=Pr-L

m Ecole
polytechnique
fédérale
de Lausanne

Thése n°9814

Quantization for Distributed Processing and Learning
of Structured Data

Présentée le 19 décembre 2022

Faculté des sciences et techniques de I'ingénieur
Laboratoire de traitement des sighaux 4
Programme doctoral en génie électrique

pour I'obtention du grade de Docteur &s Sciences

par

Isabela CUNHA MAIA NOBRE

Acceptée sur proposition du jury

Prof. J.-Ph. Thiran, président du jury
Prof. P. Frossard, directeur de thése
Prof. R. Nassif, rapporteuse

Prof. P. S. R. Diniz, rapporteur

Dr M. Mattavelli, rapporteur

2022

It’s the possibility of having a dream
come true that makes life interesting.
— Paulo Coelho, The Alchemist

With love to my family...

Acknowledgements

My PhD studies! have taken me on a very rich and experience-filled journey that has helped
me grow both academically and personally. Thus, I want to take a moment to express my
gratitude to everyone who helped make these experiences possible.

I would like to first thank my PhD advisor, Prof. Pascal Frossard, for giving me this great
opportunity. Thank you Pascal for trusting me in choosing my research topic. I appreciate the
discussions, suggestions, and in-depth feedback throughout my PhD journey. Thank you also
for checking in on me when I was sick.

I'would also like to thank the jury members of my thesis committee. Thank you Prof. Jean-
Philippe Thiran, Prof. Roula Nassif, Prof. Paulo Diniz and Dr. Marco Mattavelli for taking the
time to evaluate my thesis work to give me your much appreciated feedback.

I found extremely enjoyable the supervision of student projects during my PhD. Special thanks
to my master student Daniel, for all his great work. Daniel, you are brilliant and it was such a
joy working with you. I am excited to see you grow into a bright future.

Further, I would like to sincerely thank all the current and past LTS4 labmates Abdellah, Adam,
Ahmet, Alessandro, Apostolos, Arun, Bastien, Beril, Carol, Clément, Clémentine, Cristina,
Dorina, Eda, Ersi, Guillermo, Harshitha, Hermina, Hossein, Javier, Jelena, Marcele, Mattia,
Nikos, Ortal, Renata, Roberto, Sahar, Seyed, Stefano, Vaishnavi, William, Yamin for the great
time we spent together and for our discussions. Special thanks go out to: Eda, you were the
very first person I met in LTS4, thank you for helping me to set up in the lab in a time when
everyone was on Christmas break. Also thank you for the delicious hand-made coffees and
Netflix sessions. Ahmet, thank you for your kindness and availability in the many times I
asked for help. Our discussions were appreciated, and specially thank you for the very useful
feedback on my private defence dry-run. Same for Carol, thank you for the discussions on my
dry-run. Ersi, thank you for the many lovely lunches we had together. Thank you for our light
and positive conversations. Marcele, thank you so much for being someone I could count
on difficult times. Cristina, you were here for such a short time, but you made my internship
experience at LTS4 a very pleasant one. You are very cool and fun, I am glad I kept your
friendship after you left the lab, it was wonderful meeting you later again in Padua. Thank you
Hermina for the many useful tips and advices. Thank you Clément for your help translating
the abstract of this thesis into French, for the ski tips and the volleyball matches we played
together. Thank you Harshita and Javier for the lively exchanges. I would also like to give my

I This PhD thesis was financed in part by the Coordenacio de Aperfeicoamento de Pessoal de Nivel Superior —
Brasil (CAPES) - Finance Code 001 (grant number 88881.174577/2018-01). I am grateful for their support.

Acknowledgements

special thanks to Anne for her kindness, assistance and efficiency.

Then I would like to express my gratitude to all my friends in Switzerland. Destiny wanted me
to meet Mariana, who is both a Brazilian (from my home town Macei6!) and a Swiss, allowing
me to keep my home connections and at the same time to create new connections with the
country I live. Mariana, I always have a great time seeing you, thank you for the many times
you welcomed me to your home in Basel. To my dear Crazy Pilgrims, life during my PhD
would not have been the same without you. What a fun, adventurous, exciting group! The
UN of friendships, representing every single continent on this planet. Thanks to you I could
explore this beautiful country and keep so much energy and enthusiasm in my daily life. Jacob,
you were the first pilgrim I met, thank you for reaching out that first time, when I was lost.
Thank you for exchanging messages with me while I was still in Brazil and thank you for the
many tips before I moved into Switzerland. Thank you for introducing me to this group and
specially thank you for (unintentionally) introducing me (twice!) to Chris. Ludo and Mira, you
are such a power couple! I had the absolute joy seeing you getting married this year. Thank
you for your great vibes and enthusiasm. Nikki, your History knowledge is amazing, you would
make a great tour guide. Thanks for always taking the best shots and registering our moments
together. It will be very interesting following your next adventures in Thailand. Stephane,
Damn! The greatest pilgrim of all (sorry to the others), you are always there in every single
journey. Your love for nature reminds us why we love Switzerland, and I thank you for that.
Beatriz, you were here for a very short time, but it definitely felt longer. Thank you for being
such a good neighbour and friend, and for always offering a place to stay in Lisbon. I will
never forget you flew all over to Switzerland just for a pool party. Tom, please never lose your
child-like temperament, it is endearing to all of us. No worries, the baby plant you gave me is
in good hands. Oussama and Evan, it is always a delight hanging out with you.

Ilove EPFLs (and Switzerland’s) incredibly international environment, it was very enriching to
learn from people from all corners of the world. However, I believe that when living abroad, it is
important to try our best to connect with the locals. And I managed to break my international
bubble thanks to volleyball. Through the sport I came across many awesome people, Swiss
and international. I am thankful for all of you for the great matches and the healthy life balance
they provided me. The most immersive experience I had in this country was being part of
a club in a Swiss amateur league. Thank you Natacha for being an inspiring coach and for
the girls in the team for making us reach the final in the Championnat Vaudois. Outside of
the club, I thank you Daniel, the most brilliant volleyball player I know, for the great time
we had together and for being such a good friend. It was fun discovering snow volleyball
together. Ehsan, your Sunday’s volleyball at EPFL was part of my routine during the winter
seasons preceding Covid, and I thank you for all the effort on weekly organizing that. Flaviano,
such a delight (and coincidence) meeting another person from Maceié! Thank you for all the
invitations for dinner at your home, along with Estefani. Our matches were really fun.

A big thank you also to all of my friends from Brazil who, despite of the distance, give me a
warm welcome every time I go back. Thank you all for the support and encouragement.

I am also extremely thankful for the loving family I have. Special thanks to my grandparents
Acilea, Aldo, Vinicius and Zelia, for inspiring me with good values and for being positive

ii

Acknowledgements

examples in life. Thank you for your support and for always believing in me. Gabi, thank you
for visiting me here in Switzerland, what a marvellous time we had together and I will never
forget it. Thank you for being such an affectionate, humane and adventurous sister. Guiga,
you are a brave, peaceful and kind man, and I admire you deeply. I wish you could have come
here as well my brother, but unfortunately Covid spoiled our plans. I guess we will have to
make a trip together here, [am sure you are going to love it.

A huge thank you Chris, for being with me during all the years of my PhD. You watched me
practice the private defence many times and I am very grateful for that. You were my strength.
You suffered with me when I suffered, but much more importantly (and frequently), you
rejoiced with me when I rejoiced. I am so lucky to be contaminated with your positivity. You
are very funny, and can lighten up any mood I am in. You make me fly!

Finally I thank you, my parents, for your unconditional love and unfailing support. Thank
you for always believing in me. I don't find the words to express how grateful I am to have you
in my life. I was born during a PhD abroad and that might mean something. Mom, thanks
for coming with me to Lausanne at the very beginning, your help setting me up was greatly
appreciated. Dad, thanks for encouraging me to visit this country before my PhD started, so
that I would be sure of my choice. Thank you for praying everyday for me during these years. I
love you both so much.

This accomplishment would not have been possible without all of you. Thank you.

Lausanne, December 6, 2022 Isabela Nobre

iii

Abstract

In the domains of machine learning, data science and signal processing, graph or network data,
is becoming increasingly popular. It represents a large portion of the data in computer, trans-
portation systems, energy networks, social, biological, and other scientific applications. Often,
such data is physically distributed over different network nodes, and there is a communication
cost involved with bringing it to a central unit for processing and analysis. Decentralized algo-
rithms offer solutions to deal with network data and relax communication costs, with nodes
sharing messages over communication channels in order to jointly implement data processing
or learning tasks. However, messages are typically quantized in practice and represented by a
finite number of bits in digital communication channels. As a result, imperfections in received
signals may accumulate and eventually degrade the algorithm’s overall performance. This
thesis focuses on designing new methods to efficiently allocate bits in the different steps of
messages exchanges between network nodes when implementing distributed graph signal
tasks. First, we consider graph filters that can decompose and shape graph signal frequency
components, in order to realize a desired response. Distributed graph filters can be used in
applications such as smoothing, denoising and semi-supervised learning. We propose an
optimal bit allocation technique that adapts to the network topology and the message impor-
tance, such that it minimizes the quantization error. Second, we consider distributed Graph
Neural Networks that can be used in applications such as anomaly detection, decentralized
control and traffic prediction. We study the effect of quantization in the GNN inference stage
and we propose an analytical solution to an optimized bit allocation problem, by solving the
corresponding Karush-Kuhn-Tucker (KKT) system of equations. Our method is shown to be
beneficial in reducing the error due to quantization, compared to other baselines, on the tasks
of distributed denoising and distributed source localization. The optimized bit allocation
gives a higher relevance to messages in the middle layers of the neural network model. Finally,
we consider the distributed graph learning problem whose objective is to infer an unknown
data graph from network observations, in order to enable further processing tasks or inter-
pretability. We propose a novel distributed graph learning algorithm under the assumption
that the data is smooth on the data graph. With the use of local projection constraints, we
solve the distributed optimization problem and infer a valid graph. For the same accuracy,
our distributed algorithm has a lower communication cost compared to a centralized version,
especially for sparse networks. Additionally, we propose a bit allocation scheme for the dis-
tributed graph learning algorithm. We show that the scheme presents a better accuracy and
bit cost trade-off than a baseline uniform bit allocation scheme. Overall, this thesis proposes

Abstract

novel bit allocation techniques for signal quantization in distributed implementations of
signal processing and machine learning tasks. We believe that our research efforts will hasten
the development of intelligent distributed processing algorithms for network data that balance
performance, communication bandwidth, and computational complexity, in a wide range of
potential applications in social, sensor, energy, transportation, and other fields.

Keywords: graph signal processing, wireless sensor networks, distributed algorithms, quanti-
zation, graph filtering, graph neural networks, graph learning.

Résumé

Dans les domaines de I'apprentissage automatique, de la science des données et du traitement
du signal, les données organisées sous forme de graphes sont de plus en plus populaires.
Les graphes sont une facon naturelle de représenter les données issues de I'informatique,
des systemes de transport, des réseaux énergétiques, des applications sociales, biologiques
et d’autres applications scientifiques. Souvent, ces données sont physiquement distribuées
sur différents noeuds d'un réseau, et leur acheminement vers un processeur central entraine
un colit de communication. Les algorithmes décentralisés offrent des solutions pour traiter
les données distribuées des graphes, les nceuds partageant des messages sur des canaux
de communication afin d’exécuter conjointement des taches de traitement des données ou
d’apprentissage. En pratique, les messages sont quantifiés et représentés par un nombre fini
de bits. Par conséquent, les imperfections dans les signaux recus s’accumulent et finissent par
dégrader la performance globale de I’algorithme. Cette thése se concentre sur la conception de
nouvelles méthodes pour allouer efficacement les bits dans les différentes étapes des échanges
de messages entre les nceuds, lors de 'implémentation de taches distribuées de signaux de
graphes. Tout d’abord, nous considérons les filtres de graphe qui peuvent décomposer et
faconner les composantes de fréquence d'un signal sur un graphe, afin de réaliser une réponse
spectrale désirée. Les filtres de graphes distribués peuvent étre utilisés dans des applications
telles que le lissage, le débruitage et I'apprentissage semi-supervisé. Nous proposons une
technique d’allocation optimale des bits qui s’adapte a la topologie du réseau et a I'importance
du message et qui s’avere efficace pour minimiser I'erreur de quantification, surpassant les
algorithmes de base. Deuxiemement, nous considérons les réseaux neuronaux graphiques
distribués qui peuvent étre utilisés dans des applications telles que la détection d’anomalies,
le controle décentralisé et la prédiction du trafic. Nous étudions 'effet de la quantification
dans I'étape d’inférence du GNN et nous proposons une solution analytique a un probleme
d’allocation de bits optimisée, en résolvant le systeme d’équations de Karush-Kuhn-Tucker
(KKT) correspondant. Nous montrons que notre méthode permet de réduire I'erreur due a la
quantification pour les tiches de débruitage distribué et de localisation de sources distribuées.
L'allocation optimisée des bits donne une plus grande pertinence aux messages dans les
couches intermédiaires du modele de réseau neuronal. Enfin, nous considérons le probleme
de I'apprentissage de graphes dont I'objectif est de déduire un graphe de données inconnu a
partir d’observations, afin de permettre d’autres tiches de traitement ou d’interprétation. Nous
proposons un nouvel algorithme d’apprentissage de graphe distribué en supposant que les
données sont lisses sur le graphe de données. Grace a l'utilisation de contraintes de projection

Résumé

locales, nous résolvons le probleme d’optimisation distribuée et déduisons un graphe valide.
Pour la méme précision, notre algorithme distribué a un cotit de communication inférieur a
celui d’'un algorithme centralisé, en particulier pour les réseaux avec peu d’arétes. De plus,
nous proposons un schéma d’allocation de bits pour I'algorithme d’apprentissage de graphe
distribué. Nous montrons que ce schéma présente un meilleur compromis entre la précision
et le cott des bits que le schéma d’allocation de bits uniforme. Dans I’ensemble, cette thése
propose de nouvelles techniques de quantification dans les implémentations distribuées
de taches de traitement de signaux de graphes. Nous pensons que nos efforts de recherche
accéléreront le développement d’algorithmes distribués intelligents pour les données de
réseau qui équilibrent la performance, la bande passante de communication et la complexité
de calcul, dans les vastes applications potentielles dans les domaines sociaux, des capteurs,
de l'énergie, du transport et autres.

Mots clés : traitement du signal sur les graphes, réseaux de capteurs sans fil, algorithmes distri-
bués, quantification, filtrage sur les graphes, réseaux neuronaux sur les graphes, apprentissage
sur les graphes.

viii

Contents

Acknowledgements i
Abstract (English/Francais) \'4
1 Introduction 1
1.1 Motivation e e e e e e 1
1.2 Thesisoutline e 3
1.3 Summary of Contributions 4
2 Preliminaries 5
2.1 GraphSignalProcessing 5
2.2 Distributed Graph Signal Filtering 6
2.3 Rate-distortionmodel 9
3 Optimized Quantization in Distributed Graph Signal Filtering 11
3.1 Introduction 11
3.2 Quantization Error for Distributed Graph Filtering 13
3.3 Quantized Distributed Filtering with bounded messages 14
3.3.1 Quantizationerroranalysis 14
3.3.2 Distributed processing with bounded messages 15
3.3.3 Quantization error with bounded messages 16
3.4 Optimized bitallocation, 17
3.4.1 Rate-distortionmodel 17
3.4.2 OptimalAllocation 19
3.5 ResultsandDiscussion e 20
3.5.1 Performance of the proposedscheme 20
3.5.2 Analysis of the bitallocation 26
3.6 Conclusion e 29

4 Optimized Bit Allocation for Distributed Processing with Graph Convolutional Neu-
ral Networks 31
4.1 Introduction 31
4.2 Distributed Graph Neural Network Implementation 33
4.2.1 Network Information Processing 33

ix

Contents

4.2.2 Distributed GCNN Inference
4.3 BitAllocation Algorithm L L L
4.3.1 Filter Level Bit Allocation
4.3.2 Network-level Bit Allocation
4.4 Bit Allocation Problem Solution
4.5 ExperimentalResults
4.5.1 Distributed Denoising
4.5.2 SourcelLocalization.
4.6 Conclusion e e

5 Distributed Graph Learning with Smooth Data Priors
5.1 Introduction e e
52 Problemformulation o
5.2.1 GraphlLearning e
5.2.2 Distributed setup and problem formulation
5.3 Distributed Graph Learning Algorithm
5.3.1 Initialization
5.3.2 Optimization e
5.4 Experiments on Distributed Graph Learning
5.4.1 Experimental Settings
5.4.2 Graph Learning Performance
54.3 Analysis
5.5 Quantization for Distributed Graph Learning
5.5.1 Problem Formulation
5.5.2 TrainingStrategy it e
5.5.3 Experiments of Distributed Graph Learning with Quantization
56 Conclusion e

6 Conclusion
6.1 Summary e e
6.2 Future Work e e

A Appendix of Chapter 3
A.1 Bitallocationinthenetwork
A2 ErrorPropagation
A.3 Variance of the bit allocation for binomial distribution

B Appendix of Chapter 4
B.1 Quantization for GraphFilter
B.2 Quantization Step in Molene Experiments
B.3 Source Localization Examples
B.4 Tables for Standard Deviations

55
55
57
57
58
59
60
60
63
63
64
65
67
67
68
70
74

75
75
76

79
79
80
80

Contents

Bibliography 91

|§ Introduction

1.1 Motivation

Structured data, which is defined over the nodes of a graph, is getting very popular nowadays
in machine learning, data science and signal processing fields. Much of the data in computer,
transportation systems, energy networks, social, biological and other scientific applications
can be represented as graph data. This abundant and diverse resource needs to be processed
and analyzed before becoming useful. The field of graph signal processing (GSP) provides the
necessary tools to manipulate this type of data, also called graph signals. These tools are used
in diverse applications, such as compression, denoising or reconstruction of sensor data [1, 2].
They also permit to design filters that process graph signals by attenuating their components
at specific graph frequencies, in an analogous fashion to classical filters.

Centralised settings tend to assume that the data is available at no cost in a central processing
unit. Often however, the observation data is physically separated and there is a communica-
tion cost associated with its collection, specially if there is not a direct communication path
between sensor nodes and the central unit. Centralized solutions are not even sometimes
viable, since they cause a bottleneck on the central processor, or are too costly in communica-
tion costs. Decentralized methods of graph signal processing emerged as solutions to handle
data in large networks but also to deal with privacy concerns and also bandwidth/energy
constraints [3-5]. Another advantage of distributed algorithms compared to centralized ones
is that they can add robustness to the network in case of node failures.

There are many studies on distributed processing for graph signals or networked data [6-8].
However, only few deal with the fact that, in real case scenarios, the network is subject to
communication constraints, which limit the precision of the messages exchanged by the
different distributed algorithms. In order to collectively implement these algorithms, nodes
should exchange information through messages that are quantized and represented by bits,
with a finite precision. This leads to quantization errors in the transmitted data, which
accumulate and eventually deteriorate the overall algorithm performance. Higher number of
bits leads to less quantization error, but also to communication costs. Hence, a trade-off has

Introduction

to be defined in practice, between distributed application performance and communication
costs.

The overall objectives of this thesis is to find the optimal way to allocate bits in the different
steps of messages exchanges between nodes, when implementing distributed graph signal
processing tasks. We find that the ideal solution presents the overall best trade-off between
minimum quantization error and minimum total bit costs, thus maintaining not only high
accuracy but also respecting a bit budget constraint in the network. In particular, we study
three important distributed tasks for structured data: graph filtering, graph neural networks
and graph learning and devise optimized bit allocation algorithms for each of them.

Graph Filtering A signal can generally be decomposed in its frequency components and
a filter can shape these components in order to realize a desired response, by isolating or
enhancing some of them. Similarly, graph filters can process graph signals along their spectral
components with the help of the graph Fourier transform. Graph convolutions can then be
modeled by finite impulse response (FIR) graph filters. The FIR filter, which is the focus of
our work, is defined as a linear shift-and-sum operation. In order to enable their distributed
computation, linear graph filters can be approximated by shifted Chebyshev polynomials
[3], becoming more amenable to distributive computing for applications such as smoothing,
denoising, inverse filtering and semi-supervised learning.

Graph Neural Networks - GNNs GNNs are generalizations of neural networks for irregular
data structures and are widely used in different fields. Their inference stage can be imple-
mented distributively by allowing communication among neighbouring nodes. GNNs have
been used for inference in distributed settings in many different applications, such as anomaly
detection [9], consensus [10, 11], decentralized control [12-18], decentralized resource allo-
cation [19], distributed regression [10], distributed scheduling [20, 21], source localization
[10, 22] and traffic prediction [23]. In this work we focus on the Graph Convolutional Neural
Networks (GCNN), whose fundamental building block is the FIR graph filter (or graph con-
volution). It consists of a concatenation of layers, where each layer is composed of a bank of
graph FIR filters and a point-wise nonlinearity. Given that FIR filters can be computed in a
distributed fashion, GCNN inherit this property as well.

Graph Learning In most graph signal processing algorithms, the network topology underly-
ing the data is assumed to be known. However, in some settings, this is not the case. This gives
rise to the problem of graph learning (GL)[24-31]. In the graph learning literature, the graph
needs to be learned from the signals, so that processing tasks can be implemented by taking
the data structure into account [32, 33]. A common assumption is that the signal values change
smoothly across adjacent nodes of the unknown graph topology [34-38]. This assumption
allows the inference of the data structure, which means that the graph learning task amounts
to finding the graph structure on which signal values differences on nodes associated with the

1.2. Thesis outline

same edge (and large weights) are minimized.

1.2 Thesis outline

The goal of this thesis is to optimize the bit allocation for distributed graph signal processing
and learning tasks. The thesis is organized as follows:

In Chapter 2 we provide mathematical preliminaries that will be used throughout the thesis.

In Chapter 3 we propose a novel bit allocation method for distributed graph filtering that
minimizes the error due to message quantization without compromising the communication
costs. It first bounds the exchanged messages and then allocates a limited bit budget in an opti-
mized way to the different messages and network nodes. In particular, our novel quantization
algorithm adapts to both the network topology and the message importance in a distributed
processing task. Our results show that the proposed method is effective in minimizing the
error due to quantization and that it permits to outperform baseline distributed algorithms
when the bit budget is limited. They further show that errors produced in nodes with high
eccentricity or in the first steps of the distributed algorithm contribute more to the global
error. Also, sparse and irregular graphs require more irregular bit distribution. Our method
provides one of the first quantization solutions for distributed graph processing, which is able
to adapt to the target task, the graph properties and the communication constraints.

In Chapter 4 we extend the study to Graph Neural Networks (GNN), which are highly used
tools for processing and learning on graph-structured data. In the distributed implementation
of GNNs, messages are exchanged between neighboring nodes in order to achieve a common
objective. These messages usually have a finite precision, which may require quantization
before transmission. Thus, errors arise in the received signals, which accumulate and eventu-
ally deteriorate the GNN model accuracy. We study here the effect of quantization in the GNN
inference step and propose an analytical solution, with the use of the Karush—-Kuhn-Tucker
(KKT) conditions, to the optimized bit allocation problem, maintaining not only high accuracy
but also obeying a bit budget constraint. Our experiments on distributed denoising and
distributed source localization tasks show that our method is effective in minimizing the error
due to quantization under a limited bit budget, compared to a uniform allocation and other
baselines. It also shows that the optimal bit allocation tends to give a higher relevance to the
messages in the middle layers of the model.

In Chapter 5 we introduce a distributed algorithm for the graph learning problem. Graph
learning is generally performed centrally with a full knowledge of the graph signals, namely
the data that lives on the graph nodes. We propose here a novel distributed graph learning
algorithm, which permits to infer a graph from signal observations on the nodes under the
assumption that the data is smooth on the target graph. We solve a distributed optimization
problem with local projection constraints to infer a valid graph while limiting the number
of messages to be transmitted. Our results show that the distributed approach involves less

Introduction

messages than a centralised algorithm without compromising the accuracy in the inferred
graph. It also scales better in number of messages with the increase of the network size,
especially for sparse networks. Then, we extend the quantization analysis into the distributed
graph learning algorithm. We propose an incremental bit allocation scheme between the
three main message sets of the distributed algorithm, with a marginal analysis optimization
in order to identify the best trade-off between bit costs and accuracy in the inferred graph.
Experiments show that for both the training and the testing datasets, the proposed solution
clearly presents a better trade-off than a baseline uniform bit allocation scheme.

Finally, in Chapter 6 we conclude the thesis and offer possible directions for future develop-
ments in this field.

1.3 Summary of Contributions

The main contributions of this thesis are summarized below. In particular, we propose:

¢ A modification of the classical graph filtering algorithm that permits to bound the range
of the exchanged messages, by shifting the normalized Laplacian when implementing
the filter. We modify the distributed filtering algorithm in order to recover the results
that would be generated with the un-shifted Laplacian. The bounded range improves
the quantization scheme.

* A novel method for distributed graph filtering that minimizes the error due to message
quantization without compromising the communication costs. It adapts to the target
task, the graph properties and the communication constraints.

* A study of the effects of quantization error in the accuracy of distributed inference with a
graph convolution neural network and a solution for the resulting bit allocation problem
with the Karush-Kuhn-Tucker (KKT) conditions.

* The first distributed graph learning framework that minimizes the number of exchanged
messages. We solve a distributed optimization problem with local projection constraints
to infer a valid graph while limiting the number of messages.

* An incremental bit allocation scheme for the distributed graph learning algorithm,
with a marginal analysis technique. The proposed solution presents a better trade-off
between accuracy and bit costs than a baseline uniform bit allocation scheme.

Y4 Preliminaries

In this chapter, we introduce some fundamentals in graph signal processing and the quantiza-
tion rate-distortion model that we will be using in the following chapters of this thesis.

2.1 Graph Signal Processing

We consider a weighted undirected graph, which can be written as ¢ = (¥,&,W)!, representing
our network. In this notation, 7 represents a set of N = |7/| vertices, & represents a set of edges,
and W e RNV is the weight matrix whose entry W; j represents the weight of the edge between
nodes i and j. The value of W;; is equal to 0 if these nodes are not connected. The degree
matrix D contains diagonal entries equal to the sum of weights of all edges incident to the
nodes on the graph, specifically

Dii=d;=) Wij, 2.1)

J

and has only zeros outside the diagonal.

We can also define a matrix whose sparsity pattern follows the structure of the network,
namely the graph shift operator S. It can represent the adjacency matrix, the Laplacian or
their normalized and translated forms for example. In particular, the combinatorial Laplacian
matrix is defined as

L =D-W. (2.2)

Additionally, the normalized graph Laplacian operator is frequently used in graph signal
processing and is given by
% =1-D"2wp1"2, (2.3)

Both Laplacians are real symmetric positive semi-definite matrices, which means they have a
complete set of orthonormal eigenvectors with a set of non-negative eigenvalues. We then

1n this work, we represent scalars with non-bolded symbols, whereas we use bolded symbols for non-scalar
arrays (such as vectors and matrices).

Chapter 2. Preliminaries

denote as {1,},=0.n-1 the set of eigenvalues of £, which can be ordered as
0=Ag< A=A <..<An_152, (2.4)

and the corresponding eigenvectors as {Zy, 1, ..., Zn-1}. Finally, we denote by A the diagonal
matrix with the eigenvalues {A,},-0.n-1 on its diagonal and & the matrix whose columns are
the eigenvectors of £.

A graph signal is a function f: 7 — R defined on the vertices of the graph, which is repre-
sented by a vector f€ RV. The graph signal f is defined on the vertex domain. The Laplacian
eigenvalues carry a notion of frequency, so we can also represent this signal in the graph
spectral domain. To that end, we make use of the graph Fourier transform [2], which can be
defined as an expansion of the function in terms of the eigenvectors of £. That is, the graph
Fourier transform f' of a signal f at frequency 1, can be defined as the sum

N
FA) =Y fOX0). 2.5)

i=1

A very common assumption to be made about the graph signals is that they change smoothly
among strongly connected vertices, that is, they take similar values at those vertices. In the
graph spectral domain, this means that most of the signal’s energy lie in the first eigenvalues of
the underlying graph. We can measure the degree of smoothness with the Laplacian quadratic
form
2(£)=uX"£°X) = %Zvv,-jnxi—x,-uz, 2.6)
i,

where X € RV*M s a matrix containing M graph signals as their columns. We call the N rows
of X the feature vectors x; € R™. We see that, when W; j has a high value, nodes i and j are
strongly connected. When a graph signal is smooth, by definition, the signal difference should
be small for these nodes. Thus, we can see that we can minimize Eq. (2.6) with respect to X to
obtain smooth signals, or alternatively, we can minimize it with respect to W to obtain graphs
whose pre-existing signals can be smooth on.

2.2 Distributed Graph Signal Filtering

We further define filtering in graph signal processing. Given H(A) the (traditional) Fourier
transform of a graph filter, we can process the signal f;, by computing

Jour = HL) fin, 2.7)

with
H(1y) 0
HY):=% xT. (2.8)
0 H(An-1)

2.2. Distributed Graph Signal Filtering

We remind that & and A are respectively, the eigenvectors and eigenvalues of the graph
Laplacian. If the graph filter H(%) can be represented in polynomial format i.e.,

K
H®) =) &k, 2.9)
k=0

with the filter coefficients h = [hy, ..., hx]7, it is denominated as a finite impulse response - FIR
graph filter. It is also amenable to distributed implementation [3]. The corresponding graph
convolution

K
Jour=Y. e L* fin 2.10)
k=0

can be implemented iteratively by local processing at each node, and message exchanges
between nodes. That is, each node computes the local value of the function f;,,; by exchanging
messages with neighbors in K interactions. Along this process, all nodes together participate
in computing the full function f,,;.

The distributed implementation requires the computation of the different powers of the
Laplacian matrix that appear in (2.10). We firstly define

zi=L5fin 2.11)
and begin with
20 = fin, (2.12)
as illustrated in Fig. (2.1).
(m)
" zo[m]

Oy

N/ J

Figure 2.1 — Toy network with initial zy local values.

The node n sends its value zy[7] to its one-hop neighbors in the graph, and all the other nodes
do the same, as illustrated in Fig. (2.2).

Chapter 2. Preliminaries

(a) (b)

Figure 2.2 — Nodes share their z local values with immediate neighbours.

After all values of z; are exchanged in the network, all nodes update their local status (Fig.
(2.3)) with the relation

<1 =$Z(). (2.13)

To that end, each node 7 only calculates its value z; [1] by doing £/ zy, where £, is the row
n of &; zy is filled with the values of the messages exchanged from the neighbors of node n.
Since %}, is zero for the nodes that are not neighbors of 7, the node n does not need the values
of zj at these nodes to calculate z;[n].

Figure 2.3 — All nodes update their local status, producing their local z; values.

The messages with the values of z; are then exchanged between neighbor nodes in the same
way as for the values of zj. Then z, = £z, is obtained in a similar fashion as z;. This procedure
repeats until K iterations, which permits to compute the full function f,,; in Eq. (2.10).

Specifically, after knowing {zy[n], z; [n], ..zx [n]}, the node n computes the value of the filtered
signal in its own node using the relation [39]

K
Sourlnl = (H(L) fin) In] = Y_ hyzilnl. (2.14)
k=0

2.3. Rate-distortion model

More details are given in [3]. Distributed graph filtering is possible with nodes computing only
local values, while exchanging messages with immediate neighbours. At every instance of
the algorithm, the knowledge of the entire input or output signals is required nowhere in the
network.

2.3 Rate-distortion model

We now introduce the quantization rate-distortion model used in this thesis. In distributed
settings, messages are transmitted in order to attain the nodes’ joint objective. In realistic cases,
these messages exchanged by the network nodes have a limited precision, being typically
quantized before transmission. We consider the high rate quantization regime and use uniform
quantizers for each information message, as in high-rate regime uniform quantization is
optimal for independent variables. In such setting, the error is directly related to the number
of bits b used for each message which can be chosen to optimize performance. In uniform
quantization, the step size A is determined by the ratio of the total quantization range I" over
the number of quantization intervals, that is

A= (2.15)
The quantization range is the value range that the message is being quantized on. Its maximum
value is typically higher than the maximum possible value of the message, and similarly, the
minimum value is typically lower than its minimum value. Sometimes it can be determined
theoretically, from the input signal properties, or experimentally, where typical values are
used.

It had been shown [40] that even though the quantization noise and input signal are deter-
ministically related, when the quantization step size is sufficiently small (that is, in high rate
conditions), the quantization noise is uncorrelated with the quantized signal. Furthermore,
the probability density function of the quantization noise will be uniform with zero mean and
variance %. This is called the White-Noise Quantization Error Model [41].

It follows that the expected value of the square of the quantization error ¢ (MSE) on the
message transmitted is equal to its variance (since it has zero mean). If we apply (2.15) into
the variance expression of the White-Noise Quantization Error Model, we obtain for the MSE
rZ
Ele’] = — -27%b, 2.16

(e”] D ()
With the White-Noise Quantization Error Model, we can additionally assume that the different
messages are statistically independent, more details in [41]. This assumption will be used in
the following chapters of this thesis.

8] Optimized Quantization in Dis-
tributed Graph Signal Filtering

3.1 Introduction

Many different networks, for instance wireless sensor networks, transportation networks,
neural networks and social networks can be modeled as graphs where nodes support signal
values or features. The field of signal processing on graphs has been providing many powerful
tools to process such signals in diverse applications, such as compression, denoising or
reconstruction of sensor data [1, 2].}

Numerous applications require that the signal defined on the network is however processed
distributively. Decentralized methods of graph signal processing recently emerged in order to
scale to large networks as a way to deal with big data applications, privacy concerns and also
bandwidth/energy constraints [3-5]. They can also be necessary when centralized topologies
are not viable or suffer from a bottleneck on the central processor, with nodes that are too
far to reach the central processor. Another advantage of distributed algorithms compared to
centralized ones is that they can add robustness to the network in case of node failures.

In practice, most nodes in distributed systems have limited computing power and are con-
strained in the amount of information they can communicate; this makes the design of
efficient distributed algorithms essential. In order to enable distributed graph signal process-
ing, linear graph signals operators can for example be approximated by shifted Chebyshev
polynomials [3], becoming more amenable to distributive computing for applications such as
smoothing, denoising, inverse filtering and semi-supervised learning. There have been many
other studies on distributed processing for graph signals or networked data [4-8], but only
few deal with the fact that, in real case scenarios, the network is subject to communication
constraints that limit the precision of the messages exchanged by distributed algorithms.

In this chapter, we propose an adaptive quantization scheme for distributed graph signal

1 This chapter contains work which has been published in:
Nobre, I.C.M. and Frossard, P, 2019, May. Optimized quantization in distributed graph signal processing. In ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5376-5380).

11

Chapter 3. Optimized Quantization in Distributed Graph Signal Filtering

processing tasks. Quantization approximates a continuous range of values by a set of discrete
values and helps decreasing the communication costs. At the same time, it introduces errors
that degrade the performance of distributed processing methods. We focus on the design
of a quantization scheme that minimizes the quantization error in graph signal processing
tasks, by bounding the transmitted messages and by optimizing the bit allocation. We first
propose a distributed processing algorithm where the messages exchanged by network nodes
are bounded. We then model the error due to quantization, as a function that depends on the
network topology and on the characteristics of the distributed processing task. We further cast
an optimization problem to efficiently distribute bit to messages and nodes, so that the total
error is minimized under communication cost constraints. We finally solve the resulting bit
allocation problem with the Karush-Kuhn-Tucker (KKT) conditions. The performance of our
quantizer is evaluated and compared to the performance of an uniform quantizer. The results
show that the bit allocation optimization improves the performance in terms of final error
compared to a uniform distribution of the bit budget across messages. They also show that
a more regular graph leads towards more uniform bit distribution in the optimal allocation,
which confirms the proper adaptation of our solution to the network properties. Also, since the
errors propagate through the successive steps of the distributed signal processing operations,
we also confirm that it is efficient to allocate a large share of the bit budget in the first steps of
the iterative distributed processing algorithm.

Some works have considered different aspects of quantization in graph signal processing.
The works in [42] and [43] briefly studied the effect of quantization in a linear prediction
filter applied to graph signals. However the main objective of those works was to design
graph filters, without considering specifically the quantization effects in the design itself. On
the other hand, the work in [44] studied the effect of quantization in the representation of
graph signals, mitigating the numerical effects caused by the finite-precision machines that
centrally realize the filtering process. The authors specifically designed graph filters that are
robust to finite precision effects. That is, [44] focused on mitigating quantization effects by
designing filter coefficients, not by optimising the bit allocation on different nodes, like we do.
The above works had a centralized graph filtering approach, which means no quantization
in communication between nodes. In our case, the whole processing algorithm is done in
the network itself. There are also some works that focused on distributed optimization with
quantization constraints [45-49], but these algorithms have been developed mainly using
consensus protocols, and we are interested in solving more general processing tasks in this
chapter, not merely average computation. Despite some similarities between graph filtering
and consensus, there are some differences. Consensus can be considered a special case of low
pass filtering, and many consensus works are not focused in building optimal quantizers, but
in the convergence to consensus between nodes in the presence of quantized messages. While
in graph filters the design of an optimal quantizer does not require that nodes reach consensus.
More recently, [50] provided a broad analysis of the quantization effects of graph filters over
time-invariant and time-varying graphs. Also, [51] designed graph filters that are jointly robust
to quantized data and time-varying graph topologies. Closer to our framework, the work [39]

12

3.2. Quantization Error for Distributed Graph Filtering

derived the quantization error in distributed computations of graph signal operators and then
proposed an algorithm that learns graph dictionaries to sparsely approximate graph signals
while staying robust to the quantization noise. The work however does not focus on improving
the quantization but rather on the design of robust graph filters. To the best of our knowledge,
our work the first one that optimizes the quantization scheme for general distributed filtering
tasks.

The rest of this chapter is organized as follows. In Section 3.2, we model the graph filter
implementation in a distributed way and derive the quantization error. In Section 3.3, we
present our new bounding scheme for processing graph signals distributively, and in Section
3.4 we describe our optimal bit allocation algorithm. Finally, the results and analysis of the
performance of our new framework are shown in Section 3.5.

3.2 Quantization Error for Distributed Graph Filtering

As shown in Section 2.2, one can perfectly compute the response of graph filters in distributed
settings. However, in realistic cases, the messages exchanged by the network nodes have a
limited precision. They are typically quantized before transmission and this modifies the
outcome of the distributed filtering process.

The quantized message at node n at step k can be written as Zy [n] = zi[n] + € [n], where € [n]
is the quantization error for a message at iteration step k at node n. After its transmission,
the distributed update equation at node n becomes zy,, = LZr[n] = L(zr[n] + €r[n]) and
integrates a quantization error term.

We define by
€¢[0]

. 3.1)
€r[N]

the vector containing error values for all nodes at step k, and € = [eér , ...,eIT<_1] T the vector
containing all errors at all iteration steps and nodes.

By taking into account the quantization errors that accumulate through all iterations of the
distributed processing task, the filtered signal can finally be written as

K K-1[K-k _
HD) fin=) L2+ Y | Y hie+j L7 | €, (3.2)
k=0 k=0 | j=1

as opposed to fy,r in Eq. (2.10) for the perfect settings. More details are available in [39].

13

Chapter 3. Optimized Quantization in Distributed Graph Signal Filtering

3.3 Quantized Distributed Filtering with bounded messages

3.3.1 Quantization error analysis

We first analyze more deeply the impact of quantization. Since the first term of the above

K

expression (3.2), Y. hy. %z, is the filtered signal in a setting without quantization (as in Eq
k=0

(2.14)), we can define the second term,

K-1
Q=) €x, (3.3)
k=0

K-k ,
j=1

as the total error caused by the accumulated effects of the quantization errors.

We can further make the following observation on the evolution of the quantization error with
the iterations of the distributed processing algorithm. At step k, the maximum value (in an
absolute sense) of the messages to be transmitted is ||.Z k finlloo- Considering that, for the
norm indexes p >r >0, wehave || v ||, = | v |, for any v pertaining to the vector space where
these norms are defined, we can write

I L5 finlloo < 1 L5 Finlla < 1 L5 Mo | fin N2, (3.4)

where | £* ||, is a matrix norm induced from the 2-norm for vectors, which can be computed
by || £ K Nl2= 0 max (L5, where 0 pax (£F5) represents the largest singular value of matrix wpk
[52]. It corresponds to the square root of the largest eigenvalue of the positive-semidefinite
matrix (£%) T (£¥). Since the Laplacian matrix is diagonalizable and symmetric, we can write
(L8T = (£%), and since

L=2NxT, (3.5)

we have
L= g Nk T (3.6)

which means that the eigenvalues of £2F are the same as the eigenvalues of £ to a power of
2k. Hence, since

[ffk 2= O'max(gk) = \/Amax(gzh = \//1%6_1, 3.7

and considering that all eigenvalues of the Laplacian are real and positive values, we finally
have

I L* finlloo < AX 11 fin 2. (3.8)

This means that, as k increases, the transmitted messages can increase their ranges propor-
tionally to the eigenvalues of £, as shown in Eq. (3.8). This also means that, at a high value of
k, the value of the respective error € will be very high, hence increasing the value of the total
error. We show below how to bound these transmitted messages such that the quantization
errors will remain bounded as well.

14

3.3. Quantized Distributed Filtering with bounded messages

3.3.2 Distributed processing with bounded messages

Based on the previous observations, we propose a modification of the classical distributed
processing algorithm that permits to bound the range of the exchanged messages. Instead
of using the operator given by the normalized Laplacian £ at every step of the distributed
algorithmz, we use

L=L-1I 3.9)

Hence, the eigenvalues of % will be bounded in [-1, 1], instead of [0,2], with %. Therefore
the values of the messages being transmitted at step k will surely not surpass the range of the
original signal zy = f;;, as shown in Eq. (3.8).

In order to integrate the modified Laplacian operator .Z, we modify the distributed filtering
algorithm of the previous section as follows. We start with a scenario without quantization.
Firstly we set zy = f;,, which is then exchanged with the neighbor nodes, as before. Now,
instead of multiplying the received values by %, the nodes rather compute z, = £z,. The
value z; is then exchanged with neighbor nodes, in a similar way as the algorithm described in
the previous section. The algorithm then proceeds iteratively in the same way.

In an ideal scenario (without quantization), we have z; = Pkzy = (£ - D zy. We observe that,
at each step, we can perfectly recover z; = £*z, from 2. Since the identity matrix commutes
with all matrices, < and I also commute. Hence, we can use the Binomial formula and derive

k (K . k (K .
2 = (Z(J(—l)k—’x’)zO:Z(i)<—1)k—'zi, (3.10)

i=0 i=0
or equivalently,

=y 0 B k (k.
Ze=Zp—) ;=D zi=)y A (3.11)
i=0

i=0

Therefore, with Eq. (3.11), we can build a distributed algorithm where the values of z; are
exchanged between neighbor nodes, but only the values z; corresponding to the iterative
solutions of the original distributed filtering algorithm need to be stored. This is useful if the
sensors have memory constraints. Note that the term Zi‘c:() (’l‘) zZ; is purely combinatorial, that
is, it does not depend on any specific component such as the network, data, iteration or task,
etc.

2We note that the signal is still being processed with £, and the operator . is only used to, at transmission
stage, temporarily transform transmitted messages in order to bound the quantization range and consequently
reduce the quantization error. Once transmitted messages are received, the equivalent values that would have
been generated by processing the signal with £ are recovered (at every step). Thus, this process does not change
graph filtering properties intrinsic from processing with £.

15

Chapter 3. Optimized Quantization in Distributed Graph Signal Filtering

3.3.3 Quantization error with bounded messages

In a scenario with quantization, the distributed filtering algorithm with the modified Laplacian
operator % is modified as follows. After we set zy = fin, we quantize it as Zy = zp + €9. The
values Z are then exchanged with the neighbor nodes, as before. Now, instead of multiplying
the received values by % as in the original algorithm, the nodes rather compute z; = £%, in
the bounded scheme, the resulting value is then quantized as Z, =z +€;. The quantized value
Z, is eventually exchanged with neighbor nodes, in a similar way as the algorithm described
above.

To recover z; from Z; we use the same process as in Eq. (3.11). However, the recovery is
not perfect anymore due to quantization. The quantization error now accumulates through
iterations and the value of Z; becomes

k-1

=L -Drz+ Y (£-D"'e;, fork>0, (3.12)

1=0
while it is given by Eq. (3.10) in the ideal settings. More specifically, we compute below the
quantization error in receiving the output of the filtering process. First, Eq. (3.11) is equivalent
to

k (f
Zk=z0+), ; Z;. (3.13)
i=1

If we replace z; in (3.13) with the expression in (3.12), we obtain

k [k . i-1 .
zk:z0+Z(,) (&-D'zog+ Y. (Z-D'"e]. (3.14)
i=1\! 1=0
Notice that, if we write £ as [(£ — I) + I1* and use the Binomial formula, we obtain
k k .
5=y "~ (3.15)
i=0\ !
Thus, (3.14) can be written as
k (1)\i=1 .
ze=L*z%+Y | |Y(&-D"e, fork>o. (3.16)
i=1\!}i=0
The distributed filtering of the graph signal f;, in the quantization regime can then be written
as
) K . K k() i=1 -
four=HEB fin=) L 20+)) |.|D.(£L-D""¢, (3.17)
k=0 k=1 i=1\!/I=0
from which we derive the total error, which corresponds to the second term in Eq. (3.17),
. K k (r)iz1 .
Q=Y mY | |Y&-n"e. (3.18)
k=1 i=1\!/i=o

16

3.4. Optimized bit allocation

It can be rewritten as

. K=1|K-k i (k+i .
Q= Y hi Z() -1 | e (3.19)
k=0 | i=1 =1
For the sake of clarity, we now write
Filnl = (H{ Hy) [n,n, (3.20)

with
Hi= Y hia Z(kH) £-1i 3.21)

K-k i [k P (K .
n) = thHZ(H)Z kep Z(+p) £-D7*n,n. (3.22)
i=1 =1

Hence,

Q=) Hiey, (3.23)

and we can finally calculate the mean squared error

- Ko1Kzl
” Q ” € Hk Hiey, (3.24)
k=0 [=0
and its expected value
L, KISl S
Ec[llQI*] =)) Eele, H, Hie). (3.25)
k=0 1=0

3.4 Optimized bit allocation

3.4.1 Rate-distortion model

In this section, we now seek to minimize the expected value of the square of the total error in
Eq. (3.24) so that the impact of communication constraints on the distributed computations
is minimum.

We define b[n, k] as the number of bits used to represent the message sent from node » at step
k. We consider the high rate regime and use uniform quantizers for each message. In this case,
the error is directly related to the number of bits used for each message. The quantization
step size is then determined by the ratio of the total quantization range over the number of

17

Chapter 3. Optimized Quantization in Distributed Graph Signal Filtering

quantization intervals, that is
2|l fin lloo

Al k= =50,

(3.26)

the quantization range is 2- || fi, lloo for all k since we filter the signal with the modified
Laplacian % to bound the messages. The 2-factor is used because we opt for a symmetric
quantization around 0, that is, the quantization range lowest value is — || f; [lco and maximum
valueis + || fin lloo -

As seen in Chapter 2, if we apply (3.26) into the variance expression of the White-Noise
Quantization Error Model, we obtain

or W fin e —obini
Ecler(n]°] = —3 -2 B (3.27)
With the White-Noise Quantization Error Model, we can assume that €;[n] and €,[m] are
statistically independent for k # p or n # m. Hence the expected value of the crossed terms in
Eq. (3.25) is zero and we finally obtain the expected value of the total mean squared error as

K-1N-1

ElQI1=Y Y (H Hy)n nlEelecln?, (3.28)
k=0 n=0

which is equivalent to
. K-1N-1
EllQI*1= Y Y FilnlEelernl®, (3.29)
k=0 n=0

with (3.27), the MSE finally reads

I fin 115, K& N2

Ecll Q%= =YX Fy[n)272blnkl (3.30)
k=0 n=0

We can see from (3.29) that the quantization error is higher when Fj[n] increases. An inter-
esting problem would be to minimize Fj[n] to lower this error. This is outside the scope of
this work, but we can indicate ways this could be achieved. First of all, from (3.22) we see
that the number of steps K needed to distributively process the signal directly impacts the
amount of terms in the sum to compute Fi[n]. Not only that, it directly impacts the amount of
error terms that compose the global error in (3.29). Thus, if the filter can be designed flexibly,
it would beneficial to perform lower-order polynomial approximations for it. Alternatively,
a low-order polynomial filter could be directly designed. Secondly, the filter coefficients hy
values could also be designed in such a way that (3.22) is minimized. A third way of optimizing
F[n] is to choose denser topologies, since the redundant information shared among nodes
would mitigate the global quantization error. This last strategy however is not as good as the
first two, since it would also directly impact the communication costs.

18

3.4. Optimized bit allocation

3.4.2 Optimal Allocation

Our objective is now to minimize the total quantization error given the constraint bit budget in
the network. To that end, it is necessary to find the values of b[n, k] for every combination of k
and 7 that obey the budget constraint and minimize E||| Q %] of Eq. (3.30). This optimization
can be described by the following problem:

rninixmize Eelll Q12

K-1N-1 (3.31)
subjectto Y Y bln,kld[n]<B
k=0 n=0

Here, d[n] is the degree of node n, which drives the transmission costs, and B is the total bit
budget constraint over the whole network. The term b[n, k]d[n] represents the total number
of bits used by node n at step k to send the respective message for all d[n] neighbors. When
we sum the b[n, k]d[n] term for every k and n, we obtain the total number of bits used to
process the signal, which is our constraint in the optimization problem. Since the objective
and the constraint functions are both continuously differentiable and convex on the values of
b[n, k], we can use the Karush-Kuhn-Tucker (KKT) conditions and they will be sufficient for
finding the optimal solution. Also, we observe that the problem satisfies the KKT regularity
conditions since the constraint function is affine [53].

The KKT stationarity condition states that the solution of the optimization problem (3.31) will
be the values of b(n, k] that satisfy the equation

K-1N-1

(Eelll Q1PN +u(Y. Y bin, kidin] - B)

k=0 n=0

=0, (3.32)

0b[n, kI

where m means the partial derivative with respect to b(n, k], and p is the KKT multiplier.
The solution to Eq. (3.32) is given by

3ud(n])
b(n, k] = - n . (3.33)
2In2) \2| fin 12, In(2) F[n]
The complementary slackness condition states that
K-1N-1
p(Y. Y bln,kld[n]-B) =0, (3.34)
k=0 n=0

but if u = 0, the expression in (3.33) would present a In(0) term, which is undefined. Then,
(3.34) and (3.32) would no longer be optimality conditions for (3.31). This leads to the second
term of Eq. (3.34) being equal to zero instead, and applying (3.33) into (3.34) and solving for p,

19

Chapter 3. Optimized Quantization in Distributed Graph Signal Filtering

it results into

Bln(4) +Ni1d[n] Killn(%)
n=0 k=0 2| finllZ,In2-Fi[nl]

p=exp|- , (3.35)

N-1
K ¥ d[n]
n=0
which is always non-negative for being an exponential function, thus guaranteeing that the

KKT dual feasibility condition is satisfied. And we can finally replace in (3.33) to obtain the
optimized number of bits for each message.

In practice, a conventional approach [54] is to further round the non-integer values in Eq.
(3.33) to become integers. Then, if some of the values of b[n, k] obtained in (3.33) are negative
or zero, they are replaced by 1, to guarantee that there is a minimal communication between
neighboring nodes in every step to keep the whole system synchronized.

We can analyze the optimal bit allocation solution as follows. We observe that the number of
bits b[n, k] in Eq. (3.33) depends on d[n] and Fx[n]. As the degree d[n] grows, the communica-
tion cost in node n grows as well, since it shares its messages with more neighbors. In order to
satisfy the budget constraint, b[n, k] has thus to be smaller in a node where d|[n] is larger. On
the other hand, the factor Fy[n] is related to the topology and to the filter coefficients. From Eq.
(3.29), we can see that it weights the contribution of each individual error € [n] in the global
error. If we have a big Fi[n], it means that the relative contribution of €[n] becomes big, so
that its contribution needs to be reduced by increasing b(n, k]. Also, for the same node n,
there are more error terms in the global error computation (in Eq. (3.22)) when k is low, which
means that Fy[n] becomes higher in this case. It further means that the relative contribution
of the error terms €y in the first iterations (small k) of the distributed processing algorithm
is higher compared to the error in the later iterations. This is in agreement with the fact that
the first error terms lead to higher propagation effects. These observations will be further
confirmed in the upcoming result section.

3.5 Results and Discussion

3.5.1 Performance of the proposed scheme
a) Performance of the optimal quantizer

The performance of our quantizer is now evaluated in details. First, we create a network with
N =50 nodes that are uniformly placed at random in a unit square. The weight matrix for the
network edges is generated based on a thresholded Gaussian kernel function that takes into
account the physical distance between nodes. The edges weights are given by W;; = el
if the distance [/;; between vertices i and j is less or equal to x, and zero otherwise. We fix

x =0.2.

A graph signal is defined as f;,[n] = a[n]® + b[n)? — 1, where a[n] and b[n] are the coordinates

20

3.5. Results and Discussion

of node n, and a random noise with zero-mean normal distribution is added to it. We consider
denoising as the distributed graph signal processing task, via a low-pass filter

H) =

3.36
T+51 ()

with 7 = 3. In order to implement it distributively, a Chebyshev polynomial approximation of
order K is performed, and its polynomial coefficients {h}i=¢. x are determined as in [3].

The distributed graph signal processing task is first performed without quantization. Then,
the processing is performed with uniform quantization that is used as baseline solution. In
this case, the number of bits used to represent the transmitted messages is the same for every
node n and iteration step k. Finally, another processing is performed, using the optimization
scheme described in this chapter. In all three cases, the bounding scheme from Subsection
3.3.2 is used. We calculate the MSE between the output of the quantized and the unquantized
schemes for both uniform and optimized quantization. We repeat the entire experiment 1000
times for different networks and compute average performance shown in Figure 3.1.

= (Optimized bit distribution

0.0175 Uniform bit distribution

0.0150

00125

0.0100

MSE

0.0075

0.0050

0.0025

0.0000

300 400 500 £00 700 800 200 1000
Total number of bits exchanged per step k {in average)

Figure 3.1 — Average MSE vs average number of bits for uniform, and optimized bit allocation

forK=9and0 =2 (x =0.2, fisln] = aln)® + b[n)* - 1, HA) = 5357).

It can be seen from Fig. 3.1 that the optimization of the bit allocation proposed in this chapter
clearly improves the performance in terms of MSE if compared to a quantizer with the uniform
bit distribution. A bigger gain appears at low bit rate where effective allocation is more
important as resource are scarcer.

To evaluate the efficiency of the bounding scheme, we process the signal using the distributed
algorithm proposed in [39], where the messages are not bounded. The settings are the same as
the previous experiment. We obtain a MSE of 0.77 for 300 exchanged bits, a MSE of 0.55 for 400
exchanged bits and a MSE of 0.26 for 600 exchanged bits. These results show that, regardless
of optimizing the bit distribution or not, our bounded range algorithm yields much lower MSE
values compared to the baseline algorithm for the same bit rates. This is due to the fact that,

21

Chapter 3. Optimized Quantization in Distributed Graph Signal Filtering

0.0200
—— Optimized bit distribution

00175 Uniform bit distribution

0.0150

0.0125

0.0100

MSE

0.0073

0.0050

0.0025

0.0000

300 400 500 B00 00 800 900 1000
Total number of bits exchanged per step k {in average)

Figure 3.2 — Average MSE vs average number of bits for uniform and optimized bit allocation
for K=9and 6 =0.001 (x =0.2, fi[n] = alnl® + b(n]* -1, HA) = 37).

0.0200
—— (Optimized bit distribution

00175 Uniform bit distribution

0.0150

00125

00100

MSE

0.0075

0.0050

0.0025

0.0000

300 400 500 600 700 800 200 1000
Total number of bits exchanged per step k {in average)

Figure 3.3 — Average MSE vs average number of bits for uniform and optimized bit allocation
for K=17and 6 =0.001 (x =0.2, fix[n] = aln)* + b[n* -1, HA) = 357).

without bounding the transmitted messages, they grow substantially and in consequence, the
quantization errors grow as well.

We can analyze the effects of the graph structure and the number of iterations on the perfor-
mance of the optimization scheme. First, the same processing (with bounding scheme) is
applied into a graph with a smaller 8, which results in a bigger discrepancy between edges
weights, that is, a less regular graph. The communication constraints are however unchanged,
since the number of edges only depends on x, which remains constant in our experiments. The
results can be seen in Fig. 3.2, where the difference between the uniform and the optimized
bit distribution is slightly bigger than in the original experiments with a more regular graph
(Fig. 3.1). It means that a more regular graph tends towards a more uniform bit distribution,

22

3.5. Results and Discussion

which seems reasonable. Finally we look at the impact of the polynomial order K on the
performance. We run experiments similar to the previous ones, but with a bigger value of K.
The difference between the uniform and the optimized bit allocations is shown in Fig. 3.3. We
see that the gain due to optimal allocation is bigger than in the previous experiments with
the same network (Fig. 3.2). When k grows, the errors propagate more across iterations and
the optimized bit allocation tries to compensate it by allocating more bits in the first iteration
steps. This allocation improves the performance of the optimized scheme with respect to the
uniform scheme, and this improvement effect is more visible for greater K, since the errors
propagate for more iterations.

b) Performance with different filters

We now analyze how the performance of our algorithm changes with different filters im-
plemented in the distributed processing task. Graphs are generated in the same way as in
Subsection 3.5.1 with 8 = 0.001. The same input graph signal is now filtered by different
operators with the polynomial approximation order fixed at K = 9. Two different tasks are per-
formed with varying filter parameters. First, we perform denoising with distributed Tikhonov
regularization. Such a task can be implemented by applying the graph filter

T
T+2A7

H) = (3.37)
to the input signal. We fix the value of 7 at 10, and we choose for r the values of 1 or 3. The
second task consists in distributed smoothing, which can be performed by applying the heat
kernel
A
H(A) = e " Amax (3.38)

to the input signal. We consider 7 taking the values 1 or 10. The results of the filter processing
using different quantization methods are plotted in Figures 3.4 and 3.5.

Notice that, for the Tikhonov regularization, the higher r, the less smooth the filter. As for the
heat kernel, the higher 7, the less smooth the filter. As we can see in Figures 3.4 and 3.5, when
the filter becomes smoother, the values of the MSE become smaller (both for optimized and
uniform bit allocation). This happens because smooth filters tend to have smaller values of
hy, the filter coefficients derived from the Chebyshev polynomial approximation. Thus, the
quantization errors are multiplied by smaller factors, resulting in smaller quantization error.

c) Performance with different input signals

We now analyze the performance for different input graph signals. A graph is generated in the
same way as in Subsection 3.5.1 with 8 = 0.001, but now the input signal is a uniform random
vector, whose values vary from 0 to 1. A Gaussian noise with zero-mean is added to the signal
and the denoising is performed by distributively applying the same low-pass filter of Eq. (3.36)
to the signal, with its Chebyshev polynomial approximation of order K = 9. The experiment is

23

Chapter 3. Optimized Quantization in Distributed Graph Signal Filtering

0.0035
—— Optimized bit distribution (r=1)
Uniform bit distribution {r=1)
0.0030 Optimized bit distribution {r=3)
----- Uniform bit distribution {r=3)
00025 \
\
000201 1
% \
= \
0.0015
]l.
1.
0.0010 \
"I.
\,
0.0005 e
T -
= T —— 1 @ T o A i,
0.0000 : i e T T e et

400 800 800 1000 1200 1400
Total number of bits exchanged per step k {in average)

Figure 3.4 — Average MSE vs average number of bits for distributed Tikhonov regularization
with optimal and uniform bit allocation for r =1 and r =3 (r = 10,6 =0.001, x = 0.2, K =9,
finlnl = aln}? + b[n)* - 1).

0.0040 {-
i = Optimized bit distribution (T=1)
nooss| Uniform bit distribution (7=1)
: Optimized bit distribution (T =10)
0.0030 ".\ e Uniferm bit distribution (7 =10}
A
000251
u \
4 p.0020 \
\.
Y
0.0015 N
Y
0.0010 A
0.0005 N
~_
0.0000 . ; e iy SE
400 600 800 1000 1200 1400

Total number of bits exchanged per step k {in average)

Figure 3.5 — Average MSE vs average number of bits for distributed smoothing with optimal and
uniform bit allocation for 7 = 1 and 7 = 10 (6 = 0.001, k = 0.2, K =9, fi,[n] = a[n]? + b[n]*> - 1).

repeated 1000 times, with a different input signal at each time (while the other parameters
remain fixed) and the average performance is computed and shown in Figure 3.6. We can see
that the optimized bit allocation improves the filtering performance compared to the uniform
bit distribution.

d) Performance on a real dataset

We now consider a dataset containing the rain gauge time series components of a curated
set of historical daily rainfall data for the Amazonian rainforest region in Brazil [55]. The data
is provided by the Brazillian water management agency Agencia Nacional de Aguas (ANA).

24

3.5. Results and Discussion

—— Optimized bit distribution
0.010 Uniform bit distribution

0008

0006
w

MSs

0004

0002

0000

300 400 500 &00 700 800 200 1000
Total number of bits exchanged per step k (in average)

Figure 3.6 — Average MSE vs average number of bits for uniform and optimized bit allocation
(K=9,0=0.001,x =0.2, HA) = ﬁ), for random input signals.

Daily rainfall intensities in [mm/day] were recorded by 850 rain gauges spread in a large region
spanning the southern Amazonian rainforest to the Cerrado biomes of Brazil from 1926 to
2013. We define a geographical graph, where the nodes of the graph consist of the rain gauge
stations. The weight matrix is generated based on a thresholded Gaussian kernel function
that takes into account the geographical distance between stations. The year of 2010 was
chosen for containing the most complete data, and the average daily rain of that year was
computed for each rain site to form the signal value at each node. This results in a graph signal
of dimension 850. This graph can be visualized in Fig. 3.7.

A Gaussian noise with zero-mean is added to the rain signal and denoising is performed
by distributively applying the same low-pass filter as in Eq. (3.36) (actually its Chebyshev
polynomial approximation of degree K) to the signal and results are shown in Fig 3.8. When the
signal is processed with the algorithm proposed in [39], where the messages are not bounded,
we obtain a MSE of 93.7 for 60000 exchanged bits and a MSE of 87.5 for 80000 exchanged bits.
Comparing these results with Fig. 3.8, we can see that our proposed modified algorithm yields
much lower MSE values compared to the baseline algorithm. Also in Fig. 3.8 we see that the
optimized bit allocation further improves the MSE in the bounded scheme, when compared
to the uniform bit distribution.

The rain signal is smooth, and the filter is the same as the one used in Subsection 3.5.1, so the
differences in amplitude observed between Fig. 3.8 and the results in Subsection 3.5.1 stem
from the range of the input signal and the topology. The graph of the rain topology dataset has
more nodes, which increases the number of computations necessary to filter the signal. With
the increase in the number of computations, more errors are committed and accumulated,
hence why the MSE values tend to be higher.

25

Chapter 3. Optimized Quantization in Distributed Graph Signal Filtering

unknown
G.N=850 nodes, G.Ne=5914 edges

14

D_
12

-5
10
—10 A 8
&

_]_5 B
4

=20

2
Bl 0

75 —70 65 -0 55 —50 a5

Figure 3.7 — Graph of the rain dataset. Each node represents the rain gauge stations. The colors
represent the signal defined on the graph, that is, the daily average of rain in [mm/day] in the
year 2010, at each station

—— Optimized bit distribution
Uniform bit distribution

124
104

08 - ™\

T T T T T
60000 80000 100000 120000 140000
Total number of bits exchanged per step k (in average)

Figure 3.8 - MSE between filter outputs in perfect settings and in quantized settings vs average
number of bits for the rain dataset (K =9, x =1.8,0 =0.05and H(1) = ﬁ).

3.5.2 Analysis of the bit allocation
a) Evolution of Fj.[n]

Since Fi[n] influences the optimal bit allocation b[n, k], it is important to understand which
factors influence it. A new graph is generated in the same way as in Subsection 3.5.1, also
the same graph signal is considered to be filtered by the same filter of Eq. (3.36) with an
approximation of order K = 9 and edge weight scale factor 6 = 2. We compute Fi[n] with Eq.
(3.22). Now we observe the relationship of Fj[r] with n and k. In order to analyze the relation

26

3.5. Results and Discussion

with n first, we plot Fy[n] over the graph in Fig. 3.9, namely Fy[n] at step k = 0. At this initial
step we have the highest variance of Fy[n], so we can visualize its relationship with n better.
The colors represent the values of Fy[n] at different nodes. It can be noted that groups of
nodes that are more isolated tend to have higher values of Fy[n]. As a result, a higher number
of bits needs to be allocated to those nodes. This means that the contribution to the global
error of these nodes becomes higher. That happens because isolated nodes tend to amplify
their errors, whereas more connected nodes tend to dissolve their errors into the network.

We now plot in Fig. 3.10 the values of Fj.[n] versus k. For a given k, we show different values
of Fi[n], one value for each n. We observe that the general trend is to Fi[n] decrease with k,
as expected since initial errors indeed propagate more than the later quantization errors as
discusses earlier.

Some additional results on the relationship between Fj[n] and b[n, k] and an illustration of
the error propagation are available in the appendix.

k=0

10
0.050
0a
0.045

06 0.040

0.035
04

0.030

0z
0.025

0.0 0020

DO D2 04 06 08 10

Figure 3.9 — Fy[n] at step k = 0. The colors represent the values of Fy[n] at different nodes
(K=9,0=2,x=02, HA) = 3=, finlnl = aln)® + b[n)* - 1).

b) Variance of b[n, k]

We now have a deeper look at the actual optimal bit allocation in order to understand for
which topologies the variance of b[n, k] is high or low. A low variance means that the optimal
solution approaches the one of a uniform solution. In this case, it might be simpler to perform
a uniform bit allocation even with slightly worse MSE results.

In another set of experiments, 300 graphs generated from a weight matrix based on a thresh-
olded Gaussian kernel function were generated with the edge weight scale factor 0 fixed at 2.
The edge threshold value « varies from 0.15 to 0.4, so that we can have graphs with different
values of mean degree and variance. The unconnected graphs were removed from the experi-

27

Chapter 3. Optimized Quantization in Distributed Graph Signal Filtering

0.05

0.04

0.03

Feln]

002 .

001 I l

0.00 ' .] .]]
0 1 2 3 3 5 B 7 B

Figure 3.10 — Fy[n] versus k for all nodes (K=9,0=2,x=0.2, HA) = ﬁ, finlnl = alnl® +
b[nl*-1).

ment. The graphs were chosen with N = 50 nodes. The same graph signal as in Subsection
3.5.1is generated and filtered with the same filter of Eq. (3.36) with polynomial approximation
order K =9. We use Eq. (3.33) for computing b[n, k].

In Fig. 3.11, we can see the relationship between the degrees’ variance and mean with the vari-
ance of b[n, k] with respect to n (b[n, k] is averaged with respect to k). Each dot corresponds
to the experiment resulted with the use of a different graph. It can be noted from Figs. 3.11
that if the graph has low degree variance, that is, it is a more regular graph, it tends to have
a more uniform bit distribution. At the same time, graphs with higher degree mean (that is,
denser graphs) also tend to have more uniform bit distribution, which is expected since more
connected graphs tend to have the quantization errors smoothed out more uniformly in the
network. These facts mean that when the graph is both sparser and irregular it will require a
more irregular bit distribution hence optimal bit allocation is important.

In Fig. 3.12, we can further see the relationship with the variance of the nodes’ eccentricities.
The eccentricity of a graph node 7 is the maximum distance between n and any other node
of the graph. In Fig. 3.12 we can also notice the tendency that graphs with more irregular
eccentricities require more irregular bit distribution, because more eccentric nodes require
more bits than the less eccentric ones, as discussed previously. Which means that, for graphs
with more irregular eccentricities, the benefit of solving the optimal bit allocation problem is
higher.

A similar analysis with graphs generated from node degrees that follow a binomial distribution
is also available in the appendix.

28

3.6.

Conclusion

Degree variance

Gaussian kernel generated graph (distance based)

® |-

)
@

=
)
%]

0.20

015

0.10

0.05

3 8 10 12 14
Degree mean

54
&

Wariance of x[n, k]

Figure 3.11 — Relationship between the degrees’ variance and mean with the variance of b[n, k]
for graphs generated from a weight matrix based on a thresholded gaussian kernel function.
The colors represent the variance of b[n, k]. Each dot is a different graph.

Variance of x[n, k]

0.4 4

03

0.2 4

014

0.0

#® Gaussian kernel generated graph (distance based)

1 2 3 4 5 6
Wariance of the nodes” eccentricities

7

Figure 3.12 — Variance of b[n, k] versus variance of the nodes’ eccentricities for Gaussian kernel

generated graphs.

3.6 Conclusion

In this chapter, we have shown how the quantization error in distributed graph signal pro-
cessing tasks can be minimized by bounding the transmitted messages and by optimizing the
bit allocation in the network. Our method is important in cases where we have a bit budget
constraint. The optimal bit allocation varies with the network nodes and the steps of the
iterative filtering process; more specifically, nodes at the border of the network and the initial
steps of the iterative algorithm tend to require more bits. Its variance varies with the topology,
where irregular and sparse topologies lead to high variance of the optimal bit allocation. Ex-

29

Chapter 3. Optimized Quantization in Distributed Graph Signal Filtering

perimental results show that our distributed processing algorithm substantially decreases the
quantization error with regard to previous solutions and to a uniform bit allocation scheme. In
the next chapter, we will show how we extend these results to propose an optimal bit allocation
for distributed Graph Convolutional Neural Networks - GCNNs.

30

Optimized Bit Allocation for Dis-
tributed Processing with Graph Con-
volutional Neural Networks

4.1 Introduction

Network data require the design of learning and processing methods, that are adapted to the
underlying structure. These methods can be implemented either centrally or distributively,
depending on the application requirements. Successful learning (for classification, regression
or clustering tasks) from network data is challenging due to the complexity of such data.
A suitable machine learning model should exploit the underlying graph structure in order
to be efficient. Graph Neural Networks (GNN) are excellent tools for learning meaningful
representations for data defined over graph. These are generalizations of neural networks for
irregular data structures and are widely used in different fields [56].

Centralized processing assumes that the data is available at a central processor. However,
there are situations where centralized processing is not possible. For instance, the data could
be physically separated (e.g. in the case of wireless sensor networks) and its gathering is either
unfeasible or would incur high communication costs or bandwidth, energy and bottleneck
constraints. In some scenarios, there might be further requirements on data privacy protection,
which prevent data collection in a central entity. In the above settings, the signal is typically
processed distributively. Interestingly, GNNs can be implemented distributively by allowing
communication among neighboring nodes. This property is typically inherited from graph
filters, which are building blocks for GNNs and can be implemented distributively [3]. As
a matter of fact, GNNs have been successfully used for inference in distributed settings in
many different applications, such as anomaly detection [9], consensus [10, 11], decentralized
control [12-18], decentralized resource allocation [19], distributed regression [10], distributed
scheduling [20, 21], source localization [10, 22] and traffic prediction [23].

The many works in this field all assume infinite precision messages, or ignore the communi-
cation costs altogether in the decentralized inference stage. However, in order to collectively
implement the GNN, nodes have to exchange information messages through communication
channels. In practice, such messages are quantized and represented by a finite number of bits.
This leads to quantization errors in the received signals, which accumulate and eventually

31

Chapter 4. Optimized Bit Allocation for Distributed Processing with Graph
Convolutional Neural Networks

deteriorate the GNN model accuracy, if quantization is not optimized when bit budgets are
constrained.

Here, we propose an analytical solution to the optimal bit allocation problem for all message-
passing steps of the distributed GNN architecture, which permits to both preserve accuracy
of the target task but also to respect network bit budget constraints. We study the effects
of quantization error in the accuracy of distributed inference of a graph convolution neural
network - GCNN [57-59], that is a GNN architecture with built-in local and distributed nature
(i.e., fundamental operations are implemented locally). We assume that the architecture
has been trained a priori, possibly under infinite-precision assumption. This scenario can
happen, for instance, if the inference quantization conditions (such as the bit budget) are
not previously known, and one might opt for a general training to be used for different
settings. Alternatively, we might need to use models trained by a third party that were not
quantization aware. We formulate an optimization problem where we want to minimize
the total quantization quadratic error at the output of the GCNN, subject to communication
costs constrained by a given budget. We analytically solve the system of equations and
inequalities corresponding to the Karush-Kuhn-Tucker (KKT) conditions, which are necessary
conditions for a solution to be optimal in such a problem. Finally, we verify experimentally
our optimized solution. We performed experiments for the tasks of distributed denoising and
distributed source localization, for synthetic and real datasets. The results confirm that the
optimized bit allocation significantly reduces the quantization error compared to a uniform
bit allocation strategy and other baseline quantization strategy. Our experiments also show
that the optimal bit allocation tends to give a higher relevance to the messages in the middle
layers of the GCNN models. Thus, GCNNs can be implemented distributively in a setting
with constrained communication, without significant accuracy losses, as long as proper
quantization is deployed.

To the best of our knowledge, no prior work has considered quantization in distributed
GNNs, but quantization has been considered in other settings. Recently, in the context of
neural networks [60-63], and specifically graph neural networks [64, 65], quantization has
been considered for the centralized task of model compression. The goal is to reduce the
learned parameters to smaller precision, without impacting the accuracy of the model, in
order to improve memory usage and inference speedup. In the graph signal processing
field, quantization has already been considered in the tasks of distributed graph filtering
[44, 50, 51, 66] and distributed graph signal compression [67]. Closer to our work, the authors
of [68] analyzed the performance of decentralized inference with GNNs over noisy wireless
channels, in uncoded and coded communication systems, and developed retransmission
mechanisms to improve robustness for both cases. However, they did not study quantization
specifically, nor the design of an optimal quantizer, and are limited to single-layer GNN
classifiers.

The remaining of this chapter is organized as follows. In Section 4.2, we present the background
and setup for the distributed GCNN inference. In Section 4.3, we introduce our bit allocation

32

4.2. Distributed Graph Neural Network Implementation

optimization problem. In Section 4.4, we present our analytical solution to this problem.
In Section 4.5, we present our experimental results and analysis. Finally, in Section 4.6 we
conclude our work.

4.2 Distributed Graph Neural Network Implementation

4.2.1 Network Information Processing

In Chapter 2, we saw how we can filter an input graph signal f;,; = x to obtain an output
graph signal f,,; = y using the normalized Laplacian as the graph shift operator (GSO) for
processing. Using a generic GSO instead, Eq. (2.10) can be rewritten as

K
y=H©S)x=) hSx. 4.1)
k=0

In order to learn meaningful representations for graph signals, to be used in tasks such as
classification, regression or clustering, we need suitable machine learning tools that work for
graphs. We call neural networks that operate on graph data as Graph Neural Networks (GNNs),
which come in many diverse architectures. We consider specifically the Graph Convolutional
Neural Networks (GCNNSs) architectures [57-59], due to their structure amenable to distributed
implementation. In its most general form, one layer of the GCNN is composed of an FIR graph
filter bank, a feature aggregation function, and a point-wise non-linearity. After the last GCNN
convolutional layer, the resulting features are combined in a fully connected layer in order
to calculate the final GCNN output. We consider a GCNN with L layers and each layer with
respectively F; output features per node. The feature f of layer [is obtained by

R R
X, =0 Zng(S)x;g_l , 4.2)
g=1

where ¢ () is an activation function, and H lf §(8) is the graph filter of layer / that processes the
feature g of layer [— 1 and outputs part of feature f of layer /.

After layer L, each node aggregates the F; features with the use of a perceptron (i.e., a single-
layer fully connected neural network) and obtains the final output y. Both the non-linearity
(or activation function) and the fully connected layer are defined per-node (i.e., each node
can implement it independently, without communicating with each other), which allows a
distributed implementation as described in the next section. An illustration of the GCNN
architecture, with distributed operations, is given in Fig. 4.1. Next, we define our quantization
error and our minimization objective.

33

Chapter 4. Optimized Bit Allocation for Distributed Processing with Graph
Convolutional Neural Networks

Graph signal
xeRV

. . —
1
' ' [Distributed
FIR filter bank y \implementation

Node-wise

. layer1 6(’) 7\ implementation
- f\'.
Ve
R
. ~ efb\
HIY
jemonTmmmmmmmemeee .
['
i ' Distribut
: FlR fll‘er bank * : \ \l“D‘lset\:"\E:lgij.ﬂ"
: P
' ' =
' '
L} ' [Node-wise
', Layerl 0-(.) N ',’ 1 1mp\er‘\e'\tat|or\
b
Fa—l -]
= @@
\?’\ &
v

/ /Cnmpu[ed at ™
«——{ eachnode |
&\Tdependem!}y

Perceptron

!

y: output GCNN
(per node)

Figure 4.1 - GCNN architecture, with distributed operations.

4.2.2 Distributed GCNN Inference

We consider now the distributed implementation of the inference stage in a GCNN model'. We
assume that the GCNN model has already been trained, possibly under infinite-precision as-
sumptions. For distributed inference, the nodes share messages in order to jointly implement
all the FIR graph filters in every layer of the GCNN model. Each FIR graph filter only requires
communication with immediate neighbor. Besides the filters, every layer contains a feature

1We assume that the communication network and the data graph that describes the structure of the signal, are
aligned.

34

4.3. Bit Allocation Algorithm

aggregation function and a point-wise non -linearity operator. Both are defined per node,
so no communication is needed with the neighbor nodes. Firstly, the fully connected layer,
which combines the resulting features from the last GCNN convolutional layer, is also defined
per-node, with shared parameters, so this last step can also be performed locally at each node
independently from neighbors. We define as y the output of this GCNN if the inference is
performed under infinite-precision assumptions. In practice however, the messages have
finite precision, and must go through a quantization process before transmission. This adds
error to the system, which accumulates after going through the many iterations and layers of
the GCNN. We call the output of the quantized inference step as y9. We define the difference
between the inference output with and without quantization as

E=yl-y. 4.3)

The objective is to minimize this error when quantization has to respect a global bit budget for
the sum of all exchanged messages.

The quantization error is a function of the number of bits, since it affects y9, which will in
turn affect &, so we can determine a relationship & = f (b;). The total communication cost is

also a function of the number of bits, defined as C (b;). To simplify the notation, we define the

index i to represent the triple index /, f, g, for instance, the filter Hlf & will be referred as H'
instead. Similarly, we will replace the double index 7, k by the index j. We define then b;. the
number of bits used to represent the messages sent from node 7 at step k to its neighbors when
implementing the filter H lf €. Finally, our objective is to find the bit allocation that minimizes
the expected squared error, with a communication cost that obeys a given bit budget B, that
is,

minimize E{lI&I} = f (b))

i (4.9
subject to C(b;-) <B.

We will solve (4.4) in two levels: a filter level bit allocation, and a network-level bit allocation,
detailed next.

4.3 Bit Allocation Algorithm

4.3.1 Filter Level Bit Allocation

We develop here the quantization analysis for graph filters, for a general graph shift operator,
and additionally derive the equations for the quadratic error under optimal bit allocation. The
details are in Appendix B.1 for a generic graph shift operator (GSO), and also in Chapter 3 for
the translated normalized Laplacian. The mean squared error (MSE) of the quantization error

35

Chapter 4. Optimized Bit Allocation for Distributed Processing with Graph
Convolutional Neural Networks

Q' introduced at the output of filter H' reads

E{IQ" 17} =

(FZ)Z K-1N-1

z:ZF’*” (4.5)

k=0 n=
with
K-kK-k Y
i
j=1 p=

where $/*P represents the GSO to the power j + p, and h;C is the coefficient of the graph filter
H' at step k. The term F]l is an auxiliary variable.

In order to compute the bit allocation that will minimize the error in the output of the filter
H', we minimize in Chapter 3 the MSE under the bit budget constraint B, by solving the
optimization problem with the Karush-Kuhn-Tucker (KKT) conditions. The bit budget B! =
Y bj. is the number of bits that can be used in the distributed implementation of the graph
filter H'. The sum of the budget of each filter should be equal or smaller than the total bit
budget B available for the full GCNN implementation. With similar derivations of the ones in
Chapter 3, we find that the resulting optimal bit allocation that minimizes the MSE for filter
H'is

i
bi.:— 1 In 6H d[n] i | (47)
I~ 2In(2) mﬂmwﬂ
with
; N-1 K-1 6dn]
Bmw+zommgyn§m§ﬁ
i_ n= - d
i = exp| — , (4.8)
K Y din]
n=0

where K is the FIR filter order (i.e., the degree of the polynomial), N is the graph size, and d[n]
is the degree of node n. As discussed in Chapter 3, these results show that it is more efficient
to allocate a large share of the bit budget in the first steps of the iterative distributed graph
filtering algorithm.

We now calculate the value of E {II Q! ||2} when we use the above bit allocation b;'. for a given

filter bit budget B'. By applying (4.8) to (4.7), subsequently applying the result into (4.5), and
finally simplifying, we obtain

N-1 . —Biln4
{”Q ||} 1L {"exp 1 | (4.9
n=0 K Y dn
n=0

36

4.3. Bit Allocation Algorithm

with N p
-1 -1
_ 6d[nl
P A)

{'=d[nlexp — : (4.10)
K Y din]
n=0

As expected, when we have a large B’ budget, the expected error E {Il Q' |2} decreases. We can
see that with the negative exponential term that depends on B’ in (4.9).

4.3.2 Network-level Bit Allocation
a) Additivity Property

We have analysed thus far the quantization for filter level bit allocation. In this subsection
we link those results to the global level GCNN bit allocation problem. The error term used
in previous subsection, Q, is the quantization error introduced at the output of filter H’.
Let’s define here another error term for filter H’, &', as the contribution of that filter error to
the global error &. In other words, the error &’ would correspond to the error obtained by
implementing the GCNN in a scenario where only the messages sent while implementing
filter H' are quantized, and all the other messages from the implementation of other filters
are assumed to have infinite precision. The term & is usually different than Q' since the latter
goes through the remaining of the network, after the output of H, undergoing alterations, to
become the former.

We want to relate the quantization error at the output of the graph filters to the global quanti-
zation error at the output of the GCNN model. So, we first use an approximation called the
additivity property
E{i61”} =Y E{ils"1?}. (11
1

The additivity property has been validated both theoretically and empirically in [69, 70] for the
quantization of neural networks. We also experimentally validate this property for our specific
GCNN case, in Section 4.5. If we define the total number of bits used to implement filter H I as
B', and using the additivity property, we rewrite the problem (4.4) as

minimize E{II&IIZ}ZZE{HéaiHZ}
b’ i
j . ! (4.12)
subjectto) B'<B.
i

b) Linear Quantization Approximation

In order to relate the quantization errors at the output of the graph filters Q’, to the global
quantization at the GCNN model output &, we have previously obtained a relationship be-
tween &’ and & in (4.11). We still need to find a relationship between &’ and Q. We know

37

Chapter 4. Optimized Bit Allocation for Distributed Processing with Graph
Convolutional Neural Networks

that Equation (4.3) becomes &’ = & = y¥ — y when only the implementation of filter H uses
quantization, by definition. So, we implement the GCNN with only the quantization of H', in
order to see how Q' evolves in the network and relate it to the final error output &’ = &. Before
the notation simplification, we were referring to H' as Hlf ¢ instead, the graph filter of layer [
that filters the feature g of layer / — 1 and outputs part of feature f of layer /, as in Equation
(4.2). After implementing Hlf § and only this filter, with quantization, the feature f of layer [
becomes .
. -1
xhi=o(Q'+Y H¥®x% |, (4.13)
g=1
as opposed to Eq. (4.2) for non-quantized settings.

It has been shown [69] that deep neural networks (DNNs) can be linear to the quantization
error, under the assumption that the error is much smaller than the original value. The work
focused on the validity of the linearization for quantization noise on the non-linear layers of
ReLU, Max-pooling, Sigmoid and ReLU. Given that the differences between GNNs and DNNs
lie in the convolutional layers, which are linear in both cases, the conclusions are also valid
here. Based on the linearity assumption, we can simplify Eq. (4.13) as

. Fiy
(xlf)q:a(Ql)+a(Z Hlfg(S)xlg_l). (4.14)
g=1

Applying Eq. (4.2) on the term on the right of Eq. (4.14), and using again the linearity assump-
tion (which is only valid for the error term) on the term on the left, we obtain

«N7=Q" +x/. (4.15)

We now derive how this error term propagates to the features in the following layer (I + 1). The
feature ¢ of layer [+ 1, under quantization in the filter H lf €, is given by

F
(fo)”:U(Z H,[fl(S)(x;g)"), (4.16)
g=1
where (xlg)9 with g € [1, F;] represents all features from the previous layer /, under quantization

in the filter Hlf &, Out of those, only when g = f we have the error term (Eq. (4.15)). For every
other value of g, (x;g)9 = xlg . If we apply (4.15) into (4.16), we obtain

.
(%,)= U(H,’f1 $Q'+) Hltfl(S)xf), (4.17)
g=1
and using the linearity assumption once more, we obtain
)7 =H! (9Q +x,,. (4.18)

If we keep propagating the error of quantization in filter H lf & through the subsequent layers,

38

4.3. Bit Allocation Algorithm

until the final output, we obtain the relationship

yi—y=6"=MQ}, (4.19)
with
f F; Fi Fr- (p-1) i il tf
=M/5,=3) .. Z «;H (S)HI' (S)..H}! S (4.20)
i=1j=1 =

with L — p = [and with a; being the ith weight of the fully connected layer after the last graph
convolutional layer.

c) Approximate Optimization Problem

We now use the above approximations of Eq. (4.19) and Eq. (4.11) to rewrite the bit allocation
problem in a simpler form. First, we note that the Euclidean norm || ||, has the following
property

1712 = 1M Q"ll2 < 1M [1211Q" 112 < M1 F1I Q' 2, (4.21)

where || ||r denotes the Frobenius norm, as the Euclidian norm and the spectral norm (the
matrix norm induced from the Euclidian norm for vectors) are sub-multiplicative (i.e., obey
the property ||AB|| < || Al|||BI]). Besides, we also use another inequality from linear algebra,
[|All2 < ||AllF, in order to relate the error to the Frobenius norm of the operator M i sinceitis
easier to compute than the spectral norm. We can obtain (omitting the index in the Euclidian
norm for simplicity of notation) the following inequality:

E{ie?} < M E{1Q"17}. (4.22)

Using the above inequality, we rewrite the optimization problem of Eq. (4.12) as
minimize Z||M"||§E{||Qi||2}.
Bi ;
subjectto) B'<B (4.23)
i

Bi >0,

assuming that within each filter, the bits are allocated according to Eq. (4.7) and Eq. (4.8).
Thus, we effectively minimize an upper-bound on the error, as a proxy for the true optimal bit
allocation.

39

Chapter 4. Optimized Bit Allocation for Distributed Processing with Graph
Convolutional Neural Networks

4.4 Bit Allocation Problem Solution

We now propose an algorithm to solve the optimization problem of Eq. (4.23). In order to use
our optimization tools, we rewrite the objective and constraint functions as

minimize f(Bi) :ZIIMiII%E{IIQi||2}, (4.24)
i

subject to a1(B) = ZBi -B<0, (4.25)
i

g'(B))=-B' <0, (4.26)

where Eq. (4.26) constraints the solution to positive budgets. The Karush-Kuhn-Tucker (KKT)
conditions are necessary conditions for a solution to be the optimal solution of such a problem.
If the problem is convex, the conditions become sufficient. As both objective and constraints
in Eq. (4.23) are continuously differentiable and convex on B!, we can actually use the KKT
conditions to solve the optimization problem of Eq. (4.24). As the constraints are also affine,
regularity conditions are also satisfied.

The solution of the problem should satisfy the stationary condition
VF(BY+) piVgi(B") =0. (4.27)
i
Applying the equations (4.24), (4.25) and (4.26) into Eq. (4.27), we obtain the solution

Bi=_—lln#_ui

—, 4.28
I IR! (4.28)
with
In4
[=—— (4.29)
N-1
K Y din]
n=0
and
. - K N-1 ;
R = ||M'||5—) 4.30
1M1 ngoc (4.30)

Above, the parameter y is associated with g; and the parameters u’ are associated with g’.

The solution also has to obey the complementary slackness conditions

pigi(BH) =0, 4.31)

40

4.4. Bit Allocation Problem Solution

which translate into

p(ZBi - B) =0, (4.32)
w' B =0. (4.33)

The trivial solution of the optimization problem (every B! = 0) does not satisfy the KKT
conditions, since that would mean p = 0 in Eq. (4.32), considering that we have a positive
budget B. If we put Eq. (4.28) to 0, with p = 0, and solve for u!, we would obtain u’ = —IR?,
which is negative. This means that the trivial solution does not satisfy the dual feasibility
condition (y; = 0).

Therefore, we know that some (at least one) filters would have a non-zero budget. We call this
set of filters B'*. Similarly, the set of filters that have zero budget would be called B (in most
cases this set would be empty, especially with a bit budget that is large enough). We do not
know a priori how many (and which) filters each set contains. If we consider only the set Bit
in the previous equations, with Eq. (4.33) we obtain ,u’ur = 0. Applying this to Eq. (4.28), we
obtain
Bt = ! -,
I IR?

A solution with p = 0 would not satisfy the KKT conditions, since Eq. (4.34) would have a

(4.34)

logarithmic function of zero, which is undefined. Thus, to obtain the correct value of u, we
apply Eq. (4.34) into Eq. (4.32), knowing that the term in the right hand side of Eq. (4.32)
should be equal to zero. We finally obtain

~-BI+Y; In(IR)
|Bi*|

U =exp , (4.35)
where |Bi*| is the cardinality of B'*, that is, the number of filters with positive budget. Since
Eq. (4.35) is an exponential function, it is always non-negative, which satisfies the KKT dual
feasibility condition.

There is still an open question. We do not know from the start how many filters have positive
budget, and which ones are those. Thus, we propose the following strategy: we initially
consider that all filters have a positive budget. And then we calculate Eq. (4.34) and Eq. (4.35).
If the final result is all positive, that means that we have found a solution that satisfies all
KKT conditions, therefore is the optimal one. On the contrary, if one (or more) filters have a
negative bit budget, the filter with the lowest B’ (the more negative one), is assigned B’ = 0
instead. The bit allocation is computed again for the remaining filters, and the same procedure
is repeated until we have a bit allocation where everyone is positive. It is guaranteed that at
least one filter will be positive (B’ = B in this case). Finally, to be complete, we note that a
zero number of bits means that the message being transmitted is assumed to be in the middle
of the quantization range. Once Eq. (4.24) is solved, we allocate bit optimally for each filter
with Eq. (4.7) and Eq. (4.8). In Algorithm 1 we present the overall solution and summarize the

41

Chapter 4. Optimized Bit Allocation for Distributed Processing with Graph
Convolutional Neural Networks

above results.

Finally, the Algorithm 1 always converges to the optimal solution. Indeed it searches for
B! values that satisfy the KKT conditions, and as mentioned before, these conditions are
necessary and sufficient to be the optimal solution, since it is a convex problem. As we start
with the assumption that all filters have a positive budget, and decrease the value of |Bi*|, at
any point that the algorithm finds only positive and zero values of B/, we know that this set
of values satisfies the KKT conditions. In case the overall bit budget is very small, and |Bi*|
eventually becomes 1 in the algorithm search, the KKT equations discussed before would yield
the result B’ = B. This guarantees that the algorithm never outputs the trivial solution (every
B =0), which we already know does not satisfy the KKT conditions (for B > 0).

Input: Budget B
|Bi*| = total number of filters
Calculate u with Eq. (4.35)
for every filter do
L calculate B’ with Eq. (4.34)

while there are negative B! do
Assign the filter with lowest B’ to zero
|Bi*| = |B'*| - 1; recalculate u with Eq. (4.35)
for all the other filters do
| recalculate B with Eq. (4.34)

or every filter with positive B' do
calculate ! with Eq. (4.8)
for every individual message do
t calculate b;'. with Eq. (4.7)

=]

Algorithm 1: Optimized bit allocation solution.

4.5 Experimental Results

In this section, we present experiments to validate the proposed allocation scheme on illus-
trative distributed processing tasks. In all cases, we pre-train a GCNN network architecture
[57-59] that is eventually used for distributed inference. We study the performance of dis-
tributed inference under the optimized bit allocation and compare it to a uniform allocation
and other heuristic baselines. The focus of the first set of experiments is on the regression task
of distributed denoising, and later on, we perform experiments on the classification task of
source localization.

42

4.5. Experimental Results

4.5.1 Distributed Denoising
a) Experimental Setting

The distributed denoising of a graph signal is a node-level regression task. The goal is to
process a noisy signal x = y°"i8nal 1 3y such that the output y = fy(x) resembles the original
signal y = y°riginal where @ represents the learnable parameters for the GCNN model fp. The
original signal y°'18l serves as the target, such that a model is trained to minimize the mean
squared error (MSE) between the prediction and original signal. We perform experiments on
two datasets, a synthetic dataset using graphs of N =30 nodes and a realistic dataset with a
graph of N =355 nodes.

We build several synthetic datasets consisting of 1000 graph signals each, supported on
the same graph 4. We generate 5 such datasets, each of them supported on a different
graph ¢. The 1000 signals, in every dataset, are split into sets of 800/100/100 signals for
train/validation/test. We first generate the supporting graph ¢ by placing N = 30 nodes
uniformly at random in a unit square, and build the adjacency matrix using the distance
between nodes. A connection is made if the distance is smaller than 0.3, and the weight of
the edge is computed with a Gaussian kernel function as W;; = edizf T with 7 = 0.25, and d; is
the distance between nodes i and j. Then, for each datapoint we sample a random smooth
function for the 2D surface of the unit square, defined as f(x, y) = A-sin(ax)+B-cos(fy), where
A,B~%(0.5,1.5) and «, § ~ % (3,7) are random latent variables, %/ symbolizes the uniform

distribution and (x, y) are the datapoint’s coordinates. A graph signal yoriginal

supported on
4 is generated by assigning to each node the value of the function f(x, y) at that point in the
plane. The signal y°"8"@ serves as the ground-truth objective, while the input noisy signal x

is generated by adding Gaussian noise w ~ 4 (0,02) as x = y°"ignal 1 3y with 2 = 0.1.

We also validate the proposed method on a non-synthetic dataset supported on a larger graph.
The Moléne climatic dataset? contains recordings from 355 meteorologic stations in the area of
Moléne, France. By using their geographic position we form a supporting graph ¢ of N =355
nodes. The dataset has 930 samples corresponding to temperature recordings for 930 days.
The original temperature recordings represents the ground-truth signal y°#"2 The noisy
input x is generated by adding noise w of variance o = 0.1. For all experiments, we always
keep the same split proportion (80%/10%/10%).

The network architecture is fixed for the main experiments as a GCNN with L = 3 layers,
F =2 hidden features per layer and filters of order K =5, as discussed in Section 4.2. With
this architecture, the model has a total of 10 filters. As for the graph shift operator (GSO),
we use the translated normalized Laplacian. In Chapter 3, it is shown that the signal stays
bounded when it is processed with a graph filter with this GSO. The model is trained on the
train set for 100 epochs, with a learning rate of 0.001, and we use the Adam optimizer with
the hyperparameters arguments ; = 0.9 and f, = 0.999, and batch size of 20. We train 20

2 The dataset can be found at https://data.europa.eu/data/datasets/ 539f2f8ba3a729478718a7f3?locale=en.

43

https://data.europa.eu/data/datasets/539f2f8ba3a729478718a7f3

Chapter 4. Optimized Bit Allocation for Distributed Processing with Graph
Convolutional Neural Networks

different models with the same network architecture but different random initialization of the
model parameters (i.e., the filters coefficients) and study the impact of using an optimized bit
allocation on average. For the quantization range, we use the typical empirical values. In order
to determine those, we compute the quantization range for each layer and trained model

using training data. Specifically, for each trained model, we define the range as the interval

m
I

one forward pass (or inference) on the 800 training samples. Precisely, this single forward pass

[0, x;nax], where x"# is the maximum absolute value observed on all features on layer / during
all over the training data is done after the training phase, with the only end goal of determining
x;"*, and should not be confused with the distributed testing phase. The minimum value
of 0 is guaranteed as the input of each layer is the output of the ReLU non-linearity in the
previous layer. For the input layer 1, a range of [—x]"®, x]"®] is used. We assume that this
interval encloses the majority of possible values that features will also take at test time. Thus,

each model and layer use a custom working range.

To evaluate the proposed bit allocation strategy, we measure the MSE between the prediction
of the model in an ideal communication scenario, and the one in a quantized communica-
tion setting. Considering y = fg(x) the denoised signal under ideal communication (i.e., no
. . q quant
quantization) and y = f
compute the MSE between their difference and call it the quantization MSE (as opposed to

the denoising MSE between y°8al and y).

(x) the denoised signal with quantization during inference, we

As, to the best of our knowledge, there are currently no other bit allocation schemes for the
distributed inference on graphs, we design several baselines to compare the proposed optimal
allocation scheme to. The uniform bit allocation baseline allocates the same amount of bits
to all messages. A layer-wise bit allocation follows the heuristic of allocating more bits on
average to different layers of the network. Specifically, with L = 3 layers, we denote (A1, Az, A3)
the number of bits difference to the base rate. For example, with a base rate of 8 bits per
message, the Layer 1 (+1,0,—1) scheme allocates 9, 8 and 7 bits, respectively, for messages in
layers 1, 2 and 3, effectively allocating more bits to the first layer. In this layer-wise scheme,
bits are allocated uniformly within each layer. The next baseline is a range-based allocation,
which allocates bits to each layer depending on the quantization range of the layer. In this
baseline, we aim at a uniform quantization step for all messages, by maintaining the ratio in
Eg. (2.15) constant, with the constraint of meeting the overall communication budget. Lastly,
we use a graph-based allocation scheme, which only uses the graph-level bit allocation from
the optimal solution, but within the filters, it allocates bits uniformly (as opposed to the full
optimal solution, which varies the allocation with the nodes n and filter tap k).

b) Bit Allocation Performance

We train 20 models with random initialization on each of the 5 graphs of the synthetic dataset.
Under ideal communication conditions (i.e., no quantization), the GCNN models successfully
denoise the input (test) signals, with the denoising MSE in the output signals around 0.05912 +
0.005. Which is smaller than the additive noise variance of 0.1 added to the clean input signals.

44

4.5. Experimental Results

The denoising MSE under optimal bit allocation quantization is of 0.05913 + 0.05, for an
average of 8 bits/message, which shows that, even with quantization in distributed denoising,
the GCNN models are quite effective.

In Fig. 4.2, we plot the quantization MSE at different average bitrates for the optimal bit
allocation and several baselines. Results are averaged over five synthetic graphs with error
bars representing standard deviation. For each graph, we train 20 models with random
initialization, use each of them for denoising, and compute the average quantization MSE. It
is important to train several models because the filters learned in the GCNN play an important
role in the impact of quantization, with some filters being more robust and others more
vulnerable to small changes in the signal. We use the same 20 models for all baselines.

le-5
—F— Uniform
81 Optimal
—}— Graph-level
— Layer1(+1,0,-1)
—— Layer3(-1,0, +1)
w 61 —}— Range-based
0
=
c
°
T
N 4 4
-
c
©
3
o
2 -
0 -

8.00 825 850 875 9.00 9.25 950 9.75 10.00
Average bits/message

Figure 4.2 — Quantization MSE for different bit allocation schemes on a distributed denoising
task. Average across 5 supporting graphs and 20 models for each graph of N=30 nodes, error
bars represent standard deviation.

The proposed optimal bit allocation consistently beats every other baseline. It outperforms
the uniform allocation by a factor greater than 2 in terms of quantization MSE. The second
best scheme is the graph-level one, which only uses the graph-level bit allocation from the
optimal solution. This means that a simpler and less complex optimisation can be obtained
by only optimizing the bit allocation across filters, simplifying the in-filter allocation to a
uniform allocation. This simplified bit allocation (green) still performs better than every
other baseline, proving to be a good trade-off between complexity and performance. Yet,
the better performance of the complete optimal allocation (orange) shows the incremental
performance gain in also optimizing the allocation within the filters. The uniform and range-
based allocation perform similarly, with the range-based strategy being slightly better, showing

45

Chapter 4. Optimized Bit Allocation for Distributed Processing with Graph
Convolutional Neural Networks

that an equal quantization step size for all messages is a better strategy than an equal bit
allocation for all messages. Finally, the two heuristic strategies of a decreasing bit allocation
per layer (red) and an increasing bit allocation per layer (purple) are not good schemes.

We further test the proposed allocation scheme on a larger graph of N=355 nodes, by denoising
a signal from the Moléne climatic dataset. In this case, we use 5 different models (trained with
different initialization of the learnable parameters) and average the results. We can see these
results on Fig. 4.3. The standard deviations can be seen in the appendix. Again, here we see
that the optimal bit allocation outperforms every other baseline, followed by the sub-optimal
graph-level allocation. It shows the validity of our algorithm for non-synthetic and larger

datasets.
0.0007 A
—— Uniform
Optimal
0.0006 1 —— Graph-level
—— Layer1(+1, 0, -1)

0.0005 A —— Layer 3 (-1, 0, +1)
w —— Range-based
g
= 0.0004 -
o
g
= 0.0003 A
C
©
>
o

0.0002 A

0.0001 A

0.0000 A

8.00 825 850 875 9.00 925 950 9.75 10.00
Average bits/message

Figure 4.3 — Quantization MSE on the Moléne dataset for distributed denoising, supporting
graph of N=355 nodes. Average across 5 models. The standard deviations can be seen in the
appendix.

Next, we study the impact of the model depth on the bit allocation results. We perform
additional experiments on the same denoising dataset supported on graphs of N = 30 nodes,
in similar settings, using models with L = 2 and L = 4 layers to validate our solution with
different network depths. In Fig. 4.4 we observe that the optimal bit allocation (followed by
the sub-optimal graph-level allocation) also outperforms every other baseline, for both L =2
and L = 4. The standard deviations can be seen in the appendix.

46

4.5. Experimental Results

59 —— Uniform —— Uniform
Optimal Optimal
—— Graph-level 84 —— Graph-level
44 —— Layer1(+1,0,-1) —— Layer1(+1,0,-1)
—— Layer 3 (-1, 0, +1) —— Layer 3 (-1, 0, +1)

—— Range-based —— Range-based

Quantization MSE
Quantization MSE

8.00 825 850 875 9.00 9.25 950 9.75 10.00 8.00 825 850 875 9.00 925 950 9.75 10.00
Average bits/message Average bits/message

(a) GCNN with L=2 layers. (b) GCNN with L=4 layers.

Figure 4.4 — Quantization MSE for different bit allocation schemes on the distributed denoising
task. Average across 5 supporting graphs of N=30 nodes. Results for each graph are averaged
across 20 models of L=2 or L=4 layers. The standard deviations can be seen in the appendix.

c) Bit Allocation Analysis

We now study in more details the bit allocation results in different settings. We first analyse if
any bit allocation pattern emerge, at a layer level, with the optimal bit allocation. Specifically,
we are interested in understanding if messages exchanged in any particular layer are more
important than in other layers. In Fig. 4.5 we plot the average quantization step size per filter in
each of the three layers, for 100 models (20 models per graph, 5 graphs) on the case of synthetic
graphs with N=30 nodes. Outliers have been removed for a better visualization. Interestingly,
we see a tendency of a lower quantization step (i.e., a higher relative bit allocation) in the
second layer, while the quantization step is higher in the first and third layers. This means
the messages sent in the middle layers are more important than the ones sent in the first and
last layers. A similar trend can be seen in the Moléne dataset, in the appendix. A possible
explanation for this is that the first layers contribute more to the global quantization error, as
the errors accumulate through posterior layers. On the other hand, the last layers are closer to
the model evaluation/prediction, so the accuracy impact might be stronger. The middle layer
would then constitute a trade-off between these two opposing trends.

In Fig. 4.6 we plot the equivalent quantization step images. For L = 4, we have another
confirmation of the trend that the middle layers are more important for the bit allocation.
For L = 2, since there are no middle layers, we cannot observe the same trend, but we can
observe that the first layer is more important than the last layer, probably due to the fact that
quantization errors in the first layer accumulate more.

We finally perform experiments to empirically validate the additivity property used in Sub-
section 4.3.2. We use similar settings to those in previous subsections. Specifically, we use
the same synthetic dataset and the same 100 trained models as in Section 4.5.1. We derive
all the individual filters errors &' by implementing the GCNN in a scenario where only the

47

Chapter 4. Optimized Bit Allocation for Distributed Processing with Graph
Convolutional Neural Networks

0.08 A

o

o

1)
!

0.04 A

Quantization step

0.02 A

0.00 A

1

3

1 — i

Figure 4.5 - Quantization step size per layer using the optimal allocation scheme. Lower values
mean a higher relative bit allocation. Each datapoint represents the average quantization step
of a filter in that layer of a model. A total of 100 models (20 models per graph, 5 graphs) are
represented in the box plot, with 2, 4 and 4 filters in layers 1, 2 and 3 respectively. Bit budget of
8 bits/message on average.

0.05 1
0.08

o
o
&
L
o
=)
)

o
o
@

Quantization step
Quantization step

o
o
N

o
=3
B

o
o
N

0.00 J_ J_ L l

1 2 1
Layer Layer

(a) GCNN with L=2 layers. (b) GCNN with L=4 layers.

Figure 4.6 — Quantization step size per layer using the optimal allocation scheme for models
with L =2 and L = 4 layers. Lower values mean a higher relative bit allocation. Each datapoint
represents the average quantization step of a filter in that layer of a model. A total of 100
models (20 models per graph, 5 graphs) are represented in each box plot, with 2 and 4 filters
for layers 1 and 2, respectively. The last two layers of L = 4 also have 4 filters each. Bit budget
of 8 bits/message on average.

48

4.5. Experimental Results

messages sent while implementing filter H? are quantized, and all the other messages from
the implementation of other filters are assumed to have infinite precision. We sum all values
of &' for all filters, and compare the sum to the global error value &, obtained when all filters
are quantized at the same time. We plot the results in Fig. 4.7, where the y-label represents
the true error, i.e., &, and the x-label represents the sum of individual errors. We also draw
the equality line in dashed blue. The closer the values are to the equality line, the stronger
the validity of the additivity property. Every dot represents an average of 5 runs for each one
of the 100 models, to mitigate the randomness of the quantization noise introduced. The
red dots represent quantization schemes with 8 bits per message in average, while the blue
dots represent quantization schemes with 10 bits per message in average. In the image we
can see that all dots are very close to the equality line, which builds a good evidence for the
approximate additivity property for quantization in GCNNs. We also plot similar results for
the uniform bit allocation and for a lower bit rate in Figs. 4.8 and 4.9, respectively. We can see
that the additivity property holds for these cases as well.

Quantization error

10—4 4

O 8 bits/message
O 10 bits/message

10—5 4

True error

1073 1074
Estimated error (sum of individial error per filter)

Figure 4.7 — Empirical evaluation of the additivity property for optimized bit allocation. Each
point is from one model, representing the average across 5 runs on the synthetic dataset.

4.5.2 Source Localization
a) Experimental Setting

Source localization is a binary classification task at node-level. It refers to a broad class of
applications in which the origins of a given diffused signal should be located. For example,
finding the beginning of an epidemic, the source of heat, or the origin of an information

49

Chapter 4. Optimized Bit Allocation for Distributed Processing with Graph
Convolutional Neural Networks

Quantization error

g
O 8 bits/message

10-4 O 10 bits/message
g 1075 .
L)
(]
=

1076 4

=

10°% 1073 1074
Estimated error (sum individial error per filter)

Figure 4.8 — Empirical evaluation of the additivity property for uniform bit allocation. Each
point is from one model, representing the average across 5 runs on the synthetic dataset.

Quantization error

J
O 8 bits/message
10-24 O 4 bits/message
@
1073 @ D
s %
@
S 104 ©
=
o0Lo
10—5 4
1076 E T T T T T
10 10-3 1074 1073 1072

Estimated error (sum individial error per filter)

Figure 4.9 — Empirical evaluation of the additivity property for optimized bit allocation. Each
point is from one model, representing the average across 5 runs on the synthetic dataset. We
show here the lower bit rate of 4 and 8 bits/message in average.

50

4.5. Experimental Results

spread in a social network. Given a diffused graph signal x, the goal is to identify which nodes
are the sources of the original signal y°"#2 that is, which nodes were originally active in
yeriginal The signal y°Ui8inal can only have nodes with active (1) or inactive (0) values, in this
type of task. We generate a synthetic dataset for this task on a supporting graph ¢ of N =30
nodes. We repeat the process for 5 different graphs ¢, so we effectively generate 5 different
datasets. The generation of a graph is random and analogous to the process described in
Section 4.5.1. Then, we construct 1000 samples for each graph, which we split then into
800/100/100 sample sets for train/validation/test, respectively. For each datapoint we sample
a source signal y°"igina e {0, 1}V where nodes are either active, with a value of 1, or inactive,
with a value of 0. This signal y°"i8i" is also used as the ground-truth. The probability of a
node being active is set to p = 0.1 with a minimum of one node in ¢ being active, for each
sample. Then, we diffuse the signal as x = §¥y°18inal for 3 total of k = 3 steps.

Similarly to Section 4.5.1, we use a GCNN architecture with L = 3 layers, K = 5 filter order and
F =2 filters per layer. We train 20 models with random initialization for each of the 5 graphs,
100 models in total, and study the results on average. A model fp receives the diffused signal x
as input, and predicts, for every node, if it was originally active or not, as y = o(fg(x)). This is
a binary classification task for each node. The point-wise sigmoid function o () transforms
the output for each node into the range [0,1] such that it can be interpreted as a probability. A
node n is predicted as an active source if y, > 0.5. The model is trained for 100 epochs on a
weighted cross-entropy loss, with a weight w =5 for the minority class “active” (to compensate
for the imbalanced dataset), a learning rate of 0.001, and we use the Adam optimizer with the
hyperparameters arguments 1 = 0.9 and 8, = 0.999, and batch size of 20.

Similarly to the evaluation in Section 4.5.1, we measure the quantization MSE to evaluate a bit
allocation scheme. Given the prediction under ideal communication scenario y = o (fédeal (x))
and the prediction under quantization y9 = og(f;uam
(transform a regression model into a classification one), we define quantization MSE as

(x)), with o(-) the Sigmoid function

MSE(y,y9). This is a different evaluation from previous experiments, so we can observe
the performance of our method in a classification task as well. We evaluate the optimal
bit allocation scheme against a uniform allocation, a layer-wise allocation, a range-based
allocation and a graph-based allocation, described in Section 4.5.1.

b) Optimal Bit Allocation Performance

The trained GCNN models were able to solve the source localization task with moderate
success. The average performance across all 100 models (20 models per graph, 5 graphs) on
an ideal communication scenario was of 26.8% +2% precision 3 with a 56.4% + 6.9% recall 4.
However, the performance when the messages are quantized under optimal bit allocation was
of 26.5% +1.8% precision with a 55.0% +6.1% recall, which shows that the GCNN can maintain

3precision = true positives / (predicted true positives + predicted false positives).
4Recall = predicted true positives/ (true positives + false negatives).

51

Chapter 4. Optimized Bit Allocation for Distributed Processing with Graph
Convolutional Neural Networks

its performance when quantization at inference time is done properly.

In Fig. 4.10, we plot the mean quantization MSE at different average bitrates using the optimal
bit allocation scheme and several other baseline schemes. Results are averaged across 5
graphs. For each graph, we train 20 models with random initialization and take the average
quantization MSE. The standard deviations can be seen in the appendix. The optimal bit
allocation consistently outperforms every other baseline, achieving a lower quantization MSE
for all bitrates. Once again, the second best allocation is the graph-level scheme, a simplified
version of the optimal scheme, which proves to be a good trade-off between performance and
complexity.

le-5
5 4 —— Uniform
Optimal
—— Graph-level
—— Layer1(+1,0, -1)
47 —— Llayer3(-1,0, +1)
w —— Range-based
w0
=
c 31
o
=1
©
N
€
S 27
o
1 -
0 -

8.00 825 850 875 9.00 9.25 9.50 9.75 10.00
Average bits/message

Figure 4.10 — Quantization MSE for different bit allocation schemes on a source localization
task. Average across 5 supporting graphs and 20 GCNN models for each graph of N=30 nodes.
The standard deviations can be seen in the appendix.

4.6 Conclusion

In this work, we studied the effect of quantization in the distributed implementation of GCNNs
and we proposed an analytical solution to the bit allocation problem. We performed experi-
ments for the tasks of distributed denoising (regression) and distributed source localization
(classification), for synthetic and real datasets. The results validate the optimised bit allocation,
which prove to reduce substantially the quantization error compared to a uniform allocation
and other baselines. We also found that the optimised bit allocation tends to give a higher
relevance to the messages in middle layers of the model.

52

4.6. Conclusion

So far, we have assumed that the communication network and the data graph that describes
the structure of the signal, are the same. This is not always the case, and sometimes we do not
even have the data graph a priori. We will explore these questions in the next chapter.

53

5] Distributed Graph Learning with
Smooth Data Priors

5.1 Introduction

In the previous chapters, we have assumed that the communication network and the data
graph that describes the structure of the signal, are aligned and known. However, there are
settings where the underlying data graph is not given explicitly and has to be learned, which
has led to the so-called problem of graph learning (GL)[24-31]. In the graph learning literature,
the graph needs to be learned from the signals, so that processing tasks, besides interpretability,
can be possible [32, 33]. A common assumption is that the signal values change smoothly
across adjacent nodes of the unknown graph topology [34-38]. Under this assumption, the
graph learning task amounts to finding the graph structure on which signal values differences
on nodes associated with the same edge (and large weights) are minimized. !

Centralised settings tend to assume that the message is already gathered, with no cost, in the
central processor. Many times the observation data is physically separated and in order to
bring it to a central processor, there is a communication cost associated with it, specially if
there is not a direct communication path between nodes and the central unit. The commu-
nication costs tends to be higher the bigger the network is, since it increases the number of
hops to deliver the signals to the central node, and also when the number of graph signals is
high. Distributed methods have recently emerged in order to scale to big networks, deal with
privacy, bandwidth and energy constraints, or to avoid bottlenecks on the central processor
(in the cases where centralized topologies are viable), besides the added robustness to the
network in case of node failures.

Some works considered the graph learning task in the context of distributed algorithms. For
instance, the authors in [71, 72] consider networks that perform decentralized processing
tasks. They propose to observe the evolution of the signals in order to infer the underlying

1 This chapter contains work which has been published in:
Nobre, I.C.M., El Gheche, M. and Frossard, P, 2022, May. Distributed graph learning with smooth data priors.
In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp.
5852-5856).

55

Chapter 5. Distributed Graph Learning with Smooth Data Priors

graph that lead to the observed signal evolution. The graph learning tasks in itself, however,
requires a central processor that gathers all observed signals. Similarly, the authors in [73]
present a fusion center with the objective of joint recovery of network transmitted data and
connection topology in a collaborative network, with a tensor-based approach. The nodes
perform in-network coding in order to robustify data recovery. The coded signals are then
communicated directly to this fusion center. In a different type of setting, the work in [74]
tackles the social learning problem, limited to directed weakly-connected graphs, where the
network is partitioned into sending and receiving sub-networks. Given the beliefs collected at
areceiving agent, the task is to discover the influence that any sending sub-network might
have exerted on this receiving agent. The work does not however retrieve the topology of the
network. Closer to our work, the works [75, 76] aim to learn a graph on a graph-based filtering
multivariate model, differently from our work that focuses on the smoothness model. None
of the works cited above, that consider the graph learning task in the context of distributed
algorithms, takes into account the communication costs in the process of learning the graph.

In this work, we propose a distributed graph learning framework that carefully considers
the communication costs for exchanging data between the different nodes of the graph. We
assume that there is a communication graph that connects the nodes, and we search for
a data graph that appropriately describes the structure of the data. We formulate a graph
learning problem under the assumption that the data varies smoothly over the target data
graph. Then, we propose a new distributed optimisation algorithm to solve the graph learning
problem while limiting the communication costs. This is achieved by a combination of local
and distributed processing in the network. In particular, we propose to compute the gradient
step and most of the optimization constraints in the nodes, and then to satisfy the symmetry
constraint with a distributed projection. We propose an objective function with low number
of parameters and easy to optimize, which facilitates distributed implementations since the
parameters can be pre-set before the algorithm runs distributively. Our problem is solved in
two steps, a first one, an initialisation, where nodes exchanges their signals in order to calculate
the quadratic differences. The algorithm lowers redundant communication steps by using
the more central nodes in a cluster of neighbours to calculate all the quadratic differences
in their local vicinity and to share the results with the neighbours, without the information
ever leaving the vicinity. In the second step, the distributed optimisation step, the nodes
jointly try to find the minimum of the objective function. We use one Adam optimiser for each
node, which operate independently from each other. To take into account three out of the
four constraints, we project the solution in the constraint sets. For the symmetry projection,
specifically, nodes first independently solve their local optimisation cost until convergence,
then communicate and jointly apply the symmetry constraint projection. For the other two
constraints, the projections are done after each update step of the global algorithm. Finally,
to solve the sparsity constraint, we propose a differentiable regularisation term, that also
brings stability to the solution. Our experiments show that the communication costs of our
distributed algorithm is lowered without compromising the accuracy of the inferred graph,
compared to the communication costs of a centralized graph learning algorithm. Besides, that

56

5.2. Problem formulation

cost scales better with an increase of the network size or of the size of the data. We also show
that sparse networks benefit more from a distributed solution than dense ones. It outperforms
the baseline algorithm both in accuracy and communication costs for sparse settings. In
our distributed solution, the total communication costs is around 70% in the optimisation
algorithm and 30% in the initialisation, which indicates that we save mostly in the initialisation.
In these experiments, for the centralised case we assume the costs of transmitting the data
from the nodes to a central unity and back. Finally, we propose an incremental bit allocation
scheme for our distributed optimisation algorithm, with a marginal analysis technique. We
propose a data-driven solution that learns the bit allocation that minimizes the Frobenius
norm of the difference between the ground truth and the quantized learned data graph, while
obeying a given bit budget. Our solution presents a better trade-off between accuracy and
communication costs than implementing a uniform bit allocation scheme for all exchanged
messages. Our new algorithm certainly opens the way to other distributed graph learning
solutions for dynamic settings.

5.2 Problem formulation

5.2.1 Graph Learning

The goal of the graph learning task is to minimize the Laplacian quadratic form such that the
input signals can be represented as smooth signals? on the learned graph. Equipped with the
smoothness assumption, one can formulate the graph learning problem as follows:

minimize tr(X7 £€X), (5.1)
LCe€

where ¥ is the space of valid combinatorial graph Laplacian matrices defined as

€ ={L eRVNN| xi‘jj:.,sf]ﬁiso,x;i=—;$§j}. (5.2)
J#1

To facilitate the optimization defined in Equation (5.1) with respect to the graph structure,
we seek for a valid weight matrix instead of a Laplacian. It is more intuitive, simpler and
equivalent to search in the valid weight matrix space 3 [37]. We can thus reformulate the
problem as

minimize Y W;;llx; — ;11 (5.3)
Wew ij

2See Chapter 2 for definition.
3The space of all valid weight matrices is defined by (assuming no self-loops, directed graphs and at least one
neighbor per node)

W=wWeRV*N|w=wT, diagWw)=0,W;; =0,d; >0}

57

Chapter 5. Distributed Graph Learning with Smooth Data Priors

5.2.2 Distributed setup and problem formulation

(@) (b)

Figure 5.1 - Communication settings. a) A wireless sensor network, where each dot represents
a sensor/node. Node i is colored in red, along with its communication range defined by the
wireless communication radius. b) A zoom into the neighbourhood of i. The nodes inside the
communication range define the communication graph edges (in blue). We also represent the
graph signal values {x;}.

We now consider a network, for instance a wireless sensor network, whose nodes have a
communication range that defines which other nodes they can directly exchange messages
with, such as the one in Fig. 5.1a. We consider a communication graph %, (unweighted),
defined over the vertex set 7 representing these nodes, and an edges set that describes possible
communication links that exist between nodes, such as in Fig. 5.1b. We also assume that the
unknown data graph ¥ is a spanning subgraph of the communication graph. A spanning
subgraph is a subgraph that contains all the vertices of the original graph but whose edge set is
formed from a subset of edges of the original graph. The weights may differ between the edges
in the original graph and the edges on the subgraph. In our case, the communication graph is
unweighted (weights’ values are restricted to 0 or 1), whereas the data graph is weighted. The
nodes do not have direct access to a central unit: in order to learn the data graph ¥, they have
to use ¥, for communication, under the restriction that the nodes can only communicate
directly with 1-hop neighbors on %.. Finally, each message transmitted on the communication
graph eventually induces communication costs.

We propose to learn the data graph in a distributed way, in order to lower the communications
costs compared to a centralised solution. It means that each node n should learn which
neighbor they have on the data graph %, and the corresponding weight of these edges. This
should be done with the lowest communication cost possible. We define the communication
cost in terms of the total number of messages exchanged between nodes. Since the data graph
is a spanning subgraph of the communication graph by assumption, the potential neighbours
j, for node i in the data graph, should be picked up from %,. Equivalently, it has to belong
to the neighborhood of i in the communication graph, represented by .4#;°. We can then
rewrite the graph learning problem presented above, but in distributed settings, using the

58

5.3. Distributed Graph Learning Algorithm

above assumptions. For the node i, the distributed graph learning problem thus reads:

minimize Z Wijllx; — x; 1 (5.4)
Wy &

st W;j=0 (5.5)

W;;=0 (5.6)

d;>0 (5.7

W;j=W;;. (5.8)

In a distributed setting, solving Equation (5.4) while minimizing the communication cost
between the nodes is not trivial. Hence, we first reformulate the problem as:

minimize l Z I/I/,-jllxi—lel2 5.9
W;;=0,W;;=0 Njeﬂje
+max{0,n— Y W} (5.10)
JeAN!
s.t. Wij=Wj;, (6.11)

where 1 > 0 is the desired minimum degree for every node. Then, we propose to learn ¢4, while
limiting the communication costs. In particular, we propose an algorithm that consists of a
collaborative learning between the graph nodes with local minimization to compute the edge
weights W;;, Vi € {1,..., N} at each node (Egs. (5.9) and (5.10)) and a global optimization to
maintain the symmetry constraint as given in (5.11). We will go into details in the next section.

5.3 Distributed Graph Learning Algorithm

We now present the algorithm for solving the above graph learning problem in a distributed
way. Let’s define the variable that captures the quadratic differences between nodes as z;; =
[lx; — ij|2. The problem can be locally solved by two steps: an initialization step, where
each node i communicates its signal x; to the neighbors j € 4%, so that the z;; values
are obtained at each node, as in Fig. 5.2a; and a distributed optimization step, where the
nodes jointly minimize the objective function (5.4). Specifically, every node locally performs
gradient descent on the objective function, with the regularization term that targets the degree
constraint (5.10), and locally compute the positivity (5.5) and zero self-loop (5.6) constraints.
Every node shares these values with their neighbours, but only the information of the weight
related to the edge that connects the neighbours. For instance, node i only sends to node s
the value Wl.os, and not Wl.oq, as in Fig. 5.2c. With these values, the nodes can simultaneously
perform a projection to solve the symmetry constraint (5.8), such as in Fig. 5.2d. These steps
are repeated until convergence. We present the solution in details next.

59

Chapter 5. Distributed Graph Learning with Smooth Data Priors

5.3.1 Initialization

We propose an initialization algorithm for obtaining the values of z;; = [|x; — x; |2 at each node
i (Fig. 5.2a). The algorithm takes advantage of the properties of the communication graph
in trying to limit communication costs, by making use of situations where nodes share many
neighbors. The more central nodes in a cluster of neighbors can calculate all the quadratic
differences in their local vicinity and share the results with the neighbors. The information
from node i never leaves the neighborhood of this node, which seems appropriate from a
privacy perspective, as locality is one of advantages of distributed solutions. It is constructed
as follows. While there are still z; ;s to be calculated, every node i sends x; to its neighbour
with the highest degree, out of those whose corresponding z;; has not yet been determined,
as long as it is larger or equal to the degree of node i and as long as i did not receive the
signals from that node. If these conditions are not fulfilled, x; is not sent. The nodes that have
received the x; values then calculate all possible combinations of z;; for themselves and for
their neighbours. The corresponding results are sent to these neighbours. A similar round
happens again, for the nodes that still do not have the z;; of all its neighbours, and repeats
until all z;; combinations, of edges that belong to %, are calculated. The algorithm lowers the
communication costs by reducing the amount of times the x; values are sent. The algorithm
proposed is the one in Algorithm 2.

while there are still z; j to be calculated do
for all nodes i do

if node i doesn’t have the z; j of all its neighbours then
Determine the neighbouring node (out of those that z;; is not yet

determined) with the highest degree;
if the degree of this neighbouring node is bigger or equal than the degree of i

(and i didn’t receive the signals from that node yet) then
| Node i sends x; to this neighbouring node

or all nodes i do
Given all the received values from neighbouring nodes from the previous step

(in addition to x;), calculate all possible combinations of z; j and send to the
corresponding neighbours

)

Algorithm 2: Initialization

5.3.2 Optimization

We solve this problem with gradient descent. The positivity (5.5) and zero self-loop (5.6)
constraints are local and describe closed sets, so each node can independently project the
solution into the set defined by these constraints using ReLU function f(x) = max(0, x) and
setting x; ; = 0. Both operations can be done locally. The other two constraints are less
trivial to solve. The symmetry constraint (5.8) also represents a closed set, but cannot be
locally and independently solved by each node, since it requires communication. As for the

60

5.3. Distributed Graph Learning Algorithm

degree constraint (5.7), besides representing an open set, it involves all optimization variables
belonging to node i. Next we show how we address these last two constraints.

a) Solving the symmetry constraint

The symmetry constraint also represents a closed set, so it can be solved by projection. It
cannot be independently solved by each node, and requires communication. Each node

shares its W;; values with the corresponding neighbours and updates them with Wl.’;.mj ected _

w From an optimization point of view, the projection should be done at every step of the
algorithm. But since this projection results in communication costs, we choose a compromise
solution where the nodes first solve their local optimization problem (Egs. (5.9) and (5.10)),
without the symmetry constraint; and, once the local problem converges at every node (figs.
5.2b and 5.2e), they communicate and jointly apply the symmetry constraint (figs. 5.2c and

5.2d). Symmetry projection and optimization alternate until global convergence. *

b) Solving the degree constraint

The degree constraint is necessary so that the solution of our problem does not become the
trivial solution. It represents an open set, i.e. a set that does not contain its borders, so we
replace it by the constraint }_; W;; =7, with n > 0, in order to have an equivalent closed set.
We propose to add the regularization term max{0,n -3 iWi j}2 to the objective function. The
term is differentiable, which enables a solution with gradient descent. The sparsity in the
learned graph is not explicitly taken into account in the problem formulation. However, the
regularisation term max{0,n—3_; W; j}z prevents the degree to become too small, by penalizing
the solution when it becomes smaller than 7. Without this term (or if = 0), the solution
of the minimization problem would be the trivial solution (W;; = 0 for all 7, j), which is the
sparsest possible. It does not affect the solution when d is equal or bigger than 7, since the
regularization term becomes zero in that case. This means that, if we choose a small 7, the
solution tends to be sparse; alternatively, for big n, we tend to produce denser solutions, since
the penalization will be stronger. One advantage compared to other solutions (e.g., logarithm
function) is that when d approaches zero, the regularization term does not go to infinity,
bringing stability to the solution. The cost function we solve at node i becomes then Egs. (5.9)
and (5.10), with the data fidelity term normalized by the size of the network.

41t is important to establish the projections order, since we also solve W;; = 0 and W; j =0 with projection. The
W;; = 0 projection does not affect the variables outside the diagonal of the weight matrix, so it can be done at
any point. As for the W;j = 0 constraint, that we project with the use of the ReLU function, it is important that
it is applied after the symmetry projection, which is what is done in this work. The reason for that is that the
symmetry projection step would make variables W; ; and Wj; either become both positive, both negative or go to
the origin. In the origin and positive cases, if the ReLU function is applied after the symmetry projection, nothing
changes. As for the negative case, the ReLU operation will bring them to origin. These correspond to the correct
euclidean projections into the intersection set between the symmetry and positivity constraints. The other way
around, that is, first applying ReLU, then symmetry projection would sometimes result in wrong projections into
the intersection set, specifically for the cases where W;; and W;; have opposite signs.

61

Chapter 5. Distributed Graph Learning with Smooth Data Priors

0 0
WO+ WY,

Figure 5.2 — Toy network illustrating the distributed learning algorithm. 5.2a: After initializa-
tion, the node i obtains the difference vectors z;;. 5.2b: First estimation of the data graph
weights. 5.2c: Sharing of data graph weights. 5.2d: Weights averaging, or symmetry constraint
projection. 5.2e: Gradient descent.

One of the advantages of our method is that is has a very simple objective function, without
any parameters to be set in an online way. This is appropriate for a distributed scenario, since
the task of distributively setting up parameters is a problem on its own, which would also
involve extra communication costs. Note that the variable 7 is not to be optimized, but rather
an input of the problem that can be directly adapted to the desired graph sparsity level. In
Algorithm 3 we can see the global solution for the distributed graph learning algorithm.

62

5.4. Experiments on Distributed Graph Learning

Initialization algorithm (Fig. 5.2a and Algorithm 2)
Initialize all weights W;; =1

while the global algorithm does not converge do
for every node i do

while The local algorithm in node i does not converge do
Relu

set W;; =0
Gradient step: minimize Egs. (5.9) and (5.10)
After local convergence, local data graph weights are estimated (Figs. 5.2b and 5.2¢)
for every node i do
Node i gives Wlt] to every node j that is a neighbor in the communication
graph ¥, (Fig. 5.2¢);
Node i receives Wj‘l. from every node j that is a neighbor in the communication

graph %, (Fig. 5.2¢);

t t

Node i makes: W', — ~" " for all j (Fig. 5.2d);
| Node i makes: W;; — —5—fora J (Fig. 5.2d);

for every node i do
Relu
| setW;; =0

Algorithm 3: Distributed graph learning algorithm

5.4 Experiments on Distributed Graph Learning

5.4.1 Experimental Settings

We consider synthetic settings and create the communication graph by randomly distributing
N nodes uniformly inside the unit square (a square with side lengths 1), and assigning the
same communication radius value for every node, equal to \/LNF’. The communication radius
is the variable that determines to which neighbours the nodes can communicate to: commu-
nication is only possible for nodes whose distances are smaller than the radius. We repeat
the graph generation process until producing a connected graph, discarding graphs that are
unconnected. A variable called removal-rate defines the ratio of edges in the communication
graph that will be randomly deleted, for the data graph generation, with random weights
assigned to the edges. This data graph is also our ground truth. We then assign 5000 smooth
signals from a probabilistic generative model to the graph. To generate a smooth signal, we

interpret graphs as key elements that drive probability distributions of signals. The smooth

5In this experiment, we increase N in order to observe the algorithm’s performance at different settings. Since
these nodes are distributed in a square with side lengths 1 (the unit square), the area that these nodes are distributed
into is fixed, regardless of the number of nodes. If we use the same communication radius for all the different values
of N, the communication graph would be extremely dense for higher N (it could even produce complete graphs),
or alternatively, it would produce disconnected graphs for lower N. These would make conditions very different
for distinct values of N, making it hard to compare them. We therefore preferred to change the communication
radius, thus maintaining a pretty constant number of neighbours per node, regardless of N. The square root is
used to account for the 2-dimensional nature of the problem.

63

Chapter 5. Distributed Graph Learning with Smooth Data Priors

signal follows the normal distribution with zero mean and £ as covariance matrix (£ is the
pseudoinverse of £°), more details in [34]. We finally fix the removal-rate at 0.5, and we test
different number of nodes N, from 150 to 950 ©.

We compare our distributed algorithm with the centralized state-of-the-art approach in [36]
for smoothness based topology inference, as well as with a centralized version of our algorithm,
where (5.9) is solved directly in a central node of the network, with the symmetry projection
done at every step of the optimization algorithm. The communication cost is the number of
messages exchanged between two nodes, where one scalar number equals one message. For
our distributed framework, we consider the total cost as the sum of the initialization and the
optimization costs. For the centralized methods, it is the cost to aggregate all signals into a
node with lowest eccentricity, assuming this node would centrally make all computations, plus
the costs of bringing the results back to the nodes. The accuracy metrics are defined over the
difference between the ground truth data graph and the learned ones. The expected output
of the algorithm is that each node possess the learned data graph weights from links that
connect their communication graph neighbours. If there is no connection on the data graph,
but there is connection on the communication graph, the node should receive a weight with
value zero. In all experiments the accuracy metrics are defined over the difference between
the ground truth and the solution (proposed or baseline). We use the Pytorch optimizer Adam,
with an independent optimizer for each node in the distributed case, and only one optimizer
for the centralized cases. That way, the experiments become more realistic and coherent
with the theoretical assumptions, that each graph node is separate and makes computations
independently from each other.

All methods are assumed to know that the data graph should be a spanning subgraph of
the communication graph. This is already done in the distributed version by design. For
the centralized versions, that means the algorithms set the links that do not belong to the
communication graph to zero. In all cases, after we obtain our data graph, we clean any tiny
edges (due to numerical error), smaller than 1le-5, to obtain a sparse weight matrix.

5.4.2 Graph Learning Performance

In Figs. 5.3a and 5.3b we plot performance in terms of both total communication costs and
accuracy (Frobenius and Wasserstein) for the three algorithms under comparison. These
experiments have been run in the sparse settings (average of 11.57 neighbours/node in the
communication graph). We notice that our distributed algorithm scales better in communi-
cation costs with the increase of N. The distributed version presents better communication
costs for all cases. In terms of accuracy, the distributed algorithm is only sometimes slightly
worse than the centralized counterparts, due to the approximations inherent to its design.
The main difference between both is that the symmetry projection is done at every step of the
optimization algorithm in the centralized case. The distributed algorithm represents then a

6Sampled every 200

64

5.4. Experiments on Distributed Graph Learning

good trade-off between communication costs and graph estimation accuracy.

55 @ Proposed algorithm X
50 Proposed algorithm (centralized)
e Baseline
— 45
[C]
= 40 x
c 35 .
n
2
8> .
f=]
=]
0{ @ *
15 Y
10000 20000 30000 40000

Total communication costs (in thousands of messages)

(a) Frobenius norm (of the difference between
learned and ground truth weight matrices) ver-
sus total communication costs for the three
methods in sparse settings for different num-
bers of nodes N. Big circle: N = 150, + symbol:
N =350, star: N =550, small circle: N =750, X
symbol: N =950.

1750 @ Proposed algorithm x

Proposed algorithm (centralized)

1500 ® Baseline

1250

1000 o

Wasserstein distance x GT
—~
wu
o

]
=]

]
¥
=]

L]

[]

lOdDO 20(?;00 30CIIDO 40(’100
Total communication costs (in thousands of messages)
(b) Wasserstein distance (between learned and
ground truth weight matrices) versus total
communication costs for the three methods in
sparse settings for different numbers of nodes
N. Big circle: N =150, + symbol: N = 350,
star: N =550, small circle: N = 750, X symbol:
N =950.

Figure 5.3 — Results for sparse setting.

In the same configuration as before, we now assign 1000 signals to each node. We vary N from
50 to 150. We also assign 4 different values, 0.2, 0.3, 0.4 and 0.5, for the communication radius,
and average the results over these values. We compare the communication costs of calculating
the differences z; ; with both our initialization algorithm and the naive approach where each
node sends to the other nodes its respective signals in order to calculate the difference values
z;j. We note that our initialization algorithm not only presents lower communication costs, it
also scales well with the size of the network.

5.4.3 Analysis

Here we study in detail the performance of the algorithm with respect to different parameters.

a) Dense settings In the same conditions as before, we use a bigger communication radius (
radius= \/iﬁ), which brings an average of 25.01 neighbours per node. We call these the dense
conditions. We do the same experiments for the Frobenius norm and Wasserstein norm.
The higher density on the communication graph increases the communication costs for the
distributed version and decreases costs for both centralised versions. This happens because
the distances to the central node are lower when the nodes have more connections (for the
centralized case). For the distributed case, it means the nodes have more neighbours to
communicate to, which increases communication costs. In this experiment, the distributed
method performs similarly to centralized methods, both in accuracy and communication costs.
We can see the results for the Frobenius norm in dense settings versus the communication
costs in Fig. 5.4a, and for the Wasserstein norm in Fig. 5.4b.

65

Chapter 5. Distributed Graph Learning with Smooth Data Priors

@ Proposed algorithm x
100 Proposed algorithm (centralized)
e Baseline
G
= B0
E * x
o
c
5 B0 * .
S +
2
2
o . .
L]
20

SOICID JOC;DO JSC;DO 20600 25600

Total communication costs (in thousands of messages)
(a) Frobenius norm (of the difference between
learned and ground truth weight matrices) ver-
sus total communication costs for the three
methods in dense settings for different num-
bers of nodes N. Big circle: N =150, + symbol:
N =350, star: N =550, small circle: N =750, X
symbol: N =950.

200
Proposed algorithm *

175 Proposed algorithm {centralized) . ®
= @ Baseline
© 150
=
b3
c 125 *
& *
o
= 100
=
a +
a

75
E *
@ 50
= L

L]
25

S000 10000 15000 20000 25000
Total communication costs {in thousands of messages)

(b) Wasserstein norm (between learned and
ground truth weight matrices) versus total
communication costs for the three methods in
dense settings for different numbers of nodes
N. Big circle: N =150, + symbol: N = 350,
star: N =550, small circle: N =750, X symbol:
N =950.

Figure 5.4 — Results for dense setting.

b) Varying sparsity We now use 5000 signals, removal-rate equal to 0.7, we fix N = 500 and we
vary the communication radius from LN to

Wit

consequently changing the communication

graph sparsity. We plot the difference between the communication costs in the centralized
and distributed versions against the average degree in the communication graph in Fig. 5.5.
We observe that until 20 neighbours per node, the communication cost in the distributed
solution is lower. The observed differences between the Frobenius norms of centralized and

distributed versions, in Fig. 5.5, are very small.

Lomm costs difference (centralized - distributed)

12 14 16 18 20 22 24
Average degree in the communication graph

Figure 5.5 — Communication costs differ-
ence between centralized and distributed
methods against the average degree in the
communication graph.

66

-
o
=3

@ Proposed algorithm
0.90 Proposed algorithm {centralized)
® Baseling

=
=
o

Frobenius norm x GT

0801 ® & ® & & g g @ @
075

o070

2000 4000 6000 BOOO 10000 12000
Total communication costs (in thousands of messages)

Figure 5.6 — Normalized Frobenius norm
(of the difference between learned and
ground truth weight matrices) versus to-
tal communication costs for the base-
line method and both centralized and dis-
tributed proposed methods.

5.5. Quantization for Distributed Graph Learning

c) Number of training signals In the same settings as subsection 5.4.1, we now fix N in 300,
and vary the number of signals instead, from 1000 to 10000. In the results (Fig. 5.6), we see
that the normalized Frobenius does not change with the variation on the number of signals
for the same 3 algorithms considered. For the baseline [36], the normalized Frobenius norm
equals around 1.10, the centralized version of the proposed algorithm equals around 0.73 and
the distributed version, 0.81. The number of signals directly impacts the communication costs
for all methods, as expected. The cost grows linearly with this number. We also note that the
distributed version scales better with the growth of the number of signals.

5.5 Quantization for Distributed Graph Learning

The distributed graph learning algorithm proposed above is built under the assumption that
messages are transmitted with infinite precision and that communication costs directly relate
to the number of messages sent over the network. In realistic scenarios, messages are not sent
with infinite precision and are rather quantized in some way. In this section we analyse the
quantization effect in our distributed graph learning algorithm, and propose a bit allocation
strategy.

5.5.1 Problem Formulation

Our proposed distributed graph learning algorithm, described previously in this Chapter, has
two major steps: the initialization and the optimization step. Both require communication
in order to be implemented. In total, there are three different stages when messages are
exchanged in the algorithm: two in the initialization step, namely when nodes share the
original graph signals x; (Fig. 5.1b), and when they send back their quadratic differences z;
(Fig. 5.2a) according to the initialization algorithm (Algorithm 2); and one in the optimization
step, specifically when nodes share their intermediate estimated weight matrix values W;; (Fig.
5.2c). The messages sent on these different stages normally require different communication
costs for the same bit rate and impact the quantization error differently, given the different
purpose of each stage.

We call S, the set containing all messages sent in the the first stage, where the x; values are
exchanged. We also call the amount of messages exchanged in this stage as a, which is also
the size of the set S4. There are, in total, N - M values of x;, where N is the size of the network,
and M is the number of features, but not all are transmitted and a few are transmitted more
than once, depending on the initialization algorithm and the number of edges. Therefore, a
is not necessarily equal to N - M. Similarly, we call Sg the set containing all messages sent in
the second stage, where the z;; values are exchanged. We also call the amount of messages
exchanged in this stage as e. The total amount of z;; values is equal to the number of edges in
the communication graph. Again, this is not necessarily equal to e, as the number of z;; that
are transmitted, depends on the initialization algorithm. Finally, for the third stage, where
nodes exchanges the W;; values, we call Sp the set containing all d exchanged messages. This

67

Chapter 5. Distributed Graph Learning with Smooth Data Priors

quantity depends on the number of edges in the communication graph and on the number of
rounds needed to converge in the optimization algorithm.

We make use of uniform quantizers to represent every message7. We use by, bg and bp bits,
per message, to represent messages from the sets S4, Sg and Sp, respectively. Within a set, all
messages use the same number of bits. We are interested in determining the best allocation
9B = [ba, bg, bpl, in order to allow the distributed graph learning algorithm to infer the data
graph as best as possible, and at the same time obey a total bit budget B. Specifically, given
F (98), the Frobenius norm of the difference between the inferred (with quantization) and the
ground truth weight matrices, and C(98) the total bit cost, our objective can be written as the
following optimization problem

minimize &% (94) (5.12)
PB=[ba,bg,bp)
s.t. C(XB) <B. (5.13)

We decide for allocating the same amount of bits to all messages within each set (as opposed
to a specific message-based allocation) in order to make a general quantization scheme for the
distributed graph learning algorithm, regardless of specific settings. If we would rather target
individual messages, the learned allocation rules would heavily depend on the communication
graph structure, the input conditions and the data graph (which we do not have a priori),
and we are more interested in general rules. We identify that the three sets S4, Sg and Sp
represent the biggest intrinsic differences, in terms of communication costs and impact on
the algorithm, between the transmitted messages. That is, those differences are higher for
different sets than within sets.

A challenge in solving Eq. (5.12) is that we do not know a priori how the distributed graph
learning optimization behaves in every aspect. For instance, we do not know a priori the
number of rounds needed for convergence, which can also be changed with quantization.
Thus, finding an analytical solution for (5.12) is challenging. Therefore, we approach this
problem with an approximated, learning-based solution instead, which will be detailed next.

5.5.2 Training Strategy

We now detail the solution that we propose for the problem in Eq. (5.12). We train the best
allocation 98 = [by, bg, bp] that gives the lowest Frobenius norm for the given budget B, using
a supervised learning approach. Specifically, we make use of a training dataset that contains
all ground truth data graphs 8.

“We opt for a learning solution in this chapter (not analytical), thus we do not need to use the assumptions used
in the previous chapters. Instead, we let our algorithm learn the suitable allocation based on the available training
data.

8These graphs have in common: the node set, the communication graph they are based on and the removal-rate
value. The communication graphs edges (total number tested between 10 and 25 edges/node, in average) that are
randomly deleted are different and the randomly assigned weights are also different.

68

5.5. Quantization for Distributed Graph Learning

In order to learn a bit allocation 28 that will give the best trade-off between bit costs and
accuracy in the inferred graph, we propose an incremental bit allocation scheme with a
marginal analysis optimization [77], using the training dataset. An incremental algorithm
is a greedy algorithm, which works by allocating one bit at a time to the set S4, Sg or Sp
that performs the best for that partial allocation. Since the best performance is the one
with the lowest Frobenius norm and the lowest bit cost, for every incremental bit, we select
the set that maximizes the ratio of the change in Frobenius norm to the change in total bit
cost. Specifically, we start the algorithm with a 1-allocation® (i.e., % = [1,1,1] for sets S,
Sg and Sp respectively), and incrementally allocate an additional bit to every single set at a
time, temporarily obtaining %4 = (2,1,1], 8¢ = [1,2,1] and %p = [1,1,2]. We then run our
quantized distributed graph learning algorithm (Algorithm 3, with quantization) three times,
one for each set s, and respectively use the 984, % and % allocations to quantize messages.
We then proceed to compute % (%) and C(%;) for each set (alternatively, for each of the three
runs). Finally, we choose to allocate the incremental bit to the set that maximizes the ratio
of the change in Frobenius norm to the change in bit cost. For example, if by using 98,4 the
algorithm performs best, we would assign 98 — %4 = [2,1,1]. These steps are then repeated
until C(98) attains the bit budget. The training strategy is better detailed in Algorithm 4.

Input: B
Generate nodes
Generate ¥4,
Generate training dataset (multiple ¢, and signals)
Run Algorithm 3 with training dataset, without quantization, and compute typical
quantization ranges
for every training9,; do
P —11,1,1]
Run Algorithm 3, quantizing with %
Compute & (%) and C(%)
while C(%) < B do
Ba—B+11,0,0]
By — AB+10,1,0]
B — B +10,0,1]
Run Algorithm 3, quantizing with 984, compute % (%8 4) and C(%84)
Run Algorithm 3, quantizing with %, compute & (%g) and C(%Bg)
Run Algorithm 3, quantizing with 98p, compute & (%p) and C(%p)
Choose setindex s € [A, E, D] so that % is maximized
B — B
F(B) — F (Bs)
C(%8) — C(%s)

Birained — average of learned %8’s for all training datasets
Algorithm 4: Incremental Bit Allocation Training Strategy.

9The original algorithm starts with a 0-allocation for all messages, but our distributed optimization does not
converge in this case, so me make a slight modification on the algorithm, by starting it with a 1-allocation instead.
We assume we have enough bit budget to get started.

69

Chapter 5. Distributed Graph Learning with Smooth Data Priors

5.5.3 Experiments of Distributed Graph Learning with Quantization
a) Experimental Setup

We consider synthetic settings and create the communication graph by randomly distributing
N =50 nodes uniformly inside the unit square, and assigning the same communication radius
%, which is equivalent to the sparse settings in Subsection
5.4.2. We repeat the graph generation process until producing a connected communication

value for every node, equal to

graph, discarding graphs that are unconnected. We then proceed to generate 40 different
data graphs, with the fixed communication graph. Each one of these data graphs is generated
by removing edges from the communication graph, according to the removal-rate fixed at
0.5, and assigning random weights to the remaining edges. We additionally generate 1000
smooth!? signals, for each data graph, from a probabilistic generative model. We then split
these datasets (40 data graphs, each with 1000 signals) into training/testing according to the
ratio 50/50. Thus, the shared settings for the training and testing datasets are: the node set,
the communication graph and the removal-rate value. The data graphs are different since
the communication graph edges are removed randomly and the weights are also assigned
randomly every time a data graph is generated. The signals from the training and testing
datasets are also different. In contrary to the training dataset, the algorithm only knows the
graph signals in the testing dataset (which will be used to learn the data graphs), but not the
data graphs themselves.

In order to compute the quantization ranges for the transmitted messages, we use the typical
empirical values. Specifically, we run our distributed graph learning algorithm (Algorithm
3), without quantization, in our training dataset. We then observe the maximum absolute
value V" for every set index s, and we define the range, per set, as the interval [— V', V"],
These ranges are the ones used in our quantizers, both in training and testing stages.

b) Initial Observations

We first run experiments where we quantize only one of the sets (we test 1 to 4 bits/message),
and leave the others without quantization. We observe that in general, the quantization of
sets S4 and Sg impacts the accuracy more than the quantization of set Sp. Probably because
the initialization (sets S4 and Sg) is the first step of the distributed graph learning algorithm,
and has a stronger impact on its performance. If the input values of the optimization step
are not very correct, the optimization step can perform badly. A proper initialization is thus
important. Another consideration is that the set Sp has a low impact on the performance
since it is only responsible for the symmetry projection part of the optimization step. When
the symmetry projection happens, the nodes already have the estimation of the W;; values,
and the communication only happens in order to synchronize those estimations. Thus it is not
necessary to spend a lot of bits in this step. Additionally, we observe that the set S 4 induces
more communication costs than the other two sets. Thus, we expect that the best allocation

10smooth on the data graph.

70

5.5. Quantization for Distributed Graph Learning

scheme would allocate more bits to set Sg, as it has a strong impact on the accuracy, without
compromising communication costs as the set S4 does.

c) Performance

We then proceed to learn the bit allocation 98 with the incremental algorithm described
in Subsection 5.5.2, for different bit budgets. We then average the resulting 28 for all 20
training data graphs. For a bit budget of 50kB, specifically, we obtain a learned allocation
of % = [3.1,7.2,2.1], which confirms our initial observation to allocate more bits to set Sg.
We round to integers the bit rate 98 learned in the previous step and run our distributed
graph learning algorithm on the test set, quantizing messages according to 8. We average the
Frobenius norms and communication costs for the 20 testing datasets and plot those on Fig.
5.7. For the same testing datasets, we also perform the quantized graph learning task with a
uniform bit allocation (b4 = bg = bp), average the results and plot them on Fig. 5.7, in order
to compare with our proposed solution.

] ® Incremental Bit Allocation
9.5 7 ® Uniform Allocation
9.0 - L
o
£
i
@ 8.5 L]
-
‘)3(8.0 4
£]
g 7.5 1
£
7.0 1 ¢
£
2
= 6.5 *
]
6.0
L]]
T T T T T
20 30 40 50 60

Total kB

Figure 5.7 — Average Frobenius norm & (98) versus average total bit costs C (%) for 20 testing
datasets (20 different data graphs, each with 1000 signals). The training is done beforehand on
20 different training data graph (each with 1000 training signals).

The results on Fig. 5.7 show that the proposed solution presents a better trade-off between
accuracy and communication costs than the uniform bit allocation scheme. In a very low bit
rate condition (up to 2 bits per message, in average), the performance is similar (in average)
to that of the uniform bit allocation, as we can see with the proximity of both curves for a
bit budget up to roughly 30kB. This happens because in this case, with such a small budget,
every message should have enough bits to be communicated. This means that the learned
solution allocates the same amount of bits for all three sets in these low rate conditions,
so the optimized solution learns the uniform solution, and both perform the same. Once

71

Chapter 5. Distributed Graph Learning with Smooth Data Priors

the algorithm has a higher budget to spend, it starts allocating bits differently for the sets,
distancing itself in the plotted image from the uniform bit allocation scheme curve. This
can be seen with the separation of the two plotted curves around 30kB. In these higher rate
conditions, our algorithm has more flexibility to allocate bits, thus the Frobenius norm drops
compared to the one of the uniform bit allocation.

d) Additional Experiments

In this subsection, we perform additional experiments that complement the one from the
previous subsection. We maintain the same settings that resulted in Fig. 5.7, but now we
generate a different set of nodes, and consequently, a different communication graph'!.
Similarly to before, the shared settings for the training and testing datasets are: the node set,
the communication graph and the removal-rate value. The data graphs and graph signals of
the testing and training datasets are different. We run the same experiments with this new
node set and plot the results in Fig. 5.8. We can see in Fig. 5.8 that the same trend of Fig. 5.7 is
observed for a different node set and that the incremental bit allocation again outperforms
the uniform bit allocation.

® Incremental Bit Allocation
® Uniform Allocation
11 A ®
L]
o
=
=1
i o
10 A
5 ®
>
E
5]
=
%1 9 T
=1
.S °
£
g
8 []
]
]
T T T T T
20 30 40 50 60

Total kB

Figure 5.8 — Average Frobenius norm & (98) versus average total bit costs C(28) for 20 testing
datasets (20 different data graphs, each with 1000 signals). The training is done beforehand on
20 different training data graph (each with 1000 training signals). The same settings used for
Fig. 5.7 are used here, but with a different node set and communication graph.

We now change the network size for N = 100, we maintain the other settings constant!? and

1A new set of N = 50 nodes is randomly distributed uniformly inside the unit square. This generates a different
communication graph, with the same communication radius value.

12 Similarly as before, the shared settings for the training and testing datasets are: the node set, the communica-
tion graph and the removal-rate value. The data graphs and graph signals are different.

72

5.5. Quantization for Distributed Graph Learning

run the experiments with the incremental bit allocation strategy once more. We plot the
results in Fig. 5.9. Finally, we test our strategy in the dense settings of Subsection 5.4.3, that
is, we use a communication radius value of \/iﬁ, and sequentially plot these results in Fig.
5.10. We observe in Figs 5.9 and 5.10 that the same trends from previous experiments are kept,
particularly that the incremental bit allocation outperforms the uniform bit allocation.

17 4
] ® Incremental Bit Allocation

Uniform Allocation

= = [=
w - w o
1 1 1 1
L]
®
L]

Frobenius norm x GT - Testing

)
%]
I

11

T T T
40 60 80 100 120 140
Total kB

Figure 5.9 — Average Frobenius norm & (98) versus average total bit costs C(98) for 20 testing
datasets (20 different data graphs, each with 1000 signals). The training is done beforehand on
20 different training data graph (each with 1000 training signals). Same settings as for Fig. 5.7,
but with N =100.

73

Chapter 5. Distributed Graph Learning with Smooth Data Priors

1051 © ¢ ® Incremental Bit Allocation
Uniform Allocation

10.0 4 []

9.5 A L]

- Testing

9.0 .

8.5 A

8.0

Frobenius norm x GT
[]

7.5 4 L]

7.0 1 ®

T
20 30 40 50 60
Total kB

Figure 5.10 — Average Frobenius norm & (98) versus average total bit costs C(28) for 20 testing
datasets (20 different data graphs, each with 1000 signals). The training is done beforehand on

20 different training data graph (each with 1000 training signals). Same settings as for Fig. 5.7,

but with denser graphs, i.e., communication radius value of \/iﬁ

5.6 Conclusion

We have proposed a distributed graph learning framework that considers communication
costs. We model the problem with an objective function that has a low number of parameters
and is simple to optimize. We solve it in two steps, an initialisation step and an optimisation
step. In the latter, we use one independent optimiser per node, and we incorporate constraints
with a mix of projection methods and a regularisation term. Our experiments show that
the communication cost is lowered in the distributed algorithm without compromising the
accuracy. Our solution scales better in terms of communication costs with the increase of
the network size and the number of signals, compared to centralised solutions. We also show
that sparse networks benefit more from a distributed solution than dense ones. Moreover,
distributed solutions have other benefits by design, such as allowing the information to stay
local, improving privacy and robustness against central node failure. Finally, we have also
proposed an incremental bit allocation scheme for our distributed optimisation algorithm,
with a marginal analysis technique. We have shown that our proposed solution presents a
better trade-off between accuracy and communication costs than the uniform bit allocation
scheme. Additionally, compared to a message-specific solution, our solution does not depend
on the data graph and is a good trade-off between performance and computational complexity.

74

Conclusion

6.1 Summary

In this thesis we proposed new methods to quantize and allocate bits in the different steps
of messages exchanges between nodes, while implementing diverse distributed signal tasks.
Our methods aim to find the best trade-off between tasks performance and communication
costs. In these distributed settings, the graph nodes send messages that have limited precision
in realistic scenarios, hence they undergo quantization. We mostly considered the high rate
regime and uniform quantizers for each message. We introduced original methods for adaptive
quantization and illustrate their implementation in three specific tasks: graph filtering, graph
neural networks and graph learning. Below, we summarize the achievements of this thesis, for
each one of these tasks.

Firstly, we considered the problem of minimizing the quantization error in distributed graph
filtering tasks. We accomplished that by initially bounding the transmitted messages, and con-
secutively by optimizing the network bit allocation. Our technique proved to be advantageous
when we have a limited bit budget. In the analysis of our optimized bit allocation algorithm,
we further found that the nodes near the network’s edge and the first steps of the iterative
algorithm require more bits for representing transmitted messages. Additionally, the proper
bit allocation variance tends to be more heterogeneous with sparse and irregular topologies,
than for dense ones. We then experimentally validated the proposed distributed processing
algorithm method. We found that, in comparison to the uniform bit allocation technique, our
solution greatly reduces the quantization error.

Second, we focused on the implications of message quantization in distributed implemen-
tations of Graph Convolutional Neural Networks (GCNNs), a specific type of Graph Neural
Networks. When the necessary messages for distributed implementation are quantized, errors
occur in the received signals, which accumulate and eventually degrade the accuracy of the
GCNN model. We posed an optimized bit allocation problem, and proposed an analytical
solution with the use of the Karush-Kuhn-Tucker (KKT) conditions. We then carried out exper-
iments on synthetic and real datasets for the tasks of distributed denoising (regression) and

75

Chapter 6. Conclusion

distributed source localisation (classification). The results confirmed the benefits of the opti-
mized bit allocation algorithm, which reduces quantization error significantly compared to a
uniform allocation and alternative baselines. Interestingly, our analysis on the optimized bit
allocation showed that messages in the middle layers of the model tend to be more important
with respect to the accuracy of the GCNN.

Finally, we considered the problem of minimizing communication costs in distributed graph
learning tasks. We consider a communication graph that allows data exchanges between
nodes, and we learn a data graph that not only is a spanning subgraph of this communication
graph, but also describes the graph signal structure. We modelled this problem with an
objective function that has a small number of parameters. In order to solve it, an initialization
step and an optimization step were proposed. For the optimization step, one independent
optimizer was used for each node, and optimization constraints were addressed by using
a mix of projection methods and the addition of a regularisation term. The experimental
results demonstrated that the distributed approach reduced transmission costs in terms
of number of exchanged messages without sacrificing accuracy compared to a centralized
solution. We also found that, our method scales better in terms of communication costs as the
network size and the volume of signals increases. Additionally, we showed that a distributed
solution works best for sparse networks than dense ones. The proposed algorithm outperforms
baseline algorithms, both in accuracy and communication costs for sparse settings. Finally, we
consider the problem of quantization of messages in the distributed graph learning algorithm.
Using a marginal analysis method, we presented an incremental bit allocation scheme which,
compared to the uniform bit allocation technique, offers a superior trade-off between accuracy
and transmission costs counting in number of bits.

6.2 Future Work

While this thesis showed many different and efficient methods to quantize messages for
distributed graph signal processing and learning tasks, there remain many opportunities for
extending this work. We discuss a few of them in this section.

First of all, we believe that an interesting extension of this study would be to investigate the
use of non-uniform quantization for each message, to further enhance the performance of
our previous results, especially towards low-rate regime. We could also extend this study by
exploring the use of different quantizers for different nodes, and by investigating whether that
would provide additional gains. Considering different devices could be used in the network,
with different communication and processing capacities, it would also be pertinent to study
cases where node-specific budgets are imposed, instead of an overall budget imposed for the
whole network. Specifically for the distributed graph neural networks study, an interesting
future direction would be to train models that are intrinsically robust to quantization, which
could then be used with the optimal bit allocation strategy for additional accuracy improve-
ment. Besides quantization, it would be interesting to study settings where messages can be

76

6.2. Future Work

lost during the distributed algorithm implementation, and its impact on model performance.
We believe it is important to design algorithms and architectures that are also robust to such
message loss, since these settings are realistic and in line with real world implementation
conditions. A future direction specific for the graph learning work could be to extend it to
data graphs that are not spanning subgraphs of the communication graph, and to exploit the
benefits of a distributed graph learning framework for such case. We could also extend the
graph learning framework to different signal models, that are not necessarily smooth on the
graph.

In conclusion, this thesis suggests novel approaches for quantizing and allocating bits in
the distributed implementation of various distributed graph signal tasks. Our mathematical
investigations and empirical findings show that it is possible to achieve efficient trade-offs
between accuracy and communication costs. Our research efforts will hopefully speed up the
development of intelligent distributed algorithms for network data that balance performance,
transmission rate, and computational complexity. In the wide range of possible applications
such as social, environmental, energy, transportation, and other domains, such technology
will be critical for our increasingly interconnected future society.

77

.\ Appendix of Chapter 3

A.1 Bitallocation in the network

We now extend the experiments on Subsection 3.5.2 to observe the relationship between Fj[n]
and b(n, k]. In the same experiment of Subsection 3.5.2, we show in Fig. A.1 the values of
b[n, k] plotted as the colors of the graph. Comparing Figs. 3.9 and A.1, we notice that, when
the values of b[n, k] are high, they are also high in Fy[n]; but the opposite does not necessarily
hold true. This happens because the values of Fi[n] have the tendency of being higher on the
more isolated nodes, but the values of b[n, k] take into consideration communication costs
too. Thus they tend to be higher on those nodes that are not only at the border of the graph
but have also small degrees.

k=0

10
18.75

08 18.50

15.25
06
18.00

17.75
04

17.50

0z 17.25

17.00
Y]

DO D2 04 06 08 10

Figure A.1 - b[n, k] at step k = 0. The colors represent the values of b[n, 0] at different nodes
(K=9,0=2,x=02, HA) = 5325, fin[nl = aln)* + b[n)* - 1).

79

Appendix A. Appendix of Chapter 3

A.2 Error Propagation

We now extend the experiments in subsection 3.5.2 to do an analysis of the error propagation
for illustration purpose. Three graphs are generated in the same way as in subsection 3.5.1.
The same input graph signal is filtered by distributively applying the same low-pass filter of
Eqg. (3.36) to the signal, with its Chebyshev polynomial approximation of order K = 17. We
fix 8 = 2 and vary k. When « is small, the resulting graph is sparse. Thus, the three generated
graphs have the same set of nodes but have different sparsity values, according to the chosen
value of k. Figs. A.2, A.3 and A.4 show the three graphs for the values of x = 0.18, 0.25 and 0.3
respectively.

We are interested in observing how the individual error €y[n], at a specific value of n and
generated in the first iteration step k = 0, is propagated through the network. To achieve this,
we perform an experiment where all the other nodes send their messages without quantization
(that is, as the perfect representation of their true value) and node n only quantizes at step
k = 0, while for the next values of k it sends the messages unquantized. By doing this we can
assure that all observed errors in the distributed signal processing stem from €y[n] and its
propagation. The bounded scheme proposed in this chapter is used for all cases.

The chosen node 7 is highlighted within an orange circle. The colors represent the absolute
difference between z;7[n] in an unquantized processing (true value) and its value in the
experiment mentioned where only zy[7] is quantized but all the other values (different k’s or
different n’s) are not. We choose to represent this difference at k=17 since it is the filtering
final step and we can thus see the accumulated propagation of ¢y[n]. The difference is plotted
in log scale.

We can see in Fig. A.2 that the node 7 is only connected to another node and disconnected from
the rest. Thus, €p[n] does not propagate to most of the nodes resulting in these unconnected
nodes having no errors on zj7[n]. On the other hand, node n and its neighbor present very
high error, which suggests that the error was amplified among them. When we compare to
Figs. A.3 and A.4, where the node 7 is connected to the rest of the network, €[] propagates
to the other nodes and thus the value of the error at n drops considerably. When we consider
the last Figure in particular, we notice that there is barely any error in any node. The global
MSE for each case is 6.97e — 07 for x = 0.18, 1.10e — 07 for x = 0.25 and 0.47e—7 for x = 0.3,
respectively. Notice that Fig. A.2 has the highest eccentricity for node n, which seems to
suggest that nodes with high eccentricity, that is, more isolated nodes, tend to have their errors
amplified, whereas the ones that are more central tend to have their errors dissolved into the
network. This is coherent to what we previously observed in Section 3.5.2.

A.3 Variance of the bit allocation for binomial distribution

We now extend the experiments in subsection 3.5.2 to analyse the variance of the bit allocation
for binomial distribution. Another 300 graphs were generated considering node degrees that

80

A.3. Variance of the bit allocation for binomial distribution

k=17

10

0.8

0.6 4

0.4 4

0.2 4

0.0

Figure A.2 — Graph built with ¥ = 0.18. The colors represent the absolute difference between
z17[n] in an unquantized processing (true value) and its value in the experiment where only
zp[n] is quantized but all the other values (different ks or different rn’s) are not. The chosen
node n is highlighted within an orange circle. The global MSE is 6.97¢ — 07.

k=17

10 A

0.8

0.6

0.4 4

0.2 4

0.0 4

Figure A.3 — Graph built with ¥ = 0.25. The colors represent the absolute difference between
z17[n] in an unquantized processing (true value) and its value in the experiment where only
zp[n] is quantized but all the other values (different ks or different rn’s) are not. The chosen
node 7 is highlighted within an orange circle. The global MSE is 1.10e — 07.

follow a binomial distribution. This distribution was chosen was because the mean and
variance of this distribution can be chosen independently (as long as the variance is below the
mean). The graphs were chosen with N = 50 nodes. The same graph signal as in Subsection
3.5.1 is generated and filtered with the same filter of Eq. (3.36) with polynomial approximation

81

Appendix A. Appendix of Chapter 3

k=17

10

08

0.8

0.4

0.2

H]

0o D2 D4 06 08 10

Figure A.4 — Graph built with ¥ = 0.3. The colors represent the absolute difference between
zy17[n] in an unquantized processing (true value) and its value in the experiment where only
zp[n] is quantized but all the other values (different ks or different n’s) are not. The chosen
node n is highlighted within an orange circle. The global MSE is 0.47¢ - 7.

order K =9. We use Eq. (3.33) for computing b[n, k].

In Fig. A.5, we can see the relationship between the degrees’ variance and mean with the vari-
ance of b[n, k] with respect to n (b[n, k] is averaged with respect to k). Each dot corresponds
to the experiment resulted with the use of a different graph. We can notice that the results
of Fig. A.5 are similar to those of Fig. 3.11, which means our observations are consistent for
different types of graphs. That is, regular and dense graphs tend to have a more uniform bit
distribution. Conversely, it means that when the graph is both sparser and irregular, it will
require a more irregular bit distribution hence optimal bit allocation is important.

In Fig. A.6, we can further see the relationship with the variance of the nodes’ eccentricities.
In orange, we have graphs generated from binomial distribution node degrees and in blue we
have Gaussian kernel generated graphs. Here, the same tendency is again noticed for both
types of graphs.

82

A.3. Variance of the bit allocation for binomial distribution

Graph generated from binomial distribution node degrees

Degree variance

2

Wariance of x[n, k]

0.10
0.08
0.06
004
0.02
J
0.00
4 3 8 10 12

Degree mean

Figure A.5 — Relationship between the degrees’ variance and mean with the variance of b[n, k]
for graphs generated with node degrees following a binomial distribution. The colors represent
the variance of b(n, k] along n and k. Each color dot represents a different graph.

0.4 4

Variance of x[n, k]

014

0.0 4

03

0.2 4

.
L]
. .
L]
L]
. []
° L]
[]
[] L]
1]
L]
Gaussian kernel generated graph (distance based)
@ Graph generated from binomial distribution node degrees
T T T T T T
1 2 3 4 5 & 7

Wariance of the nodes® eccentricities

Figure A.6 — Variance of b[n, k] versus variance of the nodes’ eccentricities for two different
type of graphs. In orange, we have graphs generated from binomial distribution node degrees
and in blue we have Gaussian kernel generated graphs.

83

Appendix of Chapter 4

B.1 Quantization for Graph Filter

In this section, we develop the quantization analysis for graph filters, for a general graph filter
shift operator. We isolate the total quantization error caused by the accumulated effects of the
individual quantization errors sent at every message. Additionally, we develop an expression
of the MSE as a function of the bit allocation.

By taking into account the quantization errors that accumulate through all iterations of the
distributed processing task, the filtered signal can be written as

K-1[K-
H (S)x= Zh S*x+ Y Z hi., ;S| €x (B.1)
k=0 k=0] j=1

as opposed to Eq. (4.1) for the perfect settings. We denote for each specific filter H'(S) the
coefficients h;c in Eq. (4.1).

Since the first term of the above expression of Eq. (B.1), Z hl Skx, is the filtered signal in a
=0

setting without quantization, we can define the second term

€, (BZ)

. K_
Q=)
k=0

Z k+]

as the total error caused by the accumulated effects of the quantization errors.

Atiteration k, the maximum value (in an absolute sense) of the messages to be transmitted is
||8* x||oo. If the eigenvalues of the shift operator are bounded in [~1,1], the range of the values
being transmitted at step k will not surpass the range of the original signal.

85

Appendix B. Appendix of Chapter 4

For the sake of clarity, we now write

z .S ®3)
and
) K-kK-k
Fj=(WIW)n,nl=) Z R, jhi, ,8PIn,nl. (B.4)
j=1 p=
Hence,
. K_l .
Ql — Z W]éekr (B.5)
k=0

and we can finally calculate the mean squared error
. K K . .
E{IQ' 1P} = Y Z Ele} W) Wje,). (B.6)
k=0 [=0

Hence the expected value of the crossed terms in Eq. (B.6) is zero and we finally obtain the
expected value of the total mean squared error as

, K-1N-1
E{1Q 12} = Y Y (Wi W) in,niEtecin?, (B.7)
k=0 n=0
which is equivalent to
) K-1N-1
E{II Q' ||2}= Y.) FiE(3, (B.8)
k=0 n=0

with Eq. (2.16), the MSE finally reads

E{IQ" 17} =

This result is used in Subsection 4.3.1.

(rl)z K-1N-1

Y Y Rl (B.9)

k=0 n=0

86

B.2. Quantization Step in Moléne Experiments

B.2 Quantization Step in Molene Experiments

We now extend the experiments in Subsection 4.5.1 to observe the quantization step on the
Molene dataset. In Fig. B.1, we plot the quantization step under optimal bit allocation for
the 5 models trained on the Moléne dataset, a non-synthetic dataset supported on a graph of
N=355 from Subsection 4.5.1. Similarly to Fig. 4.5, we see a tendency of a lower quantization
step (i.e., a higher relative bit allocation) in the second layer, while the quantization step is
higher in the first and third layers. This means the messages sent in the middle layers are more
important than the ones sent in the first and last layers, from a quantization perspective.

Quantization step

0.12 4

0.10 A

0.08 A

0.06 A

0.04 A

0.02 A _J_
1

0.00 A

1 2 3
Layer

Figure B.1 — Quantization step per layer using the optimal allocation scheme for Moléne
experiments in Subsection 4.5.1. Lower values mean a higher relative bit allocation. Each
datapoint represents the average quantization step of a filter in that layer of a model. Filters of
5 models are represented in the box plot, with 1, 2 and 2 filters in layers 1, 2 and 3 respectively.
Bit budget of 8 bits/message on average.

B.3 Source Localization Examples

To better illustrate the task of source localization (Section 4.5.2), in Fig. B.2 we visualize three
examples of a source signal and its corresponding diffused signal, on three different supporting
graphs. The source signal, y°"#"@ s diffused in the graph for k = 3 steps, as x = Sky°riginal,
The diffused signal x is the input to the GCNN, which outputs a prediction y = o (fg(x)) on the
binary class of each node, either originally active (1) or inactive (0).

87

Appendix B. Appendix of Chapter 4

Source signal Diffused signal
1.0 1.0 1.0 4

0.5

0.8 0.8 0.8 1 04

0.6 /\ 0.6 0.6 1 0.3

\ 0.2

021 0.2 —

: 0.2 : LQ 0.1
-9

0.0

/

0.4+ 0.4+

S
5
S

0.01 0.0

0.0

Figure B.2 — Three example samples for the source localization task, supported on three
different graphs of N = 30. A GCNN predicts for each node whether it was active or not in the
source signal, given the diffused signal, as shown in Section 4.5.2.

B.4 Tables for Standard Deviations

In order to illustrate the standard deviations on experiments performed on Section 4.5, we
make use of tables. Table B.1 is linked to Fig. 4.3, table B.2 is linked to Fig. 4.4a, table B.3 is
linked to Fig. 4.4b, and finally, table B.4 is linked to Fig. 4.10.

88

B.4. Tables for Standard Deviations

Avg. Bits/message

8 bits

9 bits

10 bits

Uniform
Optimal
Graph-level
Layer 1 (+1,0, -1)
Layer 3 (-1, 0, +1)
Range-based

2.8e—4 +1.9e-4
9.2e—5 +5.7e-5
1.8e—4 +1.2e—-4
6.7e—4 + 4.3e-4
2.3e—4 +1.2e-4
3.2e—4 +25e-4

7.0e—5 +4.8e-5
2.3e—5 +1.3e-5
4.6e—=5 +3.2e-5
1.6e—4 + 1.0e-4
5.8e—=5+3.e-5
8.1e—5 +6.2e-5

1.7e=5 +1.2e-5
5.8e—6 +3.5e-6
l.1e=5 +8.1e-6
4.2e—5 +2.8e-5
l.4e-5+7.7¢e-6
2.0e—5 +1.5e-5

Table B.1 — Quantization MSE on the Moléne dataset for distributed denoising, supporting
graph of N=355 nodes. Average of 25 runs (5 models and 5 runs per model). Lowest and
second-lowest highlighted. Table for Fig. 4.3

Avg. Bits/message

8 bits

9 bits

10 bits

Uniform:
Optimal:
Graph-level:
Layer 1 (+1, 0, -1):
Layer 3 (-1, 0, +1):
Range-based:

1.7e—5 + 4.6e-6
5.4e—6 + 1.6e-6
1.2e—5 +3.7e-6
2.5e—=5 +7.8e-6
4.9e—-5 +1.8e-5
1.2e—5 + 2.4e-6

4.4e—6 +1.2e-6
1.2e—6 +4.1e-7
3.0e—6 + 1.0e-6
6.2e—6 + 1.8e-6
1.2e—5 +4.7e-6
3.1e—6 +6.2e-7

1.1e—6 +3.0e-7
3.2e—7 +9.0e-8
7.4e—7 +25e-7
1.5e—6 + 4.6e-7
3.1e—6 + 1.2e-6
7.8e—7 + 1.3e-7

Table B.2 - Quantization MSE for different bit allocation schemes on the distributed denoising
task. Average across 5 supporting graphs of N=30 nodes, error bars represent standard devia-
tion. Results for each graph are averaged across 20 models of L=2. Lowest and second-lowest
highlighted. Table for Fig. 4.4a

Avg. Bits/message

8 bits

9 bits

10 bits

Uniform:
Optimal:
Graph-level:
Layer1 (+1, 0, -1):
Layer 3 (-1, 0, +1):
Range-based:

5.5e—5 +9.6e-6
2.0e—5 +9.6e-6
3.9e—5 +8.8e-6
9.2e-5+2.2e-5
8.7¢—5+2.1e-5
4.8e—5 + 8.8e—6

1.4e—5 +2.5e-6
5.0e—6 + 3.4e-6
9.8e—6 +2.1e-6
2.3e—=5+5.3e-6
2.1e=5 +5.2e-6
1.2e—4 +2.3e-6

3.4e—6 +6.5e-7
1.4e—6 + 6.6e—6
2.4e—6 +5.1e-7
5.8e—6 + 1.2e-6
5.5e—6 + 1.4e-6
3.0e—6 +5.8e-7

Table B.3 - Quantization MSE for different bit allocation schemes on the distributed denoising
task. Average across 5 supporting graphs of N=30 nodes, error bars represent standard devia-
tion. Results for each graph are averaged across 20 models of L=4. Lowest and second-lowest
highlighted. Table for Fig. 4.4b

89

Appendix B. Appendix of Chapter 4

Avg. Bits/message

8 bits

9 bits

10 bits

Uniform
Optimal
Graph-level

Layer 1 (+1,0,-1)
Layer 3 (-1,0,+1)

Range-based

1.9e—3 + 1.6e-3
5.4e—4 +7.6e-4
9.6e—4 +8.9e-4
2.0e—3 +£1.3e-3
4.8e—3 +4.7¢e-3
1.4e—3 +1.0e-3

4.9e—4 + 4.1e-4
1.7e—4 + 2.6e-4
2.2e—4 +2.1e-4
5.2e—4 +3.4e-4
1.1e-3 +1.0e—4
3.4e—4 +22e-4

1.2e—4 +9.9e-5
2.3e—5 +1.5e-5
5.7e—5 +5.1e-5
1.3e—4 +8.7e-5
2.9e—4 +2.8e-4
8.9e—5 +5.7e-5

Table B.4 — Quantization MSE for different bit allocation schemes on a source localization
task. Mean and standard deviation across 5 supporting graphs of N=30 nodes. Results for
each graph are averaged across 20 models. Lowest and second-lowest highlighted.Table for
Fig. 4.10

90

Bibliography

(1]

Antonio Ortega, Pascal Frossard, Jelena Kovacevi¢, José MF Moura, and Pierre Van-
dergheynst, “Graph signal processing: Overview, challenges, and applications,” Proceed-
ings of the IEEE, vol. 106, no. 5, pp. 808-828, 2018.

David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Van-
dergheynst, “The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,” IEEE Signal Process-
ing Magazine, vol. 30, no. 3, pp. 83-98, 2013.

David I Shuman, Pierre Vandergheynst, Daniel Kressner, and Pascal Frossard, “Dis-
tributed Signal Processing via Chebyshev Polynomial Approximation,” IEEE Transactions
on Signal and Information Processing over Networks, vol. 4, no. 4, pp. 736-751, Dec. 2018.

Aliaksei Sandryhaila, Soummya Kar, and José MF Moura, “Finite-time distributed con-
sensus through graph filters,” in 2014 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2014, pp. 1080-1084.

Sam Safavi and Usman A Khan, “Revisiting finite-time distributed algorithms via suc-
cessive nulling of eigenvalues,” IEEE Signal Processing Letters, vol. 22, no. 1, pp. 54-57,
2015.

Elvin Isufi, Andreas Loukas, Andrea Simonetto, and Geert Leus, “Autoregressive moving
average graph filtering,” IEEE Transactions on Signal Processing, vol. 65, no. 2, pp. 274-288,
2017.

Santiago Segarra, Antonio G Marques, and Alejandro Ribeiro, “Optimal graph-filter
design and applications to distributed linear network operators,” IEEE Transactions on
Signal Processing, vol. 65, no. 15, pp. 4117-4131, 2017.

Xuesong Shi, Hui Feng, Muyuan Zhai, Tao Yang, and Bo Hu, “Infinite impulse response
graph filters in wireless sensor networks,” IEEE Signal Processing Letters, vol. 22, no. 8, pp.
1113-1117, 2015.

Aikaterini Protogerou, Stavros Papadopoulos, Anastasios Drosou, Dimitrios Tzovaras, and
Ioannis Refanidis, “A graph neural network method for distributed anomaly detection in
IoT,” Evolving Systems, vol. 12, no. 1, pp. 19-36, Mar. 2021.

91

Bibliography

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

92

Bianca Iancu, Luana Ruiz, Alejandro Ribeiro, and Elvin Isufi, “Graph-adaptive activation
functions for graph neural networks,” in 2020 IEEE 30th International Workshop on
Machine Learning for Signal Processing (MLSP). IEEE, 2020, pp. 1-6.

Bianca Iancu and Elvin Isufi, “Towards Finite-Time Consensus with Graph Convolutional
Neural Networks,” in 2020 28th European Signal Processing Conference (EUSIPCO). IEEE,
2021, pp. 2145-2149.

Fernando Gama, Qingbiao Li, Ekaterina Tolstaya, Amanda Prorok, and Alejandro Ribeiro,
“Decentralized Control with Graph Neural Networks,” arXiv:2012.14906 [cs, eess], June
2021.

Fernando Gama and Somayeh Sojoudi, “Distributed linear-quadratic control with graph
neural networks,” Signal Processing, vol. 196, pp. 108506, 2022.

Fernando Gama, Ekaterina Tolstaya, and Alejandro Ribeiro, “Graph neural networks for
decentralized controllers,” in 2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2021, pp. 5260-5264.

Zhan Gao, Fernando Gama, and Alejandro Ribeiro, “Wide and deep graph neural network
with distributed online learning,” IEEE Transactions on Signal Processing, vol. 70, pp.
3862-3877, 2022.

Qingbiao Li, Fernando Gama, Alejandro Ribeiro, and Amanda Prorok, “Graph neural
networks for decentralized multi-robot path planning,” in 2020 IEEE/RS] International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 11785-11792.

Qingbiao Li, Weizhe Lin, Zhe Liu, and Amanda Prorok, “Message-aware graph attention
networks for large-scale multi-robot path planning,” IEEE Robotics and Automation
Letters, vol. 6, no. 3, pp. 5533-5540, 2021.

Ekaterina Tolstaya, Fernando Gama, James Paulos, George Pappas, Vijay Kumar, and
Alejandro Ribeiro, “Learning decentralized controllers for robot swarms with graph
neural networks,” in Conference on robot learning. PMLR, 2020, pp. 671-682.

Zhiyang Wang, Mark Eisen, and Alejandro Ribeiro, “Learning decentralized wireless
resource allocations with graph neural networks,” IEEE Transactions on Signal Processing,
vol. 70, pp. 1850-1863, 2022.

Zhongyuan Zhao, Gunjan Verma, Chirag Rao, Ananthram Swami, and Santiago Segarra,
“Distributed scheduling using graph neural networks,” in 2021 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp. 4720-4724.

Zhongyuan Zhao, Gunjan Verma, Chirag Rao, Ananthram Swami, and Santiago Segarra,
“Link scheduling using graph neural networks,” IEEE Transactions on Wireless Communi-
cations, 2022.

Bibliography

[25]

Zhan Gao, Elvin Isufi, and Alejandro Ribeiro, “Stochastic graph neural networks,” IEEE
Transactions on Signal Processing, vol. 69, pp. 4428-4443, 2021.

S. Scardapane, 1. Spinelli, and P. D. Lorenzo, “Distributed Training of Graph Convolutional
Networks,” IEEE Transactions on Signal and Information Processing over Networks, vol. 7,
pp. 87-100, 2021.

Alberto Natali, Mario Coutino, and Geert Leus, “Topology-aware joint graph filter and
edge weight identification for network processes,” in 2020 IEEE 30th International
Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2020, pp. 1-6.

Coutifio Minguez, E Isufi, Takanori Maehara, and GJT Leus, “State-space network topol-
ogy identification from partial observations,” IEEE Transactions on Signal and Informa-
tion Processing over Networks, 2020.

T Mitchell Roddenberry, Madeline Navarro, and Santiago Segarra, “Network topology
inference with graphon spectral penalties,” arXiv preprint arXiv:2010.07872, 2020.

Dorina Thanou, Xiaowen Dong, Daniel Kressner, and Pascal Frossard, “Learning heat
diffusion graphs,” IEEE Transactions on Signal and Information Processing over Networks,
vol. 3, no. 3, pp. 484-499, 2017.

Carlos Lassance, Vincent Gripon, and Gonzalo Mateos, “Graph topology inference
benchmarks for machine learning,” in 2020 IEEE 30th International Workshop on Machine
Learning for Signal Processing (MLSP). IEEE, 2020, pp. 1-6.

Vincenzo Matta, Augusto Santos, and Ali H Sayed, “Graph learning over partially observed
diffusion networks: Role of degree concentration,” arXiv preprint arXiv:1904.02963, 2019.

Matthias Minder, Zahra Farsijani, Dhruti Shah, Mireille El Gheche, and Pascal
Frossard, “Figlearn: Filter and graph learning using optimal transport,” arXiv preprint
arXiv:2010.15457, 2020.

Jiaxi Ying, José Vinicius de M Cardoso, and Daniel P Palomar, “Does the 11-norm
learn a sparse graph under laplacian constrained graphical models?,” arXiv preprint
arXiv:2006.14925, 2020.

Xiaowen Dong, Dorina Thanou, Michael Rabbat, and Pascal Frossard, “Learning graphs
from data: A signal representation perspective,” IEEE Signal Processing Magazine, vol. 36,
no. 3, pp. 44-63, 2019.

Gonzalo Mateos, Santiago Segarra, Antonio G Marques, and Alejandro Ribeiro, “Con-
necting the dots: Identifying network structure via graph signal processing,” IEEE Signal
Processing Magazine, vol. 36, no. 3, pp. 16-43, 2019.

Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre Vandergheynst, “Learning
laplacian matrix in smooth graph signal representations,” IEEE Transactions on Signal
Processing, vol. 64, no. 23, pp. 6160-6173, 2016.

93

Bibliography

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

(43]

(44]

(45]

(46]

(47]

94

Pierre Humbert, Batiste Le Bars, Laurent Oudre, Argyris Kalogeratos, and Nicolas Vay-
atis, “Learning laplacian matrix from graph signals with sparse spectral representation,”
Journal of Machine Learning Research, 2021.

Vassilis Kalofolias and Nathanaél Perraudin, “Large scale graph learning from smooth
signals,” arXiv preprint arXiv:1710.05654, 2017.

Vassilis Kalofolias, “How to learn a graph from smooth signals,” in 2016 Artificial Intelli-
gence and Statistics (Al Stats). PMLR, pp. 920-929.

Stefania Sardellitti, Sergio Barbarossa, and Paolo Di Lorenzo, “Graph topology inference
based on transform learning,” in 2016 IEEE global conference on signal and information
processing (GlobalSIP). IEEE, 2016, pp. 356-360.

Dorina Thanou and Pascal Frossard, “Learning of robust spectral graph dictionaries for
distributed processing,” EURASIP Journal on Advances in Signal Processing, vol. 2018, no.
1, pp. 67, 2018.

B. Widrow, I. Kollar, and Ming-Chang Liu, “Statistical theory of quantization,” IEEE
Transactions on Instrumentation and Measurement, vol. 45, no. 2, pp. 353-361, Apr. 1996.

Lin Xiao, M. Johansson, H. Hindi, S. Boyd, and A. Goldsmith, “Joint optimization of
communication rates and linear systems,” IEEE Transactions on Automatic Control, vol.
48, no. 1, pp. 148-153, Jan. 2003.

Aliaksei Sandryhaila and José MF Moura, “Discrete signal processing on graphs,” IEEE
Transactions on Signal Processing, vol. 61, no. 7, pp. 1644-1656, 2013.

Jiani Liu, Elvin Isufi, and Geert Leus, “Filter design for autoregressive moving average
graph filters,” IEEE Transactions on Signal and Information Processing over Networks, vol.
5, no. 1, pp. 47-60, 2018.

Luiz E O. Chamon and Alejandro Ribeiro, “Finite-precision effects on graph filters,” in
2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal,
QC, Nov. 2017, pp. 603-607, IEEE.

Shengyu Zhu, Mingyi Hong, and Biao Chen, “Quantized consensus admm for multi-agent
distributed optimization,” in IEEE ICASSP, 2016, pp. 4134-4138.

Shengyu Zhu and Biao Chen, “Quantized consensus by the admm: probabilistic versus
deterministic quantizers,” IEEE Transactions on Signal Processing, vol. 64, no. 7, pp.
1700-1713, 2016.

Huagqing Li, Shuai Liu, Yeng Chai Soh, and Lihua Xie, “Event-triggered communication
and data rate constraint for distributed optimization of multiagent systems,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, , no. 99, pp. 1-12, 2017.

Bibliography

(48]

[52]

[53]

[54]

Jueyou Li, Guo Chen, Zhiyou Wu, and Xing He, “Distributed subgradient method for
multi-agent optimization with quantized communication,” Mathematical Methods in
the Applied Sciences, vol. 40, no. 4, pp. 1201-1213, 2017.

Dorina Thanou, Effrosyni Kokiopoulou, Ye Pu, and Pascal Frossard, “Distributed average
consensus with quantization refinement,” IEEE Transactions on Signal Processing, vol.
61, no. 1, pp. 194-205, 2013.

L Ben Saad, Baltasar Beferull-Lozano, and Elvin Isufi, “Quantization analysis and robust
design for distributed graph filters,” IEEE Transactions on Signal Processing, vol. 70, pp.
643658, 2021.

Leila Ben Saad, Elvin Isufi, and Baltasar Beferull-Lozano, “Graph Filtering with Quantiza-
tion over Random Time-varying Graphs,” in 2019 IEEE Global Conference on Signal and
Information Processing (GlobalSIP), Nov. 2019, pp. 1-5.

Carl D Meyer, Matrix analysis and applied linear algebra, vol. 71, Siam, 2000.

Stephen Boyd and Lieven Vandenberghe, Convex optimization, Cambridge university
press, 2004.

Adrian Segall, “Bit allocation and encoding for vector sources,” IEEE Transactions on
Information Theory, vol. 22, no. 2, pp. 162-169, 1976.

Morgan Levy, “Curated rain and flow data for the brazilian rainforest-savann transition
zone,” HydroShare, Mar 2017.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu
Philip, “A comprehensive survey on graph neural networks,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 32, no. 1, pp. 4-24, 2020.

Fernando Gama, Elvin Isufi, Geert Leus, and Alejandro Ribeiro, “Graphs, convolutions,
and neural networks: From graph filters to graph neural networks,” IEEE Signal Processing
Magazine, vol. 37, no. 6, pp. 128-138, 2020.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun, “Spectral networks and
locally connected networks on graphs,” arXiv preprint arXiv:1312.6203, 2013.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” Advances in Neural Information
Processing Systems, vol. 29, 2016.

Chaim Baskin, Natan Liss, Eli Schwartz, Evgenii Zheltonozhskii, Raja Giryes, Alex M.
Bronstein, and Avi Mendelson, “UNIQ: Uniform Noise Injection for Non-Uniform Quan-
tization of Neural Networks,” ACM Transactions on Computer Systems, vol. 37, no. 1-4, pp.
1-15, June 2021.

95

Bibliography

(61]

[62]

(63]

[64]

(65]

[66]

[67]

(68]

(69]

[70]

[71]

[72]

(73]

96

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt
Keutzer, “A Survey of Quantization Methods for Efficient Neural Network Inference,”
arXiv:2103.13630 [cs], Apr. 2021.

Hongyang Liu, Sara Elkerdawy, Nilanjan Ray, and Mostafa Elhoushi, “Layer Importance
Estimation With Imprinting for Neural Network Quantization,” in 2021 Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2408-2417.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van
Baalen, and Tijmen Blankevoort, “A White Paper on Neural Network Quantization,”
arXiv:2106.08295 [cs], June 2021.

Shyam A. Tailor, Javier Fernandez-Marques, and Nicholas D. Lane, “Degree-Quant:
Quantization-Aware Training for Graph Neural Networks,” arXiv:2008.05000 [cs, stat],
Mar. 2021.

Yiren Zhao, Duo Wang, Daniel Bates, Robert Mullins, Mateja Jamnik, and Pietro Lio,
“Learned Low Precision Graph Neural Networks,” arXiv:2009.09232 [cs], Sept. 2020.

Isabela Cunha Maia Nobre and Pascal Frossard, “Optimized Quantization in Distributed
Graph Signal Filtering,” arXiv:1909.12725 [eess], Sept. 2019.

Pei Li, Nir Shlezinger, Haiyang Zhang, Baoyun Wang, and Yonina C. Eldar, “Task-Based
Graph Signal Compression,” arXiv:2110.12387 [eess], Oct. 2021.

Mengyuan Lee, Guanding Yu, and Huaiyu Dai, “Decentralized inference with graph
neural networks in wireless communication systems,” IEEE Transactions on Mobile
Computing, 2021.

Yiren Zhou, Seyed-Mohsen Moosavi-Dezfooli, Ngai-Man Cheung, and Pascal Frossard,
“Adaptive quantization for deep neural network,” in Proceedings of the AAAI Conference
on Artificial Intelligence, 2018, vol. 32.

Wang Zhe, Jie Lin, Vijay Chandrasekhar, and Bernd Girod, “Optimizing the Bit Allocation
for Compression of Weights and Activations of Deep Neural Networks,” in 2019 IEEE
International Conference on Image Processing (ICIP), Sept. 2019, pp. 3826-3830.

Vincenzo Matta, Augusto Santos, and Ali H Sayed, “Graph learning under partial observ-
ability,” Proceedings of the IEEE, vol. 108, no. 11, pp. 2049-2066, 2020.

Vincenzo Matta and Ali H Sayed, “Consistent tomography under partial observations
over adaptive networks,” IEEE Transactions on Information Theory, vol. 65, no. 1, pp.
622-646, 2018.

André LF De Almeida, Alain Y Kibangou, Sebastian Miron, and Daniel C Aratjo, “Joint
data and connection topology recovery in collaborative wireless sensor networks,” in
2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE,
2013, pp. 5303-5307.

Bibliography

[74]

Vincenzo Matta, Virginia Bordignon, Augusto Santos, and Ali H Sayed, “Interplay between
topology and social learning over weak graphs,” IEEE Open Journal of Signal Processing,
vol. 1, pp. 99-119, 2020.

Mircea Moscu, Roula Nassif, Fei Hua, and Cédric Richard, “Learning causal networks
topology from streaming graph signals,” in 2019 27th European Signal Processing Confer-
ence (EUSIPCO). IEEE, 2019, pp. 1-5.

Mircea Moscu, Ricardo Borsoi, and Cédric Richard, “Online graph topology inference
with kernels for brain connectivity estimation,” in 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020, pp. 1200-1204.

Bennett Fox, “Discrete Optimization via Marginal Analysis,” Management Science, vol.
13, no. 3, pp. 210-216, 1966.

97

Education

Experience

ISABELA CUNHA MAIA NOBRE
EPFL LTS4 Station 11 CH-1015 Lausanne
+41 76 6422303 isabela.nobre@epfl.ch

PhD in Electrical Engineering

Ecole Polytechnique Fédérale de Lausanne (EPFL)

GPA 5.5/6; 2018 - 2022

Title: Quantization for Distributed Processing and Learning of Structured Data.
Advisor: Prof. Pascal Frossard

Expertise: Graph Signal Processing, Graph Neural Networks, Machine Learning,
Distributed Systems and Communication Systems.

M.S. Electrical Engineering, Communication Systems

Pontificia Universidade Catoélica do Rio de Janeiro (PUC-Rio)

GPA 9.4/10; 2015 - 2017

Title: On the Protection of Fixed Service Receivers from the Interference Generated
by Non-GSO Satellite Systems Operating in the 3.7-4.2 GHz Band.

Advisor: Prof. Jos¢é Mauro Pedro Fortes.

B.S. Electrical and Electronic Engineering
Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio)
GPA 9.4/10; 2011 - 2015

Exchange Program, Electrical and Electronic Engineering
University of California, San Diego (UCSD)
GPA 4/4; Fall 2014

EPFL - LTS4
Research Internship in Signal Processing over Networks, 01/2018-06/2018

Work Description: Studied quantization error in distributed signal processing tasks
over networks.

Neoenergia (Iberdrola)
Internship in the Power Systems Regulation Sector, 06/2014-08 /2014
Work Description: Worked with the operational model of the Brazilian electrical

power system and the procedures on energy commercialization and contracting.

PUC-Rio
Research Internship in Antenna Theory, 08/2012-07/2014
Work Description: Studied the control of electromagnetic modal propagation

within a coaxial antenna in order to use it in a Space Division Multiple Access system.

Teaching Assistantship, 08/2011-12/2011
Work Description: Teaching assistant of the Department of Mathematics’ course

Awards

Grants

Languages

Calculus of Several Variables. Taught at a class of approximately 40 students.

AC ROSA Engineering Consultancy
Internship in the Geotechnics Sector, 03/2012-06/2012

Work Description: Elaborated technical drawings related to geotechnical retaining
wall projects with the software AutoCAD.

UFAL - LCCV
Research Internship in Computer Vision, 02/2010-12/2010

Work Description: : Developed (C) a player for viewing videos in 3D projection
environments for oil and gas applications. Project funded by Petrobras.

Awarded 3 incentive prizes (50% of tuition costs for the awarded year) from
PUC-Rio for being one of the top 10 students out of 3000 in Engineering based
on cumulative GPA. Awards obtained in the years 2012, 2013 and 2014;

Won best project out of 30 students in the Introduction to Engineering class
(2011) by successfully designing and building a slot car and a track;

Selected among 868.000 participants nationwide to be part of the 5 students
representing Brazil at the International Olympiad on Astronomy and Astrophy-
sics and at the Latin-American Astronomy Olympiad in 2009 (high school level),
based on theoretical and practical exams. Participated in the latter and won a
silver medal;

Won third place out of 5000 students nationwide in the II Brazilian Rocket
Olympiad in 2008 (high school level) based on the range attained by a built
rocket;

National Scientific Olympiads (middle- and high- school level): 3 golden medals,
3 silver medals and 2 bronze medals (in the fields of Astronomy, Mathematics
and Chemistry, from 2005 to 2009). On average, 350 thousand students nati-
onwide participate in these competitions based on theoretical knowledge exams.

PhD: 100% tuition + CHF 83.190,00 stipend - CAPES (2018- ongoing), based
on leadership potential and academic success;

M.S: 100% tuition + R$36.000,00 stipend - CNPq / PUC-Rio (2015-2017), based
on academic performance;

B.S: 50% tuition - PUC-Rio (2011-2015), based on entrance exam results (top
20 out of 1900);

Study Abroad Scholarship: 100% tuition - UCSD (2014), based on academic
performance.

Portuguese: Native, English: Fluent, French: Fluent, Spanish: Advanced,
Italian: Basic, German: Basic

	Acknowledgements
	Abstract (English/Français)
	Contents
	Introduction
	Motivation
	Thesis outline
	Summary of Contributions

	Preliminaries
	Graph Signal Processing
	Distributed Graph Signal Filtering
	Rate-distortion model

	Optimized Quantization in Distributed Graph Signal Filtering
	Introduction
	Quantization Error for Distributed Graph Filtering
	Quantized Distributed Filtering with bounded messages
	Quantization error analysis
	Distributed processing with bounded messages
	Quantization error with bounded messages

	Optimized bit allocation
	Rate-distortion model
	Optimal Allocation

	Results and Discussion
	Performance of the proposed scheme
	Analysis of the bit allocation

	Conclusion

	Optimized Bit Allocation for Distributed Processing with Graph Convolutional Neural Networks
	Introduction
	Distributed Graph Neural Network Implementation
	Network Information Processing
	Distributed GCNN Inference

	Bit Allocation Algorithm
	Filter Level Bit Allocation
	Network-level Bit Allocation

	Bit Allocation Problem Solution
	Experimental Results
	Distributed Denoising
	Source Localization

	Conclusion

	Distributed Graph Learning with Smooth Data Priors
	Introduction
	Problem formulation
	Graph Learning
	Distributed setup and problem formulation

	Distributed Graph Learning Algorithm
	Initialization
	Optimization

	Experiments on Distributed Graph Learning
	Experimental Settings
	Graph Learning Performance
	Analysis

	Quantization for Distributed Graph Learning
	Problem Formulation
	Training Strategy
	Experiments of Distributed Graph Learning with Quantization

	Conclusion

	Conclusion
	Summary
	Future Work

	Appendix of Chapter 3
	Bit allocation in the network
	Error Propagation
	Variance of the bit allocation for binomial distribution

	Appendix of Chapter 4
	Quantization for Graph Filter
	Quantization Step in Molène Experiments
	Source Localization Examples
	Tables for Standard Deviations

	Bibliography

