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Abstract: In this study, we aim to investigate if there is a scaling of the streamwise distance from
a wind turbine that leads to a collapse of the mean wake velocity deficit under different ambient
turbulence levels. For this purpose, we perform large-eddy simulations of the wake of a wind turbine
under neutral atmospheric conditions with various turbulence levels. Based on the observation
that a higher atmospheric turbulence level leads to faster wake recovery and shorter near-wake
length, we propose the use of the near-wake length as an appropriate normalization length scale. By
normalizing the streamwise distance by the near-wake length, we obtain a collapse of the normalized
wake velocity deficit profiles for different turbulence levels. We then explore the possibility of
using the relationship obtained for the normalized maximum wake velocity deficit as a function
of the normalized streamwise distance in the context of analytical wake modeling. Specifically, we
investigate two approaches: (a) using the new relationship as a stand-alone model to calculate the
maximum wake velocity deficit, and (b) using the new relationship to calculate the wake advection
velocity within a physics-based wake expansion model. Large-eddy simulation of the wake of a wind
turbine under neutral atmospheric conditions is used to evaluate the performance of both approaches.
Overall, we observe good agreement between the simulation data and the model predictions, along
with considerable savings in terms of the models’ computational costs.

Keywords: wind turbine wake; analytical wake model; near-wake length

1. Introduction

In response to the increasing global demand for sustainable energy systems, there
has been a growing interest in developing large wind farms worldwide. In a wind farm,
the spacing between the turbines is typically in the range of 3 to 10 rotor diameters.
With these spacings, most turbines operate in the wake of upstream ones. Therefore,
wind turbine wakes reduce the available power for the downstream turbines, increase
power fluctuations, and impose variable fatigue and structural loads on downstream
turbines. To include these effects in the design phase of a wind farm, computationally
inexpensive wake models are popular in the wind energy research community, as they
offer fast and reasonably accurate prediction of wind turbine wakes and their interaction
within wind farms [1]. Several analytical wake models [2–4] have been proposed to
calculate the development of the wake downstream of a turbine. These models are based
on mass conservation [2] or both mass and momentum conservation [3,4], along with an
assumption made for the shape of velocity deficit distribution (either a top-hat profile [2,3]
or a self-similar Gaussian distribution [4]). All the above-mentioned wake models predict
the change of the wake velocity deficit based on estimation of the wake growth rate
parameter. There exist few empirical equations based on a linear relationship of the wake
growth rate parameter and streamwise turbulence intensity, which are tuned based on
experimental [5,6] or high-fidelity simulation data [7]. In order to provide a robust approach
for estimating the wake expansion parameter based on the incoming flow characteristics,
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physics-based wake models have been developed. Cheng and Porté-Agel [8] proposed
a wake expansion model based on Taylor diffusion theory [9] which provides accurate
predictions for the wind turbine wake width under high incoming turbulence, although it
underestimates the wake width in the presence of low ambient turbulence. Later, Vahidi
and Porté-Agel [10] proposed a wake expansion model based on Taylor diffusion theory,
turbulent mixing layers, and the analogy between wake expansion and scalar diffusion
considering the effects of the turbine-induced turbulence and ambient turbulence on wake
expansion. As a result, the proposed framework can predict the wake growth rate with
reasonable accuracy in a wide range of incoming turbulence levels.

The concept of self-similarity has been used extensively in the classic turbulent flow
studies [11–14]. Based on this concept, some or all of the statistical properties of the flow
can be described by simple local length and velocity scales. As defined by George [13]
“self-similarity is said to occur when the profiles of velocity (or any other quantity) can
be brought into congruence by simple scale factors which depend on only one of the
variables”. Regarding wind turbine wakes, the self-similarity of the mean velocity deficit
in the far wake region of wind turbines has been studied in several numerical [15,16] and
experimental [17,18] studies. Due to the importance of developing accurate models for wind
turbine wake flows, far wake self-similarity enables the development of computationally
fast models that can predict the mean flow distribution in an accurate manner. Analytical
wake models, such as the Gaussian wake model [4] and the model for axisymmetric wakes
under pressure gradient [19,20], have shown that the concept of self-similarity can be used
to develop accurate models for wind turbine wake flows.

Introducing proper scales is a key step in exploring a self-similar solution for turbulent
flows. There has been a broad range of theoretical, numerical, and experimental studies
devoted to classic examples, such as mixing layers, jets, and wakes [13,14]. In light of
this, a look into the literature of wind turbine wakes and co-flowing jets reveal numerous
studies seeking to find universal behavior in the mean flow by non-dimensionalizing data
with proper scales. Shamsoddin and Porté-Agel [21] used the momentum integral and the
concept of momentum diameter to explore similarities in the wakes of vertical axis wind
turbines (VAWTs) with different aspect ratios. This concept was inspired by the study of
Meunier and Spedding [22] on exploring similarities in the mean wake velocity of several
bluff bodies with different drag coefficients. Their findings indicate that if the streamwise
and lateral lengths are normalized by the effective diameter (the diameter of an equivalent
circular disk whose area is the same as the wake-generating object), a collapse of the wake
velocity deficit profiles can be observed. In another recent study to explore self-similarity in
wind turbine wakes, Li and Yang [23] performed large-eddy simulations of wind turbines
with different yaw angles and tip speed ratios under several turbulent inflows. According
to their findings, with a proper length scale (wake half-width) and velocity scale (theoretical
reduced velocity after the rotor), one can observe a self-similar behavior among several
quantities of the wind turbine wake flow with different yaw angles and tip speed ratios.
In the context of co-flowing jets, Uddin and Pollard [24] showed that by re-scaling the
streamwise distance with the virtual origin it is possible to observe similarity in the axial
spread rate of round jets with different inflow conditions.

This study aims to propose and test a new streamwise scaling for wind turbine wakes.
In order to do this, a new streamwise coordinate system is defined by normalizing the
streamwise downwind distance by the near-wake length. Using this coordinate system,
we can investigate whether wind turbine wakes under various incoming ambient turbu-
lence levels show self-similar behavior. For this purpose, we provide a set of large-eddy
simulation (LES) cases of the wake of a wind turbine operating under neutral atmospheric
conditions with various incoming turbulence levels in order to evaluate our research ques-
tion. Afterwards, we discuss the possible applications of the new streamwise scaling in the
context of analytical wake models and assess their performance against another set of LES
data from a real-scale model wind turbine wake.
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The rest of this paper is structured as follows. In Section 2, a brief description of
the large-eddy simulation framework is provided, followed by a description of LES cases.
In Section 3, the new streamwise scaling is introduced, followed by its possible applications
in the context of analytical wake modeling and evaluating the performance of the proposed
models against LES data. Finally, summary and concluding remarks are provided in
Section 4.

2. Large Eddy Simulation Framework
2.1. LES Governing Equations

In the LES framework, the filtered continuity and filtered incompressible Navier-Stokes
equations are solved:

∂ũi
∂xi

= 0 , (1)

∂ũi
∂t

+ ũj
∂ũi
∂xj

= −∂ p̃∗

∂xi
−

∂τij

∂xj
− fi , (2)

where i = 1, 2, 3 respectively denote the streamwise, spanwise, and vertical directions, ũ is
the filtered velocity (where ˜ is the spatial filtering), p̃∗ is the filtered modified kinematic
pressure, τij is the kinematic sub-grid scale (SGS) stress, and f represents the additional
forces such as the turbine forces or external forcing to drive the flow. In this study, the La-
grangian scale-dependent dynamic model [25] is used to parameterize the sub-grid scale
turbulent fluxes. The blade element actuator disk model, also referred to as the rotational
actuator disk model, is used to parameterize the wind turbine-induced forces [26–28]. This
model accounts for the effects of non-uniform force distribution and turbine-induced flow
rotation. The lift and drag forces acting on each blade element are parameterized based
on the relative velocity, the geometry of the blade airfoil, and the tabulated airfoil lift and
drag coefficients. For the sake of brevity and to avoid repetition of previously published
research, the details of the wind turbine parametrization model used in this study are
not included here; interested readers are referred to the above-mentioned references for a
detailed description.

2.2. Numerical Setup and Suite of Simulations

In this study, the in-house LES code developed at the WiRE Laboratory of EPFL (here-
after named as WiRE-LES) was used to perform the LES simulations. WiRE-LES has been
extensively used in studies of the atmospheric boundary layer (ABL) flows in the presence
of wind turbines [16,27,29–31]. The WiRE-LES code uses a three-dimensional structured
mesh, and the computational domain is discretized into Nx, Ny, and Nz evenly-spaced grid
points in the streamwise, spanwise, and vertical directions, respectively. The mesh is stag-
gered in the vertical direction. The horizontal derivatives are treated with pseudo-spectral
differentiation, and the vertical derivatives are approximated with a second-order centered
finite difference scheme. The horizontal boundary conditions are periodic, a flux-free
boundary condition is set at the top, and the local application of the Monin–Obukhov
similarity theory is used to define the bottom boundary condition. The second-order
Adams–Bashforth explicit scheme is used for time advancement.

In this study, we performed a series of large-eddy simulations of the wake of a real-
scale wind turbine under neutral ABL conditions. As shown in Table 1, we performed two
sets of simulations: test cases (T cases) and validation cases (V cases). These sets cover
a wide range of incoming turbulence levels in two non-identical domains (regarding the
physical dimensions and mesh distribution). We use the test cases to evaluate our research
question and the validation cases to assess the performance of the proposed analytical
wake models. Detailed information on all the cases is available in the Table 1. A constant
streamwise pressure gradient up to 0.8Lz, with Lz the vertical domain height, is used to
drive the flow and ensure a hub height velocity (Uhub) of 8 m/s. In order to minimize the
top boundary condition effect on the flow, the forcing in the top 20% of the domain is set
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to zero. For the simulation with the turbine, an inflow boundary condition is enforced
to override the imposed periodic boundary condition in the streamwise direction [26].
For this purpose, a buffer zone is introduced upstream of the turbine to smoothly adjust
the flow to an undisturbed ABL inflow condition. The inflow is generated through a
set of precursor simulations of ABL over flat terrain, with the same surface roughness
and no turbine. The wind turbine is characterized by a diameter of 80 m and a hub height
of 70 m. In addition, the wind turbine is positioned 12 rotor diameters from the inlet.
Under this condition, the turbine operates with an almost constant thrust coefficient (CT)
of 0.8. In order to prevent numerical instability, a Gaussian kernel is used to smoothly
distribute the parameterized turbine forces on the computational grid [32]. In order to
achieve mesh-independent results, the grid spacing is defined to fulfill the requirement
regarding the minimum number of grid points in spanwise (at least five cells) and vertically
(at least seven cells) across the rotor diameter [26,29].

Table 1. Suite of LES simulations. Test cases and validation cases are denoted by T and V, respectively,
while Iu, Iv, Iw respectively correspond to the streamwise, spanwise, and vertical rotor-averaged
turbulence intensity. The test cases are adapted from Vahidi and Porté-Agel [10].

Case Roughness (m) Lx × Ly × Lz Nx × Ny × Nz Iu Iv Iw

T1 5× 10−1 3840 m× 1920 m× 955 m 256× 192× 192 0.140 0.097 0.074
T2 5× 10−2 3840 m× 1920 m× 955 m 256× 192× 192 0.099 0.071 0.055
T3 5× 10−3 3840 m× 1920 m× 955 m 256× 192× 192 0.077 0.055 0.043
T4 5× 10−4 3840 m× 1920 m× 955 m 256× 192× 192 0.062 0.044 0.034
T5 5× 10−5 3840 m× 1920 m× 955 m 256× 192× 192 0.053 0.038 0.029
V1 1× 10−1 4320 m× 2160 m× 715 m 384× 256× 128 0.127 0.076 0.056
V2 1× 10−2 4320 m× 2160 m× 715 m 384× 256× 128 0.080 0.058 0.046
V3 1× 10−3 4320 m× 2160 m× 715 m 384× 256× 128 0.066 0.047 0.037
V4 1× 10−4 4320 m× 2160 m× 715 m 384× 256× 128 0.056 0.038 0.031
V5 1× 10−5 4320 m× 2160 m× 715 m 384× 256× 128 0.049 0.034 0.027

To provide an example of the LES cases presented above, Figure 1 shows the main
inflow characteristics of the test cases. As shown in this figure, the mean profile of the
streamwise velocity agrees well with the logarithmic wind profile and the simulation set
covers a wide range of incoming turbulence levels. Figure 2 shows the contours of the nor-
malized mean streamwise velocity in the x− z plane at the turbine location for the roughest
and smoothest cases of each simulation set. As can be seen, the wake recovery is highly
influenced by the incoming flow turbulence level. By increasing the surface roughness and
incoming turbulence level, it is possible to observe a higher mixing of the ambient flow
into the wake, leading to a shorter near-wake region and faster wake recovery.
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Figure 1. Inflow characteristic for test cases: (a) vertical profiles of the mean streamwise velocity
normalized with the friction velocity (u∗) compared to the log law (dashed line); (b) vertical profiles of
the normalized mean streamwise velocity in linear scale; (c) vertical profiles of the mean streamwise
turbulence intensity.

Figure 2. Contours of the normalized mean streamwise velocity (U/Uhub) in the x− z plane, passing
through the center of the turbine for (a) T1, (b) T5, (c) V1, (d) V5.

3. New Streamwise Scaling

In the presence of different incoming turbulence levels, previous experimental [33]
and numerical studies [29] have shown that wind turbine wakes recover faster under
higher incoming turbulence intensities. Based on this observation, several studies have
proposed an empirical relationship [5–7] or physics-based models [8,10] for estimating
the wake growth rate in the atmospheric boundary layer. Taking this observation a step
further, the main objective of this section is to investigate the potential of a new streamwise
scaling to find a universal behavior of the wind turbine wake velocity deficit profiles
operating under a wide range of incoming turbulence levels. This objective is of particular
relevance for analytical wind turbine wake models. To achieve this goal, we first introduce
our research question regarding the new streamwise scaling. Then, we test the proposed
research question with the help of LES data of a real-scale wind turbine wake under neutral
atmospheric conditions with different incoming turbulence levels. Next, we discuss the
applicability of the new streamwise scaling in the context of analytical wake models for
wake expansion and assess the performance of the proposed approaches for calculating the
wake velocity deficit against a different set of LES data.
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3.1. Seeking Similarity

This section introduces the new streamwise scaling for wind turbine wake flow.
The new streamwise scaling aims to find a universal behavior for the wake velocity deficit
of wind turbines operating under different incoming turbulence levels. The near-wake
length is proposed as the relevant length scale for the new streamwise scaling. This length
indicates the downwind position at which the wake velocity deficit profiles show a self-
similar Gaussian distribution, and is a function of the turbine operating conditions and the
incoming turbulence level. In the presence of lower incoming turbulence levels, a longer
distance is required for the wake flow to reach a self-similar state, leading to a longer
near-wake length [10,34].

With these features of the near-wake length, we state our research question as follows.
Is there a universal behavior of the normalized wake velocity deficit profiles when the
streamwise downwind distance is normalized by the near-wake length (xNW)?

By normalizing the streamwise distance, a new coordinate system is introduced
(x′ = x/xNW) in which the wind turbine wake self-similar region starts from x′ = 1.
In order to test the proposed research question, we use the LES data of wind turbine wakes
under neutral atmospheric conditions summarized in the Table 1 as test cases. For all the
cases, the near-wake length is calculated as follows. A Gaussian fit is applied to the velocity
deficit profiles, and the near-wake is defined as the downwind location at which the linear
correlation coefficient of the fit reaches the threshold of 0.99. This value is usually used as
a threshold to define the start of the Gaussian behavior of the far wake [34,35]. Figure 3
shows the change of the lateral and vertical correlation coefficient of the Gaussian fit to
the wake velocity deficit profile with the downwind distance for Case T5, along with the
0.99 threshold that indicates the onset of the self-similar region (far wake). The near-wake
length for all cases was calculated using the same method.

Figure 3. An example of the near-wake length calculation method for Case T5. The same analysis
was performed for all the cases in Table 1 to determine the near-wake length, and is not reported here
for brevity.

Figure 4 compares the change of the normalized wake velocity deficit for the test
cases as a function of the downwind distance for the standard streamwise scaling (x/D)
and the new streamwise scaling (x/xNW). The figure shows a comparison between both
scalings for the wake velocity deficit profiles at the turbine hub height in the x− y plane
(Figure 4a,b) and the normalized maximum velocity deficit (Figure 4c). The overlapping
of the wake velocity deficit profiles and the normalized maximum velocity deficit at
several downstream locations in the new streamwise coordinate demonstrates that xNW is a
relevant length scale to obtain a collapse of wake velocity deficit profiles. This new scaling
introduces a self-similar behavior for the wake velocity deficit profiles under different
incoming turbulent levels. The remainder of this paper explains how the new streamwise
scaling can be implemented in the existing analytical wake models for wake expansion, as
well as the possible computational advantages it can provide.
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(a) Normal streamwise scaling (x/D) (b) New streamwise scaling (x/xNW)

(c) Normalized maximum wake velocity deficit in normal
streamwise scaling (left) and new streamwise scaling (right)

Figure 4. Evaluating the research question: comparison of the lateral wake velocity deficit profiles
in (a) normal streamwise scaling and (b) new streamwise scaling; (c) comparison of the normalized
maximum wake velocity deficit behaviour under two different streamwise scalings.

3.2. Application of the New Streamwise Scaling

The purpose of this section is to present two possible modeling approaches that
can benefit from the new streamwise scaling. The first approach utilizes the obtained
relationship derived from fitting the collapsed data of the normalized maximum wake
velocity deficit to define the wake advection velocity in an explicit manner. Therefore,
it is beneficial for analytical wake models with an iterative process for estimating the
wake advection velocity, leading to an iterative-free streamwise-marching framework for
modeling the wake mean characteristics until the desired downwind distance. Furthermore,
the explicit estimation of the wake advection velocity enables calculation of the wake
velocity deficit at a particular downwind location without marching and solving the
wake flow for the whole upstream domain. The second approach uses the obtained
relationship for the collapsed data of the normalized maximum wake velocity deficit in the
new streamwise coordinate (x/xNW) as a stand-alone model to predict the wake velocity
deficit as a function of downwind distance in the far wake. In the rest of this paper, we
discuss the above-mentioned approaches in more detail and assess their performance by
comparing their predictions against LES data of a real-scale wind turbine wake, presented
in Table 1 as validation cases.

For practical reasons and ease of implementation in the existing analytical wake
models for wake expansion, we derive a functional form for the collapsed data of the
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normalized maximum wake velocity deficit as a function of the new streamwise scaling.
The collapsed curve is normalized by the maximum wake velocity deficit derived from
one-dimensional momentum theory (1−

√
1− CT) [36]. In this regard, we propose the

following form for the normalized maximum wake velocity deficit in the new streamwise
coordinate (x′):

∆U(x′)
Uhub(1−

√
1− CT)

= a[x′ − b]c , (3)

in which CT is the turbine thrust coefficient and the values of a, b, and c should be estimated.
This form is valid in the far wake (x′ ≥ 1), and ensures that the wake velocity deficit is
equal to the theoretical limit at the beginning of the far wake and asymptotes to zero in the
very far wake. Figure 5 shows the change in the collapsed data of the normalized maximum
wake velocity deficit for the test cases as a function of the new streamwise distance, as well
as the fitted curve. The data used for fitting correspond to the far wake region of each test
case, from the end of the near-wake to 30 rotor diameters downwind. The parameters of
the fitted function are reported in Table 2.

Figure 5. Collapsed profile of the normalized maximum wake velocity deficit for the test cases as a
function of the new streamwise scaling. The dashed line corresponds to the fitted function.

Table 2. Fitting parameters of Equation (3); R2 corresponds to the fit correlation coefficient.

a b c R2

1.75 −0.5 −1.37 0.99

3.2.1. Coupled with the Existing Analytical Models for Wake Expansion

This section focuses on how the new streamwise scaling can be incorporated as part
of the existing analytical model for wake expansion proposed by Vahidi and Porté-Agel [10].
This physics-based model for wake expansion is based on the application of Taylor dif-
fusion theory [9], turbulent mixing layers [14], the Gaussian wake model [4], and the
analogy between scalar diffusion from a disk source and wind turbine wake expansion [37].
The model includes the turbine-induced turbulence and the ambient turbulence effects
on the wake expansion. As a result, the model conserves mass and momentum in the far
wake and provides reasonable predictions of the wake width and maximum velocity deficit
within a wide range of incoming turbulence levels. To estimate the wake width at each
downstream distance, the model solves the spreading equation for the lateral mixing layer
characteristic length (σey) growing from the end of the expansion region (x0):

σey(x) =
√

Sct

〈
v2
(T/β)

〉 1
2 T︸ ︷︷ ︸

Ambient flow

+ 2S′(UhubT − (x− x0))︸ ︷︷ ︸
Turbine-induced

, (4)
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where Sct is the turbulent Schmidt number for mixing layers [38] and S′ is the mixing layer
spreading rate. Here, 〈v2

(T/β)〉
1
2 is the root mean square of the lateral velocity component

sampled upstream of the turbine at hub level and filtered in time using a moving average
filter with the window size equal to T/β, with β the Lagrangian/Eulerian scale factor
(β ≈ 0.7/Iv(w)) [39] and T the travel time:

T =
∫ x

x0

(
dx

Uadv(x)
) , (5)

where Uadv is the wake advection velocity. The wake advection velocity is defined
as Uadv(x) = 0.5(Ucenter(x) + Uhub), with Ucenter(x) the wake centerline velocity [40].
It should be mentioned here that there is no limitation to extend Equation (4) to the
vertical direction with the respective velocity time series. The total wake width is de-
fined as the geometrical mean of wake widths in the vertical and spanwise directions
(σwake,tot =

√
σwake,yσwake,z) [8,16]. To conserve mass and momentum in the far wake,

the wake centerline velocity is calculated using the Gaussian wake model. In the near-wake,
the wake centerline velocity is assumed to be constant and equal to the value derived from
the one-dimensional momentum theory (Uhub

√
1− CT). In order to calculate the Gaussian

wake width in the far wake from the corresponding mixing layer characteristic length,
the proposed analogy between scalar diffusion from the disk source and wind turbine wake
expansion is employed. This analogy results in a unique relationship between the wind
turbine wake width (σwake) and the mixing layer characteristic length (σe):

σwake
σe

= 1.95 exp(−6.19
σe

D
) + 10.96 exp(−20.05

σe

D
) + 1.03 . (6)

Equation (4), hereafter referred to as the Model Filter, requires an external function
to filter the velocity time series at each downstream distance. In order to remove the
dependency on the external function and provide a compact version of the model, the fol-
lowing equation (hereafter referred to as Model ITS, in which ITS stands for Integral Time
Scale) was derived based on the exponential form of the velocity auto-correlation function
[9,41]. This equation estimates the wake width at each downwind distance based on the
travel time, unfiltered velocity standard deviation, and the integral scale of the incoming
atmospheric flow [10]:

σey(x) =
√

SctσvTLv

√
2
(

T
TLv
− (1− exp(

−T
TLv

))

)
︸ ︷︷ ︸

Ambient flow

+ 2S′(UhubT − (x− x0))︸ ︷︷ ︸
Turbine-induced

, (7)

where TLv is the Lagrangian integral time scale for the lateral velocity time series and σv
is the lateral velocity component standard deviation. Equation (7) has the same range of
validity as the Model Filter, from the end of the expansion region (≈1D) until the desired
downwind distance. As with Equation (4), Equation (7) can be used to calculate the vertical
wake width with the respective properties.

Within the framework of this model, Vahidi and Porté-Agel [10] proposed a near-wake
length relation to calculate the starting point of the far wake based on the incoming flow
turbulence levels and turbine operating condition, as follows:

xNW
D

=
σe,NW

D
Uhub(1 +

√
1− CT)

2

(
√

Sct

√〈
v2
(T/β)

〉 1
2
〈

w2
(T/β)

〉 1
2
+ UhubS′(1−

√
1− CT)

) +
x0

D
, (8)

where σe,NW/D determines the beginning of the far wake based on the Gaussian fit correla-
tion coefficient (R2) of 0.99 and the analogy used in the model. This relationship includes
the contribution of the relevant incoming turbulence scales to wake expansion until the
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end of the near-wake by utilizing the equivalent filtered velocity of the incoming flow.
Equation (8) requires an iterative method to solve for the length of the near-wake. In order
to provide a simpler form for calculating this length, Vahidi and Porté-Agel [10] proposed
the following simplification for Equation (8):

xNW
D

=
σe,NW

D
1 +
√

1− CT

2
(√

Sct(
√

Iv Iw) + S′(1−
√

1− CT)
) + x0

D
. (9)

In both the Model Filter and Model ITS, the wake centerline velocity at each down-
wind distance is unknown prior to finding the mixing layer characteristic length and wake
width. Therefore, one should deploy an iterative scheme to estimate the wake centerline
velocity and the corresponding travel time, following the steps described in the original
model. As an outcome of the new streamwise scaling, the wake advection velocity can be
calculated by re-scaling the collapsed profile of the normalized maximum wake velocity
deficit (Equation (3)) with an estimation of the near-wake length and calculating the wake
centerline velocity from the maximum wake velocity deficit ( Ucenter(x)

Uhub
= 1− (∆U(x)

Uhub
)max).

With the wake advection velocity, it is possible to estimate the travel time in the entire
domain of interest before running the model by calculating the integral of Equation (5)
numerically. As a result, it is no longer necessary to iterate between the mixing layer charac-
teristic length and the travel time at each downwind distance, which leads to considerable
speedup of the calculation process.

Another important outcome of the new streamwise scaling in the context of analytical
models for wake expansion is to remove the need for streamwise marching to estimate
the wake mean properties at a certain downwind distance. In the iterative version of the
Model Filter and Model ITS, the domain must be discretized up to the point of interest in
order to estimate the wake velocity deficit at a given downwind distance, and the analytical
model for each upstream point must be solved prior to calculating the wake velocity
deficit at the location of interest. In contrast, the new streamwise scaling allows the wake
velocity deficit to be estimated at a desired downwind distance using the Model Filter or
Model ITS, without the need to discretize the entire domain up to the point of interest. A
direct estimation of the travel time at the desired location can be obtained by re-scaling
the collapsed profile of the normalized maximum wake velocity deficit and estimating
the wake advection velocity. The travel time can be inserted directly in the Model Filter
(Equation (4)) or Model ITS (Equation (7)) to estimate the mixing layer characteristic length
and the corresponding wake width and wake velocity deficit.

In order to test the performance of the Model Filter and Model ITS in predicting the
wake velocity deficit downwind of a turbine with the new streamwise scaling, we compare
their outputs against the LES data presented in Table 1 as validation cases. To run the
models, the step-by-step procedure provided in the original derivation is followed, together
with the same set of parameters (Sct = 0.5, S′ = 0.043, x0/D = 1, σe,NW/D = 0.18) [10].
For the sake of comparison, both models are used in their original form (iterative form
denoted as original) and with the new streamwise scaling (non-iterative form denoted as
new scaling).

The change in the maximum normalized velocity deficit at the turbine hub height
downwind of the turbine derived from the analytical models is shown in Figure 6, and
is compared with value derived from the LES data. In this comparison, we evaluate how
accurately wake expansion models coupled with the new scaling can predict the wake
maximum velocity deficits as they march the streamwise distance until 15 rotor diameters.
As can be observed, both models (in both iterative and non-iterative form) can predict
the variation of the normalized wake velocity deficit reasonably well. The models can
predict the wake velocity deficit at distances close to the turbine and provide the correct
asymptotic behavior in the far wake. This figure provides an interesting comparison
between iterative and non-iterative approaches to solve each model. By introducing the
new streamwise scaling, the Model Filter and Model ITS predict the development of the
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wake velocity deficit with the same level of accuracy as the original (iterative) form, and
with less computational cost. For the results reported in Figure 6, by virtue of the new
streamwise scaling, the computational cost of the non-iterative form of the Model Filter
and Model ITS decreases by 35% and 45%, respectively, in comparison with their iterative
counterparts. This computational efficiency is a significant factor for fast-running wake
engineering models. Later in this section, a detailed analysis of the computational efficiency
of the analytical models coupled with the new scaling for predicting the wake velocity
deficit at one specific downwind location is presented.

(a) (b)

Figure 6. Normalized maximum velocity deficit as a function of streamwise distance. The circles
indicate LES results, the lines show the models in their original (iterative) form, and the symbols
indicate the model outputs with the new scaling (non-iterative): (a) Model Filter and (b) Model ITS.

3.2.2. Stand-Alone Model

The functional form obtained from the collapse of the normalized maximum wake
velocity deficit as a function of x′ (x′ = x/xNW) (Equation (3)) can be used as a compu-
tationally fast approach to calculate the maximum wake velocity deficit as a function of
the downstream distance in the far wake with an estimation of the near-wake length as an
input. In order to conserve mass and momentum in the far wake, the Gaussian wake model
can be used to calculate the wake width and determine the wake velocity deficit distribu-
tion. Considering that the proposed method uses only a few arithmetical operations, its
computational cost is insignificant in comparison with streamwise-marching techniques.

Following the comparisons presented in Section 3.2.1, our purpose is to test how
accurately the re-scaling of the functional form obtained for the normalized maximum
wake velocity deficit collapsed data (hereafter referred to as the stand-alone model) can
predict the change in the wake velocity in the far wake by comparing its predictions against
the LES data of the validation cases. To use the stand-alone model, an estimation of the
near-wake length is required. Equation (8) is used to estimate the near-wake length using
the same set of parameters as the original derivation (Sct = 0.5, x0/D = 1, σe,NW/D = 0.18,
S′ = 0.043) [10]. Figure 7 shows the change in the maximum wake velocity deficit computed
with the stand-alone model and that obtained from LES data. As can be seen, the stand-
alone model provides the correct asymptotic behavior for the wake velocity deficit in the far
wake at downstream distances greater than 10 rotor diameters. For shorter distances from
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the turbine (up to downwind distances of about 5 to 7 rotor diameters) and for cases with
lower incoming turbulence levels, the stand-alone model underestimates the wake velocity
deficit compared to the LES data. The same trend can be observed when the predictions
are compared with the physics-based models presented in Figure 6. This difference can be
explained by the underlying modeling approach used by each analytical wake model to
estimate the maximum wake velocity deficit at a certain downwind distance. Within the
framework of the physics-based wake expansion model, the wake width at each streamwise
position is estimated by explicitly using the turbine-induced turbulence and the effective
incoming turbulence scales. On the other hand, the stand-alone model accounts for these
effects indirectly through their impact on the near-wake length, rendering the model more
sensitive to the accuracy of the estimated near-wake length and the goodness of the fit to
the collapsed data of the normalized wake velocity deficit.

Figure 7. Normalized maximum velocity deficit as a function of streamwise distance. The circles
indicate LES results and the dash-dotted line corresponds to the stand-alone model.

3.2.3. Effect of the Near-Wake Length Relation

The application of the new streamwise scaling, either integrated into the existing
analytical models for wake expansion (Section 3.2.1) or used as the stand-alone model
(Section 3.2.2), relies on estimation of the near-wake length. The near-wake length is a
function of the incoming turbulence characteristics and turbine operating conditions. In this
section, we examine the sensitivity of the discussed approaches to the relation used to
calculate the near-wake length. In order to do this, different relations for estimating the
near-wake length are used to re-scale the collapsed profile of the normalized maximum
wake velocity deficit. Next, the re-scaled normalized maximum wake velocity deficit is
used as either part of the existing analytical model for the wake expansion (to calculate the
wake advection velocity) or as the stand-alone model.

This analysis includes three different relations used to estimate the near-wake length.
First, the near-wake relation proposed by Vahidi and Porté-Agel [10] (referred to in the
figure as VPA) as stated in Equation (8); second, the near-wake length relation proposed
by Bastankhah and Porté-Agel [17] as the potential core model (referred to in the figure
as BPA):

xNW
D

=
1 +
√

1− CT√
2
[
4αIu + 2β(1−

√
1− CT)

] , (10)
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with α = 0.58 and 2β = 0.154; and third, the near-wake length model presented by
Vermeulen [42] (referred to in the figure as Verm):

xNW =

√
0.214 + 0.144m(1−

√
0.134 + 0.124m)

(1−
√

0.214 + 0.144m)
√

0.134 + 0.124m
r0

dr/dx
, (11)

where m = 1√
1−CT

, r0 = (0.5D)
√

m+1
2 , and dr/dx is defined as

dr
dx

=

√(
dr
dx

)2

α

+

(
dr
dx

)2

m
+

(
dr
dx

)2

λ

, (12)

where
(

dr
dx

)
α
= 2.5Iu + 0.005,

(
dr
dx

)
m

= (1−m)
√

1.49+m
9.76(1+m)

, and
(

dr
dx

)
λ
= 0.012Bλ, with B

being the number of blades and λ the tip speed ratio. Figure 8 shows the variation of
the near-wake length of the validation cases as a function of the streamwise turbulence
intensity, computed from the presented relations as well as from that obtained from LES
data, following the method introduced in Section 3. As can be observed, decreasing the
turbulence level means that the wake requires a longer distance to reach a self-similar
Gaussian state. This behavior is captured reasonably well by the relations for the near wake
proposed by Bastankhah and Porté-Agel [17] and by Vahidi and Porté-Agel [10].

Figure 8. Near-wake length of validation cases as a function of streamwise turbulence intensity:
comparison of the presented relationships and the LES data. The symbols represent the validation
cases. Equation (10) (BPA model, dashed line) and Equation (11) (Verm model, dotted line) are shown
for comparison. Figure adapted from Vahidi and Porté-Agel [10].

Figure 9a shows the change in the maximum wake velocity deficit at turbine hub
height as a function of the downwind distance computed from the Model Filter (in non-
iterative form) and that obtained from the validation case LES data. In order to use the
Model Filter, the travel time is calculated by re-scaling the relationship obtained from
fitting the collapsed data of the normalized maximum wake velocity deficit with different
near-wake relations. For the sake of brevity and based on the identical performance of the
Model Filter and Model ITS (Section 3.2.1), only the results for the Model Filter are reported
in the figure. Figure 9b shows the comparison between the change in the maximum velocity
deficit as a function of the downwind distance computed from the stand-alone model and
the validation case LES data. The only parameter required for the stand-alone model is the
near-wake length, which is calculated based on the previously stated relations.
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(a) Model Filter in non-iterative form (b) Stand-alone model

Figure 9. Normalized maximum velocity deficit as a function of streamwise distance: a comparison
of the effect of different near-wake relations on the analytical model outputs. (a) Model Filter in
non-iterative form with different near-wake length relations; (b) stand-alone model with different
near-wake length relations.

As shown in Figure 9, the predictions of the Model Filter are less sensitive to the
near-wake length relation at downwind distances up to 6 to 10 rotor diameters as com-
pared to the stand-alone model. This can be explained by the fact that physics-based
analytical models for the wake expansion include the contribution of the effective turbu-
lence scales and the turbine-induced turbulence to the wake width at each downwind
distance. As a result, their predictions are fairly robust against variability in the near-wake
length estimate. As can be noticed from Figure 9a, all of the approaches provide consistent
behavior in the far wake at downstream distances greater than 12 rotor diameters. It is
worth mentioning that the near-wake relations proposed by Vahidi and Porté-Agel [10]
and Bastankhah and Porté-Agel [17] show similar behavior when used in the context of
physics-based analytical models for wake expansion. This is due to the rather similar
concepts underlying the derivation of these relations and a more realistic description for the
wake development until the end of the near-wake, profiting from plausible analogies with
jet flows [17] and from the analogy between scalar diffusion from a disk source and wind
turbine wake expansion [10]. As shown in Figure 9b, the performance of the stand-alone
model is highly dependent on the relation used to calculate the length of the near-wake, as
this is the only required input. The stand-alone model coupled with the near-wake relation
proposed by Vahidi and Porté-Agel [10] provides a reasonable prediction of the wake veloc-
ity deficit compared with the LES data. On the other hand, the stand-alone model coupled
with the Vermeulen [42] and Bastankhah and Porté-Agel [17] relations underestimates or
overestimates the change in the wake velocity deficit with the downwind distance.

3.2.4. Computational Efficiency

After evaluating the performance of the above-mentioned analytical models for wake
expansion against the LES data, this section focuses on the computational advantages
of the new streamwise scaling for the presented analytical models. In order to do this,
the computational time taken by each model to estimate the wake velocity deficit at a
specific downwind location is determined. To make comparisons, we use a downwind
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location at 8 rotor diameters. This distance is of particular relevance, as it falls within
the typical range of turbine spacings found in wind farms [1]. In order to estimate the
wake velocity deficit at 8 rotor diameters for all the validation cases, the iterative form
of the Model Filter and Model ITS requires discretization of the downwind distance and
streamwise marching to solve the wake flow from the end of the expansion region to the
point of interest. However, their non-iterative counterparts take advantage of the new
streamwise scaling to calculate the wake advection velocity and the corresponding travel
time at the location of interest, which means they only need to solve the necessary equations
once. Similarly, the stand-alone model only requires the near-wake length estimation in
order to calculate the wake velocity deficit at 8 rotor diameters.

Figure 10 compares the mean relative computational cost of the Model Filter and
Model ITS (in both iterative and non-iterative form) with the stand-alone model for all the
validation cases. Equation (8) is used to calculate the near-wake length in all the reported
results. Because the iterative form of the Model Filter is the least computationally efficient
model, the reported values are normalized with its computational time. As can be noticed
in the figure, by introducing the streamwise scaling and eliminating the need to discretize
the whole domain up to the point of interest both the Model Filter and Model ITS are one
order of magnitude faster compared to their respective original iterative implementations.
Among all the presented approaches, the stand-alone model proves to be the fastest. It is
worth mentioning that the comparison between the Model Filter and Model ITS in iterative
form reveals the computational advantages of removing the need to explicitly filter the
velocity time-series using an external moving average function.

Figure 10. Relative computational time of the presented analytical models to estimate the wake
velocity deficit at a downwind distance of 8 rotor diameters.

4. Summary and Concluding Remarks

In this paper, a new streamwise scaling for wind turbine wakes under neutral at-
mospheric conditions has been presented, and the practical applications of the proposed
scaling for analytical wake models have been discussed. For this purpose, large-eddy
simulations of a real-scale wind turbine under neutral atmospheric conditions, with a wide
range of incoming turbulence levels, have been performed. The simulations have been
divided into two sets: test cases and validation cases. Test cases have been used to evaluate
the validity of the proposed research question regarding the new streamwise coordinate
system, and validation cases to assess the performance of analytical wake models.

Aiming to find a common behavior of the wake velocity deficit under a wide range
of inflow conditions, the near-wake length, as a measure of the wake self-similar region
onset, has been chosen as a proper length scale. By normalizing the streamwise distance
with the near-wake length, a collapse of the normalized far wake velocity deficit profiles
under different incoming turbulence levels has been observed. A functional form has been
obtained by fitting the collapsed data of the normalized maximum wake velocity deficit in
the far wake.
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Two approaches for predicting the wake velocity deficit based on the new streamwise
scaling have been proposed. First, by profiting from the relationship obtained by fitting
the collapsed data of the normalized maximum wake velocity deficit, the wake advection
velocity has been estimated explicitly. By coupling this explicit form with the existing
physics-based wake expansion model, a non-iterative version of this model has been pre-
sented, which led to a considerable speed-up in the calculation. Second, a stand-alone
model has been proposed and only requires as input the near-wake length to predict the
wake velocity deficit as a function of the downstream distance in the far wake. The perfor-
mance of both approaches has been evaluated against LES results of a utility-scale wind
turbine wake under a wide range of incoming turbulence levels. In a comparison focused
on predicting the wake velocity deficit until 15 rotor diameters, the physics-based wake
expansion model (in both original and simplified versions) yields reasonable predictions of
the wake velocity deficit for all the LES cases. Moreover, the mean computational cost of the
non-iterative versions of the physics-based wake expansion model decreases considerably
in comparison with the iterative counterparts (around 35% for the original version and
45% for the simplified version). The stand-alone model underestimates the wake velocity
deficit close to the turbine while providing a correct asymptotic behavior in downwind
distances greater than 10 rotor diameters. The sensitivity of the proposed approaches to the
relation used to calculate the near-wake length has been examined. While the stand-alone
model predictions showed to be sensitive to the relation used to estimate the near-wake
length, the results of the physics-based model for the wake expansion proved to be robust
to variability in the estimation of the near-wake length. In particular, it is noteworthy to
mention that in the case of predicting the wake velocity deficit at a certain downwind
distance, the physics-based wake expansion model, by taking advantage of the new scaling
and removing the need for streamwise-marching until the desired downwind distance, can
predict the wake velocity deficit at a particular downwind location one order of magnitude
faster than their original implementation (with streamwise-marching) with the same level
of accuracy.

In summary, the detailed comparison between the analytical models for the wake
expansion and LES data demonstrates that the new streamwise scaling, in combination
with the physics-based wake models, can provide an accurate and fast prediction of wind
turbine wake flows under a wide range of incoming turbulence levels.
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