. The two fixed-wing platforms, called TOPOPlanes (TP), are depicted in

Fig. 6.1(a) with the first (top) and the second version (bottom). The two TPs [74] are based

(a) (b)

Figure 6.1: Fixed-wing platform with 5 control surfaces (left): the two versions of the
TOPOplane (a) version-1 (top) and version-2 (bottom), and the eBeeX from senseFly (b)

on a hobby model platform [77]. They have a shape of a conventional aircraft with 4 control

surfaces (ailerons, elevator and rudder) following the model presented in Sec. 3.5. The second

platform (Fig. 6.1(b)) is a delta-wing produced by senseFly SA with a modified payload and

firmware. The model for such a platform was presented in Sec. 3.5. Tab. 6.1 summarizes the

main characteristics of all three platforms. The empty mass of the platform does not include

Table 6.1: General characteristics of the UAVs

TP1 TP2 eBeeX
empty mass [g ] 1791 1819 946
length [m] 1.148 0.706
width (wing Span b) [m] 1.623 1.175
wing Span S [m2] 0.343 0.32
Mean aerodynamic chord
b̄ [m]

0.225 0.295

Propeller diameter D [m] 0.362 0.23
autopilot HW PixHawk FMU2 Proprietary
autopilot SW ArduPilot - cus-

tom
PX4 - custom Proprietary

GNSS receiver µblox + Javad
TRE

TOPcon B11
(B125 later)

Septentrio
AsteRx-m2

GNSS Antenna Maxa3 AN306-1 Maxtena M1227

the weight of the removable payload and the battery. These may change per configuration,
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modifying the total mass m, which is used as a VDM parameter. The platform length is the

distance between the nose (further point of the engine/propeller) and the rearmost element on

the platform structure. The width of the platform corresponds to the wing span b introduced in

Sec. 3.5. The autopilot board with its software performs several tasks, which can be generalized

as, gathering the data from internal and some external sensors, controlling the actuators in

flight, guiding and navigating the platform during its mission, and communicating with the

ground control. More details on the autopilot are given in Sec. 6.3.2. As the main findings

are based on the TP2 platforms, a detailed architecture of the experimental setup is given

below. The payload and some of the system for the delta-wing drone eBeeX are provided in

the Appendix C.4

6.2 Payloads

Some objectives of the research group, in parallel with the research objectives of this work,

require the use of hardware of sufficient accuracy (e.g. IMU) or computational capacity. Some

of these requirements can be listed as follows

• receive, decode and re-transmit high frequency IMU data of a quality superior to au-

topilot IMU,

• execute a pre-flight calibration for (online) determination of random biases in all inertial

sensors (Sec. D.3.3),

• perform INS-based (kinematic) navigation that initializes VDM-based (dynamic) navi-

gation in the air and serves as a backup in the case of resets and terminal phase (landing)

of the flight (Sec. 7.2),

• dispose of a sufficient computational capacity for implementing and executing the

real-time VDM-based navigation (Sec. 7.3),

• live streaming the control commands from the autopilot to the real-time navigation

software and return the navigation solution to the ground.

Several payloads are utilized to validate the research objectives of this thesis. An overview of

the different payloads is given below, Tab. 6.2 summarizes the hardware components, and

Fig. 6.2 depicts the three payloads used. The mass of the payload "IGN-GECKO" was not

measured but was the total mass of the UAV with the payload.

6.2.1 "IGN-GECKO"

Displayed in Fig. 6.2(a), this payload carried by TP2 is composed of: i) a custom, 20 Mpx

camera for aerial photogrammetry developed by IGN, France [79], ii) a Gecko4Nav redundant

IMU board [80] with two Intersense NavChip MEMs IMUs.
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Table 6.2: Payload characteristics

name IMU CAMERA PC Other Weight [kg]
IGN-GECKO 2× NCv1 DigiCam raspberry-Pi -
SODA-GECKO 4× NCv1 SODAv1 UpBoard 0.443
SODA-STIM 1×STIM 318 SODAv1 UpBoard Dahu4NAV & 4×

ADIS-16475 [78]
0.473

Raspberry-PidigiCam

Gecko4Nav w. 2 IMUs

(a)

SODA 1 Gecko4Nav w. 4 IMUs

PC(upboard) No 1

(b)

Sentiboard

PC(upboard) No 2 Dahu

SODA 2 STIM 318

(c)

Figure 6.2: (a) "IGN-Gecko" with a high-quality camera (digiCAM), board with 2 redundant
IMU and embedded 32-bit micro-computer, (b) "SODA-Gecko" with SODA camera, 4
redundant IMUs, and embedded 64-bit computer UpBoard, (c) "SODA-STIM" with an

UpBoard, SODA camera, STIM-318 IMU, SentiBoard and Dahu board

The calibration of the external and internal parameters of the camera was performed thanks

to [75]. The weight and size of the camera allowed to use of only a µPC (Raspberry-Pi), which is

not used for VDM. All data from Gecko4Nav board are stored in internal memory together with

selected GNSS data. The stochastic error model of this IMU is described in [81] and the prior-

mission calibration in [53]. The on-board GNSS multi-frequency (Global Positioning System

(GPS)/GLObalnaïa Navigatsionnaïa Spoutnikovaïa Sistéma (GLONASS)) receiver TOPcon

B110 has its storage for all observations, including phase, phase rate, and pseudo-ranges on

multiple frequencies. These are required to obtain cm-level positioning and cm/s velocity

accuracy, which are used for calibration and reference. This receiver time-tags the pulse-

signalized events of camera shutter openings. It also provides the Pulse Per Second (PPS) to

the Gecko4Nav board and the autopilot (PixHawk) to associate the IMU data and the autopilot

(Pixhawk) control commands in the GPS time scale, respectively. The payload is attached
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directly and rigidly to the TPs via two carbon rods.

6.2.2 "SODA-GECKO"

A replacement system is developed that i) can provide an external attitude reference of suffi-

cient quality and ii) has sufficient computational capacity for the requirements mentioned at

the beginning of the section. A smaller and lighter camera, referenced as "SODA" is acquired

from senseFly SA I. The optical properties of the camera are somewhat lower quality than

those of digiCAM, yet sufficient for external attitude referencing. The lower size and weight of

the camera allowed to the integration of an embedded computer. In contrast to "IGN-GECKO",

it is attached to the plane via rubber vibration dampeners. A similar Gecko4Nav IMU board

with four redundant IMUs is presented in the payload. A 64-bits companion computer [82]

is incorporated to handle the real-time acquisition of the different sensor measurements, as

well as to run real-time applications. Apart from other functionality described in Sec. 7.2

and Sec. D.3.3, this computer interfaces the communication with the camera to acquire the

images. The mounting hardware is depicted in Fig. 6.2(b). More details on each hardware

component are provided in Sec. 6.3, the communication between them in Appendix C.1, and

the interaction with the rest of the UAV in Sec. 7.2.

6.2.3 "SODA-STIM"

To improve the calibration of the aerodynamic coefficients used in the VDM, accurate inertial

data is required. Together with the prospect of using several small IMUs of new generation,

the new payload replaced the R-IMU board containing Navchips (the release of which dates

back to 2010 [80]. A STIM-318 from Sensonor II representing one of the best options currently

on the market in terms of the performance per size and weight is accommodated ( 6.2(c))

alongside the "DAHU" [83] board hosting 4 ADIS-16475 IMU from Analog Devices [78] (noise

characteristic given in Tab. C.2). The new payload carries the same type of SODA camera and

a similar embedded computerIII as the "SODA-GECKO" payload.

A final assembly is presented in Fig. 6.2(c) with a carbon fiber structure, rubber dampeners,

and aluminum anchor points. The IMU is accompanied by an electronics board called the

Sentiboard (Fig. 6.2(c)), which is developed at NTNU [84] for sensor data acquisition and

synchronization. The payload is used to collect data for the aerodynamic coefficient estimation

methodology presented in Sec. 5.2, and the flights are described in Sec. 7.4. The board wiring

is given in Appendix C.6.

Ihttps://www.sensefly.com/
IIhttps://www.sensonor.com/products/inertial-measurement-units/stim318/

IIIup-board
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6.3 Sensors and Subsystems

The real-time implementation of a demonstrator is complex in terms of hardware, software,

and communication architecture. Realization of the full system required substantial develop-

ment and component customization. This section describes the hardware layer of sensors

and subsystems with the architecture, while the detailed software layer and implementation is

presented in Chp. 7.

6.3.1 Overview

The whole system is divided into two distinct components: the fixed-wing UAV and the GCS,

required for issuing commands to the UAV and visualizing telemetry including the VDM-based

performance and other measured parameters. Fig. 6.3 summarizes all hardware components

with their firmware developed or modified to meet the real-time implementation objectives.

Plane:

1. the PixHawk flight controller, hosting the autopilot software,

2. the Upboard, a powerful yet miniaturized computer dedicated to running computation-

ally intense tasks related to VDM-based navigation,

3. IMU payload:

(a) the Gecko4Nav board with the NavChip IMU for the "SODA-GECKO"

(b) the combination of STIM-318 + SentiBoard for the "SODA-STIM"

4. A GNSS receiver, in order of usage:

(a) JAVAD TRE

(b) TOPcon B110

(c) TOPcon B112

5. A SODA camera (in payload "SODA-GECKO" and "SODA-STIM"), a digiCam (in payload

"IGN-GECKO")

6. Two airspeed sensor of different quality

(a) JDrone

(b) Surrey

Components 2, 3 and 5 are assembled in one single removable payload depicted in Fig. 6.2(b)

already introduced in Sec. 6.2.
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Figure 6.3: A list of hardware (HW) and software (SW) modules

Ground:

1. regular computer hosts the GCS software, required to issue commands to the UAV, plot

the navigation solution, and display other significant parameters, such as the results of

the real-time navigation filters. The ground station will be detailed in Sec. 6.3.3,

2. the custom-made weather station to observe the horizontal local wind velocity (Sec. 6.3.4)

3. a radio command to control the plane manually, especially for take-off and landing.

The hardware mentioned above with the wiring/radio link between the components for the

TP platforms and the ground segment is shown in Fig. 6.4 in a general and simplified scheme.
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Figure 6.4: General connection between hardware components

6.3.2 In the UAV

The PixHawk Flight Controller and PX4 Autopilot Software

The Pixhawk autopilot is a popular general-purpose flight controller based on the Pixhawk-

project [85] FMUv2 open hardware design. It is based on an embedded µcontroller and can

run different implementations of autopilot software. It hosts all the electronics to interface

with other flight hardware, such as an embedded computer, a GNSS receiver, radio links, etc.

In particular, it is directly connected to the servo motors that position the flight surfaces and

to the Electronic Speed Controller (ESC) that drives the main propeller.

To achieve research objectives, the customization of the autopilot is a priority. PX4 [86], an

advanced open-software autopilot software, has been selected. The architecture of the PX4
autopilot, developed in academia and now the standard in the UAV robotics community,

ensures long-term support and high-quality standards, and it is more suited to implement

the features required for this project. The PixHawk board is used as the flight controller in the

constructed plane. The autopilot software is modified to be compatible with the GNSS receiver

and for enabling time-stamping of autopilot commands and sensor data in GPS time-frame.

In particular, PX4 has been extended concerning the following functionalities:

1. Javad GNSS driver. No available autopilot software is already equipped with the nec-

essary drivers to integrate the measurements from Javad receivers. Although Javad is

a leader in high-end receivers for geomatic applications, such products are seldom

considered on UAVs due to price limitations. A general driver has been implemented for

the whole Javad product family, based on the GREIS binary protocol, also implemented

on Topcon receivers.

2. PPS acquisition. The Javad GNSS receiver outputs a PPS synchronous with the GPS

clock. A software module has been implemented in the PX4 autopilot to enable the

timestamping of such pulses, i.e., recording the exact time (with respect to the autopilot

clock) of the pulse rising edge.

3. Real-time clock synchronization. Once the exact time of the PPS coming from the
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receiver has been recorded in Autopilot (AP) time, this information can be used to estab-

lish the relation between the low-quality autopilot clock and the GPS time reference, in

terms of offset and drift. A software module has been implemented to compute these

two parameters in real-time based on a history of pulse timestamps and GNSS epoch

times. These two parameters are encoded in an µORB message on the debug_vect
topic. Thanks to the Micro Air Vehicle communication protocol LINK (MAVLink) [87]

bridge, this message is also exposed to the embedded computer and made available to

the ROS environment by MAVLink extendable communication node for ROS (MAVROS)

(see Fig. 7.1).

The PixHawk also receives data from an airspeed sensor (Pitot tube) which is used to control

the velocity of the UAV.

The UpBoard Embedded Computer

The embedded computer chosen for this project is the UpBoard [82]. This miniaturized board

hosts an Intel Atom 64-bit processor, and it can run computationally intense tasks, such as

those required by VDM-based navigation, in real-time.

A more detailed description of the software running in the Upboard and the ROS environment

is given in Sec. 7.2. The installation of the UpBoard embedded computer can be found in a

brief WiKi IV.

NavChip IMU and Gecko4Nav

The IMU sensor(s) used for VDM-based navigation are part of the Gecko4Nav board embed-

ded in the "IGN-GECKO" and "SODA-GECKO" payloads depicted in Fig.6.2(a), 6.2(b). The

Gecko4Nav board [80] was developed in collaboration between EPFL and The Bern University

of Applied Science. The version flown with the "IGN" payload has two integrated IMUs, while

the current version ("SODA-GECKO") has four IMUs.

The Gecko4Nav board includes an FPGA and an integrated circuit to host up to four IMUs and

a port to receive GNSS data for time reference. Their multiplication improves redundancy and

potentially decreases noise, and thus improves accuracy, as studied in [88]. The connected

receiver sends a PPS to the Gecko4Nav board to synchronize the acquisition of the respective

IMUs with GPS time scale. All data from Gecko4Nav board are stored to board internal memory

together with selected GNSS data. Its noise characteristics are analyzed in [89] and are given

in Tab. C.3.

IVhttps://wiki.epfl.ch/topoupboard
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STIM-318 and SentiBoard

The IMU streams the observations at 500 Hz to the SentiBoard, which takes care of the time

tagging of the data. The SentiBoard board has several configurable ports of different protocols

to connect sensors as input and a USB port to stream sensor data as output. One serial port

handles the arrival of IMU data. A pulse so-called “Time Of Validity (TOV)” is issued by

the IMU for each outputted data packet, which is time-stamped by an internal clock. This

timestamp is encapsulated with the data and sent to the PC. A second serial port handles

messages from the GNSS receiver, where the TOV is provided by the PPS signal issued at the

same frequency as the GNSS messages. Incoming messages are encapsulated with GPS time

and sent to the PC. One of these messages contains information about the absolute GPS time.

The developed parsing software finds the relation between the board clocks and the GPS time

(Sec. 7.1).

GNSS Receivers

The three GNSS receivers used during the different campaigns with the TPs are summarized

in Tab. 6.3.

Table 6.3: GNSS receivers used in chronological order

Device constellation frequency Platforms
JAVAD TRE GPS/GLO L1/L2 TP1

TOPcon B110 GPS/GLO L1/L2 TP2
TOPcon B112 GPS/GLO/GAL/BEI L1/L2/E5 TP2 (after IGN campaign)

They allow the recording of raw GNSS observations in their storage. These observations

can be fused with other data of a stationary receiver of a similar type to obtain an accurate

position and velocity for reference and calibration. The position and velocity determined by

the receiver are communicated to the autopilot and the payload via serial port, from which

are forwarded together with IMU data to the Upboard embedded computer. The receiver also

generates the PPS signal to synchronize the system clocks on other components, e.g. IMUs

and flight CC.

Camera

The camera is an auxiliary sensor that can be used to derive a reference attitude through

photogrammetry and to determine the VDM parameters further as described in Sec. 5.3.2.

The SODA camera is a proprietary device of senseFlyV with a CMOS sensor of 5272 × 3648

pixels on 12.75 × 8.5 mm footprint. The lens is fixed rigidly to the camera body and has a

nominal focal length of 10 mm. The ground resolution is about 2.33 cm/pix when the image is

Vwww.sensefly.com
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taken 100 m above the terrain. The weight of the camera is 75 g .

The digiCAM [90] from Institut National de l’Information Géographique et Forestière (IGN)

is likely one of the best small camera systems (in terms of resolution, quality, and stability)

that such UAV platform can carry. It comprises a full-frame-sized CMOS sensor and GPS-time-

ready electronics on a stable mount to which optics of excellent quality are attached (Zeiss

Biogon 2.5/35 mm lens). It, however, weighs 300 g . The cameras are triggered to take pictures

via a mechanism described in Sec. C.1.4.

Airspeed Sensor

Two airspeed sensors are installed on the TP2. The Jdrone airspeed sensor is a low-cost

PixHawk-compatible used to control the airspeed of the UAV during the mission. The sensor

estimates the wind velocity for the calibration method WMF. The sensor is, however, not used

for VDM-based navigation.

The second Pitot tube from SurreySensor VI, is of high quality and connected to the Senti-

Board. It outputs measurement at 100 Hz and is used to determine the real-time air density ρ,

transmitted to the VDM-based navigation system (Sec. D.3.3).

VIhttps://www.surreysensors.com/
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6.3.3 Devices on the Ground

Radio Control

Figure 6.5: RC used
by the TP operator

To operate manually the UAV, a MC-32 from Graupner VII is used as

RC. It is connected to the 3DR Radio v1 receiver module from the SiK

project VIII linked to the autopilot. The system used the WiFi bands

at 2.4 G H z. The controller permits the arming and disarming of the

UAV and change between flight modes (full manual, stabilized, orbits)

programmed in the autopilot. There is no automatic take-off and

landing capability used for the TPs, thus, the UAV operator has to

control the UAV for take-off and landing. The eBeeX however, can fly

fully automatically from launch/takeoff to landing, no RC is needed.

Ground Control Station - Mission Planner

The GCS comprises a field computer and antennas to maintain duplex

communication with the UAV throughout the mission. A typical field setup is shown in Fig. 6.6

with the operator computer and the 443Mhz transceiver as presented in Fig. D.2(b). The

Figure 6.6: Ground Control Station set up with the operator’s computer running QGC and the
telemetry transceiver

software adopted on the remote PC is QGC [91]. It provides a complete flight control setup for

the linked autopilot (PX4). It communicates to the UAV via MAVLink protocol. Some of the

messages are described in Appendix C.1. The software handles entire mission planning for

autonomous flight and, thus, allows total control of the UAV trajectory.

A Graphical User Interface (GUI) display, as seen in Fig. D.2(a), eases the operator to send

commands to the UAV and monitors in real-time the vehicle position, flight track with defined

waypoints as well as the UAV instruments and subsystems.

VIIhttps://www.graupner.com/
VIIIhttps://github.com/ArduPilot/SiK
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6.3.4 Portable Weather Station

The air density ρ varies substantially at the same location with different weather conditions

(> 20%). These variations depend on the time of day, the altitude at which the UAV flies, and

the season. Variations above ground are relatively small for UAVs flying below 150 [m] Attitude

Above Ground Level (AGL) and can be modeled with relatively good confidence. The large

variations of ρ due to current meteorological conditions at the take-off area are deterministic

when observing the temperature T , pressure p, and humidity as

ρ =
pd

Rd +T
+ pv

Rv +T
(6.1)

where ρ is the density of humid air (kg /m3), T is the temperature in Kelvin, Rd and Rv are the

specific gas constants for dry air and water vapor, respectively. The constants and derivations

of dry air pd and water vapor pv can be found in [92]. These observations motivated the

installation of a small portable weather station that monitors the values mentioned above

together with the direction and magnitude of wind to compare its estimation with the VDM-

based navigation system.

Sensors

A small portable weather station is developed in three copies. Each accommodates the sensors

observing the local air parameters, as shown in Fig. 6.7(a) and wind velocity in 2D direction. On

(a) (b)

Figure 6.7: (a) Portable Weather Station main module and (b) acquisition set-up with tripod

the surface of less than 20 cm2 the weather station contains the sensors and devices presented

in Tab. 6.4 An anemometer indicating wind direction and velocity is attached to the setup

as depicted in Fig. 6.7(b). The anemometer on the weather station can identify 16 cardinal

directions thus, the resolution is 22.5deg . As a result, the output is a coarser estimate than the
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Table 6.4: Weather station specifications

Sensor type Reference Details
Static pressure MS583702BA06-50
Humidity DEL-SHT85
Temperature DEL-SHT85
GNSS receiver pressure uBlox CAM-M8 for data GPS time-tagging
µprocessor ESP32 w. 1.14 Inch LCD display and WiFi (2.4 [G H z])
SD card Internal storage of observation
Battery 1 Cell 3.5V
Anemometer SEN-08942

I/O

Analog
I2C
Serial
RS485
USB

RJ11 - Anemometer and rain gauge, USB - future uses

estimated wind. However, it can already give some approximate knowledge of the wind, which

can be helpful for the initialization of the states as presented in Sec. 9.4.1. The anemometer

must be calibrated before each use for velocity and North heading. The weather station source

files and the guide to update the firmware, the electronic schematic, layout, and the 3D printed

cover can be found at [93]. Some of the diagrams are presented in Appendix C.5.

Estimation of Atmospheric Parameters

In the Sec. 3.5, the force and moment equations were defined for the TP2 and the eBeeX. All

equations are correlated with the air density ρ. Moreover, the specific forces (Eq. 3.58) are

expressed in the wind frame. While the wind velocities are estimated as auxiliary states, the air

density ρ can be set as a constant parameter or added as a new state when the aerodynamic

coefficients are removed from the system-states as presented in Sec. 7.3.5. This new state

behaves as a scale factor s that compensates and corrects the air density variations due to

altitude changes from a model or a slow change in the weather conditions.

To increase the trust in estimating the aerodynamic coefficients using the different methods

presented in the Chp. 5, the air density ρ can be set before the takeoff according to the current

atmospheric parameters observed by the portable weather station. The air density can also be

observed in real-time with the onboard embedded sensors such as a barometer, thermometer,

and humidity via to Eq. 6.1. In either case, it is believed that the estimated VDM parameters

values are closer to their true values with the observed ρ rather than that obtained by the

standard atmospheric model. Even though an incorrect initial ρ gets compensated by the

re-estimation (via in-flight calibration) of the aerodynamic coefficients, a value approaching

the current true air density is in the best interest for the VDM parameters consistency between

flights occurring at different time, altitude, and weather conditions.

The same reasoning applies to the initial wind velocities. With approximated values ( Sec.9.4.1)
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(e.g. taken thanks to the weather station), the convergence time to estimate the wind velocity

can be accelerated. In turn, the estimation of the other states benefits from it (navigation,

VDM parameters, IMU bias states). In the case of GNSS outage, improved wind estimation is

translated to higher accuracy of autonomous navigation.

6.4 Flights

This section gives an overview of the flights performed during the thesis with their main

characteristics presented in Tab. 6.5.

6.4.1 VDM Concept Validation with Experimental Data

In 2017, Dr. Khaghani [11] used the two flights called 20170821_nx5id1 and 20170822_nx5id1

and shown in the Fig. 6.8 to confirm experimentally the VDM-based navigation concept, which

was still in an early stage. The two flights demonstrate the importance of correct sensors and
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Figure 6.8: Flight performed in August 2017 with the TP1 under the names (a)
20170821_nx5id1, and (b) 20170822_nx5id1

time-tagging of autopilot flight control commands for the VDM-based navigation system to

perform correctly. These results are given in Sec. 9.1.1. The payload comprises the MEMS-IMU

Navchip with the Gecko4Nav introduced in Sec. 6.2. A geodetic grade GNSS receiver is on

board, capable of working in RTK mode, although only the stand-alone solution is used in

navigation. The sampling frequencies are 100 H z for the IMU, 10 H z for the barometer, and

1 H z for the stand-alone GNSS position and velocity data.
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Table 6.5: Flight summaries

Flight Name Date L. [min] UAV Payload Weather (WS) Sec. Reference Details

20170821_nx5id1 2017-08-21 8 TP2 Legacy SKC, 0-1m/s V, (×) 9.1.2 [95] Test calibration maneuvers
20170822_nx5id1 2017-08-22 10 TP2 Legacy SKC, 0-1m/s V, (×) 9.1.2 [95] Test calibration maneuvers
I6X 2018-06-21 23 TP2 IGN-GECKO SKC, 0-1m/s V, (×) 8.3.19.3.2 [28]
I6U ” 18 ” ” ” 9.3.2
I7 2018-07-02 29 TP2 IGN-GECKO SKC, 0-1m/s N, (×) 8.3.19.3.2 [28]
I8 2018-07-03 40 TP2 IGN-GECKO SKC, 0-1m/s V, (×) 8.3.19.3.2 [28]
eBeex-652 2018-09-26 34 eBeeX eBee-GECKO - 8.2 [76]
eBeex-757 2019-02-20 32 eBeeX eBee-GECKO - 8.2
GiiNav2 2019-02-28 - TP1 SODA-GECKO SKC, 0-2m/s SW, (×) Test modified NavServer and GiiNav in RT with

ROS
GiiNav3 2019-09-17 - TP2 SODA-GECKO SKC, 4-5m/s N, (×) NavServer and GiiNav in RT with ROS
sodaCorrL 2019-10-01 18 TP2 SODA-GECKO SKC, 4-5m/s N, (×) Test Soda + UpBoard
GiiNav4 2020-04-23 - TP1 SODA-GECKO SKC, 0-2m/s N, (×) Test Tel2 with CC, CM from QGC, correct rosbags
t1px4-rosb3 2020-06-03 - TP1 SODA-GECKO SKC, 0-2m/s S, (×) 2 flights: without payload; Test custom QGC, ros-

bags for CC, GiiNav
t1px4-soda1 2020-07-06 - TP1 SODA-GECKO BRK, 0-4m/s SE, (×) 3 flights: 2×without payload; Test soda with Up-

Board services
tp2s1-met1 2020-10-07 23 TP2 SODA-GECKO SKC, 0-4m/s S, (✓) Test CC, weather station
tp2s1-met2 2020-11-09 34 TP2 SODA-GECKO FOG, 0-1m/s V, (✓) WS with new time tag, Camera new wiring, GiiNav

Topics
STIM3 2021-04-01 - TP2 SODA-STIM -, (✓) A.8 Test new weather station FW
STIM5 2021-09-27 30 TP2 SODA-STIM BRK, 1-3m/s S, (✓) 8.2 RT ROS topics for VDMc
STIM6 2021-10-12 32 TP2 SODA-STIM SCT, 3-5m/s N, (✓) 8.2 RT ROS topics for VDMc
STIM7 2021-11-11 16 TP2 SODA-STIM OVC, 1-2m/s N, (✓) 8.2 RT air Data
STIM8 2022-07-01 32 TP2 SODA-STIM FEW, 1-2m/s V, (✓) 7.3.4 Test all nodes in RT
STIM_12 2022-08-30 20 TP2 SODA-STIM SKC, 0-1m/s V, (✓) 9.2 VDM demonstrator, wind estimation and align-

ment
STIM_13 2022-08-30 23 TP2 SODA-STIM SKC, 1m/s S, (✓) 9.2 VDM demonstrator, wind estimation and align-

ment
STIM_14 2022-10-25 28 TP2 SODA-STIM SKC, 0-1m/s SE, (✓) 9.2 VDM demonstrator, gnss outages
STIM_15 2022-10-25 16 TP2 SODA-STIM SKC, 1-2m/s S , (✓) 9.2 VDM demonstrator, gnss outages
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6.4.2 IGN-GECKO

During the summer of 2018, several flights with the payload "IGN-GECKO" (Sec. 6.2.1) and the

platform TP2. Initially, these flights were carried out for mapping and redundant MEMS-IMU

related research [5, 75]. However, the advantage of the high-resolution camera created the

opportunity to explore the improvement of the estimation of the coefficients due to accurate

attitude observations. Four of them were selected, and their trajectories are shown in Fig. 6.9.

Two flights (IGN8, IGN6X) were released as open-source data [94]. The processing of these
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Figure 6.9: Experimental flight references (blue): a) IGN8, b) IGN7, c) IGN6X and d) IGN6u,
beginning of the trajectory (red triangle)

flights required data logging and was processed in the VDM MATLAB framework.

6.4.3 SODA-GECKO

Starting from July 2019 to November 2020, the payload "SODA-GECKO" (Sec. 6.2.2) was em-

bedded first in TP1 (up to July 2020), then in TP2 to test the change of autopilot firmware (from
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Ardupilot [96] to PX4) and the installed real-time environment ROS with the new embedded

computer. At the same time, the hardware (Sec. 6.3) was replaced in the TP2 (GNSS receiver

from Topcon B110 to B125 with a change of antenna from Maxtena [97] to AN306-1) and

required further testing. Due to this payload, the data recorded (from ROS bags) are replayed

in a simulated real-time environment (Sec. 7.3) to validate the possibility of executing the

VDM-based navigation prototype in term of computational loads with the real-time navigation

software, the description of which is given in Sec. 7.3. Among all flights, a subset is described

in Tab. 6.5 for their key steps toward achieving research objectives.

6.4.4 SODA-STIM

Mounting, installation, and testing of the new "SODA-STIM" (Sec. 6.2.3) payload started from

November 2020. Using the TP2 and this payload, high-quality data were acquired during

numerous flights to validate the proposed VDM parameter estimations (Sec. 5.2). Some

of the following flights were used to validate the calibration method proposed in Sec. 5.2

and to demonstrate the real-time VDM-based navigation software (Sec. 7.3) with an online

demonstrator (Sec. 9.2). Fig 6.10 shows these flights, and their details are in Tab. 6.5.
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Figure 6.10: Experimental flights references (blue): a) STIM5, b) STIM6, c) STIM7, d) STIM_12,
and e) STIM_13, beginning of the trajectory (red circle)
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6.4.5 eBeeX Campaign

While the research on autonomous navigation with the fixed-wing platform TP2 was progress-

ing, a parallel project IX with the delta-wing eBeeX started in 2017. From the numerous flight

attempts to gather all required and correctly time-tagged autopilot and payload data (more

than 25!), between October 2017 and February 2019, two flights are used in this work. Their

trajectories are depicted in Fig. 6.11 while some details of the flights are given in Tab. 6.5. No
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(b)

Figure 6.11: eBeeX flight trajectories with CF_eBee_756 (a) used as calibration and
AF_eBee_652 (b) as application flights

real-time environment is used for these flights, and all data are recorded for post-processing

and the validation of the WMFmethodology (Sec. A.3.1) with the delta-wing eBeeX. A description

of the payload is given in Appendix C.4.

Summary

In this chapter, the main hardware components for the experimental setup have been

described. The detailed narrative has emphasized the complexity of designing a working

VDM-based navigation system while demonstrating that most parts can be easily obtained

on the market. The VDM-based navigation system has been tested on a large number of

flights. The numerous flights acknowledged the complexity of testing and validating the

real-time design. The software application and constraints related to VDM-based navigation

real-time aspects are introduced in the next chapter.

IXCTI project number 25800.1 PFIW-IW, VDM2NAV
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7 Real-Time Implementation

Overview

The real-time implementation of the VDM-based navigation system requires new software

development and several adaptations of the experimental setup presented in the previous

chapter. This chapter presents the chosen strategy for handling data exchange from multi-

ple sources, and details the necessary software applications to achieve a working real-time

environment. To begin with, the system needs a common reference time frame to fuse the

flight control commands provided by the autopilot and the different sensor observations

(that are not directly part of AP electronics). By doing so, the sensor fusion filter is guar-

anteed to deal with the data at the correct (common) time. Second, it is described how

the data are exchanged between sensors is performed. This is achieved using ROS-topics,

which is a data communication layer managed by the ROS environment. It makes the

sensor-to-application interface independent from the hardware. The publishing of data

messages (ROS-topics) and their reception (ROS-subscription) is managed by applications

(ROS-nodes). With this scheme, the I/O of the navigation software does not need to be

adapted for different hardware realizations. In addition, the sensor observations originating

from different subsystems are generated asynchronously and ROS guarantees the exchange

between nodes with the same reference time. The transmission of messages from/to the

embedded computer, the autopilot, and the GCSare briefly presented. Within the embed-

ded computer, the different applications, called the ROS nodes, are described too. Then,

the VDM-based navigation filter, called VDMc, is described in more detail together with its

real-time features. This software runs VDM navigator and its corresponding EKF for the

particular platform and sensors at hand. It is responsible for fusing all sensor observations

and flight control command inputs to estimate the navigation solution and the auxiliary

states (wind, IMU errors, aerodynamic coefficients). Finally, the different phases of flight

are discussed for a typical UAV mission. Each phase implies different software and filter

configuration that assures the best navigation performance and filter stability, in particular

during VDM initialization, GNSS outages, and landing.
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7.1 Data in GPS-Time

VDM-based navigation requires providing a common time frame to all observation sources

(IMU, GNSS, barometer, airspeed, etc) with respect to autopilot commands. As the sensor

observations from MEMs-IMU refer to the absolute time frame driven by the GNSS receiver

via the NavServer application, the autopilot needs to be modified to express its control

commands in GPS time as well as observations from connected sensors such as the Pitot tube

and the barometer. These observations are further sent to the UpBoard computer via the

MAVlink-MAVROS bridge to the VDMc application as updates or references. Their fusions with

other observations and GNSS also require association with GPS time. Tagging the CC (and

other sensors data) with GPS-time requires finding the relation between the internal clocks

of the autopilot and GPS time, scale of which is signalized by the PPS with associated time

message with registered in the AP system time. To accomplish this task, time series of PPS is

continuously analyzed by a linear regression with two parameters:

• Bias b: representing the offset of the autopilot internal clock with respect to UTC.

• Scale factor s: accounts for the differences in the autopilot and Coordinated Universal

Time (UTC)/GPS time scalesI.

tU TC
j = b + 1

s
t P X 4

j (7.1)

Online parametric estimation of b and s is implemented with the modified PX4 autopilot.

These two values are transferred to the UpBoard computer via the ROS topic time_sync. The

GPS time is then computed by taking into account the day of GPS week and the current leap

second:

tGPS
j = tU TC

j +dow · (24 ·3600)+ l eapsecond (7.2)

This operation is performed in the ROS node TimeSynch where the values of b and s are

periodically updated. Finally, the time-tag of every message (control command, airspeed and

barometer) is replaced by the computed tGPS
j and a new ROS topic is generated with the suffix

_tagged (Sec. 7.2). The residuals of the conversion over a flight of 30 minutes are given in the

result Sec. 9.1.2.

7.2 ROS Architecture in the Embedded Computer

The embedded computer runs the Linux OS Ubuntu Desktop (16.04 for "Soda-Gecko" payload

and 18.04 for the "SODA-STIM" payload) to manage two main applications: 1) the INS- and 2)

the VDM-based navigation (GiiNav and VDMc). Each application is implemented separately

as a stand-alone executable (ROS node) and communicates with the other nodes via the

IThe scales of UTC and GPS are the same.
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ROS publish/subscribe network. Fig. 7.1 shows the schematic of the ROS nodes and the

ROS topics used to provide the required information, as well as the detailed structure of the

embedded computed software organization. Within this diagram two principal entities can be
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Figure 7.1: ROS architecture of the embedded PC

distinguished:

• ROS Nodes: processes capable of performing tasks

• ROS Topics: information exchanged among nodes

In Fig. 7.1, nodes are visually represented by circles, and the topics are represented by arrows

whose direction indicates which node subscribes or publishes to the attached topics. The

description of the ROS nodes is given hereafter:

1. MAVROS. MAVROS [98] is the ROS node providing the communication interface for the

PX4 autopilot with MAVLink communication protocol. MAVROS decodes the incoming
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MAVLink stream and makes that available on equivalent ROS topics. Among others, a

specific topic type, debug_value, composed of a header and a payload, has been used

in this project to broadcast specific information such as control commands, status, and

clock synchronization parameters.

2. Broadcast node. This custom node subscribes to the debug_value topic containing the

custom commands to/from the ground control station and sends its content, according

to the header, to a set of specific topics.

3. TimeSync node. This custom node re-tags all the autopilot control commands received

via the MAVROS node thanks to a custom plug-in. It converts the autopilot time to GPS

time thanks to the information retrieved from the time_sync topic, which contains the

bias and scale between these two systems times (Sec. 7.1). Then it publishes the GPS

time-tagged control commands on the cc_tagged topic.

4. NavServer. This custom software publishes sensor data used by the GiiNav and VDMc
applications. It was initially designed to output the parsed data from the Gecko4Nav

board to sockets and was adapted to the ROS environment. The NavServer is connected

(via USB) to the Gecko4Nav/SentiBoard and gets data from its sensors at the GNSS

receiver PPS rate. The software has been modified to extract and publish IMU and GNSS

data (and airspeed data for the Sentiboard) on separated ROS topics.

5. GiiNav. GiiNav [99] is an internally maintained software that runs an INS/GNSS navi-

gation filter using an EKF as estimator. The software handles delayed sensor outputs.

GiiNav has been modified to subscribe to ROS topics to acquired IMU and GNSS data

produced by the NavServer. It saves its navigation solutions (position, velocity and

attitude) and status of the filter in separate files as well as publishing the former to a ROS

topic (giinav_pose) proving the initial navigation states for the VDMc software. The

topic is also published to MAVROS and follows the pipeline explained in Appendix C.1,

eventually reaching the GCS. The solution is then displayed on the QGC GUI to follow

the INS/GNSS-based navigation in real-time.

6. VDMc. Is the ROS node running the VDM-based navigation estimator. The different

sensor measurements are fused within a EKF and the navigation solution is published

on the topic vdmc_pose (also forwarded to QGC. The VDMc node is detailed in Sec. 7.3.

7. Surrey. The custom Surrey node is responsible for managing the measurements from

the Surrey Pitot tube. The node also serves as ROS action client to calibrate the dy-

namic and static pressure sensor against GNSS. This is necessary to obtain accurate real

airspeed and altitude measurements. Both observations are used for calibration but

are not added as extra updates for real-time implementation. The node computes the

corrected air density ρ which is updated in real-time in the VDMc software.

8. RemoveSensorBias. This custom application provides a ROS action server implementa-

tion to compute the airspeed and barometer sensor bias. The results are subsequently
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communicated to the Surrey node to correct the raw measurements to calibrated

values.

More details of the nodes and their related topics can be found in the Appendix D.2.2.

7.3 VDMc - Software

 

 VDMc 

Figure 7.2: VDMc logo

The implementation of the first version of VDM-based navigation

in C++ is presented in the following sub-sections. The software is

available in EPFL gitlab [100]. The implementation of the design

and the details are written in the dedicated WiKi pages II.

7.3.1 Operation Modes

The Linux computer in the payload (Sec. 6.2) runs the VDMc im-

plementation and interacts with measurements, including the

autopilot flight control commands. They are encapsulated as ROS topics. The VDMc has two

main modes of operation: post-processing (debug) and real-time, as shown in Fig. 7.3. The
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Figure 7.3: Modes of the VDM C-based operation

first mode allows the utilization of data from previous flights to be replayed in a debug mode.

As only the very recent flights contain the log via ROS bags, a pipe line is created to interface

older flights with sensor-internal storage and thus compare the C++ and MATLAB implemen-

tations of the VDM-based navigator. The second mode operates similarly, but in real time.

In off-line mode, the software allows testing different configurations of the filter and sensors.

For example, the output frequencies of sensor data can be modified, GNSS outages can be

simulated, or a subset of filter states can be activated.

In online mode, the navigator is initiated when the UAV is in the air using an INS-based

solution that is executed in parallel (GiiNav). As the availability of different sensor data

IIhttps://gitlab.epfl.ch/laupre/vdm_c/-/wikis/home
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and autopilot commands is asynchronous and depends on communication delays and data

parsing, a particular sensor data management is implemented to cope with such situations.

The navigation solution is presented as a ROS (vdmc_pose) topic to the modified version

of QGC, where it can be displayed together with the inertial-based (GiiNav) and autopilot

position estimates.

7.3.2 Architecture

This section introduces the general VDMc architecture with the I/O flow as depicted in Fig. 7.4.

The C-class architecture is visualized in the Appendices D.3.1. The VDMc receives the initial

EKF VDM - TP2


Prediction

Update

GNSS

velocity

GNSS

position

IMU Pitot Barometer

VDMc node

C++ Class

Function
abstractions

GPSIMU CCGiinav_pose

Resource manager

VDMc_pose
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Legends

VDM - eBeeX


Air
data

Figure 7.4: Simplified design of VDMc I/O

conditions of the navigation states via a ROS topic giinav_pose. Sensor data (for example,

IMU measurements, GNSS position and velocity) and flight control commands are received

asynchronously, as shown at the top of Fig. 7.4. These inputs are treated in real-time (Sec. 7.3.4).

A platform-dependent vehicle dynamic model (currently implemented for TP2) predicts the

plane’s trajectory together with its uncertainty. The specific forces and angular velocities

provided by an IMU are implemented as observations (which arrive at regular intervals), while

the GNSS positions and velocities may be intermittent. Other measurements such as air speed

and/or static air pressure can be easily added as an optional observation following a template

C++, but are not used in the current real-time implementation. The internal status of the

software is currently logged internally. A pipeline similar to that for the vdmc_pose topic is

ready for the status forwarding to the QGC but the parsing of the status messages is not yet

implemented to be displayed.

98



7.3 VDMc - Software

7.3.3 Automatic Linearization in C++

The definition of the platforms and the related model equations are now written using Mathe-

matica [101] (Fig. 7.5) including, the auxiliary and sensor models. These are defined within a

Figure 7.5: Definition of the velocity and angular rate differential equations (Eq. 3.57 and
Eq. 3.49) using Mathematica environment

file dedicated to the particular platform model. A first python script (generate_model_ini.py)

is called to populate the config file model.ini (Appendix D.3.4) specifying the state space,

i.e. the auxiliary models as presented in Sec. 3.5.2. The different functions are then evalu-

ated with Mathematica and linearization is performed when necessary. The output func-

tion files define the mathematical tools needed to perform the different Kalman operations.

Then, two python scripts are run: (i) to convert these mathematical operations in C++ stan-

dard and complete different simplification to reduce the number of lines to be executed

(fixMathematicaOut_v2.ini); (ii) for some functions, the output is transformed with the

second script (sparseMatrix.py) to sparse matrices for optimization using the Eigen li-

brary [102]. The functions produced .cpp are ready to be used directly as input in the VDMc
application functions. The linearization flow is depicted in Fig. 7.6. This allows automatizing

the generation of the C++ function when some model modification is applied to the platform

without changing the structure of the filter. The modified source files need to be considered

before running the application. Complete Mathematica VDM of TP and the different sensor

models are available in [100]. The C++ source file for the GNSS sensor is shown in Fig. 7.7.

where the include macro imports the autogenerated functions. Additional sensors have to

follow this simple template and is presented in Sec. D.3.5.

7.3.4 Asynchronous Observations Handler

The autopilot commands and sensors observations are presented through ROS topics to which

VDMc subscribes. The availability of these data is principally asynchronous, and this fact needs

to be handled in real-time. A naive implementation of the VDM would wait for the required

data to perform the EKF updates (in the case of sensor data) or the state prediction (in the case

of control command data). In such a situation, the EKF is forced to idle for a certain amount of

time, which is undesirable if the navigation solution is used for real-time guidance and control

(e.g., updating the navigation states of the autopilot). Similarly, if a sensor provides several
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Figure 7.6: Linearization flowchart

observations in one data chuck (e.g., due to communication restrictions), the VDM-EKF would

postpone its execution until the data becomes available.

VDM and its EKF are implemented with timers to ensure the continuous flow of the navigation

solution. In addition, a backpropagation mechanism is implemented to deal with delayed

observations. With these additions, the VDM-based navigator/estimator continues processing

data as they arrive, performs its predictions regardless of current availability or absence of

sensor observations (even if no more observations arrive!) and saves the current states and

covariances when an update is expected to happen thanks to dedicated sensor timer. The

delay pending until the filter has to wait for the expected data to arrive before saving the states

(variable saveStateDelay in filter.ini), and the maximum time during the saved states

and covariance are kept in the memory (variable max_delay in filter.ini), are variable

to be set in the configuration file filter.ini. Fig. 7.8 shows a situation where several IMU

measurements arrive as one packet (to limit overhead in communication). In this figure, the

arrival of the data from the GNSS receiver (orange), the IMU (blue), and the autopilot control

commands (black) is represented on a horizontal timeline with vertical arrows. In the upper

part of Fig. 7.8(a), the current state and time of the filter is delineated with the dashed red

vertical line, while the current time is displayed with the green dashed line. Between the

current time and the last EKF time, two GNSS measurements are transmitted along with a

control command from the autopilot. However, the packet of IMU data is still expected to

arrive. When a delayed observation packet is detected, EKF returns to the closest previous

state using the saved states and covariances to perform the updates with the newly arrived
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Figure 7.7: Include of automatically-generated functions for the GNSS position model h_func
and Jacobian linH_func methods

observation(s) and all other observations received from this time to the current time (Fig.7.8(b)

and 7.8(c)). The “nondelayed data” is stored in a circular buffer. Lst. 7.1 shows a simulated

delayed IMU observation after 2 seconds of flight STIM12 replayed via ROSbag. Related states

are saved and later updated following the backpropagation mechanism.

Listing 7.1: Delayed IMU observation

20 INFO: Initializing the command control at time 378144.0000510000
21 WARNING: saving state at time 378146.3219932391 for timer IMU
22 WARNING: saving state at time 378146.3319932391 for timer IMU
23 INFO: backtracking from t=378146.3319932391 to t=378146.3219932391 for timer IMU

If the data arrive with a delay greater than the set (max_delay), or a delay greater than what

the dedicated buffer size can store, they will be discarded for the sake of real-time consistency.

As another (unfortunate) example, NavServer was not configured correctly in flight STIM8,

and GNSS messages with incorrect time tags (zero) were sent along with the correct ones. The

VDMc software can reject all these wrong observations, as presented by Lst. 7.2.

Listing 7.2: Rejection of incorrect time-tagged GNSS observations

20 WARNING: received GNSS data for time 0.0000000000 but the filter is already at
time 470183.7031287090

21 WARNING: The filter is already at time 470183.9031307390 but a timer requested
time 0.0000000000

22 WARNING: received GNSS data for time 0.0000000000 but the filter is already at
time 470183.9031307390
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Figure 7.8: The EKF processing the GNSS and CC data as they arrive computing new states (a)
returning in the past EKF states corresponding to the first new observation (b) and

back-propagating the states with the new corrections (c)
.

23 WARNING: The filter is already at time 470184.1131328990 but a timer requested
time 0.0000000000

24 WARNING: received GNSS data for time 0.0000000000 but the filter is already at
time 470184.1131328990

25 WARNING: The filter is already at time 470184.3131349500 but a timer requested
time 0.0000000000

26 [...]

In case of multiple data messages transmitted simultaneously (to reduce the overhead in

the communication channels), it is possible to specify the number of data messages that are

expected to be received in one packet. The size of the packet should be set in the sensor.ini
configuration file for the specific sensor. The timer mechanism and its implementation are

explained in detail in [100], the main EKF loop algorithm, the related class descriptions, are

given in Appendices D.3.2 and D.3.10, respectively.

7.3.5 Dynamic State Reduction

The current implementation of the filter includes a set of submodels (with varying state length),

as presented in Sec. 3.5.2 the use of which can be decided at the execution time (model.ini).
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This allows dynamic incorporation of states into the filter according to their prior knowledge

(of flight phase) while considering others as known (constant) parameters. The dimension of

the full state vector and the corresponding matrices inside the software is configurable by the

user. The complete model and submodels are represented in Eq. 7.3 and correspond to the

possible software configuration during the flight phases as shown in Fig. 7.9.

Calib.
=====⇒
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(7.3)

where the navigation states xn are composed of position, velocity, attitude, and angular

velocity; xp contains the VDM parameters (aerodynamic coefficients); xa and xad are the

actuator states (propeller speed, aileron, elevator, and ruder deflections) and parameters

describing their respective dynamic; xw is the wind vector; xe contains parameters modeling

biases of accelerometers and gyroscopes within the IMU; xLi mu , xBi mu and xLg ps are the lever

arm and bore-sights of the IMU and GNSS antenna relative to platform frame, respectively.

When some parameters can be determined by other means (e.g., by direct observation or

pre-calibration), the respective submodel is removed from the estimation (via modification

of the .ini file). This reduces the filter size as highlighted in Eq. 7.3. For instance, when

the IMU and GPS lever arms are measured, and the IMU-boresight and actuator dynamic

are known, the filter size is reduced from 67 to 47 parameters. Furthermore, when the VDM

parameters xp are precalibrated in a separate flight with precise GNSS positioning or refined

during a time-limited calibration phase before the mission, they can be removed further from

the filter. In this situation, only 27 parameters are kept in a state vector, considerably reducing

the processing load (Sec 9.2.2). Estimation of some of these parameters can be further blocked

during a detected outage (Fig. 7.9) using the proposed partial update method (Sec. 4.2).

7.4 Flights Phases

A normal UAV flight mission using VDM-based navigation goes through different flight phases

presented in Fig. 7.9. The following subsection outlines the implemented configurations of

the VDMc software.

Pre-flight calibration (optional) The pre-flight calibration procedure estimates the random

biases in inertial sensors after the system switch-on. For accelerometers, this is achieved

by parametric compensation when observing the gravity signal projected on the IMU
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Figure 7.9: Flight phases and corresponding software configuration

axes at 6-distinct orientations of the UAV. For gyros with turn-on biases greater than

zero, they are reset to zero. Estimated biases are subtracted from the IMU signals before

further processing. The procedure is described in detail in [103]. This calibration is

currently performed offline when data are replayed. Future developments can adapt

the existing procedure to be performed in real-time. Barometer bias can be determined

when the UAV is static on the ground and the altitude obtained from the GNSS receiver.

Similarly, local air pressure can be used to calibrate the true airspeed computed from

the dynamic pressure given from the pitot tube. These implementations are proposed

with the specific RemoveBias ROS node as presented in Sec. 7.2 and the procedure is

presented in Sec. D.3.3.

Takeoff - initialization A local-level strapdown navigation runs on the embedded PC, to-

gether with a 16-state extended Kalman Filter (GiiNav [99], adapted for the ROS en-

vironment). Once the pre-flight calibration is completed, the operator position the

UAV against the wind (Fig. 7.10(a)). The two embedded navigation software applica-
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(a) (b)

(c)

(d)

Figure 7.10: (a) Launch of the TP2 against the wind, (b) first second of the flight, and (c)
GiiNav (d) VDMc initialization

tions (GiiNav and VDMc) are in standby mode. GiiNav waits for the right conditions

to initiate its attitude. As the VDM-based navigation specifies the aerodynamic forces
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and moments, it requires that the UAV is airborne. On the other hand, the quality of

MEMS-IMU does not allow static initialization of attitude in heading with sufficient

confidence. For that, forward GPS velocity is needed. Hence, GiiNav performs a coarse

alignment and starts estimating the UAV’s attitude, velocity, and position. The filter can

cope with sizeable initial uncertainty of attitude in all axes. The GiiNav initialization is

fast and happens during the first seconds on the flight (Fig. 7.10(b) and 7.10(c)). When

the confidence of all navigation states (position, velocity, and attitude) is increased with

time, the VDMc estimation starts by transfer-alignment (Fig. 7.10(d)). The traditional

INS/GNSS filtering procedure is used during the initial and terminal phases of the flight

is run parallel to VDM-based integration. Nevertheless, as soon as VMDc is initialized and

runs, the GiiNav software could be stopped. Practically, it is kept running to compare

the performance of both navigation software under GNSS outage later on.

In flight calibration (optional) The performance of VDM-based navigation depends on ac-

curately determining aerodynamic coefficients that may not be completely known a

priori. A procedure with high dynamic (mainly rotational) can be performed for their

refinement (via state space augmentation) using all available observations (IMU, GNSS,

Pitot tube). It has been demonstrated [14] that a combination of maneuvers is essential

for that purpose and examples is given in Sec 8.1. Fig. 7.11 depicts in 2D and 3D the

in-flight calibration maneuvers performed with the eBeeX (flight eBeex_756). Different

46°34'N

46°34'10"N

46°34'20"N

6°32'E 6°32'15"E 6°32'30"E 6°32'45"E 6°33'E

Esri, HERE, Garmin, GeoTechnologies, Inc., NGA, USGS
 500 ft 

 200 m 

(a) (b)

Figure 7.11: 2D (a) and 3D (b) dynamic maneuvers during the first 6 minutes of the flight
ebeeX_756 for aerodynamic coefficient refinement

“flying patterns” (highlighted in Sec. 8.1) can be identified as leveled, ascending, and

descending straight lines, "8-loop" and orbits. Further dynamics on trajectories used

in this work can be observed at the beginning of the flights presented in Sec. 6.4. Once

refined to sufficient confidence, they can be fixed and removed from the filter state

space.

Flight mission In the normal operational mode, the UAV performs its mission (e.g. mapping)
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with a sequence of long straight lines with cruising velocity and/or few altitude changes.

This reduces the observability of several auxiliary parameters (states) as these are related

to aerodynamic coefficients. Therefore, in this mode, a potential reduction in the

number of states can be performed and, simultaneously, reduced the computational

load of VDMc. Therefore, a reduced number of aerodynamic coefficients is kept as states

in the filter. In the current implementation, all aerodynamic coefficients are removed

from the estimated states after a variable period defined by the operator. The general

idea is presented in Sec. 7.3.5. An automatic state removal decision based on their

uncertainties is an interesting further development to be implemented for the real-time

navigation software VDMc.

"Return-to-Land" (optional) In the event of GNSS outage, the UAV interrupts the mission

and performs a failsafe procedure and possibly a Return to Land (RTL). In this case,

the VDMc filter stops refining/estimating several auxiliary states related to aerodynamic

coefficients (if still present in the state space) to estimate only the navigation states

and the wind. And this until GNSS signals are again present. The mechanism of “con-

sidered” states is explained in Sec. 4.2. The automatic detection of GNSS outages is

not implemented in VDMc. A detection possibility is to observe the GNSS observations

uncertainty and receiver status, or declare an outage after the absence of GNSS solution

for a predefined number of seconds. The navigation performance at this stage under

GNSS outage with “considered states” is presented in the results Sec. 10.2.

Landing There is an automatic landing procedure on the PX4 autopilot, but for the fixed-wing

platform TP2, manual (Fig 7.12) is preferable. Fully automated landing is mandatory

in the eBeeX series. As long as the UAV is flying under normal (no stall) conditions, the

Figure 7.12: Successful manual landing on a wheat field in Echendans with the TP2

VDMc software provides navigation information to guide the UAV to its landing area.
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Summary

This chapter has covered real-time aspects of the VDM-based navigation system. In par-

ticular, the accessibility of flight control is essential, as it is their correct time-stamping

w.r.t. (external) sensor data. Alongside the autopilot-generated control commands, the data

flow from/to the UAV, the GCS, and the embedded computer have been detailed. This de-

scription allowed the understanding of the communication channels in the overall system.

Subsequently, the real-time applications in the embedded computer have been described.

Particularly, the navigation software VDMc has been documented with its main components.

Finally, the distinguished flight phases of a typical UAV mission have been described with

their specific use and configurations of navigation software. As the experimental setup has

been explained with its enhancements in the foregoing chapters, the following part of this

thesis will evaluate the theoretical and engineering contributions: first, the validation of the

calibration methodology will be discussed. Then, real-time investigations will be presented.

Finally, the performances of VDM-based navigation will be analyzed under GNSS outages.
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8 Determination of Coefficients

Overview

VDM-based navigation uses the UAV’s aerodynamic model to derive the forces and mo-

ments driving the airborne physical behavior of the aircraft. These forces and moments,

in turn, parameterize the navigation equations. The accuracy of the model-generated

moments and forces depends on the models themselves and the aerodynamic coefficients

that compose these equations. This chapter summarizes the results obtained with the

proposed coefficient identification and refinement methodology presented in Chp. 5 for the

two platforms. At first, the importance of flight dynamics in the estimation of coefficients

using recorded sensor data and reference is highlighted through simulations. The necessity

to have a coarse prior knowledge of the aerodynamic coefficients is emphasized: if a set

of coefficients is not approximated well enough, the VDM-based navigation system can

not work. This is due to challenges related to non-linear navigation equations and estima-

tion techniques that may lead to local minima or even to filter divergence. A coarse set of

VDM parameters is determined for the TP2 and eBeeX drones with the three consecutive

linear estimators of the WMF method - employing observability Grammian criteria. These

coefficients are used to generate the linear and angular acceleration of the platform during

validation flights and are compared to the IMU readings to acknowledge the correctness

of the estimation procedure. Still, in an offline environment, the two refinement methods

are proposed to obtain calibrated coefficients via optimal smoothing. Additionally, in the

state-correlation matrix obtained after optimal smoothing, a set of highly correlated pairs of

coefficients is identified. These pairs of coefficients are then lumped together. This strategy

reduces the size of the state space, and the new reduced model is evaluated using different

flights. Most of the results come from [14, 28].
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Table 8.1: List of results for coefficient calibration

Method / Data Simu. TP2 eBeeX Section

Dynamic and initialization importance ✓ 8.1
Approximate coefficients

RLS with Grammian ✓ ✓ 8.2
Refined coefficients

Optimal smoother ✓ 8.3.2
with attitude from photogrammetry ✓ 8.3.1

’pose’ sensor ✓ A.6

8.1 Effect of Flight Dynamics and Initialization

Monte Carlo simulations are performed to understand the impact of aircraft maneuvers

on coefficient self-calibration (using only flight data) via state space augmentation. The

simulations grasp the correlation of the aerodynamic coefficients among themselves and the

other states.

The steps of the self-calibration methodology are shown in Fig. 8.1 and each block will be

presented in the following sections. As the flying conditions during calibration can be chosen,

GNSS observations are continuously available, and the wind is assumed to be zero or negligible.

Therefore, the wind is not estimated to better isolate the influence of the trajectory dynamics

in the coefficient determination without the influence of additional states related to the wind.

The auxiliary states xe , xp , xa are added to the state space, as presented in Sec. 3.5.2. Their

initial values and uncertainties are given later.

Trajectory
definition

Flight sim-
ulation

Emulation
sensors & CC

Navigation
Post proc.
analysis

Monte-Carlo runs (100)

Figure 8.1: Simulation workflow in self-calibration

8.1.1 Trajectory Definition

Some aspects considered in the trajectory definition are execution time, the feasibility of

maneuvers for the autopilot and / or the drone operator, and the continuity of GNSS signal

tracking. Therefore, the designed trajectories last less than 5 minutes and avoid steep turns

and attitude changes that could lead to a loss of GNSS signal reception in actual flights.

Seven trajectory segments are defined and separated into three categories. These are: straight

line, circular orbit (loiter) and “figure-eight” (also called “infinite” loop). The last trajectory is

a combination of several maneuvers. A straight line is characterized by two waypoints that
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8.1 Effect of Flight Dynamics and Initialization

define its start and end. The actual path is not a straight line per se because the autopilot

tries to reach the waypoints by compensations of different actuators. The resulting behavior

depends on a particular control parameters, but generally resembles some oscillations around

the straight segment, as presented in the first row of Tab. 8.2.

Considered Trajectories (and combinations)

St
ra

ig
h

tL
in

e

Level Level Descending Level Ascending

O
rb

it

Controlled Auto pilot

In
fi

n
it

y
Lo

o
p

Level Descending / Ascending

Table 8.2: Categorization of simulated trajectories into segments (7 types)

Two categories of orbits/loiters are considered as shown in the second row of Tab. 8.2: manual

and autopilot controlled. The first is performed by setting the control surfaces to a constant

value, while the second is executed by autopilot guidance following waypoints distributed

along a circle. The infinity loop concatenates two complete orbits controlled by the autopilot

in the opposite direction, with or without forced changes in altitude. These two segments

are presented at the bottom of Tab. 8.2. The last type of trajectory is a concatenation of the

segments mentioned above with the addition of velocity changes. The user-defined waypoints

are represented with pink crosses on the different figures, and the axes (xE , xN and xU )

belong to a local-level frame (ENU).
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8.1.2 Flight Simulation

Once the shape of the trajectory is defined, the corresponding dynamic follows from the

guidance and control that act on a particular platform. The implementation here is inspired

by the TP2 model presented in [51].

Within the simulation, the platform is initialized airborne with chosen heading and velocity at

the first waypoint. The guidance uses waypoint coordinates expressed in a local-level frame

relative to the first waypoint together with a desired velocity and attitude of the platform at

each subsequent waypoint.

Waypoints are considered to be reached (cleared) when the platform is within a radius of 15

meters, and the next waypoint is activated. The guidance dictates the action of the actuators to

be taken to direct the aircraft to the next waypoint. The controller generates the actuator states

(i.e., the elevator, aileron and rudder angles, and propeller speed) and together with ideal

VDM parameters, they define the nominal forces and moments following the model described

in Sec. 3.5. The ideal reference trajectory follows from the rigid-body motion. Simultaneously,

the output of the ideal sensors is generated at a desired frequency, that is, for the IMU, from the

force and moment model given in Tab. 3.1 and from the derived states rl
e and vl

e as presented

in Eq. 3.70 for the position and velocity of the GNSS.

The ideal trajectory is saved as a reference, while the generated sensors and actuator com-

mands are used in the following steps. The generated control commands are delay-free,

implying the absence of time-stamped data errors or delays of actuators when reaching the

desired state. The influence of time-delay errors is presented in 9.1.1.

8.1.3 Sensor and VDM Parameters Errors

At this stage, the software has all the information to simulate the behavior of a platform

following a defined trajectory and, most importantly, the sensor and actuator outputs at each

discrete step.

To obtain a realistic stochastic model for the IMU errors, an internal identification is performed

on one of the MEMS-IMU that is used in TP2, using the approach of Generalized Method

of Wavelet Moments (GMWM) [104]. A summary of IMU error parameters from the GMWM

analysis is provided in Tab. C.3.

GNSS position and velocity errors are considered to have a Gaussian distribution with σ = 1 m

and σ = 0.03 m/s for each horizontal channel, respectively, and σ = 2 m and σ = 0.1 m/s for

the vertical channel. The error in barometric altitude data is also considered white noise with

σ = 0.5 m. This noise level is determined based on experimental data when the barometer

output is compared with the post-processed (cm-level) GNSS position as a reference.

In the simulation environment, no residual imperfections related to the knowledge of sensor
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8.1 Effect of Flight Dynamics and Initialization

position and alignment with respect to the body frame are assumed.

The initial uncertainty for the VDM parameters are fixed to 20% of their reference values (1σ).

Such uncertainty is reflected in the initial covariance matrix, while 100 Monte Carlo runs are

simulated for each trajectory to diversify the initial error in parameter values. Similarly, the

realization of stochastic processes in the simulated sensors (IMU, GNSS) is part of Monte

Carlo simulation. Initial uncertainty for navigation states corresponds to the simulated sensor

quality and is summarized in Tab. 8.3.

Table 8.3: Initial navigation state uncertainties

Navigation States Values Units
Position - all axes 1 [m]
Velocity - horizontal 1 [m]

- vertical 0.5 [m]
Attitude - roll/pitch 3 [deg]

- yaw 5 [deg]
Angular rate - all axes 1 [deg/s]

In the simulation environment, guidance and control are considered independent of navi-

gation. In other words, the guidance is based on “error-free” sensors and VDM parameters,

the reason for which the realized trajectory for each simulation may differ more from the

ideal-desired trajectory. However, this fact is less important than the ability to examine the

evolution of the parameter estimation compared to real model values. (The same simulated

environment will be used in Sec. 9.1.1).

The flight dynamic influence on the estimation quality of VDM-parameters (aerodynamic

coefficients) can be analyzed in terms of i) the remaining parameter errors and the reduction

of the estimated parameter uncertainty, and ii) the residual correlations among the parameters

among themselves and the other states.

8.1.4 Parameters Estimation per Segment

Dynamics in the trajectory increase the observability of different groups of parameters and

improve their estimation by i) decreasing the variance and ii) decreasing their dependence on

the auxiliary states. Tab. 8.4 accentuates this fact by showing the % of the remaining error in

groups of VDM parameters after different types of maneuvers. The different groups are: thrust

force FT , forces along the x, y, and z body axes given by Fx , Fy and Fz , respectively, and the

three moments Mx , My and Mx around the three body axes (as defined in Tab. 3.1). It is easily

identifiable that better estimation is achieved with rotational dynamic, but each maneuver

type influences different (groups of) coefficients. The lack of velocity changes in the suggested

trajectories explains the relatively poor estimate of the thrust force group (FT ). Therefore,

velocity variations should be considered during each maneuver.

115



Chapter 8. Determination of Coefficients

Table 8.4: Group of VDM parameter error per trajectory

Average parameter error [in %] at the end of a maneuver
Trajectory per VDM category (lowest to largest) Average
Desc. Straight L. Fy : 15.3 % < My < Mz < FT < Fx < Fz < Mx : 26.4 % 18.4 %
Straight line My : 10.0 % < Fy < FT < Fz < Mx < Mz < Fx : 17.6 % 13.8 %
Climb. Straight L. My : 9.1 % < Fy < FT < Fz < Mx < Mz < Fx : 17.4 % 13.7 %
Controlled Orbit My : 11.2 % < Fy < Mz < Mx < Fz < Fx < FT : 20.0 % 13.5 %
Orbit w. AutoPilot My : 10.8 % < Fy < Mx < Mz < Fz < Fx < FT : 17.9 % 13.2 %
8 Loop w. Alt. fix Mz : 8.3 % < Mx < Fy < My < Fz < Fx < FT : 17.5 % 11.1 %
8 Loop w. Alt. var. Mz : 8.3 % < Mx < My < Fy < Fz < Fx < FT : 16.8 % 10.9 %

Parameter Correlation

For a subset of trajectories, the correlation between all estimated states is shown on a gray

scale of the correlation matrix in Fig. 8.2 at the end of the simulated segments.

In these figures, the diagonal elements represent the normalized variances of the estimated

parameters, i.e., these always have value 1 and white color. The varying gray scale depicts

the correlation coefficients (i.e., off-diagonal elements) from 0 to 1. As presented in Sec. 3.5.2

the state-vector x is categorized into different groups, including: the 13 states of navigation

error xn , the 26 states VDM parameters xp presented in Sec. 3.5 including the parameters

S, c̄,b,D and n which are considered a priori unknown, the time-correlated sensor errors xe

that are the accelerometer and gyroscope biases for each axis (6 states). The estimation of

time-correlated errors is the dominant part, even though other types of noise are added to the

observations, and the 3 wind states xw are set to zero as no wind condition is assumed. The

distinguishable “large square” in the middle of the correlation matrix corresponds to the VDM

parameter cross-correlation among themselves.

The correlation matrices show that the directional dynamics of the trajectory increase the

correlation among VDM parameters themselves and with the navigation states (initially set to

zero). This is important as VDM parameters become observable through such a relationship

when corrections to navigation states are made via GNSS and IMU update. However, at

the same time, certain dynamics decrease the correlation of VDM parameters with respect

to auxiliary states (i.e., other states than VDM coefficients). In other words, the group of

VDM parameters stays correlated among themselvesI but become less dependent to auxiliary

quantities (e.g., the sensor errors) in the state vector. This is an essential prerequisite for their

employment outside the calibration scheme. Tab. A.6 in the Appendix presents the VDM highly

correlated (>90%) parameter pairs for a subset of trajectories. The correlation among VDM

parameters will be further analyzed with real flight data and the use of an optimal smoother in

Sec. 8.3.2

IThe correlation among them is related to model definition. In this particular case, the chosen polynomials are
non-orthogonal, therefore, their terms remain correlated implicitly.
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a) b)

c) d)

Figure 8.2: Correlation matrix P between state-vector elements at the end of a maneuver: a) -
Level flight, b) - Controlled orbit c) - Infinity loop, d) - Combination of segments. The wind is

not estimated and set to zero (no correlation)

8.1.5 Sequence of Maneuvers

The previous analysis indicated how different maneuvers contribute to the improved estima-

tion of subgroups of the VDM parameters. The idea is therefore to combine the segments

of different shapes into a “global calibration maneuver”. The proposed trajectory combines

the trajectories above with accelerations and decelerations, as well as upward and downward

sections. The trajectory is depicted in Fig. 8.3. The beginning of the trajectory, denoted with a

red circle, starts with a straight climbing line, and the total flight time is around 3 minutes.
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Figure 8.3: Combination of maneuvers. The resulting trajectory (blue) is designed with
waypoints (pink crosses) and starts at the red circle

The effects of such compound maneuvers on the estimation of the VDM parameter CFxα are

shown in Fig. 8.4. The uncertainty of this parameter represented by the estimated standard
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Figure 8.4: Error estimation evolution versus 1σ during a specific trajectory: a) - Level flight,
b) - Combination of maneuvers

deviation (upper curve on both plots) is unchanged on the straight line (a), while reduced to

40% after maneuver sequencing (b). The latter case also removes about 50% of the parameter

error (lower line), while the improvement of the former remains marginal. These investigations

are generalized for every VDM parameter in Fig. 8.5. In this figure, the error for each VDM

parameter is compared with the calibration result after a level flight in a constant direction for

two types of sequences: an “infinity loop” at a constant altitude and the previously described

global calibration maneuver. The latter decreases the uncertainties in all VDM coefficients.

118



8.1 Effect of Flight Dynamics and Initialization

Figure 8.5: Estimation error of the 21 VDM parameters at the end of 3 calibration maneuvers

8.1.6 Effect of Initial VDM Parameter Values

To investigate the influence of incorrect initial VDM parameters, the simulated trajectories

are used a second time with variation of the initial conditions. The methodology is shown in

Fig. 8.6 where the first three steps are equivalent to those presented previously. Before starting

Trajectory
definition

Flight sim-
ulation

Sensors & CC
emulation

Initial VDM
parameter

offsets

Navigation

Monte-Carlo runs (100)

Figure 8.6: Methodology to test the influence of incorrect initial VDM parameters

navigation and estimation of the auxiliary states, the initial values of xp are randomly corrupted

with a variable percentage of their correct values. The different “corruption” percentages are

10, 20, 30, 40, 50, 75 and 100% (1σ). Using Monte Carlo runs (100 for each percentage of

corruption and each trajectory), each initial VDM parameter is corrupted with a different

random value within the modified σxp .

At the end of the 100 Monte Carlo runs, the average (residual) error in the estimation of the

VDM parameters is inspected with respect to their correct value and the filter divergence

based on successful runs can be observed as a function of initial errors. Individual cases are
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depicted in Fig. 8.7(a) for the complete range of σ and in Fig. 8.7(b) in detail on the first half.

(a) (b)

Figure 8.7: Average VDM parameter errors at the end of different trajectories after their
varying initial corruptions (a) from 10 to 100% (b) zoomed from 10 to 50%

The dashed black line traces the situation where the initial and final % of errors remain the

same to mark a threshold between improvement and divergence. When the initial error

in xp is less than 40% of the parameter value, the descending straight line maneuver (light

blue with circle markers) reveals low parameter observability due to the lack of dynamic, as

the trend almost follows the dashed black line. For all the other trajectories, the dynamics

allow reducing the VDM parameters error with respect to the initial values. It should be

noted that the simulated trajectories are of a short duration and a further improvement in

VDM parameter determination is expected with longer flight segments. For initial errors

exceeding 40% of parameter values, the estimation starts to diverge. Above 50% the estimation

diverges for all trajectories. The consequences of the wrong VDM parameters are multiple.

Incorrect VDM parameters that produce inappropriate forces and moments are compensated

with other auxiliary states, such as IMU bias and wrong navigation states (or wind when

estimated) as presented in Sec. 8.3.1. In the event of GNSS outage, the solution becomes

rapidly unusable and potentially worse than INS dead reckoning. Another issue with incorrect

VDM parameters is the possibility of the numerical instability of the filter. Indeed, during

Monte Carlo simulations, some of the realizations are affected by incorrect filter conditioning

(N aN or In f values in the states x and/or in the covariance matrix P). Tab. 8.5 summarizes

the number of successful Monte Carlo runs.

Although 100 Monte Carlo runs is a rather small number to generalize the findings, a trend

can be observed from Tab. 8.5. The segment resulting in the largest number of successful runs

is colored green and the smallest is colored red for each percentage. Already from 20% of the

initial error (1σ), the stability of the filter cannot always be guaranteed. The ”controlled orbit”

maneuver (light green) seems to be the most robust to initial error. A possible explanation is

that during this maneuver, the control inputs (actuators) are fixed and thus avoid instability
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Table 8.5: Number of successful navigation runs per initial error in VDM parameters per
trajectories

Number of successful navigation runs (Monte-Carlo 100)
Initial VDM parameter error 1σ

Trajectory 10% 20% 30% 40% 50% 75% 100%
Descend. Straight L. 100 92 74 59 55 36 28
Straight line 100 98 71 56 53 36 26
Climbing Straight L. 100 98 87 70 60 40 31
Controlled Orbit 100 100 100 95 83 61 40
Orbit w. AutoPilot 100 99 95 79 57 31 19
8 Loop w. Alt. fix 100 100 99 86 73 43 31
8 Loop w. Alt. var. 100 100 98 79 66 41 21
Combinations 100 91 74 56 43 22 13

due to a filter incoherence between the flight control inputs and the moments produced using

the corresponding actuator states xa .

These simulations indicate that it is not recommended to rely on a VDM-based navigation

system with incorrect aerodynamic coefficients. The threshold at which the filter starts to

diverge appears to be around 40% of VDM parameter values (for the TP2 drone).

Flight dynamics (mainly rotational) is found to be essential for the observability of aero-

dynamic coefficients, that is, reducing their uncertainty, while alleviating the formation of

correlation within groups of VDM parameters and accentuating their relationship with nav-

igation error states. A trajectory that combines different maneuvers emphasizes dynamic

variation, which helps to estimate aerodynamic coefficients. This is even more important if

the aerodynamic coefficients are not known at all and are identified with a post-processing

trajectory as proposed in Sec. 5.2 and practically confirmed hereafter.

8.2 Identification of Coefficients with Observability Criteria

Sec. 5.2 presented the methodology to identify the aerodynamic coefficients by decoupling

the wind, the moments, and the forces estimation from the inertial and INS/GNSS solution

of a calibration flight. To implement this proposal in practice, the payload “SODA-STIM"

(Sec 6.2.3) is employed in TP2 and the flights STIM5, STIM6 and STIM7 are used. For eBeeX,

the payload "eBee-GECKO" and the flights eBee_652 and eBee_756 and for eBeeX are used. The

experimental workflow is shown in Fig. 8.8 and the calibration details were explained in Sec. 5.2

and the defined terminology is used hereafter. Following the experimental workflow for TP2,

flight data is collected, and decoupled aerodynamic estimation is performed on calibration

flights. The proposed heuristic uniqueness of observability is presented. The quality metric

associated with the calibration results is presented. The practical usage of these calibrated

parameters in application flights is demonstrated. The entire methodology is repeated for a

121



Chapter 8. Determination of Coefficients
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Figure 8.8: Experimental pipeline

delta-wing platform eBeeX.

8.2.1 Observability Grammian

Due to its simplicity, the empirical and graphical evolution of the observation Grammian in an

experimental setting is exemplified in the wind estimator. The procedure detailed in Sec. 5.2.1

is implemented for the other two estimators (for moments and forces).

For the wind estimator, the dimensionality of the state space is four ( j = 4) and Hk ∈ R1x4,

whereas observability Grammian W0(k) ∈R4x4. Upon calculating the Eigen Values (EVa) and

Eigen Vectors (EVe) of W0(k) after all observations k ∈ {1,2, · · · ,K }, EVe of W0(K ) are chosen as

the basis of a new state space. It should be noted that W0(k) is symmetric and the EVe matrix

Vk is orthonormal, making it a rotation matrix in R4. Subsequently, a closeness matrix (Γk ) is

computed as a dot product between Vk and the base (VK ). This is followed by the max(Γk )

operation. This operation finds for each eigen vector of W0(k) that is most closely aligned

with each of the basis vectors. For the wind estimator, this closest Eigen vector is reported in

Fig. 8.9 and the corresponding numerical value evolution of max(Γk ) is shown in Fig. 8.10.

As VT
k VK = I for k = K , the value of max(ΓK ) =

[
1 1 1 1

]T
. This fact can be observed in

Fig. 8.10, wherein all the trends eventually converge to unity. This means that at k = K , the first

(second, etc.) basis vector is the same as the first (second, etc.) eigen vector of W0(k). This can

be seen in Fig. 8.9. The plot in Fig. 8.9 is a very special graphical representation where i) the
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8.2 Identification of Coefficients with Observability Criteria

Figure 8.9: Tracking Eigen vector EVe of observability grammian

turns

turns

Figure 8.10: Maximum closeness in wind observability
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Chapter 8. Determination of Coefficients

x axis ∈ {1,2, · · · ,K } accounts for the discrete-time events at which airspeed measurements

are made, and ii) the y axis ∈ {v1,v2,v3,v4} represents the eigen vectors of W0(k), each made

up of one of the four colors (blue, red, yellow, purple). As discussed earlier, EVa and EVe of

W0 are calculated at each discrete-time event, followed by establishing their association to

the basis (using a closeness metric). In this graph, each basis vector is color-coded, and each

v j is represented as a quantized time series of these colors. For example, the time series v1

mainly comprises basis vector 1 (blue) except for a few samples of basis vector 2 (red) at the

beginning.
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Figure 8.11: Evolution of Eigen Values associated to the basis

In this way, the eigen values of W0(k) ∀k are approximately associated with the basis vectors.

The evolution of these EVa (red dashed line) can be seen in Fig. 8.11, where they show a

generally growing trend, except for certain minor variations in the basis vectors 2 and 3,

corresponding to basis swapping.

In Fig. 8.11 (dashed red), the normalized incremental growth of EVa (Eq. 5.15) is presented.

This incremental growth (IG) is then compared to drone’s attitude and Pitot measurement,

collectively shown using the right-hand axis of Fig. 8.11.

It can be observed that (i) the IG along basis vector 1 is correlated to pitch: The peaks (both

positive and negative) in pitch lead to a non-zero IG along basis vector 1. However, this IG

is mostly close to zero as the UAV flies in constant attitude; (ii) IG along basis vectors 2 and

3 are correlated to the UAV heading: The IG peaks along these basis vectors alternate with

a change in heading. Moreover, these IGs show complementary trends, that is, a peak in

one corresponds to a sharp valley in the other; (iii) IG along basis vector 4 is correlated to
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8.2 Identification of Coefficients with Observability Criteria

Pitot measurements: this IG is always greater than zero. These observations are very much

consistent with the findings of previous work [52], which state that i) UAV must change its

heading for the horizontal wind to be observable, ii) pitching maneuvers are essential for

better observability of down wind, and iii) the pitot scale factor is always observable as long as

the UAV is airborne.

Therefore, following this methodology, it is approximately possible to track the growth of

eigen values of observability Grammian, rather than evaluating these values only after the

last observation as in [52]. It is the IG along basis vectors that is primarily responsible for

observability. Therefore, a change of state space basis is implemented. For the wind estimator,

it seems that i) basis vector 1 corresponds to down wind, ii) basis vectors 2 and 3 correspond to

horizontal wind, and iii) basis vector 4 corresponds to pitot scale factor. Indeed, this interpre-

tation is intuitive, thanks to the low-dimensionality of the state space; however, making such

one-to-one correspondences for a high-dimensional state space may not always be possible

(as in the case of moment and force parameters). Nevertheless, after each observation, the

mathematics of the methodology handles the task of discerning most observable states from

the rest. The same methodology is used to calculate the parameters of the aerodynamic model

associated with moments and forces. An experimental comparison of the wind estimation

using the mentioned method with respect to the local weather station is given in Appendix A.8.

Remarks: There exist certain observations that are forced to be rejected by the estimator due

to their incompatibility. These observations arise due to: i) nonuniqueness of max(Γk ) →; it is

found that in some situations, two EVe are close to the same basis vector, leading to an eventual

reduction in the dimensionality of tracked EVe space. ii) Transitioning from one closest

Eigen vector to the other→ causes sharp peaks in IG, which do not necessarily correspond to

observability. The cause of both these situations seems to be due to the empirical nature of

the algorithm and presence of noise. However, such cases are easy to detect, from a software

point of view, and are completely rejected by the estimator. Moreover, they collectively form

less than 0.5% of the total number of observations for all three estimators.

8.2.2 Aerodynamic Model-Parameters

Following the partial update methodology presented in Sec. 4.2, wind, moment and force pa-

rameters using sensor data from the calibration flight are sequentially estimated. A smoother

Infinite Impulse Response (IIR) with a cutoff frequency of fc = 30 and 40 Hz (from visual

data inspection using Fast Fourier Transform (FFT)) for gyroscopes and accelerometers is

used, respectively, to eliminate high-frequency noise from inertial sensors caused by residual

vibration in the UAV. The quality of the IMU data onboard (STIM318) is far superior to that of

the autopilot (Tab. C.1).

IMU observations are compared with those obtained using calibrated VDM parameters. For

this comparison, the focus is on forces, as it is implicitly dependent on moments and wind as

a result of the cascaded estimation and computation of rigid body motion. Calculating forces
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Chapter 8. Determination of Coefficients

using accelerometer measurements is a straightforward operation that involves multiplication

by mass of the drone. One of the estimated quantities, body force along the y axis is compared

with that computed using IMU on Fig. 8.12(a). The figure shows that the force estimated by

the model parameters follows trends to the one computed directly from IMU. Furthermore,

the estimated forces appear to be a low-pass filtered version of the IMU data.

The other force and moment residuals for TP2 and eBeeX are presented in Appendix A.9.

The entire calibration and application procedure is repeated for a delta-wing UAV eBeeX.

However, repetitive details are skipped. Flight eBeeX_757 is used to determine the coefficient

with the payload presented in Appendix C.4, and flight eBeeX_652 is used for validation.

The estimated body force along the x-axis is compared with the one computed using IMU.

This comparison is presented in Fig. 8.12(b). As the force model of eBeeX contains a large

number of parameters compared to TP2, the two signals match better and the residual is lower,

confirming the correctness of model identification with respect to observations. However, this

does not necessarily guarantee better navigation performance. This aspect will be discussed

in more detail later (Sec. 10.1.2).

The determined coefficients are first validated in Sec. 10.1 using a validation flight (with GNSS

outages) and then extensively used in Sec. 10.3 for performance comparison with inertial

coasting for TP2 and eBeeX.

8.2.3 Parameter Initialization and Uncertainty

All the estimation equations presented are purely recursive, needing an initial guess that can

be computed with the observations. This is done by making use of observability Grammian

and linear regression. The developed calibration chooses certain observations, equaling the

number of states (10/11 for TP2 for instance), corresponding to the highest incremental growth

of the eigenvalue along each basis vector for running classical (weighted) linear regression:

x0 =

H T R−1H︸ ︷︷ ︸
P0

−1

H T R−1Z with, H =


He1

...

Hen

 , Z =


ze1

...

zen

 , (8.1)

where the cardinality of {e1,e2, · · · ,en} is equal to the dimension of the state space. The

subscript e j denotes most of exciting entity for the basis vector j . An example of the points

chosen for the moment estimator is shown in Fig. 8.13. The selected points are, for most,

located at the beginning of a curve, which empirically validates the selection where the

excitation of the system occurs during maneuvers. This provides an initial guess as to how to

start the estimators. It should be noted that if the first n temporal observations are selected

(assuming that n is sufficiently small as above), there is no guarantee that the regressor matrix

will be full rank, thereby causing the entire framework to break. The calculation of R is given
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Figure 8.12: (top) Juxtaposition of force-y computed using IMU and calibrated model and
their residuals (bottom) for TP2 (a), and force-x for eBeeX (b)
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Figure 8.13: Initial chosen points x0 for the moment estimator

in the following.

The initial uncertainty P0 (1σ) for the wind is set to 0.3m/s and 0.1m/s for the horizontal and

vertical components. The process noise Q for the wind is experimentally set with relatively

small values to limit the range of variations in the wind directions. For the scale factor γ,

the process noise did not affect the convergence value, but only the fluctuations during the

estimation and, therefore, is also set with a small value.

For the force RLS estimator, the initial uncertainty P0 = H T R−1H . H was defined in Eq. 8.1

and R is the covariance of the accelerometer measurement, the strength assumed to be the

same for each axis.

For the moment estimator, the initial covariance matrix P0 is calculated with respect to the

gyroscope measurement noise (angular velocity) and the differentiated value (angular accel-

eration) ω̇b
i b =

(
ωb

i b(k)−ωb
i b(k −1)

) 1
∆t

. Assuming that consecutive gyroscope measurement

noises are iid, the uncertainty of ω̇b
i b is given by uncertainty propagation σ2

ω̇ = 2σ2
ω

1
∆t

2
=

2σ2
ω f 2

s where fs is the sampling frequency and σ2
ω the noise variance of the gyroscope mea-

surement.

From a measurement moment zm given in Eq. 5.7 the Jacobian for uncertainty propagation
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can be expressed as:

∂zm =
1

q̄S

{
Ib∂ω̇b

i b +∂Ωb
i bIbωb

i b +Ωb
i bIb∂ωb

i b

}
(8.2)

∂zm =
1

q̄S

{
Ib∂ω̇b

i b −
[

Ibωb
i b

]
×∂ω

b
i b +Ωb

i bIb∂ωb
i b

}
(8.3)

∂zm =
1

q̄S

[
Ib Ωb

i bIb − [
Ibωb

i b

]
×
]
·
[
∂ω̇b

i b
∂ωb

i b

]
= F

[
∂ω̇b

i b
∂ωb

i b

]
(8.4)

where []× is the skew matrix operator (Eq. 3.13) and F’s arguments are the different observa-

tions (wind from the previous estimator and gyroscope measurements). R is the uncertainty

of zm , and for each selected point ei with i ∈ [1,n]

Rs =

R(e1) 0 . . . 0

0 R(e2) . . . 0

0 0 . . . R(en)

 (8.5)

where each R(ei ) is given by

R(ei ) = FT (ei )

[
σ2
ω̇ 0

0 σ2
ω

]
F(ei ) (8.6)

This gives P0 = H T R−1
s H and x0 is computed as in Eq. 8.1.

With these initial states and uncertainty based on the observations, the three estimators are

properly initialized, and the three cascaded estimators can be performed. Once a set of ap-

proximated coefficients is obtained, these can be further refined with the two complementary

methods (Sec 8.3).

8.3 Refinement Methods

8.3.1 Attitude Update via Photogrammetry

By adding the aerodynamic coefficients as auxiliary states as presented in Sec. 3.5.2, one can

take advantage of self-calibration by state space augmentation using precise observations.

However, the initial states (VDM parameters) cannot be ”completely” incorrect, otherwise the

filter can diverge as presented in Sec. 8.1.6. Therefore, this method can only be applied when

the aerodynamic coefficients are approximately known (either from a platform of a similar

shape or using the method proposed in Sec. 8.2).

The flight CF_i8 (with the payload "IGN-GECKO" Sec. 6.2.1) is exemplified by the use of

photogrammetry to first derive a sporadic but precise attitude of the plane that is then applied

to improve the estimation of the aerodynamic coefficients, as presented in Sec. 5.3.2. The

flight characteristics are detailed in Tab. 8.6 while the trajectory is depicted in Fig. 6.9(a). In
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total, 440 images acquired during 26 flight lines at 2 flight levels (120 m and 150 m AGL) in

a block geometry are considered. The longitudinal overlap is approximately 65% while the

lateral overlap is roughly 45%. Bundle adjustment is performed with the Metashape software

(previously PhotoScan) from AgiSoft II, using precise aerocontrol from INS/GNSS and about

20 GCPs. The image coordinates of signalized GCPs are obtained automatically by mask fitting

with an accuracy of about 0.1 pixel.

Figure 8.14: Camera orientation (triangles) and
terrain. After [105]

Table 8.6: CF_i8 flight details.

Flight name CF_i8
Geometry Block
# Images 440

# Flight lines 26
# Flight levels 2

GSD at 120/150m [mm] 24/30
Long. overlap [%] 65
Lat. overlap [%] 45
External control GCP

No. 21
1σ (xy,z) [mm] 10, 15

Fig. 8.14 shows the camera orientations in red triangles at the time the image is taken, and

the GCPs in blue triangles on the ground. The mean camera orientation uncertainties over all

images after bundle adjustment are (3, 3, 1.4) ar csec (i.e., ≈0.002 deg) for the angle around

the xc (ω) , yc (φ), and zc (κ) axis, respectively. In total, more than 400 oriented images were

used to obtain absolute attitude measurements. The INS/GNSS integrated trajectory is used

as an approximate pose for the camera before the bundle adjustment. These are also used to

initialize the VDM-based estimator within the calibration flight.

Discussion

The initial uncertainties of the VDM parameters xp are set to 2% of their values. They are

listed in the 1st and 5th columns of Tab. 8.7 for forces CF and moments CM , respectively.

While highlighting the largest changes in color within Tab. 8.7 (sign changes in green and

large differences in magnitude in red), the difference between the pairs of estimated VDM

parameters is further expressed in percentage ∆% as

∆% =

∣∣Xwc −Xw/oc

∣∣
mi n

(
Xwc ,Xw/oc

) ×100 (8.7)

where Xwc and Xw/oc are the states estimated with and without the addition of camera attitude

reference, respectively. These relative discrepancies are depicted in Fig. 8.15. Although some

coefficients change little after convergence for both methods, others change remarkably.

IIAgiSoft PhotoScan Professional (Version 1.2.6) (Software). (2016 *) Retained from
http://www.agisoft.com/downloads/installer/
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Table 8.7: Initial and estimated (filtered) VDM parameters without (GNSS) and with
photogrammetry (GNSS + Att)

Forces Init. GNSS GNSS+Att Moments Init. GNSS GNSS+Att
CF T1 0.0026 0.0030 0.0035 CM xa -0.00234 -0.012 -0.012
CF T2 -0.05 -0.0326 -0.0601 CM xβ 0.0025 0.0058 0.0061
CF T3 2.23 4.37 4.27 CM xωx

-0.0465 -0.161 -0.1536
CF z1 -0.125 -0.049 -0.091 CM xωz

-0.0219 0.0195 0.0161
CF zα -4.76 -18.7 -18.7 CM y1 0.0215 -0.026 -0.026
CF x1 -0.205 -0.485 -0.386 CM ye 0.27 0.370 0.369
CF xα -0.728 0.507 1.451 CM yα -0.657 -1.150 -1.121
CF xα2

-0.0538 -0.0551 -0.0537 CM yωy
-9.16 -17.93 -18.96

CF xβ2
0.568 1.06 0.89 CM zr -0.0137 0.0007 0.0008

CF y1 -0.127 -0.321 -0.272 CM zβ 0.0002 0.0012 0.0011
CM zωz

-0.128 -0.0192 -0.0191
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Figure 8.15: Percentage of change for each VDM parameter with and without the use of
attitude reference measurements

In particular, CF T2 , CF z1 and CF xα converge to considerably different values (in magnitude)

when attitude references are used (represented in red in Tab. 8.7). Furthermore, the sign

of estimated CF xα is changed. Some other parameters also change their signs. These are

printed in green within Tab. 8.7. Note that, for some parameters, a sign change occurred

after convergence irrespective of the use of attitude updates, which highlights the coarse

approximation of their initial values. In contrast, the addition of precise attitude observations

influences the estimation of the force coefficients more. This observation is counter-intuitive

but is not explored further as the coefficients are evaluated via navigation and they are not

evaluated individually.

The discussion of the influence of photogrammetry on the estimation of the errors (xe ) and

the wind (xw ) states is discussed in [28]. It is shown that due to the constant airspeed velocity

during a photo-flight, attitude aiding helps to decorrelate the inertial errors from the wind

estimation, which improves the determination of the VDM parameters xp .
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The improvement in autonomous navigation using precise attitude updates is presented in

Sec. A.4.

8.3.2 Optimal Smoother

Similarly to Sec 8.3.1, the flight CF_i8, is used as the calibration flight with the differential

carrier-phase GNSS (PPK). The accuracy of position and velocity updates is essential for

estimating auxiliary states related to aerodynamic parameters. Considered time-invariant

within the flight, their best estimate is obtained via an optimal (forward-backward) smoother.

It should be stressed again that the observability of parameters depends on maneuvers (as

was explored in Sec. 8.1) and some dynamic maneuvers are part of this flight. The use of

the optimal smoother further accentuates the existing structural correlations between the

aerodynamic coefficients due to the model (Sec. 3.5) while de-correlating them with other

states as depicted in Fig. 8.16(b) and 8.16(c).

(a) (b) (c)

Figure 8.16: State correlation matrix (CF_i8 with highlighted xp after a) 30 s of filtering; b) at
the end of forward-filtering; and c) optimal smoothing

The coefficients obtained by optimal smoother are given in Tab. 8.9 and compared with those

obtained by the methods WMF and with attitude observation from photogrammetry (filter).

8.3.3 Parameter Reduction

The proposed approach described in Sec. 4.3 is to reduce the number of states by finding

a linear relation between highly correlated aerodynamic coefficients. Their relations are

obtained by analyzing the corresponding sub-block of the covariance matrix after smoothing

(Psm) the calibration flight CF_i8. As depicted in Fig. 8.16(c), the parameters outside the main

diagonal in yellow are correlated by more than 90 %. Five highly correlated pairs are selected

for regression analysis. The resulting linear relations between the selected pairs are detailed

in Tab. 8.8. As the force parameter CFy 1 is correlated to CFT 3 as well as to CFx 1, the model is

reduced by four coefficients.
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Table 8.8: Proposed correlated pairs for model reduction and their linear relations

Param. pair Correlation C j si j Ci oi j

CFT 1 - CFT 2 0.97 CFT 2 = -40.9154× CFT 1 -0.202
CFT 3 - CFx 1 0.98 CFx 1 = 0.0564× CFT 3 -0.412
CFy 1 - CFT 3 0.98 CFy 1 = -0.0006× CFT 3 -0.247
CFx 1 - CFy 1 0.99 CFx 1 = 0.0336× CF y1 -0.259

CMy 1 - CMyα 0.85 CM yα = 0.820× CM y1 -1.552

The correlation pairs are quite different from those obtained from the simulations of Sec. 8.1.4

and summarized in Tab. A.6 where the correlations are more accentuated for moment-related

parameters. The remaining correlation using real flight data is more pronounced for the force-

related coefficients. The pair CMy 1 - CMyα is obtained in both scenarios (with a correlation of

97.5% in the simulation). Geometric parameters are not included in the auxiliary state vectors

xp , which removes highly correlated relations with the coefficients. The use of the experimental

refinement via optimal smoother indicates a low correlation among the coefficients compared

to those obtained with the simulations (forward filter). The performance of autonomous

navigation with the reduced model is described in Sec. 10.4.

8.4 Numerical Comparison of Coefficients

The different sets of coefficients obtained with the WMF method and the refinement using

augmented state space with smoother and attitude observations from photogrammetry for

TP2 are summarized in Tab. 8.9. The coefficients for the eBeeX are given in Tab. C.5 in the

Appendix.

Table 8.9: Coefficients obtained from WMF (Sec. 8.2), attitude observation (Sec. 8.3.1) and
smoother (Sec. 8.3.2) methods for the flight CF_i8

Approx. Refined Approx. Refined
Forces WMF Att. Obs. smoother Moments WMF Att. Obs. smoother
CF T1 0.0002 0.0035 0.0163 CM xa -0.0053 -0.012 -0.015
CF T2 -0.023 -0.0601 -0.867 CM xβ -0.0042 0.0061 -0.0113
CF T3 58.61 4.27 10.4 CM xωx

0.0312 -0.1536 -0.132
CF z1 -0.424 -0.091 0.2476 CM xωz

0.0016 0.0161 0.0446
CF zα -6.149 -18.7 -23.99 CM y1 -0.0005 -0.026 -0.0012
CF x1 4.44 -0.386 -0.179 CM ye 0.0601 0.369 0.321
CF xα 0.0306 1.451 -2.703 CM yα -0.0372 -1.121 -1.53
CF xα2

-3.120 -0.0537 -0.0553 CM yωy
-0.3829 -18.96 -7.713

CF xβ2
0.4542 0.89 0.258 CM zr 0.0050 0.0008 0.0019

CF y1 -4.728 -0.272 -0.251 CM zβ 0.0094 0.0011 0.0024
CM zωz

0.0021 -0.0191 -0.0192

The coefficients obtained with the two refinement methods agree more in terms of sign and

133



Chapter 8. Determination of Coefficients

magnitude together than with the WMF method, and similarities can be observed. However, it

is complex to evaluate each coefficient individually, as the polynomial character of the models

implicitly correlates the group of coefficients together.

The order of magnitude of the uncertainty (σ2) of the coefficients obtained with the re-

finement and the WMF methods is < 1e−5 than their respective convergence value, for all

coefficients related to moment and force. As summarized previously in Sec. 8.3.1, the compen-

sation of the erroneous coefficients with the wind and IMU error estimation highlights that

the computed uncertainties represent the accuracy of the whole state space estimation and

not the uncertainty of the coefficients only [76]. In addition, high-frequency IMU observations

that update the coefficients lead to a rapid steady state and decrease in uncertainty, even

though they are potentially in a local minimum due to a lack of observability. The partial-

Schmid update slows this convergence and might avoid setting a local minimum. This aspect

at initialization is presented in Sec. 9.3.2.

The application of these coefficients is presented in Chp. 10 where they are evaluated using

autonomous navigation and simulated GNSS outage. Although the coefficients obtained after

refinement should theoretically better match the real values, (i) the payload "IGN-GECKO"

is used for photogrammetry, (ii) TP2 underwent some changes for the "SODA-STIM" flights

(WMF and real-time experiments), and (iii) the models involving flight control commands have

slightly evolvedIII. Therefore, the set of coefficients obtained with the WMF method with the

"SODA-STIM" payload is used as initial values for the real-time implementation.

Summary

This chapter has presented the results of the coefficient estimation/calibration methodology.

At first, the importance of flight dynamics for the correct calibration of the aerodynamic

coefficients has been demonstrated. Thereafter, using real flight data, two sets of coefficients

have been given for both platforms using the WMF technique. This step has been shown

to be essential because very inaccurate initial coefficients led to the impossibility of using

state space augmentation for online refinement of the coefficients. Moreover, navigation

with such incorrect coefficients has been shown to lead to filter divergence. On the other

hand, when an approximate set of coefficients is available, e.g. adapted from a known

model, it could be improved with offline methods, benefiting from precise observations

and smoothing. With correct coefficients, the VDM-based navigation system is operational

and the next chapter will present some of its real-time analyses.

IIIThe initial models[11] used [r ad ] for control surface deflections and [r ad/s] for propeller speed, while the
current model directly uses encoded PWM for the actuators (normalized) and propeller speed
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Overview

One of the main objectives of this thesis is the design of a real-time prototype of VDM-based

navigation system. So far, most of the navigation performance results and investigations

have been obtained by simulations in a controlled setting. This new navigation approach

needs validation with a real-time environment to confirm its feasibility on a low-cost/low-

power embedded system on a small UAV. As presented in Chp. 7, such design requires

specific hardware and software to solve the challenges brought about by an online system.

This chapter covers some of the results attributed to the real-time aspects of the VDM-based

navigation implementation.

First, the influence of incorrect time-tagging of flight control commands is analyzed with

simulations to appreciate the impact on navigation performances in a real scenario. The

internal clock of the AP has a drift of more than 100 ms per hour. Therefore, time-tagged

sensor data , and in particular flight control commands, have to be continuously corrected

using a GPS-AP time regression thanks to GPS’s pulse-per-second (PPS). Then, the setup

to test the real-time system is described. This setup comprises of the TP2 aircraft, the

modified ground control station to monitor the UAV online, and the complete embedded

VDM-based navigation system using the ROS environment. The computational load of

the navigation software is analyzed with different filter sizes for the specific embedded

computer. Afterward, the initialization of the filter is discussed. The advantages of the partial

update during the first seconds of the filter initialization are put forward to reduce the error

in position. Finally, the initial wind conditions and the estimation are discussed. The

real-time wind estimation during two demonstration flights without the use of an airspeed

sensor is compared with the offline method used in Chp. 5 for coefficients calibration. The

results come from publications and projects [95].The overview of the real-time results is

summarized in Tab. 8.1 with the corresponding application and sections.
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Table 9.1: List of real-time-related results

Investigations Simulation TP2 Section

Time tagging
Simulated delays ✓ 9.1.1
PX4 vs GPS clock ✓ 9.1.2

On-line demonstrator
Components ✓ 9.2.1
Computation load ✓ 9.2.2

Initialization
Incorrect initial VDM parameters ✓ 9.3.1
Partial update ✓ 9.3.2

Wind
Wind initialization ✓ 9.4.1
Wind estimation ✓ 9.4.2

9.1 Sensors Time Delay and Influence of Time-Tagging errors

9.1.1 Requirements

VDM requires that the input of the flight control command be related to the same absolute

time frame as the other observations. The (non-) tolerances of possible delays in control input

command with respect to navigation performance on a fixed-wing UAV are analyzed.

Methodology

The control input (U ) coming from the autopilot and presented in Sec. 3.5.1 is fed to VDM. In

an ideal real-time implementation, the control input data should be read directly from the

microcontroller that commands these inputs. For the TP2 platform, the actuators include two

servos for the ailerons, one servo for the rudder, one servo for the elevator, and one motor to

spin the propeller. In most systems, the control commands can only be accessed from the

onboard computer that hosts the autopilot. The latter time tags the data with its own system

time. The data time tagging operation requires its own processing time, and depending on

the computational load of the system, some delays dcc can be expected between the time a

control command is emitted t emi
0 and the time when it is time-tagged t t ag

0 . This is illustrated

in Fig. 9.1. Furthermore, the low quality of the system time clock will cause unavoidable drifts,

adding other timing errors (Sec. 9.1.2).

To assess the influence of imperfections in the data time label on the performance of VDM-

based navigation, a similar simulation framework as in Sec. 8.1 is used. The steps are shown in

Fig. 9.2.
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Delay 

Control command period
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Figure 9.1: Time-tagging of the emitted control commands with delays
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Figure 9.2: Flowchart of simulations to assess the effect of time-tagging errors

Reference, Flight Simulation and Sensor Data

Two flights are considered, the reference trajectories shown in Fig. 9.3 and introduced in

Sec. 6.4.1. The first flight, denoted as 20170821_nx5id1, lasts 425 second s; while the second

flight, denoted as 20170822_nx5id1, lasts 272 second s. Both flights are carried out using the

TP2. PPK GNSS solution with cm-level accuracy is used to generate way points to emulate

flights in the simulations.

Once the way points are generated from real flight data, the corresponding sensor data (with

errors) are simluated for IMU, GNSS, barometer, and the control commands similarly as

presented in Sec. 8.1. As the investigations aim to assess the effect of time-tagging error in

the control input, emulated sensor readings with correct time tags are used to avoid mixing

effects.

Time-Tagging Errors

At this step, the time-tagging of control input data is corrupted by adding stochastic delays

to simulate a realistic case. The nature of such delay in the real case depends on the internal

properties of the system (clock frequency, thread priority, system load) and is unknown. In

this study, the time delays of the control command dcc are modeled as the sum of a constant

bias b and a positive random delay w as

dcc (n) = b +|w(n)| (9.1)

where w ∼N (0,σ2). The impact of time-tagging errors in VDM-based navigation performance

is studied for different values of b and σ.
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Control commands are separated into two groups: those related to the engine/propeller and

those related to the servos (for the aileron, elevator, and rudder). The servo and motor Rotation

Per Minute (RPM) commands are assumed to be accessible at 10 H z, as in the employed UAV.

The ideal time tag is corrupted by delay dcc separately for each data. The meaning of the

emitted and tagged times is illustrated in Fig. 9.1.

When the motor and servo time tags are corrupted for a particular fixed delay and absolute

noise error level, VDM-based navigation is performed. For both flights, the 3 mi n long GNSS

outage is considered before the trajectory ends. There are 15 runs for every combination of

fixed and random delays with different noise realizations, and the maximum position errors

are saved for each run for statistics.

Navigation and filtering in the simulation are set to 100 H z, but it also runs every time a new

control input (with corrupted time-tagging) is available. This guarantees that the processing

scheme does not introduce an additional delay due to buffering.

Results and Discussion

VDM-based navigation with 3 mi n of GNSS outage without any time-tagging error is per-

formed for reference and is presented in Fig. 9.3. The corresponding maximum position error

at the end of 3 mi n-long autonomous navigation is 83 m for 20170821_nx5id1 and 42 m for

20170822_nx5id1. It can be observed that the autonomous VDM-based navigation solutions

drift in both flights but stay quite close to the references while the INS-based navigation drifts

considerably faster.
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6°32'15"E 6°32'30"E 6°32'45"E
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Esri, HERE, Garmin, GeoTechnologies, Inc., NGA, USGS
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Figure 9.3: Reference trajectory (dashed-blue) and VDM-based navigation solution (green)
with correct control command time-tagging during 3 minutes of GNSS outage

The cases with different levels of delays are simulated separately for motor and servo com-

mands and are presented below.
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Motor Data Time-Tagging Errors

Investigated motor data time-tagging errors range from 0 to 300 ms of fixed delay plus a

random noise delay 1σ from 0 to 100 ms. The values considered are reported in Tab. 9.2.

Fig. 9.4 shows the maximum position error for all runs (15 for each corruption scenario) that

Table 9.2: Fixed and random delays for motor data

Fixed Delays [ms] Random Delays 1σ [ms]

0 0
10 10
50 20

100 50
200 100
300 ;

combine random and fixed delays. The maximum position error for the five random delays

combined with the more considerable fixed delay (300 ms) is depicted with boxplots (Fig. 9.4).

Motor time-tagging errors do not appear to introduce a noticeable deterioration of VDM-based

navigation performance compared to the case with perfect time-tagging. A possible reason

is the slow dynamic response of UAV to the speed of the propeller, which causes relatively

small time-tagging errors (with respect to the associated dynamic modes of the UAV) that have

minimal impact on navigation. Indeed, the absence of wind in the simulation and the nominal

and almost constant velocity of the platform during both trajectories imply almost no change

in propeller speed, simplifying the model. More significant errors in position are expected if

those two conditions are different, i.e. the wind is present or added in the simulation and the

platform changes its velocity during the flight.
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Figure 9.4: Maximum position error for all runs with motor time-tagging errors
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Servo Data Time-Tagging Errors

Considering the high sensitivity of UAV dynamic response to servo data time tagging errors,

the chosen fixed delay, and random noise standard deviation are limited within the range

from 0 to 20 ms as shown in Tab. 9.3. The effect of those errors on max. error in position is

plotted in Fig. 9.5.

Table 9.3: Fixed and random delays for servos data

Fixed Delays [ms] Random Delays 1σ [ms]

0 0
5 5

10 10
15 15
20 20

The growth in position error is noticeable when the time-tagging error of the servo data

increases. It is interesting to notice that the evolution of the errors with random delay follows

a different trend per fixed delay. This may be due to a relatively low number of runs for each
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Figure 9.5: Maximum position error for all runs with servo time-tagging errors

(of many) combination. Although longer delays have been tested, these are not presented to

stay with the primary objective: identify the central tendency of position error growth. A fixed

delay of only 10 ms increases the maximum error in position more than three times, even

without random delay. This reveals the importance of proper time-tagging control input data

for VDM-based navigation.

Fig. 9.6 shows VDM-based navigation solution with an introduced fixed and random delay

of both 10 ms in the servo data for a particular run. The maximum position error during

140



9.1 Sensors Time Delay and Influence of Time-Tagging errors
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Figure 9.6: Reference trajectory (dashed-blue) and VDM navigation solution (green) over 3
minutes of GNSS outage with 10 [ms] of fixed and random delay error for the servo

time-tagging

a GNSS outage for both flights is around 300 m, i.e., about 3 times larger than the nominal

scenario. However, the trajectory dependency of dead reckoning methods makes the direct

comparison between trajectories less relevant. Note that the magnitudes of vertical errors

are limited by the barometer measurements. There is an in-flight refinement of the VDM

parameters when GNSS data are available. 20170821_nx5id1 lasts 152 second s longer than

20170822_nx5id1 and experiences more dynamic maneuvers, therefore, it is reasonable to

expect a finer estimation of the VDM parameters resulting in slightly better performance in

autonomous navigation.

Simulations are also performed by combining time-tagging errors for motor and servo data.

However, compared to servo-error only, the difference with the addition of time-tagging errors

for the motor input is almost negligible. Therefore, these results are not presented.

Discussion

For both trajectories, it is observed that the time-tagging error in the motor data has negligible

influence on the maximum position error for all fixed and random delays considered. However,

the impact of time-tagging errors on the servo data is incontestably greater. Rapid growth in

position error is observed even for delays as small as ten milliseconds. Therefore, the correct

time tag of the control command should be implemented with a global time reference at

1ms-level or better as presented in Sec.9.1.2.

On a side note, the results for both flights reveal a correlation with the trajectory characteristics,

which is generally relevant for both kinematic and dynamic-based modeling. Therefore,

the maximum position error is not necessarily the most pertinent criterion to assess the

performance of the VDM-based navigation solution. However, it provides a bulk estimate of
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the engineering requirements for implementing time-tagging in fixed-wing UAVs.

9.1.2 PX4 Control Command Time-Tagging

To relate the potential degradation of navigation performance due to incorrect control com-

mand time-tagging, the temporal stability of the autopilot oscillator is evaluated in terms of

scale variation to GPS time. The demonstration of this synchronization is carried out on a

sample flight (AF_i7) of about 30 minutes. A regression fit over the entire period translated to

a drift of 0.12 s/hour between the PX4 system time and the GPS time. To capture the possible

variation of frequency in the autopilot oscillator during flight, the real-time scale computation

uses a buffer limited to 30 seconds, performing a regression over this period (30-second win-

dowing). The updated scale s and bias b (taken at the beginning of the regression) is outputted

as ROS topic clock_synck for further GPS time-tagging at the node TimeSync (Sec. 7.2) of the

control commands and other information coming from the autopilot such as wind estimation,

static and airspeed data.

If these offset changes are not compensated for in a flight of around 30 minutes, an incorrect

time-tagging to the filter could potentially reach 50ms. As presented in Sec. 9.1.1 an incorrect

time-tagging of the actuator of 10ms is responsible for a drift in the solution of 200 m (Fig. 9.6).

Therefore, the correct time-tagging of the autopilot control commands is crucial. The proposed

time tag in a global reference time avoids navigation errors as presented in the previous section

due to incorrect time-tagging from a potential drifting clock.

9.2 VDM Online Demonstrator

The VDM online demonstrator aims to present the feasibility of VDM-based real-time naviga-

tion by merging theoretical and engineering concepts developed during this research into a

prototype. Numerous flights have been performed to test the required hardware and software

over several months, and the results presented come from multiple ones.

9.2.1 Components

The target demonstrator is based principally on the following components:

1. The TP2 aircraft presented in Sec. 6.1 with the "STIM-SODA" payload (Sec. 6.2)

2. The Ground Control Station introduced in Sec. 6.3.3

3. The embedded VDM-based navigation software (brief description in Sec. 7.3, detailed

implementation in Sec. 7.3.2, the additional required ROS nodes in Sec. 7.2)

The description of points 1. and 3. have already been detailed in the related sections. The

modifications made to QGC for the online demonstrator requirements are presented below.
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Modified QGroundControl

In its standard implementation, only the position and attitude of the UAV, calculated by PX4
during a mission, is displayed on the map. This is represented by the red line in Fig.9.7(a). QGC

can be customized to add other tracks (e.g., blue track in Fig.9.7(a)) in parallel to the native

track. This allows comparing the navigation solution of GiiNav or VDMc (both possibly without

GNSS) to the one calculated by the PX4 autopilot (with GNSS) when they are transmitted by

the UAV embedded computer to the autopilot and received by the GCS software via MAVLink

messages. This will allow us to observe the evolution of the different navigation solutions in

real time and compare their performance.

(a) (b)

Figure 9.7: (a) Screen capture of QGC during a mission, displaying two tracks on map:
navigation solution computed by PX4 autopilot (in red), navigation solution computed by

INS/GNSS GiiNav (in blue). VDMc trajectory not displayed. (b) Widget to send custom
command to the UAV embedded computer and display received telemetry messages

Custom Commands

The GUI of QGC is modified to have bilateral communication with the companion computer

to transmit custom commands and messages. For this purpose, a custom widget containing

switches is designed and added to the graphical user interface, as shown in Fig. 9.7(b).

When activated by another selector, the pose of GiiNav and VDMc can also be displayed in real

time on GUI. One of the switches (the top one) sends a MAVLink message to the autopilot,

which is relayed to the companion computer to block access to the GNSS data for GiiNav and

VDMc. This allows us to artificially simulate a GNSS outage during flight. To monitor the status

of the different navigation nodes present in the UAVs, a display area is also added to the widget;

however, message parsing is not yet implemented. For safety reasons, the PX4 autopilot is not

affected by the software emulated GNSS-signal outage and its solution is used as reference.

The three positioning solutions (i.e. the reference, INS and VDM) are communicated back to

QGC and displayed on its screen.
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The presentation of the online demonstrator follows the flight steps presented in Sec. 7.4

where some details have already been covered.

9.2.2 Computational Load

The implementation of the VDMc software on the companion computer supports varying filter

sizes depending on the chosen submodels. The calculation of navigation solutions requires

performing a large number of matrix operations, which consumes most of the computational

power of the Central Processing Unit (CPU). The embedded computer introduced in Sec. 6.3.2

is relatively powerful. However, the target unit is likely to be a microcontroller. To have

a first insight of the time needed to perform the different steps in the EKF, three different

filter configurations for the TP2 platform, including with 68, 47 and 27 states, as recalled

in Tab. 9.4 using the principle presented in Sec. 7.3.5. In the following, the three different

Table 9.4: Three different systems with various sub-models tested with the VDMc software on
the embedded computer

Number of states Sub-models
68 Xn , Xp , Xa , Xad , Xw , Xe , XLi mu , XBi mu , XLg ps

47 Xn , Xp , Xa , Xw , Xe

27 Xn , ρ, Xa , Xw , Xe

filter sizes will be referred as ”68-states”, ”47-states” and ”27-states”. The two main steps

in a KF are state prediction and update. The execution time of these steps is monitoredI

and are shown in Tab. 9.5. The filter frequency step is set to 100 H z. When using the filter

Table 9.5: Execution time of the prediction and update steps for the different filter size

System functions Average exec. time [µs] CPU load reduction [scale]
pred. 5355 ref. value

”68-states” update-imu 1079 ref. value
update-gps (pos. + vel.) 2029 ref. value
pred. 2490 2.2

”47-states” update-imu 763 1.4
update-gps (pos. + vel.) 1545 1.3
pred. 762 7.0

”27-states” update-imu 414 2.6
update-gps (pos. + vel.) 623 3.3

with 68 states (using extra auxiliary states such as sensor misalignment, actuator dynamic

parameters, and more complex IMU error model), the time required for a prediction step

is around 5.0 ms on the current embedded computer. Therefore, the filter can run without

IThese investigations were performed on a previous version (2021) of the VDMc software with the payload
"SODA-GECKO". These average execution times are expected to be shorter in the current version on a common
scale, but the relative load reduction should follow the same trend
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overloading the CPU with this configuration, which is the most ”computationally expensive”.

However, the reduced version of the software when using the 47- or 27-state configuration

requires considerably less execution time (∼2x and ∼6x), which is potentially interesting for

a microcontroller host. Additionally, code optimizations and KF algorithms can be used to

further reduce the computational load of the VDMc software.

9.3 Initialization

9.3.1 Incorrect Model-Parameter Initialization

To emphasize the importance of correct initialization of aerodynamic parameters in a real

scenarios, different initial sets of parameters are tested in the VDM-based navigation system.

These tests are carried out on data from the application flight AF_STIM7 with a 47-dimensional

state vector. The initialization sets used in this test are as follows: (i) all ones, (ii) all zeros

(approximated to 10−7), and (iii) all random with N ∼ (0,1). The effect of these incorrect initial

parameters is evaluated during a simulated GNSS outage of 2 minutes after four minutes of

flight. The scenario with the VDM parameters initialized with all zeros results in a straight-line

trajectory during the 2 minutes of the outage because the model does not produce tangible

moments or forces. The second scenario with initial values set to ones is completely erratic

with a final position error of ∼600 m. The last scenario reaches a numerical instability within

the first second (and crashes). The results obtained with incorrect initialization are consistent

with the simulations presented in Sec. 8.1.

9.3.2 Initialization Improvement with Partial-Schmidt Update

The benefit of the partial update (PSKF) implementation detailed in Sec. 4.2 with the TP2 is

tested with the payload "IGN-GECKO" (Sec. 6.2.1) on four flights.

The CF_i8 flight is used for calibration. Three other flights from the same campaign (IGN6x,

IGN6U, IGN7) are used as application flights. They are for these results called AF_i7, AF_i6x,

and AF_i6u and are used to test the modifications suggested to the VDM-based navigation

system. As presented in Fig. 6.9, the flights are dissimilar in their geometry, combining

dynamics and a block pattern for CF_i8, different dynamics and block for AF_i7, a long straight

corridor for AF_i6x and a u-shaped corridor for AF_i6u.

Methodology

The coefficients xp obtained from the flight CF_i8, after refinement as presented in Sec. 8.3.2

with the corresponding block-covariance matrix Pp, are used as priors for all other validation

flights, while increasing the uncertainty of 1σ by a factor 1.02 (2%). During the three validation

flights, the VDM parameters are fine-tuned (when GNSS observations are present) to allow

small possible refinements due to changes in the platform configuration and its environment
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related to battery position, reassembled parts with slightly different orientation between flights,

small modification on the payload, or changes in weather conditions. Therefore, the initial

error state of the model parameters xp (0) is zero. Initial values of navigation parameters and

IMU sensor errors are obtained from conventional INS/GNSS together with their confidence

levels (Sec. 6.2.1). Therefore, the initial values of the error states xn(0) and xe (0) are zero, as are

those of the actuator errors xa(0). The position of the actuators is obtained from the autopilot.

The initial wind is set to zero with an uncertainty of 0.5m/s and 0.1m/s in the horizontal and

vertical directions, respectively (1σ).

Initialization periods of different durations (Ti ni ∈ [50,100,300]) are tested on the three ap-

plication flights to observe the influence of partial updates (Sec. 4.2) on the fluctuation of

position errors. Their maximum horizontal position error during the first 200 seconds after

initialization is shown in Fig. 9.8 for the three application flights. For all cases with Ti ni ≥ 50s,

no Schmidt

Schmidt

Figure 9.8: Max. position error during the first 200 s after initialization without and with
partial-Schmidt (Ti ni =100 s) for the three application flights

the maximum position error is reduced, improving the estimation with respect to the reference

trajectories. In a similar trend, the respective norms of velocity and attitude errors also de-

crease. These improvements are only marginal for Ti ni to be longer than 1 or 2 minutes, which

is why Ti ni = 100 s is chosen as the default value. Fig. 9.9 further shows the detailed evolution

of the horizontal error (magnitude) within flights AF_i7 and AF_i6x without (Ti ni = 0 s) and

with partial updates (Ti ni = 100 s), respectively. For AF_i6x, the benefit of an “initialization“

phase is substantial as the position error without partial update is quite large. This is likely due

to the instability of the filter caused by incorrect initial values of some parameters. Applying

the partial-Schmidt filter reduced the maximum error in position by a factor of 6.

Generally, within the three application flights, all navigation state errors decrease when an

initialization time of close to 1 minute or longer is selected. For initialization periods lasting

longer than 5 minutes, there seems to be a higher dependence on the initial state values, which

reduces the rate of convergence. However, a longer initialization time (more than 500 seconds,

for example) may be considered on some flights with limited dynamics, such as those flown

for mapping missions [28]. These types of flight are monotonous with repetitive patterns that

are flown at constant height and constant velocity. There, the benefit of partial Schmidt in the
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Figure 9.9: Evolution of horizontal position error (magnitude) after initialization for
Ti ni = [0,100] s in flights AF_i7 (left) and AF_i6x (right)

initialization phase of VDM-based navigation is less certain, because the dynamics during

such missions is low, and, in turn, the criteria for obtaining sufficient observability to refine

the aerodynamic coefficients may not be achieved [52]. Wind estimation can benefit from

such a partial update method, and its initialization is evaluated hereafter.

9.4 Wind

The correct wind estimation is of primary importance for accurate VDM-based navigation.

First, a simulation with real wind is investigated to understand the influence of initial con-

ditions (Sec. 9.4.1). Then, the real-time wind estimate for flight STIM_12 and STIM_13 is

presented later in Sec. 9.4.2.

9.4.1 Wind Estimation in Simulation

The TP2 model with the coefficients obtained after calibration (Sec. 5.3.2) is used with a

simulated flight of about 15 minutes to test the influence of the wind velocity values in the

initial state for its estimation during the simulated flight depicted in Fig. 9.10. The trajectory

is designed to have high dynamics with heading modifications to ease the wind estimation

(Sec. 5.2) and the refinement of the coefficient (8.1). The generation of sensor data and flight

control commands is similar to the methods presented in Sec. 8.1. The initial uncertainty

of the coefficients P0 is set to 1% (1σ) of the calibrated values. The real wind record taken

at 60m AGL provided by Wind Engineering and Renewable Energy at EPFL (WIRE) is added

to the simulated environment presented in Sec. 8.1 and Sec. 9.1.1. Two different initial wind

velocities are used: (i) zero wind for the three axes and reference as scenario init_0, and (ii)

1.5m/s, 3m/s and 0m/s for the North, East, and West wind velocity, respectively, and referred

to as init_non0. The initial wind uncertainties P0 (1σ) are 0.5m/s for North and East, and
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Figure 9.10: Simulated 15-minutes trajectory

0.1m/s for the down component for both initialization scenarios. The wind estimate for the

first 20 seconds (Fig. 9.11(a)) and the remaining flight (Fig. 9.11(b)) with respect to the wind

reference is presented for each axis. For all three directions, when the initial wind is set to

zero, the wind estimate tends to make large corrections before converging to the real value.

The difference in wind estimation between the two initialization scenarios seems to last less

than 10 seconds. The difference in estimate after that is only marginal and cannot even be

distinguished between the two scenarios after a few minutes. When calibrated aerodynamic

coefficients are used with the simulated trajectory, the estimated RMSE of the wind relative

to the real horizontal and vertical is 0.11m/s and 0.05m/s, respectively, and 0.10m/s and

0.07m/s).

For the defined research objectives, these findings are sufficient and have not been further

investigated: with correct aerodynamic coefficients, the in-flight wind estimate is “correct”.

However, more tests could be performed to investigate the accuracy of wind estimation in

other scenarios (i.e., with gusts). This is now part of the research of an additional thesis using

the VDM-based navigation scheme conducted in TOPO-EPFL.

Recommendations

To mitigate the large oscillations in wind estimation during initialization, a partial update is

recommended as presented in Sec. 4.2. However, suppose the local wind is not approximately

known a priori. In that case, the partial update on the wind velocity states should be used

with care: initializing the wind with zero values with a slow update convergence might corrupt

the remaining auxiliary states by compensating for the incorrect wind velocities before their

convergence to the (a priori unknown) actual value. The evaluation of the wind in real-time is

presented below.
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(a)

(b)

Figure 9.11: Wind estimation during the (a) first 20 seconds and (b) the whole trajectory of a
simulated trajectory for two different initialization scenarios: (i) approximated initial values in

red, and (ii) with zeros in green with respect to the reference wind (blue)
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9.4.2 Wind estimation in real-time

The horizontal wind estimation using WMF, the PX4 autopilot, and the VDM filter for the online

demonstrator flight STIM_12 is graphically compared in Fig. 9.12. Recall that the two former

Figure 9.12: Wind estimation for the flight STIM_12 using WMF (red), the VDM filter (blue) and
PX4 (yellow)

estimators (WMF, PX4) use airspeed measurements, whereas the latter (VDM) do not. Wind

estimated with autopilot PX4 does not match the other two, probably due to a high residual

bias in dynamic pressure measurements II. It can be observed that for the WMF wind, some

jumps are presented at the beginning of the trajectory. In contrast, these jumps are absent for

the VDM online estimation due to the partial Schmidt update applied at initialization. The

initial wind velocities are taken from the weather station readings. Tab. 9.6 summarizes the

average direction and velocity of the wind for flights STIM_12 and STIM_13 using the two

different methods. The wind estimated with the VDM estimator corresponds quite well to the

Table 9.6: Comparison of estimated horizontal wind for STIM_12 and STIM_13 using the WMF
method and VDM-EKF

WMF VDM
Flights magnitude [m/s] direction [deg ] magnitude [m/s] direction [deg ]
STIM_12 1.18 136.4 1.20 137.1
STIM_13 1.89 116.2 2.02 117.9

one estimated with WMF in terms of magnitude (∼ 2 [cm/s]) and direction ( 0.5 [deg ]) for the

IIOnly 5 minutes were saved due to (unknown) autopilot internal logging issue
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flight STIM_12. The wind was relatively calm and constant. The weather station measured a

wind velocity of 1.14[m/s] on the ground.

During the second flight STIM_13, the wind rose with sporadic gusts, resulting in more

heretic wind velocity which is captured with the VDM filter because of continuous estimation.

Whereas the WMF method blocks (partial-update) the estimation depending on the direction

of the UAV as described in Sec. 5.2.1. This results in a smoother wind velocity estimation.

The observed difference in wind magnitude is ∼ 13 [cm/s] and the heading is impacted in

consequence with a difference of 1.7[deg ]. No result could be obtained from the weather

station for this flight.

Summary

This chapter has presented several details and constraints of the real-time VDM-based

navigation system. First, the correct real-time time-tagging of the flight control commands

has been shown in simulation to be crucial to avoid the deterioration of autonomous

navigation. Second, with the correct time-tagging of all subsystems, the three components

to test the real-time setup have been briefly discussed: the UAV, the GCS software, and

the VDMc navigation filter. Subsequently, the addition of partial updates in the navigation

filter during initialization has shown a reduction in errors and removed erratic jumps in

the position solution. Finally, during the remaining duration of the mission, real-time wind

estimation has been verified using the proposed design. The next chapter will validate

the theoretical and engineering contributions by evaluating the real-time system under

different autonomous navigation scenarios.
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10 Autonomous Navigation

Overview

The presented research strives to improve autonomous navigation of small UAVs, during

GNSS-outages, compared to traditional methods. VDM-driven autonomous navigation

performance is directly related to the quality of aerodynamic model parameters, the settings

(tuning) of the navigation filter, and the proper real-time system design. In this chapter,

a two-fold performance analysis of VDM-based navigation system is performed: first,

validation of the overall real-time setup, covering the calibration of aerodynamic coefficients,

the hardware and software setup, and correct configuration. Second, evaluating the benefits

of navigation based on VDM in challenging environments.

Following this idea, this chapter exploits the performance of autonomous navigation during

a GNSS outage to (i) validate the coarse estimation methods WMF for the TP2 and eBeeX ; (ii)

demonstrate the recommended partial update methodology by not updating some states

when no observations from the GNSS receiver is available; (iii) compare the VDM-based

navigation with traditional INS coasting for TP2 with the real-time setup during the online

demonstrator flight campaigns; and (iv) investigate the reduced model (lumping highly

correlated coefficients). The dedicated section to these investigations is summarized in

Tab. 10.1 and some of the results come from [28].

Table 10.1: List of autonomous navigation results

Payloads
Investigations IGN-

GECKO
SODA-
STIM

eBee-
GECKO

Section

WMF obtained coefficients validation ✓ ✓ 10.1
Partial Schmidt improved stability ✓ 10.2
VDM vs INS coasting ✓ 10.3
VDM-based with reduced model ✓ 10.4
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Chapter 10. Autonomous Navigation

10.1 Coarse Coefficient Estimation

The “correctness” of the approximate parameters estimated using the method WMF (Sec. 8.2)

for the two platforms (TP2 and eBeeX) is tested by inspecting the performance of autonomous

VDM-based navigation under multiple emulated GNSS outages. Furthermore, two different

filters are used: (i) the coefficients are kept fixed throughout the flight, and a new state is

introduced, known as the aerodynamic scale factor and denoted by s, to compensate for

changes in atmospheric conditions and weather between calibration and application flights;

(ii) they are used as an initial guess and are re-estimated in the VDM-EKF framework.

10.1.1 TP2

Once the set of force and moment aerodynamic parameters is obtained from the calibra-

tion flight CF_STIM6, the coefficients are used for validation on the two application flights

(AF_STIM5 and AF_STIM7).

Both filters produce encouraging results and mitigate navigation drift during the 2 minute

GNSS outage by a very significant margin. This is shown in Fig. 10.1(a) for the application

flight AF_STIM5 and Fig. 10.1(b) for the application flight AF_STIM7.

The navigation solution obtained from the fusion of identified aerodynamic parameters is

also compared with i) STIM-318 and ii) ADIS-16475 during a GNSS outage. Data from the

application flight AF_STIM7 are used using both architectures mentioned above (47/27 state

estimator). The result, presented in Fig. 10.1(c), shows that the navigation solution for the

two IMUs is quite similar and that the dynamics identified from a high-grade IMU, using

the proposed methodology, could be fused with measurements from a lower grade inertial

sensor to obtain similar results. On the other hand, if the ADIS-16475 is used in an INS-driven

navigation system, the navigation performance during the outage is poor, and the result is

shown in Fig. 10.1(b).

It should also be noted that the UAV for the application flight - AP_STIM5 is somewhat different

compared to the calibration flight and the application flight - AP_STIM7 due to hardware

modifications.

10.1.2 eBeeX

The application flight eBeeX_652 is first processed with simulated GNSS outages after 23 and

28 minutes, respectively.

The model parameters are included in the state, yielding a 69-dimensional state vector (as

discussed in Sec. 5.2). Navigation results are shown in Fig. 10.2(a) and 10.2(b) along with the

INS solution. The IMU data are precalibrated: removal of the deterministic noise error thanks

to [53] offering the best possible INS solution with embedded IMU (NavChip).
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Figure 10.1: TP2 flight AF_STIM5 (a) with a 2-minute outage after 15 minute, and flight
AF_STIM7 (b) with outage after 4 minutes and (c) invariance of calibrated VDM to different

IMU. GNSS outage starts at the black cross

The results are shown in Fig. 10.2(a) and 10.2(b). However, the 26-dimensional estimator,

which considers the model parameters constant, did not produce encouraging results. The

plausible reason for such a result, based on the following evidence, seems to be overfitting:

(i) low residual error during calibration, (ii) large number of unknown parameters, and (iii)

significant navigation drift/numerical instability when model parameters are kept fixed during

the application phase.

From these two investigations, it can be observed that (i) the position error during an outage

when using VDM-based navigation with an uncalibrated IMU (ADIS-16475) is reduced com-

pared to inertial coasting (ii), similar VDM-based navigation performance can be obtained

with different grade MEMs-IMU, and (iii) better navigation performance is expected with the

complete model.

In Sec 10.3, for both platforms, multiple additional outages are emulated to confirm these

findings.
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Figure 10.2: eBeeX application flight AF_eBeeX_652 with 2 minutes outage after (a) 23 and (b)
28 minutes for VDM (black) and INS (red) solution

10.2 Partial Correction of Navigation States

When a GNSS outage occurs, the IMU measurements and barometric-derived height are the

only observations available (airspeed observations are used in different investigations). As

described in Sec. 4.2, the filter is modified so that all error states related to VDM parameters

and that of position are placed in the “considered” mode during a GNSS outage. The effects of

this approach are compared to the full state update.

For the application flight, Fig. 10.3 details the maximum and median errors on horizontal

position during two GNSS outages (each 2 minutes) with partial (light gray) and full (dark

gray) updates of the state vector. Apart from one minor exception, the position errors (as well

Figure 10.3: Max. and median horizontal errors without (dark grey) and with (light grey)
partial updates during 2-min GNSS outages

as the velocity and attitude) are lower in all cases when partial (rather than full) updates are

applied. Fig. 10.4 shows the estimated position during some of the GNSS outages described

above in the application flights AF_i7 and AF_i6u without (dashed red) and with (green) partial

156



10.2 Partial Correction of Navigation States

filtering. The reference trajectory is depicted as a dotted blue line. The minor exception of
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Figure 10.4: 2 minute GNSS outage without (red dashes), with (solid green) partial updates, on
(a) AF_i7, (b) AF_i6x, (c) and (d) AF_i6u with the reference trajectory (dotted blue)

a slightly higher positioning error with partial filtering is related to the first simulated GNSS

outage in the flight AF_i6u. There, the error in the heading is higher with the partial-Schmidt

implementation, causing a slightly larger deviation in the horizontal position after the nearly

1 km long straight line, as shown in Fig. 10.4(c). In all cases, the trajectory with partial updates

is smoother than the trajectory with updates in position. Such differences intensify toward the

end of the outage period when the confidence in position is lower. A smooth and continuous

estimate of position with a higher confidence level is more suitable for guidance and control

algorithms within the autopilot [106], especially when executing a fail-safe action, such as

return-to-land.
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10.3 Comparison to Inertial Coasting

This section compares VDM and INS-based navigation that employs 16 states including

position (3), velocity (3), attitude (4) and IMU biases (6) for accelerometers and gyroscopes.

Motivation

Recall that the "SODA-STIM" contains, apart from the bias-temperature calibrated IMU

(STIM318), another small IMU with low-noise level (ADIS-16475). Both IMUs are used in

a INS/GNSS navigation setup using flight AF_STIM7. Four GNSS outages of 2 minutes are

simulated starting at 9, 11, 12 and 14 minutes after takeoff. The horizontal error during inertial

coasting for both scenarios is shown in Fig. 10.5. The maximum horizontal error when using

Figure 10.5: Horizontal-position errors (max. & median) during repetitive GNSS outages of 2
minutes for INS only with STIM-318 versus ADIS-16475 for flight AF_STIM7

the uncalibrated ADIS-16475 IMU reaches more than 1km compared to the < 100m when

the STIM318 is used. However, with reasonably “good” aerodynamic coefficients, VDM-based

navigation performance with IMU observations from this lower grade sensor is reported to be

similar to when using the higher grade IMU STIM318 (Sec. A.3.3). This motivates to investigate

the comparison in performance under GNSS outages between the INS-based navigation with

respect to the VDM version on different platforms and payloads.

Unless otherwise specified in the related section, the initial state uncertainties for both meth-

ods are summarized in the Tab. 10.2 with some initial value (IV) specified.

For the different payloads, the IMU measurement noise and error state xe follow the char-

acteristic described in Appendix C.2.1. For the first three flight campaigns (eBeeX+GECKO,

"IGN-GECKO", WMF - STIM5, 6 and 7) the GNSS mode is PPK, and for the online demonstrator

campaign (STIM12 and STIM13), the GNSS mode is SPP with noise characteristic given in

Tab. C.4. Extensive GNSS outages are simulated to compare the performance of VDM-based

navigation with respect to inertial coasting for the first three campaign flights. They are pre-
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States 1σ Comment
xn Considering "PPK" precision

pos. [m] 0.03 / 0.08 hor. / ver.
vel.[m/s] 0.04 / 0.05 hor. / ver.
att. [deg ] 0.5 / 1 r ,p / y
ω [deg /s] 1 / 2 ṙ ,ṗ / ẏ
xp 1% IV from diff. cal. method
xa IV from AP
acc. [deg ] 1
n [r ad/s] 20

xe From Appendix C.2.1
xw [cm/s] IV set to zero

hor. 0.5
ver. 0.1

Table 10.2: Initial state uncertainty

sented in Appendix A.3. However, the simulated outages for the online demonstrator flights

STIM_12 and STIM_13 (online demonstrator campaign 1), and the real-time outages for the

flights STIM_14 and STIM_15 (online demonstrator campaign 2) are presented below for

consistency.

10.3.1 Online Demonstrator Campaign

For the generality with respect to the different payloads and IMU qualities, GNSS outages are

simulated for some flights with the payload "SODA-STIM". The two online demonstrator flight

campaigns are considered. The initial coefficients are obtained thanks to the WMF method with

CF_STIM6. The GNSS outage start times are summarized in Tab. 10.3 for the flights considered:

2 minute duration (simulated) for campaign 1 and varying for campaign 2 (in real-time).

Table 10.3: Start times (in minutes) of simulated GNSS outage after takeoff for STIM_12 and
STIM_13 flights (online demonstrator campaign 1) and GNSS outages performed in real-time

for the flights STIM_14 and STIM_15 (online demonstrator campaign 2)

Flights GNSS outage start time [mi n]
Campaign 1 (simulated)

STIM_12 10 12 14 16
STIM_13 14 16 18 20

Campaign 2 (real-time)
STIM_14 9 18
STIM_15 6
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Online Demonstrator Campaign 1

Due to operational reasons, flight data of STIM_12 and STIM_13 are replayed under the same

conditions as the real-time system configuration (VDMc) but with multiple GNSS outages for

comparing the VDMc implementation with respect to INS coasting. The initial coefficients xp

for both flights are taken from the calibration flight CF_STIM6 using the WMF method (Sec. 8.2)

and their initial uncertainty set to 2% (1σ). During the first 10 minutes of both flights, the

aerodynamic coefficients are refined, the values presented in Tab. 10.4 and then fixed, resulting

in a 26-state filter. This time, the aerodynamic scale factor s is not added to the state space

(the results with the addition of the scale factor s are presented in Appendix A.3.3).

Table 10.4: Initial coefficient and after 10 minutes of refinement for flights STIM_12 and
STIM_13

Force Initial STIM_12 STIM_13 Moment Initial STIM_12 STIM_13
CF T1 0.0002 0.0009 0.002 CM xa -0.0053 -0.015 -0.003
CF T2 -0.023 0.043 -0.039 CM xβ -0.0042 -0.014 0.0005
CF T3 58.61 11.064 33.25 CM xωx

0.0312 -0.121 -0.234
CF z1 -0.424 -0.082 -0.561 CM xωz

0.0016 0.0017 0.007
CF zα -6.149 -13.83 -0.256 CM y1 -0.0005 -0.0003 -0.0007
CF x1 4.44 -0.254 -2.599 CM ye 0.0601 0.195 0.079
CF xα 0.0306 0.017 -0.256 CM yα -0.0372 -0.074 -0.017
CF xα2

-3.120 2.251 0.646 CM yωy
-0.3829 -0.633 -1.794

CF xβ2
0.4542 0.229 1.157 CM zr 0.0050 0.012 0.005

CF y1 -4.728 -0.306 2.15 CM zβ 0.0094 0.027 0.010
CM zωz

0.0021 0.0015 0.0020

From Tab. 10.4, we can observe that some coefficients remain pretty similar to the initial value

for both flights after the 10-min refinement, whereas others change in sign and magnitude.

The direct interpretation of these changes is not straightforward. It is currently attributed to a

change in wind conditions, a different trajectory dynamic at the beginning of the flights, and a

change of battery of different capacities (different weights, implying modification of the total

mass and possibly its center).

Fig. 10.6 presents the horizontal errors after the simulated GNSS outage of 2 minutes for

the online demonstrator campaign flights STIM_12 and STIM_13 using VDM and INS. For

comparison, the flights are run another time without reducing the state space after 10 minutes,

keeping the VDM parameters to be estimated throughout the trajectory. For 75% of the

scenarios, the full filter (47 states) performs slightly better than when the coefficients are fixed

after 10 minutes. For both flights, in all cases except one, the navigation performance based

on VDM is similar to or better (up to 5×) than the navigation based on INS only for the two

types of filter (26 and 47 states). In all cases, the maximum navigation errors is lower than 75

meters for the VDM-based navigation with STIM318 (and the full model), while the median

error is maximum ∼25 meters. These values are up to 3 times higher for inertial coasting with
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10.3 Comparison to Inertial Coasting

Figure 10.6: Horizontal-position errors (max. & median) during repetitive GNSS outages of 2
minutes for flights STIM_12 and STIM_13 with 47 and 26 states, and INS

this good quality IMU.

Similar results with fixed parameters (however fixed from takeoff) are given in the Appendix A.5

for the "IGN-GECKO" payloads and flight AF_i7. A general conclusion can be formulated:

with a correct set of pre-calibrated aerodynamic coefficients, VDM-based navigation gives

improved results with respect to INS in case of outages. However, between flights, the battery

and payload may be placed in a different location/orientation, the platform may undergo

modifications (sensors, mounting), and the weather conditions may differ. Thus, it is best to

let the coefficients change slightly between flights, even after pre-calibration.

As the last investigation, instead of having the full model (47) or completely removing the VDM

parameters from the states (26 or 27 with scale state s), a proposed alternative is to reduce the

model by lumping some states together. This is explored in the following.

Online Demonstrator Campaign 2

During this campaign, the GNSS outages trigger from the QGC was correctly configured

and VDM-based navigation performance was monitored in real-time versus the INS-based

solution. For the flight STIM_14, the first GNSS outage after 9 minutes of flights lasts 309 sec.

The error in position at the end of the outage for the VDM-based navigation solution is ∼570

m and ∼2600 m for the INS (GiiNAV). After the outage, the UAV continues its mission. The

second outage starts after 18 minutes and lasts 310 sec . The error in position at the end of the

outage for the VDM and INS-based navigation solution are ∼590 m and ∼2380 m, respectively.

The two outages can be seen in Fig. 10.7

For the flight STIM_15, an outage of 474 sec was triggered after only 6 minutes of flight. The

error in position at the end of the outage for the VDM and INS-based navigation solution are

∼600 m and ∼20 km, respectively, and the solution is depicted in Fig. 10.8 with a zoomed
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Figure 10.7: STIM_14: VDM (yellow) vs INS-based navigation solution (blue) compared with
the reference (red) during GNSS outages of about 5 minutes after (a) 9 minutes and (b) 18

minutes
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(right) near the reference. For both flights, the partial update during the GNSS outage is

enabled. The smooth trajectories are easily distinguishable. The dynamic state reduction after

10 minutes was also enabled for the flights and did not produce any error. The improvement

in autonomous navigation when using the VDMc in comparison with GiiNAV is evident. It is

the first time that this type of navigation has been demonstrated in real-time on a small UAV.

10.4 Reduced Model

The reduced model uses the coefficient pairs obtained from the calibration flight CF_i8 via

smoothing and not the ones obtained from simulation (Sec. 8.1, Tab. A.6).

The reduced model is compared first with the full model of TP2 for the nominal case of GNSS

signal reception (100 s after initialization) for the same flights presented in Sec. 9.3.2, including

flight AF_i7, AF_i6x and AF_i6u. The differences in positions between both models are less

than 0.2 m, which is practically negligible under regular (1H z) GNSS updates.

However, the effect of model reduction is more noticeable when the GNSS solution is absent.

Taking into account the very same cases as in Fig. 10.3, the differences between both models

are plotted in Fig. 10.9. The errors with the reduced filter are more significant in five out of

six cases by a factor ranging from 1.2× to 2×. Compared to simulations where both filters

performed practically identically, these differences are noteworthy. This may be due in part

to a more significant error in attitude, particularly in determining the yaw angle. Although

drone guidance aims to fly each line with constant speed and azimuth, the flying envelope of

actual tests is undoubtedly more turbulent than that of simulations. Thus, the higher-order

coefficients may account for (or absorb some) real or non-modeled effects. For example, the

yaw angle is correlated with the coefficient CFy 1, “refined” value which may be influenced by

the (less correctly) estimated side-slip angle and thus the real wind (xw).

From these findings, it can be concluded that the gain in computational efficiency brought

by the reduced model comes at the price of slightly worse navigation accuracy in the case of

a GNSS outage. The quality of autonomous navigation with the VDM reduced model is still

significantly higher than that of the inertial coasting model. In contrast, within the nominal

reception conditions of the GNSS signal, these differences are practically insignificant. To

maintain the best possible navigation performance in a GNSS-denied environment, it is

recommended to use the full model.
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Figure 10.8: STIM_15: VDM (yellow) vs INS-based navigation solution (blue) compared with
the reference (red) during GNSS outages of about 8 minutes after 6 minutes, zoomed version

(b)
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Figure 10.9: Max. and median horizontal errors during 2 minutes of GNSS outages with the
full (dark grey) and reduced (light grey) models

Summary

This last chapter has validated theoretical and engineering contributions by evaluating

the performance of autonomous VDM-based navigation in different scenarios. First, the

WMF calibration methodology has been verified using the obtained coarse coefficients as

initial values during validation flights for both platforms. Then, the benefit of the partial

update was confirmed during the autonomous phase by reducing the errors and removing

erratic jumps in position due to the high update rate of IMU. Subsequently, the real-time

autonomous navigation during GNSS outages has been presented for the two online demon-

strator campaigns. The outage durations were longer than 5 minutes for the three real-time

autonomous tests. The improvement in position at the end of the outages compared to iner-

tial coasting was greater than five times for all tests. Finally, the navigation performance of a

proposed reduced model has been compared with the full model during a simulated GNSS

outage. It has been revealed to still have a better performance than inertial coasting. In con-

trast, the full model provided slightly better results, confirming that the coefficients should

be refined during the first minutes of a mission to adapt to the potential modifications of

the platform geometry and payload.
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11 Conclusion

This chapter concludes the work presented in this thesis by summarizing the key research

findings in relation to the stability and implementation of real-time, VDM-based navigation

and discusses its contribution to the growing field of autonomous drone navigation. The limi-

tations of the investigations conducted during the work are reviewed and recommendations

are provided for future studies.

11.1 Contributions

11.1.1 Conceptual

Coarse calibration

A coarse estimate of the aerodynamic model parameters was demonstrated to be indispens-

able for model-based navigation to avoid divergence or catastrophic failure of the navigation

filter. In this thesis, a methodology was proposed to estimate an initial set of aerodynamic

parameters from flight data without the need for external tools or additional setup. The

method is independent of platform geometry nor requires prior knowledge of the platform’s

aerodynamic parameters owing to the linearity of the estimation approach. The parameters

obtained from the proposed calibration algorithm have been successfully tested and validated

on two different drone geometries during flights that contained simulated GNSS outages.

Fine calibration

Attitude references derived using photogrammetric methods and optimal smoothing with

high-precision GNSS aiding in the calibration of VDM parameters has been proposed. Cou-

pling these observations with this estimation method enhances the separability of the force

and moment parameters and their decorrelation with respect to sensor errors and wind. In

turn, it leads to improved autonomous navigation performance. The importance of their

joint-usage increases with the lower quality of on-board IMU.
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Estimation stability

Steps were proposed to improve the numerical stability of the VDM filter. First, a method

was developed to identify and re-scale a small subset of state variables. Second, implementing

factorization together with partial updates of the filter parameter subset proved to stabilize

and improve the phases of initialization and autonomous navigation.

Autonomous navigation

Navigation quality during GNSS outages from different platforms and IMU quality validated

the benefit of the VDM-based navigation over the kinematic (inertial) approach. The drift

of VDM/IMU-based navigation was confirmed to be significantly lower than that of inertial

coasting. The maximum positioning error was maintained at 100 m or less over 2 minutes for

most scenarios and was less dependant on IMU quality.

Wind estimation

Wind velocity using model-based navigation is shown to be correctly estimated in simulation

and in two real flights where reference observations were available. This opens up new

opportunities for in-flight wind estimation without the use of an airspeed sensor and/or to

serve as a means of independent performance verification of such sensors.

11.1.2 Engineering

Real-time design

A real-time VDM-based navigation filter was implemented on an embedded computer. It

was tested using an online demonstrator, and the computational load was analyzed for differ-

ent filter configurations. A real-time dynamic state reduction mechanism was conceived to

adapt the filter size based on the calibration results of the VDM coefficients or to optimize the

computational load of the filter based on the available resources. Although navigation perfor-

mance during simulated GNSS outages was not as efficient when state reduction was applied

to the filter as compared to the full model, this solution may be interesting for µ-controller

implementations where computational resources are limited.

Time-tagging quality

The sensitivity of quality of control command timestamps for VDM-based navigation was

analyzed. While the time-tagging error in the motor data was found to have a negligible

influence on navigation error, that associated to the servo control commands was significant.

Rapid growth in position error was observed even for delays as small as 10 milliseconds. In

this regard, a time-tagging mechanism was implemented to label the flight control input and

all sensor observations with a global reference (GPS) to ensure consistency in the navigation

filter and mitigate potential hundreds meters of position error in case of long GNSS outages.

The remaining real-time errors in the time-tagging were verified to be on the order of 10−5s.
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11.2 Limitations

The quality of the estimated aerodynamic coefficients was inferred through VDM-based

autonomous navigation with respect to inertial coasting. This test is general and global, yet

limits the analysis of the individual coefficient influence on the navigation solution. Due to

the non-linear relations between force and moment coefficients, such a test may be valid

throughout the flying envelope allowed by the autopilot (maximum banking angles, descent

angles).

The replay environment for testing the VDM-based navigation (MATLAB or ROS bags) removes

some possible real-time system challenges such as missing or corrupted sensor data, unex-

pected hardware defects or operating system performance flaws. Although the validation of the

real-time implementation was satisfactory, additional testing for robustness is recommended

before applying its output to guidance and control inputs of an autopilot.

State-based estimation is highly dependent on the correct setting of stochastic models (initial

states and their covariance, process, and measurement noise). Optimal settings may be

invalidated due to hardware failure or its operating environment. Again, a fallback strategy for

identification and adaptation to such situations should be implemented before closing the

loop with the autopilot guidance and control.

11.3 Further work

With respect to the last limitation point, a thorough filter adjustment should be performed.

It would involve, but is not limited to, actuator deflection dynamic delays, investigation

of propeller speed during kinematics, extensive analysis of wind stochastic properties, the

influence of battery voltage on propeller speed versus PWM, possibly employing motor-

controller with RPM signal or implementing separate RPM sensor, studies on the IMU noise

model on IMUs of lower quality.

The VDM for a particular platform is known, and does not change during a mission, and is

implemented as a process model inside the navigation filter. The calibration method based

on the observability Gramian presented a change in vector basis to isolated states that are

observable. If the eigenvector basis is known a priori (i.e., after pre-calibration), an adequate

partial update on selected states could potentially be applied in real-time. The candidate

does not know whether such an implementation exists and thus suggests it as an interesting

research investigation.

Considering the high frequency of the IMU measurements leading to rapid and constant

updates of the states, an interesting investigation would be to leave the partial update in

place throughout the flight for the IMU updates, or lower their frequency, and not only during

initialization and during detected GNSS outages. The benefit of such an implementation was

observed during these two phases; therefore, an additional analysis could be performed to
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determine if navigation performance gains could be realized when applying it under nominal

GNSS reception conditions.

A large and general aerodynamic model for the delta wing drone was selected. The results of

the coefficient calibration revealed that the model was overfitting the sensor observations.

In future work, a modified/simplified model should be tested to better match the physical

behavior of the platforms. This will likely improve the general applicability of the model

between flights and potentially improve the performance of autonomous navigation.

In the absence of an air sensor (airspeed/pressure sensor) on the platform, real-time observa-

tions from the weather station (wind direction and magnitude, air temperature, humidity, and

pressure) could be transmitted (via WiFi or other communication links) to the VDM system.

The impact of weather observation updates on navigation performance could be investigated

and interesting research avenues could be identified.

Numerous additional options and improvements to the real-time application VDMc are col-

lected on the gitlab repository associated to the project. Future users of the software are

welcome to implement these enhancements.
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A.1 Numerical Conditioning

The implementation follows the methodology suggested in Sec. 4.1. The condition number

(eigen values of P) is initially driven by the variances (diagonal elements) of P0. The calibra-

tion flight CF_i8 (presented in Sec. 8.3.2) is shown as an example to represent the unknown

correlation between the states. Fig. A.1(a) shows the order of magnitude (∈ [2;−34]) of each

element of the covariance matrix P0 at the initialization of the filter without scaling. The initial

(a) (b)

Figure A.1: Order of magnitude (right-axis) of the initial covariance matrix elements P0 of a
state-vector components (left-axis): a) before, b) after scaling

covariance matrix is quasi-diagonal, with the exception of the position x and velocity v , which

are propagated to their corresponding frame/space. The variances for the position in latitude

and longitude are small ≈ 10−18, (inside the red square on Fig A.1(a)) and the covariance be-

tween latitude and longitude is even smaller ≈ 10−34. They are hardly distinguishable from the

null elements present off-diagonal within a 64-bit precision architecture and can be wrongly
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interpreted as zeros.

After scaling the states related to horizontal position errors and propeller speed n, the con-

dition number of P0 decreases considerably (from 1024 to 1010) and the range of the matrix

elements is also largely reduced (Fig A.1(b) ∈ [0;−18]). With the previously described scal-

ing of only three variables, the condition number of the matrix S used to compute the KF

gain (Tab. 2.1) drops from 1013 to 102. With that the GNSS velocity and IMU measurements

are no longer potentially numerically problematic, as the related states are already correctly

conditioned: GNSS velocity update values correspond to the magnitude of ≈ 100 and IMU of

≈ 102.

During the flight, the condition number of P with or without scaling of the states stabilizes

with a magnitude difference of approximately 105 as depicted in Fig. A.2 for a simulated flight

of 15 minutes duration [107]
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Figure A.2: Condition number of the covariance matrix with and without scaling of lat/long
and propeller speed n

leading to less numerical errors during covariance update and propagation.

According to Eq. 4.3 the propagation of round-off errors is reduced by a factor of 1010, the

fact of which improves the numerical stability of the matrix inversion. Although a matrix

inversion failure is not observed during the empirical tests without scaling in the experiments

conducted, this does not prove that it cannot occur during longer flights or under different

conditions. To paraphrase [67]: “Even when catastrophic illness does not occur, there is

diminished health”. Therefore, even when the original filter performed adequately within the

performed course, its scaled version is in much better shape and more stable for real-time

application.
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A.2 Numerical Integration

The implementation of the KF prediction steps include solving differential equations. There

exist numerous numerical differential solvers of different orders. While the first order Euler’s

numerical method [108] may give good results in some cases, a higher order is desirable par-

ticularly for differentiating non-linear equations. The most well known member of the Runga

Kutta is called the ”the classic Runge-Kutta method of order 4” (Runga Kutta 4 (RK4)) [109].

It is a numerical technique to solve linear or non-linear differential equations reducing the

error between the true solution and the numerical approximation. Its implementation in the

context of the ESEKF with quaternion is discussed below, especially for attitude propagation.

A.2.1 Attitude with Quaternions

Let x ∈Rn be the state vector of a system governed by the following differential equation (we

here omit the influence of the forcing input u for simplification):

ẋ = f (x) , (A.1)

Let the system initial state at t = t0 be x(t0) = xn , where t ∈R denotes time. RK4 addresses the

problem of computing x(t0 +∆t ), given x(t0). The general implementation of RK4 is given by

the following set of equations:

k1 =f (xn) (A.2)

k2 =f
(

xn +k1
∆t

2

)
(A.3)

k3 =f
(

xn +k2
∆t

2

)
(A.4)

k4 =f (xn +k3∆t ) (A.5)

The final result is given by a weighted average of the aforementioned operations:

x(t0 +∆t ) = xn +
[

k1

6
+ k2

3
+ k3

3
+ k4

6

]
∆t (A.6)

The implement is straightforward in most linear systems. However, in the case of the attitude

ODE in quaternion (Eq. 3.54), some extra steps need to be implemented and the operations

listed from Eq. A.2 to A.6 need to be adapted. Recalling the ODE for the attitude in quaterion

q̇ = q⊗ ω
b
lb(x)

2
, (A.7)

where q ∈S4 andωb
l b ∈R3. ⊗ represent quaternion product introduced in Sec 3.21.

Let the initial state be given by: q(t0) = qn , x(t0) = xn , thereforeωb
lb(t0) =ωb

lb(xn).
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Extending the RK4 Eq. A.2 to A.6 leads to evaluating ωb
lb at each new point ki ∈ [1−4] which

represent intermediate rotation rate quantities to integrate, new "dot quaternions". The

"quaternion rate" k1 is

k1 = q̇1 = f (xn) = qn ⊗ ω
b
lb(xn)

2
(A.8)

Then, the k1 can be integrated for the period ∆t
2 to be added to the initial attitude xn to obtain

the intermediate state

xn +k1
∆t

2
= qn ⊗q

[
ωb

lb(xn)∆t

4

]
= xk1

∆

2
(A.9)

where q[·] is the operator that transforms the elements of tangent space SO(3) (Euler angles)

to the quaternion space in S4 as seen in Eq. B.20, and xk1
∆
2 is an intermediate state. The

result will be then used as argument to compute k2 as

k2 = q̇2 = f
(

xn +k1
∆t

2

)
= qn ⊗

ωb
lb

(
xk1

∆
2

)
2

(A.10)

k3 and k4 are then computed similarly. Finally, when the ”quaternion rate” ki ∈ [1,4] are

computed, one can evaluated the equivalent rotation using the Eq. A.6 where each term

contributes to rotation the states with his own perturbation. The first two quaternions qk1 =
k1
6 ∆t and qk2 = k2

3 ∆t are computed as

qk1 = q

[
ωb

lb(xn)∆t

12

]
(A.11)

qk2 = q

ωb
lb

(
xk1

∆
2

)
∆t

6

 (A.12)

and this can be generalized for the two last intermediate quaternions qk3 and qk4 and the

completed RK4 expression is given by the following relation:

q(t0 +∆t ) = qn ⊗qk1 ⊗qk2 ⊗qk3 ⊗qk4 (A.13)

A.2.2 Small Integration Time

From [110], if the integration time is small enough (> 50 [H z]), a RK4 implementation with

a brute-forced quaternion normalization (Eq. A.14) after each time step propagation equals

the performance of the implementation proposed previously with quaternion multiplication

which guarantees the quaternion unity. Therefore, the different RK coefficients (k1 to k4) as

presented in Eq. A.2-A.5 can be added together and for each evaluation of the propagation

function f (x,u), and a quaternion normalization is performed with the following quaternion
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normalization

qk+1 −→ qk+1/
∥∥qk+1

∥∥ (A.14)

Finally, the propagation of the state in Eq. A.6 requires a final quaternion normalization. The

two methods has been tested on a VDM-based navigation system runing at 100 [H z] using the

MATLAB environment and post-processed data from a flight of 33-minutes (CF_i8 Sec. 6.4) with

a simulated GNSS outage of 2 minutes at the end of the trajectory. The difference in position

at the end of the two runs is less than 1 [cm].

A.3 VDM vs Inertial Coasting for the Different Payloads

A.3.1 eBeeX with "GECKO" Payload

For the flights eBeeX_652 and eBeeX_756, a total of eight additional GNSS interruptions of 2

minutes are introduced at different times, as summarized in Tab. A.1. The initial coefficients

used are obtained with the WMF method with flight eBeeX_756 and are given in Tab. C.5.

The coefficients are kept in the state space, so their values may evolve during the trajectory.

Table A.1: Start times (in minutes) of 2 minute-long GNSS outage after takeoff for both
calibration (eBeeX_756) and application (eBeeX_652) flights

Flights GNSS outage start time [mi n]
eBeeX_652 22 24 27 29
eBeeX_756 18 20 22 24

Horizontal errors (magnitudes) observed during autonomous navigation based on VDM (dark

gray) versus INS (light gray) are shown in Fig. A.3. For each outage, the central mark indicates

Figure A.3: Horizontal-position errors (max. & median) during repetitive GNSS outages of 2
minutes for flights flights eBeeX_756 eBeeX_652 using VDM and INS

the median, and the bar indicates the maximum error. For comparison, the second evaluation

is plotted on the same figure for inertial coasting (with barometer height aiding) using the
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identical sensor error model. For both flights and for all GNSS outages, horizontal errors with

VDM-based navigation are reduced with respect to free INS by a factor up to 3×. The reduction

is more visible in the flight eBeeX_756, which also serves as the calibration flight.

The results are promising, and the coefficient calibration could be further improved following

the methods proposed in Sec. 8.3. However, as mentioned in Sec. 10.1.2 and visible in Fig. A.3,

the high number of aerodynamic parameters (44) can result in overfitting and better results

could be obtained using model simplifications. However, this assumption could not be further

explored due to the limited number of experiments (two flights).

A.3.2 TP2 with "IGN-GECKO" Payload

Similarly for the flights AP_i7,AP_i6x and AP_i6u, four GNSS outages with a duration of 2

minutes are simulated. Their starts are summarized in Tab. A.2. Recall that the parameters

are calibrated with flight CF_i8 and the smoothing method (Sec. 8.3.2 and initial coefficients:

Tab. 8.9).

Table A.2: Start times of the 2 minutes GNSS outage within the application flights (in minutes
after take-off).

Flights GNSS outage start time [mi n]
AP_i7 17 20 23 26
AP_i6x 12 14 16 18
AP_i6u 10 11 13 14

Fig. A.4 shows the horizontal error statistics observed during autonomous navigation based

on VDM and INS. From the total of twelve cases, the reduction of maximum horizontal error

VDM

INS

Figure A.4: Horizontal-position errors (max. & median) during repetitive GNSS outages of 2
minutes for VDM and INS

for VDM with respect to inertial coasting is very significant on 3 occasions (more than 10×),

and significant on 3 others (more than 5×). In the rest of 6 cases, the improvement varies from

1.5× to 2.5×.

For visual comparison, another GNSS outage of 2 minutes is simulated at the very end of the
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application flights AF_i7 and AF_i6x for both VDM and INS-based navigation. The superior

performance of VDM-based navigation with respect to inertial-only navigation in the GNSS-

denied environment can be observed by comparing Fig. A.8 and Fig. A.5 for flight AF_i6x and

AF_i7
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Figure A.5: INS/GNSS based navigation performance under 2-mi n GNSS outage for the
flights (a) AF_i7, and (b) AF_i6x

Furthermore, to observe the improvement in navigation performance, the duration of the

first GNSS outage in AF_i6u is increased to 6 minutes. Autonomous navigation during this

period is detailed in Fig. A.6, for VDM (green), INS (red), and reference (blue). Although the

maximum horizontal error in position is ∼250 m for VDM, it is 18× larger (∼4.5 km) for the

inertial coasting case.

A.3.3 TP2 with "SODA-STIM" Payload for the WMF Campaign

The initial coefficients are obtained thanks to the WMF method with CF_STIM6. The GNSS

outage start times are summarized in Tab. A.3 for the flights considered.

Table A.3: Start times (in minutes) of 2 minute-long GNSS outage after takeoff for STIM_5 and
STIM_6 flights (WMF campaign)

Flights GNSS outage start time [mi n]
WMF campaign

STIM_5 22 24 27 29
STIM_6 22 24 26 28

During the flight AF_STIM7, the control commands were only recorded for the first 6 minutes

due to autopilot logging problems; therefore, this flight is not used for the following investiga-
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Figure A.6: For flight AF_i6u, (a) Last 400 seconds of VDM (green), INS (red), reference (blue)
during a GNSS outage of 6 minutes: (a) 2D, (b) 2D-zoomed, (c) error(t)

tions. The horizontal error statistic shown in Fig. A.7 compares the flights of the calibration

campaign (STIM5 and STIM6). For flight AF_STIM5 and CF_STIM6, the autonomous VDM-

based navigation during theGNSS outage performs better for 75% scenarios than INS-only

navigation. As the STIM318 IMU is of relatively good industrial quality (Tab. C.1), inertial

coasting gives reasonably satisfactory results (less < 100m error after 2 minutes of dead reck-

oning).

The use of a IMU of higher quality (as STIM-318) can be useful to calibrate the aerodynamic

coefficient of a particular UAV. Then a fleet of similar UAVs can fly with a VDM-based naviga-

tion system equipped with a lower-grade IMU while achieving relatively good autonomous

navigation under GNSS outage.

A.4 Coefficients with Photogrammetry Aiding

The true values of the VDM parameters remain unknown. As mentioned in [28], some of the

estimated aerodynamic parameters may be partially absorbed by random, yet time-correlated

inertial errors. The question, therefore, remains how suitable the estimated VDM parameters

are for autonomous navigation, especially those determined by a filter without coarse pre-

estimation. This is indirectly evaluated by emulating GNSS 2-minute update outage at the end
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Figure A.7: Horizontal-position errors (max. & median) during repetitive GNSS outages of 2
minutes for VDM and INS for flights AF_STIM5 and CF_STIM6

of the calibration (CF_i8) flight, as well as in the two application flights AF_i7 and AF_i6X. The

GNSS outages occur in their corresponding flight after 31, 27 and 18 minutes, respectively.

The experimental setup used in the application flights included exactly the same aircraft and

payload as is used in the calibration phase (see Sec. 6.4.2). The application flights contain

the following differences: a) although some photos are taken, they are no longer used, b)

the flights are carried out in the same area but different flight plans are used, so the flight

lines differ in length (AF_i7 - shorter, AF_i6X - longer), c) the cm-level relative positioning

(PPK) is used only as a reference; hence only stand-alone GNSS position and velocities are

used for inertial-based before emulating their absence (the uncertainties for both GNSS

modes are summarized in Tab. C.4). Furthermore, the VDM parameters xp at the end of

the calibration phase in the CF_i8 flight for both cases (without/with att. ref.) are saved

along with their corresponding correlation matrices (P). They are then used as initial states

xp (0) and covariance matrices Pp (0) for the two other application flights, AF_i6X and AF_i7

respectively. The initial uncertainty related to xp is increased by 1%, while the initial systematic

errors in IMU and the wind are reset to zero with the same uncertainty as in the simulation

environment presented in Sec. 8.1.3. By doing so, new calibration phases (however, this time

without attitude updates) can adapt the whole parameter set to a new set of sensor errors

(inertial) and weather conditions (wind).

Fig. A.8 shows the last 130 seconds of the three trajectories with (i) the reference position drawn

as a dashed blue line, the GNSS outage starts are marked with a black cross; (ii) autonomous

navigation based on VDM using the priors of the aerodynamic coefficients of CF_i8 derived

without (red) and (iii) with (green) attitude updates. It is clearly evident in the figures that

the complementary information from the attitude updates used in the calibration phase of

CF_i8 positively influenced the determination of the aerodynamic coefficients, so that the

magnitude and direction of the position drift is mitigated in the application flights.

Tab. A.4 summarizes navigation performance during the emulated GNSS outage for the cal-

ibration and the two validation flights. The four elements presented are (i) the horizontal
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Figure A.8: Comparison during 2 minute GNSS outage of VDM-based navigation performance
using (a) the CF_i8 trained aerodynamic coefficients with camera attitude references (green)

or without (red), and the application flights (b) AF_i7 and (c) AF_i6X

position error at the end of the 2 minutes of GNSS outage, (ii) the root mean square error for

the 2D and (iii) 3D positions throughout the period, and (iv) the percentage of time the UAV

stays within 150 m of the true trajectory. The latter criterion is useful for the UAV to return

close to a safe (home) location where (i) the UAV can land or (ii) the operator can assume

manual control. For the set of VDM-coefficients calibrated with the help of attitude aiding,

this is achieved in all tested cases for the given prototype. Taking into account the nominal

speed of 16 m/s for the given prototype, such UAV could return home within a radius of 150 m

without GNSS from a distance of almost 2 km.
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Table A.4: Position error at the end of the 2 minute GNSS outage, 2D and 3D position RMSE
and % of time with hor. error under 150m

IGN8 IGN7 IGN6
w/o cam w. cam w/o cam w. cam w/o cam w. cam

Error end traj. [m] 167 108 421 60.7 275 102
RMSE 2D [m] 97.3 46.9 133.5 62.5 68.9 30.0
RMSE 3D [m] 98.6 47.2 138.14 67.0 79.78 53.3
Hor. error < 150 m [%] 77.7 100 68.1 98.8 88.7 100

A.5 Fixed VDM Parameters

The current model for TP2 has 47 parameters, among them 21 representing the aerodynamic

coefficients. After attitude-aided calibration, the coefficients in the investigation are removed

from the system state from the very beginning of the flight, and only a scale factor s embedded

in the change in weather conditions is added and estimated. The filter is thus reduced from 47

to 27 states, consisting of the following elements: navigation xn , actuator xa , scale factor s,

wind velocity xw and IMU biases xe . Flight AF_i7 is selected to determine the performance of
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Figure A.9: VDM-based navigation with 27 states

autonomous navigation with the reduced filter model, where the aerodynamic coefficients are

treated as constants. In the later state of this flight, a GNSS outage of two minutes duration

is emulated. The deviation from the reference trajectory is shown in Fig. A.9. Additional

tests with fixed parameters are presented for two additional flights STIM_12 and STIM_13 in

Sec. 10.3.1. However, in these two flights, a 10 minutes refinement is performed before fixing

183



Appendix A. Additional Analysis and results

and removing the aerodynamic coefficients from the states. The dynamic state reduction is

discussed in Sec. 9.2.

Note that the Schmidt partial-update for this experiment was not yet implemented and the

“roughness” of the trajectory is observable during the outage.

A.6 Aerodynamic Coefficient Refinement Thanks to ’pose’ Sensor

The following results are taken from [76] where two sets of coefficients are obtained with

different methods. One employs the ’pose’ sensor, and the other method uses regression of se-

lected flight phases to estimate some force coefficients. The second method was implemented

by another Ph.D. student from TOPO-EPFL, for which the obtained related results are not

presented here. This experiment was carried out before the development of the WMF method-

ology presented in Sec. 8.2. The initial static aerodynamic coefficients were obtained with

wind tunnel experiments, and the dynamic ones with Tornado I. In addition, and even more

importantly, it took about one year to have approximately working aerodynamic coefficients

due to the complexity of the model and the communication with the industrial partner with

whom a project on autonomous navigation was conducted. With the methodology presented

in Sec. 5.2, it took two days to adapt the WMF software to eBeeX and obtain a set of (working)

aerodynamic coefficients!

The VDM-based navigation filter implemented in MATLAB can employ observations coming

from high fidelity PP INS/GNSS navigation solution. These measurements helps in refining the

value of aerodynamic coefficients, which take part of the estimated parameters. The accuracy

of these additional observations are verified to be few cm in position, few cm/s in velocity and

∼ 0.05° for roll and pitch and 0.1°−0.2° for yaw [111]. These observations come from a virtual

sensor called ’pose’ sensor introduced in Sec. 5.3.1. Due to this method, a set of coefficients

can be estimated in flight.

Flight with Special Sensors

For the purpose of the PP method, the best flight in terms of wind condition and sensor

measurements quality and accuracy (GNSS, IMU, Barometer), data of which were collected

on February 20th 2019 (eBeeX_756) with a special sensory payload that is presented in Sec. C.4.

During the flight, control commands as well as sensors data were recorded to postprocess

the measurements with the VDM-based navigation filter, which, apart the aerodynamic co-

efficients, also estimates the wind direction and intensity with respect to platform’s body

frame. For this reason, a condition close to “zero wind” limits the impact of incorrect wind

parameters estimation reverberated and compensated in the erroneous estimated aerody-

namic coefficients. Such conditions were almost satisfied during the aforementioned flight

and therefore this experiment was used to estimate the aerodynamic coefficients of the eBeeX

Ihttp://tornado.redhammer.se/
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platform. The whole flight is depicted in Fig. 6.11(a) showing the GNSS trajectory with carrier-

phase differential treatment resulting in position and velocity precision at cm and cm/s level,

respectively.

The trajectory resembles a standard photo mission flight plan with two perpendicular flight

lines. Circular maneuvers in the middle of the figure were designed to excite the influence of

aerodynamic coefficients to improve their estimation at the beginning of the trajectory.

The sets of aerodynamic coefficients obtained are given in Tab. C.5.

A.6.1 VDM-based Autonomous Positioning Performance

Estimating the aerodynamic coefficients and comparing their values does not reveal their

intrinsic physical meaning due to their natural correlation. In order to test them at different

portion of a trajectory (e.g., after ∼10,∼20 and ∼27 minutes) a situation with loss of GNSS data

is simulated and the performance of VDM-navigation is evaluated during 2 minutes.

The results of VDM-based navigation under GNSS outage with both the set of initial coefficients

and the two portions of the trajectory are depicted in Fig. A.10. The last 130 s of the trajectory

is shown, 120 s of which with autonomous VDM-based navigation (i.e. without GNSS). The

reference position is drawn as dashed blue line. The GNSS position and velocity are still

available during the first 10 s and this period is represented with red crosses. To appreciate the

benefit of VDM-based autonomous navigation over the currently implemented INS-based

counterpart in eBeeX, the latter solution is depicted in purple in the left column of Fig.A.10.

The maximum horizontal error of using INS-based navigation is ∼290 m and ∼190 m for GNSS

outage at 10 min and 20 min, respectively.

The maximum error in horizontal position is less than 40 m after 2 min long absence of GNSS

positioning, as shown in the first raw of Fig. A.10. Tab. A.5 shows the percentage of the time

when the autonomously derived position of the drone stays within +/- 50 m and 150 m (1 and

3 σ). Considering that 1 σ is to the norm of empirical accuracy which corresponds to 68% and

40% probability in 1D and 2D, respectively, the empirical testing meets the specifications of

the first quantifiable deliverableII.

Method / Flight length PP / 10min CCE / 10min PP / 20min CCE / 20min
1 σ (50m) 99.6% 98.7% 64.5% 71.0%

3 σ (150m) 100% 100% 100% 100%

Table A.5: Percentage of time within 2 min long autonomous navigation during which the
horizontal positioning error stays within the specs represented by 1 σ and 3 σ. This test is

invoked after 10 min and 20 min of flight

IICTI proposal document 25800.1 PFIW-IW
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Figure A.10: Last 130 s of VDM-based navigation with 2 min of GNSS outage after 10 min (a)
and 20 (b) min of flight with the aerodynamic coefficients estimated with the ’pose’ method

(Sec. 5.3.1)

A.7 Simulation VDM Parameters Correlations

For a particular trajectory, some VDM parameter pairs highly correlate but not necessarily

for another trajectory with different dynamic, i.e., the pair c̄ −CMy ω̃y that converges with a

correlation higher than 90% for a ascending straight line and “infinity loop” with altitude

changes trajectory but its correlation decreases for a more complex one. Or, the pair CMy 1 −

Level Flight Asc. Straight Flight ’8 loops’ with alt. changes Combination
CMy 1 - CMyα 93.6% CMy 1 - CMy e 90.4% CMy e - CMyα 90.2% CFzα - CFxα2 90.9%

c̄ - CMy ω̃y 96.7% D - CFT 1 90.6% CMx ω̃x - CMx ω̃z 90.9%
CMy 1 - CMyα 97.8% CMy 1 - CMyα 92.2% CMzδr - CMzβ 95.2%

CMzδr - CMzβ 95.4% S - CFzα 97.1%
c̄ - CMy ω̃y 96.1% CMy 1 - CMyα 97.5%
S - CFzα 96.4% CMy e - CMyα 97.5%

CMy e - CMy ω̃y 96.7% CMy 1 - CMy e 97.9%
CMxα - CMxβ 98.2%

D - CFT 1 99.4%

Table A.6: Highly correlated VDM parameter pairs for particular trajectories

CMy e , which is well correlated for both the climbing line and the combination of trajectories,

is not for the level and “infinity loop” ones. With these pairs, the highly correlated VDM

parameters are good candidates to be re-unified within the Kalman filter into a common state.

Such “parameter lumping” may prevent potential singularities and save processing power

by reducing the states vector size and related matrices. Also, it may better to eliminate the

geometrical parameters c̄,S from unknowns and obtain their values from CAD models or other
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A.8 Experimental Validation of Wind Estimation

measurements.

A.8 Experimental Validation of Wind Estimation

A comparison of the 2D horizontal wind estimate by the WMF method using an airspeed sensor

and the measurements of the portable weather station using the test flight STIM3 is given. The

wind is assumed to be static throughout the flight. Fig. A.11 shows the effect of 2D static wind

compensation on the measured-estimated airspeed comparison.
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Figure A.11: Anemometer heading resolution

Portable Weather Station Pitot Tube 2D wind estimation
mag ni t ud e[m/s] d i r ec t i on[d eg ] mag ni t ud e[m/s] d i r ec t i on[d eg ]
1.69 19 1.7 15

Table A.7: 2D static wind estimation comparison - mean values over flight duration

While the wind magnitude matches to a cm accuracy the wind direction results are slightly dif-

ferent, this is mainly due to the anemometer’s coarse heading resolution and the anemometer

calibration. Indeed, the initial calibration of the anemometer might be subject to direction

bias error according to the operator’s manual precision when initializing the North direction.
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A.9 WMF TP2 and eBeeX Forces and Moment Residual with Flight

STIM6

A.9.1 TP2 - Moment Residuals
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Figure A.12: Moment residual for each axis
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A.9 WMF TP2 and eBeeX Forces and Moment Residual with Flight STIM6

A.9.2 TP2 - Force Residuals
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Figure A.13: Force residual for each axis
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A.9.3 eBeeX - Moment Residuals
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Figure A.14: Moment residual for each axis

190



A.9 WMF TP2 and eBeeX Forces and Moment Residual with Flight STIM6

A.9.4 eBeeX - Forces Residuals

Figure A.15: Force residual for each axis
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B Theoretical supplements

B.1 Static and Dynamic Pressure Conversion

B.1.1 From Airspeed to Ground Velocity

To obtain the true or ground speed of an aircraft based on the Pitot tube measurements, a

transformation sequence may be required depending on the sensor type.

The airspeed without correction is called Indicated Airspeed (IAS) and is given from the

dynamic pressure (Eq. 3.67) and the total air pressure measured with the Pitot tube (Eq. 3.80)

as

I AS =

√
2(ptot −p)

ρ0
(B.1)

where ρ0 is the air density at the International Standard Atmosphere (ISA) at sea level (ISO

2533:1975, 1.225kg /m3) [55].

The Calibrated Airspeed (CAS) is obtained by correcting the IAS for both the sensor errors and

misalignment. While the first error depends on the quality of the sensor, the seconds is caused

by the variation of the local wind velocity around the sensor and the probe not constantly

pointing towards the forward body axis due to the aircraft’s motion.

While the IAS and CAS are based on the Bernoulli’s equation assuming the incompressibility

of the air, the latter can be further corrected by considering the compressibility effects in the

air and is called the Equivalent Airspeed (EAS). For small UAVs, this effect is negligible as it

becomes significant for velocity > 0.3[M ach] which is more than 350km/h. The formulas can

be found in [112].

At last, the True Airspeed (TAS) is obtained by scaling the EAS (or CAS in the case of small
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Appendix B. Theoretical supplements

UAVs) with the local air density ρ

T AS = E AS or C AS ×
√
ρ0

ρ
(B.2)

where ρ can be obtained as a function of the local weather conditions (air pressure, air

temperature, dew point or relative humidity [112, 113]) which can be obtained from a local

meteorological station, a radio broadcast METeorological Aerodrome Report (METAR) or a

local weather station C.5.

The norm of the TAS ∥V∥ and the norm of the Ground Speed (GS) ∥v∥ are equivalent if the

aircraft’s surrounded wind is null and, therefore, V = v from Eq. 3.45.

B.1.2 From Static Pressure to Altitude

The barometric altitude h is computed as

h = hb +
R ·T · ln

(
Ph
P0

)
−g0 ·M

(B.3)

where hb is a bias depending on the weather conditions, R = 8.31432
[ n·M

mol ·K
]

is the universal gas

constant, g0 = 9.80665
[m

s2

]
the gravitational acceleration constant, T [K ] is the standard tem-

perature at sea level, Ph[Pa] is the measured static pressure with the sensor, P0 = 102325[Pa]

the standard sea level pressure, and M = 0.0289644[kg /mol ] the molar mass of Earth’s dry

air. hb can be determined using the altitude measured from a GNSS receiver as performed in

Sec. D.3.3.

B.2 Extended Kalman Filter

B.2.1 From Continuous to Discrete KF - Matrix Derivation

• from F(t ) to Φ: Consider the Taylor expansion of the system state x(t ) at time t

x(t ) = x(t0)+ ẋ(t − t0)+ 1

2!
ẍ(t − t0)2 + 1

3!
...
x (t − t0)3... (B.4)

From Eq. 2.15, ẋ(t ) = F(t )x(t ) and ẍ(t ) = F(t )ẋ(t ) = F2(t )x(t ). Therefore, the Taylor expan-

sion can be written as

x(t ) = x(t0)+F(t − t0)x(t0)+ 1

2!
F(t − t0)2x(t0)+ 1

3!
F(t − t0)3x(t0)... (B.5)

x(t ) =

(
1+F(t − t0)+ 1

2!
F(t − t0)2 + 1

3!
F(t − t0)3 + ...

)
x(t0) (B.6)

x(t ) = eF(t−t0)x(t0) (B.7)
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B.2 Extended Kalman Filter

therefore Φ = eF(t−t0). For software implementation, the exponenti al function is ex-

pensive. Therefore, a first order approximation, Φ = I +F(t − t0) can be used. Other

approximations ca be found in Appendix. B.2.2

• from Q(t ) to Qk : The derivation of covariance Qk is performed via further integration

of Eq. 2.15 for the noise w(t) as following the discrete time definition of the standard

model in Eq. 2.17. It leads that

xk+1 = eF(tk+1−tk )xk +
∫ tk+1

tk

eF(tk+1−τ)G(τ)w(τ)dτ (B.8)

=Φ(tk+1)xk +
∫ tk+1

tk

Φ(tk+1 −τ)G(τ)w(τ)dτ (B.9)

where by identification wk equals

Gkwk =
∫ tk+1

tk

Φ(tk+1,τ)G(τ)w(τ)dτ (B.10)

As for the continuous time system, Qk is the covariance of the noise Gk wk . By the

definition of the covariance

Qk = cov(Gτwτ,Gs ws) (B.11)

= E [GτwτwT
s GT

s ]+ E [Gτwτ]E [Gs ws]︸ ︷︷ ︸
0 because E [wk ] = 0∀k ∈R

(B.12)

= E

[∫ tk+1

tk

∫ tk+1

tk

Φ(tk+1,τ)G(τ)w(τ)wT (s)GT (s)ΦT (tk+1, s)dτd s

]
(B.13)

=
∫ tk+1

tk

∫ tk+1

tk

Φ(tk+1,τ)G(τ)E [ w(τ)wT (s)︸ ︷︷ ︸
w(k) iid∼ N (0,σ2)∀k

GT (s)ΦT (tk+1, s)dτd s (B.14)

=
∫ tk+1

tk

Φ(tk+1,τ)G(τ)Q(τ)GT (τ)ΦT (tk+1,τ)dτ (B.15)

When F and Q are both time invariant and the sampling period ∆t = tk+1 − tk is small,

the solution can be approximated to

Qk = GWGT∆t (B.16)

other approximation are given in Appendix. B.2.2

B.2.2 Transition Matrix and Covariance Noise Update Approximation

The covariance noise propagation Qk = GWGT︸ ︷︷ ︸
q

∆t and the transition matrix Φ = I +F(t − t0)

were approximated with the first order. Higher order approximation for Φ and Qk are given in

Tab. B.1
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Table B.1: Higher order approximation of Φ and Qk

Order Φ
2 I +F∗∆t +0.5∗F∗F∗∆t ∗∆t
3 I +F∗∆t +0.5∗F2 ∗∆t 2 +F3 ∗∆t 3/6
4 I +F∗∆t +0.5∗F2 ∗∆t 2 +F3 ∗∆t 3/6+F4 ∗∆t 4/24

Qk

2 q ∗∆t +0.5∗ (F∗q +q ∗FT )∗∆t ∗∆t

3 q∗∆t+0.5∗(F∗q+q∗FT )∗∆t 2+(F∗q∗FT +0.5∗F2∗q+0.5∗q∗FT 2
)∗∆t 3/3

4 q ∗∆t +0.5∗ (F∗q +q ∗FT )∗∆t 2+ (F∗q ∗FT +0.5∗F2∗q +0.5∗q ∗FT 2
)∗

∆t 3/3+(0.5∗F∗q∗FT 2+0.5∗F2∗q∗FT +1/6∗F3∗q+1/6∗q∗FT 3
)∗∆t 4/4

“Van Loan”

[
A = [−FG ∗W ∗G .′

0∗F F.′]∗d t

]
B = e A , B12 = B(1 : n,n +1 : 2∗n), B22 = B(n +1 : 2∗n,n +1 : 2∗n)
Φ = B22T , Qk =Φ∗B12

B.3 Additional Material on Angles

B.3.1 ODE for Attitude in Euler

The attitude ODE in Euler angles θ̇l
b is derived in a similar manner as that for quaternions.

The rotation quantity to be applied to the attitude θl
b is the same as for the quaternion case:

ωb
lb . However,ωb

lb can not be added directly to the current attitude θl
b to perform the rotation.

The orientation vector of Euler angles do not exist in Euclidean space [114]. Let the attitude

vector be

θ =

r

p

y

 (B.17)

The Euler angle rates of change θ̇ ≈ωb
lb are equivalent to the cascaded rotation around each

axis at initial orientation θ of the angular change following the rotation order R1R2R3. Using

intermediate frames for the rotation around each axis,ωb
lb is equivalent as

ωb
lb =

ṙ

0

0

+R1(r )

0

ṗ

0

+R1(r )R2(p)

 0

0

ψ̇

 =

1 0 −si n(p)

0 cos(p) si n(r )cos(p)

0 −si n(r ) cos(r )cos(p)


 ṙ

ṗ

ẏ

 = (Rθ)−1 θ̇

(B.18)

Inverting the matrix (Rθ)−1 allow to rewrite

θ̇ = Rθω
b
lb = Rθ

(
ωb

i b −Rb
l ω

l
i l

)
= Rθ

(
ωb

i b −Rb
l

(
ωl

i e +ωl
el

))
(B.19)
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which is the Euler attitude ODE. Note that Eq. B.19 shows that roll rate ṙ , pitch rate ṗ, and yaw

rate ẏ are not equal to the angular rate measured by the gyroscope measurementsωb
i b .

B.3.2 Euler Angle and Quaternion Conversion

The quaterion operations have multitude of advantages. However, they lack a direct rep-

resentation for human to understand. Therefore, in many systems, the computations use

quaternions but the results are presented using Euler angles which can be directly interpreted

for orientation. The conversions between the two representations are given hereafter.

B.3.3 Euler Angle to Quaternion

As mentioned previously, a rotation around one axis in R3 equals half the rotation in H.

Therefore, a rotation vector v =φu be a rotation of φ around the axis u can be mapped to the

exponential as in Eq. 3.23 to

q = E xp(φu) = eφu/2 = cos
φ

2
+usi n

φ

2
=

[
cos(φ/2)

usi n(φ/2)

]
(B.20)

and define the transformation rotation vector using Euler angle to quaternion. If a sequence

of rotation is defined (Eq. 3.3), and the rotation vector (v) =φu is used three times for each

axis in R3 and the Euler angles representation can be seen as three sequential rotations

q =


cos(α/2)cos(β/2)cos(γ/2)+ si n(α/2)si n(β/2)si n(γ/2)

si n(α/2)cos(β/2)cos(γ/2)− cos(α/2)si n(β/2)si n(γ/2)

cos(α/2)si n(β/2)cos(γ/2)+ si n(α/2)cos(β/2)si n(γ/2)

cos(α/2)cos(β/2)si n(γ/2)− si n(α/2)si n(β/2)cos(γ/2)

 (B.21)

B.3.4 Quaternion to Euler angle

The conversion from quaternion to Euler angle is the inverse operation of Eq B.21 and is given

here directly

αβ
γ

 =


ar ct an

2(q0q1+q2q3)
1−2(q1

2+q2
2 )

ar csi n
(
2
(
q0q2 −q3q1

))
ar ct an

2(q0q3+q1q2)
1−2(q2

2+q2
3 )

 (B.22)

When implementing the ar ct an operation in a system, one should be certain that it returns

the result between [−π;π].
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C Hardware

C.1 Inter-Devices Communication

The necessary communication architecture is realized by several hardware and software

components. The links between systems and devices are described below.

C.1.1 GNSS Receiver to Autopilot (GNSS to AP)

The GNSS receiver is connected to the PixHawk via a serial link (A on TP1, B on TP2) at 38400

bps over which it delivers number of messagesI at 5 Hz. The autopilot software running on the

flight controller is extended (6.3.2) to decode the binary protocol used by the receiver (GREISII)

and to make available the encoded information to the rest of the autopilot components on

µORB topics (e.g., gps_vehicle_position). The GNSS receiver communicates its timescale

to the AP board via PPS at 5 Hz that is received on the RC13 servo input. The reception of these

pulses is monitored by modified AP software.

C.1.2 GNSS Receiver to Gecko4NAV / SentiBoard

The GNSS receiver is connected to the Gecko4Nav via a similar serial link than the autopilot

(B on TP1, A on TP2) with the same baudrate and messages. These are forwarded to the

embedded computer without any processing (Sec. C.1.3).

C.1.3 Gecko4NAV / SentiBoard to Embedded Computer (IMU to PC)

The Gecko4NAV board transmits its data (together with received GNSS data) via USB to the

embedded Computer. The firmware of FPGA on Gecko board has been updated to publish

data over USB every time it receives PPS from GPS. The GNSS receivers (Javad or Topcon) are

Iem,/dev/ser/a,jps{/RT,/GT,/PG,/VG,/SI,/XA,/EE}:{0.2}
IIhttps://javad.com/downloads/javadgnss/manuals/GREIS/GREIS_Reference_Guide.pdf
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Appendix C. Hardware

configured to provide PPS at 5 Hz (to this board as well as to AP), thus, the data are available

on the USB port 5 times a second.

Gecko4Nav board is interfaced with the ROS environment through the NavServer which

broadcasts the IMU and GPS measurements within the ROS environment.

In the case of the "SODA-STIM" payload, the SentiBoard transmits the data to the embedded

computer in real time through the USB port. The NavServer can access the data as they arrive,

parse them, and format them in ROS messages to be published on the dedicated topics (IMU0,

GPS0 and PITO). These are then used for the other ROS nodes as presented in Fig. 7.1.

C.1.4 Image Acquisition (AP to CAM to PC to GNSS)

This communication is related to image acquisition and is governed as a nested command

that triggers the camera according to a flight plan and gets the image-GPS-time in a chain

of events depicted in Fig. C.1. The AP generates the PWM and sends it to the computer via

AP PC CAM GNSS
PWM TRIG EV EV GPS

time tagged

Figure C.1: Image acquisition events

serial port. A system service called soda.service catches the pulse and generates the TRIG
signal to the camera. The camera then opens the shutter to acquire the image and at the same

time outputs a EV signal to the GNSS receiver that saves the time of image acquisition. The

flight-plane is produced by the user according to desired criteria (e.g. zone extend, image

overlap, etc.) at the GCS and uploaded to the autopilot. The images are stored on the camera

SD card from which the images are collected later on manually. The dedicated system service

manages the settings of the camera, monitors the trigger channel from the autopilot, and

supervises the image acquisition.

C.2 Sensor

C.2.1 IMU Error Statistic

STIM318

ADIS-16475
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C.3 TP2

Error Type Notation Value [Units]
Gyro bias bG 0.3

[
deg /h

]
Gyro white noise σGPSD

W N
0.15

[
deg /

p
h
]

Acc. bias bA 3
[
µg

]
Acc. white noise σAPSD

W N
7.5

[
mg /

p
H z

]
Table C.1: STIM318 noise characteristics

Error Type Notation Value [Units]
Gyro bias bG 2

[
deg /h

]
Gyro white noise σGPSD

W N
2

[
deg /

p
h
]

Acc. bias bA 3.6
[
µg

]
Acc. white noise σAPSD

W N
??

[
mg /

p
H z

]
Table C.2: ADIS-16475 noise characteristics

NavCHIP

Error Type Notation Value [Units]
Gyro bias bG 720

[
deg /h

]
Gyro correlated noise σGPSD

GM1
0.0028

[
deg /s/

p
H z

]
1/βG 200 [s]

Gyro white noise σGPSD
W N

0.18
[

deg /
p

h
]

Acc. bias bA 8
[
mg

]
Acc. correlated noise σAPSD

GM1
0.05

[
mg

]
1/βA 200 [s]

Acc. white noise σAPSD
W N

50
[
mg /

p
H z

]
Table C.3: NavChip noise characteristics

C.2.2 Stochastic Models for GNSS Noise

C.3 TP2

C.3.1 Geometric Parameters

Control Surfaces

The control surfaces of a standard fixed-wing aircraft are composed of four or more elements

and are shown in Fig. C.2 for one platform used for this research (TP2). More details on the

platform and its payload are given in Sec. 6.1 and Sec. 6.2, respectively. The right (green) and

left (red) aileron deflection δa angles are with opposite sign to create a roll moment. The

elevator δe create a pitching moment to provoke a nose up or nose down behavior. The rudder

δr deflection will create a yaw moment to move the nose of the plane to the right or the left in
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Table C.4: Typical uncertainty values for SPP and PPK GNSS solution

GNSS mode
Position error (m) Velocity error (cm/s)

Horizontal Vertical Horizontal Vertical

SPP 1 2 0.15 0.3
PPK 0.03 0.05 0.06 0.1

δa

δr

δe

δa

b

S

Figure C.2: Flight control surfaces, wing span b and surface S of a fixed-wing UAV: TOPOPlane
version 2. The dense mesh of the platform was created with the help of the Laboratory of

Intelligent System scanner system.

the horizontal plan. The three rotation angles roll, pitch and yaw representing the rotation

between the local and the body frame and known as the attitude of the UAV were introduced

in Sec. 3.3.4. Any control surface deflection will create a moment around several body axes in

a complex manner.

Main Cord

The main cord c̄ is the imaginary line joining the leading edge and the trailing edge and is

depicted in Fig. C.3. The angle between the projected wind and the cord is defined as the

Cord c̄
Relative wind

α

Leading edge

Trailing edge

Figure C.3: The cord c̄ and the angle of attack α

angle of attack α.
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C.3 TP2

Wing Span and Surface

The wing span b is the distance from one wingtip to the other one and the wing surface S

is defined as the surface generating lift which is the main wing hosting the two ailerons as

presented in Fig. C.2. The horizontal stabilizer positioned at the tail of the aircraft counters the

moment due to the lift force being generally not applied exactly at the aerodynamic center of

the UAV. A trim acting directly to the elevator deflection δe or to an additional control surface

is used to reduce this moment in order to fly leveled when no input is given to the control

surfaces. Note that a right horizontal trim can also be applied to the rudder to counter the yaw

effect caused by the propeller rotation (torque, p-factor, gyroscopic precession, and spiraling

slipstream [115]).

Propeller

The propeller diameter D measures the length of the propeller attached to the motor as

presented in Fig. C.4. There is no mention of the angle of incidence, shape, and width of the

Propeller Diameter D

Figure C.4: Propeller diameter D for (left [116]) a full blade, and (right [117]) an half-folding
propeller

blade in the VDM. The coefficient(s) CT related to the thrust force as presented in Tab. 3.1 will

absorb the non-modeled aspects of the blade. A more complex propeller model is proposed

in [118] but is not used for this research.

C.3.2 Wind Surface Determination

Among a few other coefficients, the wing area of a UAV is considered as a known constant

when computing forces and moments in VDM-based navigation. So far within the project,

the UAV wing surface was estimated at approximately. Recently, close-range imagery was

collected and used to obtain a higher confidence estimation of the wing surface coefficient.

• Both UAVs were laid bottom-up on a surface of regular spacing (chessboard) where all

crossings have known coordinates (Fig. C.5).

• Converging images of the surface and plane were taken at 1.5-2.0 m, with an equivalent
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(a)

(b)

Figure C.5: A 3D point cloud reconstruction (a) and orthophoto with surface measurements
(b) of the wing surface.

focal length of 50 mm. A 3D point-cloud of the imaged object was reconstructed using a

professional photogrammetric software III as shown in Fig. C.5 (a).

• The ortho-rectified nadir view was exported to another software to determine the sur-

faces of the different wing-areas, as depicted in Fig. C.5 (b).

• Sum of the surfaces provided the total wing surface with a confidence of a few cm2

The precisely determined wing surfaces were corrected in the current VDM implementation.

The two planes are based on the same design, and their respective surfaces are practically

equivalent. Although the direct influence of more precise physical parameters, such as wing

surface, on the VDM-navigation performance is complex to verify, such improvements will

IIIMetashape from Agisoft https://www.agisoft.com/
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C.4 eBeeX

enable a more realistic representation of the UAV to be used within the VDM framework and

improve our ability to perform such verification.

C.4 eBeeX

C.4.1 "eBee-GECKO" Payload

The support was designed with vibration dampeners to isolate the payload from the engine

resonance. The payload was connected to eBeeX via a USB cable through a custom connector

powering the board and forwarding the receiver GNSS data along with a PPS that synchronizes

the IMU clocks with the GPS time. These IMUs are NavChip from InterSense-ThalesIV (the

same IMU as for the payload "SODA-GECKO" presented in Sec. 6.2). The sensors of each IMU

were individually calibrated in the lab for improved performance.

Figure C.6: 3D printed support placed in the eBeeX payload bay with a special board
(Gecko4Nav) containing 2 MEMs-IMUs as seen from front (left) and bottom (right).

IVhttps://www.intersense.com/navchip
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C.4.2 eBeeX Aerodynamic Coefficients

The significant difference between the two methods can be explained by (i) the WMF method

estimate the moment and the force coefficients in two separate estimators whereas the ’pose’

sensor method estimates the full state-space; (ii) the WMF method does not have any initial

values whereas the second method is initialized with some coefficients obtained from wind

tunnel and CFD, and others set to zero. In both cases, the model used is over-parametrized,

and the analysis of individual coefficients is complex and was not performed during this thesis.

Force coefficients WMF ’pose’ sensor Moment coefficients WMF ’pose’ sensor
CFT 0 0.0056 0.0041 CMxβ -0.005 -0.0283
CFT 1 -0.1361 -0.0664 CMxβ2 -0.018 -0.0372
CFT 2 3.975 0.527 CMxδa 0.0123 0.00089
CFx 0 -0.1479 0.0332 CMx p 0.0817 -0.0857
CFxα 0.0043 0.351 CMx q -0.1602 0.0305

CFxα2 -0.972 0.015 CMx r 0.0401 0.18
CFxβ -4.03E-06 -0.0441 CMy 0 0.015 0.195

CFxδe 0.0152 0.000481 CMyα -0.249 -2.01
CFx p -0.0834 0.0408 CMyα2 0.829 3.9
CFx q -0.2977 0.195 CMyδeUp 0.0124

0.00036
CFx r 0.02715 -8.14e-05 CMyδeDo 0.00411
CFyβ 0.4233 0.0598 CMy p 0.0524 -0.186

CFyβ2 -0.4033 -0.0007 CMy q 4.086 -0.368

CFyδa -0.0400 0.00102 CMy r -0.246 0.712
CFy p -0.0172 0.043 CMzβ 0.005 0.0102
CFy q -0.8098 -0.0241 CMzβ2 0.0137 0.0347
CFy r -0.0062 0.00261 CMzδa -0.001 0.000158
CFz 0 -0.2939 0.165 CMz p -0.004 -0.0235
CFzα 1.0974 0.906 CMz q 0.0269 -0.00924

CFzα2 -3.666 -0.0633 CMz r 0.004 -0.0323
CFzβ -0.068 -0.263

CFzδe 0.9168 -0.0212
CFz p -0.026 0.621
CFz q 3.815 2.73
CFz r -0.543 -0.199

Table C.5: Coefficients obtained with the WMF and ’pose’ sensor method

206



C.5 Weather Station

C.5 Weather Station

C.5.1 Weather Station Schematic
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D Software

D.1 Software Communication

An overview of the different software and their links are presented hereafter and is depicted in

Fig. D.1

QGroundControl

A GUI display, as seen in Fig. D.2(a), eases the operator to send commands to the UAV and

monitor in real-time the vehicle position, and flight track with defined waypoints as well as

the UAV instruments and subsystems.

The GCS communicates with the UAV via long-range radio signals in the 433 MHz band for

telemetry (downlink) and telecommand (uplink) with a set of transceiver from SiK Telemetry

Radio (named previously 3DR radio) [119]. The module attached to the UAV is depicted in

Fig. D.2(b) on the left side and the module attached to the ground station is on the right

side. For maintaining a reliable bi-directional communication, the baud rate between plane

and ground radios on this link is chosen to be limited to 38400 bps. The protocol used

to embed these messages is MAVLink, an opened and widely used protocol in the small-

unmanned-vehicle community. Its major aim is to put packet messages into a data structure

of 17 bytes for communicating from the GCS to the UAV and the inter-communication of

UAV subsystems. Each message contains a cyclic redundancy check (CRC) to ensure message

integrity. Whenever the operator sends commands to the autopilot via the GCS, the messages

are carried out using this protocol.

PX4

The autopilot runs several parallel tasks/threads, so called internal applications. The inter-

thread/inter-process communication is achieved via an asynchronous publish / subscribe

messaging scheme called µORB [120]. Communication channels are called topics. Each
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D.1 Software Communication

(a) (b)

Figure D.2: (a) QGround Control software with a flight trajectory in manual mode and (b) Pair
of transceiver module for the UAV (left), and Ground station

topic is associated to a specific theme, e.g., the vehicle position, the status of the actuators, etc.,

and it defines the type of message that can transit on it. Each application willing to provide

information on a topic does it by, first, advertising the topic and then publishing messages

on it every time is appropriate according to the application semantics. Applications can also

subscribe to a topic. In this case, each time a new message is published on the topic, they

are asynchronously notified, and the message is delivered to them via a callback function.

All standard topics in the PX4 firmware are listed in the overview of µORB communication

networkI. The AP software modification related to sensors and topics is described in Sec. 6.3.2.

One special application exists in PX4 which translates MAVLink messages received at any of

the (serial) telemetry port to equivalent µORB ones, and vice versa. This allows messages

coming to the GCS (such as commands) to be delivered to the appropriate applications in the

PX4 firmware. A bridging mechanism also allows GCS MAVLink messages, received via the

radio link, to be first converted to µORB ones, then converted back to MAVLink, and finally

delivered to the computer via the serial link on telemetry port 2. The downlink works is a

similar manner.

The onboard connection between the autopilot and the embedded computer is obtained via

a high-speed serial link (112.5 kB/s) connecting the serial port Telemetry 2 on the autopilot

on the COM 2 port of the embedded computer, allowing MAVLink communication between

the devices. The autopilot sends the flight control commands to the UpBoard via the µORB-

MAVLink mechanism, the transformation between the autopilot system time and the GPS

time (Sec. 7.1), and the debug_vector ROS topics that are used to transmit messages between

the GCS and the UpBoard computer with the autopilot as the bridge. More details about these

messages and presented in Sec. 7.2.

The PixHawk2 autopilot board receives data from the GNSS receiver through the serial port

Ihttps://dev.px4.io/v1.9.0/en/middleware/uorb_graph.html
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(details in Sec. C.1.1), logs them together with other internal sensors on the SD card and

communicates with the GCS as well as the embedded computer via the telemetry ports 1 and

2, respectively. The messaging protocol on these ports is MAVLink. The same protocol is used

to communicate with the GCS (4.6 kB/s) to the GCS via radio link on.

The general protocol architecture is summarized in Fig. D.3

UpBoard

ROS topics

App1

App2

M
AV

R
O

S

MAVLINK

PixHawk

PX4 Pluggins

µOrb msgs
MAVLINK

GCS

QGC

Figure D.3: Messaging protocols between the embedded computer, autopilot and the GCS

D.2 ROS Nodes

D.2.1 Start all Nodes

To launch all the nodes, the ROS package vdm_field has do be used. The package possesses

the configuration and launch scripts for the different nodes. The directory tree of the package

is presented hereafter and the explanations are given in-text using the comment character #.

.
|-- CMakeLists.txt # Node compilation cmake
|-- README.md
|-- bags # rosbag output saved for post processing and debug
|-- config # configuration for giinav, and IMU: stim or NavChip
| |-- giinav
| | |-- STIM318_flight
| | | |-- EKF.ini
| | | |-- GPS.ini
| | | |-- Global.ini
| | | |-- IMU.ini
| | --- gecko
| | |-- EKF.ini
| | |-- GPS.ini
| | |-- Global.ini
| | --- IMU.ini
| |-- mavros_config.yaml # mavros configuration to enable the debug_vector messages
| --- mavros_pluginlists.yaml # enable plugins for obtaining some PX4 messages
|-- giinav_output # giinav navigation solution output
|-- launch # configuration script to launch the different nodes
| |-- all.launch
| |-- ap_clk_synch.launch
| |-- broadcastnode.launch
| |-- giinav.launch
| |-- imu_ds_ma.launch
| |-- mavros.launch
| |-- nav_server_ros.launch
| |-- nav_server_ros_static.launch
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| |-- no_nav.launch
| |-- rosbag.launch
| |-- surrey_calibrate.launch
| |-- surrey_sensor.launch
| --- vdm_c.launch
|-- log_raw # Raw IMU, GNSS and pitot output from NavServer
|-- package.xml # package ROS configuration
|-- scripts # scripts to launch/stop ROS nodes and gather data
| |-- configure_screen.sh
| |-- download_data.sh # download the flight data
| |-- node_data.txt
| |-- start_nodes.sh # >> START HERE << script used to start all nodes
| --- stop_nodes.sh # script used to stop all nodes
--- vdmc_output # Saved VDMc navigation output and config. per run

|-- VDMc_20220825_082725 # STIM13 flight
| |-- NAV.dat # VDMc: navigation solution
| |-- config
| | |-- TP2 # TP2 init files
| | | |-- initCovariance.ini
| | | |-- initStates.ini
| | | |-- models.ini
| | | |-- outputs.ini
| | | --- processNoise.ini
| | |-- filter.ini
| | --- vdm_c.ini
| --- logs.txt # VDMc output logs

D.2.2 Node Subscribers and Publishers

ap_clk_synch

Node [/ap_clk_synch]
Publications:
* /airpressure_tagged [sensor_msgs/FluidPressure]
* /airspeed_tagged [mavros_msgs/VFR_HUD]
* /cc_tagged [mavros_msgs/RCOut]
* /rosout [rosgraph_msgs/Log]

Subscriptions:
* /mavros/debug_value/debug_vector [mavros_msgs/DebugValue]
* /mavros/imu/static_pressure [sensor_msgs/FluidPressure]
* /mavros/rc/out [mavros_msgs/RCOut]
* /mavros/vfr_hud [mavros_msgs/VFR_HUD]

broadcastnode

Node [/broadcastnode]
Publications:
* /mavros/debug_value/send [mavros_msgs/DebugValue]
* /rosout [rosgraph_msgs/Log]
* /timeSync [std_msgs/Float32MultiArray]
* /toggleOnOffGnss [std_msgs/Bool]

Subscriptions:
* /GIINAV_POSE [nav_msgs/Odometry]
* /giinav_status [unknown type]
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* /mavros/debug_value/debug_vector [mavros_msgs/DebugValue]
* /mavros/debug_value/named_value_float [mavros_msgs/DebugValue]
* /vdmc_pose [nav_msgs/Odometry]
* /vdmc_status [unknown type]

GiiNav

Node [/giinav]
Publications:
* /GIINAV_POSE [nav_msgs/Odometry]
* /GIINAV_STATUS [std_msgs/String]
* /rosout [rosgraph_msgs/Log]

Subscriptions:
* /GPS0 [std_msgs/UInt8MultiArray]
* /IMU0 [std_msgs/UInt8MultiArray]

mavros

Node [/mavros]
Publications:
* /mavros/debug_value/debug [mavros_msgs/DebugValue]
* /mavros/debug_value/debug_vector [mavros_msgs/DebugValue]
* /mavros/debug_value/named_value_float [mavros_msgs/DebugValue]
* /mavros/debug_value/named_value_int [mavros_msgs/DebugValue]
* /mavros/rc/out [mavros_msgs/RCOut]

[..]

Subscriptions:
* /mavlink/to [unknown type]
* /mavros/debug_value/send [mavros_msgs/DebugValue]

[...]

nav_server_ros

Node [/nav_server_ros]
Publications:
* /GPS0 [std_msgs/UInt8MultiArray]
* /IMU0 [std_msgs/UInt8MultiArray]
* /IMU1 [std_msgs/UInt8MultiArray]
* /PITO [std_msgs/UInt8MultiArray]
* /rosout [rosgraph_msgs/Log]

Subscriptions:
* /toggleOnOffGnss [std_msgs/Bool]

Services:
* /nav_server_ros/get_loggers
* /nav_server_ros/set_logger_level

surrey

Node [/surrey]
Publications:
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* /airData [surrey_sensor/AirData]
* /filt_airSpeed [std_msgs/Float64]
* /pitotBiasServer/cancel [actionlib_msgs/GoalID]
* /pitotBiasServer/goal [surrey_sensor/MeanActionGoal]
* /rosout [rosgraph_msgs/Log]
* /surrey [surrey_sensor/Surrey]

Subscriptions:
* /PITO [std_msgs/UInt8MultiArray]
* /pitotBiasServer/feedback [unknown type]
* /pitotBiasServer/result [unknown type]
* /pitotBiasServer/status [unknown type]

vdm_c

Node [/vdm_c]
Publications:
* /giinavInitialPose_topic [nav_msgs/Odometry]
* /rosout [rosgraph_msgs/Log]
* /vdmc_pose [nav_msgs/Odometry]

Subscriptions:
* /GIINAV_POSE [nav_msgs/Odometry]
* /GPS0 [std_msgs/UInt8MultiArray]
* /cc_tagged [mavros_msgs/RCOut]
* /imu_formatted [sensor_msgs/Imu]
* /removeCoeffs_topic [unknown type]

removeSensorBiasServer

Node [/removeSensorBiasServer]
Publications:
* /baroBiasServer/feedback [surrey_sensor/MeanActionFeedback]
* /baroBiasServer/result [surrey_sensor/MeanActionResult]
* /baroBiasServer/status [actionlib_msgs/GoalStatusArray]
* /gpsBiasServer/feedback [surrey_sensor/MeanActionFeedback]
* /gpsBiasServer/result [surrey_sensor/MeanActionResult]
* /gpsBiasServer/status [actionlib_msgs/GoalStatusArray]
* /pitotBiasServer/feedback [surrey_sensor/MeanActionFeedback]
* /pitotBiasServer/result [surrey_sensor/MeanActionResult]
* /pitotBiasServer/status [actionlib_msgs/GoalStatusArray]
* /rosout [rosgraph_msgs/Log]
* /tempMeanServer/feedback [surrey_sensor/MeanActionFeedback]
* /tempMeanServer/result [surrey_sensor/MeanActionResult]
* /tempMeanServer/status [actionlib_msgs/GoalStatusArray]

Subscriptions:
* /GPS0 [std_msgs/UInt8MultiArray]
* /baroBiasServer/cancel [actionlib_msgs/GoalID]
* /baroBiasServer/goal [surrey_sensor/MeanActionGoal]
* /gpsBiasServer/cancel [actionlib_msgs/GoalID]
* /gpsBiasServer/goal [surrey_sensor/MeanActionGoal]
* /pitotBiasServer/cancel [actionlib_msgs/GoalID]
* /pitotBiasServer/goal [surrey_sensor/MeanActionGoal]
* /surrey [surrey_sensor/Surrey]
* /tempMeanServer/cancel [actionlib_msgs/GoalID]
* /tempMeanServer/goal [surrey_sensor/MeanActionGoal]
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D.3 VDMc

D.3.1 VDM C++ class architecture

Version 1

Fig. D.4 presents class architecture of VDMc software version 1. Two main parts can be identified,

which are (i) the data handling (upper part) and (ii) the estimation (lower part). The software

is still evolving, and some classes might be added, but the main architecture will remain the

same.
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Figure D.4: VDMc C++ version 1 (2020) class architecture
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Version 2

The addition of timers, the backpropagation mechanism, and the configuration files, among

others, have evolved into a new class architecture presented in Fig. D.5 The code currently

Figure D.5: VDMc version 2 (2022) C++ class architecture

runs independent threads, which greatly simplify the complexity of the classes’ dependencies.
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D.3.2 VDMc Main Time Loop

Figure D.6: Main EKF Loop of VDMc

D.3.3 Flight Phases

Pre-flight and Initialization

All nodes presented in Sec. 7.2 are started by script. A dedicated ROS package named

vdm_field handles the correct launch of the nodes (in separate “screens”) with their cor-

220



D.3 VDMc

responding configuration. Details of that node are given in Sec. D.2.1.

Static and Dynamic Pressure Calibration

The air data (from the Surrey Pitot tube) are calibrated while the platform is static on the ground

and the Pitot tube opening is covered to limit the input of dynamic pressure. The Surrey
responsible for parsing the data sent by the NavServer via the topic PITO, waits for a potential

calibration performed with a Server-Client ROS mechanism. The removeSensorBiasServer
node is called and removes the dynamic pressure bias by using the mean values over 10

seconds. A similar bias removal is applied for barometric altitude with the averaged GPS

attitude. The following two listings present the modified values of the surrey (Lst. D.1) and

airData (Lst. D.2) topics before and after calibration.

Listing D.1: surrey topic

1 time: 376748.242124
2 P0: 96269.03125
3 P1: -4.5485534668
4 P_atm: 96306.53125
5 T_ext: 30.7266731262
6 T_int: 45.0999984741
7 Humidity: 22.1220703125
8 ---
9 time: 376748.252124

10 P0: 96265.7734375
11 P1: 0.0187552012503
12 P_atm: 96306.53125
13 T_ext: 30.7266731262
14 T_int: 45.0999984741
15 Humidity: 22.1220703125

Listing D.2: airData topic
1 time: 376748.242124
2 airSpeed: 2.87045826344
3 baroAltitude: 428.428502203
4 density: 1.10408072118
5 ---
6 time: 376748.252124
7 airSpeed: 0.184321267785
8 baroAltitude: 520.353207142
9 density: 1.10408072118

The determination of the barometric altitude is given in Appendix B.1.2.

It should be noted that while airspeed and barometric sensor models are implemented in

the real-time applications VDMc, the Surrey air data are currently used only to update the air

density ρ parameters in the online demonstrator.

Navigation States xn

xn are provided by the GiiNav application as presented in Sec. 7.4. After receiving the first

pose, VDMc waits two minutes before its own alignment to obtain a reliable initialization of

attitude. The GiiNav attitude uncertainty is transmitted, but is not currently used. A decision

based on uncertainty with a threshold can be a further implementation. The decision to not

implement this automatic detection at this stage of development is made based on the idea of

redesigning an independent alignment procedure, free of GiiNav software. This would make

the VDMc software self-sufficient. The alignment logs are given in Lst. D.3.

Listing D.3: Navigation states initialization after 2 minutes

28 Now , wait: 120.0000000000 seconds for alignment.
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29 INFO: Initializing the navigation at time 378228.200000
30 Initializing navigation states:
31 0.8127811067
32 0.1142002117
33 630.1126324753
34 15.3994625111
35 -0.6883438040
36 1.4721671699
37 0.0140216270
38 -0.0820468683
39 -0.0099143834
40 0.0015296677
41 0.0000000000
42 0.0000000000
43 0.0000000000

It can be seen from Lst. D.3 that the initial angular velocities are not initialized, as GiiNav

does not provide these values. In the current implementation, the drone operator should

ensure that the drone is leveled at initialization. An addition to the software would be to detect

a “stable” attitude, in combination with the uncertainty threshold mentioned above on the

attitude to start the initialization. These values are generally close to zero and are rapidly

updated with the IMU updates. Aerodynamic coefficients xp

The initial aerodynamic coefficients come from the WMF methodology (Sec. 5.2) used on the

flight CF_STIM6 with values summarized in Tab. 8.9. They are estimated for 10 minutes after

the alignment given by GiiNav

IMU bias xe

As previously mentioned, the IMU bias and deterministic errors can be removed using the

methodology proposed by [103]. However, this methodology is not applied for the payload

"STIM-SODA" as the IMU STIM-318 applies temperature calibrated control of sensor biases.

The IMU bias states xe are initialized as zero.

Wind xw

For this particular flight (STIM_12), the wind was low and is initialized to zero. But it is always

a good idea to check the weather station to adjust the wind as suggested in Sec. 9.4.1.

ρ

The air density ρ is updated as long as the surrey_node is working. As ρ is used as a variable

and not as a state, there is no process model for air density in the current implementation.

This would be an interesting addition to the software in future versions. If there is no sensor

with the capacity to approximate the air density, the local air density can be determined based

on observations of portable the weather stations such as the one presented in Sec. 6.3.4 using

the formula given in Eq. 6.1.

Actuators xa
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As soon as the VDMc is aligned, the control command input from the autopilot (and correctly

time-tagged thanks to the node ap_clock_synch) are used to update the state xa following

the model given in Sec. 3.5.2.

Listing D.4: Actuator initialization

44 INFO: Initializing the command control at time 378228.489828

Dynamic State Reduction

10 minutes after alignment and continuous GNSS observations, the state reduction is applied.

The recorded logs give:

Listing D.5: Dynamic state reduction log

45 Changed state dimension to: 26 at: 378828.2744043290 and it took 7692 us.

Note that after state reduction, only 26 remain: the state s added as scaled (Sec. 8.2) called with

an abuse of language ρ, is directly updated with the node Surrey, and therefore not added in

the state space. A comparison of the CPU load of the embedded computer before (47-states)

and after (26 states) state space reduction of the two more consuming VDMc threads drops

from 16.4% and 11.3% to 6.9% and 3.1%, respectively. A visual comparison of the load is given

in Fig. D.7. The results of autonomous navigation for the online demonstrator are given in

Sec. 10.3.1.

D.3.4 Configuration

The VDMc application needs a set of configuration parameters, for example, the frequency at

which the filter should run, how long the filter should stay in Warm-Up phase after initialization

(Sec.4.2.3) or where to write the navigation solution. The KF needs its own set of parameters,

as well as the initial values of auxiliary states and the corresponding covariances (x(0),P(0)),

the uncertainty of the model process Q and the sensor covariance R. Each platform (TP1, TP2,

eBeeX or other) will have its model with its set of sensors and properties. This information is

stored in the configuration files, so it can be modified without recompiling the whole program.

Configuration files use a syntax similar to the traditional .ini format and support textual

key-value pairs in different sections. An automatic parser will read the .ini files to initiate

the filter with the correct settings. If some values are missing from the configuration files, the

default values have been hardcoded in the platform-dependent source files. VDMc tells the

operator if the configuration files are loaded correctly (Lst. D.6)
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(a)

(b)

Figure D.7: CPU load before (47 states) and after (26 states) the dynamic state reduction

Listing D.6: VDMc initialization with loading of the configuration files

1 *======================================================================*
2 | VDMNav - connects to ROS topic , then Kalman Filter |
3 | (c) Gabriel Laupre , Simon Gilgien , EPFL , 2020 |
4 | Inspired from ORIGINAL Giinav -Linux -Version |
5 | Version compiled on Jul 26 2022, 13:14:29 |
6 *======================================================================*
7

8 INFO (EKF): read and parse the configuration files
9 INFO (EKF): init the filter

10 INFO (TP2): Platform created
11 INFO (EKFThread): Waiting for Giinav initial alignement ...

or the default values have been loaded (Lst. D.7).

Listing D.7: VDMc loading default initial values (covariance matrix)

9 INFO (EKF): read and Parse the configuration files
10 Parse error at line 0 in file config/filter.ini
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11 Missing key ’EKF/dt_min ’ in file config/filter.ini
12 Using default value "0.001000" instead.
13 Missing key ’EKF/backpropEnabled ’ in file config/filter.ini
14 Using default value "1" instead.
15 Missing key ’EKF/saveStateDelay ’ in file config/filter.ini
16 Using default value "0.001000" instead.
17 Missing key ’EKF/filterMethod ’ in file config/filter.ini
18 Using default value "1" instead.
19 Missing key ’Backpropagation/max_delay ’ in file config/filter.ini
20 Using default value "0.200000" instead.
21 Missing key ’WarmUp/WU_time ’ in file config/filter.ini
22 Using default value "50.000000" instead.
23 Missing key ’WarmUp/WU_gamma ’ in file config/filter.ini
24 Using default value "0.100000" instead.
25 INFO (EKF): init the filter
26 INFO (TP2): Platform created
27 Parse error at line 0 in file config/TP2/models.ini
28 Missing key ’Models/estimate.Xn’ in file config/TP2/models.ini
29 [...]

The .ini files are written again for bookkeeping and error tracking at the location specified in

the vdm_.ini configuration file, along with the logs and the navigation output.

D.3.5 Sensors Classes

A sensor can be defined following a set of rules. The MeasProcessor class is an abstract class

representing a sensor configuration for a particular platform type. There are currently several

subclasses: IMU, GNSS position, GNSS velocity, barometric, and airspeed measurements

for TP2. To implement a new sensor configuration, a new subclass should be created with

the definition of the sensor model h() with the method h_func, and the linearized sensor

model H() with the method linH_func (Fig. 7.7). Then the class needs to be linked to the

type of platform. In the current implementation, it is the class dedicated to TP2 as presented

in Fig 7.4. Then, a timer dedicated to the sensor has to be created. The timer will handle

the update synchronization and, in particular, when it is expected to be performed. This

mechanism allows saving the states in case of missing or delayed sensor observations to

perform a late update and propagate the updated states. The general methodology of the state

backpropagation is explained below.

D.3.6 The FilterTimer Class

Any event that modifies the filter at a certain time must be implemented as a FilterTimer.

The class is mostly designed for events that repeatedly occur at a fixed frequency, but it is

also possible to use it for irregular events or events that occur only once. Examples of regular

events include sensor measurement updates and outputs at a fixed frequency. Single-shot

events are typically initialization tasks.

The most important parts of the FilterTimer class are the m_nextGPSTime and m_nextSystemTime
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fields. The semantic is that an event should occur when the filter time is at m_nextGPSTime
and that the necessary data is expected to be available at the system time m_nextSystemTime.

The main loop processes the timers by increasing next GPS time, and for each of them, it

propagates the EKF to the next GPS time, wait until the current system time is greater or equal

to the next system time of the timer, and call the user-defined action() method of the timer.

The action() pure virtual method should perform the intended action and optionally update

the next GPS and system times. By default, the timer increments the times by the nominal

period of the timer, but this can be changed. The return value of the timer indicates whether

the state should be saved for later backpropagation. If the timer cannot perform the intended

action because it misses some data, but this data might be available later, the timer should

indicate that the state should be saved.

The actual backpropagation is triggered by the user-defined canBacktrack() method. When

a state is saved, this function is called regularly on the saved copy of the timer, and it should

check whether the missing data is now available. If this function indicates that it can backtrack,

the saved state is restored so that the event can be processed.

D.3.7 The Main Loop

The main loop is implemented (Fig. D.6) in the EKF::process() method. It is composed of

the following steps:

1. Delete all saved states that are older than the maximum backtracking delay. If one or

more states are deleted, the timers are notified via the expirationHook() callback, so

they can release any shared resources they were holding for the event of a backpropaga-

tion.

2. For every saved state, call the canBacktrack() method on the timer that requested it

to be saved. If that call returns true, replace the current state with the saved state and

delete all more recent saved states.

3. Find the timer with the smallest next GPS time.

4. Propagate the filter to that GPS time. Propagation intervals under a certain threshold

will not be performed, so the GPS time of the filter might not exactly match the time

requested by the timer.

5. Call the user-defined action() method of the timer.

6. If the timer requests to save the state, the state of the filter, including the timers, is

copied and the state is added to the list of saved states along with the copy of the timer

that requested the state to be saved.
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If backpropagation is not desirable, (e.g. for post-processing recorded data), it can be disabled

in the filter.ini configuration file. In this case, when a timer requests the state to be saved,

the last step is not performed, and it will result in the action() method of the filter to be

called repeatedly until it increases its m_nextGPSTime.

The EKF state is a structure composed of the following fields:

• X: The state vector of the filter.

• X_tot: The full state vector of the filter, including states that are not evaluated.

• P: The covariance matrix (or the U member if the Thornton-Bierman factorization is

used)

• t: The GPS time of the filter

• UD_D: The D diagonal matrix of the Thornton-Bierman factorization of the covariance

matrix

• U: A vector of matrices storing platform-dependent additional state (e.g. control com-

mands).

• ekf: A pointer to the EKF object the state belongs to

• timers: A vector of FilterTimers

When in the saving state, the timers are copied, since they maintain internal state about the

timing. Implementations of timers are expected to keep timers lightweight and use shared

memory for most data, such as buffers.

The saved states are stored in a doubly linked list in the EKF itself. The saved objects are of

type std::pair<FilterTimer *, EKFState *>, and composed of the saved state and the

saved copy of the timer that requested the state to be saved, and therefore is responsible of

determining if the state can be restored.

D.3.8 Implementation of Timers

When implementing a timer, the FilterTimer class should be subclassed and the following

methods should be implemented. Alternatively, one of the specialized classes may be used

(see below).

• Constructor: The FilterTimer constructor needs a nominal frequency and a name. If

the timer is for an event occuring only once, such as an initialization, it is possible to

pass +0 as the frequency. This will result in the period being a positive infinity.
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• Copy constructor: This should be private, and only used in the copy() method. It is

used to make copies of the constructor on state save. This should be implemented even

if the timer never requires to save states, as it will need to be saved when other timers

require to save state. To minimize overhead, it is recommended to use shared memory

accross copies for most of data.

• copy(): this method should allocate and return a copy of the timer. This is a workaround

for a virtual copy constructor. Implementation should be something similar to

1 return new FooTimer (*this);

• action(): This is the actual action of the filter. The function receives the current EKF

state, and can modify it. The time of the EKF state is guaranteed to be close to the next

GPS time of the timer, except if the timer is not yet fully initialized (its next GPS time is

still the initial value of −1).

After this function returns, the next GPS and system times are incremented by the

nominal period of the filter, except if the function sets the m_disableTimeUpdate flag.

This applies regardless of whether the times are modified by the action() function.

This function returns true if the current state should be saved. The state is saved before

the time is automatically incremented. To be compatible with the post-processing mode,

this function should allow to be called repeatedly when it returns true.

Additionally, the following virtual functions might be overwritten:

• Destructor: If you need to release resources. Remember that the overhead should be

minimal for best backpropagation performances, since many copies might be deleted

at once.

• initialized(): This functions returns whether the timer is fully initialized. The default

implementation just checks whether the next GPS time is −1. This function is currently

not used on every timer.

• canBacktrack(): This function should be implemented if the timer might request to

save states. It is passed the saved state, and should returns whether the saved state can

be backtracked. This method is called on the saved copy, not on the currently running

timer.

• savedStateHook(): This function is called when the timer requested to save state, after

the timer and state has been copied. The state after the copy is passed as an argument.

Both the timer and the state are the original copies that will continue to run. If you

override this method, you should call the base class implementation.

• expirationHook(): This function is called when one or more saved states have been

deleted after their expiration delay, regardless of which timer requested to save those

states. It should be used to release any shared resources that were kept in case of a
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backpropagation to those states. The parameter are the current state of the EKF and the

oldest copy of this timer that is still saved.

If the filter has no more actions to perform, the next GPS time should be set to positive infinity.

This will ensure that it will no longer be called. Removing the timer from the state.timers
vector is not supported.

D.3.9 Specialized Timers

Two subclasses of FilterTimer have been written for common tasks. They can be used as

base class for actual timer implementations.

UpdateFilterTimerConfig

The UpdateFilterTimerConfig is designed to perform actions on external data using a

circular buffer for storage. Although the main purpose of this timer are the sensor updates,

it is also possible to use it for other events requiring external data (c.f. the TOPOplane 2 CC

timer for an example).

The type of used data is the SensorData structure. It is composed of a GPS time at which the

data should apply, a system time of reception of the data used for real-time synchronization,

and a vector of data.

The action() method is defined to keep the timer synchronized with the external data source,

and support backtracking. The algorithm is

1. If the filter is not initialized, initialize the next times with the times of the first data if it is

available and return.

2. If no new data is available, request to save the state and return.

3. While new data is available and in the past, discard it. If the data is probably the one for

the current time, pass it to the user-defined updateOldData() function, synchronize

the timer on this data and return.

4. If no more data is available, request the state to be saved and return.

5. If a data is available for the current time, pass it to the user-defined update(), synchro-

nize the timer on it and discard it.

6. If the next data is available, synchronize the timer on this data.

Note that if the next data is available, but the data for the current time is not, the state is not

saved. This is because data is supposed to arrive in order.
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Discarded data is only removed from the buffer if there are no saved states. Otherwise dis-

carded data is kept in the buffer to be reused in case of backpropagation. If saved states expire,

the expirationHook() method removes data that is not required by any copy of the filter

anymore from the buffer.

The canBacktrack() function is implemented by searching the buffer for the data at the time

at which the state was saved.

To implement a filter using this class, the constructors and copy() function must be imple-

mented in the same way as when using the FilterTimer directly. Additionally, the method

update must be implemented. The arguments are the EKF state and the SensorData for

the current time. The updateOldData() method can optionally be overridden to treat data

when the filter is not synchronized with the data. The default implementation does noth-

ing. If you override the expirationHook() method, you should call UpdaterFilterTimer’s

implementation in order to free the buffer.

SyncedFilterTimer

The SyncedFilterTimer class specializes the FilterTimer to perform an action synchro-

nized with another FilterTimer, even when if it drifts. By performing multiple actions at the

same time, less propagation steps are required. It can also be interesting to output the state

estimation just after processing a measurement when the incertitude is minimal. However, if

the source timer is not regular, the SyncedFilterTimer also won’t be regular. So the use of

this timer is a trade-off between computational cost and regularity.

The SyncedFilterTimer implements the action() method to find the source timer in

the state->timers vector, synchronize the next GPS and system time with it, and call the

implementation-defined syncedAction()method. It is important that the SyncedFilterTimer
appears in the state->timers vector before its source timer. This ensures that the SyncedFilterTimer
executes after the source and does not cause a deadlock.

To implement a timer using this class, the SyncedFilterTimer class must be sub-classed and

the following methods must be defined:

• Constructor: The SyncedFilterTimer constructor takes a pointer to the source timer

and the name of the filter. The frequency is automatically defined to be the same that

the frequency of the source.

• syncedAction(): This method must be implemented to perform the actual action. It

takes a pointer to the current EKF state as a parameter.

• Copy constructor and copy() must be defined similarly as when sub-classing the

FilterTimer class directly.
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Other optional functions from the FilterTimer class can be defined. If the savedStateHook()
method is overridden, the SancedFilterTimer implementation must be called instead of the

FilterTimer one.

D.3.10 Thorton Bierman Implementation for UDU Factorization

UDU Decomposition

Algorithm 1: UDU Decomposition
Data: P
Result: U ,D
n ← number of states;
U ← [0]n×n ;
D ← [0]1×n ; /* Diagonal matrix */
udtol ← 1×10−18 ; /* Tolerance for positive definiteness */
for j ← n to 1 do

for i ← j to 1 do // Triangle matrix
tmp ← P (i , j ) ;
for k ← ( j +1) to n do

tmp ← tmp −U (i ,k)∗D(k)∗U ( j ,k)
end
if i = j then

if tmp <= udtol then // Force values to ensure positiveness
D( j ) ← 1 ;
U ( j , j ) ← 0 ;

else
D( j ) ← tmp ;
U ( j , j ) ← 1 ;

end
else

U (i , j ) ← tmp/D( j )
end

end
end
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Thornton Propagation

Algorithm 2: Thornton propagation

Data: Uk−1,Dk−1,Φk ,δt ,wk ,Gk

Result: Uk ,Dk

[n,r ] ← dimension of Gk ;
ΦUk−1 ←Φk ∗Uk−1 ;
for i ← n to 1 do

σ = 0 ;
for j ← 1 to n do

σ←σ+ΦUk−1 (i , j )∗Dk−1( j , j ) ; /* Recover equivalent noise from P̂k−1 */
if j < r then

σ←σ+Gk (i , j )2 ∗wk ( j , j )∗δt ; /* Update new process noise Qk */
end

end
Dk (i , i ) ←σ ;
for j ← 1 to i −1 do

σ← 0 ;
for k ← 1 to n do

σ←σ+ΦUk−1 (i ,k)∗Dk−1(k,k)∗ΦUk−1 ( j ,k);
end
for k ← 1 to r do

σ←σ+Gk (i ,k)∗wk ( j , j )∗Gk ( j ,k)∗δt
end
Uk ( j , i ) ← σ

Dk (i ,i ) ;

for k ← 1 to n do
ΦUk−1 ( j ,k) ←ΦUk−1 ( j ,k)−Uk ( j , i )∗ΦUk−1 (i ,k);

end
for k ← 1 to r do

Gk ( j ,k) = Gk ( j ,k)−Uk ( j , i )∗Gk (i ,k);
end

end
end
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Bierman Update

Algorithm 3: Bierman observation update

Data: Ũk ,D̃k ,Rk , x̃k

Result: Ûk ,D̂k , x̂
n ← # of states;
n∗ ← # of states to be updated;
Hk ← first evaluation Hk (x̃k) ; /* Eq. 2.31 */
δzk ← zk −h(x̃k) ; /* first innovation */
for i ← 1 to n∗ do

a ← ŨT
k ∗ (Hk (i , :))T ; /* ith row of HT

k */
b ← D̃k ∗a ; /* |b| = n */
α← R(i , i ) γ← 1

α ;
for j ← 1 to n do

β←α, α←α+a( j )∗b( j ) ;
λ←−a( j )∗γ, γ← 1

α ; /* intermediate P (i , j ) */
D̂k ( j , j ) ←β∗γ∗ D̂k ( j , j );
for k ← 1 to j −1 do

β← Ûk (k, j );
Ûk (k, j ) ←β+b(k)∗λ;
b(k) ← b(k)+b( j )∗β;

end
end
δx̂k ← γ∗δzk (i )∗b ;
x̂k ← x̂k +δx̂k ;
δzk ← zk −h(x̂k) ;
Hk ← new evaluation of Hk (x̂k);

end
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