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Abstract. In this manuscript we consider kernel ridge regression (KRR) under
the Gaussian design. Exponents for the decay of the excess generalization error
of KRR have been reported in various works under the assumption of power-law
decay of eigenvalues of the features co-variance. These decays were, however,
provided for sizeably different setups, namely in the noiseless case with constant
regularization and in the noisy optimally regularized case. Intermediary settings
have been left substantially uncharted. In this work, we unify and extend this
line of work, providing characterization of all regimes and excess error decay
rates that can be observed in terms of the interplay of noise and regularization.
In particular, we show the existence of a transition in the noisy setting between
the noiseless exponents to its noisy values as the sample complexity is increased.
Finally, we illustrate how this crossover can also be observed on real data sets.
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1. Introduction

Kernel methods are among the most popular models in machine learning. Despite their
relative simplicity, they define a powerful framework in which non-linear features can be
exploited without leaving the realm of convex optimisation. Kernel methods in machine
learning have a long and rich literature dating back to the 60s [1, 2], but have recently
made it back to the spotlight as a proxy for studying neural networks in different
regimes, e.g. the infinite width limit [3–6] and the lazy regime of training [7]. Despite
being defined in terms of a non-parametric optimisation problem, kernel methods can
be mathematically understood as a standard parametric linear problem in a (possibly
infinite) Hilbert space spanned by the kernel eigenvectors (a.k.a. features). This dual
picture fully characterizes the asymptotic performance of kernels in terms of a trade-off
between two key quantities: the relative decay of the eigenvalues of the kernel (a.k.a.
its capacity) and the coefficients of the target function when expressed in feature space
(a.k.a. the source). Indeed, a sizeable body of work has been devoted to understanding
the decay rates of the excess error as a function of these two relative decays, and investi-
gated whether these rates are attained by algorithms such as stochastic gradient descent
[8, 9].

Rigorous optimal rates for the excess generalization error in kernel ridge regression
(KRR) are well-known since the seminal works of [10, 11]. However, recent interesting
works [12, 13] surprisingly reported very different—and actually better—rates sup-
ported by numerical evidences. These papers appeared to either not comment on this
discrepancy [13], or to attribute this apparent contradiction to a difference between typ-
ical and worse-case analysis [12]. As we shall see, the key difference between these works
stems instead from the fact that most of classical works considered noisy data and fine-
tuned regularization, while [12, 13] focused on noiseless data sets. This observation raises
a number of questions: is there a connection between both sets of exponents? Are Gaus-
sian design exponents actually different from worst-case ones? What about intermediary
setups (for instance noisy labels with generic regularization, noiseless labels with varying
regularization) and regimes (intermediary sample complexities)? How does infinitesimal
noise differ from no noise at all?
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1.1. Main contributions

In this manuscript, we answer all the above questions, and redeem the apparent con-
tradiction by reconsidering the Gaussian design analysis. We provide a unifying picture
of the decay rates for the excess generalization error, along a more exhaustive charac-
terization of the regimes in which each is observed, evidencing the interplay of the role
of regularization, noise and sample complexity. We show in particular that typical-case
analysis with a Gaussian design is actually in perfect agreement with the statistical learn-
ing worst-case data-agnostic approach. We also show how the optimal excess error decay
can transition from the recently reported noiseless value to its well known noisy value
as the number of samples is increased. We illustrate this crossover from the noiseless
regime to the noisy regime also in a variety of KRR experiments on real data.

1.2. Related work

The analysis for kernel methods and ridge regression is a classical topic in statistical
learning theory [10, 11, 14–17]. In this classical setting, decay exponents for optimally
regularized noisy linear regression on features with power-law co-variance spectrum have
been provided. Interestingly, it has been shown that such optimal rates can be obtained
in practice by stochastic gradient descent, without explicit regularization, with single-
pass [18, 19] or multi-pass [8], as well as by randomized algorithms [20]. Closed-form
bounds for the prediction error have been provided in a number of worst-case analyses
[16, 20]. We show how the decay rates given in the present paper can also be alternatively
deduced therefrom in appendix E.

The recent line of work on the noiseless setting includes contributions from statistical
learning theory [9, 21] and statistical physics [12, 13]. This much more recent second line
of work proved decay rates for a given, constant regularization. An example of noise-
induced crossover is furthermore mentioned in [9]. The interplay between noisy and
noiseless regimes has also been investigated in the related Gaussian process literature
[22].

The study of ridge regression with Gaussian design is also a classical topic. Refer-
ence [23] considered a model in which the covariates are isotropic Gaussian in R

p, and
computed the exact asymptotic generalization error in the high-dimensional asymp-
totic regime p, n→∞ with dimension-to-sample-complexity ratio p/n fixed. This result
was generalised to arbitrary co-variances [24, 25] using fundamental results from ran-
dom matrix theory [26]. Non-asymptotic rates of convergence for a related problems
were given in [27]. Previous results also existed in the statistical physics literature,
e.g. [28–31]. Gaussian models for regression have seen a surge of popularity recently,
and have been used in particular to study over-parametrization and the double-descent
phenomenon, e.g. in [17, 32–44].

2. Setting

Consider a data set D = {xμ, yμ}nμ=1 with n independent samples from a probability

measure ν on X × Y , where X ⊂ R
d is the input and Y ⊂ R the response space. Let K
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be a kernel and H denote its associated reproducing kernel Hilbert space (RKHS). KRR
corresponds to the following non-parametric minimisation problem:

min
f∈H

1

n

n∑
μ=1

(f(xμ)− yμ)2 + λ‖f‖2H. (1)

where ‖ · ‖H is the norm associated with the scalar product in H, and λ � 0 is the regu-
larisation. The convenience of KRR is that it admits a dual representation in terms
of a standard parametric problem. Indeed, the kernel K can be diagonalized in an
orthonormal basis {φk}∞k=1 of L

2(X ):∫
X
νx(dx

′)K(x, x′)φk(x
′) = ηkφk(x) (2)

where {ηk}∞k=1 are the corresponding (non-negative) kernel eigenvalues and νx is the
marginal distribution over X . Note that the kernel {φk}∞k=1 eigenvectors form an
orthonormal basis of L2(X ). It is convenient to define the re-scaled basis of kernel
features ψk(x) =

√
ηkφk(x) and to work in matrix notation in feature space: define

φ(x) ≡ {φk(x)}pk=1 (with p possibly infinite)

ψ(x) = Σ
1
2φ(x) Ex∼νx

[
φ(x)φ(x)�

]
= �p, Ex′∼νx[K(x, x′)φ(x′)] = Σφ(x), (3)

where Σ ≡ Ex∼νx

[
ψ(x)ψ(x)�

]
= diag(η1, η2, . . . , ηp) is the features co-variance (a diago-

nal operator in feature space). In this notation, the RKHS H can be formally written as
H = {f = ψ�θ : θ ∈ R

p, ‖θ‖2 < ∞}, i.e. the space of functions for which the coefficients
in the feature basis are square summable. With this notation, we can rewrite equation (4)
in feature space as a standard parametric problem for the following empirical risk:

R̂n(w) =
1

n

n∑
μ=1

(
w�ψ(xμ)− yμ

)2
+ λw�w. (4)

Our main results concern the typical averaged performance of the KRR estimator, as
measured by the typical prediction (out-of-sample) error

εg = EDE(x,y)∼ν(f̂(x)− y)2, (5)

where the first average is over the data D = {xμ, yμ} and the second over a fresh sample
(x, y) ∼ ν.

In what follows we assume the labels yμ ∈ Y were generated, up to an indepen-
dent additive Gaussian noise with variance σ2, by a target function f � (not necessarily
belonging to H):

yμ
d
= f�(xμ) + σN (0, 1), (6)

and we denote by θ� the coefficients of the target function in the features basis f �(x) =
ψ(x)�θ�. As we will characterize below, whether the target function f � belongs or not
to H depends on the relative decay coefficients θ� with respect to the eigenvalues of the
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kernel. We often refer to θ� as the teacher . While the present results and discussion are
provided for additive Gaussian noise for simplicity, our method are not restricted to this
particular noise, and a more complete extension of the results for other noise settings is
left for future work.

We are then interested in the evolution of the excess error εg − σ2 as the number of
samples n is increased.

2.1. Capacity and source coefficients

Motivated by the discussion above, we focus on ridge regression in an infinite dimen-

sional (p→∞) space H with Gaussian design uμ def
= ψ(xμ)

d
=N (0, Σ) with (without

loss of generality) diagonal co-variance Σ = diag(η1, η2, . . .). We expect however the
results of this manuscript to be universal for a large class of distribution beyond
the Gaussian one. In particular, we anticipate the Gaussianity assumption should be
amenable to being relaxed to sub-gaussians [45] or even any concentrated distribution
[46, 47].

Following the statistical learning terminology, we introduce two parameters
α > 1, r � 0, herefrom referred to as the capacity and source conditions [14], to
parametrize the difficulty of the target function and the learning capacity of the kernel

tr Σ
1
α < ∞, ‖Σ1

2−rθ�‖H < ∞. (7)

As in [9, 12, 13, 25], we consider the particular case where both the spectrum of Σ
and the teacher components θ�k have exactly a power-law form satisfying the limiting
source/capacity conditions (7):

ηk = k−α, θ�k = k− 1+α(2r−1)
2 . (8)

The power law ansatz (8) is empirically observed to be a rather good approximation
for some real simple datasets and kernels, see figure 7 in appendix C. The parameters
α, r introduced in (8) control the complexity of the data the teacher respectively. A large
α can be loosely seen as characterizing a effectively low dimensional (and therefore easy
to fit) data distribution. By the same token, a large r signals a good alignment of the
teacher with the important directions in the data covariance, and therefore an a priori
simpler learning task.

The regularization λ is allowed to vary with n according to a power-law λ = n−�. This
very general form allows us to encompass both the zero regularization case (correspond-
ing to � = ∞) and the case where λ = λ� is optimized, with some optimal decay rate ��.
Note that this power law form implies that λ is assumed positive. While this is indeed
the assumption of [10, 14] with which we intend to make contact,Wu and Xu [39] have
shown that the optimal λ may in some settings be negative. Some numerical experiments
suggest that removing the positivity constraint on λ while optimizing does not affect
the results presented in this manuscript. A more detailed investigation is left to future
work.

https://doi.org/10.1088/1742-5468/ac9829 6
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3. Main results

Depending on the regularization decay strength �, capacity α, source r and noise variance
σ2, four regimes can be observed. The derivation of these decays from the asymptotic
solution of the Gaussian design problem is sketched in section 4 and detailed in appendix
A, and here we concentrate on the key results. The different observable decays for the
excess error εg − σ2 are summarized in figure 1, and are given by:

• If � � α (weak regularization λ = n−�),

εg − σ2 = O
(
max

(
σ2,n−2α min(r,1)

))
. (9)

The excess error transitions from a fast decay 2α min(r, 1) (green region in figure 1
and green dashed line in figure 2) to a plateau (red region in figure 1 and red dashed
line in figure 2) with no decay as n increases. This corresponds to a crossover from
the green region to the red region in the phase diagram figure 1.

• If � � α (strong regularization λ = n−�),

εg − σ2 = O
(
max

(
σ2,n1−2� min(r,1)− �

α

)
n

�−α
α

)
. (10)

The excess error transitions from a fast decay 2� min(r, 1) (blue region in figure 1) to
a slower decay (α− �)/α (orange region in figure 1) as n is increased and the effect
of the additive noise kicks in, see figure 3. The crossover disappears for too slow
decays l � α/(1 + 2αmin(r, 1)), as the regularization λ is always sufficiently large
to completely mitigate the effect of the noise. This corresponds to the max in (10)
being realized by its second argument for all n.

Given these four different regimes as depicted in figure 1, one may wonder about
the optimal learning solution when the regularization is fine tuned to its best value. To
answer this question, we further define the asymptotically optimal regularization decay
�� as the value leading to fastest decay of the typical excess error εg − σ2. We find that
two different optimal rates exist, depending on the quantity of data available.

• If n 
 n∗
1 ≈ σ− 1

α min(r,1) , any �� ∈ (α,∞) yields excess error decay

ε�g − σ2 ∼ n−2α min(r,1). (11)

• If n � n∗
2 ≈ σ−max(2, 1

α min(r,1) ),

ε�g − σ2 ∼ n
1

1+2α min(r,1)−1, by choosing λ� ∼ n− α
1+2α min(r,1) . (12)

The optimal decay for the excess error ε�g − σ2 thus transitions from a fast decay
2α min(r, 1) when n 
 n∗

1—corresponding to, effectively, the optimal rates expected
in a ‘noiseless’ situation—to a slower decay 2α min(r, 1)/(1 + 2α min(r, 1)) when
n � n∗

2 corresponding to the classical ‘noisy’ optimal rate, depicted with the purple
point in figure 1. This is illustrated in figure 4 where the two rates are observed in
succession for the same data as the number of points is increased.
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Figure 1. Different decays for the excess generalization error εg − σ2 for different
values of n and different decays � of the regularization λ ∼ n−�, at given noise
variance σ. The red solid line represents the noise-induced crossover line, separat-
ing the effectively noiseless regime (green and blue) on its left from the effectively
noisy regime (red and orange) on its right. Any KRR experiment at fixed regular-
ization decay � (corresponding to drawing a horizontal line at ordinate �) crosses
the crossover line if � > α/(1 + 2αmin(r, 1)). The corresponding learning curve will
accordingly exhibit a crossover from a fast decay (noiseless regime) to a slow decay
(noisy regime).

We can now finally clarify the apparent discrepancy in the recent literature discussed
in the introduction. The exponent recently reported in [12, 13] actually corresponds to
the ‘noiseless’ regime. In contrast, the rate described in (12) is the classical result [10]
for the non-saturated case r < 1 for generic data. We see here that the same rate is
also achieved with Gaussian design, and that there are no differences between fixed and
Gaussian design as long as the capacity and source condition are matching. We unveiled,
however, the existence of two possible sets of optimal rate exponents depending on the
number of data samples.

All setups (effectively non-regularized KRR (9), effectively regularized KRR (10) or
optimally regularized KRR (11) and (12)) can therefore exhibit a crossover from an
effectively noiseless regime (green or blue in figure 1), to an effectively noisy regime
(red, orange in figure 1) depending on the quantity of data available. We stress that
while the noise is indeed present in the green and blue ‘noiseless’ regimes, its presence is
effectively not felt, and noiseless rates are observed. In fact, if the noise is small, one will
not observed the classical noisy rates unless an astronomical amount of data is avail-
able. This can be intuitively understood as follows: for small sample size n, low-variance
dimensions are used to overfit the noise, while the spiked subspace of large-variance
dimensions is well fitted. In noiseless regions, the excess error is thus characterized by
a fast decay. This phenomenon, where the noise variance is diluted over the dimensions
of lesser importance, is connected to the benign overfitting discussed by [17, 45]. Benign
overfitting is possible due to the decaying structure of the co-variance spectrum (8). As
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Figure 2. KRR on synthetic data sets with capacity α and source coefficient r
i.e. the idealized Gaussian setting (8), with no regularization λ = 0. Solid lines
correspond to the theoretical prediction of equation (14) using the GCM package asso-
ciated with [27]. Points are simulations conducted using the python scikit-learn

KernelRidge package [48], where the feature space dimension has been cut off to
p = 104 for the simulations, and to 105 for the theoretical curves. Dashed lines
represent the slopes predicted by equation (9), with the color (red and green) in
correspondence to the regime from figure 1.

more samples are accessed, further decrease of the excess error requires good general-
ization also over the low-variance subspace, and the overfitting of the noise results in a
slower decay.

While our analysis is for the optimal full-batch learning, we note that a similar
crossover in the case of SGD in the effectively non-regularized case (from green to red)
has been discussed in [9, 21]. It would be interesting to further explore how SGD can
behave in the different regimes discussed here.

When λ = λ0n
−� for a prefactor λ0 that is allowed to be very small, a regularization-

induced crossover, similar to the one reported in [13], can also be observed on top of the
noise-induced crossover which is the focus of the present work. This setting is detailed
in appendix. D.

4. Sketch of the derivation

We provide in this section the main ideas underlying the derivation of the main results
exposed in section 3 and summarized in figure 1. A more detailed discussion is presented
in appendix A.

4.1. Closed-form solution for Gaussian design

Closed-form, rigorous solution of the risk of ridge regression with Gaussian data of
arbitrary co-variance in the high-dimensional asymptotic regime have been studied in
[25, 39, 40]. We shall use here the equivalent notations of [27], who have the advantage
of having rigorous non-asymptotic rates guarantees. Using these characterizations as a
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Figure 3. KRR on synthetic data sets with capacity α and source coefficient r,
with regularization λ = n−�. Solid lines correspond to the theoretical prediction
of equation (14) using the GCM package associated with [27]. Points are simula-
tions conducted using the python scikit-learn KernelRidge package [48], where
the feature space dimension has been cut off to p = 104 for the simulations, and
to 105 for the theoretical curves. Dashed lines represent the slopes predicted by
equation (10), with the color (blue and orange) in correspondence to the regime
from figure 1.

starting point, we shall sketch how the crossover phenomena (9)–(12), which are the
main contribution of this paper, can be derived. Within the framework of [27], with
high-probability when n, p are large the excess prediction error is expressed as

εg − σ2 = ρ− 2m� + q�, (13)

with ρ = θ��Σθ�, and (m�, q�) are the unique fixed-points of the following self-consistent
equations:

⎧⎪⎪⎨
⎪⎪⎩

V̂ =
n
p

1 + V

q̂ =
n

p

ρ+ q − 2m+ σ2

(1 + V )2

,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
q = p

p∑
k=1

q̂ η2k + θ�2k η2k m̂
2

(nλ+ p V̂ ηk)2

m = p V̂

p∑
k=1

θ�2k η2k
nλ+ p V̂ ηk

,

{
V =

1

p

p∑
k=1

pηk

nλ+ p V̂ ηk
. (14)

We recall the reader that λ > 0 is the regularisation strength and {ηk}pk=1 are the kernel
eigenvalues. The next step is thus to insert the power-law decay (8) for the eigenvalues
into (14), and to take the limit n, p→∞. We note, however, that this last step is
not completely justified rigorously. Indeed, [25] assumes p/n = O(1) as n, p→∞ while
here we first send p→∞ and then take the large n limit, thus working effectively
with p/n→ 0. While the non-asymptotic rates guarantees of [27] are reassuring in this
respect, a finer control of the limit would be needed for a fully rigorous justification.
Nevertheless, we observed in our experiments that the agreement between theory and
numerical simulations for the excess prediction error (5) is perfect (see figures 2–4). In
the large n limit, one can finally close the equation for the excess prediction error into
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Figure 4. KRR on synthetic data sets with capacity α and source coefficient r.
The regularization λ is chosen as the one minimizing the theoretical prediction for
the excess generalization error, deduced from equation (14) using the GCM pack-
age associated with [27]. Solid lines correspond to the theoretical prediction of
equation (14). Points are simulations conducted with the python scikit-learn

KernelRidge package [48], where the feature space dimension has been cut off to
p = 104 for the simulations, and to 105 for the theoretical curves. In simulations,
the best λ� was determined using python scikit-learn GridSearchCV cross val-
idation package [48]. Note that because cross validation is not adapted to small
training sets, a few discrepancies are observed for smaller n. Dashed lines represent
the slopes predicted by theory, with the colors in correspondence to the regimes
in figure 1, purple for the purple point in figure 1. (Top) Excess error. (Bottom)
Optimal λ�. Note the noiseless case has λ∗ = 0.

εg − σ2 =

∞∑
k=1

k−1−2rα

(1+nz−1k−α)2

1− n
z2

∞∑
k=1

k−2α

(1+nz−1k−α)2

+ σ2

n
z2

∞∑
k=1

k−2α

(1+nz−1k−α)2

1− n
z2

∞∑
k=1

k−2α

(1+nz−1k−α)2

. (15)

with z being a solution of

z ≈ nλ+
( z
n

)1− 1
α

∫ ∞

( z
n)

1/α

dx

1 + xα
. (16)
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The detailed derivation is provided in appendix A. We note that this equation was
observed with heuristic arguments from statistical physics (using the non-rigorous cavity
method) in [49].

The different regimes of excess generalization error rates discussed in section 3 are
derived from this self-consistent equation. Note that the excess error (15) decomposes
over a sum of two contributions, respectively accounting for the sample variance and the
noise-induced variance. In contrast to a typical bias-variance decomposition, the effect
of the bias introduced in the task for non-vanishing λ is subsumed in both terms.

4.2. Derivation of the four regimes

If the second term in (16) dominates, then z ∼ n1−α, which is self consistent if � � α.
This is the effectively non-regularized regime, where the regularization λ is not sensed,
and corresponds to the green and red regimes in the phase diagram in figure 1. This
scaling of z can then be used to estimate the asymptotic behaviour of the sample and
noise induced variance in the decomposition on the excess error (15), yielding

εg − σ2 = O(n−2α min(r,1)) + σ2O(1), (17)

which can be rewritten more compactly as (9). Therefore, for small sample sizes the
sample variance drives the decay of the excess prediction error, while for larger samples
sizes the noise variance dominates and causes the error to plateau. The crossover happens
when both variance terms in (17) are balanced, around

n ∼ σ− 1
α min(r,1) , (18)

which corresponds to the vertical part of the crossover line in figure 1.
If the first term nλ dominates in (16), then z ∼ nλ, which is consistent provided that

� < α. This is the effectively regularized regime (blue, orange regions in figure 1). The
two variances in (15) are found to asymptotically behave like

εg − σ2 = O(n−2� min(r,1)) + σ2O
(
n

�−α
α

)
, (19)

which can be rewritten more compactly as (10). If the decay of the noise variance term
(α− �)/α is faster than the 2� min(r, 1) decay of the sample variance term, then the
latter always dominates and no crossover is observed. This is the case for � < α/(1 +
2αmin(r, 1)). If on the contrary the decay of the noise variance term is the slowest, then
this term dominates at larger n, with a crossover when both terms in (19) are balanced,
around

n ∼ σ
2

1− �
α (1+2α min(r,1)) . (20)

Equations (17) and (19) are respectively equivalent to (9) and (10), and completely
define the four regimes observable in figure 1. Equations (20) and (18) give the expression
for the crossover line in figure 1.
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4.3. Asymptotically optimal regularization

Determining the asymptotically optimal �� is a matter of finding the � leading to fastest
excess error decay. We focus on the far left part and the far right part of the phase
diagram figure 1.

In the n � n�
2 ≈ σ−max(2, 1

α min(r,1) ) limit where the crossover line confounds itself with
its � = α/(1 + 2αmin(r, 1)) asymptote, this is tantamount to solving the maximization
problem

�� = argmax
�

(
2�min(r, 1)�0<�< α

(1+2α min(r,1))
+

α− �

α
� α

(1+2α min(r,1))<�<α + 0× �α<�

)
(21)

which admits as solution (12). In the n 
 n�
1 ≈ σ− 1

α min(r,1) range, the maximization of the
excess error decay reads

�� = argmax
�

(2� min(r, 1)�0<�<α + 2α min(r, 1)�α<�), (22)

and admits as solution (11).

5. Illustration on simple real data sets

In this section we show that the derived decay rates can indeed be observed in real
data sets with labels artificially corrupted by additive Gaussian noise. For real data, the
decay model in equation (8) is idealized, and in practice there is no firm reason to expect
a power-law decay. However, we do find that for some of the data sets and kernels we
investigated, the power law fit is reasonable and can be used to estimate the exponents α
and r, see appendix C for details. For those cases, we compare the theoretically predicted
exponents, equations (9)–(12) with the empirically measured learning curve, and obtain
a very good agreement. We stress that the decay rates are not obtained by fitting the
learning curves, but rather by fitting the exponents α and r from the data. We also
observe the crossover from the noiseless (blue, green in figure 1) to the noisy (orange,
red in figure 1) regime given by the theory. Here we illustrate this with the learning
curves for the following three data sets:

• MNIST even versus odd, a data set of 7× 104 28× 28 images of handwritten digits.
Even (odd) digits were assigned label y = 1 + σN (0, 1) (y = −1 + σN (0, 1)).

• Fashion MNIST t-shirts versus coats, a data set of 14 70228× 28 images of clothes
from an online shopping platform [50]. T-shirts (coats) were assigned label y = 1 +
σN (0, 1) (y = −1 + σN (0, 1)).

• Superconductivity [51], a data set of 81 attributes of 21 263 superconducting materi-
als. The target yμ corresponds to the critical temperature of the material, corrupted
by additive Gaussian noise.

Learning curves are illustrated for a radial basis function (RBF) kernel K(x, x′) =

e−
γ
2 ‖x−x′‖2 with parameter γ = 10−4 and a degree 5 polynomial kernel K(x, x′) =

(1 + γ〈x, x′〉)5 with parameter γ = 10−3. In figure 5 the regularization λ was set
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Figure 5. Excess error for MNIST odd versus even (above) and Fashion MNIST
t-shirt versus coat (below) with labels corrupted by noise of variance σ2. The kernel
used is indicated in the title. Solid lines with points come from numerical experi-
ments with zero regularization. Dashed lines are the slopes −2αr (as r < 1) or 0,
predicted by the theory from the empirical values of α, r measured from the Gram
matrix spectrum and the teacher for each data set, see table 1. Colors of the dashed
lines (green and red) indicate the regimes in figure 1.

to 0, while in figure 6 λ was optimized for each sample size n using the
python scikit-learn GridSearchCV package [48]. KRR was carried out using the
scikit-learn KernelRidge package [48]. The values of α, r were independently mea-
sured (see appendix C) for each data set, and the estimated values summarized in
table 1. From these values the theoretical decays (9), (11) and (12) were computed,
and compared with the simulations with very good agreement. Since for real data the
power-law form (8) does not exactly hold (see figure 7 in the appendix), the estimates
for α, r slightly vary depending on how the power-law is fitted. The precise procedure
employed is described in appendix C. Overall this variability does not hurt the good
agreement with the simulated learning curves in figures 5 and 6.

When λ = 0 (figure 5) the characteristic plateau for large label noises is observed
for both MNIST and Fashion MNIST. For polynomial kernel regression on Fashion
MNIST (figure 5 right), the crossover between noiseless (slope −2αr as r < 1) and noisy
(slope 0) regimes is apparent on the same learning curve at noise levels σ = 0.5, 1. For
MNIST, the σ = 0 (σ = 1) curve is in the noiseless (noisy) regime for larger n, while at
intermediary noise σ = 0.5, and small n for σ = 1, the curve is in the crossover regime
between noiseless and noisy, consequently displaying in-between decay. Our results for
the decays for σ = 0 agree with simulations for RBF regression on MNIST provided in
[12].

For optimal regularization λ = λ� (figure 6), as the measured r < 1 we have exponents
−2rα for the noiseless regime and −2rα/(1 + 2rα) for noisy. Since the measured value of
2rα is rather small the difference between the two rates is less prominent. Nevertheless,
it seems that in our experiments the noisy regime is observed for polynomial and RBF
kernels on MNIST and σ = 0.5, 1. For Superconductivity, the green and purple decay
have close values and it is difficult to clearly identify the regime. For Fashion MNIST
only the noiseless rate is observable in the considered noise range and sample range.
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Figure 6. Excess error for MNIST odd versus even, and Fashion MNIST t-shirt
versus coat, and the critical temperature regression. The kernel used is indicated
in the title. Solid lines with dots come from numerical experiments with the regu-
larization optimized using the python scikit-learn GridSearchCV package [48].
Dashed lines are the slopes predicted by the theory, from the empirical values of
α, r measured from the Gram matrix spectrum and the teacher for each data set,
see table 1. Colors of the dashed lines indicate the regime in figure 1.

Table 1. Values of the source and capacity coefficients (7) as estimated from the
data sets. The details on the estimation procedure can be found in appendix C.

Dataset Kernel α r

Fashion MNIST K(x,x′) = (1 + 10−3〈x,x′〉)5 1.3 0.13
MNIST K(x,x′) = (1 + 10−3〈x,x′〉)5 1.2 0.15
MNIST K(x, x′) = exp(−10−4‖x− x′‖2/2) 1.65 0.097
Superconductivity K(x, x′) = exp(−10−4‖x− x′‖2/2) 2.7 0.046

6. Conclusion

To conclude, we unify hitherto disparate lines of work, and give a comprehensive study
of observable regimes, along the associated decay rates for the excess error, for KRR
with features having power-law co-variance spectrum. We show that the effect of the
noise only kicks in at larger sample complexity, meaning, in particular, that the KRR
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transitions from a noiseless regime with fast error decay to a noisy regime with slower
decay. This crossover is shown to happen for zero, decaying and optimized regularization,
and is observed on a variety of real data sets corrupted with label noise.
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Appendix A. Derivation of the decays

A.1. Equations for Gaussian design

In this appendix we discuss the derivation of equations (13) and (14) describing the
excess prediction error for the ridge regression problem with generic covariance matrix.
Exact asymptotic formulas for the excess prediction error of least-squares and ridge
regression are a classic result in high-dimensional statistics, and have been derived in
many different works [25, 34, 52, 53]. In this manuscript, we follow the presentation
given in [27], which is particularly adapted to our derivation and has the advantage
to hold rigorously at large but finite number of samples n and features p. We start by
reviewing the formulas in [27]. Consider the ridge regression problem on n independent
p-dimensional samples {uμ, yμ}nμ=1, defined by a minimisation of the following empirical
risk:

R̂ n(w) =
n∑

μ=1

(
w · uμ

√
p

− yμ
)2

+ λ‖w‖22. (A1)

Assume a Gaussian design uμ d
=N (0, Σ) with diagonal covariance Σ = diag(η1, . . . , ηp)

and labels yμ generated from a teacher/target/oracle θ� ∈ R
p:

yμ =
θ� · uμ

√
p

+ σN (0, 1). (A2)

Under the assumptions

(A1) n � 1, p � 1,n/p = O(1),

(A2) 0 < ‖θ�‖2/p < ∞,
there exists constants C, c, c′ > 0 such that for all 0 < ε < c′,

P
(
|εg − σ2 − (ρ− 2m� + q�)| > ε

)
<

C

ε
e−cnε2. (A3)
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where ρ = θ� ·Σ · θ�/p, and (m�, q�) are fixed-points of the following self-consistent
equations

⎧⎪⎪⎨
⎪⎪⎩

V̂ = m̂ =
n
p

1 + V

q̂ =
n

p

ρ+ q − 2m+ σ2

(1 + V )2

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V =
1

p

p∑
k=1

ηk

λ+ V̂ ηk

q =
1

p

p∑
k=1

q̂η2k + θ�2k η2k m̂
2

(λ+ V̂ ηk)2

m =
m̂

p

p∑
k=1

θ�2k η2k
λ+ V̂ ηk

. (A4)

Note that the risk considered in equation (A1) slightly differs from equation (4) by: (a)
a 1/n factor multiplying the sum, (b) additional

√
p scalings and (c) the fact that it is

written for finite p. Accounting for these differences, we can rewrite theorem 1 of [27]
in our setting as:

εg − σ2 = lim
p→∞

(ρ− 2m� + q�), (A5)

with ρ = θ��Σθ�, and (m�, q�) fixed-points of

⎧⎪⎪⎨
⎪⎪⎩

V̂ =
n
p

1 + V

q̂ =
n

p

ρ+ q − 2m+ σ2

(1 + V )2

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V =
1

p

p∑
k=1

pηk

nλ+ p V̂ ηk

q = p

p∑
k=1

q̂η2k + θ�2k η2k m̂
2

(nλ+ p V̂ ηk)2

m = p V̂

p∑
k=1

θ�2k η2k
nλ+ p V̂ ηk

. (A6)

Note, however, that rescaling from (A4) to (A6), sending p→∞ while keeping n finitely
large, and further allowing λ to scale with n all break the initial assumptions of theorem 1
[27], thereby losing the control in equation (A3). Therefore, strictly speaking the results
derived hereafter are not rigorous, and we assume that the typical excess error can still
be computed from equation (A5). In fact, this is well-justified by comparing the results
obtained from extrapolating the theory with finite instance simulation, e.g. figures 2–4.

A.2. Self-consistent equations for the excess prediction error

Defining z = n2

p
λ
V̂
, the equation (A6) allow to write

z = nλ+
z

n

p∑
k=1

ηk
z
n
+ ηk

. (A7)
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An expression for the excess error εg − σ2 can be obtained combining (A5) with (A6):

εg − σ2 =
(a)

lim
p→∞

1

p

p∑
k=1

[
θ�2k pηk +

q̂p2η2k + θ�2k p2η2k m̂
2

(nλ+ V̂ pηk)2
− 2 m̂ θ�2k p2η2k

nλ+ V̂ pηk

]

=
(b)

lim
p→∞

p∑
k=1

θ�2k ηk

(
nλ+ V̂ pηk

)2

+ p2

n
η2k V̂

2εg + V̂ 2θ�2k pη2k − 2θ�2k V̂ pη2k

(
nλ+ V̂ pηk

)
(nλ+ V̂ pηk)2

(A8)

= lim
p→∞

p∑
k=1

p2

n
η2k V̂

2εg + n2λ2θ�2k ηk

(nλ+ V̂ pηk)2
, (A9)

thus

εg = lim
p→∞

z2

n2

∑p
k=1

θ�2k ηk

(z 1
n+ηk)

2 + σ2

1− 1
n

∑p
k=1

η2k

(z 1
n+ηk)

2

. (A10)

Therefore, for the excess prediction error:

εg − σ2 = lim
p→∞

z2

n2

∑p
k=1

θ�2k ηk

(z 1
n+ηk)

2 +
σ2

n

∑p
k=1

η2k

(z 1
n+ηk)

2

1− 1
n

∑p
k=1

η2k

(z 1
n+ηk)

2

. (A11)

We now assume power-law form for the covariance spectrum and the teacher
coordinates (8)

ηk = k−α, θ�2k ηk = k−1−2rα, (A12)

Then equation (A10) can be simplified to

εg − σ2 = lim
p→∞

z2

n2

∑p
k=1

k−1−2rα

(z 1
n+k−α)

2 +
σ2

n

∑p
k=1

k−2α

(z 1
n+k−α)

2

1− 1
n

∑p
k=1

k−2α

(z 1
n+k−α)

2

, (A13)

which has a meaningful limit as p→∞ (with n, λ kept fixed):

εg − σ2 =

∑∞
k=1

k−1−2rα

(1+nz−1k−α)2
+ σ2n

z2

∑∞
k=1

k−2α

1+nz−1k−α)2

1− n
z2

∑∞
k=1

k−2α

(1+nz−1k−α)2

. (A14)

Therefore, the excess prediction error suggestively decomposes into two terms, the first
accounting for the variance due to sampling, while the second reflects the additional
variance entailed by the label noise. Unlike a typical bias-variance decomposition, the
effect of the bias (as manifested by the λ-dependent z term) is subsumed in both terms.
For simplicity, the first term in the numerator shall be referred to in the rest of the
derivation as the sample variance term, and the second sum in the numerator as the
noise variance term.
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In the same limit, the equation defining z (A7) is amenable to being rewritten:

z = nλ+
z

n

∞∑
k=1

1

1 + z
n
kα

, (A15)

or, approximating the Riemann sum by an integral

z ≈ nλ+
( z
n

)1− 1
α

∫ ∞

( z
n)

1/α

dx

1 + xα
. (A16)

A.3. Infinite sample limit and the scaling of the generalisation error

Consider now the limit n � 1 with λ scaling with n

λ ∼ n−�. (A17)

Note that the scalings of z with respect to n differ according to the regularisation λ,
depending on which of the two terms on the right-hand side of equation (A15) dominates.
If the first nλ term dominates, then (A15) simplifies to z ≈ nλ. For this to be self-

consistent, we must have (z/n)1−
1
α ≈ λ1− 1

α 
 nλ, i.e. n � λ− 1
α . In the converse case

where the second term in (A15) dominates, z ∼ n1−α. For this to consistently hold, one

needs (z/n)1−
1
α ≈ n1−α � nλ, i.e. n 
 λ− 1

α−1 . Depending on which term dominates in
(A15), two regime may be distinguished:

• In the effectively non-regularized � > α regime, n 
 λ− 1
α so z ∼ n1−α. In this regime

the regularization totally disappears from the analysis and KRR behaves just as if
λ = 0.

• In the effectively regularized � < α regime, n � λ− 1
α regime, z ≈ nλ.

A.4. Effectively non-regularized regime

A.4.1. Sample variance term. As before, depending on 1 + 2rα,α, it is sometimes
possible to rewrite the sample variance term in integral form. If r < 1,

∞∑
k=1

k−1−2rα

(1 + nz−1k−α)2
∼ n−2rα

∞∑
k=1

(
k
n

)−1−2rα(
1 +

(
k
n

)−α
)2

1

n
∼ n−2rα

∫ ∞

0

x−1+2(1−r)α

(1 + xα)2
= O(n−2rα).

(A18)

If r > 1, it is no longer possible to write the Riemann sum as an integral, and

∞∑
k=1

k−1−2rα

(1 + nz−1k−α)2
=

n∑
k=1

k−1−2rα

(1 + nαk−α)2
+ n−2rα

∞∑
k=n

(
k
n

)−1−2rα(
1 +

(
k
n

)−α
)2

1

n
= O(n−2α). (A19)
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A.4.2. Noise variance term. It is possible to similarly decompose the sum in the noise
variance term to find

nσ2

z2

∞∑
k=1

k−2α

(1 + nz−1k−α)2
= O(σ2). (A20)

From this, it follows that:

• for n 
 σ− 2
2α min(r,1) the sample variance term dominates the numerator, and

εg − σ2 = O(n−2α min(r,1)) (A21)

• for n � σ− 2
2α min(r,1) the noise variance term dominates the numerator, and determines

the decay of the excess prediction error

εg − σ2 = O(σ2) (A22)

These two subregimes are amenable to being written in the more compact form (9):

εg − σ2 = O
(
max

(
σ2,n−2α min(r,1)

))
(A23)

A.5. Effectively regularized regime

A.5.1. Sample variance term. By the same token, in the second � < α regularized
regime, provided r < 1, one can write the sample variance term as a Riemann sum
(since λ ∼ n−� = o(1)):

∞∑
k=1

k−1−2rα

(1 + nz−1k−α)2
∼ λ2r

∞∑
k=1

(
kλ

1
α

)−1+2(1−r)α

((
kλ

1
α

)α

+ 1
)2 λ

1
α ∼ λ2r

∞∫
0

x−1+2(1−r)α

(1 + xα)2

= O(n−2�r). (A24)

In the r > 1 case,

∞∑
k=1

k−1−2rα

(1 + nz−1k−α)2
=

n
�
α∑

k=1

k−1−2rα(
1 + 1

λ
k−α

)2 + λ
−2rα
α

∞∑
k=n

�
α

(
kλ

1
α

)−1+2(1−r)α

((
kλ

1
α

)α

+ 1
)2 λ

1
α . (A25)

Upper and lower bounds can be straightforwardly found for the first sum and the
following equivalence established

n
�
α∑

k=1

k−1−2rα(
1 + 1

λ
k−α

)2 ∼ n−2�
n

�
α∑

k=1

k−1+2(1−r)α = O(n−2�), (A26)
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while the second sum is a Riemann sum of order O(n
(−2rα)�

α ) = o(n−2�). Therefore, the
first sum in the numerator scales like

∞∑
k=1

k−1−2rα

(1 + nz−1k−α)2
= O

(
n−2 �min(r,1)

)
(A27)

A.5.2. Noise variance term:. The scaling of the noise variance term is found along
similar lines to be

nσ2

z2

∞∑
k=1

k−2α

(1 + nz−1k−α)2
= O

(
σ2n

�−α
α

)
. (A28)

If the noise variance term decays faster in n, then the sample variance term always
dominates (since σ2 is at most O(1)). This is the case when

0 < � <
α

2α min(r, 1) + 1
(A29)

and then the generalization excess prediction error scales like

εg − σ2 = O
(
n−2� min(r,1)

)
. (A30)

In the case where α > � > α
2α min(r,1)+1

there exist two regimes depending on how n

compares with the noise strength

• if n 
 σ
2

1− �
α (1+2α min(r,1)) the sample variance term dominates and we recover the noiseless

case

εg − σ2 = O
(
n−2� min(r,1)

)
. (A31)

• if n � σ
2

1− �
α (1+2α min(r,1)) the noise variance term dominates and

εg − σ2 = O
(
σ2n

�−α
α

)
. (A32)

All those regimes can be written more compactly as (10)

εg − σ2 = O
(
max

(
σ2,n1−2� min(r,1)− �

α

)
n

�−α
α

)
. (A33)

A.5.3. Case � < 0. We give here for completeness the case in which the regularization
grows with n. Then the sample variance term scales like

∞∑
k=1

k−1−2rα

(1 + nz−1k−α)2
= O(1). (A34)

To see this, use a lower and upper bound starting from 0 � nz−1k−α ∼ n�k−α � 1 for all
k � 1 and all n. The noise variance term scales like

https://doi.org/10.1088/1742-5468/ac9829 21

https://doi.org/10.1088/1742-5468/ac9829


J.S
tat.

M
ech.

(2022)
114004

Generalization error rates in kernel regression: the crossover from the noiseless to noisy regime∗

σ2n

z2

∞∑
k=1

k−2α

(1 + nz−1k−α)2
∼ σ2n2�−1 = o(1), (A35)

meaning

εg − σ2 = O(1) (A36)

A.6. Continuity across the regularization crossover line

The � = α is actually comprised in the � > 0 case of the � < α regimes. On the � = α
separation line, there is no discontinuity between the non-regularized exponents and the
regularized exponents, since

max
(
σ2,n1−2� min(r,1)− �

α

)
n

�−α
α

�=α
= max

(
σ2,n−2α min(1,r)

)
. (A37)

A.7. Asymptotically optimal regularization

The derivation in appendices A.4 and A.5 effectively delimit the four regimes in figure 1:
the effectively non-regularized noiseless green regime, the effectively regularized noise-
less blue regime, the effectively non-regularized noisy red regime, and the effectively
regularized noisy orange regime.

For any given n, we define the asymptotically optimal � as the regularization decay
yielding fastest decay of the excess prediction error. This corresponds to finding the �
with maximal excess error decay along a vertical line at abscissa n in the phase diagram
figure 1.

If n � n�
1 ≈ σ− 1

α min(r,1) (effectively noisy regime), the noise-induced crossover line is
crossed for

�c ≈
(
1− 2

ln σ

ln n

)
α

1 + 2α min(r, 1)
. (A38)

The asymptotically optimal �� is found as

�� = argmax
�

(
2� min(r, 1)�0<�<�c +

α− �

α
��c<�<α + 0× �α<�

)
. (A39)

Since the argument of the argmax is an increasing function of � on (0, �c) and a decreasing
function on (�c,∞) the maximum is found for �� = �c. The corresponding decay for the
excess error is

max

(
2�� min(r, 1),

α − ��

α

)
= 2�� min(r, 1) ≈ 2α min(r, 1)

1 + 2α min(r, 1)

(
1− 2

ln σ

ln n

)
. (A40)

It is nonetheless ill-defined to talk about an asymptotically optimal rate for the regu-
larization that continuously varies with n when n is comparable with σ−2, since (A40)
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Table 2. Dictionary between different notations previously used in the KRR
literature.

Reference α [8] r [8]

[13] b a−1
2b

[12] αS
d

1
2(

αT
αS

− d)

[9] β 2δ+β−1
2β

[10, 14] b c
2

[11, 15] 1
p

β
2

[20] b β

means that the excess error is not even a power law in this region. An asymptotic
statement can be however made. For n � n�

2 ≈ max(n�
1, σ

−2),

�� ≈ α

1 + 2α min(r, 1)
, (A41)

and the excess error decays like (12)

ε�g − σ2 = O
(
n− 2α min(r,1)

1+2α min(r,1)

)
. (A42)

For n 
 σ− 2
2α min(r,1) (effectively noiseless regime), we have

�� = argmax
�

(2� min(r, 1)�0<�<α + 2α min(r, 1)�α<�), (A43)

which means that any �� ∈ (α,∞) is optimal (in particular, vanishing regularization is
optimal), and we recover (11)

ε�g − σ2 = O
(
n−2α min(r,1)

)
. (A44)

Appendix B. A dictionary of notation in the literature

While the capacity and source conditions are assumed in almost all works concerned
with the decay rates of kernel methods, the actual notations for the capacity and source
terms α, r greatly vary. We provide in this appendix a table summarizing notations for
the references [8–15, 20] (table 2).

Appendix C. Details on real data sets

C.1. Feature map to diagonal covariance for real datasets

In the general case where the data x is drawn from a generic distribution ρx, we remind
the equations defining the feature map ψ (3):
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ψ(x) = Σ
1
2φ(x) (C1)

Ex∼ρx

[
φ(x)φ(x)T

]
= �p (C2)

Ex′∼ρx [K(x, x′)φ(x′)] = Σφ(x) (C3)

In the of a real dataset D = {xμ, yμ}ntot
μ=1 from which both the train and test set are

uniformly drawn, the distribution is then the empirical uniform distribution over D,

ρx(·) =
1

ntot

ntot∑
μ=1

δ(· − xμ). (C4)

Defining the Gram matrix (Kμν)
ntot
μ,ν=1

def
= (K(xμ, xν))ntot

μ,ν=1 ∈ R
ntot×ntot , the equations defin-

ing the feature map (3) can be rewritten in the simpler matricial form

ψ = φΣ
1
2 ,

1

ntot
φTφ = �ntot

,
1

ntot
Kφ = φΣ (C5)

where φ,ψ,λ,K ∈ R
ntot×ntot , and the feature space is of dimension p = ntot, with the μth

line of ψ (resp. φ) corresponding to ψ(xμ) (resp. φ(xμ)). To access the coordinates θ�k in
the basis of the features ψ, remember ψθ� = y, hence

θ� =
1

ntot
Σ−1ψTy (C6)

C.2. Estimation of source and capacity

The capacity and source terms α, r can be empirically estimated for the dataset D from
the eigenvalues {λk}ntot

k=1 of the Gram matrix K and the components {θ�k}ntot
k=1 of the teacher

vector. Supposing decays like (8), the cumulative functions read:

ntot∑
k′=k

λk′ ∼ k1−α,

ntot∑
k′=k

λk′θ
�2
k′ ∼ k−2rα. (C7)

These functions are plotted in figure 7 and the terms α, r estimated therefrom. The
use of the cumulative functions, rather than a direct estimation from the coordinates,
allows the integration to smoothen out the curves and get a more consistent estimation.
The values of α, r thereby measured are summarized in table 1. Note that the power-
law form (8) and the assumption p = ∞ fail to hold for real data, and the series (C7)
have power-law form only on a range of indices k, before a sharp drop due to the finite
dimensionality ntot of the feature space, see figure 7. The range of indices k where the
power-law form (8) seems to hold was qualitatively assessed, and linear regression run
thereon to estimate α, r. Since there is no clear objective way to determine the range the
fit should be conducted on, the estimates slightly vary depending on the precise choice
of the regression range, without however overly hurting the qualitative agreement with
simulations figures 6 and 5.
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Figure 7. Measurement of empirical values for capacity and source α, r for real
datasets (Fashion MNIST t-shirt and coat, MNIST) and RBF, polynomial kernels.
Because the feature space is of finite dimension ntot all the curves exhibit a sharp
drop at ntot. A power-law was fitted on the functions (C7) on a range of k where
these looked reasonably like power-laws.
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C.3. Details on simulations

We close this appendix by providing further detail on the simulations on real data
(figures 6 and 5).

For each simulation at sample size n a train set was created by subsampling n samples
from the total available dataset D. To mitigate the effect of spurious correlations due
to sampling a finite dataset, the whole dataset D has been used as a test set, following
[27, 49]. A kernel ridge regressor was fitted on the train set with the help of the
scikit-learn KernelRidge package [48]. For figure 6, the best regularization λ was
estimated using the scikit-learn GridSearchCV [48] default five-fold cross-validation
procedure on the Grid λ ∈ {0} ∪ (10−10, 105), with logarithmic step size δ logλ = 0.026.
The excess test error was averaged over 10 independent samplings of the train set and
noise realizations.

Appendix D. More crossovers

D.1. Regularization-induced crossover

On top of the distinction between effectively noiseless regimes (green, blue regions in
figure 1) and effectively noisy regimes (red, orange in figure 1), the four regimes can also
be classified in effectively non-regularized (green, red) and effectively regularized (blue,
orange), see also the discussion in section 4. In figure 1, the non-regularized regions lie
above the horizontal separation line � = α, while the regularized ones lie below. In this
appendix, we discuss a more generic setting for which this separation line ceases to be
horizontal, thereby creating a new crossover line. Similarly to the noise-type crossover
line discussed in the main text, a learning curve that crosses this regularization-induced
crossover line transitions from an non-regularized regime (green, red) to a regularized one
(blue, orange), characterized by differing decays for the excess error εg − σ2. In figures 8
and 9, the noise-type crossover line is depicted in red, while the regularization-type
crossover line is in blue.

In this section we thus detail the more general setting

λ = λ0n
−�, (D1)

with, compared to the setup studies in the main text and appendix A, an additional
prefactor λ0 to the regularization λ that is allowed to be 
 1. The particular case
� = 0,λ0 small, has been studied in [13], and has been shown to give rise to a crossover
due to the regularization, on top on the one evidenced in the present work due to the
noise.

• For small n, KRR focuses on fitting the spiked subspace comprising large variance
dimensions, and satisfies the norm constraint introduced by the regularization on
the lower importance subspace. This phenomenon can be loosely regarded as the
bias version of the benign overfitting for noise variance [17, 45]: the bias induced
by the loss of expressivity due to the norm constraint is effectively diluted over less
important dimensions, thereby not impacting the generalization.
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Figure 8. Phase diagram for λ0 
 1 and σ < λ
min(r,1)+ 1

α
0 . As for figure 1. The solid

red line corresponds to the noise-type crossover line, while the blue line indicates
the regularization-type crossover line. Note that for low enough values of the reg-
ularization, the two crossover lines can be intercepted by a same horizontal line.
This means that a double crossover is in theory observable (green-blue-orange), the
first induce by regularization (see also [13]) and the second being noise-induced.

Figure 9. Phase diagram for λ0 
 1 and σ > λ
min(r,1)+ 1

α
0 . As for figure 1, the

asymptotically optimal decays �� are indicated in solid red. The solid red line
corresponds to the noise-type crossover line, while the blue line indicates the
regularization-type crossover line. Note that for low enough values of the regu-
larization, the blue crossover line can be intercepted by a horizontal line, alongside
the red crossover line twice. Consequently a triple crossover is in theory observable
(green-red-orange-blue), with two noise-induced and one regularization-induced.

• For larger n, decreasing the excess error εg − σ2 requires a good KRR fit also on
the subspace of lesser importance, and the regularization effect is felt. In a noiseless
green-blue crossover, this results in a slower decay because of the bias introduced by
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regularizing. On a noisy red-orange crossover, the regularization conversely helps to
mitigate the noise and enables the excess risk to decay again.

D.2. Outline of the computation

The derivation for the general case (D1) follows very closely appendix A.

• If n 
 λ
− 1

α−�

0 or � > α, n 
 λ− 1
α so z ∼ n1−α,

• If n � λ
− 1

α−�

0 and � < α, n � λ− 1
α and z ≈ λ.

• If n = λ
− 1

α−�

0 regime and � < α, n ∼ λ− 1
α so z ∼ λ ∼ n1−α ∼ n−�,

Note that the introduction of λ0 
 1 means the limits between regularized and non-
regularized regime are now involving both n, � as opposed to just � in appendix A (see

also figure 1). In the first n 
 λ
− 1

α−�

0 regime, the regularization effect is not sensed and the

computation is identical to the λ0 = 1 case in appendix A. In the regularized n � λ
− 1

α−�

0 ,
keeping track of the prefactors yields

εg − σ2 = O
(
λ
2 min(r,1)
0 n−2� min(r,1)

)
+O

(
σ2n

�−α
α λ

−1
α
0

)
, (D2)

so the excess risk decays like

εg − σ2 = O

⎛
⎝λ

2 min(r,1)
0 n

�−α
α max

⎛
⎝
(

σ

λ
min(r,1)+ 1

α
0

)2

,n−2� min(r,1)+1− �
α

⎞
⎠
⎞
⎠. (D3)

Depending on whether the maximum in (D3) is always realized by one of its two
arguments, or by one then the other as n is varied, there may be a noise-induced
crossover.

• If σ < λ
min(r,1)+ 1

α
0 and � � α

1+2α min(r,1)
, the second argument of the maximum in (D3)

dominates for all n � 1 so no crossover is to be observed (see figure 8), and

εg − σ2 = O
(
λ
2 min(r,1)
0 n−2� min(r,1)

)
. (D4)

• If σ > λ
min(r,1)+ 1

α
0 and � � α

1+2α min(r,1)
, the first argument of the maximum in (D3)

dominates for all n � 1 so no crossover is to be observed (see figure 9), and

εg − σ2 = O
(
σ2n

�−α
α λ

−1
α
0

)
. (D5)

• In any other case, a crossover between the decays (D4) and (D5) is observed, at a
sample size

n�
1 =

(
σ

λ
min(r,1)+ 1

α
0

) 2

1− �
α (1+2α min(r,1))

. (D6)
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The crossover is from (D4) to (D5) if � � α
1+2α min(r,1)

an in the other order if

� � α
1+2α min(r,1)

.

The determination of the asymptotically optimal decays carries through as appendix
A, with the same conclusions. The four regimes and their respective limit, as well as the
optimal � at very large n (purple point), are summarized in figures 8 and 9.

D.3. Double and triple crossovers

We therefore recover the regularization induced crossover reported in [13] for the spe-
cial case � = 0, σ = 0. It corresponds to the green-to-blue transition for the lowest � in
figures 8 and 9. We stress that such a mechanism is entirely due to the regularization,
and hence happens on top of the noise-induced crossover studied in the present work.
It is therefore possible in theory to observe both crossovers in succession.

We detail as an example a double green-to-blue-to-orange crossover (see blue curves
in figure 10). For small n (non-regularized noiseless green regime), KRR fits the heavy
dimensions. Both noise overfitting and bias are benign. As n is increased, the blue
regularization type crossover line in figure 8 is crossed and the regularized noiseless blue
region entered. More of the less important dimensions need to be fitted well: bias is felt
and entails a slower decay, but the noise overfitting is diluted over even less important
dimensions and remains benign. As the red noise-type crossover line is passed into the
regularized noisy orange region, the overfitting ceases to be benign and hurts the decay
rate.

Appendix E. Relation to worst-case bounds

In this section, we sketch informally how the blue and orange exponents (10) can also
be derived from the worst case bounds [16, 20]. Note that the recovery from worst case
bounds of the exponents (10), which were here derived in the Gaussian design setting,
suggests that for these regimes the worst case exponents are also equal to the typical
case exponents. We remind the reader that this has also already been shown to be the
case for the asymptotically optimal lambda, see section 3, exponents (12) and [10, 14].

E.1. Optimal rates for spectral algorithms with least-squares regression over Hilbert
spaces [16]

To relate the notations employed in [16] to ours, the correspondences

γ ∈ ]0, 1] =
1

α
ζ ∈ [0, 1] = r θ ∈ [0, 1] = 1− � (E1)

L = Σ fH = f� (E2)

should be used, see also appendix B. With respect to their equation (18) defining the
source condition, the setting considered in the present work corresponds to the special
case φ(u) = uζ . Note that the assumption � � 1 is slightly more restrictive than those
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Figure 10. Excess risk learning curves for α = 2.5, r = 0.5,λ0 = 10−4, � = 1. The
noise level σ is varied and the corresponding phase diagrams given on the right. For
σ = 0 (green curve and top diagram on the right), a simple regularization-induced
crossover (green-to-blue) is observed. For σ = 3× 10−4 and σ = 10−3 (blue curves
on the left, middle diagram on the right) a double crossover green-to-blue-to-orange
is observed. The first is regularization induced, while the second is due to noise.
For σ = 10−2 and σ = 10−1 (orange, red curves and bottom diagram), a double
green-to-red-to-orange crossover is observed, respectively noise and regularization
induced.

employed in this paper. The main result of [16] is their theorem 4.2, which in our
notations translates to

Theorem 1. (Theorem 4.2 1) [16]. With probability 1− δ, there exist constants

C̃ 1, C̃ 2, C̃ 3 s.t.

(εg − σ2)
1
2 = ‖f� − f̂ ‖H = ‖θ� − ŵ ‖L2 �

(
C̃1n

−max( 1
2 ,1−r) + C̃2n

− 1
2λ

−1
2α + C̃3λ

r
)

× ln
6

δ

(
ln

6

δ
+

max
(

1
1−l

, ln n
)

α

)
(E3)

viz expliciting the scalings
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(εg − σ2)
1
2 �

(
C̃1n

−1+min( 1
2 ,min(r,1)) + C̃2n

− 1
2
α−�
α + C̃3n

−�min(r,1)
)

× ln
6

δ

(
ln

6

δ
+

max
(

1
1−l

, ln n
)

α

)
(E4)

we replaced ζ by min(r, 1) since [16] work under the assumption ζ = r ∈ [0, 1] in order
to make contact with the exponents in the present paper. Up to logarithmic corrections,
one recognizes the blue ( C̃3 term in (E4)) and orange ( C̃2 term in (E4)) exponents,
the effectively unregularized red and green regimes (9) being inaccessible in this setting

because of the restriction � � 1. One can further show that the first C̃1 term in (E4) is
always subdominant, since:

• if r � 1
2
, n− 1

2+
�
2α � n− 1

2 and the C̃2 term dominates the C̃1 term

• if r � 1
2
, n−1+min(1,r) 
 n− 1

2 
 n−� min(r,1) since �r � r � 1
2
and the C̃3 term dominates

C̃1 term

The relative competition between the C̃2,3 contributions in (E4) determine the blue to
orange crossover. This suggests in particular that typical and worst case coincide within
these regimes.

E.2. Kernel truncated randomized ridge regression: optimal rates and low noise
acceleration [20]

Similar to [16], the notations translate to

β ∈
[
0,

1

2

]
= r b ∈ [0, 1] =

1

α
. (E5)

Note that in [20], it is further assumed that the labels are bounded by a constant Y
while this only holds with high probability in our setting. The theorem 3 in [20] then
reads:

Theorem 2. (Informal). The error gap given by the KTR3 algorithm [20] is approxi-
mately bounded by, for any εr, εα > 0, for the power law ansatz (A12):

εg − σ2 � λ2r−2εr
1

2αεr
+min

[
4Y 2

αεαλ
1
α+εαn

min

(
ln

(
1 +

1

λ

)1− 1
α−εα

,
α

1 + αεα

)
,

λ2r−2εr−1

2αεrn
+

σ2

λn

]
,

(E6)

so in the particular setting λ = n−�

εg − σ2 � n−2r�+2�εr
1

2αεr
+min

[
4Y 2

αεα
n− α−�

α +εα�

×min

(
ln

(
1 + n�

)1− 1
α−εα

,
α

1 + αεα

)
,
n−2r�+2�εr+�−1

2αεr
+ σ2n−1+�

]
. (E7)
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If σ �= 0, the σ2n−1+� term dominates in the second argument of the min and the min is
realized by its first argument, leading to

εg − σ2 = O(n−2�r) +O
(
n− α−�

α

)
(E8)

namely the blue/orange crossover (10). If σ = 0 the bound is necessarily looser than
O(n−2�r) which is coherent since in the noiseless setting only the blue exponent can be
observed.
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