
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Advanced Phenomenology for Indirect New Physics 
Searches

Siyu CHEN

Thèse n° 10 025

2022

Présentée le 16 décembre 2022

Prof. F. Mila, président du jury
Dr A. Wulzer, directeur de thèse
Dr R. Schöfbeck, rapporteur
Dr R. Torre, rapporteur
Prof. L. Zdeborová, rapporteuse

Faculté des sciences de base
Laboratoire de physique théorique des particules
Programme doctoral en physique 





Acknowledgements
Not many people are as privileged as me to have the opportunity to do a PhD in Theoretical

Physics. Though many children will answer “a scientist!”, to the question of what do you want

to be in the future, many have not the chance to proceed as far as I have. When my father

named me Siyu, which in Chinese means to think about the universe, he probably did not

figure that in twenty seven years, I would actually finish a PhD in theoretical physics, a subject

as close to what my name suggests as it can be. In any sense, I think that this PhD is a major

milestone of my life, and I would like to dedicate the following short paragraphs to thank those

who have helped and supported me.

My supervisor, Professor Andrea Wulzer, is a true physicist. He does not only possess a great

deal of knowledge in the subject of particle physics, but also knows how to connect the three

aspects of theory, phenomenology and experiment. His vision for this subject has greatly

expanded mine, and without him I would not even be able to continue after my Masters. We

decided to work on the intersection of Effective Field Theory and Machine Learning, and

it has been an interesting and fulfilling journey since day one. I think that my work done

does not even match one tenths of what he has taught me. In fact, during the entire PhD,

Andrea has been teaching me without any reserve. I feel grateful that despite my ignorance

and stubbornness, Andrea never gave me up. On a second note, when I was searching for a

job in the industry, he has also been very supportive and encouraging, which I should also feel

grateful towards as I am setting foot on a different journey.

My second biggest thanks goes to my collaborator Professor Giuliano Panico. During the four

year I hardly saw Giuliano in person, but we have spent so much time on Skype discussing

the project that I cannot put him any later in this acknowledgement. He has great insights to

models beyond the Standard Model, and his attention to details has taught me a lot. I would

say that without him the project would have been ten times more difficult. My virtual respect,

Giuliano. Then I would also like to thank my colleague, now also a doctor in Theoretical

Physics, Dr. Alfredo Glioti, as my closest office mate, my best collaborator, and my dearest

friend during the past four years. Learning new topics was much easier and more fun with

Alfredo, who is smart, patient, and extremely supportive. I cannot enumerate how many

insider jokes we have made during the past four years, but every time we laugh together I feel

true companionship. I believe that you will be a great physicist in the future, Alfredo, and I will

be most proud to say that we have two papers together.

i



Acknowledgements

I was lucky to be surrounded by great minds. Professor Riccardo Rattazzi, to start with, ex-

emplifies that a true master is able to explain complicated topics in simple words. Every

lunch hour when he is around I learned something new, from concepts in physics to politics

and philosophy. The most admirable thing that I find in him is that he really cares about his

students. He goes extra miles to help students when necessary. I am really fortunate to be his

group. Then there is my colleague, also a doctor now in Theoretical Physics, Lorenzo Ricci,

who has helped me a lot in understanding important concepts, especially those in that Muon

Collider paper. Lorenzo, thank you for being always encouraging to me. During my PhD I

was also lucky to have interacted with Joao, Misha, Luca, Marco, Emmanuel Stamou, Marc,

Matthijs, Gabriel, Aditya, Andrea Manenti, Jeanne, Sasha, Brian, Matth, Emmanuel Gendi, Gil,

Miguel, Kamran, Eren and Filippo. During the quarantine time when it was difficult, Aditya

tried to make me more social, and Gil gave me the first session of ski in life. Thank you for all

you have done for me.

I reckon that this piece of work was done during a special time, two years of which was espe-

cially complicated due to the pandemic. I have to thank, apart from the names mentioned

above, my friends who stayed around and supported me. It would have been impossible

without you.

My last and most important words of gratitude goes to my parents and my grandma. I have

not seen you for more than three years now because of the pandemic, but there is not a single

day that I am not missing home. You never ask for anything but only the best for me. I only

hope that this little piece of work will make you proud.

Dublin, November 20, 2022 Siyu

ii



Abstract
Searching indirectly for physics beyond the standard model requires careful investigation

of collider data and methodological advances that are the subject of this thesis. In the first

part, we develop a multivariate analysis tool to compare data with the new physics prediction

in their statistical distributions. The performances are demonstrated through the diboson

production process at the Large Hadron Collider, but the method has general applicability. In

the second half of the thesis, we study electroweak radiation effects using double log resum-

mation on scattering cross-sections at a future muon collider at 10 TeV or more. We show that

these effects play a crucial role in probing new physics, and we make progress towards their

complete, accurate evaluation. Both parts of the thesis adopt a general Effective Field Theory

description of new physics.

keywords: High energy physics, Effective Field Theory, Beyond the Standard Model, Multi-

variate Analysis, Neural Networks, Muon Collider
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Riassunto
La ricerca indiretta della fisica oltre il modello standard richiede un’attenta indagine dei dati

degli acceleratori di particelle e dei progressi metodologici che sono oggetto di questa tesi.

Nella prima parte, sviluppiamo uno strumento di analisi multivariata per confrontare i dati

con le previsioni di nuova fisica tramite le loro distribuzioni statistiche. Le prestazioni di tale

metodo sono verificate prendendo come esempio la produzione di dibosoni al Large Hadron

Collider, ma il metodo ha un’applicabilità generale. Nella seconda metà della tesi, studiamo

gli effetti delle radiazioni elettrodeboli utilizzando la risommazione dei doppi logaritmi per

il calcolo di sezioni d’urto a un futuro acceleratore di muoni a 10 TeV o più. Mostriamo che

questi effetti svolgono un ruolo cruciale nello studio della nuova fisica e facciamo progressi

verso la loro valutazione completa e accurata. Entrambe le parti della tesi adottano una

descrizione generale della nuova fisica basate su teorie di campo efficace.

Parole chiave: Fisica delle Alte Energie, Teorie di Campo Efficaci, Oltre il Modello Standard,

Analisi Multivariata, Reti Neurali, Muon Collider
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1 Introduction

1.1 Effective Field Theory

Effective field theory (EFT) is a powerful strategy for studying Particle Physics. The idea of

EFT is simple: when the full theory at the high energy regime is not directly accessible, we

construct a low-energy theory that effectively gives the exact predictions for observables at

the low-energy scale. EFT captures effects from the UV-complete theory, but it is formulated

solely in terms of the degrees of freedom, in the form of quantum fields, that describe particles

that are light enough to be produced in low-energy experiments.

A textbook example of EFT is the Fermi theory [1][2]. Before the discovery of the W boson or

even today, when dealing with observables whose characteristic scale is much smaller than

the W boson mass mW at 80.385(15) GeV, the Fermi theory provides an adequate description

of the theory of Weak interactions. In this theory, interactions emerge from 4-fermion vertices

such as

−GFp
2

[
ψ̄νµγ

α(1−γ5)ψµ

][
ψ̄eγα(1−γ5)ψνe

]+h.c. , (1.1)

where ψνµ refers to the quantum field of the muon neutrino, ψµ that of the muon, ψe the

electron and ψνe the electron neutrino. Similar four-fermion interactions emerge for other

leptonic particles and for quarks.

GF is the coupling strength of the interaction and is measured to be 1.663787×10−5GeV−2

[3]. On the other hand, the Standard Model (SM) theory, which is currently the established

fundamental theory of Weak interactions [4], also accurately predicts the value of GF . In the

SM, W bosons mediate muon decays, as depicted in the right panel of fig.1.1, and GF can be

written in terms of the mass of the W boson mW and the Weak coupling constant gW,

GF =
p

2g 2

8m2
W

. (1.2)
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Chapter 1. Introduction

Figure 1.1: Feynman diagram of muon decay in the Fermi theory (left) and in the Standard
Model (right)

The SM is the underlying theory for the Fermi theory, as constants in the latter can be com-

puted using parameters in the former, but the other way around does not work. The formula

above, eq.(1.2), is an example of “EFT matching", where we employ the underlying funda-

mental theory to determine constants in the EFT. From this point of view, EFTs provide a

convenient way to carry out computations in low-energy level experiments.

But EFTs are more important than that. When the underlying fundamental theory is unknown,

EFT is the only sensible theoretical tool we have, as it was the case for the Fermi theory before

the experimental discovery of W bosons and theoretical establishment of Weak interactions.

Under this circumstance, eq.(1.1) is all what we know about the Weak interactions. The equa-

tion enables us to predict the manifestations of the Weak force by employing the four-fermion

vertex as previously explained, but it also provides theoretical assurance of the existence of a

more fundamental description of Weak interactions beyond the Fermi theory itself [5]. The

argument goes as follows. Taking natural units with ~,c = 1, we see that each fermionic field

carries an energy dimension of 3/2, and the Lagrangian is of dimension 4, so the coupling

strength GF is naturally suppressed by E 2, where E is the energy of the system. The amplitude

MFermi is a dimensionless quantity, and from Feynman rules we deduce that MFermi is linear

in GF , therefore

MFermi ∼GF E 2 , (1.3)

suggesting that the amplitude grows quadratically with the energy. Now, we know that Weak

interactions are perturbative, a property that bounds the amplitude by 16π2. This implies

that one can expect an energy scale ΛFermi at which the Fermi theory ceases to be a valid

description. ΛFermi is defined by

GFΛ
2
Fermi < 16π2 , (1.4)

and is bounded at the TeV scale. This bound is much higher above the mass of W bosons. Still,

it is a useful piece of information. The fact that this bound exists suggest that the Fermi theory

is not the full picture, and a more fundamental theory awaits.

2



1.1 Effective Field Theory

The SM is also an EFT, characterised by a maximal scale of validityΛSM. However, the existence

of such a bound is not established simply by dimensional analysis as we saw above for the

case of the Fermi theory. Manifestly, all the SM couplings have vanishing energy dimension,

therefore no scattering amplitude grows with energy polynomially. Nevertheless, SM couplings

run under radiative corrections according to the so-called "renormalisation group flow". While

QCD is asymptotically free, the Electroweak couplings run into the problem of divergent gauge

couplings in the UV, specifically atΛQED ∼ 1031 GeV, known as the Landau pole. This energy

level is undoubtedly too far away from what we can experimentally probe with colliders at

the moment. The situation can change if we include gravity into the picture and quantise

the Einstein-Hilbert action. The amplitude of graviton interactions does grow quadratically

with energy and by the same analysis a cutoff, lower than ΛQED, of the order of the Planck

scale ∼ 1019 GeV, emerges. While this is still too high to be accessible, other pieces of evidence

suggests that new physics should emerge at a closer, foreseeable energy horizon, like the Dark

Matter abundance and neutrino masses.

The strongest argument to look for new physics at a much lower energy scale, accessible

to present or future collider is, in fact, quantitative and motivated by the Higgs mass. If

we carefully examine the Standard Model Lagrangian, we shall find that all operators are of

dimension four except for the mass term for the Higgs. Suppose that the Standard Model has a

scaleΛSM as high as 1031 GeV, then the light mass of the Higgs mH , measured to be 125 GeV,

poses the question of fine tuning. Concretely, the Higgs mass receives loop corrections that

involve SM particles,

m2
H =

∫ ΛSM

0
dE

dm2
H

dE
+

∫ ∞

ΛSM

dE
dm2

H

dE
. (1.5)

The following Feynman diagrams estimate the first part of the integral,

Figure 1.2: Loop corrections to Higgs mass within the Standard Model

and we can compute these contributions. Writing the first integral in eq.(1.5) as δSMm2
H , we

see that it is dominated by the top quark loop, therefore

δSM

m2
H

∼ 3y2
t

8π2Λ
2
SM =

(
ΛSM

645GeV

)2

, (1.6)

with yt the Yukawa coupling between the Higgs and the top quark.

3



Chapter 1. Introduction

This estimate follows dimensional analysis, as Λ2
SM must enhance the Higgs mass operator.

Given that mH is much smaller thanΛSM, the only sensible way to construct a Higgs mass at

the value we observe is to have a fine-tuned cancellation between the SM and the BSM parts.

Cancellation of such high precision is unnatural; thus, we expect new physics to emerge at

a much lower energy level. For example, one could hypothesize that the Higgs is a pseudo

Nambu-Goldstone boson generated from the spontaneous symmetry breaking of a bigger

symmetry group G at the new physics resonance scale m∗ [5]. In this scenario, m∗ can be

much higher than the current observed Higgs mass, analogous to the fact that the QCD scale

being much higher than that of the π mesons, and a relatively small Higgs mass is conceivable.

From this perspective, the naturalness problem motivates us to look for new physics around

the corner, i.e. around the TeV energy scale, accessible by colliders.

The presence of new physics can be theoretically described the SM EFT, which is defined as

follows. we take a set of BSM operators that have dimensional n, O (n) with n > 4, and modify

the SM Lagrangian as follows,

LBSM =LSM +∑
i

ci

ΛSM
O (5)

i +∑
j

c j

Λ2
SM

O (6)
j +·· · . (1.7)

Specifically, the Wilson coefficients ci , j in front of the operators are now dimension-less.

Interestingly, the only dimension-5 operator that is allowed by symmetries of the SM we can

construct is the Weinberg operator, which predicts the neutrino mass and is measured to have

a very small size. For the interest of this thesis, we are not going to study this operator, but

only O (6), which lead to major corrections next-in-line by naive dimensional analysis.

One of the many advantages of using EFT in studying new physics is that it is model indepen-

dent. Investigating different UV theories reduces to studying the set of higher dimensional

operators that respect symmetries of the Standard Model. For example, one can construct

a basis for higher dimensional operators using the Strongly Interacting Light Higgs (SILH)

scenario [6], assuming that the Higgs doublet can identify as the fields associated with sponta-

neous symmetry breaking. This basis accommodates several underlying UV models, including

the Holographic composite Higgs model and the Little Higgs model with custodial symmetry.

Another basis is the Warsaw basis [7], classified according to the number of fermion fields

involved.

In summary, we see that the Standard Model is an EFT theory, and a UV complete theory

should emerge at an energy scale much closer than the bound set by Standard Model gauge

couplings, hinted by the light mass of the Higgs. To proceed in a model-independent fashion,

we will study higher dimensional operators to probe new physics beyond the Standard Model.

4



1.2 Probing the Standard Model EFT

1.2 Probing the Standard Model EFT

The Large Hadron Collider (LHC) is a powerful experiment for particle physics research. Two

proton beams are guided to collide at the specific detector sites, with a centre-of-mass energy

of 14 TeV. However, at the parton level, statistically speaking, at large rate partons in the

scattering events only carry a small fraction of the total centre-of-mass energy (∼ 100 GeV),

and only very rarely their momentum scales up to TeV scale [8]. If new physics particles are

above the TeV scale, colliders will not be able to discover them through direct resonance

production. EFT then offers an alternative approach. By computing the cross-section in low-

energy experiments using higher-dimensional operators, we see that new physics manifests

itself in deviations of statistical distributions of observables from that predicted by the SM,

including kinematic variables like momentum or scattering angles.

Following the discovery of the Higgs boson at the LHC in 2012, efforts have been made to

measure its couplings to other SM particles with a high precision, as many BSM models can be

probed through these couplings. Several EFT operators modify the Higgs couplings, therefore,

these measurements, together with the future improvement thereof, can be used to probe the

SM EFT. On the other hand, such experiments can exploit the large rate of collisions whose

energy is relatively low, but high enough to produce Higgs bosons of mass ∼ 125 GeV. Involving

hadronic interactions, events at the LHC suffer from large systematic uncertainties due to

non-perturbative nature of QCD and prominent experimental effects[9]. Large rate helps

reducing the statistical error, while progress in the reduction of the systematic uncertainties,

theoretical and experimental, is difficult. In view of this, Higgs coupling measurements are,

or will be soon, intrinsically limited in their accuracy. However the LHC can also measure

processes whose characteristic scale is above the EW scale of 100 GeV. On this type of processes,

effects coming from the EFT operators are enhanced. Since EFT operators have dimensions

n > 4, the Wilson coefficient is always suppressed by some positive powers ofΛSM. Scattering

amplitude with one or more insertions of vertices derived from these EFT operators will have

to grow with energy. i.e. ∼ E 2/Λ2
SM, where E is the energy of the system. For example, at 13

TeV, probing through the Drell-Yan process at the LHC already achieves far better sensitivity

than at the Large Electron-Positron (LEP) collider, whose primary interactions only involve

the electroweak sector [10]. The advantage of

A particular process that benefits from effects growing with energy is the diboson production.

However, the advantage of having BSM amplitudes ∼ E 2/Λ2
SM is undermined by the "non-

interference" theorem, which states that SM and BSM produce transverse bosons of different

helicity, therefore killing the interference that contributes as the leading correction to the

cross-section. Interestingly enough, it has been discovered that the interference term only

disappears if we integrate over the phase space of the azimuthal angles φ1,2 related to the

boson decays, and can be restored if φ1,2 are measured [11]. As an example, in W γ production

process, by examining the distributions of φ1,2, sensitivity to the two dimension-6 trilinear

gauge couplings improves. As was pointed out in this thesis, multivariate analysis which

includes both φ1,2 and other discriminating kinematic variables, such as polar angle θ1,2 and

5



Chapter 1. Introduction

scattering angleΘ can further enhance the sensitivity. This conclusion is a major motivation

for our work in Chap.2. Before jumping into the details of our method, we will briefly present

the existing statistical tools and our method in later parts of this chapter.

Apart from hadron colliders, searches for new physics continue beyond the LHC. EFT remains

a powerful method also for future leptonic colliders, for example, the muon collider, which

is projected to have muons with a centre-of-mass energy of 10 TeV, targeting at a wide range

of dimension-6 BSM operators through multiple channels [12][13][14]. The most salient

advantage of a muon collider is that all of its centre of mass energy is readily available for

relevant collisions, as compared to the scenario for protons at the LHC. For the muon collider,

sophisticated statistical tools are not yet urgent, as it still remains a question to sort out the

relevant observables and to compute them. A careful examination of radiation effects, on the

other hand, is necessary. When investigating the reach on new physics parameters in this setup,

we notice that the precision in measurement is clouded by electroweak radiation corrections

at such a high energy level [15]. A detailed discussion on using double log resummation to

quantify radiation corrections will therefore follow in Chap.3.

1.3 Statistical Tools

To develop necessary statistical tools to study SM EFT at the LHC, we focus on the statistical

problem of determining Wilson coefficients. The problem can be viewed either as a problem

of regression on the value of c, or a hypothesis testing for or against a non-vanishing value of

c . Either way, we establish confidence on how much our experiments signal the breakdown or

the validity of the SM. The problem can be addressed with a classical or Bayesian statistical

approach. However, we soon realise that the most important ingredient in carrying out such

analysis, the likelihood of data given a certain Wilson coefficient, is not easy to obtain. Accurate

theoretical predictions on the cross-sections have a limited degree of reality, because the LHC

is a complicated machine. The only additional powerful tool we have at hand is the Monte

Carlo generators that employ an enormous number of "latent" variables in modelling the

theoretical and experimental processes to generate data that are close to reality, without

relying on a closed form expression of the probability distribution functions of the underlying

processes. Thus, obtaining an accurate form of the likelihood can be seen as the "inverse"

problem to simulation.

Therefore, we discuss our approach in solving this “inverse" problem of reconstructing the

likelihood function using simulated data, and dedicate the whole of Chap.2 to study on a

specific physical channel. The approach is the frequentist setup of hypothesis testing, one

corresponding to the SM and the other to SM EFT, or BSM models, parametrised by a Wilson

coefficient. Notice, however, that the reconstructed likelihood can still be used in both ways

to assist the study EFT, as was discussed in the last paragraph. The reason to choose to focus

on hypothesis testing will become clear soon, but in essence it is the fact that we can use

the Neyman-Person lemma (sec.(1.3.1)) to build the notion of optimality of sensitivity. We

6



1.3 Statistical Tools

will present a simplified example, whose underlying probability function is known, and use

Neyman-Pearson test statistics as a concrete figure of merit for assessing the quality of other

approximation techniques, which will be discussed in this section and sec.(1.4).

1.3.1 Neyman-Person Lemma

Consider the Standard Model as the null hypothesis H0 and the addition of a set of EFT

operators as the alternative hypothesis H1, we can design a statistical test on the observed

sample data to decide which hypothesis is preferred. Generally, to reject the null hypothesis,

one computes the p-value on the probability distribution function f of some test statistic t in

the null hypothesis, defined as

p =
∫ ∞

tobs

f (t |H0)d t , (1.8)

with tobs referring to t computed on observations. One checks if the p-value is smaller than

a specific criterion α. Normally, α is taken to be 0.05, corresponding roughly to 2 standard

deviations from the mean in Gaussian distributions. In general, the test statistic can be chosen

to be any variable derived from the sample. In a simplified BSM scenario, one can choose to

only check the centre of mass energy s, and plot the distribution of s according to the null

hypothesis. If the observed s is much higher than what the Standard Model predicts, concretly,

with a p-value smaller than 0.05, one can say that the null hypothesis is rejected. Obviously, in

a more complicated setup, such a choice is not optimal.

The Neyman-Pearson lemma states that the optimal test statistic is unique and is the log

likelihood ratio between the two hypotheses,

tN P = log
L(x|H1)

L(x|H0)
, (1.9)

where x refers to observables of the sample, which is either obtained in experiments or more

viably, with simulations. Optimality in this statement refers to maximum power for a fixed

size or significance level. In a scattering event, the likelihood can be written in terms of the

differential cross-section dσ(x|H). On a set of observations x = {x1,x2 . . .xn} of n events,

L(x|H) = N ne−N

n!

n∏
i=1

p(xi |H) (1.10)

with N the predicted number of events, computed as the product of luminosity and total

cross-sectionσ(H ) = ∫
dσ(x|H ). The p.d.f. p(x|H ) of event x in hypothesis H is the normalised

differential cross-section, written as

7



Chapter 1. Introduction

p(x|H) = 1

σ(H)

dσ(x|H)

dx
, (1.11)

and consequently for the test statistics tNP

tNP =
n∑
i

log
dσ(xi |H1)

dσ(xi |H0)
−N (H1)+N (H0). (1.12)

In practice, one should compute the Neyman-Pearson test statistic tN P to check if the null

hypothesis can be rejected or not. However, as was discussed in sec.(1.2), the closed form of

the likelihood L(x|H ) is not available, or often termed “intractable" in the literature [16]. It has

to do with the fact that observables x evolve from parton-level momenta z through inevitable

experimental effects like showering and detector interactions, which is impossible to model

with an analytical form.

To overcome this difficulty, several methods have been developed in recent years to approx-

imate the log likelihood ratio tN P (x), and the goal is to come up with a reasonably accurate

estimate of this quantity, preferably with the help of simulation data and without resorting to

hand-picked functions in modelling the evolution from z to x.

1.3.2 Matrix Element Methods and Binned Analysis Method

The Matrix Element Method (MEM) is a well-established method in approximating the likeli-

hood required for optimal sensitivity [17]]. In principle, in a scattering event, the different

cross-section can be expressed in the following form,

dσ
(
pvis

i |H)=∑
k,l

∫
d x1d x2

fk (x1) fl (x2)

2sx1x2

( ∏
j∈inv.

∫ d 3p j

(2π)32E j

)∣∣Mkl
(
pvis

i , p j |H
)∣∣2

(1.13)

where pvis
i refers to the measured momenta of the observed particles, p j refers to that of

the invisible particles, and f (x) are parton distribution functions. The matrix element Mkl

should take into account the translation from parton-level momenta z to observables x, QCD

radiation, hardonisation effects, detector interactions and so on. In reality, the matrix element

Mkl is approximated by the tree-level matrix element and a set of hand-picked transfer

functions that model the rest of the process [18], [19], [20]. Efforts have also been put into

extending the tree-level matrix element to the next-to-leading (NLO) order [21], [22] and jet

substructure [23].

If we had access to the hidden processes beyond the tree-level matrix element, eq.(1.13)

would serve as an optimal device to compute the Neyman-Peason test statistic. However, the

matrix element Mkl can only be approximated and effects from NLO, hardonisation as well as

detector interactions are hard to model. One simple technique to apply the Matrix Element

8



1.4 Neural Networks as Classifiers

Method is to use the scattering amplitude computed at the tree-level and integrate over all the

hidden variables, but that obviously will result in a crude approximation.

Another commonly used method to approximate the likelihood is the Binned Analysis. The

idea is to select a discriminating variable and study its histogram. For each hypothesis, suppose

that this variable follows a certain distribution, then we can compute the number of expected

events that fall inside each pre-selected bins. Denote the bins as {b1,b2, . . .bs} and the number

of expected events by {N1, N2, . . . Ns}, then the likelihood of a sample data-set n1,n2, . . .ns is

L(n|H) =
s∏

i=1

Ni (H)n1 e−Ni

ni !
, (1.14)

which is to say if the data is indeed generated in the H hypothesis, the number of events that

fall inside each bin, ni , will be equal to the number of expected events Ni up to some statistical

error and hence maximise the likelihood. We can approximate tNP using the log ratio of this

likelihood computed in the test and null hypotheses, denoted as tbins

tbins = log
L(n|H1)

L(n|H0)
=

s∑
i

ni log
Ni ,1

Ni ,0
−Ni ,1 +Ni ,0. (1.15)

A good candidate for such a choice of discriminating variables can be the centre of mass

energy or the scattering angle. It is also common to apply some quality cuts, for example on

the transverse momentum, in order to gain more sensitivity.

The limitation of this method is obvious. Since only one variable is chosen, information in

other variables is lost. One can perhaps consider a Binned Analysis in two or more dimensions,

or multivariate Binned Analysis, however, as formula eq.(1.14) suggests, the validity of the

likelihood resides in enough events falling inside each bin so that one can approximate the

probability of observing ni events as a Poisson distribution with mean Ni . Increasing the

dimensionality of the analysis implies that the size of the sample data-set has to multiply

exponentially in order to populate each bin in a statistically satisfying way. It is practically only

reasonable to carry out analysis in 2 and perhaps 3 dimensions, but generically going beyond

is impossible. A further comparison of this method against neural-network based multivariate

analysis will be presented in the next subsection.

1.4 Neural Networks as Classifiers

1.4.1 Basics

In recent years, Machine Learning has emerged as a popular method to study statistical

distributions. Machine Learning has its applications extend in multiple directions, as diverse

as to zip code recognition [24], cancer prediction [25] and sentiment analysis in Tweets [26],

9



Chapter 1. Introduction

but at the core of the method is the approximation of the underlying statistical distribution, or

in other words, statistical inference.

Deep neural network is suitable for problems where the underlying statistical distribution

is complicated, primarily because it has more parameters than traditional methods [27]. A

more mathematical statement of the approximation capabilities of deep neural networks is

presented in the Universal Approximation theorem [28]. On the practical side, the success

in the realm of image-processing related applications [29], [30] & [31] have also advanced

its development. We choose to apply the method of deep neural networks as we understand

that the underlying physical process associated with the problem we study is of a complicated

nature that requires a high-level of abstraction, and the signal borne inside the data-set is

indirect, as was suggested earlier in this chapter.

In the basic supervised learning setup, deep neural networks consist of layers of neurons

connected in a customised way. Each layer l takes its multivariate input x(l )
i , linearly combines

the input with the weight matrix w (l )
i j and bias b(l )

i , and passes the the result through an

activation function σ so as to create an output s(l )
i . Explicitly, in the case of a fully-connected

neural network,

s(l )
i =σ(x(l )

i ·w (l )
i +b(l )

i ) (1.16)

Popular activation functions include the Sigmoid function, rectifier and Gaussian, and they

account for the non-linearity of the final output. Practically, the network can be seen as a

function of the input with weights and biases as its parameters, i.e. f (x;w,b). This is called the

forward pass.

The output of the last layer is compared to some labels y , and the discrepancy is computed as

the loss l (y, f (x;w,b)). Using the chain rule, one can then compute the derivative of the loss

with respect to the individual parameters of the model,

∂l

∂s(l )
i

= ∂l

∂x(l )
i

σ′
(
s(l )

i

)
,

∂l

∂x(l−1)
j

=∑
i

∂l

∂s(l )
i

w (l )
i j (1.17)

∂l

∂w (l )
i j

= ∂l

∂s(l )
i

x(l−1)
j ,

∂l

∂b(l )
i

= ∂l

∂s(l )
i

. (1.18)

This is called the backward pass, or in some literature back propagation. This procedure in the

algorithm allows us to decrease the loss numerically, in an iterative way. To achieve that, the

basic idea is to update the parameters by stepping down,
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1.4 Neural Networks as Classifiers

w (l )
i j ←− w (l )

i j −η
∂l

∂w (l )
i j

b(l )
i ←− b(l )

i −η ∂l

∂b(l )
i

. (1.19)

The hyper parameter η here is called the learning rate. It is usually chosen to be a constant

between 0 and 1, or in most modern practices, a dynamically changing parameter that adjusts

the speed of stepping down. This procedure, called gradient step, can be understood in the

analogy of mountain climbing. At each point of the journey, one judges the gradient of the

mountain locally, and takes a step against the gradient. Each cycle of the three procedures:

forward pass, back pass and gradient step, is called an epoch, and during training, a deep

neural network will repeat the procedure for epochs after epochs until some convergence

criterion is met.

Figure 1.3: Illustration of a fully-connected neural network [32]

Theoretically, gradient stepping only guarantees that after iterations and iterations the algo-

rithm will find a local minimum, not a global one, but there are many techniques studied and

developed to help achieve the goal of approaching the global minimum, such as stochastic

sampling [33], adaptive optimisation [34] and random drop-out [35].

An important concept to discuss in the engineering of the neural network model is over-fitting.

One of the commonly used convergence criterion used for supervised learning is to compute

the loss of the model against a test sample, i.e., on a sample data-set that is not seen by the

neural network when updating its parameters, and stop training if this loss stops to decrease.

Over-fitting refers to the situation where the model has substantially lower loss inside the

training sample than the test sample, which implies that the model is more tuned for the noise

than the actual signal of the underlying problem. The battle for higher sensitivity of models

essentially is a battle of less over-fitting. Details of this struggle will be elaborated in the next
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Chapter 1. Introduction

two chapters.

1.4.2 The Learning Problem

To use the neural network in solving the "inverse" problem of simulation, we need to first

formulate the learning problem. The physical knowledge of the H0 and H1 models gets

translated into Monte Carlo generator codes, which allow us to estimateσ0,1(X) and to produce

samples, S0,1, of artificial events following the pdf(x|H0,1) distributions. More precisely, the

Monte Carlo generates weighted events e = (xe, we), with xe one instance of x and we the

associated weight. If the we’s are not all equal, xe does not follow the pdf of x and the

expectation value of the observables O(x) has to be computed as a weighted average. We

choose the normalization of the weights such that they sum up to σ0,1(X) over the entire

sample ∑
e∈S0,1

we =σ0,1(X) . (1.20)

With this convention, the weighted sum of O(xe) approximates the integral of O(x)·dσ0,1(x)

on x ∈ X. Namely

∑
e∈S0,1

weO(xe)
LS−→

∫
x∈X

dσ0,1(x)O(x) =σ0,1(X)E
[
O|H0,1

]
, (1.21)

in the Large Sample (LS) limit where S0,1 are infinitely large. We will see below how to construct

an estimator r̂ (x) for r (x) (or, in short, to fit r (x)) using finite S0 and S1 samples.

For tree-level Monte Carlo generators the previous formulas could be made simpler by em-

ploying unweighted samples where all the weights are equal. However radiative corrections

need to be included for sufficiently accurate predictions, at least up to next-to-leading (NLO)

order in the QCD loop expansion. NLO in QCD simply means allowing 1-loop corrections to

the hard scattering process of interest. NLO generators can only produce weighted events,

and some of the events have a negative weight due to the subtraction method it employs

(detailed discusson on negative weights on NLO can be found in sec.(2.7)). Therefore the

NLO Monte Carlo samples cannot be rigorously interpreted as a sampling of the underlying

distribution. However provided they consistently obey the LS limiting condition in eq. (1.21),

they are equivalent to ordinary samples with positive weights for most applications, including

the one described below.

The estimator r̂ (x) can be obtained by solving the most basic Machine Learning problem,

namely supervised classification with real-output Neural Networks (see Ref. [36] for an in-

depth mathematical discussion). One considers a Neural Network acting on the kinematical

variables and returning f (x) ∈ (0,1). This is trained on the two Monte Carlo samples by

12



1.4 Neural Networks as Classifiers

minimizing the loss function

L[ f (·)] = ∑
e∈S0

we[ f (xe)]2 + ∑
e∈S1

we[1− f (xe)]2 , (1.22)

with respect to the free parameters (called weights and biases) of the Neural Network. The

trained Neural Network, f̂ (x), is in one-to-one correspondence with r̂ (x), namely

f̂ (x) = 1

1+ r̂ (x)
⇔ r̂ (x) = 1

f̂ (x)
−1. (1.23)

The reason why r̂ (x), as defined above, approximates r (x) is easily understood as follows. If the

Monte Carlo training data are sufficiently abundant, the loss function in eq. (1.22) approaches

its Large Sample limit and becomes

L[ f (·)]
LS−→

∫
x∈X

dσ0(x)[ f (x)]2 +
∫

x∈X
dσ1(x)[1− f (x)]2 . (1.24)

Furthermore if the Neural Network is sufficiently complex (i.e. contains a large number of

adjustable parameters) to be effectively equivalent to an arbitrary function of x, the minimum

of the loss can be obtained by variational calculus. By setting to zero the functional derivative

of L with respect to f one immediately finds

f̂ (x) ' dσ1(x)

dσ1(x)+dσ0(x)
= 1

1+ r (x)
⇒ r̂ (x) ' r (x) . (1.25)

The same result holds for other loss functions such as the standard Cross-Entropy, which has

been found in Ref. [37] to have better performances for EFT applications, or the more exotic

“Maximum Likelihood” loss [38], which is conceptually appealing because of its connection

with the Maximum Likelihood principle. We observed no strikingly different performances

with the various options, but we did not investigate this point in full detail. In what follows we

stick to the quadratic loss in eq. (1.22).

The simple argument above already illustrates the two main competing aspects that control

the performances of the method and its ability to produce a satisfactory approximation of

r (x). One is that the Neural Network should be complex in order to attain a configuration

that is close enough to the (absolute) minimum, f (x) = 1/(1+ r (x)), of the loss functional

in eq. (1.24). In ordinary fitting, this is nothing but the request that the fit function should

contain enough adjustable parameters to model the target function accurately. On the other

hand if the Network is too complex, it can develop sharp features, while we are entitled to take

the Large Sample limit in eq. (1.24) only if f is a smooth enough function of x. Namely we need

f to vary appreciably only in regions of the X space that contain enough Monte Carlo points.

Otherwise the minimization of eq. (1.22) brings f to approach zero at the individual points that

belong to S0 sample, and to approach one at those of the S1 sample. This phenomenon, called

overfitting, makes that for a given finite size of the training sample, optimal performances are

obtained by balancing the intrinsic approximation error of the Neural Network against the
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complexity penalty due to overfitting. A third aspect, which is extremely important but more

difficult to control theoretically, is the concrete ability of the training algorithm to actually

reach the global minimum of the loss function in finite time. This requires a judicious choice

of the minimization algorithm and of the Neural Network activation functions.

The problem of fitting r (x) is mathematically equivalent to a classification problem. A major

practical difference however emerges when considering the level of accuracy that is required

on r̂ (x) as an approximation of r (x). Not much accuracy is needed for ordinary classification,

because r̂ (x) (or, equivalently, f̂ (x)) is used as a discriminant variable to distinguish instances

of H0 from instances of H1 on an event-by-event basis. Namely, one does not employ r̂ (x)

directly in the analysis of the data, but a thresholded version of r̂ (x) that isolates regions

of the X space that are mostly H0-like (r is large) or H1-like (r is small). Some correlation

between r̂ (x) and r (x), such that r̂ (x) is large/small when r (x) is large/small, is thus sufficient

for good classification performances. Furthermore the region where r (x) ' 1 is irrelevant for

classification.

The situation is radically different in our case because the EFT operators are small corrections

to the SM. The regions where the EFT/SM distribution ratio is close to one cover most of the

phase-space, but these regions can contribute significantly to the sensitivity if they are highly

populated in the data sample. Mild departures of r (x) from unity should thus be captured

by r̂ (x), with good accuracy relative to the magnitude of these departures. Obviously the

problem is increasingly severe when the free parameters of the EFT (i.e. the Wilson coefficients

“c”) approach the SM value c = 0 and r (x) approaches one. On the other hand it is precisely

when c is small, and the EFT is difficult to see, that a faithful reconstruction of r (x) would be

needed in order to improve the sensitivity of the analysis. Limitations of using a single neural

network to study the distribution ratio r̂ (x) will be addressed in Chap.2. Improvement of the

simple classifier is possible. For the rest of this Chapter, we will naively follow the single neural

network approach outlined in this section.

1.4.3 Convergence to Distribution Ratio

To demonstrate the benefit of multivariate analysis and also to illustrate how a classifier can

reconstruct the likelihood ratio sufficiently accurately, we present the following example on a

toy distribution. Consider a scattering process in which the cross-section only depends on

two kinematic variables: centre of mass energy E and the scattering angle θ ranging from 0

to π. Without paying reference to a specific underlying BSM model, we design a distribution

function dσToy as follows,

dσToy(E ,θ, g ) = 1

20

(
E

1000

)−4.2 (
1+ g

E 2

10002 cosθ+ E 4

10004 g 2
)

, (1.26)

where g refers to the Wilson coefficient of a dimension-six new physics operator. In this

demonstration, we take g1 = 0.1 in the BSM hypothesis, and g0 = 0 in SM. These choices
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of the Wilson coefficient is only to showcase the differences of the various results we have

presented so far in this chapter, and are not restricted to any BSM model. The key feature

of this toy distribution is that it is an explicit example where the interference, or the leading

order correction, linear in g , would disappear if the distribution is integrated over one of the

kinematic variables, in this case, θ.

We compare the following methods with their respective approximation to the Neyman-

Pearson test statistics. Specifically,

• tN: approximation of the log likelihood by the log of the number of expected events. This

is a crude approximation, but most direct. The test statistics using solely the information

of N can be written as,

tN = n log
NBSM

NSM
(1.27)

with n(H) referring to the actual number of events in the sample, generated from a

Poisson distribution whose parameter is given by the number of expected events NH in

hypothesis H . A simple estimate it being, when g is ∼ 0.4, this method will give ∼ 0.05

p-value.

• tE, bins: Single-variable binning in energy E . To have a considerable number of events

to fall inside each bin, we chose the intervals to be {300,350,400,500,750,1200,4000}.

Denote the expected number of events that fall inside each E bin by Ni ,E bins and the

actual number of events by ni ,E, bins(H), where i refers to the index of the bin, we write

the test statistics tE, bins as

tE, bins =
∑

i

(
ni ,E, bins log

Ni ,E, bins(BSM)

Ni ,E, bins(SM)
−Ni ,E, bins(BSM)+Ni ,E, bins(SM)

)
. (1.28)

• tθ, bins: Similar single-variable binning in the scattering angle θ. Two sets of bins were

chosen, with intervals in {0,π/4,π/2,3π/4,π}. The test statistic takes a similar form.

• tE, θ, bins: Two-variable binning in both E and θ. The intervals take the outer product of

the two directions {300,350,400,500,750,1200,4000} and {0,π/4,π/2,3π/4,π}.

• tNN: A simple neural network. The network consists of an input layer, two hidden

layers of 8 neurons each and ReLU as the activation function, and lastly an output

layer that uses the sigmoid function to ensure a correct range of the output. The data

set is comprised of 2 million points generated using Monte Carlo. Instead of using

the weight w0,1 that sums up to respective total cross sections σ0,1, the sample takes

a corresponding number of SM and BSM events such that the ratio of the number

of data points generated according to the SM distribution and BSM distribution is

equal to the ratio of total cross sections in the two hypotheses. The network is trained

for 1000 epochs with a learning rate of 0.001 using RMSProp. To obtain a statistically

reliable quantification of the performance, 10 such networks were initialized and trained
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independently, the average performance of which will be reported in the following table.

An independent test set of 1 million points is generated to evaluate the performance.

The output of the network is transformed to the log ratio of likelihood according to

eq.(1.23), and the test statistics takes the form

tNN = ∑
x∈S0,1

log

(
1

y(x)
−1

)
. (1.29)

• tME: Matrix element method using the actual distribution. In this toy model, the matrix

element written in terms of the differential cross-sections is exact and we have the

following test statistics,

tME = ∑
events∈H

log
dσ(E ,θ, g1)

dσ(E ,θ, g0)
. (1.30)

We expect tME to achieve optimal probing sensitivity according to the Neyman-Pearson

lemma. This is indeed the case in our example.

Performances on the toy distribution show that neural networks obtain comparable sensitivity

to the ideal Neyman-Pearson test statistics given by the likelihood ratio, equivalently tME.

method tN tE, bins tθ, bins tE, θ, bins tNN tME

p-value 0.45568(5) 0.247(6) 0.217(7) 0.077(3) 0.044(2) 0.037(2)

Table 1.1: Various approximation methods on the Neyman-Person test statistic

In summary, the advantage of using a neural network to build log likelihood estimates is

obvious. The method is multivariate by nature, and will not depend on the choice of binning.

For example, suppose that we choose the intervals of binning on E to be uniformly distributed

between the valid range of this variable, namely from 300 to 4000, the sensitivity will be lost

(∼ 0.5). The essential requirement on successful binning comes from sufficient number of

events inside each bin, and even with a conveniently optimised choice of bins, when the

number of variables in binning grows, this requirement becomes harder and harder to meet.

On the other hand, data sets used for neural network training can be easily scaled. We will

discuss in detail in Chapter 2 the more advanced concept of a parametrised network and our

work using such a tool in studying diboson process at the LHC.
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2 Parametrized Classifiers for Optimal
EFT Sensitivity

2.1 Quadratic Parametrization

We take off from the standard classifier introduced in Sec.(1.4.2) and move on to a more realistic

physical process. Before deploying the model, we examine further how to take advantage of

the leading term of BSM correction in the interference.

Barring special circumstances, the EFT prediction for the differential cross section is a quadratic

polynomial in the Wilson coefficients.1 If a single operator is considered, so that a single free

parameter c is present and the SM corresponds to the value c = 0, the EFT differential cross

section reads

dσ0(x;c) = dσ1(x)
{
[1+ cα(x)]2 + [cβ(x)]2} , (2.1)

where α(x) and β(x) are real functions of x. An estimator r̂ (x,c) for the distribution ratio in

the entire Wilson coefficients parameters space could thus be obtained as

r̂ (x,c) = [1+ c α̂(x)]2 + [c β̂(x)]2 , (2.2)

from estimators α̂(x) and β̂(x) of the coefficient functions α(x) and β(x). Notice that eq. (2.1)

parametrizes, for genericα(x) andβ(x), the most general function of x and c which is quadratic

in c , which is always positive (like a cross section must be) and which reduces to the SM cross

section for c = 0. The equation admits a straightforward generalization for an arbitrary number

of c parameters, which we work out in Appendix A.1.

The estimators α̂(x) and β̂(x) are obtained as follows. We first define a function f (x;c) ∈ (0,1),

in terms of two neural networks nα and nβ with unbounded output (i.e. nα,β ∈ (−∞,+∞) up

1The only exception is when the relevant EFT effects are modifications of the SM particles total decay widths.
Also notice that the cross section is quadratic only at the leading order in the EFT perturbative expansion, which
is however normally very well justified since the EFT effects are small. Higher orders could nevertheless be
straightforwardly included as higher order polynomial terms.
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to weight-clipping regularization), with the following dependence on c:

f (x,c) ≡ 1

1+ [1+ c nα(x)]2 + [c nβ(x)]2 . (2.3)

Next, we consider a set C = {ci } of values of c and we generate the corresponding EFT Monte

Carlo samples S0(ci ). At least two distinct values of ci 6= 0 need to be employed, however

using more than two values is beneficial for the performances. Monte Carlo samples are also

generated for the H1 (i.e. c = 0) hypothesis, one for each of the S0(ci ) samples. These are

denoted as S1(ci ) in spite of the fact that they are all generated according to the same c = 0

hypothesis. The samples are used to train the nα,β Networks, with the loss function

L[nα(·),nβ(·)] = ∑
ci∈C

{ ∑
e∈S0(ci )

we[ f (xe,ci )]2 + ∑
e∈S1(ci )

we[1− f (xe,ci )]2

}
. (2.4)

We stress that in the second term in the curly brackets, the function f is evaluated on the same

value of c = ci that is employed for the generation of the S0(ci ) Monte Carlo sample which we

sum over in the first term.

By taking the Large Sample limit for the loss function as in eq. (1.24), differentiating it with

respect to nα and nβ and using the quadratic condition (2.1), it is easy to show that the trained

Networks n̂α and n̂β approach α and β, respectively. Namely

α̂(x) ≡ n̂α(x) 'α(x) , β̂(x) ≡ n̂β(x) 'β(x) . (2.5)

More precisely, by taking the functional derivative one shows that the configuration nα =α

and nβ =β is a local minimum of the loss in the Large Sample limit. It is shown in Appendix A.2

that this is actually the unique global minimum of the loss.

It is simple to illustrate the potential advantages of the Quadratic Classifier, based on the

analogy with the basic binned histogram approach to EFT searches. In that approach, the

X space is divided in bins and the likelihood ratio is approximated as a product of Poisson

distributions for the countings observed in each bin. Rather than r̂ (x,c), the theoretical input

required to evaluate the likelihood are estimates σ̂0(b;c) for the cross sections integrated in

each bin “b”. Employing the Standard Classifier approach to determine r̂ (x,c) would corre-

spond in this analogy to compute σ̂0(b;c) for each fixed value of c using a dedicated Monte

Carlo simulation. By scanning over c on a grid, σ̂0(b;c) would be obtained by interpolation.

Every EFT practitioner knows that this is a is very demanding and often unfeasible way to

proceed. Even leaving aside the computational burden associated with the scan over c, the

problem is that the small values of c (say, c = c) we are interested in probing typically predict

cross sections that are very close to the SM value and it is precisely the small relative difference

between the EFT and the SM predictions what drives the sensitivity. A very small Monte Carlo

error, which in turn requires very accurate and demanding simulations, would be needed in

order to be sensitive to these small effects. In the Standard Classifier method, the counterpart
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of this issue is the need of generating very large samples for training the Neural Network.

Furthermore, this should be done with several values of c for the interpolation. This approach

is computationally demanding even when a single Wilson coefficient is considered, and it

becomes rapidly unfeasible if c is a higher-dimensional vector of Wilson coefficients to be

scanned over.

The strategy that is normally adopted in standard binned analyses is closely analog to a

Quadratic Classifier. One enforces the quadratic dependence of σ0(b;c) on c as in eq. (2.1),

and estimates the three polynomial coefficients (i.e. the SM cross section and the analog of

α and β) in each bin by a χ2 fit to σ̂0(b;c), as estimated from the Monte Carlo simulations

for several values of c. The values of c used for the fit are much larger that the reach of the

experiment c = c , so that their effects are not too small and can be captured by the Monte Carlo

simulation. The Quadratic Classifier works in the exact same way. It can learn α̂(x) and β̂(x)

using training samples generated with large values of c, for which the difference between the

S0(c) and S1(c) is sizable. The training can thus recognize this difference, producing accurate

estimates of α̂(x) and β̂(x). This accurate knowledge results in an accurate estimate of r̂ (x,c)

and of its departures from unity even at the small value c = c , because our method exploits the

exact quadratic relation in eq. (2.1).

It should be noted that the “Quadratic Classifier” introduced in eq. (2.3) is “Parametrized” in

the sense that it encapsulates the dependence on the c parameters, but it is the exact opposite

of the Parametrized Neural Network (or Parametrized Classifier) of Ref. [39]. In that case, the

Wilson Coefficient c is given as an input to the Neural Network, which acts on an enlarged

(x,c) features space. The purpose is to let the Neural Network learn also the dependence on c

of the distribution ratio in cases where this is unknown. Here instead we want to enforce the

quadratic dependence of the distribution ratio on c, in order to simplify the learning task.

An alternative strategy to exploit the analytic dependence on c is the one based on “morph-

ing” [40]. Morphing consists in selecting one point in the parameter space for each of the

coefficient functions that parametrize dσ0(x;c) as a function of c, and expressing dσ0(x;c)

as a linear combination of the cross-sections computed at these points. For instance, a total

of 3 “morphing basis points”, c1,2,3, are needed for a single Wilson coefficient and quadratic

dependence, and dσ0(x;c) is expressed as a linear combination of dσ0(x;c1,2,3). This rewriting

can be used to produce two distinct learning algorithms.

The first option is to learn the density ratios dσ0(x;c1,2,3)/dσ1(x) individually (one-by-one

or simultaneously), by using training data generated at the morphing basis points c1,2,3, and

to obtain r̂ (x,c) using the morphing formula. In the analogy with ordinary binning, this

would correspond to extracting the dependence on c of the cross-sections by a quadratic

interpolation of σ̂0(b;c1,2,3) at the selected points. Of course it is possible to reconstruct the

cross sections accurately also by using 3 very accurate simulations, rather than fitting less

accurate simulations at several points. However a judicious choice of the values of c1,2,3 is

essential for a proper reconstruction of the quadratic and of the linear term of the polynomial.
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For the former, it is sufficient to take c very large, but for the latter a value of c should be

selected that is neither too large, such that the quadratic term dominates by too many orders

of magnitude, nor too small such that the constant SM term dominates. Notice that the

optimal c depends on the analysis bin because the EFT effects relative to the SM (and the

relative importance of the quadratic and linear terms) can be vastly different in different

regions of the phase space. With “plain” morphing as described above, we are obliged to

employ only few values of c, which might not be enough to cover the entire phase space

accurately. With the Quadratic Classifier instead, all values of c that are useful to learn the

distribution in some region of the phase space can be included simultaneously in the training

set. For example, for the following physical process of fully leptonic ZW decay, we will use

G (3)
ϕq : {±50,±20,±5}×10−2 TeV−2 ,

GW : {±20,±10,±5}×10−2 TeV−2 . (2.6)

Alternatively, one can use the morphing formula in place of eq. (2.1), producing a different

parameterization of the classifier than the one in eq. (2.3), to be trained with values of the

parameters that are unrelated with the morphing basis points. The parametrization employed

in the Quadratic Classifier is arguably more convenient, as it is simpler, universal and bounded

to f ∈ (0,1) interval owing to the positivity of eq. (2.1). Importantly, also the condition r̂ (x,0) ≡
1 is built-in in the Quadratic Classifier. However this could be enforced in the morphing

parameterization as well by selecting c = 0 as one of the basis points. If this is done, we do not

expect 2 a degradation of the performances if employing the morphing-based parametrization

rather then ours. Indeed, we believe that the key of the success of the Quadratic Classifier that

we observe in this section stems from the appropriate choice of the values of c used for training,

and not from the specific parametrization we employ. The non-optimal performances of the

morphing strategy observed in Ref. [40] (on a different process than the one we study) are

probably to be attributed to a non-optimal choice. Further investigations on this aspect are

beyond the scope of the present thesis.

2.2 The Physical Process

We consider ZW production at the LHC with leptonic decays, namely Z → `+`− and W → `ν,

where `= e,µ. As this is arguably the simplest process, of established EFT relevance, where

a multivariate approach is justified and potentially improves the sensitivity. We focus on

the high-energy tail of the process, with a selection cut on the transverse momentum of the

Z-boson, pT,Z > 300 GeV, because of two independent reasons. First, because at high energy

we can approximate the differential cross section analytically and define a realistic enough

Toy problem to assess the optimality of the method. Second, because at high-energy the

statistics is sufficiently limited (less than 5×103 expected events at the HL-LHC, including

2Provided that the possibility of having f outside the (0,1) interval is not a problem when training, for instance,
with the cross-entropy loss function.
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both W charges) to expect systematic uncertainties not to play a dominant role. The reach we

will estimate in the pT,Z > 300 GeV region, on purely statistical bases, should thus be nearly

realistic.

The high-energy regime, in spite of the relatively limited statistics, is the most relevant one

to probe those EFT operators that induce energy-growing corrections to the SM amplitudes.

There are only two CP-preserving and flavor-universal operators in the ZW channel that induce

quadratically energy-growing terms, namely 3

O (3)
ϕq =G (3)

ϕq

(
QLσ

aγµQL

)
(i H †←→DµH) , OW =GW εabcW aν

µ W bρ
ν W cµ

ρ . (2.7)

We thus focus on these operators in our analysis. The BSM relevance of these operators is

well established in the literature. Searching for O (3)
ϕq in di-boson final states is among the most

promising probes of Higgs compositeness at the HL-LHC [9]. The operator OW is generated

with loop-suppressed coefficient in perturbative BSM models and in composite Higgs models

of SILH [41] type. However it does not experience loop suppression for strongly-coupled BSM

and is even potentially enhanced by the strong coupling in particular scenarios [42].

Both O (3)
ϕq and OW contribute to the ZW production amplitudes with quadratically energy-

growing terms of order G · s, where s is the center-of-mass energy squared of the diboson

system. However the way in which this energy growth manifests itself in the cross section

is rather different for the two operators (see e.g. Refs. [11, 9]). The O (3)
ϕq operator mainly

contributes to the “00” helicity amplitude, in which the gauge bosons are longitudinally

polarized. The SM amplitude in this channel is sizable and has a constant behavior with s at

high energy. As a consequence, a sizable quadratically-growing interference term between

the SM and the BSM amplitudes is present in the cross section. This happens even at the

“inclusive” level, i.e. when only the hard scattering variables describing ZW production (and

not the decay ones) are measured.

On the contrary, the OW operator induces quadratically-growing contributions only in the

transverse polarization channels with equal helicity for the two gauge bosons (namely, ++ and

−−). In the SM this channel is very suppressed at high energy, since its amplitude decreases as

m2
W /s. Therefore in inclusive observables the interference between OW and the SM does not

grow with the energy and is very small. In order to access (or “resurrect” [11]) the interference,

which is the dominant new physics contribution since the Wilson coefficient of the operator is

small, the vector bosons decay variables must be measured. We thus expect that the sensitivity

to OW will benefit more from an unbinned multivariate analysis technique than the one on

O (3)
ϕq .

The relevant kinematical variables that characterize the four-leptons final state are defined

as in Ref. [11] and depicted in Figure 2.1, where V1 is identified with the Z and V2 with the W

boson. The figure displays the kinematics in the rest frame of the ZW system, obtained from

3We use the definition H†←→DµH = H†DµH − (DµH)†H .
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Figure 2.1: The kinematical variables in the “special’ coordinate frame [11].

the lab frame by a boost along the direction of motion (denoted as r̂ in the figure) of the ZW

pair, followed by a suitable rotation that places the Z along the positive z axis and r̂ on the x-z

plane with positive x component. The “inclusive” variables associated with ZW production

are the center-of-mass energy squared s andΘ ∈ [0,π], which is defined as the angle between

r̂ and the Z-boson momentum. The decay kinematics is described by the polar and azimuthal

decay angles θ1,2 and ϕ1,2. The latter angles are in the rest frame of each boson and they are

defined as those of the final fermion or anti-fermion with helicity +1/2 (e.g. the `+ in the case

of a W + and the ν for a W −), denoted as f 1,2
+ in the figure.4 The remaining variables that are

needed to characterize the four leptons completely are weakly sensitive to the presence of the

EFT operators and can be ignored, with the exception of the total transverse momentum of

the ZW system, pT,ZW, which is a useful discriminant at NLO [9].

The variables described above are useful for the theoretical calculation of the cross section,

but they cannot be used for our analysis because they are not experimentally accessible. The

“measured” variables we employ are defined as follows. First, since we do not measure the

neutrino (longitudinal) momentum, this needs to be reconstructed by imposing the on-shell

condition for the W. The reconstructed neutrino momentum, rather than the true one, is

used to define the kinematical variables and in particular s andΘ. Moreover, since we do not

measure the helicity of the fermions but only their charge, the decay angles of the Z boson,

denoted as θZ andϕZ , are defined in terms of the charge-plus lepton rather than of the helicity

plus lepton. Depending on the (unobserved) leptons helicities these angles are either equal

to θ1 and ϕ1, or to π−θ1 and ϕ1 +π, respectively. The W decay angles, defined in terms of

the lepton or the reconstructed neutrino depending on the charge of the W as previously

explained, are denoted as θW and ϕW . In summary, the variables we employ in the analysis

are

{s,Θ, θW , ϕW , θZ , ϕZ , pT,ZW} , (2.8)

where of course pT,ZW is non-vanishing only at NLO.

The on-shell condition for the W boson has no real solution if the W-boson transverse mass is

4The correct definition of ϕ2 appears in version four of Ref. [11].
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larger that the W pole mass mW . The neutrino is reconstructed in this case by assuming that

the neutrino rapidity is equal to the one of the lepton. If instead the transverse mass is smaller

than mW , the condition has two distinct real solutions, each of which produces a different

reconstructed kinematics. For our analysis we picked one of the two solutions at random on

an event-by-event basis, while for the analysis of the actual data it would be arguably more

convenient to duplicate the kinematical variables vector by including both solutions. Nothing

changes in the discussion that follows if this second option is adopted.

2.3 Analytic Approximation and Priors

2.3.1 Analytic approximation

At the tree-level order, and based on the narrow-width approximation for the decays, it is

easy to approximate the cross section analytically in the high-energy regime. The crucial

simplification is that the reconstructed 3-momentum of the W boson (with any of the two

solutions for the neutrino) becomes exact when the W is boosted, so that the reconstructedΘ

and s variables approach the “true” ones of Figure 2.1. Notice thatΘ is the angle between the Z

and the direction of motion of the ZW system in the lab frame, which corresponds at tree-level

to the direction of motion of the most energetic incoming parton. In the kinematical region

we are interested in, the (valence) quark is more energetic than the anti-quark in more than

80% of the events. Therefore we can identifyΘ as the angle between the Z and the u quark or

the d quark in the ud → Z W + and du → Z W − processes, respectively.

With these identifications, the non-vanishing on-shell helicity amplitudes MhZ hW for the hard

scattering process ud → Z W +, at leading order in the high-energy expansion, read

M00 =−g 2 sinΘ

2
p

2
−p

2G (3)
ϕq s sinΘ , M++ =M−− = 3g cwGW s sinΘp

2
, (2.9)

M−+ =−g 2(s2
w −3c2

w cosΘ)

3
p

2cw
cot

Θ

2
, M+− = g 2(s2

w −3c2
w cosΘ)

3
p

2cw
tan

Θ

2
,

where g is the SU(2)L coupling, cw and sw are the cosine and the sine of the Weak angle. An

overall factor equal to the cosine of the Cabibbo angle has not been reported for shortness. The

amplitudes for the du → Z W − process can be obtained from the ones above with the formal

substitutionsΘ→−Θ and s2
w →−s2

w. The amplitudes are non-vanishing only for left-chirality

initial quarks. Notice that the above formulas depend on the conventions in the definition of

the wave-function of the external particles, and that these conventions must match the ones

employed in the decay amplitude for the consistency of the final results. The wave-function

reported in Ref. [43] are employed.

Let us now turn to the vector bosons decays. The decay amplitudes assume a very simple form
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in terms of the θ = θ1,2 and ϕ=ϕ1,2 variables, namely

Ah =−p2gV mV e i hϕdh(θ) , (2.10)

where h is the helicity of the decaying vector boson (V =V1,2 = Z ,W ) and dh(θ) are the Wigner

d-functions. The overall coupling factor gV depends on the nature of the boson and, in the

case of the Z, on the electric charge of the helicity-plus fermion it decays to. Specifically,

gW = g /
p

2 for the W, gZ = gL = −g (1−2 s2
w)/2cw if the Z decays to an helicity-plus `+ and

gZ = gR = g s2
w/cw if the Z decays to an helicity-plus `−. The two options for the helicity (which

are physically distinct) correspond to two terms in the cross section. In the first one the Z

decay amplitude is evaluated with the gL coupling, with θ = θ1 = θZ and ϕ=ϕ1 =ϕZ . In the

second one we employ gR , θ = θ1 =π−θZ and ϕ=ϕ1 =ϕZ +π. There is no helicity ambiguity

in the W-boson decay angles. However the reconstruction of the azimuthal decay angle is

exact in the high-energy limit only up to a twofold ambiguity [11]. Namely the reconstructed

ϕW approaches ϕ1 on one of the two solutions for the neutrino (and we do not know which

one), and π−ϕ1 on the other. Since we are selecting one solution at random, we should

average the cross section over the two possibilities ϕ=ϕ2 =ϕW and ϕ=ϕ2 =π−ϕW for the

W azimuthal angle. The polar angle is instead θ = θ2 = θW in both cases.

Production and decay are conveniently combined using the density matrix notation. We

define the hard density matrix

dρhard
hZ hW h′

Z h′
W
= 1

24 s
MhZ hW

(Mh′
Z h′

W
)∗ dΦZW , (2.11)

where dΦZW is the two-body phase space and the factor 1/24s takes care of the flux and of

the averages over the colors and the helicities of the initial quarks. The decay processes are

instead encoded into decay density matrices. The one for the Z-boson, including the sum over

the `± helicities as previously explained, reads

dρZ
hZ h′

Z
= 1

2mZΓZ

[
AhZ

A ∗
h′

Z

∣∣∣
gL ,θZ ,ϕZ

+ AhZ
A ∗

h′
Z

∣∣∣
gR ,π−θZ ,ϕZ+π

]
dΦ`+`− , (2.12)

where ΓZ is the Z decay width. For the W, since we average on the neutrino reconstruction

ambiguity, we have

dρW
hW h′

W
= 1

2mW ΓW

1

2

[
AhW

A ∗
h′

W

∣∣∣ gp
2

,θW ,ϕW

+ AhW
A ∗

h′
W

∣∣∣ gp
2

,θW ,π−ϕW

]
dΦ`ν . (2.13)

The complete partonic differential cross section is finally simply given by

dσ̂= 4
∑

dρhard
hZ hW h′

W h′
Z

dρZ
hZ h′

Z
dρW

hW h′
W

, (2.14)

where the sum is performed on the four helicity indices and the factor of 4 takes into account

the decay channels into electrons and muons.
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2.3.2 Monte Carlo Generators

For our analysis we use three Monte Carlo generators, of increasing accuracy.

The first one is the Toy generator that implements the analytic approximation of the cross

section in eq. (2.14), with the hard amplitudes expanded up to order G · s in the EFT con-

tribution and up to order s0 in the SM term, as in eq. (2.9). This implies, in particular, that

in the Toy Monte Carlo all the mixed transverse/longitudinal helicity channels vanish ex-

actly, that only the ±∓ and 00 channels are retained in the SM and that new physics is just

in the 00 and ±± channels for O (3)
ϕq and OW , respectively. The Toy Monte Carlo employs a

simple fit to the (ud or du) parton luminosities obtained from the nCTEQ15 [44] PDF set

(implemented through the ManeParse [45] Mathematica package). The variable s is sampled

according to the parton luminosity, while all the other variables are sampled uniformly. The

cut pT,Z = p
s/2sinΘ > 300 GeV is implemented at generation level. Since the analytical

distribution is extremely fast to evaluate, this basic approach is sufficient to obtain accurate

Monte Carlo integrals and large unweighted event samples in a very short time.

The second generator is MADGRAPH [46] at LO, with the EFT operators implemented in the

UFO model of Ref. [47]. We simulate the 2 → 4 process pp →µ+µ−e νe , with the Z and the W

decaying to opposite flavor leptons for a simpler reconstruction, and multiply the resulting

cross section by 4. The cut on pT,Z, defined as the sum of the µ+ and µ− momenta, is imposed

at generation level, as well as the cuts

mT,eν ≤ 90GeV, 70GeV ≤ mµµ ≤ 110GeV, (2.15)

on the transverse mass of the virtual W and the invariant mass of the virtual Z. These are

needed to suppress non-resonant contributions to the production of the 4 leptons. Standard

acceptance cuts on the charged leptons are also applied. The unweighted events obtained

with MADGRAPH are further processed to compute the kinematical variables in eq. (2.8) after

neutrino reconstruction, as detailed at the beginning of this section.

The MADGRAPH LO generator is slightly more accurate than the Toy one. It contains all the

ZW helicity amplitudes and no high-energy approximation. Furthermore, it describes non-

resonant topologies and off-shell vector bosons production, which affects the reconstruction

of the neutrino and in turn the reconstruction of the Z and W decay variables [11]. Nevertheless

on single-variable distributions the Toy Monte Carlo and the LO one agree reasonably well, at

around 10%.

The third and most refined generator is MADGRAPH at NLO in QCD, interfaced with PYTHIA 8.244 [48,

49] for QCD parton showering. The complete 2 → 4 process is generated like at LO, but no cuts

could be applied at generation level apart from default acceptance cuts on the leptons and

the lower cut on mµµ in eq. (2.15). At NLO, the cut on pT,Z needs to be replaced with the cut

pT,V > 300 GeV, with pT,V = min[pT,Z, pT,W]. This cut suppresses soft or collinear vector boson

emission processes, which are insensitive to the EFT. In order to populate the pT,V > 300 GeV
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tail of the distribution with sufficient statistics, events were generated with a bias. The bias

function was equal to one for pT,V above 290 GeV, and equal to (pT,V/290GeV)4 below. The

momenta of the charged leptons and the transverse momentum of the neutrino in the gen-

erated events were read with MADANALYSIS [50] and the kinematical variables in eq. (2.8)

reconstructed like at LO. The cut pT,V > 300 GeV and the remaining cuts in eq. (2.15) were

imposed on the reconstructed events. The total cut efficiency on the Monte Carlo data, thanks

to the bias, was large enough (around 17%) to allow for an accurate prediction of the cross

section and for the generation of large enough event samples.

Even if ours is an electroweak process, it is known that NLO QCD corrections can in principle

affect significantly the sensitivity to the EFT operators. Relevant effects are related with the

tree-level zero [51] in the transverse amplitude, which is lifted at NLO, and with the appearance

of same-helicity transverse high-energy amplitudes due to real NLO radiation [52]. All these

effects are properly modeled by the MADGRAPH NLO generator.

2.4 Optimality on Toy data

Our goal is to reconstruct the EFT-over-SM cross section ratio r (x,c) as accurately as possible

1.4.2. Since r is known analytically for the Toy problem, a simple qualitative assessment of

the performances could be obtained by a point-by-point comparison (see Figures 2.7 and 2.8)

of r (x,c) with its approximation r̂ (x,c) provided by the trained Neural Network. However a

point-by-point comparison is not quantitatively relevant, since the level of accuracy that is

needed for r̂ (x,c) can be vastly different in different regions of the phase-space, depending

on the volume of expected data and on the discriminating power of each region (i.e. on how

much r is different from one).

The final aim of the entire construction is to obtain an accurate modeling of the extended

log-likelihood ratio in eq. (1.12), to be eventually employed in the actual statistical analysis.

A quantitative measure of the r reconstruction performances is thus best defined in terms

of the performances of the final analysis that employs r̂ , instead of r , in the likelihood ratio.

Among all possible statistical analyses that could be carried out, frequentist tests to the EFT

hypothesis H0(c) (regarded as a simple hypothesis for each given value of c), against the SM

one, H1, are considered for the illustration of the performances.

Four alternative test statistic variables are employed. One is the standard Poisson binned

likelihood ratio (see below). The others are unbinned and take the form

tc (D) = N(X|H0)−N(X|H1)−
N∑
i=1

τc (xi ) , (2.16)

where τc (x) is either equal to the exact log[r (x,c)] or to log[r̂ (x,c)], as reconstructed either

with the Standard Classifier or with the Quadratic Classifier described in Section 1.4.2 and 2.1,

respectively. In each case the probability distributions of t in the two hypotheses are computed
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with toy experiments (or with the simpler strategy of Section 2.5.1), and used to estimate the

expected (median) exclusion reach on c at 95% Confidence Level if the SM hypothesis is

true. In formulas, the 95% reaches (c2σ) we quote in what follows are solutions to the implicit

equation

p(tmed(c2σ);c2σ) = 0.05, with tmed(c) = Median[tc (D)|H1] , (2.17)

where the p-value is defined as

p(tc ;c) =
∫ ∞

tc

d t ′c pdf(t ′c |H0(c)) . (2.18)

The two Wilson coefficients c = G (3)
ϕq and c = GW are considered separately. Therefore the

results that follow are single-operator expected exclusion reaches.

Summarizing, the four methodologies we employ are

i) Matrix Element (ME)

In this case we set τc (x) = log[r (x,c)] in eq. (2.16), with r computed analytically using

eq. (2.14). Therefore t coincides with the log-likelihood ratio λ in eq. (1.12), which

in turn is the optimal discriminant between H0 and H1 due to the Neyman–Pearson

lemma [53]. Namely, a straightforward application of the lemma guarantees that by

employing t =λ as test statistic we will obtain the optimal (smallest) c2σ reach, better

than the one we could have obtained using any other variable. The Matrix Element

Method is thus optimal in this case, and the optimality of the other methods can be

assessed by comparing their c2σ reach with the one of the Matrix Element.

ii) Standard Classifier (SC)

The second method consists in setting τc (x) = log[r̂ (x,c)] in eq. (2.16), with r̂ recon-

structed by the Standard Classifier as in Section 1.4.2. Notice that a separate training

is needed to reconstruct r̂ (x,c) for each value of the Wilson Coefficient. Therefore

computing c2σ, as defined in eq. (2.17), requires scanning over c, performing first the

Neural Network training and next the calculation of the distributions of t by toy experi-

ments. For the Quadratic Classifier (and for the Matrix Element Method), the first step

is not needed. The details on the Neural Network architecture and training, and of its

optimization, will be discussed in Section 2.6.

iii) Quadratic Classifier (QC)

The third approach is to employ r̂ (x,c) as reconstructed by the Quadratic Classifier of

Section 2.1. Implementation details are again postponed to Section 2.6, however it is

worth anticipating that the key for a successful reconstruction is to train using values

for the Wilson coefficients that are significantly larger than the actual reach. Specifically,

we used eq.(2.6) in the beginning of this chapter.
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These values have been selected as those that induce order one departures from the SM

cross section in the low, medium and high regions of the pT,Z distribution. If willing to

compute cross-section in each pT,Z region by quadratic interpolation, using the values

selected with this criterion can be shown to maximize the accuracy on the reconstruction

of the linear term, while still allowing for a good determination of the quadratic term.

We expect this choice to be optimal for the Quadratic Classifier training as well. Also

notice that the total number of training Monte Carlo events is the same one (6M, see

Section 2.6) employed for each of the separate trainings performed on the Standard

Classifier.

iv) Binned Analysis (BA)

Finally, in order to quantify the potential gain of the unbinned strategy, we also perform

a binned analysis. The test statistic in this case is provided by the sum over the bins

of the log-ratio of the SM over EFT Poisson likelihoods, with the expected countings

as a function of the Wilson coefficients computed from Monte Carlo simulations. The

test statistic distributions, and in turn the reach by eq. (2.17), are computed with toy

experiments like for the other methods and no asymptotic formulas are employed.

For both G (3)
ϕq and GW we considered 3 bins in pT,Z, with the following boundaries

pT,Z[GeV] : {300,500,750,1200} GeV. (2.19)

The pT,Z variable is an extremely important discriminant because it is sensitive to the

energy growth induced by the EFT. The three bins are selected based on the studies in

Refs. [11, 9], and a narrower binning has been checked not to improve the sensitivity

significantly. A cut cosΘ < 0.5 is imposed in the analysis targeting G (3)
ϕq , because this

helps [9] in isolating the longitudinal helicity channel thanks to the amplitude zero

in the transverse SM amplitudes. For OW , no cosΘ cut is performed, and each pT,Z is

split in two bins, for cos2ϕW larger and smaller than zero. This is sufficient to partially

capture the leading EFT/SM interference term as discussed in Ref. [11].

Most likely the binned analysis could be improved by considering more (and/or better)

variables and a narrower binning. However it should be noticed that the simple strategies

described above already result from an optimization, targeted to the specific operators

at hand, and that the reach we obtain is consistent with the sensitivity projections

available in the literature.

2.4.1 Results

The results of the four methods are shown in Figure 2.2 (see also Table 2.1), together with

the ones obtained with the MADGRAPH LO description of the ZW process, to be discussed

in Section 2.4.2. The 2σ sensitivities reported in the figure are obtained by interpolating the

median p-value as a function of the Wilson Coefficient c, in the vicinity of the reach, and

computing c2σ by solving eq. (2.17). Further details on this procedure, and the associated
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Figure 2.2: Expected exclusion reach on G (3)
ϕq (left) and on GW (right). The results are also

reported in Table 2.1. Light-color stacked bars represent the errors.

error, are given in Section 2.5.1.

The figure reveals a number of interesting aspects. First, by comparing the Matrix Element

reach with the one of the Binned Analysis we can quantify the potential gain in sensitivity

offered by a multivariate strategy. The improvement is moderate (around 30%) for G (3)
ϕq , but

it is more than a factor of 2 (of 2.4) in the case of the GW operator coefficient. The different

behavior of the two operators was expected on physical grounds, as discussed in details below.

The figure also shows that the Quadratic Classifier is nearly optimal. More precisely, the reach

is identical to the one of the Matrix Element for G (3)
ϕq , and < 20% worse for GW . We will see in

Section 2.6 that the residual gap for GW can be eliminated with more training points than the

ones used to produce Figure 2.2. Suboptimal performances are shown in the figure in order to

outline more clearly, in Section 2.6, that our method is systematically improvable as long as

larger and larger Monte Carlo samples are available.

Finally, we see in the figure that the Standard Classifier is slightly less sensitive than the

Quadratic one, but still its performances are not far from optimality. This is reassuring in

light of possible applications of Statistical Learning methodologies to different problems,

where the dependence of the distribution ratio on the new physics parameters is not known

and the Quadratic Classifier approach cannot be adopted. On the other hand, the Standard

Classifier method is rather demanding. First, because it requires separate trainings on a grid of

values of c, out of which the reach should be extracted by interpolation. In turn, this requires

a much larger number of training points than the Quadratic Classifier, since at each point

of the grid we use as many training points as those the Quadratic Classifier needs in total

for its training. Second, because we observed hyperparameters optimization depends on

the specific value of c that is selected for training. Because of these technical difficulties,

we only report sensitivity estimates for the positive Wilson coefficients reach. Furthermore

these estimates (see Table 2.1) are based on the p-value obtained at a given point of the c grid

without interpolation. For the same reason, we did not try to apply the Standard Classifier

methodology to the LO and to the NLO data and we focus on the Quadratic Classifier in what
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follows.

Let us discuss now the physical origin of the different behaviors observed for the O (3)
ϕq and

for the OW operator. The point is that the new physics effects due to O (3)
ϕq have very dis-

tinctive features which can be easily isolated even with a simple binned analysis with few

variables. Indeed O (3)
ϕq (see eq. (2.9)) only contributes to the 00 polarization amplitude, which

is non-vanishing in the SM as well and proportional to sinΘ. The squared 00 amplitude thus

contributes to the cross section with a sizable interference term, which is peaked in the central

scattering region cosΘ∼ 0. The other helicity channels play the role of background, and are

peaked instead in the forward region. They are actually almost zero (at LO) at cosΘ' 0. There-

fore a binned analysis targeting central scattering (this is why we imposed the cut cosΘ< 0.5)

is sufficient to isolate the effects of O (3)
ϕq at the interference level and thus to probe G (3)

ϕq accu-

rately. By including the decay variables as in the multivariate analysis we gain sensitivity to

new terms in the cross section, namely to the interference between the 00 and the transverse

amplitudes, however these new terms are comparable with those that are probed already in

the Binned Analysis and thus they improve the reach only slightly.

The situation is very different for the OW operator. It contributes to the ++ and −− helicity

channels, that are highly suppressed in the SM and set exactly to zero in the Toy version of

the problem we are studying here. The pT,Z (andΘ) distribution depends only at the quartic

level on GW , i.e. through the square of the BSM amplitude, because the interference between

different helicity channels cancels out if we integrate the cross section in eq. (2.14) over the

ZW azimuthal decay angles. Our Binned Analysis is sensitive to the interference term through

the binning in ϕW , however this is not enough to approach the optimal reach because all the

other decay variables (andΘ as well) do possess some discriminating power, from which we

can benefit only through a multivariate analysis. More specifically, one can readily see by

direct calculation that the dependence on all our kinematical variables of the GW interference

contribution to the differential cross section is different from the SM term. By integrating

on any of this variables we partially lose sensitivity to this difference, and this is why the

multivariate analysis performs much better than the binned one.

2.4.2 MADGRAPH Leading Order

The analyses performed for the Toy dataset can be easily replicated for the MADGRAPH LO

Monte Carlo description of the process, obtaining the results shown in Figure 2.2.

The most noticeable difference with what was found with the Toy Monte Carlo is the strong

degradation of the Matrix Element reach, and the fact that it gets weaker than the one of the

Quadratic Classifier. As usual, the effect is more pronounced for the OW operator. This is

not mathematically inconsistent because the analytic ratio r (x,c) we employ for the Matrix

Element test statistic is not equal anymore to the ratio of the true distributions according to

which the data are generated. Therefore it is not supposed to give optimal performances. On

the other hand the observed degradation is quantitatively surprising for GW , especially in light
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of the fact that the MADGRAPH LO Monte Carlo distributions seem quite similar to the ones of

the Toy data at a superficial look. The degradation is not due to the high-energy approximation

in the ZW production amplitude, indeed the results we are reporting are obtained with the

exact tree-level helicity amplitudes, which are employed in eq. (2.14) in place of the ones in

eq. (2.9). It is due to the other approximations we performed in the calculation of the cross

section, namely to the assumption that the initial quark is always more energetic than the

anti-quark, which allows us to interpretΘ as the angle between the quark and the Z, and to

the one of a perfect reconstruction (up to the ambiguity) of the neutrino momentum. We

verified that this is the case by repeating the Matrix Element analysis using the true neutrino

momentum and the actual direction of motion of the quark in the Monte Carlo events. In this

case the reach on GW gets closer to the one obtained with the Toy data.

The degradation of the Matrix Element reach should be contrasted with the relative stability

of the Quadratic Classifier method. Notice that the method is applied on the MADGRAPH LO

data in the exact same way as on the Toy data, namely the architecture is the same, as well

as the number of training point and the values of the Wilson coefficients in eq. (2.6) used

for training. The computational complexity of the distribution ratio reconstruction is thus

identical in the two cases, in spite of the fact that the MADGRAPH LO Monte Carlo offers a

slight more complete (or “complex”) description of the data. The total computational cost

is somewhat higher in the MADGRAPH LO case, but just because the process of Monte Carlo

events generation is in itself more costly. Similar considerations hold at NLO, where the cost

of event generation substantially increases.

2.5 The reach at Next-to-Leading Order

Including NLO QCD corrections is in general essential for an accurate modeling of the LHC

data. Therefore it is imperative to check if and to what extend the findings of the previous

section are confirmed with the MADGRAPH NLO Monte Carlo description of the process,

introduced in Section 2.3.2. As far as the reconstruction of r̂ (x,c) is concerned, using MAD-

GRAPH NLO does not pose any conceptual or technical difficulty, provided of course the

(positive and negative) Monte Carlo weights are properly included in the loss function as

explained in Section 1.4.2. Computing the distribution of the test statistic variable that we

obtain after the reconstruction (or of the one we employ with the Matrix Element method, for

which the exact same issue is encountered) is instead slightly more complicated than with

the Toy and MADGRAPH LO data. This point is discussed in the following section, while the

illustration of the results is postponed to Section 2.5.2.

2.5.1 Estimating the test statistics distributions

As soon as τc (x) is known, either as an analytic function in the case of the Matrix Element or

as a (trained) Neural Network in the case of the Quadratic Classifier, the test statistic tc (D), as

defined in eq. (2.16), is fully specified. Namely we can concretely evaluate it on any dataset
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D = {xi }, consisting of N repeated instances of the variable x, for each given value of c.

However in order to perform the hypothesis test, and eventually to estimate the reach c2σ,

we also need to estimate the probability distribution of tc (D) under the H0 and under the H1

hypotheses. This is the problematic step at NLO, after which the evaluation of c2σ proceeds in

the exact same way as for the Toy and for the LO data. Specifically, once we are given with

pdf(tc |H0(c)) and pdf(tc |H1) , (2.20)

we obtain the p-value as a function of tc and c as in eq. (2.18) from the former, while from the

latter we compute the median value of tc and in turn

pmed(c) ≡ p(tmed(c);c) , (2.21)

as a function of c. After scanning over c and interpolating pmed(c) in the vicinity of the

reach (actually we interpolate the logarithm of pmed(c), using three points in c and quadratic

interpolation), we can solve the equation pmed(c2σ) = 0.05 and obtain the reach as defined in

eq. (2.17). Given the error on pmed(c) at the three points used for the interpolation, the error

on the estimate of c2σ is obtained by error propagation.

It is conceptually trivial (but numerically demanding) to estimate the distributions if artificial

instances of the dataset D (aka “toy” datasets) are available. In this case one can simply

evaluate tc (D) on many toy datasets following the H0(c) and the H1 hypotheses and estimate

the distributions. More precisely, one just needs the empirical cumulative in H0(c) and the

median of tc in H1. Toy datasets are readily obtained from unweighted Monte Carlo samples

by throwing N random instances of x from the sample, with N itself thrown Poissonianly

around the total expected number of events. This is impossible at NLO because the events

are necessarily weighted, therefore they are not a sampling of the underlying distribution of

the variable x. As emphasized in Section 1.4.2, NLO Monte Carlo data can only be used to

compute expectation values of observables O(x) as in eq. (1.21). For instance we can compute

the cross section in any region of the X space, and the mean or the higher order moments of

the variable of interest, τc (x).

This suggests two options to estimate the distributions of the test statistic at NLO. The first one

is to compute the distribution of τc (x) by means of a (weighted) histogram with many and very

narrow bins. By knowing the cross section of each bin in τc , we know how many events are

expected to fall in that bin and generate toy datasets for τc accordingly. This procedure is quite

demanding, and it relies on a careful choice of the τc binning, which can only be performed

on a case-by-case basis. It is still useful to validate the strategy we actually adopt, described

below.

The second option is to approximate the distribution of tc in a “nearly Gaussian” form, based

on the Central Limit theorem. Namely we notice that tc is in a trivial linear relation (see
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Toy Data LO NLO

G (3)
ϕq

ME [−0.350(6),0.356(8)] [−0.399(13),0.384(12)] [−0.55(4),0.464(14)]

SC & 0.4(p = 0.077(5)) — —

QC [−0.357(6),0.365(8)] [−0.401(12),0.374(10)] [−0.426(22),0.401(21)]

BA [−0.48,0.47] [−0.50,0.50] [−0.58,0.55]

GW

ME [−0.673(14),0.697(11)] [−1.390(21),1.357(22)] [−1.51(7),1.93(14)]

SC . 1(p = 0.038(3)) — —

QC [−0.781(13),0.822(13)] [−1.007(27),0.987(26)] [−0.99(4),1.08(12)]

BA [−1.67,1.67] [−1.70,1.85] [−1.63,1.98]

Table 2.1: Bounds on the G (3)
ϕq and GW coefficients obtained for the Toy, LO and NLO datasets.

The rows correspond to the Matrix Element (ME), Standard Classifier (SC), Quadratic Classifier
(QC) and Binned Analysis (BA) approach. Notice that the errors on the Binned Analysis bounds
are negligible. The results are given in 10−2 TeV−2 units.

eq. (2.16)) with the variable

Tc (D) ≡ 1

N

N∑
i=1

τc (xi ) , (2.22)

where N is Poisson-distributed with expected N, with N = N(X|H ) and H = H0 or H = H1. The

xi ’s are independent and sampled according to pdf(x|H). The cumulant-generating function

of Tc (which is a so-called “compound” Poisson variable [54]) is readily computed

KTc (ξ) ≡ log
{

E
[

eξTc

∣∣∣ H
]}

= NE
[

e
ξ
N τc

∣∣∣ H
]
−N, (2.23)

by first taking the expectation on the xi ’s conditional to N and next averaging over the Poisson

distribution of N . Therefore the cumulants of Tc ,

κn
Tc

≡ d nKTc (ξ)

dξn

∣∣∣∣
ξ=0

= N1−nE
[
τn

c

∣∣ H
]

, (2.24)

are increasingly suppressed with N for larger and larger n > 1. Since N is of the order of several

thousands in our case, neglecting all cumulants apart from the first and the second one, i.e.

adopting a Gaussian distribution for Tc , might be a good approximation.

Actually it turns out that in order to model properly the 5% tail of the distribution, which

we need to probe for the exclusion limit, non-Gaussianity effects can be relevant. These are

included by using a skew-normal distribution for Tc , which contains one more adjustable

parameter than the Gaussian to model the skewness. The mean, standard deviation and
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Figure 2.3: Expected exclusion reach on G (3)
ϕq (left) and on GW (right) with the various method-

ologies described in the text. The results are also reported in Table 2.1.

skewness of Tc are immediately obtained from eq. (2.24)

µ(Tc ) = 〈τc〉 , σ(Tc ) = 1p
N

√
〈τ2

c 〉 µ3(Tc ) = 1p
N

〈τ3
c 〉

〈τ2
c 〉3/2

, (2.25)

where 〈·〉 is used to denote expectation for brevity. By computing the expectation values of

τc , τ2
c and τ3

c using the Monte Carlo data, we thus find the parameters of the skew-normal

distribution for Tc and in turn the distribution of tc . We finally obtain the median p-value

from the definition in eq. (2.21). The errors on the expectation values of τc are estimated from

the fluctuations in the means on subsets of the entire Monte Carlo sample. These errors are

propagated to the p-value and eventually to the c2σ estimated reach as previously explained.

Accurate results (see Table 2.1) are obtained with relatively small Monte Carlo samples. Namely,

500k event were used at NLO, 1M at LO and 3M for the Toy data.

We cross-checked the above procedure in multiple ways. First, it reproduces within errors the

LO and Toy p-values obtained with the toy experiments. Second, we validated it against the

approach based on τc binning on NLO data, as previously mentioned. We also verified that

including the skewness changes the results only slightly, with respect to those obtained in the

Gaussian limit. Further improving the modeling of the non-Gaussiantiy with more complex

distributions than the skew-normal, with more adjustable parameters in order to fit higher

order moments of Tc , is therefore not expected to affect the results.

2.5.2 Results

Our results with the MADGRAPH NLO Monte Carlo are reported in Figure 2.3 and in Table 2.1.

They essentially confirm the trend we already observed in the transition from the Toy to

the MADGRAPH LO data. The Matrix Element keeps losing sensitivity because the analytic

distribution ratio is now even more faraway from the actual distribution ratio since it does

not include NLO QCD effects. The reach of the Binned Analysis deteriorates less, so that it

becomes comparable to the one of the Matrix Element. The Quadratic Classifier reach is
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Figure 2.4: Evolution of the p-value for different architectures and training sample sizes. On
the left plot we compare the baseline setup with the baseline architecture Network trained
with 200k points per value of c (for a total of 2.4M points), and with the baseline number of
training points (500k, times 12) on architectures with one less (“3×32”) and one more (“5×32”)
hidden layer. On the right plot, a similar analysis is performed, but with 3M points per value
of c.

remarkably stable. Actually it slightly improves with respect to the LO one for GW . This is

probably due to the appearance of same-helicity SM transverse amplitudes (see Section 2.3.2)

and of the corresponding interference term for the OW operators.

Notice few minor differences in the implementation of the Quadratic Classifier and of the

Binned Analysis at NLO. The Quadratic Classifier now also employs the variable pT,ZW, as

discussed in Section 2.2. The Binned Analysis for G (3)
ϕq employs pT,ZW as well, through a

cut pT,ZW/pT,V < 0.5. This improves the reach [9] because it helps recovering (partially) the

background suppression due to the zero of the transverse amplitudes in the central region.

2.6 Neural Network implementation and validation

The strategies described in Section 1.4.2 were implemented in Pytorch [55] and run on

NVIDIA GeForce GTX 1070 graphics card. Fully connected feedforward deep Neural Networks

were employed, acting on the features vector

x = {s,Θ, θW , θZ , pT,ZW, pT,Z, sinϕW , cosϕW , sinϕZ , cosϕZ } , (2.26)

for a total of 10 features. Each feature is standardized with a linear transformation to have

zero mean and unit variance on the training sample. For the Quadratic Classifier training, the

Wilson coefficient employed in the parametrization (2.3) were scaled to have unit variance

on the training sample. Employing the redundant variables (i.e., pT,Z, and the cosines and

sines of ϕW,Z ) is helpful for the performances, especially the angular ones, which enforce the

periodicity of the azimuthal angular variables. The “baseline” results presented in Figures 2.2,

2.3 and in Table 2.1 were all obtained with the features vector above and employing a total of
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6 million training Monte Carlo points for each of the two Wilson coefficients. Training was

always performed with a single batch (which was found to perform better in all cases), even if

in practice the gradients calculation was split in mini-batches of 100k points in order to avoid

saturating the memory of the GPU. Apart from these common aspects, the optimization of the

Neural Network design and of the training strategy is rather different for the Quadratic and for

the Standard Classifier methods. They are thus discussed separately in what follows.

2.6.1 The Quadratic Classifier

For the Quadratic Classifier, best performances were obtained with ReLU activation functions

and with the Adam Pytorch optimizer. The initial learning rate (set to 10−3) does not strongly

affect the performances. Other attempts, with Sigmoid activation and/or with SGD optimizer,

produced longer execution time and worse performances. The baseline architecture for the

two Neural Networks nα and nβ in eq. (2.3) consists of 4 hidden layers with 32 neurons, namely

the architecture {10,32,32,32,32,1}, including the input and the output layers. Weight Clipping

was implemented as a bound on the L1 norm of the weights in each layer, but found not to

play a significant role. The total training time, for 104 training epochs, is around 5 hours for

the baseline architecture and with the baseline number (6 million) of training points.

The Neural Network architecture was selected based on plots like those in Figure 2.4. The

left panel shows the evolution with the number of training epochs of the median p-value

(see eq. (2.21)) on Toy data for c = GW = 0.8×10−2 TeV−2, with the baseline and with larger

and smaller Networks. We see that adding or removing one hidden layer to the baseline

architecture does not change the performances significantly. The plot also shows that 104

epochs are sufficient for the convergence and that no overfitting occurs. The degradation of

the performances with less training point is also illustrated in the plot. Of course, the p-value

is evaluated using independent Monte Carlo samples, not employed for training. The errors

on the p-value are estimated from the error on the skew-normal distribution parameters

as explained in Section 2.5.1. In the baseline configuration we used 500k EFT Monte Carlo

training points for each of the 6 values of GW in eq. (2.6), plus 500k for each associated SM

sample. Each sample consists instead of 3M points in the extended configuration employed

on the right panel of Figure 2.4, for a total of 36M. The same value of GW = 0.8×10−2 TeV−2 is

employed. The baseline architecture becomes insufficient, and best results are obtained with

the 6 hidden layers of 32 neurons each.

The figure also demonstrates that the method is systematically improvable towards optimality.

The value of GW considered in the figure was not within the 95% CL reach with the baseline

setup, while it becomes visible with the extended configuration. All the reaches reported in

Table 2.1 would expectedly improve with the extended configuration. The GW reach on Toy

data becomes [−0.732(9),0.764(14)]10−2 TeV−2, which is now only less than 10% worse than

the optimal Matrix Element reach. Training takes around 30 hours with the extended configu-

ration, while generating and processing the required training points with MADGRAPH NLO
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Figure 2.5: Results of 5 different trainings of the same architecture (Baseline architecture
trained with 2.4M points) using: the same training data but different initialization seeds (red
points) and the same initialization but different training data samples (blue points).
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Figure 2.6: The p-value evolution during training for the Standard Classifier using different
architectures and activation functions. The value GW = 1×10−2 TeV−2 is employed.

(which is the most demanding generator) would take around 10 days on a 32-cores workstation.

We could thus try to improve also the NLO reach even with limited computing resources.

For the reproducibility of our results we also study how the performances depend on the Neural

Network initialization and on the statistical fluctuations of the Monte Carlo training sample.

This analysis is performed in a reduced setup, with a total of 2.4 million training point, and for

GW = 0.8×10−2 TeV−2. We see in Figure 2.5 that the p-value fluctuates by varying the random

seed used for training at a level comparable with the error on its determination. Similar results

are observed by employing different independent Monte Carlo training samples. Notice that

these fluctuations should not be interpreted as additional contributions to the error on the

p-value. Each individual Neural Network obtained from each individual training defines a

valid test statistic variable, on which we are allowed to base our statistical analysis. Since the

fluctuations are comparable to the p-value estimate errors, our sensitivity projections were

obtained by randomly selecting one of the seed/training set configuration.
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Figure 2.7: Comparison between the reconstructed (α̂) and true (α) linear term of the distribu-
tion ratio for the GW operator.
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Figure 2.8: Comparison between the reconstructed (τ̂c ) and true (τc ) distribution log-ratio for
GW = 1×10−2 TeV−2. The Standard Classifier and the Quadratic one are considered in the left
and right panel of the figure, respectively.

2.6.2 The Standard Classifier

Hyperparameters optimization is rather different for the Standard Classifier. We see in Fig-

ure 2.6 that Networks with ReLU activation like those we employed for the Quadratic Classifier

displays overfitting, and Sigmoid activations need to be employed. The results in Figures 2.2

and in Table 2.1 were obtained with 2 hidden layers with 32 neurons each and Sigmoid activa-

tion. The figure shows that increasing the complexity does not improve the performances.

This different behavior of the Standard Classifier compared with the Quadratic one is prob-

ably due to the fact that training is performed on small Wilson coefficient EFT data, whose

underlying distribution is very similar to the one of the SM data sample. Therefore there is

not much genuine difference between the two training sets, and the Network is sensitive to

statistical fluctuations in the training samples. The Quadratic Classifier instead is trained with

large values of the Wilson coefficients. The optimizer thus drives the Neural Networks towards

the deep minimum that corresponds to a proper modeling of the distribution ratio, which is

more stable against statistical fluctuations of the training samples.
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-0.04-0.020.00 0.02 0.04 0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

τ


c

lo
g
(d
σ
(τ
 c
|H

0
)/

d
σ
(τ
 c
|H

1
))

200k

4×32

-0.04-0.02 0.00 0.02 0.04 0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

τ


c

lo
g
(d
σ
(τ
 c
|H

0
)/

d
σ
(τ
 c
|H

1
))

500k

4×32

-0.04-0.020.00 0.02 0.04 0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

τ


c

lo
g
(d
σ
(τ
 c
|H

0
)/

d
σ
(τ
 c
|H

1
))

3M

6×32

Figure 2.9: Distribution log-ratio for τ̂c , for c = GW = 0.8×10−2 TeV−2. The accurate deter-
mination displayed in the plots is obtained by the reweighting of a single Toy SM Monte
Carlo sample. The same approach, based on reweighting, could have been adopted to asses
the quality of the distribution ratio reconstruction on MADGRAPH Monte Carlo data, using
MADWEIGHT.

2.6.3 Validation

An important question is how to validate as “satisfactory” the outcome of the hyperparam-

eters optimization described above. This is straightforward for the Toy version of the prob-

lem, because we have to our disposal a rigorous notion of statistical optimality, through the

Neyman–Pearson lemma, and we do have direct access to the true distribution ratio through

which the data are generated. Therefore we know that we can stop optimization as soon as

the reach of the Neural Network becomes sufficiently close to the one of the Matrix Element

method. We can also rely on a more naive validation test, based on comparing point-by-point

the distribution ratio learned by the Neural Network with the true one, which is known an-

alytically. For instance in Figure 2.7 we compare the true linear term α(x) in eq. (2.1) (for

the OW operator) with its estimator α̂(x) ≡ n̂α(x) provided by the trained Neural Network.

The baseline architecture is employed, with increasing number of training points. While it is

impossible to extract quantitative information, a qualitative comparison between the three

scatter plots confirms that more training points improve the quality of the reconstruction.

We also show, in Figure 2.8, the correlation between the true and the reconstructed ratios

(for GW = 1×10−2 TeV−2, which corresponds to the Standard Classifier 95% reach) obtained

with the Quadratic and with the Standard Classifier. The reconstruction obtained with the

Quadratic Classifier is more accurate as expected.

Validation is of course less easy if, as it is always the case on real problems, the true distribution

ratio is not known. One option is to proceed like we did in the present chapter. Namely to

identify a Toy version of the problem that is sufficiently close to the real one and for which the

distribution ratio is known. Since it is unlikely that the true distribution is much harder to learn

than the Toy distribution, and since we can establish optimality on the Toy data using a certain

architecture and training dataset size, we can argue heuristically that the same configuration

will be optimal also with a more refined Monte Carlo description.

Finally, one can monitor heuristically how accurately the distribution ratio is reconstructed,
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Chapter 2. Parametrized Classifiers for Optimal EFT Sensitivity

as follows. The true distribution log-ratio τc (x) = logr (x,c), seen as a statistical variable for

each fixed value of c, obeys, by definition, the equation

dσ0

dτc
= eτc

dσ1

dτc
. (2.27)

Therefore if we computed the distribution of τc (if it was known) in the EFT hypothesis H0(c)

and in the SM hypothesis H1, and take the log-ratio, the result would be a straight line as a

function of τc . By computing the same distributions for the reconstructed distribution log-

ratio τ̂c = log r̂ (x,c), we can thus get an indication of how closely r̂ (x,c) approximates r (x,c).

While no quantitative information can be extracted from these plots, they clearly illustrate the

improvement achieved by enlarging the size of the training sample and the Neural Network

architecture, as Figure 2.9 shows.

2.7 Event Reweighting

Training neural network based classifiers requires a large amount of simulation data, as we

have seen in sec.(2.6.1). In fact, to study statistical distributions for BSM hypotheses, in

general, is data consuming. In the previous section, to retrieve information from events of

various Wilson coefficients, we generated data sets under different values of c independently.

This is highly inefficient. To relieve the burden of rerunning simulations, we consider the

reweighting technique [56][57][58][59], which exploits the usage of latent variables in Monte

Carlo generators, to generate data sets for multiple Wilson coefficients at once.

Monte Carlo generators designed for the LHC consist of two parts. At the first level, events are

registered with parton-level latent variables zpl, which includes the four-momenta as well as

helicity, and charge information, as discrete labels, of the initial and final states. Scattering

amplitudes can be computed theoretically at this level. However, the parton level latent

variables are generally impossible to measure in experiments. To start with, the detectors

do not measure helicities. As for the initial states, because it is the quarks that participate in

the scattering process, only a fraction x of the energy carried by the protons will be available

during the collision. This process is carefully modelled by the proton distribution functions

f (x). The value of x, or more precisely, for the two initial states, x1 and x2, can be determined

through momentum conservation, if the momenta of the final states are known. However, the

final states usually include particles that cannot be directly observed or invisible, concretely,

hadrons or neutrinos. In short, the parton level latent variables zpl are not accessible in the

form of observables.

In addition, at the second level of simulation, the generator throws random variables that

model effects from hadronic showering or detector interactions to make the events closer to

reality. This statistical smearing process maps zpl to experimentally visible measurements xvis.

zpl
random variables−−−−−−−−−−−−→ xvis (2.28)
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2.7 Event Reweighting

This concept was also mentioned in sec.(1.3.2), where the Matrix Element method is developed

to employ a set of hand-picked transfer functions to approximate this process in order to

express the likelihood in terms of observables xvis. One has to keep in mind that in our

assumption, this mapping is done independently from the first level of simulation, or in

other words, BSM effects do not affect hadron showering or detector interaction, at least to a

measurable extend.

Simulated events, depending on the specific Monte Carlo algorithm, can be weighted or

unweightd, as long as the weights are positive definite. This is the case for the Toy generator

and leading order (LO) generator. For events simulated at the next-to-leading order (NLO) level,

however, the weights are not positive-definite. 1-loop correction or emission is allowed, and

in order to model photon emission and deal with infrared divergence of the energy of photons,

subtraction method is used. This involves subtracting two independent integrals, which can

result in negative weights [58][60]. This blocks unweighting of the events. The negative do not

represent a "negative" probability, but only serve in the sense that the expectation value of the

observables using a weighted data set is accurate.

Now, consider a BSM hypothesis parametrised by c. The correction to the SM amplitude

M (zpl,i|0) of event i with weight w0,i can be computed theoretically. We assign

wc,i =
∣∣M (zpl,i|c)

∣∣2∣∣M (zpl,i|0)
∣∣2 w0,i (2.29)

as its weight under the BSM hypothesis. Because the BSM effects and the hadronisation or

detector response functions factorise, this weight remains the same after going through the

second level of simulation

{zpl, wc }
random variables−−−−−−−−−−−−→ {xvis, wc }. (2.30)

Through this technique, we have exploit the algorithm of Monte Carlo generators such that

we do not have to run the second level of simulation multiple times in order to carry out

statistical analysis, such that having a data set with multiple reweights is equivalent to having

data sets corresponding to all the BSM parameters under which the reweights are computed.

Event-by-event reweighting is a common technique employed in studying collision events

a the LHC [59] and is particularly useful for our study of BSM parameters or in the future,

nuisance parameters.

Neural networks can take advantage of this technique naturally. To include reweights in the

algorithm, the formula for computing the loss eq.(1.22), needs to be extended with another

summation over the set of reweight parameters C = {c1,c2, . . .cn},

L[ f (·)] = ∑
c∈C

[ ∑
e∈S0

w0,e[ f (xe)]2 + ∑
e∈S1

wc,e[1− f (xe)]2

]
. (2.31)
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Figure 2.10: Correlation between ρrw and ρME, and ρ̂ and ρr mME .

The network can also be parametrized as was explained in eq.(2.4)

L[nα(·),nβ(·)] = ∑
c∈C

[ ∑
e∈S0(µi )

w0,e[ f (xe,ci )]2 + ∑
e∈S1(µi )

wc,e[1− f (xe,ci )]2

]
. (2.32)

In this manner, we multiply the efficiency of the algorithm, as the neural network only has to

be trained once to approximate f (xe,ci ), apart from saving a considerable amount of time by

not having to rerun the simulation for multiple data sets.

2.7.1 The Parametrized Reweighted Classifier

The parametrized classifier introduced in sec.(2.1) is now upgraded to work with reweighted

events. The data set is generated using the following set of Wilson coefficients,

GW : {±5,±2.5,±1.25}×10−2 TeV−2 . (2.33)

Different from the three generators described in sec.(2.3.2), we employ only the latent Toy

generator. In this simulation, two variables are latent, namely the helicities of the leptons of

the Z decay, and the azimuthal angle φν of the neutrino; the angle is randomly selected to be

the true φν or π/2−φν. This modification is realistic because the detectors do not measure

helicity, and neutrinos are invisible to the detectors; the angle φν cannot be reconstructed

kinematically. The nature of the learning problem now goes beyond regression even for the

Toy data, and this is what we would like to investigate using our classifiers.

To clarify what we mean by having latent variables in the latent Toy generator, we show the

comparison between the ratio of differential cross-sections given by the reweight, wc /w0, and

that computed by ME, ρME , in the left panel of fig.(2.10). The reweights have information to

the underlying latent variables, while ME does not.
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2.7 Event Reweighting

Figure 2.11: Distribution log-ratio for τ̂rw.

Figure 2.12: Reconstructed linear and quadratic term as compared to that by ME and reweights

The network is now designed to be smaller, with only two hidden layers of 32 neurons each,

and uses Sigmoid functions instead of RELU as activation functions as they help avoid the

“dead neuron" effect. We used an initial learning rate of 3×10−3 for the first 40k epochs and

then 1×10−3 for another 20k epochs. Optimisation was done using ADAM. Notably, the size

of the data set is reduced to 3 million points, and each point comes with reweights of the

mentioned Wilson coefficients (eq.2.33). Training takes roughly 2 hours for one such data set

on a A30 GPU. Reweighting clearly improves the training efficiency.

The reach of the reweighted neural network is 0.7×10−2 TeV−2, which coincides with that of

the ME. To assess the reconstruction accuracy of our classifier, we display the comparison

between the reconstructed ratio ρ̂ and ρME in the right panel fig.(2.10).

As a validation check, we produce the “staircase" plot in the same style as fig.(2.9) for τ̂rw,

which is the reweighted version of τ̂c , in fig.(2.11).

To further examine the reconstruction accuracy of different components of ρ, we check

in fig.(2.12) the reconstructed linear and quadratic terms as defined in the quadratic form

presented in eq.(2.1). We select a Wilson coefficient of GW = 1×10−2TeV−2 close to the reach

and take a binning in both the transverse momentum pT,Z and a cut on the azimuthal angles

cosφW,Z <−0.5 or cosφW,Z > 0.5. Physically, these binning and cut should outline new physics

signals.
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The plots show that the reweighted neural network reconstructs the linear and the quadratic

term with satisfying accuracy, and qualify as a promising technique to be further developed

and applied.
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3 Electroweak Radiation at Future Muon
Colliders

3.1 Introduction

The perspective of a future muon collider with high energy and high luminosity [61], whose

feasibility is being investigated by the International Muon Collider Collaboration [62], has

triggered a growing interest in the physics potential of lepton colliders with a center of mass

energy of 10 TeV or more [63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,

82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102]. Such a Very High

Energy Lepton Collider (VHEL) could greatly advance the post-LHC knowledge of fundamental

physics [61] by directly searching for new heavy particles (see e.g. [63, 64, 65, 66]), and by

precise measurements of ElectroWeak (EW) scale processes exploiting the high luminosity of

virtual vector bosons pairs (see e.g. [66, 67, 68]). By these two search modes, the VHEL reach

on new physics is generally comparable to that of the most ambitious future collider projects,

in the corresponding domains of investigation. In particular it is comparable to the combined

reach of the -ee and -hh stages of the FCC program. The sensitivity is slightly weaker or slightly

stronger depending on the specific new physics target and, obviously, on the assumed VHEL

energy and luminosity.

At a VHEL, however, there also exists a third strategy of investigation [61, 67], based on hard

processes with energy scale comparable to the collider energy Ecm ∼ 10 TeV. As the indirect

effects of new heavy particles are enhanced at high energy, these processes are extremely

sensitive probes of new physics. With the target integrated luminosity of 10 ab−1, 2 → 2

scattering processes at Ecm = 10 TeV can be generically measured with percent or few-percent

precision. Such measurements are therefore sensitive to putative new physics at a scale

Λ ∼ 100 TeV when its effects, relative to the SM cross-section, scale like (Ecm/Λ)2. In an

Effective Field Theory (EFT) description of new physics, this corresponds to an enhanced

sensitivity to those dimension-6 operators that contribute to the 2 → 2 processes with a

quadratically growing-with-energy term. The VHEL sensitivity to new physics through this

kind of “high-energy” probes vastly and generically exceeds the potential of any other future

project that is currently under consideration [67]. In particular it exceeds the sensitivity of
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precision measurements of EW-scale (∼ 100 GeV) processes at future Higgs factories, where

new physics atΛ∼ 100 TeV produces effects at the unobservable level of one part per million.

It also exceeds the potential sensitivity of a 100 TeV proton collider, because the effective

luminosity for partonic collisions above 10 TeV is significantly lower than that of the VHEL.

The possibility of probing new physics at the 100 TeV scale, and in particular of probing new

physics that is either flavor-universal or endowed with a flavor protection mechanism, is thus

a unique feature of the VHEL that deserves an extensive investigation.1

The above mentioned high-energy strategy exploits simple 2 → 2 processes with extremely low

or negligible background, whose target accuracy is statistically limited to 1%. At a superficial

look, it might thus seem that its implementation will not pose any specific challenge, neither

as concerns the feasibility of the measurements, nor as concerns the theoretical predictions

that are needed for their interpretation. However the situation is slightly more complex,

both experimentally and theoretically, owing to the phenomenon of EW radiation [103, 104,

105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123],

which becomes prominent at 10 TeV or above. This happens because of the existence of a

large separation between the hard scale E of the process and the vector boson mass scale

mW, which acts as an IR cutoff. As the hard scale is increased, large logarithms logE 2/m2
W

(squared) enhance both virtual corrections and real emission, up to the point where fixed-

order perturbation theory becomes insufficient and resummation is needed. The experimental

implications of the copious emission of real EW massive vector bosons should be assessed.

It particular it should be studied if and how it impacts the accuracy of the relevant cross-

section measurements. In this chapter we investigate the implications of EW radiation on

the theoretical predictions and, assuming purely statistical experimental errors, on the VHEL

sensitivity to new physics.

EW radiation obviously displays some similarities with QCD radiation, but also remarkable

differences. First, EW scattering processes violate the KLN theorem assumptions [124, 125]

because the initial state particles are not EW singlets. Therefore no cancellation takes place

between virtual and real contributions, not even in “fully-inclusive” cross-sections [103, 104].

Moreover the observables that are fully inclusive in the sense of Ref. [103] are insufficient to

characterize new physics because they require summing over the “color” of the hard final-state

particles. In the EW context, color sum means, for instance, including transversely-polarized

W and Z bosons and photons (or, longitudinal W , Z and Higgs) in the same observable,

while we need to keep them separate for a comprehensive exploration of new physics. Un-

like QCD (and QED), EW radiation effects cannot be eliminated or systematically mitigated

with a judicious choice of the observables. They unavoidably play an important role in the

predictions.

The second peculiarity of EW radiation is that the IR cutoff scale is physical, and the theory

is weakly-coupled at the IR scale. It should thus be possible to characterize the radiation

1Hard processes are also useful to investigate flavor non-universal effects, as we will see in Section 3.3.3 for Top
Compositeness. See also Ref. [97] for a study of new physics potentially responsible for the g −2 muon anomaly.
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fully by first-principle suitably resummed perturbative calculations. Unlike QCD and QED,

one can consider observables with an arbitrary degree of radiation exclusiveness, among

which “exclusive” scattering cross-sections with a fixed number (2, in 2 → 2 processes) of

hard partons in the final state and no extra massive vector bosons.2 Fully-inclusive cross-

sections can be also considered, however they are not sufficiently informative on new physics

as previously mentioned. In this chapter we employ “semi-inclusive” final states, consisting of

2 hard partons with fixed EW color and flavor carrying a large fraction of the total available

energy Ecm and accompanied by an arbitrary number of massive vectors, photons and other

light particles3. Our resummed predictions for semi-inclusive observables at the double

logarithm (DL) accuracy are obtained by extending the IR Evolution Equation (IREE) treatment

of EW radiation developed in Ref. [105]. Similarly, we employ the IREE to compute the more

standard exclusive cross-sections. Single-logarithmic terms turn out to be relevant, and

they are included at fixed one-loop order in the exclusive cross-sections using the results of

Ref. [127].

Finally, there is an interplay between EW radiation and short-distance physics that has no

analog in QED and QCD [67]. Based on a simplistic fixed order intuition, this interplay can

be exemplified by noticing that the emission of a soft W from one initial lepton changes the

total charge of the initial state of the hard 2 → 2 scattering process. By allowing for the charged

W emission one thus obtains a scattering cross-section that is sensitive to charged current

new physics interactions, while the exclusive process where no radiation is allowed is only

sensitive to neutral currents.4 The combined measurement of the two types of cross-section

thus enables a more effective and complete exploration of new physics. In reality the situation

is slightly more complex, because the neutral and the charged current hard amplitudes both

contribute to the resummed expression of the neutral exclusive and of the charged and neutral

semi-inclusive cross-sections. However, since they appear in different combinations in the

different cross-sections, the conclusion is unchanged.

At a more quantitative level, we will see that the VHEL energy sits in an interestingly “inter-

mediate” regime for EW radiation. The energy is on one hand large enough for the radiation

effects to be important and require resummation. Accurate resummation techniques, more

accurate than the one considered in the present chapter, will thus be needed to fully exploit

the potential of the machine. On the other hand, the energy is not yet in the asymptotic regime

where the Sudakov exponentials entail a strong suppression of the non-emission probability.

Therefore in this regime the exclusive cross-sections are still large, and comparable with the

2In order to cope with QED and QCD radiation, the observable must still be inclusive over the emission of
photons and other light particles. The cross-section we define as “exclusive” coincides with the “semi-inclusive”
cross-section of Ref. [105]. Correspondingly, the “semi-inclusive” cross-section we will readily introduce was not
considered in Ref. [105]. See Section 3.2 for details.

3A similar observable is discussed in [126] to show the impact of weak gauge boson emission at LHC. The final
state they consider is somehow intermediate between the “fully-inclsuive” of [103] and the “semi-inclusive” we
study in this chapter

4More precisely, the charged and neutral current process depend on different linear combinations of the Wilson
coefficients of the operators parametrizing new physics.
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semi-inclusive (and fully-inclusive) ones. Observables with a different degree of radiation

inclusiveness can thus be measured with comparable statistical accuracy and combined,

potentially boosting, as previously explained, the indirect sensitivity to heavy new physics.

3.2 Theoretical predictions

Several approaches have been considered in the literature for the resummation of the effects of

EW radiation. Double logarithm (DL) contributions, of the form (α log2 E 2/m2
W)n with arbitrary

n, have been resummed in fully-inclusive and exclusive cross-sections, using respectively

Asymptotic Dynamics [103, 104] and IREE [105, 106]. In Soft-Collinear Effective Theory (SCET)

the expansion is already organized in exponential form. In that case the resummation of

leading logarithms (LL)5 as well as its extension to next-to-leading (NLL) logarithm [112] has

been studied. The study of EW parton distribution or fragmentation functions [115, 116, 117,

118, 119] is obviously connected, but not directly relevant for very high energy processes,

where the main role is played by the emission of EW radiation that is both collinear and soft.

Notice however that in some framework [115, 116, 117, 118, 119] soft effects are partially or

completely included in parton distributions and fragmentation functions.

In this chapter we employ DL predictions based on the robust diagrammatic methodology

of the IREE [105], which we review and further develop in Section 3.2.1. We also supplement

our computations by the available virtual single logarithms (SL) at 1-loop [127, 128]. Based

on these results, we present in Sections 3.2.2 and 3.2.3 our theoretical predictions for the

di-fermion and di-boson production processes at the VHEL. While it will emerge that single

logarithms are potentially relevant, a systematic consideration of these effects goes beyond the

scope of the thesis. Our finding that electroweak radiation can be used to our own advantage

in the exploration of new physics, strongly motivates the systematic inclusion of subleading

effects. A first simple step would be to include in our predictions the single logarithms from

real emissions at tree level. A complete treatment including resummation would likely best be

achieved by using SCET.

3.2.1 IR Evolution Equations

The basic idea of the IREE is to introduce an unphysical IR regulator λ with dimension

(energy)2 in the calculation of the observables and to write down a differential equation for

the evolution with λ of the result. Denoting by “E 2” the hardness of the observable under

consideration, the choice λ∼ E 2 eliminates all the IR enhancements and makes fixed-order

perturbation theory well-behaved. For λ∼ E 2, the Born level computation therefore offers a

reliable approximation, which can be used as the initial condition for the evolution equation

to lower λ. The physical predictions are obtained from the solution of the IREE in the limit

λ→ 0.

5These include but do not coincide with the pure DL, as explained, for instance, in Ref. [112].

48



3.2 Theoretical predictions

In order to define the IR regulator, consider the 4-momenta ki of the external hard particles

that participate in the scattering process. They will correspond in our setup to the 4 legs

of a central energetic 2 → 2 processes. With the exception of the masses k2
i ¿ E 2, all the

Lorentz invariants constructed with the ki ’s are therefore large and of order E 2. Given a pair

i j of external hard particles and given a radiation particle with 4-momentum q we define its

hardness relative to the i j pair as

hi j (q) ≡ 2

∣∣∣∣ (ki ·q)(k j ·q)

(ki ·k j )

∣∣∣∣ . (3.1)

The IR regulator is provided by the lower bound λ

h(q) ≡ min
i 6= j

hi j (q) >λ . (3.2)

on the “absolute” hardness h of the radiation. Notice that the bound is imposed on the 4-

momentum of each individual radiation particle, either virtual or real. Specifically, eq. (3.2)

applies to the off-shell loop momenta describing virtual radiation, as well as to the on-shell

momenta of real radiation particles in the final state of the process. The specific definition

of the radiation hardness in eq. (3.1) is convenient because it reflects the structure of the

denominators that appear in the calculation of the IR-enhanced diagrams, as we will readily

see. At this stage, it is enough to remark that the lower cut on h(q) in eq. (3.2) is a valid IR

regulator as it eliminates both the regions where q is soft and those where it is collinear to one

of the hard partons.

The main peculiarity of the IREE formalism applied to EW radiation stems from the presence

of the physical scale mW ∼ 100 GeV associated to the masses of the EW bosons. We will see

that mW acts as a threshold that separates two different regimes, λÀ m2
W and λ¿ m2

W. In

the former regime, the cut on the radiation hardness in eq. (3.2) is so strong that the mass

of the radiation particles can be safely neglected and the IREE computed in the unbroken

SU(2)L×U(1)Y EW gauge theory. Starting from the initial condition at λ∼ E 2, the evolution

is thus performed with the SU(2)L×U(1)Y evolution kernel down to λ∼ m2
W. At λ¿ m2

W, the

massive vector bosons do not contribute to the evolution and the kernel is purely determined

by the unbroken U(1)Q group of electromagnetism.

Amplitude evolution

We start, following Ref. [105], from the IREE for the scattering amplitude with purely hard

external quanta and with regulator λ on the internal lines. While the discussion holds for an

arbitrary number of external legs, we focus for definiteness on 2 → 2 amplitudes, which we

indicate by

Mα
λ =Mλ

[
p1(k1,α1)p2(k2,α2) → p3(k3,α3)p4(k4,α4)

]
, (3.3)

where αi denotes the gauge group index of the external state pi , which is taken to transform

in an irreducible representation of the group. The amplitude is labeled by the 4 indices
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α=α1α2α3α4, and it is IR-regulated according to eq. (3.2). Since no real radiation is involved,

the cut acts only on the momenta of virtual vector bosons in loop diagrams. We aim at writing

down the IREE for Mα
λ

and to solve it given the initial condition

Mα
E 2 =Bα ≡ BornAmplitude. (3.4)

As we explained, for λÀ m2
W the effects of EW symmetry breaking (EWSB) can be ignored, and

Mα
λ

equals the (IR-regulated) amplitude of the unbroken EW gauge theory. More precisely,

EWSB gives negligible relative corrections of order mW/
p
λ (or powers thereof) to all those am-

plitudes that are not forbidden by the SU(2)L×U(1)Y exact symmetry of the unbroken theory.

The other amplitudes are sensitive to EWSB at the leading order and therefore they cannot

be studied in the unbroken theory.6 However their contribution to the physical scattering

process is negligible and they can be safely excluded from the discussion7 . Similarly, for the

allowed processes, up to negligible power corrections of order mW/E , the amplitude Mα
λ

is an

SU(2)L×U(1)Y invariant tensor satisfying the charge conservation equation

(G A
1c )αβM

β

λ
+ (G A

2c )αβM
β

λ
+ (G A

3 )αβM
β

λ
+ (G A

4 )αβM
β

λ

λÀm2
W= 0, ∀ A, α . (3.5)

In the equation, G A
i denotes the generators associated with the representation of each hard

particle “i ” under the EW group, acting only on the corresponding index “αi ” of the amplitude

tensor. For instance

(G A
3 )αβ = δ

α1

β1
δ
α2

β2
(G A

3 )α3

β3
δ
α4

β4
. (3.6)

Notice that, in our notation, (α3,α4) run in the representations of the outgoing states, while

(α1,α2) run in the conjugate representation of the incoming particles. Consequently in

eq. (3.5), G1c =−G∗
1 and G2c =−G∗

2 .

The IREE is obtained by computing the variation of the amplitude under an infinitesimal

variation λ→λ+δλ of the IR cutoff in eq. (3.2). This computation dramatically simplifies in

the leading DL approximation as one can infer by inspecting diagrams involving a number n

of soft/collinear virtual vector bosons. Indeed the maximal logarithm power arises from the

region where momenta are hierarchically separated E 2 À h(q1) À h(q2) À ···À h(qn) with

the softer legs dressing the subdiagrams involving the harder legs, as shown in the left panel

of Figure 3.1. In this configuration only the outermost virtual vector can reach a virtuality

h(qn) ∼ λ, the inner ones being much harder in the dominant region of integration. The

effect on Mα
λ

of the variation of λ is then computed by considering the variation of the

endpoint of the integral over the momentum of such outermost vector. More precisely we

have that −δMα
λ
≡Mα

λ
−Mα

λ+δλ equals the integral over the outermost loop momentum in

6For instance the amplitude with 3 transversely- and one longitudinally-polarized W bosons is suppressed by
mW/E already at the Born level, owing to the fact that it is impossible to form an SU(2)L singlet with one doublet
(i.e., the representation of longitudinal W ’s owing to the Equivalence Theorem) and three triplets.

7Regarding power suppressed amplitudes, in [129] it has been found that they can receive positive Sudakov
enhancements. However due to the power-like suppression we don’t expect this to affect our discussion.
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Figure 3.1: Left panel: the leading Sudakov diagrams topology. Right panel: a diagrammatic
representation of the contributions to the amplitude variation that are logarithmically en-
hanced. The momentum q is integrated over the infinitesimal strip δσ (3.7).

the infinitesimal strip

δσ= {q : h(q) ∈ [λ, λ+δλ]} . (3.7)

The contribution to the variation from the vector that connects a given pair of hard external

legs can be depicted like on the right panel of Figure 3.1. The vector boson is represented with

a double line to indicate that its momentum q must be integrated only over the strip δσ.

As we already said the leading contribution comes from the integration region where q is soft

(and also collinear), in which the vector boson emission is described by the eikonal formula

αiM
A,µ

ki

q
' kµi

ki ·q
(G A

i )αβMβ , αi M
A,µ

ki

q
' kµi

ki ·q
(G A

i c )αβMβ , (3.8)

with Gi the group generator acting on particle “i ” as in eq. (3.6). In line with our conventions,

as explained above, the generators of the charge-conjugate representation Gi c appear in the

eikonal formula for vector boson emission from an incoming particle. For brevity, we have

included the gauge coupling constants in the definition of the generators Gi . In terms of the

canonical SU(2)L×U(1)Y generators we then have

G1,2,3
i = g T 1,2,3

i , GY
i = g ′ Yi . (3.9)

The integration over the soft q momentum factorizes with respect to the integral over the

harder lines, represented as a blob in Figure 3.1. Indeed in the eikonal (q → 0) limit the virtual

vector boson momentum can be neglected and the sub-amplitude blob evaluated on the

momenta ki of the external legs before the virtual vector boson emission/absorption. There-

fore the blob gives us back the original amplitude, with one less loop but this is immaterial

as Mα
λ

is the all-loops amplitude. We can thus express the amplitude variation in terms of

the amplitude itself, eventually obtaining an evolution equation. In covariant gauges, the

leading DL contributions only arise from virtual vectors connecting two distinct external lines.
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Therefore, we have

δMα
λ = −i

(2π)4

∑
j < i

∫
δσ

d 4q
1

q2 + iε

ki ·k j

(q ·ki )(q ·k j )

[∑
A

G A
i ·G A

j

]α
βM

β

λ
, (3.10)

where the sum extends over the unordered i j pairs of distinct external legs and it is understood

that the conjugate generators must be employed for the incoming legs i , j = 1,2, due to

eq. (3.8).

The evaluation of the integral in eq. (3.10) is quite straightforward, and it is reported in

Appendix B.1 for completeness. This gives

δMα
λ =− 1

8π2

δλ

λ
log

E 2

λ

1

2

∑
A, i

(G A
i )αβ

∑
j 6=i

(G A
j )βγM

γ

λ
, (3.11)

up to non logarithmically enhanced terms. Notice that in the equation we traded the sum over

unordered i j pairs for an ordered sum times 1/2. The sum over j 6= i can be performed using

charge conservation according to eq. (3.5), giving

δMα
λ = 1

16π2

δλ

λ
log

E 2

λ

∑
i

[∑
A

G A
i G A

i

]α
βM

β

λ

= 1

16π2

δλ

λ
log

E 2

λ

∑
i

[
g 2ci + g ′2 y2

i

]
Mα

λ , (3.12)

where for any given external particle with weak isospin spin ti and hypercharge yi , the coef-

ficients ci = ti (ti +1) and y2
i are nothing but the Casimirs of respectively SU(2)L and U(1)Y .

We thus recovered the familiar result that, in DL accuracy, IR effects are universal for each

individual external particle and purely determined by the Casimir of the corresponding gauge

group representation.

We finally obtain an IREE

dMα
λ

d log2(E 2/λ)
=−1

2
K Mα

λ , where K
λÀm2

W= 1

16π2

∑
i

[
g 2ci + g ′2 y2

i

]
, (3.13)

with, since the Casimir operators are proportional to the identity, an evolution kernel K that

is a mere multiplicative constant. Solving eq. (3.13) starting from the initial condition (3.4)

gives the amplitude evaluated with an IR cutoff scale λ= m2
W

Mα
m2

W

= exp

[
−∑

i

g 2ci + g ′2 y2
i

32π2 log2(E 2/m2
W)

]
Bα . (3.14)

In order to continue the amplitude evolution to lower λ, we should now consider the regime

λ¿ m2
W, write the corresponding IREE and solve them using eq. (3.14) as initial condition.

This is straightforward, because we have seen that all that matters for the derivation of the
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IREE are the loop integrals in a strip where the virtual radiation hardness is infinitesimally

close to the cutoff λ as in eq. (3.7). In this region, a logarithmic enhancement of the amplitude

variation only originates from photon exchange diagrams.8 The IREE evolution kernel is thus

immediately obtained by specifying the previous formulae to the U(1)Q gauge group of QED

K
λ¿m2

W= 1

16π2

∑
i

[
e2q2

i

]
. (3.15)

Notice that in order to derive the IREE in this regime, only conservation of electric charge

must be employed. The conservation of the full SU(2)L×U(1)Y charges of eq. (3.5) is not valid

for λ¿ m2
W, where the effects of electroweak symmetry breaking are important.

Solving eq. (3.15) produces the regular QED Sudakov factors, which go to zero in the physical

limit λ→ 0 where the IR regulator is removed. Therefore the amplitude Mα
0 vanishes, and so

does the cross-section of the corresponding fully-exclusive scattering process, in which no

extra radiation is present in the final state. More inclusive observables need to be considered

for a non-vanishing result. One possibility is to allow for the presence of real photon radiation

up to an upper threshold of order m2
W on the hardness h. This defines a cross-section that we

denote as exclusive because it indeed excludes the radiation of massive EW bosons. In fact, it

is easy to check that h(q) > m2 for the emission of a real radiation quantum with q2 = m2. An

upper cut h(q) < m2
W then excludes the presence of massive EW bosons in the final state, but

allows for (sufficiently) soft photons. Ref. [105] considered this same observable (but calling it

“semi-inclusive”) showing that it stops evolving with λ below m2
W, due to the cancellation of

real and virtual IR effects in QED. Cross-sections that are exclusive according to our definition

can thus be computed at the DL accuracy by just squaring the λ= m2
W amplitude (3.14). At the

end of the next section we will re-derive the result of Ref. [105] for exclusive cross-sections by

a slightly different methodology, which is also suited for the calculation of the other type of

cross-sections we are interested in.

Density matrix evolution

It is possible to extend the IREE methodology to more complex quantities than the hard

Feynman amplitude. Specifically, we consider the hard “density matrix” 9

Dαᾱ
λ ≡Mα

λ (M ᾱ
λ )∗+

∞∑
N=1

∫
dPhH

N ,λ

∑
ρ1...ρN

M
α;ρ
λ

(M ᾱ;ρ
λ

)∗ , (3.16)

which incorporates the emission of an arbitrary number N of radiation particles, with gauge

group indices denoted as ρ = ρ1 . . .ρN . In the equation, Mα
λ

is the hard amplitude with no

extra emissions as in the previous section, while M
α;ρ
λ

is the amplitude for the production

of the 2 hard particles plus the radiation. The virtual radiation particles exchanged in the

8The calculation of the loop integral in Appendix B.1 shows explicitly that no enhancement emerges from the
exchange of vectors with mass mV much larger than λ.

9The same object was dubbed “overlap matrix” in Ref. [104].
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Feynman diagrams for the amplitude are subject to the IR hardness cutoff λ as in eq. (3.2).

The phase-space volume element dPhH
N ,λ =

∏N
k=1 dPhH

k,λ for the emission of real radiation is

also constrained by eq. (3.2). The H superscript refers to the possible presence of an upper

cutoff on the radiation hardness h(q) <H . In what follows we will first consider processes

we define as semi-inclusive, for which H ∼ E 2. For these processes the upper radiation cut is

effectively absent, and plays no role in the discussion. The exclusive processes defined in the

previous section instead simply correspond to H = m2
W.

It should be noted that eq. (3.16) formally violates the conservation of the total energy and

momentum, because in the radiation terms we are employing the same hard 4-momenta that

obey energy and momentum conservation in the absence of radiation. It is understood that

this makes sense only in the presence of an upper cutoff on the total energy and momentum

of the radiation, say a one tenth of E . In this way, the radiation plays a minor role in the total

balance of energy and momentum conservation or, equivalently, the hard 4-momenta can

be readjusted to balance the radiation emission up to small corrections in the corresponding

Feynman amplitudes. In practice, the cutoff allows us to factorize the total phase-space into

that for radiation, on one hand, and that for the hard 2 → 2 process on the other, with the latter

also including the delta function of 4-momentum conservation. The density matrix (3.16) can

thus be related to the physical scattering cross-section.

An upper cut Er ad < E/10 on the total radiation energy and momentum does not affect the

predictions at the double logarithm accuracy. Indeed a simple modification of the real ra-

diation integral (see the discussion around eq. (3.18) computation in Appendix B.1 shows

that the effect of this cut on the q momentum of the radiated particle merely entails reduc-

tion of the double logarithm from log2 E 2/λ to log2 E 2
r ad /λ. The difference is then of order

logE 2/λ× logE 2/E 2
r ad and falls into the same class as single logarithms as long as E/Er ad is

not too small, with 1/10 qualifying.

The hard density matrix (3.16) is a simple generalization of the scattering cross-section in

which the conjugated amplitude indices ᾱ are not equal to the indicesα of the non-conjugated

amplitude. It is a useful generalization because it obeys charge conservation equations similar

to eq. (3.5). Namely, in the regime λÀ m2
W, we have

∑
i=1c ,2c ,3,4

[
(G A

i )αβD
βᾱ

λ
+ (G A

i c )ᾱ
β̄
D
αβ̄

λ

] λÀm2
W= 0, ∀ A, α, ᾱ , (3.17)

where the obvious relations [1c ]c ≡ 1 [2c ]c ≡ 2 should be understood. That way the generators

acting on the indices β̄ of the complex conjugated amplitude are those of the corresponding

charge conjugated representation. Eq. (3.17) holds only for λÀ m2
W, because in this regime

both the virtual and the real emissions are nearly insensitive to EWSB effects as previously

explained. For λ¿ m2
W, only the electric charge generator is conserved.

The IREE can be obtained like in the previous section by computing the variation of Dλ under

λ→λ+δλ, taking now also into account also the effect of the IR cutoff on real emission. The
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contribution of virtual loop momentum integrals is thus accompanied by that of integrals

over the momentum of real radiation. All integrals have to be performed over the infinitesimal

strip δσ defined in eq. (3.7). Logarithmically enhanced terms only arise from the exchange

of virtual or real gauge bosons between different external legs (i 6= j ), like in Figure 3.2. The

effects and the corresponding diagrams can be divided into two classes. The first, in the left

panel of Figure 3.2, is given by primary radiation diagrams where vector bosons are exchanged

between the hard legs. The second, in the right panel, is given by secondary radiation diagrams

where vector bosons connect to at least one real radiation leg.

We will first consider the effects of primary radiation. The virtual radiation integral gives the

result already mentioned in eq. (3.11), and, as we show in Appendix B.1, the result is exactly

the same for the real radiation integral. The total variation from primary radiation is then

δDαᾱ
λ =− 1

16π2

δλ

λ
log

E 2

λ

∑
i=1c ,2c ,3,4

∑
A

[
(G A

i )αβ
∑
j 6=i

[
(G A

j )βγD
γᾱ

λ
+ (G A

j c )ᾱ
β̄
D
ββ̄

λ

]
+(G A

i c )ᾱ
β̄

∑
j 6=i

[
(G A

j )αβD
ββ̄

λ
+ (G A

j c )β̄
γ̄
D
αγ̄

λ

]]
. (3.18)

The argument of the first sum, over the four external legs, collects the contributions of all

the radiation emitted from the leg “i ” of the amplitude and of the conjugated amplitude. A

factor 1/2 is included to avoid double-counting. Notice that both virtual and real radiation

connecting one leg with itself is excluded from the sum, because, as we already mentioned, no

enhancement arises from those diagrams.

We can now proceed as in the previous section, and use the charge conservation in eq. (3.17)

to perform the sum over j in eq. (3.18). We find the IREE

dDαᾱ
λ

d log2(E 2/λ)
=−K αᾱ

ββ̄
D
ββ̄

λ
, (3.19)

with an evolution kernel that is the direct sum of universal terms for each external leg

K αᾱ

ββ̄

λÀm2
W= 1

32π2

∑
i

[[∑
A

G A
i G A

i

]α
βδ

ᾱ

β̄
+δαβ

[∑
A

G A
i c G A

i c

]ᾱ
β̄
+2

∑
A

(G A
i )αβ(G A

i c )ᾱ
β̄

]

= g 2

16π2

∑
i

[
ci δ

αi

βi
δ
ᾱi

β̄i
+ ∑

A=1,2,3
(T A

i )αi

βi
(T A

i c )ᾱi

β̄i

][ ∏
j 6=i

δ
α j

β j
δ
ᾱ j

β̄ j

]
= g 2

16π2

∑
i

[
Ki

]αi ᾱi

βi β̄i

[ ∏
j 6=i

δ
α j

β j
δ
ᾱ j

β̄ j

]
. (3.20)

The kernel contains one term, provided by the SU(2)L Casimir ci = ti (ti +1), which is propor-

tional to the identity in the color indices of the density matrix tensor, plus a non-diagonal

term constructed with the SU(2)L group generators matrices T A
i of the external legs. Notice

that the contribution of the U(1)Y hypercharge generator cancels.
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Figure 3.2: Diagrammatic representation of the contributions to the density matrix varia-
tion from primary (left panel) and secondary (right panel) radiation. The vector bosons are
represented as double lines to indicate that their momenta have to be integrated over the
infinitesimal strip (3.7).

There is one peculiarity of eq. (3.20) that is worth emphasizing. The semi-inclusive cross-

sections we are interested in are the diagonal entries (α= ᾱ) of the density matrix, with no

sum performed over the gauge group index α of the scattering particles.10 However one can

also consider inclusive cross-sections, where the sum over the gauge index αi is performed for

one or several external legs. By setting ᾱi =αi and summing over αi , the SU(2)L generators

in eq. (3.20) recombine to form the Casimir operator, and the contribution to the evolution

kernel from leg “i ” cancels. We thus find that, at DL accuracy, the cancellation between

real and virtual IR effects in inclusive cross-sections occurs on a leg-by-leg basis. Namely,

the effects of soft/collinear emissions associated to each individual leg cancel in the cross-

section (and in the entire density matrix) for processes that are inclusive over the color of

the corresponding particle. This result is stronger than the KLN theorem, which foresees a

cancellation only when summing over the color of all legs. The reason for the added strength

is that we are here considering radiation that is both soft and collinear. Notice however that

fully inclusive observables of practical relevance can only involve summation on the color of

the final state particles. This retains the IR effects associated with the colliding particles in the

initial state (e.g., two left-handed leptons `+L`
−
L ) which are not SU(2)L singlets. The resulting

non-cancellation of IR effects in “fully-inclusive” cross-sections, coincides with the result of

Ref. [104].

So far we have ignored the secondary radiation diagrams, depicted in the right panel of

Figure 3.2. We show now that their contribution vanishes, giving full justification to eq. (3.20).

Secondary radiation diagrams correspond to the effect of the λ cutoff variation on virtual or

real vector bosons attached to one of the intermediate “ρ” particles in the definition of the

density matrix (3.16). Clearly these effects are potentially enhanced only if the intermediate

particle is relatively hard, such that a significant separation is present between the IR cutoff λ

and the scalar product between the intermediate particle and the external leg momenta. We

10This is true only in a basis where the gauge indices αi label the on-shell SM particles, while for the calculation
of di-boson cross-sections we work in a different basis. See Section 3.2.3 and Appendix B.2 for details.
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thus start considering vector bosons attached to the hardest intermediate particle, with gauge

index “ρ1” as in the figure. The density matrix is inclusive over the color of the intermediate

particle. However we can momentarily define an “extended” density matrix D
α ;ρ1 ᾱ ;ρ̄1

λ
with

labels ρ1 and ρ̄1 for the gauge indices of the amplitude and of the conjugate amplitude,

as in the figure. The actual density matrix is eventually obtained by first setting ρ1 = ρ̄1

and then summing. The effect on the extended density matrix variation of all the radiation

emitted from ρ1 and ρ̄1 can be written in a form similar to eq. (3.18) and then simplified using

the analog of eq. (3.17) for the extended density matrix. The resulting contribution to the

evolution kernel from the intermediate ρ1 leg is the analog of that from the hard external

legs in eq. (3.20). But this contribution cancels out in the evolution of the actual density

matrix, which is inclusive over the ρ1 leg, because of the previously explained leg-by-leg

cancellation mechanism. The argument can of course be repeated for the diagrams involving

the second hardest intermediate particle, showing, as anticipated, that all the secondary

radiation diagrams can be ignored in the calculation of the evolution kernel.

It is straightforward to adapt the previous results to the regime λ¿ m2
W, in which only the

exchange of photons contributes to the evolution, as discussed in the previous section. By

specifying eq. (3.20) to the Abelian U(1)Q group we immediately find that the kernel vanishes,

owing to the well-known cancellation between real and virtual IR effects in QED. For the

calculation of the physical (λ→ 0) density matrix, and in turn of the semi-inclusive cross-

section, we thus only need to solve the IREE with the λÀ m2
W kernel (3.20), down to λ= m2

W.

For λ = E 2 the hard density matrix (3.16) is well-approximated by its tree-level expression,

which serves as the initial condition for the evolution

Dαᾱ
E 2 =Bα(Bᾱ)∗ . (3.21)

The kernel is the direct sum of tensors, denoted as Ki in eq. (3.20), each acting on the pair

αi , ᾱi associated to the i -th external particle. Therefore the solution of the IREE reads

Dαᾱ
si ≡Dαᾱ

m2
W

=
{∏

i

[
exp

[− g 2

16π2 Ki log2(E 2/m2
W)

]]αi ᾱi

βi β̄i

}
Bβ(Bβ̄)∗ , (3.22)

where the “si” subscript denotes the density matrix of the semi-inclusive process, with no

upper cut on the real radiation hardness. The explicit form of the Ki exponentials in the above

equation is reported in eq.s (B.31) and (B.36) for external legs in the doublet and triplet SU(2)L

representations. Applications of eq. (3.22) to specific processes are shown in Sections 3.2.2

and 3.2.3.

We have defined the density matrix (3.16) allowing for the presence of an upper cutoff H

on the real radiation, but this played no role in the previous discussion because this cutoff

is effectively absent (H ∼ E 2) in our definition of semi-inclusive processes. In exclusive

processes we instead set H = m2
W, namely we veto real radiation particles with hardness above

m2
W. Obviously, for λÀ m2

W this upper cut is in contradiction with the IR cutoff in eq. (3.2)
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on the radiation phase-space. Therefore in the density matrix for the exclusive process no

real radiation is present and in the λÀ m2
W regime the result simply equals the square of

the hard amplitude in eq. (3.3). The evolution up to λ= m2
W can thus be obtained from the

hard amplitude evolution (3.14) we obtained in the previous section, or easily re-derived

by dropping the terms in eq. (3.18) (namely, the second and the third) that are due to real

radiation. The contribution of real radiation is instead restored for λ¿ m2
W and the evolution

stops due to the cancellation between virtual and real QED radiation as previously explained.

The physical (λ→ 0) density matrix for exclusive processes can thus be written in a simple

closed form as

Dαᾱ
ex = exp

[
−∑

i

g 2ci + g ′2 y2
i

16π2 log2(E 2/m2
W)

]
Bα(Bᾱ)∗ . (3.23)

In Sections 3.2.2 and 3.2.3 we employ this formula to compute exclusive di-fermion and di-

boson production cross-sections, and discuss the need of supplementing it with fixed-order

single-logarithmic terms, from Ref. [127, 128].

Before concluding this section it is worth commenting on the experimental definition of the

semi-inclusive and exclusive processes, and on the perspectives for their actual experimental

detectability. The semi-inclusive process is characterized by two central (specifically, emitted

from 30 to 150 degrees from the beam line) energetic particles of specific EW color and flavor.

In particular we will require them to carry a total center of mass energy above 85% of the VHEL

Ecm, enforcing in this way the upper cut on the total radiation 4-momentum required for the

definition of the hard density matrix as discussed below eq. (3.16). The two particles can be

accompanied by the radiation of EW bosons, photons, or any other soft particle.

Notice that in our calculation at the DL order we could ignore all the effects of collinear

(rather than soft-collinear) radiation, which emerge at the single logarithm. On the other

hand, the single logarithms associated with low-virtuality (below mW) photon splittings are

much larger than logE 2/m2
W. In particular, the emission of real photons that are energetic but

collinear to a light charged hard particle (e.g., an electron or a muon) with mass m` produces

terms proportional to logE 2/m2
`

. By the KLN theorem these terms will be canceled by the

corresponding virtual contributions, but only in suitably-defined observables that recombine

the emitted photons in the experimental definition of the hard particle 4-momentum. With a

lower threshold of order mW on the energy of the photons to be recombined, the net effect on

our prediction should be of the order of a single EW logarithm logE 2/m2
W. A more detailed

assessment of this aspect, and of the possible interplay between the QED and the EW bosons

collinear emissions, requires the inclusion of single logarithms and goes beyond the scope of

the present chapter. Similar considerations hold for the collinear emission of QCD gluons to

be collected into jets, in the case of colored final states.

Up to the caveats outlined above, there are good perspectives for the actual direct experimental

detectability of semi-inclusive cross-sections. The situation is arguably more problematic for

the exclusive cross-section. In exclusive final states, we require the presence of the two hard
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particles defined as above, plus the absence of any massive vector boson (since h(q) > q2 = m2,

as discussed at the end of the previous section), or photons above the hardness upper threshold

m2
W. However, it is experimentally impossible to impose this radiation veto strictly because

the limited coverage of the detector in the forward and backward regions will not allow to

tag EW bosons or photons that are collinear to the beam. Furthermore our definition of

the exclusive cross-section is problematic in the case of QCD-colored final states. Indeed if

the upper cut h(q) < m2
W had to be imposed also on gluon radiation, QCD effects should be

included in the exclusive density matrix evolution (but not in the semi-inclusive one, where

they cancel because of color inclusivity), resulting in a large QCD Sudakov suppression factor

in eq. (3.23). This factor is as small as exp[−αs/(4π)(8/3) log2 E 2
cm/m2

W] ∼ 0.03 for di-quark

final states at the highest VHEL energy Ecm = 30 TeV, entailing a strong suppression of the

cross-section. Avoiding this suppression requires a definition of the exclusive cross-section

with a higher threshold on the QCD radiation. We will further comment in the Conclusions on

the limitations of the exclusive cross-section definition employed in this chapter.

3.2.2 Di-fermion production

The first process we investigate is the production of a highly energetic pair of fermions

`+(k1)`−(k2) → f̄ (k3) g (k4)+X , (3.24)

where f and g can be one of the six quarks, a lepton `′ 6= ` or a neutrino ν`′ . We do not discuss

explicitly the final states with the same leptonic flavor as the initial state, `′ = `, but these

processes will be employed for the muon collider sensitivity projections in Section 3.3. As

previously discussed, the final state is characterized (both for exclusive and semi-inclusive

processes) by an invariant mass for the ( f̄ , g ) pair that is almost equal to the center of mass

energy Ecm of the colliding leptons and by central scattering angle θ∗ ∈ [30◦,150◦]. Here θ∗ is

the angle between the incoming `+ and the final anti-fermion f̄ in the lab frame. Notice that

θ∗ almost coincides with the scattering angle in the center of mass frame of the hard process,

because of the tight cut on the invariant mass of the ( f̄ , g ) pair.

In order to resum the DL it is convenient to organize the calculation of the cross-section

in terms of amplitudes and density matrices whose external legs are canonical irreducible

representations of the EW group. This is trivial to achieve for the di-fermion process because

the helicity eigenstates of quarks and leptons in the massless limit do indeed transform

as canonical representations (doublets and singlets, with specific hypercharge), reported

for completeness in Appendix B.2. Furthermore, since we restrict our attention to inelastic

processes `′ 6= `, the only sizable helicity amplitudes are those with the same chirality χI

(χO) for the two incoming (outgoing) fermions, corresponding to helicities ψ̄+1/2ψ−1/2 for

χ= L and ψ̄−1/2ψ+1/2 for χ= R. The dominance of such amplitudes holds in the SM because

of the vector-like structure of gauge interaction, and it will be preserved by the 4-fermions

new physics contact interaction operators we will study in Section 3.3. We thus have to

deal with four polarized cross-sections for each di-fermion production process, labeled by
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3 TeV 10 TeV 30 TeV

DL eDL−1 SL(π2 ) DL eDL−1 SL(π2 ) DL eDL−1 SL(π2 )

`L → `′L -0.46 -0.37 0.25 -0.82 -0.56 0.33 -1.23 -0.71 0.41
`L → qL -0.44 -0.36 0.25 -0.78 -0.54 0.34 -1.18 -0.69 0.42
`L → eR -0.32 -0.27 0.13 -0.56 -0.43 0.17 -0.85 -0.57 0.21
`L → uR -0.27 -0.24 0.11 -0.48 -0.38 0.15 -0.72 -0.51 0.18
`L → dR -0.24 -0.21 0.10 -0.43 -0.35 0.13 -0.64 -0.47 0.16
`R → `′L -0.32 -0.27 0.13 -0.56 -0.43 0.17 -0.85 -0.57 0.21
`R → qL -0.30 -0.26 0.12 -0.53 -0.41 0.16 -0.79 -0.55 0.21
`R → `′R -0.17 -0.16 0.07 -0.30 -0.26 0.09 -0.46 -0.37 0.12
`R → uR -0.12 -0.12 0.05 -0.22 -0.20 0.07 -0.33 -0.28 0.08
`R → dR -0.09 -0.09 0.04 -0.17 -0.16 0.05 -0.25 -0.22 0.06

Table 3.1: Double and single logarithmic corrections to the exclusive processes `+`− → f̄ f .
The single-logarithmic corrections are evaluated at θ∗ =π/2.

χIχO = LL,LR,RL,RR. Each such cross-section will be obtained from the diagonal α = ᾱ

entries of the density matrices of Section 3.2.1, times the appropriate phase-space factors.

Exclusive processes

Exclusive cross-sections are readily obtained from eq. (3.23), and take the form

dσex

d cosθ∗
= eDL dσB

d cosθ∗
, (3.25)

in terms of the corresponding Born-level differential cross-sections. The Double Log exponent

DL is of order g 2/16π2 log2(E 2
cm/m2

W), which ranges from 0.14 at Ecm = 3 TeV up to 0.25 (0.38)

for Ecm = 10(30) TeV, times the sum of the four SU(2) Casimir of the external legs. For LL

chirality processes this factor is as large as 4×1/2(1/2+1) = 3, showing that DL resummation

is mandatory at VHEL energies Ecm ≥ 10 TeV, at least for this chirality. Double logs are still

considerable for LR and RL chirality, while they get smaller in the RR configuration because

g ′2 ∼ g 2/4. Resummation might instead not be necessary for Ecm = 3 TeV. However it will

still be needed to include the effects of radiation at fixed order since we aim, eventually, at

theoretical predictions with percent-level accuracy.

The DL Sudakov exponents in eq. (3.25) are listed in Table 3.1. The processes are labeled taking

into account that electric charge conservation enforces g = f in eq. (3.24), since a charge

mismatch cannot be compensated by the emission of charged W bosons, which is forbidden

in exclusive processes. The table also reports single logarithm (SL) contributions computed

at the fixed one loop order, which we extract from Ref.s [127].11 Specifically, we employ the

general formulae of Ref.s [127] to compute the 1-loop log-enhanced cross-section, we subtract

11Two loops NLL results for four-fermion processes are also available in [130, 131].
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the corresponding DL and normalize to the Born cross-section. We also subtract the single

logarithms from the Renormalization Group evolution, because we decided to compute the

Born amplitude with the EW couplings at the hard scale Ecm.12 Notice that the threshold for

photon recombination into the hard final state particles matters at the single-logarithmic order.

Here we assume a scale of recombination of order mW, for which the SL terms can be easily

obtained by adding a fictitious photon mass mγ = mW to the calculations of Ref.s [127, 128].

The SL terms obtained in this way can be used for “improved” theoretical predictions

dσSL1
ex

d cosθ∗
= eDL(1+SL(θ∗))

dσB

d cosθ∗
, (3.26)

that include single logarithms at fixed 1-loop order. We see in Table 3.1 that the SL contribu-

tions are relatively large. It is unclear whether they require resummation or if including them

at fixed order (definitely higher than 1-loop, if we target 1% accuracy) is sufficient.

Notice that, unlike double logarithms, the single logarithm contributions are not proportional

to the Born-level amplitude of the same scattering process. Namely the amplitudes of the

neutral-current processes in Table 3.1 receive SL corrections that are proportional to Born

charged-current amplitudes. Therefore it should be kept in mind the SL terms in eq. (3.26),

which we normalized to the Born cross-section of the process, depend on the ratio between

charged and neutral current Born amplitudes. We evaluated the amplitude ratio within the

SM to produce the results in Table 3.1. However the amplitude ratio depends on the new

physics contact interactions we consider in Section 3.3, entailing a dependence of the SL

terms on the new physics parameters. This is not the case for the double logarithms, which

are completely universal and insensitive to short-distance physics. The single logarithms also

carry a non-trivial dependence on the scattering angle θ∗, as explicitly indicated in eq. (3.26).

In Table 3.1 they are evaluated at central angle θ∗ =π/2, where they are always positive. They

can become negative, and typically increase in magnitude, in the forward and backward

scattering regions, which we however exclude with the central cut θ∗ ∈ [30◦,150◦]. Finally,

notice that the SL terms are affected by the sizable mass of the top quark, which we do include

in the t t̄ production process.

The impact of EW radiation effects on the total (unpolarized) cross-section in the central

region, relative to the Born, is displayed in Figure 3.3 as a function of Ecm. The production

of two light up-type quarks is considered for illustration, but the results for the other final

states are similar. The blue line is the one-loop DL prediction without exponentiation, while

in red we report the resummed DL prediction in eq. (3.25). The green line (labeled DL1+SL1)

represents the fixed-order one loop DL plus SL, while in black we report the SL-improved

prediction in eq. (3.26). The dashed lines are semi-inclusive cross-sections computed below.

We notice a significant cancellation between double and single logarithmic terms. However

this cancellation is not expected to be structural and to survive at higher orders in perturbation

12The calculation is similar to the one performed by two of us in Ref. [132]. We refer the reader to Section 2.3
of [132] for additional details, concerning in particular the inclusion of non-log-enhanced angular-dependent
terms.
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Figure 3.3: Impact of radiative corrections on the production of two up quarks at the VHEL.
The solid lines represent different predictions for the exclusive cross-section. The dashed lines
are double-logarithm semi-inclusive cross-sections resummed (in black) or at one loop (in
orange).

theory.

We do not try to assign theoretical uncertainties to our predictions. However an upper bound

can be obtained by considering the orange line in the figure, in which the resummed DL are

combined additively with the SL (i.e., as eDL +SL), rather than multiplicatively. An alternative

estimate of the uncertainties could be obtained by varying the scale of the EW couplings

employed for the evaluation of the radiation terms DL and SL. Varying this scale from mW

(which we employ for our predictions) to Ecm, the relative change of the radiation effects is

rather small, typically at the 10% level or less.

Semi-inclusive processes

The semi-inclusive cross-sections are the diagonal α= ᾱ entries of the semi-inclusive density

matrix in eq. (3.22), with the appropriate Ki exponential factors for each external leg. The

factors only depend on the SU(2)L quantum numbers of the legs and not of their hypercharge

(and QCD color). They are provided by eq. (B.31) for L-chirality external external legs (which

transform as doublets or conjugate-doublets) and they are trivial for the R-handed singlets.

Notice that eq. (B.31) (and the same is true for the triplet exponential factor (B.36)) does not

mix diagonal with off-diagonal entries of the density matrix. Namely if we set α= ᾱ we obtain

a tensor that is diagonal in β and β̄. Therefore the DL resummed cross-sections, collected in a

vector d~σsi, are linear combinations of the Born cross-sections d~σB . We express this relation

as
d~σsi

d cosθ∗
= eDL · d~σB

d cosθ∗
, (3.27)

where the Double-Logarithm terms “DL” are now matrices connecting the Born cross-sections

of different processes unlike for exclusive processes (3.25).
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For an explicit illustration of the semi-inclusive cross-section calculation, and of the main

features of the result, we consider the RL-chirality production processes. In this case, we have

d~σsi=


dσsi(`+R`

−
R→ūLuL)

dσsi(`+R`
−
R→ūLdL)

dσsi(`+R`
−
R→d̄LuL)

dσsi(`+R`
−
R→d̄LdL)

 , d~σB=


dσB (`+R`

−
R→ūLuL)

0

0

dσB (`+R`
−
R→d̄LdL)

=dσB (`+R`
−
R→q̄L qL)


1

0

0

1

 , (3.28)

where “u” and “d” denote here the up and down components of a L-handed fermion doublet.

The exponentiated DL matrix reads

eDL = 1

4
e−L


4cosh2(L /2) 2sinh(L ) 2sinh(L ) 4sinh2(L /2)

2sinh(L ) 4cosh2(L /2) 4sinh2(L /2) 2sinh(L )

2sinh(L ) 4sinh2(L /2) 4cosh2(L /2) 2sinh(L )

4sinh2(L /2) 2sinh(L ) 2sinh(L ) 4cosh2(L /2)

 , (3.29)

where L = g 2/16π2 log2(E 2
cm/m2

W).

We see that DL effects induce a non-vanishing cross-section for charged processes with g 6= f

in eq. (3.24), such as ūLdL and d̄LuL production. Clearly this stems from the emission of

real soft W -bosons, which is allowed in the semi-inclusive final state. Such charged cross-

sections are proportional to the Born cross-section for the corresponding neutral (ūLuL or

d̄LdL) processes, and they are not drastically smaller than those because the double-logarithm

is sizable at VHEL energies. Therefore they can be measured bringing additional sensitivity to

the charge-preserving Born amplitudes and to the corresponding short-distance new physics

effects. The interplay with short-distance physics is even more interesting for the LL-chirality

process. In that case,~σsi is a 16-dimensional vector that contains 4 observable (`+`−-initiated)

processes with final states ūLuL , ūLdL , d̄LuL and d̄LdL . DL is a 16×16 matrix that relates the

observable processes to 16 Born amplitudes, among which those (like, e.g., ν̄``
− → ūLdL) that

are sensitive to new charged current interactions. We can thus probe the latter interactions

even with the neutral `+`− VHEL collisions.

The black dashed lines in Figure 3.3 quantify the impact of the EW radiation effects on the

neutral semi-inclusive cross-sections relative to the Born predictions. The effects are smaller

than for exclusive cross-sections, as qualitatively expected owing to the partial cancellation

between virtual and real radiation. While this suggests that resummation might play a less

relevant role in semi-inclusive predictions, we point out that one-loop double logarithms are

insufficient for accurate predictions. This is shown in the purple dashed line in the figure,

which is obtained by truncating at the one-loop order the exponentiated DL matrix. It would be

interesting to study the impact of single logarithms on the predictions. This could be achieved

by combining the single radiative logs from Ref.s [127, 128] with the factorized formulas for

real emissions in Ref.s [120, 43] (which however would have to be extended to include also the

soft radiation region), but is left to future work.
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As a final technical note, we remark that the DL matrix is negative semi-defined with a single

vanishing eigenvector that corresponds to the “fully-inclusive” cross-section, further averaged

over the SU(2)L color of the initial states. Specifically the vanishing eigenvector of eq. (3.29) is

(1,1,1,1)t , which corresponds to the sum of the cross-sections over the SU(2)L gauge indices

of the final states. Therefore in this case the double logarithmic effects cancel on the “fully-

inclusive” cross-section, in accordance with the KLN theorem since the right-handed initial

leptons are SU(2)L singlets. Clearly this does not happen for the LL-chirality processes (nor

for LR-chirality) and the average over leptons and neutrinos in the initial states would be

necessary for the cancellation. The vanishing eigenvalue controls the behavior of the DL

exponential at asymptotically high energies. In the case of eq. (3.29), we have

eDL Ecm→∞−→ 1

4


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 , (3.30)

and all the semi-inclusive cross-section listed in eq (3.28) become equal. Notice however

this only holds at asymptotic energies, way above the VHEL energies. Cross-sections equality

becomes a reasonable (better than order-one) approximation only for if g 2/16π2 log2(E 2
cm/m2

W)

is as large as ∼ 1.5, i.e. Ecm & 10000 TeV.

3.2.3 Di-boson production

We now turn to the production of two energetic vector or Higgs bosons. We are interested

in reactions that are not power-like suppressed at high energy, therefore we restrict our

attention to “longitudinal” processes entailing the production of zero-helicity W and Z bosons

and Higgs, and to “transverse” di-boson processes where the W and the Z (or, the photon)

have ±1 helicities. Indeed the “mixed” longitudinal/transverse production processes are

suppressed by mW/Ecm at the amplitude level, as readily understood (see e.g. [123, 43]) by

combining the Goldstone Boson Equivalence Theorem with the selection rules associated

with the SU(2)L×U(1)Y SM group.

The new physics interactions we consider in Section 3.3 only affect longitudinal di-boson pro-

duction cross-sections, which thus play the role of the signal in our analysis. We nevertheless

also need the transverse cross-sections for an estimate of the background. We discuss the

calculation of the (exclusive and semi-inclusive) cross-sections for the two type of processes

in turn.

Longitudinal di-boson

We consider the production, out of `+`−, of one of the following hard final states

W +
0 W −

0 , Z0h , W ±
0 Z0 , W ±

0 h , (3.31)
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where the subscript “0” refers to the helicity of the massive vectors, and “h” denotes the

physical Higgs particle. Obviously only the first two final states can be produced in an exclusive

process, while the latter ones require the emission of at least one charged W and therefore they

only occur at the semi-inclusive level. Notice that the ones listed above are the only hard final

states with longitudinal bosons and Higgs that can be produced by soft EW bosons radiation

out of sizable Born-level 2 → 2 cross-sections. Therefore they are the only longitudinal di-

boson processes that can be considered for precise VHEL measurements in the high-energy

regime.

At energies much above mW, the adequate description of longitudinally-polarized massive

vectors is provided by the charged and neutral Goldstone boson scalars π± and π0 (see Ap-

pendix B.2). Together with the Higgs, they form a canonical SU(2)L×U(1)Y doublet H with

1/2 hypercharge, reported in eq. (B.26). We thus need to consider amplitudes and density

matrices associated with the hard processes

`+−1/2(k1)`−+1/2(k1) → H̄(k3, αd̄
3 ) H(k4, αd

4 ) ,

¯̀+1/2(k1, αd̄
1 )`−1/2(k2, αd

2 ) → H̄(k3, αd̄
3 ) H(k4, αd

4 ) , (3.32)

for, respectively, L-handed and R-handed production.13 For the gauge group indices we

employ the same notation as in eq. (3.3), supplemented by the superscripts d (d̄) to indicate

that the indices belong to the doublet (conjugate-doublet) representation. With a slight abuse

of notation we are denoting as `−1/2 = (ν`,−1/2,`−−1/2)t the lepton doublet with −1/2 helicity

and with `+1/2 the conjugate-doublet with helicity +1/2. Notice that final states with two H

or two H̄ need not to be included because they are power-like suppressed at high energy by

hypercharge conservation.

The relevant density matrices are obtained as a straightforward application of the results in

Section 3.2.1. The need for employing H and H̄ as external states does not pose any additional

difficulty (relative to the di-fermion processes) in the evaluation of exclusive cross-sections.

That is because the double logs are mere multiplicative factors in front of the Born-level

density matrix (3.23). Therefore the exclusive cross-sections still take the form of eq. (3.25)

and are proportional to the corresponding Born-level predictions. For the semi-inclusive

cross-section, we can proceed as for di-fermions in the determination of the Ki exponential

factors, using in particular eq. (B.31) which also holds in the present case because H and H̄ are

doublets. However in order to apply eq. (3.22) we must first express the Dαᾱ
si density matrix,

which is written in the isospin basis (H and H̄), in the physical basis of the charge and CP

eigenstates h, Z0 =π0 and W ±
0 =π±. This is achieved by simply inverting eq. (B.26). The final

result can again be expressed in terms of the Born-level cross-sections in the form of eq. (3.27).

The results display the same qualitative features as di-fermions. In particular we observe the

same interplay between short-distance physics affecting the neutral- and the charged-current

13The production from opposite-chirality leptons is negligible, both in the SM and in the presence of the new
contact interactions we investigate in the following section.
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Figure 3.4: Same as Figure 3.3, but for di-boson production. As explained in Section 3.3.2, the
cross-sections for W +W − production are integrated in the angular region θ∗ ∈ [67◦,150◦].

Born amplitudes, which we investigate in Section 3.3 in details. Also at the quantitative level,

the relative impact of radiation radiation is similar, as expected because SU(2)L doublets

are involved also in these processes. This is shown in the left panel of Figure 3.4, where we

show the exclusive and semi-inclusive cross-section predictions for W +
0 W −

0 . The different

predictions are obtained as explained in the previous section for the di-fermion processes.

Notice in particular the exclusive predictions that include one-loop single logarithms as in

eq. (3.26). We employ these predictions for exclusive cross-section in the phenomenological

studies of Section 3.2.1.

Transverse di-boson

Vector bosons (W , Z , or γ) with transverse helicity T =±1 have zero hypercharge and they

decompose as a real triplet plus a singlet under the SM SU(2)L , as in eq. (B.27). Therefore three

non-power-suppressed hard processes have to be considered for L-handed production

µ̄+1/2(k1, αd̄
1 )`−1/2(k2, αd

2 ) → B(k3)B(k4) ,

µ̄+1/2(k1, αd̄
1 )`−1/2(k2, αd

2 ) →W (k3, αt
3)B(k4) , (3.33)

µ̄+1/2(k1, αd̄
1 )`−1/2(k2, αd

2 ) →W (k3, αt
3)W (k4, αt

4) ,

while only one is relevant for the production initiated by R-handed leptons 14

`+−1/2(k1)`−+1/2(k2) → B(k3)B(k4) , (3.34)

The “t” superscript in eq. (3.33) refers to the triplet nature of the W indices.

Unlike for di-fermion and longitudinal di-boson, the transverse di-boson cross-sections for

L-handed initial leptons are linear combinations of several distinct density matrices with dif-

ferent SU(2)L quantum numbers. Therefore the exclusive cross-sections are not proportional,

14The Born process `+−1/2(k1)`−+1/2(k2) →W (k3, αt
3)W (k4, αt

4) is power-suppressed in the SM.
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unlike in eq. (3.25), to the corresponding Born cross-sections in general. For instance in the

γγ cross-section the contribution from the W W final state experiences a stronger Sudakov

suppression (3.23) than one from the BB (or W B) final state, owing to the higher SU(2)L

Casimir of the final states.

The evaluation of the semi-inclusive cross-sections proceeds as for the longitudinal di-bosons.

Namely we derive the cross-sections for the physical states by inverting eq. (B.27) and we

compute the double-logarithm exponentials using eq. (B.36) on the SU (2) triplet subspace.

Clearly the need of combining different density matrices complicates the calculation, but it

does not introduce any novel conceptual aspect. At the quantitative level instead, the situation

is significantly different than for di-fermions and longitudinal di-bosons. As shown on the

right panel of Figure 3.4, EW radiation effects are much larger due to the larger Casimir ct = 2

of the triplet representation. A sufficiently accurate modeling of these effects will probably

require resummation even at the lowest VHEL energy Ecm = 3 TeV.

The figure reports the cross-section of the W +
T W −

T final state. This final state, together with

W +
T ZT, is the only transverse di-boson process we will consider in Section 3.3 (as a background

to the corresponding longitudinal processes). Notice however that there are many other

transverse di-boson processes (namely Z Z , Zγ, γγ, and W γ) that can be measured at the

VHEL. These processes probe heavy new physics in the EW sector. In particular, as shown

in Refs. [98, 99, 102], they are sensitive (together with di-fermions) to minimal Dark Matter

in large-multiplets. The large effects of EW radiation might have a strong impact on these

studies.

3.3 Sensitivity projections

As described in the Introduction, we target effects from short-distance new physics that grow

quadratically with the collision energy, to be probed in `+`− collisions at the highest available

energy E = Ecm. In this section we consider the dimension-6 EFT operators listed in Table 3.2,

and we estimate the sensitivity of muon colliders of energies Ecm = 3, 10, 14 or 30 TeV to their

Wilson coefficients. We assume a baseline integrated luminosity [61]

L̂ = 10 ab−1
(

ECM

10 TeV

)2

. (3.35)

Semi-quantitative comments on the impact of a reduced luminosity target are postponed

to the Conclusions. We base our projections on statistically-dominated measurements of

exclusive and semi-inclusive cross-sections for the processes listed in Table 3.3. In the table, for

each process we label with a check mark the operators that produce a quadratically growing-

with-energy correction to the SM cross-section.

The target EFT operators are selected to represent generic manifestations, at energies much

below the new physics scale, of the BSM scenarios we investigate in Section 3.3.3. These

67



Chapter 3. Electroweak Radiation at Future Muon Colliders

are Composite Higgs, Composite Top and a minimal Z ′ model, which we select as concrete

examples of new physics in the Higgs, Top and EW-gauge sectors. Among the many operators

that emerge in these scenarios, we focused our attention on those that display energy growth

in 2 → 2 scattering processes at the muon collider. We will see in Section 3.3.3 that other

operators offer a weaker sensitivity to the same BSM scenarios.

The phenomenological analysis of the various processes listed in Table 3.3 is described in

Sections 3.3.1 and 3.3.2, focusing respectively on the effects of the “W&Y” and of the “Di-boson”

operators of Table 3.2. In an attempt to mimic realistic experimental results, we include

reconstruction (and, in some case, mistag) efficiencies at a level that is comparable with

the CLIC detector performances, which we extract, whenever possible, from Refs. [133, 134].

Table 3.3 displays surprisingly low efficiencies for certain processes (e.g., t t̄), entailing a

considerable degradation of the measurement uncertainty. In Sections 3.3.1 and 3.3.2 we also

present our results for the sensitivity of muon colliders to the corresponding set of operators,

with the main aim of outlining the impact of the EW radiation effects on the analysis. The

operators in the last class, dubbed “3rd family” in Table 3.2, are not discussed explicitly but the

sensitivity projection results are reported in Appendix B.3. The relevant final states, t t , bb and

tb are discussed in Section 3.3.1.

3.3.1 W&Y operators

The first two operators we consider are those associated with the W and Y parameters of LEP

EW precision tests [136], namely O2W and O2B defined as in Table 3.2. These operators arise in

the so-called universal scenarios [136, 137], that is new physics that couples dominantly to the

bosonic sector of the SM. Employing O2W and O2B is convenient in the low-energy context of

the LEP experiment, however for our purpose it is better to trade them for the current-current

operators O′
2W and O′

2B (see again Table 3.2), using the SM equations of motion. In doing

so, we neglect the contribution to the O′
W and O′

B operators, which are expected to have

no impact on the sensitivity. In what follows we parameterize the O′
2W and O′

2B operator

coefficients

G ′
2W =− g 2W

2m2
W

, G ′
2B =− g ′2Y

2m2
W

, (3.36)

in terms of the dimensionless parameters W and Y.

The relevant scattering processes, listed in Table 3.3, are the production of two energetic

fermions in the central region of the detector. Specifically, as explained at the end of Section 3.2,

we have in mind the two hard particles whose invariant mass is higher than around 85% of the

total collider Ecm, and a scattering angle θ∗ ∈ [30◦,150◦]. We assume perfect detector sensitivity

to massive W and Z bosons of arbitrary low 3-momentum, enabling the measurement of

exclusive scattering cross-sections where the emission of massive vectors (and of photons

with hardness above m2
W) is vetoed. The exclusive cross-section measurements are combined

with the semi-inclusive cross-sections, where the emission of an arbitrary number (including

zero) of massive vectors or hard photons is allowed.
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SILH basis Warsaw-like basis

W&Y
O2W = (

DµW µν,a
)2 O′

2W = J a,µ
L J a

L,µ J a,µ
L = 1

2

∑
f f̄ γµσa f

O2B = (
∂µBµν

)2 O′
2B = JµY JY ,µ JµY =∑

f Y f f̄ γµ f

Di-boson

OW = i g

2
(H †σa←→D µH)DνW a

µν O′
W = g 2

4
(H †i

←→
Dµσ

a H)(L̄Lγ
µσaLL)

OB = i g ′

2
(H †←→DµH)∂νBµν O′

B=−
g ′2

4
(H †i

←→
DµH)(̄LLγ

µLL)

−g ′2

2
(H †i

←→
DµH)(l̄Rγ

µlR )

O(3)
qD = (

q̄γµσa q
)(

DνW a
µν

)
O′(3)

qD = (
q̄γµσa q

)
J a

L,µ

3rd family O(1)
qD = (

q̄γµq
)(
∂νBµν

)
O′(1)

qD = (
q̄γµσa q

)
JY ,µ

OtD = (
t̄γµt

)(
∂νBµν

)
O′

tD = (
t̄γµσa t

)
JY ,µ

Table 3.2: The operators under consideration in their “SILH” [41] form and, after using the
equations of motion, expressed as a linear combination of Warsaw [135] operators. Y f is the
hypercharge of the fermionic field f . In the operators involving the 3rd family the fields t and
q denote respectively the right-handed and left-handed top quark.

Process N (Ex) N (S-I) Eff. O′
2W O′

2B O′
W O′

B O′(3)
qD O′(1)

qD O′
uD

e+ e− 6794 9088 100% X X

eνe — 2305 100% X X

µ+µ− 206402 254388 100% X X

µνµ — 93010 100% X X

τ+τ− 6794 9088 25% X X

τντ — 2305 50% X X

j j (Nt) 19205 25725 100% X X

j j (Ch) — 5653 100% X X

c c̄ 9656 12775 25% X X

c j — 5653 50% X X

b b̄ 4573 6273 64% X X X X

t t̄ 9771 11891 5% X X X X X

b t — 5713 57% X X X X X

Z0h 680 858 26% X X

W +
0 W −

0 1200 1456 44% X X

W +
T W −

T 2775 5027 44%

W ±h — 506 19% X X

W ±
0 Z0 — 399 23% X X

W ±
T ZT — 2345 23%

Table 3.3: The exclusive and semi-inclusive processes employed for the sensitivity projections.
The operators that give a growing-with-energy contribution to each operator are labeled with
a check mark. The expected number of events (before efficiencies) is for Ecm = 10 TeV with the
integrated luminosity (3.35).
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For each inclusive and semi-inclusive final state, we employ cross-section measurements in 10

equally-spaced bins of cosθ∗ in the range [−p3/2,
p

3/2]. In processes (e.g., j j , or bb̄) where

the two final states are effectively indistinguishable, cosθ∗ is defined to be positive and 5 bins

are employed. We assume cross-section measurements with purely statistical uncertainties,

which we estimate based on the number of events that are expected in the SM.

Of course in order to combine the exclusive and semi-inclusive cross-sections for the same

(neutral) hard final state we must take into account that the exclusive events are also counted

in the measurement of the semi-inclusive cross-section. It is thus convenient to consider a

cross-section with radiation, defined as the difference between the semi-inclusive and the

exclusive cross-sections

σrad ≡σsi −σex . (3.37)

The measurement of σrad can be combined with the one of σex since they are statistically

independent. For charged hard final states there is instead only one type of cross-section,

which necessarily involves EW radiation emission by charge conservation. We will refer to the

charged cross-section as “semi-inclusive” or “with radiation” interchangeably.

We now discuss the di-fermion processes individually.

• e+e−, µ+µ− and τ+τ−: We assume 100% reconstruction efficiency for muon and elec-

trons, and an efficiency of 50% [133] for each τ lepton. Notice that the cross-section for

muons is around 30 times larger than for the other leptons. This is mostly due to the

t-channel enhancement of the elastic µ+µ− scattering.

• cc and bb : We assume 50% and 80% efficiency for tagging respectively charm and bot-

tom quark jets [133]. We ignore the mis-tag of light jets, as well as c/b misidentification.

No information on the charge of the tagged quark is employed.

• j j : We consider the production of two light quarks u, d or s, which we suppose to

be reconstructed as jets with 100% efficiency. In Table 3.3 we report separately the

production of a neutral (Nt) and of a charged (Ch) quark/anti-quark pair, but the two

processes are collected into a single 2-jets final state. We also include the contribution

from mistagged b and c quarks.

• t t : Based on Ref.s [134, 138], we estimate as 5% the total efficiency for the reconstruction

of the t t̄ pair. This (somewhat low) efficiency estimate only includes the semi-leptonic

t t̄ final states, in which the charge of the tagged top quarks can be measured.

• t b and c j : We use 50% and 80% tag efficiency for the charm and the bottom, respec-

tively, and
p

0.05 = 20% efficiency for the top. The charge of the top quark is assumed to

be reconstructed.

• eνe , µνµ and τντ: The efficiency is 100% for muons and electrons, and 50% for the τ. It

should be noted that, because of the invisible neutrino, the hard scattering region of this

final state can not be selected with a cut on the invariant mass of the two particles. The

selection will have instead to be performed on the energy and the transverse momentum
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of the observed charged lepton.

Figure 3.5: 95% CL sensitivities to the W and Y parameters of the 30 TeV muon collider. Exclu-
sive and “with radiation” (i.e., semi-inclusive minus exclusive) cross-section measurements
of the cc process are considered in the left panel. The right panel shows the impact of e+e−

(exclusive and “with radiation”) and eν (that only exists at the semi-inclusive level) final states.

The different dependence on W and Y of the neutral- and charged-current Born amplitudes

entails (see Section 3.2.2) a different dependence on these parameters of the exclusive and

semi-inclusive cross-sections. The statistical combination of the two types of cross-sections

can thus increase the sensitivity, as illustrated in Figure 3.5. The left panel displays the 95% CL

sensitivity of cc production to W and Y, comparing the impact of the exclusive cross-section

(in green) to that (in orange) of the cross-section with radiation. The two measurements probe

different regions of the W and Y parameter space, and a significant sensitivity gain is observed

in their combination (in blue). The green and blue lines on the right panel of Figure 3.5

display a similar complementarity pattern for the e+e− final state. There also appears an even

stronger complementarity with the measurement of the eν cross-section, reported as a gray

dashed line. The emergence of the eν process, as well as the other charged final states in

Table 3.3, is entirely due to EW radiation. Nevertheless its (semi-inclusive) cross-section is

large, because EW radiation is indeed a prominent phenomenon at Ecm ' 10 TeV. Furthermore

the cross-section displays a peculiar dependence on new physics, producing a sensitivity

contour that is different from that of the e+e− measurements. The statistical combination of

the three measurements (in blue) improves the sensitivity significantly.

The final results of our analysis including all channels are summarized in Figure 3.6 and in

Table 3.4. The figure displays the sensitivity contours of exclusive measurements as dotted

lines, and the combined impact of charged and of neutral “with radiation” cross-sections, in
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Figure 3.6: 95% CL sensitivities to the W and Y at the 10 and 30 TeV muon collider.

dashed. The combination of all measurements is also shown. The table reports the results for

3, 10, 14 and 30 TeV, comparing the sensitivity of exclusive cross-sections alone with the total

combination.

At the High-Luminosity LHC (HL-LHC), it will be possible to probe the W and Y parameters

at the level of 4 · 10−5 and 8 · 10−5, respectively, at 95% CL [132, 10, 139]. Table 3.4 shows

that the 3 TeV muon collider would improve by one order of magnitude or more, and the

sensitivity improves quadratically with the muon collider energy. Among the other future

collider projects [140], CLIC at 3 TeV has the best sensitivity, of around 4 · 10−6 for both

parameters [133]. This is of course comparable with the 3 TeV muon collider sensitivity, and

a factor 10 worst than that of the muon collider at 10 TeV. The comparison with FCC-hh

projections is even more favorable to the muon collider.

3.3.2 Diboson operators

The setup for this analysis is similar to that of Ref. [67]. Namely we consider the SILH oper-

ators OW and OB , we convert them into the current-current interactions O′
W and O′

B as in

Table 3.2, and we study their effect on the production of high-energy vector bosons and Higgs.

Notice that, by the equivalence theorem, O′
W and O′

B only significantly affect the production

of longitudinally polarized vector bosons. We are therefore here studying the production of

high-energy longitudinally vector bosons and Higgs, with the production of transversely polar-

ized vector bosons playing merely the role of background. Since the effects are quadratically

enhanced by the energy, such high-energy di-boson processes are by far the best probe of

these operators at the muon collider [67].

We thus consider, among those in Table 3.3, the following final states
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Exclusive-only [95% CL] Combined [95% CL]
W×107 Y×107 ρW,Y W×107 Y×107 ρW,Y

3 TeV [−53,53] [−48,48] -0.72 [−41,41] [−46,46] -0.60
10 TeV [−5.71,5.71] [−4.47,4.47] -0.74 [−3.71,3.71] [−4.16,4.16] -0.54
14 TeV [−3.11,3.11] [−2.31,2.31] -0.74 [−1.90,1.90] [−2.13,2.13] -0.52
30 TeV [−0.80,0.80] [−0.52,0.52] -0.75 [−0.42,0.42] [−0.47,0.47] -0.48

Table 3.4: Single-operator 95% CL reach and correlation for the W&Y parameters at different
muon collider energies including only exclusive cross-sections and combining all measure-
ments. Since the likelihood is dominated by the linear terms in the new physics parameters,
the single parameter reach plus the correlation characterizes our results completely.

• Z h : Following Ref. [67], we consider an efficiency of 26% for tagging the two hard

and central final state particles, with a selection that reduces the background to a

manageable level. Notice that this final state is dominated by the longitudinal helicity

channel Z0h.

• W +W −: Again like in [67], we assume a 44% efficiency for the detection of the two

W bosons in the semi-leptonic decay channel, where the charge of the W ’s can be

reconstructed. Transverse W W production plays here the role of background.

• W h : We consider an efficiency of 19%, having in mind the leptonic W decay, and

h → bb. Like for Z h, there is no relevant background from transverse production.

• W Z : We apply an efficiency of 23%, which corresponds to the leptonic W and the

hadronic Z decay. The background from transverse W Z production is considerable,

and is taken into account.

In our analysis we do not consider the possibility of employing the decay angles of the bosons

to extract information on their polarization. Therefore the transverse di-bosons processes

W +
T W −

T and WTZT are effectively irreducible backgrounds to the corresponding longitudinal

processes, and the scattering angle θ∗ is the only discriminating variable. An increased lower

cut on θ∗ benefits the sensitivity, as it suppresses the t-channel enhancement of the transverse

background processes. After optimization we find, like in Ref. [67], that a good signal sensitivity

is obtained by the measurement of fiducial W W and W Z cross-sections in the range

θ∗ ∈ [67◦,150◦] . (3.38)

The possibility of binning θ∗ has been considered, but found not to improve the sensitivity.

Our analysis will thus be only based on the measurement of the fiducial W W and W Z cross-

sections in the above region, and of the Z h and W h cross-sections for θ∗ ∈ [30◦,150◦]. As in

the previous section, both exclusive and semi-inclusive cross-sections will be employed for

the neutral processes W W and Z h, plus the semi-inclusive charged cross-sections for W h

and W Z .
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Single Operator (Exclusive-only) [95% CL]
CB [10−4 TeV−2] CW [10−4 TeV−2]

Linear Quadratic Linear Quadratic
3 TeV [−170,170] [−189,157] [−77.4,77.4] [−81,74.4]

10 TeV [−15.3,15.3] [−17,14.2] [−8.18,8.18] [−8.62,7.82]
14 TeV [−7.86,7.86] [−8.69,7.25] [−4.40,4.40] [−4.65,4.20]
30 TeV [−1.73,1.73] [−1.92,1.6] [−1.1,1.1] [−1.16,1.04]

Single Operator (Combined) [95% CL]
CB [10−4 TeV−2] CW [10−4 TeV−2]

Linear Quadratic Linear Quadratic
3 TeV [−153,153] [−169,142] [−65.8,65.8] [−68.2,63.6]

10 TeV [−12.8,12.8] [−13.9,11.9] [−6.14,6.14] [−6.37,5.93]
14 TeV [−6.40,6.40] [−6.95,5.99] [−3.17,3.17] [−3.29,3.06]
30 TeV [−1.34,1.34] [−1.44,1.25] [−0.71,0.71] [−0.737,0.686]

Marginalized (Exclusive-only) [95% CL]
CB [10−4 TeV−2] CW [10−4 TeV−2]

Linear Quadratic Linear Quadratic
3 TeV [−478,478] [−352,596] [−217,217] [−583,125]

10 TeV [−53.2,53.2] [−35.2,50] [−28.4,28.4] [−53.5,14.2]
14 TeV [−29.4,29.4] [−18.6,25] [−16.5,16.5] [−27.5,7.82]
30 TeV [−7.98,7.98] [−4.45,5.19] [−5.04,5.04] [−6.16,2.05]

Marginalized (Combined) [95% CL]
CB [10−4 TeV−2] CW [10−4 TeV−2]

Linear Quadratic Linear Quadratic
3 TeV [−442,442] [−341,535] [−189,189] [−426,115]

10 TeV [−44,44] [−33.4,43.4] [−21.1,21.1] [−35.1,12.3]
14 TeV [−23.1,23.1] [−17.6,21.6] [−11.4,11.4] [−17.6,6.6]
30 TeV [−5.24,5.24] [−4.12,4.43] [−2.79,2.79] [−3.70,1.62]

Table 3.5: Single operator and marginalized 95% reach on CB and CW , at different muon
collider energies. The sensitivity of exclusive cross-section measurements alone is shown
separately from the combination of all the measurements. The significant degradation of the
marginalized bounds relative to the single-operators ones, and the strong sensitivity to the
quadratic terms at the marginalized level, is due to the approximately flat direction displayed
in Figure 3.7
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Figure 3.7: Left: 95% sensitivity contours in the (CB ,CW ) plane at the 30 TeV muon collider. A
second allowed region, not shown in the figure, can be eliminated by other measurements [67].
Right: Z h and W W likelihood contours at tree-level. Notice that the ellipses for W W and Z h
are tangent in two points, one being the SM, the other being the point where the amplitudes
have the same magnitude as in the SM but opposite sign.

The results of our analysis are reported in Table 3.5 and on the left panel of Figure 3.7, in terms

of the dimensionful coefficients (CB and CW ) of the O′
B and O′

W operators of Table 3.2. Our

finding are quantitatively similar to the ones of Ref. [67]. We can thus refer to that article for

the (very favorable) assessment of the muon collider sensitivity to CB and CW in comparison

with current knowledge and with other future colliders. We devote the rest of this section

to discuss the approximate flat direction of the likelihood in the (CB ,CW ) plane, which we

observe in Figure 3.7 (left panel).

The flat direction entails a strong degradation of the marginalized sensitivity, as in Table 3.5.

Furthermore this degradation brings the marginalized CB and CW limits to large values, in a

region where the likelihood is considerably affected by the contributions to the cross-sections

of the terms that are quadratic in the new physics parameters. In theories like Composite

Higgs where CB ,W ∼ 1/m2∗, this fact implies that the marginalized limits correspond to a new

physics scale m∗ not much above the collider energy. In fact, looking at Table 3.5 we notice

that the 30 TeV CB reach corresponds to m∗ = 43 TeV. Thus, if new physics happened to sit

along the flat direction in Figure 3.7, diboson processes would fail to extend the muon collider

sensitivity well above the direct mass-reach. We do not have reasons to expect new physics to

lie in that direction. Actually in certain Composite Higgs models one expects it to lie in the

nearly orthogonal direction CB = CW [67]. However the presence of the flat direction is an

obstruction to the broad exploration of new physics and to the characterization of a putative

discovery. It is thus worth explaining its origin and discussing strategies to eliminate it.

The origin of the flat direction in the tree-level sensitivity contour (showed dashed, on the

left panel of Figure 3.7) is readily understood analytically, by considering the gradients “∇”
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Process σB /σ0

(µµ)L → Z h
[
t 2

W(1+E 2
cmCB )− (1+E 2

cmCW )
]2

(µµ)L →W W
[
t 2

W(1+E 2
cmCB )+ (1+E 2

cmCW )
]2

(µµ)R →W W /Z h
[
2t 2

W(1+E 2
cmCB )

]2

(µν)L →W Z /W h
[p

2(1+E 2
cmCW )

]2

Figure 3.8: Left: Born-level cross-sections, with tW the tangent of the Weinberg angle, normal-
ized to a common σ0 (whose expression is irrelevant). Right: the angle between the Z H and
W W cross-section gradients as a function of the beam polarization fraction.

of the Born-level cross-sections in the (CB ,CW ) plane, around the SM point (0,0). Using the

results for W W and Z h shown in Figure 3.8 and rescaling the gradients by the common factor

2E 2
cmσ0 one finds

∇Z h
L = (1− t 2

W){−t 2
W,+1} , ∇W W

L = (1+ t 2
W){+t 2

W,+1} , ∇Z h
R =∇W W

R = 4 t 4
W{1,0} , (3.39)

where sup- and sub-scripts refer respectively to the final states and to the chirality of the

incoming fermions. Notice that the Z h and W W gradients for right-handed initial states are

perfectly aligned, so that this contribution to the cross sections has a flat direction (orthogonal

to the gradient). The degeneracy can only be lifted by the left-handed contribution to the

cross sections. However, given the small value of t 2
W ' 0.3, the gradients ∇Z h

L and ∇W W
L also

form a relatively small angle, ∼ 30◦. They are thus not very effective in lifting the flat direction

when considering the total (L+R) contribution to the W W and Z h cross-section. Indeed, the

angle between ∇Z h
L +∇Z h

R and ∇W W
L +∇W W

R is in the end only ∼ 17◦ and thus the flat directions

of the two cross-section measurements essentially coincide, as the right panel of Figure 3.7

shows. The combined likelihood is consequently also flat, in the same direction.

As evident in eq. (3.39), the L-gradients form a large angle with the R-gradient. Therefore,

if one could use polarized beams, the degeneracy would be eliminated by measuring the

contribution of each chirality. Considering a polarization fraction −PL for the muon, and +PL

for the anti-muon beam, the cross-section gradients read (we indicate by ∇R the identical ∇Z h
R ,

∇W W
R )

∇Z h
PL

= (1+PL)2

4
∇Z h

L + (1−PL)2

4
∇R , ∇W W

PL
= (1+PL)2

4
∇W W

L + (1−PL)2

4
∇R . (3.40)

The angle between the two gradients steeply increases for positive PL , as indicated by the plot

in the right panel of Figure 3.8. Correspondingly, even a modest amount of polarization has

a considerable impact on the sensitivity. The left panel of Figure 3.9 displays our sensitivity

projections in a scheme where the VHEL integrated luminosity is equally split between positive
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and negative PL =±30%. The likelihood contour (in green) corresponding to PL =+30% is

significantly smaller than that (in blue) for PL =−30%, owing to the lifting of the flat direction

achieved for positive PL . On the other hand, the measurements at PL =−30% probe a direction

complementary to that probed at PL =+30%. The combination of the two measurements thus

benefits the sensitivity. The impact of beam polarization was emphasized already in Ref. [67].

Here we confirm that result, using more accurate predictions and including the entire set of

exclusive and semi-inclusive cross-section measurements previously described.

Up to this point, we discussed the flat direction in the un-polarized likelihood (left panel of

Figure 3.7) by employing the tree-level cross-sections. When considering also EW radiation,

the predictions are significantly affected, but the flat direction is not fully eliminated. For

the exclusive Z h and W W cross-sections this is easily understood, since virtual radiation

suppresses the L-processes more than the R ones, owing to the larger Sudakov for incoming

left-handed muons. The exclusive Z h and W W cross-sections gradients are thus even more

aligned than the gradients of the corresponding tree-level predictions. The semi-inclusive

cross-sections for Z h and W W production are also quite aligned, among them and with the

exclusive cross-sections. This was expected because the partial cancellation between real and

virtual logarithms make semi-inclusive cross-sections not vastly different from the tree-level

ones.

On the contrary, the measurement of the charged processes W Z and W h could have been

expected to eliminate or mitigate the flat direction, because they are strongly sensitive to the

Born cross-section of the charged scattering (µν)L →W Z /W h (see the left panel of Figure 3.8).

The associated gradient

∇ch
L = 2{0,+1} , (3.41)

points in a different direction than ∇Z h
L , ∇W W

L and ∇R . Therefore the gradient of σW h/W Z

could in principle point in a direction that is completely different from that of the (nearly

parallel) gradients of the Z h and W W cross-sections. However, by expanding at the first order

in L = g 2/16π2 log2(E 2
cm/m2

W), the unpolarized (longitudinal) W Z and W h cross-sections are

approximately equal and read

σW Z 'σW h ' 1

4
L · (σZ h

B +σW W
B +σch

B ) , (3.42)

where σch
B is the charged Born cross-section reported on the left panel of Figure 3.8 (times

1/4, from the polarization average) and σB
Z h,W W are the Born cross-sections of the neutral

processes. Therefore, the charged cross-section gradient ∇ch
L must compete with the (nearly

parallel) gradients of Z h and W W , and its size happens to be insufficient to produce a large

misalignment angle between the σW h/W Z and σZ h/W W gradients.

The situation would be improved, if we could tailor an observable in which the σZ h
B and σW W

B

contributions in eq. (3.42) are eliminated or reduced. Notice, for that purpose, that the Z h and

W W terms in eq. (3.42) can be interpreted as due to one hard µµ neutral-current scattering,

followed by the radiation of one charged W boson from the final legs of the hard process.
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Figure 3.9: Left Panel: 95% CL contours in for PL =±30% beam polarization. Right Panel: the
impact of the ISR-inclusive W h cross-section measurement.

The W is thus preferentially collinear to the final states. The σch
B term comes instead from

the radiation of a W from the initial state, collinear to the beam axis, followed by a hard µν

scattering.15 This suggests to consider alternative W h and W Z cross-sections that exclude

final state radiation (FSR) while being inclusive on initial state radiation (ISR). FSR consists of

soft radiation collinear to the hard particles in the final state, which is precisely the source of

the first two terms in eq. (3.42). Excluding FSR, the resulting “ISR-inclusive” cross-sections are

expected be roughly

σW Z /W h
ISR−inc ' 1

4
L σch

B . (3.43)

This observable should thus be mostly sensitive to CW , and its measurement should produce

a nearly horizontal band in the (CB ,CW ) plane, thus eliminating the flat direction.

Unfortunately we are unable to produce resummed predictions for the ISR-inclusive cross-

sections with the IREE methodology. We can however illustrate the impact of such measure-

ments using tree-level MadGraph [46] predictions with the SMEFT@NLO model [141], focusing

in particular on the W h channel. Specifically, we simulate the process

µ+µ− →W +W −h , (3.44)

at Ecm = 30 TeV, with the following selection cuts. First, we identify as “hard” the W boson that

forms, together with the Higgs, the pair with the highest invariant mass. Secondly we ask this

mass to be above 0.85 ·Ecm = 25.5 TeV and the hard W and h to be within the central region

15This interpretation would straightforwardly correspond to Feynman diagrams in a physical gauge, where DL’s
are associated to emissions from individual legs. We already remarked that in covariant gauges instead they arise
from the interference between emission from strictly different legs.
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3.3 Sensitivity projections

Figure 3.10: Left Panel: 95% exclusion reach on the Composite Higgs coupling-mass parameter
space. The reach for OH is taken from [67]. Right Panel: sensitivity projections for a Y -
universal Z ′ model. The gray band and the blue dash-dot line represent respectively the region
probed by the HL-LHC program and the sensitivity projections for all other future collider
projects [142].

θ∗ ∈ [30◦,150◦]. These selections enforce the occurrence of a hard scattering, and correspond

to our definition of a “semi-inclusive” process. We further restrict to the “ISR-inclusive” region

by asking the other (“soft”) W to be parallel to the beam, in a cone of 20◦. Since the emission

of at least one soft W is required for W h production, the latter cut effectively corresponds to a

veto on central EW radiation.16

The above estimate of the ISR-inclusive cross-section produces the blue band on the right

panel of Figure 3.9. As expected, the band is nearly horizontal. In the figure we also display, in

green, the 95% CL contour of the likelihood including all the measurements discussed in the

present section, apart from the measurement of the semi-inclusive W h cross-section which is

correlated with the ISR-inclusive measurement. The combination of the two contours, shown

in red, strongly mitigates the flat direction issue. Notice however that our tree-level estimate

of the ISR-inclusive cross-section could be subject to large errors, and resummed predictions

should be employed for a conclusive assessment of the sensitivity gain.

3.3.3 BSM sensitivity

Composite Higgs

As a first concrete scenario of new physics we consider Composite Higgs [143, 144, 145]. In

this scenario, the Higgs is a composite Pseudo-Nambu-Goldstone boson emerging from some

strong dynamics at a scale m∗. In principle the underlying dynamics could arise from gauge

interactions, like in QCD. However the only concrete realistic constructions, accounting for the

16The attempt made in Ref. [67] to exploit the W W h process did not impose the crucial angular cut that defines
the ISR-inclusive region.

79



Chapter 3. Electroweak Radiation at Future Muon Colliders

origin of both the fermion masses and the scale m∗ itself, have been obtained in the context

of warped compactifications. In these constructions, compositeness occurs in a holographic

sense. Within the Composite Higgs scenario, the size of the Wilson coefficients in the resulting

low energy EFT, can be estimated, under simple but robust dynamical assumptions, in terms

of the mass scale m∗ and overall coupling strength g∗ of the underlying strong dynamics [41].

Furthermore, simple considerations suggest g∗ ∼< 4π, while the existence of O (1) couplings

within the SM implies g∗ ∼> 1. The Composite Higgs power-counting rules predict the Wilson

coefficients of the operators in the left column of Table 3.2 to scale as

C2W =−c2W

2

g 2

g 2∗m2∗
, C2B =−c2B

2

g ′2

g 2∗m2∗
, CW = cW

1

m2∗
, CB = cB

1

m2∗
, (3.45)

where the dimensionless coefficients c2W , c2B , cW , cB are expected to be of order 1. Even

though it does not affect the processes studied in this chapter, an important role is also played

by

OH = ∂µ(H †H)∂µ(H †H), CH = cH

2

g 2∗
m2∗

. (3.46)

In our sensitivity projections we will report the corresponding bounds, as obtained in [67]

by studying the process µ+µ− → hhνν at tree level. Other probes of CH at the muon collider,

from Higgs coupling measurements, are superior or competitive at the lower energy muon

colliders [67], but they are not considered in the sensitivity plots.

Using the above scalings, and setting all the c coefficients to 1, we can translate the bounds of

Section 3.3 for a 10 TeV muon collider into sensitivity estimates in the plane (m∗, g∗), as in

Figure 3.10. In the same plot we also report the HL-LHC sensitivity projections, the envelope

of the 95% CL sensitivity contours of all the future collider projects that have been considered

for the 2020 update of the European Strategy for Particle Physics [142]. The advantage of the

muon collider is evident. Results at muon colliders with different energies, with an integrated

luminosity scaling as in eq. (3.35), are reported in Appendix B.4.

Composite top.

The results for purely bosonic operators we just discussed apply robustly to basically all com-

posite Higgs scenarios. Operators involving fermions are more sensitive to the assumptions

on the flavor dynamics, but one convenient option is offered by the mechanism of partial

compositeness [147], under which the elementary fermions mix linearly with heavy partners

in the strong sector. Due to its large Yukawa coupling, the top quark is expected to have a

large mixing with its partners and therefore precise measurements involving the third family

represent an appealing opportunity to probe new physics.

At the muon collider the most relevant effects are expected in t t̄ and bb̄ production.17 Indeed

the dimension-6 operators in the last block of Table 3.2 gives rise to contributions that grow

17See [148] for a similar analysis for CLIC.
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3.3 Sensitivity projections

Figure 3.11: 95% exclusion reach for the two partial compositeness scenarios under consid-
eration. The green shapes represent the combined bound from the flavor universal mea-
surements, while the red contours also includes the di-top and di-bottom constraints. The
projected sensitivity of other future collider projects and the gray band of HL-LHC are taken
from Ref. [142]. The right panel (εt = 1) also includes the stronger CLIC sensitivity estimated
in Ref. [146].

with Ecm and which can be exploited at the large energy of the muon collider. In a model-

independent approach one can parametrize the “amount of compositeness” of respectively

the 3rd quark family left-handed doublet and right-handed up-type singlet by εq and εt . These

quantities range from 0 to 1. Given the universal coupling strength g∗ of the strong sector the

resulting top Yukawa coupling scale as [41]

yt ∼ εqεt g∗ . (3.47)

The relevant Wilson coefficients are then expected to scale as (see [138] for a short review)

C (3)
qD = c(3)

qD

g ε2
q

m2∗
, C (1)

qD = c(1)
qD

g ′ε2
q

m2∗
, CtD = ctD

g ′ε2
t

m2∗
, (3.48)

where the ci are, as usual, expected to be order 1 coefficient. For concreteness we focus on two

benchmark scenarios, where we fix εt and εq and leave g∗ and m∗ free. In the first scenario,

the right-handed top quark is assumed to be fully composite, corresponding to εt = 1 and

εq = yt /g∗. In the second, the two top chiralities are assumed equally composite, that is

εq = εt =
√

yt /g∗.

Notice that the contribution of the operator

Ot t ≡ 1

2
(t̄Rγ

µtR )(t̄RγµtR ) , (3.49)

to the Wilson coefficients of the OtD , through Renormalization Group (RG) evolution, is not

negligible in the scenario of total right-handed top quark compositeness [146]. Using the
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power-counting estimate

Ct t = ε4
t

g 2∗
m2∗

ct t , (3.50)

we obtain a correction [146] to the CtD coefficient at a scale µ= Ecm

CtD (µ) =CtD (m∗)+Ct t (m∗)
32

9

g ′

16π2 log

(
m2∗
µ2

)
= ε2

t
g ′

m2∗

(
ctD + ct t

32

9

ε2
t g 2∗

16π2 log

(
m2∗
µ2

))
. (3.51)

This correction is sizable if εt ∼ 1, especially for large g∗, because the sensitivity of the muon

collider extends to a scale m∗ that is significantly larger than Ecm.

There are in principle three more operators OH t , O(1)
H q and O(3)

H q (defined as in the “Warsaw”

basis [135]) that mix significantly with those in eq. (3.48) through RG evolution. However, the

their effects can only be important in the case where εq ∼ 1, which we do not contemplate in

our analysis. We will therefore neglect the RG effects of the latter three operators and consider

only those of Ot t .

Our results are summarized in Figure 3.11, where we report the projected exclusion reach in

the g∗ and m∗ plane in the two scenarios under consideration for Ecm = 10 TeV. Additional

results can be found in Appendix B.4. Starting from the scenario of equal compositeness (left

panel) we notice that at g∗ the additional hypothesis of top compositeness extends the muon

collider potential to probe the scale of Higgs compositeness m∗. The effect is even stronger

for fully composite tR (right panel), which shows that di-top measurements can cover up to

m∗ ∼ 150 TeV for g∗ & 8. We should point out, however, that this result depends on the exact

O (1) value of the ct t , ctD coefficients in eq. (3.51). This dependence is illustrated in Figure B.4,

where we set ctD = 1 and we vary the value of ct t .

Finally we remark that a detailed analysis of the composite Higgs scenario with partial com-

positeness would require specific hypotheses on the flavor dynamics and a detailed inspection

of the flavor observables. Depending on those hypotheses, principally the maximality or

minimality of the underling flavor symmetry, the resulting flavor constraints on the new

physics scale m∗ can vary dramatically. While a comprehensive analysis clearly exceeds the

purposes of this work, a perspective can be gained by considering available studies. As shown

in Ref. [149], under the strongest assumptions, that is for a symmetry structure offering the

best protection from unwanted effects, flavour and CP observables could start exploring the

range m∗ =O(10) TeV in the next decade or so, given the availability of better measurements

and assuming better theoretical predictions. This is roughly the same range explored by a 3 TeV

muon collider. Moreover the m∗ ∼ 50 TeV reach of a 10 TeV muon collider vastly surpasses

any conceivable improvement of flavour constraints, and competes with the more stringent

flavour bounds obtained by making more generic assumptions on the flavor dynamics. Notice

also that the present lepton flavor universality anomalies in B-decays, at least the seemingly

more prominent ones in neutral currents, suggest a new physics scale in the ∼ 30 TeV range,

which could be explored both directly and indirectly by the muon collider.
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3.3 Sensitivity projections

Figure 3.12: Reach on the new physics scale at 2σ (continuous) and at 5σ (dashed), relative to
the collider energy, as a function of the integrated luminosity normalized to eq. (3.35). The red
lines are for Universal manifestations of Higgs compositeness, while the green ones include
the effect of Top compositeness in the εt = 1, εq = yt /g∗ scenario. The blue lines are for the
Y -universal Z ′ for a fixed coupling gZ ′ = g .

Y -Universal Z ′ model

The Y -universal Z ′ model represents a simple extension of the SM, featuring an additional

heavy gauge boson, of mass MZ ′ , on top of the SM particles.18 In this benchmark scenario

the new vector charges are aligned with the SM hypercharge with coupling gZ ′ . Requiring the

width of the Z ′ to not exceed 0.3MZ ′ sets the perturbative limit on the coupling to be gZ ′ . 1.5.

At energies below MZ ′ , integrating out the Z ′ only generates the O′
2B operator of Table 3.2. The

Wilson coefficient of the operators corresponds, by eq. (3.36), to

Y =
(

gZ ′ mW

g ′ MZ ′

)2

. (3.52)

The sensitivity projections are reported in the right panel of Figure 3.10. The orange and green

regions are the ones probed by muon colliders at 3 and 10 TeV energy, respectively. The gray

band represents the expected exclusion reach from HL-LHC, while the blue line indicates

the combined sensitivity from other future collider projects (dominantly FCC, and the 3 TeV

stage of CLIC). The 3 TeV muon collider sensitivity is obviously similar to the one of CLIC. A

10 TeV machine would greatly improve this result probing up to 500 TeV for large (but still

perturbative) coupling. The dashed lines represent the discovery reach, showing that already

at 3 TeV there are vast opportunities for indirect discovery, well above the region that the

HL-LHC might exclude. Results at higher muon collider energies are reported in Figure B.2.

18See [142] for details. Concrete BSM scenarios featuring additional Z ′s can be found, for instance, in Ref. [150].
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3.4 Conclusions and outlook

We have studied the interplay between two classes of novel phenomena, which can be ob-

served at future lepton colliders with very large center of mass energy. The first class consists

of hard scattering processes induced by new physics at around 100 TeV. The second class

consists of the long-distance effects of EW radiation. Both phenomena play a relevant role at

lepton colliders with Ecm ∼ 10 TeV. In particular they are relevant at muon colliders, which are

the main target of the present work.

The interplay manifests itself in two ways. The first one is simply that EW radiation effects

on the SM predictions are large (see Sections 3.2.2 and 3.2.3) and require to be included

and resummed with high accuracy in order to isolate the putative BSM contribution to the

measurements. EW radiation thus plays for muon colliders a similar role as QCD radiation

for the LHC, with the difference (discussed in the Introduction) that its effects can not be

mitigated by the choice of suitable (inclusive) observables. Therefore they are actually even

more important for muon colliders than QCD is for the LHC.

The second and possibly more interesting aspect of the interplay is given by the influence on

the pattern of EW radiation operated by the presence of new physics in the hard scattering

amplitude. This makes observables that require or that exclude the presence of radiation

display a different dependence on the new physics parameters, and the sensitivity profits from

their combined measurements as illustrated in Sections 3.3.1 and 3.3.2, and in Appendix B.3.

Our sensitivity projections rely on putative measurements of exclusive and semi-inclusive

cross-sections. Both classes of processes are characterized by the occurrence of a hard scatter-

ing, with two particles in the final state carrying almost all the available energy. The emission

of additional EW bosons and hard photons is vetoed in the exclusive case and allowed in the

semi-inclusive one. We computed the resummed semi-inclusive cross-sections in double

logarithm (DL) approximation by extending the IREE methodology [105], as described in

Section 3.2.1. The exclusive cross-sections were computed at DL, but also including single

logarithms at 1-loop, which we found to be sizable.

The studies performed in this paper should be improved and extended in many directions.

Better predictions will be definitely needed in order to approach the percent-level accuracy

target that is needed to fully exploit the statistical precision potential of a muon collider.

Moreover, given the magnitude of the radiation effects we observed, it is possible that more

accurate predictions will considerably affect some of our sensitivity projections. A first step in

that direction, which we leave for future work, is the inclusion of single logarithms at fixed

leading order in the semi-inclusive predictions. That could be achieved by combining one

loop virtual logarithms with a factorized treatment of real emission. That calculation, would

possibly also help clarify the connection between soft-collinear effects (studied in this paper)

and the PDF/Fragmentation Function treatment of EW radiation. It is not unconceivable

that the same approach could be extended at the two loop order. In parallel, the impact of

resummation beyond DL should be assessed. The SCET methodology currently offers the
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most promising approaches.

Another priority is to investigate further classes of cross-sections, sensitive to different EW

radiation patterns. Our results indicate that investigation should be done on the basis of

the structure of short distance new physics. At the end of Section 3.3.2 we took one step

in that direction, showing that the approximately flat direction in the (CB ,CW ) likelihood

contours is mitigated, in the absence of polarized beams, by considering an “ISR-inclusive”

cross-section. This third cross-section type is inclusive on radiation collinear to the beam, but

vetoes centrally emitted radiation. We could not compute the ISR-inclusive cross-section at

DL with our IREE methodology and limited ourself to a tree-level estimate. A straightforward

direction for progress would be to perform that calculation and verify if and how it impacts

our findings.

The definition and study of cross-sections should be also based on experimental consider-

ations. We already pointed out that exclusive cross-sections are problematic in that regard.

Indeed imposing the radiation veto requires experimental sensitivity to EW radiation that is

emitted in all directions, including the forward and backward regions along the beam line.

The angular coverage of the muon collider detector is still to be quantified, however we expect

that it will be insufficient for the measurement of exclusive cross-sections.

In view of the above, it is important to emphasize that our sensitivity projections have been

verified to not change radically when exclusive cross-section measurements are not available.

This conclusion is not in contradiction with (and cannot be inferred from) our sensitivity

plots, where (see e.g. Figure 3.6) we observe a strong complementarity between “exclusive”

observables and observables “with radiation”. Indeed for neutral processes the latter observ-

ables consists of the difference between the semi-inclusive and the exclusive cross-sections.

Therefore the impact of eliminating the exclusive measurements can not be estimated by

suppressing the “exclusive” cross section measurement in the computation of the likelihood.

The proper estimate is obtained by employing the semi-inclusive neutral processes without

subtraction, combined with the charged measurements, produces a combined reach that is

not much inferior to the one that exploits the exclusive measurements. In essence, the main

sensitivity gain due to radiation stems from the emergence of the charged processes and from

their complementarity with the neutral ones. The complementarity between neutral measure-

ments with different degrees of radiation inclusiveness (e.g., exclusive versus semi-inclusive)

plays instead a less relevant role in our results. This same qualitative behavior can be observed

in the comparison between the neutral and charged lepton production processes on the right

panel of Figure 3.5.

On the other hand, the complementarity between exclusive and semi-inclusive measurements

exists and can benefit the sensitivity as we illustrated on the left panel of Figure 3.5. It plays a

marginal role in the combined fit to the limited number of EFT operators we considered in

this paper. It could however be relevant in a more global exploration and characterization of

putative new physics. One way to recover sensitivity, if exclusive measurements were indeed
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unavailable, could be to exploit the ISR-inclusive cross-sections. These are easier to measure

because they do not require sensitivity to radiation in the forward and backward regions. This

aspect should be investigated.

Our phenomenological results strengthen and extend previous estimates of the muon collider

sensitivity to heavy new physics. We have a considered a variety of BSM scenarios with new

physics coupled to the SM with electroweak strength. We found that a Ecm = 10 TeV muon

collider can probe up to a scale ranging from 50 to 200 TeV. The reach improves linearly with

Ecm. These figures are significantly above the potential (direct and indirect) sensitivity of other

future collider projects, and above the direct sensitivity reach of the muon collider itself, which

is obviously bounded by the collider energy.

The indirect sensitivity to scales that are well above the direct reach is a great addition to

the physics case of a muon collider, whose relevance would not be diminished, but on the

contrary augmented, by the occurrence of a direct discovery. Indeed, direct hints for new

particles observed at the muon collider will turn into a full-fledged discovery of new physics

only after unveiling the underlying theoretical description of their dynamics. The possibility

of probing this dynamics well above the particle’s mass will play a decisive role in this context.

Furthermore, the direct manifestation of new physics might be hard to detect. Perhaps,

indirect probes will provide the first hint of its existence, to be eventually confirmed by

targeted direct searches. Finally, indirect searches for BSM phenomena based on precise

measurements guarantee a sound output of the project. The connection with the phenomenon

of EW radiation, which is interesting per se, adds scientific value to the program.

Before concluding, we discuss the impact of the integrated luminosity on our results. We

employed the baseline luminosity in eq. (3.35), which corresponds to 90 ab−1 for a 30 TeV

muon collider. Since the possibility of reducing the 90 ab−1 target is under discussion, it is

worth assessing the impact of a lower integrated luminosity on our conclusions. An important

aspect is associated with the actual experimental feasibility of the relevant measurements.

While a conclusive assessment will require dedicated studies, the expected number of events

in Table 3.3 19 and the corresponding efficiencies show that, with a factor 10 reduction in

luminosity, some of the processes we employed would be left with a handful of observed

events, possibly preventing the corresponding measurements. If the reduction in luminosity

were less extreme, the sensitivity to the scale of new physics would simply deteriorate as the

fourth root of the luminosity, as shown in Figure 3.12 for some of the BSM scenarios we studied

in Section 3.3.3. The figure displays the exclusion and discovery reach on the new physics

scale normalized to the collider energy Ecm = 30 TeV. This is the right figure of merit, since the

goal is to extend the muon collider sensitivity above the direct reach. The reduction by a factor

of 101/4 = 1.8 due to a factor 10 luminosity reduction partially undermines this goal, especially

for what concerns the generic manifestations of the Composite Higgs scenario.

19The table is for Ecm = 10 TeV, however with the scaling in eq. (3.35) the results depend weakly on the energy.
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A Formulation of the Quadratic Classi-
fier

A.1 The general Quadratic Classifier

Any quadratic-order real polynomial of n−1 variables ci , i = 1, . . .n−1, with arbitrary constant,

linear and quadratic terms, can be written as a quadratic form in the n-dimensional variable

v(c) = (1, c1, . . . , cn−1)T . (A.1)

Namely, we write the polynomial as

P (c) = vT (c)A v(c) , (A.2)

with A a generic n-dimensional real symmetric square matrix.

If P (c) is non-negative for any value of c, it is easy to show that the matrix A must be positive

semi-definite. Being real, symmetric and positive semi-definite, it is possible to use the

Cholesky decomposition for A, and write it as

A = LT L , (A.3)

where L is a upper-triangular (i.e., Li j = 0 for j < i ) real matrix. Therefore the most general

positive quadratic order polynomial reads

P (c) = vT (c)LT L v(c) =
n∑

i=1

(
n∑

j=1
Li j v j (c)

)2

=
n∑

i=1

(
Li 1 +

n∑
j=2

Li j c j−1

)2

, (A.4)

which is manifestly non-negative because it is the sum of square terms. Moreover for c = 0,

since Li 1 = L11δi 1, we have P (0) = L2
11. The Cholesky decomposition is unique up to sign flips

of the rows of L. Rather than resolving this ambiguity, for instance by choosing the diagonal

entries of L to be positive, we adopt eq. (A.4) without further constraints as the most general

(though redundant) parametrization of P (c).
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Appendix A. Formulation of the Quadratic Classifier

The EFT differential cross section is a positive quadratic polynomial in the Wilson Coefficient

ci at each phase-space point x, and it reduces to the SM cross section for c = 0. It must

therefore take the form

dσ0(x;c) = dσ1(x)
n∑

i=1

[
δi 1 +

n∑
j=2

λ(x)i j c j−1

]2

, (A.5)

with λ(x) an upper-triangular matrix of real functions. If only one c parameter is present (i.e.,

n = 2), this reduces to eq. (2.1) with the identifications

λ(x)12 =α(x) λ(x)22 =β(x) . (A.6)

The Quadratic Classifier that generalizes eq. (2.3) is thus defined as

f (x,c) ≡ 1

1+
n∑

i=1

[
δi 1 +

n∑
j=2

n(x)i j c j−1

]2 , (A.7)

in terms of an upper-triangular matrix n(x) of real-output Neural Networks.

A.2 Minimization of the parametrized loss

In the Large Sample limit, the loss function in eq. (2.4) becomes

L[n(·)]
LS= ∑

c∈C

{∫
dσ0(x;c)[ f (x,c)]2 +

∫
dσ1(x)[1− f (x,c)]2

}
, (A.8)

with the Quadratic Classifier f defined in eq. (A.7). By simple algebraic manipulations, this

can be rewritten as

L[n(·)]
LS= ∑

c∈C

{∫
dσ1(x)dσ0(x;c)

dσ1(x)+dσ0(x;c)
+

∫
[dσ1(x)+dσ0(x;c)]

[
f (x,c)− 1

1+ r (x,c)

]2}
, (A.9)

with r (x,c) = dσ0(x;c)/dσ1(x). The first integral is independent of f and thus it is irrelevant

for the minimization of the loss. The second one is the integral of a non-negative function of x

which attains its global minimum (i.e., it vanishes) if and only if

f (x,c) = fmin(x,c) = 1

1+ r (x,c)
, ∀c ∈C . (A.10)

By using eq. (A.5), and comparing with eq. (A.7), we immediately conclude that the configura-

tion n(x)i j =λ(x)i j is a global minimum of the loss and that this minimum is unique provided

the set C contains at least two distinct non-vanishing elements. More precisely, this holds

only up to sign ambiguities, associated with those of the Cholesky decomposition. However

this is irrelevant because the ambiguity cancels out in f , and in turn it cancels out in the

reconstructed distribution ratio r̂ (x,c) = 1/ f̂ (x,c)−1.
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A.2 Minimization of the parametrized loss

We have shown that the Quadratic Classifier reconstructs the distribution ratio exactly (in the

Large Sample limit and for infinitely complex Neural Network) at the global minimum of the

loss, and that this minimum is unique. Notice however that we could not show that the Large

Sample limit loss does not possess additional local minimums, as it is instead readily proven

for the standard classifier of Section 1.4.2 by variational calculus.
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B Resummation of Radiation at the
Muon Coller

B.1 Radiation Integrals

The contribution of virtual radiation to the amplitude variation in eq. (3.10) is proportional to

the integral

I ≡ −i

(2π)4

∫
δσ

d 4q
1

q2 −m2
V + iε

(ki ·k j )

(q ·ki )(q ·k j )
, (B.1)

where we included a mass mV ∼ mW for the virtual vector in order to verify explicitly that the

integral is log-enhanced only in the λÀ m2
W regime, where the IR cutoff is much above the EW

scale. We now proceed (following [151]) to the evaluation of I assuming, for simplicity, exactly

massless hard 4-momenta k2
i = k2

j = 0. The integral is Lorentz-invariant, therefore it can only

depend on the scalar product (ki ·k j ), that we set to

(ki ·k j ) = 1

2
(ki +k j )2 = 1

2
E 2 , (B.2)

in what follows.

The calculation is conveniently performed in Sudakov coordinates [152]. Namely we parametrize

the loop momentum q as

q = uki + vk j +q1
⊥ζ1 +q2

⊥ζ2 , (B.3)

where (ζ1)2 = (ζ2)2 =−1 and ζ1,2 ·ki = ζ1,2 ·k j = 0. In these coordinates

q2 = u v E 2 −|q⊥|2 , (B.4)

and the infinitesimal strip δσ (3.7) that defines the integration region is expressed as

|u v |E 2 ∈ [λ,λ+δλ] . (B.5)
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After the change of variables, the integral reads

I = i

(2π)4

∫
δσ

dud v

uv

∫
d 2q⊥

|q⊥|2 −uvE 2 +m2
V − iε

. (B.6)

The d 2q⊥ integral must be performed up to an upper cutoff that justifies the usage of the

Eikonal approximation formula in eq. (3.8) for the gauge boson vertices. In particular we

notice that the actual denominators of the virtual legs in the diagram are not (ki , j ·q) as in the

Eikonal formula, but rather (ki , j · q)±q2/2, with plus or minus for incoming and outgoing

particles, respectively. Neglecting q2/2 is justified only if |q⊥|2/2 is not as large as to compete

with the minimum among |ki ·q| = |u|E 2/2 and |k j ·q | = |v |E 2/2. Therefore the q⊥ integral

should be cutoff at

|q⊥|2 <Λ2 , with Λ2 = E 2 min
[|u|, |v |] . (B.7)

Similarly, the term proportional to uv in q2 should not be large compared to (ki , j ·q), therefore

the u and v integrals are also bounded, in the region

|u| < 1, |v | < 1, (B.8)

supplemented by eq. (B.5).

The integration boundaries of u and v are invariant under u →−u and under v →−v reflec-

tions. We can thus perform the integral (B.6) in the first quadrant of the (u, v) plane, provided

we duly symmetrize the integrand. Furthermore we notice that first-quadrant integration

region (restricted to u < 1 and v < 1, owing to eq. (B.8)) is conveniently described by the

coordinates τ and y , defined by

u =p
τe y , v =p

τe−y . (B.9)

Indeed in these coordinates the condition (B.5) merely sets the value of τ to

τ= λ

E 2 , with δτ= δλ

E 2 , (B.10)

while the upper bound (B.7) on the |q⊥| integral reads

Λ2 = E 2pτe−|y | = E
p
λe−|y | . (B.11)

We can thus express the integral as

I = 2 i

(2π)3

δλ

λ

∫ yM

0
d y

∫ E
p
λe−y

0
d |q⊥|2

[
1

|q⊥|2 −λ+m2
V − iε

− 1

|q⊥|2 +λ+m2
V − iε

]
. (B.12)
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where, sinceΛ2 is symmetric under y →−y , we could take the y integral from 0 to

yM =−1

2
logτ= log

Ep
λ

, (B.13)

and multiply by a factor 2.

The d |q⊥|2 integral in eq. (B.12) is readily performed. It is convenient to separate the terms that

emerge from the upper |q⊥|2 integration extreme from the one of the lower extreme |q⊥|2 = 0,

obtaining two contributions to I , IU and IL. We will readily see that fhe former contribution is

suppressed, therefore

I ' IL = 1

8π2

δλ

λ
log

E 2

λ

i

π
log

[
λ+m2

V − i ε

−λ+m2
V − i ε

]
. (B.14)

The logarithm gives quite different results in the two regimesλÀ m2
W ∼ m2

V andλ¿ m2
W ∼ m2

V .

In the second one, the argument of the logarithm has positive real part, almost equal to to 1

up to m2
V /λ power-corrections. In the first regime, the argument has negative real part and

the log equals +i π, plus λ/m2
V corrections. Namely

I
λÀm2

W= − 1

8π2

δλ

λ
log

E 2

λ

[
1+O (m2

V /λ)
]

, I
λ¿m2

W= − 1

8π2

δλ

λ
log

E 2

λ
·O (λ/m2

V ) , (B.15)

from which we recover eq. (3.11). More precisely, notice that the integral for each pair of

external legs i j is controlled by the specific scale E 2 = 2(ki · k j ). In eq. (3.11) we set all

these scales equal up to corrections that are not log enhanced, but of order one. This in

turn corresponds to order 1/log corrections to the evolution kernel and to single-logarithm

corrections to the solutions of the IREE.

The contribution to I from the upper |q⊥|2 integration extreme is suppressed. To see this it is

convenient to employ the integration variable ρ = exp(y − yM), obtaining

IU = 2 i

(2π)3

δλ

λ

∫ 1

p
λ/E

dρ
1

ρ
log

[
1−ρ(1−m2

V /λ)

1+ρ(1+m2
V /λ)

]
, (B.16)

where we could drop the −iε because the argument of the logarithm has positive real part

in the entire range of integration. The ρ integral is finite for
p
λ/E → 0, therefore it does not

produce log-enhanced contributions. In particular the integral gives −π2/4 for λÀ m2
W ∼ m2

V

and it is power-suppressed in the opposite regime.

We now compute the contribution of real radiation to the density matrix variation, which we

employ in eq. (3.18). The relevant integral that controls the contribution from a real radiation

diagram like those in Figure 3.2, reads

IR ≡− 1

(2π)3

∫
δσ

d 3q

2q0

(ki ·k j )

(ki ·q)(k j ·q)
=− 1

(2π)3

∫
δσ

d 4q δ(q2 −m2
V )θ(q0)

(ki ·k j )

(ki ·q)(k j ·q)
, (B.17)
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where we employed the eikonal formula in eq. (3.8), but ignored the “G” factors that are

included separately in eq. (3.18). Notice the presence of a minus sign, which is due to three

factors of −1. The first minus is due to the fact that applying the eikonal formula to the conju-

gate amplitude gives the complex conjugate of the generator matrix “Gi ” of the corresponding

leg, while eq. (3.18) is expressed in terms of the generators Gi c =−G∗
i of the conjugate repre-

sentation. The second minus sign emerges from the sum over the polarizations of the real

vector boson, which gives −ηµν. The third minus is because the contribution to the variation

is minus the integral over the strip δσ, since the λ cutoff is a lower bound on the hardness.

In Sudakov coordinates (B.3), and setting (ki ·k j ) = E 2/2, the integral becomes

IR =− 1

(2π)2

∫
δσ

dud v

uv
θ(u + v)

∫
d |q⊥|2δ

(
uvE 2 −|q⊥|2 −m2

V

)
. (B.18)

The integration extremes of all the variables are like those of the virtual integral, including

the condition (B.5) that defines the infinitesimal integration strip δσ. The delta function in

eq. (B.18) has support only if u v > 0, and the theta function further restricts the integral to the

first quadrant of the (u, v) plane. We can thus employ the τ and y coordinates in eq. (B.9) and

readily obtain

IR =− 1

8π2

δλ

λ
log

E 2

λ
·θ(λ−m2

V ) . (B.19)

Evidently, the theta function condition is not satisfied for λ¿ m2
W ∼ m2

V , therefore the integral

vanishes in this regime. In the other regime

IR
λÀm2

W= =− 1

8π2

δλ

λ
log

E 2

λ
, (B.20)

which is equal to the virtual radiation integral, as anticipated in the main text. Notice that

the pre-factor of eq. (3.18) contains an additional 1/2, due to the fact that the real radiation

contribution is effectively counted twice in the equation by the two terms proportional to
(G A

i )(G A
j c ) and to (G A

i c )(G A
j ) , which are equal after summing over i and j .

B.2 High-energy EW multiplets

The EW symmetry is effectively unbroken at energies much above the EW scale. Therefore

in this regime it is convenient to describe the SM particles in terms of representations of the

(linearly-realized) SM group SU(2)L×U(1)Y , with generators

T A = {T a ,Y } , a = 1,2,3 . (B.21)

The generators act on the single particle states as

T A|p(k,α)〉 = |p(k,β)〉(T A
r )βα , (B.22)
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Bosons SU(2)L Y

W t 0

B s 0

H d +1/2

H̄ d̄ −1/2

Leptons SU(2)L Y

(ν`,−1/2 ,`−−1/2) d −1/2

(ν̄`,+1/2, `++1/2)t d̄ −1/2

`−+1/2 s −1

`+−1/2 s +1

Quarks SU(2)L Y

(u−1/2, d−1/2)t d +1/6

(ū+1/2, d̄+1/2)t d̄ −1/6

u+1/2 s +2/3

ū−1/2 s −2/3

d+1/2 s −1/3

d̄−1/2 s +1/3

Table B.1: SU(2)L×U(1)Y quantum numbers of the SM particles in the high-energy regime.

with generator matrices T A
r that define the representation “r” of the particle multiplet. The

fieldΦα
r that interpolates the multiplet from the vacuum, namely

〈0|Φα
r (0)|p(k,β)〉∝ δαβ , (B.23)

transforms with the same generator matrix, i.e.[
Φα

r (x),T A]= (T A
r )αβΦ

α
r (x) . (B.24)

The SU(2)L representations of the SM particles and the corresponding U(1)Y charges are listed

in Table B.1.

All the fermionic particles with helicity −1/2 transforms as doublets (i.e., r = d), the anti-

particles with helicity +1/2 transform in the conjugate (r = d̄) of the doublet representation,

while all the others are singlets. Obviously this is true only in the high energy limit where the

fermions are effectively massless and the helicity corresponds the chirality of the correspond-

ing interpolating fields. The doublet representation matrices are the standard

T a
d =

{(
0 +1/2

+1/2 0

)
,

(
0 −i /2

+i /2 0

)
,

(
+1/2 0

0 −1/2

)}
, T a

d̄
=−(T a

d )∗ =−(T a
d )t . (B.25)

The EW multiplets of bosonic particles are less well-known, but equally straightforward to

work out employing the standard Goldstone Boson Equivalence Theorem, or better its stronger

formulation in Ref.s [43, 153]. The point is that for massive W ± and Z vector bosons with 0

(longitudinal) helicity one can employ interpolating fields that are a specific combination of
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Appendix B. Resummation of Radiation at the Muon Coller

the regular gauge fields W ±
µ and Zµ and of the Goldstone boson scalar fields π± and πZ . The

longitudinal states are thus a linear combination of the quantum fluctuation modes associated

to this two different type of fields, and the scattering amplitudes with external longitudinal

states are a linear combination of Feynman diagrams where the external states are represented

either as gauge fields or as Goldstone fields. This is a convenient formalism in the high energy

limit because the polarization vector associated with gauge external lines vanishes as mW/E

(unlike the regular longitudinal polarization, that diverges as E/mW), and only the Goldstone

diagrams survive. In essence this means that the Goldstones, and not the gauge, are the

adequate interpolating fields for the longitudinal particles at high energy. Therefore the EW

quantum numbers of the longitudinal particles are the ones of the Goldstones, and not of

the gauge fields. The Goldstone bosons, together with the Higgs, form a doublet with +1/2

hypercharge, and the corresponding conjugate doublet

H =
(
π+ ,

h + iπZp
2

)t

, H̄ =
(
π− ,

h − iπZp
2

)t

. (B.26)

Vector bosons with transverse helicity T =±1 are instead well-described by gauge fields even

at high energy. Therefore they decompose into a triplet plus a singlet EW multiplet, which are

readily obtained by undoing the Weinberg rotation

W a =
(

W +
T +W −

Tp
2

, i
W +

T −W −
Tp

2
, cW ZT + sWγT

)t

, B =−sW ZT + cWγT . (B.27)

Explicitly, the triplet generator matrices are

T a
t =


0 0 0

0 0 −i

0 i 0

 ,

 0 0 i

0 0 0

−i 0 0

 ,

0 −i 0

i 0 0

0 0 0


 . (B.28)

We now proceed to the evaluation of the Ki exponentials in the explicit formula for the semi-

inclusive density matrix (3.22), for external legs in the doublet (or anti-doublet) or in the triplet

canonical representations defined by eq. (B.25) and (B.28). The K tensors in eq. (3.20) are

[
Kd

]αᾱ
ββ̄

= [
Kd̄

]αᾱ
ββ̄

= cdδ
α
βδ

ᾱ

β̄
+∑

a
(T a

d )αβ(T a
d̄

)ᾱ
β̄
= δαβδ

ᾱ

β̄
− 1

2
δαᾱδββ̄ , (B.29)[

Kt
]αᾱ
ββ̄

= ctδ
α
βδ

ᾱ

β̄
+∑

a
(T a

t )αβ(T a
t )ᾱ

β̄
= 2δαβδ

ᾱ

β̄
+δα

β̄
δᾱβ−δαᾱδββ̄ . (B.30)

The exponential of eq. (B.29) is trivial and we readily obtain[
exp

(−L Kd
)]αᾱ
ββ̄

= e−L δαβδ
ᾱ

β̄
+e−L /2 sinh(L /2)δαᾱδββ̄ , (B.31)
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where we defined

L = g 2

16π2 log2(E 2/m2
W) . (B.32)

The exponential of eq. (B.30) is slightly more involved. First of all notice that the three tensor

structures in the right-hand-side of eq. (B.30) commute so we can exponentiate all of them

independently. In particular we get

exp
(
−2Lδαβδ

ᾱ

β̄

)
= e−2L δαβδ

ᾱ

β̄
(B.33)

exp
(
−Lδα

β̄
δᾱβ

)
= cosh(L )δαβδ

ᾱ

β̄
− sinh(L )δα

β̄
δᾱβ , (B.34)

exp
(
Lδαᾱδββ̄

)
= δαβδ

ᾱ

β̄
+ 1

3

(
e3L −1

)
δαᾱδββ̄ . (B.35)

Taking the product of the factors just found, we get[
exp

(−L Kt
)]αᾱ
ββ̄

= e−2L
(
cosh(L )δαβδ

ᾱ

β̄
− sinh(L )δα

β̄
δᾱβ

)
+ 2

3
e−

3
2 L sinh(3L /2)δαᾱδββ̄ .

(B.36)
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B.3 3rd family operators

The sensitivity to the 3rd family operators in Table 3.2 are summarized in this section. In

Figure B.1 we report the two-dimensional contours in the (CtD , C (3)
qD ) and (C (1)

qd , C (3)
qD ) planes,

with the third operator set to zero. We notice that the “with radiation” cross-section measure-

ments (see the main text) is mostly effective to probe C (3)
qD producing a significant sensitivity

improvement on the combined bound in this direction. The effect is milder in the orthogonal

directions. The likelihood is dominated by the linear term in the new physics parameters so all

our result can be expressed in terms of the single operator reaches (at 95% CL) of and the cor-

relations matrices in Table B.2. In the table we report the sensitivity of exclusive cross-section

measurements alone, and the combination of all the measurements.
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Top left: Ecm = 3 TeV; top right: Ecm = 10 TeV; bottom left: Ecm = 14 TeV; bottom right: Ecm = 30
TeV

B.4 Summary plots

In this appendix we collect additional results skipped in the main text. In particular in Fig-

ure B.2 we report the sensitivity projections for the Y -universal Z ′ model, in the (gZ ′ , MZ ′)

plane for the different collider energies. In Figure B.3 we collect the sensitivity projections for

the composite Higgs model in the (m∗, g∗) plane for Ecm = 3, 14, 30 TeV. Projections includ-

ing composite top measurements can be found in Figure B.5. Finally, Figure B.4 shows the

dependence of the bound on the value of the ct t coefficients, as explained in the main text.

Exclusive-only [95% CL] Combined [95% CL]
CtD C (1)

qD C (3)
qD CtD C (1)

qD C (3)
qD

3 TeV [−24.4,24.4] [−9.47,9.47] [−6.68,6.68] [−23.1,23.1] [−8.59,8.59] [−5.45,5.45]
10 TeV [−2.24,2.24] [−0.97,0.97] [−0.71,0.71] [−2.04,2.04] [−0.81,0.81] [−0.49,0.49]
14 TeV [−1.15,1.15] [−0.52,0.52] [−0.38,0.38] [−1.03,1.03] [−0.42,0.42] [−0.25,0.25]
30 TeV [−0.26,0.26] [−0.13,0.13] [−0.10,0.10] [−0.22,0.22] [−0.10,0.10] [−0.05,0.05]

Table B.2: Single-operator 95% CL reach and correlation matrices for the Wlison coefficient
C (3)

qD , C (1)
qD and C (3)

qD of the operators of Table 3.2 at different collider energies. All results
include exclusive cross-sections or combined measurements. The Wilson coefficient are
expressed in 10−4 TeV−2. Since the likelihood is dominated by the linear terms in the new
physics parameters, the single parameter reach and the correlation characterize our results
completely.
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Figure B.1: 95% CL contours in the (CtD , C (3)
qD ) (left) and (C (1)

qd , C (3)
qD ) (right) planes at the 10 and

30 TeV muon colliders.

Figure B.2: The same as the right panel of Figure 3.10 for various collider energies.
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Figure B.3: The same as the left panel of Figure 3.10 for various collider energies.

Figure B.4: The same as the right panel of Figure 3.11 for different values of ct t to show the
model dependence of the result.
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Figure B.5: The same as Figure 3.11 for various collider energies. The blue line on the equally-
composite (left panels) projections are taken from [142], while on the right-handed composite
top scenario are taken from [146].
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