
Formal Methods in Computer-Aided Design 2022

Formally Verified Quite OK Image Format
Mario Bucev

School of Computer and Communication Sciences
EPFL

1015 Lausanne, Switzerland
mario.bucev@epfl.ch

Viktor Kunčak
School of Computer and Communication Sciences

EPFL
1015 Lausanne, Switzerland

viktor.kuncak@epfl.ch
https://orcid.org/0000-0001-7044-9522

Abstract—Lossless compression and decompression functions
are ubiquitous operations that have a clear high-level specifi-
cation and are thus suitable as verification benchmarks. Such
functions are also important. On the one hand, they improve the
performance of communication, storage, and computation. On
the other hand, errors in them would result in a loss of data.
These functions operate on sequences of unbounded length and
contain unbounded loops or recursion that update large state
space, which makes finite-state methods and symbolic execution
difficult to apply.

We present deductive verification of an executable Stainless im-
plementation of compression and decompression for the recently
proposed Quite OK Image format (QOI). While fast and easy to
implement, QOI is non-trivial and includes a number of widely
used techniques such as run-length encoding and dictionary-
based compression. We completed formal verification using the
Stainless verifier, proving that encoding followed by decoding
produces the original image. Stainless transpiler was also able
to generate C code that compiles with GCC, is inter-operable
with the reference implementation and runs with performance
essentially matching the reference C implementation.

Index Terms—formal verification, compression, Stainless, SMT
solver, mechanized induction

I. INTRODUCTION

Lossless conversions are ubiquitous. Examples include com-
pression tools such as zip, as well as lossless image formats
such as PNG. Unfortunately, common compression formats,
especially ones for pictures, are more complex than one would
expect a first. As a result of this complexity and the absence
of precise specifications, it has proven difficult to reason
about implementations of these algorithms. Consequently,
the practice in the field is to use software testing, possibly
backed by advanced testing algorithms [1], which do not
guarantee correctness. As a reaction to the complexity of
existing formats, Dominic Szablewski announced the “quite
OK image format” [2] on 24 November 2021. The proposal
was accompanied by a concise and efficient implementation. It
attracted significant attention, with re-implementations quickly
emerging in different programming languages (including Ver-
ilog) as well as variations such as streaming implementations.

Inspired by these developments, this paper presents an exe-
cutable and formally verified implementation of the quite OK
image encoding and decoding algorithms. We have presented

This project is supported in part by the EPFL School of Computer and
Communication Sciences as well as the Swiss Science Foundation Project
200021 197288.

this formal development and shared the code on GitHub as
part of the ASPLOS 2022 tutorial at EPFL in March 2022
[3], but no reviewed record of the work existed until now.
The verified case study is now also available at:

https://github.com/epfl-lara/bolts/tree/master/qoi/

We are not aware of a formally verified implementation of
functional correctness of QOI. Recently, a blog appeared
referring to an implementation in Ada/SPARK1. Our under-
standing is that this Ada/SPARK implementation only proves
the absence of run-time errors and not full correctness.

In a broader line of work, formal verification was applied
either to specific algorithms or domain-specific languages.
The Deflate algorithm [4] specification has been formalized,
implemented, and verified in [5] in Coq. Researchers also
formalized common lemmas in information theory in Coq and
apply these to Shannon-Fano codes [6].

Related approaches verify serialization tasks, which do not
typically aim to compress data. Examples of such work include
[7] formally verified Protocol buffer compiler implementation
in Coq, for a commonly used subset of this serialization for-
mat. Correct by construction pretty printing in parsing libraries
also ensures correctness subject to certain local invertibility
conditions [8, Section 6.4], as do invertible lenses [9]. Our
case study may thus also provide a starting point for exploring
the expressive power of provably invertible domain-specific
languages for data transformation.

II. BACKGROUND

A. Stainless Verifier and C Transpiler

Stainless [3], [10]–[12] accepts as input source code in
a subset of the Scala programming language [13]. Typical
Stainless programs can thus be compiled using the existing
Scala compilers and run using the Java Virtual Machine.

Stainless supports formal verification of assertions, precon-
ditions, postconditions, and invariants using the Inox solver.
Inox in turn relies on unfolding of function definitions and
uses SMT solvers, notably Z3, CVC4, and Princess.

Stainless also supports generation of C code (transpilation)
for a subset of Scala. This subset targets programs without
heap-allocated memory, in the spirit of our previous case
study [14]. We wrote our QOI format case study to meet the

1https://blog.adacore.com/quite-proved-image-format

https://doi.org/ This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0001-7044-9522
https://github.com/epfl-lara/bolts/tree/master/qoi/
https://blog.adacore.com/quite-proved-image-format
https://doi.org/
https://doi.org/
https://creativecommons.org/licenses/by/4.0/


expectations of the C code generator; it is the generated C code
that we use for the performance comparison (Section IV-C).

B. QOI Format Overview

To encourage subsequent verification efforts and compar-
isons, we summarize here the QOI format definition. The
format is structured with a header, followed by the actual data,
and terminated by a marker (7 zero bytes followed by 0116).
Table I describes the header format. Images are encoded in a
row-major order (left-to-right, top-to-bottom).

QOI encoder is single-pass. It manipulates the following
data structures:

• The image to encode pixels. Each pixel is constituted of
chan bytes.

• The current index pxPos within pixels (multiple of chan),
the current pixel px, as well as the previous pixel pxPrev
(initialized to R = G = B = 0 and A = 255).

• The encoded image bytes and the output position outPos
within bytes.

• index, an array of 64 pixels denoting previously-seen
pixels. It is zero-initialized.

• run, counting the number of equal consecutive pixels
(initialized to 0).

In the following, we write px.r, px.g, px.b, px.a to refer to
the red, green, blue, and alpha channels of a pixel px. When a
pixel does not have an alpha channel, we default px.a to 255.

Each pixel is encoded in one of four different cases, two of
which have two subcases. Encoded pixels are written in tagged
chunks, uniquely identifying the applied (sub)case. The details
of the chunk formats and computations can be found in [2].

Case A. If px = pxPrev, we increment the run counter.
Whenever it reaches 62, we write a run chunk, reset run to
0 and continue with the next pixel.

Otherwise, if px ̸= pxPrev and run > 0, we write a run
chunk as well, reset run to 0 and proceed to encode px using
the remaining three methods.

Case B. We compute a hash of the current pixel px, denoted
by colorPos(px). The hash function is set by the QOI standard
and yields a non-negative number smaller than 64. Then, if
index(colorPos(px)) = px, we write an index chunk using the
computed position and proceed with the next pixel. Otherwise,
we update index(colorPos(px)) with px and encode px using the
two remaining methods.

Cases C.i and C.ii. The idea is to encode a difference
between the current and previous pixel, provided the difference

TABLE I
QOI FILE HEADER STRUCTURE. OFFSET AND SIZE ARE GIVEN IN BYTES.

Name Offset Size Description
Magic 0 4 qoif to indicate a QOI image
w 4 4 Image width in pixels (in big-endian)
h 8 4 Image height in pixels (in big-endian)
chan 12 1 Channels: 3 for RGB; 4 for RGBA
Color space 13 1 0: sRGB with linear alpha, 1: all chan-

nels linear (informative)

71 6F 69 66 00 00 00 03 00 00 00 02 03 01

magic number

C2 9A E8 FE D2 D2 D2 2D Resulting image

Header

Payload

End marker 00 00 00 00 00 00 00 01

Run of 3

x x x x x x

Luma RGB Index

Fig. 1. Example of a Compressed Image in QOI format

is “small enough”. This case comes with two variants: the diff
subcase (C.i) with a chunk size of 1 byte and the luma subcase
(C.ii) for larger magnitudes with a chunk size of 2 bytes.

Cases D.i and D.ii. Whenever all above cases do not apply,
we resort to encoding the full RGB value if px.a = pxPrev.a
(D.i) or the full RGBA value otherwise (D.ii).

Decompression is single-pass as well and maintains the
same data structures as the compression counterpart. The
decoder iterates over all chunks and applies the reverse trans-
formation.

Example of decoding an image. Consider the encoded QOI
image depicted in fig. 1. Squares denote bytes in hexadecimal
while thick black boxes delimit the chunks. Though this figure
actually transcribes the shown 3×2 image in the QOI format,
knowing the exact details of the computations is unnecessary
for this discussion.

The decoder starts with a black and opaque pxPrev. It reads
the first data byte (C216) and uniquely identifies a run chunk
indicating to repeat the previous pixel pxPrev 3 times (case A).
The decoder then proceeds with the next chunk.

The following 9A16 signals this byte and the following
one, E816, constitutes a luma chunk (case C.ii). The decoder
computes a cyan2 pixel based on the previous pixel and the
differences stored in this chunk. Before moving on, this pixel
is stored in index at the position given by colorPos(·).

Next, FE16 identifies an RGB chunk (case D.i) with three
following repeating bytes D216, producing a light gray pixel.
The decoder computes a position for this pixel and stores it
in index (which happens to not collide with the previous cyan
pixel).

Finally, 2D16 specifies an index chunk (case B) with the
position of the cyan pixel decoded previously.

III. VERIFICATION APPROACH

We proved two classes of properties (memory safety is
ensured by the programming language model):

• Runtime safety: for any input, the encoder and decoder
do not access arrays out of bound or throw exceptions.

• Correctness: decoding is the inverse of encoding (invert-
ibility).

It is much less work to show only the first property, so we
focus our presentation on the second one.

2Dark gray in monochromatic.

2



To prove correctness, we proceed by “running” the encoder
on an arbitrary but fixed input and decode the image at the
same time as it is encoded. Once we are finished, the decoded
image must be the same as the original one.

We establish not only separate invariants for the encoder and
decoder’s respective states, but also an invariant that ties them.
For example, if the encoder encounters a sequence of repeating
pixels (case A), it delays writing down the chunk until the end
of this sequence. In such a case, the decoder is expected to
lag behind the encoder. On the other hand, for cases B, C and
D, both the encoder and decoder are expected to advance at
the same pace and are, in some sense, synchronized.

Then, given encoder and decoder states satisfying the in-
variants, we show that encoding a single pixel and decoding it
should give the same pixel while maintaining these invariants.
We then generalize this result to the entire image, leveraging
induction.

To describe invertibility in Stainless, we write plain Scala
code in terms of encode and decode, and provide the appro-
priate conditions. Before presenting the inversion theorem, we
deem it helpful first to introduce some definitions.

The following snippet contains the declarations of three
records (or case classes in Scala’s terminology). For concise-
ness, we abbreviate a: T, b: T, c: T to a, b, c: T below.
// Encoding context
case class EncCtx(pixels: Array[Byte], w, h, chan: Long) {

// invariants on the fields (only one conjunct shown)
require(pixels.length == w * h * chan)

}
case class EncodedResult(encoded: Array[Byte], length: Long)
case class DecodedResult(pixels: Array[Byte], w, h, chan: Long)

EncCtx contains the input of the encoder: the image (pixels,
an array of RGBA bytes) as well as its dimensions and the
number of channels. As these values may not be arbitrary
(for instance, we must have pixels.length == w * h * chan), we add
a require clause that specifies an invariant over these fields.
Stainless then injects these assumptions into proofs when the
values of the type appear in verification conditions.

EncodedResult, as its name suggests, holds the result of the
encoding process. As encoded must be big enough to account
for the worst case, the length field indicates the effective size
of the compressed image.

We can now state the “invertibility theorem” with the
decodeEncodeIsIdentityThm function in the snippet below3.
def encode(ctx: EncCtx): EncodedResult = ...
def decode(bytes: Array[Byte], /* exclusive end index for decoding: */

until: Long): Option[DecodedResult] = ...

def decodeEncodeIsIdentityThm(ctx: EncCtx): Boolean = {
val res = encode(ctx)
decode(res.bytes, res.length) match

case Some(DecodedResult(decoded, w, h, chan)) =>
w == ctx.w && h == ctx.h && chan == ctx.chan &&
// Predicate for comparing arrays within a range
arraysEq(ctx.pixels, decoded, 0, pixels.length)

case None() => false // i.e. should be unreachable
}.holds

3For brevity of presentation, code and specification snippets may slightly
differ from the actual case study available on the URL shown in the
introduction.

The .holds construct in decodeEncodeIsIdentityThm asks Stain-
less to prove the following. Given a valid EncCtx – representing
the encoder input – satisfying its stated invariant, if we feed the
result res of the encoder to the decoder, it always succeeds (by
having case None() returning false). Additionally, the decoded
dimensions and number of channels correspond to the original
input. Furthermore, the original and decoded images are equal.

To help Stainless prove this theorem, we must establish
contracts for several functions, provide sufficient proof an-
notations to guide the solver, and write lemmas – which are
just (possibly recursive) functions stating a property. However,
decodeEncodeIsIdentityThm does not contain any proof annota-
tion, as everything needed to derive the conclusion is contained
in the definitions of encode and decode.

In fact, encode and decode contain few annotations. They
delegate the work (alongside the proofs) to encodeLoop and
decodeLoop. In particular, encodeLoop iterates (through recur-
sion) over the pixels and invokes encodeSingleStep for the actual
work. By stating a sufficiently strong induction hypothesis (IH)
on encodeLoop and combining the IH with the properties of
encodeSingleStep, we obtain proof of invertibility.

As encodeLoop is “just” gluing the pieces together, we
instead present encodeSingleStep:

// Pixel read from the pixels array, updated output
// position within the bytes array and updated run.
case class EncodingIteration(px: Int, outPos, run: Long)

// Contains the state of the decoder, that is mutated
// in encodeSingleStep (‘var‘ marks a field as mutable).
case class GhostDecoded(var index: Array[Int],

var pixels: Array[Byte], var inPos, var pxPos: Long)

def encodeSingleStep(index: Array[Int], bytes: Array[Byte],
pxPrev: Int, run0, outPos0, pxPos: Long, ctx: EncCtx,
@ghost decoded: GhostDecoded): EncodingIteration = // ...

encodeSingleStep returns EncodingIteration that gives the last
read pixel (px) and one-past-the-end position of the last written
byte (outPos). For a sequence of repeating pixels, the run field
of the returned record is incremented. Otherwise, the encoded
pixels are written (in-place) in bytes and outPos is updated
accordingly.

Notably, encodeSingleStep takes a ghost parameter, decoded,
which models the decoder state that would arise during
possible future decoding runs. Ghost variables are subject
to ghost elimination, which we discuss in more detail in
IV-C. Intuitively, ghost variables allow tracking some extra
information that may only be used for contracts and proof
annotations: in particular, they cannot influence the execution
of the algorithm [15].

The precondition of encodeSingleStep requires that the de-
coder state is consistent: for instance, the currently decoded
pixels correspond to the original ones. At the end of the
function, before returning, we “run” the decoder on decoded
by calling decodeLoop with the updated index and bytes arrays.

Then, we can express local invertibility as follows. If we
run the decoder from the old decoded state (i.e. before enter-
ing encodeSingleStep) on the bytes we wrote when executing

3



encodeSingleStep, then the decoded pixels must correspond to
the pixels that have been encoded.

To prove this key property, we proceed in two phases, akin
to how the encoder proceeds. The snippet below shows an
excerpt of the encodeSingleStep, highlighting these two phases.

// Record returned by updateRun
case class RunUpdate(reset: Boolean, run, outPos: Long)

def encodeSingleStep(...) = {
// ... Some preconditions
// A copy of the ”original” index, will be erased by ghost elimination:
@ghost val oldIndex = freshCopy(index)
// Phase 1: Run−length processing (case A)
val runUpd = updateRun(bytes, run0, outPos0)
val run1 = runUpd.run
val outPos1 = runUpd.outPos
// The premise holds when flushing (writing down the run chunk)
assert(runUpd.reset ==>

updateRunProp(pxPrev, px, bytes, run0, outPos0, outPos1))
// ... other assertions
// Phase 2: Encode pixel individually (cases B, C, D)
val outPos2 = if px != pxPrev then

val outPos2 = encodeNoRun(index, bytes, outPos1)
// ... some assertions and lemmas to support this claim
assert(encodeNoRunProp(pxPrev, px, oldIndex, index, bytes,

outPos1, outPos2))
outPos2

else
// ... assertions stating invariants are preserved
outPos1

// ... assertions to glue everything together
EncodingIteration(px, outPos2, run1)

}.ensuring(/* postconditions stating distilled properties */)

First, the encoder handles the run-length part of the algo-
rithm, corresponding to case A as described in II-B. The work
is delegated to updateRun and returns a record telling (through
the reset field) whether a run chunk was written to bytes. If
not, then invertibility is of course preserved as the encoded
pixels are left untouched. Otherwise, updateRun guarantees
that reading the written chunk gives us a run chunk whose
value is the run counter we have just written – expressed with
updateRunProp, presented afterward.

Second, in the case where the previous and current pixels
are different, the encoder picks methods B, C or D to encode
the current pixel. The task is handed over to encodeNoRun and
states with encodeNoRunProp that reading the written chunk
yields back the pixel.

updateRunProp and encodeNoRunProp both use doDecodeNext
to decode the written chunk. The latter returns an ADT with
two variants describing the decoded chunk. Run(r) indicates a
run chunk with r + 1 repeating pixels. The +1 is a result
of the run counter being shifted by one when encoded.
DiffOrIndexOrColor(px) denotes a pixel encoded by method B, C
or D. Due to the variable length nature of chunks, doDecodeNext
also returns the position of the next chunk to be decoded (if
any).

enum DecodedNext:
case Run(run: Long)
case DiffOrIndexOrColor(px: Int)

def doDecodeNext(bytes, index: Array[Int],
pxPrev: Int, inPos0: Long): (DecodedNext, Long) = ...

Expressing the desired properties is then a matter of pattern-
matching over the result of doDecodeNext and tying it with
appropriate equalities.
def updateRunProp(pxPrev, px: Int, bytes: Array[Byte],

run0, outPos0, outPos1: Long): Boolean =
// ... preconditions including e.g. ordering on outPos0, outPos1
// If px == pxPrev, the current run counter run0 is incremented
// (reflected by the conditional +1).
val run = run0 + bool2int(px == pxPrev)
// The index does not matter for this case, we give an arbitrary array
val dummyIndex = Array.fill(64)(0)
doDecodeNext(bytes, dummyIndex, pxPrev, outPos0) match

case (Run(r), inPos) => r + 1 == run && inPos == outPos1
case => false

// oldIndex refers to the index at the beginning of encodeSingleStep
def encodeNoRunProp(pxPrev, px: Int, oldIndex, index: Array[Int],

bytes: Array[Byte], outPos1, outPos2: Long): Boolean =
// ... preconditions including e.g. ordering on outPos1, outPos2
doDecodeNext(bytes, oldIndex, pxPrev, outPos1) match

case (DiffOrIndexOrColor(decodedPx), inPosRes) =>
decodedPx == px && inPosRes == outPos2 &&
oldIndex.updated(colorPos(px), px) == index

case => false

We rely on Inox (Stainless’ underlying solver) to unfold
function definitions to prove that the calls to updateRunProp
and encodeNoRunProp in encodeSingleStep hold. To help with
the proof, we also provide assertions whose content is similar
to the properties stated by updateRunProp and encodeNoRunProp.

Now that we have these two invertibility properties, we
show that the composition of these two phases preserves
invertibility by tying all facts together (see the end of the body
of encodeSingleStep in the source code of encoder.scala).

IV. RESULTS

We first present some statistics and remarks about the ver-
ification before considering the performance of the generated
C code with respect to the reference implementation.

For all experiments, we used a server with 2×
Intel®Xeon®CPU E5-2680 v2 at 2.80GHz (release date Q3’13,
for a total of 20 physical cores) running on Ubuntu 20.04.3
LTS.

A. Verification Statistics

Our QOI implementation in Scala without annotations con-
sists of 313 lines of code (LOC)4. The annotated version has
2789 LOC, of which 1405 are for lemmas and helpers. This
yields a ratio of 8.9 lines of specifications per executable line.
The specification lines include 42 lemmas, 19 of which are
general purpose and could become part of the standard library.

Table II shows for each category of verification condition
(VC) their respective numbers and their cumulative times. It
took roughly 1h30min to verify all VCs. The lower quartile,
the median, and the upper quartile are 0.5s, 1.8s, and 5.7s
respectively. Around 9.5% of VCs took more than 30s to
verify, the highest being 3min.

For each function call, Stainless generates VCs correspond-
ing to the function preconditions. Assertions annotations and
postconditions of functions are translated into VCs as well.

4Counted with cloc v1.82

4



TABLE II
SUMMARY OF THE VERIFICATION CONDITIONS.

Verification Condition # Total time [min]
Preconditions 2387 370.9
Body assertions 787 203.3
Postconditions 145 31.2
Array index within bounds 126 4.9
Remainder by zero 87 10.6
Non-negative measure 23 2.1
Class invariant 21 1.5
Cast correctness 6 0.1
Match exhaustiveness 5 0.4
Measure decreases 4 4.4
Total 3591 629.4

Stainless furthermore generates other runtime safety verifica-
tion conditions, such as array bounds checks and remainder
by zero checks. It is sometimes necessary to provide sufficient
annotations (e.g., assertions and invariants) to help Stainless
prove these VCs.

B. Verification Effort

The case study was implemented and formally verified by
the first author (who had a few months of experience with
Stainless) over the period of approximately 4 to 5 weeks.

We have first implemented a version closely following the
C reference version. Though we could prove runtime safety,
describing deeper properties turned out to be difficult. For
example, we could not refer to the result of decoding a range,
but only the end-to-end decompression result of the entire
image.

We have thus rewritten the implementation multiple times
making both small and larger changes. Since the encoder
and decoder are succinct, the rewrites took a relatively small
amount of time compared to the remaining verification effort.

During repeated verification runs, the VC cache and the
ability to selectively verify only provided functions greatly
speed up the interactive experience. For example, making a
few changes to a previously verified version requires less than
two minutes to check all VCs, compared to the 1h30min for
a clean-state re-run.

C. Generated C Code and Its Efficiency

We compare the encoding and decoding throughput of the
transpiled C code with the reference implementation. Though
the primary goal of the reference is simplicity, its decoding
and encoding throughput are respectively 3.4x and 29x higher
than libpng while achieving a similar compression ratio5.

As briefly mentioned in IV-B, we make use of ghost states
for proving invertibility. Stainless first checks for correct usage
of ghost variables before eliminating them in a phase of the C
transpiler. Assertions and functions contracts are removed as
well6. In summary, “proof infrastructure” is erased and incurs
no cost at runtime.

5Derived from the section “Grand total for images (AVG)” at
https://qoiformat.org/benchmark/ (consulted the 11.08.2022).

6To ensure removal, developers should import the StaticChecks library.

The generated C code is 661 LOC long, against 311 for the
reference implementation. For the purpose of evaluation, we
also wrote unverified glue C code that performs I/O. We do
not make any correctness claims about this code, only about
the part that converts arrays of bytes between uncompressed
and compressed form. We evaluated the throughput of the
generated C code (genc-qoi) against the reference imple-
mentation (qoi) using a modified version of the benchmark
utility shipped with qoi. We run the benchmark with 3 runs
over 7 images ranging from 3 to 13.8 megapixels, and report
the result in table III.

We compiled all involved C sources using GCC 11.1.0
with -O3. As our implementation uses tail recursion, so
does the generated C code7. It is necessary to pass an
optimization level of at least -O2 or explicitly pass the
-foptimize-sibling-calls to GCC in order to have
the tail calls eliminated.

To our surprise, the transpiled version is on-par with the
reference implementation: it is approximately 7% faster in
decoding and 2% slower in encoding. Disassembling the
decoding functions reveals that both were compiled similarly.
Nevertheless, the genc-qoi version uses more instructions
for all cases but index decoding (case B). These extra instruc-
tions are of an arithmetic and logical nature and do not involve
memory operations. For case B, GCC produced one 4-bytes
memory load operation for genc-qoi, while it emitted four
1-byte memory load operations for qoi. We conjecture that
the reported difference may be explained by these three extra
memory loads.

TABLE III
BENCHMARK RESULTS OF QOI AND GENC-QOI

Decoding throughput Encoding throughput
[megapixels/s] [megapixels/s]

qoi (unverified) 90.92 86.24
genc-qoi (verified) 97.65 84.45

V. CONCLUSIONS

We have presented a QOI implementation in Scala and
verified with Stainless that decoding is the inverse of encoding.
We have also seen that the transpiled C version matches the
performance of the reference implementation. Going forward,
we expect that other verified implementations will emerge
and that QOI will become a useful benchmark for testing
verification approaches and tools.

ACKNOWLEDGMENT

We thank FMCAD 2022 reviewers for helpful comments.
We thank Georg S. Schmid for useful discussions and Jad
Hamza for developing the C code generator in Stainless. We
thank the organizers of ASPLOS 2022 conference for the
opportunity to present a summary of the case study as one
part of the tutorial.

7We thank GCC! Our C code generator does not (yet) eliminate tail calls.

5

https://qoiformat.org/benchmark/


REFERENCES

[1] A. Kanade, R. Alur, S. Rajamani, and G. Ramanlingam, “Representation
dependence testing using program inversion,” in Proceedings of the
Eighteenth ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 277–286. [Online]. Available:
https://doi.org/10.1145/1882291.1882332

[2] “The Quite OK Image format for fast, lossless compression.” [Online].
Available: https://qoiformat.org/

[3] “Verifying programs with Stainless (ASPLOS 2022 tutorial on Stain-
less.” [Online]. Available: https://epfl-lara.github.io/asplos2022tutorial/

[4] L. P. Deutsch, “DEFLATE Compressed Data Format Specification
version 1.3,” Internet Engineering Task Force, Request for Comments
RFC 1951, May 1996, num Pages: 17. [Online]. Available: https:
//datatracker.ietf.org/doc/rfc1951

[5] C.-S. Senjak and M. Hofmann, “An implementation of deflate in coq,”
2016. [Online]. Available: https://arxiv.org/abs/1609.01220

[6] R. Affeldt, J. Garrigue, and T. Saikawa, “Examples of Formal
Proofs about Data Compression,” in 2018 International Symposium on
Information Theory and Its Applications (ISITA). Singapore: IEEE,
Oct. 2018, pp. 633–637. [Online]. Available: https://ieeexplore.ieee.org/
document/8664276/

[7] Q. Ye and B. Delaware, “A verified protocol buffer compiler,” in
Proceedings of the 8th ACM SIGPLAN International Conference on
Certified Programs and Proofs, ser. CPP 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 222–233. [Online].
Available: https://doi.org/10.1145/3293880.3294105

[8] R. Edelmann, “Efficient parsing with derivatives and zippers,”
Ph.D. dissertation, EPFL, Lausanne, 2021. [Online]. Available:
http://infoscience.epfl.ch/record/287059

[9] M. Hofmann, B. Pierce, and D. Wagner, “Symmetric lenses,” in Pro-
ceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’11. New York, NY,
USA: Association for Computing Machinery, 2011, p. 371–384.

[10] J. Hamza, N. Voirol, and V. Kunčak, “System FR: Formalized foun-
dations for the Stainless verifier,” Proc. ACM Program. Lang, no.
OOPSLA, November 2019.

[11] V. Kuncak and J. Hamza, “Stainless verification system tutorial,” in
Formal Methods in Computer Aided Design, FMCAD 2021, New Haven,
CT, USA, October 19-22, 2021. IEEE, 2021, pp. 2–7.

[12] “Stainless,” 2022. [Online]. Available: https://github.com/epfl-lara/
stainless/

[13] M. Odersky, L. Spoon, B. Venners, and F. Sommers, Programming in
Scala (Fifth Edition, Updated for Scala 3.0). Artima Press, 2021.

[14] J. Hamza, S. Felix, V. Kunčak, I. Nussbaumer, and F. Schramka, “From
verified Scala to STIX file system embedded code using Stainless,”
in NASA Formal Methods (NFM), 2022, p. 18. [Online]. Available:
http://infoscience.epfl.ch/record/292424

[15] M. Abadi and L. Lamport, “The existence of refinement mappings,”
in Proceedings of the 3rd Annual Symposium on Logic in
Computer Science, July 1988, pp. 165–175, lICS 1988 Test of
Time Award. [Online]. Available: https://www.microsoft.com/en-us/
research/publication/the-existence-of-refinement-mappings/

6

https://doi.org/10.1145/1882291.1882332
https://qoiformat.org/
https://epfl-lara.github.io/asplos2022tutorial/
https://datatracker.ietf.org/doc/rfc1951
https://datatracker.ietf.org/doc/rfc1951
https://arxiv.org/abs/1609.01220
https://ieeexplore.ieee.org/document/8664276/
https://ieeexplore.ieee.org/document/8664276/
https://doi.org/10.1145/3293880.3294105
http://infoscience.epfl.ch/record/287059
https://github.com/epfl-lara/stainless/
https://github.com/epfl-lara/stainless/
http://infoscience.epfl.ch/record/292424
https://www.microsoft.com/en-us/research/publication/the-existence-of-refinement-mappings/
https://www.microsoft.com/en-us/research/publication/the-existence-of-refinement-mappings/

	Introduction
	Background
	Stainless Verifier and C Transpiler
	QOI Format Overview

	Verification Approach
	Results
	Verification Statistics
	Verification Effort
	Generated C Code and Its Efficiency

	Conclusions
	References

