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Abstract— This paper presents a comparison of linear and
nonlinear Model Predictive Control (MPC) strategies for trajec-
tory tracking Micro Aerial Vehicles (MAVs). In this comparative
study, we paid particular attention to establish quantitatively
fair metrics and testing conditions for both strategies. In
particular, we chose the most suitable numerical algorithms to
bridge the gap between linear and nonlinear MPC, leveraged
the very same underlying solver and estimation algorithm
with identical parameters, and allow both strategies to operate
with a similar computational budget. In order to obtain a
well-tuned performance from the controllers, we employed
the parameter identification results determined in a previous
study for the same robotic platform and added a reliable
disturbance observer to compensate for model uncertainties.
We carried out a thorough experimental campaign involving
multiple representative trajectories. OQur approach included
three different stages for tuning the algorithmic parameters,
evaluating the predictive control feasibility, and validating the
performances of both MPC-based strategies. As a result, we
were able to propose a decisional recipe for selecting a linear
or nonlinear MPC scheme that considers the predictive control
feasibility for a peculiar trajectory, characterized by specific
speed and acceleration requirements, as a function of the
available on-board resources.

I. INTRODUCTION

The recent technical advances on Micro Aerial Vehi-
cles (MAVs) have motivated many researchers to deploy
these vehicles into challenging real-world environments to
accomplish complex missions, such as surveillance, search
and rescue, object delivery, etc. [1]. Following a prescribed
trajectory as closely as possible (trajectory tracking) is one
of the most prominent and often essential components to
complete such missions. In relation to this task, controllers
must almost always meet four criteria: high trajectory track-
ing performance, satisfaction of constraints, robustness to
unmodelled dynamics, and real-time, possibly on-board, op-
eration [2].

Among possible control solutions, Model Predictive Con-
trol (MPC) stands out immediately when the first two criteria
above are considered, since it optimizes the performance
over a prediction horizon and integrates constraints into
the problem explicitly [3]. However, unmodelled dynamics
and perturbations usually generate significant issues, since
MPC requires an accurate model of the system to operate,
although it integrates the feedback into the control loop.
In order to mitigate the impact of such inaccuracies, the
system is typically identified as accurately as possible, and
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Fig. 1: A trajectory tracking experiment performed with a Helipal
Storm Quadrotor; in this figure, a screw trajectory is followed.

the use of a robust version of MPC and/or a disturbance
estimator is recommended. Finally, performing the predictive
control action in real-time and with on-board resources is
challenging due to the inherent fast dynamics of MAVs and
the high-level requirements of missions. While addressing
this problem, researchers usually face an important dilemma:
”Should I use a linear or a nonlinear MPC strategy for
my task?” Multiple contributions in the literature show that
for highly nonlinear systems with fast dynamics, such as
MAVs, Nonlinear MPC (NMPC) should be preferred in spite
of its higher computational cost [4]. Nonetheless, multiple
complex missions involve tasks that can be carried out in
near-hovering conditions or with slow speed/acceleration. In
such conditions, their dynamics and other constraints can
be approximated by linear models and therefore a computa-
tionally light-weight Linear MPC (LMPC) scheme becomes
competitive.

There are different successful real-world implementations
of MPC for MAVs performing unified trajectory optimiza-
tion and tracking [4], perception-aware tracking [5], six-
dimensional tracking [6], time-optimal way-point tracking
[7], Image-Based Visual Servo (IBVS) control [8] and lo-
cal reference trajectory and tracking [9]. Furthermore, for
interested readers, the studies in which the validation is per-
formed only in simulation include [10], [11], [12], [13], [14].
Multiple previous contributions report comparative studies
between LMPC and NMPC. For instance, [15] performs
this analysis for rotary-winged MAVs engaged in trajectory
tracking under nominal conditions and wind disturbance for
several real scenarios. However, authors employ different
solvers for LMPC and NMPC, a choice that does not allow
for a fair benchmarking of the two strategies in terms of
solver accuracy and computation time. In [2], the authors
investigate the effectiveness of a flatness-based MPC ap-
proach and compare it to canonical LMPC and NMPC.



While this contribution is not targeting a direct comparison
between the two strategies, it indirectly contributes to a
comparative performance evaluation. However, the insight
is limited for our scope, as algorithms have not been de-
ployed on-board, taking into account the typically scarce
resources of a MAV. In [16], although the authors study the
trajectory tracking control problem for an articulated Un-
manned Ground Vehicle (UGV) and conduct an experimental
benchmarking for LMPC and NMPC, they use different
estimation frameworks and solvers in their implementation,
making the comparison of the respective algorithms more
difficult from a pure control perspective. Finally, although it
is not a direct comparison between LMPC and NMPC, [17]
analyzes two state-of-the-art controllers, i.e. NMPC and a
differential flatness-based controller, in simulation and real-
world experiments. Note that, in contrast to this paper, our
focus is on the predictive controllers and we give insights
about two different kinds of MPC methodologies, while the
aforementioned paper includes a reactive controller in the
comparison.

In this paper, our aim is to provide an as fair as possible
comparison between LMPC and NMPC strategies on a real
MAV engaged in trajectory tracking, in order to help the
reader to respond in an as educated way as possible to the
previously mentioned dilemma. To achieve a performance
well-tuned to the underlying hardware platform for both
strategies, we employ the system identification results of
a previous study [18], and integrate a disturbance observer
based on an Extended Kalman Filter (EKF) to mitigate the
issues related to model uncertainty and perturbations. We
choose a Real Time Iteration (RTI) strategy based on Sequen-
tial Quadratic Programming (SQP) for the NMPC solution
in order to easily bridge the gap between the nonlinear
and linear counterparts, as explained in [19]. Our approach
consists of three stages, eventually resulting in a decisional
recipe for selecting the most appropriate MPC-based scheme
for the targeted application. In the first stage, we leverage
a realistic and calibrated robotic simulator, namely, Webots
[20], in order to tune the parameters of both controllers,
i.e. control weights, control/estimation frequency and horizon
length, to obtain the best performances in terms of trajectory
tracking accuracy. Note that we use the same cost penalty
parameters and tolerances for both controllers, allocate sim-
ilar computational budgets, and employ the same low-level
QP solver to be objective. One big advantage of LMPC here
is its ability to increase both frequency and horizon length
due to the relative simplicity and convexity of the optimal
control problem solved for a given computational budget.
For the second stage, we switch to physical reality, choose
a generic type of trajectory and conduct various experiments
with increasing difficulty in terms of the feasibility metrics to
investigate the relation between the feasibility of a controller
and tracking performance. In order to validate this approach,
in the third stage, we evaluate the performance of both
MPC-based strategies on a representative set of trajectories
and show the effectiveness of the aforementioned decision
process.

The main contribution of this paper lies in the objective
benchmarking campaign designed for LMPC and NMPC,
which is, to the best of our knowledge, missing in the

literature. Leveraging the very same low-level convex solver,
tolerances, maximum computational budget, cost weights,
estimation/control framework and trajectory types reveals
the underlying characteristics of both controllers and makes
the comparison between them as fair as possible. Further-
more, the extensive experiments conducted for testing and
validation increase the credibility of the campaign. Finally,
a significant contribution is that we present a quantitative
procedure to facilitate the decisional process for a given
system and targeted application in order to select MPC
scheme. This recipe includes the computation of two novel
metrics: the feasibility margin and the average feasibility.
Both metrics natively consider the robot’s resources and the
characteristics of the targeted trajectory.

II. METHODOLOGY

Our comparative study is carried out on a multi-rotor
MAV operating indoor and performing a trajectory tracking
mission. Assume that the mission must be carried out with
high accuracy due to the cluttered nature of the environ-
ment and timing constraints. The vehicle has access to
its absolute position through a global localization system
such as a Motion Capture System (MCS), is equipped with
an integrated optical flow and distance sensor to obtain
linear velocities and an IMU to acquire linear accelerations,
rotational velocities and Euler angles. The MAV has two
processors, one of them is a commercially available board
running an open-source autopilot and the other one is a high-
level on-board computer.

A. Notation and Plant Model

Similar to [21], we will adopt the following notation for
vectors and rotation matrices assuming that x is the name of
the vector and {a},{b},{c} are the coordinate frames:
Vector quantity x € R" of the origin of {a} with
respect to the origin of {jb} expressed in {c}.

RV:  Rotation matrix R € SO® that transforms a vector

expression from {a} to {b}.

| . |l2 represents the Euclidean norm of a vector or the
spectral norm of a real matrix and || . |[p:= VxT Px (with
P € R™" and P > 0) denotes the weighted Euclidean norm
of x € R". Note that bold letters represent matrices or vectors.

The state of a MAV can be described by the position of
the center of gravity xj, /n € IR3, the linear velocity v, n € R3,
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the attitude Euler angles ¢ /m € R? and the angular speeds

wh, € R3. Here, {n} is the Earth-fixed inertial frame and
{bé is the body-fixed frame of the MAV.

We adopt the full dynamics of the multi-rotor MAV includ-
ing dominant (propeller) and auxiliary (drag) aerodynamic
effects based on [22] and [23]. Note that although this model
can be used as a plant model for any simulation, it is too
complex for the MPC running onboard. We will explain the
abstract model employed for MPC in the following sections.

The cascaded architecture displayed in Fig. 2 is designed
for both strategies in order to separate high frequency tasks
(attitude control) from the low frequency tasks (trajectory
control). We adopted this structure due to three main reasons.
First, [17] indicates the necessity of using an inner-loop con-
troller for high performance trajectory tracking by validating
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Fig. 2: Control and estimation architecture of the MAV.

it with real experiments. Second, this separation lets us use
the full potential of the autopilot and onboard computer by
assigning the tasks to the dedicated hardware. Third, MPC
can still reach/manipulate the attitude dynamics variables as
inputs, thus, it has a good control over the inner-loop. The
next parts will explain the estimation algorithm briefly and
present the trajectory controllers in detail.

B. Vehicle Model and Estimation Scheme

In order to reduce the computational load of MPC and
handle the control actions with different rates, we take
advantage of the autopilot where a high frequency attitude
controller is implemented. Consequently, a first order, sim-
plified representation of the attitude subsystem is employed.
Based on the model presented in [15], we propose the
following dynamic equations (or prediction function) for a
multirotor MAV:

Xy /n =V (1)
0 0
1
Vpu=-——|Ry| 0 ~Faero+dy, |+ 0
b Tcmd —8
(1b)
. 1
B = . (K,tcmd — /n) (I¢)

where mj, is the mass of the MAV, d}, € R3 is the
perturbation estimated by the EKF (assumed constant over
the horizon) , tue € R3 is the commanded attitude angles
[Ocmd Ocmd Wema)'» Faero € R® is the drag forces acting
on the body, T, = diag(ty, e, Ty) and K; = diag(ky,ke,ky)
are respectively the gains and time constants of first-order
attitude subsystem. For the parametric estimation of the drag
coefficient, attitude gains and time constant, please refer to
[18].

In order to filter out the sensor noise and estimate the
perturbations, an extended-state EKF inspired by [24] is
implemented. The state for the estimator can be written as
follows:

A

- N b b
&= [xfi/f v/?/f Bon’ dps' )" 2

where 32 /n 18 the perturbations acting on the body due to
modelling inaccuracies and external disturbance. The process
model is chosen based on Eq. (1) and a slowly varying
disturbance model in three linear dimensions is concatenated
to the overall process. The measurement model includes the
position information from the MCS, body velocities from the
optical flow-distance sensor module and Euler angles from
the IMU. The parameters of the estimator are tuned in real

experiments considering the relative magnitudes of process
and sensor noises.

C. Linear MPC

To eliminate the direct dependency on the yaw angle v,
we introduce a heading-free reference frame {/f} where the
x-axis is aligned with the heading direction of the vehicle
(y"/ = 0). The transformation of the attitude angles between
Earth-fixed inertial and heading-free frame is given by:

cosy

o | siny 0"
[ 0 } - { —siny cosl/l] [ oht ] )

Based on that, we define the following state and control input
vector for LMPC:

T o T hf anf
§L= [xi/n Vi/n 9" oM’ “)
up = [¢C}Zld ec}iid Toma]” o)

where T,; is the commanded thrust generated by four
propellers, ¢fl”’: 4 and Ozzd are the commanded roll and pitch
angle in the heading-free frame.

Inspired by [15], the vehicle model is linearized around
hovering condition assuming small attitude angles. Next,
we discretize the continuous-time model by the Zero Order
Hold (ZOH) method, knowing that this is an highly accurate
analytical method for linear systems if the sample time is
sufficiently small. The linearized discrete state-space model
(or prediction function) can be written as:

A8, [k+1] = AAE [K] + BAuy [k] + B4Ad k] (6)

where AE, k] = &, [k] — E)/[k] is the deviation between
the variable &, [k] and the reference state &%/ [k]; the same

notations hold for Auy[k] and Ad[k]. In our implementation,

only the reference position [xZ /n]ref is provided. All other

reference vectors are given as they all refer to hovering
condition. Since the matrices A, B and B, are invariant
to position, the dynamic model in Eq. (6) still holds even
if it is linearized around the hovering condition instead of
references.

In the remaining sections, we will use the following
notation to distinguish the predicted values from the actual
ones: x[m|n] is the value of variable x at discrete instant
k = m, predicted at k = n where m > n. Moreover, N is
the prediction (and control) horizon and Az is defined as
the sampling time. At time k with initial &, [0], the LMPC
controller solves the following Open-Loop Control Problem
(OCP):

N

-1
nin Y (1A, [k+nlk][g+[|Auck+nlk]||)
ELAUL .=

+||AE [k +NIK] |7 (7)



subject to the following constraints:

A&, [k+n+1]k] = AAE, [k+ n|k] + BAug [k +n|k] + rlk +n|k|
rlk+nlk] = A& [k +n) + Bu! [k+n]

+Budlk+nk] — EX k+n+1]
dik+n|k] =d[0], A&, [k+nlk]+E& [k+n]eX,
Augk+nlk]+u; [k+n €U, n=0,..,.N—1
EL[kIK) = €,[0] (8)

where Q >~ 0 and R > 0 are respectively the penalty on
the state error and input error, P is the terminal penalty
on state error, r is the affine term to correct the infeasible
trajectory, Xy is the state constraint due to small attitude
angle assumption and safety consideration and Uy is the
input constraint from the physical limits of the propellers
and electric motors.

Note that the OCP can be cast as a Quadratic Pro-
gramming (QP) problem, by considering AZ; = [A&, [k +
1/k],...,AE [k+N|K]]T and AU = [Aup[k|K],...,Aur[k+N —
1|4]]T. The QP solver we employed is gqpOASES [25], which
is not an ideal solver to tackle the sparse optimization
problem described by Eqgs. (7) and (8). Thus, the condensing
procedure described in Section II of [26] is implemented to
reduce the dimension. The overall procedure is summarized
in Algorithm 1.

Algorithm 1 LMPC at the discrete time #;

Initial preparation phase before start (at #; < 0)

0. Linearize the system around hovering conditions (£} (1), U} (;)) and
obtain the sensitivities to construct the linear model and constraints

1. Discretize the system by a proper integration method (ZOH)

2. Define the QP problem similar to (7) and (8) omitting &, [k|k] = &, [0]
3. Condense QP to reduce sparsity

Feedback phase performed at 7 upon arrival of & [k|k]

4. Input & [k|k] to the QP problem
5. Iterate and solve the QP problem until obtaining a sufficiently low
tolerance, check processor limits and control sample
do while (1 ==0 || tcpy <t;) && tol < threshold
(EF (), Uf (1)) ¢ QP(E] (1), U (), Er. (1))
end while

Only the first control input uy [k|k] = Aug [k|k] + u}” [k]
is applied to the vehicle. However, the commanded roll
d)fn]: 4 and pitch an{d angles need to be transformed into the
Earth-fixed inertial frame by Eq. (3). Furthermore, the non-
zero attitude effects on thrust can be compensated by the

following equation involving roll and pitch angles:

= Tema
Toa = —14 9
md cos@cosO ©)

D. Nonlinear MPC

We choose a RTI-based SQP approach to obtain the
solution because of two main reasons. First, it is arguably a
most successful (in terms of speed and accuracy) and largely
used strategy for real applications [19]. Second, it is very
straightforward to comprehend the connection between the
QP solution of LMPC and the SQP solution of NMPC.

In contrast to LMPC, the state and input are redefined by
the following expressions:

Ev=10," v, o0 (10)
uy = [¢cmd ecmd Tcmd]T (11

Based on the Eq. (1) and a discretization methodology
suitable for real-time applications (Runge-Kutta-4), the fol-
lowing discrete-time nonlinear model (or prediction function)
is obtained:

Enlk+1] = F(&ylk],u[k], d[K]) (12)
Similar to the linear counterpart, the OCP can now be written
as follows:

N-1 . .
Jmin Y (|Ey[k+nlk] — 3 (k+n]lg + [luy [k +nlk] — uy! [k-+n] )

EnUn o

+Eylk+ NIk — X T+ N1 (13)

subject to the following constraints:

Enlk+n+ 11k = f(&ylk], uv[K],d[K])

dlk+n|k] = d[0]
éN[k+n|k]€XN, uylk+nlkl €Uy, n=0,.,N—1
EyIkIk] = €,[0] (14)

The details of the solution strategy for NMPC are reported
in Algorithm 2.

Algorithm 2 NMPC at the discrete time #;

Initial preparation phase before start (at #; < 0)

0. Discretize the system by a proper integration method (i-RK-4)

Preparation phase over the time interval [fz_q,%]

1. Time-shift optimal solution at the previous time step to obtain initial
guess, (EX (1), Uy () < (Ex (te—1), Us (ti—1))

2. Linearize the system around (Z5,(#),U% (1)) and obtain the sensitiv-
ities to construct the linear model and constraints

3. Define the QP problem similar to (13) and (14) omitting & y/[k|k] =
Sw0]

4. Condense the QP problem to reduce the sparsity

Feedback phase performed at 7 upon arrival of & [k|k]

5. Input & [k|k] to the QP problem
6. Iterate and solve the QP problem until obtaining a sufficiently low
KKT result, for the next iterations check processor limits, control sample
time and desired running KKT limit to finish
do while (1, ==0 || tcpy <ty) && KKT > threshold
(BN (1), Uy (1)) 4 QP(E5, (1), U (1), En (1))
end while

To realize Algorithm 2, the nonlinear program solver
ACADO [27] is integrated with the necessary modifications.
Note that ACADO employs qpOASES as convex solver
which is the same the solver leveraged in LMPC. This allows
us to equivalently setup the problems and compare the LMPC
and NMPC in an objective fashion.

E. Algorithmic comparison of LMPC and NMPC

By comparing Algorithm 1 and 2, the following algorith-
mic differences can be pointed out:

e« LMPC can be considered as following a RTI scheme

where the preparation phase is performed only once



and usually offline. This reduces the computational cost
significantly.

e The linearization step for LMPC is performed with
respect to the reference trajectory in contrast to NMPC,
where an initial guess based on the previous optimal
solution is leveraged.

o While the analytical discretization methods such as
ZOH can be employed for LMPC (only once during
the initial preparation phase), the approximate numerical
strategies such as implicit Runge-Kutta must be applied
for NMPC which generates considerable overhead for
the computation. Our objective in selecting a discretiza-
tion method is to obtain an as accurate as possible
integration while taking computational resources into
account.

o The termination condition for LMPC includes the error
tolerance for the QP solver. On the other hand, NMPC
uses Karush-Khun-Tucker (KKT) conditions to decide
the optimality of the solution.

F. Feasibility Margin and Average Feasibility

Two important definitions should be given here in order to
facilitate the comprehension of next sections. These defini-
tions will be adopted to decide the controller type by taking
the target application into account.

Consider two compact sets X C R” and ¥ C R”. Assume
that sets P C R" and Q C R" are the bound sets of X and
Y, respectively. Note that, the bound set can be defined as
the set of points on the contour of the given set. Then the
Feasibility Margin of set X with respect to Y can be defined
as follows:

FMy.y = min(y (p) min|p — ) (15)
where p € P, g € Q and Iy (p) is the signed-indicator function
whose definition is given as follows:

Iy(p) = {+i’

ifpeyY

16
otherwise (16)

Note that this margin is negative if X ¢ Y and can also be
expressed as the Percentage Feasibility Margin, PFMx y =
FMy y/|lg*|| where ¢* is solution to FMy y. Fig. 3 helps the
reader to visualize this concept.

The Average Feasibility of X with respect to Y is defined
as follows:

AFyy = 1/L/Iy(p) min < lp gl ) dp
P q el

a7

where pe P, g€ Q and L= [pdp.

Assuming that there is no limit velocity for the MAV’s
working regime, in the context of this paper, the set Y
represents the feasible (achievable) accelerations of the MAV
and X stands for the set of target accelerations. The set of
achievable accelerations Y can be calculated by Eq. (1b) and
the knowledge of thrust, angle limits and maximum velocity
during flight. Furthermore, the reference accelerations can
be obtained by differentiating the position reference twice in
time.

Feasibility 4 Rp*
Q margin<0 // \
2 A Q, /[ N
T P <« s \

L

Y X Y |
(’p }/‘ x
* “'.“TTJ) ¢ !
a Feasibility S
margin >0 /

Fig. 3: Feasibility margin explained in two different scenarios: X C
Y and X ¢ Y where p* and ¢* are the solutions to the optimization
problem in Eq. (15).
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Fig. 4: The Helipal quadrotor and its components.

III. EXPERIMENTS AND RESULTS

We applied a three-stages experimental procedure. As
mentioned before, the first stage leveraged simulation exper-
iments and was used to tune the meta-parameters of both
controllers. The remaining stages were performed in the
physical reality and their purposes were to obtain a procedure
to decide on the type of MPC, validate the results and give
further insights about the performance of the controllers in
a variety of conditions. Before presenting the details of the
stages, it is worth giving additional details about the MAV
used in our experimental campaign.

The quadrotor is a modified Helipal Storm Drone-4 v3,
endowed with a Cube Orange autopilot, a Jetson Xavier
NX on-board computer, an IMU, and an optical flow, as
shown in Fig. 4. It weighs 1.55 kg and has a center to
propeller distance of 21 c¢m. The 3D position information is
obtained with the aid of an MCS with millimeter accuracy.
All computations are performed on-board by leveraging the
Robot Operating System (ROS). The Jetson Xavier NX
computer has six parallel NVIDIA Carmel ARM v8.2 (max.
1.9 GHz) cores and one dedicated GPU (Volta architecture
with 384 NVIDIA CUDA cores and 48 Tensor cores). For the
experiments, all CPUs are activated with maximum power.
The trajectories are generated inside an indoor volume of 27
m?3. The quadrotor can reach up to 6.4 m/s> acceleration and
10 m/s speed. The attitude controller runs at 100 Hz and it
receives the autopilot references from the onboard computer
at the running frequency of the NMPC.

A. Stage 1: Tuning Meta-Parameters

In order to perform the comparison of LMPC and NMPC
in a fair fashion, a number of criteria can be enforced
to be the same: estimation framework, cost penalty, solver
type, error tolerance and allocated computational budget



Hor.
Freq. steps) 20 30 40 50 60 70
(Hz)

20 6.6 £ 2.1 38+16 35+15 32+14 32+14 34x16
30 119 +£31 55+£17 32+£12 25+12 24413 23+12
40 181 +£45 10629 50+15 31+13 23+12 21+11
50 245+ 61 132+34 77+21 47+14 31+£12 23+11
60 309+76 175+44 107+£29 68+£19 45+14 31+£12

TABLE I: Mean and standard deviations of position tracking RMSE
[em] for LMPC with the different frequency and horizon lengths.

Hor.

Freq. steps) 20 30 40
(Hz)

20 65+19 38+16 3.6+17

30 120 £3.1 55+ 1.7 -

40 187 £45 107 £2.8 -

50 253 £ 6.0 - -

60 321 +75 - -

TABLE II: Mean and standard deviations of position tracking for
NMPC [cm] with the different frequency and horizon lengths.

(to the possible extent). However, the controller-estimation
frequency and prediction horizon can be different for LMPC
and NMPC: in this way, LMPC can benefit from its lower
computational cost. In theory, we expect that, first, increasing
total prediction time would improve the performance up
to a point where the model mismatch becomes significant;
second, having high control/estimation frequency would help
to reject the measured and unmeasured disturbances up to a
certain frequency, where the impact of such mechanism on
the performance would saturate. Following this reasoning,
firstly, we should find the optimal frequency and horizon
length for both controllers without exceeding the maximum
computational budget. For our implementation, while the
optimal controller frequency was limited by the maximum
sensing frequency of absolute positioning information (60
Hz), the horizon length was upper-bounded by the capabili-
ties of the QP solver (70 steps). Hence, a systematic search
was performed inside these bounds. Note that the metric we
used to find the optimal parameters is the position tracking
Root Mean Square Error (RMSE).

We run the LMPC and NMPC with the chosen frequencies
and horizons on the on-board computer and extracted the
pairs whose CPU usage was less than 60% of the total
budget. This percentage was selected as a safety factor.
Afterwards, we designed a generic and feasible set of Lis-
sajous trajectories whose acceleration and speed profiles are
smooth, and tested these pairs ten times in Webots [20],
an open-source, high-fidelity robotic simulator. We list the
results in Table I for LMPC, in Table II for NMPC, and
highlight the optimal frequency and horizon pairs. As a
result, the frequency-horizon pair of {40,70} and {20,30}
are selected for LMPC and NMPC, respectively. Note that
we discard the pairs {20,40} for NMPC since it was very
close to the allocated CPU limit.

B. Stage 2: Investigating Feasibility

Before starting this stage, our hypothesis was that the
feasibility margin and average feasibility of a predictive
control scheme in carrying out a given trajectory tracking
mission has a significant effect on the performance. In order
to validate this claim, we designed five Lissajous trajectories
with decreasing feasibility margin by increasing the maxi-
mum acceleration and speed of the reference trajectory, and

2z-acceleration (m/s?)

PFM = 84%

PFM = 29%

(mis?) y-acceleration (m/s?)

x-acceleration x-acceleration (m/s?)

Fig. 5: Comparison of percentage feasibility margin of LMPC (left)
and NMPC (right) for a Lissajous trajectory.

Type Lissajous Lissajous Lissajous Lissajous Lissajous
Prop. ) (o) €) @ ®)
Ay (M/s?) 0.17 0.37 0.76 1.48 4.12
Vinax (/8) 0.49 0.74 1.05 1.47 2.45
PFM-LMPC (%) 84.7 65.0 28.9 -31.2 -121.1
AF-LMPC 88.9 75.2 48.5 8.6 -69.1
PFM-NMPC (%) 97.0 93.2 84.6 62.6 -0.1
AF-NMPC 99.9 99.5 90.4 71.5 34.8

TABLE III: Properties of the designed Lissajous trajectories.

conducted five trials for each with the real hardware.

Fig. 5 is obtained purely by theoretical computation and
demonstrates the feasible (achievable) set of accelerations for
LMPC (orange) and NMPC (blue) for a specific Lissajous
trajectory. Here, we also indicated the reference acceleration
(green) of the prescribed trajectory we tested. As can be seen
from the figure, since a small-angle assumption is needed for
LMPC, the feasible set is quite narrow and the feasibility
margin (red) is very small, amounting to 29%. On the other
hand, NMPC has quite a large margin: 85% for the very
same trajectory.

Table III provides the properties of the designed Lissajous
trajectories, again obtained exclusively by theoretical com-
putation, and Fig. 6 presents the mean, standard deviation
and maximum tracking errors for the same trajectories with
decreasing feasibility margin in physical reality. This data
is quite revealing in several ways. First of all, for the high
average feasibility (AF >50%) for LMPC, it is apparent that
LMPC is more performant than NMPC when we consider
the average RMSE. Next, if the average feasibility of LMPC
is small (AF <50%), NMPC starts to outperform LMPC
and the performance of LMPC degrades rapidly until failing
completely to track the trajectory. Next, we see that PFM
is significantly correlated with the standard deviation of the
RMSE tracking error and is relatively large for PFM < 0
for the selected controller. As a result, although one can pay
attention to AF if the average error is concerned, PFM is
a strong indication of low tracking performance in specific
regions of trajectory, hence affecting mainly the spread of
error.

Table IV lists the average and standard deviations of
CPU solver times for the differently parametrized Lissajous
trajectories. As can be seen, all solutions were obtained
inside the dedicated sample time with enough accuracy; note
also that there is a 2-5 times CPU time difference between
the solutions of LMPC and NMPC.

C. Stage 3: Validation on Arbitrary Trajectories

For this stage, various arbitrary trajectories involving dif-
ferent feasibility margins were designed in order to verify the



Type Lissajous  Lissajous Lissajous Lissajous  Lissajous
el BRD @ ) @ )
LMPC (40 Hz) | 5.0 £0.8 49 +0.8 5.6 £2.0 9.7 £3.6

NMPC (20 Hz) | 19.5 £3.9 204 £2.7 21.2 £230 213 +1.7 21.5 +1.7

TABLE IV: Solver CPU times [ms] of the design trajectories.
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Fig. 7: Validation trajectories (green), disturbance vector (red). Note
that when following the Polygon trajectory, the drone will stop for
2 seconds after each linear segment (at orange point). In contrast, it
moves continuously without any pause when following the Zigzag
trajectory.

Type Polygon Polygon Screw Screw Lissajous

Prop. (mild) (agile)  (mild) (agile) Zigzag (wind)
gy (/57 6.1 10.1 0.35 0.73 10.11 0.37
Vinax (M/5) 0.5 1.1 0.73 1.05 0.47 0.74
PFM-LMPC (%) | -504.3 -748 61.9 192 -348.1 65.0
AF-LMPC 85.1 46.6 62.2 21.9 91.4 752
PFM-NMPC (%) -40.6 -102.2 98.9 84.2 -84.8 93.2
AF-NMPC 95.6 89.2 99.0 88.3 96.5 99.5

TABLE V: Properties of the validation trajectories.

findings of the previous stage. Fig. 7 illustrates graphically
these trajectories: Polygon, Screw, Zigzag and Lissajous
with emulated wind disturbance (average ~ 1.2m/s). The
properties of the validation trajectories are given in Table V
and the tracking errors are displayed in Fig. 8. The results
obtained here mostly confirm the previous stage with one
exception. First, AF for LMPC (with 50% threshold) deter-
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Fig. 8: Tracking errors for different validation trajectories in phys-

ical reality.
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Fig. 9: Way-point tracking response for LMPC and NMPC in
physical reality.

mines the selection of MPC controller type if the average
tracking error considered. This statement is accurate even
for the second Lissajous trajectory with the wind disturbance,
although the degradation of performance due to wind is more
apparent for LMPC, i.e. large maximum error. Note that,
for these experiments, the mean and standard deviations of
the estimated disturbance forces are 0.43 N and 0.11 N,
respectively. Second, small PFM (< 30%) for LMPC is an
effective indication of large maximum error in all trajectories
except for the Polygon trajectory with mild dynamics. A
possible reason for this exception is that there were pausing
points at the each corner of the polygon, which reduce the
maximum error occurred for slow speeds. As a result, if the
maximum error is critical for the mission, NMPC should be
preferred under these conditions.

Finally, it is also crucial to compare the two controllers
in more extreme conditions, where the feasibility margin is
heavily negative. Figure 9 illustrates the mean and standard
deviation of the position evolution for LMPC and NMPC
for two arbitrary way-points. It is worth noting that each
way-point is tracked five times in physical reality. Closer
inspection of the plot reveals that NMPC has better step
response characteristics: lower rise time, settling time, error
variation and overshoot. Numerical values of this way-point
experiment are reported in Table VI.

D. Discussion

Based on all the results above, considerations can be made
in view of choosing the appropriate type of MPC controller:

« The biggest constraint is the computational budget to



\ NMPC LMPC

Rise time [s] 1.24+0.1 1.3+0.1
Overshoot [%] 25407 13.0£6.2
Settling time [s] | 4.1+£0.5 5.440.5

TABLE VI: Step response metrics for goal tracking.

solve the MPC problem. Since, on average, generating
a NMPC solution takes two to five times longer duration
than computing a LMPC solution, for the applications
where the robot has limited processing power, LMPC
should be preferred.

o For the simpler trajectories (in terms of velocity and
acceleration) with AF > 50%, LMPC might reach or
even outperforms NMPC in terms of average tracking
error due to the capability to handle a higher con-
trol/estimation frequency and longer horizon length. The
selection of LMPC could also be advantageous since it
allows the inclusion of other essential computations.

o For more dynamic trajectories for LMPC with AF <
50%, NMPC would be a better candidate since the
performance of LMPC degrades significantly after this
point.

o Very small PF'M of a controller for the given trajectories
is highly correlated with the maximum error that can
occur during the tracking. NMPC seems to be a better
option if the maximum or standard deviation of error is
crucial for the mission.

o Time-critical and highly dynamic tasks such as way-
point tracking should be performed by NMPC due to
its inherent solution quality and relaxed constraints.

o The mild wind disturbance combined with the trajectory
did not change our selection criteria considering average
RMSE. However, the effect of disturbance degrades
the performance LMPC more compared to NMPC,
increasing significantly the spread of tracking error.

IV. CONCLUSIONS

In this paper, we have designed various experiments in
order to compare linear and nonlinear MPC for a MAV
carrying out trajectory tracking maneuvers. We performed
such comparison in a fair way by considering multiple
aspects: numerical solver, trajectory richness, optimization
of algorithmic meta-parameters, computational budget. The
results of our experimental campaign not only report quanti-
tative results for multiple representative trajectories but also
allow us to shed light on relevant criteria for choosing one
of the two schemes. In particular, by defining quantitative
metrics considering the feasibility of a targeted trajectory
with respect to the on-board resources and controller’s ca-
pabilities, we have been able to propose a decisional recipe
for the selection of the most appropriate MPC-based scheme
for minimizing the RMSE position tracking error.
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