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Abstract
We study the problem of learning unknown parameters of stochastic dynamical models from data.
Often, these models are high dimensional and contain several scales and complex structures. One
is then interested in obtaining a reduced, coarse-grained description of the dynamics that is valid
at macroscopic scales. In this thesis, we consider two stochastic models: multiscale Langevin
diffusions and noisy interacting particle systems. In both cases, a simplified description of the
model is available through the theory of homogenization and the mean field limit, respectively.
Inferring parameters in coarse-grained models using data from the full dynamics is a challenging
problem since data are compatible with the surrogate model only at the macroscopic scale.

In the first part of the thesis we consider the framework of overdamped two-scale Langevin
equation and aim to fit effective dynamics from continuous observations of the multiscale model.
In this setting, estimating parameters of the homogenized equation requires preprocessing of
the data, often in the form of subsampling, because traditional maximum likelihood estimators
fail. Indeed, they are asymptotically biased in the limit of infinite data and when the multi-
scale parameter vanishes. We avoid subsampling and work instead with filtered data, found by
application of an appropriate kernel of the exponential family and a moving average. We then
derive modified maximum likelihood estimators based on the filtered process, and show that they
are asymptotically unbiased with respect to the homogenized equation. A series of numerical
experiments demonstrate that our new approach allows to successfully infer effective diffusions,
and that it is an improvement of traditional methods such as subsampling. In particular, our
methodology is more robust, requires less knowledge of the full model, and is easy to implement.
We conclude the first part presenting novel theoretical results about multiscale Langevin dynamics
and proposing possible developments of the filtering approach.

In the second part of the thesis we consider both multiscale diffusions and interacting particle
systems, and we employ a different technique which is suitable for parameter estimation when
a sequence of discrete observations is given. In particular, our estimators are defined as the
zeros of appropriate martingale estimating functions constructed with the eigenvalues and the
eigenfunctions of the generator of the effective dynamics. We first prove homogenization results
for the generator of the multiscale Langevin equation and then apply our novel eigenfunction
estimators to the two problems under investigation. Moreover, in the case of multiscale diffusions,
we combine this strategy with the filtering methodology previously introduced. We prove that
our estimators are asymptotically unbiased and present a series of numerical experiments which
corroborate our theoretical findings, illustrates the advantages of our approach, and shows that
our methodology can be employed to accurately fit simple models from complex phenomena.

Key words: eigenfunction martingale estimator, filtering, Fokker–Planck equation, homogeniza-
tion, interacting particle systems, Langevin dynamics, maximum likelihood estimator, mean field
limit, multiscale diffusion process, statistical inference.
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Résumé
Nous étudions le problème d’estimation de paramètres inconnus de modèles dynamiques sto-
chastiques à partir de données. Souvent, ces modèles sont de dimension éleveée, ils contiennent
plusieurs échelles et des structures complexes. Nous sommes donc interessés à une description
réduite de la dynamique qui soit valable aux échelles macroscopiques. Dans cette thèse, nous
considérons deux modèles stochastiques : les processus de diffusion de Langevin multi-échelles et
les systèmes de particules en interaction en présence de bruit. Dans les deux cas, une description
simplifiée du modèle est disponible grâce à la théorie de l’homogénéisation et de la limite du
champ moléculaire, respectivement. Inférer des paramètres dans des modèles réduits en utilisant
les données de la dynamique complète est un problème difficile puisque les données ne sont
compatibles avec le modèle de substitution qu’à l’échelle macroscopique.

Dans la première partie de la thèse, nous considérons l’équation de Langevin suramortie à deux
échelles et nous avons pour but d’ajuster la dynamique effective à partir d’observations continues
du modèle multi-échelle. Dans ce cadre, l’estimation des paramètres de l’équation homogénéisée
nécessite un prétraitement des données, souvent sous forme de sous-échantillonnage, car les estima-
teurs traditionnels du maximum de vraisemblance échouent. En effet, ils sont asymptotiquement
biaisés dans la limite des données infinies et lorsque le paramètre multi-échelle tend vers zéro.
Nous évitons le sous-échantillonnage et nous travaillons avec des données filtrées, obtenues en
appliquant un filtre exponentiel et une moyenne mobile. Nous obtenons ensuite des estimateurs
de maximum de vraisemblance modifiés basés sur le processus filtré, et nous montrons qu’ils sont
asymptotiquement non biaisés par rapport à l’équation homogénéisée. De nombreuses expériences
numériques démontrent que notre nouvelle approche permet d’inférer avec succès des processus
de diffusion effectifs, et qu’elle constitue une amélioration des méthodes traditionnelles telles
que le sous-échantillonnage. En particulier, notre méthodologie est plus robuste, elle nécessite
moins de connaissances du modèle complet, et elle est facile à mettre en œuvre. Nous concluons
la première partie en présentant de nouveaux résultats théoriques sur la dynamique de Langevin
multi-échelle et en proposant des développements possibles de l’approche de filtrage.

Dans la deuxième partie de la thèse, nous considérons à la fois des processus de diffusion multi-
échelles et les systèmes de particules en interaction, et nous employons une technique différente
qui convient à l’estimation des paramètres lorsque des observations discrètes sont donnée. En
particulier, nos estimateurs sont définis comme les zéros de fonctions d’estimation martingales
appropriées, construites avec les valeurs propres et les fonctions propres du générateur de la
dynamique effective. Nous prouvons d’abord des résultats d’homogénéisation pour le générateur
de l’équation de Langevin multi-échelle, puis nous appliquons nos nouveaux estimateurs aux deux
problèmes étudiés. De plus, dans le cas des processus de diffusion multi-échelles, nous combinons
cette stratégie avec la méthodologie de filtrage introduite précédemment. Nous prouvons que nos
estimateurs sont asymptotiquement non biaisés et nous présentons expériences numériques qui
valident nos résultats théoriques, qui illustrent les avantages de notre approche et qui montrent que
notre méthodologie peut être employée pour inférer des modèles simples de phénomènes complexes.

Mots clés : estimateur martingale avec fonctions propres, filtrage, équation de Fokker–Planck,
homogénéisation, systèmes d’interaction de particules, dynamique de Langevin, estimateur du
maximum de vraisemblance, théorie du champ moléculaire, processus de diffusion multi-échelle,
inférence statistique.
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Sommario
Studiamo il problema di stimare parametri incogniti di modelli dinamici stocastici dai dati. Spesso
questi modelli sono di dimensione elevata e contengono numerose scale e strutture complesse.
Siamo quindi interessati ad ottenere una descrizione ridotta della dinamica che è valida alle
scale macroscopiche. In questa tesi consideriamo due modelli stocastici: processi di diffusione
di Langevin multiscala e sistemi di interazione di particelle con rumore. In entrambi i casi una
descrizione semplificata del modello esiste ed è ottenuta con le teorie dell’omogeneizzazione e del
campo medio, rispettivamente. Stimare parametri in modelli ridotti usando i dati della dinamica
completa è un problema complesso poiché i dati sono compatibili con il modello surrogato solo
alla scala macroscopica.

Nella prima parte della tesi consideriamo l’equazione di Langevin sovrasmorzata con due scale e
cerchiamo di adattare una dinamica effettiva alle osservazioni continue del modello multiscala. In
questo contesto, stimare i parametri dell’equazione omogeneizzata richiede di preprocessare i dati,
spesso attraverso un sottocampionamento, perché i tradizionali stimatori di massima verosimi-
glianza falliscono. Infatti, essi sono asintoticamente distorti quando il tempo finale di osservazione
tende all’infinito e il parametro multiscala tende a zero. Evitiamo il sottocampionamento e
lavoriamo invece con dati filtrati, ottenuti applicando un filtro esponenziale e una media mobile.
Deriviamo poi nuovi stimatori modificando gli stimatori di massima verosimiglianza e utilizzando
il processo filtrato, e dimostriamo che sono asintoticamente non distorti rispetto all’equazione
omogeneizzata. Una serie di esperimenti numerici mostra che il nostro approccio permette di
inferire correttamente processi di diffusione effettivi ed è un miglioramento dei metodi tradizionali
come il sottocampionamento. In particolare, la nostra metodologia è più robusta, richiede una
conoscenza minore del modello completo, ed è facile da implementare. Concludiamo la prima
parte presentando nuovi risultati teorici sulla dinamica di Langevin multiscala e proponendo
possibili sviluppi dell’approccio di filtraggio.

Nella seconda parte della tesi consideriamo sia processi di diffusione multiscala che sistemi di
interazione di particelle, e applichiamo una tecnica differente adatta a stimare parametri data
una sequenza di osservazioni discrete. In particolare, i nostri stimatori sono definiti come gli zeri
di funzioni martingala di stima costruite con gli autovalori e le autofunzioni del generatore della
dinamica effettiva. Per prima cosa dimostriamo risultati di omogeneizzazione per il generatore
dell’equazione di Langevin multiscala e poi applichiamo i nostri nuovi stimatori ai due problemi
in esame. Inoltre, nel caso di processi di diffusione multiscala, combiniamo questa strategia con
la metodologia di filtraggio precedentemente introdotta. Dimostriamo che i nostri stimatori sono
asintoticamente non distorti e presentiamo numerosi esperimenti numerici che corroborano i nostri
risultati teorici, illustrano i vantaggi del nostro approccio, e mostrano che la nostra metodologia
può essere impiegata per inferire accuratamente modelli semplici da fenomeni complessi.

Parole chiave: stimatore martingala con autofunzioni, filtraggio, equazione di Fokker–Planck,
omogeneizzazione, sistemi di interazione di particelle, dinamica di Langevin, stimatore di massima
verosimiglianza, teoria del campo medio, processi di diffusione multiscala, inferenza statistica.
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Notation
Sets of numbers

N set of positive integers
Z set of integers
R set of real numbers

Differentials
∇ or grad gradient operator
∇· or div divergence operator
∆ Laplace operator
∇2 Hessian operator

Functions
Let D be an open domain of Rd, d a positive integer, and consider functions f : D → R.

Ck(D) space of k-times continuously differentiable functions
Lp(D) usual Lebesgue space with p ∈ [1,∞]
χD characteristic function of the set D
ḟ partial derivative with respect to time or to a parameter
∂xf partial derivative with respect to the variable x

Vectors and matrices
Let a, b ∈ Rd and A,B ∈ Rd×d with d a positive integer.

‖a‖ Euclidean norm of a vector
‖A‖ 2-norm of a matrix
〈a; b〉 inner product, i.e., a>b
a⊗ b outer product, i.e., ab>
A : B Frobenius inner product, i.e., tr(A>B)
S(A) symmetric part, i.e., (A+A>)/2

Acronyms
BKE Backward Kolmogorov Equation
EM Euler–Maruyama
FPE Fokker–Planck equation
MLE Maximum likelihood estimator
OU Ornstein–Uhlenbeck
PDE Partial differential equation
SDE Stochastic Differential Equation
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Introduction
Learning models from data is a problem of fundamental importance in modern applied mathemat-
ics. The abundance of data in many application areas, such as molecular dynamics or atmosphere
and ocean science, makes it possible to develop physics-informed data driven methodologies for
inferring models from data [109,122,126]. Naturally, most problems of interest are characterised
by a very high dimensional state space and by the presence of many characteristic length and time
scales. When it is possible to decompose the state space into its macroscopic and microscopic
components, then one is usually interested in the derivation of a model for the macroscopic
components, while treating the microscopic ones as noise. This often leads to reduced models
which are stochastic, thus naturally described by stochastic differential equations (SDEs). The
main goal of this thesis is to derive rigorous and systematic methodologies for learning coarse-
grained models that accurately describe the dynamics at macroscopic length and time scales from
observations of the full microscopic dynamics.

The model which we will mainly consider throughout this thesis is the multiscale overdamped
Langevin SDE. This simple equation arises from models of molecular dynamics, and is featured by
two fully separated time scales. In particular, it describes the motion of a particle in a confining
potential which has slow variations with rapid order-one oscillations superimposed. Hence, it
is frequently desirable to infer from data a simpler model which captures effectively large-scale
structures, or slow variations, disregarding small-scale fluctuations. In this framework, under
appropriate assumptions on the potential, a single-scale surrogate equation in which the fast-scale
potential is eliminated is guaranteed to exist due to the theory of homogenization [20,104]. Given
multiscale data in the form of a continuous sample path from this class of model problems of
Langevin type, we are therefore interested in determining the drift and diffusion coefficients of the
corresponding homogenized equation, i.e., our goal is to obtain effective coarse-grained dynamics
from data, in a consistent way with respect to the homogenization theory. The mismatch between
the data and their desired slow-scale representation is a typical instance of a problem of model
misspecification, which, if ignored or handled incorrectly, can lead to erroneous inference. Indeed,
the data, coming from the full dynamics, are compatible with the coarse-grained model only at
the time scales at which the effective dynamics is valid. Several methods to take into account
model misspecification in multiscale frameworks exist [12, 13, 97, 103]. For diffusion processes,
the proposed approaches rely on different sorts of subsampling, which has proved itself effective
to some extent in many applications, but which requires nevertheless precise knowledge of how
separated the two characteristic scales are. Robustness of this methodology is dubious, too, as
inference results tend to be extremely sensitive to the subsampling rate.

We therefore introduce a novel methodology for efficiently estimating the drift and diffusion
coefficients of the effective equation given a continuous stream of data from the multiscale model.
We propose to modify the maximum likelihood estimator (MLE), which has been proven to
fail [103], by using suitably preprocessed data, instead of the raw ones. Rather than subsampling
the original trajectory, we smooth the data by applying an appropriate linear time-invariant
filter from the exponential family [3]. The estimator we obtain is robust with respect to the
parameters of the filter and asymptotically unbiased in the limit of infinite data and of infinitely
fast oscillations at the microscale, as long as the filtering width is sufficiently large with respect
to the fastest scale. Moreover, we observe numerically that iterating the filtering procedure, i.e.,

1



Introduction

employing smoother data, allows us to obtain reliable estimations of the unknown parameters
independently of the filtering width. We also notice from numerical experiments that our estimator
appears to be asymptotically normal and this gives a conjecture on its asymptotic variance.

Moreover, instead of employing an exponential filter, we also propose to preprocess the data
applying a moving average [51]. This leads to a stable and robust estimator which is even simpler
to compute, and for which we prove the same asymptotic unbiasedness property. Difficulties
are hidden in the theoretical analysis of the proposed estimator, indeed the main proof is based
on the observation that original and filtered data together form a system of stochastic delay
differential equations. Furthermore, if the effective diffusion coefficient is assumed to be known,
we present how our filtered data methodology can be combined with Bayesian techniques in order
to provide a full uncertainty quantification of the inference procedure. Still in the case of known
diffusion coefficient, we also show that, instead of employing filtered data, it is possible to use the
Stratonovich formulation of the MLE.

The assumption that a continuous path from the solution is observed is however not realistic in
most applications. In fact, in all real problems one can only obtain discrete-time measurements of
the diffusion process. Hence, we focus on the problem of learning the coarse-grained homogenized
model assuming that we are given discrete observations from the microscopic model. We propose
a new estimator for learning homogenised SDEs from noisy discrete data that is obtained as the
zero of a martingale estimating function which is based on the eigenvalues and the eigenfunctions
of the generator of the homogenized process [6]. This technique was origially applied to one-scale
SDEs in [73]. We show that this new estimator is asymptotically unbiased only if the distance
between two consecutive observations is sufficiently large when compared with the multiscale
parameter describing the fastest scale, i.e., if data are compatible with the homogenized model.
Therefore, in order to obtain unbiased approximations independently of the sampling rate with
which the observations are obtained, we propose a second estimator which, in addition to the
original observations, relies also on filtered data obtained following the filtering methodology
introduced in the first part of this thesis. We notice that smoothing the original data makes
observations compatible with the homogenized process independently of the rate with which they
are sampled. Hence, this second estimator can be employed as a black-box tool for parameter
estimation in the case of discrete-time data.

We then employ a similar approach based on martingale estimating functions for inferring unknown
parameters in systems of weakly interacting diffusions. For these models the mean field limit
exists and is described by a nonlinear diffusion process of McKean type, obtained as the limit
when the number of interacting processes goes to infinity. When the number of interacting SDEs
is large, the inference problem can become computationally intractable and it is often useful to
study the problem of parameter estimation for the limiting mean field SDE. This is related, but
distinct, from the previous problem of inference for multiscale diffusions where the objective is to
learn the parameters in the homogenized limiting SDE from observations of the full dynamics.
Our goal is to show how the inference methodology using martingale estimating functions which
is applied to multiscale diffusions can be modified so that it can also be applied to interacting
diffusions with a well defined mean field limit. Despite their difference in spirit, it is useful to keep
in mind the analogy between homogenization and mean field limits, in the context of parameter
estimation.

We consider in particular systems of exchangeable weakly interacting diffusions for which uniform
propagation of chaos results are known [18,19, 39, 84, 93] and for which the mean field SDE has a
unique invariant measure. We assume that we are given a sample of discrete-time observations of
a single particle. Due to exchangeability, this amount of information should be sufficient to infer
parameters in the mean field SDE, in the joint asymptotic limit as the number of observations
and the number of particles go to infinity. Our approach consists of constructing martingale
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estimating functions [21, 73] based on the eigenvalues and the eigenfunctions of the generator
of the mean field dynamics. Then, our eigenfunction estimator is the zero of the estimating
function [105]. Unlike the finite dimensional case, the mean field SDE is a measure-valued
process and the generator is a nonlinear operator, dependent on the law of the process. A direct
application of the martingale eigenfunction estimator would require the solution of a nonlinear
eigenvalue problem that can be computationally demanding in high dimensions and that would
also lead to eigenfunctions depending on time via their dependence on the law of the process.
We circumvent this difficulty by replacing the law of the process with the (unique) invariant
measure of the mean field dynamics. This leads to a standard Sturm–Liouville type of eigenvalue
problem that we can analyze and also solve numerically at a low computational cost. In this
thesis we consider the framework where the invariant measure of the mean field SDE is unique.
We remark, however, that our numerical experiments show that our methodology applies to
McKean SDEs that exhibit phase transitions, i.e., that have multiple stationary measures, as
long as we are below the transition point, or the form of the invariant measure is known up to a
finite set of parameters, e.g., moments. When the mean field dynamics has a unique invariant
measure, we first show the existence of the estimator with high probability when the number
of available data and particles is large enough, and then analyze its consistency proving the
asymptotic convergence towards the true value of the unknown parameter and providing a rate.
Moreover, we prove that the estimator is asymptotically normal under appropriate assumptions
on the relationship between the number of observations and particles, in particular the latter
must be sufficiently greater than the former.

Finally, on a parallel path, but still related to the first model considered in this thesis, i.e., the
Langevin dynamics, we show some additional theoretical results. First, we compute the rate
of weak convergence of the invariant measure of the multiscale system to the corresponding
homogenized invariant measure, and we present a new proof for the homogenization of the
backward Kolmogorov equation (BKE) based on the theory of evolutionary Gamma convergence
[87]. Then, we study the homogenization of the Poisson problem and the eigenvalue problem for
the generator of the multiscale dynamics, proving convergence results for the eigenpairs and the
solution of the Poisson problem. We remark that the analysis is based on the theory of two-scale
convergence [9, 10] which we extend to the case of weighted Sobolev spaces.

Outline
The thesis is divided in two parts. Part I is made of Chapters 1 to 4 and mainly concerns the
introduction of filtered data to modify MLEs, and Part II is made of Chapters 5 to 8 and is
mostly about eigenfunction estimators. We remark that Chapters 2 to 4 and 6 to 8 contain the
original contributions of this thesis.

In Chapter 1 we introduce the inference problem for multiscale Langevin dynamics, we give a brief
overview of the existing literature on the topic and we present the main contributions of Part I.
Chapters 2 and 3, which are based on our papers [3, 51], are about the filtered data methodology
based on exponential filter and moving average, respectively, and Chapter 4 is devoted to some
additional results and open problems related to the multiscale Langevin model.

In Chapter 5 we introduce interacting particle systems and the technique of martingale estimating
functions based on eigenpairs of the generator for parameter estimation. We give a brief overview
of the existing literature on the topic and we present the main contributions of Part II. Chapter 6,
which is based on our paper [125], is devoted to the study of the homogenization of the generator
of the multiscale Langevin dynamics and Chapters 7 and 8, which are based on our papers [6,105],
are about the application of eigenfunction estimators to multiscale and interacting diffusions,
respectively.
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1 Inference for multiscale over-
damped Langevin dynamics
In this chapter we consider the multiscale overdamped Langevin equation and its coarse-grained
model, which exists due to the theory of homogenization. We then introduce the inference
problem we are interested in, and provide an overview of the techniques that have already been
employed in the literature. Finally, we summarize the main contributions which will be presented
in the remaining chapters of this part, and give the outline of the first part of this thesis.

1.1 Problem setting
We are interested in inferring coarse-grained equations from observations of diffusion processes
evolving on multiple time scales. Given a positive integer d, a drift function bε : Rd × Rd → Rd
periodic with respect to its second argument, a multiscale parameter ε > 0, and a diffusion
coefficient σ > 0, we consider the d-dimensional multiscale stochastic differential equation (SDE)

dXε(t) = bε
(
Xε(t), X

ε(t)
ε

)
dt+

√
2σ dW (t), (1.1)

where W := (W (t), t ≥ 0) is a standard d-dimensional Brownian motion, and where Xε(0)
is a given initial condition. Assuming that continuous-time data Xε := (Xε(t), 0 ≤ t ≤ T )
are provided, with T a finite time horizon, our goal is then to infer a coarse-grained equation,
independent of the fastest scale O(ε−1), which reads

dX0(t) = b0
(
X0(t)

)
dt+

√
2Σ dW (t), (1.2)

where b0 : Rd → Rd and Σ ∈ Rd×d are the effective drift function and diffusion matrix, respectively.
Knowledge of the full model (1.1) yields, in specific instances, a single-scale model (1.2) which
is effective in the sense of the theory of homogenization. In particular, one can prove in these
cases that Xε → X0 for ε→ 0 in a weak sense (see [104, Chapter 18] or [20, Chapter 3]). In this
thesis, we consider bε and σ to be unknown and wish to infer the parameters b0 and Σ of (1.2)
from multiscale data. Hence, the problem we consider here could be framed into the setting of
data-driven homogenization.

The class of multiscale SDEs which can be written as (1.1) is vast, and can be employed for
modeling a wide range of physical and social phenomena. In this thesis, we narrow the scope by
considering a gradient structure and a semi-parametric framework, inspired by simple models of
molecular dynamics. Let L be a positive integer, and consider a periodic function p : Rd → R
with period Ti in the i-th direction in Rd for i = 1, . . . , d, and a potential V : Rd → R defined by

V(x) =
L∑
`=1

α`V`(x),

where {V` : Rd → R}L`=1 are smooth functions and {α`}Li=1 are scalar drift coefficients. We then
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let the drift function in the multiscale dynamics (1.1) be given by

bε (x, y) = −∇V(x)− 1
ε
∇p(y) = −

L∑
`=1

α`∇V`(x)− 1
ε
∇p(y),

and, with this choice, equation (1.1) reads in the nonparametric form

dXε(t) = −∇V(Xε(t)) dt− 1
ε
∇p
(
Xε(t)
ε

)
dt+

√
2σ dW (t), (1.3)

and in the semi-parametric form

dXε(t) = −
L∑
`=1

α`∇V`(Xε(t)) dt− 1
ε
∇p
(
Xε(t)
ε

)
dt+

√
2σ dW (t). (1.4)

We remark that the stochastic model we consider is of the overdamped Langevin type. There
exists for equation (1.4) a model of the form (1.2) which is effective in the homogenization limit
ε → 0. Let Xε := (Xε(t), 0 ≤ t ≤ T ) denote the solution of (1.4) for a finite time horizon T .
Then, it holds Xε → X0 in law in C0([0, T ];Rd) for ε → 0, where X0 := (X0(t), 0 ≤ t ≤ T ) is
the solution of the overdamped Langevin equation

dX0(t) = −
L∑
`=1

A`∇V`(X0(t)) dt+
√

2Σ dW (t). (1.5)

Here, the matrices A` := α`K and Σ := σK depend on the symmetric positive semidefinite matrix
K ∈ Rd×d defined by

K =
∫
T

(I +DΦ(y))(I +DΦ(y))> dπ(y), T :=
d⊗
i=1

[0,Ti], (1.6)

where DΦ is the Jacobian of the solution Φ: Rd → Rd of the vector-valued partial differential
equation (PDE), or cell problem

L0Φ = ∇p, in T , + periodic b.c. on ∂T ,∫
T

Φ(y) dπ(y) = 0,
(1.7)

and the differential operator L0, applied component-wise to Φ, is defined as

L0 = −∇p · ∇+ σ∆.

The measure π introduced in (1.6) is the probability measure on T given by π(dy) = ω(y) dy
where the density ω with respect to the Lebesgue measure is defined as

ω(y) = 1
Cπ

exp
(
−p(y)

σ

)
, Cπ =

∫
T

exp
(
−p(y)

σ

)
dy, (1.8)

which accounts for the fluctuations in the limit as t → ∞ of the fast-scales of the solution of
(1.4). We refer the reader to [104, Chapters 11 and 18] for a complete derivation and proof of this
homogenization result. Clearly, the homogenized equation corresponding to the non parametric
form (1.3) is given by

dX0(t) = −K∇V(X0(t)) dt+
√

2Σ dW (t). (1.9)
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We consider from now on for clarity the case d = 1, for which equation (1.4) reads

dXε(t) = −α · V ′(Xε(t)) dt− 1
ε
p′
(
Xε(t)
ε

)
dt+

√
2σ dW (t), (1.10)

where V : R→ RL is defined as V (x) = (V1(x), V2(x), . . . , VL(x))>, the derivative V ′ is computed
component-wise, and α = (α1, α2, . . . , αL)>. Let us assume that we are exposed to a continuous-
time stream of data Xε solution of (1.4) for a finite time horizon T . Moreover, let us assume that
the periodic function p, as well as the scale-separation parameter ε, the drift coefficients {α`}L`=1,
and the diffusion coefficient σ are unknown. Conversely, we assume that the functions {V`}L`=1
are known. Our goal is then to infer the effective drift coefficient A = (A1, A2, . . . , AL)> ∈ RL
and diffusion coefficient Σ > 0 that define the single-scale dynamics

dX0(t) = −A · V ′(X0(t)) dt+
√

2Σ dW (t). (1.11)

Let us remark that in this one-dimensional setting it is possible to determine Φ explicitly, and
the homogenization coefficient K is given by

K = T2

CπĈπ
, (1.12)

where

Cπ =
∫ T

0
e−p(y)/σ dy, Ĉπ =

∫ T

0
ep(y)/σ dy.

We consider the inferred coefficients to be asymptotically unbiased if they converge to the true
effective coefficients in the homogenization limit ε → 0 and for infinite data, i.e., for T → ∞.
Since the coarse-grained dynamics are inferred from data instead of being computed using the
homogenization formulas, we are in the setting of data-driven homogenization.
Remark 1.1. For enhancing the clarity of the exposition, throughout most of the thesis, we have
chosen to focus on the case of a multi-dimensional parameter in the setting of one-dimensional
diffusion processes. In fact, all the theory we present in the following could be generalized to
the case of the d-dimensional SDE (1.4). Slight modifications of the proofs demonstrate that
analogous results as those presented later on may be obtained in the d-dimensional case.
Remark 1.2. The value of the initial condition Xε

0 in the SDE (1.10) is important neither for the
numerical experiments nor for the following analysis and can be chosen arbitrarily. In fact, as
shown in [103, Proposition 5.2], the process Xε

t is geometrically ergodic and therefore it converges
to its invariant distribution exponentially fast for any initial condition.
Remark 1.3. We note that our framework may be viewed in the semi-parametric setting as the
one of [74]. In particular the functions V`, ` = 1, . . . , L can be seen as the known basis functions
of a truncated expansion (e.g., Taylor series or Fourier series) for the unknown confining potential
V. Numerical examples highlighting the potential of our method in such a setting is given in
Sections 2.3.3 and 3.2.2. We also mention that assuming a parametric form for the potential V
is a technique usually employed in the statistics literature in order to regularize the likelihood
function and obtain a parametric approximation of the actual MLE of V , which does not exist in
general [107].

Let us now state the assumptions which will be employed throughout the rest of our work. In
particular, we consider the same dissipative setting as [103, Assumption 3.1].
Assumption 1.4. The potentials p and V satisfy

(i) p ∈ C∞(R) and is T-periodic for some T > 0;
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(ii) V` ∈ C∞(R) for all ` = 1, . . . , L is polynomially bounded from above and bounded from
below, and there exist a, b > 0 such that

− α · V ′(x)x ≤ a− bx2;

(iii) V ′ and V ′′ are Lipschitz continuous, i.e. there exists a constant C > 0 such that

‖V ′(x)− V ′(y)‖2 ≤ C |x− y| , and ‖V ′′(x)− V ′′(y)‖2 ≤ C |x− y|

where ‖·‖ denotes the Euclidean norm, and the components V ′` , V ′′` , V ′′′` are polynomially
bounded for all ` = 1, . . . , L.

Remark 1.5. Assumption 1.4 has the following consequences:

(i) Assumption 1.4(i) allows to employ the theory of periodic homogenization to conclude that
(1.11) is effective for equation (1.10).

(ii) Assumption 1.4(ii) implies that the solutions of (1.10) and (1.11) are geometrically ergodic,
and thus the existence of unique invariant measures (see [103, Propositions 5.1 and 5.2]).

(iii) Assumption 1.4(iii) is technical, and guarantees sufficient regularity for our main results to
hold.

Remark 1.6. In the following, in particular in the proof of Lemma 2.3, we will employ Assumption
1.4(ii) for the whole drift of the SDE (1.1), i.e., the function

Vε(x) := α · V (x) + p
(x
ε

)
.

Since p ∈ C∞(R) and is periodic, all derivatives of p are in L∞(R). Therefore, the assumption
above is sufficient for Vε to satisfy Assumption 1.4(ii) with different values for a and b. In
particular, assume Assumption 1.4(ii) holds for V. Then, we have for all γ > 0 by Young’s
inequality

−(Vε)′(x)x ≤ a− bx2 − 1
ε
p′
(x
ε

)
x

≤
(
a+ 1

2ε2γ
‖p′‖2L∞(R)

)
−
(
b− γ

2

)
x2.

Hence, Assumption 1.4(ii) holds for Vε with a coefficient b which is arbitrarily close to the
coefficient for V , alone. We also remark that the fact that the shift term blows up as ε→ 0 is not
an issue because the ergodicity of the multiscale process has to hold for ε > 0 fixed.

1.2 Failure of standard estimators
We now briefly present the classical methodology for estimating the drift coefficient alone. Let
T > 0 and let X0 := (X0(t), 0 ≤ t ≤ T ) be a realization of the solution of (1.11) up to final time
T . Girsanov’s change of measure formula applied to (1.11) allows to write the likelihood of X0

given a drift coefficient A as

LT (X0 | A) = exp
(
−IT (X0 | A)

2Σ

)
, (1.13)

where

IT (X0 | A) =
∫ T

0
A · V ′(X0(t)) dX0(t) + 1

2

∫ T

0

(
A · V ′(X0(t))

)2 dt.
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Minimizing the functional IT (X0 | A) with respect to A therefore gives the maximum likelihood
estimator (MLE) of A, which is independent of the diffusion coefficient Σ and can be formally
computed in closed form as

ÂMLE(X0, T ) := arg min
A∈RL

IT (X0 | A) = −M−1(X0, T )v(X0, T ), (1.14)

where M(X0, T ) ∈ RL×L and v(X0, T ) ∈ RL are defined as

M(X0, T ) = 1
T

∫ T

0
V ′(X0(t))⊗ V ′(X0(t)) dt, v(X0, T ) = 1

T

∫ T

0
V ′(X0(t)) dX0(t),

and where ⊗ denotes the outer product in RL. Under Assumption 1.4, the MLE given in
(1.14) is indeed the unique minimizer of the likelihood function, as shown in [107, Theorem
2.4]. Let us consider the modified estimator of the drift coefficient obtained replacing X0 with
Xε := (Xε(t), 0 ≤ t ≤ T ) solution of (1.10), i.e.,

ÂMLE(Xε, T ) := arg min
A∈RL

IT (Xε | A) = −M−1(Xε, T )v(Xε, T ), (1.15)

where IT (Xε | A), the matrix M(Xε, T ) and the vector v(Xε, T ) are obtained replacing each
occurrence of X0 with Xε. We now introduce the following additional hypothesis.
Assumption 1.7. For all T > 0, the symmetric matrices M(X0, T ) and M(Xε, T ) are positive
definite and there exists λ̄ > 0 such that λmin(M(X0, T )) ≥ λ̄ and λmin(M(Xε, T )) ≥ λ̄.

In the following, we simply denote by M := M(Xε, T ) and v := v(Xε, T ) in case of no ambiguity.
Given the convergence of Xε → X0 in the space of continuous stochastic processes, one would
expect that the MLE (1.15) would be asymptotically unbiased for the drift coefficient A of the
homogenized equation (1.11). Instead, it is possible to prove that in the asymptotic limit for
T → ∞ and ε → 0, the MLE tends to the drift coefficient α of the unhomogenized equation
(1.10). We report here this result, whose proof can be found for the case L = 1 in [103, Theorem
3.4]. We remark that the proof for L > 1 follows directly from the one-dimensional case.

Theorem 1.8. Let Assumption 1.4 hold and let the process Xε be the solution of (1.10). Then

lim
ε→0

lim
T→∞

ÂMLE(Xε, T ) = α 6= A, a.s.,

where α is the drift coefficient of equation (1.10).

Estimating the effective diffusion coefficient Σ of the homogenized SDE (1.11) is as well a relevant
problem. Indeed, knowing Σ besides the drift coefficient A gives a complete estimation of the
effective model (1.11), which is effective for the multiscale data generated by (1.10) in the sense of
homogenization theory. The standard estimator of the diffusion coefficient Σ given the stream of
data X0 is obtained by computing the quadratic variation 〈X0〉T of the path X0 and by defining

Σ̂QV(X0, T ) = 〈X
0〉T

2T .

We remark that in case the data X0 would originate from the model (1.11), we would have by
definition Σ̂QV(X0, T ) = Σ. In [103, Theorem 3.4], the authors show that this approach fails in
case the data are not pre-processed, meaning that the estimator Σ̂QV(Xε, T ) obtained using the
quadratic variation of Xε equals the diffusion coefficient σ of (1.10), even in the limit for ε→ 0,
i.e.,

Σ̂QV(Xε, T ) = σ 6= Σ. (1.16)
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Therefore, we deduce that in the framework of data-driven homogenization both the standard
estimators ÂMLE(Xε, T ) and Σ̂QV(Xε, T ) for the effective drift and diffusion coefficients are not
asymptotically unbiased and fail. Hence, it is necessary to employ homogenization-informed
techniques to infer the effective equation.
Remark 1.9. In case ε is known and due to Theorem 1.8 and (1.16), it would be possible to infer
directly the full multiscale model (1.11) employing a periodic parametrisation of the function p.
We argue that this would be less useful, at least for predictive purposes, than estimating directly
the effective model. Indeed, numerical integration of (1.10) is possible only by choosing critically
small time step for most numerical schemes, which in turn yields dramatically high computational
cost.

The main existing tool for obtaining unbiased estimators in the literature is subsampling the
data. In particular, let δ > 0 be the subsampling rate, chosen for simplicity such that T = nδ for
a positive integer n. The subsampled drift estimator is computed with a Euler–Maruyama-type
discretization of the MLE with spacing δ, i.e.,

−M δ
sub(Xε, T )Âδsub(Xε, T ) = vδsub(Xε, T ), (1.17)

where

Mδ
sub(Xε, T ) := δ

T

n−1∑
i=0

V ′(Xε(iδ))⊗ V ′(Xε(iδ)),

vδsub(Xε, T ) := 1
T

n−1∑
i=0

V ′(Xε(iδ)) (Xε((i+ 1)δ)−Xε(iδ)) .

For the diffusion coefficient, the same subsampling and discretization procedure yields the
estimator

Σ̂δsub = 1
2T

n−1∑
i=0

(Xε((i+ 1)δ)−Xε(iδ))2
.

The subsampling rate which guarantees asymptotically unbiased estimators lays between the time
scales of the multiscale and the effective models, i.e., for δ = εζ , with ζ ∈ (0, 1) [103, Theorems
3.5 and 3.6]. The optimal subsampling rate is conjectured in [103] to be δ = ε2/3. Despite being
widely employed in practice, estimators based on subsampling present some drawbacks, such as
having a high variance. Other disadvantages of subsampling are mainly two. First, it has been
demonstrated numerically [103] that inference results based on subsampling highly depend on δ
for ε > 0 and finite T . Second, knowledge of the scale-separation parameter ε is necessary to
build asymptotically unbiased estimators, which in practice could be a severe limitation.

1.3 Literature review
The literature on statistical inference of stochastic models modelled by SDEs is vast. Introductory
references on the topic are [17, 23, 77, 108]. A series of methods have been proposed in recent
years for multiscale models, in different settings and with different purposes. We refer the reader
to [102] for a recent survey, and summarize the approaches which are related to the one presented
in this thesis in the following.

Multiscale diffusion processes can be employed for modeling chemical reactions with species
reacting at different speeds [79, 80] and for simple models in molecular dynamics, for which
the effect of model misspecification was studied in a series of papers [12–14,97,103] under the
assumption of scale separation. In particular, for Brownian particles moving in two-scale potentials
it was shown that, when fitting data from the full dynamics to the homogenized equation, the
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MLE is asymptotically biased [103, Theorem 3.4]. To be more precise, in the large sample size
limit, the data remains consistent with the multi-scale problem at small scale. Ostensibly this
would seem related only to the estimation of the diffusion coefficient. However, because of detail
balance, it also has the effect that the MLE, for the drift in a parameter fit of a single-scale model,
incorrectly identifies the coefficient of the homogenized equation. The bias of the MLE can be
eliminated by subsampling at an appropriate rate, which lies between the two characteristic time
scales of the problem.

Similar techniques can be employed in econometrics, in particular for the estimation of the
integrated stochastic volatility in the presence of market microstructure noise. In this case, too,
the data have to be subsampled at an appropriate rate [8, 94]. The correct subsampling rate can,
in some instances, be rather extreme with respect to the frequency of the data itself, resulting in
ignoring as much as 99% of the time-series. As the intuition suggests, this increases significantly
the variance of the estimator, which is usually taken care of with additional bias corrections
and variance reduction procedures. The need of such methodology is accentuated by data being
obtained at high-frequency [7, 127].

The problem of extracting large-scale variations from multiscale data is studied in atmosphere
and ocean science. In this field, too, subsampling the data is necessary to obtain an accurate
coarse-grained model [32,123].

The necessity to subsample the data can be alleviated by exploiting a martingale property of
the likelihood function, and by computing appropriate estimators for conditional expectations,
as was done in [68, 74]. This class of estimators can be applied to the case where the noise
is multiplicative and also given by a deterministic chaotic system, as opposed to white noise.
Estimators of this family have been applied to time series from paleoclimatic data and marine
biology and augmented with appropriate model selection methodologies [75]. The estimators
proposed in [74] are not well posed on a single trajectory, which is overcome by averaging over a
set of short trajectories. For [68], estimators are obtained through a computationally expensive
procedure employed to approximate conditional expectations via Nadarya–Watson techniques.
Let us remark that, to our knowledge, unbiasedness for these estimators of the effective dynamics
is not theoretically justified and is just conjectured in [74]. In [68], theoretical analysis is restricted
to the one-dimensional case and when the effective dynamics is of the Ornstein–Uhlenbeck (OU)
type.

In their series of works [47, 48, 113], the authors propose estimators for the parameters of a
multiscale SDE. The setting is similar to the one studied in this thesis, with the difference
that the stochastic dynamics are driven by a small noise, which vanishes in the homogenization
limit. Hence, the effective equation is in this case a deterministic dynamical system. Theoretical
difficulties are due in this framework to the likelihood function induced by the effective dynamics,
which is singular. Closely related work is [96], where estimation of multiscale stochastic dynamics
is obtained by dimensionality reduction of an appropriate posterior distribution.

Inference of diffusion processes can be naturally performed under a Bayesian perspective. If
one focuses on the drift coefficient, the form of the likelihood function guarantees, under a
Gaussian prior hypothesis, that the posterior distribution is itself a Gaussian. The versatility of
the Bayesian approach in the infinite-dimensional case [37,115] gives the possibility to extend the
study of inferring the drift of a diffusion process to the non-parametric case [106,107].

The recent work [31] deals with inference of a similar multiscale equation with Kalman filtering
methodologies. In this work, though, the authors focus on retrieving the coefficients of the
multiscale dynamics given misspecified data from the reduced model, while we are interested in
the opposite direction.
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Chapter 1. Inference for multiscale overdamped Langevin dynamics

The issue of model misspecification in inverse problems with a multiscale structure has been
treated in the context of PDEs, too. In particular, it has been shown that it is possible to
infer a coarse-grained equation from data coming from the full model and to retrieve, in the
large data limit, the correct result [92]. A series of papers [1,2,4] focuses on retrieving the full
model when the multiscale coefficient is endowed with a specific parametrized structure. Since
these problems are ill-posed, the latter is achieved via Tikhonov regularization [1, 92], adopting a
Bayesian approach [2,92] or exploiting techniques of Kalman filtering [4]. In [2,4], the authors
highlight the need to account explicitly for the modelling error due to homogenization and apply
statistical techniques taken from [26,27].

1.4 Our main contributions

In the next two chapters, which are based on our research articles [3, 51], we bypass subsampling
by designing a methodology based on filtered data.

In Chapter 2 we smooth the time-series data from the multiscale model by application of an
appropriate linear time-invariant filter, from the exponential family, and show that doing so allows
us to accurately retrieve the drift coefficient of the homogenized model. The methodology we
present is straightforward to implement, robust in practice and backed by theory. In particular,
we show theoretically and demonstrate via numerical experiments that:

(i) The smoothing width of the filter can be alternatively tuned to be proportional to the
speed of the slow process or to smaller scales and provide in both cases unbiased results for
maximum likelihood parameter estimation. Sharp estimates on the minimal width with
respect to the multiscale parameter are provided. The unbiasedness results are given in
Theorems 2.12 and 2.17 for filtered data in the homogenized and in the multiscale regimes,
respectively.

(ii) We additionally propose in the multiscale regime an estimator of the effective diffusion
coefficient based on filtered data, as shown by Theorem 2.19.

(iii) Estimations based on our technique are robust in practice with respect to the parameter
of the filter. This is not the case for subsampling, which is strongly influenced by the
subsampling frequency. The robustness of our technique is demonstrated via numerical
experiments in Sections 2.3.1 and 2.3.3.

(iv) The entire stream of data is employed, which, in practice, enhances the quality of the
filter-based MLE in terms of bias. Moreover, avoiding subsampling and thus discretising
the data allows us to employ continuous-time theoretical tools.

(v) It is possible to employ the filtered data approach within a continuous-time Bayesian
framework by a careful modification of the likelihood function. Under mild hypotheses
on the filter parameters, we are able to show that the posterior distributions obtained
with our methodology are asymptotically consistent with respect to the drift parameter of
the homogenized equation. Our main theoretical result is given in Theorem 2.24, and a
numerical experiment for the combination of the filtered data approach and of Bayesian
techniques is presented in Section 2.3.4.

In Chapter 3 we build on the techniques introduced in Chapter 2 and design a new class of
estimators for effective diffusions based on moving averages. The methodologies we introduce here
are easy to implement, computationally cheap, robust, and unbiased with respect to the theory
of homogenization. Furthermore, we complete the numerical analysis by testing our method
against a complex instance of multi-dimensional Langevin equations. The basic idea underlying
the new estimator is similar to the previous one, i.e., in both cases we propose to smoothen
the data through some filtering kernel, and to compute modified estimators which employ in
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some appropriate fashion the filtered data. Nevertheless, the theoretical and numerical analysis
presented in Chapter 3 extend relevantly the work in Chapter 2 and have their own originality.
In particular:

(i) Numerical experiments show that the straightforward application of a moving average to the
data yields extremely robust inference of effective dynamics when presented with multiscale
data. The accuracy of the inference procedure is remarkably higher than previously existing
techniques.

(ii) We propose a novel straightforward estimator for the effective diffusion coefficient, which
was not previously analysed in the literature.

(iii) Implementing our methodology does not require prior knowledge of the scale-separation
parameter, and is simple and efficient even for data and parameters in multiple dimensions.

(iv) We present an original analysis of asymptotic unbiasedness based on the ergodic properties of
an appropriate system of stochastic delay differential equations (SDDEs). To our knowledge,
this analysis is a novel theoretical contribution to the literature of statistical inference for
SDEs.

Finally, in Chapter 4 we present additional theoretical results about the homogenization of
multiscale Langevin dynamics and further developments related to the exponential filter introduced
in Chapter 2. In particular:

(i) We prove the homogenization of the backward Kolmogorov equation (BKE) corresponding to
the multiscale Langevin SDE employing the theory of the evolutionary Gamma convergence.

(ii) We compute a rate of convergence of the expectation with respect to the invariant measure of
the multiscale Langevin dynamics towards the expectation with respect to the homogenized
invariant measure.

(iii) We propose a different modification of the MLE for the drift estimation of the homogenized
Langevin SDE which does not rely on filtered data, but which uses the Stratonovich
formulation.

(iv) We propose a new estimator by repeatedly iterating the filtering procedure with the
exponential kernel in Chapter 2.

(v) We give a tentative central limit theorem for our estimator with exponentially filtered data
of Chapter 2.

We remark that we are still working on points (iv) and (v) and therefore they contain conjectures
which we believe are true, but we have not been able to prove rigorously yet.
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2 Exponential filter

This chapter, which is based on our research article [3], is devoted to the introduction of filtered
data obtained employing an appropriate filter of the exponential family. They are then employed
to modify the maximum likelihood estimator (MLE) and give an asymptotic unbiased estimator
for the drift coefficient of the homogenized Langevin equation given continuous data from the
multiscale system. The chapter is organized as follows. In Section 2.1 we present our filtered
data methodology with a particular focus on ergodic properties, on multiscale convergence and,
naturally, on the unbiasedness properties of our estimators. In Section 2.2 we introduce the
Bayesian framework and show how it can be enhanced employing filtered data, and in Section 2.3
we demonstrate the effectiveness of our methodology via a series of numerical experiments.
Section 2.4 collects several technical results which are useful for the proof of the main theorems,
and in Section 2.5 we draw our conclusions.

2.1 The filtered data approach
In this section, we introduce and analyse a novel approach based on filtered data to address the
issue that the MLE estimator, when confronted with multiscale data, is biased. Let β, δ > 0 and
let us consider a family of exponential kernel functions kδ,βexp : R+ → R defined as

kδ,βexp(r) = Cβδ
−1/βe−r

β/δ, (2.1)

where Cβ is the normalizing constant given by

Cβ = β Γ(1/β)−1,

so that ∫ ∞
0

kδ,βexp(r) dr = 1,

and where Γ(·) is the gamma function. We consider the process Zδ,β,εexp := (Zδ,β,εexp (t), 0 ≤ t ≤ T )
defined by the weighted average

Zδ,β,εexp (t) :=
∫ t

0
kδ,βexp(t− s)Xε(s) ds.

The process Zδ,β,εexp can be interpreted as a smoothed version of the original trajectory Xε. In fact,
in the field of signal processing the kernel (2.1) belongs to the class of low-pass linear time-invariant
filters, which cut the high frequencies in a signal to highlight its slowest components. In the
following, rigorous analysis is conducted only when β = 1. Nonetheless, numerical experiments
show that for higher values of β the performances of estimators computed employing the filter
are more robust and qualitatively better.
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Chapter 2. Exponential filter

Figure 2.1 – Filtering a trajectory Xε obtained with V (x) = x2/2, p(y) = cos(y), α = 1, σ = 0.5
and ε = 0.1. The filtering width is δ = {1,

√
ε, ε} from top to bottom, respectively, and β = 1.

Remark 2.1. Given a trajectory Xε, it is relatively inexpensive to compute Zδ,β,εexp from a compu-
tational standpoint. In particular, the process Zδ,β,εexp is the truncated convolution of the kernel
with the process Xε. Hence, computational tools based on the Fast Fourier Transform (FFT)
exist and allow to compute Zδ,β,εexp fast component-wise. Moreover, the process Zδ,β,εexp can be
computed, in case β = 1, in a recursive manner and therefore “online”.

Given a trajectory Xε and the filtered data Zδ,β,εexp , the estimator of the drift coefficient we propose
is given by

Âδ,βexp(Xε, T ) = −(M̃δ,β
exp(Xε, T ))−1ṽδ,βexp(Xε, T ), (2.2)

where we employ the subscript exp and the superscript δ, β for reference to the filter’s kernel in
(2.1), and where

M̃ δ,β
exp(Xε, T ) = 1

T

∫ T

0
V ′(Zδ,β,εexp (t))⊗ V ′(Xε(t)) dt,

ṽδ,βexp(Xε, T ) = 1
T

∫ T

0
V ′(Zδ,β,εexp (t)) dXε(t).

(2.3)

Let us remark that the formula above is obtained from (1.15) by replacing only one instance of
Xε
t with Zδ,β,εexp (t) in both M and v. In particular, it is fundamental for proving unbiasedness to

keep in the definition of v the differential of the original process dXε(t) (see Remark 2.7). Let us
furthermore remark that Âδ,βexp(Xε, T ) need not be the minimizer of some likelihood function based

18
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on filtered data. In fact, if one were to replace Zδ,β,εexp (t) directly in (1.13), the symmetric part of
the matrix M̃δ,β

exp(Xε, T ) would appear and Âδ,βexp(Xε, T ) would not be the minimizer. Therefore,
the estimator Âδ,βexp(Xε, T ) has to be thought of as a perturbation of ÂMLE(Xε, T ), directly at
the level of estimators and after the maximization procedure. The only theoretical guarantee
which is still needed for the well-posedness of Âδ,βexp(Xε, T ) is for M̃δ,β

exp(Xε, T ) to be invertible,
which we assume to be true and which we observed to hold in practice.

We now consider the diffusion coefficient, and propose the estimator for Σ in (1.11) given by

Σ̂δ,1exp(Xε, T ) := 1
δT

∫ T

0

(
Xε(t)− Zδ,β,εexp (t)

)2 dt, (2.4)

where again we employ the same subscript and superscript for reference to the kernel (2.1) of
the filter. As we will show in the following, and in particular in Theorem 2.19, the estimator
Σ̂δ,1exp(Xε, T ) is unbiased for the effective diffusion coefficient Σ in case β = 1 and when we filter
data at the multiscale regime, i.e., when δ is a vanishing function of ε.

Let us from now on consider β = 1. For this value of β, the parameter δ appearing in (2.1)
regulates the width of the filtering window. In practice, larger values of δ will lead to trajectories
which are smoother and for which fast-scale oscillations are practically canceled. Let us remark
that the filtering width resembles the subsampling step employed for the estimator Âδsub(Xε, T )
introduced and analyzed in [103]. For subsampling, the choice guaranteeing asymptotically
unbiased results is δ = εζ with ζ ∈ (0, 1), and a similar analysis is due for our technique. For
visualization purposes, we depict in Figure 2.1 the filtered trajectory Zδ,β,εexp for three different
values of δ, namely δ = {1,

√
ε, ε}. With δ = 1, all oscillations at the fast scale are canceled

and the filtered trajectory Zδ,β,εexp presents only slow-scale variations. Reducing the value of δ,
fast-scale oscillations are progressively taken into account.

In the following, we first focus on the ergodic properties of the process Zδ,β,εexp when it is coupled
with the process Xε. This analysis is practically independent of the choice of δ, and is therefore
presented on its own. Then, we focus on two different cases which depend on the choice of the
width δ of the filter. First, in Section 2.1.2, we consider δ to be independent of ε, and therefore
we filter at the speed of the homogenized process. In this case, we are able to prove that our
estimator of the drift coefficient of the homogenized equation is asymptotically unbiased almost
surely. This result will be presented in Theorem 2.12. We then move on in Section 2.1.3 to the
case δ ∝ εζ , which corresponds to filtering the data at the speed of the multiscale process. In
this case, we show that under some conditions on the exponent ζ, we can still obtain estimators
which are asymptotically unbiased. This result is proved in Theorem 2.17. For this second case,
we widely employ techniques and estimates which come from [103].

Let us finally remark that, for economy of notation, from now on and until the end of this chapter
we will simply write Xε

t and Zεt instead of Xε(t) and Zδ,β,εexp (t), respectively, and similarly for all
stochastic processes. Moreover, we drop explicit reference to the dependence of M̃δ,β

exp(Xε, T ) and
ṽδ,βexp(Xε, T ) on the parameters δ and β and we only write M̃exp(Xε, T ) and ṽexp(Xε, T ).

2.1.1 Ergodic properties

Let us consider the filtering kernel (2.1) with β = 1, i.e.,

kδ,1exp(r) = 1
δ
e−r/δ. (2.5)
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In this case, Leibniz integral rule yields the equality

dZεt = kδ,1exp(0)Xε
t dt+

∫ t

0
(kδ,1exp)′(t− s)Xε

s dsdt = 1
δ

(Xε
t − Zεt ) dt,

which can be interpreted as an ordinary differential equation for Zεt driven by the stochastic signal
Xε. Considering the processes Xε and Zε together, we obtain the system of two one-dimensional
stochastic differential equations (SDEs)

dXε
t = −α · V ′(Xε

t ) dt− 1
ε
p′
(
Xε
t

ε

)
dt+

√
2σ dWt,

dZεt = 1
δ

(Xε
t − Zεt ) dt.

(2.6)

The first ingredient for verifying the ergodic properties of the two-dimensional stochastic process
(Xε, Zε)> := ((Xε

t , Z
ε
t )>, 0 ≤ t ≤ T ) is verifying that the measure induced by the stochastic

process admits a smooth density with respect to the Lebesgue measure. Since noise is present
only on the first component, this is a consequence of the theory of hypo-ellipticity, as summarized
in the following Lemma, whose proof is given in Section 2.4.1.

Lemma 2.2. Let (Xε, Zε)> be the solution of (2.6) and let mεt be the measure induced by the
joint process at time t. Then, the measure mεt admits a smooth density with respect to the Lebesgue
measure.

Once it is established that the law of the process admits a smooth density for all times t > 0,
which satisfies a time-dependent Fokker–Planck equation (FPE), we are interested in the limiting
properties of this law. In particular, we know that the process Xε alone is geometrically
ergodic [85, Theorem 4.4], and we wish the couple (Xε, Zε)> to inherit the same property. The
following Lemma guarantees that the couple is indeed geometrically ergodic, and its proof is
given in Section 2.4.1.

Lemma 2.3. Let Assumption 1.4 hold and let b > 0 be given in Assumption 1.4(ii). Then, if
δ > 1/(4b), the process (Xε, Zε)> solution of (2.6) is geometrically ergodic, i.e., there exists
C, λ > 0 such that for all measurable f : R2 → R such that for some integer q > 0

f(x, z) ≤ 1 +
∥∥(x, z)>

∥∥q
2 ,

it holds ∣∣∣∣E f(Xε
t , Z

ε
t )−

∫
R

∫
R
f(x, z) dµεexp(x, z)

∣∣∣∣ ≤ C (1 +
∥∥(Xε

0 , Z
ε
0)>
∥∥q

2

)
e−λt,

for ρε-a.e. couple (Xε
0 , Z

ε
0)>, where E denotes expectation with respect to the Wiener measure,

and µεexp is the invariant measure of the couple (Xε, Zε)>. Moreover, the density ρεexp of µεexp
with respect to the Lebesgue measure is the solution to the stationary FPE

σ∂2
xxρ

ε
exp(x, z) + ∂x

((
α · V ′(x) + 1

ε
p′
(x
ε

))
ρεexp(x, z)

)
+ 1
δ
∂z
(
(z − x)ρεexp(x, z)

)
= 0. (2.7)

Remark 2.4. The condition δ > 1/(4b) is not very restrictive. Let the parameter dimension L = 1
and let V (x) ∝ x2r for an integer r > 1. Then, Assumption 1.4(ii) holds for an arbitrarily large
b > 0. Therefore, the parameter of the filter δ can be chosen along the entire positive real axis. A
similar argument can be employed for higher dimensions L > 1.

In a general case, it is not possible to find an explicit solution to (2.7). Nevertheless, it is possible
to show some relevant properties of the solution itself, which are summarized in the following
Lemma, whose proof is given in Section 2.4.1.
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Lemma 2.5. Under the assumptions of Lemma 2.3, let ρεexp be the solution of (2.7) and let us
write

ρεexp(x, z) = ϕε(x)Rε
exp(x, z), (2.8)

where ϕε is the marginal density of the invariant measure νε of Xε, i.e.,

ϕε(x) =
∫
R
ρεexp(x, z) dz.

Then, it holds

ϕε(x) = 1
Cνε

exp
(
− 1
σ
α · V (x)− 1

σ
p
(x
ε

))
, (2.9)

where
Cνε =

∫
R

exp
(
− 1
σ
α · V (x)− 1

σ
p
(x
ε

))
dx.

Moreover, it holds

σδ

∫
R

∫
R
V ′(z)ϕε(x)∂xRε

exp(x, z) dx dz = Eµ
ε
exp [(Xε − Zε)2V ′′(Zε)]. (2.10)

Remark 2.6. Lemma 2.5, and in particular the equality (2.10), plays a fundamental role in the
proof of unbiasedness of the estimator based on filtered data. In particular, this equality allows to
bypass the explicit knowledge of the function Rexp(x, z), which governs the correlation between
the processes Xε and Zε at stationarity, for which a closed-form expression is not available in
the general case.
Remark 2.7. Let us return to the definition of Âδ,βexp(Xε, T ) and replace the differential dXε

t with
dZεt in ṽexp(Xε, T ). In this case, if β = 1 it holds

lim
T→∞

1
T

∫ T

0
V ′(Zεt ) dZεt = lim

T→∞

1
δT

∫ T

0
V ′(Zεt )(Xε

t − Zεt ) dt = 1
δ
Eµ

ε
exp [V ′(Zε)(Xε − Zε)] = 0,

where the last equality is obtained as in the proof of Lemma 2.5, with the choice f(x, z) = V (z)
at the last line. Therefore, we stress again that it is indeed necessary to employ the original
differential dXε

t in the vector ṽexp(Xε, T ) in the definition (2.2) of Âδ,βexp(Xε, T ).
Remark 2.8. Let us consider the kernel (2.1) with β > 1. In this case, the steps leading to the
system (2.6) do not yield a system of Itô SDEs, but of stochastic delay differential equations. In
fact, by the Leibniz integral rule we have

dZεt = kδ,βexp(0)Xε
t dt+

(∫ t

0
(kδ,βexp)′(t− s)Xε

s ds
)

dt

= Cβδ
−1/βXε

t dt−
(
β

δ

∫ t

0
(t− s)β−1kδ,βexp(t− s)Xε

s ds
)

dt,

The analysis of the estimator in case β > 1 is therefore based on different arguments than the
one we present here.

2.1.2 Filtered data in the homogenized regime

In this section, we analyze the behavior of the estimator Âδ,βexp(Xε, T ) based on filtered data
given in (2.2) when the filtering width δ is independent of ε. The analysis in this case is based
on the convergence of the couple (Xε, Zε)> with respect to the multiscale parameter ε → 0.
In particular, it is known that the invariant measure of Xε converges weakly to the invariant
measure of X0, the solution of the homogenized equation (1.11). The following result guarantees
the same kind of convergence for the couple (Xε, Zε)>.
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Lemma 2.9. Under Assumption 1.4, let µεexp be the invariant measure of the couple (Xε, Zε)>.
If δ is independent of ε, then the measure µεexp converges weakly to the measure µ0

exp(dx,dz) =
ρ0

exp(x, z) dxdz, whose density ρ0
exp is the unique solution of the FPE

Σ∂2
xxρ

0
exp(x, z) + ∂x

(
A · V ′(x)ρ0

exp(x, z)
)

+ 1
δ
∂z
(
(z − x)ρ0

exp(x, z)
)

= 0, (2.11)

where A and Σ are the coefficients of the homogenized equation (1.11).

Proof. Let (X0, Z0)> :=
(
(X0

t , Z
0
t )>, 0 ≤ t ≤ T

)
be the solution of

dX0
t = −A · V ′(X0

t ) dt+
√

2Σ dWt,

dZ0
t = 1

δ

(
X0
t − Z0

t

)
dt,

with (X0
0 , Z

0
0 )> ∼ µ0

exp. The arguments of Section 2.1.1 can be repeated to conclude that the
invariant measure of (X0, Z0)> admits a smooth density ρ0

exp which satisfies (2.11). Moreover,
standard homogenization theory (see e.g. [20, Chapter 3, Theorem 6.4] or [104, Theorem 18.1])
guarantees that (Xε, Zε)> → (X0, Z0)> for ε → 0 in law as random variables with values in
C0([0, T ];R2), provided that (Xε

0 , Z
ε
0)> ∼ µεexp. We remark that traditionally it is assumed

that the initial conditions satisfy (Xε
0 , Z

ε
0)> = (X0

0 , Z
0
0 )> for the homogenization result to

hold, but notice that the proof of e.g. [104, Theorem 18.1] can be shown to hold with a minor
modification in case both the multiscale and the homogenized processes are at stationarity.
Denoting E = C0([0, T ],R2), this means that the measure induced by (Xε, Zε)> on (E,B(E))
converges weakly to the measure induced by (X0, Z0)> on the same measurable space (see
e.g. [104, Definition 3.24]). Hence, the measure µεexp converges weakly to µ0

exp for ε→ 0.

Example 2.10. A closed form solution of (2.11) can be obtained in a simple case. Let the dimension
of the parameter L = 1 and let V (x) = x2/2. Then, the analytical solution is given by

ρ0
exp(x, z) = 1

Cµ0
exp

exp
(
−AΣ

x2

2 −
1
δΣ

(x− (1 +Aδ)z)2

2

)
,

where

Cµ0
exp

=
∫
R

∫
R

exp
(
−AΣ

x2

2 −
1
δΣ

(x− (1 +Aδ)z)2

2

)
dx dz = 2πΣ

√
δ

(1 +Aδ)
√
A
.

This is the density of a multivariate normal distribution N (0,Γ), where the covariance matrix is
given by

Γ = Σ
A(1 +Aδ)

(
1 +Aδ 1

1 1

)
.

Let us remark that this distribution can be obtained from direct computations involving Gaussian
processes. In particular, we have that X0 is in this case an Ornstein–Uhlenbeck (OU) process
and it is therefore known that X0 ∼ GP(mt, C(t, s)), where at stationarity mt = 0 and

C(t, s) = Σ
A
e−A|t−s|.

The basic properties of Gaussian processes imply that Z0 is a Gaussian process, and that the
couple (X0, Z0)> is a Gaussian process, too, whose mean and covariance are computable explicitly.

We now present an analogous result to Lemma 2.5 for the limit distribution.
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Corollary 2.11. Let ρ0
exp be the solution of (2.11) and let us write

ρ0
exp(x, z) = ϕ0(x)R0

exp(x, z), (2.12)

where ϕ0 is the marginal density of the invariant measure ν0 of X0, i.e.,

ϕ0(x) =
∫
R
ρ0

exp(x, z) dz.

Then, if A and Σ are the coefficients of the homogenized equation (1.11), it holds

ϕ0(x) = 1
Cν0

exp
(
− 1

ΣA · V (x)
)
, where Cν0 =

∫
R

exp
(
− 1

ΣA · V (x)
)

dx. (2.13)

Moreover, it holds

Σδ
∫
R

∫
R
V ′(z)ϕ0(x)∂xR0

exp(x, z) dxdz = Eµ
0
exp [(X0 − Z0)2V ′′(Z0)].

Proof. The proof is directly obtained from Lemma 2.5 setting p(y) = 0 and replacing α, σ by
A,Σ respectively.

Let us introduce a notation which will be used throughout the rest of the chapter. We denote

M̃ε
exp := Eµ

ε
exp [V ′(Zε)⊗ V ′(Xε)], M̃0

exp := Eµ
0
exp [V ′(Z0)⊗ V ′(X0)], (2.14)

i.e., M̃ε
exp is obtained in the limit for T →∞ applying the ergodic theorem elementwise to the

matrix M̃exp(Xε, T ), and M̃0
exp is the limit for ε→ 0 of the matrix M̃ε

exp due to Lemma 2.9. For
completeness, we introduce here the symmetric matricesMε andM0 which are defined as

Mε := Eν
ε

[V ′(Xε)⊗ V ′(Xε)], M0 := Eν
0
[V ′(X0)⊗ V ′(X0)], (2.15)

and which will be employed in the following. We can now introduce the main result, namely the
convergence of the estimator based on filtered data of the drift coefficient of the homogenized
equation.

Theorem 2.12. Let the assumptions of Lemma 2.3 and Lemma 2.9 hold, and let Âδ,βexp(Xε, T )
be defined in (2.2) with δ independent of ε and β = 1. If M̃exp(Xε, T ) is invertible, then

lim
ε→0

lim
T→∞

Âδ,βexp(Xε, T ) = A, a.s.,

where A is the drift coefficient of the homogenized equation (1.11).

Proof. Replacing the expression of dXε
t into (2.3), we get for ṽexp(Xε, T )

ṽexp(Xε, T ) = −M̃exp(Xε, T )α− 1
T

∫ T

0

1
ε
p′
(
Xε
t

ε

)
V ′(Zεt ) dt+

√
2σ
T

∫ T

0
V ′(Zεt ) dWt.

Therefore, we have

Âδ,βexp(Xε, T ) = α+ 1
T
M̃exp(Xε, T )−1

∫ T

0

1
ε
p′
(
Xε
t

ε

)
V ′(Zεt ) dt

−
√

2σ
T

M̃exp(Xε, T )−1
∫ T

0
V ′(Zεt ) dWt

=: α+ Iε1(T )− Iε2(T ).

(2.16)
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Chapter 2. Exponential filter

We study the terms Iε1(T ) and Iε2(T ) separately. First, the ergodic theorem applied to Iε1(T )
yields

lim
T→∞

Iε1(T ) = (M̃ε
exp)−1 Eµ

ε
exp

[
1
ε
p′
(
Xε

ε

)
V ′(Zε)

]
, a.s. (2.17)

Replacing the decomposition (2.8), the expression (2.9) of ϕε and integrating by parts, we have

Eµ
ε
exp

[
1
ε
p′
(
Xε

ε

)
V ′(Zε)

]
=
∫
R

∫
R
V ′(z) 1

ε
p′
(x
ε

) 1
Cνε

e−
1
σα·V (x)e−

1
σ p( xε )Rε

exp(x, z) dx dz

= −σ
∫
R

∫
R

d
dx

(
e−

1
σ p( xε )

) 1
Cνε

e−
1
σα·V (x)V ′(z)Rε

exp(x, z) dx dz

= σ

∫
R

∫
R

1
Cνε

e−
1
σ p( xε )∂x

(
e−

1
σα·V (x)Rε

exp(x, z)
)
V ′(z) dxdz,

which implies

Eµ
ε
exp

[
1
ε
p′
(
Xε

ε

)
V ′(Zε)

]
= −

(∫
R

∫
R
V ′(z)⊗ V ′(x)ρεexp(x, z) dxdz

)
α

+ σ

∫
R

∫
R
V ′(z)ϕε(x)∂xRε

exp(x, z) dxdz

= −M̃ε
expα+ σ

∫
R

∫
R
V ′(z)ϕε(x)∂xRε

exp(x, z) dx dz.

Replacing the equality above into (2.17), we obtain

lim
T→∞

Iε1(T ) = −α+ (M̃ε
exp)−1σ

∫
R

∫
R
V ′(z)ϕε(x)∂xRε

exp(x, z) dx dz, a.s.

Due to Lemma 2.5, we therefore have

lim
T→∞

Iε1(T ) = −α+ 1
δ

(M̃ε
exp)−1 Eµ

ε
exp [(Xε − Zε)2V ′′(Zε)], a.s. (2.18)

Since δ is independent of ε, we can pass to the limit as ε goes to zero and Lemma 2.9 yields

lim
ε→0

lim
T→∞

Iε1(T ) = −α+ 1
δ

(M̃0
exp)−1 Eµ

0
exp [(X0 − Z0)2V ′′(Z0)], a.s. (2.19)

Due to Corollary 2.11, we have

1
δ
Eµ

0
exp [(X0 − Z0)2V ′′(Z0)] = Σ

∫
R

∫
R
V ′(z)ϕ0(x)∂xR0(x, z) dxdz,

and moreover, an integration by parts yields

1
δ
Eµ

0
exp [(X0 − Z0)2V ′′(Z0)] = −Σ

∫
R

∫
R
V ′(z)(ϕ0)′(x)R0

exp(x, z) dxdz

= −Σ
∫
R

∫
R
V ′(z) d

dx

(
1
Cν0

e−
1
ΣA·V (x)

)
R0

exp(x, z) dx dz

=
(∫

R

∫
R
V ′(z)⊗ V ′(x)ρ0

exp(x, z) dxdz
)
A

= M̃0
expA.

We can therefore conclude that

lim
ε→0

lim
T→∞

Iε1(T ) = −α+A, a.s. (2.20)
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We now consider the second term Iε2(T ), and rewrite it as

Iε2(T ) =
√

2σIε2,1(T )Iε2,2(T ),

where

Iε2,1(T ) :=
(

1
T

∫ T

0
V ′(Zεt )⊗ V ′(Xε

t ) dt
)−1(

1
T

∫ T

0
V ′(Zεt )⊗ V ′(Zεt ) dt

)
,

Iε2,2(T ) :=
(

1
T

∫ T

0
V ′(Zεt )⊗ V ′(Zεt ) dt

)−1(
1
T

∫ T

0
V ′(Zεt ) dWt

)
.

The ergodic theorem yields

lim
T→∞

Iε2,1(T ) = (M̃ε
exp)−1 Eµ

ε
exp [V ′(Zε)⊗ V ′(Zε)] =: Rε,

where Rε is bounded uniformly in ε due to the theory of homogenization, Assumption 1.4(iii)-1.7
and Lemma 2.28. Moreover, always due to Lemma 2.28 and Assumption 1.4(iii) we have that
V ′(Zε) is square integrable, and hence the strong law of large numbers for martingales implies

lim
T→∞

Iε2,2(T ) = 0, a.s.,

independently of ε. Therefore
lim
ε→0

lim
T→∞

Iε2(T ) = 0, a.s.,

which, together with (2.20) and (2.16), proves the desired result.

Remark 2.13. Let us remark that the assumption that δ is independent of ε is necessary to pass
from (2.18) to (2.19) but is not needed before (2.18). Moreover, the term Iε2(t) in the proof
vanishes a.s. independently of ε. Therefore, in the analysis of the case δ = O(εζ) it will be
sufficient for unbiasedness to show that

lim
ε→0

1
δ

(M̃ε
exp)−1 Eµ

ε
exp [(Xε − Zε)2V ′′(Zε)] = A,

which is a non-trivial limit since δ → 0 for ε→ 0.

2.1.3 Filtered data in the multiscale regime

We now consider the case of the filtering width δ = O(εζ), where ζ > 0 will be specified in the
following. In this case, the filtered process resembles more the original process Xε, as can be
noted in Figure 2.1. Moreover, the techniques employed for proving Theorem 2.12 can only
be partly exploited, as highlighted by Remark 2.13. In fact, in order to prove unbiasedness it
is necessary to characterize precisely the difference between the processes Zε and Xε. A first
characterization is given by the following Proposition, whose proof is found in Section 2.4.2.

Proposition 2.14. Let Assumption 1.4 hold and let β = 1 and ε, δ > 0 be sufficiently small.
Then, it holds for every t > 0

Xε
t − Zεt = δBεt +R(ε, δ),

where the stochastic process Bεt is defined as

Bεt :=
√

2σ
∫ t

0
kδ,βexp(t− s)(1 + Φ′(Y εs )) dWs, (2.21)
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Chapter 2. Exponential filter

where Φ is the solution of the cell problem (1.7), Ws is the Brownian motion appearing in (1.10)
and Y εt = Xε

t /ε. Moreover, Bεt and the remainder R(ε, δ) satisfy for every p ≥ 1 the estimates(
Eν

ε

|Bεt |
p
)1/p

≤ Cδ−1/2, (2.22)

and (
Eν

ε

|R(ε, δ)|p
)1/p

≤ C
(
δ + ε+ max{1, t}e−t/δ

)
, (2.23)

where C is independent of ε, δ and t, and νε is the invariant measure of Xε.

It is clear from the proposition above that understanding the properties of the process Bεt is key
to understanding the behavior of the difference between Xε and Zε. In particular, we can write
the dynamics of Bεt with an application of the Itô formula and due to the properties of the kernel
kδ,βexp(t) as

dBεt = −1
δ
Bεt dt+

√
2σ
δ

(1 + Φ′(Y εt )) dWt.

This equation can be coupled with the dynamics of the processes Xε
t , Y εt and Zεt , thus describing

the evolution of the quadruple (Xε, Y ε, Zε, Bε) together. In particular, it is possible to show that
the results of Section 2.1.1 hold for the quadruple, and the properties of the invariant measure of
the quadruple can be exploited to prove the unbiasedness of the estimator in the case δ = O(εζ)
in the same way as in the case δ independent of ε.

In light of Remark 2.13, it is fundamental to understand the behavior of the quantity

1
δ

(Xε
t − Zεt )2V ′′(Zεt ),

as well as its limit for t→∞ and for ε→ 0. Let us remark that due to Proposition 2.14 we have

1
δ

(Xε
t − Zεt )2V ′′(Zεt ) ≈ δ(Bεt )2V ′′(Zεt ),

and therefore studying the right hand side of the approximate equality above is the goal of
the upcoming discussion. The following result, whose proof is in Section 2.4.3, gives a first
characterization.

Lemma 2.15. Under Assumption 1.4, let ηε be the invariant measure of the 4-dimensional
process (Xε, Y ε, Zε, Bε). Then it holds

δ Eη
ε [

(Bε)2V ′′(Zε)
]

= σ Eη
ε

[(1 + Φ′(Y ε))2V ′′(Zε)] + R̃(ε, δ),

where the remainder R̃(ε, δ) satisfies∣∣∣R̃(ε, δ)
∣∣∣ ≤ C (δ1/2 + ε

)
.

Let us remark that the quantity appearing above hints towards the theory of homogenization. In
fact, we recall that the homogenization coefficient K is given by

K =
∫ L

0
(1 + Φ′(y))2

π(dy),

where π is the marginal measure of the process Y ε when coupled with Xε. Therefore, the next
step is the homogenization limit, i.e., the limit of vanishing ε, which is considered in the following
Lemma, and whose proof is given in Section 2.4.3.
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2.1. The filtered data approach

Lemma 2.16. Let the assumptions of Lemma 2.15 hold, and let δ = εζ with ζ > 0. Then, it
holds

lim
ε→0

σ Eη
ε

[(1 + Φ′(Y ε))2V ′′(Zε)] = ΣEν
0
[V ′′(X0)],

where Σ is the diffusion coefficient of the homogenized equation (1.11).

Provided with the results presented above, we can prove the following Theorem, stating that
the estimator Âδ,βexp(Xε, T ) is asymptotically unbiased even in the case of the filtering width δ
vanishing with respect to the multiscale parameter ε.

Theorem 2.17. Let the assumptions of Lemma 2.3 and Lemma 2.16 hold. Let Âδ,βexp(Xε, T ) be
defined in (2.2) and let β = 1 and δ = εζ with ζ ∈ (0, 2). If M̃exp(Xε, T ) is invertible, then

lim
ε→0

lim
T→∞

Âδ,βexp(Xε, T ) = A, a.s.,

where A is the drift coefficient of the homogenized equation (1.11).

Proof. Let us introduce the notation

Aε(δ) := 1
δ

(M̃ε
exp)−1 Eµ

ε
exp [(Xε − Zε)2V ′′(Zε)],

where M̃ε
exp is defined in (2.14). Then following the proof of Theorem 2.12 and in light of Remark

2.13, we only need to show that if δ = εζ with ζ ∈ (0, 2) we have

lim
ε→0
Aε(δ) = A, a.s.

Using Proposition 2.14 and geometric ergodicity for taking the limit for t→∞ (Lemma 2.3), we
have the following equality

Aε(δ) = (M̃ε
exp)−1 1

δ
lim
t→∞

E[(Xε
t − Zεt )2V ′′(Zεt )]

= (M̃ε
exp)−1 1

δ
lim
t→∞

E
[
(δBεt +R(ε, δ))2

V ′′(Zεt )
]

=: (M̃ε
exp)−1 lim

t→∞
(Jε1 (t) + Jε2 (t) + Jε3 (t)) ,

where R(ε, δ) is given in Proposition 2.14, E denotes the expectation with respect to the Wiener
measure and

Jε1 (t) = δ E
[
(Bεt )2V ′′(Zεt )

]
,

Jε2 (t) = 2E [BεtR(ε, δ)V ′′(Zεt )] ,

Jε3 (t) = 1
δ
E
[
R(ε, δ)2V ′′(Zεt )

]
.

Let us consider the three terms separately. First, by geometric ergodicity and applying Lemma
2.15 and Lemma 2.16 we get

lim
ε→0

lim
t→∞

Jε1 (t) = lim
ε→0

δ Eη
ε [

(Bε)2V ′′(Zε)
]

= lim
ε→0

(
σ Eη

ε

[V ′′(Zε)(1 + Φ′(Y ε))2] + R̃(ε, δ)
)

= ΣEν
0
[V ′′(X0)].

Let us now consider Jε2 (t). Considering Hölder conjugates p, q, r the Hölder inequality yields

‖Jε2 (t)‖ ≤ E[|Bεt |
p]1/p E[|R(ε, δ)|q]1/q E[‖V ′′(Zε)‖r]1/r.
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Now, we can bound the first two terms with (2.22) and (2.23), respectively. The third term is
bounded due to Assumption 1.4 and Lemma 2.28. Hence, we have for t sufficiently large

‖Jε2 (t)‖ ≤ C
(
δ1/2 + εδ−1/2

)
.

We consider now Jε3 (t). The Hölder inequality yields for conjugates p and q

‖Jε3 (t)‖ ≤ E[|R(ε, δ)|2p]1/p E[‖V ′′(Zεt )‖q]1/q,

which, similarly as above, yields for t sufficiently large

‖Jε3 (t)‖ ≤ C
(
δ + ε2δ−1) .

Therefore, since δ = O(εζ) for ζ ∈ (0, 2), the terms Jε2 (t) and Jε3 (t) vanish in the limit for t→∞
and ε→ 0. Furthermore, by Lemma 2.31 and by weak convergence of the invariant measure µεexp
to µ0

exp, we have
lim
ε→0
M̃ε

exp =M0,

whereM0 is defined in (2.15). Therefore

lim
ε→0
Aε(δ) = Σ(M0)−1 Eν

0
[V ′′(X0)],

and, finally, employing (2.13) and (2.15) and integrating by parts yields

lim
ε→0
Aε(δ) = Σ(M0)−1 1

ΣM
0A = A,

which implies the desired result.

We conclude the analysis concerning the estimator Âδ,βexp(Xε, T ) for the effective drift coefficient
with a negative convergence result, i.e., that if δ = εζ with ζ > 2, the estimator based on filtered
data converges to the coefficient α of the unhomogenized equation. This result is relevant for two
reasons. First, it shows the sharpness of the bound on ζ in the assumptions of Theorem 2.17.
Second, it shows an interesting switch between two completely different regimes at ζ = 2, which
happens arbitrarily fast in the limit ε→ 0.

Theorem 2.18. Let the assumptions of Lemma 2.3 hold. Let Âδ,βexp(Xε, T ) be defined in (2.2)
and let β = 1 and δ = εζ with ζ > 2. If M̃exp(Xε, T ) is invertible, then

lim
ε→0

lim
T→∞

Âδ,βexp(Xε, T ) = α, in probability,

where α is the drift coefficient of the multiscale equation (1.10).

The proof is given in Section 2.4.3.

We conclude this section by proving a result of asymptotic unbiasedness for the estimator
Σ̂δ,1exp(Xε, T ) of the effective diffusion coefficient Σ defined in (2.4). The proof is given in
Section 2.4.4.

Theorem 2.19. Let the Assumptions of Theorem 2.18 hold. Then, if δ = εζ , with ζ ∈ (0, 2), it
holds

lim
ε→0

lim
T→∞

Σ̂δ,1exp(Xε, T ) = Σ, in probability,

where Σ is the diffusion coefficient of the homogenized equation (1.11).
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2.2 The Bayesian setting
In this section we present a Bayesian reinterpretation of the inference procedure, which, given the
structure of the problem, allows full uncertainty quantification with little more computational
effort than required for the MLE.

Let us fix a Gaussian prior π0 = N (A0, C0) on A, where A0 ∈ RL and C0 ∈ RL×L is symmetric
positive definite. Then, given a final time T > 0, the posterior distribution πT,ε admits a density
pT (A | Xε) with respect to the Lebesgue measure which satisfies

pT (A | Xε) = 1
CπT,ε

LT (Xε | A) p0(A),

where CπT,ε is the normalization constant, p0 is the density of π0, and where the likelihood
LT (Xε | A) is given in (1.13). The log-posterior density is therefore given by

log pT (A | Xε) = − logCπT,ε −
T

2ΣA · v(Xε, T )− T

4ΣA ·M(Xε, T )A− 1
2(A−A0) ·C−1

0 (A−A0),

where M(Xε, T ) and v(Xε, T ) are defined in (1.15). Since the log-posterior density is quadratic
in A, the posterior is Gaussian, and it is therefore sufficient to determine its mean and covariance
to fully characterize it. We denote by mT,ε and CT,ε the mean and covariance matrix, respectively.
Completing the squares in the log-posterior density, we formally obtain

C−1
T,ε = C−1

0 + T

2ΣM(Xε, T ),

C−1
T,εmT,ε = C−1

0 A0 −
T

2Σv(Xε, T ).
(2.24)

Under Assumption 1.4, one can show that the posterior at time T > 0 is well defined and given by
πT,ε(· | Xε) = N (mT,ε, CT,ε). Let us remark that in order to compute the posterior covariance
CT,ε the value of the diffusion coefficient Σ of the homogenized equation is needed. Although
the exact value is in general unknown, it can be estimated employing the subsampling technique
presented in [103] or with the estimator Σ̂δ,1exp(Xε, T ) given in (2.4) based on filtered data. In
fact, we verified in practice that the estimator of the diffusion coefficient based on subsampling is
more robust with respect to the subsampling step than the estimator for the drift coefficient. In
the following theorem, we show that the posterior distribution obtained with no pre-processing of
the data contracts asymptotically to the drift coefficient of the unhomogenized equation. We
characterize the contraction by verifying that the posterior measure concentrates in arbitrarily
small balls. Let us finally remark that the measure πT,ε is a random measure, and therefore
contraction has to be considered averaged with respect to the Wiener measure. The choice of the
contraction measure and some parts of the proof are taken from [106, Theorem 5.2].

Theorem 2.20. Under Assumption 1.4, the posterior measure πT,ε(· | Xε) = N (mT,ε, CT,ε)
satisfies for all c > 0

lim
ε→0

lim
T→∞

E [πT,ε ({a : ‖a− α‖2 ≥ c} | X
ε)] = 0,

where E denotes expectation with respect to the Wiener measure and α is the drift coefficient of
the unhomogenized equation (1.10).

Remark 2.21. The result above has the same consequences in the Bayesian setting as Theorem
1.8 has for the MLE. In particular, it shows that the posterior distribution obtained when data
are not pre-processed concentrates asymptotically on the drift coefficient of the unhomogenized
equation (1.10). Moreover, a partial result which can be deduced from the proof is that in the
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limit for T → ∞ and for a positive value ε > 0 the Bayesian and the MLE approaches are
equivalent. In particular, we have for all ε > 0

lim
T→∞

‖CT,ε‖2 = 0,

lim
T→∞

∥∥∥mT,ε − ÂMLE(Xε, T )
∥∥∥

2
= 0,

i.e., the weak limit of the posterior πT,ε for T →∞ is the Dirac delta concentrated on the limit
of ÂMLE(Xε, T ) for T →∞.

Proof of Theorem 2.20. The proof of [106, Theorem 5.2] guarantees that if the trace of CT,ε
tends to zero and if the mean mT,ε tends to α, then the desired result holds. Indeed, the triangle
inequality yields

E [πT,ε ({a : ‖a− α‖2 ≥ c} | X
ε)] ≤ E

[
πT,ε

({
a : ‖a−mT,ε‖2 ≥

c

2

}
| Xε

)]
+ P

(
‖mT,ε − α‖2 ≥

c

2

)
.

If the mean converges in probability, then the second term vanishes. For the first term, Markov’s
inequality yields

πT,ε

({
a : ‖a−mT,ε‖2 ≥

c

2

}
| Xε

)
≤ 4
c2

∫
RL
‖a−mT,ε‖22 πT,ε(da | X

ε),

and a change of variable simply gives∫
RL
‖a−mT,ε‖22 πT,ε(da | X

ε) = tr(CT,ε).

This proves that we just have to verify that the covariance matrix vanishes and that the mean
tends to the coefficient α. Let us first consider the covariance matrix. An algebraic identity yields

CT,ε = 2Σ
T

(
M(Xε, T )−1 −Q−1) ,

where
Q = M(Xε, T ) + T

2ΣM(Xε, T )C0M(Xε, T ).

Let us first remark that due to the hypothesis on M(Xε, T ) (Assumption 1.41.7) and the ergodic
theorem it holds for all T > 0 ∥∥M(Xε, T )−1∥∥

2 ≤
1
λ̄
,

where λ̄ is given in Assumption1.41.7. We now have that for generic symmetric positive definite
matrices R and S it holds ∥∥(R+ S)−1∥∥

2 ≤
∥∥S−1∥∥

2 .

Applying this inequality to Q−1, we obtain∥∥Q−1∥∥
2 ≤

2Σ
T

∥∥(M(Xε, T )C0M(Xε, T ))−1∥∥
2 ≤

2Σ
T

∥∥M(Xε, T )−1∥∥2
2

∥∥C−1
0
∥∥

2 = 2Σ
T λ̄2

∥∥C−1
0
∥∥

2 ,

which implies
lim
T→∞

∥∥Q−1∥∥
2 = 0,

and due to the triangle inequality
lim
T→∞

‖CT,ε‖2 = 0. (2.25)
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We proved that in the limit for T →∞ the covariance shrinks to zero independently of ε. We
now consider the mean. First, we remark that the triangle inequality yields

‖mT,ε − α‖2 ≤
∥∥∥mT,ε − ÂMLE(Xε, T )

∥∥∥
2

+
∥∥∥ÂMLE(Xε, T )− α

∥∥∥
2
.

For the second term, Theorem 1.8 implies

lim
ε→0

lim
T→∞

∥∥∥ÂMLE(Xε, T )− α
∥∥∥

2
= 0, a.s.

Let us now consider the first term. Replacing the expression of the MLE (1.15) and due to the
Cauchy–Schwarz and triangle inequalities, we obtain∥∥∥mT,ε − ÂMLE(Xε, T )

∥∥∥
2

= 2Σ
T

∥∥∥∥M(Xε, T )−1C−1
0 A0 −Q−1

(
C−1

0 A0 −
T

2Σv(Xε, T )
)∥∥∥∥

2

≤ 2Σ
T λ̄

∥∥C−1
0
∥∥

2

(
‖A0‖2 + 1

λ̄
‖v(Xε, T )‖2 + 2Σ

T λ̄

∥∥C−1
0
∥∥

2 ‖A0‖2

)
.

Moreover, the ergodic theorem and the strong law of large numbers for martingales guarantee
that ‖v(Xε, T )‖2 is bounded a.s. for T →∞. Therefore

lim
T→∞

∥∥∥mT,ε − ÂMLE(Xε, T )
∥∥∥

2
= 0, a.s.,

independently of ε. Finally,

lim
ε→0

lim
T→∞

‖mT,ε − α‖2 = 0, a.s.,

which, together with (2.25), implies the desired result.

2.2.1 The filtered data approach

In this section, we present how to correct the asymptotic biasedness of the posterior highlighted
by Theorem 2.20 employing filtered data. In the Bayesian setting, we consider the modified
likelihood function

L̃T (Xε | A) = exp
(
− ĨT (Xε | A)

2Σ

)
,

where

ĨT (Xε | A) =
∫ T

0
A · V ′(Zεt ) dXε

t + 1
2

∫ T

0
(A · V ′(Xε

t ))2 dt

= ṽexp(Xε, T ) ·A+ 1
2A ·M(Xε, T )A.

Since M is symmetric positive definite, the function L̃T (Xε | A) is indeed a valid Gaussian likeli-
hood function. We then obtain the modified posterior π̃T,ε = N (m̃T,ε, CT,ε), whose parameters
are given by

C−1
T,ε = C−1

0 + T

2ΣM(Xε, T ),

C−1
T,εm̃T,ε = C−1

0 A0 −
T

2Σ ṽexp(Xε, T ).

Let us remark that the posterior π̃T,ε has the same covariance as πT,ε given in (2.24) and that
therefore it is indeed a valid Gaussian posterior distribution. Nevertheless, in order to employ

31



Chapter 2. Exponential filter

the tool of convergence introduced in Theorem 2.20, we need to study the properties of the MLE
based on the likelihood L̃T (Xε | A), i.e., the quantity

Ãδ,βexp(Xε, T ) = −M(Xε, T )−1ṽδ,βexp(Xε, T ). (2.26)

The following theorem guarantees the unbiasedness of this estimator under a condition on the
parameter δ of the filter.

Theorem 2.22. Let the assumptions of Theorem 2.17 hold. Then, if δ = εζ with ζ ∈ (0, 2) and
β = 1, it holds

lim
ε→0

lim
T→∞

Ãδ,βexp(Xε, T ) = A, a.s.,

for Ãδ,βexp(Xε, T ) defined in (2.26).

Proof. We first consider the difference between the two estimators Ãδ,βexp(Xε, T ) and Âδ,βexp(Xε, T ).
In particular, the ergodic theorem and an algebraic equality imply

lim
T→∞

(
Ãδ,βexp(Xε, T )− Âδ,βexp(Xε, T )

)
=
(

(Mε)−1 − (M̃ε
exp)−1

)
lim
T→∞

ṽexp(Xε, T )

= −(Mε)−1
(
Mε − M̃ε

exp

)
(M̃ε

exp)−1 lim
T→∞

ṽexp(Xε, T )

= (Mε)−1
(
Mε − M̃ε

exp

)
lim
T→∞

Âδ,βexp(Xε, T ),

almost surely, whereMε and M̃ε
exp are defined in (2.15) and (2.14), respectively. Therefore, due

to Assumption 1.4 which allows controlling the norm of (Mε)−1 and due to Lemma 2.31 we have
for a constant C > 0

lim
T→∞

∥∥∥Ãδ,βexp(Xε, T )− Âδ,βexp(Xε, T )
∥∥∥

2
≤ C

(
ε+ δ1/2

)
, (2.27)

where we remark that Âδ,βexp(Xε, T ) has a bounded norm for ε sufficiently small due to Theorem
2.17. Now, the triangle inequality yields∥∥∥Ãδ,βexp(Xε, T )−A

∥∥∥
2
≤
∥∥∥Ãδ,βexp(Xε, T )− Âδ,βexp(Xε, T )

∥∥∥
2

+
∥∥∥Âδ,βexp(Xε, T )−A

∥∥∥
2
.

Therefore, due to Theorem 2.17, the inequality (2.27) and since δ = εζ , the desired result
holds.

Remark 2.23. One could argue that we could have carried on the whole analysis for the estimator
Ãδ,βexp(Xε, T ) instead of the estimator Âδ,βexp(Xε, T ). Nevertheless, the latter guarantees the strong
result of almost sure convergence in case δ is independent of ε, which is false for the former.
Conversely, analysing the properties of the estimator Ãδ,βexp(Xε, T ) is fundamental for the Bayesian
setting, in which the matrix M̃exp(Xε, T ) cannot be employed as its symmetric part is not positive
definite in general.

In light of the proof of Theorem 2.20, Theorem 2.22 guarantees that the mean of the posterior
distribution π̃T,ε converges to the drift coefficient of the homogenized equation. Since the
covariance matrix is the same for πT,ε and π̃T,ε, it is possible to prove a positive convergence
result for π̃T,ε, which is given by the following Theorem.

Theorem 2.24. Let the Assumptions of Theorem 2.22 hold. Then, the modified posterior measure
π̃T,ε(· | Xε) = N (m̃T,ε, CT,ε) satisfies

lim
ε→0

lim
T→∞

E [π̃T,ε ({a : ‖a−A‖2 ≥ c} | X
ε)] = 0,

where E denotes expectation with respect to the Wiener measure and A is the drift coefficient of
the homogenized equation (1.11).
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Proof. The proof follows from the proof of Theorem 2.20 and from Theorem 2.22.

2.3 Numerical experiments
In this section we show numerical experiments confirming our theoretical findings and showcasing
the potential of the filtered data approach to overcome model misspecification arising when
multiscale data are used to fit homogenized models.

Remark 2.25. In practice, we consider for numerical experiment the data to be in the form of a
high-frequency discrete time series from the solution Xε of (1.10). Let τ > 0 be the time step
at which data are observed, and let Xε := (Xε

0 , X
ε
τ , X

ε
2τ , . . .). We then compute the estimator

Âδ,βexp,τ as

Âδ,βexp,τ (Xε, T ) = −M̃δ,β
exp,τ (Xε, T )−1ṽδ,βexp,τ (Xε, T ),

where

M̃δ,β
exp,τ (Xε, T ) = τ

T

n−1∑
j=0

V ′(Zεjτ )⊗ V ′(Xε
jτ ), ṽδ,βexp,τ (Xε, T ) = 1

T

n−1∑
j=0

V ′(Zεjτ )(Xε
(j+1)τ −X

ε
jτ ).

We take in all experiments τ � ε2, so that the discretization of the data has negligible effects
and does not compromise the validity of our theoretical results.

2.3.1 Parameters of the filter

For the first preliminary experiments, we consider L = 1 and the quadratic potential V (x) = x2/2.
In this case, the solution of the homogenized equation is an OU process. Moreover, we set the
the fast potential in the multiscale equation (1.10) as p(y) = cos(y). In all experiments, data are
generated employing the Euler–Maruyama (EM) method with a fine time step.

Verification of theoretical results

We first demonstrate numerically the validity of Theorem 2.12, Theorem 2.17 and Theorem 2.18,
i.e., the unbiasedness of Âδ,βexp(Xε, T ) for β = 1 and δ = εζ with ζ ∈ [0, 2) and biasedness for
ζ > 2. Let us recall that for ζ = 0 the analysis and the theoretical result are fundamentally
different than for ζ ∈ (0, 2). We consider ε ∈ {0.1, 0.05, 0.025}, the diffusion coefficient σ = 1 and
generate data Xε

t for 0 ≤ t ≤ T with T = 103. Then we filter the data by choosing δ = εζ , and
ζ = 0, 0.1, 0.2, . . . , 3, and compute Âδ,βexp(Xε, T ). Results are displayed in Figure 2.2, and show
that for ζ > 2, i.e., δ = o(ε2), the estimator tends to the drift coefficient α of the unhomogenized
equation. Conversely, as predicted by the theory, for ζ ∈ [0, 2) the estimator tends to A, the
drift coefficient of the homogenized equation. Therefore, the point δ = ε2 acts asymptotically
as a switch between two completely different regimes, which is theoretically sharp in the limit
for T →∞ and ε→ 0. Let us remark that the results displayed in Figure 2.2.(a) demonstrate
that the transition occurs more rapidly for the smallest values of ε. Moreover, in Figure 2.2.(b),
one can see how with bigger final times T the estimator is closer both to A when ζ ∈ [0, 2] and
to α when ζ > 2. Still, we observe that in finite computations the switch between A and α is
smoother than what we expect from the theory, which suggests to fix, if possible, δ = 1.
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Chapter 2. Exponential filter

Figure 2.2 – Results for Section 2.3.1. On both figures, horizontal lines represent α and A, the
drift coefficients of the unhomogenized and homogenized equations, and the grey vertical line
represents the lower bound for the validity of Theorem 2.17. The curved lines (dashed, dotted
and dash-dotted) represent on figure (a) the values of Âδ,βexp(Xε, T ) for ε = {0.1, 0.05, 0.025},
respectively, computed with T = 103. On figure (b), they correspond to the values of Âδ,βexp(Xε, T )
at T = {100, 300, 1000}, respectively, computed with ε = 0.05. We plot next to both figures
(a) and (b) a zoom on a neighbourhood of ε2 to show the transition between the two regimes
highlighted by the theoretical results. Note that the δ-axis is in logarithmic scale and is normalized
with respect to ε.
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2.3. Numerical experiments

σ = 0.5

σ = 0.7

σ = 1.0

Figure 2.3 – Results for Section 2.3.1. The case of δ = 1 is highlighted as a solid dot for the
filtered data technique, as the analysis and theoretical result is different in this case. The three
rows correspond to σ = 0.5, 0.7, 1.0 from top to bottom, and the dashed line corresponds to the
true value of A.
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Figure 2.4 – Results for the estimator based on filter data with respect to the parameter β
(Section 2.3.1). The result for β = 1, for which there are theoretical guarantees given by Theorem
2.17, is highlighted as a solid dot. From left to right we consider different values of σ, and the
dashed line corresponds to the true value of A.

Comparison with subsampling

We now compare the results given by the filtered data technique with the results given by
subsampling the data, i.e., the difference between the estimators Âδ,βexp(Xε, T ) and Âδsub(Xε, T ).
We fix the multiscale parameter ε = 0.1 and generate data for 0 ≤ t ≤ T with T = 103. We
choose δ = εζ and vary ζ ∈ [0, 1], where δ is the filtering and the subsampling width, respectively.
Moreover, for the filtered data approach we consider both β = 1 and β = 5. We report in Figure
2.3 the experimental results. Let us remark that:

(i) for σ = 0.5 the results given by subsampling and by the filter with β = 1 are similar, while
for higher values of σ the filtered data approach seems better than subsampling;

(ii) in general, choosing a higher value of β seems beneficial for the quality of the estimator;

(iii) the dependence on δ of numerical results given by the filter seems relevant only in case
β = 1 and for small values of σ. For β = 1 and higher values of σ, the estimator is stable
with respect to this parameter. This can be observed for a higher value of β but we have
no theoretical guarantee in this case.

The influence of β

We finally test the variability of the estimator with respect to β in (2.1). We consider δ = ε,
which corresponds to ζ = 1 and seems to be the worst-case scenario for the filter, at least for
β = 1. We consider again σ = 0.5, 0.7, 1 and vary β = 1, 2, . . . , 10. Results, given in Figure 2.4,
show empirically that the estimator stabilizes fast with respect to β. Nevertheless, there is no
theoretical guarantee supporting this empirical observation.

2.3.2 Variance of the estimators

We now compare the estimators Âδ,βexp based on filtered data and Âδsub based on subsampling
in terms of variance. We consider for this experiment the SDE (1.10) with L = 1, the bistable
potential V (x) = x4/4 − x2/2, the multiscale drift coefficient α = 1, the diffusion coefficient
σ = 1 and with ε = 0.1. We then let Xε = (Xt, 0 ≤ t ≤ T ) be the solution of (1.10) and generate
Ns = 500 i.i.d. samples of Xε. We then compute the estimators Âδ,βexp and Âδsub on each of the
realizations of Xε, thus obtaining Ns replicas {Âδ,β,(i)exp }Ns

i=1 and {Âδ,(i)sub }
Ns
i=1. For the estimator

36



2.3. Numerical experiments

Figure 2.5 – Numerical results for Section 2.3.2. Comparison between the density of the estimator
of the drift based on filtered data with β = {1, 5}, the estimator based on subsampling and the
estimator based on shift-subsampling and averaging of (2.29). On the left and on the right, the
final time is T = {500, 1000}, respectively.

Âδ,βexp, we consider the kernel (2.1) with β = {1, 5} and with δ = 1. For the estimator Âδsub, we
employ the subsampling width δ = ε2/3, which is heuristically optimal following [103]. It could
be argued that another estimator based on subsampling and shifting could be employed to reduce
the variance. In particular, we let τ > 0 be the time step at which the data are observed. Indeed,
in practice we work with high-frequency discrete data, and observe Xε := (Xε

0 , X
ε
τ , . . . , X

ε
nτ ),

with nτ = T . We assume for simplicity that the subsampling width δ is a multiple of τ and
compute for all k = 0, 1, . . . , δ/τ − 1

Âδ,ksub(Xε, T ) = −
∑n−1
j=0 V

′(Xε
jδ+k)(Xε

(j+1)δ+k −X
ε
jδ+k)

δ
∑n−1
j=0 V

′(Xε
jδ+k)2

, (2.28)

i.e. the subsampling estimator obtained by shifting the origin by kτ . We then average over the
index k and obtain the new estimator

Âδavg(Xε, T ) = τ

δ

δ/τ−1∑
k=0

Âδ,ksub(Xε, T ). (2.29)

We include this estimator in the numerical study for completeness, and compute Ns replicas of
Âδavg on all the realizations of Xε. Results, given in Figure 2.5 for the final times T = {500, 1000},
show that our novel approach does not outperform subsampling in terms of variance, but clearly
does in terms of bias. Moreover, we notice numerically that the shifted-averaged estimator Âδavg

does not reduce sensibly the variance in this case with respect to Âδsub. In fact, this is only partly
surprising, since the estimators Âδ,ksub of (2.28) are highly correlated. Finally, we notice that the
filtering estimator Âδ,βexp with β = 5 has a lower variance with respect to the same estimator with
β = 1. This confirms that choosing a higher value of β improves the estimation of the effective
drift coefficient.

2.3.3 Multidimensional drift coefficient

Let us consider the Chebyshev polynomials of the first kind, i.e., the polynomials Ti : R → R,
i = 0, 1, . . ., defined by the recurrence relation

T0(x) = 1, T1(x) = x, Ti+1(x) = 2xTi(x)− Ti−1(x).

We consider the potential function V (x) with

Vi(x) = Ti(x), i = 1, . . . , 4,
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Coefficient Multiscale Homogenized No preprocessing Filtering Subsampling
α A ÂMLE Âδ,βexp Âδsub

1 -1 -0.62 -0.92 -0.70 -0.59
2 -0.5 -0.31 -0.70 -0.27 0.05
3 0.5 0.31 0.55 0.31 0.14
4 1 0.62 1.22 0.57 0.13

Figure 2.6 – Results for Section 2.3.3. In the figure, from left to right the potential function
estimated with the data itself, the filter, subsampled data. In the table, numerical results for the
single components of the true and estimated drift coefficients.

thus considering the semi-parametric framework of Remark 1.3. This potential function satisfies
Assumption 1.4 whenever L is even and if the leading coefficient αL is positive. We set L = 4 and
the drift coefficient α = (−1,−1/2, 1/2, 1). With this drift coefficient, the potential function is of
the bistable kind. Moreover, we set ε = 0.05, the diffusion coefficient σ = 1, the fast potential
p(y) = cos(y) and simulate a trajectory of Xε for 0 ≤ t ≤ T with T = 103 employing the EM
method with time step ∆t = ε3. We estimate the drift coefficient A ∈ R4 with the estimators:

(i) ÂMLE(Xε, T ) based on the data Xε itself;

(ii) Âδsub(Xε, T ) based on subsampled data with subsampling parameter δ = ε2/3;

(iii) Âδ,βexp(Xε, T ) based on filtered data Zε computed with β = 1 and δ = 1.

In particular, we pick this specific value of δ for the subsampling following the optimality criterion
given in [103]. Results, given in Figure 2.6, show that the filter-based estimation captures well
the homogenized potential as well as the coefficient A. Moreover, it is possible to remark the
negative result given by Theorem 1.8 holds in practice, i.e., with no pre-processing the estimator
ÂMLE(Xε, T ) tends to the drift coefficient α of the unhomogenized equation. Finally, we can
observe that the subsampling-based estimator fails to capture the homogenized coefficients.
Indeed, the estimator strongly depends on the sampling rate and on the diffusion coefficient, as
shown in the numerical experiments of [103]. Even though the authors suggest the choice of
δ = ε2/3, this is just an heuristic and is not guaranteed to be the optimal value in all cases. In
the asymptotic limit of ε→ 0 and T →∞, any valid choice of the subsampling rate is guaranteed
theoretically to work, but not in the pre-asymptotic regime. Our estimator, conversely, seems to
perform better with no particular tuning of the parameters even in this multi-dimensional case,
which demonstrates the robustness of our novel approach.
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Figure 2.7 – Results for Section 2.3.4. Posterior distributions over the parameter A = (A1, A2)>
for the bistable potential obtained with the filtered data approach. The figures refer to final time
T = 100, 200, 400 from left to right, respectively. The estimator Ãδ,βexp(Xε, t) is represented with a
circle, while the true value A of the drift coefficient of the homogenized equation is represented
with a cross.

2.3.4 The Bayesian approach: bistable potential

In this numerical experiment we consider L = 2 and the bistable potential, i.e., the function V
defined as

V (x) =
(
x4

4 −x
2

2

)>
,

with coefficients α1 = 1 and α2 = 2. We then consider the multiscale equation with σ = 0.7,
the fast potential p(y) = cos(y) and ε = 0.05, thus simulating a trajectory Xε. We adopt here a
Bayesian approach and compute the posterior distribution π̃T,ε obtained with the filtered data
approach introduced in Section 2.2.1. The parameters of the filter are set to β = 1 and δ = ε in
(2.1). Moreover, we choose the non-informative prior π0 = N (0, I). Let us remark that in order
to compute the posterior covariance the diffusion coefficient Σ of the homogenized equation has
to be known. In this case, we pre-compute the value of Σ via the coefficient K and the theory of
homogenization, but notice that Σ could be estimated either employing the subsampling technique
of [103] or using the estimator Σ̂δ,1exp based on filtered data defined in (2.4). In particular, in this
case Σ ≈ 0.2807, and we compute numerically

Σ̂δ,1exp(Xε, 100) = 0.2901, Σ̂δ,1exp(Xε, 200) = 0.2835, Σ̂δ,1exp(Xε, 400) = 0.2813,

so that employing the estimator Σ̂δ,1exp instead of the true value would have negligible effects on
the computation of the posterior over the effective drift coefficient. We stop computations at
times T = {100, 200, 400} in order to observe the shrinkage of the Gaussian posterior towards the
estimator Ãδ,βexp(Xε, T ) with respect to time. In Figure 2.7, we observe that the posterior does
indeed shrink towards this estimator, which in turn gets progressively closer to the true value of
the drift coefficient A of the homogenized equation.

2.4 Technical results

2.4.1 Proofs of Section 2.1.1

Proof of Lemma 2.2. We have to show that the joint process solution to (2.6) is hypo-elliptic.
Denoting as f : R→ R the function

f(x) = −α · V ′(x)− 1
ε
p′
(x
ε

)
,
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the generator of the process (Xε, Zε)> is given by

L = f∂x + σ∂2
xx + 1

δ
(x− z)∂z =: X0 + σX 2

1 ,

where
X0 = f∂x + 1

δ
(x− z)∂z, X1 = ∂x.

The commutator [X0,X1] applied to a test function v then gives

[X0,X1]v = f∂2
xv + 1

δ
(x− z)∂x∂zv − ∂x

(
f∂xv + 1

δ
(x− z)∂zv

)
= −∂xf∂xv −

1
δ
∂zv.

Consequently,

Lie (X1, [X0,X1]) = Lie
(
∂x,−∂xf∂x −

1
δ
∂z

)
,

which spans the tangent space of R2 at (x, z), denoted Tx,zR2. The desired result then follows
from Hörmander’s theorem (see e.g. [101, Chapter 6]).

Proof of Lemma 2.3. Lemma 2.2 guarantees that the FPE can be written directly from the
system (2.6). For geometric ergodicity, let

S(x, z) :=
(
−α · V ′(x)− 1

εp
′(xε )

1
δ (x− z)

)
·
(
x
z

)
= −

(
α · V ′(x) + 1

ε
p′
(x
ε

))
x+ 1

δ
(xz − z2).

Due to Assumption 1.4(ii), Remark 1.6 and Young’s inequality, we then have for all γ > 0

S(x, z) ≤ a+
(

1
2γδ − b

)
x2 + 1

δ

(γ
2 − 1

)
z2.

We choose γ = γ∗ := 1− bδ +
√

1 + (1− bδ)2 > 0 so that

C(γ∗) := − 1
2γ∗δ + b = −1

δ

(
γ∗

2 − 1
)
,

and we notice that C(γ∗) > 0 if δ > 1/(4b). In this case, we have

S(x, z) ≤ a− C(γ∗)
∥∥∥(x z

)>∥∥∥2
,

and problem (2.6) is dissipative. It remains to prove the irreducibility condition [85, Condition
4.3]. We remark that the system (2.6) fits the framework of the example the end of [85, Page 199],
and therefore [85, Condition 4.3] is satisfied. The result then follows from [85, Theorem 4.4].

Proof of Lemma 2.5. Integrating equation (2.7) with respect to z we obtain the stationary FPE
for the process Xε, i.e.

σ(ϕε)′′(x) + d
dx

((
α · V ′(x) + 1

ε
p′
(x
ε

))
ϕε(x)

)
= 0, (2.30)

whose solution is given by

ϕε(x) = 1
Cνε

exp
(
− 1
σ
α · V (x)− 1

σ
p
(x
ε

))
,
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and which proves (2.9). In view of (2.8) and (2.30), equation (2.7) can be rewritten as

∂x
(
σϕε(x)∂xRε

exp(x, z)
)

+ ∂z

(
1
δ

(z − x)ϕε(x)Rε
exp(x, z)

)
= 0.

We now multiply the equation above by a continuous differentiable function f : R2 → RL,
f = f(x, z), and integrate with respect to x and z. Then, an integration by parts yields

σ

∫
R

∫
R
∂xf(x, z)ϕε(x)∂xRε

exp(x, z) dxdz = 1
δ

∫
R

∫
R
∂zf(x, z)(x− z)ϕε(x)Rε

exp(x, z) dxdz,

which implies the following identity in RL

σδ

∫
R

∫
R
∂xf(x, z)ϕε(x)∂xRε

exp(x, z) dxdz = Eµ
ε
exp [∂zf(Xε, Zε)(Xε − Zε)] .

Finally, choosing
f(x, z) = (x− z)V ′(z) + V (z),

we obtain the desired result.

2.4.2 Proof of Proposition 2.14

Preliminary estimates

In order to prove the characterization provided by Proposition 2.14, we need to prove two
additional results on the filter. First, we prove a Jensen-like inequality for the kernel of the filter.

Lemma 2.26. Let δ > 0 and kδ,1exp be defined in (2.5). Then, for any t > 0, p ≥ 1 and any
function g ∈ C0([0, t]) it holds∣∣∣∣∫ t

0
kδ,1exp(t− s)g(s) ds

∣∣∣∣p ≤ ∫ t

0
kδ,1exp(t− s) |g(s)|p ds.

Proof. Let us first note that ∫ t

0
kδ,1exp(t− s) ds = 1− e−t/δ.

Therefore, the measure κt(ds) on [0, t] defined as

κt(ds) :=
kδ,1exp(t− s)
1− e−t/δ

ds,

is a probability measure. An application of Jensen’s inequality therefore yields∣∣∣∣∫ t

0
kδ,1exp(t− s)g(s) ds

∣∣∣∣p ≤ (1− e−t/δ)p
∫ t

0
|g(s)|p κt(ds)

= (1− e−t/δ)p−1
∫ t

0
kδ,1exp(t− s) |g(s)|p ds.

Finally since 0 < (1− e−t/δ) < 1 and p ≥ 1, this yields the desired result.

The following lemma characterizes the action of the filter when it is applied to polynomials in
(t− s).
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Lemma 2.27. With the notation of Lemma 2.26, it holds for all p ≥ 0∫ t

0
kδ,1exp(t− s)(t− s)p ds ≤ Cδp,

where C > 0 is a positive constant independent of δ and t.

Proof. The change of variable u = (t− s)/δ yields∫ t

0
kδ,1exp(t− s)(t− s)p ds = δp

∫ t/δ

0
upe−u du = δpγ

(
p+ 1, t

δ

)
≤ δpΓ(p+ 1),

where γ is the lower incomplete Gamma function and Γ is the complete Gamma function.

Proof of Proposition 2.14

Denoting Y εt := Xε
t /ε, we will make use of the decomposition [103, Formula 5.8]

Xε
t −Xε

s = −
∫ t

s

(α · V ′(Xε
r ))(1 + Φ′(Y εr )) dr

+
√

2σ
∫ t

s

(1 + Φ′(Y εr )) dWr − ε(Φ(Y εt )− Φ(Y εs )),
(2.31)

which is obtained applying the Itô formula to Φ, the solution of the cell problem (1.7). Recall
that by definition of Zεt we have

Xε
t − Zεt =

∫ t

0
kδ,βexp(t− s)(Xε

t −Xε
s ) ds+ e−t/δXε

t .

Plugging the decomposition (2.31) into the equation above, we obtain

Xε
t − Zεt = Iε1(t) + Iε2(t) + Iε3(t) + Iε4(t),

where
Iε1(t) := −

∫ t

0
kδ,βexp(t− s)

∫ t

s

(α · V ′(Xε
r ))(1 + Φ′(Y εr )) dr ds,

Iε2(t) :=
√

2σ
∫ t

0
kδ,βexp(t− s)

∫ t

s

(1 + Φ′(Y εr )) dWr ds,

Iε3(t) := −ε
∫ t

0
kδ,βexp(t− s)(Φ(Y εt )− Φ(Y εs )) ds,

Iε4(t) = e−t/δXε
t .

Let us analyze the terms above singularly. For Iε1(t), one can show [103, Proposition 5.8]∫ t

s

(α · V ′(Xε
r ))(1 + Φ′(Y εr )) dr = (t− s)(A · V ′(Xε

t )) +Rε1(t− s),

where the remainder Rε1 satisfies(
Eν

ε

|Rε1(t− s)|p
)1/p

≤ C(ε2 + ε(t− s)1/2 + (t− s)3/2). (2.32)

Therefore, it holds

Iε1(t) = −(A · V ′(Xε
t ))
∫ t

0
kδ,βexp(t− s)(t− s) ds+

∫ t

0
kδ,βexp(t− s)Rε1(t− s) ds

= −δ(A · V ′(Xε
t )) + e−t/δ(t+ δ)(A · V ′(Xε

t )) + R̃ε1(t),
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where we exploited the equality∫ t

0
kδ,βexp(t− s)(t− s) ds = δ − e−t/δ(t+ δ),

and where
R̃ε1(t) :=

∫ t

0
kδ,βexp(t− s)Rε1(t− s) ds.

Now, Lemma 2.26, the inequality (2.32) and Lemma 2.27 yield for all p ≥ 1

Eν
ε
∣∣∣R̃ε1(t)

∣∣∣p ≤ C ∫ t

0
kδ,βexp(t− s)Eν

ε

|Rε1(t− s)|p ds

≤ C
∫ t

0
kδ,βexp(t− s)(ε2p + εp(t− s)p/2 + (t− s)3p/2) ds

≤ C
(
ε2p + εpδp/2 + δ3p/2

)
,

where C is a positive constant independent of ε and δ. Therefore, for δ sufficiently small, we get(
Eν

ε

|Iε1(t)|p
)1/p

≤ C
(
δ + ε2 + εδ1/2 + te−t/δ

)
.

We now consider the second term. Let us introduce the notation

Qεt :=
∫ t

0
(1 + Φ′(Y εr )) dWr,

and therefore rewrite
Iε2(t) =

√
2σ
∫ t

0
kδ,βexp(t− s)(Qεt −Qεs) ds.

An application of the Itô formula to u(s,Qεs) where u(s, x) = k(t− s)x yields

Iε2(t) =
√

2σ
(
Qεt

∫ t

0
kδ,βexp(t− s) ds−Qεt + δ

∫ t

0
kδ,βexp(t− s) (1 + Φ′(Y εs )) dWs

)
= δBεt −

√
2σe−t/δQεt =: δBεt −Rε2(t).

(2.33)

where Bεt is defined in (2.21). For the remainder Rε2(t), let us remark that for all p ≥ 1 it holds

(E |Qεt |
p)2 ≤ E |Qεt |

2p ≤ Ctp−1
∫ t

0
E |1 + Φ′(Y εr )|2p dr ≤ Ctp

where we applied Jensen’s inequality, an estimate for the moments of stochastic integrals [69,
Formula (3.25), p. 163] and the boundedness of Φ. Therefore we have(

Eν
ε

|Rε2(t)|p
)1/p

≤ C
√
te−t/δ. (2.34)

In order to obtain the bound (2.22) on Bεt , let us remark that from (2.33) it holds for a constant
C > 0 depending only on p

(E |Bεt |
p)1/p ≤ Cδ−1 (E |Iε2(t)|p)1/p + Cδ−1 (E |Rε2(t)|p)1/p

.

The second term is bounded exponentially fast with respect to t and δ due to (2.34). For the
first term, applying Lemma 2.26, the inequality [69, Formula (3.25), p. 163] and Lemma 2.27 we
obtain for a constant C > 0 independent of δ and t

E |Iε2(t)|p ≤ C
∫ t

0
kδ,βexp(t− s)E |Qt −Qs|p ds

≤ C
∫ t

0
kδ,βexp(t− s)(t− s)p/2 ds ≤ Cδp/2.
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Therefore, it holds for δ sufficiently small

(E |Bεt |
p)1/p ≤ Cδ−1/2,

which proves the bound (2.22). Let us now consider Iε3(t). Since Φ is bounded, we simply have

|Iε3(t)| ≤ Cε,

almost surely. Finally, due to [103, Corollary 5.4], we know that Xε
t has bounded moments of all

orders and therefore (
Eν

ε

|Iε4(t)|p
)1/p

≤ Ce−t/δ,

which concludes the proof.

2.4.3 Proofs of Section 2.1.3

Preliminary estimates

The following lemma shows that Zε has bounded moments of all orders.

Lemma 2.28. Under Assumption 1.4, let Zε be distributed as the marginal of the invariant
measure µεexp of the couple (Xε, Zε)>. Then for any p ≥ 1 there exists a constant C > 0 uniform
in ε such that

Eµ
ε
exp |Zε|p ≤ C.

Proof. Let Xε
t be at stationarity with respect to its invariant measure νε. Let Zεt be the

corresponding filtered process. By definition of Zεt and applying Lemma 2.26 we have

Eν
ε

|Zεt |p = Eν
ε

∣∣∣∣∫ t

0
kδ,βexp(t− s)Xε

s ds
∣∣∣∣p

≤
∫ t

0
kδ,βexp(t− s)Eν

ε

|Xε
s |p ds,

which, together with the definition of kδ,βexp and the fact that Xε
s has bounded moments of all

orders [103, Corollary 5.4], implies for a constant C > 0

Eν
ε

|Zεt |p ≤ C.

In order to conclude, we remark that due to Lemma 2.3 we have for all t ≥ 0

Eµ
ε
exp |Zε|p ≤ Eν

ε

|Zεt |
p + Ce−λt,

which, for t sufficiently big, yields the desired result.

Corollary 2.29 is a direct consequence of Proposition 2.14 and provides a rough estimate of the
difference between the trajectories Xε

t and Zεt when they are at stationarity.

Corollary 2.29. Under Assumption 1.4, let the couple (Xε, Zε)> be distributed as its invariant
measure µεexp. Then, if δ ≤ 1, it holds for any p ≥ 1(

Eµ
ε
exp |Xε − Zε|p

)1/p
≤ C

(
ε+ δ1/2

)
,

for a constant C > 0 independent of ε and δ.
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Proof. Let p ≥ 1, then due to Proposition 2.14 there exists a constant C > 0 depending only on
p such that

Eν
ε

|Xε
t − Zεt |

p ≤ C
(
εp + δp/2

)
.

Let us now remark that this result holds for Xε
t being at stationarity and for Zεt being its filtered

process, and not for a couple (Xε, Zε)> ∼ µεexp. In order to conclude, we remark that due to
Lemma 2.3 we have for all t ≥ 0

Eµ
ε
exp |Xε − Zε|p ≤ Eν

ε

|Xε
t − Zεt |

p + Ce−λt,

which, for t sufficiently big, yields the desired result.

The result above can be in some sense rather counter-intuitive. Indeed, for a fixed ε > 0 and
for δ → 0 independently of ε, one expects the filtered trajectory Zε to approach Xε. This is
provided by the following Lemma.

Lemma 2.30. Under Assumption 1.4, let the couple (Xε, Zε)> be distributed as its invariant
measure µεexp. Then, if δ ≤ 1, it holds for any p ≥ 1(

Eµ
ε
exp |Xε − Zε|p

)1/p
≤ C

(
δε−1 + δ1/2

)
,

for a constant C > 0 independent of ε and δ.

Proof. By equation (1.10) we have for all 0 ≤ s < t

Xε
t −Xε

s = −α
∫ t

s

V ′(Xε
r ) dr − 1

ε

∫ t

s

p′
(
Xε
r

ε

)
dr +

√
2σ(Wt −Ws).

Therefore, by Assumption 1.4 and since Xε
t has bounded moments of all orders at stationarity [103,

Corollary 5.4], it holds for any p ≥ 1 and a constant C > 0

Eν
ε

|Xε
t −Xε

s |
p ≤ C

(
(t− s)p + (t− s)pε−p + (t− s)p/2

)
, (2.35)

where νε is the invariant measure of Xε. By definition of Zεt we have

Xε
t − Zεt =

∫ t

0
k(t− s)(Xε

t −Xε
s ) ds+ e−t/δXε

t ,

which, applying Lemma 2.26, the inequality (2.35) and Lemma 2.27, implies

Eν
ε

|Xε
t − Zεt |

p ≤ C
(∫ t

0
kδ,βexp(t− s)Eν

ε

|Xε
t −Xε

s |
p ds+ e−pt/δ Eν

ε

|Xε
t |
p

)
≤ C

(
δp + δpε−p + δp/2 + e−pt/δ

)
.

Geometric ergodicity (Lemma 2.3) then implies for µεexp the measure of the couple (Xε, Zε)>

Eµ
ε
exp |Xε − Zε|p ≤ Eν

ε

|Xε
t − Zεt |

p + Ce−λt,

which, for t sufficiently big and since δ ≤ 1 yields the desired result.

Let us conclude with a last preliminary estimate concerning the matrices M̃ε
exp andMε defined

in (2.14) and (2.15), respectively.
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Lemma 2.31. Let the assumptions of Corollary 2.29 hold. Then the matrices Mε and M̃ε
exp

satisfy ∥∥∥Mε − M̃ε
exp

∥∥∥
2
≤ C

(
ε+ δ1/2

)
,

for a constant C > 0 independent of ε and δ.

Proof. Applying Jensen’s and Cauchy–Schwarz inequalities we have∥∥∥Mε − M̃ε
exp

∥∥∥
2
≤ Eµ

ε
exp ‖(V ′(Zε)− V ′(Xε))⊗ V ′(Xε)‖2

≤
(
Eµ

ε
exp ‖V ′(Zε)− V ′(Xε)‖22

)1/2 (
Eµ

ε
exp ‖V ′(Xε)‖22

)1/2
.

The Lipschitz condition on V ′ together with the boundedness of the moments of Xε and Corollary
2.29 yield for a constant C > 0∥∥∥Mε − M̃ε

exp

∥∥∥
2
≤ C

(
Eµ

ε
exp |Zε −Xε|2

)1/2
≤ C

(
ε+ δ1/2

)
,

which is the desired result.

Proof of Lemma 2.15

Let us consider the following system of SDEs for the processes Xε
t , Z

ε
t , B

ε
t , Y

ε
t

dXε
t = −α · V ′(Xε

t ) dt− 1
ε
p′(Y εt ) dt+

√
2σ dWt,

dZεt = 1
δ

(Xε
t − Zεt ) dt,

dBεt = −1
δ
Bεt dt+

√
2σ
δ

(1 + Φ′(Y εt )) dWt,

dY εt = −1
ε
α · V ′(Xε

t ) dt− 1
ε2 p
′(Y εt ) dt+

√
2σ
ε

dWt,

whose generator L̃ε is given by

L̃ε =−
(
α · V ′(x) + 1

ε
p′(y)

)
∂x + 1

δ
(x− z)∂z −

1
δ
b∂b −

(
1
ε
α · V ′(x) + 1

ε2 p
′(y)

)
∂y

+ σ

(
∂2
xx + 2

ε
∂2
xy + 1

ε2 ∂
2
yy + 2(1 + Φ′(y))

δ
∂2
xb + 2(1 + Φ′(y))

εδ
∂2
yb + (1 + Φ′(y))2

δ2 ∂2
bb

)
.

Let us denote by eε : R3 × [0,T]→ R, eε = eε(x, z, b, y), the density of the invariant measure ηε
of the quadruple (Xε

t , Z
ε
t , B

ε
t , Y

ε
t ). Then eε solves the stationary FPE L̃∗εeε = 0, i.e., explicitly

∂x

((
α · V ′(x) + 1

ε
p′(y)

)
eε
)

+ 1
δ
∂z ((z − x)eε)

+ 1
δ
∂b(beε) + ∂y

((
1
ε
α · V ′(x) + 1

ε2 p
′(y)

)
eε
)

+ σ

(
∂2
xxe

ε + 2
ε
∂2
xye

ε + 1
ε2 ∂

2
yye

ε

)
+ σ

(
2
δ
∂2
xb ((1 + Φ′(y))eε) + 2

εδ
∂2
yb ((1 + Φ′(y))eε) + 1

δ2 ∂
2
bb

(
(1 + Φ′(y))2eε

))
= 0.

(2.36)

We now multiply the equation above by a continuous differentiable function f : R2 → RL,
f = f(z, b), and integrate with respect to x, z, b and y. Then an integration by parts yields

1
δ

∫
R3×[0,T]

∂zf(z, b)(x− z)eε − 1
δ

∫
R3×[0,T]

∂bf(z, b)beε + σ

δ2

∫
R3×[0,T]

∂2
bbf(z, b)(1 + Φ′(y))2eε,
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which implies the following identity in RL

δ Eη
ε

[∂bf(Zε, Bε)Bε] = σ Eη
ε [
∂2
bbf(Zε, Bε)(1 + Φ′(Y ε))

]
+ δ Eη

ε

[∂zf(Zε, Bε)(Xε − Zε)] .
(2.37)

Choosing
f(z, b) = 1

2b
2V ′′(z),

we obtain

δ Eη
ε [

(Bε)2V ′′(Zε)
]

= σ Eη
ε

[V ′′(Zε)(1 + Φ′(Y ε))] + δ

2 Eη
ε [

(Bε)2V ′′′(Zε)(Xε − Zε)
]

=: σ Eη
ε

[V ′′(Zε)(1 + Φ′(Y ε))] + R̃(ε, δ).

We now consider the remainder and, applying Hölder’s inequality, Corollary 2.29, Lemma 2.28,
Assumption 1.4 and (2.22), we get for p, q, r such that 1/p+ 1/q + 1/r = 1∣∣∣R̃(ε, δ)

∣∣∣ ≤ Cδ (Eηε |Bε|2p)1/p (
Eη

ε

|V ′′′(Zε)|q
)1/q (

Eη
ε

|Xε − Zε|r
)1/r

≤ C(δ1/2 + ε),

which completes the proof.

Proof of Lemma 2.16

Let us introduce the notation

∆(ε) =
∣∣∣σ Eηε [V ′′(Zε)(1 + Φ′(Y ε))2]− ΣEν

0
[V ′′(X0)]

∣∣∣ ,
and note that the aim is to show that limε→0 ∆(ε) = 0. By the triangle inequality we get

∆(ε) ≤
∣∣∣σ Eηε [V ′′(Zε)(1 + Φ′(Y ε))2]− σ Eη

ε

[V ′′(Xε)(1 + Φ′(Y ε))2]
∣∣∣

+
∣∣∣σ Eηε [V ′′(Xε)(1 + Φ′(Y ε))2]− ΣEν

0
[V ′′(X0)]

∣∣∣
=:∆1(ε) + ∆2(ε).

We first study ∆1(ε) and due to the boundedness of Φ′, Assumption 1.4 and Lemma 2.29 we have

∆1(ε) ≤ C Eη
ε

|Xε − Zε| ≤ C(δ1/2 + ε) = C(εζ/2 + ε),

which implies
lim
ε→0

∆1(ε) = 0.

We now consider ∆2(ε). Integrating equation (2.36) with respect to z and b we obtain the FPE
for the stationary marginal distribution λ : R× [0,T], λ = λ(x, y), of the couple (Xε, Y ε)>

∂x

((
α · V ′(x) + 1

ε
p′(y)

)
λ

)
+ ∂y

((
1
ε
α · V ′(x) + 1

ε2 p
′(y)

)
λ

)
+σ
(
∂2
xxλ+ ∂2

xy

(
2
ε
λ

)
+ ∂2

yy

(
1
ε2λ

))
= 0,

whose solution is given by

λ(x, y) = 1
Cλ

exp
(
−α
σ
V (x)− 1

σ
p(y)

)
,
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where
Cλ =

∫
R

∫ T

0
exp

(
−α
σ
V (x)− 1

σ
p(y)

)
dxdy

=
(∫

R
exp

(
−α
σ
V (x)

)
dx
)(∫ T

0
exp

(
− 1
σ
p(y)

)
dy
)

= Cν0Cπ.

Therefore, since Σ = Kσ and by equations (1.6) and (2.13) we have

σ Eη
ε

[V ′′(Xε)(1 + Φ′(Y ε))2] = σ

∫
R

∫ T

0
V ′′(x)(1 + Φ′(y))2 1

Cλ
exp

(
−α
σ
V (x)− 1

σ
p(y)

)
dxdy

= σ

(∫
R
V ′′(x) 1

Cν0
exp

(
−α
σ
V (x)

)
dx
)

×

(∫ T

0
(1 + Φ′(y))2 1

Cπ
exp

(
− 1
σ
p(y)

)
dy
)

= σKEν
0
[V ′′(X0)] = ΣEν

0
[V ′′(X0)],

which shows that ∆2(ε) = 0 and completes the proof.

Proof of Theorem 2.18

Let us consider the decomposition (2.16), i.e.,

Âδ,βexp(Xε, T ) = α+ Iε1(T )− Iε2(T ),

where Iε1(T ) is defined in (2.16) and satisfies

lim
T→∞

Iε1(T ) = (M̃ε
exp)−1 Eµ

ε
exp

[
1
ε
p′
(
Xε

ε

)
V ′(Zε)

]
, a.s.,

and, by the proof of Theorem 2.12 we have independently of ε

lim
T→∞

Iε2(T ) = 0, a.s.

A Taylor expansion of the first order of V ′ yields

V ′(Zε) = V ′(Xε) + V ′′(X̃ε)(Zε −Xε),

where X̃ε is a random variable which assumes values between Xε and Zε. We can therefore write

lim
T→∞

Iε1(T ) = (M̃ε
exp)−1

(
Eν

ε

[
1
ε
p′
(
Xε

ε

)
V ′(Xε)

]
+ Eµ

ε
exp

[
1
ε
p′
(
Xε

ε

)
V ′′(X̃ε)(Zε −Xε)

])
=: (M̃ε

exp)−1 (Jε1 + Jε2 ) .

We now consider the two terms separately and show they vanish for ε→ 0. Integrating by parts
in Jε1 we obtain

Jε1 =
∫
R

1
ε
p′
(x
ε

)
V (x) 1

Cνε
exp

(
−α
σ
V (x)− 1

σ
p
(x
ε

))
dx

=
∫
R

(σV ′′(x)− (V ′(x)⊗ V ′(x))α) 1
Cνε

exp
(
−α
σ
V (x)− 1

σ
p
(x
ε

))
dx

= σ Eν
ε

[V ′′(Xε)]− Eν
ε

[V ′(Xε)⊗ V ′(Xε)]α.
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We then pass to the limit as ε→ 0 and integrate by parts again to obtain

lim
ε→0

Jε1 = σ Eν
0 [
V ′′(X0)

]
− Eν

0 [
V ′(X0)⊗ V ′(X0)

]
α = 0. (2.38)

We now turn to Jε2 . The Hölder’s inequality with conjugate exponents p and q and the assumptions
on p and V yield

‖Jε2‖ ≤ Cε−1
(
Eµ

ε
exp

∣∣∣X̃ε
∣∣∣q)1/q (

Eµ
ε
exp |Zε −Xε|p

)1/p
.

Since X̃ε assumes values between Xε and Zε, it has bounded moments by [103, Corollary 5.4]
and Lemma 2.28. Hence, applying Lemma 2.30 we have

‖Jε2‖ ≤ C
(
δε−2 + δ1/2ε−1

)
,

which, since δ = εζ with ζ > 2, implies

lim
ε→0
‖Jε2‖ = 0. (2.39)

Finally, Lemma 2.31 and the weak convergence of the invariant measure νε to ν0 imply

lim
ε→0
M̃ε

exp =M0,

which, together with (2.38), (2.39) implies that Iε1(T )→ 0 for T →∞ and ε→ 0, which implies
the desired result.

2.4.4 Proof of Theorem 2.19

First, the ergodic theorem yields

lim
T→∞

Σ̂δ,1exp = 1
δ
Eµ

ε
exp
[
(Xε − Zε)2] ,

then applying Proposition 2.14 at stationarity we obtain

lim
T→∞

Σ̂δ,1exp = δ Eµ
ε
exp
[
(Bε)2]+ 2Eµ

ε
exp [BεR(ε, δ)] + 1

δ
Eµ

ε
exp
[
R(ε, δ)2]

=: Iε1 + Iε2 + Iε3 ,

and due to the Cauchy-Schwarz inequality and estimates (2.22) and (2.23) we have

|Iε2 | ≤ C
(
δ1/2 + εδ−1/2

)
and |Iε3 | ≤ C

(
δ + ε2δ−1) , (2.40)

for a constant C > 0 independent of ε and δ. Let us now consider Iε1 . Employing equation (2.37)
with the function f(z, b) = 1/2b2 gives

Eη
ε [

(Bε)2] = σ

δ
Eη

ε

[1 + Φ′(Y ε)] = σK
δ

= Σ
δ
,

which together with bounds (2.40) and the hypothesis on δ implies

lim
ε→0

lim
T→∞

Σ̂δ,1exp = Σ, in probability,

which is the desired result.
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2.5 Conclusion
In this chapter we considered a novel methodology to confront the problem of model misspecifica-
tion when homogenized models are fit to multiscale data. Our approach is based on using filtered
data for the estimation of the drift of the homogenized diffusion process. We proved asymptotic
unbiasedness of estimators drawn from our methodology. Moreover, we found a modified Bayesian
approach which guarantees robust uncertainty quantification and posterior contraction, based on
the same filtered data approach. Numerical experiments demonstrate how the estimator based on
filtered data requires less knowledge of the characteristic time-scales of the multiscale equation
with respect to subsampling, and how it can be employed as a black-box tool for parameter
estimation on a range of academic examples.
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3 Moving average

In this chapter, which is based on our research article [51], we use a similar approach to the
one proposed in Chapter 2, but instead of employing an exponential filter, we compute filtered
data applying a moving average. The chapter is organized as follows. In Section 3.1 we present
our methodology and introduce the main results of unbiasedness for the estimators based on
filtered data. We then present numerical experiments in Section 3.2 corroborating our theoretical
findings and showing how to apply our methodology to a complex multi-dimensional scenario.
Section 3.3 is dedicated to the proof of unbiasedness for our estimators, and in Section 3.4 we
draw our conclusions.

3.1 The filtered data approach
In this work, we propose an alternative to subsampling for preprocessing the data and infer
effective dynamics. In particular, we smoothen the data with a continuous moving average,
identified by the kernel

kδma(r) = 1
δ
χ[0,δ](r),

where χ[a,b] denotes the indicator function of the interval [a, b] for real numbers a < b, and where
δ > 0 is the size of the moving average window. We then take a time convolution of the kernel
and the data and obtain the filtered trajectory

Zδ,εma(t) =
∫ t

0
kδma(t− s)Xε(s) ds = 1

δ

∫ t

t−δ
Xε(s) ds, t ≥ δ. (3.1)

The process Zδ,εma is fully defined on the interval t ∈ [0, T ] by defining for small times t ≤ δ

Zδ,εma(t) = 1
t

∫ t

0
Xε(s) ds, 0 ≤ t < δ.

We remark that with this choice the process Zδ,εma is continuous on [0, T ], and can be seen as a
smoothed version of the original trajectory where the fast oscillations are damped.

The idea of smoothening the data with a low-pass filter has already been introduced in Chapter 2.
Instead of a moving average, we consider in Chapter 2 the exponential filtering kernel (2.1).
Filtered data Zδ,β,εexp (t) are then obtained similarly to (3.1) by taking a time convolution. We
recall that the parameters δ and β in (2.1) have two different roles. In particular, we have that β
is a shape parameter, and δ is the filtering width. The approaches presented here in the previous
chapter are closely related. In fact, it is simple to deduce that for almost every r ≥ 0

lim
β→∞

kδ,βexp(r) = χ[0,1](r), (3.2)

independently of δ. We remark that the theoretical analysis in Chapter 2 is restricted to the case
where the shape parameter β = 1, despite numerical experiments suggest that choosing β > 1
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yields better estimators. Studying the moving average kernel and due to (3.2) therefore partially
fills the theoretical gap of our previous work.

3.1.1 Estimating the drift coefficient

We now present how in practice one employs filtered data to obtain asymptotically unbiased
estimators of the effective drift coefficient. The main idea is modifying the classical MLE (1.15)
by replacing one occurrence of the original process Xε with the filtered process Zδ,εma both in M
and v. In particular, the drift estimator Âδma(Xε, T ) is defined as the solution of the linear system

− M̃ δ
ma(Xε, T )Âδma(Xε, T ) = ṽδma(Xε, T ), (3.3)

where
M̃ δ

ma(Xε, T ) := 1
T

∫ T

0
V ′(Zδ,εma(t))⊗ V ′(Xε(t)) dt,

ṽδma(Xε, T ) := 1
T

∫ T

0
V ′(Zδ,εma(t)) dXε(t).

We remark that it is fundamental to keepXε(t) in the differential of the right-hand side ṽδma(Xε, T ),
as discussed in Remark 2.7. For the well-posedness of the estimator Âδma(Xε, T ) the matrix
M̃δ

ma(Xε, T ) needs to be invertible. We take this property as an assumption in the theoretical
analysis but we observe that it holds in practice in all the numerical experiments.

3.1.2 Estimating the diffusion coefficient

We now focus on inferring the effective diffusion coefficient and we propose two different estimators.
The first one is given by

Σ̂δma(Xε, T ) = 1
δT

∫ T

δ

(
Xε(t)− Zδ,εma(t)

)
(Xε(t)−Xε(t− δ)) dt, (3.4)

which is analogous to the diffusion estimator presented in Section 2.1.

A different methodology for estimating the diffusion coefficient of the homogenized equation can
be derived from the particular form of (1.11). We know that Σ = σK and therefore an estimation
of Σ can be obtained by first estimating σ and K. The former can be computed exactly due to
(1.16), indeed we have

σ = 〈X
ε〉T

2T ,

while for the latter we use the fact that A = αK. Given an estimator Â for the effective drift
coefficient and since by Theorem 1.8 we know that α̂ = ÂMLE(Xε, T ) approximates α, we write

α̂K̂ = Â, (3.5)

which is an overdetermined linear system with L equations and one unknown, and where K̂
denotes the estimator of the coefficient K which we aim to infer. The least squares solution to
(3.5) is given by

K̂ = α̂>Â

α̂>α̂
.

Assuming that an estimator Â(Xε, T ) of the effective drift coefficient has already been computed,
the effective diffusion coefficient can then be estimated as

Σ̃(Xε, T ) = 〈X
ε〉T (ÂMLE(Xε, T )>Â(Xε, T ))

2T (ÂMLE(Xε, T )>ÂMLE(Xε, T ))
. (3.6)
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Remark 3.1. In practice, the stream Xε consists of high-frequency discrete data, and not of a
continuous process. Hence, the filtered data and all our estimators are computed in practice with
the usual appropriate discretizations. We notice that if Xε consists of n data points, the time
complexity needed to compute the filtered trajectory Zδ,εma is of order O(n).

3.1.3 Statement of asymptotic unbiasedness results

In this section we present the main theoretical results of this work, i.e., the asymptotic unbiasedness
of the proposed estimators.

We first consider the drift estimator Âδma(Xε, T ), which is asymptotically unbiased due to the
following result.

Theorem 3.2. Let Âδma(Xε, T ) be defined in (3.3) with δ independent of ε or δ = εζ where
ζ ∈ (0, 2). Under Assumption 1.4 and if M̃δ

ma(Xε, T ) is invertible, it holds

lim
ε→0

lim
T→∞

Âδma(Xε, T ) = A, a.s.,

where A is the drift coefficient of the homogenized equation (1.11).

The following result of asymptotic unbiasedness holds for the estimator Σ̂δma(Xε, T ) of the effective
diffusion.

Theorem 3.3. Let Σ̂δma(Xε, T ) be defined in (3.4) with δ = εζ where ζ ∈ (0, 2). Under Assump-
tion 1.4, it holds

lim
ε→0

lim
T→∞

Σ̂δma(Xε, T ) = Σ, a.s.,

where Σ is the diffusion coefficient of the homogenized equation (1.11).

We notice from the statement of Theorem 3.3 that the main limitation of Σ̂δma is that knowledge
of the scale-separation parameter ε is necessary for unbiasedness. Conversely, the estimator
Σ̃(Xε, T ) of the effective diffusion can be asymptotically unbiased even if δ is independent of
ε. Indeed, unbiasedness of Σ̃(Xε, T ) solely relies on the accuracy of the corresponding drift
estimator, as shown by the following result.

Theorem 3.4. Let Â be an asymptotically unbiased estimator of the effective drift coefficient,
i.e.,

lim
ε→0

lim
T→∞

Â(Xε, T ) = A, a.s., (3.7)

where A is the drift coefficient of the homogenized equation (1.11), and let Σ̃(Xε, T ) be defined in
(3.6). Under Assumption 1.4, it holds

lim
ε→0

lim
T→∞

Σ̃(Xε, T ) = Σ, a.s.,

where Σ is the diffusion coefficient of the homogenized equation (1.11).

The following corollary is a direct consequence of Theorem 3.4.

Corollary 3.5. Let Σ̃δma(Xε, T ), Σ̃δ,βexp(Xε, T ), Σ̃δsub(Xε, T ) be defined by (3.6) with Â(Xε, T )
replaced by Âδma(Xε, T ), Âδ,βexp(Xε, T ), and Âδsub(Xε, T ), respectively. If δ is independent of ε or
δ = εζ with ζ ∈ (0, 2), then

lim
ε→0

lim
T→∞

Σ̃δma = Σ, a.s., lim
ε→0

lim
T→∞

Σ̃δ,βexp = Σ, a.s.,
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and if δ = εζ with ζ ∈ (0, 1)
lim
ε→0

lim
T→∞

Σ̃δsub = Σ, a.s.,

where Σ is the diffusion coefficient of the homogenized equation (1.11).

Two remarks are due.
Remark 3.6. In our approach, the scale-separation parameter ε need not be known. In particular,
Theorem 3.2 and Corollary 3.5 show that our estimators are asymptotically unbiased if δ is
independent of ε, i.e., the filtering width equals the speed of the homogenized process. Since ε is
in general unknown in practice, this constitutes an advantage with respect to, e.g., subsampling,
for which knowledge of ε is necessary. Moreover, as we demonstrate numerically in Section 3.2,
modifying the filtering width has a weak impact on the inference results as long as δ ∈ [ε, 1] when
T <∞ and ε > 0.
Remark 3.7. Despite being more accurate in practice, as demonstrated by our numerical experi-
ments, and not requiring knowledge of ε, the estimator Σ̃δma is computationally more expensive
to obtain than Σ̂δma. Indeed, computing Σ̃δma requires estimators for the parameters α and σ of
the multiscale equation (1.10), as well as the drift coefficient A of the homogenized model (1.11).
Hence, if a very accurate estimate for the whole effective equation is needed, we recommend to
employ Σ̃δma, while Σ̂δma can be used in case only the diffusion coefficient is required.

The proof of Theorems 3.2 to 3.4 is obtained by applying techniques similar to the ones employed
in [103], and is presented in detail in Section 3.3.

3.1.4 The multidimensional case

In this section we report the expression of the estimators for higher dimensions. Indeed, the choice
d = 1 is made only for economy of notation, and for clarity. Moreover, the proofs of Theorems 3.2
to 3.4 would be conceptually unchanged by considering d > 1, up to tedious technical details.
Let ∇V : Rd → RdL be the vector obtained by stacking the gradients of the components V`,
` = 1, . . . , L, of the slow-scale potential, i.e.,

∇V (x) =
(
∇V1(x)> · · · ∇VL(x)>

)>
.

Then, the drift estimator for the block matrix A ∈ RdL×d given by

A =
(
A>1 · · · A>L

)>
,

is the solution of the linear system

− M̃ δ
ma(Xε, T )Âδma(Xε, T ) = ṽδma(Xε, T ),

where the matrices M̃δ
ma(Xε, T ) ∈ RdL×dL and ṽδma(Xε, T ) ∈ RdL×d are defined as

M̃ δ
ma(Xε, T ) := 1

T

∫ T

0
∇V (Zδ,εma(t))⊗∇V (Xε(t)) dt,

ṽδma(Xε, T ) := 1
T

∫ T

0
∇V (Zδ,εma(t))⊗ dXε(t).

Concerning the diffusion coefficient, it is natural to impose that it is symmetric and positive
definite, so that the square root

√
2Σ is well defined. For this reason, we define the estimator

Σ̂δma(Xε, T ) for the effective diffusion coefficient Σ ∈ Rd×d as

Σ̂δma(Xε, T ) = S
(

1
δT

∫ T

δ

(
Xε(t)− Zδ,εma(t)

)
⊗ (Xε(t)−Xε(t− δ)) dt

)
,
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3.2. Numerical experiments

where S(B) denotes the symmetric part of a matrix B ∈ Rd×d, i.e., S(B) = (B+B>)/2. Remark
that positive definiteness is not guaranteed for Σ̂δma(Xε, T ), but due to asymptotic unbiasedness
it is natural to expect that for T large enough and ε small enough the estimator Σ̂δma(Xε, T )
is positive definite as its limit. For the estimators of the form Σ̃(Xε, T ), we first estimate the
homogenization matrix as

K̂ = arg min
K∈Sym+

d

∥∥∥ÂMLE(Xε, T )K − Â(Xε, T )
∥∥∥
F
,

where Sym+
d is the space of symmetric positive definite matrices of size d×d, ‖·‖F is the Frobenius

norm, and Â(Xε, T ) is any estimator of the effective drift coefficient A ∈ RdL×d. It is simple to
compute the minimum in practice by imposing K = BB>, and then minimizing directly over
B ∈ Rd×d. Then, we define

Σ̃(Xε, T ) = 〈X
ε〉T

2T K̂.

In this case, the estimator is symmetric and positive definite by construction.

As we present in the numerical experiment of Section 3.2.3, our methodology based on moving
average can be naturally and successfully applied to higher-dimensional stochastic differential
equations (SDEs).

3.2 Numerical experiments
In this section, we present a series of numerical experiments which have the twofold goal of
validating our theoretical analysis, and of showcasing the effectiveness of our technique on
challenging academic examples.

3.2.1 Sensitivity analysis with a Ornstein–Uhlenbeck model

We first consider the one-dimensional equation (1.10) with L = 1, with the slow scale potential
V (x) = x2/2, and with the fluctuating potential p(y) = sin(y). In this case, the effective model is
an Ornstein–Uhlenbeck (OU) equation. In this scenario, we can compute exact values for the
effective drift and diffusion coefficients to assess the accuracy of our inference method. We then
compare numerically the accuracy of the estimators

(i) Âδma, Âδ,1exp, and Âδsub of the effective drift coefficient obtained by employing data preprocessed
with the moving average filter of width δ, the exponential filter with δ and shape parameter
β = 1, and subsampling with period δ,

(ii) Σ̂δma, Σ̂δ,1exp, and Σ̂δsub of the effective diffusion coefficient obtained with the same methods,
respectively,

(iii) Σ̃δma, Σ̃δ,1exp, and Σ̃δsub of the effective diffusion coefficient based on the corresponding drift
estimators given in (i).

We consider T = 104 and generate data Xε = (Xε(t), 0 ≤ t ≤ T ) from the multiscale model
with drift coefficient α = 1 and for a variable diffusion coefficient σ = 0.5, 0.75, 1, so that
the homogenization coefficient K ≈ 0.19, 0.45, 0.62, respectively. Moreover, we consider scale-
separation parameters ε = 0.2, 0.1, 0.05 to observe convergence with respect to the homogenization
limit. Data is generated with the Euler–Maruyama (EM) method with fixed time step ∆t = ε3

min,
where εmin = 0.05 is the smallest value we employ for the scale-separation parameter. With
this choice, we have the twofold advantage of introducing negligible numerical errors which
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σ = 1

σ = 0.75

σ = 0.5

Figure 3.1 – Estimation of the drift coefficient of an effective OU equation. Top: Numerical
results at final time T = 104 for variable σ = 1, 0.75, 0.5 (per row), for ε = 0.2, 0.1, 0.05 (blue,
red, and yellow lines respectively), and for variable filtering/subsampling width δ (horizontal axis
in all figures). Comparison between filtering with moving average and exponential filters (first
two columns) and subsampling (last column). Bottom: Convergence with respect to t ∈ [0, 104]
of the two estimators based on filtered data with δ = 1, and of the subsampling estimator with
δ = ε2/3, for fixed σ = 1 and ε = 0.05. Remark: The legend on top is valid for all plots, except
the last row.
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σ = 1

σ = 0.75

σ = 0.5

Figure 3.2 – Estimation of the diffusion coefficient of an effective OU equation. Top: Numerical
results at final time T = 104 for variable σ = 1, 0.75, 0.5 (per row), for ε = 0.2, 0.1, 0.05 (blue,
red, and yellow lines respectively), and for variable filtering/subsampling width δ (horizontal axis
in all figures). Results for the estimators Σ̂: Comparison between filtering with moving average
and exponential filters (first two columns) and subsampling (last column). Bottom: Convergence
with respect to t ∈ [0, 104] of the two estimators based on filtered data with δ = ε, and of the
subsampling estimator with δ = ε2/3, for fixed σ = 1 and ε = 0.05. Remark: The legend on top
is valid for all plots, except the last row.
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σ = 1

σ = 0.75

σ = 0.5

Figure 3.3 – Estimation of the diffusion coefficient of an effective OU equation. Top: Numerical
results at final time T = 104 for variable σ = 1, 0.75, 0.5 (per row), for ε = 0.2, 0.1, 0.05 (blue,
red, and yellow lines respectively), and for variable filtering/subsampling width δ (horizontal axis
in all figures). Results for the estimators Σ̃: Comparison between filtering with moving average
and exponential filters (first two columns) and subsampling (last column). Bottom: Convergence
with respect to t ∈ [0, 104] of the two estimators based on filtered data with δ = 1, and of the
subsampling estimator with δ = ε2/3, for fixed σ = 1 and ε = 0.05. Remark: The legend on top
is valid for all plots, except the last row.
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do not compromise the validity of our results, and of capturing well the fast-scale oscillations.
The filtering/subsampling widths are set to δ = εζ for ζ = i/10 for i = 0, 1, . . . , 20 to observe
robustness with respect to preprocessing. Let us remark that subsampling-based estimators
are asymptotically unbiased only for ζ ∈ (0, 1), and that the theory for both filtering kernels is
different in case ζ = 0, i.e., when the filtering width is independent of ε.

Numerical results, given in Figures 3.1 to 3.3, demonstrate that

(i) Figure 3.1: The two filtering techniques yield estimators of the drift coefficient of comparable
accuracy across all parameters σ, ε and δ, and they are both more robust than subsampling
when varying the parameters σ and δ. We observe that robustness with respect to δ is
particularly improved for higher values of σ. For the two filtering methodologies asymptotic
unbiasedness with respect to ε seems to hold in practice. Finally, convergence with respect
to t ∈ [0, T ], verified with σ = 1, δ = 1 for the filtering methods and δ = ε2/3 (conjectured
optimal in [103]) for subsampling is similar for the three methods.

(ii) Figure 3.2: The estimators Σ̂δma, Σ̂δ,1exp, and Σ̂δsub of Σ have similar accuracy across all values
of ε, δ, and σ. Again, convergence with respect to ε seems to be in practice respected.
Let us remark that for these estimators δ = 1 is not a viable choice (for neither the two
filtering methods, nor subsampling). Convergence in time is therefore demonstrated for
σ = 1, for δ = ε for the two filtering methods, and with δ = ε2/3 for subsampling. With
these choices, the moving average filter introduced here seems to slightly outperform the
concurrent methods.

(iii) Figure 3.3: The estimators Σ̃δma and Σ̃δ,1exp show enhanced accuracy with respect to the
corresponding estimators of (ii) across all values of ε, σ, and δ. Convergence with respect to
ε seems to be respected for all methods. Convergence in time is demonstrated for σ = 1, for
δ = 1 for the two filtering methods, and with δ = ε2/3 for subsampling. With these choices,
the moving average filter introduced here seems to show a faster time transient towards the
effective diffusion coefficient with respect to the concurrent methods. We remark that the
diffusion estimators identified by the “hat” seem to converge faster with respect to t than
the ones identified with the “tilde”.

3.2.2 The semi-parametric setting

We now consider the semi-parametric setting for a one-dimensional multiscale Langevin equation
of the form (1.10). In particular, we consider the number of parameters L = 6 and define
V : R→ RL as

V (x) =
(
x6

6
x5

5
x4

4
x3

3
x2

2 x

)>
.

The slow-scale potential is premultiplied by the six dimensional drift coefficient α ∈ R6

α =
(
1 −1 −5.25 4.75 5 −3

)>
.

With this choice, the slow-scale potential V = α · V has three stable points. Moreover, we choose
the fast-scale potential as p = sin(y), the diffusion coefficient σ = 1, and the multiscale parameter
ε = 0.05. We then wish to infer the effective drift and diffusion coefficients A ∈ R6 and Σ > 0
from synthetic data Xε = (Xε(t), 0 ≤ t ≤ T ) with T = 5 · 104, generated with the EM method
with time step ∆t = ε3. In this case, the homogenization coefficient K ≈ 0.62. We then infer the
effective drift and diffusion coefficients A ∈ R6 and Σ > 0 which define the homogenized equation
(1.11). Similarly to Section 3.2.1, we compare the two filtering methodologies (moving average
and exponential kernels), and subsampling. Moreover, we compute for all strategies the effective
drift estimator Â, and the effective diffusion estimators Σ̂ and Σ̃.
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Chapter 3. Moving average

Figure 3.4 – Estimation of the drift coefficient in the one-dimensional semi-parametric setting.
First row: on the left, evolution of the relative error with respect to t ∈ [0, 5 · 104], and on the
right dependence of the relative error on the filtering/subsampling width δ ∈ [ε2, 1]. Second and
third rows: Dependence on δ of the estimators for the components Ai, i = 1, . . . , 6 of the effective
drift coefficient obtained with filtered data with both kernels, and with subsampling. Fourth row:
Dependence on the filtering/subsampling width δ of the estimated drift function with the same
three methodologies. Remark: The legend on top is valid for all plots, except the last row.
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Figure 3.5 – Estimation of the diffusion coefficient in the one-dimensional semi-parametric setting.
First (Σ̂) and second (Σ̃) row: on the left, we show the evolution of the relative error with
respect to t ∈ [0, 5 · 104], and on the right the dependence of the relative error with respect to
the filtering/subsampling width δ ∈ [ε2, 1]. Third row: Dependence on δ of the estimators Σ̂ and
Σ̃ of the effective diffusion coefficient obtained with filtered data with both kernels, and with
subsampling.
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Figure 3.6 – Slow-, fast-, and multiscale potentials for the two-dimensional example of Section 3.2.3,
depicted here in the square (−2.5, 2.5)2.

Numerical results, given in Figures 3.4 and 3.5, demonstrate that

(i) Figure 3.4: The six-dimensional effective drift coefficient is estimated accurately by both
filtering-based methodologies, which yield comparable results both in terms of time conver-
gence and of robustness with respect to the filtering width δ. At final time, both estimators
have relative errors of magnitude 10−2, and all six components of the drift coefficient are
accurately retrieved. We note that for δ = 1, i.e., the go-to implementation when ε is
unknown, the moving average estimator appears to be slightly better than the one obtained
with the exponential filter. Subsampling, conversely, does not enable to retrieve the drift
coefficient accurately and strongly depends on the subsampling width δ. We remark that
that the optimal value for δ appears to be δ ≈ ε3/2, which is surprising in view of the
convergence result of [103]. Finally, we notice that for all values of δ the estimated drift
function is visually almost identical to the effective drift, and is clearly differentiated from
the slow component of the multiscale drift.

(ii) Figure 3.5: The diffusion coefficient is estimated more accurately by the estimator Σ̃ than
Σ̂ when employing filtered data. Indeed, for both filtering kernels the estimator Σ̃ is very
robust with respect to the filtering width δ, and results are very accurate in case δ = 1, the
go-to implementation when the scale-separation parameter ε is unknown. Conversely, the
estimator Σ̂ strongly depends on the filtering/subsampling width. We note that choosing
δ = ε the moving average estimator Σ̂εma outperforms the corresponding estimator Σ̂ε,1exp
based on exponential filtering. For subsampling, the two estimators are equivalent in terms
of accuracy, and are extremely dependent of the subsampling width δ. Equivalently to the
drift estimator, the best inference results seem to be given by δ ≈ ε3/2, and not at the
conjectured optimal value ε2/3.

3.2.3 A two-dimensional example

As a last numerical example, we consider a two-dimensional SDE (d = 2) of the form (1.4). In
particular, we let L = 4 and define

V1(x) = exp
(
−‖x− x1‖2

)
, V2(x) = exp

(
−‖x− x2‖2

)
,

V3(x) = exp
(
−‖x‖2

)
, V4(x) = 1

4 ‖x‖
4
,

where x1 = (2, 2)>, x2 = (−2,−2)>. The exact drift coefficient in the multiscale dynamics is
defined by α1 = α2 = −15, α3 = 10 and α4 = 1. We choose the fast-scale periodic potential
p : R2 → R as

p(y) = sin (y1) + sin2 (y2) ,
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Figure 3.7 – Estimation of the effective drift coefficient for the two-dimensional example of
Section 3.2.3. First row: Dependence of the relative error with respect to t ∈ [0, T ] (left) and to
the subsampling/filtering width δ (right) for both filtering methods and subsampling. Second
and third row: Graphical representation in the square (−2.5, 2.5)2 of the estimated effective drift
function at final time for the same three methods.
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Figure 3.8 – Estimation of the effective diffusion coefficient for the two-dimensional example of
Section 3.2.3. First and second row: Dependence of the relative error of the estimators Σ̂ (first
row) and Σ̃ (second row) with respect to t ∈ [0, T ] (left) and to the subsampling/filtering width
δ (right) for both filtering methods and subsampling. Third and fourth row: Sensitivity of the
estimators of the entries of the diffusion matrix Σ with respect to δ, with both “hat” (third row)
and “tilde” (fourth row) estimators, and for the same three methodologies as above.
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and let the diffusion coefficient σ = 1 and the scale-separation parameter ε = 0.1. Since the
fast-scale potential can be decomposed as p(y) = p1(y1) + p2(y2), the homogenization coefficient
K is diagonal and its diagonal components can be computed employing the one-dimensional
formula (1.12). In particular, we have

K ≈
(

0.62 0
0 0.88

)
.

We remark that choosing larger values for the diffusion coefficient σ makes the diagonal elements
of the matrix K close to 1. Hence, in this case the homogenized potential and the slow-scale
component of the multiscale potential would be close, which in turn may lead to a misinterpretation
of the numerical results in case δ = εζ with ζ > 1. The slow, fast, and multiscale potential
functions are represented in Figure 3.6. The slow-scale potential presents two wells around the
points x1 and x2, a local maximum in the origin, and diverges outside any ball large enough
and centered in the origin. The superposition of the slow and fast-scale potentials (evaluated
in y = x/ε) perturbs the slow-scale potential and is responsible for an infinity of non-negligible
local minima. We note that due to the local minima, the local maximum in the origin, and the
two-dimensional setup, transitions between the potential wells are rare. This compromises the
accuracy of the inference results, especially for the drift coefficient, unless final time is taken large
enough.

We set T = 2 · 105 and generate synthetic observations Xε = (Xε(t), 0 ≤ t ≤ T ) by integrating
(1.4) with the EM method with time step ∆t = ε3. The necessity to perform experiments over
long time horizons is due to the bistable nature of our setting, and to the low probability of
transitioning between the potential wells due to the components V1 and V2 of the potential. It
would have been also possible to increase the probability of such transitions by increasing the
value of the diffusion coefficient σ, which however would have been problematic, as explained
above. We then estimate the effective drift coefficients {Ai ∈ R2×2}4i=1 and the effective diffusion
matrix Σ ∈ R2×2 employing data filtered with the moving average and exponential kernels, and
with subsampling for a comparison. For the drift coefficient, we measure accuracy by computing
the relative error on the 16-dimensional vector obtained by stacking all coefficients of the four
2× 2 effective drift matrices. Numerical results, given in Figures 3.7 and 3.8, demonstrate that

(i) Figure 3.7: The drift estimator obtained with both filtering methodologies is extremely
accurate, given the complexity of the setting and the high-dimensionality of the coefficient.
In particular, for all values of δ ∈ [ε, 1] we obtain relative errors below 10%. Moreover,
implementing both filtering methodologies with δ = 1, i.e., when the scale-separation
parameter is unknown, yields quasi-optimal results. We remark that the estimator Â1

ma
obtained with the moving average kernel and δ = 1 appears to converge sensibly faster with
respect to t ∈ [0, T ] than the corresponding estimator Â1,1

exp obtained with the exponential
kernel. Conversely, the relative error for subsampling is dramatically higher, and subsampling
should not in our opinion be employed in this high-dimensional setting. Always commenting
on Figure 3.7, we note that the drift function estimated with both filtering methods at final
time is visually almost indistinguishable from the exact effective drift function.

(ii) Figure 3.8: Likewise the numerical experiments of the previous sections, the diffusion
estimators Σ̂ obtained with both filtering kernels and subsampling is not robust with respect
to the filtering width, with the moving average kernel that seems to perform slightly better
than the exponential kernel for δ = ε, and than subsampling when δ = ε3/2. The estimators
Σ̃ obtained with the two filtering methods are instead extremely accurate at identifying
both the diagonal components – especially Σ22, and the zero off-diagonal elements. The
subsampling-based estimator Σ̃sub, instead, suffers from the lack of accuracy of the drift
estimator Âδsub, and is not reliable. Always commenting on Figure 3.8, we remark that
convergence with respect to t ∈ [0, T ] of the estimators Σ̃1

ma and Σ̃1,1
exp is similar, with the
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moving average filter seemingly less prone to instabilities for small t.

3.3 Asymptotic unbiasedness of the estimators
In this section we present the proof of Theorems 3.2 to 3.4 and Corollary 3.5, i.e., the results of
asymptotic unbiasedness for our filtering-based estimators. In Chapter 2 the proofs of convergence
are obtained with the kernel kδ,1exp by noticing that the original trajectory Xε and its filtered
version Zδ,1,εexp are solution of an hypoelliptic system of Itô SDEs. For higher values of β > 1,
the system describing the evolution of Xε and Zδ,β,εexp is not a Itô system due to the presence of
a memory term. In case we consider the moving average kernel kδma which we study here, the
memory term simplifies to a constant delay. Hence, the evolution of the filtered trajectory Zδ,εma
can be coupled with the original trajectory Xε through the system of stochastic delay differential
equations (SDDEs)

dXε(t) = −α · V ′(Xε(t)) dt− 1
ε
p′
(
Xε(t)
ε

)
dt+

√
2σ dW (t),

dZδ,εma(t) = −1
δ

(Xε(t− δ)−Xε(t)) dt.
(3.8)

To be precise, the system above is a combination of a Itô SDE and a delay ordinary differential
equation driven by a stochastic signal. Due to the theory of homogenization (see [20, Chapter 3],
or [104, Chapter 18], or the proof of Lemma 2.9), if δ is independent of ε, the solution (Xε, Zδ,εma)
converges in law as random variables in C0([0, T ],R2) to the solution (X0, Zδ,0ma) of the system

dX0(t) = −A · V ′(X0(t)) dt+
√

2Σ dW (t),

dZδ,0ma(t) = −1
δ

(X0(t− δ)−X0(t)) dt.
(3.9)

In the following, we first focus on ergodic properties of the couples (Xε, Zδ,εma) and (X0, Zδ,0ma)
evolving according to (3.8) and (3.9), respectively. Then, we employ the invariant measures and
the Fokker–Planck equations (FPEs) derived through the ergodicity theory to prove asymptotic
unbiasedness. We remark that the strategy we adopt is similar to the one of Chapter 2. Still,
different techniques need to be employed due to the delay in the second equation of the systems
(3.8) and (3.9).

Let us remark that, for economy of notation, from now on in this section we will simply write
Xε
t and Zεt instead of Xε(t) and Zδ,εma(t), respectively, and similarly for all stochastic processes.

Moreover, we drop explicit reference to the dependence of M̃δ
ma(Xε, T ) and ṽδma(Xε, T ) on the

parameter δ and we only write M̃ma(Xε, T ) and ṽma(Xε, T ).

3.3.1 Ergodic properties

It is well-known (see, e.g., [103]) that Xε is geometrically ergodic with invariant measure νε
whose density ϕε takes the Gibbs form

ϕε(x) = 1
Cνε

exp
(
−V

ε(x)
σ

)
, Cνε =

∫
R

exp
(
−V

ε(x)
σ

)
dx,

where
Vε(x) := α · V (x) + p

(x
ε

)
.
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Moreover, an analogous result holds true for the homogenized process X0, which is geometrically
ergodic with invariant measure ν0 whose density ϕ0 is given by

ϕ0(x) = 1
Cν0

exp
(
−A · V (x)

Σ

)
, Cν0 =

∫
R

exp
(
−A · V (x)

Σ

)
dx.

We now introduce a similar result of ergodicity for the couples (Xε, Zε) and (X0, Z0) satisfying
(3.8) and (3.9), respectively, i.e., for the multiscale process and its filtered version.

Proposition 3.8. Under Assumption 1.4, the solution (Xε, Zε) of (3.8) is ergodic, and the
density ρεma of its invariant measure µεma on R2, such that µεma(dx, dz) = ρεma(x, z) dx dz, satisfies

σ∂2
xxρ

ε
ma(x, z) + ∂x ((Vε)′(x)ρεma(x, z)) + 1

δ
∂z

((∫
R
ySε

ma(y | x, z) dy − x
)
ρεma(x, z)

)
= 0,∫

R

∫
R
ρεma(x, z) dx dz = 1,

(3.10)
where, if Xε

0 ∼ νε, it holds∫
R
ySε

ma(y | x, z) dy = E [Xε
0 | Xε

δ = x, Zεδ = z] ,

i.e., Sε
ma(· | x, z) is the conditional density of Xε

0 given Xε
δ = x and Zεδ = z. Moreover, if δ is

independent of ε, the solution (X0, Z0) of (3.9) is ergodic, and the density ρ0
ma of its invariant

measure µ0
ma on R2, such that µ0

ma(dx, dz) = ρ0
ma(x, z) dxdz, satisfies

Σ∂2
xxρ

0
ma(x, z) + ∂x

(
A · V ′(x)ρ0

ma(x, z)
)

+ 1
δ
∂z

((∫
R
yS0

ma(y | x, z) dy − x
)
ρ0

ma(x, z)
)

= 0,∫
R

∫
R
ρ0

ma(x, z) dxdz = 1,

(3.11)
where, if X0

0 ∼ ν0, it holds∫
R
yS0

ma(y | x, z) dy = E
[
X0

0 | X0
δ = x, Z0

δ = z
]
,

i.e., S0
ma(· | x, z) is the conditional density of X0

0 given X0
δ = x and Z0

δ = z.

Proof. In order to prove that the joint process (Xε, Zε) is ergodic, we show that it admits
a unique invariant measure. If Xε

0 is distributed accordingly to its invariant measure νε,
which exists due to Assumption 1.4, then the processes (Xε

s , 0 ≤ s ≤ δ) and (Xε
s , t − δ ≤

s ≤ t) are equally distributed for all t ≥ δ. Hence, the two-dimensional random variables(
Xε
δ ,

1
δ

∫ δ
0 X

ε
s ds

)
and

(
Xε
t ,

1
δ

∫ t
t−δX

ε
s ds

)
are equal in law for all t ≥ δ. Recalling that the

joint process
(
Xε
t ,

1
δ

∫ t
t−δX

ε
s ds

)
is the solution (Xε

t , Z
ε
t ) of the system (3.8), it follows that the

invariant measure µεma on R2 is the law of the random variable
(
Xε
δ ,

1
δ

∫ δ
0 X

ε
s ds

)
. The uniqueness

of the invariant measure µεma is then a direct consequence of the uniqueness of the invariant
measure νε for the process Xε since the joint measure µεma is uniquely determined by its marginal
νε. Moreover, the FPE for the one-time PDF related to an SDDE with a single fixed delay is
well-known (see, e.g., [46,61,82]) and the stationary equation (3.10) for the density ρεma of µεma is
then obtained due to the particular form of the system (3.8). Finally, the results corresponding
to the homogenized system (3.9) can be proved analogously.
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The following formulas, which will be employed in the proof of the main results, are then direct
consequences of the FPEs obtained above.

Lemma 3.9. Let ρεma(x, z) = ϕε(x)Rε
ma(z | x), where ϕε and ρεma are the densities of the

invariant measures of Xε and (Xε, Zε), respectively, and where Rε
ma is the conditional density of

Zε given Xε. Then, if Xε
0 ∼ νε, it holds

σ

∫
R

∫
R
V ′(z)ϕε(x)∂xRε

ma(z | x) dxdz = 1
δ
Eµ

ε
ma [(Xε

δ − Zεδ ) (Xε
δ −Xε

0)V ′′(Zεδ )] . (3.12)

Moreover, if δ is independent of ε and writing ρ0
ma(x, z) = ϕ0(x)R0

ma(z | x) for the density of the
homogenized invariant measure µ0

ma of (X0, Z0), it holds

Σ
∫
R

∫
R
V ′(z)ϕ0(x)∂xR0

ma(z | x) dxdz = 1
δ
Eµ

0
ma
[(
X0
δ − Z0

δ

) (
X0
δ −X0

0
)
V ′′(Z0

δ )
]
. (3.13)

Proof. We proceed similarly to the proof of Lemma 2.5. Replacing the decomposition ρεma(x, z) =
ϕε(x)Rε

ma(z | x) into the FPE (3.10) gives

∂x (σϕε(x)∂xRε
ma(z | x)) + ∂z

(
1
δ

(∫
R
ySε

ma(y | x, z) dy − x
)
ϕε(x)Rε

ma(z | x)
)

= 0.

We then multiply the equation above by a smooth function f : R2 → RL, f = f(x, z), and
integrate first with respect to x and z and then by parts, obtaining

σ

∫
R

∫
R
∂xf(x, z)ϕε(x)∂xRε

ma(z | x) dxdz = 1
δ
Eµ

ε
ma [∂zf(Xε

δ , Z
ε
δ )(Xε

δ −Xε
0)] .

The choice f(x, z) = (x−z)V ′(z)+V (z) gives equation (3.12). Finally, equation (3.13) is obtained
analogously employing the FPE of the homogenized SDE (3.11).

3.3.2 Preliminary results

Let us first introduce the notation

M̃ε
ma := Eµ

ε
ma [V ′(Zε)⊗ V ′(Xε)] , M̃0

ma := Eµ
0
ma
[
V ′(Z0)⊗ V ′(X0)

]
,

Mε := Eν
ε

[V ′(Xε)⊗ V ′(Xε)] , M0 := Eν
0 [
V ′(X0)⊗ V ′(X0)

]
,

which is repeatedly employed below. Before presenting the main proofs, we introduce two auxiliary
lemmas.

Lemma 3.10. Under Assumption 1.4, it holds

Xε
δ − Zεδ =

√
2σ
δ

∫ δ

0
t(1 + Φ′(Y εt )) dWt +R(ε, δ), (3.14)

where Φ is the solution of the cell problem (1.7) and where the remainder R(ε, δ) satisfies for all
p ≥ 1 and a constant C > 0 independent of ε and δ

Eµ
ε
ma [|R(ε, δ)|p]1/p ≤ C (ε+ δ) . (3.15)

Moreover, if Xε
0 is stationary, i.e. Xε

0 ∼ ϕε, it holds

Eµ
ε
ma [|Xε − Zε|p]1/p ≤ C

(
δ1/2 + ε

)
, (3.16)

Eµ
ε
ma [|Zε|p]1/p ≤ C. (3.17)
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3.3. Asymptotic unbiasedness of the estimators

Proof. Employing the decomposition (5.8) in [103] and due to [103, Lemma 5.5, Propsition 5.8]
we have for all t ∈ [0, δ]

Xε
δ = Xε

t +
√

2σ
∫ δ

t

(1 + Φ′(Y εs )) dWs +R(ε, δ), (3.18)

where the remainder satisfies for all p ≥ 1 and for a constant C > 0 independent of ε and δ

Eµ
ε
ma [|R(ε, δ)|p]1/p ≤ C (ε+ δ) .

Therefore, we obtain

Xε
δ − Zεδ = 1

δ

∫ δ

0
(Xε

δ −Xε
t ) dt =

√
2σ
δ

∫ δ

0

∫ δ

t

(1 + Φ′(Y εs )) dWs dt+R(ε, δ),

which by Fubini’s theorem yields

Xε
δ − Zεδ =

√
2σ
δ

∫ δ

0
t(1 + Φ′(Y εt )) dWt +R(ε, δ),

and proves (3.14) and (3.15). By the Itô isometry, it holds

Eµ
ε
ma

[∣∣∣∣∣
∫ δ

0
t(1 + Φ′(Y εt )) dWt

∣∣∣∣∣
p]1/p

≤ Cδ3/2, (3.19)

which, together with (3.14), (3.15) and the proof of Proposition 3.8, gives (3.16). Finally, (3.17)
is proved by applying the triangle inequality and due to (3.16) and [103, Corollary 5.4].

Lemma 3.11. Under Assumption 1.4 and if δ = εζ with ζ ∈ (0, 2), then it holds

lim
ε→0
M̃ε

ma =M0.

Proof. By the triangle inequality, we have∥∥∥M̃ε
ma −M0

∥∥∥ ≤ ∥∥∥M̃ε
ma −Mε

∥∥∥+
∥∥Mε −M0∥∥ .

The first term vanishes as ε → 0 due to Lemma 3.10, [103, Corollary 5.4] and since V ′ is
Lipschitz under Assumption 1.4. The second term vanishes due to the theory of homogenization
as ε→ 0.

3.3.3 Proof of the main results

We can now prove our main results, i.e., Theorems 3.2 to 3.4 and Corollary 3.5.

Proof of Theorem 3.2. Following the proof of Theorem 2.12, we have

Âδma(Xε, T ) = α+ I1 − I2,

where
I1 = 1

T
M̃ma(Xε, T )−1

∫ T

0

1
ε
p′
(
Xε
t

ε

)
V ′(Zεt ) dt,

I2 =
√

2σ
T

M̃ma(Xε, T )−1
∫ T

0
V ′(Zεt ) dWt,
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and where
lim
T→∞

I2 = 0,

uniformly in ε by Lemma 3.10 and the strong law of large numbers for martingales. Considering
I1, due to Assumption 1.4 the ergodic theorem and an integration by parts yield

lim
T→∞

I1 = −α+ (M̃ε
ma)−1σ

∫
R

∫
R
V ′(z)ϕε(x)∂xRε

ma(z | x) dx dz,

where Rε
ma(z | x) is defined in Lemma 3.9, which also implies

lim
T→∞

I1 = −α+Aε(δ),

where
Aε(δ) = 1

δ
(M̃ε

ma)−1 Eµ
ε
ma [(Xε

δ − Zεδ )(Xε
δ −Xε

0)V ′′(Zεδ )] . (3.20)

It remains to show that
lim
ε→0
Aε(δ) = A,

for which we consider two cases, corresponding to δ independent of ε and δ = εζ with ζ ∈ (0, 2),
respectively.

Case 1: δ independent of ε. In this case, the theory of homogenization yields

lim
ε→0
Aε(δ) = 1

δ
(M̃0

ma)−1 Eµ
0
ma
[
(X0

δ − Z0
δ )(X0

δ −X0
0 )V ′′(Z0

δ )
]
,

so that applying Lemma 3.9 for the homogenized equation backwards we have

lim
ε→0
Aε(δ) = (M̃0

ma)−1Σ
∫
R

∫
R
V ′(z)ϕ0(x)∂xR0

ma(z | x) dxdz.

An integration by parts then gives

lim
ε→0
Aε(δ) = (M̃0

ma)−1M̃0
maA = A,

which concludes Case 1.

Case 2: δ = εζ with ζ ∈ (0, 2). Replacing formulas (3.18) with t = 0 and (3.14) into (3.20) gives

Aε(δ) = 2σ
δ2 (M̃ε

ma)−1 Eµ
ε
ma

[(∫ δ

0
t(1 + Φ′(Y εt )) dWt

)(∫ δ

0
(1 + Φ′(Y εt )) dWt

)
V ′′(Zεδ )

]
+ R̃1(ε, δ),

where, due to Lemma 3.10, estimate (3.19) and the fact that by the Itô isometry

Eµ
ε
ma

[∣∣∣∣∣
∫ δ

t

(1 + Φ′(Y εs )) dWs

∣∣∣∣∣
p]1/p

≤ Cδ1/2, (3.21)

it follows that the remainder satisfies∥∥∥R̃1(ε, δ)
∥∥∥ ≤ C (δ1/2 + εδ−1/2 + ε2δ−1

)
. (3.22)

Moreover, since V ′′ is Lipschitz under Assumption 1.4 and due to the triangle inequality, equation
(3.18), estimates (3.15), (3.21) and Lemma 3.10, it holds for all t ∈ [0, δ]

Eµ
ε
ma
[
‖V ′′(Zεδ )− V ′′(Xε

t )‖p
]1/p ≤ C (ε+ δ1/2

)
, (3.23)
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which for ε and δ sufficiently small is at most of order O
(∥∥∥R̃1(ε, δ)

∥∥∥). Hence, by the Itô isometry

Aε(δ) = 2σ
δ2 (M̃ε

ma)−1 Eµ
ε
ma

[(∫ δ

0
t(1 + Φ′(Y εt )) dWt

)(∫ δ

0
(1 + Φ′(Y εt ))V ′′(Xε

t ) dWt

)]
+ R̃2(ε, δ)

= 2σ
δ2 (M̃ε

ma)−1
∫ δ

0
tEµ

ε
ma
[
(1 + Φ′(Y εt ))2V ′′(Xε

t )
]

dt+ R̃2(ε, δ),

where due to (3.22) and (3.23) the remainder satisfies∥∥∥R̃2(ε, δ)
∥∥∥ ≤ C (δ1/2 + εδ−1/2 + ε2δ−1

)
.

Repeating the last part of the proof of Lemma 2.16, we then obtain

Aε(δ) = 2σK
δ2 (M̃ε

ma)−1 Eν
0
[V ′′(X0)]

∫ δ

0
tdt+ R̃2(ε, δ)

= Σ(M̃ε
ma)−1 Eν

0
[V ′′(X0)] + R̃2(ε, δ).

Finally, since δ = εζ with ζ ∈ (0, 2), by (3.22) and due to Lemma 3.11 we obtain

lim
ε→0
Aε(δ) = Σ(M0)−1 Eν

0
[V ′′(X0)],

and an integration by parts gives

lim
ε→0
Aε(δ) = Σ(M0)−1 1

ΣM
0A = A,

which proves Case 2 and therefore concludes the proof.

Proof of Theorem 3.3. Due to Assumption 1.4 the ergodic theorem gives

lim
T→∞

Σ̂δma(Xε, T ) = 1
δ
Eµ

ε
ma [(Xε

δ − Zεδ ) (Xε
δ −Xε

0)] . (3.24)

Following step-by-step Case 2 of the proof of Theorem 3.2 with the value 1 instead of V ′′(Zεδ ),
and without the pre-multiplication by (M̃ε

ma)−1, we obtain the desired result.

Remark 3.12. It is clear from the proof of Theorem 3.3 that it is theoretically not possible to
choose δ independent of ε in the computation of Σ̂δma(Xε, T ). Let L = 1 and V (x) = x2/2, so that
X0 is an OU process. In this case, the process X0 is a Gaussian process such that at stationarity
X0 ∼ GP(0, C(t, s)) where

C(t, s) = Σ
A
e−A|t−s|. (3.25)

By (3.24) and (3.25) we can therefore explicitly compute

lim
ε→0

lim
T→∞

Σ̂δma(Xε, T ) = 1
δ
Eµ

0
ma
[(
X0
δ − Z0

δ

) (
X0
δ −X0

0
)]

= 1− e−δA

δA
Σ,

so that Σ̂δma(Xε, T ) is asymptotically unbiased only if δ → 0.
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Proof of Theorem 3.4. Notice that due to (1.16) we have

〈Xε〉T
2T = σ,

which together with (3.7) and by Theorem 1.8 implies

lim
ε→0

lim
T→∞

Σ̃(Xε, T ) = α>A

(α>α)σ.

Finally, since A = Kα and Σ = Kσ we obtain

lim
ε→0

lim
T→∞

Σ̃(Xε, T ) = Kσ = Σ,

which is the desired result.

Proof of Corollary 3.5. The desired results follow directly from Theorems 2.12, 2.17 and 3.2, [103,
Theorem 3.5] and Theorem 3.4. We remark that the limit in Theorem 2.17 holds true also a.s.
and the proof of [103, Theorem 3.5] can be modified (see Remark 3.13) such that hypothesis (3.7)
is satisfied.

Remark 3.13. The proof of [103, Theorem 3.5] can be modified in order to show that the estimator
Âδsub(Xε, T ) given in (1.17) satisfies

lim
ε→0

lim
T→∞

Âδsub(Xε, T ) = A, a.s. (3.26)

Due to Assumption 1.4(ii) and by the ergodic theorem we have

lim
T→∞

Âδsub(Xε, T ) = −Eν
ε

[V ′(Xε
0)(Xε

δ −Xε
0)]

Eνε [V ′(Xε
0)2]

.

We then employ Lemma 7.17 with f the identity function and ∆ = δ and we notice that the
martingale

Mε
t :=

√
2σ
∫ t

0
(1 + Φ′(Y εs )) dWs,

where Φ is defined in (1.7) and Y εs = Xε
s/ε, is such that Mε

0 = 0. Therefore, we obtain

lim
T→∞

Âδsub(Xε, T ) = A+ R̃(ε, δ),

where the remainder satisfies for a constant C > 0 independent of ε and δ∣∣∣R̃(ε, δ)
∣∣∣ ≤ C (εδ−1 + δ1/2

)
.

Finally, since δ = εζ with ζ ∈ (0, 1) we deduce the desired result (3.26).

3.4 Conclusion
In this chapter we introduced a novel methodology for inferring effective diffusions from obser-
vations of multiscale dynamics based on filtering the data with moving averages. Asymptotic
unbiasedness is rigorously proved by originally exploiting an ergodicity result for SDDEs. Our
method is robust, easy to implement, computationally uninvolved, and outperforms the standard
technique of subsampling on a range of test cases. Moreover, the performances are comparable to
the similar class of estimators that we introduced in Chapter 2. The accuracy of our methodology
in the multiscale, multi-dimensional, and highly-parametrised case is surprisingly high in view of
its simplicity and low computational involvement.
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4 Further results and open prob-
lems
In this chapter we present additional theoretical results related to the homogenization of the
multiscale Langevin dynamics and potential improvements of the filtering methodology, which
appear to work in practice, but are still open problems from the theoretical viewpoint. In particular,
a homogenization result for the multiscale Langevin dynamics and the rate of convergence for the
expectation of smooth functions with respect to its invariant measure towards the expectation with
respect to the homogenized invariant measure are presented in Sections 4.1 and 4.2, respectively.
Then, Section 4.3 is devoted to the Stratonovich formulation of the MLE. Finally, we consider
the estimator of Chapter 2, and in Section 4.4 we study filtered data obtained by repeatedly
applying the exponential filter and in Section 4.5 we analyze its asymptotic normality.

4.1 Homogenization of Langevin dynamics via Γ–convergence

In this section we prove an homogenization result for the backward Kolmogorov equation (BKE)
of the multiscale overdamped Langevin stochastic differential equation (SDE), employing the
theory of the evolutionary Γ-convergence, which is presented in detail in [87]. This theory provides
an abstract framework where it is possible to prove rigorous convergence results for generalized
gradient flows. Therefore, it is a powerful tool which can be employed to show homogenization
results and it is different from the more classic approaches like multiscale expansion, two-scale
convergence and Tartar’s method of oscillating test functions. In addition to the result presented
here for the Langevin dynamics, we believe that evolutionary Γ-convergence can be useful in
more general settings.

4.1.1 Problem setting

We consider the two-scale SDE (1.3) in the nonparameteric form in one dimension, i.e.,

dXε(t) = −V ′(Xε(t)) dt− 1
ε
p′
(
Xε(t)
ε

)
dt+

√
2σ dW (t), (4.1)

and whose homogenized counterpart is therefore

dX0(t) = −KV ′(X0(t)) dt+
√

2Kσ dW (t), (4.2)

We now introduce the assumptions on the slow scale potential V, which will be needed in the
following analysis.
Assumption 4.1. The potential V ∈ C∞(R) is polynomially bounded from above and bounded
from below, and there exist a, b > 0 such that

− V ′(x)x ≤ a− bx2. (4.3)
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Moreover, it holds

lim
|x|→+∞

(
1
4 ‖∇V(x)‖2 − 1

2∆V(x)
)

= +∞ and lim
|x|→+∞

‖∇V(x)‖ = +∞. (4.4)

We recall that, under the dissipative condition (4.3) in Assumption 4.1, the processes Xε(t) and
X0(t) are geometrically ergodic with unique invariant measures νε and ν0, whose densities ϕε
and ϕ0 are given by

ϕε(x) = 1
Cνε

e−
1
σ (V(x)+p( xε )), where Cνε =

∫
R
e−

1
σ (V(x)+p( xε )) dx, (4.5)

and
ϕ0(x) = 1

Cν0
e−

1
σV(x), where Cν0 =

∫
R
e−

1
σV(x) dx. (4.6)

We note that the density ϕε can be rewritten using ϕ0 and the definition of the density ω of the
measure π in (1.8) as

ϕε(x) = Cν0Cπ
Cνε

ω
(x
ε

)
ϕ0(x), (4.7)

where
lim
ε→0

Cνε = Cν0Cπ
T

. (4.8)

We now consider the BKE of the multiscale SDE (4.1)

∂uε

∂t
(t, x) = σ

∂2uε

∂x2 (t, x)−
(
V ′(x) + 1

ε
p′
(x
ε

)) ∂uε

∂x
(t, x),

uε(0, x) = u0(x),
(4.9)

for some initial condition u0, and its homogenized counterpart

∂u0

∂t
(t, x) = Kσ∂

2u0

∂x2 (t, x)−KV ′(x)∂u
0

∂x
(t, x),

u0(0, x) = u0(x),
(4.10)

and we aim to prove an homogenization result for the BKE, i.e., the convergence of the solution
uε of (4.9) to the solution u0 of (4.10) in some sense which will be specified later. In particular,
we employ the theory of evolutionary Γ-convergence which has been developed in [87]. For
the following analysis, it is useful to define the functions wε(t, x) = eλtuε(t, x) and w0(t, x) =
eλtu0(t, x) for a fixed value of λ > 0. Then, due to equations (4.9) and (4.10), they are the
solutions of

∂wε

∂t
(t, x) = σ

∂2wε

∂x2 (t, x)−
(
V ′(x) + 1

ε
p′
(x
ε

)) ∂wε

∂x
(t, x) + λwε(t, x),

wε(0, x) = u0(x),
(4.11)

and
∂w0

∂t
(t, x) = Kσ∂

2w0

∂x2 (t, x)−KV ′(x)∂w
0

∂x
(t, x) + λw0(t, x),

w0(0, x) = u0(x),
(4.12)

respectively. We remark that once we prove the convergence of wε to w0 then the convergence of
uε to u0 follows directly since uε(t, x) = e−λtwε(t, x) and u0(t, x) = e−λtw0(t, x).
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4.1.2 Gradient flow formulation

In this section we reformulate the homogenization problem of the BKE using the Integrated
Evolutionary Variational Estimate (IEVE) presented in [87, Section 3.4.1]. Let us introduce the
gradient system (L2

ϕ0(R), Eε, Ψε), where L2
ϕ0(R) is the Lebesgue space weighted by the invariant

measure of the homogenized process and the functionals Eε, Ψε : L2
ϕ0(R)→ [0,+∞] are defined by

Eε(u) =
{

1
2σ
∫
R(∂xu(x))2ϕε(x) dx+ 1

2λ
∫
R u(x)2ϕε(x) dx if u ∈ H1

ϕ0(R),
+∞ if u ∈ L2

ϕ0(R) \H1
ϕ0(R),

(4.13)

and
Ψε(v) = 1

2

∫
R
v(x)2ϕε(x) dx, (4.14)

where H1
ϕ0(R) is the Sobolev space weighted by the invariant measure ϕ0 of the homogenized

process (4.2). Moreover, we introduce the limit functionals E0 and Ψ0 given by

E0(u) =
{

1
2Kσ

∫
R(∂xu(x))2ϕ0(x) dx+ 1

2λ
∫
R u(x)2ϕ0(x) dx if u ∈ H1

ϕ0(R),
+∞ if u ∈ L2

ϕ0(R) \H1
ϕ0(R),

(4.15)

and
Ψ0(v) = 1

2

∫
R
v(x)2ϕ0(x) dx. (4.16)

Then, equations (4.11) and (4.12) can be rewritten employing the gradient flow formulation as

DΨε(ẇε) = −DEε(wε) and DΨ0(ẇ0) = −DE0(w0), (4.17)

where the dot denotes the derivative with respect to the time variable. Let us finally recall the
definition of continuous, Gamma and Mosco convergence of functionals Fε,F0 : X → [−∞,+∞],
where X is a reflexive Banach space, which will be employed in the analysis. For further details
on the gradient flow formulation and on the different notions of convergence we refer to [87].

Definition 4.2 (Continuous convergence). We say that Fε strongly converges to F0 and we
write Fε C−→ F0 if

uε → u0 in X =⇒ Fε(uε)→ F0(u0).

Moreover, we say that Fε weakly converges to F0 and we write Fε C−⇀ F0 if

uε ⇀ u0 in X =⇒ Fε(uε)→ F0(u0).

Remark 4.3. Notice that weak continuous convergence implies strong continuous convergence.

Definition 4.4 (Gamma convergence). We say that Fε strongly Gamma converges to F0 and
we write Fε Γ−→ F0 if

(G1S) uε → u0 in X =⇒ F0(u0) ≤ lim inf
ε→0

Fε(uε),

(G2S) ∀u0 ∈ X ∃ uε : uε → u0 in X and F0(u0) = lim
ε→0
Fε(uε).

Moreover, we say that Fε weakly Gamma converges to F0 and we write Fε Γ−⇀ F0 if

(G1W) uε ⇀ u0 in X =⇒ F0(u0) ≤ lim inf
ε→0

Fε(uε),

(G2W) ∀u0 ∈ X ∃ uε : uε ⇀ u0 in X and F0(u0) = lim
ε→0
Fε(uε).
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Remark 4.5. Notice that (G2S) =⇒ (G2W) and (G1W) =⇒ (G1S).

Definition 4.6 (Mosco convergence). We say that Fε Mosco converges to F0 and we write
Fε M−→ F0 if

Fε Γ−→ F0 and Fε Γ−⇀ F0.

Remark 4.7. Notice that, in view of Remark 4.5, for Mosco convergence it is enough to check
conditions (G2S) and (G1W).

4.1.3 Homogenization result

In this section we prove the homogenization of the BKE, but we first need some technical results.
In the next two lemmas we prove the convergence of the functionals Ψε and Eε to Ψ0 and E0,
respectively.

Proposition 4.8. Let Ψε and Ψ0 be defined in (4.14) and (4.16) on the space L2
ϕ0(R). Then

Ψε
C−→ Ψ0, where C−→ stands for continuous convergence given in Definition 4.2.

Proof. Let vε be a sequence such that vε → v in L2
ϕ0(R) as ε → 0. Then, by the triangle

inequality we have∣∣∣∣12
∫
R
vε(x)2ϕε(x) dx− 1

2

∫
R
v0(x)2ϕ0(x) dx

∣∣∣∣ ≤ 1
2

∣∣∣∣∫
R
vε(x)2ϕε(x) dx−

∫
R
v0(x)2ϕε(x) dx

∣∣∣∣
+ 1

2

∣∣∣∣∫
R
v0(x)2ϕε(x) dx−

∫
R
v0(x)2ϕ0(x) dx

∣∣∣∣
=: 1

2(Iε1 + Iε2),
(4.18)

and we now show that the two terms in the right-hand side vanish. First, due to equation (4.7)
we obtain

Iε1 ≤
Cν0Cπ
Cνε

∫
R

∣∣vε(x)2 − v0(x)2∣∣ ∣∣∣ω (x
ε

)∣∣∣ϕ0(x) dx,

and, since ω is smooth and periodic and hence bounded, by limit (4.8) and applying the Cauchy–
Schwarz inequality we have for a constant C > 0 independent of ε

Iε1 ≤ C
∥∥vε − v0∥∥

L2
ϕ0 (R)

(
‖vε‖L2

ϕ0 (R) +
∥∥v0∥∥

L2
ϕ0 (R)

)
, (4.19)

which implies that Iε1 → 0 as ε→ 0. We now consider Iε2 and by equations (4.7) and (4.8) and
the periodicity of p we get

lim
ε→0

Iε2 = lim
ε→0

∣∣∣∣Cν0

Cνε

∫
R
v0(x)2e−

1
σ p( xε )ϕ0(x) dx−

∫
R
v0(x)2ϕ0(x) dx

∣∣∣∣ = 0,

which together with (4.18) and (4.19) yields that Ψε(vε)→ Ψ0(v0) as ε→ 0 and concludes the
proof.

Proposition 4.9. Let Eε and E0 be defined in (4.13) and (4.15) on the space L2
ϕ0(R). Then

Eε M−→ E0, where M−→ stands for Mosco convergence given in Definition 4.6.

Proof. In order to prove Mosco convergence, as highlighted in Remark 4.7 we need to show two
conditions, hence we divide the proof in two steps.
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4.1. Homogenization of Langevin dynamics via Γ–convergence

Step 1: liminf estimate. Let uε be a sequence such that uε ⇀ u0 in L2
ϕ0(R) as ε → 0 with

α = lim infε→0 Eε(uε). If α = +∞ then the result is trivial. Otherwise, using equation (4.7) and
since ω is such that there exists a constant β > 0 such that ω(y) ≥ β for all y ∈ R, we have for a
constant C > 0 independent of ε

‖uε‖2H1
ϕ0 (R) ≤ CE

ε(uε),

which implies that, up to a subsequence, uε is bounded in H1
ϕ0(R). Therefore, there exists a

convergent subsequence in H1
ϕ0(R) and, since uε ⇀ u0 in L2

ϕ0(R) and by the uniqueness of the
limit, we deduce that uε ⇀ u0 in H1

ϕ0(R) which yields uε → u0 and ∂xu
ε ⇀ ∂xu

0 in L2
ϕ0(R).

Then, we have

Eε(uε) = 1
2σ
∫
R

(∂xuε(x))2ϕε(x) dx+ 1
2λ
∫
R
uε(x)2ϕε(x) dx

= σCν0Cπ
2Cνε

∫
R

(
∂xu

ε(x)− K
Tω
(
x
ε

)∂xu0(x)
)2

ω
(x
ε

)
ϕ0(x) dx

+ σKCν0Cπ
TCνε

∫
R
∂xu

ε(x)∂xu0(x)ϕ0(x) dx− σK2Cν0Cπ
2T2Cνε

∫
R

1
ω
(
x
ε

)∂xu0(x)2ϕ0(x) dx

+ λCν0Cπ
2Cνε

∫
R
uε(x)2ω

(x
ε

)
ϕ0(x) dx

=: Iε1 + Iε2 + Iε3 + Iε4 ,
(4.20)

and we now study the four terms in the right-hand side separately. By equations (1.12) and (4.8),
the weak convergence of ∂xuε to ∂xu0 in L2

ϕ0(R) and the periodicity of ω we obtain

Iε1 ≥ 0,

lim
ε→0

Iε2 = Kσ
∫
R

(∂xu0(x))2ϕ0(x) dx,

lim
ε→0

Iε3 = −1
2Kσ

∫
R

(∂xu0(x))2ϕ0(x) dx.

(4.21)

Moreover, by the strong convergence of uε to u0 in L2
ϕ0(R) and following an argument similar to

the proof of Proposition 4.8 we deduce

lim
ε→0

Iε4 = 1
2λ
∫
R
u0(x)2ϕ0(x) dx,

which together with (4.20) and (4.21) gives

lim inf
ε→0

Eε(uε) ≥ E0(u0),

which is the desired liminf estimate.
Step 2: recovery sequence. Let u0 ∈ H1

ϕ0(R) and define the sequence uε such that uε(0) =
u0(0) and

∂xu
ε(x) = K

Tω
(
x
ε

)∂xu0(x).

Notice that by the periodicity of ω and equation (1.12) we have uε ⇀ u0 in H1
ϕ0(R), which implies

that uε → u0 in L2
ϕ0(R). Then, reasoning similarly to Step 1 we deduce that

lim
ε→0
Eε(uε) = E0(u0),

which shows that uε is the desired recovery sequence and completes the proof.
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We are now ready to state and prove the homogenization result.

Theorem 4.10. Let uε, u0 : [0, T ] → L2
ϕ0(R) be the solutions of the BKEs (4.9) and (4.10),

respectively. Then for all t > 0 and as ε→ 0 it holds

uε(t) ⇀ u0(t) in H1
ϕ0(R).

Proof. Let us consider the functions wε, w0 : [0, T ] → L2
ϕ0(R) defined as wε(t) = eλtuε(t) and

w0(t) = eλtu0(t) which solve equations (4.11) and (4.12) and recall that their gradient flow
formulation is given by (4.17) with functionals Eε, Ψε, E0, Ψ0 defined in (4.13), (4.14), (4.15)
and (4.16). Then, by equations (4.7) and (4.8) we deduce that there exist three constants
C1, C2, C3 > 0 independent of ε such that

Eε(u) ≥ C1 ‖u‖2H1
ϕ0 (R) ,

and
C2 ‖v‖2L2

ϕ0 (R) ≤ Ψ
ε(v) ≤ C3 ‖v‖2L2

ϕ0 (R) .

Moreover, under conditions (4.4) in Assumption 4.1 and by [5, Propostion A.4] it follows that
H1
ϕ0(R) is compactly embedded into L2

ϕ0(R). Therefore, due to Propositions 4.8 and 4.9 and
applying [87, Theorem 3.4.1] we obtain for all t > 0 and as ε→ 0

wε(t) ⇀ w0(t) in H1
ϕ0(R),

which, recalling that uε(t) = e−λtwε(t) and u0(t) = e−λtw0(t), gives the desired result.

4.2 Rate of weak convergence of multiscale Langevin dynamics
In this section we aim to compute a rate for the weak convergence of the invariant measure of
the multiscale Langevin dynamics towards the corresponding homogenized invariant measure.
We first recall that in [103, Proposition 5.2] it is proved that measure νε with density ϕε in (4.5)
weakly converges to the measure ν0 with density ϕ0 in (4.6) by showing that ϕε ⇀ ϕ0 in L1(R).
Hence, we know that for all bounded and continuous functions f ∈ C0

b (R)

lim
ε→0

Eϕ
ε

[f(X)] = Eϕ
0
[f(X)]. (4.22)

We still work under Assumption 4.1 and we are now interested in studying the rate of convergence
of (4.22), i.e., we want to find r > 0 and a constant C > 0 independent of r such that∣∣∣Eϕε [f(X)]− Eϕ

0
[f(X)]

∣∣∣ ≤ Cεr.
We first need to study some technical results on periodic functions which will be employed later
in the main theorem.

4.2.1 Periodic functions

The next lemma provides a condition which guarantees that the primitive of a periodic function
is periodic as well. This result will be used to prove Lemma 4.12, which is crucial in computing
the rate of weak convergence, which is our main goal.
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Lemma 4.11. Let u : R→ R be a periodic function with period T > 0. If

1
T

∫ T

0
u(y) dy = 0, (4.23)

then any primitive U : R→ R of u is periodic with the same period T. Moreover, U can be chosen
such that

1
T

∫ T

0
U(y) dy = 0. (4.24)

Proof. The general form of the primitive U is

U(y) =
∫ y

0
u(t) dt+ c, with c ∈ R.

Then, by hypothesis (4.23) and since u is periodic with period T we have

U(y + T) =
∫ y+T

0
u(t) dt+ c =

∫ T

0
u(t) dt+

∫ T+y

T
u(t) dt+ c =

∫ y

0
u(t) dt+ c = U(y),

which shows that U is periodic with period T. Finally, choosing

c = − 1
T

∫ T

0

∫ y

0
u(t) dtdy

gives condition (4.24) and completes the proof.

Lemma 4.12. Let g ∈ Ckb (R) and u : R→ R be a periodic function with period T > 0 and such
that

1
T

∫ T

0
u(y) dy = 0.

Then there exists C > 0 independent of ε such that∣∣∣∣∫
R
g(x)e− 1

σV(x)u
(x
ε

)
dx
∣∣∣∣ ≤ Cεk.

Proof. Integrating by parts and noticing that the boundary term vanishes we have∫
R
g(x)e− 1

σV(x)u
(x
ε

)
dx = −ε

∫
R

d
dx

(
g(x)e− 1

σV(x)
)
U
(x
ε

)
dx,

where, due to Lemma 4.11, the primitive U is periodic and has zero mean over the period.
Moreover, periodicity and continuity give the boundedness of U . Iterating this procedure k times
yields ∫

R
g(x)e− 1

σV(x)u
(x
ε

)
dx = (−1)kεk

∫
R

dk

dxk
(
g(x)e− 1

σV(x)
)
Uk
(x
ε

)
dx,

where Uk is the k-th antiderivative of u obtained choosing at each step the primitive with zero
mean over the period and it is therefore bounded. It now remains to compute the derivative of
order k inside the integral and using the general Leibniz rule and the Faà di Bruno’s formula we
get

dk

dxk
(
g(x)e− 1

σV(x)
)

=
k∑

n=0

(
k

n

)
g(k−n)(x) dn

dxn
(
e−

1
σV(x)

)
= e−

1
σV(x)

k∑
n=0

(
k

n

)
g(k−n)(x)

n∑
i=0

1
i!

(
1
σ

)i i∑
j=0

(−1)j
(
i

j

)
V(x)i−j dn

dxn
(
V(x)j

)
.
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Hence, there exists a constant C̃ > 0 independent of ε such that∣∣∣∣∫
R
g(x)e− 1

σV(x)u
(x
ε

)
dx
∣∣∣∣ ≤ C̃εk k∑

n=0

n∑
i=0

i∑
j=0

∫
R

∣∣∣g(k−n)(x)
∣∣∣ |V(x)|i−j

∣∣∣∣ dn

dxn
(
V(x)j

)∣∣∣∣ e− 1
σV(x) dx,

and defining

C = C̃

k∑
n=0

n∑
i=0

i∑
j=0

∫
R

∣∣∣g(k−n)(x)
∣∣∣ |V(x)|i−j

∣∣∣∣ dn

dxn
(
V(x)j

)∣∣∣∣ e− 1
σV(x) dx

gives the desired result.

Remark 4.13. Notice that similar results can be proven in the multidimensional case, i.e., when R
is replaced by Rd and the interval [0,T] is replaced by the hypercube T = [0,T]d. In particular,
in Lemma 4.11 we consider the vector U : T → Rd such that divy U = u with components

U1(y) =
∫ y1

0
u(t, y2, . . . , yd) dt− 1

Td

∫
T

∫ y1

0
u(t, y2, . . . , yd) dtdy,

Ui(y) = 0 for all i = 2, . . . , d,
and observe that it is periodic with period T in all directions and it satisfies

1
Td

∫
T
U(y) dy = 0.

Moreover, in Lemma 4.12 we consider functions g ∈ Ckb (Rd) and the proof remains the same if all
the derivatives with respect to x are replaced by the partial derivatives with respect to the first
component x1, in fact the following integration by parts holds∫

Rd
g(x)e− 1

σV(x)u
(x
ε

)
dx = ε

∫
Rd
g(x)e− 1

σV(x) divx
(
U
(x
ε

))
dx

= −ε
∫
Rd
∇
(
g(x)e− 1

σV(x)
)
· U
(x
ε

)
dx

= −ε
∫
Rd

∂

∂x1

(
g(x)e− 1

σV(x)
)
U1

(x
ε

)
dx,

which finally yields the rate of convergence εk.

4.2.2 Main result

We are now ready to state the main result of this section, i.e., the rate of convergence of the limit
in (4.22).
Theorem 4.14. Let f ∈ Ckb (R). Then there exists a constant C > 0 independent of ε such that∣∣∣Eϕε [f(X)]− Eϕ

0
[f(X)]

∣∣∣ ≤ Cεk.
Proof. By definition of ϕε and ϕ0 in (4.5) and (4.6) we obtain∣∣∣Eϕε [f(X)]− Eϕ

0
[f(X)]

∣∣∣ =
∣∣∣∣∫

R
f(x)e− 1

σV(x)
(

1
Cνε

e−
1
σ p( xε ) − 1

Cν0

)
dx
∣∣∣∣

≤ 1
Cνε

∣∣∣∣∫
R
f(x)e− 1

σV(x)
(
e−

1
σ p( xε ) − Cπ

T

)
dx
∣∣∣∣

+ 1
Cνε

∣∣∣∣CπCν0

T
− Cνε

∣∣∣∣ ∣∣∣∣∫
R
f(x) 1

Cν0
e−

1
σV(x) dx

∣∣∣∣
=: Iε1 + Iε2 .

(4.25)
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We now consider the second term in the right-hand side and we have∣∣∣∣CπCν0

T
− Cνε

∣∣∣∣ =
∣∣∣∣∫

R
e−

1
σV(x)

(
Cπ
T
− e−

1
σ p( xε )

)
dx
∣∣∣∣ ,

then we define the function
u(y) = Cπ

T
− e− 1

σ p(y),

and observe that
1
T

∫ T

0
u(y) dy = 0.

Therefore, applying Lemma 4.12 we deduce the existence of a constant C̃2 > 0 independent of ε
such that ∣∣∣∣CπCν0

T
− Cνε

∣∣∣∣ ≤ C̃2ε
k,

which together with the boundedness of the sequence {Cνε} due to (4.8) yields

|Iε2 | ≤ C2ε
k, (4.26)

for a constant C2 > 0 independent of ε. We now study the term I1 and, similarly as above,
applying Lemma 4.12 and due to the boundedness of the sequence {Cνε} we obtain

|Iε1 | ≤ C1ε
k, (4.27)

for a constant C1 > 0 independent of ε. Finally, employing estimates (4.26) and (4.27) together
with bound (4.25) and defining C = max{C1, C2} give the desired result.

Remark 4.15. Notice that Theorem 4.14 can be extended due to Remark 4.13 to the multidi-
mensional setting (f ∈ Ckb (Rd) with d > 1). Moreover, the result easily generalizes to the case
where the function f takes values in RL with L > 1. In both cases we obtain the same rate of
convergence εk.

4.3 Drift estimator employing Stratonovich integral

We consider the one-dimensional multiscale and homogenized SDEs (1.10) and (1.11) with L = 1
for simplicity, i.e., α,A ∈ R. We still aim to correctly estimate the drift coefficient A of the
effective equation (1.11) given a trajectory (Xε(t))t∈[0,T ] of the multiscale dynamics (1.10). In
this section we show how one can modify the MLE in order to make it asymptotically unbiased
without employing filtered data as done in Chapters 2 and 3. We consider the Stratonovich
formulation of the MLE given in [41]

ÂStrat(Xε, T ) =
−
∫ T

0 V ′(Xε(t)) ◦ dXε(t) + Σ
∫ T

0 V ′′(Xε(t)) dt∫ T
0 V ′(Xε(t))2 dt

, (4.28)

and we show that it is asymptotically unbiased in the limit of infinite data. We remark that, even
if this technique is simple to implement and does not depend on hyperparameters, it requires the
knowledge of the diffusion coefficient Σ of the homogenized equation (1.11). Therefore, in case Σ
is known one should employ this estimator rather than using the estimators of Chapters 2 and 3,
as this approach is simpler and does not requires the computation of the filtered data. However,
this assumption is not realistic in most applications, where the diffusion coefficient is in general
unknown and hence our estimators with filtered data should be employed.

81



Chapter 4. Further results and open problems

4.3.1 Asymptotic unbiasedness

In the following theorem we prove that the estimator ÂStrat(Xε, T ) defined in (4.28) is asymptot-
ically unbiased in the limit of infinite trajectory (T →∞) and when the multiscale parameter
vanishes (ε→ 0). As usual, for economy of notation, we will simply write Xε

t instead of Xε(t).

Theorem 4.16. Under Assumption 1.4 it holds

lim
ε→0

lim
T→∞

ÂStrat(Xε, T ) = A, a.s.

Proof. Replacing equation (1.10) in the definition (4.28) we have

ÂStrat(Xε, T ) = α+
1
T

∫ T
0 V ′(Xε

t ) 1
εp
′
(
Xεt
ε

)
dt

1
T

∫ T
0 V ′(Xε

t )2 dt
−

√
2σ
T

∫ T
0 V ′(Xε

t ) ◦ dWt

1
T

∫ T
0 V ′(Xε

t )2 dt
+

Σ
T

∫ T
0 V ′′(Xε

t ) dt
1
T

∫ T
0 V ′(Xε

t )2 dt
=: α+ I1(ε, T )− I2(ε, T ) + I3(ε, T ),

(4.29)
and we now consider the three terms in the right-hand side separately. First, following the proof
of [103, Theorem 3.4] we obtain

lim
ε→0

lim
T→∞

I1(ε, T ) = 0, a.s. (4.30)

Then, converting the Stratonovich integral into the Itô integral we have

I2(ε, T ) =

√
2σ
T

∫ T
0 V ′(Xε

t ) dWt

1
T

∫ T
0 V ′(Xε

t )2 dt
+

σ
T

∫ T
0 V ′′(Xε

t ) dt
1
T

∫ T
0 V ′(Xε

t )2 dt
=: I1

2 (ε, T ) + I2
2 (ε, T ),

(4.31)

and following the proof of [103, Theorem 3.4] we obtain

lim
ε→0

lim
T→∞

I1
2 (ε, T ) = 0, a.s. (4.32)

Then, the ergodic theorem and the homogenization theory give

lim
ε→0

lim
T→∞

I2
2 (ε, T ) = σ

Eν
0
[V ′′(X)]

Eν0 [V ′(X)2]
, a.s.,

lim
ε→0

lim
T→∞

I3(ε, T ) = Σ Eν
0
[V ′′(X)]

Eν0 [V ′(X)2]
, a.s.,

and, due to the invariant measure ν0 with density ϕ0 defined in (2.13), an integration by parts
yields

Eν
0
[V ′′(X)] = A

Σ Eν
0
[V ′(X)2] = α

σ
Eν

0
[V ′(X)2].

Therefore, we have

lim
ε→0

lim
T→∞

I2
2 (ε, T ) = α, a.s., and lim

ε→0
lim
T→∞

I3(ε, T ) = A, a.s.,

which together with decompositions (4.29) and (4.31) and limits (4.30) and (4.32) give the desired
result.
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Figure 4.1 – Numerical results for the drift estimator ÂStrat(Xε, T ). The dotted line represents
the exact drift coefficient A.

4.3.2 Numerical experiment

We now present numerical experiments which confirm our theoretical result. We consider equation
(1.10) and we set the drift coefficient α = 1, the diffusion coefficient σ = 1 and the fast-scale
potential p(y) = cos(y). We then study four different slow-scale potentials

V1(x) = x2

2 , V2(x) = x4

4 , V3(x) = x6

6 , V4(x) = x4

4 −
x2

2 ,

and we generate data up to the final time T = 104 employing the Euler–Maruyama (EM) method
with a fine time step, in particular we set h = ε3. In Figure 4.1 we show how the estimation
evolves with respect to time for different values of the multiscale parameter ε = 0.05, 0.1, 0.2. We
observe that the results stabilize for large values of the final time T , and that they improve when
the multiscale parameter ε is smaller.

4.4 Iterated exponential filter
In this section we present a possible development of the filtering methodology presented in
Chapter 2 for inferring the drift coefficient of the homogenized equation (1.11) given continuous
observations from the multiscale system (1.10). Since we noticed that using exponentially filtered
data was beneficial for the unbiasedness of the estimator, the idea is now to repeatedly apply the
filter to the original data multiple times, in order to obtain new smoother data. We remark that
this is still a work in progress and rigorous theoretical results have not been proven yet. However,
preliminary numerical experiments suggest that this approach could provide estimators which are
unbiased independently of the length of the filtering width, and therefore more robust.
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Consider the filter (2.1) with β = 1

kδ,1exp(r) = 1
δ
e−r/δ,

and for a positive integer N let the process ZεN := (ZεN (t), 0 ≤ t ≤ T ) be defined by

ZεN (t) :=
∫ t

0
k(t− s1)

∫ s1

0
k(s1 − s2) · · ·

∫ sN −1

0
k(sN −1 − sN )Xε

sN
dsN · · · ds2 ds1. (4.33)

The filtered process can be rewritten in different fashions. In particular, noticing that

kδ,1exp(t− s)kδ,1exp(s− r) = 1
δ
kδ,1exp(t− r),

we can write

ZεN (t) = 1
δN −1

∫ t

0

∫ s1

0
· · ·
∫ sN −1

0
kδ,1exp(t− sN )Xε

sN
dsN · · · ds2 ds1. (4.34)

Then, applying Cauchy’s iterated integral rule to (4.34), we obtain

ZεN (t) = 1
δN −1(N − 1)!

∫ t

0
(t− s)N −1kδ,1exp(t− s)Xε

s ds.

This shows that filtering iteratively the data corresponds to a single application of a different
filter, which we call kδ,Nexp and which is defined as

kδ,Nexp (r) = 1
δN (N − 1)!r

N −1e−r/δ. (4.35)

Moreover, we showed in Chapter 2 that the original trajectory Xε(t) and the single-filtered
process Zε1(t) satisfy the system of SDEs

dXε(t) = −α · V ′(Xε(t)) dt− 1
ε
p′
(
Xε(t)
ε

)
dt+

√
2σ dW (t),

dZε1(t) = 1
δ

(Xε(t)− Zε1(t)) dt.

Clearly, with the same argument we have that recursively it holds

dXε(t) = −α · V ′(Xε(t)) dt− 1
ε
p′
(
Xε(t)
ε

)
dt+

√
2σ dW (t),

dZεn(t) = 1
δ

(
Zεn−1(t)− Zεn(t)

)
dt, n = 1, . . . ,N ,

(4.36)

with the initialization Zε0(t) ≡ Xε(t), and therefore the process (Xε(t), Zε1(t), . . . , ZεN (t)) satisfy
a system of N + 1 SDEs. The corresponding stationary Fokker–Planck equation (FPE) for the
density ρε,Nexp (x, z) of the invariant measure µε,Nexp (x, z) is given by

σ∂2
xxρ

ε,N
exp (x, z) + ∂x

((
α · V ′(x) + 1

ε
p′
(x
ε

))
ρε,Nexp (x, z)

)
+ 1
δ
∂z1
(
(z1 − x)ρε,Nexp (x, z)

)
+ 1
δ

N∑
n=2

∂zn
(
(zn − zn−1)ρε,Nexp (x, z)

)
= 0,

(4.37)

where z = (z1, . . . , zN ). Finally, the new estimator Âδ,Nexp (Xε, T ) is obtained in the same way
as Âδ,1exp(Xε, T ), by replacing the data Zε filtered once with the data ZεN filtered N times. In
the following we will simply write Xε

t and (ZεN )t instead of Xε(t) and ZεN (t), respectively, and
similarly for all stochastic processes.

84



4.4. Iterated exponential filter

4.4.1 Statement of main results

We first present a negative result which corresponds to Theorem 2.18 for the exponential filter. In
particular, we show that even if we apply the filter N times, if the filtering width is sufficiently
small, then the estimator is asymptotically biased and converges to the drift coefficient α of the
multiscale equation (1.10). We remark that the proof of Theorem 4.17 requires some technical
results, contained in Lemmas 4.28 to 4.30, which for convenience are postponed to Section 4.4.3.

Theorem 4.17. If N = bδ−γe, where b·e denotes rounding to the nearest integer, with γ ∈ [0, 1)
and if δ = εζ with ζ > 2/(1− γ), it holds

lim
ε→0

lim
T→∞

Âδ,Nexp (Xε, T ) = α, a.s.,

where α is the drift coefficient of the multiscale equation (1.10).

Proof. By the proof of Theorem 2.18, we have that

Âδ,Nexp (Xε, T ) = α+ Iε1(T )− Iε2(T ),

where it holds
lim
T→∞

Iε2(T ) = 0, a.s.,

independently of ε and where Iε1(T ) satisfies

lim
T→∞

Iε1(T ) = (M̃ε,N
exp )−1 (Jε1 + Jε2 ) ,

with
M̃ε,N

exp := Eµ
ε,N
exp [V ′(Xε)⊗ V ′(ZεN )] ,

Jε1 := Eµ
ε,N
exp

[
1
ε
p′
(
Xε

ε

)
V ′(Xε)

]
,

Jε2 := Eµ
ε,N
exp

[
1
ε
p′
(
Xε

ε

)
V ′′(X̃ε)(ZεN −Xε)

]
,

where X̃ε lays between Xε and ZεN . A similar reasoning as in the proof of Theorem 2.18 allows
to conclude that

lim
ε→0

Jε1 = 0, (4.38)

and an application of the Hölder’s inequality, Lemmas 4.28 and 4.29 below yields

‖Jε2‖ ≤ C
(
N δε−2 + N 1/2δ1/2ε−1

)
.

Let us remark that since N = bδ−γe ≤ Cδ−γ with γ ∈ [0, 1) we have that the quantity (N − 1)δ
is bounded and therefore Lemma 4.29 holds. We then obtain

‖Jε2‖ ≤ C
(
δ1−γε−2 + δ(1−γ)/2ε−1

)
,

which, since by hypothesis δ = εζ with ζ > 2/(1− γ), gives

lim
ε→0
‖Jε2‖ = 0. (4.39)

Finally, Lemma 4.30 together with (4.38) and (4.39) gives that Iε1(T )→ 0 for T →∞ and ε→ 0,
which in turn implies the desired result.
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Figure 4.2 – On the x axis, the value δ of the filtering width. The horizontal solid lines represent the
drift coefficients α and A of (1.10) and (1.11), respectively. The dashed, dash-dotted and dotted
lines represent the value of Âδ,Nexp (Xε, T ), with N = bδ−γe and γ = {0, 1/3, 2/3}, respectively.

Inspired by the fast switch between two completely different regimes for the filter in Chapter 2
and based on the previous theorem, we propose the following conjecture. Initial steps which we
believe are useful to prove it and which are similar to some results in Chapter 2, are presented in
Section 4.4.3. Even if we have not been able to prove the conjecture yet, the numerical experiment
in the next section seems to indicate that it holds true.

Conjecture 4.18. If N = bδ−γe, where b·e denotes rounding to the nearest integer, with
γ ∈ [0, 1) and if δ = εζ with 0 ≤ ζ < 2/(1− γ), it holds

lim
ε→0

lim
T→∞

Âδ,Nexp (Xε, T ) = A, a.s.,

where A is the drift coefficient of the homogenized equation (1.11).

Remark 4.19. Notice that by letting γ → 1, then it is possible to take ζ → ∞, which in turn
implies δ → 0 and N →∞. Therefore, the smaller the filtering width is, the more we have to
apply the filter to the data. This means that, by iterating the filtering procedure, it would be
possible to filter at any regime as long as the number of iterations is sufficiently large.

4.4.2 Numerical experiment

We consider V (x) = x2/2, so that the solution of the homogenized equation (1.11) is a Ornstein–
Uhlenbeck (OU) process. We then choose the fluctuating potential as p(y) = cos(y) and
the multiscale parameter ε = 0.1. We generate data Xε = (Xε

t , 0 < t ≤ 103) from the
multiscale equation, sampled at a high frequency. We then compute ZεN , with N = bδ−γe and
γ ∈ {0, 1/3, 2/3}, and the estimator Âδ,Nexp (Xε, T ). Let us remark that for γ = 0 one gets N = 1
and therefore the same framework as Chapter 2. Finally, we fix δ = εζ , varying ζ ∈ (0, 3). Results,
given in Figure 4.2, show the benifts of the iterated approach. Indeed, where for N = 1 (i.e.,
γ = 0) results quickly diverge from the drift coefficient A of the homogenized equation towards
the coefficient α in (1.11), multiple applications of the filter, well-calibrated with respect to the
filtering width δ, give extremely robust results with respect to the latter.

4.4.3 Some partial results toward proving Conjecture 4.18

In this section we introduce some technical results which may be useful to show Conjecture 4.18.
Their proofs is similar to the proofs of the corresponding results for the exponential filter in
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Chapter 2, but it is in general more complex as it is important to highlight the dependence on
the number N of times we apply the filter, in addition to the parameter δ of the filtering width.
In the first part we show some inequalities for the new iterated filter, and in the second part we
study the ergodic properties of the corresponding filtered data.

Properties of the filter

Lemma 4.20. It holds ∫ t

0
kδ,Nexp (t− s) ds = Ck(t,N , δ),

where 0 < Ck(t,N , δ) < 1. Moreover, if t > 6(N − 1)δ, it holds

1− Ck(t,N , δ) ≤ Ce−t/(2δ),

for a constant C > 0 independent of δ, N and t.

Proof. The change of variables u = (t− s)/δ yields∫ t

0
kδ,Nexp (t− s) ds = 1

(N − 1)!

∫ t/δ

0
uN −1e−u ds = 1

(N − 1)!γ
(

N ,
t

δ

)
=: Ck(t,N , δ),

where γ is the lower incomplete Gamma function. Now, since 0 < γ(N , t/δ) < Γ(N ), where Γ
is the Gamma function, and Γ(N ) = (N − 1)!, we have 0 < Ck(t,N , δ) < 1. Let us remark
that it holds

1− Ck(t,N , δ) = 1− 1
(N − 1)!γ

(
N ,

t

δ

)
= 1

(N − 1)!Γ
(

N ,
t

δ

)
,

where Γ is the upper incomplete Gamma function. Let first N = 1. In this case, we have
Γ(1, t/δ) = e−t/δ ≤ e−t/(2δ), so that the desired result holds for all t ≥ 0. We now consider the
case N ≥ 2. For any real numbers a, x, the bound

Γ(a, x) ≤ Bxa−1e−x,

holds for any B > 1 and for x > B(a − 1)/(B − 1) [90]. We take B = 6/5 and consider
t > 6(N − 1)δ so that the bound above holds for Γ(N , t/δ). Moreover, by Stirling’s formula, we
have for N ≥ 2 that (N − 1)! ≥

√
2π(N − 1)(N − 1)N −1e−(N −1). Then, we obtain

1− Ck(t,N , δ) ≤ C e
−t/δ+N −1
√

N − 1

(
t

δ(N − 1)

)N −1
,

for a constant C > 0 and independent of t, δ and N . Then, since
√

N − 1 ≥ 1 we have

1− Ck(t,N , δ) ≤ Ce−t/δ+N −1
(

t

δ(N − 1)

)N −1

= C exp
(

(N − 1)
(

1− t

δ(N − 1) + log
(

t

δ(N − 1)

)))
Now, let us remark that if x > 6 it holds 1 + log x < x/2, so that by choosing x = t/(δ(N − 1))
and since t > 6(N − 1)δ we obtain

1− Ck(t,N , δ) ≤ Ce−t/(2δ),

which proves the desired result.
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Lemma 4.21. Let g ∈ C0((0, T )), N be a positive integer and kδ,Nexp be defined in (4.35). Then,
it holds ∣∣∣∣∫ t

0
kδ,Nexp (t− s)g(s) ds

∣∣∣∣p ≤ ∫ t

0
kδ,Nexp (t− s) |g(s)|p ds,

for all p ≥ 1.

Proof. We employ the equivalent formulation of (4.33) for the filter, with a generic continuous
function g(s) instead of Xε

s . Let us define

I1(sN −1) :=
∫ sN −1

0
kδ,1exp(sN −1 − sN )g(sN ) dsN ,

and for n = 2, . . . ,N

In(sN −n) :=
∫ sN −n

0
kδ,1exp(sN −n − sN −n+1) · · ·

· · ·
∫ sN −1

0
kδ,1exp(sN −1 − sN )g(sN ) dsN · · · dsN −n+1,

with s0 ≡ t. We then prove the result by induction on n. For n = 1, the result holds due to
Lemma 2.26. For the recursion step, assume that it holds

|In(sN −n)|p ≤
∫ sN −n

0
kδ,1exp(sN −n − sN −n+1) · · ·

· · ·
∫ sN −1

0
kδ,1exp(sN −1 − sN ) |g(sN )|p dsN · · · dsN −n+1.

We can then write

In+1(sN −n−1) =
∫ sN −n−1

0
kδ,1exp(sN −n−1 − sN −n)In(sN −n) dsN −n.

Now In(sN −n) is a continuous function of sN −n and therefore again due to Lemma 2.26 we have

|In+1(sN −n−1)|p ≤
∫ sN −n−1

0
kδ,1exp(sN −n−1 − sN −n) |In(sN −n)|p dsN −n,

which, combined with the induction hypothesis, yields the desired result.

Lemma 4.22. Let p ≥ 1. Then, it holds∫ t

0
kδ,Nexp (t− s)(t− s)p ds ≤ Γ(p+ 1)N pδp.

Proof. It holds∫ t

0
kδ,Nexp (t− s)(t− s)p ds = 1

δN −1(N − 1)!

∫ t

0
kδ,1exp(t− s)(t− s)N +p−1 ds,

so that from the proof of Lemma 2.27, we obtain∫ t

0
kδ,Nexp (t− s)(t− s)p ds ≤ Γ(N + p)

(N − 1)! δ
p,
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where Γ denotes the Gamma function. It now remains to show that

Γ(N + p)
(N − 1)! ≤ Γ(p+ 1)N p, (4.40)

which we prove by induction. The case N = 1 is trivial. Let us now assume that (4.40) holds
true, then by the properties of the Gamma function, it holds

Γ(N + 1 + p)
N ! = (N + p)Γ(N + p)

N (N − 1)! ≤ N + p

N
Γ(p+ 1)N p = Γ(p+ 1)(N p + pN p−1). (4.41)

Moreover, notice that for p ≥ 1

(N + 1)p = N p

(
1 + 1

N

)p
≥ N p

(
1 + p

N

)
= N p + pN p−1,

which together with (4.41) gives the desired result.

Ergodic properties

Lemma 4.23. Let (Xε, Zε1 , . . . , Z
ε
N )> be the solution of (4.36) and let mε,Nt be the measure

induced by the joint process at time t. Then, the measure mε,Nt admits a smooth density with
respect to the Lebesgue measure.

Proof. We have to show that the joint process solution to (4.36) is hypo-elliptic. Denoting as
f : R→ R the function

f(x) = −α · V ′(x)− 1
ε
p′
(x
ε

)
,

the generator of the process (Xε, Zε1 , . . . , Z
ε
N )> is given by

L = f∂x + σ∂2
xx + 1

δ
(x− z1)∂z1 + 1

δ

N∑
n=2

(zn−1 − zn)∂zn =: X0 + σX 2
1 ,

where

X0 = f∂x + 1
δ

(x− z1)∂z1 + 1
δ

N∑
n=2

(zn−1 − zn)∂zn , X1 = ∂x.

Then we have
A0 = Lie(X1) = Lie(∂x)

A1 = Lie([X0,X1]) ⊃ Lie
(
−1
δ
∂z1

)
A1 = Lie([X0, [X0,X1]]) ⊃ Lie

(
1
δ2 ∂z2

)
. . .

AN ⊃ Lie
(

(−1)N

δN
∂zN

)
.

Consequently,
H = Lie (A0,A1, . . . ,AN ) ⊃ Lie (∂x, ∂z1 , . . . , ∂zN ) ,

which spans the tangent space of R1+N at (x, z1, . . . , zN ), denoted Tx,z1,...,zN R1+N . The desired
result then follows from Hörmander’s theorem (see e.g. [101, Chapter 6]).
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Lemma 4.24. Let ρε,Nexp be the solution of (4.37) and let us write

ρε,Nexp (x, z) = ϕε(x)Rε,N
exp (x, z), (4.42)

where ϕε is the marginal density of Xε, i.e.,

ϕε(x) =
∫
RN

ρε,Nexp (x, z) dz.

Then, it holds

ϕε(x) = 1
Cνε

exp
(
− 1
σ
α · V (x)− 1

σ
p
(x
ε

))
, (4.43)

where
Cνε =

∫
R

exp
(
− 1
σ
α · V (x)− 1

σ
p
(x
ε

))
dx.

Moreover, it holds

σδ

∫
R1+N

V ′(zN )ϕε(x)∂xRε,N
exp (x, z) dx dz = Eµ

ε,N
exp [(Xε − ZεN )(ZεN −1 − ZεN )V ′′(ZεN )].

Proof. Integrating equation (4.37) with respect to z1, . . . , zN we obtain the stationary FPE for
the process Xε, i.e.

σ(ϕε)′′(x) + d
dx

((
α · V ′(x) + 1

ε
p′
(x
ε

))
ϕε(x)

)
= 0, (4.44)

whose solution is given by

ϕε(x) = 1
Cνε

exp
(
− 1
σ
α · V (x)− 1

σ
p
(x
ε

))
,

and which proves (4.43). In view of (4.42) and (4.44), equation (4.37) can be rewritten as

∂x
(
σϕε∂xR

ε,N
exp

)
+ ∂z1

(
1
δ

(z1 − x)ϕεRε,N
exp

)
+

N∑
n=2

∂zn

(
1
δ

(zn − zn−1)ϕεRε,N
exp

)
= 0.

We now multiply the equation above by a continuous differentiable function f : R1+N → RL,
f = f(x, z), and integrate with respect to x and z1, . . . , zN . Then an integration by parts yields

σ

∫
R1+N

∂xf(x, z)ϕε(x)∂xRε,N
exp (x, z) dx dz = 1

δ

∫
R1+N

∂z1f(x, z)(x− z1)ϕε(x)Rε,N
exp (x, z) dxdz

+
N∑
n=2

1
δ

∫
R1+N

∂znf(x, z)(zn−1 − zn)ϕε(x)Rε,N
exp (x, z) dxdz,

which implies the following identity in RL

σδ

∫
R1+N

∂xf(x, z)ϕε(x)∂xRε,N
exp (x, z) dxdz = Eµ

ε,N
exp [∂z1f(Xε, Zε1 , . . . , Z

ε
N )(Xε − Zε1)]

+
N∑
n=2

Eµ
ε,N
exp

[
∂znf(Xε, Zε1 , . . . , Z

ε
N )(Zεn−1 − Zεn)

]
.

Finally, choosing
f(x, z1, . . . , zN ) = (x− zN )V ′(zN ) + V (zN ),

we obtain the desired result.
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Proposition 4.25. It holds

Xε
t − (ZεN )t = δ

N∑
n=1

(Bεn)t +R(ε, δ),

where the stochastic processes (Bεn)t are defined for all n = 1, . . . ,N as

(Bεn)t =
√

2σ
∫ t

0
kδ,nexp(t− s)(1 + Φ′(Y εs )) dWs. (4.45)

Moreover, the following estimates are satisfied(
Eν

ε

∣∣∣∣∣
N∑
n=1

(Bεn)t

∣∣∣∣∣
p)1/p

≤ CN 1/2δ−1/2, (4.46)

(
Eν

ε

|(BεN )t|2
)1/2

≤ CN −1/4δ−1/2, (4.47)(
Eν

ε

|R(ε, δ)|p
)1/p

≤ C (ε+ N δ) . (4.48)

Proof. Denoting Y εt := Xε
t /ε, we will use the decomposition [103, Formula 5.8]

Xε
t −Xε

s = −
∫ t

s

(α · V ′(Xε
r ))(1 + Φ′(Y εr )) dr

+
√

2σ
∫ t

s

(1 + Φ′(Y εr )) dWr − ε(Φ(Y εt )− Φ(Y εs )).
(4.49)

Recall that by definition of (ZεN )t and by Lemma 4.20 we have

Xε
t − (ZεN )t =

∫ t

0
kδ,Nexp (t− s)(Xε

t −Xε
s ) ds+ (1− Ck(t,N , δ))Xε

t .

Plugging the decomposition (4.49) into the equation above, we obtain

Xε
t − (ZεN )t = Iε1(t) + Iε2(t) + Iε3(t) + Iε4(t),

where
Iε1(t) := −

∫ t

0
kδ,Nexp (t− s)

∫ t

s

(α · V ′(Xε
r ))(1 + Φ′(Y εr )) dr ds,

Iε2(t) :=
√

2σ
∫ t

0
kδ,Nexp (t− s)

∫ t

s

(1 + Φ′(Y εr )) dWr ds,

Iε3(t) := −ε
∫ t

0
kδ,Nexp (t− s)(Φ(Y εt )− Φ(Y εs )) ds,

Iε4(t) = (1− Ck(t,N , δ))Xε
t .

Reasoning similarly as in the proof of Proposition 2.14, since Φ and Φ′ are bounded and Xε
t has

bounded moments of any order by [103, Corollary 5.4], due to Lemma 4.20, Lemma 4.21 and
Lemma 4.22 we deduce for t > 6(N − 1)δ(

Eν
ε

|Iε1 |
p
)1/p

≤ C
∫ t

0
kδ,Nexp (t− s)(t− s) ds ≤ CN δ,(

Eν
ε

|Iε3 |
p
)1/p

≤ Cε,(
Eν

ε

|Iε4 |
p
)1/p

≤ Ce−t/(2δ).

(4.50)
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Let us now consider Iε2(t). We introduce the notation

Qεt :=
∫ t

0
(1 + Φ′(Y εr )) dWr,

and therefore we have
Iε2(t) =

√
2σ
∫ t

0
kδ,Nexp (t− s)(Qεt −Qεs) ds.

Applying iteratively the Itô formula to un(s,Qεs) where un(s, x) = kδ,nexp(t−s)x for all n = 1, . . . ,N
yields

Iε2(t) =
√

2σ
(

(Ck(t,N , δ)− 1)Qεt + δ

N∑
n=1

∫ t

0
kδ,nexp(t− s) (1 + Φ′(Y εs )) dWs

)

= δ

N∑
n=1

(Bεn)t −
√

2σ(1− Ck(t,N , δ))Qεt =: δ
N∑
n=1

(Bεn)t − Ĩε2(t).

(4.51)

where the processes Bεn, n = 1, . . . ,N are defined in (4.45). For the remainder Ĩε2(t), as in the
proof of Proposition 2.14, we have

(E |Qεt |
p)2 ≤ E |Qεt |

2p ≤ Ctp−1
∫ t

0
E |1 + Φ′(Y εr )|2p dr ≤ Ctp,

which due to Lemma 4.20 implies for all t > 6(N − 1)δ(
Eφ

ε
∣∣∣Ĩε2(t)

∣∣∣p)1/p
≤ C
√
te−t/(2δ), (4.52)

which together with (4.50) gives estimate (4.48). Let us now remark that from (4.51) it holds for
a constant C > 0 depending only on p(

E

∣∣∣∣∣
N∑
n=1

(Bεn)t

∣∣∣∣∣
p)1/p

≤ Cδ−1 (E |Iε2(t)|p)1/p + Cδ−1
(
E
∣∣∣Ĩε2(t)

∣∣∣p)1/p
.

The second term is bounded exponentially fast with respect to t and δ due to (4.52). For the
first term, applying Lemma 4.21, the inequality [69, Formula (3.25), p. 163] and Lemma 4.22 we
obtain for a constant C > 0 independent of δ and t

E |Iε2(t)|p ≤ C
∫ t

0
kδ,Nexp (t− s)E |Qt −Qs|p ds

≤ C
∫ t

0
kδ,Nexp (t− s)(t− s)p/2 ds ≤ CN p/2δp/2.

Therefore, it holds (
E

∣∣∣∣∣
N∑
n=1

(Bεn)t

∣∣∣∣∣
p)1/p

≤ CN 1/2δ−1/2,

which proves the bound (4.46). It only remains to prove the estimate (4.47). Since Φ′ is bounded
and by Itô isometry we have

Eν
ε

|(BεN )t|2 ≤ C
∫ t

0
(kδ,Nexp )2(t− s) ds = C

(2N − 2)!
δ22N −1((N − 1)!)2 .
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4.4. Iterated exponential filter

Moreover, due to Stirling’s formula we have for all N ≥ 2

(N − 1)! ≥
√

2π(N − 1)(N − 1)N −1e−(N −1),

and
(2N − 2)! ≤ e

√
(2N − 2)(2N − 2)(2N −2)e−(2N −2),

which yield
Eν

ε

|(BεN )t|2 ≤ CN −1/2δ−1,

which implies the desired estimate.

Lemma 4.26. It holds for all n = 1, . . . ,N

(Zεn−1)t − (Zεn)t = δ(Bεn)t +Rn(ε, δ), (4.53)

where (Zε0)t ≡ Xε
t and the stochastic process (Bεn)t is defined in (4.45) and Rn(ε,∆) satisfies(

Eν
ε

|Rn(ε, δ)|p
)1/p

≤ C (ε+ δ) ,

for a constant C > 0 independent of ε and δ.

Proof. Let us prove the result by induction. The case n = 1 is given by Proposition 2.14. Then,
assuming that (4.53) holds true, by definition of the stochastic process (Zεn)t we have

(Zεn)t − (Zεn+1)t =
∫ t

0
kδ,1exp(t− s)((Zεn−1)s − (Zεn)s) ds

=
√

2σδ
∫ t

0
kδ,1exp(t− s)

∫ s

0
kδ,nexp(s− r)(1 + Φ′(Y εr ) dWr ds+

∫ t

0
kδ,1exp(t− s)Rn(ε, δ) ds

=: In+1 +Rn+1(ε, δ).

Let us first consider In+1. By exchanging the order of the integrals we obtain

In+1 =
√

2σδ
∫ t

0

1
δn+1 e

− t−rδ

(∫ t

r

(s− r)n−1

(n− 1)! ds
)

(1 + Φ′(Y εr )) dWr

=
√

2σδ
∫ t

0
kδ,n+1

exp (t− r)(1 + Φ′(Y εr )) dWr.

Moreover, the remainder Rn+1(ε, δ) satisfies

(
Eν

ε

|Rn+1(ε, δ)|p
)1/p

≤
(∫ t

0
kδ,1exp(t− s) ds

)1/p (
Eν

ε

|Rn(ε, δ)|p
)1/p

≤ C (ε+ δ) ,

which concludes the proof.

Lemma 4.27. Let ηεN be the invariant measure of (Xε, Y ε, Zε1 , . . . , Z
ε
N , Bε1, . . . , B

ε
N ). Then it

holds

δ Eη
ε
N

[
N∑
n=1

BεnB
ε
N V ′′(ZεN )

]
= σ Eη

ε
N [(1 + Φ′(Y ε))2V ′′(ZεN )] + R̃(ε, δ),

where the remainder R̃(ε, δ) satisfies∣∣∣R̃(ε, δ)
∣∣∣ ≤ C (N 1/4δ + N 1/2δ1/2ε+ N 1/2δ3/2

)
,

for a constant C > 0 independent of ε, δ and N .
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Proof. Let us consider the following system of SDEs for the multidimensional stochastic process
(Xε

t , (Zε1)t, . . . , (ZεN )t, (Bε1)t, . . . , (BεN )t, Y εt )

dXε
t = −α · V ′(Xε

t ) dt− 1
ε
p′(Y εt ) dt+

√
2σ dWt,

d(Zε1)t = −1
δ

((Zε1)t −Xε
t ) dt,

d(Zεn)t = −1
δ

(
(Zεn)t − (Zεn−1)t

)
dt, n = 2, . . . ,N

d(Bε1)t = −1
δ

(Bε1)t dt+
√

2σ
δ

(1 + Φ′(Y εt )) dWt,

d(Bεn)t = −1
δ

(
(Bεn)t − (Bεn−1)t

)
dt, n = 2, . . . ,N

dY εt = −1
ε
α · V ′(Xε

t ) dt− 1
ε2 p
′(Y εt ) dt+

√
2σ
ε

dWt,

whose generator L̃εN is given by

L̃εN =−
(
α · V ′(x) + 1

ε
p′(y)

)
∂x −

1
δ

(z1 − x)∂z1 −
1
δ

N∑
n=2

(zn − zn−1)∂zn

− 1
δ
b1∂b1 −

1
δ

N∑
n=2

(bn − bn−1)∂bn −
(

1
ε
α · V ′(x) + 1

ε2 p
′(y)

)
∂y

+ σ

(
∂2
xx + 2

ε
∂2
xy + 1

ε2 ∂
2
yy + 2(1 + Φ′(y))

δ
∂2
xb1 + 2(1 + Φ′(y))

εδ
∂2
yb1 + (1 + Φ′(y))2

δ2 ∂2
b1b1

)
.

Let us denote by eεN : R1+2N × [0,T]→ R, eεN = eεN (x, z1, . . . , zN , b1, . . . , bN , y), the density
of the invariant measure ηεN of (Xε

t , (Zε1)t, . . . , (ZεN )t, (Bε1)t, . . . , (BεN )t, Y εt ). Then eεN solves
the stationary FPE (L̃εN )∗eεN = 0, i.e., explicitly

∂x

((
α · V ′(x) + 1

ε
p′(y)

)
eεN

)
+ 1
δ
∂z1 ((z1 − x)eεN ) + 1

δ

N∑
n=2

∂zn ((zn − zn−1)eεN )

+ 1
δ
∂b1(b1ηε) + 1

δ

N∑
n=2

∂bn ((bn − bn−1)eεN ) + ∂y

((
1
ε
α · V ′(x) + 1

ε2 p
′(y)

)
eεN

)
+ σ

(
∂2
xxe

ε
N + 2

ε
∂2
xye

ε
N + 1

ε2 ∂
2
yye

ε
N

)
+ σ

(
2
δ
∂2
xb1 ((1 + Φ′(y))eεN ) + 2

εδ
∂2
yb1 ((1 + Φ′(y))eεN ) + 1

δ2 ∂
2
b1b1

(
(1 + Φ′(y))2eεN

))
= 0.

We now multiply the equation above by a continuous differentiable function f : R2N → RL,
f = f(z1, . . . , zN , b1, . . . , bN ), and integrate with respect to x, z, b and y. Then an integration
by parts yields

1
δ

∫
R1+2N ×[0,T]

∂z1f(z, b)(x− z1)eεN + 1
δ

N∑
n=2

∫
R1+2N ×[0,T]

∂znf(z, b)(zn−1 − zn)eεN

−1
δ

∫
R1+2N ×[0,T]

∂b1f(z, b)b1eεN −
1
δ

N∑
n=2

∫
R1+2N ×[0,T]

∂bnf(z, b)(bn − bn−1)eεN

+ σ

δ2

∫
R1+2N ×[0,T]

∂2
b1b1f(z, b)(1 + Φ′(y))2eεN = 0,
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4.4. Iterated exponential filter

which implies the following identity in RL

δ Eη
ε
N [∂b1f(Zε, Bε)Bε1] + δ

N∑
n=2

Eη
ε
N
[
∂bnf(Zε, Bε)(Bεn −Bεn−1)

]
= σ Eη

ε
N
[
∂2
b1b1f(Zε, Bε)(1 + Φ′(Y ε))2]

+ δ Eη
ε
N [∂z1f(Zε, Bε)(Xε − Zε1)] + δ

N∑
n=2

Eη
ε
N
[
∂znf(Zε, Bε)(Zεn−1 − Zεn)

]
.

Choosing

f(z, b) = 1
2

(
N∑
n=1

bn

)2

V ′′(zN ),

we obtain

δ Eη
ε
N

[
N∑
n=1

BεnB
ε
N V ′′(ZεN )

]
= σ Eη

ε
N [(1 + Φ′(Y ε))2V ′′(ZεN )]

+ δ

2 Eη
ε
N

( N∑
n=1

Bεn

)2

V ′′′(ZεN )(ZεN −1 − ZεN )


=: σ Eη

ε
N [(1 + Φ′(Y ε))2V ′′(ZεN )] + R̃(ε, δ),

where, by Hölder’s inequality with exponents p, q, r, Lemma 4.26 and bounds (4.46) and (4.47),
the remainder satisfies

∥∥∥R̃(ε, δ)
∥∥∥ ≤ Cδ

Eη
ε
N

∣∣∣∣∣
N∑
n=1

Bεn

∣∣∣∣∣
2p1/p (

Eη
ε
N ‖V ′′′(ZεN )‖q

)1/q (
Eη

ε
N
∣∣ZεN −1 − ZεN

∣∣r)1/r

≤ CδN 1/2δ−1/2
(
N −1/4δ1/2 + ε+ δ

)
,

which completes the proof.

Lemma 4.28. It holds
Eµ

ε,N
exp |ZεN |

p ≤ C,

for all p ≥ 1 and for a constant C > 0 independent of ε.

Proof. The proof trivially follows from the proof of Lemma 2.28 and from Lemma 4.21 by replacing
the filter kδ,1exp with the iterated filter kδ,Nexp .

Lemma 4.29. Let (N − 1)δ ≤ t̄ <∞. Then, it holds(
Eµ

ε,N
exp |Xε − ZεN |

p
)1/p

≤ C
(
N δε−1 + N 1/2δ1/2

)
,

where C > 0 is a constant independent of ε, δ and N .

Proof. By Lemma 4.20, we have

Xε
t − (ZεN )t =

∫ t

0
kδ,Nexp (t− s) (Xε

t −Xε
s ) ds+ (1− Ck(t,N , δ))Xε

t .
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Moreover, it holds
Eν

ε

|Xε
t −Xε

s |
p ≤ C

(
(t− s)pε−p + (t− s)p/2

)
see Lemma 2.30. Therefore, by Lemma 4.21 we obtain

Eν
ε

|Xε
t − (ZεN )t|p ≤ C

∫ t

0
kδ,Nexp (t− s)

(
(t− s)pε−p + (t− s)p/2

)
ds

+ C (1− Ck(t,N , δ))p Eν
ε

|Xε
t |
p

=: I1 + I2,

for a constant C depending only on p. Let us consider the first term. By Lemma 4.22, we have

I1 ≤ CN pδpε−p + CN p/2δp/2.

For the second term, by Lemma 4.20 and [103, Corollary 5.4] we have for t > 6(N − 1)δ the
bound

I2 ≤ Ce−pt/(2δ).
By ergodicity we have that

Eµ
ε,N
exp |Xε − ZεN |

p = lim
t→∞

Eϕ
ε

|Xε
t − (ZεN )t|p ,

which, for t sufficiently big and since (N − 1)δ ≤ t̄ <∞ yields the desired result.

Lemma 4.30. Le M̃ε andM0 be defined as

M̃ε,N
exp := Eµ

ε,N
exp [V ′(Xε)⊗ V ′(ZεN )] , and M0 := Eν

0 [
V ′(X0)⊗ V ′(X0)

]
.

Then, if N δ → 0 as ε→ 0 it holds

lim
ε→0
M̃ε,N

exp =M0.

Proof. Employing triangle inequality and Cauchy–Schwarz inequality we have∥∥∥M̃ε,N
exp −M0

∥∥∥ ≤ ∥∥∥Eµε,Nexp [V ′(Xε)⊗ V ′(ZεN )]− Eν
ε

[V ′(Xε)⊗ V ′(Xε)]
∥∥∥

+
∥∥∥Eνε [V ′(Xε)⊗ V ′(Xε)]− Eν

0 [
V ′(X0)⊗ V ′(X0)

]∥∥∥
≤ C

(
Eν

ε

‖V ′(Xε)‖2
)1/2 (

E |ZεN −Xε|2
)1/2

+
∥∥∥Eνε [V ′(Xε)⊗ V ′(Xε)]− Eν

0 [
V ′(X0)⊗ V ′(X0)

]∥∥∥ ,
and due to Proposition 4.25 we obtain∥∥∥M̃ε,N

exp −M0
∥∥∥ ≤ ∥∥∥Eνε [V ′(Xε)⊗ V ′(Xε)]− Eν

0 [
V ′(X0)⊗ V ′(X0)

]∥∥∥
+ C

(
ε+ N 1/2δ1/2 + N δ

)
.

Finally, the desired result follows by homogenization theory and weak convergence of measures.

We believe that the technical results presented in this section should be useful to show Conjec-
ture 4.18, whose proof should follow the same ideas of Theorem 2.17. The main steps consist of
showing that some remainder terms vanish and, in this case, their bound depend not only on ε
and δ, but also on N . However, we notice that when we let ε→ 0 some of them blow up. This
can be caused by the fact that some bounds which we computed may not be tight enough and
should be improved, such as the ones in Proposition 4.25 and consequently in Lemma 4.27.
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4.5. Central limit theorem for estimator with exponential filter

Figure 4.3 – Central limit theorem result. The histogram represents numerical results, the solid
curve a Gaussian fit to the latter and the dashed curve the theoretical estimate given in Theorem
4.31.

4.5 Central limit theorem for estimator with exponential filter
The goal of this section is to study the asymptotic normality of the drift estimator proposed
in Chapter 2. Simple numerical experiments suggest that it is possible to prove a central limit
theorem and preliminary computations led us to the formulation of the following conjecture.

Conjecture 4.31. Let T = ε−γ with γ > 0 and consider the exponential filter (2.1) with β = 1
and δ independent of ε. Then, if γ is sufficiently small, it holds

lim
ε→0

√
T
(
Âδ,βexp(Xε, T )−A

)
= Λ, in law,

where Λ ∼ N (0,Γ) and

Γ = 2σ Eµ
0
exp [V ′(Z0)⊗ V ′(X0)]−1 Eµ

0
exp [V ′(Z0)⊗ V ′(Z0)]Eµ

0
exp [V ′(X0)⊗ V ′(Z0)]−1.

4.5.1 Numerical experiment

In this experiment we wish to confirm the validity of Conjecture 4.31. We consider the same test
equation as for Section 2.3.1, i.e., the quadratic potential V (x) = x2/2 with fluctuating potential
p(y) = sin(y), multiscale parameter ε = 0.05 and diffusion coefficient σ = 1. The parameters of
the filter are set to β = 1 and δ = 1. We compute the estimator Âδ,βexp(Xε, T ) with final time
T = 103 on 2000 realizations of the solution and estimate the quantity

∆ε
A(T ) :=

√
T
(
Aδ,βexp(Xε, T )−A

)
,

where A is the drift coefficient of the homogenized equation (1.11). Results, depicted in Figure 4.3,
show that the distribution of ∆ε

A(T ) indeed follows a zero-mean Gaussian law, whose covariance
however does not exactly agree with the theoretical result.

4.5.2 Ideas behind Conjecture 4.31

In this section we present some theoretical results which guided us to the formulation of Conjec-
ture 4.31 and partially justify it. However, we remark that this is not a rigorous proof and only
gives an intuition on why it should be true. We first introduce a technical lemma.
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Lemma 4.32. Let Lεexp be the generator of the couple (Xε, Zε)>, i.e.,

Lεexp = −
(
α · V ′(x) + 1

ε
p′
(x
ε

))
∂x + 1

δ
(x− z)∂z + σ∂2

xx.

Moreover, let ρεexp be the density of the invariant measure µεexp of (Xε, Zε)> and uε : R2 → RL
be the solution of

− Lεexpu
ε = χε − Eµ

ε
exp [χε(Xε, Zε)], (4.54)

satisfying Eµ
ε
exp [uε(Xε, Zε)] = 0 for χε : R2 → RL. Then, it holds

1
T

∫ T

0
χε(Xε

t , Z
ε
t ) dt = Eµ

ε
exp [χε(Xε, Zε)]− Rε(T )

T
+
√

2σS ε(T )
T

, (4.55)

where

Rε(T ) := uε(Xε
T , Z

ε
T )− uε(Xε

0 , Z
ε
0), S ε(T ) :=

∫ T

0
∂xu

ε(Xε
t , Z

ε
t ) dWt. (4.56)

Moreover, it holds

2σ Eµ
ε
exp [∂xuε(Xε, Zε)⊗ ∂xuε(Xε, Zε)] = Eµ

ε
exp [χε(Xε, Zε)⊗ uε(Xε, Zε)

+ uε(Xε, Zε)⊗ χε(Xε, Zε)].
(4.57)

Proof. The proof of (4.55) and (4.56) is an application of the Itô formula (see e.g. [104, Remark
6.17]). For (4.57), it is possible to show that since (Lεexp)∗ρεexp = 0 it holds

(Lεexp)∗(uερεexp) = 2σρεexp∂
2
xxu

ε − ρεexpLεexpu
ε + 2σ∂xuε∂xρεexp.

Therefore, an integration by parts yields

Eµ
ε
exp [Lεexpu

ε(Xε, Zε)⊗ uε(Xε, Zε)] =
∫
R

∫
R
uε ⊗ (Lεexp)∗

(
uερεexp

)
dxdz

= −
∫
R

∫
R
uε ⊗ Lεexpu

ερεexp dx dz

− 2σ
∫
R

∫
R
∂xu

ε ⊗ ∂xuερεexp dx dz

= − Eµ
ε
exp [uε(Xε, Zε)⊗ Lεexpu

ε(Xε, Zε)]

− 2σ Eµ
ε
exp [∂xuε(Xε, Zε)⊗ ∂xuε(Xε, Zε)].

Finally, since Eµ
ε
exp [u(Xε, Zε)] = 0

2σ Eµ
ε
exp [∂xuε(Xε, Zε)⊗ ∂xuε(Xε, Zε)] = −Eµ

ε
exp [Lεexpu

ε(Xε, Zε)⊗ uε(Xε, Zε)
+ uε(Xε, Zε)⊗ Lεexpu

ε(Xε, Zε)]

= Eµ
ε
exp [χε(Xε, Zε)⊗ uε(Xε, Zε)

+ uε(Xε, Zε)⊗ χε(Xε, Zε)],

which is the desired result.

The next conjecture, which is crucial to justify Conjecture 4.31, should be rigorously proved using
homogenization techniques. We only give an idea based on a multiscale expansion of the solution.
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4.5. Central limit theorem for estimator with exponential filter

Conjecture 4.33. Let uε be the solution of (4.54) with

χε(x, z) = 1
ε
p′
(x
ε

)
V ′(z)− V ′(z)⊗ V ′(x)(M̃ε

exp)−1pε,

where
M̃ε

exp := Eµ
ε
exp [V ′(Zε)⊗ V ′(Xε)], pε := Eµ

ε
exp

[
1
ε
p′
(
Xε

ε

)
V ′(Zε)

]
.

Then, uε → 0 “in some sense” for ε→ 0.

Idea of proof. We present here a formal proof based on asymptotic expansion with respect to ε.
Let us first remark that by definition

Eµ
ε
exp [χε(Xε, Zε)] = 0,

and therefore problem (4.54) reads
− Lεexpu

ε = χε.

Let us now denote y = x/ε and write

uε(x, z) = u0(x, y, z) + εu1(x, y, z) + ε2u2(x, y, z) + . . . ,

which implies that

∂xu
ε = ∂x(u0(x, y, z) + εu1(x, y, z) + ε2u2(x, y, z) + . . .)

+ 1
ε
∂y(u0(x, y, z) + εu1(x, y, z) + ε2u2(x, y, z) + . . .).

Let us first remark that from the proof of Theorem 2.12 we have that

lim
ε→0

(M̃ε
exp)−1pε = A− α.

Replacing uε in (4.54) and grouping the terms of order ε0, ε−1 and ε−2 we get the system

L0u0 = 0, (4.58)
L1u0 + L0u1 = −p′(y)V ′(z), (4.59)

L0u2 + L1u1 + L2u0 = (V ′(z)⊗ V ′(x)) (A− α), (4.60)

where
L0 = −p′(y)∂y + σ∂2

yy,

L1 = −p′(y)∂x − α · V ′(x)∂y + 2σ∂2
xy,

L2 = −α · V ′(x)∂x −
1
δ

(z − x)∂z + σ∂2
xx.

Let us first remark that equation (4.58) is satisfied for u0 = u0(x, z) independent of y. In
particular, the kernel of L0 is made of constants and the kernel of L∗0 is one-dimensional and
Ker(L∗0) = Span{ω} where

ω(y) = 1
Cπ

e−p(y)/σ, where Cπ =
∫ T

0
e−p(y)/σ dy, (4.61)

where T is the period of p. Since u0 is independent of y equation (4.59) reduces to

L0u1 = p′(y) (∂xu0 − V ′(z)) .
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Let us remark that the general solution u1 can be written as

u1(x, y, z) = Φ(y) (∂xu0(x, z)− V ′(z)) ,

where Φ: R→ R satisfies
− L0Φ = −p′(y).

Let us remark that this cell problem is the same as (1.7). We consider now equation (4.60) and
remark that we can rewrite it as

L0u2 = (V ′(z)⊗ V ′(x))(A− α)−
(

2Φ′(y)− 1
σ
p′(y)Φ(y) + 1

)
σ∂2

xxu0

+ (Φ′(y) + 1) (α · V ′(x)) ∂xu0 − (V ′(z)⊗ V ′(x))αΦ′(y) + 1
δ

(z − x)∂zu0.

By the Fredholm alternative, in order for (4.60) to have a solution we need the right hand side
to have zero-mean with respect to ω in (4.61). Therefore, recalling that the homogenization
coefficient K in (1.6) is given by

K =
∫ T

0
(1 + Φ′(y))2ρ(y) dy

and remarking that integrations by part allow to rewrite K as

K =
∫ T

0
(1 + Φ′(y))ρ(y) dy, K =

∫ T

0

(
2Φ′(y)− 1

σ
p′(y)Φ(y) + 1

)
ω(y) dy,

we get

0 = (V ′(z)⊗ V ′(x))(A− α− (K − 1)α)−Kσ∂2
xxu0 + (Kα · V ′(x)) ∂xu0 + 1

δ
(z − x)∂zu0.

Moreover, since A = Kα and Σ = Kσ, it implies

0 = −Σ∂2
xxu0 + (A · V ′(x)) ∂xu0 + 1

δ
(z − x)∂zu0,

which can be written as
− L0u0 = 0, (4.62)

where L0 is the generator of the couple (X0, Z0)>. Finally, the unique solution of (4.62) satisfying

Eµ
0
exp [u0(X0, Z0)] = 0,

is given by
u0(x, z) = 0.

We can finally give an intuition behind the central limit theorem stated at the beginning of the
section.

Idea of proof of Conjecture 4.31. Let us introduce the notation

M̃ε
exp := Eµ

ε
exp [V ′(Zε)⊗ V ′(Xε)], M̃0

exp := Eµ
0
exp [V ′(Z)⊗ V ′(X)],

and the notation
pε := Eµ

ε
exp

[
1
ε
p′
(
Xε

ε

)
V ′(Zε)

]
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4.5. Central limit theorem for estimator with exponential filter

and let us remark that from the proof of Theorem 2.12 one can deduce the equalities

A = 1
δ

(M̃0
exp)−1 Eµ

0
exp [(X0 − Z0)2V ′′(Z0)], (4.63)

and
α = (M̃ε

exp)−1
(

1
δ
Eµ

ε
exp [(Xε − Zε)2V ′′(Zε)]− pε

)
. (4.64)

Let us furthermore remark that the decomposition (2.16) yields
√
T
(
Âδ,βexp(Xε, T )−A

)
=
√
T (α−A+ Iε1 − Iε2) .

Replacing the expression for A and α given in (4.63) and (4.64), we get
√
T
(
Âδ,βexp(Xε, T )−A

)
=
√
T
(
Iε1(T )− (M̃ε

exp)−1pε
)

+
√
T

δ
(M̃ε

exp)−1 Eµ
ε
exp [(Xε − Zε)2V ′′(Zε)]

−
√
T

δ
(M̃0

exp)−1 Eµ
0
exp [(X0 − Z0)2V ′′(Z0)]−

√
TIε2(T ).

We rewrite the term involving Iε2(T ) as

√
TIε2(T ) =

√
2σ√
T
M̃exp(Xε, T )−1Qε(T ),

where, since Zεt is adapted with respect to the natural filtration Ft of the Wiener process
W := (Wt, t ≥ 0), the quantity

Qε(T ) :=
∫ T

0
V ′(Zεt ) dWt,

is a martingale whose quadratic variation is given by

〈Qε〉T =
∫ T

0
V ′(Zεt )⊗ V ′(Zεt ) dt.

Since the ergodic theorem guarantees that

lim
T→∞

〈Qε〉T
T

= Eµ
ε
exp [V ′(Zε)⊗ V ′(Zε)], in L1,

the martingale central limit theorem gives

lim
T→∞

1√
T
Qε(T ) = Ξε, in law,

where Ξε ∼ N (0,Eµ
ε
exp [V ′(Zε)⊗ V ′(Zε)]). Now, by the ergodic theorem

lim
T→∞

M̃exp(Xε, T )−1 = (M̃ε
exp)−1, a.s.

Therefore, we have by Slutsky’s theorem that

lim
T→∞

√
TIε2(T ) = Λε ∼ N (0,Γε) , in law.

where the covariance matrix Γε is given by

Γε = 2σ(M̃ε
exp)−1 Eµ

ε
exp [V ′(Zε)⊗ V ′(Zε)](M̃ε

exp)−>.
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Finally, we denote by Λ the limit for ε → 0 of the sequence of Gaussian random variables Λε,
whose covariance matrix Γ0 is given by

Γ0 = 2σ(M̃0
exp)−1 Eµ

0
exp [V ′(Z0)⊗ V ′(Z0)](M̃ε

exp)−>.

Let us introduce the notation

Jε1 (T ) :=
√
T
(
Iε1(T )− (M̃ε

exp)−1pε
)
,

and let us remark that we can rewrite

Jε1 (T ) =
√
T

(
1
T

∫ T

0
V ′(Zεt )⊗ V ′(Xε

t ) dt
)−1

×

(
1
T

∫ T

0

(
1
ε
p′
(
Xε
t

ε

)
V ′(Zεt )− V ′(Zεt )⊗ V ′(Xε

t )(M̃ε
exp)−1pε

)
dt
)
.

Let us denote by uε the solution of (4.54) with right hand side

χε(x, z) = 1
ε
p′
(x
ε

)
V ′(z)− V ′(z)⊗ V ′(x)(M̃ε

exp)−1pε,

and note that Eµ
ε
exp [χε(Xε, Zε)] = 0. Then, by Lemma 4.32, we have

Jε1 (T ) =
√
T

(
1
T

∫ T

0
V ′(Zεt )⊗ V ′(Xε

t ) dt
)−1(

−Rε(T )
T

+
√

2σS ε(T )
T

)
,

where Rε(T ) and S ε(T ) are defined in (4.56). Since Rε(T ) is bounded independently of ε, we
first get by the ergodic theorem

lim
T→∞

(
1
T

∫ T

0
V ′(Zεt )⊗ V ′(Xε

t ) dt
)−1

Rε(T )√
T

= 0, a.s.

Repeating the same reasoning as for Qε(T ) and employing the ergodic theorem and the Slutsky’s
theorem, we get

lim
T→∞

Jε1 (T ) = lim
T→∞

√
2σ
(

1
T

∫ T

0
V ′(Zεt )⊗ V ′(Xε

t ) dt
)−1

S ε(T )√
T

= Λε1 ∼ N (0,Γε1),

where due to (4.57) the covariance is given by

Γε1 = 2σ(M̃ε
exp)−1 Eµ

ε
exp [∂xuε(Xε, Zε)⊗ ∂xuε(Xε, Zε)](M̃ε

exp)−>

= (M̃ε
exp)−1 Eµ

ε
exp [uε(Xε, Zε)⊗ χε(Xε, Zε) + χε(Xε, Zε)⊗ uε(Xε, Zε)](M̃ε

exp)−>.

Since due to Conjecture 4.33 the solution uε → 0 in some sense, we expect the covariance Γε1 to
behave similarly in the limit ε→ 0. Let us now introduce the notation

Jε2 (T ) =
√
T

δ

(
(M̃ε

exp)−1 Eµ
ε
exp [(Xε − Zε)2V ′′(Zε)]− (M̃0

exp)−1 Eµ
0
exp [(X0 − Z0)2V ′′(Z0)]

)
.

We have the decomposition

Jε2 (T ) =
√
T

δ

(
(M̃ε

exp)−1 − (M̃0
exp)−1

)
Eµ

ε
exp [(Xε − Zε)2V ′′(Zε)]

+
√
T

δ
(M̃ε

0)−1
(
Eµ

ε
exp [(Xε − Zε)2V ′′(Zε)]− Eµ

0
exp [(X0 − Z0)2V ′′(Z0)]

)
=: Jε2,1(T ) + Jε2,2(T ).
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4.5. Central limit theorem for estimator with exponential filter

In order to send the terms above to zero, we need the convergence rate of µεexp to µ0
exp w.r.t.

ε, and some arguments in this sense seem to appear in [62]. Then, setting T = ε−γ with an
appropriate γ sufficiently small, the quantity Jε2 (T ) tends to zero as ε vanishes and implies the
expected result.
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Part IIEstimating functions based on
eigenpairs of the generator:

inference from discrete
observations
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5 Inference and homogenization
problems
This chapter is devoted to the presentation of estimators based on martingale estimating functions
constructed with the eigenvalues and eigenfuncions of the generator of the dynamics, for inference
problems given a sequence of discrete data. We first introduce the homogenization problem for
the eigenpairs of the generator of the multiscale Langevin dynamics and the second model under
investigation, i.e., interacting diffusions, and then provide an overview of the literature on this
topic. Finally, we present the main contributions and give the outline of the second part of this
thesis.

5.1 Problem setting
In the section below we explain in more details and introduce the main notation to analyze
the homogenization of the eigenvalue problem for the generator of the multiscale Langevin
dynamics. We then want to apply the inference methodologies based on eigenfunction estimators
to the simple model of fast/slow stochastic differential equations (SDEs) for which the theory of
homogenization exists, that enables us to study the inference problem in a rigorous and systematic
manner, and to systems of weakly interacting diffusions for which the mean field limit exists and
is described by a nonlinear diffusion process of McKean type, obtained in the limit as the number
of interacting processes goes to infinity. Interacting particle systems are therefore outlined below.

5.1.1 Multiscale diffusions and eigenvalue problem for the generator

In Chapters 6 and 7 we study the same class of diffusion processes introduced in Chapter 1, i.e.,
multiscale Langevin dynamics.

Before focusing on the inference problem, in Chapter 6 we present theoretical results for the
generator of the multiscale SDE and, in particular, about the homogenization of its eigenvalues
and eigenfunctions. In fact, the estimators which we introduce later are based on the eigenpairs
of the generator of the homogenized dynamics, which we verify to be the limit in some sense
which will be more clear later of the eigenpairs of the generator of the multiscale dynamics. We
consider the multiscale and homogenized Langevin SDEs (1.3) and (1.9)

dXε(t) = −∇V(Xε(t)) dt− 1
ε
∇p
(
Xε(t)
ε

)
dt+

√
2σ dW (t), (5.1)

dX0(t) = −K∇V(X0(t)) dt+
√

2Σ dW (t). (5.2)

We recall that, under Assumption 1.4, it has been shown in [103] that the processes Xε(t) and
X0(t) are geometrically ergodic with unique invariant distributions νε and ν0 whose densities
with respect to the Lebesgue measure are given by

ϕε(x) = 1
Cνε

e−
1
σ (V(x)+p( xε )) with Cνε =

∫
Rd
e−

1
σ (V(x)+p( xε )) dx, (5.3)
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and

ϕ0(x) = 1
Cν0

e−
1
d tr(Σ−1K)V(x) with Cν0 =

∫
Rd
e−

1
d tr(Σ−1K)V(x) dx. (5.4)

Notice that tr(Σ−1K)/d = 1/σ since Σ = Kσ and that ϕε ⇀ ϕ0 in L1(Rd) by [103, Proposition
5.2]. We then introduce the generators Lε and L0 of the multiscale process (5.1) and (5.2),
respectively, which are defined for all u ∈ C2(Rd) as

Lεu(x) = −
(
∇V(x) + 1

ε
∇p
(x
ε

))
· ∇u(x) + σ∆u(x), (5.5)

and
L0 = −K∇V(x) · ∇u(x) + Σ : ∇2u(x), (5.6)

where : denotes the Frobenius inner product and ∇2 the Hessian matrix. Since the process Xε(t)
is close in a weak sense to the process X0(t) as ε→ 0, we then expect that also the generators
Lε and L0 behave similarly when the multiscale parameter vanishes. In particular, we consider
the infinitesimal generator Lε of (5.1) and study first the partial differential equation (PDE)

− Lεuε + ηuε = f, (5.7)

for a right-hand side f and where η > 0, and then the eigenvalue problem

− Lεφε = λεφε. (5.8)

We analyze the homogenization of problems (5.7) and (5.8) providing asymptotic results for their
solutions in the limit of vanishing ε. In particular, we show that they converge to the solutions of
the corresponding problems for the generator L0 of the homogenized diffusion (5.2). We remark
that these equations are defined on the whole space Rd, and this leads us to the introduction of
weighted Sobolev spaces where the weight function is the invariant density of the homogenized
process (5.2). The proof of the convergence results relies on the theory of two-scale convergence,
which we extend to the case of weighted Sobolev spaces in order to make it fit into our framework.

We then study the parameter estimation problem in Chapter 7. We consider M + 1 uniformly
distributed observation times 0 = t0 < t1 < t2 < . . . , < tM = T , set ∆ = tm − tm−1 and let
(Xε(t))t∈[0,T ] be a realization of the solution of (1.10). We assume to know a sample {X̃ε

m}Mm=0
of the realization where X̃ε

m = Xε(tm) and we aim to estimate the drift coefficient A of the
homogenized equation (1.11). We employ the techinque of eigenfunction martingale estimating
functions which is suitable for inference problems where a sequence of discrete observations is
given. Moreover, by observing that if the sampling rate ∆ is too small with respect to the
multiscale parameter ε, then the data could be compatible with the full dynamics rather than
with the coarse-grained model, we also adopt the filtering methodology presented in Chapter 2,
which has been proved to be beneficial for correcting the behavior of the maximum likelihood
estimator (MLE) in the setting of continuous observations.

Remark 5.1. For clarity of the presentation, in Chapter 7 we focus our analysis on scalar
multiscale diffusions with a finite number of parameters in the drift that have to be learned from
data. Nevertheless, we remark that all the theory presented can be generalized to the case of
multidimensional diffusion processes in Rd, for which we provide further details in Section 7.7 and
an example in Section 7.3.5. However, the problem becomes more complex and computationally
expensive from a numerical viewpoint and it can be prohibitive if the dimension d is too large,
since the methodology proposed requires the solution of the eigenvalue problem for the generator
of a d-dimensional diffusion process.
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5.1.2 Interacting particle systems

In Chapter 8 we employ eigenfunction estimators for a different model. In particular, we consider
a system of interacting particles in one dimension moving in a confining potential V over the time
interval [0, T ] whose interaction is governed by an interaction potential F

dX(n)
t = −V ′(X(n)

t ;α) dt− 1
N

N∑
i=1
F ′(X(n)

t −X(i)
t ;κ) dt+

√
2σ dW (n)

t , n = 1, . . . , N,

X
(n)
0 ∼ γ, n = 1, . . . , N,

(5.9)

where N is the number of particles, {W (n)
t }Nn=1 are standard independent one dimensional

Brownian motions, V(·;α) and F(·;κ) are the confining and interaction potentials, respectively,
which depend on some parameters α ∈ RL1 , κ ∈ RL2 , and σ > 0 is the diffusion coefficient. The
functions V ′ and F ′ are then the derivatives of V and F with respect to their first argument. We
assume chaotic initial conditions, i.e., that the particles are initially distributed according to the
same measure γ.
Remark 5.2. We consider the case when the particles move in one dimension for the clarity of
exposition. In fact, the proposed method and our rigorous results can be easily generalized to the
case of N interacting particles moving in dimension d > 1. However in higher dimensions the
problem becomes more complex and expensive from the computational point of view.

We place ourselves in the same framework of [84], which is summarized in the following assumption.
Assumption 5.3. The confining and interaction potentials V and F , respectively, satisfy:

(i) V(·;α) ∈ C2(R) is uniformly convex and polynomially bounded along with its derivatives
uniformly in α;

(ii) F(·;κ) ∈ C2(R) is even, convex and polynomially bounded along with its derivatives
uniformly in κ.

It is well-known (see, e.g., [101, Chapter 4]) that under Assumption 5.3 the dynamics described
by the system (5.9) is geometrically ergodic with unique invariant measure given by the Gibbs
measure µNθ ( dx) = ρN (x; θ) dx, where

ρN (x; θ) = 1
CµN

θ

exp
{
− 1
σ
EN (x; θ)

}
, CµN

θ
=
∫
RN

exp
{
− 1
σ
EN (x; θ)

}
dx,

and EN (·; θ) is defined by

EN (x; θ) :=
N∑
n=1
V(xn;α) + 1

2N

N∑
n=1

N∑
i=1
F(xn − xi;κ).

for θ =
(
α> κ>

)> ∈ Θ ⊆ RL with L = L1 + L2 and Θ the set of admissible parameters. The
main goal is the estimation of the unknown parameter θ ∈ Θ, given discrete observations of
the path of one single particle. We are interested in applications involving large interacting
particle systems, i.e., when N � 1, hence studying the whole system is not practical and can be
computationally unfeasible. Therefore, our approach consists of considering the mean field limit
which has already been thoroughly studied (see, e.g., [38, 53]). Letting the number of particles N
go to infinity we obtain the nonlinear, in the sense of McKean, SDE

dXt = −V ′(Xt;α) dt− (F ′(·;κ) ∗ u(·, t; θ))(Xt) dt+
√

2σ dWt,

X0 ∼ γ,
(5.10)
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where u(·, t; θ) is the density with respect to the Lebesgue measure of the law of Xt and the
nonlinearity means that the drift of the SDE (5.10) depends on the law of the process. The
density u is the solution of the nonlinear Fokker–Planck (McKean–Vlasov) equation

∂u

∂t
(x, t) = ∂

∂x

(
V ′(x;α)u(x, t; θ) + (F ′(·;κ) ∗ u(·, t; θ))(x, t)u(x, t; θ) + σ

∂u

∂x
(x, t)

)
,

with initial condition u(x, 0; θ) dx = γ( dx). It is well known that, in contrast to the finite
dimensional dynamics, the mean field limit (5.10) can have, in the non-convex case more than one
invariant measures µθ( dx) = ρ(x; θ) dx [28,38]. The density of the stationary state(s) satisfies
the stationary Fokker–Planck equation

d
dx (V ′(x;α)ρ(x; θ) + (F ′(·;κ) ∗ ρ(·; θ))(x)ρ(x; θ) + ρ′(x; θ)) = 0,

where the second variable θ emphasizes the fact that ρ depends on the parameters α and κ of the
potentials V and F , respectively. However, under Assumption 5.3 it has been proven in [84] that
there exists a unique invariant measure which is the solution of

ρ(x; θ) = 1
Cµθ

exp
{
− 1
σ

(V(x;α) + (F(·;κ) ∗ ρ(·; θ))(x))
}
, (5.11)

where Cµθ is the normalization constant

Cµθ =
∫
R

exp
{
− 1
σ

(V(x;α) + (F(·;κ) ∗ ρ(·; θ))(x))
}

dx.

Example 5.4. A particular choice for the interaction potential is the Curie–Weiss quadratic
interaction [38], which is also known as harmonic potential. We take κ > 0 and consider the
interaction potential

F(x;κ) = κ

2x
2.

The interacting particle system (5.9) becomes, for all n = 1, . . . , N

dX(n)
t = −V ′(X(n)

t ;α) dt− κ
(
X

(n)
t − X̄N

t

)
dt+

√
2σ dW (n)

t ,

where X̄N
t denotes the empirical mean

X̄N
t = 1

N

N∑
i=1

X
(i)
t .

This interaction term creates a tendency for the particles to relax toward the center of gravity of
the ensemble and the parameter κ measures the strength of the interaction between the agents,
hence this model provides a simple example of cooperative interaction.

The mean field limit (5.10) then becomes

dXt = −V ′(Xt;α) dt− κ (Xt −mt) dt+
√

2σ dWt,

where mt denotes the expectation of Xt, mt = E[Xt], and its unique (when the confining potential
V is convex) invariant measure µθ( dx) = ρ(x; θ) dx is given by

ρ(x; θ) = 1
Cµθ

exp
{
− 1
σ

(
V(x;α) + κ

(
1
2x

2 −mx
))}

, (5.12)
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with the constraint for the expectation with respect to the invariant measure

m =
∫
R
xρ(x; θ) dx, (5.13)

and where
Cµθ =

∫
R

exp
{
− 1
σ

(
V(x;α) + κ

(
1
2x

2 −mx
))}

dx.

Equation (5.13) is the self-consistency equation [38, 46, 59] that enables us to calculate the
invariant measure and, then, the stationary state(s). In the case where the confining potential is
quadratic, we have a system of linear SDEs and the mean field limit reduces to the mean field
Ornstein-Uhlenbeck (OU) SDE. In this case the first moment vanishes, m = 0, and the invariant
measure is unique (this is the case, of course, of arbitrary strictly convex confining potentials).
The inference problem for the linear interacting particle system and for the corresponding mean
field limit is easier than that of the general case. We emphasize that, unlike this present work,
most earlier papers, e.g., [24, 70], focus on this linear case, i.e., on systems of weakly interacting
linear SDEs. The estimator proposed and studied in Chapter 8 can be applied to arbitrary
non-quadratic interaction and confining potentials.

In Chapter 8 we therefore present our method for the estimation of the unknown parameter
θ = (α, κ) ∈ Θ ⊆ RL, given discrete observation of a single particle of the system (5.9). We
consider M + 1 equidistant observation times 0 = t0 < t1 < · · · < tM = T , let ∆ = tm − tm−1 be
the sampling rate and let (X(n)

t )t∈[0,T ] be a realization of the n-th particle of the solution of the
system (5.9) for some n = 1, . . . , N . We then aim to estimate the unknown parameter θ given a
sample {X̃(n)

m }Mm=0 of the realization where X̃(n)
m = X

(n)
tm and tm = ∆m.

5.2 Construction of eigenfunction estimators
In this section we present the eigenfunction estimators which we will employ in Chapters 7
and 8 to estimate unknown parameters in multiscale diffusions and interacting particle systems,
respectively, based on discrete-time observations. This methodology has already been studied for
one-scale problems without a martingale structure in [73], and our exposition is mainly based
on this article. For the clarity of the exposition, we analyze only one-dimensional stochastic
processes and parameters and refer to [73] for further details about the multidimensional cases.
We consider the class of SDEs

dXt = b(Xt; θ) dt+ h(Xt; θ) dWt, (5.14)

where W is a standard one-dimensional Brownian motion, b and h are the drift and diffusion
functions, which are assumed to be known, and θ is the unknown parameter which varies in a
subset Θ of R. Then, the inference problem consists in estimating the exact value θ0 given M + 1
equidistant discrete observations Xt0 , Xt1 , . . . , XtM , where tm − tm−1 = ∆. In order to construct
the estimator we need the eigenvalues and eigenfunctions of the generator of (5.14) which solve
the eigenvalue problem

− Lθφ(x; θ) = −λ(θ)φ(x; θ),

where Lθ is defined for all twice continuously differentiable functions u as

Lθu(x) = b(x; θ)u′(x) + 1
2h

2(x; θ)u′′(x).

The spectral theory of diffusion processes guarantees that the spectrum of Lθ is discrete, the
eigenvalues satisfy 0 ≤ λ0(θ) < λ1(θ) < · · · < λj(θ) ↑ ∞ and the eigenfunctions form an
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orthonormal basis of the weighted space L2
µθ

(Rd), where µθ is the invariant measure of the process
Xt in (5.14). Moreover, under weak regularity conditions it can be shown that the following
formula holds

E
[
φ(Xtm ; θ) | Xtm−1

]
= e−λ(θ)∆φ(Xtm−1 ; θ),

and it will be fundamental in the analysis. We can therefore select the first J eigenpairs
{(φj , λj)}Jj=1, which are the most relevant since the dependence on the past is mainly determined
by the small eigenvalues, and define the martingale estimating function as

GJM (θ) =
M∑
m=1

J∑
j=1

ψj(Xtm−1 ; θ)
(
φj(Xtm ; θ)− e−λj(θ)∆φj(Xtm−1 ; θ)

)
,

where {ψj(·; θ)}Jj=1 is a set of smooth functions possibly dependent on the parameter θ. The
eigenfunction estimator θ̂JM is finally defined as the zero of the function GJM , i.e, GJM (θ̂JM ) = 0.
We now introduce some assumptions which are important to prove the asymptotic unbiasedness
and normality of the proposed estimator.
Assumption 5.5. Let us define the following quantities:

s(x; θ) = exp
(
−2
∫ x

0

b(y; θ)
h2(y; θ) dy

)
,

gj(x, y, z; θ) = ψj(z; θ)
(
φj(y; θ)− e−λj(θ)∆φj(x; θ)

)
,

ḡj(x, y; θ) := gj(x, y, x; θ)
Qθ∆(x, y) = µθ(x)Π∆(y, x; θ),

where µθ and Π∆ are the invariant and transition densities, respectively. Then:

(i) the following holds for all θ ∈ Θ∫ +∞

0
s(x; θ) dx =

∫ 0

−∞
s(x; θ) dx =∞ and

∫ +∞

−∞

1
s(x; θ)h2(x; θ) dx = A(θ) <∞,

(ii) the functions ḡj(x, y; θ), j = 1, . . . , J , are in L2(Qθ0∆ ) and continuously differentiable with
respect to θ for all x and y,

(iii) the functions ∂θ ḡj(x, y; θ), j = 1, . . . , J , are locally dominated square integrable with respect
to Qθ0∆ and it holds

f(θ0) =
J∑
j=1

∫
∂θḡj(x, y; θ0) dQθ0∆ (x, y) 6= 0.

We can now state the main convergence result in [73], which will be employed in our analysis in
Chapters 7 and 8.

Theorem 5.6. Under Assumption 5.5 an estimator θ̂JM , which solves the equation GJM (θ̂JM ) = 0,
exists with a probability tending to one as M →∞. Moreover, it holds

lim
M→∞

θ̂JM = θ0, in probability,

and
lim
M→∞

√
M(θ̂JM − θ0) = N

(
0, v(θ0)

f2(θ0)

)
, in distribution,
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where

v(θ0) =
J∑
j=1

J∑
k=1

∫
ψj(x; θ0)ψk(x; θ0)ajk(x; θ0)µθ0(x) dx,

with

ajk(x; θ0) =
∫ (

φj(y; θ)− e−λj(θ)∆φj(x; θ)
)(

φk(y; θ)− e−λk(θ)∆φk(x; θ)
)

Π∆(y, x; θ) dy.

5.3 Literature review
Multiscale diffusion processes are a powerful tool in many applications, and in all these scenarios
it is relevant to extract single-scale surrogates, which are effective for modeling the slowest
component of the system, which often governs its macroscopic behavior. The literature about
inference of unknown parameters in stochastic systems from continuous observations has been
already analyzed in detail in Section 1.3. We add here that, in case the data consist of discrete
observations instead of continuous time series, it is possible to employ estimators based on
martingale properties and on a spectral decomposition of the generator of the stochastic process.
In addition to the work of [73], other methodologies of this kind have been applied successfully
to inference problems for single-scale SDEs [34, 35], as well as more recently for multiscale
diffusions [36]. We also remark that a general theory for martingale estimating functions exists
and is thoroughly outlined in [21]. They appear to be appropriate for multiscale problems due to
their robustness properties.

We now focus on the study of the homogenization of the Poisson problem and the eigenvalue
problem for the generator of the multiscale Langevin dynamics. We remark that the Poisson
problem for elliptic operators corresponding to infinitesimal generators of diffusion processes has
been thoroughly investigated in [98–100], where more probabilistic approaches and the method
of corrector are employed. In particular, the authors prove the existence and uniqueness of the
solution in suitable weighted Sobolev spaces and its continuity with respect to parameters in
the equations. Moreover, the Poisson problem for an extended generator defined in terms of
an appropriate version of the Dynkin formula is analyzed in [120]. Regarding the study of the
homogenization of the eigenvalue problem for elliptic operators, several results exist in the context
of bounded domains [11,71,72], and additional first-order corrections for the eigenvalues of the
homogenized generator are provided in [89]. Our theoretical analysis is based on the notion of
two-scale convergence, which was initially introduced in [91] and then studied in greater detail
in [9, 10]. Our contribution to this field consists in the extension of this theory from Lebesgue
spaces in bounded domains to the more general case of weighted Sobolev spaces in unbounded
domains. An advantage of the two-scale convergence approach with respect to other techniques
presented in the literature is the fact that it gives a mathematical justification to the formal
asymptotic multiscale expansion which is usually employed to derive the homogenized equation.

In Chapter 8 we then consider interacting particle systems and, more generally interacting
multiagent models, which appear frequently in the natural and social sciences. In addition to the
well known applications, e.g., plasma physics [58] and stellar dynamics [22], new applications
include, e.g., the modeling of chemotaxis [116], pedestrian dynamics [60,83], crowd dynamics [86],
urban modeling [43], models for opinion formation [52,57], collective behavior [38], and models
for systemic risk [54]. In many of these applications, the phenomenological models involve
unknown parameters that need to be estimated from data. This is particularly the case for
multiagent models used in the social sciences and in economics, where no physics-informed choices
of parameters are available. Learning parameters or even models, in a nonparametric setting,
from data is becoming an increasingly important aspect of the overall mathematical modeling
strategy. This is particularly the case in view of the huge quantity of available data in different
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areas, which allows the development of accurate data-driven techniques for learning parameters
from data.

Inference for large interacting systems has attracted considerable attention, starting from the work
of Kasonga [70], in which the MLE was considered. In particular, it was proved that the MLE
for estimating parameters in the drift, when the drift is linearly dependent on the parameters,
given continuous time observations of all the particles of the N -particle system, is consistent
and asymptotically normal in the limit as N →∞. In this setting, it is possible to test whether
the particles are interacting or not, at least in the linear case, i.e., for a system of interacting
OU processes. Consistency and asymptotic normality of the sieve estimator and an approximate
MLE estimator, i.e., when discrete observations of all the particles are given, was studied in [24]
in the same framework of linear dependence on the parameters for the drift and known diffusion
coefficient. Moreover, MLE inference of the mean field OU SDE was also considered. Properties
of the MLE for the McKean SDE, when a continuous path of the SDE is observed, were studied
in [121]. Consistency of the MLE was proved and an application to a model for ionic diffusion was
presented. The MLE estimator for the McKean SDE was also considered in [81] and numerical
experiments for the mean field OU process were presented. The combined large particle and long
time asymptotics, N →∞ and T →∞, of the MLE for the case of a quadratic interaction, i.e.,
for interacting OU processes, was studied in [29]. Unlike the previous works mentioned in this
literature review, the case where only a single particle trajectory is observed was considered in
this work. It was shown that the parameters in the drift can be estimated with optimal rate of
convergence simultaneously in mean-field limit and in long-time dynamics. Offline and online
inference for the McKean SDE was studied in [112]. Consistency and asymptotic normality of the
offline MLE for the interacting particle system in the limit as the number of particles N →∞ was
shown. In addition, an online parameter estimator for the mean field SDE was proposed, which
evolves according to a continuous-time stochastic gradient descent algorithm on the asymptotic
log-likelihood of the interacting particle system.

5.4 Our main contributions

In Chapter 6, which is based on our research article [125], we prove homogenization results using
two-scale convergence for two different problems involving the generator of the multiscale Langevin
dynamics. In particular, the main contribution of this chapter, in addition to the extension of
the theory of two-scale convergence to weighted Sobolev spaces in unbounded domains, is the
homogenization of the Poisson equation with a reaction term (5.7) and of the eigenvalue problem
(5.8) for the generator of multiscale Langevin dynamics. We work with weighted Sobolev spaces
in the whole space Rd and we show:

(i) strong convergence in L2 sense and weak convergence in H1 sense of the solution of the
multiscale equation (5.7) to the solution of the corresponding homogenized problem,

(ii) convergence of the eigenvalues of the multiscale generator to the corresponding eigenvalues
of the homogenized generator;

(iii) strong convergence in L2 sense and weak convergence in H1 sense of the eigenvectors of the
multiscale generator to the corresponding eigenvectors of the homogenized generator.

On the other hand, the main goal of Chapters 7 and 8, which are based on our research
articles [6, 105], is to propose new robust algorithms based on martingale estimating functions
for learning parameters in coarse-grained models from observations originated by more complex
phenomena. In Chapter 7 we focus on multiscale diffusions and combine two main ideas:

(i) the use of martingale estimating functions for discretely observed diffusion processes based
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on the eigenvalues and the eigenfunctions of the generator of the homogenized process,
(ii) the filtering methodology for smoothing the data in order to make them compatible with

the homogenized model, which was introduced in Chapter 2.

We prove theoretically and observe numerically that the estimator without filtered data is
asymptotically unbiased if:

(i) the observations are taken at the homogenized regime, i.e., the sampling rate is independent
of the parameter measuring scale separation,

(ii) the observations are taken at the multiscale regime, i.e., the sampling rate is dependent on
the fastest scale, and the sampling rate is bigger than the multiscale parameter.

Moreover, we show that the estimator with filtered data corrects the bias caused by a sampling rate
smaller than the multiscale parameter and therefore it is asymptotically unbiased independently
of the sampling rate. Hence, this second estimator is not sensitive with respect to the sampling
rate.

In Chapter 8 we adopt a similar approach for interacting particle systems and our main contribu-
tions are summarized below.

(i) We propose a new methodology for estimating parameters in the drift of large interacting
particle systems when a sequence of discrete observations of a single particle is given. Our
proposed estimator is based on the eigenvalues and eigenfunctions of the generator of the
mean field SDE at the steady state.

(ii) We show theoretically that our estimator is asymptotically unbiased and asymptotically
normal in the limit as the number of observations and the number of particles go to infinity
and we compute the rate of convergence.

(iii) We demonstrate numerically that our proposed estimator is reliable and robust with respect
to the sampling rate.
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6 Homogenization of the generator
of multiscale Langevin dynamics
In this chapter, which is based on our research article [125], we study the homogenization of
the Poisson problem and the eigenvalue problem for the generator of the multiscale Langevin
dynamics employing weighted Sobolev spaces and the theory of two-scale convergence. The
chapter is organized as follows. In Section 6.1 we introduce the weighted Sobolev spaces which are
employed in the analysis and we present some preliminary results. Then, in Sections 6.2 and 6.3
we study the homogenization of the Poisson problem with a reaction term and of the eigenvalue
problem for the generator, respectively, and in Section 6.4 we show numerical examples which
confirm our theoretical findings. In Section 6.5 we summarize the main results of the chapter.

We first introduce the functional spaces which will be employed throughout the rest of the chapter.

Notation

Let ϕ : Rd → R be a probability density function (either ϕε or ϕ0 defined in (5.3) and (5.4)) and
T be the cell defined in (1.6).

• L2
ϕ(Rd) is the space of measurable functions u : Rd → R such that

‖u‖L2
ϕ(Rd) :=

(∫
Rd
u(x)2ϕ(x) dx

)1/2
<∞.

• L2
ϕ(Rd × T ) is the space of measurable functions u : Rd × T → R such that

‖u‖L2
ϕ(Rd×T ) :=

(∫
Rd

∫
T
u(x, y)2ϕ(x) dy dx

)1/2
<∞.

• H1
ϕ(Rd) is the space of measurable weakly differentiable functions u : Rd → R such that

‖u‖H1
ϕ(Rd) :=

(∫
Rd
u(x)2ϕ(x) dx+

∫
Rd
‖∇u(x)‖2 ϕ(x) dx

)1/2
<∞.

• Ckper(T ) with k ∈ N is the subspace of Ck(Rd) of T −periodic functions.
• H1

per(T ) is the closure of C∞per(T ) with respect to the norm in H1(T ).
• Wper(T ) is the quotient space H1

per(T )/R and it is endowed with the norm

‖u‖Wper(T ) = ‖∇u‖L2(T ) .

• L2
ϕ(Rd;C0

per(T )) is the space of measurable functions u : x 7→ u(x) ∈ C0
per(T ) such that

‖u(x)‖L∞(T ) ∈ L2
ϕ(Rd) and it is endowed with the norm

‖u‖L2
ϕ(Rd;C0

per(T )) =
(∫

Rd
sup
y∈T
|u(x, y)|2 ϕ(x) dx

)1/2
.
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• L2
ϕ(Rd;Wper(T )) is the space of measurable functions u : x 7→ u(x) ∈ Wper(T ) such that
‖u(x)‖Wper(T ) ∈ L2

ϕ(Rd) and it is endowed with the norm

‖u‖L2
ϕ(Rd;Wper(T )) =

(∫
Rd

∫
T
‖∇yu(x, y)‖2 ϕ(x) dy dx

)1/2
.

6.1 Preliminary results
In this section we introduce the main functional spaces which will be employed in the following
analysis and we study their relations. Let us consider the weighted Sobolev spaces L2

ϕε(Rd),
L2
ϕ0(Rd), H1

ϕε(Rd) andH1
ϕ0(Rd), where the weight functions are the densities of invariant measures

νε and ν0 defined in (5.3) and (5.4), where we recall that p is T -periodic. First, we show that
the weighted Lebesgue spaces L2

ϕε(Rd) and L2
ϕ0(Rd) describe the same space of functions but

they are endowed with different norms.

Lemma 6.1. Under Assumption 1.4(i), there exist two constants Clow, Cup > 0 independent of ε
such that

Clow ‖u‖L2
ϕ0 (Rd) ≤ ‖u‖L2

ϕε
(Rd) ≤ Cup ‖u‖L2

ϕ0 (Rd) .

In particular, the injections IL2
ϕε

(Rd)↪→L2
ϕ0 (Rd) and IL2

ϕ0 (Rd)↪→L2
ϕε

(Rd) are continuous.

Proof. Since p ∈ C∞(Rd) is T -periodic, then there exists a constant M > 0 such that |p(y)| ≤M
for all y ∈ Rd. Therefore, we have

0 < e−
M
σ ≤ e−

1
σ p( xε ) ≤ eMσ ,

which implies
e−

M
σ ‖u‖L2

ϕ0 (Rd) ≤ ‖u‖L2
ϕε

(Rd) ≤ e
M
σ ‖u‖L2

ϕ0 (Rd) .

Finally, defining Clow := e−
M
σ and Cup := e

M
σ we obtain the desired result.

An analogous result holds true also for the weighted Sobolev spaces H1
ϕε(Rd) and H1

ϕ0(Rd) and
follows directly from Lemma 6.1.

Corollary 6.2. Under Assumption 1.4(i), there exist two constants Clow, Cup > 0 independent
of ε such that

Clow ‖u‖H1
ϕ0 (Rd) ≤ ‖u‖H1

ϕε
(Rd) ≤ Cup ‖u‖H1

ϕ0 (Rd) .

In particular, the injections IH1
ϕε

(Rd)↪→H1
ϕ0 (Rd) and IH1

ϕ0 (Rd)↪→H1
ϕε

(Rd) are continuous.

Let us now consider the injections IH1
ϕ0 (Rd)↪→L2

ϕ0 (Rd) and IH1
ϕε

(Rd)↪→L2
ϕε

(Rd), which are continuous
since by definition we have

‖u‖L2
ϕ0 (Rd) ≤ ‖u‖H1

ϕ0 (Rd) and ‖u‖L2
ϕε

(Rd) ≤ ‖u‖H1
ϕε

(Rd) .

We remark that these injections are not compact in general, differently from classical non
weighted Sobolev spaces in bounded and regular domains, where the compactness is always
guaranteed by the Rellich–Kondrachov theorem [44, Theorem 5.7.1]. Hence, in order to ensure
the compactness of the injections IH1

ϕ0 (Rd)↪→L2
ϕ0 (Rd) and IH1

ϕε
(Rd)↪→L2

ϕε
(Rd) we make the following

additional assumption.
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Assumption 6.3. There exists a constant β > 2 such that the slow-scale potential V satisfies

lim
‖x‖→+∞

(
1
β
‖∇V(x)‖2 −∆V(x)

)
= +∞ and lim

‖x‖→+∞
‖∇V(x)‖ = +∞.

Then, Assumption 6.3 implies condition (82) in [5], and due to [5, Proposition A.4] it follows that
the injection IH1

ϕ0 (Rd)↪→L2
ϕ0 (Rd) is compact and the measure ϕ0 satisfies the Poincaré inequality

for all u ∈ H1
ϕ0(Rd) and for a constant CP > 0∫

Rd
(u(x)− ū0)2ϕ0(x) dx ≤ CP

∫
Rd
‖∇u(x)‖2 ϕ0(x) dx, (6.1)

where ū0 =
∫
Rd u(x)ϕ0(x) dx.

Remark 6.4. Assumption 6.3 is satisfied, e.g., by quadratic potentials in Rd of the form V(x) =
1
2x
>Dx, where D ∈ Rd×d is a symmetric positive definite matrix, and by the bistable potential

V(x) = x4/4− x2/2 in R. Moreover, Assumption 6.3 is not the only sufficient condition to ensure
the compactness of the injection IH1

ϕ0 (Rd)↪→L2
ϕ0 (Rd). Two other necessary and sufficient conditions

are presented in Proposition 1.3 and Lemma 2.2 in [49]. In particular, it is required that the
potential V is such that either the Schrödinger operator

S = −∆ + 1
4
∥∥∇ϕ0∥∥2 − 1

2∆ϕ0,

or the operator
P = −∆ +∇ϕ0 · ∇,

has compact resolvent. Moreover, another sufficient condition is given in [66, Theorem 3.1], where
it is proved that the potentials of the form V = ‖x‖2p with p integer greater than zero satisfy the
condition.

Given Assumption 6.3 and using [5, Proposition A.4], we can now prove that the same compactness
result holds true also for the spaces H1

ϕε(Rd) and L2
ϕε(Rd).

Lemma 6.5. Under Assumptions 1.4 and 6.3, the injection IH1
ϕε

(Rd)↪→L2
ϕε

(Rd) is a compact
operator and the measure ϕε satisfies the Poincaré inequality for all u ∈ H1

ϕε(Rd) and for a
constant C̃εP > 0 ∫

Rd
(u(x)− ūε)2ϕε(x) dx ≤ C̃εP

∫
Rd
‖∇u(x)‖2 ϕε(x) dx, (6.2)

where ūε =
∫
Rd u(x)ϕε(x) dx.

Proof. Let Vε be defined as
Vε(x) = V(x) + p

(x
ε

)
.

Then, due to Assumption 1.4(i) there exists a constantM > 0 such that |p(y)| ≤M , ‖∇p(y)‖ ≤M
and |∆p(y)| ≤ M for all y ∈ T . We now show that for any ε > 0 the potential Vε satisfies
condition (82) in [5]. In fact, by the triangle inequality we first have

‖∇Vε(x)‖ =
∥∥∥∥∇V(x) + 1

ε
∇p
(x
ε

)∥∥∥∥ ≥ ‖∇V(x)‖ − 1
ε

∥∥∥∇p(x
ε

)∥∥∥ ≥ ‖∇V(x)‖ − M

ε
,
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which due to Assumption 6.3 implies that

lim
‖x‖→+∞

‖∇Vε(x)‖ ≥ lim
‖x‖→+∞

‖∇V(x)‖ − M

ε
= +∞.

Moreover, let β be given in Assumption 6.3, and notice that by Young’s inequality we get

‖∇Vε(x)‖2 ≥ ‖∇V(x)‖2 + 1
ε2

∥∥∥∇p(x
ε

)∥∥∥2
− 2
ε
‖∇V(x)‖

∥∥∥∇p(x
ε

)∥∥∥
≥ ‖∇V(x)‖2 − β − 2

β
‖∇V(x)‖2 − β

(β − 2)ε2

∥∥∥∇p(x
ε

)∥∥∥2

≥ 2
β
‖∇V(x)‖2 − βM2

(β − 2)ε2 ,

which due to Assumption 6.3 yields

lim
‖x‖→+∞

(
1
4 ‖∇V

ε(x)‖2 − 1
2∆Vε(x)

)
≥ 1

2 lim
‖x‖→+∞

(
1
β
‖∇V(x)‖2 −∆V(x)

)
− βM2

4(β − 2)ε2 −
M

2ε2

= +∞.

Therefore, condition (82) in [5] is satisfied, and following the same argument of [5, Proposition
A.4] we obtain the desired result.

6.2 Poisson equation with a reaction term

Let us recall that the generators Lε and L0 of the multiscale and homogenized diffusions are
defined in equations (5.5) and (5.6), respectively. In this section we study the problem for the
multiscale generator

− Lεuε + ηuε = f, (6.3)
with f ∈ L2

ϕε(Rd) and where the reaction term with coefficient η > 0 is added in order to ensure
the well-posedness of the problem, and we analyze its homogenization. In particular, we show
that the solution uε converges in some sense which will be specified later to the solution u0 of
the Poisson problem for the homogenized generator with a reaction term

− L0u0 + ηu0 = f, (6.4)

where, in view of Lemma 6.1, f is now seen as a function of L2
ϕ0(Rd).

Remark 6.6. We decided to study the Poisson equation with a reaction term with coefficient
η > 0 so that, as we will see later, the bilinear form of the corresponding weak formulation is
coercive. This guarantees the well-posedness of the problem without additional conditions on
the solution and on the right-hand side, which would be otherwise needed if the bilinear form
was only weakly coercive as in the case η = 0. Moreover, this partial differential equation (PDE)
will be useful in the study of the homogenization of the eigenvalue problem for the generator,
which is the focus of Section 6.3 and the main purpose of this chapter. We finally remark that
the solutions to the equations (6.3) and (6.4) depend not only on ε, but also on the choice of
the parameter η. However, in order to simplify the notation, we decided not to include η as a
subscript of the solutions uε and u0.

6.2.1 Weak formulation

We first write the weak formulation of problems (6.3) and (6.4) and, applying the Lax–Milgram
lemma, we prove that they admit a unique solution respectively in the spaces H1

ϕε(Rd) and
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H1
ϕ0(Rd). Since the proof is analogous for both the cases, we present the details only in the

multiscale setting. Letting ψ ∈ H1
ϕε(Rd) be a test function, multiplying equation (6.3) by

ψ(x)ϕε(x) and integrating over Rd and by parts we obtain

σ

∫
Rd
∇uε(x) · ∇ψ(x)ϕε(x) dx+ η

∫
Rd
uε(x)ψ(x)ϕε(x) dx =

∫
Rd
f(x)ψ(x)ϕε(x) dx.

Therefore, the weak formulation of problem (6.3) reads:

find uε ∈ H1
ϕε(Rd) such that Bε(uε, ψ) = F ε(ψ) for all ψ ∈ H1

ϕε(Rd), (6.5)

where Bε : H1
ϕε(Rd)×H1

ϕε(Rd)→ R and F ε : H1
ϕε(Rd)→ R are defined as

Bε(v, ψ) = σ

∫
Rd
∇v(x) · ∇ψ(x)ϕε(x) dx+ η

∫
Rd
v(x)ψ(x)ϕε(x) dx,

F ε(ψ) =
∫
Rd
f(x)ψ(x)ϕε(x) dx.

(6.6)

Similarly, the weak formulation of problem (6.4) reads:

find u0 ∈ H1
ϕ0(Rd) such that B0(u0, ψ) = F 0(ψ) for all ψ ∈ H1

ϕ0(Rd), (6.7)

where B0 : H1
ϕ0(Rd)×H1

ϕ0(Rd)→ R and F 0 : H1
ϕ0(Rd)→ R are defined as

B0(v, ψ) =
∫
Rd

Σ∇v(x) · ∇ψ(x)ϕ0(x) dx+ η

∫
Rd
v(x)ψ(x)ϕ0(x) dx,

F 0(ψ) =
∫
Rd
f(x)ψ(x)ϕ0(x) dx.

(6.8)

Then, the well-posedness of the two problems is given by the following lemmas.

Lemma 6.7. Problem (6.5) has a unique solution uε ∈ H1
ϕε(Rd) which satisfies

‖uε‖H1
ϕε

(Rd) ≤
1

min{σ, η} ‖f‖L2
ϕε

(Rd) . (6.9)

Proof. The existence and uniqueness of the solution follow from the Lax–Milgram lemma once
we show the continuity and coercivity of Bε and the continuity of F ε defined in (6.6). Applying
the Cauchy–Schwarz inequality we obtain

|Bε(v, ψ)| ≤ 2 max{σ, η} ‖v‖H1
ϕε

(Rd) ‖ψ‖H1
ϕε

(Rd) ,

and
|F ε(ψ)| ≤ ‖f‖L2

ϕε
(Rd) ‖ψ‖H1

ϕε
(Rd) , (6.10)

which prove the continuity of Bε and F ε. Moreover, we also have

Bε(ψ,ψ) ≥ min{σ, η} ‖ψ‖2H1
ϕε

(Rd) , (6.11)

which gives the coercivity of Bε. Finally, due to inequalities (6.10) and (6.11) we deduce

min{σ, η} ‖uε‖2H1
ϕε

(Rd) ≤ B
ε(uε, uε) = F ε(uε) ≤ ‖f‖L2

ϕε
(Rd) ‖u

ε‖H1
ϕε

(Rd)

which implies estimate (6.9) and concludes the proof.
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Lemma 6.8. Problem (6.7) has a unique solution u0 ∈ H1
ϕ0(Rd) which satisfies∥∥u0∥∥

H1
ϕ0 (Rd) ≤

1
min{λmin(Σ), η} ‖f‖L2

ϕ0 (Rd) ,

where λmin(Σ) > 0 is the smallest eigenvalue of the matrix Σ.

We omit the proof of Lemma 6.8 since it follows the same argument of Lemma 6.7.

6.2.2 Two-scale convergence

We now focus on the homogenization of problem (6.5) and our strategy is based on the two-scale
convergence method outlined in [30, Chapter 9]. We remark that we extend this theory to the
case of weighted Sobolev spaces in unbounded domains, hence also the definition of two-scale
convergence has to be adapted and it is given in Definition 6.9. We first introduce some preliminary
results, and in the last part of this section we prove the main convergence theorem.

Definition 6.9. A sequence of functions {vε} in L2
ϕ0(Rd) is said to two-scale converge to the

limit v0 ∈ L2
ϕ0(Rd × T ) if for any function ψ ∈ L2

ϕ0(Rd;C0
per(T )) it holds

lim
ε→0

∫
Rd
vε(x)ψ

(
x,
x

ε

)
ϕ0(x) dx = 1

|T |

∫
Rd

∫
T
v0(x, y)ψ(x, y)ϕ0(x) dy dx.

We then write vε  v0.

Remark 6.10. From Definition 6.9 it follows that two-scale convergence implies weak convergence.
In fact, choosing ψ independent of y we obtain

vε ⇀
1
|T |

∫
T
v0(·, y) dy in L2

ϕ0(Rd),

and if also the two-scale limit is independent of y then vε ⇀ v0 in L2
ϕ0(Rd).

The following lemmas are technical results which will be useful in the proof of next theorems.
The former studies the properties of the space L2

ϕ0(Rd;C0
per(T )) and the latter is a convergence

result for two-scale functions in the same space.

Lemma 6.11. The space L2
ϕ0(Rd;C0

per(T )) is separable and dense in L2
ϕ0(Rd × T ).

Proof. Since the space C0
per(T ) is separable, then by [30, Proposition 3.55] it follows that the

space L2(Rd;C0
per(T )) is separable. Moreover, L2(Rd;C0

per(T )) is isomorphic to L2
ϕ0(Rd;C0

per(T ))
through the isomorphism

I : L2
ϕ0(Rd;C0

per(T ))→ L2(Rd;C0
per(T )), u 7→ I (u) =

√
ϕ0u,

and thus the space L2
ϕ0(Rd;C0

per(T )) is separable as well. Concerning the density result, since
D(T ) is dense in L2(T ), then L2

ϕ0(Rd;D(T )) is dense in L2
ϕ0(Rd;L2(T )). Finally, the property

that L2
ϕ0(Rd;C0

per(T )) is dense in L2
ϕ0(Rd × T ) follows from the inclusion L2

ϕ0(Rd;D(T )) ⊂
L2
ϕ0(Rd;C0

per(T )) and the fact that L2
ϕ0(Rd;L2(T )) = L2

ϕ0(Rd × T ).

Lemma 6.12. Let ψ ∈ L2
ϕ0(Rd;C0

per(T )). Then

lim
ε→0

∫
Rd
ψ
(
x,
x

ε

)2
ϕ0(x) dx = 1

|T |

∫
Rd

∫
T
ψ(x, y)2ϕ0(x) dy dx. (6.12)
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Proof. The proof follows the same steps of the proof of Lemma 5.2 in [9], where the spaces L1(Ω)
and L1(Ω;C0

per(Y )) are replaced by L2
ϕ0(Rd) and L2

ϕ0(Rd;C0
per(T )), respectively. Accordingly,

the integrals
∫

Ω v(x) dx for a function v = v(x) are replaced by
∫
Rd v(x)ϕ0(x) dx.

The following propositions are compactness results in the spaces L2
ϕ0(Rd) and H1

ϕ0(Rd), respec-
tively, which highlight the importance of the notion of two-scale convergence and thus justify the
introduction of Definition 6.9. The proof of Proposition 6.14 is based on the proof of Theorem
9.9 in [30].

Proposition 6.13. Let {vε} be a bounded sequence in L2
ϕ0(Rd). Then, there exist a subsequence

{vε′} and a function v0 ∈ L2
ϕ0(Rd × T ) such that

vε
′
 v0.

Proof. The proof follows the same steps of the proof of Theorem 9.7 in [30], where Proposition
3.61, equation (9.2) and the spaces L2(Ω), L2(Ω×Y ), L2(Ω;C0

per(Y )) are replaced by Lemma 6.11,
equation (6.12) and L2

ϕ0(Rd), L2
ϕ0(Rd × T ), L2

ϕ0(Rd;C0
per(T )), respectively. Accordingly, the

integrals
∫

Ω v(x) dx for a function v = v(x) are replaced by
∫
Rd v(x)ϕ0(x) dx.

Proposition 6.14. Let {vε} be a sequence of functions in H1
ϕ0(Rd) such that

vε ⇀ v0 in H1
ϕ0(Rd). (6.13)

Then, vε  v0 and there exist a subsequence {vε′} and v1 ∈ L2
ϕ0(Rd;Wper(T )) such that

∇vε
′
 ∇v0 +∇yv1.

Proof. By Proposition 6.13, there exists a subsequence (still denoted by ε) such that

vε  v ∈ L2
ϕ0(Rd × T ) and ∇vε  Ξ ∈ (L2

ϕ0(Rd × T ))d. (6.14)

Letting ψ ∈ (D(Rd;C∞per(T )))d and integrating by parts we have∫
Rd
∇vε(x) · ψ

(
x,
x

ε

)
ϕ0(x) dx = −

∫
Rd
vε(x)

[
divx ψ

(
x,
x

ε

)
+ 1
ε

divy ψ
(
x,
x

ε

)]
ϕ0(x) dx

+ 1
σ

∫
Rd
vε(x)ψ

(
x,
x

ε

)
· ∇V(x)ϕ0(x) dx,

which implies∫
Rd
vε(x) divy ψ

(
x,
x

ε

)
ϕ0(x) dx = ε

∫
Rd
vε(x)

[
1
σ
ψ
(
x,
x

ε

)
· ∇V(x)− divx ψ

(
x,
x

ε

)]
ϕ0(x) dx

− ε
∫
Rd
∇vε(x) · ψ

(
x,
x

ε

)
ϕ0(x) dx.

Passing to the limit as ε→ 0 and due to (6.14) we obtain

1
|T |

∫
Rd

∫
T
v(x, y) divy ψ(x, y)ϕ0(x) dy dx = 0,

which yields for all ψ ∈ (D(Rd × T ))d∫
Rd

∫
T
∇yv(x, y) · ψ(x, y)ϕ0(x) dy dx = 0.
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Hence, by [30, Theorem 1.44] and since ϕ0(x) > 0 for all x ∈ Rd we get

∇yv = 0 a.e. on Rd × T .

Therefore, from [30, Proposition 3.38] with Ω replaced by T and x fixed we deduce that v does not
depend on y and due to Remark 6.10 and hypothesis (6.13) this implies that v = v0 ∈ H1

ϕ0(Rd).
Let now ψ ∈ (D(Rd;C∞per(T )))d such that divy ψ = 0. Integrating by parts and by (6.14) we
obtain

lim
ε→0

∫
Rd
∇vε(x) · ψ

(
x,
x

ε

)
ϕ0(x) dx

= lim
ε→0

∫
Rd
vε(x)

[
1
σ
ψ
(
x,
x

ε

)
· ∇V(x)− divx ψ

(
x,
x

ε

)]
ϕ0(x) dx

= 1
|T |

∫
Rd

∫
T
v0(x)

[
1
σ
ψ(x, y) · ∇V(x)− divx ψ(x, y)

]
ϕ0(x) dy dx

= 1
|T |

∫
Rd

∫
T
∇v0(x) · ψ(x, y)ϕ0(x) dy dx.

Due to (6.14) we also have

lim
ε→0

∫
Rd
∇vε(x) · ψ

(
x,
x

ε

)
ϕ0(x) dx = 1

|T |

∫
Rd

∫
T

Ξ(x, y) · ψ(x, y)ϕ0(x) dy dx,

and defining ψ̃(x, y) =
√
ϕ0(x)ψ(x, y) it follows that∫

Rd

∫
T

√
ϕ0(x)

[
Ξ(x, y)−∇v0(x)

]
· ψ̃(x, y) dy dx = 0,

for all ψ̃ ∈ (D(Rd;C∞per(T )))d such that divy ψ = 0. Therefore, by a classical result (see,
e.g., [55, 118]) there exists a unique function ṽ1 ∈ L2(Rd;Wper(T )) such that(

Ξ(x, y)−∇v0(x)
)√

ϕ0(x) = ∇y ṽ1(x, y).

Finally, defining v1 ∈ L2
ϕ0(Rd;Wper(T )) as v1(x, y) = ṽ1(x, y)/

√
ϕ0(x) gives the desired result.

6.2.3 Homogenization

We are now ready to state and prove the homogenization of problem (6.3) employing the two-scale
convergence methodology introduced in the previous section. The proof of next theorem is
inspired by [30, Section 9.3].

Theorem 6.15. Let uε and u0 be respectively the unique solutions of problems (6.5) and (6.7).
Then, under Assumptions 1.4 and 6.3 and as ε→ 0

(i) uε → u0 in L2
ϕ0(Rd),

(ii) uε ⇀ u0 in H1
ϕ0(Rd).

Proof. By Lemmas 6.1 and 6.7 and Corollary 6.2 we have

‖uε‖H1
ϕ0 (Rd) ≤

1
Clow

‖u‖H1
ϕε

(Rd) ≤
1

Clow min{σ, η} ‖f‖L2
ϕε

(Rd) ≤
Cup

Clow min{σ, η} ‖f‖L2
ϕ0 (Rd) ,
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which implies that the sequence {uε} is bounded in H1
ϕ0(Rd). Then, there exist ũ ∈ H1

ϕ0(Rd) and
a subsequence (still denoted by ε) such that

uε ⇀ ũ in H1
ϕ0(Rd) and uε → ũ in L2

ϕ0(Rd).

Due to Proposition 6.14 there exists u1 ∈ L2
ϕ0(Rd;Wper(T )) such that, up to a subsequence

uε  ũ and ∇uε  ∇ũ+∇yu1.

We now want to prove that ũ is the unique solution of problem (6.7), i.e., ũ = u0. Let ψ0 ∈ D(Rd)
and ψ1 ∈ D(Rd;C∞per(T )) and note that ψ0(·) + εψ1

(
·, ·ε
)
∈ H1

ϕε(Rd) and thus it can be chosen
as a test function in (6.5). We then have

σ

∫
Rd
∇uε(x) ·

(
∇ψ0(x) + ε∇xψ1

(
x,
x

ε

)
+∇yψ1

(
x,
x

ε

))
ϕε(x) dx

+ η

∫
Rd
uε(x)

(
ψ0(x) + εψ1

(
x,
x

ε

))
ϕε(x) dx =

∫
Rd
f(x)

(
ψ0(x) + εψ1

(
x,
x

ε

))
ϕε(x) dx,

(6.15)
and noting that

ϕε(x) = CπCν0

Cνε
ω
(x
ε

)
ϕ0(x), (6.16)

where π is defined in (1.8), equation (6.15) can be rewritten as

Iε1,1 + Iε1,2 + ε
(
Iε2,1 + Iε2,2

)
= Jε1 + εJε2 , (6.17)

where
Iε1,1 := σ

∫
Rd
∇uε(x) ·

(
∇ψ0(x) +∇yψ1

(
x,
x

ε

))
ω
(x
ε

)
ϕ0(x) dx,

Iε1,2 := η

∫
Rd
uε(x)ψ0(x)ω

(x
ε

)
ϕ0(x) dx,

Iε2,1 := σ

∫
Rd
∇uε(x) · ∇xψ1

(
x,
x

ε

)
ω
(x
ε

)
ϕ0(x) dx,

Iε2,2 := η

∫
Rd
uε(x)ψ1

(
x,
x

ε

)
ω
(x
ε

)
ϕ0(x) dx,

Jε1 :=
∫
Rd
f(x)ψ0(x)ω

(x
ε

)
ϕ0(x) dx,

Jε2 :=
∫
Rd
f(x)ψ1

(
x,
x

ε

)
ω
(x
ε

)
ϕ0(x) dx.

Passing to the limit as ε→ 0 in equation (6.17) and by two-scale convergence we obtain

lim
ε→0

Iε1,1 = σ

|T |

∫
Rd

∫
T

(∇ũ(x) +∇yu1(x, y)) · (∇ψ0(x) +∇yψ1(x, y))ω(y)ϕ0(x) dy dx,

lim
ε→0

Iε1,2 = η

|T |

∫
Rd

∫
T
ũ(x)ψ0(x)ω(y)ϕ0(x) dy dx = η

|T |

∫
Rd
ũ(x)ψ0(x)ϕ0(x) dx,

lim
ε→0

Iε2,1 = σ

|T |

∫
Rd

∫
T

(∇ũ(x) +∇yu1(x, y)) · ∇xψ1(x, y)ω(y)ϕ0(x) dy dx,

lim
ε→0

Iε2,2 = η

|T |

∫
Rd

∫
T
ũ(x)ψ1(x, y)ω(y)ϕ0(x) dy dx,

lim
ε→0

Jε1 = 1
|T |

∫
Rd

∫
T
f(x)ψ0(x)ω(y)ϕ0(x) dy dx = 1

|T |

∫
Rd
f(x)ψ0(x)ϕ0(x) dx,

lim
ε→0

Jε2 = 1
|T |

∫
Rd

∫
T
f(x)ψ1(x, y)ω(y)ϕ0(x) dy dx,
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which yield

σ

∫
Rd

∫
T

(∇ũ(x) +∇yu1(x, y)) · (∇ψ0(x) +∇yψ1(x, y))ω(y)ϕ0(x) dy dx

+ η

∫
Rd
ũ(x)ψ0(x)ϕ0(x) dx =

∫
Rd
f(x)ψ0(x)ϕ0(x) dx.

(6.18)

We now show that equation (6.18) is a variational equation in the functional space

H = H1
ϕ0(Rd)× L2

ϕ0(Rd;Wper(T )),

endowed with the norm

‖Ψ‖H =
(
‖ψ0‖2H1

ϕ0 (Rd) + ‖ψ1‖2L2
ϕ0 (Rd;Wper(T ))

)1/2
, for all Ψ = (ψ0, ψ1) ∈ H,

and that the hypotheses of the Lax–Milgram lemma are satisfied. Let a : H ×H → R be the
bilinear form defined for any Ξ = (ξ0, ξ1) ∈ H and Ψ = (ψ0, ψ1) ∈ H by

a(Ξ,Ψ) = σ

∫
Rd

∫
T

(∇ξ0(x) +∇yξ1(x, y)) · (∇ψ0(x) +∇yψ1(x, y))ω(y)ϕ0(x) dy dx

+ η

∫
Rd
ξ0(x)ψ0(x)ϕ0(x) dx,

and let F : H → R be the linear functional defined by

F (Ψ) =
∫
Rd
f(x)ψ0(x)ϕ0(x) dx.

Notice that due to the definition of ω in (1.8) and the hypotheses on p in Assumption 1.4(i) there
exist two constants C1, C2 > 0 such that 0 < C1 ≤ |ω(y)| ≤ C2 for all y ∈ Y . It follows that a
and F are continuous, in fact applying the Cauchy–Schwarz inequality we get

|a(Ξ,Ψ)| ≤ (2σ(1 + C2) + η) ‖Ξ‖H ‖Ψ‖H ,

and
|F (Ψ)| ≤ ‖f‖L2

ϕ0 (Rd) ‖Ψ‖H .

Moreover, we also have

a(Ψ,Ψ) ≥ C1σ

∫
Rd

∫
T
‖∇ψ0(x) +∇yψ1(x, y)‖2 ϕ0(x) dy dx+ η

∫
Rd
ψ0(x)2ϕ0(x) dx

= C1σ |T |
∫
Rd
‖∇ψ0(x)‖2 ϕ0(x) dx+ η

∫
Rd
ψ0(x)2ϕ0(x) dx

+ C1σ

∫
Rd

∫
T
‖∇yψ1(x, y)‖2 ϕ0(x) dy dx

≥ min{C1σ |T | , η, C1σ} ‖Ψ‖H ,

which shows that a is coercive and where we used the fact that due to the periodicity of ψ1(x, ·)
in T for all x ∈ Rd∫

Rd

∫
T
∇ψ0(x) · ∇yψ1(x, y)ϕ0(x) dy dx =

∫
Rd

∫
T

divy (∇ψ0(x)ψ1(x, y))ϕ0(x) dy dx

=
∫
Rd

∫
∂Y

ψ1(x, y)∇ψ0(x) · nyϕ
0(x) dγy dx = 0,
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where ny denotes the outward unit normal vector to ∂T . Therefore, the Lax-Milgram lemma
gives the existence and uniqueness of the solution U = (ũ, u1) ∈ H of equation (6.18) for any
Ψ = (ψ0, ψ1) ∈ H. Then, notice that the components of the unique solution U must satisfy

ũ(x) = u0(x) and ∇yu1(x, y) = (∇Φ(y))>∇u0(x),

where u0 is the unique solution of problem (6.7) and Φ solves equation (1.7). In fact, replacing U
into (6.18) we obtain(∫

Rd
σ

(∫
T

(I +∇Φ(y)>)ω(y) dy
)
∇u0(x) · ∇ψ0(x)ϕ0(x) dx

)
+ η

∫
Rd
u0(x)ψ0(x)ϕ0(x) dx

+ σ

∫
Rd

∫
T

(
I +∇Φ(y)>

)
∇u0(x) · ∇yψ1(x, y)ω(y)ϕ0(x) dy dx =

∫
Rd
f(x)ψ0(x)ϕ0(x) dx,

(6.19)
and, due to definition (1.6) and problem (6.7), equation (6.19) holds true for all Ψ = (ψ0, ψ1) ∈ H
if we show that for any ψ1 ∈ L2

ϕ0(Rd;Wper(T ))

I := σ

∫
Rd

∫
T

(
I +∇Φ(y)>

)
∇u0(x) · ∇yψ1(x, y)ω(y)ϕ0(x) dy dx = 0.

Integrating by parts and by definition of ω in (1.8) we indeed have

I = σ

∫
Rd

∫
∂T

(
I +∇Φ(y)>

)
∇u0(x)ψ1(x, y)ω(y)ϕ0(x) · ny dγy dx

−
∫
Rd

∫
T

(σ∆Φ(y)−∇Φ(y)∇p(y)−∇p(y)) · ∇u0(x)ψ1(x, y)ω(y)ϕ0(x) dy dx

= 0,

where the last equality is given by (1.7) and the periodicity of the functions Φ, ψ1(x, ·) and ω in
T . We have thus proved that the only admissible limit for the subsequence of {uε} is the solution
u0 of problem (6.7), which implies that the whole sequence {uε} converges to u0 and completes
the proof.

The previous result can be generalized to the case where also the right-hand side depends on the
multiscale parameter ε.

Corollary 6.16. Let {fε} be a sequence in L2
ϕε(Rd) such that fε → f0 in L2

ϕ0(Rd) and let uε
be the unique solution of problem

Bε(uε, ψ) = 〈fε;ψ〉L2
ϕε

(Rd) , for all ψ ∈ H1
ϕε(Rd), (6.20)

where 〈·; ·〉L2
ϕε

(Rd) denotes the inner product in L2
ϕε(Rd). Then, under Assumptions 1.4 and 6.3

and as ε→ 0
uε ⇀ u0 in H1

ϕ0(Rd) and uε → u0 in L2
ϕ0(Rd),

where u0 is the unique solution of the problem

B0(u0, ψ) =
〈
f0;ψ

〉
L2
ϕ0 (Rd) , for all ψ ∈ H1

ϕ0(Rd),

where 〈·; ·〉L2
ϕ0 (Rd) denotes the inner product in L2

ϕ0(Rd).

Proof. Let ũε be the solution of problem

Bε(ũε, ψ) =
〈
f0;ψ

〉
L2
ϕε

(Rd) , for all ψ ∈ H1
ϕε(Rd), (6.21)
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and notice that by Theorem 6.15 and as ε→ 0

ũε ⇀ u0 in H1
ϕ0(Rd) and ũε → u0 in L2

ϕ0(Rd). (6.22)

Consider now the difference between problems (6.20) and (6.21)

Bε(uε − ũε, ψ) =
〈
fε − f0;ψ

〉
L2
ϕε

(Rd) ,

and choose ψ = uε − ũε. Since Bε is coercive by (6.11) and using the Cauchy–Schwarz inequality
we have

min{σ, η} ‖uε − ũε‖2H1
ϕε

(Rd) ≤ B
ε(uε − ũε, uε − ũε)

=
〈
fε − f0;uε − ũε

〉
L2
ϕε

(Rd)

≤
∥∥fε − f0∥∥

L2
ϕε

(Rd) ‖u
ε − ũε‖H1

ϕε
(Rd) ,

which implies
‖uε − ũε‖H1

ϕε
(Rd) ≤

1
min{σ, η}

∥∥fε − f0∥∥
L2
ϕε

(Rd) ,

and employing Lemma 6.1 and Corollary 6.2 we obtain

‖uε − ũε‖H1
ϕ0 (Rd) ≤

Cup

Clow min{σ, η}
∥∥fε − f0∥∥

L2
ϕ0 (Rd) .

Therefore, since fε → f0 in L2
ϕ0(Rd) we deduce that uε − ũε → 0 in H1

ϕ0(Rd), which together
with the limits in (6.22) gives the desired result.

Finally, the next theorem is a corrector result which justifies the two first term in the asymptotic
expansion of the solution uε of (6.5)

uε(x) = u0(x) + εu1

(
x,
x

ε

)
+ ε2u2

(
x,
x

ε

)
+ . . . ,

which is usually employed in homogenization theory.

Theorem 6.17. Let uε and u0 be respectively the unique solutions of problems (6.5) and (6.7).
Then, under Assumptions 1.4 and 6.3

lim
ε→0

∥∥∥uε − u0 − εu1

(
·, ·
ε

)∥∥∥
H1
ϕ0 (Rd)

= 0,

where u1(x, y) = Φ(y) · ∇u0(x) and Φ is the solution of (1.7).

Proof. Let us first recall that from the proof of Theorem 6.15 we know that as ε→ 0

uε  u0 and ∇uε  ∇u0 +∇yu1. (6.23)

Let zε be defined as
zε(x) := uε(x)− u0(x)− εu1

(
x,
x

ε

)
,

and let z̄ε be its mean with respect to the invariant distribution ϕ0, i.e.,

z̄ε :=
∫
Rd
zε(x)ϕ0(x) dx.
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Then, applying the Poincaré inequality (6.1) we obtain

‖zε‖2H1
ϕ0 (Rd) = ‖zε‖2L2

ϕ0 (Rd) + ‖∇zε‖2(L2
ϕ0 (Rd))d

= ‖zε − z̄ε‖2L2
ϕ0 (Rd) + (z̄ε)2 + ‖∇zε‖2(L2

ϕ0 (Rd))d

≤ (z̄ε)2 + (CP + 1) ‖∇zε‖2(L2
ϕ0 (Rd))d ,

(6.24)

and we now study the two terms in the right-hand side separately. First, by the two-scale
convergence (6.23) and the fact that Φ is bounded by [103, Lemma 5.5] we have

lim
ε→0

z̄ε = lim
ε→0

(∫
Rd
uε(x)ϕ0(x) dx−

∫
0
u0(x)ϕ0(x) dx− ε

∫
Rd

Φ
(x
ε

)
· ∇u0(x)ϕ0(x) dx

)
= 0.

(6.25)
We then consider the second term in the right-hand side of (6.24) and using Lemma 6.1 we have

‖∇zε‖2(L2
ϕ0 (Rd))d ≤

1
C2

low
‖∇zε‖2(L2

ϕε
(Rd))d

= 1
C2

low

∫
Rd

∥∥∥∥∇uε(x)−
(
I +∇Φ

(x
ε

)>)
∇u0(x)− ε∇2u0(x)Φ

(x
ε

)∥∥∥∥2
ϕε(x) dx

≤ 2
C2

low
(Iε1 + Iε2),

where
Iε1 := ε2

∫
Rd

∥∥∥∇2u0(x)Φ
(x
ε

)∥∥∥2
ϕε(x) dx

Iε2 :=
∫
Rd

∥∥∥∥∇uε(x)−
(
I +∇Φ

(x
ε

)>)
∇u0(x)

∥∥∥∥2
ϕε(x) dx.

Since Φ and ω are bounded, due to equation (6.16) and noting that

lim
ε→0

CπCν0

Cνε
= |T | , (6.26)

we obtain
lim
ε→0

Iε1 = lim
ε→0

ε2CπCν0

Cνε

∫
Rd

∥∥∥∇2u0(x)Φ
(x
ε

)∥∥∥2
ω
(x
ε

)
ϕ0(x) dx = 0. (6.27)

Moreover, since uε solves problem (6.5) we have

σIε2 =
∫
Rd
f(x)uε(x)ϕε(x) dx+ σ

∫
Rd

∥∥∥∥(I +∇Φ
(x
ε

)>)
∇u0(x)

∥∥∥∥2
ϕε(x) dx

− 2σ
∫
Rd

(
I +∇Φ

(x
ε

)>)
∇u0(x) · ∇uε(x)ϕε(x) dx− η

∫
Rd
uε(x)2ϕε(x) dx,

which by equation (6.16) yields

σCνε

CπCν0
Iε2 =

∫
Rd
f(x)uε(x)ω

(x
ε

)
ϕ0(x) dx+ σ

∫
Rd

∥∥∥∥(I +∇Φ
(x
ε

)>)
∇u0(x)

∥∥∥∥2
ω
(x
ε

)
ϕ0(x) dx

− 2σ
∫
Rd

(
I +∇Φ

(x
ε

)>)
∇u0(x) · ∇uε(x)ω

(x
ε

)
ϕ0(x) dx

− η
∫
Rd
uε(x)2ω

(x
ε

)
ϕ0(x) dx.
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Passing to the limit as ε → 0, due to the two-scale converge (6.23), equation (6.26) and the
definition of K in (1.6) we have

lim
ε→0

σIε2 =
∫
Rd
f(x)u0(x)ϕ0(x)−

∫
Rd

Σ∇u0(x) · ∇u0(x)ϕ0(x) dx− η
∫
Rd
u0(x)2 = 0,

where the last equality follows from the fact that u0 is the solution of problem (6.7), and which
together with (6.27) implies

lim
ε→0
‖∇zε‖2(L2

ϕ0 (Rd))d = 0. (6.28)

Finally, bound (6.24) and limits (6.25) and (6.28) imply the desired result.

6.3 Eigenvalue problem
In this section we study the homogenization of the eigenvalue problem for the multiscale generator
Lε. Let (λε, φε) be an eigenpair of Lε which solves

− Lεφε = λεφε, (6.29)

and let (λ0, φ0) be an eigenpair of L0 which solves

− L0φ0 = λ0φ0. (6.30)

We first show that the spectra of the generators Lε and L0 are discrete and afterwards we prove
the convergence of the eigenvalues and the eigenfunctions of the former to the eigenvalues and
the eigenfunctions of the latter as the multiscale parameter ε vanishes.

Lemma 6.18. Let Lε be the generator defined in (5.5). Under Assumptions 1.4 and 6.3, there
exists a sequence of couples eigenvalue-eigenvector {(λεn, φεn)}n∈N which solve (6.29). Moreover,
the eigenvalues satisfy

0 = λε0 < λε1 < λε2 < · · · < λεn < · · · ↗ +∞,

and the eigenfunctions belong to H1
ϕε(Rd) with φε0 ≡ 1 and

‖φεn‖H1
ϕε

(Rd) =
√

1 + λεn
σ
, (6.31)

and form an orthonormal basis of L2
ϕε(Rd).

Proof. By Lemma 6.5 and in particular the Poincaré inequality (6.2), the generator Lε has a
spectral gap. Therefore, by [101, Section 4.7] −Lε is a non-negative self-adjoint operator in
L2
ϕε(Rd) with discrete spectrum. Hence, the eigenvalues are real, non-negative, simple and can

be ordered as
0 = λε0 < λε1 < λε2 < · · · < λεn < · · · ↗ +∞.

Notice that λε0 = 0 and φε0 ≡ 1. Moreover, using the the unitary transformation which maps the
generator to a Schrödinger operator, it follows that the eigenfunctions {φεn}∞n=0 span L2

ϕε(Rd)
and can be normalized such that they form an orthonormal basis (see, e.g., [65, 110]). It now
only remains to show that the eigenfunctions belong to H1

ϕε(Rd) and the equality (6.31). Let
us consider problem (6.5), which has a unique solution due to Lemma 6.7 and let us denote by
Sεη : L2

ϕε(Rd)→ H1
ϕε(Rd) the operator which maps the right-hand side f to the solution uε, i.e.,

Sεηf = uε. A couple (λεn, φεn) satisfies for all ψ ∈ H1
ϕε(Rd)

Bε(φεn, ψ) = 〈(λεn + η)φεn;ψ〉L2
ϕε

(Rd) , (6.32)
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where Bε is defined in (6.6) and 〈·; ·〉L2
ϕε

(Rd) denotes the inner product in L2
ϕε(Rd), and hence

Sεηφεn = 1
λεn + η

φεn,

which shows that φεn is also an eigenfunction of Sεη with corresponding eigenvalue 1/(λεn + η) and
therefore φεn ∈ H1

ϕε(Rd). Finally, choosing ψ = φεn in (6.32) and since ‖φεn‖L2
ϕε

(Rd) = 1 we deduce
that

‖∇φεn‖
2
(L2
ϕε

(Rd))d = λεn
σ
,

which yields equation (6.31) and concludes the proof.

An analogous results holds true also for the homogenized generator L0, for which we omit the
details since the proof is similar to proof of the previous lemma.

Lemma 6.19. Let L0 be the generator defined in (5.6). Under Assumptions 1.4 and 6.3, there
exists a sequence of couples eigenvalue-eigenvector {(λ0

n, φ
0
n)}n∈N which solve (6.30). Moreover,

the eigenvalues satisfy

0 = λ0
0 < λ0

1 < λ0
2 < · · · < λ0

n < · · · ↗ +∞,

and the eigenfunctions belong to H1
ϕ0(Rd) with φ0

0 ≡ 1 and√
1 + λ0

n

λmax(Σ) ≤
∥∥φ0

n

∥∥
H1
ϕ0 (Rd) ≤

√
1 + λ0

n

λmin(Σ) ,

and form an orthonormal basis of L2
ϕ0(Rd).

We remark that the eigenvalues and the eigenfunctions of the generators Lε and L0 can be
computed employing the Rayleigh quotients Rε and R0, respectively, which are defined as

Rε(ψ) = σ
‖∇ψ‖2(L2

ϕε
(Rd))d

‖ψ‖2L2
ϕε

(Rd)
for all ψ ∈ H1

ϕε(Rd), ψ 6= 0,

R0(ψ) =
〈Σ∇ψ;∇ψ〉(L2

ϕ0 (Rd))d

‖ψ‖2L2
ϕ0 (Rd)

for all ψ ∈ H1
ϕ0(Rd), ψ 6= 0.

(6.33)

Let Eεn be the finite dimensional subspace of H1
ϕε(Rd) spanned by the first n eigenfunctions

{φε0, φε1, . . . , φεn} and let E0
n be the finite dimensional subspace of H1

ϕ0(Rd) spanned by the first
n eigenfunctions {φ0

0, φ
0
1, . . . , φ

0
n}. Then, the “minimax principle” (see, e.g., [33,114]) gives the

characterization for the n-th eigenvalue

λεn = Rε(φεn) = max
ψ∈Eεn

Rε(ψ) = min
ψ∈H1

ϕε
(Rd),ψ⊥Eε

n−1

Rε(ψ) = min
W∈Dεn

max
ψ∈W

Rε(ψ),

λ0
n = R0(φ0

n) = max
ψ∈E0

n

R0(ψ) = min
ψ∈H1

ϕ0 (Rd),ψ⊥E0
n−1

R0(ψ) = min
W∈D0

n

max
ψ∈W

R0(ψ),
(6.34)

where
Dε
n = {W ⊂ H1

ϕε(Rd) : dimW = n},
D0
n = {W ⊂ H1

ϕ0(Rd) : dimW = n}.
We can now state and prove the homogenization of the spectrum of the multiscale generator,
whose proof is inspired by the proof of Theorem 2.1 in [71].
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Theorem 6.20. Let (λεn, φεn) and (λ0
n, φ

0
n) be ordered couples eigenvalue-eigenfunction of the

generators Lε and L0, respectively, with ‖φεn‖L2
ϕε

(Rd) = 1 and
∥∥φ0

n

∥∥
L2
ϕ0 (Rd) = 1. Then, under

Assumptions 1.4 and 6.3 and choosing the sign of φεn such that
〈
φεn;φ0

n

〉
L2
ϕ0 (Rd) > 0, it holds for

all n ∈ N and as ε→ 0

(i) λεn → λ0
n,

(ii) φεn → φ0
n in L2

ϕ0(Rd),

(iii) φεn ⇀ φ0
n in H1

ϕ0(Rd).

Proof. The proof is divided into several steps.
Step 1: Boundedness of eigenvalues and eigenfunctions.
Let ψ ∈ H1

ϕε(Rd), which due to Corollary 6.2 belongs to H1
ϕ0(Rd) as well. Employing Lemma 6.1

we have
Clow ‖∇ψ‖(L2

ϕ0 (Rd))d

Cup ‖ψ‖L2
ϕ0 (Rd)

≤
‖∇ψ‖(L2

ϕε
(Rd))d

‖ψ‖L2
ϕε

(Rd)
≤
Cup ‖∇ψ‖(L2

ϕ0 (Rd))d

Clow ‖ψ‖L2
ϕ0 (Rd)

,

which by the definitions of the Rayleigh quotients in (6.33) implies

C2
low

λmax(K)C2
up
R0(ψ) ≤ Rε(ψ) ≤

C2
up

λmin(K)C2
low

R0(ψ),

where K is defined in (1.6). Then, applying the “minimax principle” in (6.34) we obtain for all
n ∈ N

C2
low

λmax(K)C2
up
λ0
n ≤ λεn ≤

C2
up

λmin(K)C2
low

λ0
n,

which shows that the sequence of eigenvalues {λεn} is bounded for all n ∈ N. Moreover, due to
equation (6.31) and Corollary 6.2 we deduce that also the sequence of eigenfunctions {φεn} is
bounded in H1

ϕ0(Rd), in fact we have

‖φεn‖H1
ϕ0 (Rd) ≤

1
Clow

‖φεn‖H1
ϕε

(Rd) ≤
1

Clow

√
1 +

C2
up

λmin(Σ)C2
low

λ0
n.

Step 2: Extraction of a subsequence.
Due to Step 1 we can extract a subsequence ε′ of ε such that {λε′0 } is convergent and {φε

′

0 } is
weakly convergent in H1

ϕ0(Rd) and strongly convergent in L2
ϕ0(Rd) and a further subsequence

ε′′ of ε′ such that {λε′′0 } and {λε
′′

1 } are convergent and {φε′′0 } and {φε
′′

1 } are weakly convergent
in H1

ϕ0(Rd) and strongly convergent in L2
ϕ0(Rd). Repeating this procedure for all n ∈ N and

choosing the standard diagonal subsequence we can find a subsequence, which is still denoted by
ε, such that for all n ∈ N

λεn → λ̃n, φεn ⇀ φ̃n in H1
ϕ0(Rd), φεn → φ̃n in L2

ϕ0(Rd),

where λ̃n ∈ R and φ̃n ∈ H1
ϕ0(Rd). From now on we will always consider this final subsequence, if

not stated differently.
Step 3: Identification of the limits.
A couple eigenvalue-eigenfunction (λεn, φεn) of the multiscale generator Lε solves the problem

Bε(φεn, ψ) = 〈(λεn + η)φεn;ψ〉L2
ϕε

(Rd) , for all ψ ∈ H1
ϕε(Rd),

where Bε is defined in (6.6) and by Step 2

(λεn + η)φεn → (λ̃n + η)φ̃n in L2
ϕ0(Rd).
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Hence, by Corollary 6.16 and the uniqueness of the limit it follows that the couple (λ̃n, φ̃n) solves
the problem

B0(φ̃n, ψ) =
〈

(λ̃n + η)φ̃n;ψ
〉
L2
ϕ0 (Rd)

, for all ψ ∈ H1
ϕ0(Rd),

where B0 is defined in (6.8) and therefore it is a couple eigenvalue-eigenfunction of the homogenized
generator L0.
Step 4: Ordering of the limits.
We now show that the sequence of limits {λ̃n}n∈N is such that λ̃0 < λ̃1 < λ̃2 < · · · < λ̃n < · · · .
First, due to Lemma 6.18 we know that λε0 < λε1 < λε2 < · · · < λεn < · · · , hence their limits must
satisfy λ̃0 ≤ λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃n ≤ · · · . Let us now assume by contradiction that there exist
l,m ∈ N such that λ̃l = λ̃m =: λ̃. Since the eigenfunctions φεl and φεm corresponding to the
eigenvalues λεl and λεm are orthogonal in L2

ϕε(Rd), then

〈φεl ;φεm〉L2
ϕε

(Rd) = 0,

and passing to the limit as ε vanishes we obtain〈
φ̃l; φ̃m

〉
L2
ϕ0 (Rd)

= 0. (6.35)

In fact, we have∣∣∣∣∣〈φ̃l; φ̃m〉L2
ϕ0 (Rd)

− 〈φεl ;φεm〉L2
ϕε

(Rd)

∣∣∣∣∣ ≤∣∣∣∣∣〈φ̃l; φ̃m〉L2
ϕ0 (Rd)

−
〈
φ̃l; φ̃m

〉
L2
ϕε

(Rd)

∣∣∣∣∣+
∣∣∣∣〈φ̃l; φ̃m〉

L2
ϕε

(Rd)
− 〈φεl ;φεm〉L2

ϕε
(Rd)

∣∣∣∣ ,
(6.36)

where the first term in the right hand side vanishes due to the convergence of the measure νε
with density ϕε towards the measure ν0 with density ϕ0 and the second term tends to zero due
to the convergence of the eigenvectors and because by Cauchy–Schwarz inequality and Lemma 6.1
we have∣∣∣∣〈φ̃l; φ̃m〉

L2
ϕε

(Rd)
− 〈φεl ;φεm〉L2

ϕε
(Rd)

∣∣∣∣ ≤ ∥∥∥φ̃lφ̃m − φεlφεm∥∥∥L2
ϕε

(Rd)
≤ Cup

∥∥∥φ̃lφ̃m − φεlφεm∥∥∥
L2
ϕ0 (Rd)

.

(6.37)
Therefore, equality (6.35) implies that the eigenvectors φ̃l and φ̃m corresponding to the eigenvalue
λ̃ are linearly independent and hence λ̃ is not a simple eigenvalue, which is impossible due to
Lemma 6.19.
Step 5: Entire spectrum.
We now prove that there is no eigenvalue of the homogenized generator L0 other than those in the
sequence {λ̃n}n∈N. Let us assume by contradiction that {λ̃n}n∈N is a subsequence of {λ0

n}n∈N,
i.e., that there exists an eigenvalue λ ∈ R of the homogenized generator L0 such that λ 6= λ̃n
for all n ∈ N and let φ ∈ H1

ϕ0(Rd) be its corresponding normalized eigenfunction, which due to
Lemma 6.19 satisfies 〈

φ; φ̃n
〉
L2
ϕ0 (Rd)

= 0, for all n ∈ N.

Then, there exists m ∈ N such that λ < λ̃m+1. Let vε be the solution of the problem

Bε(vε, ψ) = (λ+ η) 〈φ;ψ〉L2
ϕε

(Rd) , for all ψ ∈ H1
ϕε(Rd), (6.38)
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and notice that due to Theorem 6.15

vε ⇀ φ in H1
ϕ0(Rd) and vε → φ in L2

ϕ0(Rd).

Choosing ψ = vε in (6.38) we then have

lim
ε→0

Rε(vε) = lim
ε→0

σ
‖∇vε‖(L2

ϕε
(Rd))d

‖vε‖L2
ϕε

(Rd)
= lim
ε→0

(λ+ η) 〈φ; vε〉L2
ϕε

(Rd)

‖vε‖L2
ϕε

(Rd)
− η = λ, (6.39)

where the last equality is justified by an argument similar to (6.36) and (6.37). Let now ξε be
defined as

ξε := vε −
m∑
n=0
〈vε;φεn〉L2

ϕε
(Rd) φ

ε
n, (6.40)

which has the same limit as vε, i.e.,

ξε ⇀ φ in H1
ϕ0(Rd) and ξε → φ in L2

ϕ0(Rd),

since a similar computation to (6.36) and (6.37) yields

lim
ε→0
〈vε;φεn〉L2

ϕε
(Rd) =

〈
φ; φ̃n

〉
L2
ϕ0 (Rd)

= 0. (6.41)

Moreover, due to (6.41) also its Rayleigh quotient has the same limit as (6.39), i.e.,

lim
ε→0

Rε(ξε) = λ,

and by definition (6.40) it follows for all n = 1, . . . ,m

〈ξε;φεn〉L2
ϕε

(Rd) = 0.

Therefore, by the “minimax principle” (6.34), λεm+1 ≤ Rε(ξε) and passing to the limit as ε→ 0
we deduce that λ̃m+1 ≤ λ which contradicts the fact that m is such that λ < λ̃m+1.
Step 6: Convergence to the homogenized spectrum.
From Steps 3,4,5 and by Lemma 6.19 it follows that the sequence of limits {λ̃n}n∈N is the same
as the sequence of eigenvalues {λ0

n}n∈N of the homogenized generator L0, hence we have λ̃n = λ0
n

for all n ∈ N. Moreover, since the eigenfunctions are normalized, then the limit φ̃n can be either
φ0
n or −φ0

n. The hypothesis that the sign of φεn is chosen such that (φεn, φ0
n)L2

ϕ0 (Rd) > 0 implies

that the positive sign is the right one, i.e., φ̃n = φ0
n for all n ∈ N.

Step 7: Convergence of the whole sequence.
For all n ∈ N the fact that the only admissible limit for the subsequence {λεn} is λ0

n implies
that the whole sequence converges to λ0

n. Indeed, assuming by contradiction that {λεn} does not
converge to λ0

n gives the existence of a subsequence {λε′n } and δ > 0 such that∣∣∣λε′n − λ0
n

∣∣∣ > δ. (6.42)

However, repeating all the previous steps we can extract a subsequence {λε′′n } from {λε
′

n } such
that

lim
ε→0

λε
′′

n = λ0
n,

which contradicts (6.42). Finally, a similar argument shows the convergence of the whole sequence
of eigenfunctions {φεn} to φ0

n and concludes the proof.
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6.4. Numerical illustration

Figure 6.1 – Multiscale and homogenized solution of the Poisson problem with a reaction term
setting ε = 0.1.

Figure 6.2 – Poisson problem with a reaction term varying ε. Left: distance between the multiscale
and homogenized solution. Right: distance between the multiscale solution and its first order
expansion.

6.4 Numerical illustration
In this section we present an example complementing our theoretical results. We consider the
one-dimensional (d = 1) multiscale Ornstein–Uhlenbeck (OU) process with slow-scale potential
V(x) = x2/2, fast-scale potential p(y) = cos(y) and diffusion coefficient σ = 1. The numerical
results are obtained setting the discretization size h = ε2 and replacing the real line R with
a truncated domain D = [−R,R] with R = 5. The error introduced by this approximation
is negligible since the invariant measures ϕ0 and ϕε, which appear as weight functions in the
integrals, decay exponentially fast for ‖x‖ → ∞. In particular, the problems are discretized
employing the finite element method with continuous piecewise linear functions as basis functions.
We also remark that, due to the fast decay of the invariant measures, we did not need to impose
any boundary condition on the solution, but we only assumed the functions ϕ0 and ϕε to be zero
on the boundary of the truncated domain D.

6.4.1 Poisson problem with a reaction term

We consider the Poisson problems (6.3) and (6.4) with reaction coefficient η = 1 and right-hand
side f(x) = x. In this particular case the homogenized equation (6.4) admits the analytical
solution

u0(x) = x

K + η
.

In Figure 6.1 we plot the numerical solutions uε and u0 setting ε = 0.1, and we observe that
the multiscale solution oscillates around the homogenized one. We then solve equation (6.3)
for different values of the mutiscale parameter ε = 0.025, 0.05, 0.1, 0.2, 0.4, and we compute the
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distance between uε and u0 both in L2
ϕ0(R) and H1

ϕ0(R). On the left of Figure 6.2 we observe
that the theoretical results given by Theorem 6.15 are confirmed in practice. In particular,∥∥uε − u0

∥∥
L2
ϕ0 (R) decreases as ε vanishes, while

∥∥uε − u0
∥∥
H1
ϕ0 (R) remains constant. Indeed, the

solution uε converges to u0 strongly in L2
ϕ0(R) but only weakly in H1

ϕ0(R). We now consider a
better approximation of the multiscale solution uε, which is given by the first order expansion

ũε(x) = u0(x) + εu1

(
x,
x

ε

)
,

where
u1(x, y) = (u0)′(x)Φ(y).

The analytical solution Φ of equation (1.7), which is periodic in T = [0,T] and has zero-mean
with respect to ω, is

Φ(y) = CΦ − y + T
Ĉπ

∫ y

0
e

1
σ p(z) dz,

where

Ĉπ =
∫ T

0
e

1
σ p(y) dy,

and

CΦ = 1
Cπ

∫ T

0
ye−

1
σ p(y) dy − T

CπĈπ

∫ T

0

∫ y

0
e

1
σ (p(z)−p(y)) dz dy.

On the right of Figure 6.2 we plot the distance between uε and its first order approximation ũε
both in L2

ϕ0(R) and H1
ϕ0(R), and we observe that we now also have strong convergence in H1

ϕ0(R)
as shown by Theorem 6.17.

6.4.2 Eigenvalue problem

We now consider the homogenization of the eigenvalue problem for the multiscale generator. First,
in Figure 6.3 we set ε = 0.1 and plot the first four eigenvalues and eigenfunctions of both Lε and
L0. We observe that the eigenvalues λεn are close to the eigenvalues λ0

n and that the mismatch
increases for n bigger, i.e., for eigenvalues with greater magnitude. Moreover, the eigenfunctions
behave similarly to the solution of the Poisson problem, in the sense that φεn oscillates around
φ0
n. We remark that in the particular case of the OU process the eigenvalue problem for the

homogenized generator L0 can be solved analytically and the eigenfunctions are given by the
normalized Hermite polynomials [101, Section 4.4]. In particular, we have for all n ∈ N that
λ0
n = Kn and

φ0
n(x) = 1√

n!
Hn

(√
K
Σx
)
,

where

Hn(z) = (−1)ne z
2
2

dn

dzn
(
e−

z2
2

)
.

We then solve the eigenvalue problem for different values of the multiscale parameter ε =
0.025, 0.05, 0.1, 0.2, 0.4, and we compute the distance between the multiscale and homogenized
eigenvalues and eigenfunctions. Figure 6.4 demonstrates numerically what we proved theoretically
in Theorem 6.20, i.e., that we have convergence of the eigenvalues and strong convergence in
L2
ϕ0(R), but only weak in H1

ϕ0(R), of the eigenfunctions.
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6.4. Numerical illustration

Figure 6.3 – First four eigenvalues and eigenfunctions of the multiscale and homogenized generator
setting ε = 0.1.
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Figure 6.4 – Distance between the first four eigenvalues and eigenfunctions of the multiscale and
homogenized generator varying ε.

6.5 Conclusion
We presented the homogenization of two problems involving the infinitesimal generator of the
multiscale overdamped Langevin stochastic differential equation (SDE). We first considered
the Poisson problem with a reaction term and, after introducing appropriate weighted Sobolev
spaces and extending the theory of two-scale convergence, we proved in Theorem 6.15 the strong
convergence in L2 sense and the weak convergence in H1 sense of the multiscale solution to the
solution of the same problem where the multiscale generator is replaced by its homogenized
surrogate. In Theorem 6.17 we also provided a corrector result which justifies the two first terms
in the usual asymptotic expansion in homogenization theory. We then analyzed the eigenvalue
problem and in Theorem 6.20 we showed homogenization results for the eigenvalues and the
eigenfunctions of the multiscale generator. In particular, we demonstrated the convergence of the
eigenvalues and the strong convergence in L2 sense and the weak convergence in H1 sense of the
eigenvectors towards the corresponding eigenvalues and eigenfunctions of the generator of the
coarse-grained dynamics. Finally, we verified numerically our theoretical results simulating the
multiscale one-dimensional OU process.
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7 Eigenfunction estimators for
multiscale diffusions
In this chapter, which is based on our research article [6], we apply eigenfunction estimators to
infer the parameters of the homogenized Langevin dynamics given discrete observations from the
multiscale system. The chapter is organized as follows. In Section 7.1 we introduce the proposed
estimators and in Section 7.2 we present the main theoretical results. Then, in Section 7.3 we
perform numerical experiments which validate the efficacy of our method and Section 7.4 is
devoted to the proofs of the main theorems. Moreover, in Section 7.5 we show some technical
results which are employed in the analysis and in Sections 7.6 and 7.7 we explain some details
about the implementation of the proposed methodology and the extension to the multidimensional
case, respectively. Finally, in Section 7.8 we draw our conclusions.

7.1 Martingale estimating functions based on eigenfunctions
In this section we develop martingale estimating functions based on the eigenfunctions of the
generator of the process, since the theory of the eigenvalue problem for elliptic differential
operators and the multiscale analysis of this eigenvalue problem are well developed. Let A ⊂ RL
be the set of admissible drift coefficients for which Assumption 1.4(ii) is satisfied. To describe our
methodology we consider the solution Xt(a) of the homogenized process (1.11) with a generic
parameter a ∈ A instead of the exact drift coefficient A:

dXt(a) = −a · V ′(Xt(a)) dt+
√

2Σ dWt, (7.1)

which has invariant measure

ϕa(x) = 1
Cνa

exp
(
− 1

Σa · V (x)
)
, where Cνa =

∫
R

exp
(
− 1

Σa · V (x)
)

dx. (7.2)

The generator La of (7.1) is defined for all u ∈ C2(R) as

Lau(x) = −a · V ′(x)u′(x) + Σu′′(x), (7.3)

where the subscript denotes the dependence of the generator on the unknown drift coefficient a.
From the well-known spectral theory of diffusion processes and under our assumptions on the
potential V we deduce that La has a countable set of eigenvalues (see e.g. [63]). In particular, let
{(λj(a), φj(·; a))}∞j=0 be the sequence of eigenvalue-eigenfunction couples of the generator which
solve the eigenvalue problem

Laφj(x; a) = −λj(a)φj(x; a), (7.4)

which, due to (7.3), is equivalent to

Σφ′′j (x; a)− a · V ′(x)φ′j(x; a) + λj(a)φj(x; a) = 0, (7.5)

and where the eigenvalues satisfy 0 = λ0(a) < λ1(a) < · · · < λj(a) ↑ ∞ and the eigenfunctions
form an orthonormal basis for the weighted space L2

ϕa(R). We mention in passing that, by making
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a unitary transformation, the eigenvalue problem for the generator of the Langevin dynamics can
be transformed to the standard Sturm-Liouville problem for Schrödinger operators [101, Chapter
4]. We now state a formula, which has been proved in [73] and will be fundamental in the rest of
the work

E
[
φj(Xtm(a); a)|Xtm−1(a) = x

]
= e−λj(a)∆φj(x; a), (7.6)

where ∆ = tm − tm−1 is the constant distance between two consecutive observations. We now
discuss how this eigenvalue problem can be used for parameter estimation. Let J be a positive
integer and let {ψj(·; a)}Jj=1 be J arbitrary functions ψj(·; a) : R → RL possibly dependent on
the parameter a, which satisfy Assumption 7.2(i)(ii) stated below, and define for x, y, z ∈ R the
martingale estimating function

gj(x, y, z; a) = ψj(z; a)
(
φj(y; a)− e−λj(a)∆φj(x; a)

)
. (7.7)

Then, given a set of observations {X̃ε
m}Lm=0, we consider the score function ĜJM,ε : A → RL

defined by

ĜJM,ε(a) = 1
∆

M−1∑
m=0

J∑
j=1

gj(X̃ε
m, X̃

ε
m+1, X̃

ε
m; a). (7.8)

This function can be seen as an approximation in terms of eigenfunctions of the true score
function, i.e., the gradient of the log-likelihood function with respect to the unknown parameter.
The full derivation of a martingale estimating function as an approximation of the true score
function is given in detail in [21, Section 2]. The first step is a discretization of the gradient
of the continuous-time log-likelihood, which yields a biased estimating function. Hence, the
next step is adjusting this function by adding its compensator in order to obtain a zero-mean
martingale. Moreover, by using the eigenfunctions of the generator, it is shown in [73] that this
approach is suitable for scalar diffusion processes with no multiscale structure, i.e., processes
with a single characteristic length/time scale. In fact, by a classical result for ergodic diffusion
processes [101, Section 4.7], any function in the L2 space weighted by the invariant measure can
be written as an infinite linear combination of the eigenfunctions of the generator of the diffusion
process.
Remark 7.1. In the construction of the martingale estimating function ĜJM,ε(a) we omitted the
first index j = 0 because, for ergodic diffusion processes, the first eigenvalue is zero, λ0(a) = 0, and
its corresponding eigenfunction is constant, φ0(a) = 1, and hence they would give g0(x, y, z; a) = 0
independently of the function ψ0(z; a). Therefore, it would not provide us with any information
about the unknown parameters in the drift.

The estimator ÂJM,ε.The first estimator we propose for the homogenized drift coefficient A is
given by the solution ÂJM,ε of the L-dimensional nonlinear system

ĜJM,ε(a) = 0. (7.9)

An intuition on why ĜJM,ε is a good score function is given by the following result. Let ĜJM,0
be the score function where the observations of the slow variable of the multiscale process are
replaced by the homogenized ones, then due to equation (7.6)

E
[
ĜJM,0(A)

]
= 0,

which means that the zero of the expectation of the score function with homogenized observations
is exactly the drift coefficient of the effective equation. In Algorithm 1 we summarize the main
steps for computing the estimator ÂJM,ε and further details about the implementation can be
found in Section 7.6. We finally introduce the following technical assumption which will be
employed in the analysis.
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7.1. Martingale estimating functions based on eigenfunctions

Assumption 7.2. The following hold for all a ∈ A and for all j = 1, . . . , J :

(i) ψj(z; a) is continuously differentiable with respect to a for all z ∈ R;
(ii) all components of ψj(·; a), ψ′j(·; a), ψ̇j(·; a), ψ̇′j(·; a) are polynomially bounded;
(iii) the slow-scale potential V is such that φj(·; a), φ′j(·; a), φ′′j (·; a), and all components of

φ̇j(·; a), φ̇′j(·; a), φ̇′′j (·; a) are polynomially bounded;

where the dot denotes either the Jacobian matrix or the gradient with respect to a.
Remark 7.3. In [73] the authors propose a method to choose the functions {ψj(·; a)}Jj=1 in order
to obtain optimality in the sense of [56]: this optimal set of functions can be seen as the projection
of the score function onto the set of martingale estimating functions obtained by varying the
function {ψj(·; a)}Jj=1. For the class of diffusion processes for which the eigenfunctions are
polynomials, the optimal estimating functions can be computed analytically. In fact, they are
related to the moments of the transition density, which can be computed explicitly. Moreover,
another procedure is to choose functions which depend only on the unknown parameter and which
minimize the asymptotic variance. This approach is strongly related to the asymptotic optimality
criterion considered by [64]. For further details on how to choose these functions we refer to [73],
and we remark that their calculation requires additional computational cost. Nevertheless, the
theory we develop is valid for all functions which satisfy Assumptions 7.2(i) and 7.2(ii) and we
observed in practice that choosing simple functions independent of the unknown parameter, e.g.
monomials of the form ψj(z; a) = zk with k ∈ N, is sufficient to obtain satisfactory estimations.
We also remark that in one dimension we can characterize completely all diffusion processes
whose generator has orthogonal polynomials as eigenfunctions [15, Section 2.7]. Partial results in
this directions also exist in higher dimensions.

Algorithm 1: Estimation of A without filtered data

Input: Observations
{
X̃ε
m

}M
m=0

.
Distance between two consecutive observations ∆.
Number of eigenvalues and eigenfunctions J .
Functions {ψj(z; a)}Jj=1.
Slow-scale potential V .
Diffusion coefficient Σ.

Output: Estimation ÂJM,ε of A.

1: Consider the eigenvalue problem Σφ′′j (x; a)− a · V ′(x)φ′j(x; a) + λj(a)φj(x; a) = 0.
2: Compute the first J eigenvalues {λj(a)}Jj=1 and eigenfunctions {φj(·; a)}Jj=1.
3: Construct the function gj(x, y, z; a) = ψj(z; a)

(
φj(y; a)− e−λj(a)∆φj(x; a)

)
.

4: Construct the score function ĜJM,ε(a) = 1
∆
∑M−1
m=0

∑J
j=1 gj(X̃ε

m, X̃
ε
m+1, X̃

ε
m; a).

5: Let ÂJM,ε be the solution of the nonlinear system ĜJM,ε(a) = 0.

7.1.1 The filtering approach

We now go back to our multiscale stochastic differential equation (SDE) (1.10) and, inspired by
Chapter 2, we propose a second estimator for the homogenized drift coefficient by filtering the
data. In particular, we modify ÂJM,ε by filtering the observations and inserting the new data into
the score function ĜJM,ε in order to take into account the case when the step size ∆ is too small
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with respect to the multiscale parameter ε. Let us consider the exponential kernel k : R+ → R
defined as

k1,1
exp(r) = e−r,

for which a rigorous theory has been developed in Chapter 2. We remark that this exponential
kernel is a low-pass filter, which cuts the high frequencies and highlights the slowest components.
We then define the filtered observations {Z̃εm}Mm=0 choosing Z̃ε0 = 0 and computing the weighted
average for all m = 1, . . . ,M

Z̃εm = ∆
m−1∑
k=0

k1,1
exp(∆(m− k))X̃ε

k, (7.10)

where the fast-scale component of the original multiscale trajectory is eliminated, and we define
the new score function as a modification of (7.8), i.e.,

G̃JM,ε(a) = 1
∆

M−1∑
m=0

J∑
j=1

gj(X̃ε
m, X̃

ε
m+1, Z̃

ε
m; a). (7.11)

Remark 7.4. Notice that the filtered data only partially replace the original data in the definition
of the score function. This idea is inspired by Chapter 2 where the same approach is used with the
maximum likelihood estimator (MLE). The importance of keeping also the original observations
becomes apparent in the proofs of the main results. However, a simple intuition is provided by
equation (7.6). This equation is essential in order to obtain the unbiasedness of the estimators
when the sampling rate ∆ is independent of the multiscale parameter ε, but it is not valid for the
filtered process.

The estimator ÃJM,ε.The second estimator ÃJM,ε is given by the solution of the L-dimensional
nonlinear system

G̃JM,ε(a) = 0. (7.12)

The main steps to compute the estimator ÃJM,ε are highlighted in Algorithm 2 and additional
details about the implementation can be found in Section 7.6. Note that (7.10) can be rewritten
as

Z̃εm = ∆
m−1∑
k=0

e−∆(m−k)X̃ε
k. (7.13)

We introduce its continuous version Zεt which will be employed in the analysis

Zεt =
∫ t

0
e−(t−s)Xε

s ds. (7.14)

We remark that the joint process (Xε
t , Z

ε
t ) satisfies the system of multiscale SDEs

dXε
t = −α · V ′(Xε

t ) dt− 1
ε
p′
(
Xε
t

ε

)
dt+

√
2σ dWt,

dZεt = (Xε
t − Zεt ) dt,

(7.15)

and, using the theory of homogenization, when ε goes to zero it converges in law as a random
variable in C0([0, T ];R2) to the two-dimensional process (X0

t , Z
0
t ), which solves

dX0
t = −A · V ′(X0

t ) dt+
√

2Σ dWt,

dZ0
t =

(
X0
t − Z0

t

)
dt.
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Moreover, it has been proved in Sections 2.1.1 and 2.1.2 that the two-dimensional processes
(Xε

t , Z
ε
t ) and (X0

t , Z
0
t ) are geometrically ergodic and their respective invariant measures have

densities µεexp and µ0
exp with respect to the Lebesgue measure denoted respectively by ρεexp =

ρεexp(x, z) and ρ0
exp = ρ0

exp(x, z). Let us finally remark that given discrete observations X̃ε
m we

can only compute Z̃εm, but the theory, which has to be employed for proving the convergence
results, has been studied for the continuous-time process Zεt .

Remark 7.5. The only difference in the construction of the estimators ÂJM,ε and ÃJM,ε is the fact
that the latter requires filtered data, which are obtained from discrete observations, and thus it
is computationally more expensive. Therefore, when it is possible to use the estimator without
filtered data, it is preferable to employ it.

Algorithm 2: Estimation of A with filtered data

Input: Observations
{
X̃ε
m

}M
m=0

.
Distance between two consecutive observations ∆.
Number of eigenvalues and eigenfunctions J .
Functions {ψj(z; a)}Jj=1.
Slow-scale potential V .
Diffusion coefficient Σ.

Output: Estimation ÃJM,ε of A.

1: Consider the eigenvalue problem Σφ′′j (x; a)− a · V ′(x)φ′j(x; a) + λj(a)φj(x; a) = 0.
2: Compute the first J eigenvalues {λj(a)}Jj=1 and eigenfunctions {φj(·; a)}Jj=1.

3: Compute the filtered data
{
Z̃εm

}M
m=0

as Z̃ε0 = 0 and Z̃εm = ∆
∑m−1
k=0 e−∆(m−k)X̃ε

k.
4: Construct the function gj(x, y, z; a) = ψj(z; a)

(
φj(y; a)− e−λj(a)∆φj(x; a)

)
.

5: Construct the score function G̃JM,ε(a) = 1
∆
∑M−1
m=0

∑J
j=1 gj(X̃ε

m, X̃
ε
m+1, Z̃

ε
m; a).

6: Let ÃJM,ε be the solution of the nonlinear system G̃JM,ε(a) = 0.

7.2 Main results
In this section we present the main results of this chapter, i.e., the asymptotic unbiasedness of
the proposed estimators. We first need to introduce the following technical assumption, which is
a nondegeneracy hypothesis related to the use of the implicit function theorem for the functions
(7.8) and (7.11) in the limit as M →∞.
Assumption 7.6. Let A be the homogenized drift coefficient of equation (1.11). Then the following
hold

(i) det
(∑J

j=1 E
µ̃0

exp

[(
ψj(Z̃0

0 ;A)⊗∇aX∆(A)
)
φ′j(X0

∆;A)
])
6= 0,

(ii) det
(∑J

j=1 E
ν0 [(

ψj(X0
0 ;A)⊗∇aX∆(A)

)
φ′j(X0

∆;A)
])
6= 0,

(iii) det
(∑J

j=1 E
µ0

exp
[
(ψj(Z0

0 ;A)⊗ V ′(X0
0 ))φ′j(X0

0 ;A)
])
6= 0,

(iv) det
(∑J

j=1 E
ν0 [

(ψj(X0
0 ;A)⊗ V ′(X0

0 ))φ′j(X0
0 ;A)

])
6= 0,

where µ̃0
exp is the invariant measure of the couple (X̃0

m, Z̃
0
m) with density ρ̃0

exp, whose existence is

143



Chapter 7. Eigenfunction estimators for multiscale diffusions

guaranteed by Lemma 7.28, and ∇aXt(a) is the gradient of the stochastic process Xt(a) in (7.1)
with respect to the drift coefficient a.
Remark 7.7. The nondegeneracy Assumption 7.6, which is analogous to Condition 4.2(a) in [73],
holds true in all nonpathological examples and does not constitute an essential limitation on the
range of validity of the results proved in this work. Further details about the necessity of this
assumption for the analysis of the proposed estimator will be given in Section 7.4.2.

The proofs of the following two main theorems are the focus of Section 7.4.

Theorem 7.8. Let J be a positive integer. Under Assumptions 1.4, 7.2 and 7.6 and if ∆ is
independent of ε or ∆ = εζ with ζ ∈ (0, 1), there exists ε0 > 0 such that for all 0 < ε < ε0 , an
estimator ÂJM,ε which solves the system ĜJM,ε(ÂJM,ε) = 0 exists with probability tending to one as
M →∞. Moreover

lim
ε→0

lim
M→∞

ÂJM,ε = A, in probability,

where A is the homogenized drift coefficient of equation (1.11).

Theorem 7.9. Let J be a positive integer. Under Assumptions 1.4, 7.2 and 7.6 and if ∆ is
independent of ε or ∆ = εζ with ζ > 0 and ζ 6= 1, ζ 6= 2, there exists ε0 > 0 such that for all
0 < ε < ε0 an estimator ÃJM,ε which solves the system G̃JM,ε(ÃJM,ε) = 0 exists with probability
tending to one as M →∞. Moreover

lim
ε→0

lim
M→∞

ÃJM,ε = A, in probability,

where A is the homogenized drift coefficient of equation (1.11).

Remark 7.10. Notice that in both Theorem 7.8 and Theorem 7.9 the order of the limits is
important and they cannot be interchanged. In fact, we first consider the large data limit, i.e.,
the number of observations M tends to infinity, and then we let the multiscale parameter ε vanish.
Moreover, in Theorem 7.9 the values ζ = 1 and ζ = 2 are not allowed because of technicalities in
the proof, but we observe numerically that the estimator works well also in these two particular
cases.

These two theorems show that both estimators based on the multiscale data from (1.10) converge
to the homogenized drift coefficient A of (1.11). Since the analysis is similar for the two cases,
we will mainly focus on the second score function with filtered observations and at the end of
each step we will state the differences with respect to the estimator without pre-processed data.
Remark 7.11. Since the main goal of this chapter is the estimation of the effective drift coefficient
A, in the numerical experiments and in the following analysis we will always assume the effective
diffusion coefficient Σ to be known. Nevertheless, we remark that our methodology can be slightly
modified in order to take into account the estimation of the effective diffusion coefficient too. In
fact, the parameter a can be replaced by the parameter θ = (a, s) ∈ RL+1 where a stands for the
drift and s stands for the diffusion, yielding nonlinear systems of dimension L+ 1 corresponding
to (7.9) and (7.12). The proofs of the asymptotic unbiasedness of the new estimators θ̂JM,ε and
θ̃JM,ε can be adjusted analogously. For completeness, we provide a more detailed explanation and
a numerical experiment illustrating this approach in Section 7.3.6.

7.2.1 A particular case

Before analysing the general framework, let us consider the simple case of the Ornstein-Uhlenbeck
(OU) process, i.e. let the dimension of the parameter L = 1 and let V (x) = x2/2. Then the
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multiscale SDE (1.10) becomes

dXε
t = −αXε

t dt− 1
ε
p′
(
Xε
t

ε

)
dt+

√
2σ dWt,

and its homogenized version is

dX0
t = −AX0

t dt+
√

2Σ dWt.

Letting a ∈ A, then the eigenfunctions φj(·; a) and the eigenvalues λj(a) satisfy

φ′′j (x; a)− a

Σxφ
′(x) + λ(a)

Σ φ(·; a) = 0.

The solution of the eigenvalue problem can be computed explicitly (see [101, Section 4.4]); we
have

λj(a) = ja,

and φj(·; a) satisfies the recurrence relation

φj+1(x; a) = xφj(x; a)− jΣ
a
φj−1(x; a),

with φ0(x; a) = 1 and φ1(x; a) = x. It is also possible to prove by induction that

φ′j(x; a) = jφj−1(x).

Let us consider the simplest case with only one eigenfunction, i.e. J = 1, and ψ1(z; a) = z, which
implies

g1(x, y, z; a) = z
(
y − e−a∆x

)
.

Then the score functions (7.8) and (7.11) become

Ĝ1
M,ε = 1

∆

M−1∑
m=0

X̃ε
m

(
X̃ε
m+1 − e−a∆X̃ε

m

)
,

G̃1
M,ε(a) = 1

∆

M−1∑
m=0

Z̃εm

(
X̃ε
m+1 − e−a∆X̃ε

m

)
.

The solutions of the equations Ĝ1
M,ε(a) = 0 and G̃1

M,ε(a) = 0 can be computed analytically and
are given by

Â1
M,ε = − 1

∆ log
(∑M−1

m=0 X̃
ε
mX̃

ε
m+1∑M−1

m=0 (X̃ε
m)2

)
, (7.16)

and

Ã1
M,ε = − 1

∆ log
(∑M−1

m=0 Z̃
ε
mX̃

ε
m+1∑M−1

m=0 Z̃
ε
mX̃

ε
m

)
. (7.17)

Comparing these estimators with the discrete MLE (defined in the same way as the subsampling
estimator (1.17)) without filtered data

M̂LE
∆
M,ε = −

∑M−1
m=0 X̃

ε
m(X̃ε

m+1 − X̃ε
m)

∆
∑M−1
m=0 (X̃ε

m)2
,

and the discrete MLE with filtered data

M̃LE
∆
M,ε = −

∑M−1
m=0 Z̃

ε
m(X̃ε

m+1 − X̃ε
m)

∆
∑M−1
m=0 Z̃

ε
mX̃

ε
m

,
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we notice that they coincide in the limit as ∆ vanishes. We remark that we are comparing our
estimator with the discrete MLE instead of the analytical formula for the MLE in continuous time
since we assume that we are observing our process at discrete times. Therefore, the continuous
time MLE has to be approximated using the available discrete data [101, Section 5.3]. In the
following theorems we show the asymptotic limit of the estimators. We do not provide a proof
for these results since Theorem 7.12 and Theorem 7.14 are particular cases of Theorem 7.8 and
Theorem 7.9 respectively, and Theorem 7.13 follows from the proof of Theorem 7.8 as highlighted
in Remark 7.26.

Theorem 7.12. Let ∆ be independent of ε or ∆ = εζ with ζ ∈ (0, 1). Then, under Assumption 1.4,
the estimator (7.16) satisfies

lim
ε→0

lim
M→∞

Â1
M,ε = A, in probability,

where A is the drift coefficient of the homogenized equation (1.11).

Theorem 7.13. Let ∆ be independent of ε or ∆ = εζ with ζ > 2. Then, under Assumption 1.4,
the estimator (7.16) satisfies

lim
ε→0

lim
M→∞

Â1
M,ε = α, in probability,

where α is the drift coefficient of the homogenized equation (1.10).

Theorem 7.14. Let ∆ be independent of ε or ∆ = εζ with ζ 6= 1, ζ 6= 2. Then, under Assumption
1.4, the estimator (7.17) satisfies

lim
ε→0

lim
M→∞

Ã1
M,ε = A, in probability,

where A is the drift coefficient of the homogenized equation (1.11).

Remark 7.15. Notice that it is possible to write different proofs for Theorems 7.12, 7.13 and 7.14,
which take into account the specific form of the estimators, and thus show stronger results. In fact,
if the distance ∆ between two consecutive observations is independent of the multiscale parameter
ε, then the convergences in the statements do not only hold in probability, but also almost surely.
We expect that almost sure convergence can be proved for a larger class of equations, but are
neither aware of related literature showing such a stronger result, nor have been able to prove it.

7.3 Numerical experiments
In this section we present numerical experiments which confirm our theoretical results and show
the power of the martingale estimating functions based on eigenfunctions and filtered data to
correct the unbiasedness caused by discretization and the fact that we are using multiscale data
to fit homogenized models. Moreover, we present a sensitivity analysis with respect to the number
M of observations and the number J of eigenvalues and eigenfunctions taken into account. In the
experiments that we present data are generated employing the Euler–Maruyama (EM) method
with a fine time step h, in particular we set h = ε3. Letting ∆, T > 0, we generate data Xε

t for
0 ≤ t ≤ T and we select a sequence of observations {X̃ε

m}Mm=0, where M = T/∆ and X̃ε
m = Xε

tm
with tm = m∆. In view of Remark 1.2 we do not require stationarity of the multiscale dynamics,
hence we always set the initial condition to be Xε

0 = 0. Notice that the time step h is only used
to generate numerically the original data and has to be chosen sufficiently small in order to have
a reliable approximation of the continuous path. However, the distance between two consecutive
observations ∆ is the rate at which we sample the data, which we assume to know, from the
original trajectory. In order to compute the filtered data {Z̃εm}Mm=1 we employ equation (7.13).
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7.3. Numerical experiments

Figure 7.1 – Sensitivity analysis with respect to the number M of observations for different values
of ∆ ≤ 1, for the estimator ÃJM,ε with J = 1.

We repeat this procedure for 15 different realizations of Brownian motion and we plot the average
of the drift coefficients computed by the estimators. We finally remark that in order to compute
our estimators we need the value of the diffusion coefficient Σ of the homogenized equation. In
all the numerical experiments we compute it exactly using the formula for the coefficient K given
by the theory of homogenization, but we also remark that its value could be estimated employing
the subsampling technique presented in [103] or modifying the estimating function as explained
in Remark 7.11.

7.3.1 Sensitivity analysis with respect to the number of observations

We consider the multiscale OU process, i.e. equation (1.10) with V (x) = x2/2, and we take
p(y) = cos(y), the multiscale parameter ε = 0.1, the drift coefficient α = 1 and the diffusion
coefficient σ = 1. Notice that for this choice of the slow-scale potential the technical assumptions
required in the main Theorems 7.8, 7.9 can be easily checked. We plot the results computed by
the estimator ÃJM,ε with J = 1 and ψ1(x; a) = x and we then divide the analysis in two cases: ∆
“small” and ∆ “big”.

Let us first consider ∆ “small”, i.e. ∆ = εζ with ζ = 0, 0.5, 1, 1.5, and take T = 400. In Figure 7.1
we plot the results of the estimator as a function of the number of observations M . We remark
that in this case the number of observations needed to reach convergence is strongly dependent
and inversely proportional to the distance ∆ between two consecutive observations. This means
that in order to reach convergence we need the final time T to be sufficiently large independently
of ∆. In fact, when the distance ∆ is small, the discrete observations are a good approximation
of the continuous trajectory and therefore what matters most is the length T of the original path
rather than the number M of observations.

In order to study the case ∆ “big”, i.e. ∆ > 1, we set ∆ = 2ζ with ζ = 1, 2, 3, 4, and take T = 215.
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Figure 7.2 – Sensitivity analysis with respect to the number M of observations for different values
of ∆ > 1, for the estimator ÃJM,ε with J = 1.

Figure 7.2 shows that in this case the number of observations needed to reach convergence is
an increasing function of ∆. Therefore, in order to have a reliable approximation of the drift
coefficient of the homogenized equation, the final time T has to be chosen depending on ∆. This
is justified by the fact that, differently from the previous case, the discrete data are less correlated
and therefore they do not well approximate the continuous trajectory. In particular, when the
distance ∆ between two consecutive observations is very large, then in practice we need a huge
amount of data because a good approximation of the unknown coefficient is obtained only if the
final time T is very large.

7.3.2 Sensitivity analysis with respect to the number of eigenpairs

Let us now consider equation (1.10) with four different slow-scale potentials

V1(x) = x2

2 , V2(x) = x4

4 , V3(x) = x6

6 , V4(x) = x4

4 −
x2

2 . (7.18)

The other functions and parameters of the SDE are chosen as in the previous subsection, i.e.
p(y) = cos(y), α = 1, σ = 1 and ε = 0.1. Moreover, we set ∆ = ε and T = 500 and we
vary J = 1, . . . , 10. The functions {ψj}10

j=1 appearing in the estimating function are given by
ψj(x; a) = x for all j = 1, . . . , J .

In Figure 7.3, where we plot the values computed by ÂJM,ε and ÃJM,ε, we observe that the number
J of eigenvalues and eigenfunctions slightly improve the results, in particular for the fourth
potential, but the estimation stabilizes when the number of eigenvalues J is still small, e.g. J = 3.
Therefore, in order to reduce the computational cost, it seems to be preferable not to take large
values of J . This is related to how quickly the eigenvalues grow and, therefore, how quickly
the corresponding exponential terms decay. The rigorous study of the accuracy of the spectral
estimators as a function of the number of eigenvalues and eigenfunctions that we take into account
will be investigated elsewhere.
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Figure 7.3 – Sensitivity analysis with respect to the number J of eigenvalues and eigenfunctions
for different slow-scale potentials, for the estimators ÂJM,ε and ÃJM,ε.

7.3.3 Verification of the theoretical results

We consider the same setting as in the previous subsection, i.e. equation (1.10) with slow-scale
potentials given by (7.18) and p(y) = cos(y), α = 1, σ = 1 and ε = 0.1. Moreover, we set J = 1,
ψ1(x; a) = x and T = 500 and we choose the distance between two successive observations to be
∆ = εζ with ζ = 0, 0.1, 0.2, . . . , 2.5.

In Figure 7.4 we compare our martingale estimator ÂJM,ε without filtered data with the discrete

maximum likelihood estimator denoted M̂LE
∆
M,ε. The MLE does not provide good results for

two reasons:

(i) if ∆ is small, more precisely if ∆ = εζ with ζ > 1, sampling the data does not completely
eliminate the fast-scale components of the original trajectory, therefore, since we are
employing data generated by the multiscale model, the estimator is trying to approximate
the drift coefficient α of the multiscale equation, rather than the one of the homogenized
equation;

(ii) if ∆ is relatively big, in particular if ∆ = εζ with ζ ∈ [0, 1), then we are taking into account
only the slow-scale components of the original trajectory, but a bias is still introduced
because we are discretizing an estimator which is usually used for continuous data.

Nevertheless, as observed in these numerical experiments and investigated in greater detail in [103],
there exists an optimal value of ∆ such that M̂LE

∆
M,ε works well, but this value is not known

a priori and is strongly dependent on the problem, hence this technique is not robust. Figure
7.4 shows that the second issue, i.e., when ∆ is relatively big, can be solved employing ÂJM,ε,
an estimator for discrete observations, and that filtering the data is not needed as proved in
Theorem 7.8.

Then, in order to solve also the first problem, in Figure 7.5 we compare ÂJM,ε with our martingale
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Figure 7.4 – Comparison between the discrete maximum likelihood estimator M̂LE
∆
M,ε presented

in [103] and our estimator ÂJM,ε with J = 1 without filtered data as a function of the distance ∆
between two successive observations for different slow-scale potentials.

estimator ÃJM,ε with filtered data. We observe that inserting filtered data in the estimator
allows us to disregard the fast-scale components of the original trajectory and to obtain good
approximations of the drift coefficient A of the homogenized equation independently of ∆, as
already shown in Theorem 7.9. In particular, we notice that the results still improve even for big
values of ∆ if we employ the estimator based on filtered data. Finally, as highlighted in Remark
7.26, we observe that the limiting value of the estimator ÂJM,ε as the number of observations M
goes to infinity and the multiscale parameter ε vanishes is strongly dependent on the problem and
cannot be computed theoretically. However, if we consider the slow-scale potential V1(x) = x2/2,
i.e. the multiscale OU process, then the limit, as proved in Theorem 7.13, is the drift coefficient
α of the multiscale equation.

7.3.4 Multidimensional drift coefficient

In this experiment we consider a multidimensional drift coefficient, in particular we set L = 2.
We then consider the bistable potential, i.e.,

V (x) =
(
x4

4 −x
2

2

)>
,

and the fast-scale potential p(y) = cos(y). We choose the exact drift coefficient of the multiscale
equation (1.10) to be α =

(
1.2 0.7

)> and the diffusion coefficient to be σ = 0.7. We also set
the number of eigenfunctions J = 1, the function ψ1(x; a) =

(
x3 x

)>, the distance between two
consecutive observations ∆ = 1 and the final time T = 1000. We then compute the estimator
ÂJM,ε after M = 100, 200, . . . , 1000 observations and in Figure 7.6 we plot the result of the
experiment for the cases ε = 0.1 and ε = 0.05. Since we are analysing the case ∆ independent
of ε, filtering the data is not necessary and therefore we consider the estimator ÂJM,ε which is
computationally less expensive to compute.
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Figure 7.5 – Comparison between our two estimators ÂJM,ε without filtered data and ÃJM,ε with
filtered data with J = 1 as a function of the distance ∆ between two successive observations for
different slow-scale potentials.

M 100 200 300 400 500 600 700 800 900 1000
ε = 0.1 0.742 0.395 0.215 0.201 0.093 0.036 0.011 0.027 0.034 0.028
ε = 0.05 0.086 0.031 0.019 0.031 0.018 0.049 0.081 0.085 0.055 0.053

Table 7.1 – Absolute error êJM,ε defined in (7.19) between the homogenized drift coefficient A
and the estimator ÂJM,ε with J = 1 for a two-dimensional drift coefficient.

We observe that the estimation is approaching the exact value A of the drift coefficient of the
homogenized equation as the number of observations increases, until it starts oscillating around the
true value A =

(
0.48 0.28

)>. Moreover, we notice that the time needed to reach a neighborhood
of A is smaller when the multiscale parameter ε is closer to its vanishing limit. In Table 7.1 we
report the absolute error êJM,ε defined as

êJM,ε =
∥∥∥A− ÂJM,ε

∥∥∥
2
, (7.19)

where ‖·‖2 denotes the Euclidean norm, varying the number of observations M for the two values
of the multiscale parameter.

7.3.5 Multidimensional stochastic process: interacting particles

In this section we consider a system of d interacting particles in a two-scale potential, a problem
with a wide range of applications which has been studied in [59]. For t ∈ [0, T ] and for all
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Figure 7.6 – Evolution in time of the estimator ÂJM,ε with J = 1 for a two-dimensional drift
coefficient.

i = 1, . . . , d, consider the system of SDEs

dXε
i (t) = −αXε

i (t) dt− 1
ε
p′
(
Xε
i (t)
ε

)
− θ

d

d∑
j=1

(
Xε
i (t)−Xε

j (t)
)

dt+
√

2σ dWi(t). (7.20)

In this section we fix the number of particles and study the performance of our estimators as
ε vanishes. The very interesting problem of inference for mean field SDEs, obtained in the
limit as d → ∞, will be investigated in Chapter 8. It can be shown (see e.g. [59, Section 2.1]
and [40,42]) that (Xε

1 , . . . X
ε
d) converges in law as ε goes to zero to the solution (X0

1 , . . . , X
0
d) of

the homogenized system

dX0
i (t) = −AX0

i (t) dt− Θ
d

d∑
j=1

(
X0
i (t)−X0

j (t)
)

dt+
√

2Σ dWi(t). (7.21)

where Θ = Kθ and K is defined in (1.6). Moreover, the first eigenvalue and eigenfunction of the
generator of the homogenized system can be computed explicitly and they are given respectively
by

φ1(x1, . . . , xd) =
d∑
i=1

xi and λ1 = A.

Hence, letting ∆ > 0 independent of ε, given a sequence of observations ((X̃ε
1)m, . . . (X̃ε

d)m)Mm=0,
we can express the estimators analytically

Â1
M,ε = − 1

∆ log


∑M−1
m=0

(∑d
i=1(X̃ε

i )m
)(∑d

i=1(X̃ε
i )m+1

)
∑M−1
m=0

(∑d
i=1(X̃ε

i )m
)2

 ,

Ã1
M,ε = − 1

∆ log

∑M−1
m=0

(∑d
i=1(Z̃εi )m

)(∑d
i=1(X̃ε

i )m+1

)
∑M−1
m=0

(∑d
i=1(Z̃εi )m

)(∑d
i=1(X̃ε

i )m
)
 .

Let us now set p(y) = cos(y), α = 1, σ = 1 and θ = 1. We then simulate system (7.20) for different
final times T = 100, 200, . . . , 1000 and approximate the drift coefficient A of the homogenized
system (7.21) for d = 2 and d = 5. In Figure 7.7 and Figure 7.8 we plot the results respectively
of the estimators ÂJM,ε with ∆ = 1 and ÃJM,ε with ∆ = ε for two different values of ε = 0.1, 0.05.
As expected, we observe that our estimator provides a better approximation of the unknown
coefficient A when the time T increases and that this value stabilizes after approximately T = 500.
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Figure 7.7 – Evolution in time of the estimator ÂJM,ε with J = 1 for a d-dimensional system of
interacting particles with sampling rate ∆ = 1.

Figure 7.8 – Evolution in time of the estimator ÃJM,ε with J = 1 for a d-dimensional system of
interacting particles with sampling rate ∆ = ε.

7.3.6 Simultaneous inference of drift and diffusion coefficients

As highlighted by Remark 7.11, a small modification of our methodology allows us to estimate the
diffusion coefficient, in addition to drift coefficients. Define the parameter θ =

(
a> s

)> ∈ RL+1,
whose exact value is given by θ0 =

(
A> Σ

)> ∈ RL+1, where A and Σ are the drift and diffusion
coefficients of the homogenized equation, respectively. Then, the eigenvalue problem reads for all
j ∈ N

sφ′′j (x; θ)− a · V ′(x)φ′j(x; θ) + λj(θ)φj(x; θ) = 0,

where the eigenvalues and eigenfunctions are now dependent on the new parameter θ. Accordingly,
also the functions {ψj}Jj=1 can be chosen dependent on both the drift and diffusion coefficients
and, moreover, they have to take values in RL+1, i.e., ψj(·; θ) : R→ RL+1. Therefore, the new
score functions ĜJM,ε and G̃JM,ε are defined from Θ = A×S ⊂ RL+1, which is the set of admissible
parameters θ, to RL+1 and thus give nonlinear systems of dimension L+ 1. Finally, the solutions
θ̂1
M,ε and θ̃1

M,ε of the systems are the estimators of both the drift and diffusion coefficients of the
homogenized equation. In fact, small modifications in the proofs of the main results, in particular
in the notation, yield the asymptotic unbiasedness of the estimators under the same conditions,
i.e.,

lim
ε→0

lim
M→∞

θ̂1
M,ε = lim

ε→0
lim
M→∞

θ̃1
M,ε = θ0 =

(
A> Σ

)>
, in probability.

Consider now the same setting of Section 7.3.1, i.e., the multiscale OU potential with V (x) = x2/2,
p(y) = cos(y), α = 1, σ = 1 and let us assume that both the drift and diffusion coefficients are
unknown. We remark that in this case we have L = 1. Then, set the final time T = 1000, the
sampling rate ∆ = 1 and the number of eigenfunctions and eigenvalues J = 2. Moreover, we
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Figure 7.9 – Simultaneous inference of drift and diffusion coefficient for the estimator ÂJM,ε with
J = 2.

choose the functions ψ1(x; θ) = ψ2(x; θ) =
(
x2 x

)>. Since the distance between two consecutive
observations is independent of the multiscale parameter ε, we consider the estimator ÂJM,ε

without filtered data. In Figure 7.9 we plot the evolution of our estimator varying the number
of observations M for two different values of ε, in particular ε = 0.1 and ε = 0.05. We observe
that if the multiscale parameter is smaller, then the number of observations needed to obtain a
reliable approximation of the unknown parameters is lower.

7.4 Asymptotic unbiasedness
In this section we prove our main results. The plan of the proof is the following:

(i) we first study the limiting behaviour of the score functions ĜJM,ε and G̃JM,ε defined in (7.8)
and (7.11) as the number of observations M goes to infinity, i.e., as the final time T tends
to infinity;

(ii) we then show the continuity of the limit of the score functions obtained in the previous
step and we compute their limits as the multiscale parameter ε vanishes (Section 7.4.1);

(iii) we finally prove our main results, i.e., the asymptotic unbiasedness of the drift estimators
(Section 7.4.2).

We first define the Jacobian matrix of the function gj introduced in (7.7) with respect to a:

hj(x, y, z; a) = ψ̇j(z; a)
(
φj(y, a)− e−λj(a)∆φj(x; a)

)
+ ψj(z; a)⊗

(
φ̇j(y; a)− e−λj(a)∆ (φ̇j(x; a)−∆λ̇j(a)φj(x, a)

))
,

(7.22)

which will be employed in the following and where ⊗ denotes the outer product in RL and the
dot denotes either the Jacobian matrix or the gradient with respect to a, e.g. hj = ġj . Then note
that, under Assumption 1.4, due to ergodicity and stationarity and by [21, Lemma 3.1] we have

lim
M→∞

1
M
ĜJM,ε(a) = 1

∆

J∑
j=1

Eν
ε

[gj (Xε
0 , X

ε
∆, X

ε
0 ; a)] =: ĜJ(ε, a),

and

lim
M→∞

1
M
G̃JM,ε(a) = 1

∆

J∑
j=1

Eµ̃
ε
exp

[
gj

(
Xε

0 , X
ε
∆, Z̃

ε
0 ; a
)]

=: G̃J(ε, a), (7.23)
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where Eν
ε

and Eµ̃
ε
exp denotes respectively that Xε

0 and (Xε
0 , Z̃

ε
0) are distributed according to their

invariant distribution. We remark that the invariant distribution µ̃εexp exists due to Lemma 7.28.
By equation (7.22) the Jacobian matrices of ĜJ (ε, a) and G̃J (ε, a) with respect to a are given by

ĤJ(ε, a) := ∂

∂a
ĜJ(ε, a) = 1

∆

J∑
j=1

Eν
ε

[hj (Xε
0 , X

ε
∆, X

ε
0 ; a)] ,

and

H̃J(ε, a) := ∂

∂a
G̃J(ε, a) = 1

∆

J∑
j=1

Eµ̃
ε
exp

[
hj

(
Xε

0 , X
ε
∆, Z̃

ε
0 ; a
)]
. (7.24)

7.4.1 Continuity of the limit of the score function

In this section, we first prove the continuity of the functions ĜJ , G̃J : (0,∞) × A → RL and
ĤJ , H̃J , : (0,∞) × A → RL×L. We then study the limit of these functions for ε → 0. As the
proof for the filtered and the non-filtered are similar, we will concentrate on the filtered case
and comment on the non-filtered case. Before entering into the proof, we give two preliminary
technical lemmas which will be used repeatedly and whose proof can be found respectively in
Sections 7.5.1 and 7.5.3.

Lemma 7.16. Let Z̃ε be defined in (7.10) and distributed according to the invariant measure
µ̃εexp of the process (X̃m, Z̃m). Then for any p ≥ 1 there exists a constant C > 0 uniform in ε
such that

Eµ̃
ε
exp

∣∣∣Z̃ε∣∣∣p ≤ C.
Lemma 7.17. Let f : R→ R be a C∞(R) function which is polynomially bounded along with all
its derivatives. Then

f(Xε
∆) = f(Xε

0)−A ·V ′(Xε
0)f ′(Xε

0)∆+Σf ′′(Xε
0)∆+

√
2σ
∫ ∆

0
f ′(Xε

t )(1+Φ′(Y εt )) dWt+R(ε,∆),

where R(ε,∆) satisfies for all p ≥ 1 and for a constant C > 0 independent of ∆ and ε(
Eν

ε

|R(ε,∆)|p
)1/p

≤ C(ε+ ∆3/2).

We start here with a continuity result for the score function and its Jacobian matrix with respect
to the unknown parameter.

Proposition 7.18. Under Assumption 7.2, the functions G̃J : (0,∞)×A → RL and its derivative
H̃J , : (0,∞)×A → RL×L defined in (7.23) and (7.24), where ∆ can be either independent of ε
or ∆ = εζ with ζ > 0, are continuous.

Proof. We only prove the statement for G̃J , then the argument is similar for H̃J . Letting
ε∗ ∈ (0,∞) and a∗ ∈ A, we want to show that

lim
(ε,a)→(ε∗,a∗)

∥∥∥G̃J(ε, a)− G̃J(ε∗, a∗)
∥∥∥ = 0.

By the triangle inequality we have∥∥∥G̃J(ε, a)− G̃J(ε∗, a∗)
∥∥∥ ≤ ∥∥∥G̃J(ε, a)− G̃J(ε, a∗)

∥∥∥+
∥∥∥G̃J(ε, a∗)− G̃J(ε∗, a∗)

∥∥∥ =: Q1(ε, a) +Q2(ε),
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then we divide the proof in two steps and we show that the two terms vanish.
Step 1: Q1(ε, a)→ 0 as (ε, a)→ (ε∗, a∗).
Since ψj and φj are continuously differentiable with respect to a for all j = 1, . . . , J respectively
due to Assumption 7.2 and Lemma 7.30, then also gj is continuously differentiable with respect
to a. Therefore, by the mean value theorem for vector-valued functions we have

Q1(ε, a) ≤ 1
∆

J∑
j=1

∥∥∥Eµ̃εexp

[
gj(Xε

0 , X
ε
∆, Z̃

ε
0 ; a)

]
− Eµ̃

ε
exp

[
gj(Xε

0 , X
ε
∆, Z̃

ε
0 ; a∗)

]∥∥∥
= 1

∆

J∑
j=1

∥∥∥∥∫ 1

0
Eµ̃

ε
exp

[
hj(Xε

0 , X
ε
∆, Z̃

ε
0 ; a∗ + t(a− a∗))

]
dt (a− a∗)

∥∥∥∥ .
Then, letting C > 0 be a constant independent of ε, since ψj and φj are polynomially bounded still
by Assumption 7.2 and Xε

0 , Xε
∆ and Z̃ε0 have bounded moments of any order by [103, Corollary

5.4] and Lemma 7.16, we obtain

Q1(ε, a) ≤ C

∆ ‖a− a
∗‖ ,

which implies that Q1(ε, a) vanishes as (ε, a) goes to (ε∗, a∗) both if ∆ is independent of ε and if
∆ = εξ.
Step 2: Q2(ε)→ 0 as ε→ ε∗.
If ∆ is independent of ε, then we have

lim
ε→ε∗

Q2(ε) = lim
ε→ε∗

∥∥∥∥∥∥ 1
∆

J∑
j=1

Eµ̃
ε
exp

[
gj(Xε

0 , X
ε
∆, Z̃

ε
0 ; a∗)

]
− 1

∆

J∑
j=1

Eµ̃
ε∗
exp

[
gj(Xε∗

0 , Xε∗

∆ , Z̃ε
∗

0 ; a∗)
]∥∥∥∥∥∥

≤ lim
ε→ε∗

1
∆

J∑
j=1

∥∥∥Eµ̃εexp

[
gj(Xε

0 , X
ε
∆, Z̃

ε
0 ; a∗)

]
− Eµ̃

ε∗
exp

[
gj(Xε∗

0 , Xε∗

∆ , Z̃ε
∗

0 ; a∗)
]∥∥∥ ,

and the right hand side vanishes due to the continuity of gj for all j = 1, . . . , J and the continuity
of the solution of an SDE with respect to a parameter (see [76, Theorem 2.8.1]). Let us now
consider the case ∆ = εζ with ζ > 0 and let us assume, without loss of generality, that ε > ε∗.
Denoting ∆∗ = (ε∗)ζ and applying Itô’s lemma we have for all j = 1, . . . , J

φj(Xε
∆; a∗) = φj(Xε

∆∗ ; a∗)− α ·
∫ ∆

∆∗
V ′(Xε

t )φ′j(Xε
t ; a∗) dt− 1

ε

∫ ∆

∆∗
φ′j(Xε

t ; a∗)p′
(
Xε
t

ε

)
dt

+ σ

∫ ∆

∆∗
φ′′j (Xε

t ; a∗) dt+
√

2σ
∫ ∆

∆∗
φ′j(Xε

t ; a∗) dWt,

then we can write

G̃J(ε, a∗) = 1
∆

J∑
j=1

(
Eµ̃

ε
exp

[
ψj(Z̃ε0 ; a∗)φj(Xε

∆∗ ; a∗)
]
− e−λ(a∗)∆ Eµ̃

ε
exp

[
ψj(Z̃ε0 ; a∗)φj(Xε

0 ; a∗)
])

+R(ε),
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where R(ε) is given by

R(ε) = − 1
∆

J∑
j=1

∫ ∆

∆∗
Eµ̃

ε
exp

[
ψj(Z̃ε0 ; a∗)φ′j(Xε

t ; a∗)α · V ′(Xε
t )
]

dt

− 1
ε∆

J∑
j=1

∫ ∆

∆∗
Eµ̃

ε
exp

[
ψj(Z̃ε0 ; a∗)φ′j(Xε

t ; a∗)p′
(
Xε
t

ε

)]
dt

+ σ

∆

∫ ∆

∆∗
Eµ̃

ε
exp

[
ψj(Z̃ε0 ; a∗)φ′′j (Xε

t ; a∗)
]

dt+
√

2σ
∆

J∑
j=1

Eµ̃
ε
exp

[∫ ∆

∆∗
ψj(Z̃ε0 ; a∗)φ′j(Xε

t ; a∗) dWt

]
.

Let C > 0 be independent of ε and notice that since p′ is bounded, ψj , φ′j , φ′′j , V ′ are polynomially
bounded and Xε

t and Z̃ε0 have bounded moments of any order by [103, Corollary 5.4] and Lemma
7.16, applying Hölder’s inequality we obtain

‖R(ε)‖ ≤ C

∆

(
‖α‖+ σ + 1

ε

)
(∆−∆∗) + C

∆
√

2σ(∆−∆∗)1/2. (7.25)

Therefore, by the continuity of the solution of an SDE with respect to a parameter (see [88]) and
due to the bound (7.25), we deduce that

lim
ε→ε∗

G̃J(ε, a∗) = 1
∆∗

J∑
j=1

Eµ̃
ε∗
exp

[
ψj(Z̃ε

∗

0 ; a∗)
(
φj(Xε∗

∆∗ ; a∗)− e−λ(a∗)∆∗φj(Xε∗

0 ; a∗)
)]

= G̃J(ε∗, a∗),

which implies that Q2(ε) vanishes as ε goes to ε∗ and concludes the proof.

Remark 7.19. Notice that the proof of Proposition 7.18 can be repeated analogously for the
functions ĜJ : (0,∞)×A → RL and ĤJ : (0,∞)×A → RL×L without filtered data in order to
prove their continuity.

Next we study the limit as ε vanishes and we divide the analysis in two cases. In particular,
we consider ∆ independent of ε and ∆ = εζ with ζ > 0. In the first case (Proposition 7.20)
data are sampled at the homogenized regime ignoring the fact that the they are generated
by a multiscale model, while in the second case (Proposition 7.22) the distance between two
consecutive observations is proportional to the multiscale parameter and thus data are sampled
at the multiscale regime preserving the multiscale structure of the full path.

Proposition 7.20. Let the functions G̃J : (0,∞) ×A → RL and H̃J , : (0,∞) ×A → RL×L be
defined in (7.23) and (7.24) and let ∆ be independent of ε. Under Assumption 7.2 and for any
a∗ ∈ A we have

(i) lim
(ε,a)→(0,a∗)

G̃J(ε, a) = 1
∆

J∑
j=1

Eµ̃
0
exp

[
gj

(
X0

0 , X
0
∆, Z̃

0
0 ; a∗

)]
,

(ii) lim
(ε,a)→(0,a∗)

H̃J(ε, a) = 1
∆

J∑
j=1

Eµ̃
0
exp

[
hj

(
X0

0 , X
0
∆, Z̃

0
0 ; a∗

)]
.

Proof. We only prove the statement for G̃J , then the argument is similar for H̃J . By the triangle
inequality we have∥∥∥∥∥∥G̃J(ε, a)− 1

∆

J∑
j=1

Eµ̃
0
exp

[
gj

(
X0

0 , X
0
∆, Z̃

0
0 ; a∗

)]∥∥∥∥∥∥ ≤ Q1(ε, a) +Q2(ε),
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where
Q1(ε, a) =

∥∥∥G̃J(ε, a)− G̃J(ε, a∗)
∥∥∥ ,

which vanishes due to the first step of the proof of Proposition 7.18 and

Q2(ε) =

∥∥∥∥∥∥ 1
∆

J∑
j=1

Eµ̃
ε
exp

[
gj

(
Xε

0 , X
ε
∆, Z̃

ε
0 ; a∗

)]
− 1

∆

J∑
j=1

Eµ̃
0
exp

[
gj

(
X0

0 , X
0
∆, Z̃

0
0 ; a∗

)]∥∥∥∥∥∥ .
Let us remark that the convergence in law of the joint process {(X̃ε

m, Z̃
ε
m)}Mm=0 to the joint process

{(X̃0
m, Z̃

0
m)}Mm=0 by Lemma 7.28 implies the convergence in law of the triple (Xε

0 , X
ε
∆, Z̃

ε
0) to the

triple (X0
0 , X

0
∆, Z̃

0
0 ) since X̃ε

0 = Xε
0 , X̃ε

1 = Xε
∆ and X̃0

0 = X0
0 , X̃0

1 = X0
∆. Therefore we have

lim
ε→0

Q2(ε) ≤ lim
ε→0

1
∆

J∑
j=1

∥∥∥Eµ̃εexp

[
gj

(
Xε

0 , X
ε
∆, Z̃

ε
0 ; a∗

)]
− Eµ̃

0
exp

[
gj

(
X0

0 , X
0
∆, Z̃

0
0 ; a∗

)]∥∥∥ = 0,

which implies the desired result.

Remark 7.21. Similar results to Proposition 7.18 and Proposition 7.20 can be shown for the
estimator without filtered data. In particular we have that ĜJ (ε, a) and ĤJ (ε, a) are continuous
in (0,∞)×A and

(i) lim
(ε,a)→(0,a∗)

ĜJ(ε, a) = 1
∆

J∑
j=1

Eν
0 [
gj
(
X0

0 , X
0
∆, X

0
0 ; a∗

)]
,

(ii) lim
(ε,a)→(0,a∗)

ĤJ(ε, a) = 1
∆

J∑
j=1

Eν
0 [
hj
(
X0

0 , X
0
∆, X

0
0 ; a∗

)]
.

Since the proof is analogous, we do not report here the details.

Proposition 7.22. Let the functions G̃J : (0,∞) ×A → RL and H̃J , : (0,∞) ×A → RL×L be
defined in (7.23) and (7.24) and let ∆ = εζ with ζ > 0 and ζ 6= 1, ζ 6= 2. Under Assumption 7.2
and for any a∗ ∈ A we have

(i) lim(ε,a)→(0,a∗) G̃J(ε, a) = g̃0
J(a∗), where

g̃0
J(a) :=

J∑
j=1

Eµ
0
exp
[
ψj(Z0

0 ; a)
(
LAφj(X0

0 ; a) + λj(a)φj(X0
0 ; a)

)]
,

(ii) lim(ε,a)→(0,a∗) H̃J(ε, a) = h̃0
J(a∗), where

h̃0
J(a) :=

J∑
j=1

Eµ
0
exp
[
ψ̇j(Z0

0 ; a)
(
LAφj(X0

0 ; a) + λj(a)φj(X0
0 ; a)

)]
+

J∑
j=1

Eµ
0
exp
[
ψj(Z0

0 ; a)⊗
(
LAφ̇j(X0

0 ; a) + λj(a)φ̇j(X0
0 ; a)

)]
+

J∑
j=1

Eµ
0
exp
[
ψj(Z0

0 ; a)φj(X0
0 ; a)

]
⊗ λ̇j(a),

where the generator LA is defined in (7.3).
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Proof. We only prove the statement for G̃J , then the argument is similar for H̃J . By the triangle
inequality we have∥∥∥G̃J(ε, a)− g̃0

J(a∗)
∥∥∥ ≤ ∥∥∥G̃J(ε, a)− G̃J(ε, a∗)

∥∥∥+
∥∥∥G̃J(ε, a∗)− g̃0

J(a∗)
∥∥∥ =: Q1(ε, a) +Q2(ε),

then we need to show that the two terms vanish and we distinguish two cases.
Case 1: ζ ∈ (0, 1).
Applying Lemma 7.17 to the functions φj(·; a∗) for all j = 1, . . . , J and noting that

Eµ̃
ε
exp

[
ψj(Z̃ε0 ; a∗)

∫ ∆

0
φ′j(Xε

t ; a∗)(1 + Φ′(Y εt )) dWt

]
= 0,

since
Ms :=

∫ s

0
φ′j(Xε

t ; a∗)(1 + Φ′(Y εt )) dWt

is a martingale with M0 = 0, we have

G̃J(ε, a∗) = 1
∆

J∑
j=1

Eµ̃
ε
exp

[
ψj(Z̃ε0 ; a∗)

(
φj(Xε

∆; a∗)− e−λj(a
∗)∆φj(Xε

0 ; a∗)
)]

= 1− e−λj(a∗)∆

∆

J∑
j=1

Eµ̃
ε
exp

[
ψj(Z̃ε0 ; a∗)φj(Xε

0 ; a∗)
]

+
J∑
j=1

1
∆ Eµ̃

ε
exp

[
ψj(Z̃ε0 ; a∗)R(ε,∆)

]

+
J∑
j=1

Eµ̃
ε
exp

[
ψj(Z̃ε0 ; a∗)

(
Σφ′′j (Xε

0 ; a∗)−A · V ′(Xε
0)φ′j(Xε

0 ; a∗)
)]

=: Iε1 + Iε2 + Iε3 ,

where R(ε,∆) satisfies for a constant C > 0 independent of ε and ∆ and for all p ≥ 1(
Eµ̃

ε
exp |R(ε,∆)|p

)1/p
≤ C(ε+ ∆3/2). (7.26)

We now study the three terms separately. First, by Cauchy-Schwarz inequality, since ψj(·; a∗) is
polynomially bounded, Z̃ε0 has bounded moments of any order by Lemma 7.16 and due to (7.26)
we obtain

‖Iε2‖ ≤ C
(
ε∆−1 + ∆1/2

)
. (7.27)

Let us now focus on Iε1 for which we have

Iε1 = 1− e−λj(a∗)∆

∆

J∑
j=1

Eµ
ε
exp [ψj(Zε0 ; a∗)φj(Xε

0 ; a∗)]

+ 1− e−λj(a∗)∆

∆

J∑
j=1

E
[(
ψj(Z̃ε0 ; a∗)− ψj(Zε0 ; a∗)

)
φj(Xε

0 ; a∗)
]
,

where Zε0 is distributed according to the invariant measure µεexp of the continuous process (Xε
t , Z

ε
t )

and
lim
ε→0

1− e−λj(a∗)∆

∆ = λj(a∗). (7.28)

By the mean value theorem for vector-valued functions we have

E
[
(ψj(Z̃ε0 ; a∗)− ψj(Zε0 ; a∗))φj(Xε

0 ; a∗)
]

= E
[∫ 1

0
ψ′j(Zε0 + t(Z̃ε0 − Zε0); a∗) dt (Z̃ε0 − Zε0)φj(Xε

0 ; a∗)
]
,
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and since ψ′j(·; a∗), φj(·; a∗) are polynomially bounded, Xε
0 , Zε0 , Z̃ε0 have bounded moments of any

order respectively by [103, Corollary 5.4], Lemma 2.28 and Lemma 7.16 and applying Hölder’s
inequality and Corollary 7.29 we obtain∥∥∥E [(ψj(Z̃ε0 ; a∗)− ψj(Zε0 ; a∗)

)
φj(Xε

0 ; a∗)
]∥∥∥ ≤ C (∆1/2 + ε

)
. (7.29)

Moreover, notice that by homogenization theory (see Section 2.1.2) the joint process (Xε
0 , Z

ε
0)

converges in law to the joint process (X0
0 , Z

0
0 ) and therefore

lim
ε→0

Eµ
ε
exp [ψj(Zε0 ; a∗)φj(Xε

0 ; a∗)] = Eµ
0
exp
[
ψj(Z0

0 ; a∗)φj(X0
0 ; a∗)

]
,

which together with (7.28) and (7.29) yields

lim
ε→0

Iε1 =
J∑
j=1

λj(a∗)Eµ
0
exp
[
ψj(Z0

0 ; a∗)φj(X0
0 ; a∗)

]
. (7.30)

We now consider Iε3 and we follow an argument similar to Iε2 . We first have

Iε3 =
J∑
j=1

Eµ
ε
exp
[
ψj(Zε0 ; a∗)

(
Σφ′′j (Xε

0 ; a∗)−A · V ′(Xε
0)φ′j(Xε

0 ; a∗)
)]

+
J∑
j=1

E
[(
ψj(Z̃ε0 ; a∗)− ψj(Zε0 ; a∗)

) (
Σφ′′j (Xε

0 ; a∗)−A · V ′(Xε
0)φ′j(Xε

0 ; a∗)
)]

=: Iε3,1 + Iε3,2,

where the first term in the right-hand side converges due to homogenization theory and the
second one is bounded by ∥∥Iε3,2∥∥ ≤ C (∆1/2 + ε

)
.

Therefore, we obtain

lim
ε→0

Iε3 =
J∑
j=1

Eµ
0
exp
[
ψj(Z0

0 ; a∗)
(
Σφ′′j (X0

0 ; a∗)−A · V ′(X0
0 )φ′j(X0

0 ; a∗)
)]
,

which together with (7.27) and (7.30) implies

lim
ε→0
G̃J(ε, a∗)

=
J∑
j=1

Eµ
0
exp
[
ψj(Z0

0 ; a)
(
Σφ′′j (X0

0 ; a∗)−A · V ′(X0
0 )φ′j(X0

0 ; a∗) + λj(a∗)φj(X0
0 ; a∗)

)]
,

(7.31)

which shows that Q2(ε) vanishes as ε goes to zero. Let us now consider Q1(ε, a). Following the
first step of the proof of Proposition 7.18 we have

Q1(ε, a) ≤ 1
∆

J∑
j=1

∥∥∥Eµ̃εexp

[
gj(Xε

0 , X
ε
∆, Z̃

ε
0 ; a)

]
− Eµ̃

ε
exp

[
gj(Xε

0 , X
ε
∆, Z̃

ε
0 ; a∗)

]∥∥∥
≤

J∑
j=1

∥∥∥∥ 1
∆ Eµ̃

ε
exp

[
hj(Xε

0 , X
ε
∆, Z̃

ε
0 ; ã)

]∥∥∥∥ ‖(a− a∗)‖ ,
where ã assumes values in the line connecting a and a∗, and repeating the same computation as
above we obtain

Q1(ε, a) ≤ C ‖a− a∗‖ ,
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which together with (7.31) gives the desired result.
Case 2: ζ ∈ (1, 2) ∪ (2,∞).
Let Zε0 be distributed according to the invariant measure µεexp of the continuous process (Xε

t , Z
ε
t )

and define

R̃(ε,∆) := 1
∆

J∑
j=1

Eµ̃
ε
exp

[
gj(Xε

0 , X
ε
∆, Z̃

ε
0 ; a∗)

]
− 1

∆

J∑
j=1

Eµ
ε
exp [gj(Xε

0 , X
ε
∆, Z

ε
0 ; a∗)]

= 1
∆

J∑
j=1

E
[(
ψj(Z̃ε0 ; a∗)− ψj(Zε0 ; a∗)

)(
φj(Xε

∆; a∗)− e−λj(a
∗)∆φj(Xε

0 ; a∗)
)]
.

Then we have

G̃J(ε, a∗) =
J∑
j=1

1
∆ Eµ

ε
exp [gj(Xε

0 , X
ε
∆, Z

ε
0 ; a∗)] + R̃(ε,∆) =:

J∑
j=1

Qεj + R̃(ε,∆), (7.32)

and we first bound the remainder R̃(ε,∆). Applying Itô’s lemma to the process Xε
t with the

functions φj(·; a∗) for each j = 1, . . . , J we have

φj(Xε
∆; a∗) = φj(Xε

0 ; a∗)−
∫ ∆

0
α · V ′(Xε

t )φ′j(Xε
t ; a∗) dt−

∫ ∆

0

1
ε
p′
(
Xε
t

ε

)
φ′j(Xε

t ; a∗) dt

+ σ

∫ ∆

0
φ′′j (Xε

t ; a∗) dt+
√

2σ
∫ ∆

0
φ′j(Xε

t ; a∗) dWt,

(7.33)

and observing that

E

[(
ψj(Z̃ε0 ; a∗)− ψj(Zε0 ; a∗)

)∫ ∆

0
φ′j(Xε

t ; a∗) dWt

]
= 0, (7.34)

since
Ms =

∫ s

0
φ′j(Xε

t ; a∗) dWt

is a martingale with M0 = 0, we obtain

R̃(ε,∆) =
J∑
j=1

1− e−λj(a∗)∆

∆ E
[(
ψj(Z̃ε0 ; a∗)− ψj(Zε0 ; a∗)

)
φj(Xε

0 ; a∗)
]

+
J∑
j=1

1
∆

∫ ∆

0
E
[(
ψj(Z̃ε0 ; a∗)− ψj(Zε0 ; a∗)

) (
σφ′′j (Xε

t ; a∗)− α · V ′(Xε
t )φ′j(Xε

t ; a∗)
)]

dt

−
J∑
j=1

1
ε∆

∫ ∆

0
E
[(
ψj(Z̃ε0 ; a∗)− ψj(Zε0 ; a∗)

)
p′
(
Xε
t

ε

)
φ′j(Xε

t ; a∗)
]

dt

=: R̃1(ε,∆) + R̃2(ε,∆) + R̃3(ε,∆).

By the mean value theorem for vector-valued functions we have

E
[
(ψj(Z̃ε0 ; a∗)− ψj(Zε0 ; a∗))φj(Xε

0 ; a∗)
]

= E
[∫ 1

0
ψ′j(Zε0 + t(Z̃ε0 − Zε0); a∗) dt (Z̃ε0 − Zε0)φj(Xε

0 ; a∗)
]
,
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and since ψ′j(·; a∗), φj(·; a∗) are polynomially bounded, Xε
0 , Zε0 , Z̃ε0 have bounded moments of any

order respectively by [103, Corollary 5.4], Lemma 2.28 and Lemma 7.16 and applying Hölder’s
inequality we obtain ∥∥∥R̃1(ε,∆)

∥∥∥ ≤ C (E ∣∣∣Z̃ε0 − Zε0 ∣∣∣2)1/2
, (7.35)

for a constant C > 0 independent of ε and ∆. We repeat a similar argument for R̃2(ε,∆) and
R̃3(ε,∆) to get∥∥∥R̃2(ε,∆)

∥∥∥ ≤ C (E ∣∣∣Z̃ε0 − Zε0 ∣∣∣2)1/2
and

∥∥∥R̃3(ε,∆)
∥∥∥ ≤ Cε−1

(
E
∣∣∣Z̃ε0 − Zε0 ∣∣∣2)1/2

,

which together with (7.35) yield∥∥∥R̃(ε,∆)
∥∥∥ ≤ C (E ∣∣∣Z̃ε0 − Zε0 ∣∣∣2)1/2 (

1 + ε−1) . (7.36)

Moreover, applying Lemma 7.17 and proceeding similarly to the first part of the first case of the
proof we have ∥∥∥R̃(ε,∆)

∥∥∥ ≤ C (E ∣∣∣Z̃ε0 − Zε0 ∣∣∣2)1/2 (
1 + ε∆−1 + ∆1/2

)
,

which together with (7.36) and Corollary 7.29 implies∥∥∥R̃(ε,∆)
∥∥∥ ≤ C (E ∣∣∣Z̃ε0 − Zε0 ∣∣∣2)1/2 (

1 + min{ε−1, ε∆−1 + ∆1/2}
)

≤ C
(

∆1/2 + min{ε, ε−1∆}
)(

1 + min{ε−1, ε∆−1 + ∆1/2}
)
.

(7.37)

Let us now consider Qεj . Replacing equation (7.33) into the definition of Qεj in (7.32) and
observing that similarly to (7.34) it holds

Eµ
ε
exp

[
ψj(Zε0 ; a∗)

∫ ∆

0
φ′j(Xε

t ; a∗) dWt

]
= 0,

we obtain

Qεj = 1− e−λj(a∗)

∆ Eµ
ε
exp [ψj(Zε0 ; a∗)φj(Xε

0 ; a∗)]

− 1
∆

(∫ ∆

0
Eµ

ε
exp
[
(ψj(Zε0 ; a∗)⊗ V ′(Xε

t ))φ′j(Xε
t ; a∗)

]
dt
)
α

− 1
∆

∫ ∆

0
Eµ

ε
exp

[
ψj(Zε0 ; a∗)1

ε
p′
(
Xε
t

ε

)
φ′j(Xε

t ; a∗)
]

dt+ σ

∆

∫ ∆

0
Eµ

ε
exp
[
ψj(Zε0 ; a∗)φ′′j (Xε

t ; a∗)
]

dt.

We rewrite ψj(Zε0 ; a∗) inside the integrals employing equation (7.15) and Itô’s lemma

ψj(Zε0 ; a∗) = ψj(Zεt ; a∗)−
∫ t

0
ψ′j(Zεs ; a∗) (Xε

s − Zεs ) ds,

hence due to stationarity we have
Qεj = Qεj,1 +Qεj,2, (7.38)

where

Qεj,1 = 1− e−λj(a∗)

∆ Eµ
ε
exp [ψj(Zε0 ; a∗)φj(Xε

0 ; a∗)]− Eµ
ε
exp
[
(ψj(Zε0 ; a∗)⊗ V ′(Xε

0))φ′j(Xε
0 ; a∗)

]
α

− Eµ
ε
exp

[
ψj(Zε0 ; a∗)1

ε
p′
(
Xε

0
ε

)
φ′j(Xε

0 ; a∗)
]

+ σ Eµ
ε
exp
[
ψj(Zε0 ; a∗)φ′′j (Xε

0 ; a∗)
]
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and

Qεj,2 = 1
∆

(∫ ∆

0

∫ t

0
Eµ

ε
exp
[
(ψ′j(Zεs ; a∗)⊗ V ′(Xε

t ))φ′j(Xε
t ; a∗)(Xε

s − Zεs )
]

dsdt
)
α

+ 1
∆

∫ ∆

0

∫ t

0
Eµ

ε
exp

[
ψ′j(Zεs ; a∗)1

ε
p′
(
Xε
t

ε

)
φ′j(Xε

t ; a∗)(Xε
s − Zεs )

]
dsdt

− σ

∆

∫ ∆

0

∫ t

0
Eµ

ε
exp
[
ψ′j(Zεs ; a∗)φ′′j (Xε

t ; a∗)(Xε
s − Zεs )

]
dsdt.

Since φ′j(·; a∗), φ′′j (·; a∗) and ψ′j(·; a∗) are polynomially bounded, p′ is bounded and Xε
t and Zεt

have bounded moments of any order respectively by [103, Corollary 5.4] and Lemma 2.28, Qεj,2 is
bounded by ∥∥Qεj,2∥∥ ≤ C (∆ + ε−1∆

)
. (7.39)

Let us now move to Qεj,1 and let us recall the functions defined in (2.8) and (2.12)

Rε
exp(x, z) :=

ρεexp(x, z)
ϕε(x) and R0

exp(x, z) :=
ρ0

exp(x, z)
ϕ0(x) ,

where ρεexp and ρ0
exp are respectively the densities with respect to the Lebesgue measure of the

invariant distributions µεexp and µ0
exp of the joint processes (Xε

t , Z
ε
t ) and (X0

t , Z
0
t ) and ϕε and ϕ0

are their marginals with respect to the first component. Integrating by parts we have

Eµ
ε
exp

[
ψj(Zε0 ; a∗)1

ε
p′
(
Xε

0
ε

)
φ′j(Xε

0 ; a∗)
]

=
∫
R

∫
R
ψj(z; a∗)

1
ε
p′
(x
ε

)
φ′j(x; a∗)ρεexp(x, z) dxdz

= −σ
∫
R

∫
R

1
Cϕε

ψj(z; a∗)
d
dx

(
e−

1
σ p( xε )

)
φ′j(x; a∗)e− 1

σα·V (x)Rε
exp(x, z) dx dz

= σ

∫
R

∫
R

1
Cϕε

ψj(z; a∗)
∂

∂x

(
φ′j(x; a∗)e− 1

σα·V (x)Rε
exp(x, z)

)
e−

1
σ p( xε ) dxdz,

which implies

Eµ
ε
exp

[
ψj(Zε0 ; a∗)1

ε
p′
(
Xε

0
ε

)
φ′j(Xε

0 ; a∗)
]

= σ Eµ
ε
exp
[
ψj(Zε0 ; a∗)φ′′j (Xε

0 ; a∗)
]

− Eµ
ε
exp
[
(ψj(Zε0 ; a∗)⊗ V (Xε

0))φ′j(Xε
0 ; a∗)

]
α

+ σ

∫
R

∫
R
ψj(z; a∗)φ′j(x; a∗)ϕε(x) ∂

∂x
Rε

exp(x, z) dx dz.

Employing the last equation in the proof of Lemma 2.5 with f(x, z) = ψj(z; a∗)φ′j(x; a∗) and
δ = 1 we have

σ

∫
R

∫
R
ψj(z; a∗)φ′j(x; a∗)ϕε(x) ∂

∂x
Rε

exp(x, z) dx dz = Eµ
ε
exp
[
ψ′j(Zε0 ; a∗)φj(Xε

0 ; a∗)(Xε
0 − Zε0)

]
,

(7.40)
and thus we obtain

Qεj,1 = 1− e−λj(a∗)

∆ Eµ
ε
exp [ψj(Zε0 ; a∗)φj(Xε

0 ; a∗)]− Eµ
ε
exp
[
ψ′j(Zε0 ; a∗)φj(Xε

0 ; a∗)(Xε
0 − Zε0)

]
.

Letting ε go to zero and due to homogenization theory, it follows

lim
ε→0

Qεj,1 = λj(a∗)Eµ
0
exp
[
ψj(Z0

0 ; a∗)φj(X0
0 ; a∗)

]
− Eµ

0
exp
[
ψ′j(Z0

0 ; a∗)φj(X0
0 ; a∗)(X0

0 − Z0
0 )
]
,
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then applying formula (7.40) for the homogenized equation, i.e. with p(y) = 0 and α and σ
replaced by A and Σ, and integrating by parts we have

Eµ
0
exp
[
ψ′j(Z0

0 ; a∗)φj(X0
0 ; a∗)(X0

0 − Z0
0 )
]

= Σ
∫
R

∫
R
ψj(z; a∗)φ′j(x; a∗)ϕ0(x) ∂

∂x
R0

exp(x, z) dxdz

= −Σ
∫
R

∫
R
ψj(z; a∗)

d
dx
(
φ′j(x; a∗)ϕ0(x)

)
R0

exp(x, z) dxdz

= Eµ
0
exp
[
ψj(Z0

0 ; a∗)
(
Σφ′′j (X0

0 ; a∗)−A · V ′(X0
0 )φ′j(X0

0 ; a∗)
)]
.

Therefore, we obtain

lim
ε→0

Qεj,1 = Eµ
0
exp
[
ψj(Z0

0 ; a∗)
(
Σφ′′j (X0

0 ; a∗)−A · V ′(X0
0 )φ′j(X0

0 ; a∗) + λj(a∗)φj(X0
0 ; a∗)

)]
,

which together with (7.32), (7.38) and bounds (7.37) and (7.39) implies that Q2(ε) vanishes as
ε goes to zero. Finally, analogously to the first case we can show that also Q1(ε, a) vanishes,
concluding the proof.

Remark 7.23. A similar result to Proposition 7.22 can be shown for the estimator without filtered
data only if ζ ∈ (0, 1), i.e. the first case in the proof. In particular, we have

(i) lim(ε,a)→(0,a∗) ĜJ(ε, a) = ĝ0
J(a∗), where

ĝ0
J(a) :=

J∑
j=1

Eν
0 [
ψj(X0

0 ; a)
(
LAφj(X0

0 ; a) + λj(a)φj(X0
0 ; a)

)]
,

(ii) lim(ε,a)→(0,a∗) ĤJ(ε, a) = ĥ0
J(a∗), where

ĥ0
J(a) :=

J∑
j=1

Eν
0 [
ψ̇j(X0

0 ; a)
(
LAφj(X0

0 ; a) + λj(a)φj(X0
0 ; a)

)]
+

J∑
j=1

Eν
0 [
ψj(X0

0 ; a)⊗
(
LAφ̇j(X0

0 ; a) + λj(a)φ̇j(X0
0 ; a)

)]
+ Eν

0 [
ψj(X0

0 ; a)φj(X0
0 ; a)

]
⊗ λ̇j(a),

where the generator LA is defined in (7.3). Since the proof is analogous, we do not report here
the details. On the other hand, if ζ > 2 we can show that

(i) lim(ε,a)→(0,a∗) ĜJ(ε, a) = g0
J(a∗), where

g0
J(a) :=

J∑
j=1

Eν
0 [
ψj(X0

0 ; a)
(
σφ′′j (X0

0 ; a)− α · V ′(X0
0 )φ′j(X0

0 ; a) + λj(a)φj(X0
0 ; a)

)]
,

(7.41)
(ii) lim(ε,a)→(0,a∗) ĤJ(ε, a) = h0

J(a∗), where

h0
J(a) :=

J∑
j=1

Eν
0 [
ψ̇j(X0

0 ; a)
(
σφ′′j (X0

0 ; a)− α · V ′(X0
0 )φ′j(X0

0 ; a) + λj(a)φj(X0
0 ; a)

)]
+

J∑
j=1

Eν
0 [
ψj(X0

0 ; a)⊗
(
σφ̇′′j (X0

0 ; a)− α · V ′(X0
0 )φ̇′j(X0

0 ; a) + λj(a)φ̇j(X0
0 ; a)

)]
+

J∑
j=1

Eν
0 [
ψj(X0

0 ; a)φj(X0
0 ; a)

]
⊗ λ̇j(a).
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The proof is omitted since it is similar to the second case of the proof of Proposition 7.22.

7.4.2 Proof of the main results

Let us remark that we aim to prove the asymptotic unbiasedness of the proposed estimators, i.e.,
their convergence to the homogenized drift coefficient A as the the number of observations M
tends to infinity and the multiscale parameter ε vanishes. Therefore, we study the limit of the
score functions and their Jacobian matrices as M →∞ and ε→ 0 evaluated in the desired limit
point A.

We first analyse the case ∆ independent of ε and we consider the limit of Proposition 7.20 and
Remark 7.21 evaluated in a∗ = A. Then due to equation (7.6) we get

1
∆

J∑
j=1

Eµ̃
0
exp

[
gj

(
X0

0 , X
0
∆, Z̃

0
0 ;A

)]

= 1
∆

J∑
j=1

Eµ̃
0
exp

[
ψj(Z̃0

0 ;A)
(
φj(X0

∆;A)− e−λj(A)∆φj(X0
0 ;A)

)]

= 1
∆

J∑
j=1

Eµ̃
0
exp

[
ψj(Z̃0

0 ;A)
(
E
[
φj(X0

∆;A)
∣∣ (X0

0 , Z̃
0
0 )
]
− e−λj(A)∆φj(X0

0 ;A)
)]

= 0,
(7.42)

and similarly we obtain
1
∆

J∑
j=1

Eν
0 [
gj
(
X0

0 , X
0
∆, X

0
0 ;A

)]
= 0.

On the other hand, if ∆ is a power of ε we study the limit of Proposition 7.22 and Remark 7.23
evaluated in a∗ = A and by (7.4) we have

g̃0
J(A) = 0 and ĝ0

J(A) = 0. (7.43)

Moreover, differentiating equation (7.6) with respect to a, we get

E
[
φ̇j(Xtm(a); a)|Xtm−1(a) = x

]
= e−λj(a)∆φ̇j(x; a)− λ̇j(a)∆e−λj(a)∆φj(x; a)
− E

[
φ′j(Xtm(a); a)∇aXtm(a)|Xtm−1(a) = x

]
,

(7.44)

where the process ∇aXt(a) satisfies

d (∇aXt(a)) = −V ′(Xt) dt− a · V ′′(Xt)∇aXt(a) dt.

Therefore, due to (7.6) and (7.44) we have

1
∆

J∑
j=1

Eµ̃
0
exp

[
hj

(
X0

0 , X
0
∆, Z̃

0
0 ;A

)]
= −

J∑
j=1

Eµ̃
0
exp

[(
ψj(Z̃0

0 ;A)⊗∇aX∆(A)
)
φ′j(X0

∆;A)
]
,

(7.45)
and

1
∆

J∑
j=1

Eν
0 [
hj
(
X0

0 , X
0
∆, X

0
0 ;A

)]
= −

J∑
j=1

Eν
0 [(

ψj(X0
0 ;A)⊗∇aX∆(A)

)
φ′j(X0

∆;A)
]
.
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Then due to Lemma 7.30 we can differentiate the eigenvalue problem (7.5) with respect to a and
deduce that

Σφ̇′′j (x; a)− a · V ′(x)φ̇′j(x; a) + λj(a)φ̇j(x; a) = V ′(x)φ′j(x; a)− λ̇jφj(x; a),

where the dot denotes the gradient with respect to a and which together with (7.5) implies

h̃0
J(A) =

J∑
j=1

Eµ
0
exp
[
(ψj(Z0

0 ;A)⊗ V ′(X0
0 ))φ′j(X0

0 ;A)
]
, (7.46)

and

ĥ0
J(A) =

J∑
j=1

Eν
0 [

(ψj(X0
0 ;A)⊗ V ′(X0

0 ))φ′j(X0
0 ;A)

]
.

Before showing the main results, we need two auxiliary lemmas, which in turn rely on the technical
Assumption 7.6, which can now be rewritten as

(i) det
(

1
∆
∑J
j=1 E

µ̃0
exp

[
hj

(
X0

0 , X
0
∆, Z̃

0
0 ;A

)])
6= 0,

(ii) det
(

1
∆
∑J
j=1 E

ν0 [
hj
(
X0

0 , X
0
∆, X

0
0 ;A

)])
6= 0,

(iii) det
(
h̃0
J(A)

)
6= 0,

(iv) det
(
ĥ0
J(A)

)
6= 0.

Since the proofs of the two lemmas are similar we only write the details of the first one.

Lemma 7.24. Under Assumption 7.2 and Assumption 7.6 there exists ε0 > 0 such that for all
0 < ε < ε0 there exists γ̃ = γ̃(ε) such that if ∆ is independent of ε or ∆ = εζ with ζ > 0 and
ζ 6= 1, ζ 6= 2

G̃J(ε,A+ γ̃(ε)) = 0 and det
(
H̃J(ε,A+ γ̃(ε))

)
6= 0.

Moreover
lim
ε→0

γ̃(ε) = 0.

Proof. Let us first extend the functions G̃J and H̃J by continuity in ε = 0 with their limit given
by Proposition 7.20 and Proposition 7.22 depending on ∆ and note that due to (7.42) if ∆ is
independent of ε and (7.43) otherwise, we have

G̃J(0, A) = 0.

Moreover, by (7.45), (7.46) and Assumption 7.6, we know that

det
(
H̃J(0, A)

)
6= 0.

Therefore, since the functions G̃J and H̃J are continuous by Proposition 7.18, the implicit function
theorem (see [67, Theorem 2]) gives the desired result.

Lemma 7.25. Under Assumption 7.2 and Assumption 7.6 there exists ε0 > 0 such that for all
0 < ε < ε0 there exists γ̂ = γ̂(ε) such that if ∆ is independent of ε or ∆ = εζ with ζ ∈ (0, 1)

ĜJ(ε,A+ γ̂(ε)) = 0 and det
(
ĤJ(ε,A+ γ̂(ε))

)
6= 0.

Moreover
lim
ε→0

γ̂(ε) = 0.
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We are now ready to prove the asymptotic unbiasedess of the estimators, i.e., Theorem 7.8 and
Theorem 7.9. We only prove Theorem 7.9 for the estimator ÃJM,ε with filtered data. The proof of
Theorem 7.8 for the estimator ÂJM,ε without filtered data is analogous and is omitted here.

Proof of Theorem 7.9. We need to show for a fixed 0 < ε < ε0:

(i) the existence of the solution ÃJM,ε of the system G̃JM,ε(a) = 0 with probability tending to
one as M →∞;

(ii) limM→∞ ÃJM,ε = A+ γ̃(ε) in probability with limε→0 γ̃(ε) = 0.

We first note that by Lemma 7.24 we have

lim
ε→0

γ̃(ε) = 0.

We then follow the steps of the proof of [21, Theorem 3.2]. Due to [16, Theorem A.1], claims (i)
and (ii) hold true if we verify that

lim
M→∞

sup
a∈Bε

C,M

∥∥∥∥ 1
M

˙̃
G
J

M,ε(a)− H̃J(ε,A+ γ̃(ε))
∥∥∥∥ = 0, in probability, (7.47)

and as M →∞
1√
N
G̃JM,ε(A+ γ̃(ε))→ N (0,Λε) , in law, (7.48)

where Λε is a positive definite covariance matrix and

BεC,M =
{
a ∈ A : ‖a− (A+ γ̃(ε))‖ ≤ C√

M

}
,

for C > 0 small enough such that BC,1 ⊂ A. Result (7.48) is a consequence of [45, Theorem 1].
We then have

sup
a∈Bε

C,M

∥∥∥∥ 1
M

˙̃
G
ε

M,J(a)− H̃J(ε,A+ γ̃(ε))
∥∥∥∥

≤ sup
a∈Bε

C,1

∥∥∥∥∥∥ 1
M∆

M−1∑
m=0

J∑
j=1

hj(X̃ε
m, X̃

ε
m+1, Z̃

ε
m; a)− H̃J(ε, a)

∥∥∥∥∥∥
+ sup
a∈Bε

C,M

∥∥∥H̃J(ε, a)− H̃J(ε,A+ γ̃(ε))
∥∥∥ ,

where the right-hand side vanishes by [21, Lemma 3.3] and the continuity of H̃ (Proposition
7.18), implying result (7.47). Hence, we proved (i) and (ii), which conclude the proof of the
theorem.

Remark 7.26. Notice that if ∆ = εζ with ζ > 2 and we do not employ the filter, in view of (7.41)
and following the same proof of Theorem 7.9, we could compute the asymptotic limit of ÂJM,ε as
M goes to infinity and ε vanishes if we knew a∗ such that

J∑
j=1

Eν
0 [
ψj(X0

0 ; a∗)
(
σφ′′j (X0

0 ; a∗)− α · V ′(X0
0 )φ′j(X0

0 ; a∗) + λj(a∗)φj(X0
0 ; a∗)

)]
= 0.

The value of a∗ cannot be found analytically since it is, in general, different from the drift
coefficients α and A of the multiscale and homogenized equations (1.10) and (1.11). Nevertheless,
we observe that in the simple scale of the multiscale OU process we have a∗ = α.
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7.5 Technical results
In this section we prove some technical results which are used to show the unbiasedness of the
estimators ÂJM,ε and ÃJM,ε. We first study the properties of the filter applied to discrete data
and then we focus on the regularity of the eigenfunctions and eigenvalues of the generator. We
finally prove a formula which can be interpreted as an approximation of the Itô’s lemma.

7.5.1 Application of the filter to discrete data

The following result quantifies the expected distance among the continuous process Zεt and the
filtered observations Z̃εm.

Lemma 7.27. Let 0 < ∆ < 1, M be a positive integer and let Z̃εm and Zεt be defined respectively
in (7.10) and (7.14) with X̃ε

0 = Xε
0 distributed according to its invariant measure νε. Then there

exists a constant C > 0 independent of ε, ∆ and M such that for all m = 0, . . . ,M and for all
p ≥ 1 (

Eν
ε
∣∣∣Zεm∆ − Z̃εm

∣∣∣p)1/p
≤ C

(
∆1/2 + min

{
ε,∆ε−1}) ,

where Eν
ε

denotes the expectation with respect to the Wiener measure and the fact that Xε
0 is

distributed according to νε.

Proof. In order to simplify the notation, let us define the quantity

E := Eν
ε
∣∣∣Zεm∆ − Z̃εm

∣∣∣p ,
which is equivalent to

E = Eν
ε

∣∣∣∣∣
m−1∑
k=0

∫ (k+1)∆

k∆

(
e−(m∆−s)Xε

s − e−∆(m−k)X̃ε
k

)
ds

∣∣∣∣∣
p

.

Then by Jensen’s inequality applied to the convex function y 7→ |y|p and since Xε
k∆ = X̃ε

k we have

E ≤ 2p−1 Eν
ε

(
m−1∑
k=0

∫ (k+1)∆

k∆
e−(m∆−s) |Xε

s −Xε
k∆| ds

)p

+ 2p−1 Eν
ε

(
m−1∑
k=0

∫ (k+1)∆

k∆

(
e−(m∆−s) − e−∆(m−k)

)
ds
∣∣∣X̃ε

k

∣∣∣)p
=: 2p−1 (E1 + E2) .

(7.49)

We now study the two terms separately. Applying Lemma 2.26 we first get

E1 = Eν
ε

(∫ m∆

0
e−(m∆−s)

∣∣∣∣∣Xε
s −

m−1∑
k=0

Xε
k∆χ[k∆,(k+1)∆)(s)

∣∣∣∣∣ ds
)p

≤
∫ m∆

0
e−(m∆−s) Eν

ε

∣∣∣∣∣Xε
s −

m−1∑
k=0

Xε
k∆χ[k∆,(k+1)∆)(s)

∣∣∣∣∣
p

ds,

(7.50)

and, in order to bound the term inside the integral, we can follow two different procedures. Either
we employ [103, Lemma 6.1], which gives

Eν
ε

∣∣∣∣∣Xε
s −

m−1∑
k=0

Xε
k∆χ[k∆,(k+1)∆)(s)

∣∣∣∣∣
p

≤ C
(

∆p + ∆p/2 + εp
)
, (7.51)
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where C > 0 is a constant independent of ε and ∆ or we notice that, since Xε
t has bounded

moments of any order by [103, Corollary 5.4] and p is bounded, it holds for all s ∈ [k∆, (k + 1)∆)

Eν
ε

|Xε
s −Xε

k∆|
p = Eν

ε

∣∣∣∣−α ∫ s

k∆
Xε
r dr − 1

ε

∫ s

k∆
p′
(
Xε
r

ε

)
dr +

√
2σWs

∣∣∣∣p
≤ C

(
∆p + ∆pε−p + ∆p/2

)
.

(7.52)

Therefore, due to (7.50), (7.51) and (7.52), we obtain

E1 ≤ C
(

∆p/2 + min
{
εp,∆pε−p

})
. (7.53)

Let us now consider E2, which can be first bounded by

E2 ≤ ∆p Eν
ε

(
m−1∑
k=0

(
e−∆(m−1−k) − e−∆(m−k)

) ∣∣∣X̃ε
k

∣∣∣)p ,
and note that

m−1∑
k=0

(
e−∆(m−1−k) − e−∆(m−k)

)
=
m−1∑
k=0

(
e−∆k − e−∆(k+1)

)
= 1− e−∆m.

Therefore, applying Jensen’s inequality and due to the fact that X̃ε
k has bounded moments of any

order by [103, Corollary 5.4] we have

E2 ≤ ∆p(1− e−∆m)p−1
m−1∑
k=0

(
e−∆(m−1−k) − e−∆(m−k)

)
Eν

ε
∣∣∣X̃ε

k

∣∣∣p ≤ C∆p,

which, together with (7.49) and (7.53), gives the desired result.

We now show the ergodicity of the process (X̃ε
m, Z̃

ε
m), where the first component is a sample from

the continuous-time process, i.e. X̃ε
m = Xε

m∆, while the second component is computed starting
from the discrete observations X̃ε

m.

Lemma 7.28. Let ∆ > 0 and let Assumption 1.4 hold. Then the couple (X̃ε
m, Z̃

ε
m), where X̃ε

m is a
sample from the continuous process (1.10) and Z̃εm is defined in (7.10), admits a unique invariant
measure µ̃εexp with density with respect to the Lebesgue measure denoted by ρ̃εexp = ρ̃εexp(x, z).
Moreover, if ∆ is independent of ε, it converges in law to the two-dimensional process (X̃0

m, Z̃
0
m)

with ρ̃0
exp = ρ̃0

exp(x, z) as density of the invariant measure µ̃0
exp.

Proof. By definition (7.13) we obtain the following SDE

Z̃εm+1 = e−∆Z̃εm + ∆e−∆X̃ε
m,

where X̃ε
m is a stationary and ergodic sequence. Observing that log e−∆ = −∆ < 0, applying

Theorem 1 and in view of Remark 1.3 in [25] we deduce the existence of a unique invariant
measure for the couple (X̃ε

m, Z̃
ε
m). Let us notice that in the theorem the sequence X̃ε

m must be
defined for all m ∈ Z while in our framework m ∈ N, but let us also remark that any stationary
process indexed by N can be extended to one indexed by Z in an essentially unique way. Moreover,
if ∆ is independent of ε, the same reasoning can be repeated to get the existence of a unique
invariant measure for the couple (X̃0

m, Z̃
0
m). Finally, standard homogenization theory implies the

weak convergence of ρ̃εexp to ρ̃0
exp, which concludes the proof.
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Corollary 7.29. Let Zε and Z̃ε be at stationarity. Then there exists a constant C > 0 indepen-
dent of ε and ∆ such that(

E
∣∣∣Zε − Z̃ε∣∣∣p)1/p

≤ C
(

∆1/2 + min
{
ε,∆ε−1}) .

Proof. The result follows directly from Lemma 7.27 by letting m go to infinity, noting that the
constant C is independent of n and employing ergodicity given by Lemma 7.28.

It directly follows that Z̃εm has bounded moments of all order and, in particular, we can prove
Lemma 7.16.

Proof of Lemma 7.16. Applying Jensen’s inequality to the function x 7→ |x|p, we have

Eµ̃
ε
exp

∣∣∣Z̃ε∣∣∣p ≤ 2p−1 Eµ
ε
exp |Zε|p + 2p−1 E

∣∣∣Z̃ε − Zε∣∣∣p ,
then bounding the two terms in the right-hand side respectively with Lemma 2.28 and Corollary
7.29 gives the desired result.

7.5.2 Properties of eigenfunctions and eigenvalues of the generator

Let us now consider the eigenvalue and the eigenfunctions of the generator of SDE (7.1).

Lemma 7.30. Let {(λj(a), φj(·; a))}∞j=0 be the solutions of the eigenvalue problem (7.4). Then
φj(x; a) and λj(a) are continuously differentiable with respect to a for all x ∈ R and for all j ∈ N.
Moreover, φj(·; a) and φ̇j(·; a) belong to C∞(R).

Proof. The first result follows from Section 2 and Section 6 in [111]. Let us remark that the fact
that the spectrum is discrete and non-degenerate is guaranteed by [101, Section 4.7]. Finally, the
second result in the statement is a direct consequence of the elliptic regularity theory.

7.5.3 Approximation of the Itô formula

In this section we prove Lemma 7.17, which is an approximation of the Itô’s lemma applied to
the stochastic process Xε

t . Let us introduce the process Sεt defined by the following SDE with
initial condition Sε0 = Xε

0

dSεt = −αV ′(Xε
t )(1 + Φ′(Y εt ))dt+

√
2σ(1 + Φ′(Y εt ))dWt, (7.54)

where Y εt = Xε
t /ε and Φ is the cell function which solves equation (1.7), and notice that

Sε∆ = Xε
0 − α

∫ ∆

0
V ′(Xε

t )(1 + Φ′(Y εt )) dt+
√

2σ
∫ ∆

0
(1 + Φ′(Y εt )) dWt.

Therefore, due to equation (5.7) in [103] we have

|Xε
∆ − Sε∆| = ε |Φ(Y ε∆)− Φ(Y ε0 )| ,

and, since Φ is bounded by [103, Lemma 5.5], we get for a constant C > 0 independent of ∆ and
ε

|Xε
∆ − Sε∆| ≤ Cε. (7.55)
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Before showing the main formula, we need two preliminary estimates which will be employed
later in the analysis. The proofs of Lemma 7.31 and Lemma 7.32 are inspired by the proof of
Proposition 5.8 in [103].

Lemma 7.31. Let f : R → R be a continuously differentiable function such that f, f ′ are
polynomially bounded. Then∫ ∆

0
α · V ′(Xε

t )f(Xε
t )(1 + Φ′(Y εt )) dt = A · V ′(Xε

0)f(Xε
0)∆ +R1(ε,∆), (7.56)

where the remainder satisfies for all p ≥ 1 and for a constant C > 0 independent of ∆ and ε(
Eν

ε

|R1(ε,∆)|p
)1/p

≤ C(ε2 + ∆1/2ε+ ∆3/2).

Proof. To obtain the remainder R1(ε,∆) we decompose suitably the difference between the
left-hand side and the right-hand side of (7.56). Applying Jensen’s inequality to the function
z 7→ |z|p we have

Eν
ε

|R1(ε,∆)|p ≤ 3p−1 Eν
ε

∣∣∣∣∣
∫ ∆

0
α · (V ′(Xε

t )− V ′(Xε
0)) f(Xε

t )(1 + Φ′(Y εt )) dt

∣∣∣∣∣
p

+ 3p−1 Eν
ε

∣∣∣∣∣α · V ′(Xε
0)
∫ ∆

0
(f(Xε

t )− f(Xε
0)) (1 + Φ′(Y εt )) dt

∣∣∣∣∣
p

+ 3p−1 Eν
ε

∣∣∣∣∣f(Xε
0)V ′(Xε

0) ·
∫ ∆

0
(α(1 + Φ′(Y εt ))−A) dt

∣∣∣∣∣
p

=: I1(ε,∆) + I2(ε,∆) + I3(ε,∆).

(7.57)

Letting C > 0 be a constant independent of ε and ∆, we now bound the three terms separately.
First, applying Hölder inequality and since V ′ is Lipschitz, Φ′ is bounded, f is polynomially
bounded and Xε

t has bounded moments of any order by [103, Corollary 5.4], we have

I1(ε,∆) ≤ C∆p−1
∫ ∆

0
Eν

ε

|Xε
t −Xε

0 |
p dt,

then applying [103, Lemma 6.1] we obtain

I1(ε,∆) ≤ C
(

∆2p + ∆3p/2 + εp∆p
)
. (7.58)

We then rewrite I2(ε,∆) employing the mean value theorem

I2(ε,∆) = 3p−1 Eν
ε

∣∣∣∣∣α · V ′(Xε
0)
∫ ∆

0
f ′(X̃ε

t )(Xε
t −Xε

0)(1 + Φ′(Y εt )) dt

∣∣∣∣∣
p

,

where X̃ε
t assumes values between Xε

0 and Xε
t , and we repeat the same reasoning as for I1(ε,∆)

to get
I2(ε,∆) ≤ C

(
∆2p + ∆3p/2 + εp∆p

)
. (7.59)

We now consider the function
H(y) =: α(1 + Φ′(y))−A,
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which by definition of A and due to (1.6) has zero mean with respect to π defined in (1.8).
Therefore, since f and V ′ are polynomially bounded and Xε

0 has bounded moments of any order
by [103, Corollary 5.4], applying [103, Lemma 5.6] we obtain

I3(ε,∆) ≤ C
(
ε2p + εp∆p + εp∆p/2

)
. (7.60)

Finally, for ε and ∆ sufficiently small, the desired result follows from (7.57) and from estimates
(7.58), (7.59) and (7.60).

Lemma 7.32. Let f : R → R be a continuously differentiable function such that f, f ′ are
polynomially bounded. Then∫ ∆

0
σf(Xε

t )(1 + Φ′(Y εt ))2 dt = Σf(Xε
0)∆ +R2(ε,∆), (7.61)

where the remainder satisfies for all p ≥ 1 and for a constant C > 0 independent of ∆ and ε(
Eν

ε

|R2(ε,∆)|p
)1/p

≤ C(ε2 + ∆1/2ε+ ∆3/2).

Proof. To obtain the remainder R2(ε,∆) we decompose suitably the difference between the
left-hand side and the right-hand side of (7.61). Applying Jensen’s inequality to the function
z 7→ |z|p we have

Eν
ε

|R2(ε,∆)|p ≤ 2p−1 Eν
ε

∣∣∣∣∣
∫ ∆

0
σ (f(Xε

t )− f(Xε
0)) (1 + Φ′(Y εt )2) dt

∣∣∣∣∣
p

+ 2p−1 Eν
ε

∣∣∣∣∣f(Xε
0)
∫ ∆

0

(
σ(1 + Φ′(Y εt ))2 − Σ

)
dt

∣∣∣∣∣
p

=: I1(ε,∆) + I2(ε,∆).

(7.62)

Letting C > 0 be a constant independent of ε and ∆, we now bound the two terms separately.
First, we rewrite I1(ε,∆) employing the mean value theorem

I1(ε,∆) = 2p−1 Eν
ε

∣∣∣∣∣
∫ ∆

0
σf ′(X̃ε

t )(Xε
t −Xε

0)(1 + Φ′(Y εt ))2 dt

∣∣∣∣∣
p

,

where X̃ε
t assumes values between Xε

0 and Xε
t , then applying Hölder inequality and since Φ′ is

bounded, f ′ is polynomially bounded andXε
t has bounded moments of any order by [103, Corollary

5.4], we have

I1(ε,∆) ≤ C∆p−1
∫ ∆

0
Eν

ε

|Xε
t −Xε

0 |
p dt,

and applying [103, Lemma 6.1] we obtain

I1(ε,∆) ≤ C
(

∆2p + ∆3p/2 + εp∆p
)
. (7.63)

We now consider the function
H(y) =: σ(1 + Φ′(y))2 − Σ,

which by definition of Σ and due to (1.6) has zero mean with respect to µ defined in (1.8). Therefore,
since f is polynomially bounded and Xε

0 has bounded moments of any order by [103, Corollary
5.4], applying [103, Lemma 5.6] we obtain

I2(ε,∆) ≤ C
(
ε2p + εp∆p + εp∆p/2

)
. (7.64)

Finally, for ε and ∆ sufficiently small, the desired result follows from (7.62) and from estimates
(7.63) and (7.64).

172



7.6. Implementation details

We can now prove the main formula, which is employed repeatedly in the proof of the asymptotic
unbiasedness of the drift estimators.

Proof of Lemma 7.17. Applying Itô’s lemma to the process Sεt defined in (7.54) with the function
f we have

f(Sε∆) = f(Xε
0)−

∫ ∆

0
α · V ′(Xε

t )f ′(Xε
t )(1 + Φ′(Y εt )) dt+

∫ ∆

0
σf ′′(Xε

t )(1 + Φ′(Y εt ))2 dt

+
√

2σ
∫ ∆

0
f ′(Xε

t )(1 + Φ′(Y εt )) dWt,

and due to Lemma 7.31 and Lemma 7.32 we obtain

f(Sε∆) = f(Xε
0)−A · V ′(Xε

0)f ′(Xε
0)∆ + Σf ′′(Xε

0)∆ +
√

2σ
∫ ∆

0
f ′(Xε

t )(1 + Φ′(Y εt )) dWt

−R1(ε,∆) +R2(ε,∆).

Then we write
f(Xε

∆) = f(Sε∆) + [f(Xε
∆)− f(Sε∆)] =: f(Sε∆) +R3(ε,∆),

and, in order to conclude, it only remains to bound the expectation of R3(ε,∆). Applying the
mean value theorem and the Cauchy-Schwarz inequality and due to (7.55), the hypotheses on f
and the fact that Xε

t has bounded moments of any order by [103, Corollary 5.4], we obtain

Eν
ε

|R3(ε,∆)|p ≤
(
Eν

ε
∣∣∣f ′(X̃)

∣∣∣2p)1/2 (
Eν

ε

|Xε
∆ − Sε∆|

2p
)1/2

≤ Cεp,

where X̃ takes values between Xε
∆ and Sε∆, and which together with the estimates for R1 and R2

implies the desired result.

7.6 Implementation details
In this section we present the main techniques that we employed in the implementation of
the proposed method. The most important steps in the algorithm are the computation of the
eigenvalues and eigenfunctions of the eigenvalue problem (7.5)

Σφ′′j (x; a)− a · V ′(x)φ′j(x; a) + λj(a)φj(x; a) = 0,

and the solution of the non-linear system (7.9) or (7.12) with filtered data. Let us first focus
on the eigenvalue problem. We note that the domain of the eigenfunctions is the whole real
line R and need to be truncated for numerical computations. We first consider the variational
formulation of equation (7.5), i.e., we multiply it by vϕa, where v is a test function and ϕa is
the invariant distribution defined in (7.2), and integrating by parts we obtain for all j ∈ N the
following eigenvalue problem

Σ
∫
R
φ′j(x; a)v′(x)ϕa(x) dx = λj(a)

∫
R
φj(x; a)v(x)ϕa(x) dx.

Since ϕa decays to zero exponentially fast, for all ε > 0 there exists r > 0 such that

|ϕa(x)| < ε for all x 6∈ [−r, r].

Hence, letting R > 0 we assume that ϕa(±R) ' 0 and we solve the truncated problem

Σ
∫ +R

−R
φ′j(x; a)v′(x)ϕa(x) dx = λj(a)

∫ +R

−R
φj(x; a)v(x)ϕa(x) dx. (7.65)
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Notice that R must be chosen big enough and such that

R ≥ max
m=0,...,M

max
{∣∣∣X̃ε

m

∣∣∣ , ∣∣∣Z̃εm∣∣∣} =: R̄,

and we take R = max{R̄ + 0.1, 1.7}. Moreover, in order to have a unique solution for the
eigenvector φj(·; a) we impose the additional conditions

φj(R; a) > 0 and
∫ +R

−R
φj(x; a)2ϕa(x) dx = 1. (7.66)

We then introduce a partition Ph of [−R,R] in Nh subintervals Ki = [xi−1, xi] with

−R = x0 < x1 < · · · < xNh < xNh = +R,

and h = 2R/Nh, and we construct the discrete space

X1
h =

{
vh ∈ C0([−R,+R]) : vh|Ki ∈ P1 ∀ Ki ∈ Ph

}
,

which is constituted by continuous piecewise linear functions. Note that the discretization
parameter h is chosen to be h = 0.1 or h = 0.05. We pick the characteristic Lagrangian basis
{βk}Nhk=0 of X1

h characterized by the following property

βk(xi) = δik for all i, k = 0, . . . , Nh,

where δik is the Kronecker delta. We want to find φj(·; a) ∈ X1
h such that equation (7.65) holds

true for all v ∈ X1
h. Therefore, in equation (7.65) we substitute

φj(x; a) =
Nh∑
k=0

θ
(k)
j (a)βk(x) and v(x) = βi(x) for all i = 0, . . . , Nh,

and we obtain the discrete formulation

SΘj(a) = λj(a)MΘj(a), (7.67)

where Θj(a) ∈ RNh+1 is such that (Θj(a))k = θ
(k−1)
j (a) and the components of the matrices

S,M ∈ RNh+1×Nh+1 are given by

Sik = Σ
∫ +R

−R
β′i−1(x)β′k−1(x)ϕa(x) dx, and Mik =

∫ +R

−R
βi−1(x)βk−1(x)ϕa(x) dx,

where the integrals are approximated through the composite Simpson’s quadrature rule. Equation
(7.67) is a generalized eigenvalue problem which can be solved in Matlab using the function
eigs or in Phyton using the function scipy.sparse.linalg.eigsh. Then we normalize Θj(a)
or change its sign in order to impose the conditions (7.66), which can be rewritten as

θ
(Nh)
j (a) > 0 and Θj(a)>MΘj(a) = 1.

Once we compute λj(a) and Θj(a) we have an approximation of the eigenvalues and eigenfunctions
and we can construct the function ĜJM,ε(a) in (7.8) or G̃JM,ε(a) in (7.11) with filtered data. Hence,
it only remains to solve systems (7.9) or (7.12), i.e.,

ĜJM,ε(a) = 0, or G̃JM,ε(a) = 0.

To solve these equations we can follow two approaches:
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7.7. Multidimensional diffusion processes

(i) find the zero of ĜJM,ε(a) or G̃JM,ε(a);

(ii) find the minimum of
∥∥∥ĜJM,ε(a)

∥∥∥ or
∥∥∥G̃JM,ε(a)

∥∥∥.
In practice, for the first approach we can use the function fsolve in Matlab or the function
scipy.optimize.fsolve in Python, while for the second one the function fmincon in Matlab
or the function scipy.optimize.minimize in Python can be used. Finally, note that the
functions implemented in Matlab or Python have been employed with their default parameters.

7.7 Multidimensional diffusion processes
In this section we present how our methodology for estimating the drift coefficient of the
homogenized equation can be extended to the case of the d-dimensional multiscale diffusion
process (1.4). Using the tensor notation, we can then define the drift coefficient A ∈ RL×d×d,
which collects together the L matrices A` for ` = 1, . . . , L of the homogenized equation (1.5).
Our goal is now to estimate the tensor A and thus we need to define the score functions. First,
the d-dimensional eigenvalue problem for j = 1, . . . , J corresponding to (7.5) is

Σ : ∇2φj(x; a)−
(

L∑
`=1

a`∇V`(x)
)
· ∇φj(x; a) + λj(a)φj(x; a) = 0,

where : denotes the Frobenius inner product, ∇2 the Hessian matrix and the parameter a ∈
RL×d×d collects together the L matrices a` for ` = 1, . . . , L. Then, in order to define the
martingale estimating functions gj for j = 1, . . . , J , we take a collection {ψj}Jj=1 of functions
ψj(·; a) : Rd → RL×d×d and we use equation (7.7). Finally, we construct the score functions ĜJM,ε

and G̃JM,ε in the same way as we did in the one dimensional case, i.e., employing equations (7.8)
and (7.11). We remark that the filtered data are obtained as in equation (7.10) by applying
the filter component-wise. We can now compute the estimators ÂJM,ε and ÃJM,ε by solving the
nonlinear systems

ĜJM,ε(a) = 0 and G̃JM,ε(a) = 0,
which have dimension Ld2. From a theoretical point of view, slight modifications of the proofs
allow to conclude that analogous results to the main theorems hold true, i.e., that the estimators
are asymptotically unbiased in the limit of infinite observations and when the multiscale parameter
vanishes. However, the problem becomes more complex and computationally expensive from a
numerical viewpoint, in particular when the dimension d is large. In fact, the final nonlinear
system, which has to be solved, has dimension Ld2 instead of L and, most importantly, it is
required to solve the eigenvalue problem for the generator of a diffusion process in d dimensions.

7.8 Conclusion
In this chapter we presented new estimators for learning the effective drift coefficient of the
homogenized Langevin dynamics when we are given discrete observations from the original
multiscale diffusion process. Our approach relies on a martingale estimating function based on
the eigenvalues and eigenfunctions of the generator of the coarse-grained model and on a linear
time-invariant filter from the exponential family, which is employed to smooth the original data.
We studied theoretically the convergence properties of our estimators when the sample size goes
to infinity and the multiscale parameter describing the fastest scale vanishes. In Theorem 7.8
and Theorem 7.9 we proved respectively the asymptotic unbiasedness of the estimators with and
without filtered data. We remark that the former is not robust with respect to the sampling rate
at finite multiscale parameter while the estimator with filtered data is robust independently of
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the sampling rate. We analysed numerically the dependence of our estimators on the number of
observations and the number of eigenfunctions employed in the estimating function noticing that
the first eigenvalues in magnitude are sufficient to approximate the drift coefficient. Moreover,
we performed several numerical experiments, which highlighted the effectiveness of our approach
and confirmed our theoretical results.
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8 Eigenfunction estimators for
interacting particle systems
In this chapter, which is based on our research article [105], we apply eigenfunction estimators to
infer the parameters of the mean field limit of a system of interacting particles given discrete
observations of one single particle. The chapter is organized as follows. In Section 8.1 we construct
the proposed estimator and in Section 8.2 we present the main theoretical results. Then, in
Section 8.3 we show several numerical experiments illustrating the potentiality of our approach
and in Section 8.4 we present the proofs of the main results. Finally, in Section 8.5 we draw our
conclusions.

8.1 Parameter estimation problem
We want to construct martingale estimating functions based on the eigenfunctions and the
eigenvalues of the generator of the dynamics, the same technique which was initially proposed
in [73] for single-scale stochastic differential equations (SDEs) and which we applied to multiscale
SDEs in Chapter 7. In principle, the methodology developed in [73] could be applied to the
N -particle system. However, this would require solving the eigenvalue problem for the generator
of an N -dimensional diffusion process, which is computationally expensive. Moreover, our
fundamental assumption is that we are observing a single particle and thus we do not have a
complete knowledge of the system. Therefore, we construct the martingale estimating functions
employing the generator of the mean field dynamics, which is a good approximation of the path
of a single particle when the number N of particles is large [117]. Let Lt be the generator of the
mean field limit SDE (5.10)

Lt = − (V ′(·;α) + (F ′(·;κ) ∗ u(·, t; θ))) d
dx + σ

d2

dx2 ,

and let L be the generator obtained replacing the density u(·, t; θ) with the density ρ(·; θ) of the
invariant measure µθ

L = − (V ′(·;α) + (F ′(·;κ) ∗ ρ(·; θ))) d
dx + σ

d2

dx2 .

We remark that now the generator L is time-independent. We then consider the eigenvalue
problem −Lφ(·; θ) = λ(θ)φ(·; θ), which reads

σφ′′(x; θ)− (V ′(x;α) + (F ′(·;κ) ∗ ρ(·; θ))(x))φ′(x; θ) + λ(θ)φ(x; θ) = 0, (8.1)

and from the well-known spectral theory of diffusion processes (see, e.g., [63]) we deduce the
existence of a countable set of eigenvalues 0 = λ0(θ) < λ1(θ) < · · · < λj(θ) ↑ ∞ whose
corresponding eigenfunctions {φj(·; θ)}∞j=0 form an orthonormal basis of the weighted space
L2
ρ(·;θ)(R). In fact, even if the SDE (5.10) is nonlinear, when X0 ∼ µθ then the solution Xt

behaves like a classic diffusion process with drift function −V ′(·;α)−F ′(·;κ) ∗ ρ(·; θ), hence the
spectral theory for diffusion processes still holds. We also state here the variational formulation
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of the eigenvalue problem, which will be employed to implement numerically the proposed
methodology. Let v be a test function and multiply equation (8.1) by vρ(·; θ), where the density
ρ(·; θ) of the invariant measure µθ is defined in (5.11). Then, integrating over R and by parts we
obtain

σ

∫
R
φ′(x; θ)v′(x)ρ(x; θ) dx = λ(θ)

∫
R
φ(x; θ)v(x)ρ(x; θ) dx.

We are now ready to present how to employ the eigenvalue problem in the construction of the
martingale estimation function and afterwords in the definition of our estimator. Let J be a
positive integer and let ψj(·; θ) : R→ RL for j = 1, . . . , J be arbitrary functions dependent on the
parameter θ which satisfy Assumption 8.2 below, and define the martingale estimating function
GJM,N : Θ→ RL as

GJM,N (θ) := 1
M

M−1∑
m=0

J∑
j=1

ḡj(X̃(n)
m , X̃

(n)
m+1; θ),

where
ḡj(x, y; θ) := ψj(x; θ)

(
φj(y; θ)− e−λj(θ)∆φj(x; θ)

)
, (8.2)

and {X̃(n)
m }Mm=0 is the set of observations of the n-th particle from the system with N particles.

The estimator we propose is then given by the solution θ̂JM,N of the p-dimensional nonlinear
system

GJM,N (θ) = 0, (8.3)

where in this case 0 denotes the vector with all components equal to zero. An intuition on why
considering the solution of equation (2.8) as a good estimator is the following and will be more
clear later. Let GJM defined in (8.19) be the estimating function where the observations from the
inetracting particle system have been replaced by the observations from the corresponding mean
field limit. Then, employing formula (8.18) we have

Eµθ0
[
GJM (θ0)

]
= 0,

which means that the zero of the expectation of the estimating function with observations from
the mean field limit is exactly the true unknown coefficient. The main steps needed to obtain the
estimator θ̂JM,N are summarized in Algorithm 3. For further details about the implementation
and for discussions about the choice of the arbitrary functions {ψj(·; θ)}Jj=1 we refer to Section 7.6
and Remark 7.3.
Remark 8.1. The main limitation of our approach is that the knowledge of the invariant measure
is required in order to construct the martingale estimating function (step 1 in Algorithm 3).
However, it is often the case that the invariant measure is known up to a set of parameters, such
as moments, i.e., only the functional form of the invariant measure is known. These parameters
(moments) are obtained by solving appropriate self-consistency equations [46, Section 2.3]. When
such a situation arises, it is possible to first learn these parameters using the available data,
e.g., estimate the moments that appear in the invariant measure by employing the law of large
numbers. Then, we are in the setting where our technique applies and we can proceed in the
same way, as shown in the numerical experiments in Sections 8.3.5 and 8.3.6. In summary, it is
sufficient to replace step 1 in Algorithm 3 with “estimate the moments in the invariant measure
ρ(·; θ)”.

We finally introduce a technical hypothesis which will be needed for the proofs of our main results.
Assumption 8.2. Let Θ ⊆ RL be a compact set. Then the following hold for all θ ∈ Θ and for all
j = 1, . . . , J :

(i) ψj(x; θ) is continuously differentiable with respect to θ for all x ∈ R;
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(ii) all components of ψj(·; θ), ψ′j(·; θ), ψ̇j(·; θ), ψ̇′j(·; θ) are polynomially bounded uniformly in
θ;

(iii) the potentials V and F are such that φj(·; θ), φ′j(·; θ) and all components of φ̇j(·; θ), φ̇′j(·; θ)
are polynomially bounded uniformly in θ;

where the dot denotes either the Jacobian matrix or the gradient with respect to θ.
Remark 8.3. Assumption 8.2(i) together with [111, Sections 2 and 6] gives the continuous
differentiability of the vector-valued function GJM,N (θ) with respect to the unknown parameter θ.

Algorithm 3: Estimation of θ ∈ Θ
Input: Observations {X̃(n)

m }Mm=0.
Distance between two consecutive observations ∆.
Number of eigenvalues and eigenfunctions J .
Functions {ψj(x; θ)}Jj=1.
Confining potential V and interaction potential F .
Diffusion coefficient σ.

Output: Estimation θ̂JM,N of θ.

1: Find the invariant measure ρ(·; θ).

2: Consider the equation
σφ′′(x; θ)− (V ′(x;α) + (F ′(·;κ) ∗ ρ(·; θ))(x))φ′(x; θ) + λ(θ)φ(x; θ) = 0.

3: Compute the first J eigenvalues {λj(θ)}Jj=1 and eigenfunctions {φj(·; θ)}Jj=1.

4: Construct the function ḡj(x, y; θ) = ψj(x; θ)
(
φj(y; θ)− e−λj(θ)∆φj(x; θ)

)
.

5: Construct the score function GJM,N (θ) = 1
M

∑M−1
m=0

∑J
j=1 ḡj(X̃

(n)
m , X̃

(n)
m+1; θ).

6: Let θ̂JM,N be the solution of the nonlinear system GJM,N (θ) = 0.

Remark 8.4. In this chapter we always assume that the diffusion coefficient σ in (5.9) is known.
We remark that this is not an essential limitation of our methodology; in fact, if the diffusion
coefficient is also unknown, we can consider the parameter set to be estimated to be θ̃ = (θ, σ) =
(α, κ, σ) ∈ RL+1 and repeat the same procedure. The estimator is then obtained as the solution
of the nonlinear system of dimension L + 1 corresponding to (8.3). A numerical experiment
illustrating this procedure is given in Section 8.3.3. Moreover, our main theoretical results
remain valid and the proofs do not need any major changes. Alternatively, if the sampling rate
is sufficiently small, it is possible to first estimate the diffusion coefficient using the quadratic
variation and then proceed with the methodology proposed in this chapter.
Example 8.5. Let us consider the Curie–Weiss quadratic interaction introduced in Example 5.4
as well as a quadratic Ornstein–Uhlenbeck (OU) confining potential V (x;α) = 1

2x
2. In this case

the only unknown parameter is κ and the eigenvalue problem (8.1) reads

σφ′′(x; θ)− (1 + κ)xφ′(x; θ) + λ(θ)φ(x; θ) = 0, (8.4)

so that the eigenvalue and eigenfunctions can be computed analytically (see Section 7.2.1). In
particular, the first eigenvalue and eigenfunction are given by λ1(θ) = 1 + κ and φ1(x; θ) = x,
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respectively. Therefore, letting ψ1(x; θ) = x we have an explicit expression for our estimator

θ̂1
M,N = −1− 1

∆ log
(∑M−1

m=0 X̃
(n)
m X̃

(n)
m+1∑M−1

m=0 (X̃(n)
m )2

)
. (8.5)

For additional details regarding the eigenvalue problem (8.4) we refer to Section 7.2.1. We also
remark that when the drift coefficient of the OU process is unknown, i.e., if we consider the
confining potential V (x;α) = α

2 x
2, then the eigenvalue problem reads

σφ′′(x; θ)− (α+ κ)xφ′(x; θ) + λ(θ)φ(x; θ) = 0,

which only depends on the sum α+ κ and not on the single parameters alone. Therefore, in this
case it is not possible to estimate the unknown coefficients α and κ, but we can only estimate
their sum. This is in contrast with the set up in [70], where all the particles are observed in
continuous time. When this amount of information is available, it is possible to check whether or
not the particles are interacting, i.e., to check whether κ = 0 or not (see [70, Section 4]).

8.2 Main results
In this section we present the main theoretical results of this chapter. In particular, we prove
that our estimator θ̂JM,N is asymptotically unbiased (consistent) and asymptotically normal
as the number of observations M and particles N go to infinity and we compute the rate of
convergence towards the true value of the parameter, which we denote by θ0. Part of the proof
of the consistency of the estimator, which will be presented in detail in Section 8.4, is inspired
by Section 7.4. In that chapter we studied the asymptotic properties of a similar estimator for
multiscale SDEs letting the number of observations go to infinity and the multiscale parameter
vanish. The proofs or our results in the present chapter also requires us to perform a rigorous
asymptotic analysis with respect to two parameters, the number of observations and the number
of particles.

We first define the Jacobian matrix of the function ḡj introduced in (8.2) with respect to the
parameter θ, with ⊗ denoting the outer product in RL,

hj(x, y; θ) := ˙̄gj(x, y; θ)

= ψ̇j(x; θ)
(
φj(y; θ)− e−λj(θ)∆φj(x; θ)

)
+ ψj(x; θ)⊗

(
φ̇j(y; θ)− e−λj(θ)∆

(
φ̇j(x; θ)−∆λ̇j(θ)φj(x, θ)

))
,

as well as the following quantity

`j,k(x, y; θ) := (ψj(x; θ)⊗ ψk(x; θ))
(
φj(y; θ)φk(y; θ)− e−(λj(θ)+λk(θ))∆φj(x; θ)φk(x; θ)

)
.

We remark that whenever we write Eµθ we mean that X0 ∼ µθ and similarly for the other
probability measures.

We now present our main results. In Theorem 8.6 we prove that our estimator is consistent.

Theorem 8.6. Let J be a positive integer and let {X̃(n)
m }Mm=1 be a set of observations obtained

by system (5.9) with true parameter θ0. Under Assumptions 5.3 and 8.2 and if

det

 J∑
j=1

Eµθ0 [hj(X0, X∆; θ0)]

 6= 0, (8.6)
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there exists N0 > 0 such that for all N > N0 an estimator θ̂JM,N , which solves the system
GJM,N (θ) = 0, exists with probability tending to one as M goes to infinity. Moreover, the
estimator θ̂JM,N is asymptotically unbiased, i.e.,

lim
N→∞

lim
M→∞

θ̂JM,N = θ0, in probability, (8.7)

lim
M→∞

lim
N→∞

θ̂JM,N = θ0, in probability, (8.8)

and if M = o(N)
lim

M,N→∞
θ̂JM,N = θ0, in probability. (8.9)

Then, in Theorem 8.7 we provide a rate of convergence for our estimator.
Theorem 8.7. Let the assumptions of Theorem 8.6 hold, and let us introduce the notation

ΞJM,N :=
(

1√
M

+ 1√
N

)−1 ∥∥∥θ̂JM,N − θ0

∥∥∥ .
Then, for all ε > 0 there exists Kε > 0 such that

lim
N→∞

lim
M→∞

P
(
ΞJM,N > Kε

)
< ε, (8.10)

lim
M→∞

lim
N→∞

P
(
ΞJM,N > Kε

)
< ε, (8.11)

and if M = o(
√
N)

lim
M,N→∞

P
(
ΞJM,N > Kε

)
< ε. (8.12)

Finally, in Theorem 8.8 we show that our estimator is asymptotically normal.
Theorem 8.8. Let the assumptions of Theorem 8.6 hold with M = o(

√
N). Then, the estimator

θ̂JM,N is asymptotically normal, i.e.,

lim
M,N→∞

√
M
(
θ̂JM,N − θ0

)
= ΛJ ∼ N (0,ΓJ0 ), in distribution,

where

ΓJ0 =

 J∑
j=1

Eµθ0 [hj(X0, X∆; θ0)]

−1 J∑
j=1

J∑
k=1

Eµθ0 [`j,k(X0, X∆; θ0)]


×

 J∑
j=1

Eµθ0 [hj(X0, X∆; θ0)]

−> .
(8.13)

Remark 8.9. We note that the technical assumption (8.6) is not a serious limitation of the validity
of the theorem; in fact, it is a nondegeneracy hypothesis which holds true in all nonpathological
cases and is equivalent to [73, Condition 4.2(a)] and Assumption 7.6. Moreover, it is not necessary
to assume that the matrix ΓJ0 in Theorem 8.8 is indeed a covariance matrix because, due to the
particular form of the estimating function, this follows directly from the central limit theorem as
explained in [73].
Remark 8.10. For the proof of the main results, we need to assume that, roughly speaking, the
number of particles goes to infinity faster than the number of observations. It is not clear whether
this assumption is strictly necessary. We expect that noncommutativity issues between the
different distinguished limits may arise in the case where the mean field dynamics exhibits phase
transitions, i.e., when the stationary state is not unique, see [40]. We will study the consequences
of this noncommutativity due to phase transitions to the performance of our estimator and, more
generally, to the inference problem in future work.
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Figure 8.1 – Sensitivity analysis for the OU potential with respect to the numberM of observations
and N of particles, for the estimator θ̂JM,N with J = 1.

Figure 8.2 – Sensitivity analysis for the OU potential with respect to the number J of eigenvalues
and eigenfunctions, for the estimator θ̂JM,N .

8.3 Numerical experiments
In this section we present a series of numerical experiments to validate our theoretical results
and demonstrate the effectiveness of our estimator in estimate unknown drift parameters of
interacting particle systems. In order to generate synthetic data we employ the Euler–Maruyama
(EM) method with a time step h = 0.01 to solve numerically system (5.9) and obtain (X(n)

t )t∈[0,T ]
for all n = 1, . . . , N . Notice that in order to preserve the exchangeability property of the system
it is important to set the same initial condition for all the particles, hence we take X(n)

0 = 0 for
all n = 1, . . . , N . We then randomly choose a value n∗ ∈ {1, . . . , N} and we assume to know a
sample {X(n∗)

m }Mm=0 of observations obtained from the n∗-th particle with sampling rate ∆. We
remark that the parameters h and ∆ are not related to each other, in fact the former is only used
to generate the data, while the latter is the actual distance between two consecutive observations.
We repeat the same procedure for 5 different realizations of the Brownian motions and then we
compute the average of the values obtained employing our estimator θ̂JM,N . In the following, we
first perform a sensitivity analysis with respect to the number of observations M , particles N and
eigenvalues and eigenfunctions employed in the estimation J , then we confirm our theoretical
results given in Theorems 8.6 to 8.8 and finally we test our technique with more challenging
academic examples which do not exactly fit into the theory.
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Figure 8.3 – Rates of convergence for the OU potential with respect to the number M of
observations and N of particles, for the estimator θ̂JM,N with J = 1.

8.3.1 Sensitivity analysis and rate of convergence

We consider the setting of Example 8.5 choosing σ = 1, i.e., the interacting particle system reads

dX(n)
t = −X(n)

t dt− κ
(
X

(n)
t − X̄N

t

)
dt+

√
2 dB(n)

t , n = 1, . . . , N, (8.14)

and we aim to estimate the interaction parameter κ, so we write θ = κ. We set κ = 0.5 and
the number of eigenvalues and eigenfunctions J = 1 with ψ1(x; θ) = x, so that we can employ
the analytical expression of our estimator given in (8.5). In Figure 8.1 we perform a sensitivity
analysis for the estimator θ̂1

M,N fixing ∆ = 1, varying the number M of observations and N
of particles and choosing as other parameter respectively N = 250 and M = 1000, for which
convergence has been reached. The blue line is the estimation given by one single particle while
the red line is obtained by averaging the estimations computed employing all the different particles.
We notice that convergence is reached when both N andM are large enough and, as expected, the
estimation computed by averaging over all the particles stabilizes faster. Moreover, in Figure 8.2
we fix M = 1000 and N = 250 and we compare the results for different numbers J of eigenvalues
and eigenfunctions employed in the construction of the estimating function. We observe that
increasing the value of J does not significantly improves the results, hence it seems preferable to
always choose J = 1 in order to reduce the computational cost. Finally, in Figure 8.3 we verify
that the rates of convergence of the estimator θ̂1

M,N towards the exact value θ0 with respect to
the number of observations M and particles N are consistent with the theoretical results given in
Theorem 8.7. In particular, we observe that approximately it holds∣∣∣θ̂1

M,N − θ0

∣∣∣ ' O( 1√
M

+ 1√
N

)
.

8.3.2 Comparison with the maximum likelihood estimator

We keep the same setting of Section 8.3.1 and we compare the results of our estimator with a
maximum likelihood estimator (MLE). In particular, in [70] MLE for the interacting particle
system with continuous observations is rigorously derived. Since for large values of N all the
particles are approximately independent and identically distributed and we are assuming to
observe only one particle, we replace the sample mean with the expectation with respect to the
invariant measure, i.e., X̄N

t = 0, and we ignore the sum over all the particles. We then discretize
the integrals in the formulation obtaining a modified MLE

θ̃MLE
M,N = −1−

∑M−1
m=0 X̃

(n)
m (X̃(n)

m+1 − X̃
(n)
m )

∆
∑M−1
m=0 (X̃(n)

m )2
. (8.15)
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Figure 8.4 – Comparison between the estimator θ̂JM,N with J = 1 (left) and the maximum
likelihood estimator θ̃MLE

M,N (right) varying the distance ∆ between two consecutive observations
for the OU potential.

Figure 8.5 – Inference of the diffusion coefficient based on the quadratic variation varying the
distance ∆ between two consecutive observations for the OU potential.

In Figure 8.4 we fix the final time T = 1000 and we repeat the estimation for different values
of ∆ = 0.01 · 2i with i = 0, . . . , 5. We observe that, differently from our estimator, the MLE
is unbiased only for small values of the sampling rate ∆, i.e., when the discrete observations
approximate well the continuous trajectory. Notice also that, as highlighted by the numerical
experiments, our estimator θ̂1

M,N and the MLE θ̃MLE
M,N defined respectively in (8.5) and (8.15)

coincide in the limit of vanishing ∆. In fact, we can rewrite equation (8.5) as

θ̂1
M,N = −1− 1

∆ log
(

1 +
∑M−1
m=0 X̃

(n)
m (X̃(n)

m+1 − X̃
(n)
m )∑M−1

m=0 (X̃(n)
m )2

)
,

observe that the fraction in the argument of the logarithm is O(∆) and employ the asymptotic
expansion log(1 + x) ∼ x for x = o(1).

8.3.3 Diffusion coefficient

We still consider the setting of Example 8.5, but, differently from Section 8.3.1, we now assume
the diffusion coefficient to be unknown and we aim to retrieve the correct values of the interaction
parameter and the diffusion coefficient, which are given by κ = 0.5 and σ = 1, respectively. We
set the number of particles N = 250 and the number of observations M = 1000. A first approach
consists in first estimating the diffusion coefficient alone employing the quadratic variation and
then infer the interaction parameter as in the previous numerical experiments. In particular, the

184



8.3. Numerical experiments

Figure 8.6 – Simultaneous inference of the interaction and diffusion coefficients for the OU
potential. Left: estimation θ̂JM,N obtained from each particle with J = 2. Right: average of the
estimations varying the number of observations.

diffusion coefficient can be approximated as

σ̃QV
M,N = 1

2∆M

M−1∑
m=0

(X̃(n)
m+1 − X̃(n)

m )2.

However, this estimator is asymptotically unbiased only in the limit of ∆ vanishing and is therefore
reliable only if the sampling rate is sufficiently small. In fact, one can prove that

lim
N→∞

lim
M→∞

σ̃QV
M,N = lim

N→∞

1
2∆ E

[
(X(n)

∆ −X(n)
0 )2

]
= 1

2∆ E
[
(X∆ −X0)2] ,

which, due to the fact that in the framework of Example 8.5 Xt at stationarity is a Gaussian
process with zero mean and covariance function

C(t, s) = σ

1 + κ
e−(1+κ)|t−s|,

implies

lim
N→∞

lim
M→∞

σ̃QV
M,N = σ

1− e−(1+κ)∆

(1 + κ)∆ ,

where the right-hand side converges to σ if ∆ goes to zero. This is also shown in Figure 8.5 where
we estimate the diffusion coefficient for different values of the sampling rate ∆ = 0.01 · 2i with
i = 0, . . . , 5. Hence, if ∆ is far from its vanishing limit we have to follow a different procedure.
We now fix ∆ = 1 and aim to simultaneously infer the diffusion coefficient and the interaction
parameter using our eigenfunction martingale estimators. We then write θ =

(
κ σ

)> and in
order to construct the estimating functions we employ J = 2 eigenvalues and eigenfunctions
with functions ψ1(x; θ) = ψ2(x; θ) =

(
x2 x

)>. We remark that in the particular case of the OU
process it is possible to express the eigenvalues and eigenfunctions analytically and the first two
are given by

λ1 = 1 + κ, φ1(x; θ) = x,

λ2 = 2(1 + κ), φ2(x; θ) = x2 − σ

1 + κ
.

Note that the first eigenvalue and eigenfunction do not depend on the diffusion coefficient σ and
therefore they alone do not provide enough information, hence it is important to choose at least
J = 2. In Figure 8.6 we show the numerical results. On the left and we plot the estimation
computed employing one single particle for all the N particles and we observe that the estimators
are concentrated around the exact values. On the other hand, on the right, we average all the
estimations previously computed and we plot the results varying the number of observations M .
We notice that the estimations stabilize fast near the correct coefficients.
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Figure 8.7 – Central limit theorems for the OU potential, for the estimator θ̂JM,N with J = 1.

8.3.4 Central limit theorem

We keep the same setting of Section 8.3.1 and we validate numerically the central limit theorem
which we proved theoretically in Theorem 8.8. In this particular case, the asymptotic variance
ΓJ0 can be computed analytically. In fact, the mean field limit of (8.14) at stationarity is

dXt = −(1 + κ)Xt dt+
√

2 dBt,

and its solution (Xt)t∈[0,T ] is a Gaussian process, i.e., X ∼ GP(m(t), C(t, s)), where m(t) = 0 and

C(t, s) = 1
1 + κ

e−(1+κ)|t−s|.

Moreover, we have

h1(x, y; θ) = ∆e−(1+κ)∆x2 and `1,1(x, y; θ) = x2
(
y2 − e−2(1+κ)∆x2

)
,

and therefore we obtain
ΓJ0 = e2(1+κ)∆ − 1

∆2 .

We then fix the number of particles N = 1500, the number of observations M = 1000 and the
sampling rate ∆ = 1. In Figure 8.7 we plot the quantity

√
M(θ̂JM,N − θ0) for any particle n =

1, . . . , N and for 500 realizations of the Brownian motion and we observe that it is approximately
distributed as N (0,ΓJ0 ) accordingly to the theoretical result.

8.3.5 Double well potential

We consider the setting of Example 5.4 and we analyse the double well potential, i.e., we let the
confining potential V(·;α) be

V(x;α) = α ·
(
x4

4 −x
2

2

)>
,

with α =
(
1 2

)>, which is the parameter that we aim to estimate, so we write θ = α. Moreover,
we set the interaction term κ = 0.5 and the number of observations M = 2000 with sampling
rate ∆ = 0.5. Finally, to construct the estimating functions we use J = 1 eigenfunctions and
eigenvalues and we employ the function ψ1(x; θ) =

(
x x3)>. We remark that this example does

not fit in Assumption 5.3, but if the diffusion coefficient σ is chosen sufficiently large, then we are
below the phase transition and the mean field limit admits a unique invariant measure [38], so
the theory applies. However, when the diffusion coefficient σ is below the critical noise strength,
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M = 2000

Figure 8.8 – Inference of the two-dimensional drift coefficient of the double well potential below
the phase transition. Top: average of the estimations θ̂JM,N with J = 1 varying the number of
observations. Bottom: scatter plot of the estimations obtained from each particle.
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M = 2000

Figure 8.9 – Inference of the two-dimensional drift coefficient of the double well potential above
the phase transition. Top: average of the estimations θ̂JM,N with J = 1 varying the number of
observations. Bottom: scatter plot of the estimations obtained from each particle.
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α1 α2 α3

α3

α2

α1

Figure 8.10 – Inference of the three-dimensional drift coefficient of a nonsymmteric potential
for the estimator θ̂JM,N with J = 1. Diagonal: histogram of the estimations of each component
obtained from all particles. Off-diagonal: scatter plot of the estimations obtained from all particles
for two components at a time. Black and red stars/lines represent the average of the estimations
and the exact value, respectively.

then a continuous phase transition occurs and two stationary states exist [59]. In particular,
the transition point occurs at σ ' 0.6 with these data. We therefore perform two numerical
experiments, one below and one above the phase transition, setting σ = 0.75 and σ = 0.5. In the
former we have a unique invariant measure, so we can follow the usual approach, while in the latter
we do not know in which state the data are converging. Nevertheless, the invariant distribution is
known up to the first moment by equation (5.12), so we first estimate the expectation using the
law of large numbers with the available observations and then repeat the same procedure as in
the previous case. In Figures 8.8 and 8.9 we plot the results of these two experiments. On the top
of the figures we plot the evolution of our estimator varying the number of observations M for
two different values of the number of particles, in particular N = 25 and N = 250. We observe
that the estimator approaches the correct drift coefficient α as the number of observations M
increases and, as expected, the final approximation is better when the number of particles is
sufficiently large. Moreover, on the bottom of the same figures we show the scatter plot of the
estimations obtained from each particle with M = 2000 observations and we can see that they
are concentrated around the exact drift coefficient α. We finally remark that we do not notice
significant differences between two cases, yielding that the initial estimation of the first moment
of the invariant measure does not affect the final results and thus that our methodology can be
employed even when multiple stationary states exist.
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8.3.6 Nonsymmetric confining potential

We still consider the same setting of Example 5.4 and we now study the case of a nonsymmetric
potential. In particular, we let the confining potential V(·;α) be

V(x;α) = α ·
(
x4

4
x2

2 x
)>

,

with α =
(
1 −2 1

)>, which is the unknown parameter that we want to infer, hence we set θ = α.
Notice that the confining potential is given by the sum of the double well potential and a linear term
which breaks the symmetry. This type of potentials of the form V(x) =

∑L
`=1 a2`s

2` + a1s, where
L ≥ 2, a1, a2 ∈ R, a4, . . . , a2(L−1) ≥ 0 and a2L > 0, which is used in the study of metastability
and phase transitions and may have arbitrarily deep double wells, has been analyzed in [119,124].
Similarly to the experiment in Section 8.3.5, this example does not satisfy Assumption 5.3 and
more stationary states can exist. In particular, in [119] it has been proved the existence of an
invariant measure around each critical point of the potential. We therefore adopt the same
strategy as in the second part of Section 8.3.5 and, since the invariant measure is known up to
the first moment by equation (5.12), we first approximate the expectation using the sample mean
of the available observations, and then proceed with the following steps of the algorithm. We
further set the interaction term κ = 0.5, the diffusion coefficient σ = 1.5, the number of particles
N = 250 and the number of observations M = 2000 with sampling rate ∆ = 0.5. Moreover, to
construct the estimating functions we use J = 1 eigenfunctions and eigenvalues and we employ the
function ψ1(x; θ) =

(
x x2 x3)>. In Figure 8.10 we plot the results of the inference procedure

considering two components of the three-dimensional drift coefficient at a time and the single
components alone. We observe that the majority of the estimations obtained from all particles
are concentrated around the exact values and that their average provides a reliable approximation
of the true unknown. A peculiarity of this numerical experiment is the relationship between the
first and second components of the estimated drift coefficient, in fact one increases when the
other decreases and vice-versa, meaning that the two approximations appear to be correlated.

8.4 Proof of the main results
In this section we present the proof of Theorems 8.6 to 8.8, which are the main results of this
chapter. We first recall that due to [50, Lemma 2.3.1] the solution of the interacting particle
system X

(n)
t and of its mean field limit Xt have bounded moments of any order, in particular

there exists a constant C > 0 independent of N such that for all t ∈ [0, T ], n = 1, . . . , N and
q ≥ 1

E
[∣∣∣X(n)

t

∣∣∣q]1/q ≤ C and E [|Xt|q]
1/q ≤ C. (8.16)

Moreover, in [84, Theorem 3.3] it is shown that each particle converges to the solution of the
mean field limit with the same Brownian motion in L2, i.e, that

sup
t∈[0,T ]

E
[∣∣∣X(n)

t −Xt

∣∣∣2]1/2
≤ C√

N
, (8.17)

where the constant C is also independent of the final time T . We also state here a formula which
has been proved in [73] and will be crucial in the last part of the proof

Eµθ0 [φj(X∆; θ0) | X0 = x] = e−λj(θ0)∆φj(x; θ0), for all j = 1, . . . , J, (8.18)

where θ0 is the true parameter which generates the path (Xt)t∈[0,T ] and Eµθ0 denotes the fact
that X0 ∼ µθ0 . Before entering the main part of the proof, we introduce some notation and
technical results which will be used later. We finally remark that all the constants will be denoted
by C and their value can change from line to line.
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8.4.1 Limits of the estimating function and its derivative

Let us first define the following vector-valued functions GJM (θ),GJN (θ),G J(θ) : RL → RL and
matrix-valued functions HJM (θ),HJN (θ),H J(θ) : RL → RL×L

GJM (θ) := 1
M

M−1∑
m=0

J∑
j=1

ḡj(X̃m, X̃m+1; θ), HJM (θ) := 1
M

M−1∑
m=0

J∑
j=1

hj(X̃m, X̃m+1; θ),

GJN (θ) :=
J∑
j=1

Eµ
N
θ0

[
ḡj(X(n)

0 , X
(n)
∆ ; θ)

]
, HJN (θ) :=

J∑
j=1

Eµ
N
θ0

[
hj(X(n)

0 , X
(n)
∆ ; θ)

]
,

G J(θ) :=
J∑
j=1

Eµθ0 [ḡj(X0, X∆; θ)] , H J(θ) :=
J∑
j=1

Eµθ0 [hj(X0, X∆; θ)] .

(8.19)

The following lemma then shows that these quantities are bounded in a suitable norm and thus
well defined.

Lemma 8.11. Under Assumptions 5.3 and 8.2 there exists a constant C > 0 independent of
M,N such that for all q ≥ 1

(i) E
[∥∥GJM,N (θ)

∥∥q] ≤ C, (ii) E
[∥∥GJM (θ)

∥∥q] ≤ C,
(iii)

∥∥GJN (θ)
∥∥ ≤ C, (iv)

∥∥G J(θ)
∥∥ ≤ C.

Proof. Since the argument is similar for the four cases, we only write the details of (i). Using the
triangle inequality we have

E
[∥∥GJM,N (θ)

∥∥q] ≤ 2q−1

M

M−1∑
m=0

J∑
j=1

E
[∥∥∥ψj(X̃(n)

m ; θ)
∥∥∥q (∣∣∣φj(X̃(n)

m+1; θ)
∣∣∣q +

∣∣∣φj(X̃(n)
m ; θ)

∣∣∣q)] ,
and due to the Cauchy–Schwarz inequality we obtain

E
[∥∥GJM,N (θ)

∥∥] ≤ 2q−1

M

M−1∑
m=0

J∑
j=1

E
[∥∥∥ψj(X̃(n)

m ; θ)
∥∥∥2q
]1/2

E
[∣∣∣φj(X̃(n)

m+1; θ)
∣∣∣2q]1/2

+ 2q−1

M

M−1∑
m=0

J∑
j=1

E
[∥∥∥ψj(X̃(n)

m ; θ)
∥∥∥2q
]1/2

E
[∣∣∣φj(X̃(n)

m ; θ)
∣∣∣2q]1/2

.

Finally, bound (8.16) together with the fact that ψj and φj are polynomially bounded for all
j = 1, . . . , J by Assumption 8.2 gives the desired result.

In the next proposition we study the behaviour of the estimating function GJM,N as the number
of observations M and particles N go to infinity.

Proposition 8.12. Under Assumptions 5.3 and 8.2 it holds for all 1 ≤ q < 2

(i) lim
N→∞

GJM,N (θ) = GJM (θ), in Lq, (ii) lim
M→∞

GJM (θ) = G J(θ), in L2,

(iii) lim
M→∞

GJM,N (θ) = GJN (θ), in L2, (iv) lim
N→∞

GJN (θ) = G J(θ).

Moreover, there exists a constant C > 0 independent of M,N and θ such that

(i)′ E
[∥∥GJM,N (θ)−GJM (θ)

∥∥q]1/q ≤ C√
N
, (iv)′

∥∥GJN (θ)− G J(θ)
∥∥ ≤ C√

N
.
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Proof. Results (ii) and (iii) are direct consequences of [21, Lemma 3.1] and of the ergodicity
of the processes (X(n)

t )t∈[0,T ] and (Xt)t∈[0,T ] given by [59, Section 1] and [84, Theorem 3.16],
respectively. Let us now consider cases (i) and (i)′. Using the triangle inequality we have

E
[∥∥GJM,N (θ)−GJM (θ)

∥∥q] ≤ 4q−1

M

M−1∑
m=0

J∑
j=1

(
Q

(1)
m,j +Q

(2)
m,j +Q

(3)
m,j +Q

(4)
m,j

)
,

where
Q

(1)
m,j := E

[∥∥∥ψj(X̃(n)
m ; θ)

∥∥∥q ∣∣∣φj(X̃(n)
m+1; θ)− φj(X̃m+1; θ)

∣∣∣q] ,
Q

(2)
m,j := E

[∥∥∥ψj(X̃(n)
m ; θ)

∥∥∥q ∣∣∣φj(X̃(n)
m ; θ)− φj(X̃m; θ)

∣∣∣q] ,
Q

(3)
m,j := E

[∥∥∥ψj(X̃(n)
m ; θ)− ψj(X̃m; θ)

∥∥∥q ∣∣∣φj(X̃m+1; θ)
∣∣∣q] ,

Q
(4)
m,j := E

[∥∥∥ψj(X̃(n)
m ; θ)− ψj(X̃m; θ)

∥∥∥q ∣∣∣φj(X̃m; θ)
∣∣∣q] ,

and applying the mean value theorem we obtain

Q
(1)
m,j ≤ E

[∥∥∥ψj(X̃(n)
m ; θ)

∥∥∥q ∣∣∣∣∫ 1

0
φ′j(X̃m+1 + s(X̃(n)

m+1 − X̃m+1); θ) ds
∣∣∣∣q ∣∣∣X̃(n)

m+1 − X̃m+1

∣∣∣q] ,
Q

(2)
m,j ≤ E

[∥∥∥ψj(X̃(n)
m ; θ)

∥∥∥q ∣∣∣∣∫ 1

0
φ′j(X̃m + s(X̃(n)

m − X̃m); θ) ds
∣∣∣∣q ∣∣∣X̃(n)

m − X̃m

∣∣∣q] ,
Q

(3)
m,j ≤ E

[∥∥∥∥∫ 1

0
ψ′j(X̃m + s(X̃(n)

m − X̃m); θ) ds
∥∥∥∥q ∣∣∣X̃(n)

m − X̃m

∣∣∣q ∣∣∣φj(X̃m+1; θ)
∣∣∣q] ,

Q
(4)
m,j ≤ E

[∥∥∥∥∫ 1

0
ψ′j(X̃m + s(X̃(n)

m − X̃m); θ) ds
∥∥∥∥q ∣∣∣X̃(n)

m − X̃m

∣∣∣q ∣∣∣φj(X̃m; θ)
∣∣∣q] .

Then, employing the Hölder inequality with exponents 4/(2 − q), 4/(2 − q), 2/q and since the
functions φj , φ′j , ψj , ψ′j are polynomially bounded by Assumption 8.2 and X̃(n)

m , X̃m have bounded
moments of any order by (8.16) we deduce

E
[∥∥GJM,N (θ)−GJM (θ)

∥∥q] ≤ C

M

M−1∑
m=0

J∑
j=1

(
E
[
(X̃(n)

m − X̃m)2
] q

2 + E
[
(X̃(n)

m+1 − X̃m+1)2
] q

2
)
,

which due to (8.17) proves (i)′, which directly implies (i). Finally, the proofs of results (iv) and
(iv)′ are similar to cases (i) and (i)′, respectively, and are omitted here.

Corollary 8.13. Under Assumptions 5.3 and 8.2 it holds for all 1 ≤ q < 2

lim
M,N→∞

GJM,N (θ) = G J(θ), in Lq.

Proof. Employing the triangle inequality we have

E
[∥∥GJM,N (θ)− G J(θ)

∥∥q] ≤ 2q−1
(
E
[∥∥GJM,N (θ)−GJM (θ)

∥∥q]+ E
[∥∥GJM (θ)− G J(θ)

∥∥q]) ,
where the right-hand side vanishes by (i)′ and (ii) in Proposition 8.12, yielding the desires
result.

The limits considered in Proposition 8.12 are summarized schematically in the following diagram
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GJM,N (θ)

GJM (θ)

GJN (θ)

G J(θ)

in Lq

N →∞
in L2

M →∞

in L2
M →∞ N →∞

where q ∈ [1, 2).
Remark 8.14. Notice that all the results in this section hold true also for the derivatives HJM (θ),
HJN (θ), H J(θ) with respect to the parameter θ defined in (8.19). Since the arguments are
analogous we omit the details here.

8.4.2 Zeros of the limits of the estimating function

The goal of this section is to show that the limits of the estimating functions previously defined
admit zeros and to study their asymptotic limit. We already know by (8.18) that G J(θ0) = 0,
where θ0 is the true parameter. Then, in the following lemma we consider the zero of the function
GJN (θ) and its limit as N →∞.

Lemma 8.15. Under Assumptions 5.3 and 8.2 and if det(H J(θ0)) 6= 0 there exists N0 > 0
such that for all N > N0 there exists ϑJN ∈ Θ which solves the system GJN (θ) = 0 and satisfies
det(HJN (ϑJN )) 6= 0. Moreover, there exists a constant C > 0 independent of N such that∥∥ϑJN − θ0

∥∥ ≤ C√
N
. (8.20)

Proof. We first remark that by (8.18) we have G J (θ0) = 0 and, without loss of generality, we can
assume that det(H J(θ0)) > 0. Let δ > 0 sufficiently small, by point (iv)′ in Proposition 8.12
and Remark 8.14 we know that HJN (θ) converges to H J(θ) uniformly in θ and therefore there
exist N1 > 0 and ε > 0 such that for all N > N1 and for all θ ∈ Bε(θ0)

0 < det(H J(θ0))− δ ≤ det(HJN (θ)) ≤ det(H J(θ0)) + δ, (8.21)
0 <

∥∥H J(θ0)−1∥∥− δ ≤ ∥∥HJN (θ)−1∥∥ ≤ ∥∥H J(θ0)−1∥∥+ δ. (8.22)

Hence, due to equation (8.21) and applying the inverse function theorem we deduce the existence
of η > 0 such that

Bη(GJN (θ0)) ⊆ GJN (Bε(θ0)).

Notice that the radius η > 0 can be chosen independently of N > N1. In fact, by the proof
of [95, Theorem 2.3] and [78, Lemma 1.3] we observe that η is dependent on the radius ε of the
ball Bε(θ0) and the quantity

∥∥HJN (θ0)−1
∥∥, which can be bounded independently of N > N1 due

to estimate (8.22). Moreover, since

lim
N→∞

GJN (θ0) = G J(θ0) = 0,

then there exists N2 > 0 such that for all N > N2 we have 0 ∈ Bη(GJN (θ0)). Therefore, setting
N0 = max{N1, N2} for all N > N0 there exists ϑJN ∈ Bε(θ0) such that GJN (ϑJN ) = 0, which proves
the existence. Furthermore, equation (8.21) gives det(HJN (ϑJN )) 6= 0. It now remains to show
estimate (8.20). Since the set Bε(θ0) is compact, there exist ϑ̃J ∈ Bε(θ0) and a subsequence ϑJNk
such that

lim
k→∞

ϑJNk = ϑ̃J .
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By point (iv)′ in Proposition 8.12 the function GJN (θ) converges to G J (θ) uniformly in θ, thus we
have

0 = lim
k→∞

GJNk(ϑJNk) = lim
k→∞

[
GJNk(ϑJNk)− G J(ϑJNk) + G J(ϑJNk)

]
= G J(ϑ̃J),

which yields ϑ̃J = θ0. This is guaranteed by the fact that ε can be previously chosen sufficiently
small such that θ0 is the only zero of the function G J(θ) in Bε(θ0). Since θ0 is the unique limit
point for the subsequence ϑJNk , it follows that the whole sequence converges. Then, applying the
mean value theorem we obtain

G J(ϑJN )− GJN (ϑJN ) = G J(ϑJN )− G J(θ0) =
(∫ 1

0
H J(θ0 + t(ϑJN − θ0)) dt

)
(ϑJN − θ0),

which implies

∥∥ϑJN − θ0
∥∥ ≤ ∥∥∥∥∥

(∫ 1

0
H J(θ0 + t(ϑJN − θ0)) dt

)−1∥∥∥∥∥ ∥∥G J(ϑJN )− GJN (ϑJN )
∥∥ .

Since ϑJN converges to θ0 as N goes to infinity, then

lim
N→∞

∥∥∥∥∥
(∫ 1

0
H J(θ0 + t(ϑJN − θ0)) dt

)−1∥∥∥∥∥ =
∥∥H J(θ0)−1∥∥ ,

where the right-hand side is well defined because det(H J (θ0)) 6= 0. Therefore, if N is sufficiently
large there exists a constant C > 0 independent of N such that∥∥∥∥∥

(∫ 1

0
H J(θ0 + t(ϑJN − θ0)) dt

)−1∥∥∥∥∥ ≤ C,
which together with point (iv)′ in Proposition 8.12 yields estimate (8.20) and concludes the
proof.

In the next lemma we study the zero of the random function GJM (θ) and its limit as M →∞.
This result is almost the same as [73, Theorem 4.3].

Lemma 8.16. Let the assumptions of Lemma 8.15 hold. Then, an estimator ϑ̂JM , which solves
the equation GJM (θ) = 0 and is such that det(HJM (ϑ̂JM )) 6= 0, exists with a probability tending to
one as M →∞. Moreover,

lim
M→∞

ϑ̂JM = θ0, in probability,

and
lim
M→∞

√
M
(
ϑ̂JM − θ0

)
= ΛJ ∼ N (0,ΓJ0 ), in distribution,

where ΓJ0 is defined in (8.13).

Proof. The existence of the estimator ϑ̂JM which solves the equation GJM (θ) = 0 with a probability
tending to one asM →∞ and its asymptotic unbiasedness and normality is given by [73, Theorem
4.3], whose prove can be found in [21, Theorem 3.2] and is based on [16, Theorem A.1]. Moreover,
by the last line of the proof of [21, Theorem 3.2] or by (A.5) in [73, Theorem 4.3] we have

lim
M→∞

HJM (ϑ̂JM ) = H J(θ0), in probability, (8.23)
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where det(H J(θ0)) 6= 0 by assumption. Hence, there exists δ > 0 such that if∥∥∥HJM (ϑ̂JM )−H J(θ0)
∥∥∥ ≤ δ,

then det(HJM (ϑ̂JM ))) 6= 0. Moreover, for M large enough it holds

P
(∥∥∥HJM (ϑ̂JM )−H J(θ0)

∥∥∥ ≤ δ) ≥ 1− εM ,

where εM → 0 as M →∞. Let us now define the events

AM :=
{
∃ ϑ̂JM : GJM (ϑ̂JM )

}
and BM :=

{∥∥∥HJM (ϑ̂JM )−H J(θ0)
∥∥∥ ≤ δ} ,

and notice that by the first part of the proof we have P(AM ) = pM where pM → 1 as M →∞.
Then, using the basic properties of probability measures we obtain

P
(
AM ∩ {det(HJM (ϑ̂JM )) 6= 0}

)
≥ P (AM ∩BM ) ≥ P(AM ) + P(BM )− 1 ≥ pM − εM ,

where the last term tends to one as M →∞, and which gives the desired result.

We now consider the zero of the actual estimating function GJM,N (θ) and we first analyze its limit
as M →∞.

Lemma 8.17. Let the assumptions of Theorem 8.6 hold. Then, there exists N0 > 0 such that for
all N > N0 an estimator θ̂JM,N , which solves the system GJM,N (θ) = 0, exists with a probability
tending to one as M goes to infinity. Moreover, there exist ϑJN solving GJN (θ) = 0 such that

lim
M→∞

θ̂JM,N = ϑJN , in probability,

and
lim
M→∞

√
M
(
θ̂JM,N − ϑJN

)
= ΛJN ∼ N (0,ΓJN ), in distribution,

where ΓJN is a positive definite covariance matrix such that limN→∞ ΓJN = ΓJ0 where ΓJ0 is defined
in (8.13).

Proof. First, by Lemma 8.15 there exists N0 > 0 such that for all N > N0 there exists ϑJN such
that

GJN (ϑJN ) = 0 and det(HJN (ϑJN )) 6= 0.

Then, the results are equivalent to Lemma 8.16 and therefore the argument follows the same
steps of its proof, which is given in detail in [21, Theorem 3.2] and is based on [16, Theorem A.1].
Finally, the convergence of the covariance matrix ΓJN is implied by (8.17).

We then study the limit of the zero of GJM,N (θ) as N →∞.

Lemma 8.18. Let the assumptions of Lemma 8.17 hold and let M � N . Then, the estimator
θ̂JM,N satisfies for some ϑ̂JM solving GJM (θ) = 0 and for a constant C > 0 independent of M and
N

E
[∥∥∥θ̂JM,N − ϑ̂JM

∥∥∥] ≤ C√M

N
.
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Proof. The existence of the estimators ϑ̂JM , such that GJM (ϑ̂JM ) = 0 and det(HJM (ϑ̂JM )) 6= 0, and
θ̂JM,N , such that GJM,N (θ̂JM,N ) = 0, with a probability tending to one as M goes to infinity is
guaranteed by Lemmas 8.16 and 8.17, respectively. Then, all the following events are considered
as conditioned on the existence of ϑ̂JM and θ̂JM,N and the fact that det(HJM (ϑ̂JM )) 6= 0. Let us
now define the function f : RL × RM+1 → RL as

f(θ, x) = 1
M

M−1∑
m=0

J∑
j=1

ḡj(xm, xm+1; θ),

where xm denotes the m-th component of the vector x ∈ Rm+1, and the vectors X(n) and X
whose m-th components for m = 0, . . . ,M are given by

X(n)
m = X̃(n)

m and Xm = X̃m,

where {X̃(n)
m }Mm=0 is the set of observations and {X̃m}Mm=0 are the corresponding realizations of

the mean field limit. Notice that f ∈ C1(Θ×RM+1) due to Assumption 8.2 and Remark 8.3 and
by definition we have

f(ϑ̂JM ,X) = 0 and det
(
∂f

∂θ
(ϑ̂JM ,X)

)
6= 0.

Therefore, applying the implicit function theorem there exist ε, δ > 0 and a continuously
differentiable function F : Bε(X)→ Bδ(ϑ̂JM ) such that f(F (x), x) = 0 for all x ∈ Bε(X). Hence,
if X(n) is close enough to X then there must be one θ̂JM,N ∈ Bδ(ϑ̂JM ) such that F (X(n)) = θ̂JM,N .
Then, employing Jensen’s inequality and by estimate (8.17) we have

E
[∥∥∥X(n) − X

∥∥∥] = E

( M∑
m=0

∣∣∣X̃(n)
m − X̃m

∣∣∣2)1/2 ≤ ( M∑
m=0

E
[∣∣∣X̃(n)

m − X̃m

∣∣∣2])1/2

≤ C
√
M

N
,

where the constant C is independent ofM and N . Therefore, letting ε > 0 and applying Markov’s
inequality we obtain

P
(∥∥∥X(n) − X

∥∥∥ ≥ ε) ≤ 1
ε
E
[∥∥∥X(n) − X

∥∥∥] ≤ C

ε

√
M

N
. (8.24)

Defining the event A = {
∥∥X(n) − X

∥∥ < ε} and using the law of total expectation conditioning on
A we deduce

E
[∥∥∥θ̂JM,N − ϑ̂JM

∥∥∥] = E
[∥∥∥θ̂JM,N − ϑ̂JM

∥∥∥ |A]P(A) + E
[∥∥∥θ̂JM,N − ϑ̂JM

∥∥∥ |AC
]
P(AC),

which since θ̂JM,N , ϑ̂
J
M ∈ Θ, a compact set, and due to estimate (8.24) implies

E
[∥∥∥θ̂JM,N − ϑ̂JM

∥∥∥] ≤ E
[∥∥∥θ̂JM,N − ϑ̂JM

∥∥∥ |A]+ C

√
M

N
. (8.25)

It now remains to study the first term in the right-hand side. Applying the mean value theorem
we obtain

GJM (θ̂JM,N )−GJM,N (θ̂JM,N ) = GJM (θ̂JM,N )−GJM (ϑ̂JM )

=
(∫ 1

0
HJM (ϑ̂JM + t(θ̂JM,N − ϑ̂JM )) dt

)
(θ̂JM,N − ϑ̂JM ),
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which implies

∥∥∥θ̂JM,N − ϑ̂JM
∥∥∥ ≤ ∥∥∥∥∥

(∫ 1

0
HJM (ϑ̂JM + t(θ̂JM,N − ϑ̂JM )) dt

)−1∥∥∥∥∥∥∥∥GJM (θ̂JM,N )−GJM,N (θ̂JM,N )
∥∥∥ .

Using Hölder inequality with exponents q ∈ (1, 2) and its conjugate q′ such that 1/q + 1/q′ = 1
we have

E
[∥∥∥θ̂JM,N − ϑ̂JM

∥∥∥ |A] ≤ QE
[∥∥∥GJM (θ̂JM,N )−GJM,N (θ̂JM,N )

∥∥∥q |A]1/q , (8.26)

where

Q = E

∥∥∥∥∥
(∫ 1

0
HJM (ϑ̂JM + t(θ̂JM,N − ϑ̂JM )) dt

)−1∥∥∥∥∥
q′

|A

1/q′

.

Employing the inequality E[Y |A] ≤ E[Y ]/P(A), which holds for any positive random variable Y ,
point (i)′ in Proposition 8.12 and estimate (8.24), the second term in the right-hand side can be
bounded by

E
[∥∥∥GJM (θ̂JM,N )−GJM,N (θ̂JM,N )

∥∥∥q |A]1/q ≤ C√
N

 1

1− C
√

M
N

1/q

≤ C√
N
, (8.27)

where the last inequality is justified by the fact that M � N and by changing the value of the
constant C. We now have to bound the first term Q in the right-hand side of equation (8.26).
Employing the inequality

∥∥M−1
∥∥ ≤ ‖M‖p−1

/ |det(M)|, which holds for any square nonsingular
matrix M ∈ RL×L, we have

Q ≤ E


∥∥∥∫ 1

0 HJM (ϑ̂JM + t(θ̂JM,N − ϑ̂JM )) dt
∥∥∥q′(p−1)

∣∣∣det
(∫ 1

0 HJM (ϑ̂JM + t(θ̂JM,N − ϑ̂JM )) dt
)∣∣∣q′ |A

 .
Since we are conditioning on the event A, by the first part of the proof, we know that∥∥∥θ̂JM,N − ϑ̂JM

∥∥∥ ≤ δ,
and, by taking ε sufficiently small, we can always find δ small enough, but still finite, such
that the absolute value of the determinant in the denominator is lower bounded by a constant
independent of M and N because det(HJM (ϑ̂JM )) 6= 0 and by (8.23) it converges in probability to
det(H J(θ0)), which is invertible. Hence, applying Jensen’s inequality we obtain

Q ≤ C E

[∥∥∥∥∫ 1

0
HJM (ϑ̂JM + t(θ̂JM,N − ϑ̂JM )) dt

∥∥∥∥q
′(p−1)

|A

]

≤ C E
[∫ 1

0

∥∥∥HJM (ϑ̂JM + t(θ̂JM,N − ϑ̂JM ))
∥∥∥q′(p−1)

dt|A
]
,

which due to Lemma 8.11, Remark 8.14, the property E[Y |A] ≤ E[Y ]/P(A), which holds for any
positive random variable Y , and estimate (8.24) yields

Q ≤ C

P(A)

∫ 1

0
E
[∥∥∥HJM (ϑ̂JM + t(θ̂JM,N − ϑ̂JM ))

∥∥∥q′(p−1)
]

dt ≤ C,

which together with equations (8.25), (8.26) and (8.27) gives the desired result.
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The results of this section are summarized in the following diagram

θ̂JM,N

ϑ̂JM

ϑJN

θ0

in L1

N →∞
in P

M →∞

in P
M →∞ N →∞

where P stands for convergence in probability.
Remark 8.19. All the previous results only prove the existence of such estimators with high
probability and do not guarantee their uniqueness. However, as we will see in the next section,
any of these estimators converge to the exact value of the unknown.

8.4.3 Proof of the main theorems

In this section we finally present the proofs of the main results of this chapter, i.e., Theorems 8.6
to 8.8.

Proof of Theorem 8.6. First, by Lemma 8.17 we deduce the existence of N0 > 0 such that for all
N > N0 the estimator θ̂JM,N exists with a probability tending to one as M goes to infinity. Then,
we prove separately equations (8.7), (8.8) and (8.9).
Proof of (8.7). By Lemmas 8.15 and 8.17 we have

lim
N→∞

lim
M→∞

θ̂JM,N = lim
N→∞

ϑJN = θ0, in probability,

which proves (8.7).
Proof of (8.8). By Lemma 8.18 the estimator θ̂JM,N converges to ϑ̂JM in L1 as N goes to infinity
and hence in probability. Therefore, applying Lemma 8.16 we obtain

lim
M→∞

lim
N→∞

θ̂JM,N = lim
M→∞

ϑ̂JM = θ0, in probability,

which shows (8.8).
Proof of (8.9). We introduce the following decomposition

θ̂JM,N − θ0 = (θ̂JM,N − ϑ̂JM ) + (ϑ̂JM − θ0) =: Q1 +Q2,

where ϑ̂JM is defined in Lemma 8.16 and due to Lemma 8.18 the first quantity satisfies

E [‖Q1‖] ≤ C
√
M

N
, (8.28)

with the constant C independent of M and N . Therefore, since M = o(N), estimate (8.28)
together with Lemma 8.16 and the fact that convergence in L1 implies convergence in probability
gives the desired result (8.9) and ends the proof.

Proof of Theorem 8.7. The existence of the estimator θ̂JM,N is given by Theorem 8.6. Then, we
prove separately equations (8.10), (8.11) and (8.12).
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8.4. Proof of the main results

Proof of (8.10). Let ϑN be defined in Lemma 8.15. Using basic properties of probability
measures we have

P
(
ΞJM,N > Kε

)
= P

(∥∥∥θ̂JM,N − θ0

∥∥∥ > ( 1√
M

+ 1√
N

)
Kε

)
≤ P

(∥∥∥θ̂JM,N − ϑN
∥∥∥+ ‖ϑN − θ0‖ >

(
1√
M

+ 1√
N

)
Kε

)
,

(8.29)

which implies

P
(
ΞJM,N > Kε

)
≤ P

(∥∥∥θ̂JM,N − ϑN
∥∥∥ > ( 1√

M
+ 1√

N

)
Kε

2

)
+ P

(
‖ϑN − θ0‖ >

(
1√
M

+ 1√
N

)
Kε

2

)
≤ P

(√
M
∥∥∥θ̂JM,N − ϑN

∥∥∥ > Kε

2

)
+ P

(
‖ϑN − θ0‖ >

Kε

2
√
N

)
,

and we now study two terms in the right-hand side separately. First, letting M and N go to
infinity by Lemma 8.17 we obtain

lim
N→∞

lim
M→∞

P
(√

M
∥∥∥θ̂JM,N − ϑN

∥∥∥ > Kε

2

)
= P

(∥∥ΛJ
∥∥ > Kε

2

)
,

where the right-hand side can be made arbitrarily small by taking Kε > 0 sufficiently large.
Moreover, we have

P
(
‖ϑN − θ0‖ >

Kε

2
√
N

)
= E

[
1{‖ϑN−θ0‖> Kε

2
√
N

}] ,
where the right-hand side is identically equal to zero if we set Kε > 2C, where the constant C is
given by Lemma 8.15. Hence, for all ε > 0 we can take Kε > 0 sufficiently large such that

lim
N→∞

lim
M→∞

P
(
ΞJM,N > Kε

)
< ε,

which proves (8.10).
Proof of (8.11). Let ϑ̂M be defined in Lemma 8.16. Repeating a procedure similar to (8.29)
and applying Markov’s inequality we get

P
(
ΞJM,N > Kε

)
≤ P

(∥∥∥θ̂JM,N − ϑ̂M
∥∥∥ > ( 1√

M
+ 1√

N

)
Kε

2

)
+ P

(√
M
∥∥∥ϑ̂M − θ0

∥∥∥ > Kε

2

)
≤ 2

√
MN

Kε(
√
M +

√
N)

E
[∥∥∥θ̂JM,N − ϑ̂M

∥∥∥]+ P
(√

M
∥∥∥ϑ̂M − θ0

∥∥∥ > Kε

2

)
,

and we now study two terms in the right-hand side separately. First, by Lemma 8.16 we have

lim
M→∞

P
(√

M
∥∥∥ϑ̂M − θ0

∥∥∥ > Kε

2

)
= P

(∥∥ΛJ
∥∥ > Kε

2

)
,

where the right-hand side can be made arbitrarily small by taking Kε > 0 sufficiently large.
Moreover, by Lemma 8.18 we have

2
√
MN

Kε(
√
M +

√
N)

E
[∥∥∥θ̂JM,N − ϑ̂M

∥∥∥] ≤ 2CM
Kε(
√
M +

√
N)

, (8.30)
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where the constant C is independent of M and N . Hence, for all ε > 0 we can take Kε > 0
sufficiently large such that

lim
M→∞

lim
N→∞

P
(
ΞJM,N > Kε

)
< ε,

which shows (8.11).
Proof of (8.12). Equation (8.12) is obtained following verbatim the proof of (8.11) in the
previous step and using the fact that M = o(

√
N) to show that the right-hand side in equation

(8.30) vanishes.

Proof of Theorem 8.8. The existence of the estimator θ̂JM,N is given by Theorem 8.6. Then, let
us introduce the following decomposition

√
M
(
θ̂JM,N − θ0

)
=
√
M
(
θ̂JM,N − ϑ̂JM

)
+
√
M
(
ϑ̂JM − θ0

)
,

where ϑ̂JM is defined in Lemma 8.16. We now study two terms in the right-hand side separately.
By Lemma 8.18 we have

√
M E

[∥∥∥θ̂JM,N − ϑ̂JM
∥∥∥] ≤ C M√

N
,

where the constant C is independent of M and N , hence since M = o(
√
N) by hypothesis we

obtain
lim

M,N→∞

√
M
(
θ̂JM,N − ϑ̂JM

)
= 0, in probability. (8.31)

Moreover, by Lemma 8.16 we know that

lim
M→∞

√
M
(
ϑ̂JM − θ0

)
= ΛJ ∼ N (0,ΓJ0 ), in distribution, (8.32)

where the covariance matrix ΓJ0 is defined in (8.13). Finally, limits (8.31) and (8.32) together
with Slutsky’s theorem imply the desired result.

8.5 Conclusion
In this chapter we considered inference problems for large systems of exchangeable interacting
particles. When the number of particles is large, then the path of a single particle is well
approximated by its mean field limit. The limiting mean field SDE is on the one hand more
complex because it is a nonlinear SDE (in the sense of McKean), but on the other hand more
tractable from a computational viewpoint as it reduces anN -dimensional SDE to a one dimensional
one. Our aim was to infer unknown parameters of the dynamics, in particular of the confining
and interaction potentials, from a set of discrete observations of a single particle. We propose
a novel estimator which is obtained by computing the zero of a martingale estimating function
based on the eigenvalues and the eigenfunctions of the generator of the mean field limit, where
the law of the process is replaced by the (unique) invariant measure of the mean field dynamics.
We showed both theoretically and numerically the asymptotic unbiasedness and normality of our
estimator in the limit of infinite data and particles, providing also a rate of convergence towards
the true value of the unknown parameter. In particular, we observed that these properties
hold true if the number of particles is much larger than the number of observations. Even
though our theoretical results require uniqueness of the steady state for the mean field dynamics,
our numerical experiments suggest that our method works well even when phase transitions
are present, i.e., when there are more than one stationary states. Moreover, we compared our
estimator with the MLE, demonstrating that our approach is more robust with respect to small
values of the sampling rate. We believe, therefore, that the inference methodology proposed and
analyzed in this chapter can be very efficient when learning parameters in mean field SDE models
from data.
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Future perspectives
In this last section we present possible directions of future research related to the problems
studied in this thesis. In the first part, and in particular in Chapters 2 and 3, we introduced
filtered data to tackle the problem of model misspecification when we aim to fit homogenized
dynamics from multiscale continuous-time data. We believe that this approach opens the way to
several further developments. In particular, we think it would be relevant to:

(i) Analyse the exponential filter for β > 1 in (2.1), which seems to provide more robust results
in practice, and study different kinds of filters which do not belong to the exponential family
or are not moving averages.

(ii) Consider multiscale stochastic differential equations for which the homogenized equations
present non-constant diffusion terms (e.g., multiplicative noise), or drift functions which do
not depend linearly on the parameters.

(iii) Extend the analysis to the non-parametric framework most likely by means of Bayesian
regularization techniques, thus allowing to recover whole effective functions.

(iv) Derive asymptotically unbiased estimators for the diffusion coefficient which are robust in
practice and do not rely on the drift estimator.

(v) Apply similar methodologies to correct faulty behavior of other methods.

In the second part of the thesis we considered eigenfunction estimators for inferring unknown
parameters in effective models given discrete-time observations from multiscale and interacting
diffusions. We first remark that Chapter 6 provides rigorous homogenization results for the
eigenpairs of the generator in the setting of the Langevin dynamics, but we believe that similar
theorems can be proved for more general classes of multiscale diffusion processes. Regarding the
application of eigenfunction estimators to multiscale diffusions in Chapter 7, in order to be able
to assess the accuracy, it would be interesting to analyse its rate of convergence with respect to
both the number of observations and the fastest scale. This is a highly nontrivial problem since
it first requires the development of a fully quantitative periodic homogenization theory. On the
other hand, the work presented in Chapter 8 about the application of eigenfunction estimators
to interacting particle systems can be extended in several other interesting directions. First,
the main limitation of our methodology is the fact that in order to construct the martingale
estimating function we have to know the functional form of the invariant measure of the mean
field limit, possibly parameterized in terms of a finite number of moments. There are many
examples of mean field partial differential equations where the self-consistency equation cannot
be solved analytically or, at least, its solution depends on the unknown parameters in the model.
Therefore, it would be interesting to lift this assumption by first learning the invariant measure
from data and then applying our approach. This leads naturally to our second objective, namely
the extension of our methodology to a nonparametric setting, i.e., when the functional form of
the confining and interaction potentials are unknown. Thirdly, we want to obtain more detailed
information on the computational complexity of the proposed algorithm, in particular when more
eigenfunctions are needed for our martingale estimator and when we are in higher dimensions in
space. Finally, it would be interesting to mix the two models under investigation and study the
problem of parameter estimation for multiscale interacting particle systems for which we have to
combine the homogenization and mean field limits.
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