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Abstract
This thesis is devoted to studying the estimation and minimisation of risk in engineering

problems, and is divided into three main parts.

The first part addresses the challenge of risk-estimation using the Multi-Level Monte Carlo

(MLMC) method. Specifically, we tackle the problem of accurately estimating the probabil-

ity density function, the cumulative distribution function, the quantile, and the expectation

in the tail above the quantile, the so called Conditional-Value-at-Risk (CVaR), of a random

output Quantity of Interest (QoI) of a complex differential model with input uncertainties.

We propose to use the framework of MLMC estimators for parametric expectations devel-

oped in [85] and we present novel error estimates for these MLMC estimators, as well as a

novel adaptive MLMC parameter selection procedure based on the novel error estimates to

achieve a prescribed tolerance on the above-mentioned summary statistics in a cost-optimal

manner.

The second part addresses the challenge of risk-averse engineering design. We seek to min-

imise the CVaR of a random output quantity of interest of a complex differential model us-

ing gradient-based approaches combined with the MLMC method. Specifically, we propose

novel MLMC estimators for the sensitivities of the CVaR with respect to design parameters

based on the framework of parametric expectations developed in the first part of the thesis.

We propose combining this MLMC framework with an alternating minimisation-gradient de-

scent algorithm, for which we prove exponential convergence in the optimisation iterations

under the assumptions of strong convexity and Lipschitz continuity of the gradients.

In the third part, we present our work on the development of a new software library for hi-

erarchical Monte Carlo methods, developed as a part of the Horizon 2020 European Union

Project titled “ExaQUte”. The software library is designed to mirror the hierarchical structure

common to the MLMC, the multi-index and some multi-fidelity Monte Carlo estimators. In

addition, the library also mirrors the common structure of several adaptive MLMC and Monte

Carlo algorithms that are used to calibrate the parameters of the aforementioned estimators.

This combination allows users to implement their own hierarchical Monte Carlo estimators

and algorithms. In addition, the library is parallelised using an external task scheduler, where

the tasks of computing independent samples across the various hierarchy levels, the error es-

timation and the adaptive parameter selection procedures are all scheduled in parallel in a

manner that respects resource-locality and task-dependencies.

Lastly, we demonstrate the above developments on an array of simple demonstrative prob-

lems run in serial, as well as on more applied examples pertinent to the ExaQUte project for
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which high-performance computational hardware was used to conduct parallelised simula-

tions.
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Résumé
Cette thèse est consacrée à l’étude de l’estimation et de la minimisation du risque dans les

problèmes d’ingénierie, et est divisée en trois parties principales.

La première partie aborde le défi de l’estimation du risque en utilisant la méthode de Monte

Carlo multi-niveaux (MLMC). Plus précisément, nous abordons le problème de l’estimation

précise de la fonction de densité de probabilité, de la fonction de distribution cumulative,

du quantile et de l’espérance dans la queue au-dessus du quantile, appelée valeur condition-

nelle à risque (CVaR), d’une quantité d’intérêt (QoI) de sortie aléatoire d’un modèle diffé-

rentiel complexe avec des incertitudes d’entrée. Nous proposons d’utiliser le cadre des esti-

mateurs MLMC pour les attentes paramétriques développé dans [85] et nous présentons de

nouvelles estimations d’erreur pour ces estimateurs MLMC, ainsi qu’une nouvelle procédure

adaptative de sélection des paramètres MLMC basée sur les nouvelles estimations d’erreur

pour atteindre une tolérance prescrite sur les statistiques sommaires susmentionnées d’une

manière optimale en termes de coût.

La deuxième partie aborde le défi de la conception technique averse au risque. Nous cher-

chons à minimiser le CVaR d’une quantité de sortie aléatoire d’intérêt d’un modèle diffé-

rentiel complexe en utilisant des approches basées sur le gradient combinées à la méthode

MLMC. Plus précisément, nous proposons de nouveaux estimateurs MLMC pour les sensi-

bilités du CVaR par rapport aux paramètres de conception basés sur le cadre des attentes pa-

ramétriques développé dans la première partie de la thèse. Nous proposons de combiner ce

cadre MLMC avec un algorithme alternatif de minimisation et de descente de gradient, pour

lequel nous prouvons une convergence exponentielle dans les itérations d’optimisation sous

les hypothèses de forte convexité et de continuité Lipschitz des gradients.

Dans la troisième partie, nous présentons notre travail sur le développement d’une nouvelle

software pour les méthodes de Monte Carlo hiérarchiques, développée dans le cadre du pro-

jet de l’Union européenne Horizon 2020 intitulé "ExaQUte". La software est conçue pour

refléter la structure hiérarchique commune au MLMC, au multi-index et à certains estima-

teurs Monte Carlo multifidélité. En outre, la software reflète également la structure com-

mune de plusieurs algorithmes MLMC et Monte Carlo adaptatifs qui sont utilisés pour ca-

librer les paramètres des estimateurs susmentionnés. Cette combinaison permet aux utili-

sateurs de mettre en œuvre leurs propres estimateurs et algorithmes de Monte Carlo hiérar-

chiques. En outre, la software est parallélisée à l’aide d’un planificateur de tâches externe, où

les tâches de calcul d’échantillons indépendants à travers les différents niveaux de la hiérar-

chie, l’estimation des erreurs et les procédures de sélection adaptative des paramètres sont
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toutes planifiées en parallèle d’une manière qui respecte la localisation des ressources et les

dépendances des tâches.

Enfin, nous démontrons les développements ci-dessus sur un ensemble de problèmes dé-

monstratifs simples exécutés en série, ainsi que sur des exemples plus appliqués pertinents

pour le projet ExaQUte pour lequel du matériel de calcul haute performance a été utilisé pour

effectuer des simulations parallélisées.
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1 Introduction

Scientific computing has grown vastly in recent history, giving researchers the ability to sim-

ulate the behaviour of complex multiscale phenomena. In typical applications, the math-

ematical models used to describe complex phenomena typically do not have closed form

solutions. Dubbed the “third pillar of the scientific method”, computational methods al-

low us to simulate approximate solutions to these models using computers, and enable us

to control the accuracy of these approximate solutions at a practically feasible computing

cost. Advances in computing architecture, numerical algorithms and solution techniques

have helped proliferate scientific computing as an important tool in nearly all technologi-

cal disciplines. The focus of this thesis research is on two particular branches of scientific

computing; namely Uncertainty Quantification (UQ) and Optimization Under Uncertainty

(OUU).

Mathematical models typically contain several input parameters whose values need to be

calibrated to accurately model natural phenomena. However, the values of some of these

inputs can contain uncertainty due to noise or measurement error, or contain inherent fluc-

tuations due to the phenomenon being modelled. Other input parameters may be control-

lable and can be used to steer the model towards desirable performances and/or reduce the

influence of uncertainties on output QoIs. A classical example is of wind flow over a bluff

body. The flow model may be subject to uncertainties in the wind conditions, and the effects

of these uncertainties may be controlled by changing the shape parameters of the body. UQ

methods aim at characterizing the input uncertainties and quantifying their effects on output

Quantity of Interest (QoI). Many UQ approaches take a probabilistic point of view, describing

such uncertainties as randomness in the input parameters, and quantify the uncertainty in

an output QoI through the use of summary statistics such as the mean, central moments, or

quantiles. Moreover, in the field of OUU, one is interested in selecting the control input pa-

rameters of a model such that these statistics are optimised. In particular, risk-averse OUU

seeks to select the control parameters of a system under the influence of input noise, such

that the system is robust to non-typical or unfavourable operating conditions.

In this research, we tackle the challenge of developing risk-averse optimisation algorithms for
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Chapter 1. Introduction

complex engineering problems. Specifically, we are interested in the risk-averse shape opti-

misation of engineering structures subject to uncertain wind conditions such that they are

robust to uncertainties in the wind. A large part of the work presented in this thesis has been

carried out within the European Union Horizon 2020 project titled “Exascale Quantification

of Uncertainties for Technology and Science Simulation”, or ExaQUte for short.

In Section1.1, we provide an overview of the ExaQUte project and its structure, tailored to-

wards achieving this goal. In Section 1.2, we highlight and describe the main contributions

made by this author towards the ExaQUte project and towards this thesis research. The over-

all structure of the thesis will be detailed in Section 1.3.

1.1 The ExaQUte project

The European Union Horizon 2020 ExaQUte project (2018-2021) [40], short for “Exascale

Quantification of Uncertainties for Technology and Science Simulation”, aimed at develop-

ing a framework to enable the solution to UQ and OUU problems for complex engineering

systems on exascale computing architecture. The project was a consortium of multiple uni-

versities and partners, the details of whom can be found in Table 1.1.

Participant Country

Centre Internacional de Mètodes Numèrics
en Enginyeria (CIMNE)

Spain

Barcelona Supercomputing Center (BSC) Spain
Technische Universität München (TUM) Germany
Institut national de recherche en sciences et
technologies du numérique (Inria)

France

IT4Innovations National Supercomputing
Center (IT4I)

Czech Republic

École Polytechnique Fédérale de Lausanne
(EPFL)

Switzerland

Universitat Politècnica de Catalunya (UPC) Spain
str.ucture GmbH Germany

Table 1.1: ExaQUte project list of partners

The overall aim of the ExaQUte project was divided into several “work packages” (WP), aimed

at distributing the component tasks of the framework based on the target expertise of each

of the respective partners in Table 1.1. The work packages are detailed in Fig. 1.1, which also

shows the interdependency of the ExaQUte work packages, with the arrows indicating that

the developments achieved within one work package will be used in the following work pack-

age. The interested reader is referred to the project website for a detailed description of each

of the work packages [132]. The majority of the research work pursued by EPFL, a significant

portion of which is presented in this thesis, was conducted as a part of WP5 and WP6. The

aim of WP5 was to propose theoretical and algorithmic extensions to the MLMC method that

2



1.1 The ExaQUte project

would enable the use of MLMC estimators for complex differential models in a highly parallel

environment, in addition to developing the necessary MLMC framework for risk-estimation.

WP6, the central goal of the ExaQUte project, aimed at developing gradient-based optimisa-

tion algorithms for risk-averse shape design, that use the aforementioned MLMC framework

developed in WP5 for gradient estimation.

Figure 1.1: ExaQUte project work packages and their interdependencies

The project began in June 2018, with a scheduled end date of May 2021, with a total duration

of 36 months. However, due to delays related to the COVID-19 pandemic, the end of the

project was postponed to November 2021, extending the duration of the project to 42 months.

Subject to this timeline, each of the work packages WP5 and WP6 were divided further into

tasks. The description of the tasks, as well as their timeline proposed for the total 42 month-

long project, are shown in the Gantt plot in Fig. 1.2. The research work conducted within this

thesis begins at month 7 of the project, and encompasses tasks 5.2-5.5 and 6.2-6.5.

Each of the tasks in Fig. 1.2 required the time-bound submission of a comprehensive deliv-

Figure 1.2: Timeline of the ExaQUte project for the tasks specific to this thesis

3



Chapter 1. Introduction

erable report, describing the steps taken towards accomplishing the corresponding task. The

reports were due at the end of the corresponding period indicated in Fig. 1.2. In addition

to the submission of periodic reports, the deliverables also consisted of periodic releases of

a novel Python MLMC engine, titled X-Monte Carlo (XMC), initially developed as a part of

task 5.2 and used extensively within the consortium thereafter [5]. The time-line and topics

of research of this thesis have hence been selected to primarily prioritize the timely comple-

tion and submission of the deliverable reports and software releases to the European Union.

Table 1.2 provides a brief description of each deliverable report headed by EPFL. The author

was a co-author of all of the deliverables, and was a main contributor to deliverables D5.2 to

5.5, D6.2 and D6.5, with comparatively less contribution to D6.3 and D6.4.

Deliverable Reference Content

D5.2 [6] Description of the XMC Python engine [5]
D5.3 [19] Potential algorithms for the use of MLMC

methods with adaptive mesh refinement
D5.4 [18] Feasibility of MLMC methods for time-

dependent problems
D5.5 [20] MLMC estimators and algorithms for risk-

measures applied to engineering problems
D6.2 [51] OUU problem formulation and derivation

of stochastic sensitivities
D6.3 [17] Novel gradient-based OUU algorithms for

risk-measures
D6.4 [14] Stochastic optimisation for time dependent

problems
D6.5 [15] Risk-averse design using MLMC estimators

applied to engineering problems

Table 1.2: ExaQUte project list of partners

The ExaQUte project was successfully concluded in January 2022 with the presentation of

the cumulative results of the project to a scientific committee appointed by the European

Union, consisting of three academic and industrial experts. The project received praise for its

ambitious goals and significant results, and for its successful completion within the planned

time-frame.

1.2 Contributions made by the thesis

The ExaQUte project was structured from its conceptualisation to focus on the development

of suitable MLMC methods for use within the UQ and OUU problems inherent to risk-averse

shape optimisation for wind engineering problems. As will be seen in Chapter 2, MLMC

methods have shown great success in reducing the cost of simulations wherein the under-

lying problem is a complex differential model with high-dimensional random inputs, which

characterises our application area of wind engineering. As a result, it was decided to struc-
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1.2 Contributions made by the thesis

ture the ExaQUte project around the development of MLMC methods. In addition, it was also

decided during the conceptualisation phase that the ExaQUte project would aim at quanti-

fying and minimising risks through the use of the CVaR, a risk-measure that quantifies risks

associated to unlikely scenarios in the upper tail of the distribution of the output QoI and

possesses highly favourable properties for OUU algorithms. This meant that suitable MLMC

methods would have to be developed to estimate the CVaR, as well as its sensitivities with re-

spect to design parameters. This, in turn, would require addressing several challenges, each

with a corresponding contribution made during this thesis research.

The first challenge is related to the theme of WP5; namely, the quantification of the risks

associated to a given design using the MLMC method where the risk is described in terms

of the Probability Density Function (PDF), the Cumulative Distribution Function (CDF), the

Value-at-Risk (VaR) or the CVaR of the output QoI. We followed the approach of [85], which

recast the estimation of the above quantities to the computation of parametric expectations.

We developed novel computable error estimates for the estimation of such quantities, which

are then used to optimally select the parameters of the corresponding MLMC estimator in

a continuation type adaptive algorithm. The efficiency and robustness of our novel proce-

dure was demonstrated on an array of numerical test cases of increasing complexity. These

developments are presented in our work [16], as well as in the deliverable report [20].

The second challenge is related to the subject of WP6; namely, the development of novel

OUU algorithms for risk-averse shape optimisation using the MLMC framework. To this end,

we tackled the problem of minimising the CVaR using gradient-based approaches in com-

bination with MLMC estimators. In particular, we considered the framework of MLMC for

parametric expectations that we developed for the CVaR in [16], and proposed modifications

of the MLMC estimator, error estimation procedure, and adaptive MLMC parameter selec-

tion to ensure the accurate estimation of the CVaR and its sensitivities for a given design with

a prescribed accuracy. We then proposed combining the MLMC framework with an alternat-

ing inexact minimisation-gradient descent algorithm for which we prove exponential conver-

gence in the optimisation iterations under plausible assumptions on the objective function

and its gradients. We demonstrated the performance of our approach on two numerical ex-

amples of practical relevance, which evidenced the same optimal asymptotic cost-tolerance

behaviour as standard MLMC methods for fixed design computations of output expectations.

The developments are summarized in our work [52], as well as the deliverable reports [51, 17,

14, 15].

The third challenge is related to implementing the mathematical and algorithmic procedures

developed in addressing the first two challenges into a software framework capable of scal-

able parallelism on high-performance hardware. A key advantage of MLMC methods is their

vast potential for parallelism. During the ExaQUte project, the author was involved in the

development of the ExaQUte software framework, a collection of software tools that were

developed simultaneously and collaboratively by the partners of the consortium, aimed at

conducting exascale simulations on high-performance hardware. Specifically, the author
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Chapter 1. Introduction

contributed to the development of the aforementioned XMC Python library [5], a software

library that was founded and developed during this thesis research. In addition, the author

was also involved in the integration of the library with the other software tools of the ExaQUte

software framework, namely the Kratos multi-physics engine [95] and the PyCOMPSs/Hy-

perloom task schedulers [125, 35], which allowed the parallelised implementation of several

MLMC algorithms and estimators for QoI that were outputs of complex differential mod-

els such as fluid-flow equations. The public repository of the XMC library can be found at

[5], and a summary of its structure and capabilities can be found in [6]. The ExaQUte soft-

ware framework was also applied by the author, in collaboration with the members of the

consortium, to simulate risk-estimation and risk-averse shape optimisation for a problem of

practical interest on high-performance hardware, thereby demonstrating the successful in-

tegration of the algorthmic and mathematical developments with the software components.

The simulation results are summarized in [20] and [15] respectively, and are reported in this

thesis.

Lastly, the grand goal of the ExaQUte project was to apply the above-mentioned frameworks

to the problem of risk-averse shape optimisation of a civil engineering structure subject to

turbulent wind flow conditions. To this end, the author of this thesis, in collaboration with

members of the consortium, explored in [19] and [18] the conditions under which such a

complex problem could be treated using MLMC methods. Several small- and large-scale sim-

ulations were conducted, specifically in [18], to assess whether the conditions necessary for

the optimal performance of the MLMC method could be attained for a turbulent wind flow

problem. The simulation results of [18] demonstrated that while the MLMC method could

be used for oscillatory problems such as vortex shedding at lower Reynolds’ numbers, the

hypotheses necessary for the optimal performance of MLMC would be challenging to attain

for turbulent problems. The report also proposed alternative methods for solving the UQ

problem for turbulent flows. These results are also presented within this thesis.

1.3 Structure of the thesis

This thesis is structured into three parts, each related to a contribution described in Sec-

tion 1.2. The first part, consisting of Chapters 2 and 3, focuses on the MLMC estimation of

risk-measures. Specifically, we first present an overview of the current literature on MLMC

methods in Chapter 2, laying a foundation for the rest of the thesis. We then summarize

in Chapter 3 the developments that we presented in [16] and [20] on MLMC estimators for

parametric expectations.

The second part, consisting of Chapters 4 and 5, sheds light on the combination of the MLMC

algorithms developed in the first part with novel gradient-based approaches to tackle the

challenge of CVaR minimisation. We provide an overview in Chapter 4 of the current litera-

ture on Partial Differential Equation (PDE)-constrained OUU of the CVaR, and the challenges

associated with the use of MLMC methods for gradient-based CVaR minimisation. We then
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describe in Chapter 5 the extension of the parametric expectation approach described in

Chapter 3 that allows us to use MLMC estimators to estimate the sensitivities of the CVaR.

We also describe our novel gradient-based OUU framework that uses inexact gradients com-

puted using MLMC to minimise the CVaR. The combination is demonstrated on two prob-

lems of practical relevance.

The third part, consisting of Chapters 6 and 7 delve deeper into the collaborative software

development aspects of the ExaQUte project, focussing on the work completed during this

thesis research towards the development of the XMC library, as well as its integration with

the ExaQUte software framework. Chapter 6 outlines the structure of the XMC library, and

describes how its design and its combination with the PyCOMPSs/Hyperloom scheduler can

efficiently exploit the parallelism inherent to MLMC and other hierarchical Monte Carlo esti-

mators. Chapter 7 then describes multiple large-scale numerical simulations that were con-

ducted using the ExaQUte software framework and the XMC library; namely the feasibility

studies conducted to explore the use of MLMC methods for turbulent problems, as well as the

production simulations conducted in [20] and [15] to demonstrate the successful implemen-

tation of the algorithmic developments described in Chapters 3 and 5 within the ExaQUte

software framework.

Lastly, we present a conclusion in Chapter 8, summarizing the results of this thesis, and pro-

vide an outlook for future research on the topic.
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2 Introduction to MLMC methods

Complex differential models are used in many disciplines across science and engineering as

predictive or design tools. More often than not, however, some input parameters of these

models are uncertain, either due to missing information, lack of proper characterization or

intrinsic variability. It is hence of utmost interest to study and quantify the effects of these

uncertainties on an output QoI of the model, or several QoIs, which are in turn used for pre-

diction or design. When uncertainty is modelled as randomness in a probabilistic framework,

each QoI becomes a random variable and its distribution is often inaccessible in closed form.

We assume here that the QoI can be simulated in an approximate way, typically by sampling

the random input parameters and computing the solution of a suitable discretisation of the

underlying differential model. It is therefore of great practical interest to estimate by simu-

lation, and with controlled accuracy, the distribution of the QoI or some summary statistics

such as the mean, central moments of different orders, or quantiles of a given significance.

Solving the underlying differential model at a desired accuracy typically has a high compu-

tational cost, even for a single realisation of the random input. An accurate estimation of the

summary statistics of a QoI by a direct Monte Carlo approach is often prohibitively expensive.

MLMC methods, as introduced in the works [57] and [70], are a well established technology

to compute the expected value of a random QoI that is an output quantity of a stochastic

differential model. MLMC estimators exploit multiple discretisations of the underlying dif-

ferental model and have shown significant performance improvements over standard Monte

Carlo algorithms [57, 85, 68, 45] when the appropriate parameters are selected properly.

In this chapter, we recall the construction of the basic MLMC estimator for estimating the

expected value of a random QoI, through which we review the relevant literature on the dif-

ferent aspects of MLMC methods. In particular, Section 2.1 introduces this MLMC estima-

tor, reviewing some basic complexity results as well as presenting an overview of practical

MLMC algorithms. Section 2.2 highlights several common elements of MLMC methods, as

well as other hierarchical Monte Carlo methods such as the Multi-Index Monte Carlo (MIMC)

method presented in Section 2.2.1 and the Multi-Fidelity Monte Carlo (MFMC) method pre-

sented in Section 2.2.2. The association between these common structures and the XMC
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Chapter 2. Introduction to MLMC methods

software library [5] that we developed during this thesis research are highlighted in this sec-

tion. Lastly, Section 2.3 gives a brief overview of some extensions of MLMC to compute sum-

mary statistics other than the expected value, as well as sampling strategies other than Monte

Carlo.

2.1 MLMC estimators and complexity behaviour

Let (Ω,F ,P) denote a complete probability space, ω ∈ Ω an elementary random event and

Q :Ω→ R a real valued QoI. We address here the problem of estimating the expected value

E [Q] of the random QoI Q. Sampling directly from Q is typically not possible for the appli-

cations of interest in this thesis., which involve solving complex differential models. Rather,

one samples from an approximation Qh to Q, where h denotes an appropriate approxima-

tion parameter. For example, h can be a mesh parameter associated to a discretisation of the

underlying differential model of which Q is an output.

We first study a naive Monte Carlo estimator for E [Q]:

E [Q] ≈ µ̂mc := 1

N

N∑
i=1

Q(i )
h

N
, (2.1)

where
{

Q(i )
h

}N

i=1
are N independent identically distributed samples of Qh . The accuracy of

this estimator can be quantified by the MSE, defined as MSE
(
µ̂mc

)
:= E[

(µ̂mc −E [Q])2
]
. Thanks

to the independence of the samples Q(i )
h , it is easy to see that

MSE
(
µ̂mc

)= (E [Qh −Q])2 + Var(Qh)

N
. (2.2)

The first term, called the squared bias error, describes the discretisation error in approximat-

ing Q using Qh , and the second term, called the statistical error, is related to finite sampling

using N samples. Both error contributions need to be balanced to obtain a good estimate.

We assume that there exist positive constants Cα,α,Cγ,γ such that

|E [Qh −Q] | ≤Cαhα, (2.3a)

Cost
(
Q(i )

h

)
≤Cγh−γ. (2.3b)

We remark that Cost
(
Q(i )

h

)
denotes the expected cost of computing one realisation of Qh ,

since different realisations can possibly have different costs, for example, due to differences

in the convergence of iterative methods used to solve the underlying PDE. We require the

MSE in Eq. (2.2) to satisfy a tolerance of ϵ2, split equally between the squared bias and the

statistical error contributions. By selecting the number of samples N ∝ ϵ−2 and the discreti-

sation parameter h ∝ ϵ1/α, it can be shown that the cost to compute the estimator µ̂mc scales
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as

Cost
(
µ̂mc

)
≲ ϵ−2−γ/α. (2.4)

The cost term in Eq. (2.4) consists of two parts, namely the cost to solve the underlying prob-

lem once, which scales as O
(
ϵ−γ/α

)
, and the cost of sampling, which scales as O

(
ϵ−2

)
.

MLMC methods aim to “hide” the cost of solving the underlying problem such that complex-

ity of a comparable MLMC estimator scales only as O
(
ϵ−2

)
in the best case. MLMC methods

work by sampling from a set of approximations {Ql }L
l=0 to Q on a sequence of L +1 discreti-

sations with different characteristic discretisation parameters, for example induced by mesh

sizes h0 > h1 > ... > hL , typically a geometric sequence hl−1 = shl with s > 1. The MLMC

estimator to estimate E [Q] is given by

E [Q] ≈ µ̂ := 1

N0

N0∑
i=1

Q(i ,0)
0 +

L∑
l=1

1

Nl

Nl∑
i=1

[
Q(i ,l )

l −Q(i ,l )
l−1

]
, (2.5)

where Q(i ,l )
l and Q(i ,l )

l−1 are correlated realisations of the QoI computed with the same under-

lying realisation of the input parameters on meshes with discretisation parameters hl and

hl−1 respectively, Q(i ,l )
l ,l−1 and Q( j ,k)

k,k−1 are otherwise independent if i ̸= j or k ̸= l , and {Nl }L
l=0 is

a decreasing sequence of sample sizes. The sample sizes Nl and the number of levels L are

commonly referred to as the MLMC “hierarchy”. Notice that the sum over the discretisation

levels l = 0, ...,L telescopes in expectation:

E
[
µ̂
]= E [Q0]+

L∑
l=1

E [Ql −Ql−1] = E [QL] ≈ E [Q] , (2.6)

and hence, the bias or discretisation error |E[
µ̂−Q

] | = |E [QL −Q] | of the MLMC estimator

depends only on the finest discretisation level considered.

The MSE of the MLMC estimator, defined again as MSE
(
µ̂
)

:= E
[
(µ̂−E [Q])2

]
, splits in this

case as:

MSE
(
µ̂
)= (E [QL −Q])2 +

L∑
l=0

Var(Ql −Ql−1)

Nl
, (2.7)

where Q−1 := 0. We see that the bias term is analogous to the one in Eq. (2.2), whereas the sta-

tistical error term is now split over the L+1 levels, thanks to the fact that the level-wise Monte

Carlo estimators µ̂mc,l =
∑Nl

i=1(Q(i ,l )
l −Q(i ,l )

l−1 )/Nl are mutually independent. We again make

the assumption that there exist positive constants Cα,α,Cβ,β,Cγ,γ such that the following
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hold:

bl := |E [Ql −Q] | ≤Cαhαl , (2.8a)

Vl :=Var(Ql −Ql−1) ≤Cβhβl , (2.8b)

cl := Cost
(
(Q(i ,l )

l ,Q(i ,l )
l−1

)
≤Cγh−γ

l . (2.8c)

We remark once again that cl denotes the expected cost of computing one realisation each

of Ql and Ql−1. We require the MSE to satisfy a tolerance of ϵ2 that is equally split between

the bias and statistical error terms in Eq. (2.7). The bias error is controlled by the number of

levels L. Assuming a geometric sequence of discretisations hl = h0s−l , s > 1, we wish to select

L such that the bias error satisfies a tolerance of ϵ2/2:

CαhαL ≤ ϵp
2

=⇒ L =
⌈

1

α log(s)
log

(p
2Cαh0

ϵ

)⌉
. (2.9)

Once L has been selected, we wish to select the level-wise sample sizes {Nl }L
l=0 to minimise

the cost of the estimator µ̂ subject to the constraint that the statistical error satisfies a toler-

ance of ϵ2/2:

{N∗
l }L

l=0 = argmin
{Nl }L

l=0∈NL

L∑
l=0

Nl cl s.t.
L∑

l=0

Vl

Nl
≤ ϵ2

2
. (2.10)

It has been shown in [57] that a nearly optimal solution to this problem is given by

N∗
l =

⌈
2

ϵ2

√
Vl

Cl

(
L∑

k=0

√
Vkck

)⌉
, l ∈ {0,1, ...,L}. (2.11)

This process of selecting L and Nl using knowledge of the estimates bl , Vl and cl , as well as

the model constants and rates in Eqs. (2.8), is usually referred to in the literature as “tuning”.

It was shown in [57] that by selecting the number of levels and sample sizes as in Eqs. (2.9)

and (2.11), the cost of the MLMC simulation scales as

Cost
(
µ̂
)= L∑

l=0
Nl cl ≲


ϵ−2, β> γ,

ϵ−2(logϵ)2, β= γ,

ϵ−2−(γ−β)/α, β< γ.

(2.12)

For β> γ, the cost is dominated by Monte Carlo sampling on the coarsest levels and, hence,

the cost to solve a single problem on the finest discretisation O
(
ϵ−γ/α

)
does not appear here.

For β= γ the number of samples is distributed evenly across levels and for β< γ, the cost is

primarily on the finest levels. Even in this worst case, MLMC estimators are an improvement

over standard Monte Carlo in terms of complexity as can be seen when compared with (2.4).
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2.1.1 Adaptive tuning of MLMC algorithms

Selecting the hierarchy parameters L(ϵ) and Nl (ϵ) in a cost optimal manner requires knowl-

edge of the quantities bl , Vl and cl , as well as their corresponding decay rates. Knowledge of

these quantities is typically not available prior to computing samples. It was proposed in [57]

to obtain estimates of bl , Vl and cl by running a “screening” phase with a few samples. These

quantities were then estimated by sample average and sample variance estimators using the

screening hierarchy. The optimal hierarchy for a given tolerance ϵ2 could then be computed

based on these estimates. However, since the screening phase typically contains very few

samples and levels, the resulting estimates of bl , Vl and cl may not be accurate.

To remedy this issue, one can begin with a screening phase, but incrementally improve the

estimates of bl , Vl and cl in an iterative manner. The authors of [56] proposed Algorithm 1, a

heuristic algorithm wherein the number of levels in the MLMC hierarchy is incremented by

one for every iteration of the algorithm.

Algorithm 1: Adaptive MLMC algorithm from [56]

1: Input: Target tolerance ϵ> 0.
2: Start with L = 2 and Nl = N 0 samples, l ∈ {0,1,2}.
3: while extra samples need to be evaluated do
4: Evaluate extra samples on each level
5: Compute estimates for Vl and cl

6: Compute optimal sample sizes Nl (ϵ) according to Eq. (2.11). Set NL = N 0.
7: if |E [QL −QL−1]|/(eα−1) < ϵ/

p
2 then

8: Exit loop
9: else

10: Set L = L+1
11: end if
12: end while

Alternatively, the authors of [39] proposed an approach, named CMLMC, where, in con-

trast to Algorithm 1, the MLMC hierarchy is adapted to a sequence of decreasing tolerances

ϵi = ϵκN−i , i ∈ {0, ..., N }, of which the target tolerance ϵ is the final one. Such a construc-

tion makes the optimal MLMC estimator for the final tolerance robust to inaccurate initial

estimates of bl , Vl and cl from the screening hierarchy. This algorithm is described in Algo-

rithm 2. In this thesis research, we develop such continuation type algorithms, both for use

in risk-estimation and for combination with risk-averse gradient-based optimisation tech-

niques. The reader is referred to [56], in addition to the works of [39, 105], for detailed de-

scriptions of various different MLMC algorithms to estimate bl , Vl and cl and adaptively tune

the parameters of the MLMC hierarchy based on them.
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Algorithm 2: CMLMC Algorithm

1: Input: Target tolerance ϵ> 0, Number of CMLMC iterations d ∈N, Tolerance refinement
ratios λ> κ> 1. Set j = 1, ϵa = ϵ0.

2: Launch screening hierarchy.
3: Compute estimates bl , Vl and cl and model parameters cα,cβ,cγ,α,β,γ.
4: Compute MSE

(
µ̂
)

based on Eq. (2.7)
5: while j ≤ d or MSE

(
µ̂
)≥ ϵ2 do

6: Launch hierarchy with L∗(ϵa), {N∗
l (ϵa)}L∗

l=0 computed based on Eqs. (2.9) and (2.11)

7: if j ≤ d { Set ϵa = ϵλ(d− j ) } else { Set ϵa = ϵκ(d− j ) }
8: Compute estimates bl , Vl , cl and model parameters cα,cβ,cγ,α,β,γ
9: Compute MSE

(
µ̂
)

based on Eq. (2.7)
10: Update j ← j +1
11: end while

2.2 Beyond MLMC: A common structure for hierarchical estima-

tors and relation to XMC software

A key part of this thesis research is the development of the XMC software library [5]. The

structure of the library was chosen to reflect the MLMC idea of sampling the hierarchical

differences Ql −Ql−1 for different l . Additionally, the library structure was also designed to

reflect the commonalities between Algorithm 1 and 2, as well as other commonly used MLMC

algorithms. The common features are identified as follows:

• The estimator is the sum of independent estimators over a list of levels (or, more gen-

erally, indices) such that:

µ̂= ∑
l∈L

µ̂l , (2.13)

where L denotes the list of levels/indices.

• Each µ̂l is a Monte Carlo type estimator, requiring multiple independent evaluations

of the QoI using different discretisations or models, e.g., Ql −Ql−1 at level l

• Level/index-dependent quantities such as bl , Vl and cl must be estimated for error

control/adaptivity.

• A global coordination between levels/indices (adaptive algorithm) is needed to define

the new hierarchy once all computations and level-wise error estimations have been

completed.

As a result of this general structure, users are able to design their own hierarchical Monte

Carlo estimator and corresponding adaptive algorithm, by appropriately selecting modules

within the library. We elaborate on these features more extensively in Chapter 6. In addi-

tion to the MLMC estimator, we present in this section some other examples of hierarchical

16



2.2 Beyond MLMC: A common structure for hierarchical estimators and relation to XMC
software

Monte Carlo estimators in the literature that share this common structure and can/have been

implemented within the XMC software library.

2.2.1 Multi-Index Monte Carlo estimators

MIMC estimators [68] generalise the notion of MLMC estimators to more than one discreti-

sation parameter. For example, one may wish to exploit different combinations of space and

time discretizations for complexity gains. The notion of levels l ∈ {0,1, ...,L} is extended to a

set of multi-indices s = (s1, s2, ..., sd ) where each si takes a value in {0,1, ...,Li }. Each si corre-

sponds to one level of one discretization parameter. For a multi-index s ∈Nd , we denote by

Qs the approximation of Q obtained with a discretisation characterised by s = (s1, s2, ..., sd )

and define the following mixed difference operators:

∆i Qs =
{

Qs −Qs−ei , if si > 0,

Qs , if si = 0,
(2.14)

and ∆Qs =∆1 ⊗∆2 ⊗ ...⊗∆dQs , (2.15)

where ei is the canonical vector whose components are given by (ei ) j = δi j . The MIMC esti-

mator is then defined as

µ̂mimc =
∑

s∈I

1

Ns

Ns∑
i=1
∆Q(i ,s)

s , (2.16)

where I is a set of indices chosen based on notions of optimal error and cost. Each term

∆Q(i ,s)
s involves at most 2d computations on different discretisation levels; namely,

∆Q(i ,s)
s = ∑

j∈{0,1}d

(−1)∥ j∥1Q(i ,s)
s− j , (2.17)

where in Eq. (2.17), we use the convention that Q(i ,s)
s− j = 0 if any of the entries of s − j are

negative. The key point in Eq. (2.17) is that all the terms Q(i ,s)
s− j are computed with the same

realisation of the input parameters, whereas the terms ∆Q(i ,s)
s and ∆Q( j ,p)

p are independent if

i ̸= j or s ̸= p. Assuming that the mixed differences satisfy the following properties,

|E [∆Qs] | ≤Cα

d∏
i=1

e−αi si , (2.18a)

Var(∆Qs) ≤Cβ

d∏
i=1

e−βi si , (2.18b)

Cost (∆Qs) ≤Cγ

d∏
i=1

eγi si , (2.18c)

for some positive constants Cα, Cβ, Cγ and rates (αi ,βi ,γi ), i ∈ {1, ...,d}, a complexity the-

orem was proven in [68] for the estimator µ̂mi mc , showing substantial improvement over an
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MLMC estimator in which all discrete parameters are refined going from one level to another.

In other words, the bounds in Eqs. (2.18) assume that the dependence of the above quanti-

ties on the discretization parameters factorizes into individual rates along each discretization

parameter.

2.2.2 Multi-Fidelity Monte Carlo estimators

The MFMC method is an extension of the concept of levels within the MLMC framework to

a more general notion of “fidelity”. MFMC estimators have been extensively used as an al-

ternative to MLMC estimators, wherein the hypotheses in Eqs. (2.8) cannot be guaranteed.

Typically, MFMC estimators consist of a few simulations conducted on a highly accurate but

expensive high-fidelity model, corrected with correlated simulations from several less ac-

curate but relatively cheaper low-fidelity models. In contrast to MLMC estimators, general

MFMC estimators do not make any assumptions on the relative accuracy of the high- and

low-fidelity models. Instead, they purely use correlation information to compute the optimal

variance reduction and corresponding cost-optimal sample allocation.

To demonstrate this concept further, we study the idea of control variates. The MFMC method

can be thought of as a generalisation of the concept of control variates. The method of con-

trol variates seeks to minimise the variance of the Monte Carlo estimator in Eq. (2.1) as fol-

lows. We are once again interested in estimating E [Q] and, to this end, introduce another

random variable Z with a bounded second moment. We define the new random variable

Q̂α := Q −α(Z − E [Z ]). By construction, we have that E
[
Q̂α

] = E [Q]. In addition, we have

that Var
(
Q̂α

) = Var(Q)− 2αCov(Q, Z )+α2Var(Z ), and that this variance is minimised by

choosing the parameter α as:

α∗ = argmin
α∈R

Var
(
Q̂α

)= Cov(Q, Z )

Var(Z )
. (2.19)

As a result, we have that

Var
(
Q̂α

)= min
α∈R

Var
(
Q̂α

)=Var(Q)

(
1− Cov(Q, Z )

Var(Q)Var(Z )

)
. (2.20)

Once the optimal value α∗ has been estimated, possibly through an initial screening phase,

the control variate estimator reads:

E [Q] ≈ µ̂cv,1 = 1

N

N∑
i=1

(
Q(i ) −α∗Z (i )

)
+α∗E [Z ] . (2.21)

In the event that E [Z ] is not known exactly, but is inexpensive to evaluate, one can estimate

the second term using a richer Monte Carlo estimator as follows:

E [Q] ≈ µ̂cv,2 = 1

N

N∑
i=1

(
Q(i ) −α∗Z (i )

)
+ α∗

M

M∑
j=1

Z ( j ), (2.22)
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2.2 Beyond MLMC: A common structure for hierarchical estimators and relation to XMC
software

where M ≫ N , and the first N samples {Z (i )
j }N

i=1 in the last term may or may not coincide

with the N samples {Z (i )
j }N

i=1} of the control variates. This notion can be extended to multiple

control variates {Z j }d
j=1 as well, yielding a variety of MFMC estimators. The authors of [103,

101] propose an MFMC estimator of the following form:

E [Q] ≈ µ̂mfmc =
1

N

N∑
i=1

Q(i ) +
d∑

j=1
α j

(
1

M j

M j∑
i=1

Z (i )
j − 1

M j−1

M j−1∑
i=1

Z (i )
j

)
, (2.23)

similar in structure to the MLMC estimator in Eq. (2.5), and the sample sizes {M j }d
j=1 are such

that N = M0 < M1 < ... < Md . In both works, the variance of the MFMC estimators are min-

imised over the sample sizes M j and coefficients α j , constrained to a given computational

budget. Closed form expressions are provided in both works for the optimal values of these

parameters in terms of the correlation coefficients between the high-fidelity model Q and

lower fidelity models Z j . Additionally, convergence and complexity results were shown in

[102] for the estimator µ̂mfmc, demonstrating that it could replicate the same complexity be-

haviour of a comparable MLMC estimator. We note that the estimator (2.23) does not quite

possess the general structure presented at the beginning of this section. We also highlight

that closed form expressions for the optimal parameters of MFMC estimators such as (2.23)

are, in general, not readily available in closed form, and require additional assumptions on

cost/correlation information.

We present below a hierarchical MFMC estimator that was proposed in [20] for a hierarchy of

approximations {Ql }L
l=0 to Q:

E [Q] ≈ E [QL] ≈
L∑

l=0

1

Nl

Nl∑
i=1

(
Q(i ,l )

l −αl−1Q(i ,l )
l−1

)L−1∏
k=l

αk . (2.24)

Although this estimator exploits less the correlations between the models than the one in

Eq. (2.23), and therefore has worse cost-complexity behaviour, it fit the general structure of

hierarchical estimators given at the beginning of this section and is easier to calibrate since

it relies mostly on level-wise calculations and error estimations. Various strategies were pre-

sented in [20] for the calibration of the above estimator. In addition, the estimator was im-

plemented in [5] and applied to a problem of turbulent flow around a building.

MFMC estimators have recently been successfully combined with MLMC estimators and

control variates to achieve superior performance. [54] proposed a combined multi-fidelity-

multi-level estimator and derived expressions for the optimal values of sample sizes as well

as the equivalent of the coefficients α. The resultant estimator was shown to perform better

than a comparable MLMC estimator in terms of accuracy. The approach was further applied

successfully in [55] to a problem of aerospace engineering. A generalised framework was also

proposed in [63] for unifying different MFMC, MLMC and control variate approaches. No-

tably, the authors of [117, 116] introduced the concept of best linear unbiased estimators, a

generalized estimator which combines evaluations from models with different fidelities in a
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Chapter 2. Introduction to MLMC methods

manner that guarantees the largest variance reduction.

2.3 Extensions and alternatives to the MLMC method

As was reviewed earlier, MLMC methods have been used successfully in literature for com-

puting estimates of E [Q] where Q is the output of a complex differential model with high-

dimensional random inputs. Additionally, multi-level or multi-index methods have also seen

use in combination with other sampling strategies than Monte Carlo sampling, and also to

estimate statistics other than E [Q]. For completeness, we present here a brief overview in this

section of such literature, although we highlight that these methods are external to the focus

area of this thesis research and are not elaborated on hereafter.

For alternative statistics, [27] proposed MLMC estimators for higher order central moments

of the form E [(Q −E [Q])p ], p ≥ 2, based on biased estimators for the level-wise contributions.

Unbiased MLMC estimators were proposed in [86] to estimate higher-order moments, with

analogous complexity results as in Eq. (2.12). For rare event estimation, importance sampling

estimators have been successfully combined with a multi-level framework in [131]. Lastly,

we note that MLMC methods have also been used to estimate distribution and robustness

measures such as quantiles or the CDF, albeit to a lesser extent than moments. The relevant

literature will be reviewed in Chapter 3, since the main focus of that chapter is on the MLMC

estimation of risk-measures.

As an alternative to Monte Carlo sampling, several other sampling methods have also been

proposed in combination with multi-level and multi-index estimators. Notably, stochastic

collocation [21] has been combined successfully with both multi-level [124, 77, 88] and multi-

index [67, 66, 25] strategies. Quasi-Monte Carlo sampling has also been explored within

multi-level [61, 87, 71] and multi-index [110, 111] frameworks.
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3 MLMC estimators for parametric ex-
pectations

As was described in Chapters 1 and 2, it is of great practical interest to estimate by simu-

lation, and with controlled accuracy, the distribution of a random QoI that is the output of

a complex differential model with high-dimensional random input noise. MLMC methods,

as demonstrated in Chapter 2, have shown significant promise in this area, exhibiting dra-

matic performance improvements over naive Monte Carlo methods for estimating the ex-

pected value of a random QoI. However, since one of the key aims of this thesis is to quantify

and estimate the tails of the distribution of the QoI, it is desired instead to quantify summary

statistics other than the expected value; namely risk-measures. Risk-measures are commonly

used in risk-estimation and risk-averse design applications. Examples include quantiles of a

given significance, alternatively known as the VaR, or super quantiles such as the so-called

conditional-value-at-risk, which is often used as a risk-measure in stochastic optimisation

problems in finance [113, 128]. The application of MLMC methods to estimate such statistics

is not as well-developed as for the expected value, as well as the problem of error estimation

and adaptive tuning of the MLMC hierarchy. We discuss, in this chapter, the developments

presented in [16] and [20] towards the MLMC estimation of parametric expectations, from

which estimates of risk-measures such as the VaR and the CVaR could be derived.

Particularly, we follow the approach proposed in [85], which consists of introducing suitable

parametric expectations, and deriving the sought after statistics as a post-processing step.

Parametric expectations are expectations of the form

Φ(θ) := E[
φ(θ,Q)

]
. (3.1)

In this work, we follow [85] and use the following particular form for the function φ:

φ(θ,Q) := θ+ 1

1−τ (Q −θ)+, X + := max(0, X ), θ ∈Θ⊂R, (3.2)

where τ ∈ (0,1) denotes a significance parameter andΘ denotes a suitable interval of interest.
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Chapter 3. MLMC estimators for parametric expectations

This form has the advantage that after estimating the functionΦ and its derivatives

Φ(m)(θ) := ∂m

∂θm E
[
φ(θ,Q)

]
, m ∈N, (3.3)

the CDF FQ (θ) = E[
1Q≥θ

]
and the PDF fQ (θ) = F (1)

Q (θ) over the interval Θ, as well as the VaR

qτ and the CVaR cτ of any significance τ for which qτ ∈ Θ, can be obtained by simple post-

processing:
FQ (θ) = τ+ (1−τ)Φ(1), qτ = argmin

θ∈Θ
Φ(θ),

fQ (θ) = (1−τ)Φ(2), cτ = min
θ∈Θ

Φ(θ) =Φ(qτ).
(3.4)

On the notation, we comment that Φ(0) =Φ, and that 1Q≥θ denotes the characteristic func-

tion which takes on a value of 1 in the interval denoted by the subscript and 0 everywhere

else.

We remark that the CDF could also be estimated by direct MLMC estimation of the expec-

tations FQ (θ) = E[
1Q≥θ

]
for different values of θ. However, using MLMC to estimate the ex-

pected value of a discontinuous function can lead to two main issues. The first is that since

the function is discontinuous, the rate of decay of the level-wise variances corresponding to

Eq. (2.8) but for E
[
1Q≥θ

]
is significantly reduced in comparison to E [Q], and could potentially

cause non-optimal MLMC performance [12, 59]. In addition, only correlated sample pairs

that lie on either side of the discontinuity at θ will contribute to the corresponding MLMC

estimator and to estimates of the analogous versions of bl and Vl in Eq. (2.8) corresponding

to 1Q≥θ. Since this occurs increasingly rarely for finer levels, due to Eq. (2.8), obtaining stable

estimates of these quantities may require a excessively large number of samples. The para-

metric expectation approach overcomes these problems, since the function φ in Eq. (3.2) is

Lipschitz continuous in Q for all θ ∈Θ.

We briefly review alternative approaches that have been proposed in the literature to use

MLMC methods for estimating the distribution of a QoI. A MLMC estimator for the CDF was

proposed and analysed in [60] wherein a smoothened approximation to the characteristic

function 1Q≥θ was used. The MLMC method was also used in [58] for nested conditional

expectations from which the VaR and CVaR could be derived. An alternative smoothing of

the characteristic function based on the KDE method was proposed in [123], combined with

an MLMC estimator wherein stratification based sampling was applied at each level. The

authors of [24] combined an approach to locate the discontinuity using a root-finding al-

gorithm, followed by numerical pre-integration. One can also derive the VaR and the CVaR

from surrogate distributions derived from moments. For example, in the works [28, 64], a

maximum entropy approach was used to estimate the PDF and the VaR using moment es-

timates from MLMC estimators. The use of MLMC estimators for parametric expectations

is still an ongoing research area. The work in [85] built upon the ideas presented in [60],

but generalises them further to approximate general parametric expectations. Furthermore,

novel MLMC estimators for the characteristic function were presented based on the idea of
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pointwise estimation combined with interpolation.

The current work builds upon the theoretical work in [85] and aims at deriving practical al-

gorithms for the MLMC estimators proposed therein. This requires the derivation of reliable

and possibly sharp error estimators that can be used to adaptively calibrate the hierarchy

of the MLMC estimators to achieve optimal performance, i.e., a computational complexity

aligned with the theoretical predictions. An error bound was already presented in [85] based

on the use of inverse inequalities. However, this bound results in conservative error estimates

that lead to MLMC hierarchies that are impractically expensive to compute. In this work, we

propose novel error estimators which are much sharper than those reported previously and

can be used for practical engineering purposes. These estimators improve on the large lead-

ing constants while preserving their optimal theoretical decay rates as the discretisation is

refined. More precisely, we propose a bias error estimator based on a smoothened density as

well as a statistical error estimator based on bootstrapping [126]. We then use our novel error

estimators to design a continuation MLMC algorithm that successively improves the hierar-

chy to meet a target tolerance with optimal performance. We show on three numerical tests,

including an option pricing problem in finance and a laminar fluid dynamics problem, that

our methodology does indeed feature a computational complexity aligned with the theoret-

ical rates presented in [85]. Furthermore, we demonstrate that the methodology is robust in

the sense that the true MSE, computed with respect to a reference solution, is always smaller

than the prescribed tolerance. We add that the novel MLMC contributions of this work have

been implemented in the Python package XMC, available at [5].

The structure of this work is as follows. In Section 3.1, we present the MLMC estimator for

the parametric expectation Φ in Eq. (3.1) and introduce a notion of the MSE for Φ and its

derivatives. We briefly recall the results of [85] on error bounds for MLMC estimators of para-

metric expectations and present a simplified complexity result for an optimally tuned MLMC

estimator. We also detail the practical aspects of implementing such an error estimator. In

Section 3.3, we describe novel error estimators that provide tighter bounds on the true error.

We compare the performance of these error estimators with the a priori ones presented in

[85] on a simple case for which theoretical results are known. Section 3.4 details an adap-

tive strategy for selecting the parameters of the hierarchy such that a given tolerance can be

achieved on the MSE of the MLMC estimator of Φ(m), m ∈ {0,1,2}, as well as on the MSE of

MLMC estimators of the VaR and the CVaR. In particular, Section 3.4.4 recalls a result from

[85] to relate the error on derived quantities such as the VaR and the CVaR to the error on Φ

and its derivatives. The novel error estimator, the adaptive strategy and the performance of

the MLMC algorithm are demonstrated on an array of problems of increasing complexity in

Section 5.4. Finally, Section 3.6 offers a conclusion and a discussion on the presented work.
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Chapter 3. MLMC estimators for parametric expectations

3.1 Multi-Level Monte Carlo approximation of parametric expecta-

tions

As presented at the beginning of this chapter, we focus in this work on the problem of approx-

imating parametric expectations of the form in Eqs. (3.2) and (3.3) using the MLMC method.

The approach we follow is motivated by [85, 60]. We approximate the parametric expectation

Φ and its derivativesΦ(m) on an intervalΘ via the MLMC method as follows: We first consider

a set of n ∈N nodes

θ := {θ1,θ2, ...,θn}, θ j ∈Θ⊂R, 1 ≤ j ≤ n, θ j < θ j+1, (3.5)

such thatΘ= [θ1,θn]. The functionΦ is then approximated pointwise at any point θ j ∈Θ as

Φ(θ j ) ≈ E[
φ(θ j ,QL)

]= E[
φ(θ j ,Q0)

]+ L∑
l=1

E
[
φ(θ j ,Ql )−φ(θ j ,Ql−1)

]
, (3.6)

where each expected value is estimated using a Monte Carlo estimator. We then define the

MLMC estimator Φ̂L(θ j ) ofΦ(θ j ) as

Φ̂L(θ j ) := 1

N0

N0∑
i=1

φ(θ j ,Q(i ,0)
0 )+

L∑
l=1

1

Nl

Nl∑
i=1

[
φ(θ j ,Q(i ,l )

l )−φ(θ j ,Q(i ,l )
l−1 )

]
. (3.7)

It is important to note that the same set of random events is used to evaluate the estima-

tor for all θ j . Finally, we obtain a MLMC estimator Φ̂L of the whole function Φ : Θ→ R by

interpolating over the pointwise estimates as below:

Φ̂L =Sn
(
Φ̂L(θ)

)
, (3.8)

where Sn denotes an appropriate interpolation operator and Φ̂L(θ) denotes the set of point-

wise MLMC estimates in Eq. (3.7), that is:

Φ̂L(θ) = {Φ̂L(θ1),Φ̂L(θ2), . . . ,Φ̂L(θn)}. (3.9)

An estimate of the function derivative of order m ∈ N denoted by Φ̂(m)
L is then obtained by

computing the derivative of the resultant interpolated function:

Φ̂(m)
L :=S (m)

n

(
Φ̂L(θ)

)
:= ∂m

∂θm Sn
(
Φ̂L(θ)

)
, (3.10)

provided that it exists. Throughout this work, cubic spline interpolation with equally spaced

interpolation points is used. Hence, we restrict ourselves to m ∈ {0,1,2}, although other in-

terpolant operators and interpolation points can be used as well [85].

We use the following MSE criterion to quantify the accuracy of the function derivative esti-
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3.2 A priori error estimates on function derivatives and complexity analysis

mate:

MSE
(
Φ̂(m)

L

)
:= E

[∥∥∥Φ(m) − Φ̂(m)
L

∥∥∥2

L∞(Θ)

]
, m ∈ {0,1,2}, (3.11)

where the norm
∥∥ f

∥∥
L∞(Θ) of a function f :Θ→R is defined as

∥∥ f
∥∥

L∞(Θ) := esssup
θ∈Θ

| f (θ)|. (3.12)

By the triangle inequality, the MSE can be separated into three terms:

MSE
(
Φ̂(m)

L

)
≤ 3

{∥∥Φ(m) −S (m)
n (Φ(θ))

∥∥2
L∞(Θ)︸ ︷︷ ︸

Squared interpolation error

+∥∥S (m)
n

(
Φ(θ)−E[

Φ̂L(θ)
])∥∥2

L∞(Θ)︸ ︷︷ ︸
Squared bias error

+E
[∥∥S (m)

n

(
Φ̂L(θ)−E[

Φ̂L(θ)
])∥∥2

L∞(Θ)

]
︸ ︷︷ ︸

Squared statistical error

}

=: 3
{

(e(m)
i )2 + (e(m)

b )2 + (e(m)
s )2

}
, (3.13)

where we have used the notation e(m)
i , e(m)

b and e(m)
s for the interpolation, bias and statistical

errors respectively.

Both the computational cost and accuracy, and thus the complexity, of the MLMC estima-

tor are determined by three different sets of parameters; namely the number of interpolation

points n, the level-wise sample size Nl at each level l and the number of levels L. These

should be chosen in a cost optimal way based on suitable a priori or a posteriori error esti-

mates. In the next sections, we first review the a priori error estimates and the corresponding

complexity analysis from [85], before presenting our new and refined error estimators in Sec-

tion 3.3.

3.2 A priori error estimates on function derivatives and complexity

analysis

We review in this section the a priori estimators derived in [85] for each of the error terms

in the MSE bound presented in Eq. (3.13). We review as well the MLMC method described

therein to adaptively select the parameters of the hierarchy based on a simplified cost model,

for which we also state the corresponding complexity result. The main idea behind the error

bounds introduced in [85] is to exploit the properties of the particular form of the function

φ given in Eq. (3.2) in order to derive an upper bound for the MSE in Eq. (3.13). Since the

function φ(θ,Q) is uniformly Lipschitz continuous in Q for all θ ∈Θ, we have that∣∣φ(θ,Ql )−φ(θ,Ql−1)
∣∣≤Cl i p |Ql −Ql−1| ∀θ ∈Θ, (3.14)
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Chapter 3. MLMC estimators for parametric expectations

with finite Lipschitz constant Cl i p = 1/(1−τ), τ ∈ (0,1). If one can control the decay rates of

the expected value and variance of the difference Ql −Ql−1 with level l , then the correspond-

ing statistics of the difference in the function φ evaluated at the two levels φ(·,Ql )−φ(·,Ql−1)

decay as well with the same or better rates in the L∞(Θ)-norm. Consequently, complexity

results analogous to those available for MLMC estimators of the simple expectation of Q can

be obtained for Φ̂L .

In [85], inverse inequalities were used to relate the MSE of Φ̂(m)
L ,m ≥ 0 in Eq. (3.11) to point-

wise errors on Φ̂L(θ j ), j ∈ {1, ...,n}. Particularizing the general a priori bound from [85] to the

case of cubic spline interpolation, we obtain:

MSE
(
Φ̂(m)

L

)
≤ 3

{
(ē(m)

i )2 + (ē(m)
b )2 + (ē(m)

s )2
}

, (3.15a)

where ē(m)
i :=C1(m)

∥∥Φ(4)
∥∥

L∞(Θ)

( |Θ|
n

)(4−m)

, (3.15b)

ē(m)
b

:=C2(m)C3(n −1)mbL , (3.15c)

ē(m)
s :=C2(m)C3(n −1)m

√√√√c(n)
L∑

l=0

Vl

Nl
, (3.15d)

where |Θ| denotes the size of the domain Θ. Each of the three terms e(m)
i ,e(m)

b and e(m)
s in

Eq. (3.13) are bounded respectively by the corresponding term ē(m)
i , ē(m)

b and ē(m)
s in Eq. (3.15a)

and the constants C1(m), C2(m) and C3 are related to the properties of the cubic spline in-

terpolation operator and are detailed in 3.A, together with some relevant properties of cubic

splines. The constant c(n) in Eq. (3.15d) is introduced in [90], further detailed in [62] and

reads:

c(n) = 2π

(
ln(n +1)+

p
8/π

n+1∑
k=2

k−2ln(k)−1/2

)
. (3.16)

We have also introduced the notation bl and Vl for the level-wise biases and variances re-

spectively, which are defined as

bl := ∥∥Φ−E[
φ(·,Ql )

]∥∥
l∞(θ) , and Vl := E

[∥∥φ(·,Ql )−φ(·,Ql−1)
∥∥2

l∞(θ)

]
, (3.17)

where the norm ∥·∥l∞(θ) is defined for a function f : Θ→ R evaluated at a set of points θ ≡
{θ1, ...,θn} as follows: ∥∥ f

∥∥
l∞(θ) := max

1≤i≤n
| f (θi )|. (3.18)

Note that bl , Vl and
∥∥Φ(4)

∥∥
L∞(Θ) are usually not directly computable in practice. However,

it is possible to estimate them reliably from the MLMC samples themselves. This will be

discussed later in this section.

Using the a priori bounds derived in Eqs. (3.15a)-(3.15d), we now describe how to select the
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3.2 A priori error estimates on function derivatives and complexity analysis

optimal values n∗, N∗
l and L∗ such that the MSE on the function derivative satisfies a tol-

erance ϵ2 split with positive weights wi , wb and ws between the squared interpolation, bias

and statistical error terms respectively. The weights are such that wi +wb +ws = 1. We define

the tolerances ϵ2
i , ϵ2

b and ϵ2
s as follows and require each of the terms in Eq. (3.15a) to satisfy

their respective tolerances:

(ē(m)
i )2 ≤ ϵ2

i := wi ϵ
2

3
, (ē(m)

b )2 ≤ ϵ2
b := wbϵ

2

3
, (ē(m)

s )2 ≤ ϵ2
s := wsϵ

2

3
, (3.19)

The interpolation error is controlled solely by the number of interpolation points, which is

therefore selected first, namely as

n∗ =
ÈÌÌÌ

[
C1(m)

∥∥Φ(4)
∥∥

L∞(Θ)

ϵi

] 1
(4−m)

|Θ|
ÉÍÍÍ , (3.20)

ensuring that the squared interpolation error is bounded by ϵ2
i once n is chosen as in Eq. (3.20).

Given n∗, the optimal number of levels L∗ is selected to be the smallest level such that the

squared bias error satisfies a tolerance ϵ2
b ; namely that C2(m)C3(n∗−1)mbL∗ ≤ ϵb , that is

L∗ = min

{
K ∈N0 : bK ≤ ϵb

C2(m)C3(n∗−1)m

}
. (3.21)

Lastly, with n∗ and L∗ fixed, the level-wise sample size Nl at level l is selected to minimise

the cost of computing the MLMC estimator

Cost
(
Φ̂(m)

L

)
≤

L∗∑
l=0

Nl (cl +n∗cφ)+n∗cint, (3.22)

subject to the following constraint on the squared statistical error:

C 2
2 (m)C 2

3 (n∗−1)2mc(n∗)
L∗∑

l=0

Vl

Nl
≤ ϵ2

s . (3.23)

Here, cl is the cost of computing one realisation of the correlated pair of approximations

(Ql ,Ql−1) at level l , cφ is the constant that bounds the cost of evaluating the function φ(θ,Q)

for any (θ,Q) ∈ Θ×R and cint is the cost per interpolation point of constructing the cubic

spline interpolant on a uniform grid. In [85], the level-wise sample sizes were selected under

the assumption that cint and cφ were non-zero. However, for the applications addressed in

this work, it was found that cint and cφ are usually negligible in comparison to cl . Hence, we

select the level-wise sample sizes {Nl }L∗
l=0 based on the simplified cost model

Cost
(
Φ̂(m)

L

)
≈

L∗∑
l=0

Nl cl . (3.24)
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Consequently, the level-wise sample sizes are selected similar to [57] as follows:

N∗
l =

⌈
C 2

2 (m)C 2
3 c(n∗)(n∗−1)2m

ϵ2
s

√
Vl

cl

L∗∑
k=0

√
Vkck

⌉
, 0 ≤ l ≤ L∗. (3.25)

Below, we present a complexity result based on the simplified cost model in Eq. (3.24) using

the a priori bounds in Eqs. (3.15a)-(3.15d). This result is a simplified version of the one pre-

sented in [85] and is tailored to the use of cubic spline interpolation. We give here the proof

for completeness.

Proposition 3.2.1. Suppose that there exist positive constants α, β, and γ such that 2α ≥
min(β,γ) and that

(i) bl decays exponentially with order α > 0 in l , in the sense that bl ≤ cαe−αl for some

constant cα > 0,

(ii) Vl decays exponentially with order β > 0 in l , in the sense that Vl ≤ cβe−βl for some

constant cβ > 0,

(iii) the cost to compute each i.i.d. realisation of (Ql ,Ql−1) increases exponentially with rate

γ> 0 in l , in the sense that cl = Cost (Ql ,Ql−1) ≤ cγeγl for some constant cγ,

for all l ∈ N0, when hl−1 = shl for some s > 1 and m ∈ {0,1,2}. For any 0 < ϵ < e−1, the m-

th derivative, of the MLMC estimator Φ̂L of Φ ∈ C 4(Θ) with the number n of (uniform) nodes

chosen according to Eq. (3.20), the maximum number of levels L as in Eq. (3.21), and level-

wise sample sizes Nl given by Eq. (3.25), satisfies MSE
(
Φ̂(m)

L

)
≤ ϵ2 at a computational cost that

is bounded by

Cost
(
Φ̂(m)

L

)
≲ log(ϵ−1)ϵ−2− 2m

4−m


1, if β> γ,

log(ϵ−1)2, if β= γ,

ϵ
β−γ
α

4
4−m , if β< γ.

Proof. We begin by considering the choice of the number of interpolation points given by

Eq. (3.20). We have that n = O
(
ϵ

−1
4−m

)
. In the light of hypothesis (i), the optimal choice of L is

given by

L =
⌈

1

α
log

[p
3cαC2(m)C3(n −1)m

p
wbϵ

]⌉
=O

(
log

(
ϵ−

4
α(4−m)

))
. (3.26)

Using the expression for Nl in Eq. (3.25) in the simplified cost model gives

Cost
(
Φ̂(m)

L

)
=

L∑
l=0

Nl cl ≤
L∑

l=0
cl +

3C 2
2 (m)C 2

3 c(n)(n −1)2m

wsϵ2

[
L∑

l=0

√
Vl cl

]2

, (3.27)
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3.2 A priori error estimates on function derivatives and complexity analysis

where the first term is added to take into account the cost of computing at least one sample

per level. Using the hypothesis on the cost cl at level l , it follows from Eq. (3.26) that

L∑
l=0

cl ≤ cγ
L∑

l=0
eγl = cγ

[
eγL −e−γ

1−e−γ

]
=O

(
ϵ−

γ

α
4

4−m

)
. (3.28)

In addition, we use the hypotheses on the variance Vl at level l to write

L∑
l=0

√
Vl cl =

√
cβcγ

L∑
l=0

e

(
γ−β

2

)
l

(3.29)

=√
cβcγ


[

epL−e−p

1−e−p

]
, if β ̸= γ

(L+1), if β= γ
(3.30)

where p = (γ−β)/2. In the event that β > γ, we have p < 0. In combination with Eq. (3.26),

we have that [
epL −e−p

1−e−p

]
≤ e−p

e−p −1
=O (1) . (3.31)

In the event that β< γ, we have that p > 0 and hence that[
epL −e−p

1−e−p

]
=O

(
ϵ
β−γ
2α

4
4−m

)
. (3.32)

In summary, we can write that

[
L∑

l=0

√
Vl cl

]2

=


O (1) , if β> γ,

O
(
log(ϵ−1)2

)
, if β= γ,

O
(
ϵ
β−γ
α

4
4−m

)
if β< γ.

(3.33)

As a final step, we note that c(n) = O
(
log(n)

) ≡ O
(
log(ϵ−1)

)
and that (n − 1)2m = O

(
ϵ

−2m
4−m

)
.

Combining all the terms together, we have that

Cost
(
Φ̂(m)

L

)
≲ ϵ

−γ
α

4
4−m + log(ϵ−1)ϵ−2− 2m

4−m


1, if β> γ,

log(ϵ−1)2, if β= γ,

ϵ
β−γ
α

4
4−m , if β< γ.

(3.34)

In addition, we require that 2α≥ min(β,γ) for the complexity to be dominated by the second

term alone and not by the first term that quantifies the cost of a single simulation. This can

be seen by considering each of the following two cases. In the first case β≥ γ, we have

4γ

(4−m)α
≤ 8

4−m
⇐⇒ 2α≥ γ, (3.35)
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Chapter 3. MLMC estimators for parametric expectations

since m ≤ 2. For the second case β< γ, we have that

4γ

(4−m)α
≤ 8

4−m
+ 4(γ−β)

(4−m)α
⇐⇒ 2α≥β. (3.36)

This completes the proof.

3.2.1 Practical aspects and tuning of hierarchy parameters

As pointed out earlier, the error bounds in Eqs. (3.15a)-(3.15d) are still not directly com-

putable. To this end, we present below a possible way to estimate the level-wise terms bl

and Vl , as well as the term
∥∥Φ(4)

∥∥
L∞(Θ) based on the available samples of the MLMC estima-

tor. To estimate the level-wise bias terms bl , we first note that with the help of Hypothesis (i)

from Proposition 3.2.1, we have that

lim
l→∞

E
[
φ(·,Ql )

]=Φ (3.37)

in l∞(θ) and hence, similar to the procedure in [56], one can obtain the heuristic estimate

bl =
∥∥Φ−E[

φ(·,Ql )
]∥∥

l∞(θ) (3.38)

=
∥∥∥∥∥ ∞∑

k=l+1
E
[
φ(·,Qk )

]−E[
φ(·,Qk−1)

]∥∥∥∥∥
l∞(θ)

(3.39)

≈
∥∥E[

φ(·,Ql )−φ(·,Ql−1)
]∥∥

l∞(θ)

(eα−1)
. (3.40)

The expectation in Eq. (3.40) is then estimated with a Monte Carlo estimator over the Nl

independent and identically distributed correlated sample pairs {Q(i ,l )
l ,Q(i ,l )

l−1 }Nl

i=1, denoted by

b̂l . The variance term Vl can also be computed by replacing the expectation in Eq. (3.17) with

a similar sample average estimator V̂l , yielding the following:

b̂l := 1

Nl

∥∥∥∑Nl

i=1φ(·,Q(i ,l )
l )−φ(·,Q(i ,l )

l−1 )
∥∥∥

l∞(θ)

(eα−1)
, (3.41)

V̂l := 1

Nl

Nl∑
i=1

∥∥∥φ(·,Q(i ,l )
l )−φ(·,Q(i ,l )

l−1 )
∥∥∥2

l∞(θ)
. (3.42)

To start the estimation procedure, one typically computes a small number of QoI realisations

on a pre-fixed small number of levels. Such a small initial hierarchy is called a “screening” hi-

erarchy. The screening hierarchy is typically selected such that it is significantly smaller than

the expected optimal hierarchy, so that the computational cost of the screening hierarchy is

negligible in comparison to the optimal hierarchy. Using the screening hierarchy, one can

then obtain initial estimates of b̂l and V̂l , as well as their decay rates in the levels l , based

on which the optimal number of interpolation points n∗, number of levels L∗ and level-wise
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3.2 A priori error estimates on function derivatives and complexity analysis

sample sizes N∗
l can be selected for a prescribed tolerance ϵ2 according to Eqs. (3.20), (3.21)

and (3.25). A MLMC estimator can then be constructed with the estimated optimal hierarchy,

upon which better estimates of b̂l , V̂l and a better MLMC estimator can be produced in an

iterative manner. Such an approach was pioneered in [57].

To compute the optimal hierarchy L∗ and N∗
l from Eqs. (3.21) and (3.25), one may need val-

ues of b̂l and V̂l on levels L < l ≤ L∗ beyond the current maximum level L used, for which

no samples are available. To this end, we fit the theorized models cαe−αl and cβe−βl from

Proposition 3.2.1 to b̂l and V̂l respectively, for the levels where these estimates are available,

using a least squares fit. We then use the level-wise biases and variances predicted by these

models instead of the actual estimates in Eqs. (3.21) and (3.25).

For computing the interpolation error bound in Eq. (3.15b), as well as for computing the

optimal number of interpolation points in Eq. (3.20), we are required to estimate the norm

of the fourth derivative of the function Φ. The estimate of the fourth derivative cannot be

computed directly from the interpolant as S (4)
n (Φ̂L(θ)) since Sn is a cubic spline, hence

Sn
(
Φ̂L(θ)

) ∈ C 2(Θ) and the fourth derivative does not exist. We propose instead the use of

KDE techniques to solve this issue. Such a KDE smoothing procedure is used extensively

through this work and is described in detail in Section 3.2.2.

The procedure to estimate
∥∥Φ(4)

∥∥
L∞(Θ) is as follows. We begin by selecting the level ⌈L/2⌉

from the hierarchy. This level is selected since N⌈L/2⌉ is sufficiently large to justify the KDE

approach but Φ̂⌈L/2⌉ is also expected to be sufficiently close toΦ. Although there may exist an

optimal choice for this level, this particular choice was found to suffice for the applications

in this study. A KDE-smoothened function estimate Υ⌈L/2⌉(θ) := Ekde
⌈L/2⌉

[
φ(θ, ·)] of the func-

tion Φ̂⌈L/2⌉ is produced according to the procedure described in Section 3.2.2, where Ekde
l is

defined in Eq. (3.46) below. The fourth derivativeΥ(4)
⌈L/2⌉ is then computed using a second or-

der central difference approximation where Υ⌈L/2⌉ is evaluated on a uniform grid on Θ with

n′ ≫ n points. The norm is also approximated on the same grid:∥∥∥Υ(4)
⌈L/2⌉

∥∥∥
L∞(Θ)

≈ max
i∈{1,...,n′}

∣∣∣Υ(4)
⌈L/2⌉(θi )

∣∣∣ . (3.43)

We summarize below the fully computable a priori error estimators:

ē(m)
i ≈ ê(m)

i :=C1(m)
∥∥∥Υ(4)

⌈L/2⌉
∥∥∥

L∞(Θ)

( |Θ|
n

)(4−m)

, (3.44a)

ē(m)
b ≈ ê(m)

b
:=C2(m)C3(n −1)m b̂L , (3.44b)

ē(m)
s ≈ ê(m)

s :=C2(m)C3(n −1)m

√√√√c(n)
L∑

l=0

V̂l

Nl
. (3.44c)

In Section 3.3.4, we will compare the a priori error estimators described here to the newly de-

veloped error estimators introduced in Section 3.3. As will be seen in Section 3.3.4, the a priori

error estimators may prove to be too conservative and lead to hierarchies with large values of
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L and Nl when selecting these parameters to attain practical tolerances on the MSE. These

hierarchies become impractically expensive to simulate. The main advantage of the a priori

error estimators is that the bias and variance terms b̂l and V̂l computed in the manner de-

scribed in this section decay exponentially in the levels with the same rate as the underlying

QoI Q (see [85]). However, the inequalities used to achieve this favourable property produce

large leading constants. We will introduce new error estimators in Section 3.3 that preserve

the exponential decay property, and consequently the complexity result in Proposition 3.2.1,

while reducing or eliminating these leading constants.

3.2.2 Function derivative estimation by KDE based smoothing

The error estimator Eq. (3.44a) requires estimating the fourth derivative of the functionΦl (θ) =
E
[
φ(θ,Ql )

]
. For this, we could first estimate the expected value with a Monte Carlo sample

average estimator. As can be seen easily from Eq. (3.1), this estimate produces a piecewise

linear function in θ. This, in turn, implies that the first derivative of such a function is piece-

wise constant, and that second and higher order derivatives do not exist. Using an empirical

direct Monte Carlo approach to estimating by Monte Carlo quantities such as
∥∥Φ(4)

∥∥
L∞(Θ),

which are important to the error estimation and to the procedure of adaptively selecting the

hierarchy parameters, is hence not viable.

We propose the use of KDE techniques to remedy this issue. The KDE procedure for con-

structing derivatives of Φl is presented here. An appropriately smoothed probability density

function pkde
l of Ql is constructed using a one dimensional Gaussian kernel centred on each

of the Nl fine samples {Q(i ,l )
l }Nl

i=1 at level l . The functionΦl is then approximated as follows:

Φl (θ) =
∫
φ(θ, q)pl (q)d q (3.45)

≈
∫
φ(θ, q)pkde

l (q)d q =: Ekde
l

[
φ(θ,Ql )

]
(3.46)

where pkde
l (q) = 1

Nl

Nl∑
i=1

Kδl

(
q,Q(i ,l )

l

)
, (3.47)

Kδl (·,µ) denotes the Gaussian kernel with mean µ and bandwidth parameter δl > 0. The

bandwidth parameter δl controls the “width” of the kernel and is related to the covariance

of the underlying data. It can in principle be a function of the level l and the sample size

Nl . Here, it is chosen according to Scott’s rule [121], which ensures that δl → 0 as Nl →∞.

Since the expressions for Kδ and φ are known, a closed form expression can be computed

for Ekde
l

[
φ(θ,Ql )

]
, which is a C∞ function in θ due to the smoothness of the Gaussian ker-

nel. The smoothed expression can then be evaluated on a fine grid in Θ with n′ ≫ n points

and derivatives can be evaluated exactly, or more conveniently, estimated by finite different

formulas.

The KDE procedure will also used in the novel bias estimator proposed in the next section.
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3.3 Novel error estimators for function derivatives

In particular, the novel bias estimator requires the estimation of the level-wise quantities∥∥∥S (m)
n

(
E
[
φ(θ,Ql )−φ(θ,Ql−1)

])∥∥∥
L∞(Θ)

. For estimating such quantities, which require the com-

putation of derivatives of Φ, the KDE smoothing follows a similar procedure. However, the

density is now bivariate, namely characterising the distribution of the two correlated random

variables Ql and Ql−1:

E
[
φ(θ,Ql )−φ(θ,Ql−1)

]= ∫ ∫ [
φ(θ, ql )−φ(θ, ql−1)

]
pl ,l−1(ql , ql−1)d ql d ql−1 (3.48)

≈
∫ ∫ [

φ(θ, ql )−φ(θ, ql−1)
]

pkde
l ,l−1(ql , ql−1)d ql d ql−1 (3.49)

=: Ekde
l ,l−1

[
φ(θ,Ql )−φ(θ,Ql−1)

]
(3.50)

where pkde
l ,l−1(ql , ql−1) = 1

Nl

Nl∑
i=1

Kδl

(
ql ,Q(i ,l )

l

)
Kδl−1

(
ql−1,Q(i ,l )

l−1

)
. (3.51)

The bandwidth parameters δl and δl−1 are chosen according to Scott’s rule based on the sam-

ple sets {Q(i ,l )
l }Nl

i=1 and {Q(i ,l )
l−1 }Nl

i=1, respectively. One consequence of this method of bandwidth

parameter selection is that the parameter δl will be larger on fine levels where Nl is typically

small. Although the joint density pl ,l−1 will tend to concentrate around the diagonal as l in-

creases, the KDE density may include a significant off-diagonal mass for large values ofδl and

δl−1. This may induce a larger variance of the estimator in Eq. (3.50) with respect to naively

estimating the expectation in Eq. (3.48) using Monte Carlo. The advantage of using Eq. (3.50),

over a Monte Carlo estimate of Eq. (3.48), is that one can differentiate the approximation in

Eq. (3.50) with respect to θ, since the resulting expression is smooth with respect to θ.

One can also use anisotropic or more complex choices for the kernel, which may require

numerical integration or special quadrature. However, for the purposes of this work, the

isotropic Gaussian kernel was found to suffice. In addition to being able to compute higher

order derivatives of function estimates, the KDE based smoothing approach also provides

other important benefits to the error estimation and adaptivity that will be demonstrated in

Section 3.3.4.

3.3 Novel error estimators for function derivatives

As will be demonstrated numerically in Section 3.3.4 below, the a priori interpolation error

estimator ê(m)
i in Eq. (3.44a), provides a satisfactory error bound in practice. Moreover, the

interpolation error is often much smaller than the bias and statistical error terms, at least for

the cases explored in this work. As a result, we primarily target the accurate estimation of the

bias and statistical error terms. In fact, we propose here new estimators for these quantities

that provide tighter bounds on the corresponding true errors, while also preserving the same

decay rates with respect to l as the a priori level-wise bias and variance contributions bl and

Vl and lead eventually to the complexity bound of Proposition 3.2.1.
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3.3.1 Bias term

We begin with the bias term e(m)
b in the expression for the MSE on Φ̂(m)

L in Eq. (3.13). The

a priori bound ē(m)
b from Eq. (3.15c), together with the hypotheses from Proposition 3.2.1,

implies that e(m)
b can be bounded from above as follows,

e(m)
b

:= ∥∥S (m)
n

(
Φ(θ)−E[

Φ̂L(θ)
])∥∥

L∞(Θ) ≲ e−αL , (3.52)

where the symbol ≲ denotes an inequality with a hidden constant, possibly depending on

the derivative order m and the number of interpolation points n. Combining this with the

implication from Eq. (3.37) implies that the differences
∥∥∥S (m)

n
(
E
[
Φ̂l (θ)− Φ̂l−1(θ)

])∥∥∥
L∞(Θ)

de-

cay with at least a rate α in the levels l . Then, proceeding as in Eq. (3.40), we can reasonably

estimate the bias error as follows:

e(m)
b ≈

∥∥∥S (m)
n

(
E
[
Φ̂L(θ)− Φ̂L−1(θ)

])∥∥∥
L∞(Θ)

(eα−1)
. (3.53)

The expectation on the right-hand side could in practice be estimated using a sample average

Monte Carlo estimator with the NL samples on the finest level L, for example:

E
[
Φ̂L − Φ̂L−1

]= E[
φ(·,QL)−φ(·,QL−1)

]
=

∫ [
φ(·, qL)−φ(·, qL−1)

]
pL,L−1(qL , qL−1)d qLd qL−1 (3.54)

≈ 1

NL

NL∑
i=0

φ(·,Q(i ,L)
L )−φ(·,Q(i ,L)

L−1 ), (3.55)

where we denote the true joint probability density of the bivariate random variable (QL ,QL−1)

as pL,L−1 and have replaced it with the empirical measure induced by the Monte Carlo es-

timator. As was seen in Section 3.2.2, this approximation causes issues when computing

quantities that depend on derivatives of such a Monte Carlo estimator; namely that the first

derivative is piecewise constant and that the second and higher derivatives do not exist for

such an estimator. This results in level-wise bias estimators that no longer satisfy the decay

hypotheses of Proposition 3.2.1.

This problem was solved in the a priori estimator ê(m)
b in Eq. (3.44b) by using spline inverse

inequalities as follows:∥∥S (m)
n

(
E
[
Φ̂L(θ)− Φ̂L−1(θ)

])∥∥
L∞(Θ) ≤C2(m)C3(n −1)m

∥∥E[
Φ̂L − Φ̂L−1

]∥∥
L∞(Θ) . (3.56)

However, this procedure leads to unacceptably large constants. Here we propose a new

estimator that avoids using inverse inequalities and, instead, directly estimates the term

S (m)
n

(
E
[
Φ̂l − Φ̂l−1

])
using the KDE technique described in Section 3.2.2 to smooth the em-

pirical measure; that is, approximating the unknown joint density pL,L−1 by a bivariate KDE

smoothed density pkde
L,L−1 as described in Section 3.2.2.
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The resultant novel estimator for e(m)
b is hence given by

e(m)
b ≈ ê(m)

b,new
:=

∥∥∥S (m)
n

(
Ekde

L,L−1

[
φ(θ,QL)−φ(θ,QL−1)

])∥∥∥
L∞(Θ)

(eα−1)
=:

b̂(m)
L,new

(eα−1)
, (3.57)

where we have defined the level-wise bias terms b̂(m)
l ,new , l ∈ {0, ...,L}. In practice, the decay

rate α is estimated by fitting the model cαe−lα by least squares on the estimates b̂(m)
L,new for

l ∈ {1, ..,L}.

3.3.2 Statistical error term

The squared statistical error term in Eq. (3.13) has the form

(e(m)
s )2 = E

[∥∥S (m)
n

(
Φ̂L(θ)−E[

Φ̂L(θ)
])∥∥2

L∞(Θ)

]
. (3.58)

The a priori bound described in Section 3.2 for the statistical error also suffers from a pos-

sibly large leading constant that results in conservative statistical error estimates, as will be

highlighted below. As an alternative, we propose the use of a bootstrapping technique [126]

to estimate this term as follows. First, observe that a MLMC estimator Φ̂(m)
L ofΦ(m) is defined

through the hierarchy of samples denoted by

Q ≡
{

{Q(i ,l )
l ,Q(i ,l )

l−1 }Nl

i=1

}L

l=0
. (3.59)

The idea behind bootstrapping is to create Nbs ∈ N new MLMC estimators of Φ denoted

Ψ̂1,Ψ̂2, ...,Ψ̂Nbs , each defined by a hierarchy of samples of the same size as the original hi-

erarchy Q. For each Ψ̂ j , this is done by randomly selecting Nl sample pairs (Q̃( j ;i ,l )
l ,Q̃( j ;i ,l )

l−1 ) =
(Q

(Mi j ,l )
l ,Q

(Mi j ,l )
l−1 ), i = {1, ..., Nl } with M1 j , ..., MNl j

i.i.d∼ U ({1, ..., Nl }) and j = {1, ..., Nbs} at each

level l to define a resampled hierarchy Q j by:

Q j ≡
{

{Q̃( j ;i ,l )
l ,Q̃( j ;i ,l )

l−1 }Nl

i=1

}L

l=0
, j ∈ {1, ..., Nbs}.

The bootstrapped MLMC estimate Ψ̂ j defined through Q j then also provides an estimator

of Φ(m). Using the sample of Nbs bootstrapped MLMC estimators, one can approximate the

expectations in Eq. (3.58) by sample averages over the bootstrapped MLMC estimators. That

is, the statistical error e(m)
s can be estimated by the bootstrapped estimate ê(m)

s,new as

(e(m)
s )2 ≈ (ê(m)

s,new )2 := 1

Nbs

Nbs∑
j=1

∥S (m)
n

(
Ψ̂ j (θ)− Ψ̄(θ)

)∥2
L∞(Θ), (3.60)

where Ψ̄ denotes the sample average of {Ψ̂ j }Nbs

j=1.

The choice of Nbs is made adaptively. First, it is set to an initial fixed value. Then, since

Eq. (3.60) is a Monte Carlo estimator, the sample variance of the L∞(Θ)-norms is used to es-
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timate the MSE of the statistical error estimate. If this MSE exceeds a fixed fraction of the

statistical error tolerance ϵ2
s , the number of bootstrapped samples Nbs is doubled, and the

process is repeated until the tolerance is satisfied. In addition, since the cost of bootstrap-

ping and interpolating is negligible in comparison to sample generation costs, Nbs can be

arbitrarily large without a significant additional cost to computing the MLMC estimator Φ̂(m)
L

itself.

3.3.3 Summary of novel error estimator

To summarise the developments above, we have proposed novel bias and statistical error

estimators to improve on the properties of the a priori error estimator demonstrated in Sec-

tion 3.2. The final estimator reads:

MSE
(
Φ̂(m)

L

)
≤ 3C 2

1 (m)
∥∥∥Υ(4)

⌈L/2⌉
∥∥∥2

L∞(Θ)

( |Θ|
n

)2(4−m)

+3
(b̂(m)

L,new )2

(eα−1)2 + 3

Nbs

Nbs∑
j=1

∥∥S (m)
n

(
Ψ̂ j (θ)− Ψ̄(θ)

)∥∥2
L∞(Θ) . (3.61)

In fact, we will show in the following section that the new error estimator preserves decay

rates of the underlying QoI while reducing or eliminating large leading constants and leading

to a tighter error bound.

3.3.4 Demonstration and comparison of error estimators

To demonstrate the performance of the error estimators introduced in the previous sections,

we introduce a simple toy problem. Specifically, we consider a random Poisson equation in

two spatial dimensions,

−∆u = f , in D = (0,1)2 , (3.62)

with homogeneous Dirichlet boundary conditions. The forcing term f is given by

f (x) =−Cξ(x1
2 +x2

2 −x1 −x2) , 0 ≤ x1, x2 ≤ 1 , (3.63)

with ξ being a random variable distributed according to the Beta(2,6) distribution and C > 0 a

positive constant. This problem was also used as a demonstrative example in the companion

paper [86] of this work, in order to demonstrate MLMC estimators for higher order central

moments. For this forcing term, the solution to the PDE can be computed explicitly and

reads

u(x1, x2) =Cξx1x2(1−x1)(1−x2)/2. (3.64)
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3.3 Novel error estimators for function derivatives

The QoI we consider is the spatial average of the solution, that is

Q :=
∫

D
u d x = C

72
ξ . (3.65)

For the remainder of the study, we set C = 432, leading to Q = 6ξ.

Since we have the explicit dependence of the QoI Q on the random input ξ, we can easily

compute the exact distribution of Q given that we know the distribution of ξ. In particular,

we can compute Φ(θ) = E[
φ(θ,Q)

]
with φ as in Eq. (3.2) exactly for any τ ∈ (0,1). Indeed, the

density pη of a random variable η= κξ with κ> 0 reads:

pη(x) = 42

κ

(
1− x

κ

)5 x

κ
, x ∈ [0,κ]. (3.66)

Setting κ= 6 leads to the following form forΦ based on the density pQ of Q = 6ξ:

Φ(θ) = θ+ 1

1−τ
∫ 6

0
(q −θ)+pQ (q)d q

= θ− (θ−6)7(θ+2)

373248(1−τ)
. (3.67)

We plot the true CDF FQ (θ) := P(Q ≤ θ) in Fig. 3.1. We also list the true values of the VaR qτ
and the CVaR cτ for different significances τ in Table 3.1.

0 1 2 3 4 5
θ
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F Q
(θ
)

Figure 3.1: CDF FQ of Q for the
Poisson problem.

τ qτ = F−1
Q (τ) cτ

0.6 1.611077 2.369803
0.7 1.885696 2.578204
0.8 2.225169 2.843327
0.9 2.715390 3.236473

Table 3.1: VaR and CVaR values for the QoI associ-
ated with Poisson problem.

For the numerical assessment of the error estimators, the Poisson problem in Eq. (3.62) is

discretised using second order central finite differences on a hierarchy of uniform meshes,

where the number of degrees of freedom at level l is given by (5×2l−2)2. The resultant system

is solved directly using sparse LU factorisation. The approximations {Ql }L
l=0 are also linear in

the random variable ξ and hence, the solution for each discretisation can be precomputed

for a fixed value ξ = 1 and simply multiplied afterwards by the random realization of ξ to

yield the random QoI. In addition, this implies that the “true” function Φl is also known in

closed-form for all levels.
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Chapter 3. MLMC estimators for parametric expectations

Assessment of the interpolation error estimator

We compute the true interpolation error by considering the true function Φ presented in

Eq. (3.67) for τ = 0.7. The interval of interest is selected to be Θ ≡ [1.5,2.5], since we expect

the 70%-VaR to be within this interval (cf. Table 3.1). The true interpolation error e(m)
i ,tr u of the

mth derivative ofΦ is given by

e(m)
i ,tr u = ∥∥S (m)

n (Φ(θ))−Φ(m)
∥∥

L∞(Θ) .

We compare this with the fully a priori error estimate ê(m)
i , introduced in Eq. (3.44a). Instead

of the KDE method described in Section 3.2, the norm of the fourth derivative of Φ is esti-

mated using the analytical form of Φ(4) evaluated on a fine grid, in order to focus solely on

the quality of the error estimator.

Fig. 3.2 compares the estimator ê(m)
i with the true error for different values of the number

of interpolation points n and for different derivatives Φ(m) for m ∈ {0,1,2}. As can be seen

from plots in that figure, ê(m)
i produces a satisfactory bound on the true error for the range of

interpolation points tested, and for all value of m ∈ {0,1,2}. The figure also shows that both

the true error and the error estimate ê(m)
i follow the expected decay, which is O (n4−m).

(a) m = 0 (b) m = 1 (c) m = 2

Figure 3.2: True interpolation error e(m)
i ,tr u and interpolation error estimator ê(m)

i for different
numbers of interpolation points n and different order of derivatives m ofΦ.

Assessment of bias estimators

To demonstrate the performance of the novel KDE-based bias estimator ê(m)
b,new described in

Section 3.3.1, we compare it with two alternative methods for bias error estimation. The first

method is the fully a priori bias estimator ê(m)
b given in Eq. (3.44b). The second method is

to naively estimate the bias using an empirical mean without KDE smoothing, wherein the

pointwise estimates obtained in Eq. (3.48) are directly interpolated. Note that the number of

interpolation points is fixed during this study to n = 10, which ensures that the interpolation

error is much smaller in comparison to the bias as can be inferred from Figs. 3.2 and 3.3. We

also fix the level l = 5 for this study. The true error is given by

e(m)
b,tr u =

∥∥∥Φ(m)
l −Φ(m)

∥∥∥
L∞(Θ)

, (3.68)
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3.3 Novel error estimators for function derivatives

which we approximate accurately by evaluating the norm on a very fine grid using the known

functions Φl and Φ and their derivatives. The a priori estimate, as was described in Sec-

tion 3.2, is given by

ê(m)
b

:= C2(m)C3(n −1)m

(eα−1)
b̂L , (3.69)

where we used the Nl samples available on level l to estimate the expectation. The naive

non-smoothened estimate is given instead by

ê(m)
b,nai

:= 1

(eα−1)

∥∥∥∥∥S (m)
n

(
1

Nl

Nl∑
i=1

φ(θ,Q(i ,l )
l )−φ(θ,Q(i ,l )

l−1 )

)∥∥∥∥∥
L∞(Θ)

. (3.70)

Lastly, the KDE-smoothened error estimator is given by

ê(m)
b,new =

b̂(m)
L,new

(eα−1)
, (3.71)

where b̂(m)
L,new is defined in Eq. (3.57) and computed as described in Section 3.3.1. In both

Eqs. (3.70) and (3.71), the norm is evaluated on a fine grid with n′ = 1000 points. For the

decay rateα, we use the theoretical result that for a hierarchy of meshes whose characteristic

mesh size decays as 2−l in the levels l , the second order central finite difference scheme yields

a bias error decay rate of 2−2l , giving α= 2ln(2) ≈ 1.39.

Fig. 3.3 summarises the results on the performance of these bias estimators. We plot each of

the error estimators as well as the true error for different sample-sizes Nl for fixed l and for

different orders of derivatives of Φ. For each value of Nl , we create 20 independent realiza-

tions of Nl correlated sample pairs and for each set of Nl correlated sample pairs, we evaluate

the different bias error estimators. We observe that the fully a priori error estimate becomes

increasingly conservative for higher order derivatives m. The naive non-smoothened error

estimator significantly improves on the a priori estimator but still overestimates the error for

higher derivatives and small sample sizes. This is to be expected since we numerically differ-

entiate a non-smooth function. The novel KDE-based approach clearly provides the tightest

bound on the true error among the three estimators, consistently for all values of m.

Moreover, the KDE-based approach preserves the underlying decay rate of the QoI with re-

spect to the level l . To illustrate this, we compute a hierarchy that uses 100 samples per level

for 5 levels. A hierarchy of this size is sampled independently 20 times and the resulting bias

estimates are plotted against levels for each realisation of the hierarchy. These results are

summarised in Fig. 3.4. The average least-squares-fit decay rate over these 20 simulations is

computed and shown in the corresponding figure legend. We reiterate that theoretical con-

siderations predict that the bias decays at a rate α= 2log(2) ≈ 1.39, independent of the order

m of the derivative. As can be seen from the figure, the a priori estimates capture the correct

decay rate but are conservative on the true error. In addition, they become drastically more

conservative for higher order derivatives. The naive approach provides a much tighter bound
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(a) m = 0 (b) m = 1 (c) m = 2

Figure 3.3: Comparison of bias error estimators ê(m)
b , ê(m)

b,nai and ê(m)
b,new for different sample

sizes and for different derivatives ofΦ.

than the a priori approach, but its decay rate deteriorates at least for the second order deriva-

tive. The KDE approach, on the other hand, provides the tightest bound while also preserving

the correct underlying decay rate.

(a) m = 0 (b) m = 1 (c) m = 2

Figure 3.4: Comparison of bias decay over levels for different derivatives ofΦ.

Statistical error comparison

The statistical error is controlled by the level-wise sample sizes. To assess the quality of the

novel statistical error estimator that was introduced in Section 3.3.2, we consider three types

of hierarchies, all of the general form

Nl =
⌊

N02r l
⌋

, l ∈ {0,1, ...,L}. (3.72)

For the simulations performed in this section, we fix L = 5 and consider r ∈ {−1,0,1}. These

values of r generate hierarchies where Nl decreases, stays the same, and increases with l ,

respectively. Although hierarchies where Nl increases with l do not occur in practice, they

are nevertheless investigated here to assess the robustness of the error estimator. By selecting

different values of N0, one can determine the hierarchy fully.

We propose estimating the statistical error as follows. The true statistical error e(m)
s,tr u , which is

not readily computable in this case, is estimated using a brute force strategy where we repeat
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3.4 Tuning the MLMC hierarchy using the novel error estimators

the MLMC procedure Nr e f = 104 times. The squared true error is then estimated as:

(e(m)
s,tr u)2 ≈ 1

Nr e f

Nr e f∑
i=1

∥∥S (m)
n

(
Φ̂L,i −ΦL

)∥∥2
L∞(Θ) , (3.73)

where Φ̂L,i denotes the i th simulation of an MLMC hierarchy whose parameters are given

by Eq. (3.72) for a given r and N0. For the novel bootstrapped statistical error estimate in-

troduced in Section 3.3.2, we create one realisation of the hierarchy in Eq. (3.72) and create

Nbs = 100 bootstrapped realisations of the resulting MLMC estimator. The statistical error

estimate ê(m)
s,new is then computed as described in Section 3.3.2 and in Eq. (3.60). We do not

change Nbs adaptively in this demonstration and keep the value fixed. We perform the above

study for the three different types of hierarchy in Eq. (3.72), and for the first two derivatives of

Φ, as well as for Φ itself. For each hierarchy shape and derivative, we test for different values

of the hierarchy size parameter N0.

The results are shown in Fig. 3.5. The a priori statistical error estimate given by Eq. (3.44c) and

the bootstrapped statistical error estimate given by Eq. (3.60) are plotted alongside the true

statistical error for decreasing, uniform and increasing hierarchies and for different deriva-

tives of Φ. As can be observed from the figure, the bootstrapped statistical error estimate

provides a tight bound on the true error for the range of hierarchies and derivatives tested,

whereas the a priori statistical error estimator defined in Eq. (3.44c) clearly provides overly

conservative estimates for m = 1,2.

3.4 Tuning the MLMC hierarchy using the novel error estimators

In the previous sections, we have presented effective error estimators for the MSE contribu-

tions of the MLMC estimator of Φ(m). The next step will be to adapt the MLMC hierarchy

based on such an error estimator to achieve a prescribed tolerance on the MSE in a cost-

optimal way. This implies that one should choose adaptively the number of interpolation

points n, the maximum discretisation level L and the level-wise sample sizes Nl . We discuss

a possible way to do this for the MSE on Φ̂(m)
L and quantities derived from it, focussing on the

PDF, the CDF, the VaR and the CVaR as defined in Eq. (3.4). The procedure is, of course, sim-

ilar to the adaptive procedure described in Section 3.2 for the fully a priori error estimators,

but tailored here to the current setting.

3.4.1 MLMC tuning procedure for linear combinations of MSEs

It can be seen from Eq. (3.4) that the MSE of the CDF and the PDF are directly propor-

tional to the MSE of Φ̂(1)
L and Φ̂(2)

L respectively. In addition, as will be shown in Section 3.4.4,

Lemma 3.4.2, the MSE of the VaR and of the CVaR can be bounded by a linear combination of

the MSEs of Φ̂L and Φ̂(1)
L . For these reasons, we first present a method to calibrate the MLMC

estimator of any arbitrary quantity sτ with corresponding estimate ŝτ, whose MSE can be
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(a) m = 0,r =−1 (b) m = 1,r =−1 (c) m = 2,r =−1

(d) m = 0,r = 0 (e) m = 1,r = 0 (f) m = 2,r = 0

(g) m = 0,r = 1 (h) m = 1,r = 1 (i) m = 2,r = 1

Figure 3.5: Statistical error estimator comparison of ê(m)
s and ê(m)

s,new . From left to right, in-
creasing order of derivative m ofΦ. From top to bottom, decreasing, uniform and increasing
hierarchies of different sizes.

bounded by linear combinations of the form

MSE(ŝτ) ≤ k0MSE
(
Φ̂L

)+k1MSE
(
Φ̂(1)

L

)
+k2MSE

(
Φ̂(2)

L

)
, k0,k1,k2 ≥ 0. (3.74)

Each of the three terms decomposes into its three respective error contributions, which can

then be combined to yield global interpolation, bias and statistical error contributions:

MSE(ŝτ) ≤ 3

{ [
2∑

m=0
km(e(m)

i )2

]
︸ ︷︷ ︸

Squared interpolation error

+
[

2∑
m=0

km(e(m)
b )2

]
︸ ︷︷ ︸

Squared bias error

+
[

2∑
m=0

km(e(m)
s )2

]
︸ ︷︷ ︸

Squared statistical error

}
. (3.75)

We require the MSE to satisfy a tolerance ϵ2 with each of the three squared error contributions

on the right-hand side of Eq. (3.75) satisfying their corresponding tolerances ϵ2
i , ϵ2

b and ϵ2
s as

defined in Eq. (3.19). In addition, each of the terms e(m)
i , e(m)

b and e(m)
s is estimated using the
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error estimators ê(m)
i , ê(m)

b,new and ê(m)
s,new defined in Eqs. (3.44a), (3.57) and (3.60) respectively.

As described in Section 3.2, the interpolation error is controlled solely by the number of in-

terpolation points. To determine it, we require that the squared interpolation error term in

Eq. (3.75) satisfies the condition:

∥∥∥Υ(4)
⌈L/2⌉

∥∥∥2

L∞(Θ)

[
2∑

m=0
kmC 2

1 (m)

( |Θ|
n

)2(4−m)
]
≤ ϵ2

i , (3.76)

which results from each term e(m)
i in the interpolation error contribution of Eq. (3.75) be-

ing bounded by its estimator ê(m)
i in Eq. (3.44a). Determining n such that equality holds in

Eq. (3.76) requires finding the roots of a polynomial of the form a8n−8+a6n−6+a4n−4+a0 = 0

for a8, a6, a4, a0 ≥ 0. In case of multiple real roots, the smallest positive root is taken and the

optimal number of interpolation points n∗ is, in practice, taken to be the smallest integer

larger than this root.

The bias error is controlled by the number of levels L. To determine it, we first estimate the

level-wise bias terms b̂(m)
l ,new , l ∈ {1, ...,L} for m ∈ {0,1,2}. We then enforce the condition that

the squared bias error term in Eq. (3.75), with each of the terms e(m)
b replaced by the corre-

sponding estimator ê(m)
b,new , satisfies the tolerance ϵ2

b . However, we recall that bias estimates

are unavailable for levels l > L and are available only on levels where samples have already

been computed. As a result, to determine the optimal choice of level L∗, the bias decay mod-

els cαm e−lαm are first constructed by least squares fits respectively on the level-wise bias es-

timates b̂(m)
l ,new , l ∈ {1, ...,L} for each m ∈ {0,1,2}. We then require the squared bias error term,

with the terms b̂(m)
l ,new in ê(m)

b,new replaced by the corresponding model cαm e−lαm , to satisfy the

following conditions:

2∑
m=0

kmc2
αm

e−2Lαm

(eαm −1)2 ≤ ϵ2
b , (3.77)

on L. The appropriate choice of level L∗ is selected to be the minimum level that satisfies the

above condition in Eq. (3.77). Although all three rates αm , m ∈ {0,1,2} are expected to be the

same in most cases, small differences can exist in practice due to estimation errors.

To select the appropriate level-wise sample sizes Nl , we are required to localize the boot-

strapped statistical error estimator ê(m)
s,new over the levels l . We propose an algorithm to ac-

complish this based on rescaling the level-wise variances V̂l defined in Eq. (3.42), thus pre-

serving the same squared statistical error splitting between levels as in the case of the a priori

error estimator. We first discuss the case of a single term in Eq. (3.75) (km = 1,k j = 0, j ̸= m).

Recall from Section 3.2 that the level-wise sample sizes Nl are selected to minimise the total

cost subject to the constraint that the statistical error e(m)
s satisfies a given tolerance. The a
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priori error estimator ê(m)
s in Eq. (3.44c) is naturally split over the levels as

(ê(m)
s )2 =

L∑
l=0

K (n,m)
V̂l

Nl
, (3.78)

where K (n,m) = C 2
2 (m)C 2

3 (n −1)2mc(n), {Nl }L
l=0 denotes the hierarchy based on which ê(m)

s

is computed and V̂l is defined as in Eq. (3.42) and hence, is independent of m. On the other

hand, the new error estimator ê(m)
s,new based on bootstrapping does not provide such an im-

mediate notion of how each level contributes to the overall statistical error and as such pro-

vides only a global statistical error estimate. To overcome this limitation, we propose using

the error splitting structure of the a priori statistical error estimator in Eq. (3.78), however

replacing the large constant K (n,m), which is responsible for the overly conservative error

bound of ê(m)
s exemplified in Section 3.3.4, with a new one so that the total error matches the

computable a posteriori estimator ê(m)
s,new . In particular, we introduce the redefined level-wise

variances Ṽl , computed such that

(ê(m)
s,new )2 =

L∑
l=0

Ṽl

Nl
, (3.79)

where each Ṽl is a rescaled version of V̂l and the same scaling constant is used across lev-

els. It follows that the rescaled variances Ṽl decay at the same rate over levels as the a priori

variances V̂l . Specifically, we define the rescaled variances Ṽl as follows:

Ṽl = reV̂l , where re := (ê(m)
s,new )2∑L

k=0 V̂k /Nk
. (3.80)

We refer to re as the rescaling ratio. The formulation of the cost optimisation problem then

proceeds similarly to Section 3.2 with V̂l replaced by Ṽl . As before, we neglect the evalua-

tion and interpolation costs cφ and cint since they are negligible in comparison to cl for the

type of applications considered in this work. We require that the statistical error satisfies

the prescribed tolerance ϵ2
s while minimising the total cost of the simulation. Similar to the

constrained optimisation problem for the a priori estimators described in Section 3.2, the

approach here yields the following optimal level-wise sample sizes:

N∗
l =

ÈÌÌÌ 1

ϵ2
s

√
Ṽl

cl

L∗∑
k=0

√
Ṽkck

ÉÍÍÍ=
ÈÌÌÌ re

ϵ2
s

√
V̂l

cl

L∗∑
k=0

√
V̂kck

ÉÍÍÍ . (3.81)

We note here that the hierarchy {Nl }L
l=0 is used to compute the estimator V̂l , cl and ê(m)

s,new ,

whereas the hierarchy {N∗
l }L

l=0 is the cost-optimal hierarchy computed based on these esti-

mators that will achieve a tolerance of ϵ2
s on the statistical error. Finally, we also note that the

variance rescaling proposed in Eq. (3.80) can be extended to a linear combination of errors
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as follows:

Ṽl = reV̂l , where re :=
[∑2

m=0 km(ê(m)
s,new )2

]
∑L

k=0 V̂k /Nk
, 0 ≤ l ≤ L∗. (3.82)

We now justify the choice of rescaling factor with the following theoretical result. We first es-

tablish upper and lower bounds on the true squared statistical error
∑2

m=0 km(e(m)
s )2 in terms

of the true level-wise variances Vl defined in Eq. (3.17).

Lemma 3.4.1. Let Φ̂L be the estimator defined in Eq. (3.7) to approximate Φ ∈ C 4(Θ) and

{Vl }L
l=0 be the true corresponding level-wise variances as defined in Eq. (3.17). Then there exist

positive constants λ(n) and Klow (n,m) such that:

λ(n)

|Θ|
L∑

l=0

Vl

Nl
≤

2∑
m=0

km(e(m)
s )2 ≤

(
2∑

m=0
kmK (n,m)

)
L∑

l=0

Vl

Nl
. (3.83)

Proof. The upper bound follows directly from the a priori statistical error bound introduced

in Eq. (3.15d) in Section 3.2. The lower bound is derived as follows. We first define the func-

tion Γ := Φ̂L −E
[
Φ̂L

]
:Θ→R. We then have:

(e(m)
s )2 = E

[∥∥S (m)
n (Γ(θ))

∥∥2
L∞(Θ)

]
≥ 1

|Θ| E
[∥∥S (m)

n (Γ(θ))
∥∥2

L2(Θ)

]
, (3.84)

since Θ is bounded. The cubic spline interpolant Sn (Γ(θ)) over a set of point evaluations

Γ(θ) ∈ Rn , θ = {θ1, ...,θn}, can be written as a linear combination of suitable basis functions

ψi (θ), i ∈ {1, ...,n}:

Sn (Γ(θ)) =
n∑

i=1
Γ(θi )ψi (θ). (3.85)

This then implies that

∥∥S (m)
n (Γ(θ))

∥∥2
L2(Θ) =

n∑
i , j=1

Γ(θi )Γ(θ j )
∫
Θ
ψ(m)

i (θ)ψ(m)
j (θ)dθ (3.86)

= Γ(θ)T B (m)Γ(θ), (3.87)

where B (m) ∈Rn×n is a matrix whose entries are given by B (m)
i j = ∫

Θψ
(m)
i (θ)ψ(m)

j (θ)dθ. It then

follows that:

2∑
m=0

km E
[∥∥S (m)

n (Γ(θ))
∥∥2

L2(Θ)

]
= E

[
Γ(θ)T

(
2∑

m=0
kmB (m)

)
Γ(θ)

]
≥λE[∥Γ(θ)∥2

l 2

]
, (3.88)

where λ = λ(n) > 0 denotes the minimum eigenvalue of the positive definite matrix B =
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∑2
m=0 kmB (m), which is non-zero since B is non-singular. We then finally have that

2∑
m=0

km(e(m)
s )2 ≥ λ(n)

|Θ| E
[∥∥Φ̂L(θ)−E[

Φ̂L(θ)
]∥∥2

l 2

]
≥ λ(n)

|Θ|
L∑

l=0

Vl

Nl
, (3.89)

where in the final inequality, we have used the level-wise independence of samples of the

MLMC estimator. This concludes the proof.

Lemma 3.4.1 shows that the true global squared statistical error
∑2

m=0 km(e(m)
s )2 can be both

lower and upper bounded by a constant times the quantity
∑L

l=0 Vl /Nl . Therefore, we expect

the rescaling ratio

re =
∑2

m=0 km(ê(m)
s,new )2∑L

l=0
V̂l
Nl

≈
∑2

m=0 km(e(m)
s )2∑L

l=0
Vl
Nl

to remain bounded independent of the hierarchy {Nl }L
l=0.

Lastly, since the variances V̂l are estimated using Monte Carlo sampling, the estimates on

finer levels typically have a larger error due to smaller sample-sizes. In addition, estimates

of V̂l and cl may not be available for unexplored levels l . To alleviate this problem, we fit

the exponential models cβe−βl and cγeγl on the variances Ṽl and costs cl respectively for

l ∈ {1, ...,L} using a least-squares fit, similar to the procedure described in Section 3.2.1. We

use the costs and variances predicted by these models instead of Ṽl and cl in Eq. (3.81) for

the optimal level-wise sample sizes. This stabilises the estimates computed on finer levels,

and the models can also be extrapolated for levels where estimates are not available yet. The

expression for the optimal level-wise sample sizes is then given by

N∗
l =

ÈÌÌÌcβ

ϵ2
s

√√√√e−βl

eγl

L∗∑
k=0

√
e(γ−β)k

ÉÍÍÍ , 0 ≤ l ≤ L∗. (3.90)

3.4.2 Assessment of the stability and behaviour of the rescaling ratio

We now wish to numerically study the behaviour of the rescaling ratio re . We therefore con-

sider once again the Poisson problem from Section 3.3.4 and focus instead on the computa-

tion of the 70%-CVaR. It will be shown in Section 3.4.4 that the MSE of the PDF, the CDF, the

VaR and the CVaR can all be written in the form of Eq. (3.74) with appropriately chosen val-

ues of k0, k1 and k2. Particularly, Lemma 3.4.2 in that section derives the values of k0, k1 and

k2 for the VaR and the CVaR. Fig. 3.6 shows the variation of re for different hierarchy shapes

Nl = N02r l , l ∈ {0, ...,5}, r ∈ {−1,0,1} and for different interval sizes Θ centred approximately

around the 70%-VaR. For each value of r , Θ and N0, we simulate 20 independent random

realizations of the hierarchy and plot the values of re along with the sample average over the

20 values of re . We observe that for nearly all choices of hierarchy, the rescaling ratio re is sta-
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3.4 Tuning the MLMC hierarchy using the novel error estimators

ble, in the sense that the realizations are clustered about a mean value with a relatively small

variance. However, for hierarchies with very small sample sizes N0 on coarser levels, which

contribute proportionately more to the overall statistical error, and for cases with smaller in-

tervals, we observe sporadic large values of re . These observations indicate that one needs to

select an adequately large sample size and/or interval size in order for the rescaling ratio re

to be numerically stable. It can be seen from Eq. (3.90) that larger values of re in practice lead

to larger hierarchies and, hence, more conservative statistical error estimates. It is therefore

important to select the intervalΘ and sample sizes appropriately.

(a) r =−1 (b) r = 0 (c) r = 1

Figure 3.6: Behaviour of re for different hierarchy shapes and interval sizes for Poisson prob-
lem

3.4.3 Adaptive MLMC algorithm

It was shown earlier that the cost optimal number of interpolation points n, level-wise sample

sizes Nl and the number of levels L could be calculated according to Eqs. (3.76), (3.77) and

(3.90) respectively, with knowledge of the quantities b̂(m)
l ,new , V̂l and cl , their corresponding

decay rates and constants, as well as ê(m)
s,new . Since estimates of these quantities are com-

puted using a posteriori computations and require that samples have already been com-

puted, we propose the use of a variation of the CMLMC algorithm introduced in [39] and fur-

ther adapted for complex simulation problems in [105]. The CMLMC algorithm begins with a

small pre-set initial hierarchy, typically called the “screening” hierarchy, and a geometrically

decreasing sequence of tolerances ϵ2
0 > ϵ2

1 > ·· · > ϵ2
d = ϵ2, where ϵ2 is the target tolerance to be

achieved on the MSE. The method then adapts for the tolerance ϵ2
j , j ∈ {1, ...,d} based on the

estimates from the hierarchy tuned on ϵ2
j−1. For ϵ0, one uses the estimates from the screen-

ing hierarchy. The advantage of this method is that the estimators b(m)
l , V̂l , ê(m)

s,new and cl are

successively improved. This makes the algorithm more robust to inaccurate initial estimates

from the screening hierarchy, since the screening hierarchy is typically selected to be much

smaller than the optimal hierarchy. The algorithmic description of the CMLMC algorithm

is presented in Alg. 3 for a general statistic sτ whose MSE decomposes as in Eq. (3.75). The

reader is referred to [39] for a more detailed exposition.
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Chapter 3. MLMC estimators for parametric expectations

Algorithm 3: CMLMC Algorithm

1: Input: Target tolerance ϵ> 0, Number of CMLMC iterations d ∈N, Tolerance refinement
ratios λ> κ> 1, Error parameters k0, k1 and k2. Set j = 1, ϵa = ϵ0.

2: Launch screening hierarchy.
3: Compute estimators b̂(m)

l ,new ,V̂l ,cl , ê(m)
s,new and model parameters cα,cβ,cγ,α,β,γ.

4: Compute MSE(ŝτ) based on Eq. (3.75).
5: while j ≤ d or MSE(ŝτ) ≥ ϵ2 do
6: Launch hierarchy with n∗(ϵa), L∗(ϵa), {N∗

l (ϵa)}L∗
l=0 computed based on

Eqs. (3.76), (3.77) and (3.90)
7: if j ≤ d { Set ϵa = ϵλ(d− j ) } else { Set ϵa = ϵκ(d− j ) }
8: Compute estimators b̂(m)

l ,new ,V̂l ,cl , ê(m)
s,new and model parameters cα,cβ,cγ,α,β,γ

9: Compute MSE(ŝτ) based on Eq. (3.75)
10: Update j ← j +1
11: end while

3.4.4 Error bounds on the PDF, the CDF, the VaR and the CVaR

It follows directly from Eq. (3.74) that the MSE of the PDF fQ (θ) and the CDF FQ (θ) can be

written as follows:

MSE
(
F̂Q

)= (1−τ)2MSE
(
Φ̂(1)

L

)
, MSE

(
f̂Q

)= (1−τ)2MSE
(
Φ̂(2)

L

)
, (3.91)

where F̂Q (θ) := τ+ (1−τ)Φ̂(1)
L and f̂Q (θ) := (1−τ)Φ̂(2)

L . As a result, Eq. (3.74) can be used to

bound the error on these quantities by selecting k1 and k2 appropriately. We now present

a simple result to demonstrate that the general form in Eq. (3.74) can also be used also to

bound the MSE of the VaR and the CVaR.

Lemma 3.4.2. Let Φ̂L be the multilevel Monte Carlo estimator defined in Eq. (3.7) to approx-

imate Φ. If there exist q̂τ, qτ ∈Θ such that Φ̂(1)
L (q̂τ) =Φ(1)(qτ) = 0 for some given τ ∈ R, then it

holds that

E
[∣∣q̂τ−qτ

∣∣2
]
≤

∥∥∥∥ 1

Φ(2)

∥∥∥∥2

L∞([q̂τ,qτ])
MSE

(
Φ̂(1)

L

)
, (3.92)

as well as that

E
[|ĉτ− cτ|2

]≤ 2
∥∥Φ(1)

∥∥2
L∞([q̂τ,qτ])

∥∥∥∥ 1

Φ(2)

∥∥∥∥2

L∞([q̂τ,qτ])
MSE

(
Φ̂(1)

L

)
+2MSE

(
Φ̂L

)
, (3.93)

where ĉτ = Φ̂L(q̂τ) and cτ =Φ(qτ).

Proof. Let q̂τ, qτ ∈Θ be such that Φ̂(1)(q̂τ) =Φ(1)(qτ) = 0. It then follows from Taylor’s theorem

that

|q̂τ−qτ||Φ(2)(ξ)| = |Φ̂(1)
L (q̂τ)−Φ(1)(q̂τ)| (3.94)

for some ξ between q̂τ and qτ, so that the first claim follows. The second claim follows from
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the first claim upon noting that

|ĉτ− cτ| =
∣∣Φ̂L(q̂τ)−Φ(qτ)

∣∣≤ ∣∣Φ(q̂τ)−Φ(qτ)
∣∣+ ∣∣Φ̂L(q̂τ)−Φ(q̂τ)

∣∣
≤ ∣∣Φ(1)(ζ)

∣∣|q̂τ−qτ|+
∣∣Φ̂L(q̂τ)−Φ(q̂τ)

∣∣ (3.95)

in view of Taylor’s theorem for some ζ between q̂τ and qτ.

From Lemma 3.4.2, it is evident that qτ and q̂τ represent the true and estimated VaR, while

cτ and ĉτ represent the true and estimated CVaR, respectively. We can then derive MSE

bounds for the VaR and the CVaR by setting the constants k0, k1 and k2 in Eq. (3.75) based on

Lemma 3.4.2. A closed form expression for the solution of Eq. (3.76) for the number of inter-

polation points can be derived since Lemma 3.4.2 implies that some of the constants k0,k1

and k2 are zero for each of the VaR and the CVaR. For the number of levels L and level-wise

sample sizes Nl , the methods described earlier in this section can be directly used with the

appropriate values of the constants k0,k1 and k2. Since we expect the interval [qτ, q̂τ] to be

small, we replace each of the constants
∥∥Φ(1)

∥∥
L∞([qτ,q̂τ]) with |Φ̂(1)

L (q̂τ)| and
∥∥1/Φ(2)

∥∥
L∞([qτ,q̂τ])

with |1/Φ̂(2)
L (q̂τ)| in practice. Lastly, we note that although k0, k1 and k2 in Eq. (3.75) and in

Algorithm 3 are constants, we use the function estimator Φ̂(m)
L to estimate and update them

iteratively within the continuation framework in Algorithm 3.

3.5 Numerical Experiments

We now demonstrate the performance of the above combination of novel error estimators,

adaptive strategy and CMLMC algorithm on a set of test cases. Firstly, we consider again the

simple Poisson problem introduced in Section 3.3.4. We then study a problem of options

contract pricing using the Black-Scholes Stochastic Differential Equation (SDE). Lastly, we

study a case of laminar steady fluid flow over a cylinder placed in a channel governed by the

Navier-Stokes equations, which demonstrates the methodology on a more applied problem.

3.5.1 Poisson Problem

We consider the same random Poisson equation in two spatial dimensions described in Sec-

tion 3.3.4. We recall that we have an explicit dependence of Q on the random input ξ for this

example and hence, it is straightforward to compute reference values for the VaR and CVaR

of different significances (See Tab. 3.1).

The details of the input uncertainties, numerical scheme and discretisation hierarchy are de-

scribed in Section 3.3.4. We are interested particularly in the estimation of the CVaR with

significance τ = 0.7, and hence consider the interval Θ = [1.5,2.5] as before. The MLMC es-

timator proposed in Section 3.1 is used to estimate the parametric expectation Φ. The CVaR

estimate is computed from Φ̂L as described in Eq. (3.4). The hierarchy is adaptively calibrated

as described in Section 3.4 based on the novel error estimators described in Section 3.3. The
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CMLMC algorithm described in Section 3.4.3 is then used to successively improve the esti-

mates required to compute the optimal hierarchy with λ = 1.5 and κ = 1.1 in Algorithm 3.

To compute the statistical error estimate, we initially use Nbs = 100 bootstrapped samples

and then adapt Nbs according to the procedure described in Section 3.3.2 to obtain a boot-

strap error smaller than 1% of the squared statistical error tolerance. The above combination

of problem simulations, MLMC and error estimation have been implemented in the Python

package XMC [3].

To assess the robustness of the novel error estimators, a reliability study is conducted. For a

given tolerance, the entire MLMC simulation is repeated 20 times independently. For each

simulation, an estimate of the CVaR and a corresponding estimate of the MSE are produced.

Since the true value of the CVaR is known for this example, we compute the corresponding

true squared errors. We expect the MSE estimates to be approximately equal to the sample

average of the true squared errors, which we take here as the reference value for the true MSE.

The results of this reliability study are shown in Fig. 3.7a. As can be seen from the figure, the

error estimates bound the true error on the CVaR and lead to practically computable MLMC

hierarchies for the CVaR. For all the tolerances tested, the squared error estimate is not larger

than 10 times the squared true error, which we consider acceptable for practical applications

(cf. Section 3.3.4).

To verify the predictions of Proposition 3.2.1, we also compute the cost of each MLMC simu-

lation according to Eq. (3.24). The time taken to compute each of the Nl samples is measured,

and cl is taken to be their average. The cost is computed using the level-wise sample sizes cor-

responding to the final iteration of the CMLMC that satisfies the target tolerance and aver-

aged over the 20 repetitions of the algorithm. The results are summarised in Fig. 3.7b, where

the average cost over all the simulations for each final CMLMC tolerance is plotted versus the

final tolerance.

To compare the MLMC estimator with the Monte Carlo method, we propose the following

Monte Carlo estimator:

Φ̂(m)
L,mc (θ) :=S (m)

n

(
Φ̂L,mc (θ)

)
, θ ∈Θ,

where Φ̂L,mc (θ j ) := 1

N

N∑
i=1

φ(θ j ,Q(i )
L ). (3.96)

To estimate the MSE of the CVaR computed from the estimator in Eq. (3.96), we utilise the

general MSE form in Eq. (3.75) but for an MLMC estimator with a single level, i.e., without

the telescoping summation term in Eq. (3.7). The constants k0, k1 and k2 are chosen accord-

ing to the results of Lemma 3.4.2 for the CVaR. We now describe a procedure to select the

parameters of this estimator such that a prescribed tolerance can be obtained on the corre-

sponding MSE of the CVaR. The number of interpolation points n used in the Monte Carlo

estimator is selected to be the same as for the MLMC estimator, since the CMLMC method

leaves the number of interpolation points unchanged for all tested tolerances. The discreti-
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sation level L is selected to be the same as the finest level predicted by the CMLMC algorithm

for the MLMC estimator over all repetitions of the CMLMC algorithm for the given tolerance,

although nearly all repetitions predict the same level L for a given tolerance. To predict the

correct sample size N , we first note that the squared statistical error term of the CVaR for the

Monte Carlo estimator in Eq. (3.96) contains only the single level contribution and hence, is

inversely proportional to the sample size N , where the numerator is independent of N and

can be estimated using a sample variance estimator. The sample size is then selected such

that this statistical error term satisfies the same squared statistical error tolerance ϵ2
s as the

MLMC estimator. The cost can then be computed in a straightforward manner from N and

the cost of a single simulation at level L.

The estimated Monte Carlo cost is shown as well in Fig. 3.7b, together with a least squares fit

rate over the estimated Monte Carlo cost. We observe that the predictions made by Proposi-

tion 3.2.1 are observed here, namely that the MLMC cost grows as O (ϵ−2) and that the Monte

Carlo cost grows as O (ϵ−3) for a prescribed tolerance ϵ2 on the MSE of the CVaR.

(a) Reliability of error estimator (b) Complexity behaviour

Figure 3.7: Summary of results for the Poisson problem

In Fig. 3.8, we compare the performance of the error estimation procedure for difference val-

ues of the significance τ ∈ {0.6,0.8,0.9,0.95}, while keeping the interval Θ fixed for all tested

significances. We perform a reliability study similar to the one in Fig 3.7a. The results are

summarized in Fig. 3.8a, which shows the mean of the true squared errors for different sig-

nificances, as well as the estimated MSEs for τ= 0.95. The MSEs are not plotted for the other

tested significances, since they are visually indistinguishable from the τ = 0.95 case. We ob-

serve that the estimated MSE is more conservative for higher significances. It is possible that

this issue can be ameliorated with an appropriately chosen selection procedure forΘ. In ad-

dition, Fig. 3.8b shows the mean cost to compute the optimal hierarchy for a given tolerance

for each tested significance. For a given tolerance ϵ2, the cost scales as O (ϵ−2) for all sig-

nificances tested. However, we observe that the constant increases for higher significances.

Additionally, we observe that the constant scales approximately as (1−τ)−2, which is to be

expected, since all three terms in Eq. (3.13) scale as (1−τ)−2.
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Figure 3.8: Error estimator performance for different significances τ

We now return the discussion to the case of τ= 0.7. Fig. 3.9 compares the true and estimated

squared errors on Φ(m), m ∈ {0,1,2} and the VaR for the same set of simulations as in Fig. 3.7

plotted against the prescribed tolerance used in the CVaR calculation. As can be seen in this

figure, a tight bound is obtained onΦ(m),m ∈ {0,1,2}, with a comparatively more conservative

estimate on the VaR. The reason for this discrepancy can be explained with Lemma 3.4.2;

although the equality in Eq. (3.94) holds true for the function derivative evaluated at the VaR,

Eq. (3.92) in turn bounds this with the L∞ norm over the entire interval Θ. Finally, Fig. 3.9d

shows the MSE of the VaR estimated from the same QoI realizations corresponding to the

optimal hierarchy for the interval Θ = [1.5,2.5], but using a smaller interval Θ = [1.87,1.89]

such that the 70%-VaR is contained within the interval. It can be seen that choosing a smaller

interval around the VaR results in a tighter bound on the true MSE. However, this choice

needs to be balanced with the numerical stability of the rescaling ratio re in Eq. (3.80) (cf.

discussion in Section 3.4.2). The choice of interval Θ hence may have an important effect on

the tightness of the error bounds on the VaR and CVaR. In practical applications, however,

one does not know a priori the location of the VaR. For the purposes of this study, we only

explore fixed intervals Θ and find that the resultant hierarchies are practically computable,

leading to effective MLMC estimators. In future works, we plan to explore algorithms that

adaptively selectΘ.

In Fig. 3.10, we conduct a similar complexity study as the one shown in Fig. 3.7b. We adapt

the MLMC hierarchy to achieve a particular relative tolerance on the MSE of each ofΦ(m),m ∈
{0,1,2}, as well as the VaR and CVaR. The relative error e(m)

r of Φ̂(m)
L and the relative errors eqτ

r

and ecτ
r of the VaR and the CVaR respectively, are computed as follows:

(e(m)
r )2 =

MSE
(
Φ̂(m)

L

)
∥∥∥Φ̂(m)

L

∥∥∥2

L∞(Θ)

, (eq̂τ
r )2 = MSE

(
q̂τ

)
q̂2
τ

, (eĉτ
r )2 = MSE(ĉτ)

ĉ2
τ

. (3.97)

We run 20 independent runs of the CMLMC algorithm each for a given statistic and a given
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(a) m = 0 (b) m = 1

(c) m = 2 (d) VaR

Figure 3.9: Reliability of error estimator forΦ(m) and VaR for the Poisson problem

relative tolerance. We plot the average of the cost to compute the optimal hierarchy over

these 20 simulations versus the corresponding relative tolerance in Fig. 3.10. As can be seen

from Fig. 3.10, higher derivatives of Φ are more expensive to compute for a certain relative

tolerance. In addition, for each simulation that was adapted on Φ(1) for all tolerances con-

sidered, we plot the cost of the simulation versus the MSE estimate on the VaR. It can be

observed from Fig. 3.10 that for a given budget, adapting the hierarchy on the VaR directly

leads to a much lower relative error than adapting on Φ(1) and computing the VaR as a post-

processing step.

Lastly, Fig. 3.11 shows the optimal level-wise sample sizes computed for each intermediate

tolerance of one simulation of the CMLMC algorithm aimed at estimating the 70%-CVaR to

the finest tolerance simulated. This demonstrates the successive refinement strategy of the

CMLMC algorithm, where the hierarchy is calibrated based on a decreasing sequence of tol-

erances. This can be seen in the increased level-wise sample sizes in the hierarchy with suc-

cessive iterations. In addition, the red dashed line shows the expected decay rate of Nl over

the levels l as predicted by Eq. (3.81), for the variance decay and cost growth exponentsβ and

γ obtained from least squares fits on the estimates of Ṽl and cl over the levels l , respectively.
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Figure 3.10: Complexity for different statistics

3.5.2 Black Scholes Stochastic Differential Equation

We consider in this section the simulation of the price of a financial asset in time using the

Black-Scholes SDE. The price of the asset is modelled as a geometric Brownian motion:

dS = r S d t +σS dW , S(0) = S0, t ∈ (0,T ]. (3.98)

with r,σ,S0 > 0. The QoI for this example, whose distribution we wish to quantify, is the

discounted European call option, defined as follows:

Q := e−r T max
(
S(T )−K ,0

)
, (3.99)

where K > 0 denotes the agreed strike price and T > 0 the pre-defined expiration date. It

is known that the solution S(T ) to Eq. (3.98) at time T is a log-normally distributed random

variable with mean S0er T and variance S0
2e2r T

(
eσ

2T −1
)
. Hence, the CDF of Q is:

FQ (θ) =


1
2 + 1

2 erf

(p
2
(
σ2T−2r T+2ln

(
K+er T θ

)
−2ln(S0)

)
4σ

p
T

)
, θ ≥ 0 ,

0 , θ < 0 ,
(3.100)

where erf(z) = 2p
π

∫ z

0
e−s2

d s. (3.101)

Using the CDF in Eq. (3.100), it is then straightforward to compute reference values for the

VaR and CVaR. Table 3.2 lists the values of the VaR and CVaR for different significances τ

and for r = 0.05, σ = 0.2, T = 1, K = 10, and S0 = 10. The corresponding CDF is plotted in

Fig. 3.12. We are interested in estimating the CVaR value corresponding to a significance of

τ= 0.7 while ensuring the numerical stability of the rescaling ratio re in Eq. (3.82) and hence,
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Figure 3.11: Hierarchy evolution over CMLMC iterations

select an intervalΘ= [0.5,2.0]. We utilize the CMLMC algorithm coupled with the novel error

estimators described in Section 3.3 in order to calibrate the MLMC estimator for the CVaR.
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Figure 3.12: CDF FQ of Q for the
SDE problem.

τ qτ = F−1
Q (τ) cτ

0.6 0.799151 2.455898
0.7 1.373571 2.914953
0.8 2.086595 3.515684
0.9 3.153379 4.460298

Table 3.2: VaR and CVaR values for the QoI associ-
ated with SDE problem.

For the numerical experiments, the SDE in Eq. (3.98) is discretised on a hierarchy of uniform

grids given by t l
i = i∆tl , for level l ∈ {0, ...,L}, with i ∈ {0,1, ..., N l

T } such that N l
T∆tl = T . The

grid sizes ∆tl are selected such that ∆tl = ∆t02−l , giving rise to a hierarchy of nested grids.

Furthermore, we use the Euler Maruyama scheme to discretise the problem on this uniform

grid. Denoting the discretised approximation of S(ti ) on level l as St l
i
, the scheme for level l

reads:

St l
i+1

= St l
i
+ r∆tl St l

i
+σ

√
∆tl St l

i
ξi , ξi

i.i.d∼ N (0,1), i ∈ {0, ..., N l
T −1}, (3.102)

with St l
0
= S0. Correlated realizations are generated on a pair of levels l and l −1 by using the

same realization of the Brownian path on both levels.

The performance of the MLMC method can be summarized as follows. Fig. 3.13a shows the

results of a reliability study analogous to the one conducted in Section 3.5.1 for the Poisson
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problem. For each CMLMC simulation, an estimate of the MSE of the CVaR is produced

using the novel error estimation procedure described in Sections 3.3 and 3.4. The MSE es-

timates are compared with the corresponding true squared errors computed using the es-

timated value of the CVaR obtained from the CMLMC algorithm and the reference value in

Table 3.2 corresponding to τ = 0.7. As can be seen from Fig. 3.13a, the estimated MSE is

larger than the “true” MSE by a factor of approximately 10, which we consider acceptable

for practical applications. In addition, Fig. 3.13b shows the computational cost to compute

the optimal hierarchy for a given tolerance on the MSE. The plot demonstrates that the com-

plexity behaviour matches the best case scenario predicted by Proposition 3.2.1. It is also

noteworthy that the MLMC estimator not only provides a significantly improved computa-

tional complexity of O (ϵ−2) compared to O (ϵ−3) for the Monte Carlo method, but also that

the computational cost of the MLMC estimator is already smaller by one to two orders of

magnitude even for the largest tolerance considered. For comparison, the Monte Carlo cost

is plotted in Fig. 3.13b using the procedure as described in Section 3.5.1.

Lastly, we present in Fig. 3.14 a similar study as in Fig. 3.9. For the same set of reliabil-

ity simulations as in Fig. 3.13a, we compute the true squared error and MSE estimate for

Φ(m), m ∈ {0,1,2}, as well as the VaR, and plot it against the tolerance on the MSE used in the

CVaR calculation. In addition, for the VaR, shown in Fig. 3.14d, we estimate the MSE also on

a smaller interval Θ = [1.35,1.4] than the one used for estimating the CVaR for comparison.

The results are comparable to the case of the Poisson problem in Section 3.5.1; although the

novel error estimators provide accurate estimates of the MSE of Φ(m), m ∈ {0,1,2}, the error

estimates for the VaR are comparatively more conservative but improve with smaller interval

size selection.

(a) Reliability of error estimator (b) Complexity behaviour

Figure 3.13: Summary of results for the Black Scholes SDE

3.5.3 Navier-Stokes flow over a cylinder in a channel

To demonstrate the performance of the MLMC estimator and the novel error estimators on a

more challenging problem, we consider a two-dimensional steady incompressible fluid flow
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(a) m = 0 (b) m = 1

(c) m = 2 (d) VaR

Figure 3.14: Reliability of error estimator forΦ(m) and VaR for Black Scholes problems

over a cylinder placed asymmetrically in a channel. The goal here is to study the effects of

random inlet perturbations on the distributions of force and moment coefficients on the

cylinder.

The domain of the problem is a rectangle with a circular cylinder removed and can be defined

as D = [0,2.2]× [0,0.41]\Br (0.2,0.2), r = 0.05, where Br (x, y) denotes a circle centred at the

coordinate (x, y) ∈ D ⊂ R2 with radius r > 0. The flow is characterized by the velocity field

u : D → R2 and pressure field p : D → R. The velocity and pressure fields are governed by the

steady incompressible Navier-Stokes equations:

(u ·∇)u −ν∆u +∇p = 0, (3.103)

∇·u = 0, in D, (3.104)

where ν = 0.01 denotes the kinematic viscosity. The boundary conditions are as follows. At

the inflow boundary (x = 0), we consider a random inlet profile, which consists of a parabolic
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mean profile on which harmonics with random amplitudes are added:

u(0, y) =
(

4U y(0.41− y)

0.412 +ur ,0

)
, (3.105)

ur (y) =σ
Nh∑
j=1

ξ j e− j sin

(
jπy

0.41

)
, ξ j

i .i .d∼ N (0,1), (3.106)

where U = 4.0 is the peak velocity of the parabolic profile,σ= 0.5 denotes a strength parame-

ter and Nh = 8 denotes the number of harmonics superimposed. Fig. 3.15 shows 10 different

realizations of the inlet profile given in Eq. (3.106), plotted over the parabolic mean profile.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
U(y)

0.0

0.1

0.2

0.3

0.4

y

Figure 3.15: Inlet profile realizations (in color) plotted over parabolic mean profile (in black)

On the bottom and top channel walls (y = 0 and y = 0.41 respectively), no-slip boundary con-

ditions are prescribed. On the outlet (x = 2.2), a zero-stress boundary condition is prescribed

with the form

(ν∇u −pI )n = 0, (3.107)

where n = [1,0]T denotes the outward boundary normal vector and I ∈ R2×2 denotes the

identity matrix.

For a peak velocity of U = 4.0, the area-weighted inlet velocity is Ui n = 2.667. Taking the

reference length to be the diameter of the cylinder, the Reynolds’ number is

Re = 2Ui nr

ν
= 2.667×0.1

0.01
= 26.67. (3.108)

The QoI considered is the drag coefficient Cd , whose value is computed as follows. First, we
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compute the drag and lift forces Fd and Fl on the cylinder, which are given respectively by:[
Fd

Fl

]
=

∫
∂Br

(ν∇u −pI )nd s, (3.109)

where ∂Br denotes the surface of the circle over which the stress is integrated. The drag

coefficient Cd is then computed from the drag force as:

Cd = Fd

U 2
i nr

. (3.110)

The domain D is discretised with a non-uniform triangulation. Reference mesh size values

are prescribed on the surface of the circle, as well as at the corners of the domain. The coars-

est two meshes, corresponding to levels l = 0 and l = 1 of those simulated, are shown in

Fig. 3.16. Each finer level is produced by reducing the prescribed reference mesh sizes by a

factor
p

2 from the previous level and re-applying the triangulation. The meshes computed

as a result are non-nested. Table 3.3 shows the minimum and maximum mesh sizes hmi n and

hmax , as well as the number of vertices for each of the meshes considered in the hierarchy. As

can be seen from the table, the number of vertices approximately doubles with every level.

The problem is implemented using the FEniCS finite element software [92]. P2-P1 Taylor-

Hood elements are used for the velocity and pressure fields. The resulting non-linear prob-

lem is solved using Newton iterations with a relative tolerance of 10−10 on the residual. Linear

systems are solved using a sparse direct solver [9, 8].

Figure 3.16: Meshes for cylinder problem for level l = 0 (top) and l = 1 (bottom)

As in previous sections, we aim to estimate the 70%-CVaR using the CMLMC method pre-

sented in this work, for which we select the interval Θ = [0.3,0.8]. We perform a reliability

study identical to the ones conducted in Section 3.5.1 and Section 3.5.2 for the Poisson and

Black Scholes problems, respectively. The reference value of the 70%-CVaR is, however, not

available in this case. Instead, a numerical reference is computed as follows. We conduct 20

independent repetitions of the CMLMC algorithm, tuned to a tolerance that is one quarter
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Level hmi n hmax Vertices

0 1.31×10−2 2.65×10−1 199
1 9.80×10−3 1.87×10−1 333
2 6.54×10−3 1.44×10−1 593
3 4.91×10−3 9.82×10−2 1073
4 2.91×10−3 7.58×10−2 2038
5 2.28×10−3 5.62×10−2 3857

Table 3.3: Mesh parameters for the Navier Stokes problem

of the finest tolerance tested for in what follows. The reference value is then taken to be the

average over the 20 estimates of the CVaR produced by these simulations. The resultant relia-

bility plot is shown in Fig. 3.17a. As can be seen in Fig. 3.17a, the estimated squared errors are

approximately 1.5 orders conservative on the true MSE. Although considerably more conser-

vative than for the Poisson and Black-Scholes problems, we deem the error estimator still ac-

ceptable and leading to practically computable hierarchies. In addition, the complexity plot

is shown in Fig. 3.17b. The reference Monte Carlo cost is computed using the same procedure

as described in Section 3.5.1 for the Poisson problem. The figure once again demonstrates

that the complexity behaviour matches the best case scenario predicted by Proposition 3.2.1.

The MLMC estimator shows a complexity of O (ϵ−2) as compared to a complexity of O (ϵ−3.6)

in the Monte Carlo case. In addition, even for the largest tolerance considered, the MLMC

estimator is three orders faster than the corresponding Monte Carlo estimator.

Fig. 3.18 shows the true and estimated MSEs on Φ(m), m ∈ {0,1,2}, as well as the VaR for the

same set of simulations as in Fig. 3.17a. In addition, MSE estimates are computed for the

VaR case with a smaller interval Θ= [0.49,0.51]. We note that the results are similar to those

seen for the Poisson and Black Scholes problems, although the error estimators for all four

statistics are relatively more conservative when compared to those problems. In addition,

although the reduction of interval size leads to a reduction in the MSE estimates predicted

for the VaR, the reduction is not as significant as in the case of the Poisson and Black-Scholes

problems.

Finally, we recall that the rescaling ratio for the Poisson problem was shown in Fig. 3.6 to

be relatively stable with respect to different interval sizes and hierarchy shapes. However,

we conducted a similar study for the Navier-Stokes problem and observed that the rescaling

ratio was drastically more sensitive to the choice of these parameters than in the Poisson

problem case. The study is summarized in Fig. 3.19; namely that we observe the behaviour

of the variance rescaling ratio re for different hierarchy shapes and interval sizes around the

70%-VaR. We conduct the study only for hierarchies as in Eq. (3.72) with r = 0, that is, for a

hierarchy with the same sample sizes across all levels. In contrast to the results of Fig. 3.6,

we observe that the rescaling ratio very strongly depends on the hierarchy size N0, as well

as the interval Θ, and increases significantly for smaller values of N0 and shorter intervals Θ.

These observations demonstrate the imperative need for an adaptive selection algorithm for
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(a) Reliability of error estimator (b) Complexity behaviour

Figure 3.17: Summary of results for the Navier-Stokes problem

the intervalΘ. We plan to explore this direction in a future work.

3.6 Conclusions

The aim of this work was to tackle the problem of estimating summary statistics of a ran-

dom QoI which was an output of a complex differential model with random inputs. Namely,

MLMC estimators for the VaR, the CVaR, the CDF and the PDF were proposed based on the

concept of parametric expectations proposed in [85]. In this past theoretical work, a priori

error estimates and complexity results were proposed for MLMC estimators of parametric

expectations, laying the foundation for the current work. However, the a priori estimates pre-

viously proposed were found to be highly conservative due to the presence of large leading

constants and hence, practically unusable.

A completely practical modification was presented in this work by developing novel error es-

timators combined with an adaptive strategy for selecting the MLMC hierarchy parameters

and a CMLMC framework for these summary statistics. The novel developments entail the

following. Novel error estimators were presented for parametric expectations of the form in

Eqs. (3.1) and (3.2) in Section 3.3. In Section 3.4, we have subsequently derived novel er-

ror estimators on the VaR and the CVaR based on the novel error estimators on parametric

expectations. The error estimators presented in this work are an important improvement

from the error bounds presented in [85]; namely that they eliminate large leading constants

that led to conservative error estimates while preserving decay rate properties important for

the optimal performance of the MLMC algorithm. Novel practical methods were presented

for estimating the bias and statistical error components; the bias error is estimated using a

KDE-smoothened density and the statistical error is estimated using bootstrapping and lo-

calised using rescaled local variances. Adaptive strategies were also presented for selecting

the parameters of the MLMC estimator for parametric expectations based on these error esti-

mates. In particular, a CMLMC algorithm was described to successively calibrate the MLMC
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(a) m = 0 (b) m = 1

(c) m = 2 (d) VaR

Figure 3.18: Reliability of error estimator forΦ(m) and VaR for Navier Stokes problem

estimator on iteratively improved estimates of the errors. The above combination of error

estimators, adaptive strategy and MLMC algorithm were demonstrated on a simple problem

whose analytical solution was known. It was shown that the error estimators provided prac-

tical error bounds on the true error and resulted in practically computable hierarchies for the

test problems, ranging from a simple Poisson problem to the steady Navier-Stokes equations

for flow over a cylinder, demonstrated in this study.

The numerical examples considered here indicate that the performance of the novel ap-

proach sensitively depends on the choice of interval over which to construct the paramet-

ric expectation. It was shown that the choice of interval was important to the tightness of

the novel error estimators for derived quantities such as the VaR and the CVaR. We plan to

explore this and related improvements in future works.

3.A Spline Intepolator Property

We recall here basic results on error bounds for the use of cubic spline interpolation operators

to approximate a function and its derivatives.
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Figure 3.19: Behaviour of re for different hierarchy shapes and interval sizes for Navier Stokes
problem

Lemma 3.A.1 (Cubic spline interpolation operator). Let Sn
(

f (θ)
) ∈C 2(Θ) be the cubic spline

interpolation operator acting on the function values f (θ) ∈ Rn consisting of the function f :

Θ→ R evaluated at the n uniform nodes θ = [θ1, ...,θn]T such [θ1,θn] = Θ. The interpolation

operator satisfies

(S.1) for m ∈ {0,1,2} and for any f ∈C 4(Θ)∥∥∥∥ f (m) − d m

dθm Sn
(

f (θ)
)∥∥∥∥

L∞(Θ)
≤C1(m)

∥∥ f (4)
∥∥

L∞(Θ)

( |Θ|
n

)(4−m)

,

with C1(0) = 5/384, C1(1) = 1/24, and C1(2) = 3/8,

(S.2) for m ∈ {1,2} and for any x ∈Rn

∥∥∥∥ d m

dθm Sn (x)

∥∥∥∥
L∞(Θ)

≤C2(m)(n −1)m ∥Sn (x)∥L∞(Θ) ,

with C2(1) = 18/ |Θ| and C2(2) = 48/|Θ|2,

(S.3) ∥Sn (x)∥L∞(Θ) ≤C3 ∥x∥l∞ for any x ∈Rn , with C3 = 7(2
p

7+1)
27 ,

for all n ∈N.

Proof. The fact that S := Sn
(

f (θ)
) ∈ C 2(Θ) as well as the properties (S.1) and (S.3) are well

known results in approximation theory [69, 44, 109]. To prove property (S.2), we first note

that

∥S∥L∞(Θ) = max
1≤ j≤n−1

∥∥P j
∥∥

L∞([θ j ,θ j+1]) = max
1≤ j≤n−1

∥∥P j ◦ g j
∥∥

L∞([−1,1]) ,
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where g j (t ) = θ j+θ j+1

2 + δ
2 t with δ := θ j+1 −θ j = |Θ|

n−1 . Here, P j denotes the cubic spline poly-

nomial on the interval [θ j ,θ j+1]. It then follows from the Markov type inequality result [65]

that

∥S∥L∞(Θ) ≥
1

9
max

1≤ j≤n−1

∥∥∥∥ d

d t
P j (g j )

∥∥∥∥
L∞([−1,1])

= δ

18
max

1≤ j≤n−1

∥∥∥P (1)
j

∥∥∥
L∞([θ j ,θ j+1])

,

which shows that ∥∥S(1)
∥∥

L∞(Θ) ≤
18

δ
∥S∥L∞(Θ) =

18(n −1)

|Θ| ∥S∥L∞(Θ) .

An analogous analysis for the second derivative yields
∥∥S(2)

∥∥
L∞(Θ) ≤ 48

δ2 ∥S∥L∞(Θ), which com-

pletes the proof. We recall that the constants C1(0) and C1(1) in (S.1) above are known to be

optimal [69].
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4 Overview of Risk-Averse PDE-
Constrained OUU

Optimisation algorithms play an important role across various scientific and engineering

fields as valuable design tools. The key goal of optimisation is to find the best values of cer-

tain parameters (design variables) of a model, typically a differential model such as a PDE,

used to predict the behaviour of a certain system, such that a desired output quantity of the

model is optimised. Such differential models usually also include various other input pa-

rameters beside the design variable, which may or may not be fully characterised. There is

an increasing interest in the computational science and engineering community to treat such

parameters as random variables to reflect their uncertainty, either due to a lack of knowledge

or to some intrinsic variability. As a result, the output quantity being optimised also becomes

a random variable. Naively optimising the system for only one particular value of the ran-

dom inputs can lead to a design that is not robust enough to the uncertainties in the system.

A classical example is of designing civil engineering structures to minimise structural loads,

the target application area of the ExaQUte project. Designing the structure for moderate or

mean wind conditions may result in a design that is unable to withstand, for example, local

wind gusts or storms. The field of PDE-constrained OUU seeks to characterise the random-

ness of the output QoI of the PDE using summary statistics such as moments, quantiles, etc.,

and optimise the summary statistic instead of the QoI directly. In particular, in risk-averse

PDE-constrained optimisation, one aims at favouring designs with acceptable performance

also in extreme conditions. In this case, the summary statistic, often called a risk-measure,

should quantify the importance that is given in the design process to unfavourable scenar-

ios. The choice of risk-measure, in turn, influences the choice of optimisation algorithm and

sampling strategy used to solve the problem.

In this chapter, we present an overview of OUU problems, solution methodologies and sam-

pling strategies. We begin by focusing on the problem formulation of risk-averse optimi-

sation, in Section 4.1. In this thesis, we focus on coherent risk-measures, a class of risk-

measures that demonstrates several favourable properties for use in risk-averse OUU. We

briefly review the concept of coherent risk-measures in Section 4.2, with a focus on the CVaR,

our coherent risk-measure of choice for the optimisation applications targeted within the
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ExaQUte project and within this thesis in Section 4.2. Section 4.3 presents a brief overview

of various optimisation algorithms and sampling strategies used to solve risk-averse design

problems in literature.

We recall that the key aim of the ExaQUte project is to carry out risk-averse civil engineer-

ing design using gradient-based approaches. We also recall that we are primarily interested

in using the MLMC method to do so, since the underlying differential model is typically a

high-cost model. To this end, we review in Section 4.4 the relevant literature on risk-averse

PDE-constrained minimisation of the CVaR, specifically using gradient-based approaches

combined with the MLMC method, highlighting existing challenges. We also highlight the

key features of our work in Chapter 5 that address these challenges, thereby laying the foun-

dation for the developments presented in Chapter 5.

4.1 Risk-measures and optimisation formulation

Let (Ω,F ,P) denote a complete probability space and ω ∈ Ω an elementary random event.

We denote by Q(z) ∈ Lp (Ω,R) a random QoI that is the output of the underlying differen-

tial model for a given set of design parameters z ∈ Rd . A risk-measure R : Lp (Ω,R) → R is a

mapping that quantifies a notion of risk in the distribution of Q(z). We focus in this work on

optimisation problems of the type:

J ∗ = min
z∈Rd

J (z) :=R(Q(z)). (4.1)

The choice of R has important implications for the distribution of Q(z). For example, a

popular class of risk-measures, known as mean-risk models, are of the form R(Q(z)) :=
E [Q(z)] + cD[Q(z)],c > 0, where D[Q(z)] quantifies the “dispersion” of the QoI. A com-

mon candidate for D is the standard deviation, leading to the mean-variance risk-measure

R(Q(z)) = E [Q(z)]+ c
√
Var(Q(z)), which aims to minimise E [Q] as well as deviations from

it, with the relative balance being controlled by the constant c. However, a common down-

side of this risk-measure is that it equally weighs deviations both above and below the mean.

Another class of candidates for D, which remedy this issue, are the central semi-deviations

σ+
p [Q(z)] = (

E
[
(Q(z)−E [Q(z)])

p
+
])1/p

, where p ∈ [1,∞) and the subscript + denotes the maxi-

mum function. We refer the reader to [122, Chapter 6] for an extensive summary of different

risk-measures and their corresponding properties.

[80] presented another class of risk-measures, corresponding to probabilistic optimisation,

wherein the objective function J (z) has the form:

J (z) =P(Q(z) ≥Qr e f ) = E[
1Q(z)≥Qr e f

]
, (4.2)

which measures the probability of Q(z) exceeding a prescribed threshold value Qr e f . A clas-

sical example, pertinent to the ExaQUte project, is when Qr e f corresponds to a critical struc-

tural moment or force in a structural engineering application. The work [112] also explored
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the use of failure probabilities within constraints.

We also mention the concept of distributionally robust optimisation introduced in [10]. The

measure of Q(z) is treated as unknown, and it is desired to construct a surrogate measure

from some known, possibly noisy, measurements of Q(z). A possible formulation is then

to minimise, with respect to the design z, the worst possible expectation over the space of

possible surrogate measures as follows:

J (z) := sup
P∈M

EP [Q(z)] , (4.3)

where P denotes the surrogate measure and M denotes the set of surrogate probability mea-

sures. The interested reader is referred to [122] and [80] for a thorough overview of risk-

measures and their use in risk-averse problem formulations. We remark that, in our work

[51], we followed closely the analysis of [80] for a similar problem of PDE constrained pe-

nalised risk-measure minimisation, presenting optimality conditions and outlining the al-

gorithmic implementation aspects of using a gradient-based algorithm for some common

risk-measures including the CVaR.

4.2 Coherent risk-measures and the CVaR

Coherent risk-measures, introduced in [11], are risk-measures that satisfy several additional

axioms that yield favourable properties for use in risk-averse OUU. These axioms are pre-

sented in Definition 1. Several coherent risk-measures have been proposed in literature, fol-

lowing the work of [11], including the entropic-value-at-risk [1], The tail-value-at-risk [104],

and the CVaR [113].

Definition 1. A coherent risk-measure is a risk-measure R : Lp (Ω,R) → R, p ∈ [1,∞) that sat-

isfies the following properties for all X ,Y ∈ Lp (Ω,R):

(i) Convexity: For t ∈ [0,1], R(t X + (1− t )Y ) ≤ tR(X )+ (1− t )R(Y ).

(ii) Monotonicity: If X ,Y satisfy X (ω) ≤ Y (ω) for P−a.e.ω ∈Ω, then R(X ) ≤R(Y ).

(iii) Translation Equivariance: For t ∈R, R(X + t ) =R(X )+ t .

(iv) Positive Homogenity: For t ≥ 0, R(t X ) = tR(X ).

The work of [115] considered optimisation problems of the form in Eq. (4.1) containing co-

herent risk-measures and derived optimality conditions for the problem, along with several

other results on the properties of R. [122] extended the analysis of problem (4.1) to the case

of PDE-constrained optimisation, deriving existence and optimality conditions. The authors

of [83] derived optimality conditions for a penalised version of Eq. (4.1) with PDE constraints

and with a coherent R, where undesirable designs were penalised through a penalisation
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term. A Gâteaux differentiability result was also shown for such an objective function. No-

table, the authors of [53] formulated a modified version of Eq. (4.1), by considering a se-

quence of log-barrier approximations combined with an interior point optimisation algo-

rithm.

In this thesis, we focus on the CVaR [113, 114], a widely used coherent risk-measure. We de-

note by cτ(z) the CVaR of Q(z) of significance τ ∈ [0,1], i.e., cτ(z) := E[
Q(z)|Q(z) ≥ qτ

]
, where

qτ is the τ-quantile of Q(z). We showed in Chapter 3 that, following the work in [113], cτ(z)

could be written in the following form under certain conditions on the distribution of Q(z):

cτ(z) = min
θ∈R

{
Φ(θ; z) := E[

φ(θ,Q(z))
]}

, φ(θ,Q) := θ+ (Q −θ)+

1−τ . (4.4)

Such a formulation of the CVaR in terms of a minimisation problem was shown in [113] to

possess several favourable properties for use with risk-averse optimisation.

4.3 Optimisation algorithms and sampling strategies

We now review the literature on OUU algorithms to solve problem (4.1). However, we restrict

our discussion to PDE-constrained problems that use sample-based discretisations of the

random space, since this allows us to easily re-purpose existing PDE solvers for sampling. The

reader is referred to the introduction of [84] for a review of the alternative; namely, projection-

based discretisations. Notably, we refer the reader to the works [120, 119, 118], who used an

adaptive sparse-grid approach combined with a one-shot optimisation algorithm based on

sequential quadratic programming.

We note that two broad approaches can be used to solve problem (4.1); namely, evolutionary

algorithms and gradient-based methods. Evolutionary algorithms were used in combination

with Monte Carlo estimators for PDE-constrained CVaR minimisation in [108, 107]. A ge-

netic algorithm was also used in combination with MLMC estimators in [106]. Multiple dif-

ferent risk-measures, including the CVaR, were estimated, and the framework was applied to

aerodynamic shape optimisation problems. However, evolutionary algorithms typically have

slower rates of convergence in comparison to gradient-based methods and involve multiple

expensive evaluations of the objective function.

Gradient-based algorithms have also been used to solve problems of the form in Eq. (4.1).

For example, [89] proposed the use of non-smooth optimisation techniques combined with

Monte Carlo estimation to solve a problem of CVaR minimisation. The works [77, 79, 78]

combine stochastic collocation methods to estimate different risk measures with trust-region

methods for solving the optimization problem. The authors of [84] propose to minimise a

smoothed version of the CVaR, estimated using a Monte Carlo approach, with second order

differentiability, using a trust region algorithm.

We also highlight that MLMC algorithms have been used successfully in several works to solve
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PDE-constrained OUU problems, however, for quadratic (hence smooth) risk-measures. For

instance, [130] uses a combination of MLMC estimators with an optimisation approach that

combines a non-linear conjugate gradient method with local quadratic approximation of the

objective function to solve a quadratic optimal control problem. [94] proposes a stochastic

gradient algorithm that uses MLMC estimators for a similar quadratic control problem. The

work in [2] solves a quadratic optimal control problem pathwise, generating and combining

the pathwise optimal controls using an MLMC estimator.

4.4 Challenges in gradient-based CVaR minimisation with MLMC

We consider the following problem of penalised PDE-constrained CVaR minimisation for our

work:

J ∗ = min
z∈Rd

{
cτ(z)+κ∥∥z − zr e f

∥∥2
l 2

}
, (4.5)

= min
z∈Rd

θ∈R

{
J (θ, z) :=Φ(θ; z)+κ∥∥z − zr e f

∥∥2
l 2

}
, (4.6)

where we have added a term penalising deviations of the design z from a preferred design

zr e f with strength parameter κ, and ∥·∥l 2 denotes the Euclidean norm. Additionally, due to

the high-cost of the underlying PDE, and the high-dimensionality of input uncertainties, we

are interested in the use of the MLMC method. We address in this section the main chal-

lenges in using the MLMC methods, combined with gradient-based approaches, to solve

problem (4.6). We highlight how our recent work [52], that will be summarized in Chapter 5,

addresses these challenges by developing novel MLMC estimators that rely on the frame-

work of parametric expectations [85], and extend the work in Chapter 3 to the computation

of CVaR sensitivities.

The computation of the sensitivities of the CVaR cτ(z) with respect to the extended

design variables z and θ typically requires the estimation of expectations of the form

E
[
(Q(z)−θ)+

]
and E

[
1Q(z)≥θ f (z)

]
for suitable design-dependent random variables f (z). Al-

though E
[
(Q(z)−θ)+

]
and E

[
1Q(z)≥θ f (z)

]
can be shown to be differentiable in θ and z [74,

73] under some conditions on the distribution of Q(z), sample- or quadrature-based approx-

imations of these expectations are typically not differentiable and may require some addi-

tional treatment. One possibility is to directly use the non-differentiable estimations in com-

bination with non-smooth optimisation techniques that use sub-gradient information. For

example, the work in [89] uses a combination of smooth and non-smooth optimisation tech-

niques, using sub-gradients computed using Monte Carlo estimators, to minimise the CVaR.

Alternatively, one could construct smoothed versions of the maximum/indicator functions,

with sufficient regularity such that sample-based approximations are still differentiable. For

example, a regularised version of the CVaR was constructed in [84], with second order dif-

ferentiability, and optimised successfully using a trust-region method combined with Monte

Carlo sampling. Additionally, a primal-dual algorithm was introduced in [81] for minimising
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a similarly regularised version of the CVaR, smoothed using the epi-regularisation approach

developed by the same authors in [82].

However, although regularised or smoothed versions of the CVaR can be constructed with

adequate differentiability, this property is lost in the limit of vanishing smoothing, as is re-

quired when the algorithm is close to the optimum. The method proposed in [85] and ex-

tended in Chapter 3 offers an alternative to CVaR regularisation. In these works, the quantity

E
[
(Q(z)−θ)+

]
is estimated directly using an MLMC estimator at a set of points in θ, all shar-

ing the same realisations of Q(z), followed by a cubic spline interpolation over the pointwise

evaluations thus obtained. Derivatives such as E
[
1Q(z)≥θ f (z)

]
are then approximated using

derivatives of the cubic spline. As was discussed in Chapter 3, directly using a naive MLMC

estimator to estimate E
[
1Q(z)≥θ f (z)

]
may cause non-optimal MLMC complexity behaviour.

By constructing an MLMC estimator of E
[
(Q(z)−θ)+ f (z)

]
and numerically differentiating in

θ instead, our approach ameliorates this issue and preserves the same optimal complexity

behaviour of the MLMC method as predicted for estimating E [Q(z)]. Lastly, since the MLMC

estimator proposed in [85, 16] automatically provides an approximation Ĵ (·, z) of the func-

tion θ 7→J (θ, z) at a given design z, we propose in this work to use an optimisation algorithm

in which, at each iteration, gradient steps are taken only in the design variable z, whereas ex-

act optimisation in θ is performed using the surrogate Ĵ (·, z). Such an algorithm, introduced

in [17], was applied in combination with the Monte Carlo estimation of a regularised version

of the CVaR in [26].

The computation of the sensitivities of the CVaR cτ(z) with respect to the extended

design variables z and θ typically requires the estimation of expectations of the form

E
[
(Q(z)−θ)+

]
and E

[
1Q(z)≥θ f (z)

]
for suitable design-dependent random variables f (z). Al-

though E
[
(Q(z)−θ)+

]
and E

[
1Q(z)≥θ f (z)

]
can be shown to be differentiable in θ and z [74,

73] under some conditions on the distribution of Q(z), such sample- or quadrature-based

approximations of these expectations are typically not differentiable and may require some

additional treatment. One possibility is to directly use the non-differentiable estimations

in combination with non-smooth optimisation techniques that use sub-gradient informa-

tion. For example, the work in [89] uses a combination of smooth and non-smooth optimisa-

tion techniques, using sub-gradients computed using Monte Carlo estimators, to minimise

the CVaR. Alternatively, one could construct smoothed versions of the maximum/indicator

functions, with sufficient regularity such that sample-based approximations are still differen-

tiable. For example, a regularised version of the CVaR was constructed in [84], with second or-

der differentiability, and optimised successfully using a trust-region method combined with

Monte Carlo sampling. However, although regularised or smoothed versions of the CVaR can

be constructed with adequate differentiability, this property is lost in the limit of vanishing

smoothing, as is required when the algorithm is close to the optimum.

The method that was proposed in [85] and that we extended in Chapter 3 offers an alternative

to CVaR regularisation. We proposed to estimate the quantity E
[
(Q(z)−θ)+

]
directly using an

MLMC estimator at a set of points in θ, all sharing the same realisations of Q(z), followed by
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a cubic spline interpolation over the pointwise evaluations thus obtained. Derivatives such

as E
[
1Q(z)≥θ f (z)

]
were then approximated using derivatives of the cubic spline. We will fol-

lowed the above path in our work [52], and will summarize the same in Chapter 5, discussing

how this approach can be extended to the computation of sensitivities of the CVaR.

Additionally, since the MLMC estimator that we proposed in Chapter 3 automatically pro-

vides an approximation Ĵ of the function θ 7→ J (θ, z) at a given design z, we propose in

Chapter 5 to use an optimisation algorithm in which, at each iteration, gradient steps based

on Ĵ are taken only in the design variable z, whereas exact optimisation in θ is performed

using the surrogate Ĵ . Such an algorithm, introduced in [17], was applied in combination

with the Monte Carlo estimation of a regularised version of the CVaR in [26]. We instead pro-

pose to combine the this optimisation approach with a CMLMC approach, and introduce a

novel CMLMC-Alternating Minimisation-Gradient Descent (AMGD) algorithm in Chapter 5.
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5 Gradient-based minimisation of the
CVaR using MLMC estimators

The main contributions of our work [52], which were briefly introduced in Section 4.4 and

summarised here, are as follows. We propose novel expressions for the sensitivity of the ob-

jective function defined in Eq. (4.6) in terms of parametric expectations, thus allowing us

to use and extend the framework we presented in Chapter 3 to build cost optimal adaptive

MLMC estimators for those sensitivities with error control. We then propose to use MLMC

sensitivity estimators within an alternating minimisation-gradient descent algorithm, anal-

ogous to the one proposed in [17, 26], where gradient steps are taken in the design variable

z whereas exact optimisation is performed in θ using an MLMC-constructed surrogate Ĵ of

J . The accuracy of the surrogate and sensitivity estimation is increased over the optimisa-

tion iterations and is set proportional to the gradient norm. Following closely the analysis

in [26], we propose a convergence result for our algorithm under the assumption that the

objective function J (θ, z) is strongly convex with Lipschitz continuous gradients.

The structure of this chapter is as follows. We present the problem formulation in Section 5.1,

for a problem of penalised CVaR minimisation of the form in Eq. (4.6). A novel expression for

the gradients in terms of parametric expectations is also presented in Section 5.1. In Sec-

tion 5.2, we propose the novel AMGD algorithm described at the beginning of this chapter

with inexact gradient and objective function estimation and demonstrate its convergence.

Section 5.3 discusses the novel MLMC estimators, error estimation procedure, and adaptive

CMLMC-type hierarchy selection for the gradients of J (θ, z). In addition, it presents a final

CMLMC-AMGD algorithm. Lastly, in Section 5.4, we demonstrate the above optimisation al-

gorithm and MLMC procedure on two problems of interest. The first is a two-dimensional

oscillator, typically used to model oscillatory phenomena in excitable media. The second

is a more applied problem of pollutant transport modelling. We demonstrate that the pro-

cedure proposed in this work performs well and reflects the theoretical results presented in

Sections 5.1 and 5.2.
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5.1 Problem formulation

Let (Ω,F ,P) denote a complete probability space, ω ∈ Ω an elementary random event and

z ∈ Rd the vector of design variables. We denote by Q(z,ω) ∈ R the random QoI, typically

a functional of the solution to an underlying differential model with random input ω and

design z. We are interested in minimising the CVaR cτ(z) of the random variable Q(z, ·) over

the designs z ∈ Rd , as indicated in Eq. (4.5), following the formulation presented in [113]. To

this end, we first introduce the following assumptions on the random variable Q(z, ·).

Assumption 1. For any z ∈Rd :

(i) Q(z, ·) is a random variable in Lp (Ω,R) for some p ∈ [1,∞).

(ii) The measure of Q(z, ·) admits a probability density function, i.e., the measure of Q(z, ·) is

free of atoms. We denote by Γ the subset of random variables in Lp (Ω,R) that are free of

atoms, and hence, Q(z, ·) ∈ Γ⊂ Lp (Ω,R).

(iii) There exists a positive random variable K , possibly dependent on z, such that E [K ] <∞
and

|Q(z +∆z, ·)−Q(z, ·)| ≤ K (·)∥∆z∥l 2 , (5.1)

for any ∆z ∈Rd close enough to 0 (restated here from [74, 73]).

(iv) For almost every ω ∈ Ω, the mapping z 7→ Q(z,ω) is differentiable in Rd and the corre-

sponding vector of partial derivatives Qz (z, ·) = [
Qz1 (z, ·), ...,Qzd (z, ·)]T of Q with respect

to the components zk of z, k ∈ {1, ...d}, is a random variable in Lp (Ω,Rd ).

To quantify the tails of Q(z, ·), we first define the τ-VaR qτ(z), alternatively known as the τ-

quantile, of significance τ ∈ (0,1) as follows:

qτ(z) := min{θ ∈R|E[
1Q(z,·)≤θ

]≥ τ}. (5.2)

The τ-CVaR cτ(z) is defined as the expected value of Q(z, ·) in the tail above and including the

τ-VaR qτ(z):

cτ(z) := E[
Q(z, ·)|Q(z, ·) ≥ qτ(z)

]
. (5.3)

As was described in Chapter 4, [113] proposed that cτ(z) could be written in the form in

Eq. (4.4) for a random variable Q(z, ·) satisfying Assumption 1.(ii).

In this chapter, we extensively use the concept of parametric expectations introduced in

Chapter 3. In particular, let us re-introduce the function (parametric expectation) Φ : R×
Rd →R as:

Φ(θ; z) := E[
φ(θ,Q(z, ·))

]
, θ ∈R, z ∈Rd , (5.4)
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withφ :R×R→R given by Eq. (3.2). The introduction of the parametric expectationΦ has the

advantage that the τ-VaR qτ(z) and the τ-CVaR cτ(z) of any significance τ can be obtained by

simple post-processing ofΦ as:

qτ(z) = argmin
θ∈R

Φ(θ; z), cτ(z) = min
θ∈R

Φ(θ; z) =Φ(qτ(z); z). (5.5)

The framework of parametric expectations allows us to write the penalised CVaR minimi-

sation problem in Eq. (4.5) as a combined minimisation over θ and z as in Eq. (4.6). The

problem is restated below for reference:

J ∗ = min
z∈Rd

θ∈R

{
J (θ, z) :=Φ(θ; z)+κ∥∥z − zr e f

∥∥2
l 2

}
. (5.6)

For the remainder of this work, we address the challenge of solving problem (5.6). The com-

bined objective function J (θ, z) has several properties that, when combined with the prop-

erties of Q in Assumption 1, have useful implications for gradient based optimisation tech-

niques. We first discuss the differentiability of J (θ, z). Theorem 5.1.1 below gives a result on

Fréchet differentiability of the CVaR.

Theorem 5.1.1. Let L(X ,Y ) denote the space of bounded linear operators between the normed

vector spaces X and Y . We define the function R :R×Lp (Ω;R) →R as follows:

R(θ,Q) := θ+ E
[
(Q −θ)+

]
1−τ = E[

φ(θ,Q)
]

. (5.7)

Then, R(θ,Q) is jointly Fréchet differentiable inR×Γ, with Fréchet derivative DR(θ,Q) ∈L(R×
Lp (Ω,R),R) at the point (θ,Q) ∈R×Γ in the direction (δθ,δQ) ∈R×Lp (Ω,R) given by:

DR(θ,Q)(δθ,δQ) =
(

1− E
[
1Q≥θ

]
1−τ

)
δθ+ E

[
1{Q≥θ}δQ

]
1−τ . (5.8)

Proof. The reader is referred to Appendix 5.A for the proof.

This result, combined with Assumption 1 on Q, leads immediately to the differentiability of

J (θ, z).

Corollary 5.1.1. The objective function J (θ, z) is jointly Fréchet differentiable in R×Rd , with

Fréchet derivative DJ (θ, z) ∈ L(R×Rd ,R) at the point (θ, z) in the direction (δθ,δz) ∈ R×Rd

given by:

DJ (θ, z)(δθ,δz) =
(

1− E
[
1Q≥θ

]
1−τ

)
δθ+ E

[
1{Q≥θ}Q

T
z δz

]
1−τ +2κ(z − zr e f )Tδz. (5.9)

A direct implication of Corollary 5.1.1 is that the gradient ∇J (θ, z) ∈Rd+1 and partial deriva-

tives Jz (θ, z) = [
Jz1 (θ, z), ...,Jzd (θ, z)

]T ∈ Rd and Jθ(θ, z) ∈ R exist, and the partial deriva-
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tives are given by the following expressions:

Jθ(θ, z) = 1− E
[
1Q(z,·)≥θ

]
1−τ , (5.10)

Jz (θ, z) = E
[
1Q(z,·)≥θQz (z, ·)]

1−τ +2κ(z − zr e f ). (5.11)

One of the main contributions of this work is the estimation of the sensitivities in Eqs. (5.10)

and (5.11) using MLMC estimators. However, as discussed in Chapter 4, using MLMC to

directly estimate the expectations in Eqs. (5.10) and (5.11) may require a large number of

samples to achieve accurate estimates. Even if accurate estimates can be achieved, it may

result in compromised or non-optimal MLMC performance. The reader is referred to [16,

85] for a detailed discussion on the topic. To ameliorate this issue, we propose the following

alternative formulation of the gradients in terms of parametric expectations:

Jθ(θ, z) =Φ(1)(θ; z), withΦ as in Eqs. (3.1)-(3.2), (5.12)

Jz (θ, z) =Ψ(1)(θ; z)+2κ(z − zr e f ), (5.13)

whereΨ(θ; z) := E
[
− (Q(z, ·)−θ)+Qz (z, ·)

1−τ
]
=:

[
E
[
ψ(θ,Q,Qz1 )

]
, ...,E

[
ψ(θ,Q,Qzd )

]]T . (5.14)

The superscript of the parametric expectations in Eq. (5.12) and Eq. (5.13) denotes the deriva-

tive computed with respect to θ. In addition to Φ(θ; z), we have introduced the parametric

expectation Ψ(θ; z) ∈ Rd and the function ψ(θ,Q,Qzk ) ∈ R where zk and Qzk denote the kth

components of z and Qz respectively, k ∈ {1, ...,d}. The differentiability of Ψ(θ; z) in θ fol-

lows by the same arguments of Theorem 5.1.1 and Corollary 5.1.1, under Assumption 1. It

was shown in [16] that since φ and ψ are Lipschitz continuous in their arguments, the cor-

responding MLMC estimators no longer suffer from the compromised performance due to

discontinuities. The idea is then to build MLMC estimators Φ̂(·, z) and Ψ̂(·, z) for the whole

functions θ 7→ Φ(θ; z) and θ 7→Ψ(θ; z) respectively on a suitably chosen interval Θ ⊂ R, and

then approximate Jθ and Jz as Ĵθ(θ, z) = Φ̂(1)(θ; z) and J̃z (θ, z) = Ψ̂(1)(θ; z)+2κ(z − zr e f ).

As a by-product of this approach for estimating sensitivities, we construct an approximation

θ ∈ Θ 7→ Ĵ (θ, z) = Φ̂(θ; z) +κ∥∥z − zr e f
∥∥2

l 2 of the objective function itself for all θ ∈ Θ, at a

given design z ∈Rd . This allows us to consider an optimisation problem in which exact min-

imisation in θ is performed at each iteration using the surrogate Ĵ , and gradient steps are

performed only in z using the approximate gradient J̃z . Notice that the gradient approxima-

tion in z is inconsistent with the surrogate model Ĵ , i.e., J̃z ̸= ∂zĴ , in contrast to Ĵθ. We

will detail this approach in the next section.

5.2 Gradient based optimisation algorithm

In this section, we present a gradient-based iterative procedure to find a local minimiser

(θ∗, z∗) of the OUU problem in Eq. (5.6), should it exist. The broad goal of a gradient based
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algorithm is to define the iterates (θ j , z j ), j ∈N such that

lim
j→∞

(θ j , z j ) = (θ∗, z∗), (5.15)

where the iterates are computed using gradient information. Motivated by our interest in

using MLMC estimators based on parametric expectations to estimate the objective func-

tion and its sensitivities, we consider in this section the general situation in which, at each

iteration j of the gradient based algorithm, we build an approximation Ĵ j (θ, z),θ ∈Θ of the

objective function at the design z ∈ Rd on a suitably chosen interval Θ ⊂ R (which may de-

pend on j , although to ease the notation, we do not highlight such dependence), as well as

approximations Ĵ
j
θ

(θ, z) and J̃
j

z (θ, z), θ ∈Θ where the approximation J̃
j

z may not coincide

with the z-derivative of Ĵ j . The approximations Ĵ j , Ĵ
j
θ

and J̃
j

z may be random, as will

be the case for MLMC estimators. We the propose the following variation of the standard

gradient descent algorithm, starting from an initial design z0:

θ j ∈ argmin
θ∈Θ

Ĵ j (θ, z j ), (5.16)

z j+1 = z j −αJ̃
j

z (θ j , z j ), (5.17)

where α > 0 denotes a step size parameter. We note that according to the procedure in [16],

the interval Θ can be freely selected and, hence, we can ensure that θ j always belongs to the

interior ofΘ, so that Ĵ
j
θ

(θ j , z j ) = 0 ∀ j ∈N.

In Theorem 5.2.1 in Section 5.2.1, we show that the iterates (θ j , z j ) converge exponentially

fast in the iteration counter j towards (θ∗, z∗) under additional assumptions on the objective

function J and its approximations Ĵ j . The results of Theorem 5.2.1, specifically the

implications of Eq. (5.20), demonstrate that exponential convergence of the iterates z j and

θ j in j can be obtained if the gradient approximation is accurate up to a tolerance that is

a fraction η of the gradient magnitude at the previous iteration. The step size is selected

sufficiently small, and remains fixed over all optimisation iterations, although variable step

sizes and line search methods could be easily added. The algorithm is terminated once

the gradient magnitude drops to a specified fraction of the initial value. We introduce here

the notation w = (θ, z), ∇J = (Jθ,Jz ) and ∇̃Ĵ j = (Ĵ j
θ

,J̃ j
z ) for convenience in the following.
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Algorithm 4: Novel AMGD algorithm

1: Input: Initial design z0, iteration counter j = 0, tolerance 0 < ϵ< 1, step size α> 0 and

tolerance fraction η> 0.

2: Set residual r = ϵ+1.

3: while r > ϵ do

4: if j = 0 { Compute Ĵ )(·, z j ) and J̃ 0
z (·, z j ) up to a fixed tolerance.}

5: else
{

Compute Ĵ j (·, z j ) and J̃
j

z (·, z j ) such that

MSE
(∇̃Ĵ j (·, z j )

)≤ η2
∥∥∇J (θ j−1, z j )

∥∥2
l 2 with MSE

(∇̃Ĵ j (·, z j )
)

defined as in Eq. (5.20).

}
6: Compute a minimiser θ j ∈ argminθ∈Θ Ĵ j (θ, z j ).

7: Compute gradient step z j+1 = z j −αJ̃
j

z (θ j , z j ).

8: Set residual r = ∥∥∇̃Ĵ j (w j )
∥∥2

l 2 /
∥∥∇Ĵ 0(w0)

∥∥2
l 2 .

9: Update j ← j +1.

10: end while

5.2.1 Convergence analysis

For the interested reader, we present a self-contained convergence analysis of the iterates

(θ j , z j ) in Theorem 5.2.1, under additional assumptions on J and Ĵ j , based on the analy-

sis presented in [26]. The key differences in the two analyses are related to the fact that the

algorithm studied here is an AMGD algorithm instead of a pure gradient descent algorithm.

We first note that the objective function J (θ, z) is convex under the additional assumption

that Q(z, ·) is almost surely convex in z [113, Theorem 10]. When combined with the as-

sumption that J → ∞ when ∥z∥l 2 , |θ| → ∞, this ensures that a minimiser of J (θ, z) exists

in R×Rd . However, we require additional assumptions on the objective function J to prove

exponential convergence of the iterates θ j and z j towards such a minimiser; namely Assump-

tions 2 and 3 that it is both strongly convex and with Lipschitz continuous gradients, respec-

tively. An immediate implication of Assumption 2 is that there exists a unique minimiser

(θ∗, z∗) ∈R×Rd for the OUU problem in Eq. (5.6) such that Jz (θ∗, z∗) =Jθ(θ∗, z∗) = 0.

In what follows, we denote by Ej [·] the expectation conditional on all of the random variables

used to define z j (i.e., conditioned on the past up to iteration j ), and by 〈·, ·〉 the l 2 inner

product. Readers interested in the implementation details of Algorithm 4 and its relation to

the MLMC method can proceed directly to Section 5.3.

Assumption 2. The objective function J is µ-strongly convex, i.e., there exists µ> 0 such that,

for all wa , wb ∈R×Rd , equivalently:

(i) J (wb) ≥J (wa)+〈
wb −wa ,∇J (wa)

〉+ µ
2 ∥wb −wa∥2

l 2 ,

(ii)
〈∇J (wb)−∇J (wa), wb −wa

〉≥µ∥wb −wa∥2
l 2 .
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Assumption 3. The objective function J has Lipschitz continuous gradients, i.e., there exists

L > 0 such that, for all wa , wb ∈R×Rd :∥∥∇J (wb)−∇J (wa)
∥∥

l 2 ≤ L ∥wb −wa∥l 2 . (5.18)

Lemma 5.2.1. Let J satisfy Assumptions 2 and Assumptions 3. Then we have that, for 0 <α≤
1/L,

µ

2

∥∥w −w∗∥∥2
l 2 + α

2

∥∥∇J (w)
∥∥2

l 2 ≤
〈∇J (w), w −w∗〉

. (5.19)

The above result is restated here from [26, Lemma 2.1].

Theorem 5.2.1. LetΘ⊂R be a convex set. Let J :R×Rd →R satisfy Assumptions 2 and 3, and

Ĵ j :Θ×Rd →R satisfy the following condition:

MSE
(
∇̃Ĵ j (·, z j )

)
:= Ej

[∥∥∥Ĵ
j
θ

(·, z j )−Jθ(·, z j )
∥∥∥2

L∞(Θ)

]
+

d∑
k=1

Ej

[∥∥∥Ĵ
j

zk (·, z j )−Jzk (·, z j )
∥∥∥2

L∞(Θ)

]
≤ η2

∥∥∇J (θ j−1, z j )
∥∥2

l 2 , (5.20)

for some η > 0, where (θ j−1, z j ) is the j th iterate produced by Algorithm 4 with step size α

satisfying 0 <α≤ 1/L and αµ≤ 1. Then, the following result holds true:

E
[∥∥z j+1 − z∗∥∥2

l 2 +C1(θ j −θ∗)2
]
≤ ξE

[∥∥z j − z∗∥∥2
l 2 +C1(θ j−1 −θ∗)2

]
, (5.21)

for some constants C1 > 0 and 0 < ξ< 1.

Proof. From the definition of the iterate z j+1 in Eq. (5.17), we have:

∥∥z j+1 − z∗∥∥2
l 2 =

∥∥∥z j − z∗−αJ̃
j

z (θ j , z j )
∥∥∥2

l 2
(5.22)

= ∥∥z j − z∗∥∥2
l 2 +α2

∥∥∥J̃
j

z (θ j , z j )
∥∥∥2 −2α

〈
J̃

j
z (θ j , z j ), z j − z∗

〉
(5.23)

= ∥∥z j − z∗∥∥2
l 2 +α2

(∥∥∥J̃
j

z (θ j , z j )
∥∥∥2 +

(
Ĵ

j
θ

(θ j , z j )
)2

)
︸ ︷︷ ︸

=:T̂1

−2α
(〈

Jz (θ j , z j ), z j − z∗〉+〈
Jθ(θ j , z j ),θ j −θ∗

〉)︸ ︷︷ ︸
=:T̂2

−2α
(〈

J̃
j

z (θ j , z j )−Jz (θ j , z j ), z j − z∗
〉
+

〈
Ĵ

j
θ

(θ j , z j )−Jθ(θ j , z j ),θ j −θ∗
〉)

︸ ︷︷ ︸
=:T̂3

.

(5.24)
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The term T̂1 =α2
∥∥∇̃Ĵ j (w j )

∥∥2
l 2 can be bounded as follows:

Ej
[
T̂1

]=α2Ej

[∥∥∥∇̃Ĵ j (θ j , z j )
∥∥∥2

l 2

]
(5.25)

≤α2Ej

[∥∥∥∇̃Ĵ j (θ j , z j )±∇J (θ j , z j )
∥∥∥2

l 2

]
(5.26)

≤α2

[
Ej

[∥∥∥∇̃Ĵ j (θ j , z j )−∇J (θ j , z j )
∥∥∥2

l 2

]1/2

+Ej

[∥∥∇J (θ j , z j )
∥∥2

l 2

]1/2
]2

(5.27)

≤α2
[
η

∥∥∇J (θ j−1, z j )
∥∥

l 2 +Ej

[∥∥∇J (θ j , z j )
∥∥2

l 2

]1/2
]2

(5.28)

≤α2
[

(η2 +η)
∥∥∇J (θ j−1, z j )

∥∥2
l 2 + (1+η)Ej

[∥∥∇J (θ j , z j )
∥∥2

l 2

]]
, (5.29)

The term T̂2 =−2α
〈∇J (w j ), w j −w∗〉

can be bounded as follows:

Ej
[
T̂2

]≤−αµ
(∥∥z j − z∗∥∥2

l 2 +Ej
[
(θ j −θ∗)2])−α2Ej

[∥∥∇J (θ j , z j )
∥∥2

l 2

]
, (5.30)

where we have used Lemma 5.2.1. Finally, the term T̂3 =−2α
〈∇̃Ĵ j (w j )−∇J (w j ), w j −w∗〉

can be bounded as follows:

Ej
[
T̂3

]≤ 2αEj

[∥∥∥∇̃Ĵ j (θ j , z j )−∇J (θ j , z j )
∥∥∥

l 2

∥∥w j −w∗∥∥
l 2

]
(5.31)

≤ 2αEj

[∥∥∥∇̃Ĵ j (θ j , z j )−∇J (θ j , z j )
∥∥∥2

l 2

]1/2

Ej

[∥∥w j −w∗∥∥2
l 2

]1/2
(5.32)

≤ 2αη
∥∥∇J (θ j−1, z j )

∥∥
l 2 Ej

[∥∥w j −w∗∥∥2
l 2

]1/2
. (5.33)

Combining the bounds for T̂1, T̂2 and T̂3, we have the following:

Ej

[∥∥z j+1 − z∗∥∥2
l 2

]
≤ (1−αµ)

∥∥z j − z∗∥∥2
l 2 −αµEj

[
(θ j −θ∗)2]

+α2(η2 +η)
∥∥∇J (θ j−1, z j )

∥∥2
l 2 +α2ηEj

[∥∥∇J (θ j , z j )
∥∥2

l 2

]
+2αη

∥∥∇J (θ j−1, z j )
∥∥

l 2 Ej

[∥∥w j −w∗∥∥2
l 2

]1/2
. (5.34)

We now utilise Lemma 5.2.1 once again, from which we have the following result:

α
∥∥∇J (w)

∥∥
l 2 ≤ (1+√

1−αµ)
∥∥w −w∗∥∥

l 2 =: L̃
∥∥w −w∗∥∥

l 2 , (5.35)

for 0 <α≤ 1/L and αµ≤ 1. In addition, the last term of Eq. (5.34) can be rewritten as follows:

2αη
∥∥∇J (θ j−1, z j )

∥∥
l 2 Ej

[∥∥w j −w∗∥∥2
l 2

]1/2 ≤ η
(
α2

∥∥∇J (θ j−1, z j )
∥∥2

l 2

L̃
+ L̃Ej

[∥∥w j −w∗∥∥2
l 2

])
(5.36)
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5.3 Gradient estimation and error control using MLMC methods

Applying Eqs. (5.35) and (5.36) to Eq. (5.34), we then have the following simplified bound:

Ej

[∥∥z j+1 − z∗∥∥2
l 2

]
≤ (

1−αµ+ (η2 +2η)L̃2 +2ηL̃
)∥∥z j − z∗∥∥2

l 2

+ (−αµ+ηL̃2 +ηL̃
)
Ej

[
(θ j −θ∗)2]

+ (
(η2 +η)L̃2 +ηL̃

)
(θ j−1 −θ∗)2, (5.37)

= (1−C1 +C2)
∥∥z j − z∗∥∥2

l 2 −C1Ej
[
(θ j −θ∗)2]+C2(θ j−1 −θ∗)2, (5.38)

where we have defined the constants C1 = αµ−ηL̃2 +ηL̃ and C2 = (η2 +η)L̃2 +ηL̃. We then

have the following:

Ej

[∥∥z j+1 − z∗∥∥2
l 2

]
+C1Ej

[
(θ j −θ∗)2]≤ (1−C1 +C2)

∥∥z j − z∗∥∥2
l 2 +C2(θ j−1 −θ∗)2

≤ max

(
1−C1 +C2,

C2

C1

)(∥∥z j − z∗∥∥2
l 2 +C1(θ j−1 −θ∗)2

)
.

(5.39)

We note that the leading constant on the right hand side is less than 1 as long as C1 > C2,

which holds true for η<
√

1+αµ/L̃2−1. This in turn ensures contraction in the norm ∥z∥2
l 2 +

C1θ
2 on the space Rd ×R. This completes the proof.

Remark 1.We note that although the accuracy condition Eq. (5.20) is stated in the L∞-norm

for all θ, the proof of Theorem 5.2.1 uses this property only at θ j . This condition is required

since we do not know the quantile θ j a priori, and seek to use the parametric expectation

framework from [16] to do so. [16] requires that the error in the approximations Ĵ j be con-

trolled at all θ, in order to estimate θ j accurately.

Remark 2.In practical applications, it is difficult to determine whether Assumptions 2 and 3

are satisfied, since both are strongly dependent on the properties of the random QoI Q(z, ·).

These assumptions require stronger properties on Q(z, ·) and its PDF than those presented in

Assumption 1; for example, that the PDF remains both upper- and lower-bounded away from

zero for all designs z, and that the random variable Q(z, ·) is bounded, i.e., Q(z, ·) ∈ L∞(Ω,R).

5.3 Gradient estimation and error control using MLMC methods

We note that the key assumption in the proof of Theorem 5.2.1 is Eq. (5.20); namely, that the

gradient approximation is accurate up to a tolerance that is proportional to the magnitude of

the true gradient. As stated earlier in Chapter 4, we are interested in utilising the framework of

MLMC estimators for parametric expectations developed in [16] for the accurate estimation

of the objective function J (risk-measure CVaR) and its gradient.

Expressing the gradients Jz and Jθ in terms of the first derivatives of the parametric expec-

tations Φ(θ; z) and Ψ(θ; z) as in Eqs. (5.12) and (5.13) and estimating the latter using MLMC
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estimators poses many key advantages. The first advantage was already seen earlier in Sec-

tion 5.2; namely that J̃
j

z and Ĵ
j
θ

can be estimated for all θ for a given design z in one shot.

Secondly, as was demonstrated in [16], the analogous differences forΦ(θ; z) decay at the same

rate in the levels l as the differences Ql −Ql−1, in an appropriately selected norm over θ ∈ R.

This ensures that if cost-optimal MLMC behaviour can be achieved for estimating E [Q], then

it can be achieved also for MLMC estimators of Φ(θ; z) and Ψ(θ; z), using a practically com-

putable number of samples. The last key advantage is that, using the mechanism in [16], one

can select the parameters of the MLMC estimator such that a prescribed tolerance can be

attained on the MLMC approximation error on Φ and Ψ. By prescribing a tolerance propor-

tional to the gradient magnitude, one can estimate the gradient using MLMC estimators that

respect the condition in Eq. (5.20) as required by Algorithm 4.

Although the procedure used in this chapter to estimate Φ accurately is identical to the one

described in Chapter 3, some important modifications are required to use the same proce-

dure for accurately estimating Ψ. We present in this section the modifications of our work

[16] presented in Chapter 3 that are required for the accurate estimation of Ψ, and conse-

quently the gradients Jθ and Jz , using the MLMC method.

5.3.1 MLMC estimator for the gradients

We begin by recalling that the parametric expectation Ψ is defined as in Eq. (5.14). The

proposed MLMC method relies on a sequence of approximations {Ql (z)}L
l=0 to Q(z) on a se-

quence of L +1 discretisations with, for example, different mesh sizes h0 > h1 > ... > hL , typi-

cally a geometric sequence hl−1 = shl with s > 1. The MLMC estimator for the kth component

Ψk (·; z) := E[
ψ(·,Q(z),Qzk (z))

]
of Ψ on Θ, k ∈ {1, ...,d} follows the same construction as that

forΦ in [16]. The first step is to estimateΨk (θr , z),r ∈ {1, ...,n}, on a set of n equidistant points

θ = {θ1, ...,θn} such thatΘ= [θ1,θn], by a standard MLMC estimator Ψ̂L,k (θr ; z), which reads:

Ψ̂L,k (θr ; z) := 1

N0

N0∑
i=1

ψ
(
θr ,Q(i ,0)

0 (z),Q(i ,0)
zk ,0

(z)
)

+
L∑

l=1

1

Nl

Nl∑
i=1

[
ψ

(
θr ,Q(i ,l )

l (z),Q(i ,l )
zk ,l

(z)
)
−ψ

(
θr ,Q(i ,l )

l−1 (z),Q(i ,l )
zk ,l−1

(z)
)]

, (5.40)

where Q(i ,l )
l (z) ≡ Ql (z;ω(i ,l )) and Q(i ,l )

l−1 (z) ≡ Ql−1(z;ω(i ,l )) are correlated realisations of Ql (z)

and Ql−1(z), respectively, typically obtained by solving the underlying differential problem

on meshes with discretisation parameters hl and hl−1, driven by the same realisation ω(i ,l )

of the random parameters for the fixed design z. On the other hand, Q(i ,l )
l and Q( j ,k)

k are

independent if i ̸= j or l ̸= k. Finally, Q(i ,l )
zk ,l

and Q(i ,l )
zk ,l−1

are the sensitivities of the realisations

Q(i ,l )
l and Q(i ,l )

l−1 respectively with respect to zk . {Nl }L
l=0 is a decreasing sequence of sample

sizes. The MLMC hierarchy is hence defined by three parameters; namely the number of

interpolation points n, the number of levels L and the level-wise sample sizes Nl .
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5.3 Gradient estimation and error control using MLMC methods

We finally construct a MLMC estimator Ψ̂L,k of the whole function Ψk (·; z) :Θ→ R by inter-

polating over the pointwise estimates as below:

Ψ̂L,k (·; z) =Sn
(
Ψ̂L,k (θ; z)

)
, (5.41)

where Sn denotes a uniform cubic spline interpolation operator and Ψ̂L,k (θ; z)

denotes the set of pointwise MLMC estimates in Eq. (5.40), that is Ψ̂L,k (θ; z) =
{Ψ̂L,k (θ1; z),Ψ̂L,k (θ2; z), . . . ,Ψ̂L,k (θn ; z)}. An estimate of the first derivative Ψ(1)

k in θ is

then obtained by computing the derivative of the resultant interpolated function, for each

component Ψ̂(1)
L,k :

Ψ̂(1)
L,k (·; z) :=S (1)

n

(
Ψ̂L,k (θ; z)

)
:= ∂

∂θ
Sn

(
Ψ̂L,k (θ; z)

)
. (5.42)

5.3.2 Estimation of the MSE of the gradient

Since we have assumed that the gradient estimate ∇̃Ĵ j is a random vector in Lp (Ω,Rd+1)

with p ≥ 2, we propose to quantify the error on the gradient in an MSE sense as follows:

MSE
(
∇̃Ĵ j (·, z j )

)
:= E

[∥∥∥Ĵ
j
θ

(·, z j )−Jθ(·, z j )
∥∥∥2

L∞(Θ)

]
+

d∑
k=1

E

[∥∥∥J̃
j

zk (·, z j )−Jzk (·, z j )
∥∥∥2

L∞(Θ)

]
,

(5.43)

where Jzk and J̃
j

zk denote the kth components of Jz and J̃
j

z .

We now present a result relating MSE
(∇̃Ĵ j (·, z j )

)
to the MSE of the MLMC estimators Φ̂(1)

L

and Ψ̂(1)
L .

Proposition 5.3.1. Let Φ̂L(·; z j ) and Ψ̂L(·; z j ) denote the MLMC estimators of Φ(·; z j ) and

Ψ(·; z j ) as defined in Eq. (3.7) and Eq. (5.40) respectively. Let ∇̃Ĵ j (·, z j ) be the approximation

to the true gradient ∇J (·, z j ) computed using the estimates Φ̂(1)
L (·; z j ) and Ψ̂(1)

L (·; z j ) at the j th

optimisation iteration. Let Ψk and Ψ̂L,k denote the k th component of Ψ and Ψ̂L respectively,

for k ∈ {1, ...,d}. Let the MSEs on Φ̂(1)
L and Ψ̂(1)

L,k be defined as follows:

MSE
(
Φ̂(1)

L

)
(z j ) := E

[∥∥∥Φ̂(1)
L (·; z j )−Φ(1)(·; z j )

∥∥∥2

L∞(Θ)

]
, (5.44)

MSE
(
Ψ̂(1)

L,k

)
(z j ) := E

[∥∥∥Ψ̂(1)
L,k (·; z j )−Ψ(1)

k (·; z j )
∥∥∥2

L∞(Θ)

]
, (5.45)

for the design z j ∈Rd . Then, we have that:

MSE
(
∇̃Ĵ j (·, z j )

)
= MSE

(
Φ̂(1)

L

)
(z j )+

d∑
k=1

MSE
(
Ψ̂(1)

L,k

)
(z j ). (5.46)
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Proof. We first note that:∥∥∥Ĵ
j
θ

(·, z j )−Jθ(·, z j )
∥∥∥2

L∞(Θ)
= ∥∥Φ̂(1)(·; z j )−Φ(1)(·; z j )

∥∥2
L∞(Θ) (5.47)∥∥∥J̃

j
zk (·, z j )−Jzk (·, z j )

∥∥∥2

L∞(Θ)
=

∥∥∥Ψ̂(1)
L,k (·; z j )−Ψ(1)

k (·; z j )
∥∥∥2

L∞(Θ)
(5.48)

Adding together each of the contribuitons and taking the expectation on both sides, we have

that:

MSE
(
∇̃Ĵ j (·, z j )

)
= MSE

(
Φ̂(1)

L

)
(z j )+

d∑
k=1

MSE
(
Ψ̂(1)

L,k

)
(z j ). (5.49)

As was described earlier in this section, we seek to use the error estimation and adaptivity

procedure described in Chapter 3 to accurately estimate Φ(1) and Ψ(1)
k , and consequently, to

accurately estimate the gradient ∇J . From Eq. (5.46), it is evident that if one can control

the MSE of Φ̂(1)
L and Ψ̂(1)

L,k in an L∞ sense, one can control the MSE on the gradient ∇J as

defined in Eq. (5.43). Specifically, the MSE of the gradient is equal to a simple sum of the

MSEs of the parametric expectations. Eq. (5.46) hence allows us to use the work of [16] to

accurately calibrate MLMC estimators for the parametric expectations Φ(1) and Ψ(1) such

that the resultant gradient estimate is accurate up to a prescribed tolerance.

5.3.3 Modified error estimation procedure

Since the error estimation procedure is independent of the design z, in the following, we drop

the explicit dependence ofΦ andΨ on z, with the dependence being implied. We recall here

that the error estimation procedure for estimating MSE
(
Φ̂(1)

L

)
is identical to that presented in

Chapter 3. The procedure for estimating MSE
(
Ψ̂(1)

L

)
however has several modifications from

the procedure for Φ̂(1)
L , that we detail in this section. We recall that MSE

(
Ψ̂(1)

L

)
was defined in

Eq. (5.45). Proceeding similarly as in [16], we can bound MSE
(
Ψ̂(1)

L

)
as follows:

MSE
(
Ψ̂(1)

L,k

)
≤ (êΨk

i )2 + (êΨk

b )2 + (êΨk
s )2, (5.50)

where êΨk

i , êΨk

b and êΨk
s denote error estimators that estimate the error due to interpolation,

the error due to approximation of the QoI (i.e. bias error), and the error due to finite sampling

(i.e. statistical error) respectively on Ψ̂L,k .

The procedure for estimating the interpolation and bias errors requires the accurate estima-

tion of θ-derivatives of the function Ψl ,k (θ) = E[
ψ(θ,Ql ,Qzk ,l )

]
. Although the true function

Ψl ,k is smooth, replacing the true probability density with an empirical probability density

corresponding to a Monte Carlo estimator implies that the right hand side would be a linear
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combination of piecewise linear functions. The first derivative of such a function would be

piecewise constant, and high order derivatives would not exist in the discontinuity points,

and would be zero otherwise. A MLMC hierarchy designed based on estimates obtained in

this manner would lead to non-optimal complexity behaviour. In Section 3.2.2, we described

a KDE based procedure for ameliorating this issue. Although the error estimation procedure

is broadly the same for estimatingΨ as for Φ, an important distinction arises with respect to

this KDE procedure, which we detail in this section.

Since the issue chiefly relates to the regularity of the empirical Monte Carlo probability den-

sity, we propose the use of a KDE based smoothing technique; namely, we replace the true

joint density pl of (Ql ,Qzk ,l ) with a KDE smoothed joint probability density pkde
l , which con-

sists of a linear combination of two-dimensional kernels composed of products of two one-

dimensional Gaussian kernels centred on each of the Nl fine samples {(Q(i ,l )
l ,Q(i ,l )

zk ,l
)}Nl

i=1:

Ψl ,k (θ) =
∫ ∫

ψ(θ, q, qzk )pl (q, qzk )d qd qzk (5.51)

≈
∫ ∫

ψ(θ, q, qzk )pkde
l (q, qzk )d qd qzk (5.52)

:= 1

Nl

Nl∑
i=1

∫ ∫
ψ(θ, q, qzk )Kδl (q,Q(i ,l )

l )Kδzk ,l
(qzk ,Q(i ,l )

zk ,l
)d qd qzk . (5.53)

=− 1

Nl

Nl∑
i=1

∫
qzk Kδzk ,l

(qzk ,Q(i ,l )
zk ,l

)d qzk

∫
(q −θ)+

1−τ Kδl (q,Q(i ,l )
l )d q. (5.54)

=− 1

Nl

Nl∑
i=1

Q(i ,l )
zk ,l

∫
(q −θ)+

1−τ Kδl (q,Q(i ,l )
l )d q =: Ekde

l ,k

[
ψ(θ, ·, ·)] . (5.55)

Here, Kδl (·,µ) denotes a Gaussian kernel with mean µ and bandwidth parameter δl > 0,

which is selected according to Scott’s rule [121] for the realisations {Q(i ,l )
l }Nl

i=1 and controls the

“width” of the kernel. A closed form expression can be computed for the integral in Eq. (5.55),

leading to the KDE smoothed approximation Ekde
l ,k

[
ψ(θ, ·, ·)] forΨk .

According to the procedure in Section 3.2.1, the interpolation error requires the estimation

of the quantity
∥∥∥Ψ(4)

k

∥∥∥, for which we use the KDE estimator described above. To this end, we

first select a level ⌈L/2⌉ from the MLMC hierarchy; this choice of level is to ensure that Ψ̂⌈L/2⌉,k

is sufficiently close to Ψk , and N⌈L/2⌉ is large enough for the KDE procedure to produce ac-

curate estimates. We then construct the KDE approximation Υ⌈L/2⌉,k (θ) := Ekde
⌈L/2⌉,k

[
ψ(θ, ·, ·)].

The fourth derivative Υ(4)
k is then constructed using a second order central finite difference

scheme on a uniform grid on Θ with n′ ≫ n points. The norm is evaluated on the same grid

as follows: ∥∥∥Ψ(4)
k

∥∥∥
L∞(Θ)

≈ max
i∈{1,...,n′}

∣∣∣Υ(4)
⌊L/2⌋,k (θi )

∣∣∣ (5.56)
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For the bias error on Ψ̂L,k , we are required to estimate the quantity∥∥S (1)
n

(
E
[
ψ(θ,Ql ,Qzk ,l )−ψ(θ,Ql−1,Qzk ,l−1)

])∥∥
L∞(Θ) . (5.57)

Replacing the expectation by a Monte Carlo estimator leads to the same regularity issue

as described earlier in this section. To smooth the empirical Monte Carlo density, we

propose the use of a KDE smoothed approximation pkde
l ,l−1 to the true density pl ,l−1 of

(Ql ,Qzk ,l ,Ql−1,Qzk ,l−1), consisting of products of four one-dimensional Gaussian kernels:

E
[
ψ(θ,Ql ,Qzk ,l )−ψ(θ,Ql−1,Qzk ,l−1)

]
(5.58)

=
∫ ∫ ∫ ∫ [

ψ(θ, q f , q f
zk )−ψ(θ, qc , qc

zk )
]

pl ,l−1(q f , q f
zk , qc , qc

zk )d q f d q f
zk d qc d qc

zk (5.59)

≈ 1

Nl

Nl∑
i=1

∫ ∫ ∫ ∫ [
ψ(θ, q f , q f

zk )−ψ(θ, qc , qc
zk )

]
×Kδl (q f ,Q(i ,l )

l )Kδzk ,l
(q f

zk ,Q(i ,l )
zk ,l

)Kδl−1 (qc ,Q(i ,l )
l−1 )Kδzk ,l−1

(qc
zk ,Q(i ,l )

zk ,l−1
)d q f d q f

zk d qc d qc
zk (5.60)

= 1

Nl

Nl∑
i=1

Q(i ,l )
zk ,l−1

∫
(qc −θ)+

1−τ Kδl−1 (qc ,Q(i ,l )
l−1 )d qc −Q(i ,l )

zk ,l

∫
(q f −θ)+

1−τ Kδl (q f ,Q(i ,l )
l )d q f (5.61)

=: Ekde
l ,l−1,k

[
ψ(θ,Ql ,Qzk ,l )−ψ(θ,Ql−1,Qzk ,l−1)

]
. (5.62)

The expectation in Eq. (5.57) can be replaced by the KDE smoothened expectation in

Eq. (5.62), which can then be used in the bias error estimation procedure outlined in [16].

Lastly, the procedure for the statistical error follows the idea of bootstrapping developed in

[16] identically without modification.

5.3.4 Adaptive hierarchy selection procedure and CMLMC-gradient descent al-
gorithm

We discuss in this section how to select the parameters of the MLMC hierarchy; namely the

number of interpolation points n, the level-wise sample sizes Nl and the number of levels L.

The aim is to select these parameters such that a prescribed tolerance can be obtained on the

gradient estimate ∇̃Ĵ j . In what follows, we drop the dependence on z for notational simplic-

ity, with the dependence being implied. We propose here a minor variation of the framework

presented in Section 3.4. An adaptive strategy was proposed therein for the selection of the

hierarchy parameters n, L and Nl for any statistic sτ, the MSE of whose estimator ŝτ could be

bounded by a linear combination of MSEs on Φ̂L and its derivatives:

MSE(ŝτ) ≤ c0MSE
(
Φ̂L

)+ c1MSE
(
Φ̂(1)

L

)
+ c2MSE

(
Φ̂(2)

L

)
, c0,c1,c2 > 0. (5.63)

We first note that the same hierarchy adaptivity procedure extends trivially to any linear com-

bination of MSEs of Φ̂L , Ψ̂L,k , and their derivatives. Specifically, this includes the case of the

MSE on the gradient ∇̃Ĵ j in Eq. (5.46). In addition, each of the MSEs on the parametric ex-

pectations in Eq. (5.46) can be split into its three error contributions, similar to Eq. (5.50),
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leading to the following error estimator for MSE
(∇̃Ĵ j (w)

)
:

MSE
(
∇̃Ĵ j

)
= MSE

(
Φ̂(1)

L

)
+

d∑
k=1

MSE
(
Ψ̂(1)

L,k

)
≤

(
(êΦi )2 +

d∑
k=1

(êΨk

i )2

)
︸ ︷︷ ︸

Squared interpolation error

+
(

(êΦb )2 +
d∑

k=1
(êΨk

b )2

)
︸ ︷︷ ︸

Squared bias error

+
(

(êΦs )2 +
d∑

k=1
(êΨk

s )2

)
︸ ︷︷ ︸
Squared statistical error

. (5.64)

Here, êΦi , êΦb and êΦs denote the interpolation, bias and statistical error estimators corre-

sponding to MSE
(
Φ̂(1)

L

)
. Once in the above form, the procedure described in Section 3.4

for adapting the hierarchy parameters n, L and Nl for linear combinations of MSEs can be

extended trivially to the current case when combined with the modifications proposed in

Section 5.3.3. Lastly, we comment that the above adaptive procedure is carried out within

the framework of the CMLMC algorithm presented in Algorithm 3.

We now possess all the ingredients required to tailor Algorithm 4 to the specific case in

which an MLMC procedure is combined with a CMLMC algorithm to estimate the gradi-

ent up to a prescribed tolerance. The algorithm is detailed below, and differs from Al-

gorithm 4 in that the first estimate of the gradient is computed based on a screening hi-

erarchy, and that successive gradients are computed such that the MSE on the gradient

satisfies a tolerance equal to a fraction of the gradient magnitude from the previous it-

eration; namely, the right hand side of Eq. (5.20) is estimated using ∇Ĵ j−1(w j−1). An-

other key difference to note is that in contrast to the CMLMC Algorithm 3, the screen-

ing hierarchy used to compute first estimates for the design z j is the optimal hierar-

chy used to accurately estimate the gradient for the design z j−1. In addition, the gra-

dient at the first design point z0 is estimated using an initial small fixed hierarchy.

Algorithm 5: CMLMC-gradient descent OUU algorithm

Input: Initial design z0, iterate j = 0, tolerance 0 < ϵ< 1, step size α> 0 and η> 0.

Set residual r = ϵ+1

while r > ϵ do

if j = 0 { Simulate screening hierarchy }

else
{

Start CMLMC from the optimal hierarchy for z j−1; Simulate CMLMC adapting

hierarchy such that MSE
(∇̃Ĵ j (·, z j )

)≤ η∥∥∇̃Ĵ j−1(w j−1)
∥∥2

l 2

}
Compute minimiser θ j ∈ argminθ∈Θ Ĵ j (θ, z j ) = Φ̂L(θ, z j )

Compute gradient J̃
j

z (θ j , z j ) = Ψ̂(1)
L (θ j ; z j )+2κ(z j − zr e f )

Compute gradient step z j+1 = z j −αJ̃
j

z (θ j , z j ) and

∇̃Ĵ j (w j ) =
(
Ĵ

j
θ

(θ j , z j ) = 0,J̃ j
z (θ j , z j )

)
Set residual r = ∥∥∇̃Ĵ j (w j )

∥∥2
l 2 /

∥∥∇Ĵ 0(w0)
∥∥2

l 2

Update j ← j +1

end while
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5.4 Numerical results

5.4.1 FitzHugh Nagumo oscillator

To demonstrate the optimisation framework, we use the FitzHugh–Nagumo system de-

scribed in [49] and [97]. The FitzHugh–Nagumo model is a two dimensional simplification of

the Hodgkin-Huxley model introduced by [72], which was originally proposed in the field of

neuroscience to model the phenomenon of spiking neurons. The dynamical equations read

as follows: [
v̇

ẇ

]
=

[
v − v3

3 −w + I

ζ (v +a −bw)

]
,

[
v(t = 0)

w(t = 0)

]
=

[
v0

w0

]
, t ∈ [0,T ], (5.65)

where [v(t ), w(t )]T ∈R2 denotes the state variables and a, b, ζ and I denote system parame-

ters. Fig. 5.1 shows a phase-space plot containing the v and w-nullclines for a nominal value

of the system parameters. The oscillator enters a limit cycle for parameter values such that

the intersection of the two nullclines lies in the interval v ∈ [−1,1], indicated by the black

lines. If the intersection lies exterior to this interval, then the oscillator eventually reaches

the intersection and remains at a constant value of v and w . Although initially proposed to

model neuron behaviour, the FitzHugh–Nagumo model has seen widespread use in mod-

elling wave phenomena in excitable media. Examples include blood coagulation [47, 91] and

cardio-electrophysiological phenomena [33], wherein the optimal control of the model plays

an important role in the application. The reader is referred to [129] for an overview of existing

work on the modelling applications and optimal control of the FitzHugh–Nagumo system.

Figure 5.1: FitzHugh–Nagumo oscillator dynamics
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In this work, we study the forced FitzHugh–Nagumo system:[
v̇

ẇ

]
=

[
v − v3

3 −w + I +σẆ1

ζ (v +a −bw)+σẆ2

]
,

[
v(t = 0)

w(t = 0)

]
=

[
v0

w0

]
, t ∈ [0,T ], (5.66)

where Ẇ1 and Ẇ2 are “formal” derivatives of standard Brownian paths and σ= 0.01 controls

the noise strength. To study the behaviour of the system, we propose the following QoI:

Q = 1

T

∫ T

0
v2(t )d t . (5.67)

We are interested in minimising an objective function of the form in Eq. (5.6), where we seek

to minimise the CVaR with significance τ = 0.7. We denote by z = [a,b,ζ, I ]T the vector of

design parameters with respect to which we want to carry out the optimisation, and seek to

penalise deviations from the design zr e f = [0.8,0.7,0.08,1.0].

We discretise the interval [0,T ] using a hierarchy of uniform grids t j = j∆tl , j ∈ {0,1, ..., NT,l },

with ∆tl = T /NT,l and NT,l = NT,02l . We set T = 10 and NT,0 = 20, and consider an Euler-

Maruyama discretisation of Eq. (5.66). Using the notation v l
n to denote the approximation of

v(tn) at level l , the discretised system then reads:[
v l

n+1

w l
n+1

]
=

[
v l

n

w l
n

]
+∆tl

[
v l

n − (v l
n )3

3 −w l
n + I

ζ
(
v l

n +a −bw l
n

) ]
+σ

√
∆tl

[
ξl

1,n

ξl
2,n

]
, (5.68)[

v l
0

w l
0

]
=

[
v0

w0

]
, n ∈ {0, ..., NT,l −1}, (5.69)

where ξl
1,n and ξl

2,n are independently drawn realisations of standard normal random vari-

ables. The quantity of interest that we study is the following time average:

Q = 1

T

∫ T

0
v2(t )d t ≈

NT,l−1∑
n=0

(
(v l

n)2 + (v l
n+1)2

2

)
∆tl

T
=: Ql . (5.70)

To compute the sensitivities Qz,l , we utilize the method of adjoints. We consider the corre-

sponding adjoint variables λl
n and νl

n corresponding to v l
n and w l

n , n ∈ {1, ..., NT,l } respec-

tively. The adjoint equation reads as follows:[
λl

n

νl
n

]
=

[
λl

n+1

νl
n+1

]
+∆tl

([
(1− (v l

n)2) ζ

−1 −ζb

][
λl

n+1

νl
n+1

]
+

[
2v l

n
T

0

])
, (5.71)[

λl
NT,l

νl
NT,l

]
=∆tl

[
v l

n
T

0

]
, n ∈ {1, ..., NT,l −1}. (5.72)

The reader is referred to Appendix 5.B for the details of the derivation.

Once the adjoint equation is solved backwards in time, the approximation Qz,l of the sensi-
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tivities Qz at level l can then be obtained as follows:

Qa,l =
NT,l−1∑

n=0
∆tlζν

l
n+1, Qb,l =−

NT,l−1∑
n=0

∆tlζw l
nν

l
n+1,

QI ,l =
NT,l−1∑

n=0
∆tlλ

l
n+1, Qζ,l =

NT,l−1∑
n=0

∆tl (v l
n +a −bw l

n)νl
n+1.

(5.73)

To demonstrate the performance of Algorithm 5, we assess the performance individually of

its two components; firstly, the performance of the CMLMC algorithm, the error estimation

procedure and the adaptive strategy described in Section 5.3 for accurately estimating the

gradient for a given design, and secondly, the gradient based optimisation procedure de-

scribed in Algorithm 5. We first assess the performance of the CMLMC algorithm and adap-

tive strategy. We remark that the solution of the forward and adjoint problems, as well as the

CMLMC procedure, are implemented within the XMC software library [3], which we use for

the simulations presented herein.

We seek to accurately estimate the gradient ∇J (·, z0) using the estimator ∇Ĵ (·, z0), where

z0 = [0.7,0.8,0.08,1.0] and we set τ= 0.70 for the significance of the CVaR. We set the param-

eters zr e f = z0 and κ = 5.0. The gradient and gradient error are estimated using the MLMC

procedure described in Sections 5.3. To assess the reliability of the error bound derived in

Proposition 5.3.1, we run a reliability study wherein we adapt the parameters of the MLMC

hierarchy to attain a prescribed tolerance on MSE
(∇Ĵ (·, z0)

)
. We run the MLMC algorithm

20 times for each tolerance tested and compare the estimated error to the true error obtained

using a reference gradient computed using a Monte Carlo estimator with 2×105 samples and

2×104 time steps. Specifically, we are interested in assessing the tightness of the inequality

in Eq. (5.64).

The resultant plot is shown in Fig. 5.2a. Three errors are plotted in Fig. 5.2a; namely, the true

error on the gradient, defined in the L∞ sense, corresponding to the term on the leftmost side

of Eq. (5.64), the square root of the MSE estimate on the gradient, produced by the optimally

calibrated MLMC hierarchy, corresponding to the term on the rightmost side of Eq. (5.64),

and the true error on the gradient evaluated at the point (θ0, z0), where θ0 corresponds to the

70%-VaR for the design z0. The true errors are computed with respect to a reference solu-

tion computed using 2×105 samples and 2×104 time steps. As can be seen from the figure,

the MSE estimator provides a tight bound on the true error on the parametric expectations.

However, the true error on the gradient in the L∞ sense is much larger than the true pointwise

error. This is a natural consequence of using the L∞-norm over the entire intervalΘ to define

the MSE, as compared to using the pointwise error. Controlling the MSE error in an L∞ sense,

as defined in Eq. (5.43), is necessitated by the error accuracy condition in Eq. (5.20), in order

to ensure exponential convergence of Algorithm 5.

Fig. 5.2b shows the complexity behaviour of the MLMC estimator calibrated using the

CMLMC algorithm. We compute the cost required to obtain the final optimal hierarchy for a
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given tolerance ϵ2 on MSE
(∇Ĵ (·, z0)

)
. As can be seen from the figure, the cost grows as ϵ−2,

which is the theoretically predicated best case performance for the MLMC estimator. For

comparison, we also plot the estimated cost of a comparable Monte Carlo estimator, as well

as the expected cost growth rate for the case of the first order time discretisation used here.

The Monte Carlo reference cost is computed as described in [16].

(a) Reliability of error estimator (b) Complexity behaviour

Figure 5.2: Error estimator performance for the CMLMC estimator of the gradient for the
FitzHugh–Nagumo system

We now examine the performance of the gradient descent algorithm proposed in Section 5.2.

We are interested in solving the minimisation problem given in Eq. (5.6), with τ = 0.7. We

utilize the framework of Algorithm 5, with a tolerance ϵ = 0.01 on the gradient ratio. This

implies that we stop the algorithm once the gradient magnitude has dropped to 1/100th of

its initial magnitude. As an initial guess, we begin with the design z0 = [0.7,0.8,0.08,1.0]. We

also set zr e f = [0.7,0.8,0.08,1.0]. We combine the above with the CMLMC algorithm detailed

in [16] and detailed further in Section 5.3, with η= 0.2 on the relative error on the gradient.

We plot in Fig. 5.3a the value of the objective function for different iterations of the objective

function. We observe exponential convergence in the number of iterations towards the final

value, as predicted by Theorem 5.2.1, although we cannot guarantee that the hypotheses of

Theorem 5.2.1 are satisfied for this problem. Fig. 5.3b shows the value of the gradient ratio r

for different iterations of the optimisation algorithm. We also observe that the gradient de-

creases exponentially. Lastly, we plot in Fig. 5.3c the CDF of the output QoI Q(z j , ·) computed

at different iterations of the optimisation algorithm, as well as the predicted VaR and CVaR

values. We observe that the CDF, the VaR and the CVaR all move left, reducing the mass in the

right tail of the distribution. Since we are minimising the CVaR, defined as the expectation of

the random variable above the VaR, this translates to moving the right tail of the distribution

as much as possible to the left.

Fig. 5.4a shows the optimal hierarchy produced by the CMLMC algorithm at each iteration

of the optimisation. We observe that since the tolerance supplied to the CMLMC algorithm
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(a) Objective function decay. (b) Gradient ratio decay. (c) Change in CDF.

Figure 5.3: Performance of Algorithm 5 over different iterations for the FitzHugh–Nagumo
system

is a fraction of the gradient magnitude, the optimally tuned hierarchy becomes larger for

later iterations of the optimisation. In addition, Fig. 5.4b shows the cumulative cost required

for the optimisation algorithm to reach a given gradient magnitude. The cumulative cost

at a given optimisation iteration is defined as the sum of costs of all optimal hierarchies

until the current optimisation iteration. Specifically, the cumulative cost is computed as∑ j
i=0

∑L
l=0 N (i )

l (Cost(Ql )+Cost(Ql−1)), where {N (i )
l }L

l=0 denote the optimal level-wise sample

sizes for the i th optimisation iteration and Cost(Ql ) denotes the average cost of simulating

one sample of Ql . This cost is plotted versus the gradient magnitude. We observe that after

an initial pre-asymptotic regime, the cumulative cost grows as
∥∥∇̃Ĵ j (w j )

∥∥−2
l 2 , a rate comen-

surate with the use of an optimally tuned MLMC hierarchy at each iteration tuned to obtain

a tolerance proportional to
∥∥∇̃Ĵ j (w j )

∥∥
l 2 .

(a) Level-wise sample sizes (b) Cumulative cost

Figure 5.4: Hierarchy of CMLMC estimators and complexity behaviour of Algorithm 5 for
different iterations for the FitzHugh–Nagumo system
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5.4.2 Pollutant transport problem

We now apply the methodology to a more applied problem of practical relevance. We study a

problem of pollutant transport, where the concentration of pollutant in a domain is modelled

using a steady reaction-diffusion-advection equation. We consider a square domain D =
(0,1)×(0,1), with boundary ∂D := Γd ∪Γn , where Γd := {0}×(0,1) and Γn := ∂D\Γd . We denote

by u : D ×R9 ×Ω → R the concentration of the pollutant. The concentration satisfies the

following equation:

−∇· (ϵ∇u(x, z,ω))+V(x,ω) ·∇u(x, z,ω) = f (x)−B(x, z), x ∈ D, (5.74)

subject to the following boundary conditions:

ϵ
∂u

∂n
(x, z,ω) = 0, x ∈ Γn , for P−a.e. ω ∈Ω (5.75)

u(x, z,ω) = 0, x ∈ Γd , for P−a.e. ω ∈Ω, (5.76)

where ϵ> 0 denotes a viscosity parameter. V(x,ω) is a random divergence-free velocity field

defined as follows:

V(x,ω) :=
[

b(ω)−a(ω)x1

a(ω)x2

]
, (5.77)

where a ∼ U [4.95,5.05] and b ∼ U [3.95,3.05] are uniformly distributed random variables,

and x1 and x2 denote the components of x. The source f (x) is the sum of five Gaussian

source terms:

f (x) =
5∑

i=1
si exp

(
− (x −µi )T (x −µi )

2σ2
i

)
, (5.78)

where the values of si , µi and σi are given in Table 5.1. The sink term B(x, z) is defined as

follows:

B(x, z) =
9∑

k=1
zk exp

(
− (x −pk )T (x −pk )

2σ2

)
, (5.79)

where the locations pk are defined as pk = (0.25i ,0.25 j ), i , j ∈ {1,2,3},k = 3(i −1)+ j ,σ= 0.05,

and zk denotes the kth component of z ∈R9. We are interested in studying the distribution of

the random QoI Q, defined as follows:

Q(z,ω) := κs

2

∫
D

u2(x, z,ω)d x, (5.80)

with κs = 104.

The problem is implemented using the FEniCS finite element software [92]. The domain

is discretised using a uniform triangular mesh with piecewise linear finite elements. The
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i µi σi si

1 [0.55205319,0.65571641]T 0.0229487 2.3220339
2 [0.49379544,0.10950509]T 0.0205321 1.7931427
3 [0.13032797,0.57569277]T 0.0196891 2.3522452
4 [0.33868732,0.37971428]T 0.0212297 2.2850373
5 [0.27670822,0.15833522]T 0.0227373 2.3194400

Table 5.1: Source term parameters for the pollutant transport problem

resultant linear system is solved using a sparse direct solver [9, 8]. The number of elements

per side of the square domain varies as 32×2l /2, l ∈ {0,1, ...,L}, leading to a mesh size hl that

varies as hl = h0×2−l . An in-built automatic differentiation module within the FEniCS library

is used to compute the sensitivities of the QoI with respect to design parameters. Once again,

the XMC software library [3] is used to implement the CMLMC procedure.

Similar to Section 5.4.1, we seek to examine both parts of the optimisation algorithm; namely

the CMLMC and the gradient based OUU algorithm. For the CMLMC, we seek to accurately

estimate ∇Ĵ (·, z0), where z0 = zr e f = [0.1]9, such that MSE
(∇Ĵ (·, z0)

)
satisfies a prescribed

tolerance. Fig. 5.5 shows the results of reliability and complexity studies conducted for the

above parameters, similar to the one conducted for the FitzHugh–Nagumo system in Sec-

tion 5.4.1. For studying the reliability of the error estimators, we conduct 20 independent

CMLMC simulations for a given tolerance. For each simulation, we plot three errors; namely

the true L∞ error on the gradient, the square root of the MSE estimate produced by our error

estimation procedure described in Section 5.3, and the true pointwise error on the gradient,

computed by evaluating the parametric expectations ∇Ĵ (·, z0) for the gradient at θ0, the VaR

corresponding to the design z0. The reference value of the gradient is computed by first run-

ning 20 simulations for a tolerance that is half of the finest tested tolerance, and averaging

over the gradient estimates produced by these simulations. Similar to before, we find that al-

though our novel error estimators provide a tight bound on the true L∞ error of the gradient,

the L∞ error on the gradient is significantly larger than the error on the gradient evaluated at

θ0. Fig. 5.5b presents the complexity results of the CMLMC algorithm. The cost to compute

the optimal hierarchy for a given tolerance ϵ2 on MSE
(∇Ĵ j (·, z0)

)
is plotted versus the toler-

ance, for each of the 20 CMLMC simulations at a given tolerance, in addition to their sample

average value. In addition, the theoretical cost growth rate of a comparable Monte Carlo esti-

mator is shown, as well as the estimated cost of the estimator for reference and comparison.

The Monte Carlo reference cost is computed as described in [16]. As can be seen from the

figure, the complexity follows the theoretically predicted complexity ϵ−2.

For the OUU, we wish to minimise an objective function of the form in Eq. (5.6), with zr e f =
[0.0]9, κ= 1.0, and for significance of τ= 0.7. This implies that we seek to minimise the CVaR

while also minimising the amplitude of the controlled sinks. We utilise Algorithm 5, starting

from a design z0 = [0.1]9, and halt the optimisation once a gradient ratio of r = 0.08 has been
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(a) Reliability of error estimator (b) Complexity behaviour

Figure 5.5: Error estimator performance for the pollutant transport problem

achieved. In Fig. 5.6, we show the source field f (x), the control field B(x, z∗) and the solution

u(x, z∗,ω) for the mean conditions a(ω) = 4 and b(ω) = 5 at the optimal control z∗ obtained

by solving problem (5.6).

(a) f (x) (b) B(x, z∗) (c) u(x, z∗,ω)

Figure 5.6: Source, control and solution fields for the pollutant transport problem for a(ω) = 4
and b = 5(ω), and for x ∈ D

Fig. 5.7a shows the decay of the objective function towards its final value. We once again ob-

serve exponential convergence in the optimisation counter j , as predicted by Theorem 5.2.1.

In addition, we plot in 5.3b the gradient ratio for different iterations of the optimisation,

which also decreases exponentially in the iteration counter j . Fig. 5.7c shows the CDF of the

output QoI Q(z j , ·) for different iterations j of the optimisation algorithm, along with the esti-

mated VaR and CVaR. The CDF, the VaR and the CVaR all move left as before in Section 5.4.1,

which translates to moving the right tail of the distribution as much as possible to the left.

Fig. 5.9a shows the optimal hierarchy produced by the CMLMC algorithm at each iteration

of the optimisation for a given tolerance. Similar to before, we observe that the optimally

tuned hierarchy increases in size for later optimisation iterations since the tolerance sup-

plied to the CMLMC is a fraction of the gradient magnitude. Fig. 5.5b shows the cumulative
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(a) Objective function decay. (b) Gradient ratio decay. (c) Change in CDF.

Figure 5.7: Optimization performance over different iterations for the pollutant transport
problem

cost, as defined in Section 5.4.1, for a given gradient magnitude. We observe once again that

the cumulative cost grows as
∥∥∇̃Ĵ j

∥∥−2
l 2 after an initial pre-asymptotic regime, as is to be ex-

pected for the use of an optimally tuned MLMC hierarchy at each iteration, tuned to obtain a

tolerance proportional to
∥∥∇̃Ĵ j

∥∥2
l 2 .

(a) Level-wise sample sizes (b) Cumulative cost

Figure 5.8: Hierarchy and complexity behaviour for different iterations for the pollutant
transport problem

We now wish to study the performance of the AMGD algorithm for different significances τ.

To this end, we compare the performance of the algorithm for τ = 0.7 and τ = 0.9. Since the

performance of the algorithm in terms of objective function and gradient decay in the τ= 0.9

case are nearly identical to the performance observed in Fig. 5.8 for the τ = 0.7, the corre-

sponding results are not presented here. Fig. 5.9a shows the optimal hierarchy produced by

the CMLMC algorithm at each optimisation iteration for the two significances tested. We ob-

serve that the level-wise sample sizes Nl decay at the same rate in the levels l for both tested

significances, however with a larger constant for the τ= 0.9 case. Additionally, Fig. 5.9b shows

the cumulative cost for a given gradient magnitude, for both significances. We observe that

the cumulative cost grows as
∥∥∇̃Ĵ j (w j )

∥∥−2
l 2 in both cases, following an initial pre-asymptotic

regime. However, the τ = 0.9 case shows a larger constant. In this case, the interval Θ is
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changed with each optimisation iteration such that it is centered on the quantile estimate

corresponding to the previous optimisation iteration. It can be shown, for the case of a sim-

ple Monte Carlo estimator, that the constant is expected to scale in this case as (1−τ)−1. We

note that we observe a similar scaling in this case.
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Figure 5.9: Hierarchy and complexity behaviour for different significances for pollutant trans-
port problem

5.5 Conclusions

The aim of this work was to tackle the challenge of minimising the CVaR of a random QoI,

typically the output of a differential model with random inputs, over a suitable design space,

using gradient-based optimisation techniques. A main challenge in utilising gradient-based

techniques was the differentiability of the CVaR in terms of the design variables. A differen-

tiability result was presented in Section 5.1, which was a generalisation of the one presented

in [74], showing that gradient-based algorithms could still be used to directly minimise the

CVaR without requiring smoothing.

The expression for the sensitivities of the CVaR with respect to design parameters required

the computation of expectations of discontinuous functions of the QoI; namely, the indica-

tor function. Estimating this expectation naively using MLMC estimators could become im-

practically expensive, and possibly result in non-optimal complexity behaviour of the corre-

sponding MLMC estimator. A similar issue was discussed and tackled in [16], and an alterna-

tive was proposed using the framework of parametric expectations. We presented a modified

expression for the sensitivities of the CVaR, based on derivatives of parametric expectations,

thereby allowing us to use the work in [16]. Based on this modification, we also presented a

novel optimisation algorithm consisting of an alternating minimisation-gradient procedure.

We demonstrated a theoretical result that, under additional assumptions on the combined

objective function in Eq. (5.6), the novel algorithm would achieve exponential convergence

of the design iterates towards the optimal design in the optimisation iterations.
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To enable the use of the work in [16], we presented modifications of the MLMC estimator,

the error estimation procedure and adaptive hierarchy selection procedure specific to com-

puting the sensitivities of the CVaR. Namely, a relation was derived between the MSE of the

sensitivities and the MSE of the parametric expectations in Section 5.3. In addition, a mod-

ification of the KDE smoothing procedure presented in [16] was presented, specific to CVaR

minimisation. The combination of the MSE relation and KDE modification allowed us to

trivially extend the error estimation and hierarchy adaptivity procedure of [16] to the current

application. Lastly, a minor modification of the CMLMC procedure of [16] was presented in

Algorithm 5, wherein the CMLMC was restarted from the optimal hierarchy of the previous

design iterate.

The combination of gradient-based optimisation and MLMC estimation of the sensitivi-

ties of the CVaR was tested on two problems of practical relevance; namely the FitzHugh–

Nagumo oscillator and a more applied problem of advection-reaction-diffusion problem

used to model pollutant transport. In both cases, it was observed that the novel error estima-

tion procedure provided tight bounds on the MSE of the gradient as defined in Eq. (5.43). In

addition, the CMLMC algorithm was shown to produce the best-case complexity behaviour

for the MLMC estimators of the sensitivities. The OUU algorithm was shown to converge

exponentially in the optimisation iterations, while also preserving the best case MLMC cost

complexity.

The numerical examples considered in this work demonstrated that the AMGD procedure

performs well for the cases presented here. However, one may wish to improve on the perfor-

mance of the algorithm by considering alternatives to the AMGD algorithm. Such variations

could, for example, include higher order optimisation methods such as the Newton method.

It still remains to be seen whether higher order method can be used directly with objective

functions of the type in problem (5.6), as well as whether the framework of parametric ex-

pecations can be combined with such an algorithm. The authors of [31, 32], for example,

have introduced a novel stochastic adaptive BFGS algorithm. We plan to explore such ques-

tions in future works.

5.A Proof of Theorem 5.1.1

To prove Theorem 5.1.1 on the Fréchet differentiability of the objective function J (θ, z), we

first prove an important result in Lemma 5.A.1. We recall that Γ ⊂ Lp (Ω,R) is the set of Lp -

integrable random variables whose measures are atom-free.

Lemma 5.A.1. Consider random variables Y ∈ Γ⊂ Lp (Ω,R) and δY ∈ Lp (Ω,R). We then have

the following:

lim
∥δY ∥Lp →0

E
[
1{0≤Y ≤−δY }

]= 0, (5.81)

and lim
∥δY ∥l p→0

E
[
1{−δY ≤Y ≤0}

]= 0. (5.82)
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Proof. We begin with the proof for Eq. (5.81), since the proof for Eq. (5.82) follows from iden-

tical arguments. We make use of the following result; for any X ∈ Lp (Ω,R), the following holds

for any ϵ> 0 and p ≥ 0:

E
[
1{|X |≥ϵ}

]≤ E[ |X |p
ϵp

]
= ∥X ∥p

Lp ϵ
−p . (5.83)

Setting ϵ= ∥X ∥βLp for some β ∈ [0,1), we have that

E

[
1

{|X |≥∥X ∥β
Lp }

]
≤ ∥X ∥p−βp

Lp = ∥X ∥γLp , (5.84)

where γ := p(1−β). We rewrite the term within the limit in Eq. (5.81) as follows:

E
[
1{0≤Y ≤−δY }

]= E[
1{0≤Y ≤−δY }

(
1

{|δY |<∥δY ∥β
Lp }

+1
{|δY |≥∥δY ∥β

Lp }

)]
(5.85)

= E
[
1{0≤Y ≤−δY }1{|δY |<∥δY ∥β

Lp }

]
+E

[
1{0≤Y ≤−δY }1{|δY |≥∥δY ∥β

Lp }

]
. (5.86)

The first term can be bounded as follows:

E

[
1{0≤Y ≤−δY }1{|δY |<∥δY ∥β

Lp }

]
≤ E

[
1

{0≤Y ≤∥δY ∥β
Lp }

]
(5.87)

Due to dominated convergence, we can pass the limit into the expectation, resulting in the

following:

lim
∥δY ∥Lp →0

E

[
1

{0≤Y ≤∥δY ∥β
Lp }

]
= E

[
lim

∥δY ∥Lp →0
1

{0≤Y ≤∥δY ∥β
Lp }

]
= E[

1{Y =0}
]= 0, (5.88)

since Y ∈ Γ is atom-free. The second term can be bounded as follows, where we use a Hölder

inequality:

E

[
1{0≤Y ≤−δY }1{|δY |≥∥δY ∥β

Lp }

]
≤ ∥∥1{0≤Y ≤−δY }

∥∥
L∞

∥∥∥∥1{|δY |≥∥δY ∥β
Lp }

∥∥∥∥
L1

(5.89)

≤ E
[
1

{|δY |≥∥δY ∥β
Lp }

]
(5.90)

≤ ∥δY ∥γLp . (5.91)

Hence, we have that the second term in Eq. (5.86) goes to zero as well with the application

of the limit, thus concluding the proof for Eq. (5.81). The proof for Eq. (5.82) follows from

identical arguments.

Proof of Theorem 5.1.1. We note that the function R(θ,Q) is a composition of two functions.
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We define the functions l1 : Γ→R and l2 :R×Γ→ Γ as follows:

l1(Y ) :− E[
Y +]

(5.92)

l2(θ,Q) :=Q −θ, (5.93)

=⇒ R(θ,Q) = θ+ l1 ◦ l2(θ,Q)

1−τ . (5.94)

Hence, to show that R is Fréchet differentiable, it suffices to show that each of the functions

l1 and l2 are Fréchet differentiable.

It is straightforward to see that l2 is Fréchet differentiable (being linear and bounded) with

Fréchet derivative Dl2(θ,Q) in the direction (δθ,δQ) ∈R×Lp (Ω,R) given by:

Dl2(θ,Q)(δθ,δQ) = δQ −δθ. (5.95)

The Fréchet derivative of l1 however, requires some consideration. We argue that the Fréchet

derivative of l1 exists at any point Y ∈ Γ and is given by Dl1(Y )(δY ) = E[
1{Y ≥0}δY

]
. To prove

this statement, we must verify the following limit:

lim
∥δY ∥Lp →0

∣∣E[
(Y +δY )+

]−E[
Y +]−E[

1{Y ≥0}δY
]∣∣

∥δY ∥Lp
= 0 (5.96)

To show the above, we begin by re-writing the numerator as follows:

E
[
(Y +δY )+−Y +−1{Y ≥0}δY

]= E[
δY 1{Y +δY ≥0,Y ≥0} −1{Y ≥0}δY

]
+E[

(Y +δY )1{Y +δY ≥0,Y <0}
]

−E[
Y 1{Y +δY <0,Y ≥0}

]
. (5.97)

Inserting Eq. (5.97) into Eq. (5.96), we have the following:∣∣E[
(Y +δY )+

]−E[
Y +]−E[

1{Y ≥0δY }
]∣∣

∥δY ∥Lp
≤ T1 +T2 +T3

∥δY ∥Lp
, (5.98)

with the terms T1, T2 and T3 given by:

T1 := ∣∣E[
δY 1{Y +δY ≥0,Y ≥0} −δY 1{Y ≥0}

]∣∣ , (5.99)

T2 := ∣∣E[
(Y +δY )1{Y +δY ≥0,Y <0}

]∣∣ , (5.100)

T3 := ∣∣E[
Y 1{Y +δY <0,Y ≥0}

]∣∣ . (5.101)

We then begin with the term T1. We first note that T1 can be rewritten in the following man-
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ner:

T1 =
∣∣−E[

δY 1{0≤Y <−δY }
]∣∣≤ E[|δY |1{0≤Y <−δY }

]
(5.102)

≤ ∥δY ∥Lp

∥∥1{0≤Y <−δY }
∥∥

Lq = ∥δY ∥Lp E
[
1{0≤Y <−δY }

]1/q , (5.103)

≤ ∥δY ∥Lp E
[
1{0≤Y ≤−δY }

]1/q . (5.104)

The term T2 can be bounded as follows:

T2 =
∣∣E[

(Y +δY )1{Y +δY ≥0}1{Y <0}
]∣∣≤ E[|δY |1{−δY ≤Y <0}

]
, (5.105)

≤ ∥δY ∥Lp

∥∥1{−δY ≤Y <0}
∥∥

Lq = ∥δY ∥Lp E
[
1{−δY ≤Y ≤0}

]1/q . (5.106)

Similarly, the term T3 can be bounded as follows:

T3 =
∣∣E[

Y 1{Y +δY <0}1{Y ≥0}
]∣∣≤ E[|δY |1{0≤Y <−δY }

]
(5.107)

≤ ∥δY ∥Lp

∥∥1{0≤Y ≤−δY }
∥∥

Lq = ∥δY ∥Lp E
[
1{0≤Y ≤−δY }

]1/q . (5.108)

Inserting Eqs. (5.104), (5.106) and (5.108) into Eq. (5.98), and applying the limit using

Lemma 5.A.1, we have that:

lim
∥δY ∥Lp →0

∣∣E[
(Y +δY )+

]−E[
Y +]−E[

1{Y ≥0}δY
]∣∣

∥δY ∥Lp
= 0. (5.109)

This concludes the proof.

5.B Adjoint of first-order ODE with additive noise

We present here the derivation of the adjoints for a first-order Ordinary Differential Equa-

tion (ODE) with white noise forcing for an objective function containing the CVaR of a time-

averaged quantity of the trajectory. Let (Ω,F ,P) be a complete probability space, ω ∈Ω de-

note an elementary random event, and z ∈ Rd the set of design variables. Let u(t , z,ω) ∈U ⊂
RNu be the state vector at time t ∈ [0,T ] for a given random input ω and design z. The state

vector u is governed by the following ODE with additive noise.

u̇(t , z,ω) = g (u, z)+τẆ (t ,ω) over (0,T ], (5.110)

u(0, z,ω) = u0, (5.111)

where g : U ×Rd → RNu , and W : [0,T ]×Ω→ RNu is a Nu-dimensional standard Wiener pro-

cess.

We discretise the problem on a uniform temporal grid T where the interval [0,T ] is divided

into N ∈N segments of step size ∆t = T /N , T := {tn := n∆t : n ∈ J0, Nl K}. The ODE is discre-
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tised using the Euler–Maruyama scheme, which reads as follows:

un+1 = un +∆t g (un , z)+τ
p
∆tξn ,

u0 = u0,

where un denotes the approximation to u(tn , z,ω), ξn ∈RNu are Nu-dimensional random vec-

tors whose components are independent identically distributed standard normal variables.

We are interested in computing the statistics of time-averages of functions of the trajectory.

Q = 〈 f (u)〉T . (5.112)

We approximate the time integral using the trapezoid rule on the aforementioned temporal

grid, leading to

Q(z,ω) ≈Qh(z,ω) :=
N−1∑
n=0

(
f (un)+ f (un+1)

2

)
∆t

T
. (5.113)

We are interested in minimising the CVaR of this quantity over the parameters z but use the

combined formulation in Eq. (5.6). The corresponding Lagrangian for the problem reads

L (θ, z, {un}, {λn}) = θ+ E
[
(Q(z, ·)−θ)+

]
1−τ +E

[
N−1∑
n=0

λn+1
(
un +∆t g n +τ

p
∆tξn −un+1

)
−λ0(u0 −u0)

]
,

(5.114)

where we use g n := g (un , z), and λn ∈RNu , n ∈ J0, NK denote the Lagrange multipliers for the

initial condition and the steps of the discretised equations.

Differentiating with respect to z gives

dL

dz
= E

[
1Qh≥θ

(1−τ)T

N−1∑
n=0

(
f n

u un
z + f n+1

u un+1
z

2

)
∆t

]

+E
[

N−1∑
n=0

λn+1 (
un

z +∆t (g n
u un

z + g n
z )−un+1

z

)]
(5.115)

=: E
[
L̂

]
. (5.116)

Re-arranging the terms leads to

L̂ = u0
z

[
λ1(1+∆t g 0

u)+ 1Qh≥θ
(1−τ)T

f 0
u∆t

2

]
+∆tλ1g 0

z +uN
z

[
1Qh≥θ

(1−τ)T

f N
u ∆t

2
−λN

]
+

N−1∑
n=1

un
z

[
λn+1(1+∆t g n

u )−λn + 1Qh≥θ
(1−τ)T

∆t f n
u

]
+∆tλn+1g n

z , (5.117)

where we have used the subscript notation for partial derivatives.
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We have in our case that u0
z = 0. To remove terms dependent on un

z , we set

λn =λn+1(1+∆t g n
u )+ 1Qh≥θ

(1−τ)T
∆t f n

u , n = 1, ..., N −1 (5.118)

λN = 1Qh≥θ
(1−τ)T

f N
u ∆t

2
. (5.119)

This gives us the adjoint equations which are solved backwards in time. It is noteworthy to

mention that since Eq. (5.118) is linear, that it can be solved for {λn} without the factor
1Qh≥θ

(1−τ)T ,

and equivalently, the sensitivities can be computed as:

dL

dz
= 1Ql≥θ

(1−τ)T
E

[
N−1∑
n=0

∆tλn+1g n
z

]
. (5.120)

That is, setting

J (θ, z) = θ+ E
[
(Qh(z, ·)−θ)+

]
1−τ , (5.121)

we have that Jz (θ, z) = E[∑N−1
n=0 ∆tλn+1g n

z

]
.
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6 Software Development

One of the main aims of the ExaQUte project was to enable the simulation of risk-averse

engineering design problems at an exascale computing speed. This translates to a speed of

1018 double precision operations per second. Many mathematical, algorithmic and software

tools were developed within the project towards this goal. We summarize, in this chapter,

the software goals of the ExaQUte project and detail the contributions made by this thesis

in this context. We first present the overall ExaQUte software framework, a scalable parallel

implementation of the algorithms developed within the ExaQUte project that consists of a

combination of individual software tools concurrently and collaboratively developed by the

members of the ExaQUte consortium. We then describe in detail our main contribution to

this software framework; namely, the X-Monte Carlo (XMC) software library [5], a Python

library developed during this thesis research for hierarchical Monte Carlo methods. We also

discuss the interfacing of the XMC library with other software packages developed within the

consortium.

In Section 6.1, we introduce the ExaQUte software framework, and describe each of the com-

ponent software libraries, wherein we introduce the XMC package and how it interfaces with

the other software tools in the framework. Section 6.2 describes the structure and function of

the XMC library developed by EPFL and contributed to by the author of this thesis. We com-

pare it to the MLMC estimator introduced in Chapter 2, and demonstrate how the structure

of the estimator has motivated the structure of the library. In Section 6.3, we introduce some

notable simulations, whose results are not presented in detail in this thesis, that were com-

puted using the ExaQUte framework and using XMC. Furthermore, in Chapter 7, we will in-

troduce the main production simulation results of the ExaQUte project wherein the research

produced in this thesis, implemented within the XMC package and the ExaQUte software

framework, was used for risk-estimation and risk-averse optimisation.
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6.1 ExaQUte software framework

The development of the ExaQUte software framework was an important overall goal of the

ExaQUte project, being integrated into the deliverable structure of the project. The reader

is referred to the ExaQUte website [132], for a detailed list of software-related deliverables,

each relating to a different software component of the ExaQUte software framework. A com-

prehensive overview of the ExaQUte software framework can be found in the report [23]. We

present, in this section, a summary of the material therein.

The list of constituent libraries of the ExaQUte software framework, as well as their function-

ality within the overall algorithmic structure of the project, is given in Table 6.1, along with

the responsible consortium partners from Table 1.1. The collective ExaQUte software frame-

work structure is shown in Fig. 6.1, indicating a broad interlinking call-structure between the

various software packages. We note here that the XMC library is a central component of the

framework. We refer readers to [23] for references that offer further details on the individual

software packages.

Software Partner Functionality
OUU scripts EPFL, CIMNE,

TUM
Control the overall gradient-based
optimisation algorithm

XMC [5] EPFL, CIMNE Launch MLMC simulations to esti-
mate a given statistic up to a tolerance

Kratos Multi-
physics [95]

TUM, CIMNE,
UPC

Time-dependent FEM PDE solver

ExaQUte API [30] BSC, IT4I Interface API between XMC and
scheduling systems to enable agnos-
tic selection

PyCOMPSs [125] BSC Job scheduling system to enable par-
allelism between MLMC simulations

Hyperloom,
Quake [35, 29]

IT4I Job scheduling system to enable par-
allelism between MLMC simulations

ParMMG [36] Inria Parallel adaptive mesh refinement

Table 6.1: Software of the ExaQUte project

We now wish to relate the structure of the MLMC estimator for the expected value E [Q] of

a random QoI Q described in Eq. (2.5) to the software packages of the framework. The esti-

mator in Eq. (2.5) uses a set of approximations {Ql }L
l=0 of increasing accuracy and cost. The

estimator reads:

E [Q] ≈ µ̂ := 1

N0

N0∑
i=1

Q(i ,0)
0 +

L∑
l=1

1

Nl

Nl∑
i=1

(
Q(i ,l )

l −Q(i ,l )
l−1

)
, (6.1)

where Q(i ,l )
l and Q(i ,l )

l−1 are correlated realisations of the QoI for the same random input on lev-

els l and l −1. Using Eq. (6.1), we now describe in detail each of the component frameworks,

110



6.1 ExaQUte software framework

excluding the XMC package, which will be covered in detail in Section 6.2.

Figure 6.1: ExaQute software framework

6.1.1 Kratos Multiphysics

The Kratos Multiphysics solver [95] is a multi-physics software framework written in the C++

language for the numerical solution of engineering problems. Although the Kratos package

was chiefly used for Computational Fluid Dynamics (CFD) applications within the ExaQUte

project, the package is also capable of computational structural dynamics, thermal problems,

fluid-structure interaction and particle methods. The package is also capable of thread-level

and node-level parallelism. In the context of the ExaQUte project and the MLMC estimator

presented in Eq. (6.1), the Kratos package is used to generate the realisations Q(i ,l )
l and Q(i ,l )

l−1
for a given random input.

6.1.2 ParMMG

ParMMG [36] is a parallel three dimensional volume remesher, that is used extensively by the

Kratos package in Section 6.1.1. The Kratos library first computes the solution field for a given

mesh. It then computes mesh refinement information for the mesh based on the obtained

solution field. For example, for the simulations that will be presented in Chapter 7, a metric

field is computed by Kratos using Hessian information that is estimated using the solution

field. This information, along with the mesh, is passed on to ParMMG, which applies the

required refinements in parallel, and then repartitions the mesh between processors such

that an equal workload is maintained between processors. An important implication of this

111



Chapter 6. Software Development

capability is that when it is tuned appropriately, it can be used to select and design meshes

such that the MLMC hypotheses in Eq. (2.8) are respected.

6.1.3 PyCOMPSs and Hyperloom

We described in Chapter 2 that the hierarchical Monte Carlo estimators and algorithms pre-

sented therein possessed several common features that were exploited by the structure of

the XMC library. Another highly important features of hierarchical Monte Carlo estimators is

that each correlated sample pair (Q(i ,l )
l ,Q(i ,l )

l−1 ) can be computed concurrently and indepen-

dent of one-another. For scenarios where there are no data-dependencies between the two

samples within the pair, even Q(i ,l )
l and Q(i ,l )

l−1 can be computed independently and concur-

rently. Additionally, samples on different levels l can also be computed independently. Lastly,

the estimation of the level-wise bias and variances, as defined in Eq. (2.8), can be computed

independently between the levels. In total, hierarchical Monte Carlo estimators possess a

large degree of latent parallelism that can be exploited by an appropriate software tool and

parallelisation strategy. Some research exists on the optimal scheduling of MLMC estima-

tors. Notably, the authors of [46] presented several different optimal scheduling strategies for

MLMC estimators.

Within the ExaQUte project, task-based parallelism has been used to exploit this latent par-

allelism, through the PyCOMPSs [125] and Hyperloom/Quake [35, 29] task schedulers. The

user provides the task schedulers with a list of “tasks” within their program. With respect to

the hierarchical Monte Carlo approach, these can, for example, be the computation of a given

realisation Q(i ,l )
l , or the computation of the level-wise estimates bl , Vl and cl in Eq. (2.8). The

task schedulers then construct a task-dependency graph, and, given a pool of available com-

puting resources, allocate the tasks to different processors based on data-locality. Although

the default strategy is one of data-locality, users can also select strategies such as first-in-

first-out, last-in-first-out, etc. A key advantage of both of the task-scheduling software is that

they are hardware-agnostic. This means that, other than supplying information of the pool

of available resources and providing information on the list of tasks, the user does not have

to provide any hardware-specific information to the code.

6.1.4 ExaQUte API

The ExaQUte Application Programming Interface (API) aims at providing a common Python

API through which to interact with either of the runtime parallelism frameworks described in

Section 6.1.3. Specifically, the ExaQUte API provides a set of Python decorators that are ap-

plied to functions by the user throughout their program. The decorators provide PyCOMPSs

or Hyperloom with information about the inputs and outputs of the task, whether the task

requires MPI or OpenMP parallelism, resource constraints and/or data-dependencies, etc. It

also provides a synchronization API to allow users to synchronize remotely generated data

and barriers to synchronize tasks’ execution. More details about the ExaQUte API are pro-
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vided in [30]. The ExaQUte API is the key link between the task-schedulers in Section 6.1.3

and the XMC package, which will be described in detail in Section 6.2.

6.2 XMC library

As a part of the ExaQUte project, EPFL was tasked with the development and maintenance

of an MLMC Python engine. The Python engine, developed extensively during this thesis re-

search, is a key ingredient in the ExaQUte software framework, as can be seen from Fig. 6.1.

The XMC software library, short for X-Monte Carlo, is a software library for implementing

various hierarchical Monte Carlo methods as described in Chapter 2. Along with the deliv-

erable reports introduced in Chapter 1, it was required to release a version of the software at

month 12 of the project [4], as well as at month 30 [5]. In addition to the features present in

these releases, several experimental features are available as well in lesser stable versions of

the code, available at the public repository information presented in [5] and [4]; for example,

the parametric expectation framework of [16] and [52].

Users of the library are able to select one of many pre-programmed hierarchical Monte Carlo

algorithms such as fixed or adaptive Monte Carlo/MLMC algorithms as well as CMLMC al-

gorithms like Algorithm 2 and 3. They can also chose from pre-programmed interfaces with

widely used numerical analysis packages. Current support exists for the Kratos package [95],

developed within the ExaQUte consortium, as well as the Fenics library [92]. The library also

offers parallelisation capabilities using the PyCOMPSs [125] and Hyperloom/Quake [35, 29]

distributed computing frameworks, and is written using the ExaQUte API to interact with

them [30].

The library is also programmed in a modular way that allows users to construct their own

X-Monte Carlo algorithm from several building-block functions. Although current support

exists for MLMC, MIMC and some MFMC estimators, the library was developed to allow fu-

ture developers to extend the capabilities of XMC to wider classes of hierarchical Monte Carlo

estimators as well. It also allows developers to write custom-interfaces easily for their own

numerical analysis packages, such as custom-finite element analysis or computational fluid

dynamics libraries.

6.2.1 Library structure and relation to modularity

As was discussed in Chapter 2, the XMC library uses a class structure that we designed based

on the common properties of hierarchical Monte Carlo methods, specifically the MLMC es-

timator in Eq. (6.1), the Algorithms 1 and 2, as well as other hierarchical estimators and al-

gorithms. To motivate the library structure, we first present a generic version of an adaptive

hierarchical Monte Carlo algorithm in Algorithm 6. We observe that each of the algorithms 1

and 2, as well as the CMLMC algorithm presented in Chapter 3, fits into this common struc-

ture, with the specific definition of each generic step redefined according to the definition of
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each algorithm.

Algorithm 6: Generic hierarchical Monte Carlo algorithm used in XMC

1: Start: Fixed initial hierarchy. Inputs for stopping criteria.
2: while Stopping criteria are not satisfied do
3: if First iteration then
4: Simulate screening hierarchy
5: else
6: Compute optimal hierarchy parameters
7: Simulate optimal hierarchy
8: end if
9: Compute level/index-wise estimates

10: Compute model fit on level/index-wise estimates if needed
11: Compute global estimator and error estimates.
12: end while

During the early development stages of the library, we aimed to develop a modular frame-

work that, although initially and primarily used for MLMC methods, could be extended to

more generic hierarchical Monte Carlo methods. We decided to design the class structure

of XMC to satisfy the needs of Algorithm 6. To this end, Table 6.2 shows the main classes

of XMC, their related mathematical objects, and their intended function within the library.

In what follows, we will relate each step of Algorithm 6 to the class structure presented in

Table 6.2.

In relation to Algorithm 6, we have the following. The XMCAlgorithm class manages the

overall execution of Algorithm 6. The tasks in lines 4 and 7 of computing a certain hi-

erarchy, given the number of levels/indices and index-wise sample sizes, is managed by

the MonteCarloSampler class, and its index-wise child hierarchy of classes MonteCarloIndex,

SampleGenerator,SolverWrapper and RandomGeneratorWrapper. Once the samples are computed,

the tasks in lines 9 of compute level-wise or index-wise estimates, such as the bias terms bl

and variance terms Vl , are handled by instances of the StatisticalEstimator class. Addition-

ally, the task in line 10 of computing models for the variation of these level/index-wise quan-

tities over the levels/indices is carried out by ModelEstimator class. The overall assembly of

the hierarchical estimator and the computation of its corresponding error estimate in line 11,

both computed using level/index-wise estimations, is carried out by the EstimationAssembler

and ErrorEstimator classes respectively. The HierarchyOptimiser class carries out the task in

line 6, which is to select the shape parameters of the novel hierarchy based on the estimates

from the previously simulated hierarchy. Lastly, the execution of the stopping criterion in

line 2 is managed by the MultiCriterion. A number of other minor classes exist within the

library, satisfying more auxiliary functions. In addition to the primary classes described in

the hierarchical nested structure in Table 6.2, we present in Fig. 6.2 the interdependence be-

tween the classes. At each level, the higher class contains one or more instances of the lower

class.
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6.2 XMC library

A key feature of this library is that, due to the generic definition of Algorithm 6, and due to

the modularity of the class structure matching each step of Algorithm 6, one can select from

a variety of estimators and algorithms by adjusting the specific definition of each step. For

example, one can choose between adaptively selecting the hierarchy parameters to attain

a prescribed tolerance on the MSE, or simply doubling the current level-wise sample sizes,

by changing the definition of routines within the HierarchyOptimiser class. Another exam-

ple is of the switch between multi-index and multi-level estimators. The estimators differ

by the number of discretisation parameters, which is inferred from the length of the multi-

index defining a certain index. By simply editing the length of the multi-index provided to

the MonteCarloSampler class by XMCAlgorithm, users can change between MIMC and MLMC es-

timators.

To support such modularity, we have created a set of demo configuration files that allow users

to edit the specific routine definitions of each class. Users can select from these pre-made

demo configuration files, or to create their own files based on them, to uniquely tailor Al-

gorithm 6 to their needs. The configuration file mechanism goes hand-in-hand with the

framework of function object instantiation in Python, which we have used to define func-

tion routines at run-time by selecting from a pre-defined list of options for each routine. This

mechanism is covered in detail in Section 6.2.3.

XMCAlgorithm

MonteCarloSampler HierarchyOptimisaerMultiCriterion

MonteCarloIndex ErrorEstimator ModelEstimatorEstimationAssemblerMonoCriterion

SampleGenerator StatisticalEstimator

SolverWrapper QoIProcessorRandomGeneratorWrapper

Figure 6.2: XMC class structure.

6.2.2 Parallelism using PyCOMPSs

As was discussed in Chapter 2, we designed the XMC library to reflect the hierarchical struc-

ture of various hierarchical Monte Carlo algorithms. In addition to this, we developed the

hierarchical structure of XMC with the aim of exploiting any underlying potential for paral-

lelism to the maximum extent. The discussion in Chapter 2 highlighted that there are two

main degrees of parallelism that could be exploited.
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The first is that since the level-wise estimators of E [Ql −Ql−1] are simple Monte Carlo esti-

mators, the computation of the correlated sample pairs can all be conducted in parallel. As

a result, the routines of the SolverWrapper class that generate each individual sample Q(i ,l )
l is

task-decorated using the ExaQUte API. The second degree of parallelism is that the compu-

tation of the level-wise estimates bl , Vl and cl defined in Eq. (2.8) can be done independently

for each level l . To this end, the routines of the MonteCarloIndex class that compute these es-

timates are also task-decorated ExaQUte API, with a synchronisation point at each level l to

wait for all of the samples required to compute bl , Vl and cl to finish simulating.

The global coordination between the levels, required for error control and adaptivity, is con-

ducted serially. To this end, a synchronisation point is placed at the execution of the stopping

criterion at each iteration of the generic XMC algorithm, since this requires the computation

of an appropriate error, which depends on the computation of bl , Vl and cl , which in turn

depend on the computation of the underlying QoI realisations. Once the synchronisation

point is reached, the relatively inexpensive hierarchy adaptivity calculations are computed

serially before launching the next batch of tasks. Such a paradigm is illustrated in Fig. 6.3 for

one iteration of a generic MLMC algorithm. Tasks at the same horizontal point in Fig 6.3 are

executed concurrently.

Create task list

{Q(i ,0)
0 }N0

i=1

{Q(i ,1)
1 ,Q(i ,1)

0 }N1
i=1

...

{Q(i ,L)
L ,Q(i ,L)

L−1 }NL
i=1

b0,V0,c0

b1,V1,c1

...

bL ,VL ,cL

µ̂,MSE
(
µ̂
)

Figure 6.3: Parallelised iteration of MLMC algorithm

6.2.3 Function definition mechanism

The ExaQUte XMC library is organised as follows. The global directory xmc is a Python package

that contains all the packages, sub-packages and modules of the library. Within this folder,

each file contains the definition of one class. Every file is treated as a module that can be

imported. If the class is called ClassName, the file is named className.py Each class contains

multiple types of members; this includes class and function definition instances, variables

and other data structures, as well as method definitions.

The key mechanism that allows for the multi-algorithmic capability of the XMC library is

the instantiation of function objects; this is used to enable a function with a given name to

have multiple definitions. For example, we require that the optimalIndexSet method of the

HierarchyOptimiser class to be called as optimalIndexSet(), but to evaluate different expres-

sions for the optimal number of levels based on the type of XMC algorithm used.
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In this way the user can simply specify the type of algorithm they would like to run and the

definition of optimalIndexSet automatically changes based on this, without any further inter-

vention. This is achieved by instantiating optimalIndexSet dynamically to a specific function

definition through the constructor of the HierarchyOptimiser class as follows:

1 # hierarchyOptimiser .py
2 class HierarchyOptimiser ():
3 def __init__ (self , ** keywordArgs ):
4 ...
5 self. optimalIndexSet =
6 dynamicImport ( keywordArgs .get(" optimalIndexSet "))
7 ...

The dynamicImport method sets the definition of optimalIndexSet based on inputs to the con-

structor. In this way, every call to optimalIndexSet in the code is replaced by a call to the spe-

cific definition. It is hence implied that every “general” method such as optimalIndexSet will

have a corresponding list of specific definitions, one of which is selected at runtime during

the construction of the class containing the method.

To organise this, every className.py file has a corresponding folder methodDefs_className. In-

side this folder, there are multiple files named generalMethod.py, one for each member of

ClassName that is a function object instance of the class. Within each generalMethod.py, there

are a list of definitions as follows:

1 # generalMethod .py
2 def specificDefinition1 ():
3 ...
4

5 def specificDefinition2 ():
6 ...

For the example in this section, the instantiation then occurs as follows.

1 # elsewhere .py
2 if ( xmcAlgorithmType == " xmcAlgorithm1 "):
3 keywordArgs [" optimalIndexSet "] = "xmc. methodDefs_hierarchyOptimiser .

optimalIndexSet . specificDefinition1 "
4

5 x = HierarchyOptimiser (** keywordArgs )

6.3 Examples of use

We briefly report here on simulations within the ExaQUte project that the XMC package has

been used for. Firstly, the ExaQUte software framework was presented in totality in [99],

applied to a case of fluid flow over a building. The case was intended to demonstrate effi-

cient Central Processing Unit (CPU) usage. The XMC package was also used to simulate both
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two dimensional and a three dimensional fluid flow cases in [23] using a simple adaptive

Monte Carlo algorithm to estimate the expected value of a given random QoI. In this case the

aim was to measure weak and strong scalability performance of the entire ExaQUte software

framework on high performance computing hardware, while using either of the PyCOMPSs

or Hyperloom schedulers. The combination showed good strong and weak scaling perfor-

mance. Lastly, the XMC library was used to simulate a MFMC algorithm in [20].
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Mathematical Object Corresponding Class Functionality
− XMCAlgorithm Main class. Handles routines corre-

sponding to MLMC algorithm being
implemented. Manages all other class
instances and their interactions

µ̂ MonteCarloSampler Handles routines corresponding to
the estimator in consideration

1
Nl

∑Nl

i=0

(
Q(i ,l )

l −Q(i ,l )
l−1

)
MonteCarloIndex Index/level-specific class that man-

ages sample generation and level-
wise estimations at the level/index l(

Q(i ,l )
l −Q(i ,l )

l−1

)
SampleGenerator Index/level-specific class that man-

ages the correlated generation of one
sample at all indices involved in a
correlated difference at the level/in-
dex l , i.e., l and l − 1. Contains 2d

SolverWrapper instances, where d is
the number of discretisation parame-
ters

Ql SolverWrapper Handles the generation of one realisa-
tion for a given random input

ω(i ,l ) RandomGeneratorWrapper Generates the random inputs for use
by the SolverWrapper instances

bl , Vl , cl StatisticalEstimator Handles the computation of level-
wise statistics necessary for global es-
timations, error estimation, and hier-
archy optimisation

Cα, α, Cβ, β, Cγ, γ ModelEstimator Obtains the level-wise estimate data
from all levels and constructs expo-
nential/geometrical decay models on
them

µ̂ EstimationAssembler Obtains the level-wise estimate data
from all levels and constructs the
overall estimator

MSE
(
µ̂
)

ErrorEstimator Obtains the level-wise estimate data
from all levels and constructs error
components such as the bias error,
statistical error, etc. and also the MSE

Nl (ϵ),L(ϵ) HierarchyOptimiser Predicts the new hierarchy parame-
ters for a given tolerance ϵ2

− MultiCriterion Manages the stopping criterion/crite-
ria of the algorithm

Table 6.2: XMC classes and relation to mathematical objects
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7 Production Simulations

We recall here that the aim of the ExaQUte project was to apply MLMC methods to the prob-

lem of risk-averse shape optimisation for civil engineering applications; namely for min-

imising the CVaR of a random QoI, typically a structural force or moment coefficient, with

respect to a set of design parameters. This required several novel mathematical, algorith-

mic and software-related developments. Chapters 3 and 5 presented the novel mathematical

and algorithmic tools developed during the ExaQUte project and during this thesis research;

namely the development of MLMC estimators for the CVaR, and the development of novel

gradient-based OUU algorithms for the CVaR using the MLMC method to estimate the re-

quired sensitivities. Additionally, we presented in Chapter 6 the novel Python library XMC [5],

which provides an implementation of these algorithms. Numerical results were presented in

both Chapters 3 and 5 that demonstrated the efficacy of the novel algorithmic developments,

as well as their implementation within XMC, for problems of practical relevance to the Ex-

aQUte project. Specifically, in Chapter 3, we presented a problem of steady incompressible

fluid flow over a cylinder placed in a channel and subject to inflow uncertainties, whereas, in

Chapter 5, we tested our framework on an advection-reaction-diffusion problem used in pol-

lutant transport applications. The above-mentioned simulations were conducted on a com-

mercial desktop computer, and were simulated serially using only the XMC library. Although

these simulations demonstrated the effectiveness of the serial implementation of these al-

gorithms within the XMC library, it was also required of the ExaQUte project to demonstrate

that the ExaQUte software framework presented in Chapter 6 could be used to solve complex

multi-physics UQ and OUU problems on high-performance hardware with scalable paral-

lelism.

In this chapter, we present the results of some of these large-scale simulations that were con-

ducted on high-performance hardware using the ExaQUte software framework presented in

Chapter 6. The production simulations were conducted with two broad aims in mind. The

first was to assess whether the decay rate hypotheses in Eq. (2.8) could be fulfilled for the

target application of the ExaQUte project; namely one of turbulent fluid flow over a civil en-

gineering structure, or for more simplified versions of such a problem, thereby enabling the
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use of MLMC estimators. The second, dependent on the results of the first set of feasibility

studies, was to apply the CVaR estimation and CVaR sensitivity estimation frameworks de-

veloped in our works [16] and [52] to a problem of practical interest to the ExaQUte project

that would satisfy the MLMC decay rate hypotheses.

The structure of this chapter reflects these two main aims, and can be divided into two broad

parts. The first part, Section 7.1, summarises the material that we presented in [18] on the use

of MLMC estimators for chaotic problems. We introduce the challenges related to MLMC es-

timators for chaotic problems in Section 7.1.1. We demonstrate these challenges on two sim-

ple oscillator problems in Sections 7.1.2, followed by a simplified problem representing wind

flow over a building in Section 7.1.3. The second part, covered in Section 7.2, summarises the

results from further collaborative simulations using the ExaQUte software framework that we

presented in the final deliverable reports [20] and [15]. Specifically, in Section 7.2.2, we apply

the parametric expectation framework of Chapter 3 to estimate the CVaR of the drag coef-

ficient using the ExaQUte software framework. Additionally, in Section 7.2.3, we apply the

MLMC procedure developed for estimating the sensitivities of the CVaR within a trust-region

based optimisation algorithm to tackle a problem of shape optimisation, wherein we seek to

minimise the CVaR of the negative of the lift-coefficient for a problem of potential flow over

an airfoil subject to inlet uncertainties. Section 7.2.4 then presents an overall conclusion of

the results presented in this chapter, as well as potential future research directions.

7.1 Feasibility of MLMC for time dependent problems

7.1.1 MLMC theory for time dependent problems

To illustrate the potential pitfalls in using the MLMC method for time-dependent problems,

let us consider a system of SDEs with additive noise given by

d X (t ) = f (t , X (t ))d t +σdW (t ), t > 0, X (0) = X 0, (7.1)

where X (t ) ∈ Rn , σ ∈ Rn×k , and W (t ) is a Rk -valued standard Wiener process. Relevant to

the ExaQUte project is the accurate computation of time averages of some output quantities

Q̃(X (t )) with Q̃ :Rn →R a smooth function. Namely, our goal is to compute

Q = 〈Q̃(X (t ))〉T = 1

T

∫ T

0
Q̃(X (t ))d t . (7.2)

We consider as well a discretised version of Eq. (7.2) by, for example, the Euler–Maruyama

scheme.

Xn+1 = Xn +h f (tn , Xn)+σ∆Wn , n = 0,1, ..., X0 = X 0, (7.3)
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with ∆Wn
i .i .d∼ N (0,h), where h is the step size, and a piecewise linear reconstruction of the

solution

Xh(t ) =
(

tn+1 − t

h

)
Xn +

(
t − tn

h

)
Xn+1, t ∈ (tn , tn+1], n = 0,1, ... (7.4)

This leads to the following approximation of the time average.

Qh = 〈Q̃(Xh(t ))〉T = 1

T

∫ T

0
Q̃(Xh(t ))d t . (7.5)

Under reasonable regularity assumptions on f and Q̃ [75], we have that:∣∣E[
Q̃(Xh(t ))

]−E[
Q̃(X (t ))

]∣∣≤ c1(t )h, ∀t > 0, (7.6)

E
[(

Q̃(Xh(t ))−Q̃(X (t ))
)2

]1/2 ≤ c2(t )h, ∀t > 0, (7.7)

for the case of additive noise considered here. Eq. (7.6) follows from [75, Theorem 14.1.5],

whereas Eq. (7.7) follows from [75], with both results requiring that f is Lipschitz continu-

ous in the state and 1/2-Hölder continuous in time and Q̃ is Lipschitz continuous. The left

hand side of Eq. (7.6) and Eq. (7.7) are called the weak error and strong (or pathwise) error,

respectively.

[75, Theorem 4.5.4] showed that, under the additional assumption of linear growth on f , one

could show that the constant c2(t ) typically has the form c2(t ) = c̄2eLt ,L ∈ R. For chaotic

systems, the constant L is typically positive and large, meaning that the error estimate is

meaningful only for a time horizon T of the order O
(
L−1

)
. On the other hand, under a dis-

sipative condition 1 on f [96, Theorem 6.1], one has that E
[
Q̃(X (t ))2

]1/2 ≤ C for all t > 0, so

that Eq. (7.7) can be replaced by

E
[(

Q̃(Xh(t ))−Q̃(X (t ))
)2

]1/2 ≤ min
{
c̄2eLt h,2C

}
, ∀t > 0. (7.8)

Concerning the weak error, if both the SDE and its discretised form are ergodic [75, Section

17.2], the constant c1(t ) is uniformly bounded in time so that Eq. (7.6) can be replaced by∣∣E[
Q̃(Xh(t ))

]−E[
Q̃(X (t ))

]∣∣≤ c̄1h, ∀t > 0. (7.9)

The estimates in Eqs. (7.8) and (7.9) can be used to estimate the decay of the bias and variance

1 X⊤ f (t , X ) ≤−k1 |X |2 +k2 for |X | ≥ R for suitable non-negative constants k1, k2 and R.
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estimates bl and Vl defined in Eqs. (2.8) for the time averaged QoI Qhl . We have that

bl =
∣∣E[

Qhl −Q
]∣∣= ∣∣E[〈Q̃(Xhl (t ))〉T −〈Q̃(X (t ))〉]∣∣≤ c̄1hl = ĉ1s−l , (7.10)

Vl =Var
(
Qhl −Qhl−1

)≤ E[(
Qhl −Qhl−1

)2
]

(7.11)

≤ 2E
[(

Qhl −Q
)2

]
+2E

[(
Qhl−1 −Q

)2
]

(7.12)

≤ 4min

{
4C 2,

c̄2
2e2LT

2L
h2

l−1

}
(7.13)

≤ min{ĉ2, ĉ3e2LT s−2l }, (7.14)

for suitable time independent constants ĉ1, ĉ2, ĉ3. We see from these estimates that the bias

term always features an exponential decay with respect to the level l , whereas to observe a

decay of the variance in the chaotic case, we have to either consider very large l or T =O (L−1)

so that the second term in the minimum of Eq. (7.14) is smaller than the first one. In other

words, variance decay can be expected only for short time intervals in which the two approx-

imated outputs Q̃(Xhl (t )) and Q̃(Xhl−1 (t )) remain correlated. For long time horizons, the two

time series decorrelate completely and the variance term Vl , while remaining bounded, does

not feature any decay with respect to l .

7.1.2 Oscillator problems

Van der Pol Oscillator

The Van der Pol Oscillator is an oscillator whose trajectory x(t ) is governed by the second-

order differential equation

d 2x

d t 2 −µ(1−x2)
d x

d t
+x = 0. (7.15)

The oscillator has the favourable property that it has a limit cycle to which it converges inde-

pendent of the initial coordinates in the phase space. It is also a good proxy model for vortex

shedding fluid flows. To assess the effectiveness of MLMC methods in this case, we consider

a stochastic version of Eq. (7.15) where the system is forced by white noise (derivative of a

Wiener process):

d 2x

d t 2 −µ(1−x2)
d x

d t
+x = τẆ (t ), (7.16)

124



7.1 Feasibility of MLMC for time dependent problems

where W (t ) is a standard Wiener process and τ is the strength parameter for the forcing term.

We rewrite this equation as a system of SDEs:

d x = yd t , t ∈ (0,T ] (7.17)

d y = (
µ(1−x2)y −x

)
d t +τdW, t ∈ (0,T ] (7.18)

x(0) = x0, y(0) = y0. (7.19)

We discretize the system using the Euler-Maruyama scheme, which reads as follows:[
yn+1

xn+1

]
=

[
yn

xn

]
+h

[
µ(1−x2

n)yn −xn + τp
h
ξn

yn

]
, (7.20)

where [yn , xn]T denote the approximations to [y(tn), x(tn)] at the time steps tn = nT /N =: nh,

ξn are independent identically distributed realizations of a standard normal random variable,

and we set µ= 1, x0 = 1 and y0 = 1. The strength parameter is chosen as τ= 1.0 and the time

horizon is chosen to be T = 100. The solution x(t ) is plotted versus t for the same realization

of the white noise solved on both finest and coarsest meshes in Fig. 7.1. Pathwise correlation

can clearly be observed in the plot.

Figure 7.1: One realization of the stochastic Van der Pol oscillator solution on the finest and
coarsest meshes

We then simulate the system for 10 independent realizations of the Brownian path. We plot

the values |〈x〉(i )
h,T −〈x〉(i )

r e f ,T | vs. h for i = {1, ...,10}, where for each realization of the Brownian

path, the finest mesh is taken to be the reference solution. Each color corresponds to a differ-

ent underlying Brownian path realization. The resultant plot is shown in Fig. 7.2. We observe
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convergence rates of between 1.0 to 1.3 in the step size h based on least squares fits, which is

consistent with the predicted strong convergence rate of the Euler-Maruyama scheme.

Figure 7.2: Pathwise mesh convergence in the stochastic case for the Van der Pol oscillator.
Different colours correspond to different realisations.

We now wish to study the applicability of MLMC algorithms to this problem. For MLMC to

produce the optimal complexity for a given tolerance, the underlying problem should satisfy

the rate hypotheses of Eqs. (2.8). For the purposes of this study, we consider meshes with

16000, 32000, 64000 and 128000 points in time, indexed as l = {0, ...,3}. We denote the QoI

computed on mesh l as 〈x〉l ,T and the corresponding step size as hl . We study the conver-

gence of the quantities

bl := |E[〈x〉l ,T −〈x〉r e f ,T
] |, (7.21a)

Vl :=Var
(〈x〉l ,T −〈x〉l−1,T

)
, (7.21b)

with respect to hl . For each l , we estimate bl and Vl using sample average and sample vari-

ance estimators respectively, using 100 independent Brownian path realizations. For each

Brownian path, the problem is solved on both the fine and coarse levels. The variation of bl

and Vl with levels l is shown in Fig. 7.3. We observe rates of approximately 1 and 2 in the step

size hl for the bias terms bl and variance terms Vl respectively.

We observe that the stochastic Van der Pol oscillator possesses favourable properties in terms

of retaining pathwise correlations. In addition, we have also shown that the Van der Pol os-

cillator satisfies the MLMC hypotheses of Eqs. (2.8) and, hence, can obtain the demonstrated

complexity behaviour with an optimally selected hierarchy. To demonstrate this optimal
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Figure 7.3: Bias (left) and variance (right) convergence for the stochastic Van der Pol oscilla-
tor.

complexity behaviour, we estimate the expectation E [〈x〉T ] using an optimally tuned MLMC

estimator µ̂. We prescribe a tolerance ϵ on the total error of the MLMC estimator defined as

TE(µ̂) := |E[〈x〉L,T −〈x〉L−1,T
] |+Cα

√√√√ L∑
l=0

Var
(〈x〉l ,T −〈x〉l−1,T

)
Nl

, (7.22)

where Cα corresponds to the inverse of the CDF of the standard normal distribution evalu-

ated at a significance of 1−α/2.

We use the CMLMC algorithm [39, 105] to tune the hierarchy optimally for a given tolerance

on the total error. The cost of computing the optimally tuned hierarchy is then measured

and plotted against the corresponding tolerance. For each tolerance tested, the entire MLMC

simulation is repeated 15 times and the corresponding simulation time is noted for the opti-

mally tuned hierarchy. The results are shown in Fig. 7.4. In addition, the estimated cost for a

Monte Carlo simulation to reach the same tolerance is also shown. It can be seen that the cost

grows as ϵ−2, thus demonstrating optimal complexity behaviour for an MLMC estimator. It

also demonstrates that MLMC estimators can be used with success for problems displaying

periodic or oscillatory behaviour.

Lorenz Oscillator

We now wish to study the challenges faced in applying the MLMC framework to chaotic prob-

lems. To this end, we study the Lorenz oscillator. The Lorenz oscillator is a three dimensional
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Figure 7.4: Complexity behaviour for CMLMC algorithm for the Van der Pol oscillator.

chaotic oscillator governed by the following system of ODEs:

d x

d t
=σ(y −x), (7.23a)

d y

d t
= x(ρ− z)− y, (7.23b)

d z

d t
= x y −βz. (7.23c)

For the purposes of this study, we select the parameter values to beσ= 10, ρ = 28 andβ= 8/3.

The Lorenz oscillator has the property that, for these parameter values, it is chaotic. This

means that two trajectories with initial conditions differing by an arbitrarily small perturba-

tion will eventually diverge. This poses a challenge for the MLMC method since pathwise

convergence is important for the hypotheses in Eqs. (2.8) to be satisfied.

As for the Van der Pol oscillator, we study a stochastic version of the Lorenz Oscillator where

the right hand sides of all three of the Eqs. (7.23) are forced with independent white noise

terms as follows:

d x =σ(y −x)d t +τdW1, (7.24a)

d y = (
x(ρ− z)− y

)
d t +τdW2, (7.24b)

d z = (
x y −βz

)
d t +τdW3, (7.24c)

for t ∈ (0,T ], where T = 400 denotes the time horizon, W1,W2 and W3 are independent

Wiener processes and τ is the strength parameter whose value is chosen to be 1.0 for the

purposes of this study.
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We discretize Eqs. (7.24) using the Euler-Maruyama scheme. The discretized system reads

xn+1

yn+1

zn+1

=

xn

yn

zn

+h


σ(yn −xn)+ τp

h
ξ1,n

xn(ρ− zn)− yn + τp
h
ξ2,n

xn yn −βzn + τp
h
ξ3,n

 , (7.25)

where [xn , yn , zn]T denote approximations to [x(tn), y(tn), z(tn)]T on the time grid tn =
nT /N =: nh, and ξ1,n ,ξ2,n and ξ3,n are independent standard normally distributed random

variables. We wish to study the behaviour of the system for different step sizes; namely cor-

responding to N = {4,8,16,32,64}× 104, and index the levels using l ∈ {0, ...,4} accordingly.

Fig 7.5 shows one realization of the solution of the forced Lorenz oscillator computed on the

finest and coarsest meshes with the same underlying white-noise realizations. We observe

that the solutions very quickly decorrelate.

Figure 7.5: A realization of the stochastic Lorenz oscillator solution computed on the finest
and coarsest meshes

We then simulate the system for 10 independent realizations of the Brownian paths. We plot

the values |〈x〉(i )
h,T −〈x〉(i )

r e f ,T | versus h for i = {1, ...,10}, where, for each realization of the Brow-

nian path, the finest mesh is taken to be the reference solution. The resultant plot is shown in

Fig. 7.6 where different colors indicate the different realizations. It is evident from Fig. 7.6 that

pathwise convergence cannot be expected for the Lorenz oscillator for the given parameters.

We now conduct a screening MLMC similar to the Van der Pol oscillator with 104 samples per

level, to study the difference of the time averages. We wish study the decay of the level-wise

biases bl and variances Vl defined in Eqs. (7.21) for the QoI 〈x〉hl ,T for different levels l as
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Figure 7.6: Convergence of time averages for the stochastic Lorenz oscillator. Different
colours correspond to different realisations.

defined earlier. It is expected that the bias decays for a large enough time window T , but that

variance decay cannot be guaranteed. The resultant behaviour is reported in Fig. 7.7. It can

be observed that although the bias decays with rate better than 1 in the time step size h, the

variance does not decay in a meaningful way. The framework of MLMC estimation cannot be

applied to the Lorenz oscillator problem in this circumstance, since the MLMC hypotheses

in Eq. (2.8) may not be fulfilled for chaotic problems unless very small time step sizes or

time windows are considered for the analysis. We mention the work [48], who proposed a

modification of the MLMC procedure and tested the same on the the Lorenz oscillator. A

spring-like coupling between the fine and coarse levels was proposed and demonstrated to

retain pathwise-correlation, and it was shown that Eq. (2.8) could be satisfied for significantly

larger mesh sizes than compared to a naive MLMC approach.
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Figure 7.7: Bias (left) and variance (right) convergence for the stochastic Lorenz oscillator

7.1.3 Turbulent flow over a rectangle

The eventual goal of the ExaQUte project is to simulate fully turbulent three dimensional flow

over a civil engineering structure such as a building. As an intermediate two dimensional

step, a reduced problem is considered; namely, that of turbulent flow over a rectangle. A

scheme of the problem is shown in Fig. 7.8 and Fig. 7.9.

Figure 7.8: Problem description [34], D = 1

The incompressible Navier-Stokes Eqs. (7.26) and (7.27) are used to model the fluid flow:

∂u

∂t
−ν∆u + (u ·∇)u +∇p = 0, (7.26)

∇·u = 0. (7.27)

Uncertainty is present in the inlet conditions. Specifically, a Dirichlet condition is applied at

the inlet boundary, where the velocity is prescribed, with some randomness, in the horizontal

direction and constant along the edge, whereas the pressure is prescribed to a constant value

of zero. The inlet velocity is taken to be distributed as vi nlet ∼ N (2.0,0.022). This leads to

a flow-through time of approximately 140 seconds based on the length of the domain. The

viscosity value is adjusted to achieve the required Reynolds’ number of Re ≈ 1.3×105. On the
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Figure 7.9: Rectangle problem dimensions. Inner rectangle 5 m×1 m.

upper and lower boundaries, the outward normal component of velocity is set to zero. On

the outlet, a zero stress condition is enforced. No-slip boundary conditions are enforced on

the surface of the rectangle.

The problem is discretised using linear triangular elements for both pressure and velocity

fields. Algebraic subgrid-scale stabilization is used to stabilize the problem [37, 38]. A second

order fractional step method is used for time stepping that treats both pressure and velocity

implicitly. For further details on the case set-up and numerical scheme used, the reader is

referred to [19, 18] and the literature cited therein. A hierarchy of meshes was constructed

using the adaptive procedure described in [19] for the mean conditions. The parameters of

the resultant meshes are shown in Table 7.1, where hmi n denotes the minimum mesh size

and h denotes the time step size.

Interpolation Error hmi n Nodes [×1000] CFL h
101 0.035 1.1 80 0.7
100 0.012 2 80 0.24

10−1 0.0033 5 80 0.066
10−2 0.0011 15 80 0.022
10−3 0.00037 92 80 0.0075

Table 7.1: Mesh parameters for high Reynolds’ number study

We are interested in studying the pathwise convergence of the time average of the drag force

〈FD,l 〉 over the interval [140,300], where l indexes the meshes in Table 7.1. The drag force

is computed using a boundary integral formulation. Specifically, for each realisation of the

random inlet velocity, indexed by i ∈ {1, ...,50}, it is of interest to study the convergence of∣∣∣〈F (i )
D,l 〉−〈F (i )

D,l−1〉
∣∣∣, where F (i )

D,l denotes the drag force computed for the i th inlet velocity reali-

sation on level l .
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Fig. 7.10 shows the variation of |〈F (i )
D,l 〉−〈F (i )

D,l−1〉| versus the interpolation error for each of the

different realizations, as well as E[
∣∣〈FD,l 〉−〈FD,l−1〉

∣∣] estimated using a sample average over

the 50 realizations. It can be seen from the plot that pathwise convergence of this quantity in

the mesh is not observed. The variation of the variance of the differencesVar [〈FDl 〉−〈FDl−1〉]
with the interpolation error is also plotted in Fig. 7.11, where it is evident that this quantity

does not decay with the mesh parameter either.

Figure 7.10: Pathwise convergence test for the flow problem with high Reynolds number.
Same color for same realisation at different levels. Black line denotes sample average over
the realisations. Levels defined by Table 7.1.
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Figure 7.11: Variance decay plot for the flow problem with high Reynolds number. Levels
defined by Table 7.1

It can be concluded that neither pathwise convergence, nor variance decay, may be possible

to obtain at high Reynolds’ numbers due to the chaotic nature of the flow. The turbulence

indeed poses a significant challenge to retaining the pathwise correlation of both fine and

coarse samples necessary for optimal MLMC performance. As a result, the MLMC hypothe-

ses of Eqs. (2.8) are not likely to be fulfilled for this problem configuration. Although level-

wise bias and variance decay were not obtained for the problem configuration, meaningful

correlations were still observed between the various levels. The resultant correlations are

shown in Table 7.2. We proposed in [18] the use of MFMC estimators to exploit these correla-

tions, demonstrating that MFMC type estimators could provide a significant cost reduction

compared to a naive Monte Carlo estimator at the finest considered level. The interested

reader is referred to [18, 20] for further information.

Correlations 1 2 3 4

1 1
2 0.586 1
3 0.516 0.322 1
4 0.652 0.490 0.357 1

Table 7.2: Correlation data for rectangle flow problem for levels indexed as in Table 7.1

We highlight at this point that, in addition to the numerical experiments in Sections 7.1.1

and 7.1.2, the author of this thesis contributed to the design of the simulation, as well as the

analysis of the results and data used to produce Figs. 7.10 and 7.11. Although the simulations

themselves were produced by our consortium partners at CIMNE using the Kratos software
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package, it was decided to include the results in the content of this thesis to highlight the

important negative result that MLMC methods were likely to perform sub-optimally for tur-

bulent fluid flow problems.

7.2 CVaR estimation and minimisation using MLMC

As described earlier in this chapter, the aim of the ExaQUte project was to carry out risk-avere

design of civil engineering structures. An example of the target application can be found in

[76] and [20], wherein the fully three dimensional wind flow over a tall building was simu-

lated. The shape parameters of the building were selected to minimise the CVaR of a force

coefficient subject to random wind conditions. Simpler lower-dimensional surrogate prob-

lems were studied as intermediate steps towards achieving this goal in [19] and [18].

We present here the numerical results from [20] and [15]. The MLMC framework for the CVaR

and its sensitivities with respect to design parameters, developed in Chapters 3 and 5, is ap-

plied to a practical problem; namely that of steady potential flow around an airfoil with un-

certainties in the wind conditions [20, 100]. Such a problem was selected to demonstrate that

the mathematical frameworks developed within this thesis, and within the ExaQUte project,

could perform successfully for a problem that satisfied the MLMC decay rate hypotheses,

but also possessed characteristics similar to the target application. We seek to estimate and

minimise the CVaR corresponding to a force coefficient of the system. In Section 7.2.1, we

describe the problem domain, governing equations, and boundary conditions, and briefly

introduce the numerical method used to solve the problem. Section 7.2.2 presents results on

the estimation of the CVaR of a force coefficient of the system using the parametric expecta-

tion framework developed in Chapter 3. In addition, Section 7.2.3 describes the results ob-

tained for minimising the CVaR of the same force coefficient over the space of the airfoil de-

sign parameters, although using a constrained optimisation formulation and a trust-region

algorithm that uses our MLMC procedure developed in Chapter 5 to estimate sensitivities of

the CVaR. Section 7.2.4 then presents the overall conclusions obtained from these simula-

tions, and proposes potential future directions of research.

7.2.1 Airfoil problem formulation

We study a problem of steady potential flow around a NACA0012 airfoil placed in a circular

domain. The flow is governed by a simplified version of the Navier-Stokes equations; namely,

the potential flow equation. The potential flow equation is typically used to model flows

around streamlined bodies at high Reynolds’ numbers and small angles of attack. For exam-

ple, it is often used to model commercial airliners at cruise speed and altitude. The potential

flow model allows us to reduce the Navier-Stokes system of PDEs to a single nonlinear PDE,

thereby greatly reducing computational cost while preserving modelling accuracy. In this

case, the steady compressible Navier-Stokes equations simplify to the steady full-potential
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Figure 7.12: Simplified representation of the domain Ω and its boundary Γ. The wake ΓW is
modelled as a straight line. Extracted from [100].

equation:

∇· (ρ∇u
)= 0, (7.28)

where u denotes the potential, ρ denotes the density of the fluid, and the velocity field v is

given by v =∇u. The density ρ can be written in the following form using the isentropic flow

hypothesis:

ρ

ρ∞
=

(
1+ γ−1

2

u2∞
a2∞

(
1− ∇u ·∇u

u2∞

)) 1
γ−1

, (7.29)

where u∞, ρ∞ and a∞ denote the freestream velocity, density and speed of sound respec-

tively, and γ denotes the ratio of specific heats. Hence, Eq. (7.28) is a nonlinear PDE for the

potential u, requiring appropriate treatment.

The problem domain is denoted byΩ, and is shown in Fig. 7.12; its boundary is denoted by Γ.

Γ is partitioned into two parts ΓD and ΓN . Let n denote the outward normal on the boundary

and v∞ denote the freestream velocity. ΓD then denotes the part of Γwhere v∞ ·n < 0 and ΓN

denotes the part of Γwhere v∞ ·n ≥ 0. The boundary conditions on u read as follows:

u(x) = v∞ · x +u∞, on ΓD , (7.30)

n · (ρ∇u
)= g , on ΓN , (7.31)

n · (ρ+∇u+−ρ−∇u−)= 0, on ΓW , (7.32)∣∣∇u+∣∣2 −|∇u−|2 = 0, on ΓW , (7.33)

where the + and − denote the upper and lower parts of the wake boundary ΓW . Eq. (7.30)
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prescribes a velocity on the inlet part of the domain based on a given Mach number M∞ and

angle of attack α∞ as v∞ = a∞M∞(cosα∞, sinα∞). Eq. (7.31) imposes a Neumann boundary

condition on ΓN ; namely by prescribing an appropriate mass flux on the “outlet” part of the

domain boundary, as well as a zero flux condition on the airfoil surface. Since the naive finite

element discretisation of Eq. (7.28) can lead to a non-lifting problem, the wake conditions

Eqs. (7.32) and (7.33) need to be enforced in order for circulation to be generated around

the boundary. Eq. (7.32) corresponds to mass conservation and Eq. (7.33) corresponds to the

equality of pressures across the wake ΓW . The wake ΓW is modelled in this problem as a

straight line. In both the UQ and OUU studies that will be presented in Sections 7.2.2 and

7.2.3, we study, as a QoI, the negative of the lift coefficient Cl , computed as was proposed in

[98]:

Cl =
u+−u−
1
2 |v∞|c , (7.34)

where |v∞| denotes the freestream speed and c denotes the chord length of the airfoil.

The problem is discretised using a linear triangular finite element discretisation. The numer-

ical method used to solve the problem was presented in [43] which features the solution of

the problem on body-fitted meshes with the wake boundary treated in an embedded manner.

In [100], the solution was extended to a fully embedded approach. The meshes are generated

differently, depending on whether they were used for the UQ problem or the OUU problem.

As a result, the details of the meshing procedure will be presented in Sections 7.2.2 and 7.2.3.

7.2.2 CVaR estimation for the potential flow

We wish to study the behaviour of the lift coefficient Cl defined in Eq. (7.34) subject to uncer-

tainties in the inlet boundary ΓD . We model the freestream Mach number and angle of attack

as random variables distributed as M∞ ∼ N (0.3,0.12) and α∞ ∼ N (5.0,0.022) degrees. In

Section 7.2.3, we minimise the CVaR of the negative of Cl , since this is equivalent to shifting

the distribution of the lift coefficient towards higher values. To this end, we are interested in

this section in estimating the 70%-CVaR of −Cl .

In this study, we consider two different approaches to design the MLMC hierarchy; namely a

fixed hierarchy of meshes and an adaptive refinement approach. The fixed hierarchy consists

of a set of classical body-fitted meshes. Some details of the meshes used in the analysis are

shown in Table 7.3. The three first levels of the fixed hierarchy are shown in Fig. 7.13.

The adaptive refinement approach, on the other hand, uses a series of adaptive mesh refine-

ment steps starting from a pre-generated level zero mesh, where the tolerance prescribed

to each iteration of the refinement process forms a geometrically decreasing sequence. The

MLMC hierarchy is defined by this same set of tolerances, which varies with the level l as

ϵ02−l , with ϵ0 = 0.2. When a set of correlated sample pairs is desired at the levels l and l −1,

the adaptive mesh refinement process is started from the the solution on the fixed initial
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Level Nodes Elements

0 7238 14230
1 18931 37054
2 35016 68364
3 51129 99672
4 68471 133430

Table 7.3: Information of the fixed hierarchy of meshes.

mesh, and terminated at level l . The solutions corresponding to the adaptive refinement

steps at levels l and l −1 are then used to compute realisations of the QoI at these two levels.

In this way, meshes can be generated on-the-fly for each sample pair. The mesh refinement

process is based on the procedure proposed in [41] and implemented in [36]. The method

in [41] constructs a metric based on an approximate Hessian of the solution, as described in

[50]. This Hessian-based metric was previously described in [19, Section 2.2]; further details

are available therein, such as the procedure to approximate the Hessian.

An important distinction exists between the fixed and adaptive approaches. Namely, the

fixed meshes were constructed purely using airfoil geometry information. As a result, the

hierarchy of meshes in Table 7.3 preserved the geometry shape of the airfoil. In contrast, the

adaptive approach functions as follows. The Kratos software package is used to compute the

solution and corresponding metric information for a given mesh and random realisation. It

then passes this information to the MMG remesher for adaptive refinement, which treats the

mesh representation of the geometry as the “true” geometry, as opposed to incorporating ge-

ometry information during the refinement process. For coarse initial meshes, this can mean

that the solver interprets the airfoil geometry as its polygonal approximation on the coarse

mesh and keeps the same polygonal shape through the adaptivity procedure, thus leading to

sharp corners and multiple singularities in the corresponding pressure field, which, in turn,

leads to a subsequent loss of convergence of the lift coefficient in the mesh parameters. To

avoid this issue, the initial fixed mesh used for the adaptive refinement process is chosen to

be relatively fine, with 7× 104 nodes, to ensure that the airfoil shape is already adequately

captured using the initial mesh.

We recall that we are interested in accurately estimating the CVaR c0.7(−Cl ). We use the para-

metric expectation framework described in Chapter 3 for estimating the CVaR and adaptively

calibrate the hierarchy based on the error estimation and adaptive hierarchy selection proce-

dure described therein such that a prescribed tolerance is obtained on the CVaR. The simu-

lations are conducted using the ExaQUte software framework described in Chapter 6. Specif-

ically, the management of the CMLMC algorithm is conducted by the XMC package. The

XMC package is interfaced with the Kratos multi-physics engine, which solves Eq. (7.28) for a

given realisation of the input noise. The Kratos multi-physics engine interfaces, in turn, with

the MMG adaptive re-mesher to conduct adaptive mesh refinement for the adaptive mesh
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refinement case. Lastly, the PyCOMPSs scheduler is used to execute the large number of PDE

solves required by the MLMC estimator in parallel. The ExaQUte software framework was im-

plemented on the MareNostrum4 cluster [93], a supercomputer managed by the Barcelona

Supercomputing Centre, a partner in the ExaQUte consortium.

The results can be summarised as follows. To demonstrate the physics of the problem, we

conduct a set of 256 simulations on adaptively refined meshes, adapting each realisation to a

tolerance corresponding to the finest level obtained during the MLMC simulations which will

be presented later. We plot a histogram of the negative of the lift coefficient in Fig. 7.23. Addi-

tionally, we plot the mean, the 70%-VaR, the 70%-CVaR and a scaled version of the empirical

CDF. As will be demonstrated in Section 7.2.3, minimising the right tail of this distribution

and moving it left-ward corresponds to minimising the occurrences of small lift values.

For each of the above simulations, we compute the pressure coefficient Cp defined as follows:

Cp := p −p∞
1
2ρ∞|v∞|2 , (7.35)

where p denotes the pressure field and p∞ denotes the freestream pressure. The pressure

field p can be computed from the density ρ using the isentropic relation:

p

p∞
=

(
ρ

ρ∞

)γ
, (7.36)

where γ denotes the ratio of specific heats. Fig. 7.16 shows the physical distribution of several

estimated statistics of the pressure coefficient field over the airfoil, including the mean, the

VaR and the CVaR, for a significance value of τ = 0.7. The mean and variance are estimated

using their corresponding sample average estimators, whereas the VaR and the CVaR are es-

timated by constructing suitable parametric expectations at each mesh point using the pro-

cedure in Chapter 3. Other statistics introduced by [127], namely the worse-case scenario,

denoted by Sup[Cp ], and the safety-margin E
[
Cp

]+λ0.7
√
Var [Cp ], where λ0.7 denotes the

inverse of the standard normal CDF at a significance of τ = 0.7, are also plotted. The mean

value is extended with a filling area, covering the mean values plus and minus three times the

pointwise standard deviations. As can be seen from Fig. 7.16, the safety-margin statistic does

not coincide with the 70%-VaR, indicating that the distribution of the pressure coefficient is

also asymmetric, similar to the lift coefficient.

We show in Fig. 7.17 the decay of the quantities b̂(1)
l ,new and V̂l , defined in Eqs. (3.57) and (3.42),

over the levels l . The quantities b̂(1)
l ,new and V̂l are estimated using the final optimal hierarchy

computed in one of the simulations corresponding to the finest tolerance tested in each of

the fixed and adaptive mesh cases. As can be seen from Fig. 7.17, the problem exhibits ideal

properties for the application of MLMC methods in both cases, showing an exponential de-

cay in the levels l . We note however, that the levels are identified with different discretisation

parameters in either of the cases; namely, the mesh parameters in the fixed case and the re-

finement error in the adaptive case. This makes the interpretation of the convergence rates
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somewhat difficult.

In both the fixed and adaptive mesh cases, we conduct a reliability test similar to the tests

conducted in Section 5.4 of Chapter 3; namely, we run 5 CMLMC simulations each for a set

of decreasing tolerances prescribed on the MSE of the CVaR. These results are summarised

in Fig. 7.18 for both fixed and adaptive mesh cases. Specifically, Figs. 7.18a and 7.18c demon-

strate the reliability of the error estimation procedure. Two errors are plotted; namely the true

squared error on the CVaR, computed using a reference CVaR that is the sample average over

the 5 realisations of the CVaR produced at the finest tolerance tested, and the CVaR MSE es-

timate produced by the novel error estimation procedure of Chapter 3. As can be seen from

both figures, the error estimates provide a sufficiently tight bound on the true error in the

CVaR. However, neither the true nor the estimated errors decay smoothly with the tolerance,

nor is the order of difference between them consistent for all tolerances, as was observed for

the test cases in Chapter 3. In addition, Figs. 7.18b and 7.18d plot the estimated cost of sim-

ulating the optimal MLMC hierarchy versus the corresponding tolerance. In both fixed and

adaptive cases, it can be seen that the cost to compute the MLMC hierarchy scales faster than

the best-case MLMC performance, a result not predicted by Theorem 3.2.1.

Several factors could potentially contribute to the behaviours observed in Fig. 7.18, which

demonstrates poorer performance than was observed in Chapter 3. The first is that due to

computational budget and time constraints, it was possible to compute only 5 realisations

for each tolerance, leading to poor estimates of the true MSE and the estimated mean cost.

The second, possibly more significant, contributor could be the phenomenon of interval se-

lection demonstrated in Section 3.4.2 of Chapter 3; namely that selecting too small an in-

terval over which to construct the parametric expectation could lead to unstable rescaling

ratio behaviour and, hence, unstable MSE estimation. Unfortunately, the airfoil simulations

could not be re-run with a larger interval size to test this hypothesis, since the rescaling ratio

phenomenon was discovered only after the loss of access to the MareNostrum4 supercom-

puter following the end of the ExaQUte project. It is hoped that in future research, this phe-

nomenon can be accounted for and the test cases re-run with a larger number of CMLMC

simulations for each prescribed tolerance.

The author of this thesis contributed to the simulations reported above in the following ways.

The simulations were conducted using the CVaR estimation framework of Chapter 3, which

the author implemented within the XMC library. Additionally, the author collaborated with

the partners at CIMNE to integrate this XMC implementation of the work with the Kratos

multi-physics software, to parallelise the implementation using the PyCOMPSs task sched-

uler, and to implement the join software framework on the MareNostrum 4 cluster. The data

was then processed and analysed by the author to present the results on MLMC performance

reported in this section.

The data set of results of these numerical experiments is publicly available as a part of [13].
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7.2.3 CVaR optimisation for the potential flow

We now study a problem of CVaR minimisation for the airfoil problem introduced in Sec-

tion 7.2.1. A NACA0012 airfoil is placed within a circular domain as shown in Fig. 7.12 and

is subject to the same uncertainty in the inlet conditions as in Section 7.2.2; namely that the

Mach number is distributed as M∞ ∼ N (0.3,0.12) and the angle of attack is distributed as

α∞ ∼ N (5.0,0.022) degrees. The flow around the airfoil is governed by the potential flow

equation described in Eq. (7.28). We wish to minimise the 70%-CVaR of the negative of the

lift coefficient over the space of possible airfoil designs, where the lift coefficient is computed

as in Eq. (7.34). We chose to minimise the negative of the lift coefficient since, as was seen in

Fig. 7.23, minimising the right tail of the distribution amounts to reducing the occurrences of

small values of the lift coefficient.

We now describe the optimisation problem that was solved in [15]. We introduce the com-

plete probability space (Ω,F ,P) and elementary random event ω ∈Ω. We denote by z ∈ Rd

the vector of design parameters that determine the shape of the airfoil, and by u(ω, z) the

solution to Eq. (7.28) for a given random inputω and design z. In contrast to problem (5.6) in

Chapter 5, an alternative constrained formulation was proposed in [15] as follows:

J ∗ = min
z∈Rd

θ∈R

{
J (θ, z) :=Φ(θ; z)

}
s.t. F (u(ω, z), z) = 0 for P-a.e. ω ∈Ω,

and c(z) = 0, (7.37)

where Φ is as defined in Eq. (3.1) and corresponds to the CVaR statistic, F (u(ω, z), z) = 0 de-

notes the residual operator corresponding to the underlying PDE, and c(z) denotes the set of

equality constraints on the design z.

To use gradient-based methods to solve problem (7.37), it is required to compute the sensi-

tivities of the objective function J (θ, z). The sensitivities, in turn, require the solution of the

adjoint equation corresponding to problem (7.37). Additionally, three equality constraints

are applied to the problem; namely that the chord length, the perimeter, and the angle of

attack remain constant. The reader is referred to [14] for a detailed derivation of the adjoint

equation corresponding to the “deterministic” version of problem (7.28). In addition, the

reader is referred to [15] for a detailed extension of the deterministic adjoints to the case of

CVaR minimisation, as well as a review of some literature on the trust-region algorithm used

and the treatment of the constraints therein.

The underlying domain is discretised using triangular linear finite elements, and the forward

and adjoint problems are solved as described in [100] and [15] respectively to produce re-

alisations of the QoI Q = −Cl and its sensitivity Qz with respect to the design z. Although

Algorithm 5 was not used in [15] to solve this problem, the estimation of the sensitivities of

J (θ, z) was carried out using the MLMC framework described in Chapter 5, wherein suitable
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parametric expectations were used to compute the sensitivities. The adaptive remeshing pro-

cedure described in Section 7.2.2, as proposed by [41] and implemented in [42], is also used

here to produce correlated samples pairs at a desired level l in the MLMC hierarchy; namely

that each level is identified with a tolerance prescribed to the remeshing process, that expo-

nentially decreases with levels. The solutions to Eq. (7.28) obtained in the final two steps of

the refinement process are then used to compute correlated realisations of Ql and Ql−1.

However, there exists an important distinction in the meshing process in comparison to Sec-

tion 7.2.2, with important consequences for the OUU procedure. We recall here the meshing

issue that was described in Section 7.2.2; namely that the MMG remesher considered the

geometry captured by the coarse mesh to be the “true” geometry, and did not incorporate ge-

ometry information in the remeshing process. As a result, it was required to define the shape

of the airfoil through the coordinates of the mesh points on the surface of the initial airfoil

design, and for this discretisation to remain unchanged throughout the optimisation. Since

the refinement process generated a hierarchy of nested meshes for the MLMC hierarchy, this

required the airfoil to already be well resolved by the level 0 mesh, and for the number of

points on the surface of the mesh to remain unaffected by the refinement process across all

MLMC levels. To this end, the airfoil was discretised with 10198 nodes, leading to twice as

many design variables (d = 20396) due to the two dimensional nature of the problem. The

corresponding starting mesh for the algorithm is shown in Fig. 7.19. Additional details are

presented in [15] on smoothing the shape of the airfoil after performing a trust-region step to

ensure smoothness of the design.

An important implication of the large number of design points was that the XMC implemen-

tation of the error estimation and MLMC adaptivity procedure described in Chapter 5 used

to conduct the simulations became excessively expensive and unfeasible. Due to compu-

tational budget constraints, as a result, the adaptive hierarchy selection procedure was dis-

carded and replaced by a fixed MLMC hierarchy. The fixed hierarchy is constructed with 4

levels and 256 samples per level.

Table 7.4: MLMC hierarchy used at every optimisation step.

Level l Fine Sam-
ples

Coarse Sam-
ples

Refinement
tolerance

0 256
1 256 256 0.1
2 256 256 0.05
3 256 256 0.025

The ExaQUte software framework was utilised to simulate the optimisation problem. Specif-

ically, the MLMC sensitivity estimation procedure was implemented using a parallelised ve-

rion of the XMC library, with the parallelism across samples and levels being exploited using

the PyCOMPSs task scheduler. The underlying forward and adjoint problems were solved
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7.2 CVaR estimation and minimisation using MLMC

using the Kratos multi-physics software, using the approaches described in [100] and [15]

respectively. As described earlier, the MMG software package was used to carry out adap-

tive mesh refinement using the Hessian-based metric information computed by the Kratos

multi-physics library. The simulations were conducted on the MareNostrum4 cluster of the

Barcelona Supercomputing Centre [93]. The problem was run for a duration of 24 hours, after

which the simulation was stopped due to wall clock time restrictions. The stopping criteria

of the algorithm was set in terms of the relative change of the objective function, which was

not reached within the wall clock time limit.

The results obtained from the simulation can be summarised as follows. We first note that

since we use a fixed MLMC hierarchy, we do not eliminate or reduce the MLMC error as the

optimisation progresses, in contrast to Algorithm 5 of Chapter 5. As a result, we can neither

guarantee that we asymptotically reach the true optimum of the problem, nor can we make

a claim on the decay rates of the objective function or the gradient in the optimisation steps

similar to the results of Theorem 5.2.1. At best, since the MLMC decay rate hypotheses are

satisfied for this problem (see Fig. 7.17), it may be expected that the objective function pos-

sibly decays for some initial iterations of the optimisation algorithm before saturating to a

stable value when the error in the MLMC estimation exceeds the accuracy requirements of

the optimisation algorithm. This behaviour can somewhat be observed in Fig. 7.20a, which

shows the change of the objective function through the optimisation steps. It can be seen

that the objective function eventually reaches a stable value, but not smoothly. The corre-

sponding evolution of the relative change in the objective function is illustrated in Fig. 7.20b,

and does not exhibit any meaningful systematic decay in value. A comparison of various air-

foil designs is presented in Fig. 7.21; namely, we present the initial shape of the airfoil, the

final design obtained from the OUU simulation described above, and an optimal design ob-

tained from a deterministic minimisation conducted using the mean operating conditions of

the uncertainties prescribed to the OUU problem.

Fig. 7.22 shows the evolution of the empirical CDF of −Cl computed using the 256 finest QoI

realisations at each optimisation step. We observe that the distribution moves towards the

left, minimising small values of the lift coefficient as is preferred for the airfoil design. In

addition, Figs. 7.23a and 7.23b display histograms computed using the 256 finest samples

of the MLMC hierarchy computed at the initial and final optimisation steps respectively. A

scaled version of the empirical CDF is also shown, in addition to the mean, the estimated

VaR and the estimated CVaR, for each of the two cases. We mention that, in addition to the

distribution of the QoI moving to the left, as was also observed in Fig. 7.22, the final PDF is

also observed to have a larger variance than the initial PDF, specifically with a longer left tail.

In addition to the lift coefficient, we present the behaviour of the pressure coefficient in Fig.

7.24 for the final optimisation iteration, computed according to Eq. (7.35). The pressure co-

efficient distribution of the initial shape is identical to the distribution shown in Fig. 7.16 for

the UQ problem, and is hence, not repeated here. At each point on the surface of the air-

foil, we utilise the MLMC samples of Cp to compute estimates of the mean, the VaR and the

143



Chapter 7. Production Simulations

CVaR, in addition to the worst-case, safety-margin and three-sigma statistics introduced in

Section 7.2.2 in Fig. 7.16. We note the presence of some numerical artefacts in the pressure

coefficient distribution corresponding to the final iteration; namely the presence of a wave-

like variation of the lift coefficient over both surfaces of the airfoil, as well as a sharp variation

on the upper surface at x =−0.2 approximately. Several factors could be contributing to the

presence of these artefacts, including the inaccurate MLMC estimation and its combination

with the trust region algorithm, as well as the discrete representation of the airfoil. Unfortu-

nately, these artefacts could not be rectified and the corresponding simulations could not be

re-run due to the restriction of access to the MareNostrum4 cluster, following the completion

of the ExaQUte project.

The results produced in [15] and presented here are a showcase of an engineering application

with many design parameters for which the ExaQUte software framework has been applied

successfully on a supercomputer, albeit with caveats on the mathematical consistency of the

numerical approximations used. This was possible due to the combination of the different

utilities and software packages released during the project [99, 6, 23]; namely, the remeshing

software [36]; the solver [95]; the task schedulers [22] and [29]; and the uncertainty quantifi-

cation library [5]. The author of this thesis contributed to these simulations in the following

ways; namely by implementing the framework of MLMC estimation of the sensitivities in the

XMC software package, and integrating this implementation with the PyCOMPSs scheduler

to exploit parallelism, as well as the Kratos multi-physics package to solve the underlying for-

ward and adjoint problems. The author was also involved in the design of the simulations, as

well as in the processing and assessment of the data in order to produce the results presented

herein.

The data set of raw results of these numerical experiments is also available publicly at [13].
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Figure 7.13: Meshes corresponding to the first three levels of the MLMC hierarchy in the fixed
case.
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(c) Adaptively refined mesh corresponding to level 2

Figure 7.14: Meshes corresponding to the first three levels of the MLMC hierarchy using adap-
tive refinement.
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Figure 7.15: Distribution of −Cl .
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(a) Pressure distribution over the airfoil.

(b) Zoom in at the leading edge

Figure 7.16: Distribution of statistical quantities for the pressure field

148



7.2 CVaR estimation and minimisation using MLMC

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Levels l

10 2

10 1

Bi
as

Rate = 1.20

(a) Bias decay for fixed case

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Levels l

10 5

10 4

10 3

Va
ria

nc
e

Rate = 2.34

(b) Variance decay for fixed case

1.0 1.2 1.4 1.6 1.8 2.0
Levels l

10 1

6 × 10 2

2 × 10 1

3 × 10 1

4 × 10 1

Bi
as

Rates = 2.08

(c) Bias decay for adaptive case

1.0 1.2 1.4 1.6 1.8 2.0
Levels l

10 4

10 3

Va
ria

nc
e

Rate = 4.10

(d) Variance decay for adaptive case

Figure 7.17: Bias and variance decay for airfoil problem with fixed and adaptive meshes.

149



Chapter 7. Production Simulations

2 12 2 10 2 8

Tolerances 2

10 7

10 6

10 5

10 4

10 3

10 2
Sq

ua
re

d 
Er

ro
rs

 o
n 

CV
aR

Computed MSE
Tolerance=Error
MSE Estimate
True Sq. Error

(a) Fixed case error estimator reliability

2 14 2 12 2 10 2 8

Tolerance 2

103

104

105

106

107

Ti
m

e 
fo

r f
in

al
 h

ie
ra

rc
hy

MLMC Mean Cost
2

MC Cost 2

(b) Fixed case complexity behaviour

2 11 2 10 2 9 2 8

Tolerances 2

10 10

10 8

10 6

10 4

10 2

Sq
ua

re
d 

Er
ro

rs
 o

n 
CV

aR

Computed MSE
Tolerance=Error
MSE Estimate
True Sq. Error

(c) Adaptive case error estimator reliability

2 12 2 11 2 10 2 9 2 8

Tolerance 2

104

105

106
Ti

m
e 

fo
r f

in
al

 h
ie

ra
rc

hy

MLMC Mean Cost
2

MC Cost 2

(d) Adaptive case complexity behaviour

Figure 7.18: Summary of results for the airfoil problem
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Figure 7.19: Starting mesh of the optimisation problem
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Figure 7.20: Evolution of the objective function over optimisation iterations
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Figure 7.21: Comparison of the initial shape and various optimal designs
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Figure 7.22: Empirical CDF for the first ten iterations of the optimisation algorithm. Darker
colours represent later iterations.
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Figure 7.23: Distribution of QoI for initial and final optimisation steps.
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(a) Pressure distribution along the airfoil shape

(b) Zoom in at the leading edge

Figure 7.24: Distribution of the pressure coefficient over the final airfoil shape.
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7.2.4 Conclusion

We presented in this chapter the results of several collaborative production level simula-

tions conducted during the ExaQUte project using the ExaQUte software framework. In Sec-

tion 7.1, we presented results from [18] on the feasibility of using the MLMC method with

time-dependent problems. It was shown that pathwise correlation of the time signals was

required in order to ensure convergence in the discretisation parameter, which could only

be ensured for very short time windows for chaotic problems. We demonstrated, through

two simple oscillator problems and a more applied example of turbulent fluid flow over a

rectangle, that although the MLMC decay rate hypotheses of Eqs. (2.8) could be satisfied for

oscillatory problems, satisfying the hypotheses for chaotic problems still remains a challenge

due to the difficulty in preserving pathwise correlation. Although the decay rate hypotheses

were not satisfied for the turbulent flow problem, we observed that correlations still existed

between the different discretisation levels. To exploit these correlations, we proposed the use

of MFMC estimators in [18]. In addition, MFMC simulations were presented in the report

[20] for an engineering application, which the author of this thesis was however not involved

in and, therefore, have not been reported in this thesis.

In Section 7.2, we presented the results of collaborative production simulations that were

conducted using the ExaQUte software framework for the reports [20] and [15]. The aim of

the simulations was to demonstrate that the implementation of the MLMC procedures from

Chapters 3 and 5 in the XMC library, integrated with the ExaQUte software framework, could

be utilised successfully for an applied engineering problem, and to highlight the contribu-

tions of the author of this thesis towards this end. In Section 7.2.2, we estimated the 70%-

CVaR for a problem of potential flow over an airfoil with inlet uncertainties. It was demon-

strated that although the problem satisfied the hypotheses in Eq. (2.8), poor error estimator

performance was observed, possibly due to the rescaling ratio issue discussed in Chapter 3.

However, due to loss of access to the supercomputing hardware of the consortium, we were

unable to rectify these issues and re-run the corresponding simulations. In terms of software

however, the ExaQUte software framework was found to perform as expected, demonstrating

the successful code integration efforts carried out by the members of the consortium and the

author of this thesis.

In Section 7.2.3, we tackled a problem of CVaR minimisation for the potential flow problem

over an airfoil. It was desired to minimise the CVaR of the negative of the lift coefficient,

leading to higher values of lift, by controlling the shape of the airfoil, using a trust region al-

gorithm. However, due to limitations in the capability of the MMG remeshing software that

caused a dramatic increase in the computational cost of the XMC library, it was required to

discard the adaptive MLMC procedure described in Chapter 5 for the accurate estimation of

the gradient and, instead, utilise a fixed MLMC hierarchy. Although the corresponding nu-

merical results demonstrated a minimisation of the CVaR and a corresponding favourable

shift in the distribution of the lift coefficient, several numerical artefacts were found in the

simulations. Once again, due to the unfortunate loss of access to computing hardware fol-
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lowing the completion of the ExaQUte project, we were unable to rectify the artefacts, and

presented the results here as they were at the time of simulation. We once again highlight

that in terms of software, the ExaQUte software framework performed as expected, giving us

the ability to simulate the MLMC hierarchy in a parallel and scalable manner.

For future research, we believe that the exploration of MFMC estimators to estimate sensi-

tivities of the CVaR with respect to design parameters would be a highly promising research

direction, enabling the use of MFMC methods for optimisation problems wherein the MLMC

hypotheses (2.8) are not satisfied. It is also hoped that the numerical artefacts presented in

Sections 7.2.2 and 7.2.3 can be rectified through adequate calibration of the MLMC estima-

tion procedure through the selection of a more appropriate interpolation interval, or an au-

tomated interval selection procedure, and through the extension of the capabilities of the

meshing software. Lastly, we briefly explored the concept of an asynchronus MLMC algo-

rithm outisde of this thesis during the ExaQUte project, wherein estimates of the level-wise

biases and variances required to estimate an optimal hierarchy could be updated on-the-fly

in a continuous manner. An implementation of such an algorithm, however for a fixed hierar-

chy, was presented in [7], to which the author of this thesis has not, however, contributed. We

believe that an adaptive version of this algorithm would prove highly beneficial for scalable

high-performance implementations of the MLMC estimation procedure.

156



8 Conclusions and Outlook

8.1 Conclusions

As was described in Chapter 1, this thesis research was conducted as a part of the ExaQUte

project [40], a European Union Horizon 2020 research project aimed at the development of

technologies to enable exascale uncertainty quantification and risk-averse optimisation. The

aim of the project was to carry out risk-estimation and risk-averse optimisation for a problem

of civil engineering design. The project required the development of several novel mathemat-

ical and algorithmic technologies, as well as an integrated high-performance software frame-

work capable of executing these technologies on high-performance hardware. The project

was ambitious in its goals, and was deemed by a scientific review committee to have success-

fully satisfied the goals of the project in a timely manner. Several important contributions

were made by this thesis towards the completion of the ExaQUte project goals.

The first key aim of the project was the development of novel MLMC estimators and algo-

rithms for risk-estimation for use with complex differential models whose input uncertain-

ties and output QoI were modelled as random variables. Our research work [16], reported in

Chapter 3, tackled this challenge and aimed to develop an accurate MLMC estimation pro-

cedure for the CVaR, a risk-measure that quantifies the tails of the distribution of the random

QoI and possesses properties favourable for use with risk-averse optimisation algorithms.

Specifically, we proposed to use the framework of parametric expectations introduced in [85]

to accurately estimate the CVaR. The developments, presented in Chapter 3, included novel

error estimators, a novel adaptive MLMC hierarchy selection procedure, and a novel CMLMC

algorithm to incrementally calibrate the MLMC hierarchy to obtain accurate estimates of ro-

bustness measures such as the PDF, the CDF, the VaR and the CVaR. We also proved that our

novel procedure preserved the optimal cost complexity behaviour predicted for the MLMC

estimation of the expected value in the case of the CVaR. We successfully demonstrated our

approach on three problems of interest; namely, the Poisson problem, the Black-Scholes

SDE, and the steady Navier-Stokes equations modelling the flow around a cylinder placed

in a channel.
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The second key aim of the project was the development of novel optimisation algorithms for

the gradient-based minimisation of the CVaR, using the MLMC method to reduce the cost

of simulating the underlying PDE. Our work [52] addressed this challenge, and presented a

novel gradient-based approach to solve a problem of penalised CVaR estimation. The work

built upon our earlier research on MLMC estimators for parametric expectations, extending

the work in [16] to propose novel MLMC estimators for the sensitivities of the CVaR with re-

spect to design parameters. This additionally allowed us to combine the MLMC approach

with an AMGD algorithm, alternatively minimising in one coordinate of the objective func-

tion to obtain the VaR, and subsequently conducting a gradient step in the remaining design

variables. Under suitable assumptions on the objective function, we proved exponential con-

vergence in the optimisation iterations towards the minimiser. We demonstrated our frame-

work on two examples of interest; namely the FitzHugh–Nagumo oscillator and an advection-

reaction-diffusion equation used to model pollutant transport. We showed that our optimi-

sation algorithm reproduces the same cost complexity behaviour as the underlying MLMC

estimation procedure.

The third key aim of the ExaQute project was the development of an overarching software

framework capable of integrating the different mathematical developments produced within

the project together into a high-performance implementation capable of achieving scalable

performance on high-performance hardware. To this end, we extensively developed the X-

Monte Carlo (XMC) software library [5], a library capable of implementing several hierarchi-

cal Monte Carlo estimators and algorithms. As discussed in Chapters 2 and 6, the software

library was designed to mirror the common structures observed in hierarchical Monte Carlo

estimators; namely, the idea of successive differences between the various hierarchy levels,

as well as the common pattern of adaptive Monte Carlo algorithms. As of the writing of this

conclusion, the XMC library is capable of implementing MLMC, MIMC and some MFMC es-

timators, in addition to several adaptive algorithms. Extensive work has also been carried

out on the integration of the XMC library with the other component libraries of the ExaQUte

software framework [23]; namely, the author aided in the parallelised implementation of the

MLMC estimators for parametric expectations and for the sensitivities of the CVaR within

the XMC library, as well as the integration of these implementations with the Kratos multi-

physics solver and the PyCOMPSs/Hyperloom task schedulers.

These integration efforts culminated in the ability to simulate several engineering application

problems in parallel on high-performance hardware [93]. We presented in Chapter 7 the

results of several of these simulations; namely to study the feasibility of the MLMC approach

for turbulent and chaotic problems, and to demonstrate the implementation of the works in

Chapters 3 and 5 within the ExaQUte software framework. Although the ExaQUte software

framework performed well, we observed several challenges that we hope to tackle in future

research. It was found that the MLMC decay rate hypotheses presented in Chapter 2 may

not be satisfied for turbulent fluid flows, due to the chaotic nature of the flow. The MFMC

method was proposed as a plausible alternative to the MLMC approach, and some results

were presented in [20] on a civil engineering problem. Additionally, due to limitations in
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the capability of the remeshing software utilised by Kratos, several numerical artefacts were

observed in the results of Chapter 7.

8.2 Outlook and Future Scope

Our research into risk-estimation and risk-averse optimisation raised several important

mathematical questions that we hope to tackle in future scope. In Chapter 3, we reported

that the performance of our error estimation procedure was sensitive to the choice of interval

over which we construct the parametric expectations; namely that larger intervals provided

more conservative error estimates, and smaller intervals were likely to produce numerical

instabilities. We hope to examine the issue further in future works, with the aim to adaptively

select an interval such that optimal error estimator performance can be achieved.

In Chapter 5, we had demonstrated the successful performance of our approach using a

gradient-based approach. It still remains to be seen whether the MLMC estimation of the

sensitivities of the CVaR, as well as the AMGD procedure, can be extended to higher-order

gradient-based methods such as the Newton based method. This would require a proof of

the second order differentiability of the CVaR in the design parameters, which we are as yet

unaware of in literature.

Although we presented a parallelisation of the XMC library using task-based parallelism

in Chapter 6, the parallelisation strategy contained a natural synchronisation point, which

could cause a loss of efficiency in the task-based paradigm due to idle processors. We briefly

explored the concept of an asynchronous MLMC algorithm during the ExaQUte project,

where estimates of the relevant level-wise errors would be updated continuously on-the-fly

as more samples were computed. Mathematically, algorithmically and in terms of software

capability, this would require several novel developments, but could potential lead to highly

scalable implementations of MLMC estimators on high-performance hardware.

In Chapters 7, we explored briefly the use of adaptive mesh refinement strategies to refine the

underlying discretised PDE such that the MLMC decay rate hypotheses would be respected.

We demonstrated a strategy wherein the underlying discretisation is refined for each sample,

and the levels of the MLMC hierarchy are identified with a geometrically decreasing set of

tolerances provided to the adaptive refinement process. We proposed in [19] the use of an

alternative strategy, wherein metric information from all of the samples at a given level could

be used to refine a common mesh used for all samples at that level. The strategy is expected to

fit well within a continuation-type MLMC algorithm. We believe that developing this strategy

further is key to extending the MLMC method to more complex applications.

In Chapters 7 we observed several numerical artefacts that were caused due to the limitations

described in Chapter 3, as well as limitations in the capabilities of the remesher used in the

ExaQUte software framework. Due to computational budget and cluster access constraints,

we were unable to rectify these artefacts as of the writing of this thesis. We hope to revisit
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these simulations in future research, and hope to demonstrate the successful performance

of our methodologies on additional challenging applications.
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[115] A. Ruszczyński and A. Shapiro. “Optimization of convex risk functions”. In: Mathe-

matics of operations research 31.3 (2006), pp. 433–452.

[116] D. Schaden and E. Ullmann. “Asymptotic analysis of multilevel best linear unbiased

estimators”. In: SIAM/ASA Journal on Uncertainty Quantification 9.3 (2021), pp. 953–

978.

[117] D. Schaden and E. Ullmann. “On multilevel best linear unbiased estimators”. In:

SIAM/ASA Journal on Uncertainty Quantification 8.2 (2020), pp. 601–635.

[118] C. Schillings. “Optimal aerodynamic design under uncertainties”. In: Thesis (2011).

[119] C. Schillings and V. Schulz. “On the influence of robustness measures on shape

optimization with stochastic uncertainties”. In: Optimization and Engineering 16.2

(2015), pp. 347–386.

[120] V. Schulz and C. Schillings. “Optimal aerodynamic design under uncertainty”. In:

Management and Minimisation of Uncertainties and Errors in Numerical Aerodynam-

ics. Springer, 2013, pp. 297–338.

[121] D. W. Scott. “On optimal and data-based histograms”. In: Biometrika 66.3 (1979),

pp. 605–610.

[122] A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on stochastic programming:
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