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Abstract
The alkali-silica reaction (ASR), also known as concrete cancer, is one of the most

prevalent causes of concrete degradation. In this chemical reaction, amorphous silica in the

aggregates reacts with alkalis in the pore solution. By absorbing water, hydrophillic ASR

products generate highly localized internal pressure that causes expansion and cracking.

The detrimental effects of ASR on concrete pose a major threat to the safety and

operability of concrete infrastructure in all parts of the world.

The long lifespan of concrete structures and their high economic significance make it

crucial to evaluate the effect of ASR-induced degradation. ASR has therefore been the

subject of extensive research over the past few decades. Modeling and experimental

studies have provided fundamental insight into the physics of ASR at the meso-scale

of concrete. However, the impact of the mesoscopic ASR damage evolution on the

macro-scale, or structural scale, on concrete is not well understood yet. Investigating the

structural outcome of the ASR damage necessitates robust meso-scale solvers faster than

the existing meso-scale models that conventionally use finite element method (FEM) as

the solution scheme.

Over the past 30 years, fast Fourier transform (FFT)-based methods have gained much

attention as fast and reliable alternatives to conventional FEM solvers because they can

exploit regular grid structures, use lightweight iterative solvers, and speed up meso-scale

simulations by orders of magnitude. However, it has not been feasible to effectively

utilize them in damage mechanics problems due to two shortcomings: ringing artifacts

and incapability to solve non-elliptic problems, in their recent efficient implementations,

where conjugate gradient (CG) is used as the linear solver.

In the present thesis, we have resolved the shortcomings of the FFT-based solution

scheme for being effectively used in damage mechanics problems. All of the developed

methods are implemented in an open-source FFT-accelerated software package capable
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Abstract

of solving generic homogenization problems for other use cases as well. The developed

library is capable of solving non-convex problems (non-elliptic partial differential equation

(PDE)) containing phases with extremely high contrast with a ringing-free scalable FFT-

accelerated solver.

The developed fast and robust numerical framework is employed to conduct ASR meso-

scale simulations. The obtained results show good agreement with the results obtained

using the conventional FEM solver. The developed solution scheme is 200 times faster

than the solution of the same problem with conventional FEM solvers. Therefore, it

enables comprehensive multi-scale structural ASR damage modeling with reasonable

computational costs.

Keywords: Alkali-Silica Reaction, FFT-accelerated homogenization, Non-convex solvers,

Ringing-free spectral solver, FFT-accelerated solver with FEM discretization, Precondi-

tioned FEM
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Zusammenfassung
Die Alkali-Kieselsäure-Reaktion (AKR), auch bekannt als Betonkrebs, ist eine der

häufigsten Ursachen für die Zerstörung von Beton. Bei dieser chemischen Reaktion

reagiert amorphes Siliziumdioxid in den Zuschlagstoffen mit Alkalien in der Porenlösung.

Durch die Absorption von Wasser erzeugen hydrophile AKR-Produkte einen hohen

lokalisierten Innendruck, der zu Ausdehnung und Rissbildung führt. Die nachteiligen

Auswirkungen der AKR auf Beton stellen eine große Gefahr für die Sicherheit und die

Funktionsfähigkeit von Betoninfrastrukturen in allen Teilen der Welt.

Die lange Lebensdauer von Betonbauwerken und ihre hohe wirtschaftliche Bedeutung

machen es entscheidend, die Auswirkungen der AKR-induzierten Degradation zu bewer-

ten. AKR ist daher in den letzten Jahrzehnten Thema umfangreicher Forschungsarbeiten

gewesen. Modellierung und experimentelle Studien haben einen grundlegenden Einblick

in die Physik der AKR im Mesomaßstab des Betons geliefert. Allerdings sind die Aus-

wirkungen der mesoskopischen AKR-Schadensentwicklung auf die Makroebene bzw. die

strukturelle Skala des Betons, ist noch nicht gut verstanden. Die Untersuchung der struk-

turelle Ergebnis des ASR-Schadens erfordert eine robuste Mesoskala Löser, die schneller

als die bestehenden mesoskaligen Modelle (die herkömmlich FEM als Lösungsschema

verwenden) sind.

In den letzten 30 Jahren haben FFT-basierte Methoden viel Aufmerksamkeit als schnelle

und zuverlässige Alternativen zu konventionellen FEM-Lösern gewonnen. Der Grund dafür

ist, dass sie regelmäßige Gitterstrukturen ausnutzen können, leichtgewichtige iterative

Löser verwenden und Simulationen im Meso-Maßstab um Größenordnungen beschleunigen.

Allerdings ist es bisher nicht durchführbar, sie bei Problemen der Schadensmechanik

effektiv zu nutzen, da zwei Unzulänglichkeiten: Ringing-Artefakte und die Unfähigkeit,

nicht-elliptische Probleme zu lösen, wenn CG als linearer Löser verwendet wird.

In der vorliegenden Arbeit haben wir die Unzulänglichkeiten des FFT-basierten Lösungs-
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Zusammenfassung

schemas für den effektiven Einsatz bei Problemen der Schadensmechanik gelöst. Alle

entwickelten Methoden sind in einem quelloffenen, FFT-beschleunigten Softwarepaket

implementiert, das in der Lage ist, generische Homogenisierungsprobleme zu lösen. Die

entwickelte Bibliothek ist in der Lage, nicht-konvexe Probleme (nicht elliptische PDE)

enthalten extrem hoch kontrastierte Phasen mit einem schwingungsfreien, skalierbaren

FFT-beschleunigten Löser zu lösen.

Der entwickelte schnelle und robuste numerische Rahmen wird zur Durchführung von

ASR-Simulationen im Meso-Maßstab eingesetzt. Die erzielten Ergebnisse zeigen eine gute

Übereinstimmung mit den Ergebnissen, die mit dem herkömmlichen FEM-Löser erzielt

wurden. Das entwickelte Lösungsschema ist etwa 200-mal schneller als die Lösung dessel-

ben Problems mit herkömmlichen FEM-Solvern. Daher ermöglicht es eine umfassende

mehrskalige strukturelle AKR Schadensmodellierung mit angemessenen Rechenkosten.

Stichwörter: Alkali-Kieselsäure-Reaktion, FFT-beschleunigte Homogenisierung, Nicht-

konvexe Löser, Ringing-freier Spektral-Löser, FFT-beschleunigter Löser mit FEM-Diskretisierung,

Vorkonditionierte FEM
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Résumé
La réaction alcali-silice (RAS), également connue sous le nom de cancer du béton, est

l’une des causes les plus courantes de la dégradation interne du béton. Dans cette réaction,

la silice amorphe des agrégats réagit avec les alcalis présents dans la solution des pores.

En absorbant l’eau, les produits hydrophiles de la RAS génèrent une pression interne très

localisée qui provoque l’expansion du béton et sa fissuration. Les effets néfastes de la RAS

constituent une menace majeure pour la sécurité et l’exploitabilité des infrastructures en

béton dans toutes les régions du monde. La durabilité des structures en béton et leur

grande importance économique rendent cruciale l’évaluation de la dégradation du béton

induite par la RAS.

La RAS a donc été l’objet de recherches approfondies au cours des dernières décennies.

Des études expérimentales et de modélisation ont fourni des informations fondamentales

sur la physique de la RSA à l’échelle méso. Cependant, l’impact à l’échelle macro - ou

échelle structurelle - de l’évolution mésoscopique des dommages causés par le RAS n’est

pas encore bien compris. L’étude des conséquences structurelles des dommages causés

par la RAS nécessite l’utilisation des solveurs à l’échelle méso plus rapides que ceux

existants, typiquement basés sur la méthode des éléments finis (FEM). Au cours des

30 dernières années, les méthodes basées sur la transformée de Fourier rapide (FFT)

ont gagné beaucoup d’attention en tant qu’alternatives rapides et fiables aux solveurs

FEM conventionnels, car elles peuvent exploiter des structures de grille régulières, utiliser

des solveurs itératifs légers, et accélérer les simulations à méso-échelle. Cependant, il

n’a pas été possible de les utiliser efficacement dans les problèmes de mécanique de

l’endommagement en raison de deux inconvénients : les artéfacts d’oscillations parasites

et l’incapacité à résoudre des problèmes non-elliptiques.

Dans la présente thèse, nous avons résolu les défauts du schéma de solution basé sur la FFT

pour leur utilisation efficace dans les problèmes de mécanique de l’endommagement. Toutes
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les méthodes développées sont implémentées dans un logiciel open-source capable de

résoudre des problèmes d’homogénéisation génériques. La librairie développée est capable

de résoudre des problèmes non convexes (non-elliptiques PDEs) avec un solveur accéléré

par FFT sans oscillations parasites. Le schéma numérique développé, rapide et robuste,

est employé pour réaliser des simulations méso-échelle de la RAS. Les résultats obtenus

montrent un bon accord avec les résultats obtenus en utilisant le solveur conventionnel

FEM. Le schéma numérique développé est 200 fois plus rapide que la solution du même

problème avec les solveurs FEM conventionnels. Par conséquent, il permet de modéliser

des dommages structurels multi-échelles de manière exhaustive et avec des coûts de calcul

raisonnables.

Mots-clés : Réaction alcali-silice, homogénéisation accélérée par FFT, solveurs non

convexes, solveur spectral sans oscillations parasites, solveur accéléré par FFT avec

discrétisation FEM, FEM préconditionnée.
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Introduction

Motivation and objectives

The alkali-silica reaction (ASR) is the most common type of the alkali-aggregate reaction,

which occurs when silica within concrete aggregates react with alkaline of concrete pore

solution. ASR manifests itself at the scale of an aggregate in the form of local silica

dissolution; expansion of ASR products; initiating micro-cracks; and the expansion of

the aggregates, cement paste, and concrete. Cracking and expansion caused by ASR

impact negatively on the civil engineering infrastructure including bridges and concrete

dams worldwide. ASR consequences have considerable financial implications for large

structures like dams, bridge piers, and sea walls. It is therefore necessary to study

ASR in order to have a better understanding of its process, predict its severity in the

existing structures, determine if any remedial action is necessary and also prevent its

manifestation in new structures

Clusters of alkali-silicate gel are formed as a result of the ASR products accumulating

inside pre-existing cracks (Gaboriaud et al. (2002)). The newly formed alkali-silicate

clusters are referred to as pockets. The expansion of ASR gel pockets, due to their

water absorption, cause internal loading on aggregates, which can lead to cracking. The

resulting cracks originate in the aggregates and extend into the cement paste. The

openings of induced cracks could be much larger than those of the pre-existing cracks and

the initial ASR gel pocket sizes. As the ASR process advances, its outcomes, expansion

and cracks also reveal in the structural scale. The Swiss Committee on Dams (Sellier

et al. (2017)) reported that approximately 50% of 154 Swiss dams are affected by this

problem. As engineering structures of great economic significance, dams is the focus of

1



Introduction

discussions about the macro-scale effects of ASR.

Field observations and experimental data suggest that ASR involves a combination

of multiple phenomena that occur at the same time and chemical, structural, and

environmental factors are all involved in this process. It is indispensable to use numerical

modelling in order to understand and predict the behavior of such a complex system.

Results obtained by Dunant and Scrivener (2010); Cuba Ramos (2017) show that the meso-

scale and macro-scale damage processes can not be separated in modeling ASR damage.

At the structural scale, a model of a concrete dam with sufficiently fine discretization

size yields 1014 − 1015 elements (discretizing a concrete dam with volume of 106 m3 to

elements with size of 1 mm3). This makes full resolution of structural ASR damage

modeling unfeasible with existing computational infrastructure. Multi-scale modeling

(as depicted in Figure 1) reduces the complexity of the model. Finite element method

(FEM) is commonly used for both micro-scale and macro-scale simulations, resulting

in FE squared (FE2) schemes. Despite using the FE2 model to model ASR, multi-scale

modeling is still extremely computationally challenging due to the large gap between the

spatial scale of the ASR gel formation and initiating damage at microscopic scale and the

scale of the concrete dam structure. As a result of the simple and regular structure of

the meso-scale model, schemes such as fast Fourier transform (FFT)-accelerated schemes

can be used to accelerate the solution process.

Continuum meso-scale modeling (or computational homogenization) involves computing

the overall response of periodic unit cells of material, a representative volume element

(RVE), to an average strain (i.e., macroscale). FEM is commonly used for this purpose.

However, generally, FFT-accelerated solvers are computationally advantageous since

unlike FEM they can leverage the simplicity of the geometry of the regular periodic

solution domain. On the other hand FEM cannot benefit from its main strength, the

capability of handling complex geometries. By introducing spectral methods, Moulinec

and Suquet (1994) have developed a faster alternative method for modeling periodic RVEs

compared to FEM. In terms of computation cost and memory footprint, this new

method is considerably superior to FEM for solving the core problem of computational

homogenization (Eisenlohr et al. (2013)), but has not been fully exploited yet for the

present problem.
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Specifically, for meso-scale ASR damage modeling the following characteristics of the

problem make use of FFT-accelerated schemes challenging: i. ringing artifacts ubiquitous

in the FFT-accelerated solution schemes make the results of continuum damage modeling

non-physical, ii. In the modern and efficient implementations FFT-accelerated solver,

employed iterative solvers (e.g. conjugate gradient (CG)) are incapable of handling non-

convex problems such as damage mechanics. Note that the solver (fixed-point) originally

used by Moulinec and Suquet (1994) despite its capability of handling non-convexity

suffers from other major issues like conditional convergence and also cannot cope with

cell containing phases with high contrasts. Overcoming these problems enables to reduce

the complexity of a multi-scale ASR damage modeling to 106− 107 instead of 1014− 1015

in a fully resolved FEM model, which makes ASR damage modeling feasible.

The goal of this project is to overcome and resolve the existing challenges in meso-scale

modeling of ASR damage with the FFT-accelerated homogenization scheme. This creates

the possibility of fast and efficient ASR damage modeling. In addition, a robust and fast

algorithmic consistent tangent evaluation scheme is introduced in this thesis. Besides,

all the developed and introduced methods are implemented in an open source software

package µSpectre. The µSpectre project, is an open-source platform for efficient FFT-

based continuum mesoscale modeling (Junge et al. (2022)) applicable to solve generic

homogenization problems.

Outline

The following chapters of this dissertation are organized as follows:

Chapter 1 discusses the literature on computational homogenization. This chapter

elaborates on FFT-accelerated homogenization schemes and presents two recent FFT-

accelerated homogenization schemes developed by the µSpectre team in detail.

Chapter 2 reviews the literature on ASR expansion and cracking mechanisms. The

existing models for concrete deterioration due to ASR are described and categorized.

Chapter 3 introduces two ringing mitigation schemes based on two different local ho-

mogenization schemes at the interphases of the solution domain. With the examples

3
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ASR damage simulation
in a concrete dam

Problem complexity ∝ # of elements = 1014 − 1015

Macro-scale

Model size ≈ 106 m3

Element size ≈ 10 m
# elements ≈ 103

Feasible with FEM

Micro-scale

Model size ≈ 1 m3

Element size ≈ 10−3 to 10−2 m
# elements ≈ 107

Speed-up needed
Speed-up possible

w.r.t. conventional FEM
using FFT-accelerated solvers

102 to 103

Accurate multi-scale
ASR damage simulation

in a concrete dam

Problem complexity ∝ 103 × 106−(2,3) ≈ 106 to 107

Figure 1: schematic of the multi-scale model of ASR damage

presented in this chapter, the effectiveness of proposed methods is evaluated.

In Chapter 4, the equivalence of two ringing-free FFT-accelerated homogenization schemes

developed by µSpectre development team, namely the generalized projection based solver

with finite element (FE) discretization scheme (strain-based scheme developed by Leute

et al. (2021)) and the preconditioned FFT-accelerated FEM scheme (displacement-base

scheme developed by Ladecký et al. (2022b)) is shown. I am a co-author of both of

these papers. Their equivalence is first expressed both in their mathematical formulation.

Afterwards, their equivalence is also empirically shown through the comparison of their

solution to a nonlinear homogenization problem. The strain-based scheme is used

in Chapter 7 to simulate ASR damage.

Chapter 5 introduces a modified trust region solver that uses a first order approximation

for the energy functional. This solver, as a non-convex solver that does not require

explicit energy functional, enables us to benefit from the speed-up of FFT-accelerated

homogenization schemes for non-convex problems. This solver is used in Chapter 7 to

solve non-convex ASR damage problem.
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Chapter 6 describes an algorithmic consistent tangent I introduced for the strain-based

solution scheme. The introduced algorithmic consistent tangent merely involves solution

of the linearized RVE problem at equilibrium. I have used potential energy minimization

to derive the tangent. The developed effective tangent evaluation algorithm is exact

within the limits (tolerance) of the solver used to solve the corresponding linear system

of equations. The accuracy of the developed and implemented algorithmic consistent

tangent is validated against analytical solutions. In addition, the accuracy and the

speed-up of the algorithmic consistent tangent is compared to finite difference (FD)

tangent approximation in presented examples in the chapter. The algorithmic consistent

tangent is used in Chapter 7 for evaluating the reduction of the tangent due to ASR

damage.

In Chapter 7, the machinery prepared in the previous chapters (chapters 3-6) is employed

to model ASR damage in a regular periodic RVE. A compression-tension asymmetric

damage material devoid of singularity issue in its tangent evaluation is also presented

in this chapter and used as the constitutive law of the aggregate and the cement paste

composing the RVE. The obtained results are tested against the literature and the

influence of the external load (mean stress in uni-axial compression) is studied. The

effect of using different regular FE discretization is also studied in this chapter.

The thesis is concluded, in Chapter 8, by the summary of the main results and an outlook

on the possible further developments.
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1 State of the art computational

homogenization

Mechanical homogenization, motivated by the idea of representing a heterogeneous

micro-structure as an equivalent homogeneous medium, aims to calculate effective me-

chanical properties of micro-structures, including homogenized elastic constants and the

stress-strain response given the micro-structure and constitutive laws of the individual

components. For simple micro-structures (e.g. micro-structures containing only linear

elastic phases and simple geometries) the effective properties of a heterogeneous material

can be estimated analytically (Budiansky (1965); Mori and Tanaka (1973); Norris (1985);

Hill (1985); Milton and Sawicki (2003); Milton (1995); Nemat-Nasser and Hori (2013)).

However, when the micro-structure gets more complex, analytical methods are generally

no longer suitable for the determination of the effective properties.

Computational homogenization, on the other hand, is an effective method in up-scaling

the behavior of complex micro-structures especially those consisting of, i. highly nonlinear,

or ii. evolving phases (Hill (1963); Geers et al. (2010)). Computational homogenization

methods are based on the construction of a micro-scale boundary value problem, the so-

called cell problem, discretizing the solution domain and solving the governing equation,

equilibrium equation for instance, using numerical schemes such as FEM (Schröder

(2014)) or spectral methods (Moulinec and Suquet (1994); Eisenlohr et al. (2013)).

For solving the homogenization problem numerically, the spectral Fourier-basis solvers

(Boyd (2000)) are efficient with a potential speed up compared to FEM solvers (Eisenlohr

et al. (2013)). They are also appropriate for homogenization problems as the periodic
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Chapter 1. State of the art computational homogenization

boundary condition is the most robust and realistic boundary condition among the

possible RVE boundary conditions, namely, i. uniform displacement ii. uniform traction

iii. periodic boundary conditions).

Following the seminal works of Moulinec and Suquet (1994, 1998), FFT based homoge-

nization methods developed rapidly ; see, e.g. work of Schneider (2021); Lucarini et al.

(2021). The spectral solvers can be efficiently used to solve partial differential equation

(PDE)s corresponding to the quasi-dynamic mechanical equilibrium of microstructure.

The availability of highly optimized FFT implementations (like FFTW Frigo and Johnson

(2005) and PFFT Pippig (2013)) enabled the development of efficient spectral solvers that

can beat standard FEM implementations significantly in terms of computational costs and

computationally accessible system sizes. Increasing the resolution and improving solution

accuracy is straightforward in spectral methods. As a result, large-scale micro-structures

simulations are more efficient using spectral methods compared to conventional FEM.

In spite of their simplicity and efficiency for solving multiphase elastic problems, FFT

methods suffer from mathematical artifacts in the form of spurious oscillations. These

numerical artifacts appear in the homogenization solution as oscillatory overshoots

specifically pronounced in the vicinity of abrupt phase transitions. Since the introduction

of spectral solvers, several studies have tried to find the causes of the numerical artifacts

in the solution of homogenization problem solved with spectral solvers and resolving

them (see e.g. Müller (1996); Willot et al. (2014); Brisard and Dormieux (2012); Willot

(2015); Schneider et al. (2016b); Kaßbohm et al. (2006); Khorrami et al. (2020); Ma et al.

(2021)). Based on the findings in the literature, the following are the main causes of

numerical artifacts persisting in the solution of the spectral solvers:
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(a) Stair-shaped boundary in
pixelated discretization

(b) Boundary-conforming tri-
angular FE mesh.

(c) Pixelation of a circle, in-
terface pixels are shaded.

Figure 1.1: Comparison of a boundary-conforming and a regular voxel mesh obtained
from Kabel et al. (2015)

1. In his work, Doitrand et al. (2015) proposed that voxel-shaped discretization is the

cause of oscillations. In voxel meshes, in contrary to conventional FE discretization,

non-smooth "zig-zag" interfaces between phases are inevitable (see Figure 1.1c), and

modeling interfaces that are not aligned with the regular grid results in stair-shaped

interface boundary (depicted in Figure 1.1c). This shortcoming results in artificial

oscillatory behavior, specifically, in modeling curvilinear interfaces. The stair-cased

shape transition contributes to spurious oscillations in the solution of spectral

methods.

2. In accordance with Moulinec and Suquet (1998), Gibbs ringing might be caused by

the fact that discrete Fourier transform (DFT) cannot satisfy Shannon’s theorem

for heterogeneous fields, in other words, DFT is not equal to Fourier Transform.

To be consistent with Shannon’s theorem, the cutoff frequency (i.e. the frequency

above which the Fourier transform disappears) must be lower than half the sampling

frequency. However, in mechanics, a heterogeneous field does not have a cut-off

frequency.

3. Another possible origin of numerical artifacts in Fourier-accelerated method is re-

ported to be the hourglass effect (Rüter (2019)), which is well known to cause numer-

ical oscillations in FEM and has also been observed in spectral methods (Leuschner

and Fritzen (2018)). The specific type of discretization employed in spectral meth-

ods (voxels) produces non-physical and oscillatory solutions due to the presence of
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deformation modes that are not associated with energy changes. A typical example

of such deformation for a rectangular 2-dimensional (2D) element with only one

integration point in the center is depicted in Figure 1.2. The deformation depicted

in Figure 1.2 yields a strain of zero at the integration point (noted as Q in Figure 1.2)

and therefore corresponds to zero energy in the integration scheme of the element.

This problem in a more general form corresponds to the incapability of voxel grided

domain to express arbitrary compatible deformation field (χ in Figure 1.3a), i.e.

only one strain or placement gradient tensor per voxel is insufficient to represent

a general deformation and can merely present parallelograms. An example of a

deformation making a parallelogram is depicted as ψ in Figure 1.3b.

Figure 1.2: Hourglass mode in a single rectangular element with only one integration
(quadrature point) at its center.

Figure 1.3: (a) arbitrary deformation vs (b) parallelogram deformation of a rectangular
voxel. The undeformed voxel is shown in both subfigures in light blue while in subfigure
(a) the dark blue shows arbitrary deformation noted with χ while the green shape in
subfigure (b) shows the closest parallelogram deformed shape to the arbitrary deformation
field that is obtainable in voxel grid discretization with one node per voxel (Figure is
obtained from Leute et al. (2021)).

A sharp phase transition can cause oscillations in the solution field due to ringing artifacts,

which are exacerbated by the increasing contrast between the touching phases. Damage

10



mechanics problems are the most susceptible to Gibbs ringing artifacts among all me-

chanical homogenization problems for the following reasons. Firstly, The most important

phenomenon that drives damage mechanics is localization, i.e. local overestimation of the

solution field causes non-physical damage initiation or growth, which makes the solution

path of the system non-physical. Solving a damage mechanics problems by the original

spectral method yields checker-board damage pattern (as shown in Figure 1.4a) which is

obviously non-physical.

Figure 1.4: Crack pattern in a concrete micro-structure using a.spectral method suscepti-
ble to ringing artifacts, b.ringing-free solver using a finite element discretization (Figure
is obtained from Leute et al. (2021)).

In addition, the high phase contrast between the damaged and intact phases (ratio of

infinity in practice) also makes the solution particularly prone to high ringing artifacts.

Therefore, for carrying out a physical solution for homogenization of damage mechanics

and specifically ASR damage modeling, it is essential to address the ringing artifact.

Different strategies have been adopted, in the literature, to address the ringing artifact

in spectral methods. Generally, the approaches can be categorized into the following

groups.

1. Smoothing the phase interfaces: remedies in this category try to smooth the

interface of the underlying phases of the solution domain Doitrand et al. (2015);

Kabel et al. (2015); Charière et al. (2020); Ma et al. (2019) by introducing the
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Chapter 1. State of the art computational homogenization

composite voxels as an example. We derive, implement, and test two sub-pixel

homogenization approaches in Chapter 3. These methods can merely mitigate the

artifacts in the solution.

2. Employing standard finite difference derivatives: These methods focus on the basis

function used in the spectral method which implicitly is the Fourier basis in the

original spectral scheme introduced by Moulinec and Suquet (1994). Some of the

studies in the literature employed finite difference discrete derivatives. For instance,

Müller (1996) utilized finite difference discretization, whereas Willot (2015) and

Schneider et al. (2016b) describe a central-difference scheme on a staggered grid.

In the literature, there are also other FFT-accelerated solution schemes using finite

differences (Lebensohn and Needleman (2016); Vidyasagar et al. (2017)). These

methods also can mitigate the ringing artifacts.

3. Altering the discretization: These methods focus on altering the discretization

(regular voxel grid) as well as the basis function conventionally employed in spectral

methods. Schneider et al. (2016a) also used linear hexahedral discretization in

their FFT-accelerated solution scheme and Leuschner and Fritzen (2018) have

developed an accelerated solution scheme based on Galerkin discretization with

a FE basis. Recently, Leute et al. (2021) have developed a ringing free version of

the projection-based spectral scheme using FE discretization and basis function

and Ladecký et al. (2022b) have developed a FFT-accelerated preconditioned FEM

scheme that is mathematically equivalent to the scheme of Leute et al. (2021).

These methods can completely eliminate the ringing artifacts from the solution of

the spectral methods. As shown in Figure 1.4b, such schemes are proper to model

problems with localized phenomena such as damage mechanics.

In the rest of this chapter, after defining the nonlinear small-strain elasticity problem, I

will elaborate on the projection-based spectral scheme using FE basis function that I co-

developed with Leute et al. (2021), called, afterwards strain-based scheme since the degree

of freedom (DoF) of the scheme is strain, and the FFT-accelerated preconditioned FEM

scheme ( Ladecký et al. (2022b)), called, from here on, displacement-based scheme since

the DoF of the scheme is displacement, similar to previous work of Lucarini and Segurado
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1.1 Notation

(2019b) where the authors also used displacement as the DoF of a FFT-accelerated

solution scheme. I co-developed these two schemes with the µSpectre development team

and implemented them in µSpectre Junge et al. (2022). They are used as the numerical

solver in this dissertation.

1.1 Notation

We denote d-dimensional vectors and matrices by boldface letters: a = (aα)d
α=1 ∈ Rd or

A = (Aαβ)d
α,β=1 ∈ Rd×d. Matrix-matrix and matrix-vector multiplications are denoted as

C = BA and c = Ba , which in the Einstein summation notation reads as Cαγ = BαβAβγ

and cα = Bαβaβ respectively. Greek letters (α, β, γ etc.) will be reserved for spatial

indexes in range of 1 to d. The colon : is the double dot product, a tensor contraction

over two indices; therefore, A : B can be noted in the index notation as AαβBβα.

Vectors and matrices arising from the discretization will be denoted by a and A, to

highlight their special structure. These notations correspond to matrices and vectors

defined on a d-dimensional grid and defined on all of the discretization points of the grid.

The (I)-th component of a will be denoted as a[I] and (I, J)-th component of A will be

denoted as A[I, J ]. We consider a general d-dimensional setting throughout the paper.

However, for the sake of readability, I use d = 2 in the expanded form of matrices, such

as in equation (1.2).

1.2 Nonlinear small-strain elasticity

A d-dimensional rectangular periodic cell Ω = ∏d
α=1

[
− lα

2 ,
lα
2

]
is considered as the solution

domain corresponding to the RVE schematically shown in 2D in Figure 1.5. The schemes

explained in the following use the Mandel notation for the derivation as the symmetry of

the small strain formulation elasticity allows. Doing so, we can reduce the dimension of

the symmetric strain tensor from

ε = ∂u : Ω→ Rd×d
sym (1.1)
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Chapter 1. State of the art computational homogenization

x1

x2

Ω

Figure 1.5: Rectangular two-dimensional cell with outlined periodic micro-structure
obtained from Ladecký et al. (2021).

to ∂u : Ω→ Rdm , where dm = (d)(d+1)
2 and the symmetrized gradient operator ∂ is in

2D defined as:

∂u =


(∇su)11

(∇su)22
√

2(∇su)12

 =


∂

∂x1
0

0 ∂
∂x2√

2
2

∂
∂x2

√
2

2
∂

∂x1


u1

u2

 . (1.2)

Accordingly, the fourth rank C : Ω → Rd×d×d×d can be represented as C → Rdm×dm

defined in the 2D case as:

C =


C1111 C1122

√
2C1112

C2211 C2222
√

2C2212
√

2C1211
√

2C1222 2C1212

 . (1.3)

We split the overall strain of the RVE, ε, to its mean, E, and periodic fluctuation ε̃ = ∂ũ

contributions,

ε(x) = E + ∂ũ(x) ∀x ∈ Ω. (1.4)

The placement field ũ belongs to the space of admissible functions V
{

ṽ : Ω-periodic→ Rd
}

and
∫

Ω ṽ dx = 0. The mechanical equilibrium equation as the governing equation can be
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1.3 Strain-based (projection-based FFT-accelerated) scheme

written in our notation as (Belytschko et al. (2014)):

∂T σ(x,E + ∂ũ(x),h(x)) = 0 ∀x ∈ Ω, (1.5)

where h represents the internal parameters of the materials and σ is the stress field and

∂T denotes the divergence operator. Various phases of a micro-structure can be described

by different material models in a finite- or small-strain formulation. As mentioned earlier

we take small-strain as the formulation; however, it is straightforward to extend the

derivation to finite-strain.

The equilibrium equation (1.5) can be reformulated in the weak form as:

∫
Ω
ṽ(x)T

(
∂T σ(x,E + ε̃(x),h(x))

)
dx = 0 ∀ṽ ∈ V (1.6)

where ṽ is the test function.

1.3 Strain-based (projection-based FFT-accelerated) scheme

Homogenization schemes, mostly, combine equations (1.1) and (1.6) , which yield a set

of 2nd order differential equations. In the case of small strain formulation, they become

the well-known Navier-Lamé equations. By contrast, equilibrium solution with Fourier

techniques, typically, treat equations (1.6) and (1.1) as two sets of first-order differential

equations separately (e.g. Lahellec et al. (2003); Vondřejc et al. (2014); Zeman et al.

(2017); de Geus et al. (2017)). In such methods, the strain tensor ε is the DoF of the

solution (in small strain), i.e. the equations are solved to directly obtain ε. Equation (1.1)

can be regarded as a constraint that enforces compatibility of the strain tensor, i.e. being

the symmetric gradient of the respective placement map.

As proposed in the Fourier-Galerkin (FG) scheme developed by Zeman et al. (2017);

de Geus et al. (2017), the projection based solution solves equations (1.5) and (1.1)

in the subspace of compatible second-order tensors such that the pair of first-order

differential equations reduces to the single first-order differential Eq. (1.5). This is

formulated mathematically by a projection operator G that maps any second-order

tensor onto its compatible part and thereby into the subspace of compatible tensors.
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The compatibility projection operator can be mathematically formulated according to

Helmholtz decomposition.

In the strain-based scheme, the equilibrium equation (1.6) using the divergence theorem

can be reformulated as:

∫
Ω

( ˇ̃ζ(x)
)T

σ(x,E + ε̃(x),h(x)) dx = 0,

∀ ˇ̃ζ ∈ E = {∂ũ(x), ũ(x) : periodic} (1.7)

with ˇ̃ζ = ∂ṽ. The space of the compatible strain fields is denoted as E . Note that the

boundary terms vanish due to periodicity of the domain. It is also notable that, in

addition to ˇ̃ζ, ε̃(x) also needs to belong to E which is often overlooked in the derivations

in the literature. This is because the employed iterative solvers update the solution

with iterates that are in the compatible field. This automatically makes the ε̃(x) to

be a compatible field (Vondřejc et al. (2014)). This makes explicit application of the

compatibility operator on the resultant fluctuation strain field unnecessary.

The test function in the strain-based scheme, ˇ̃ζ in (1.7), should be in a compatible strain

space while in the FEM formulation, the test function is a displacement field. Therefore,

the test function of the strain-based scheme is not an arbitrary field (unlike FEM). On

the other hand, proceeding with the Galerkin discretization necessitates having a fully

arbitrary test function. As a result, in order to apply the Galerkin discretization on (1.7),

it is necessary to impose compatibility on the test variable. Zeman et al. (2017) have

introduced a compatibility projection operator G based on the Fourier discretization to

impose compatibility. The Operator G maps any second-order tensor to its compatible

(periodic gradient) contribution. Applying the projection operator on the test variable

ζ̃(x) makes it possible to continue with the Galerkin discretization and solve directly for

strain field.
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1.3 Strain-based (projection-based FFT-accelerated) scheme

1.3.1 Projection operator

The key element of the strain-based scheme is the projection operator G which enforces

compatibility on an arbitrary field ζ̃(x) as:

ˇ̃ζ(x) =
[
G ⋆ ζ̃

]
(x)

=
∫

Ω
G(x− y) : ζ̃(y) dy ∀x ∈ Ω. (1.8)

Applying the projection yields the compatible contribution ˇ̃ζ(x) of the original field ζ̃(x).

In (1.8), ⋆ denotes the convolution operator. The convolution format of Eq. (1.8) makes

its application in Fourier space convenient, since convolution in real space is equivalent

to contraction in Fourier space. Accordingly, (1.8) can be rewritten as:

ˇ̃ζ(x) = F−1{Ĝ(k) : F{ζ̃(k)}} (1.9)

where Ĝ(k) is the compatibility operator in the Fourier space, and k is the discrete

frequency vector in the Fourier domain. Leute et al. (2021) derived a general expression

for the operator Ĝ which can be expressed as an explicit function of a second rank

tensor ĝ:
(
Ĝ = Ĝ (ĝ)

)
. Considering that the objective of the Ĝ operator is projecting a

field as close as possible to its compatible contribution, they derived the operator ĝ by

minimizing the difference of the ˇ̃ζ and ∂ṽ as:

ĝαβ(k) = D̂α(k)
(
D̂∗

θ(k)D̂θ(k)
)−1
D̂∗

β(k) (1.10)

in index notation, where D̂ is the derivative operator (∂) in Fourier space, and ∗ denotes

the Hermitian transpose, the derivation will be worked out in :FEM. The form of the

projection operator Ĝ as a function of ĝ is different in small strain and finite strain

formulations (further details can be found in Zeman et al. (2017); Leute et al. (2021)).

In the original projection based method developed by Zeman et al. (2017), D̂ was

expressed based on the Fourier basis as D̂(k) = ik which yields a second rank tensor of
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ĝ of the form:

ĝαβ(k) =


0 if k = 0,
kαkβ

k2 ∀ k ̸= 0.
(1.11)

ks are normalized discrete Fourier wave-vectors. Leute et al. (2021) showed that, based

on the general form of the projection operator according to (1.10) it is possible to derive

projection operators using gradient operator (D̂) obtained from different discretizations

and basis sets of choice. For instance, Leute et al. (2021) worked out a projection operator

based on a linear FE discretization and showed that using the basis functions of a FE

discretization results in elimination of Gibbs ringing artifact. This makes use of FE

discretization suitable for problems with localized phenomena such as damage mechanics

which is the target problem in this dissertation.

Choosing different D̂ in a projection based spectral method is equivalent to choosing

different element types and shape functions in the conventional FEM formulation. The

operator D̂, in case of using FE discretization, is calculated using the derivative of the

corresponding shape functions. Similar to a FE scheme, the strain, stress, and tangents

are evaluated at the quadrature point of the FE discretization. In the following, the

discretized equilibrium equation is derived following a FE discretization process.

The projection operator, corresponding to a regular discretization grid, is denoted as G.

The Fourier parts of the application of the projection operator is dropped from now on

for sake of brevity and the action of the projection operator on a discretized field ζ̃ is in

the discretized format is, in the following, noted as:

ˇ̃ζ = G ζ̃. (1.12)

1.3.2 Discretization

The weak form (1.7) can be discretized using the Galerkin method with FE basis functions

conforming to a regular space-filling discretization. Such a discretization can be generated

by periodic repetition of a space-filling discretization stencil, examples of which in 2D
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1.3 Strain-based (projection-based FFT-accelerated) scheme

are shown in Figure 1.6. Inspired by the standard FE discretization procedure, the weak

form (1.7) can be written as:

∫
Ω

(ˇ̃ζ(x))T σ(x,E + ε̃(x),h(x)) dx

≈
NQ∑

Q=1
(ˇ̃ζ(xQ))T σ(xQ,E + ε̃(xQ),h(xQ))wQ,

(1.13)

where NQ is the number of the quadrature points xQ. Strain and stress fields are evaluated

at quadrature points xQ
q , Q ∈ {1, 2, . . . , NQ }. On the other hand, the displacement fields

are evaluated at discretization (nodal) points. Every component ũα of the unknown

vector ũ is approximated by a linear combination of interpolating finite element basis

functions

ũα(x) ≈ ũN
α (x) =

NI∑
I=1

ũI
αϕ

I
α(x) for all x ∈ Ω, (1.14)

the coefficients ũI
α = ũN

α (xI) correspond to the values of ũN
α at the discretization points

xI and ϕI are the FE interpolation basis functions.

As noted before, the compatibility of the ˇ̃ε, ˇ̃ζ is not primarily satisfied. By definition ˇ̃ε,
ˇ̃ζ are formulated as:

ˇ̃εN
αβ(xQ) =

NI∑
I=1

ũN
α (xI)∂ϕ

I(xQ)
∂xβ

, and ˇ̃ζN
αβ(xQ) =

NI∑
I=1

ṽN
α (xI)∂ϕ

I(xQ)
∂xβ

. (1.15)

The compatibility can be enforced using the discrete operator G ∈ RdmNQ×dmNQ intro-

duced in (1.12) and accordingly left hand of (1.13) can be rewritten as:

(Gζ̃)T Wσ(E + Gε̃,h) = 0 ∀ ζ̃ ∈ RdmNQ , (1.16)

where W ∈ RdmNQ×dmNQ are quadrature weight matrices in 2D with form of:

W =


Wm 0 0

0 Wm 0

0 0 Wm

, (1.17)
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consisting of dm identical diagonal matrices Wm[Q,Q] = wQ. considering that the test

field ζ̃ is now arbitrary, the discretized equilibrium (1.16) casts to:

GT Wσ(E + Gε̃,h) = 0, (1.18)

Where the strain field is defined on quadrature points of the FEM discretization. It is

notable that the action of GT operator is equivalent to the divergence operator.

1.3.3 Linearization

Using Newton’s method to solve the nonlinear system of equilibrium equation (1.18)

iteratively, the (i+ 1)th update of the strain field ε(i+1) in the iterative scheme can be

calculated from the previous approximation of the strain field ε(i) incremented by a strain

increment (finite increment) δε(i+1),

ε(i+1) = ε(i) + δε(i+1). (1.19)

starting from an initial strain approximation ε0, the strain increment at each step is

given by solution of the linear system:

GT CW
(i)Gδε̃(i+1) = −GT Wσ(E + Gε̃(i),h(i)). (1.20)

Here weighed constitutive tangent matrix CW
(i) = WC(i) absorbs quadrature weights W.

Based on the findings of Zeman et al. (2010); Vondřejc et al. (2014) and according to the

fact that using the G ensures the compatibility of the solution steps (the solution steps

belong to a compatible strain field E), right projection in the left hand side of (1.20) can

be dropped and the linearized version of the equilibrium equation casts to:

GT CW
(i)δε̃

(i+1) = −GT Wσ(E + Gε̃(i),h(i)). (1.21)
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Figure 1.6: Example of regular periodic FE grids with associated discretization stencils
for a two-dimensional cell Ω. All grids consist of 16 pixels (Np = 16). Row (1) shows:
(a.1) a grid with 16 discretization nodes (NI = 16) and quadrature points (NQ = 64),
(b.1) a grid with 16 discretization nodes (NI = 16) and 32 quadrature points (NQ = 32),
(c.1) a grid with 32 discretization nodes (NI = 32) and 64 quadrature points (NQ = 64).
Row (2) shows: (a.2) a one-node stencil (Nn = 1) with one bilinear rectangular element
and four quadrature points with quadrature weights wQ = 1

4Vp, (b.2) a one-node stencil
(Nn = 1) with two linear triangular elements and two quadrature points with quadrature
weights wQ = 1

2Vp, (c.2) a two-node stencil (Nn = 2) with four linear triangular elements
and four quadrature points with quadrature weights wQ = 1

4Vp, Here, Vp denotes pixel
volume, such that VpNp = |Ω|. This figure is obtained from Ladecký et al. (2022b).
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1.4 Displacement-based (preconditioned FFT-accelerated

FEM) scheme

In this scheme, after applying the divergence theorem on the weak form noted in (1.6), in-

stead of taking ∂ṽ as ζ̃, the Galerkin discretization scheme is followed for the displacement

test function of ṽ similar to standard FEM framework which yields:

∫
Ω

∂ṽ(x)T σ(x,E + ∂ũ(x),h(x)) dx = 0 ∀ṽ ∈ V, (1.22)

1.4.1 Discretization

The weak form (1.22) can be discretized following a process similar to what is ex-

plained in Subsection 1.3.2. Strain and stress fields are evaluated at quadrature points

xQ
q , Q ∈ {1, 2, . . . , NQ }, and the displacement fields are sampled at nodal points

xI
n, I ∈ {1, 2, . . . , NI }, cf. Figure 1.6. The count of nodal points is the product of

the number of pixels Np and the number of nodal points per pixel Nn. Here, we follow

standard FE theory and approximate ṽ and ũ by continuous element-wise polynomial

of degree k and, therefore, their gradients are also expressable with polynomials with

degree up to k. This enables us to proceed with discretizing the weak form equilibrium

equation (1.22) with a suitable Gaussian quadrature rule:

∫
Ω

∂ṽ(x)T σ(x,E + ∂ũ(x),h(x)) dx

≈
NQ∑

Q=1
∂ṽ(xQ

q )T σ(xQ
q ,E + ∂ũ(xQ

q ),h(xQ
q ))wQ,

(1.23)

where the choice of the quadrature rule determines the position of the quadrature points

xQ
q and the quadrature weights wQ. Components of ũα are approximated with a linear

combination of the basis functions ϕI (shape function corresponding to NI) as:

ũα(x) ≈ ũN
α (x) =

NI∑
I=1

ũN
α (xI

n)ϕI(x) ∀x ∈ Ω, (1.24)
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where ũN
α (xI

n) are the nodal values for all ũN
α at nodal points xI

n. Taking partial derivative

of (1.24) and evaluating at quadrature points yields:

∂ũN
α (xQ

q )
∂xβ

=
NI∑
I=1

ũN
α (xI

n)
∂ϕI(xQ

q )
∂xβ

for Q = 1, . . . , NQ. (1.25)

Using (1.25) one can evaluate the symmetrized gradients at quadrature points based on

the nodal values. According to (1.25) one can define the partial derivative operator ∂
∂xβ

in the matrix format as:

Dβ[Q, I] =
∂ϕI(xQ

q )
∂xβ

for Q = 1, . . . , NQ and I = 1, . . . , NI . (1.26)

Accordingly (1.25) can be written as:

∂ũN
α (xQ

q )
∂xβ

=
NI∑
I=1

ũN
α (xI

n)Dβ[Q, I] for Q = 1, . . . , NQ. (1.27)

Subsitution of (1.27) in (1.2) yields:

∂ũ = Dũ =


D1 0

0 D2
√

2
2 D2

√
2

2 D1


ũ1

ũ2

, (1.28)

as the approximation of the symmetrized gradient of displacement fluctuation (strain

fluctuation) evaluated at quadrature points based on ũα (the placement fluctuation

evaluated at nodal points in the direction α). The matrices D1 are sparse due to the local

support of the FE basis function and block circulant due to periodicity of the domain.

Using regular FE discretization enables expressing the discretized gradient with the same

gradient stencil for all of the pixels in the RVE. Therefore, the gradient of displacement

field ũ can be obtained by a convolution of ũ with a short kernel, namely the gradient

stencil.

According to (1.28), one can write the weak form (1.23) in a discretized format which
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becomes:

ṽT DT Wσ(E + Dũ,h) = 0 ∀ṽ ∈ RdNI , (1.29)

with W ∈ RdmNQ×dmNQ , defined in (1.17). Since the test vector ṽ is an arbitrary field,

the discrete nonlinear equilibrium equation takes the form of:

DT Wσ(e + Dũ,h) = 0. (1.30)

1.4.2 Linearization

In order to solve (1.30) iteratively we use Newton’s method to linearize it. Suppose

the (i + 1)th approximation of the nodal values ũ(i+1) ∈ RNI is given as the previous

approximation ũ(i) ∈ RNI incremented by a finite displacement increment ũ(i+1) ∈ RNI :

ũ(i+1) = ũ(i) + δũ(i+1), (1.31)

with an initial approximation ũ(0) ∈ RNI . The displacement increment δũ(i+1) follows

from the solution of the linear system

DT WC(i)D︸ ︷︷ ︸
K(i)

δũ(i+1) = −DT Wσ(E + Dũ(i),h(i))︸ ︷︷ ︸
b(i)

, (1.32)

where the discrete constitutive tangent matrix C(i) = ∂σ

∂ε
(e+Dũ(i),h(i)) ∈ RdmNQ×dmNQ ,

C(i) =


C(i)11 C(i)12 C(i)13

C(i)21 C(i)22 C(i)23

C(i)31 C(i)32 C(i)33

, (1.33)

is obtained from the constitutive tangent C(i)(x) = ∂σ

∂ε
(x,E + ∂ũ(i)(x),h(i)(x)), eval-

uated at quadrature points given the ũ(i) the displacements at nodal points and the

material internal variables h(i). K(i) ∈ RdNI×dNI denotes the matrix of the linear system

(1.32), and b(i) ∈ RdNI stands for its right-hand side. So far, we have worked out the
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1.4 Displacement-based (preconditioned FFT-accelerated FEM) scheme

standard FE discretized equilibrium equation.

Equation (1.32) is the linearized FE equilibrium equation for a regular, space-filling, and

periodic discretized RVE resulting in a symmetric system matrix K(i) that is also positive

definite for a wide range of homogenization problems. This makes the CG method

the method of choice for solving (1.32), when combined with a proper preconditioner

optimizing spectral characteristics of the system matrix. The preconditioner, presented in

the following, is most conveniently applied in Fourier space according to its mathematical

characteristics.

1.4.3 Preconditioning

The linearized equilibrium equation (1.32) is spectrally badly conditioned, i.e. the

distribution of the eigenvalues of the system matrix do not make clusters and are

distributed sparsely. The spectral characteristics of the system matrix are a crucial

factor to the solution of linear systems with iterative solvers such as CG (Ganesh and

Morgenstern (2020)). Undesired spectral properties (distribution of eigenvalues) of

the linearized system makes use of iterative solver such as CG inefficient for solving

equation (1.32) and also their solution complexity does not scale well with problem

size (Bercovier and Rosenthal (1986)). The preconditioning is meant to improve the

performance of iterative solvers solving a modified linear system of equation by clustering

the distribution of its eigenvalues:

M−1
(i) K(i)δũ(i+1) = M−1

(i) b(i), (1.34)

The preconditioned system of equation (1.34) should have more favorable spectral

properties compared to (1.32) (Saad (2003); Golub and Van Loan (2013)).

In addition, another important characteristic of a proper preconditioner is having a

computationally inexpensive inversion, since the inversion is basically an overhead to

the solution process. It is notable that the matrix M−1
(i) K(i) is not symmetric which

makes CG inapplicable; however, given that both M−1
(i) and K(i) are symmetric, the

system (1.34) solved with preconditioned conjugate gradient (PCG) becomes equivalent
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to the symmetric form:

M−1/2
(i) K(i)M

−1/2
(i) δz(i+1) = M−1/2

(i) b(i) (1.35)

where, δz(i+1) = M1/2
(i) δũ(i+1), Therefore, (1.34) is solvable with PCG (Saad (2003)).

The preconditioner M(i) proposed by Ladecký et al. (2021) has the format of the original

system matrix of (1.32) though the material tangent stiffness in K(i) is replaced by a

spatially uniform material data (tangent) of a reference material (Cref ∈ Rdm×dm).

M(i) = Kref
(i) = DT WCref

(i)D ∈ RdNI×dNI . (1.36)

Based on the results recently obtained by Gergelits et al. (2019); Pultarová and Ladeckỳ

(2021); Ladecký et al. (2021) that eigenvalues of the preconditioned system matrix

M−1
(i) K(i) reside in the following bounds independent of the system size:

λL
I = min

xQ
q ∈ supp ϕI

λmin

((
Cref

(i)

)−1
C(i)(xQ

q )
)
, I = 1, . . . , NI, (1.37)

λU
I = max

xQ
q ∈ supp ϕI

λmax

((
Cref

(i)

)−1
C(i)(xQ

q )
)
, I = 1, . . . , NI, (1.38)

where suppϕI denotes the support of shape function ϕI , and λmin, λmax are the minimal

and maximal generalized eigenvalues, respectively. Based on (1.37) and (1.38), the

conditioning number of the preconditioned system is independent of the discretization

size (characteristic element length) and does not grow with mesh refinement. The

preconditioner
(
Kref

(i)

)−1
clusters the eigenvalues of the system matrix and the number

of the resulting clusters is independent of the discretization size of the solution domain.

This is shown in Ladecký et al. (2022b) by showing that the number of required CG steps

(representing the number of eigen value clusters) does not growing with mesh refinement.

The proposed preconditioner is similar to the preconditioner proposed by Lucarini and

Segurado (2019b).
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1.4.4 Preconditioner inversion

Regular FE discretization yields spatially invariant D since the stencil of all the pixels

are identical. Therefore, for a spatially uniform Cref
(i) the preconditioning matrix Kref

(i) ∈

RdNnNp×dNnNp consists of (dNn)2 block-circulant blocks of Kref
(i)ᾱβ̄ ∈ RNp×Np :

Kref
(i) =

Kref
(i)11 Kref

(i)12

Kref
(i)21 Kref

(i)22

 ∈ R2Np×2Np , (for dNn = 2). (1.39)

The block circulant structure of Kref
(i)ᾱβ̄ makes its Fourier counterpart:

K̂ref
(i)ᾱβ̄ = FKref

(i)ᾱβ̄FH (1.40)

The details are elaborated on by Ladecký et al. (2022b). The expanded version of the

linearized equilibrium equation reads as:

(DT WCref
(i)D)−1︸ ︷︷ ︸(

Kref
(i)

)−1

DT WC(i)D︸ ︷︷ ︸
K(i)

δũ(i+1) =− (DT WCref
(i)D)−1︸ ︷︷ ︸(

Kref
(i)

)−1

DT Wσ(e + Dũ(i),h(i))︸ ︷︷ ︸
−b(i)

. (1.41)

According to the findings of Ladecký et al. (2022b) the spectral characteristics of precondi-

tioned FFT-accelerated scheme are as favorable as the projection-based FFT-accelerated

scheme and given same discretization (e.g. identical FE discretization) the two methods

are equivalent.

Optimal spectral characteristics of the system matrix in (1.21) and (1.41) makes linear

iterative solvers and specifically CG solver ideal for solving the linearized equilibrium

equation (1.21) (Pultarová and Ladeckỳ (2021)). However, solving (1.21) with CG solver

needs Hessian matrix C to be symmetric positive semi definite (SPSD) which is not the

case in several mechanical homogenization problems such as meta-materials(Li. (2017))

or continuum damage (Bažant (1976); Marvi-Mashhadi et al. (2020)). This issue is

discussed and resolved in Chapter 5 by choosing a different iterative solver capable of

handling non-convexity. After enabling the non-convex optimization in the strain-based

scheme it will be used in Chapter 7 for modeling ASR damage.
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ASR is one of the most prevalent causes of concrete deterioration Hobbs (1988); Swamy

(1991). ASR, reported for the first time by Stanton (1942), has caused deterioration to

many concrete structures, such as dams and bridges (Sellier et al. (2017)). The ASR

outcomes, on a structural level, include concrete expansion, loss of stiffness and strength,

and even failure. This chapter discusses the state of the art of ASR modeling, after

briefly introducing the ASR process.

2.1 ASR process

The ASR process begins with the formation of "gels" that are the result of chemical

reactions between silica (SiO2) in the aggregates and alkali in the pore solution (Fernandes

et al. (2004); Ramyar et al. (2004); Peterson et al. (2006); Glasser and Kataoka (1981,

1982)),

Si−O− Si + R+ + OH− → Si−O− R + H−O− Si, (2.1)

H−O− Si + R+ + OH− → Si−O− R︸ ︷︷ ︸
ASR gel

+H2O. (2.2)

Due to its hydrophilicity, the formed gel absorbs a significant amount of moisture, causing

it to expand significantly (Pan et al. (2012)). Gel pockets are contained within the pores

of the aggregates, and as they grow, they subject concrete structures to highly localized

stress. The induced stress in concrete may cause microcracks inside aggregates (Ponce
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and Batic (2006); Garcia-Diaz et al. (2006)), which grow and propagate as the alkali

silica reaction advances. The coalescence of these cracks can cause stiffness loss and even

failure at structural scale.

Concrete structures such as concrete dams are meant to last for decades or even centuries.

Therefore, it is important to study ASR damage consequences on their structure that

might appear in time scale of several years or decades. Various experiments have been

conducted to determine how ASR affects concrete structures (Swamy and Al-Asali (1988);

Marzouk and Langdon (2003)). Based on their findings, the ASR process and its effects on

the mechanical properties of concrete may be influenced by a variety of factors including

the mineralogy of the rock, the size of the aggregate, the alkali content, the relative

humidity, temperature, and the confining stress, etc. Therefore, it is necessary to model

the structures affected by ASR to evaluate the ASR influence on them and make a better

understanding of the effects of different parameters.

ASR outcome depends on different mechanisms going on at various spatial scales from

micro-scale where the ASR gels form (micro-scale) to the meso-scale where microcracks

inside concrete aggregate coalesce and propagate into the cement paste, and, finally,

macro-scale, where the structural outcome appears as macroscopic expansion, stiffness loss

and structural failure. The multi-scale, multi-physics nature of the ASR damage process

has always been an obstacle in developing a comprehensive predictive and practical model.

To the author’s best knowledge, previous investigations of the effects of micro-cracking

on the structural scales have not been successfully scaled due to their prohibitively

high computational costs (Cuba Ramos (2017)). In other words, explicit modeling

of the underlying phenomena at the micro-structure using conventional methods yield

computationally unacceptable problem sizes. On the other hand, it is vital for a predictive

engineering model to resolve and probe the ongoing phenomena with sufficient resolution

and capture the structural behavior at the same time. This means that the ASR process

needs to be studied in a multi-scale scheme.
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Figure 2.1: Different scales in modeling ASR (Figures adopted from Walker et al. (2006)
and Papilloud (2019))

2.2 ASR simulation

There are two basic aspects involved in the the ASR damage process, namely chemical

and mechanical aspects of ASR as depicted in Figure 2.2. Based on findings of Dunant

(2009) and the review conducted by Pan et al. (2012), the interaction of the chemical and

the mechanical aspect of ASR is unidirectional and the gel formation pace is independent

of mechanical phase of the process. Accordingly, the chemical (left half of the process

shown in Figure 2.2) and the mechanical aspect (right half of the process in Figure 2.2)

of the ASR process are separable and can be studied independently of each other. As

shown by Cuba Ramos (2017), the mechanical part of the process does not influence

on its chemical part. Therefore, in a comprehensive ASR damage model we can detach

these two phases and only focus on the mechanical part.

Explicit modeling of underlying phenomena in the concrete micro structure using conven-

tional methods (such as conventional FEM) yields computationally prohibitive models.

My research focuses on the mechanical aspect of the ASR damage process and more

specifically on speeding up ASR modeling at the meso scale.

Modeling the mechanical aspects of ASR can be addressed at different spatial scales as
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Figure 2.2: Separation of chemical and mechanical aspects of ASR

shown in Figure 2.1 and briefly described hereunder:

• Micro scale: The models at this scale are capable of capturing the smallest feature

of ASR damage explicitly, i.e. the ASR gel pockets and their interaction with

other phases (Zdenek et al. (2000); Schlangen and Çopuroglu (2007); Garcia-

Diaz et al. (2006); Dunant and Scrivener (2010)). Accordingly, the resolution of

micro scale models are in order of magnitude of 10−6 m (smallest scale shown

in Figure 2.1a). This resolution allows to resolve crack initiation due to gel

pocket expansion (Gallyamov et al. (2022)). The upper bound of the micro scale

simulation setups is bounded by computational facilities. Models at this scale

cannot currently involve multiple ASR product sites. The findings of micro scale

models are valuable to study the influences of gel growth on localization and damage

initiation mechanisms on ASR damage (Suwito et al. (2002)).

• Meso scale: The models at this scale should be big enough to be able to statistically

represent concrete micro-structure with a random distribution of aggregate and

cement paste phases; therefore, the size of the model setup should be in the order of

the magnitude of 10−1 − 100 m where one can resolve concrete micro-structure, as

shown in Figure 2.1b (Comby-Peyrot et al. (2009); Dunant and Scrivener (2012);

Cuba Ramos (2017); Gallyamov et al. (2020)). Models at this spatial scale can be

used RVEs for larger spatial scales. This is the scale that is mainly targeted to

improve in my research.

• Macro scale: The models at this scale are used to predict the structural response of

the structures experiencing ASR damage like the Salanfe dam shown in Figure 2.1c.
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Most of existing models at this scale utilize phenomenological laws for modeling

the ASR damage (Multon and Toutlemonde (2006)). The main characteristic of

macro-scale ASR damage models is considering concrete as a homogeneous medium.

One way of treating ASR expansion in these models is applying a local eigenstrain

at the elements including the ASR product sites (Charlwood and Scrivener (2011);

Charlwood et al. (1992)). The induced ASR expansion can also be taken a function

of temperature, moisture and other environmental inputs to study the variation

of ASR damage with respect to these parameters Léger et al. (1996).

Based on the findings of Cuba Ramos (2017), the load state imposed on the structure and

the load scenarios do not influence the ASR expansion at the reactive ASR sites. Therefore,

the phenomenon resolved in the micro-scale mechanical ASR damage modeling category

(the first category presented above) can be separated from the other two categories

dealing with larger spatial scales. Accordingly, in order to have a predictive ASR damage

model in a structural scale, it is sufficient to resolve the problem discretized with the

resolution of 10−3 − 10−2 m where the cement paste and the aggregates can be taken

as explicit phases in the model. In other words, the resolution that is considered in

the meso-scale models is necessary to model the ASR damage process accurately at the

structural scale.

Accordingly, the required simulation setup sizes in a three dimensional setup results in

1012 − 1015 elements which is clearly beyond the computational power of the existing

computational facilities and is computationally prohibitive. A possible solution is using a

multi-scale model that breaks the problem into meso- and macro-scale models as depicted

in Figure 1 in the introduction chapter. By adopting a multi-scale model, we can break

the problem into a macro scale model with the element count in the order of 103 and a

meso-scale model with element count of 107 (as depicted in Figure 1). The meso-scale part

of the model is computationally expensive and the focus of this research is accelerating it

in order to make comprehensive ASR modeling computationally affordable.

Cuba Ramos (2017) has developed one of the most promising multi scale models for

simulating ASR damage. In their developed model, a FE2 approach was adopted; however,

it was not successful for simulating 3D ASR damage simulation and hampered by its high
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computational costs. In FE2 models, the underlying meso scale RVEs use FEM to solve

the governing equations. FEM is designed to solve problems with complex geometries.

The geometry of the RVEs (solution domain at meso-scale) are generally very simple

and most of FEM machinery is actually wasted in solving such problems.

Cuba Ramos (2017) has adopted a continuum damage constitutive law, first introduced

by Kachanov (1958), to model the ASR damage model at meso-scale. In this constitutive

law, material is linear elastic before the damage threshold and switches to strain-softening

after reaching a certain load state (Mazars (1984)). Strain softening is applied by a scalar

damage variable D. The strain softening constitutive law, in their model, is isotropic

and the Young modulus of the damaged material decays according to E = E0(1 −D)

where E0 is the intact Young modulus. The scalar damage variable D ranges between

0 for the virgin material to 1 for complete failure. The damage surface (f), proposed

by Mazars and Pijaudier-Cabot (1989) has the form of:

f = ε̆− κ (D) (2.3)

where ε̆ is a strain measure and κ is softening parameter which takes the largest value of

the equivalent strain measure ε̆ ever reached by the material. The most simple strain

measure that results in the most simple strain-softening damage law is the norm of

the strain tensor. One other possible strain measure appropriate for modeling concrete

constitutive behavior used by Cuba Ramos (2017) has the form of:

ε̆ =
d∑
i

H(ϵi) (2.4)

where, d is the number of the dimensions of the problems , εi is the ith eigenvalue of the

strain tensor, and H is the Heaviside function. As a result of this strain measure, the

material is only damaged in tensile conditions.

The strain softening part of the constitutive law introduces a non-convex potential

energy which makes non-linear FEM solvers susceptible to instabilities (Pijaudier-Cabot

and Bažant (1987)). Cuba Ramos (2017) adopted the sequential linear algorithm

(SLA) (explained in details in Rots (2001); Rots and Invernizzi (2004); Rots et al. (2008);
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2.2 ASR simulation

DeJong et al. (2008)) to circumvent non-convexity of the problems. SLA is based on

breaking the non-linear non-convex problem to a sequence of linear convex problems.

In SLA, in each solution step, only one integration point is allowed to soften by certain

reduction of its stiffness due to damage (Pari et al. (2022)). SLA is an event-driven

algorithm and therefore it does not scale with problem size since by increasing problem size

damage sites (possible event sites) increases rapidly; therefore, SLA becomes inefficient.

This is a major drawback of a cell problem in the multi-scale model of Cuba Ramos

(2017).

The combined complexity of meso- and macro-scale in the multi-scale model (as developed

by Cuba Ramos (2017)) is proven to be prohibitively high and significant further speed

up is necessary to have a comprehensive ASR damage modeling. In the multi-scale ASR

model depicted in Figure 1, I have deliberately divided the problem in an unbalanced

fashion (the meso-scale model is larger in sense of number of elements). This is because,

in the meso-scale model, due to the regular geometry of the solution domain, one can use

solution schemes faster than conventional FEM. In this research, I use FFT-accelerated

solution schemes to speed up the solution in the meso scale model (at least 2 orders

of magnitude).My modifications enabling effectively use of FFT-accelerated methods

for ASR damage modeling are elaborated on in the following chapters of this thesis.

Spectral methods introduced first by Moulinec and Suquet (1994, 1998) can be significantly

faster than FEM in solving periodic problems. Therefore, they look to be an efficient

choice for modeling RVEs in a multi scale model. Replacing the numerical solver of

the inner problem of FE2 with a spectral method implementation results in drastic

acceleration in simulations. In this research, a specific spectral method implementation

introduced by Vondřejc et al. (2014) will be adopted, modified and extended to be able

to model ASR damage at meso-scale.
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3 Voigt and laminate homogenized

pixels

As discussed in Chapter 1, numerical artifacts in the form of spurious ringing is one of

the major issues of FFT-accelerated methods with Fourier basis in solving numerical

homogenization of multi-phase elastic problems. It has been shown in the literature (Ma

et al. (2021)) that the regular discretization of the interface causes staired interface of

phases. This staired interphase is shown to be contributing to spurious oscillations near

the phase change in FFT-accelerated schemes. Contrary to conventional FEM, spectral

methods require a regular mesh (see Figure 1.1). As a result, general geometries cannot

be discretized in spectral methods in a boundary-conforming manner. Thus, assigning

material to the elements at the interface of different phases is challenging in spectral

methods. In Figure 1.1, it is unclear what material property should be assigned to

the shaded pixels in Figure 1.1.c that lie at the interface between two phases, while in

conventional FEM, one can discretize the solution domain with an arbitrary interface

profile using a boundary-conforming FE mesh. Such numerical artifacts are not of great

importance in a wide range of problems; however, in problems with highly localized

phenomena such as non-linear plasticity or continuum damage (targeted in this research),

these artifacts are of high significance, since they can hugely affect the outcome of the

simulation.

One of the approaches adopted in the literature for mitigating the ringing artifacts is to

smooth the interphase (phases at the interface) by applying a homogenization scheme in

pixels located at the interphase. In other words, a combination of materials involved in
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Chapter 3. Voigt and laminate homogenized pixels

a boundary pixel is considered for stress evaluation. As mentioned in Chapter 1, this

approach is a ringing mitigation (and not an elimination) approach. In this chapter, I

have examined the effectiveness of two strategies based on smoothing the sharp interfaces

of the touching phases in suppressing the ringing artifacts.

I present two consistent methods for fabricating interface voxels with effective properties

through the use of Voigt and laminate homogenization. These ideas are inspired by the

work of Kabel et al. (2015); Lahellec et al. (2003); Brisard and Dormieux (2012). In both

Voigt and laminate approaches, an effective interphase pixel is derived from a mixture

of the underlying phases of the materials inside the pixel, i.e. the phase transition is

smoothed by a local homogenization of tangent of the pixels at the interface. Therefore

pixels consisting of more than one material in the full-scale resolution will be internally

homogenized. Unlike most of the literature that is primarily focusing on extending

the original spectral scheme proposed by Moulinec and Suquet (1994), I focus on the

projection-based FFT-accelerated scheme as introduced by Zeman et al. (2017); de Geus

et al. (2017) explained in Chapter 1.

3.1 Derivation

In this chapter, I present two homogenization schemes adopted at pixel level in the finite

strain formulation. The derivation is identical for small strain in Voigt homogenization

as it merely involves taking weighted average of the stress and tangent at the interface

voxels. Here, I have conducted all the derivation in finite-strain formulation and the

small strain derivation is straightforward. The implementation exists for both small- and

finite-strain formulations in µSpectre.

In the case of the laminate homogenization, the small strain derivation is simpler than

finite-strain and rather straightforward, since, in small strain formulation, it is not

necessary to consider the rotation of the interface inside a voxel due to deformation

as the assumption of small strain does not allow such deformations. As a result, it is

not necessary to consider different stress types, such as P and S (respectively first and

second Piola-Kirchhoff stresses) while solving for RVE equilibrium and internal voxel

equilibrium.
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3.1 Derivation

3.1.1 Voigt homogenization

This approach applies the simplest homogenization which is basically the weighted

averaging of the stress and tangent of the underlying phases (Milton and Sawicki (2003)).

The internal voxel homogenization merely involves weighted arithmetic averaging of the

tangent of the constituent phases. This approximation gives the upper bound of the

effective tangent of pixels. Given that the volume fraction of the phases L, and R in an

interfacial pixel are respectively α and (1− α), the effective stress and tangent of the

pixel are:

Peff = αPL + (1− α)PR (3.1)

Keff = αKL + (1− α)KR. (3.2)

Where P is the first Piola-Kirchhoff stress tensor, F is placement gradient and K is the

finite strain tangent defined as: K = ∂P/∂F. First Piola-Kirchhoff stress P and placement

gradient F are energy conjugate pairs that I have used for solving the equilibrium of

the RVE in finite-strain formulation. As a result, after the evaluation of the material

stress and tangent according to their constitutive law (possibly in different stress or

strain measures), the mixing rules (3.1) and (3.2) are applied after their conversion to P

and K. It is notable, that this conversion is also necessary for simple pixels since the

equilibrium of the RVE is also expressed in terms of first Piola-Kirchhoff stress P as

∇ ·P = 0 and all the evaluated stresses in finite strain formulation needs to be converted

to first Piola-Kirchof stress.

The Voigt homogenization scheme can be generalized to pixels consisting of more than

two underlying phases by taking the effective stress and tangent of the pixel as the

weighted average of those phases. In the Voigt homogenization, only the volume fraction

of the different phases is important in calculating the effective tangent, while other

aspects such as structure morphology are not influential at all.

39



Chapter 3. Voigt and laminate homogenized pixels

3.1.2 Laminate homogenization

In the laminated pixel approach, the orientation of the interface of the underlying phases

is also taken into account when calculating the effective stress and tangent. In this

approach, the interface of the phases in a single voxel is approximated by a line in 2D

and a plane in 3-dimensional (3D). We compute the orientation of the interface of the

underlying phases by taking a weighted average of the normal vectors of the actual

interface of the interface of the phases bounded inside the voxel. For instance, in the

case of the interface of a polygon inclusion in 2D, the normal vector of the sides of the

polygons bounded inside the pixel, with the lengths of the bounded sides as the weights

is considered as the effective normal of the interface. In the case of polyhedron inclusion

in 3D, the weighted sum of the faces of the polyhedron bounded in the voxel with the

area of the faces as the weights is taken as the effective normal vector n.

The general procedure of internal homogenization of the laminated pixels , as implemented,

includes the following steps:

• Rotating the coordinate axis to align the X-axis with the normal of the laminate

surface

• Solving the compatibility conditions for the stress and strain components contribut-

ing to the traction at the interface plane

• Calculating the effective stress and tangent from the resolved stress and tangent of

the sub-phases of the pixel (Milton and Sawicki, 2003, Section 9.2).

• Rotating back the effective stress and tangent of the pixel to the main coordinate

axis.

The procedure of approximating the inter-pixel interface with a laminate with a straight

interface and the rotation to align the X ′-axis with interface normal vector is schematically

shown in the Figure 3.1. The general procedure, described above and elaborated on

below, is applicable to materials with generally nonlinear constitutive laws. The rotation

needed to align the normal vector of the laminate interface with the X-axis is applied by
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3.1 Derivation

Figure 3.1: 2D schematic of the laminate homogenization approximation.

a rotation matrix with the form of:

R = I + V + V2 1
1 + c

(3.3)

where c = n ·eX is the cosine of the angle between the unit normal vector of the laminate

interface (n) plane and the unit vector in the eX direction. V is the skew-symmetric

cross product of n and eX and is defined as:

V =


0 −v3 v2

v3 0 −v1

−v2 v1 1

 , (3.4)

with v being the cross product of n and eX (v = n × eX). This rotation is schemat-

ically shown, in 2D, as the transformation of the middle shape to the right shape in

the Figure 3.1.

In the rotated coordinate axis, the stress and strain elements can be easily categorized as

intralaminar (in-plane, noted as ⊥ in the formula below) and interlaminar (across-plane,

noted as ∥ in the formula below) components. The intralaminar components of a tensor

T with respect to a surface with normal vector n′ are:

T⊥ = T · n′ (3.5)

In case of the stress tensor, as a general rule, all the components contributing to the
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Chapter 3. Voigt and laminate homogenized pixels

traction force transmitted through the laminate interface are considered intralaminar P⊥

and the remaining elements are interlaminar components P∥. In the rotated coordinate

axis, where the laminate interface normal vector (N ′) and X ′-axis are aligned, the

intralaminar and interlaminar components of a tensor T are listed in Table 3.1. In the

following, I explain the solution to the compatibility in the case of having two phases

with arbitrary constitutive law inside a laminate pixel.

By imposing an average deformation F to a pixel, I need to solve for the effective stress

Peff and tangent Keff response of the equivalent laminate approximation of the voxel.

To this end, we first solve for the deformation of the underlying materials L and R

(respectively standing for left and right sub-pixel materials). FR and FL, In a general 3D

case, are composed of 18 components (9 placement gradient F components for each of

the R and L phases) to be solved.

Table 3.1: Categorizing of a tensor T into interlaminar and intralaminar stress/strain
components with the interface of the phases normal being aligned to the X-axis

intralaminar (T⊥) interlaminar (T∥)
2D Txx, Txy Tyy, Tyx

3D Txx, Txy, Txz, Tyy, Tzz, Tyx, Tzx, Tyz, Tzy

We divide stress tensors PR and PL and strain tensors FR and FL into interlaminar and

intralaminar elements according to Table 3.1. For all of the interlaminar components

(noted as ∥), one can equate the deformation in both phases with that of the input strain

(F∥ = FL ∥ = FR∥). This yields 12 unknowns of 18 unknowns (6 F∥ components of each

of R and L phases), the interlaminar components of both L and R phases. The other 6

unknowns remained to be solved are the intralaminar components, FR⊥ and FL⊥. For

solving them, we satisfy the internal pixel equilibrium at the interface of the laminate

layers. Therefore we equate the traction t at the interface of the underlying phases,

tL = tR. (3.6)

In order to make sure the segregation of elements into interlaminar and intralaminar

components remains valid, I express the vector of traction forces t in the undeformed
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3.1 Derivation

configuration in terms of first Piola-Kirchof stress according to

t = P · n′. (3.7)

Since the normal vector of the phases R and L at their interface, n′ R and n′ L, are

collinear with opposing directions and according to (3.7), the equilibrium at the laminate

interface expressed in terms of stress components has the form of:

PL⊥(FL) = −PR⊥(FR). (3.8)

which is a system of equations composed of 3 nonlinear equations. The complementary

equations for solving 6 remaining unknowns is based on that the weighted average of

the intralaminar strain components of the underlying phases is equal to the intralaminar

strain components of the imposed strain on the pixel.

F⊥ = α FL⊥ + (1− α) FR⊥, (3.9)

The 3 independent linear equations expressed in (3.9) can be easily solved for either

of the phases. for instance, the intralaminar strain components of the phase R can be

obtained as:

FR⊥ = F⊥ − α FL⊥

1− α , (3.10)

substituting (3.10) in (3.8) gives:

PL⊥
(
FL
)

= −PR⊥
(

F⊥ − α FL⊥

1− α

)
. (3.11)

Which is now a set of 3 nonlinear equations with 3 unknowns FL⊥. By defining

∆P⊥ ≡ PL⊥ + PR⊥ the set of equations can be expressed as:

∆P⊥
(
FL⊥

)
= 0. (3.12)

We have used iterative Newton-Raphson scheme for solving the set of nonlinear equa-

tions (3.12). Note that in case of small strain elasticity problem with linear elastic

materials (3.12) becomes a linear system of equations. After solving for F⊥, I obtain
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Chapter 3. Voigt and laminate homogenized pixels

the intralaminar strain components of the other phase FR⊥ according to (3.10). Having

the full FR and FL solved, I evaluate the stress and the tangent of the both phases

L and R phases according to their constitutive laws. Now I have the stresses PR and

PL and the tangents of both phases KR and KL. The mixture rule of the stresses are

straightforward and can be generally taken as (3.1) similar to Voigt homogenization.

However, for applying the mixture rule for the tangent I have taken the approach obtained

from Milton and Sawicki (2003) and therefore I need to have the stress expressed as the

second Piola-Kirchof stress S that can be obtained for each sub-phase knowing the first

Piola-Kirchof and the placement gradient according to:

S = F−1P (3.13)

Using the second Piola-Kirchof stress allows for definition of symmetric tangent matrix

C ≡ ∂S/∂E where E is the Cauchy strain tensor. the tangent C can be obtained according

to:

C = [F ⊗ I]−1 [K− [I ⊗ S]] [F ⊗ I]−T (3.14)

as derived by Curnier (1994). The operator ⊗ denotes outer under product. R = A⊗B

can be expressed as Rβγλθ = AβλBγθ in index notation. Having the symmetric tangents

CL and CR I can proceed with the mixture rule derived in Milton and Sawicki (2003).

The symmetric tangent C correlates the strain and stress components. I already have

categorized strain and stress components into interlaminar and intralaminar components.

Following the same logic I divide the tangent C into 4 blocks as expressed in Table 3.2.

Table 3.2: Blocks of the stiffness tangent based on the type of the components (inter-
laminar ∥ or intralaminar ⊥) of the strain and stress tensors they correlate. Each row
correspond to the components related to one category of the stress tensor and each
column correspond to a category of the strain tensor.

F∥ F⊥

P∥ A∥∥ A∥⊥

P⊥ A⊥∥ A⊥⊥
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I construct these matrices (As) from components of the tangent matrix C according to:

A⊥⊥ =



C1111
√

2C1113
√

2C1112

√
2C1113 2C1313 2C1312

√
2C1112 2C1312 2C1212


, (3.15)

A⊥∥ =



C1122
√

2C1133
√

2C1123

√
2C2213

√
2C3313 2C2313

√
2C2212

√
2C3312 2C2312


, (3.16)

A∥∥ =



C2222 C2233
√

2C2223

C2233 C3333
√

2C3323

√
2C2223

√
2C3323 2C2323


, (3.17)

and A∥⊥ = A⊥∥. Using these matrices we obtain the effective tangent blocks according

to:

Aeff
⊥⊥ =

〈
A−1

⊥⊥

〉−1
(3.18)

Aeff
⊥∥ =

〈
A−1

⊥⊥

〉−1 〈
A−1

⊥⊥A⊥∥
〉

(3.19)

Aeff
∥∥ =

〈
A∥∥ −A∥⊥A−1

⊥⊥A⊥∥
〉

+
〈
A∥⊥∥A−1

⊥⊥

〉〈
A−1

⊥⊥

〉−1 〈
A−1

⊥⊥A⊥∥
〉

(3.20)

where ⟨⟩ denotes weighted arithmetic average. We obtain the effective symmetric tangent

Ceff by reconstructing it from A blocks based on the blocks given in (3.18), (3.19),

and (3.20). Then we compute the effective tangent Keff by applying the inversion of (3.14)

as:

Keff = I ⊗ Seff + [F ⊗ I] Ceff [I ⊗ F]T . (3.21)

The effective stress and the effective tangent of a laminate pixel can be obtained according

to (3.1) and (3.21). Following the procedure explained above, I can compute the stress

and effective tangent of the pixel under an imposed placement gradient F and can take
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Chapter 3. Voigt and laminate homogenized pixels

that as the evaluated stress and stiffness of the pixel for the RVE homogenization.

The internal homogenization overhead of laminate pixels can cause massive impact on

speed of solution of the whole RVE domain, because some pixels (interphase pixels) need

internal homogenization that involves an iterative solution process (Newton’s method).

In addition, by using laminate pixels we cannot anymore benefit from all the speed-up

that we could achieve by optimizing the material evaluation (implementing the stress and

tangent evaluation statically) because making laminate pixels hard-coded for material

pairs results in combinatory growing laminate material count which is not feasible

(combination of the underlying phases as template parameters).

Some possible solutions that might enable effective use of laminate homogenized pixels

feasible are: the followings. i Hard coded laminate materials made from two predetermined

materials defined as a new material. This needs definition of a new material whenever a

new pair of materials need to be used as a laminate pixel. ii Another approach might

be smart distribution of resources such as scheduling for stress and tangent evaluation.

These approaches seem to be non-trivial to implement and are actually harmful for

general performance. Having a scheduler for material stress and tangent evaluation at

quadrature point as a general strategy is extremely harmful to performance when the

evaluation expense of majority of material points is in the same range such as cases where

laminate pixels do not exist.

3.2 Examples and results

Even though ringing artifacts are not unique to stair-shaped discretization, it is necessary

to use a stair-shaped discretization to observe effectiveness of Voigt or laminate sub-

pixel homogenization strategies suppressing ringing artifacts. Two examples using such

discretization are presented here in order to demonstrate how much these approaches

can mitigate ringing artifacts.
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3.2.1 Inclined square inclusion example

In the first example, we take a 2D RVE containing an inclined rectangular inclusion located

at the center of the RVE. The RVE experiences a spherical mean strain with amplitude

of 1 × 10−4. In addition, in each corner of the RVE, a triangular inclusion is inserted

(depicted in Figure 3.2a). These triangular inclusions make the RVE geometrically

equivalent to a RVE containing a straight square at its center. The problem is solved

by using a spectral solver with Fourier-basis functions (as developed by de Geus et al.

(2017)) with simple, split (Voigt homogenized), and laminate homogenized interphase

pixels. The material assigned to the pixels at the interphase pixels (hatched pixels in 3.2b)

Figure 3.2: The phases in inclined square example, blue represents the inclusions and
red represents matrix, a. Whole solution domain, b. zoomed over the boundary of a
inclusion. Pixels located at the boundary of phases are hatched.

is determined by the location of the center of the voxel in the simple pixel approach. In

Voigt homogenized pixels, however, the intersection of the boundary phase (modeled

as a polygon in 2D) is intersected with the pixels edges and the contribution of each

material at each pixel is determined by the surface ratio associated with each phase in

that pixel. In the laminate pixel approach, in addition to the surface ratio, the normal

vector of the intersection between the phase boundary and the pixel (the part of the

interface bounded inside a pixel) is calculated and stored for each pixel.

This computational geometry process of intersecting two ploygons in 2D and polyhedra

in 3D is not straightforward. I have adopted and slightly modified an open source

library named Cork (Bernstein (2007)) is to automate the task in µSpectre. The RVE is

subjected to a spherical mean strain with an amplitude of 1.0 × 10−4. The domain is
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Chapter 3. Voigt and laminate homogenized pixels

discretized with 283 pixels in each direction. The Poisson ratio of both phases is 0.3 and

their Young moduli are respectively 7.0× 101GPa for the matrix and 7.0× 104GPa for

the inclusion that make a contrast of 103 between their Young moduli.

Figure 3.3 and Figure 3.4, respectively, illustrate the shear strain and the Von-Mises

stress of the RVE at equilibrium. In each of these figures, the first row depicts the entire

solution domain while the second row zooms in on the subdomain near the inclusion at

the center of the RVE, where ringing artifacts are more evident. In both of the figures,

the left column corresponds to the solution obtained using simple pixels, the middle

column represents the response of the RVE obtained by split pixel approach, and the

right column shows the response of the RVE obtained using laminate pixels.

Figure 3.3 and Figure 3.4 show that the Voigt homogenization approach can reduce the

amplitude of the ringing artifact, but neither of them can eliminate it. In comparison to

the solution of the simple cell, the highest shear strain value shown in Figure 3.3 and the

highest von Mises stress in Figure 3.4 are lower in the split pixel solution. Additionally,

the laminate pixel approach appeared to be more effective than Voigt homogenization in

mitigating the ringing, and they can suppress the ringing in some areas of the solution

domain; however, they are unable to completely eliminate the artifacts.

3.2.2 Circular square inclusion example

A circular inclusion is inserted at the center of the periodic RVE in the second example.

This example generates stairs as well when discretized in a regular voxel grid. The

geometry of the example is shown Figure 3.5a, the shaded pixels in Figure 3.5b correspond

to the pixels residing on the boundary of the phases. In this example, both phases are

taken as linear elastic materials with Poisson ratio of 0.3 and the Young moduli of

inclusion and the matrix are respectively are 7.0 GPa for the matrix and 70.0 GPa which

makes a hard inclusion problem with contrast ratio of 10.

The shear strain and the von Mises stress of the solution of the RVE under a spherical

mean strain with amplitude of 1×10−3 are respectively shown in Figure 3.6 and Figure 3.7.

The first row in each of these figures represents the solution for the entire RVE. The same
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3.2 Examples and results

Figure 3.3: Shear strain inclined square example, a. Over whole solution domain, b.
zoom over the right corner of the inclusion at the center of the RVE

Figure 3.4: Von-Mises stress strain inclined square example, a. Over whole solution
domain, b. zoom over the right corner of the inclusion at the center of the RVE
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a. b.

Figure 3.5: The phases in circular inclusion example, blue represents the inclusions and
red represents matrix, a. Over whole solution domain, b. zoom over the boundary of a
inclusion. Pixels located at the boundary of phases are hatched.

variable is shown zoomed over a region of the RVE including the phase boundaries (where

the laminate and split pixels are located). The box at the top of the first row shows

the area over which the zoom is placed in the second row of the same figure. In these

figures, and specifically in the Von-Mises stress plots shown in Figure 3.7, it is evident

that the Voigt pixel homogenization approach can suppress very high overshoots (pure

black) stress values in the domain even though the ringing (checker-board) oscillations

persist. It is also depicted that laminate sub-pixel homogenization approach is actually

more effective than Voigt homogenization in mitigating ringing artifacts; however, it also

cannot eliminate the ringing artifact.

3.2.3 Simple square example

Two previous examples are helpful to express the effectiveness of split and laminate pixel

approaches visually and qualitatively. The third example is arranged to make a quanti-

tative evaluation of the Voigt homogenization and laminate inter-pixel homogenization.

In this example, a RVE containing a square inclusion occupying 5/9 of RVE length in

both directions is considered. The RVE is once discretized in a 9× 9 structured grid and

solved for equilibrium experiencing a spherical mean strain of 10−3 which will be used as

a reference solution. Afterwards, the same RVE discretized in 3× 3 grid is solved with

both Voigt and laminate homogenized interphase pixels. The schematic of the RVE is

50



3.2 Examples and results

Figure 3.6: Shear strain strain of the circular inclusion example, a. Over whole solution
domain, b. zoom over the region in the box depicted in the first row to show the
oscillations at the boundary of the phases.

depicted in Figure 3.8a.

Both materials phases used in this test case are linear elastic materials. In the laminate

homogenization scheme, the direction of the interface is taken as the weighted average of

the normal vectors of the interfacial faces at each pixel. The direction of these normal

vectors are shown as arrows in each interphase pixel in Figure 3.8a.

The test case is solved for interface pixels using either Voigt homogenization or laminate

homogenization. The resultant elastic energy of the RVE solved with these two inter-pixel

homogenization schemes is then compared with the reference value of the energy from the

reference solution (6× 6 cell solved with simple pixels). This comparison is repeated for

different phase contrasts between the inclusion and the matrix phases of the RVE (shown

respectively as white and gray in Figure 3.8a. Figure 3.8b illustrates the relative error of

both approaches approximating the elastic potential energy of the RVE using laminate

sub-pixel homogenization approach going under a spherical strain with amplitude of

10−4 for different phase contrast ratios. Figure 3.8b depicts that the range of the error

in estimation of the strain energy of the RVE is roughly one order of magnitude less
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Chapter 3. Voigt and laminate homogenized pixels

Figure 3.7: Von-Mises stress of the circular inclusion example, a. Over whole solution
domain , b. zoom over the region in the box depicted in the first row to show the
oscillations at the boundary of the phases.

compared to Voigt homogenization approach.
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Figure 3.8: Test case for comparing the Voigt homogenization and the laminate homoge-
nization, a. The configuration utilized for the test. b. The relative error of calculated
elastic energy for different phase contrasts (E1 and E2 respectively correspond to the
Young modulus of materials 1 and 2 shown in Figure 3.8a)
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3.3 Conclusion

3.3 Conclusion

I have derived and implemented two different sub-pixel homogenization schemes in this

chapter namely, Voigt and laminate homogenization schemes. Two possible approaches

to reduce (mitigate) the Gibbs ringing artifacts in spectral methods have been presented.

Unlike other similar implementations we have applied these two schemes in the projection-

based FFT-accelerated solution scheme of de Geus et al. (2017). I have used the

computational geometry means provided by Cork in order to automate generation of

split and laminate pixels as well.

The first two examples of this section depict that although the Voigt and laminate pixel

homogenization approaches can mitigate the ringing artifact to some extent, they cannot

eliminate it. It seems that the ringing artifact persists even in low phase contrasts

(10) between phases in the circular inclusion example. I intentionally picked examples

in which the phase boundaries form a stair-shaped discretization, in which the Voigt

and laminate homogenizations are the most effective. In the cases where stair-shaped

boundaries do not exist, both approaches (laminate and Voigt inter-pixel homogenization

schemes) are actually not sufficiently effective for making continuum damage mechanics

solution devoid of non-physical checker-board crack patterns.

In addition, it should be noted that the laminate homogenization process can result in high

computational costs due to its internal iterative homogenization, which severely reduces

the appeal of using spectral solvers (solution speed-up) in the first place. In conclusion,

these observations indicate that Voigt and Laminate homogenization approaches are not

sufficient to simulate damage mechanics problems and that other methods are required

to resolve the ringing artifact.

Even though both sub-pixel homogenization schemes presented here can mitigate the

ringing artifact, they cannot eliminate long-range oscillatory fluctuation in the solution

fields of the homogenization problem and therefore they do not enable us to use FFT-

accelerated solvers for modeling damage at meso-scale. The Gibbs ringing elimination

approaches based on altering the discretization are suitable to resolve the Gibbs ringing

issue. Two examples of such methods are presented in Chapter 1 and will be elaborated
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Chapter 3. Voigt and laminate homogenized pixels

on in Chapter 4. Different groups including our development group (µSpectre team)

have altered the basis functions to eliminate the ringing artifacts in the FFT-accelerated

scheme. For instance, the FFT-accelerated solution scheme developed by Leute et al.

(2021) and already presented in Chapter 1 using FE discretization seems really promising

and will be used in Chapter 7 for ASR damage modeling, where it is crucial to have a

ringing free
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4 Equivalence of the strain-based

and displacement-based schemes

As stated in Chapter 1, FFT-accelerated spectral solvers, implicitly, use the Fourier

polynomials as basis functions to express the variables in the solution domain. This

choice of basis functions is closely linked to the Gibbs-ringing artifacts that are ubiquitous

in almost all of Fourier accelerated solvers in the literature (Schneider (2021); Leute et al.

(2021)). Based on our findings explained in Leute et al. (2021) (µSpectre development

team), opting for FE basis functions for defining the gradient operator, from which the

projection operator is constructed, can eliminate the Gibbs-ringing artifact. The FEM

shape function gradients introduced by Leute et al. (2021) allows simulating RVEs even

with infinite phase contrast at the interfaces, for instance RVEs containing free surfaces

or completely degraded materials due to damage. Resolving these two shortcomings of

FFT-accelerated solvers (ringing artifacts and incapability of handling infinite phase

contrast) makes it possible to tackle homogenization of problems with highly localizing

phenomena such as strain softening. This also enables one to use the efficient and well

scaling iterative linear solvers such as CG for homogenization of sophisticated problems

such as damage mechanics.

Achieving fast, efficient, and ringing-free FFT-accelerated solver using FE basis functions

raises the question whether a pure FEM scheme can realize similarly efficient scaling

solution (as efficient as FFT-accelerated schemes). Earlier, Schneider et al. (2016a)

used linear hexahedral discretization in their FFT accelerated solution scheme. They

also noted that the scheme can be expressed in a displacement-based scheme where the
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Chapter 4. Equivalence of the strain-based and displacement-based schemes

unknowns of the problem are actually the displacement of the nodes similar to FEM.

Leuschner and Fritzen (2018) have worked out a displacement-based FFT-accelerated

solution scheme using the FE Galerkin discretization and also showed that using a

preconditioned CG with the discretized periodic Green’s operator of a uniform reference

material as the preconditioner improves the efficiency of the solution.

Ladecký et al. (2022b) (µSpectre development team) have developed a pure FE solution

scheme that solves the linearized system with a geometrically optimal preconditioner based

on the discretized periodic Green’s function of a reference material. Their displacement-

based formulation successfully extended the concepts introduced by Leuschner and Fritzen

(2018) to arbitrary regular FE discretizations. For specific choice of the reference material

(4th rank symmetrizing identity tensor Is = 1
2 (δikδjl + δilδjk)), Their solution scheme

is already shown to realize the same distribution of eigenvalues (of the corresponding

linearized system of equations) as the strain-based method introduced by Leute et al.

(2021). This equivalence is achieved naturally using the same discretization. We have

also shown the equivalence mathematically by showing that the solutions steps of the two

schemes generates same series of iterates (Ladecký et al. (2022b)). By using the same

iteration termination criteria, we have also shown the equivalence of the strain-based

and the displacement-based schemes numerically. Ladecký et al. (2022b) presented the

scheme on a small-strain elasticity micro-mechanical formulation discretized on a regular

periodic grid. The extension of the scheme to finite-strain is also straightforward.

In this chapter, I show the equivalence of the displacement-based preconditioned FEM

scheme (Ladecký et al. (2022b)) and an extended form of the strain based scheme (Leute

et al. (2021)). This equivalence is already shown by Ladecký et al. (2022b) for a specific

case of reference material (4th rank symmetrizing identity tensor Is). The projection

operator we introduced in Leute et al. (2021), implicitly, uses the 4th rank symmetrizing

identity tensor Is as a reference material in the equivalent displacement-based formulation.

Therefore, their introduced projection operator is from now on denoted as GIs (Projection

with the 4th rank symmetrizing identity tensor Is as the corresponding reference material

in the subscript).

Ladecký et al. (2022b) has empirically shown that using a reference material capable of

56



expressing the anisotropy of the system response (including the Poisson effect) accelerates

the solution, at least, by roughly 50% in a nonlinear problem (as also indicated later here

in Table 4.1). As an extension to GIs , here, I incorporate a reference material defined

by elastic tangent tensor Cref into the definition of the projection operator explained

in Chapter 1 and introduce a modified projection operator with an arbitrary admissible

reference material with elastic tensor Cref. The subscript of the projection operator (GCref)

denotes the reference material of the projection operator. For instance, the standard

projection operator introduced by Leute et al. (2021) is denoted here as GIs and the

projection operator with a generic Cref as the reference material is noted as GCref . I

also will show empirically that using GCref with a Cref better reflecting the anisotropy of

the RVE can also speed up the solution of the strain-based solution compared to using

GIs .

I, in this chapter, will show that solving the equilibrium equation (1.18) using the

introduced projection operator GCref is equivalent to using the displacement-based scheme

with a preconditioner defined with the discretized periodic Green’s operator of a reference

material Cref as the reference material. The equivalence of these two approaches is first

shown in their formulation where the solution iterates are shown to be equivalent in both

schemes.

It is also notable that the DoF these solution schemes differ and to be able to compare them

same termination criterion for the iterative solvers is needed. This needs modification

in the definition of the solution error (which is by default the quadratic norm of the

solution step in the state space of the DoF of the scheme). This is the reason of the

difference of the default termination criterion of these two schemes non-conforming as

their solution DoF differ. The required modification in the termination criterion is also

introduced in this chapter and solvers with modified termination criteria are used for

solving the example presented here.

The content of this chapter is partly taken from a submitted paper from µSpectre

development team ( Ladecký et al. (2022b)) and another manuscript (Ladecký et al.

(2022a)) that is under preparation and is almost ready.
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Chapter 4. Equivalence of the strain-based and displacement-based schemes

4.1 Derivation

To show the equivalence of the strain-based and displacement-based approaches we start

from the final form of the linearized equation system of the discretized equilibrium

equation (1.41). For sake of simplicity, the FFTs are omitted from the formulation and

the quadrature weights wQ of the quadrature points are assumed to be uniform; therefore,

the weight matrices can be dropped for now. The equilibrium equation (1.41) yields:

(
DT Cref

(i)D
)−1

︸ ︷︷ ︸(
Kref

(i)

)−1

DT C(i)D︸ ︷︷ ︸
K(i)

δũ(i+1) =− (DT Cref
(i)D)−1︸ ︷︷ ︸(

Kref
(i)

)−1

DT σ
(
E + Dũ(i),h(i)

)
︸ ︷︷ ︸

−b(i)

. (4.1)

The PCG algorithm for solving (4.1) is presented in Algorithm 1. Next, considering

that ∂ũ(i) = Dũ(i), in the left hand side of (4.1), we substitute Dδũ, with δ∂ũ (i.e.

re-interpreting the gradient of displacement increment as the increment of displacement

gradient) and rewrite (4.1) as:

(
DT Cref

(i)D
)−1

DT C(i)δ∂ũ(i+1) =−
(
DT Cref

(i)D
)−1

DT σ
(
E + ∂ũ(i),h(i)

)
, (4.2)

with Γref
(i) standing for the periodic discretized Green’s operator of a reference medium

with elastic tensor Cref. Considering that the ũ(i+1) belongs to a gradient field with zero

average, the mean of the right hand side of (4.2) is also zero. Generally speaking, if the

gradient of two fields with zero mean are equal then the two fields are equal. Therefore,

we can take discrete derivative of both sides of (4.2) which yields:

D
(
DT Cref

(i)D
)−1

DT︸ ︷︷ ︸
Γref

(i)

C(i)δ∂ũ(i+1) =−D
(
DT Cref

(i)D
)−1

DT︸ ︷︷ ︸
Γref

(i)

σ
(
E + ∂ũ(i),h(i)

)
, (4.3)

By taking the 4th rank symmetrizing identity tensor as the elastic tensor of the reference

materials (Cref
(i) = Is), the operator Γref

(i) boils down to the compatibility projection

GIs = D
(
DT Is D

)−1
DT (equivalent to the definition of the projection operator presented

in (1.10) in Chapter 1) projecting an arbitrary field to its closest compatible part in the

least square sense considering the L2-norm of difference with a gradient field (shown
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4.1 Derivation

by Leute et al. (2021)). The linearized equation (4.3) becomes:

D
(
DT Is D

)−1
DT︸ ︷︷ ︸

GT
Is

C(i)δ∂ũ(i+1) =−D
(
DT Is D

)−1
DT︸ ︷︷ ︸

GT
Is

σ
(
E + ∂ũ(i),h(i)

)
(4.4)

GT
IsC(i)δε̃(i+1) =− GT

Isσ
(
E + ε̃(i),h(i)

)
, (4.5)

which is identical to (1.21) given that the solution iterates are compatible (periodic

gradient) fields. As a result, we have actually shown that the strain-based and the

displacement-based schemes are identical in case of Cref
(i) = Is.

4.1.1 Projection operator with a reference material

I extend the derivation of the projection operator introduced by Leute et al. (2021)

and introduce a general projection operator that with an arbitrary admissible refer-

ence material Cref instead of Is. This allows proving the general equivalence with the

displacement-based scheme with an arbitrary admissible reference material. To this end,

I follow a similar approach to the derivation of the projection operator proposed by Leute

et al. (2021).

Assume that ζ : Ω → Rd×d is an arbitrary tensor field. The difference between ζ and

a compatible gradient field ∂ṽ ∈ E (gradient of arbitrary field ṽ with zero mean) can

be simply noted as (∂ṽ− ζ) which needs to be minimized to make ζ the compatible

contribution of ṽ.

As an extension of the derivation of Leute et al. (2021), I take an energy norm of the

residual (taking Cref = Is yields the same projection as that of Leute et al. (2021)),

||R(ũ)||Cref =
∫

Ω
(∂ṽ − ζ)T Cref (∂ṽ − ζ) dx, (4.6)

as we want to minimize the difference of ζ and ∂ṽ we can take ||R(ũ)||Cref as an objective
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Chapter 4. Equivalence of the strain-based and displacement-based schemes

function, which using a quadrature rule, in discrete form reads as:

R = ||R(ũ)||Cref
W(i)

= (Dṽ− ζ)T Cref
W(i) (Dṽ− ζ) , (4.7)

where Cref
W(i) is the weighted discretized elastic tensor of the reference materials with the

weights taken from the quadrature rule applied. Cref
W(i) can be obtained from the wight

matrix W and the elastic matrix of the reference material Cref according to Cref
W(i) ≡WCref

Now, by minimizing R we can find a displacement field that minimizes the norm of the

difference of the tensor field ζ and the gradient of ṽ in a space with the metric of Cref
W(i).

For this end we need to differentiate R with respect to ṽ:

∂R
∂ṽ = 2DT Cref

W(i)Dṽ−DT Cref
W(i)ζ − ζT Cref

W(i)D = 0. (4.8)

Solving for ṽ yields the linear system of equation:

DT Cref
W(i)D︸ ︷︷ ︸

Kref

ṽ = DT Cref
W(i)ζ. (4.9)

Solution of (4.9) gives ṽ as

ṽ =
(
DT Cref

W(i)D
)−1

︸ ︷︷ ︸
K−1

ref

DT Cref
W(i)ζ. (4.10)

The compatible contribution of the field ζ is actually the gradient of ṽ; therefore, we can

write compatible contribution of ζ as:

ζ̌ = Dṽ =

ΓCref
W(i)︷ ︸︸ ︷

D
(
DT CrefD

)−1
DT Cref

W(i)︸ ︷︷ ︸
GCref

W(i)

ζ = GCref
W(i)

ζ. (4.11)

As a result, the general projection operator GCref
W(i)

= D
(
Kref

)−1
DT Cref

W(i) with Kref =

DT Cref
W(i)D can be used instead of GIs in the strain-based method. In general, the closer

Cref
W(i) can reconstruct the anisotropy of the effective tangent of the RVE the more

speed-up gain it gives for solving the linearized equilibrium equation (Ladecký et al.

60



4.1 Derivation

(2022b)). It is notable that, in solid mechanics, the anisotropy includes both anisotropy

in geometrical coordinate directions as well as anisotropy between different components

of the stress and strain, for instance the Poisson effect. Ladecký et al. (2021) have shown

that taking the Cref with a Poisson ratio roughly resembling that of the RVE accelerates

the solution roughly by 50%.

A closer look to (4.11) and comparing it with the expression of GIs reveals that, there is

an extra Cref
W(i) appearing on the right side of the definition of the GCref

W(i)
that is missing

in the linearized strain-based equilibrium equation (4.3). This causes two problems in

solving the linearized equilibrium equation for the strain field. i. The solution field is

in a stress field space S mapped from the strain field E with the transformation matrix

Cref
W(i), ii. The coefficient matrix of the linearized equilibrium equation is not symmetric

in case of using GCref which makes CG inapplicable to solve the equation iteratively.

One possible solution to format the strain-based linearized equation equivalent to the

displacement based equation resolving the aforementioned problems is pre-multiplying

both sides of the equation with
(
Cref

W(i)

)−1
. Accordingly, we can rewrite (4.3) as:

(
Cref

W(i)

)−1
GT

Cref
W(i)

C(i)δε̃(i+1) =−
(
Cref

W(i)

)−1
GT

Cref
W(i)

σ
(
E + ε̃(i),h(i)

)
. (4.12)

One efficient way of handling the pre-multiplied
(
Cref

W(i)

)−1
is taking it as a preconditioner

in the linear solver algorithm and solving the linearized equilibrium using a PCG solver.

The PCG algorithm used to solve the preconditioned strain-based with arbitrary Cref
W(i) is

presented in Algorithm 2. We have adopted this scheme for examining the equivalence of

the displacement-based scheme and the generalized strain-based scheme in the presented

example in the following of the chapter.

4.1.2 Termination criterion

As mentioned earlier, in order to compare the performance of the strain-based and

displacement-based scheme, numerically, we need to adopt an identical termination

criterion for the linear solvers (PCG) used to solve the linearized equations ((4.1) and

(4.12)) and also for the nonlinear solver (Newton solver here).
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Chapter 4. Equivalence of the strain-based and displacement-based schemes

The termination criterion of the linear solvers used in the strain-based and the displacement-

based schemes is based on the L2-norm of the residual (stress in strain-based and force in

displacement-based scheme). Clearly these are not identical and make the comparison of

solution step count with equal tolerance infeasible. Therefore, here we define an energy

norm as the measure used in the termination criterion of the linear solvers by contracting

the energy conjugate pairs in both the methods; strain and stress in the strain-based

method; and displacement and force in the displacement based method.

This choice of convergence measure aligns with the nature of conjugate gradient method

which minimizes the energy norm of the error. As shown by Vondrejc and de Geus (2017)

the quality of the homogenized properties of a RVE is actually proportional to the energy

norm
∣∣∣∣∣∣e(i)

k

∣∣∣∣∣∣2
K

of the solution error defined as:

∣∣∣∣∣∣e(i)
k

∣∣∣∣∣∣2
K

=
∣∣∣∣∣∣x(i) − x(i)

k

∣∣∣∣∣∣2
K

= (x(i) − x(i)
k )T K(x(i) − x(i)

k ). (4.13)

with K being the system matrix and x(i) being the displacement field in the displacement-

based method and K being the tangent and x(i) being the strain field in the strain-based

scheme. x(i)
k is basically the value of the DoF field at kth iteration of the linear solver.

As explained earlier, the usual termination criterion is based on the L2-norm of the

residual r(i)
k which can be written as function of e(i)

k as:

∣∣∣∣∣∣r(i)
k

∣∣∣∣∣∣2
2

= e(i)
k

T
KT Ke(i)

k =
∣∣∣∣∣∣e(i)

k

∣∣∣∣∣∣2
KT K

, (4.14)

because r(i)
k = b−Kx(i)

k = Kx(i) −Kx(i)
k = K(x(i) − x(i)

k ) = Ke(i)
k . We propose to measure∣∣∣∣∣∣r(i)

k

∣∣∣∣∣∣2
M−1 instead of

∣∣∣∣∣∣r(i)
k

∣∣∣∣∣∣2
2

∣∣∣∣∣∣r(i)
k

∣∣∣∣∣∣2
M−1 = e(i)

k

T
KT M−1Ke(i)

k =
∣∣∣∣∣∣e(i)

k

∣∣∣∣∣∣2
KT M−1K

. (4.15)

If M is a good approximation of K, then M−1K ≈ I and

∣∣∣∣∣∣e(i)
k

∣∣∣∣∣∣2
KT M−1K

≈
∣∣∣∣∣∣e(i)

k

∣∣∣∣∣∣2
K

; (4.16)

the approximation of the error in the energy norm.
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4.1 Derivation

In our case, M is built in the same way as K, but for constant reference material Cref
W(i)

(see
(
Kref

(i)

)−1
and K(i) in (4.1)). M always approximates K better than I and thus energy

norm
∣∣∣∣∣∣r(i)

k

∣∣∣∣∣∣2
M−1 is a better approximation of

∣∣∣∣∣∣e(i)
k

∣∣∣∣∣∣2
K

rather than
∣∣∣∣∣∣r(i)

k

∣∣∣∣∣∣2. Therefore, it is

a better measure to terminate the PCG algorithm. In addition, it can be easily computed

by contracting 2 of the existing fields in the algorithm as explained in the following.

In order to normalize these measures, we normalize them to the initial residual
∣∣∣∣∣∣r(i)

0

∣∣∣∣∣∣2
M−1 .

For initial guess ũ
(i)
0 = 0 we get

∣∣∣∣∣∣r(i)
0

∣∣∣∣∣∣2
M−1 =

∣∣∣∣∣∣b(i)
∣∣∣∣∣∣2

M−1 =
∣∣∣∣∣∣Kũ(i)

∣∣∣∣∣∣2
M−1 =

∣∣∣∣∣∣ũ(i)
∣∣∣∣∣∣2

KT M−1K
, (4.17)

the approximation of the energy norm of the solution ũ(i). From the computational

viewpoint, the evaluation of the approximate energy norm is of nearly zero cost, as

we need the product
(
r(i)
0

)T
M−1r(i)

0 =
∣∣∣∣∣∣r(i)

0

∣∣∣∣∣∣2
M−1 in every PCG iteration. Considering

that z
(i)
k ≡ M−1r(i)

k is already defined and computed in the PCG algorithm the only

calculation needed to compute
∣∣∣∣∣∣r(i)

k

∣∣∣∣∣∣2
M−1 is contracting (computing inner product of) r(i)

k

and z
(i)
k . These modifications are presented in lines 9 and 19 of Algorithm 1 and lines 9

and 17 of Algorithm 2.

In addition, we need to make the termination criterion of the nonlinear solvers also

identical. The termination criterion of the Newton solver that we use as the nonlinear

solver is based on the norm of the difference of the DoF field after and before the linear

solver call (solution increment). It is basically the squared norm of the difference of the

strain field in the strain-based scheme and the displacement in the displacement-based

scheme, i.e. the size of the step caused by solution of the linear solver. Therefore, the

termination criteria are clearly different in case of these two schemes.

We have chosen to modify the termination criterion of the displacement solver as the

value of the strain field is basically available in the nonlinear solver as the strain value is

calculated at the quadrature points since they are needed for material stress and stiffness

evaluation. Accordingly, by changing the termination criterion of the displacement-based

nonlinear solver we can make the termination criterion of the two schemes identical with,

basically, no overhead. For the strain-based solver, on the other hand, doing the same

trick and taking error with
∣∣∣∣∣∣r(i)

0

∣∣∣∣∣∣2
C−1 yields similar energy norm of the reference material.
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Chapter 4. Equivalence of the strain-based and displacement-based schemes

Having identical termination criteria (for both linear and nonlinear solvers) allows us to

compare the number of linear and nonlinear solution steps of the two schemes by keeping

the tolerances constant. The explained termination criteria were incorporated into the

schemes and are used in the example presented in Section 4.2 to compare strain-based

and displacement-based schemes in practice.

4.2 Examples and Result

In Section 4.1, we explained the equivalence of an extended form of strain-based FFT-

accelerated scheme we developed ( Leute et al. (2021)) and the geometrically optimal

preconditioned displacement based FE scheme we developed (Ladecký et al. (2022b)).

The necessary modifications needed for observing this equivalence in practice (such

as solving the strain-based method using PCG in the general case of the projection

defined with a reference material with elastic tensor Cref and the changes needed in the

termination criterion) were elaborated in Section 4.1. Here, by using the concepts and

the modifications explained in Section 4.1, we compare solving equilibrium of a RVE

containing nonlinear materials with identical FE discretization and show that under

equivalent circumstances (same discretization and same termination criterion). The

number of solution steps of two solution schemes solving a nonlinear homogenization

problem are the same.

4.2.1 Homogenization of a hyper-elasto-plastic micro-structure

The example is adopted from de Geus et al. (2017) where the micro-structure of the RVE

consists of hyperelasto-plastic material. The constitutive law of such materials is explained

in detials in (Simo (1992); Geers (2004); Simo and Hughes (2006); de Souza Neto et al.

(2008)). The yield criterion of the hyperelasto-plastic constitutive law which bounds the

elastic domain of the material response has the form:

τeq − τy(εp) ≤ 0 (4.18)
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4.2 Examples and Result

where εp is the accumulated plastic strain, τy is the yield stress which is a function of εp,

and τeq is a function of the elastic contribution of the strain at equilibrium. The yield

stress τy(εp) can be obtained as a linear function of εp as:

τy0(εp) = τy0 +Hεp (4.19)

where τy0 (initial yield stress) and H (hardening coefficient) are material parameters.

I discretized the solution domain of the example by 441×441-pixel grid. It consists of two

steel phases martensite and ferrite that are identical in their elastic regime (mechanically

identical as far as they are both in their elastic regime);however, their initial yield stress

and hardening coefficients are contrasted here by φ = 2 as the phase contrast between

martensite and ferrite as:

τ ferrite
y0 × φ = τmartensite

y0 (4.20)

H ferrite × φ = Hmartensite (4.21)

Total macroscopic deformation gradient

F =
√

3
2

[
0.995 0

0 −0.995

]
(4.22)

is applied in 5 load increments.

I solved the problem with both strain-based and displacement-based schemes. The

solution domain is discretized in both schemes with linear triangular elements. I set the

Newton tolerance to ηNW = 10−5 and (P)CG tolerance to ηCG = 10−5. We solve three

cases with identity Cref = I, symmetrized identity Cref = Is, and mean value Cref = Cmean

reference materials, where the preconditioner is made with a reference material with the

stiffness matrix of weighted average RVE of the tangent of the underlying phases.

The distributions of global plastic strain εp obtained for two solution schemes are shown

in the first row of Figure 4.1, which shows that the solution of the two schemes are

identical. The regions of details of the εp (the second row) also approves the identity of

the solution fields in further detail. In addition, the number of Newton’s method steps and
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(a.1)

strain-based
FE projection

(a.2)

(a.3)

(b.1)

displacement-based
linear FE

(b.2)

(b.3)

0

1

2
×10−2

εp

−3

5
×10−4

P12

E

Figure 4.1: Global plastic strains εp in dual-phase steel with applied deformation
gradient (4.22) in row (1) with local detials in row (2). Row (3) shows accompanying
normalized shear stresses P12 in detailed area. Discretization schemes in columns: (a)
the strain-based scheme with FE projection operator with two linear triangular elements
and (b) the displacement-based FE scheme with two linear triangular elements. All
quantities are averaged per pixel.
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4.3 Conclusion

Cref strain-
based(SB)

displacement-
based (DB)

Newton steps 9 9

I 861 861

(P)CG steps Is 609 609

Cmean 457 457

Table 4.1: The number of Newton’s method steps and the total number of (P)CG steps
required to solve the finite strain elasto-plastic problem of Section 4.2 for a three choices of
reference material, with Newton tolerance ηNW = 10−5 and (P)CG tolerance ηCG = 10−5.
solution schemes from left to right: the strain-based scheme with FE projection operator
with two linear triangular elements, the displacement based FE scheme with two linear
triangular elements. The count of solution steps exhibits the equivalence of displacement
FE scheme presented by Ladecký et al. (2022b) and strain-based FE scheme presented
by Leute et al. (2021).

the total number of (P)CG iterations needed to solve the problem with strain-based and

displacement-based approaches are shown in Table 4.1 which highlights their equivalence.

4.3 Conclusion

In this chapter, we have shown the equivalence of the displacement-based scheme presented

by Ladecký et al. (2021) and an extended version of the strain-based scheme presented

by Leute et al. (2021). Their equivalence has been shown in terms of the linearized

equilibrium equations of both of the schemes. It has been also tested and validated

in practice in a nonlinear finite element problem presented in Section 4.2. As a result,

displacement-based and strain-based formulations converge equally and the only decision-

making consideration regarding the possibility of efficient implementation. However, we

have opted to use the strain-based method for ASR damage homogenization problem

due to some minor advantages, for instance, imposing macroscopic loads in form of stress

is more straightforward in the strain-based formulation and has been already worked out

by Lucarini and Segurado (2019a). Accordingly, the simulations in Chapter 7 are carried

out using the strain-based formulation with FE discretization.
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4.4 Algorithms

Algorithm 1 displacement-based preconditioned CG
Num. scheme: (DT Cref

W D)−1︸ ︷︷ ︸
M−1

DT C(i)
W D︸ ︷︷ ︸

K

δũ(i+1) =

− (DT Cref
W D)−1︸ ︷︷ ︸

M−1

DT Wσ(E + Dũ(i),h(i))︸ ︷︷ ︸
−b

(4.1)

1: δũ0 ▷ Initial displacement
2: E ▷ Macroscopic gradient field

3: M = D⊤Cref
W D ▷ Preconditioner

4: K = D⊤C(i)
W D ▷ System (Stiffness) matrix

5: b = −D⊤Wσ(E + Dũ(i),h(i)) ▷ Right hand side

6: procedure DB PCG(δũ0,K,b,M, tol, itmax)
7: r0 := b−Kδũ0

8: z0 := M−1r0

9: nr0 := ||r0||M−1 ≡ r⊤
0 z0 ▷ initial residual

10: p0 := z0

11: k := 0
12: while k ≤ itmax do ▷ k = 0, 1, ..., itmax

13: Kpk = Kpk

14: αk = r⊤
k zk

p⊤
k

Kpk

15: δũk+1 = δũk + αkpk

16: rk+1 = rk − αkKpk

17:

18: zk+1 = M−1rk+1

19: nrk+1 = ||rk+1||M−1 ≡ r⊤
k zk

20: if nrk+1
nr0

< tol then
21: return ũk+1

22: βk = r⊤
k+1zk+1

r⊤
k

zk

23: pk+1 = zk+1 + βkpk

24: k = k + 1
25: return δũk ▷ if itmax reached68



4.4 Algorithms

Algorithm 2 strain-based preconditioned CG with Cref as preconditioner

Num. scheme:
(
Cref

)−1

︸ ︷︷ ︸
M−1

GT
CrefC(i)︸ ︷︷ ︸

K

δε̃(i+1) = −
(
Cref

)−1

︸ ︷︷ ︸
M−1

GT
Crefσ

(
E + ε̃(i),h(i)

)
︸ ︷︷ ︸

−b

, (4.12)

1: δε̃0 ≡ Dδũ0 ▷ Initial displacement gradient
2: E ▷ Macroscopic gradient field

3: M⋆ = Cref ▷ Preconditioner
4: K⋆ = GT

CrefC(i) ▷ System (Stiffness) matrix
5: b⋆ = GT

Crefσ
(
E + ε̃(i),h(i)

)
= GT

Crefσ
(
E + Dũ(i),h(i)

)
▷ Right hand side

6: procedure SB PCG(δε̃0,M⋆,K⋆,b⋆, tol, itmax)
7: r⋆

0 := b⋆ −K⋆δε̃0

8: z⋆
0 := M⋆−1r⋆

0
9: nr⋆

0 = ||r⋆
0||(M⋆)−1 ( or

√
r⋆
0

⊤z⋆
0) ▷ initial residual

10: p⋆
0 := z⋆

0

11: k := 0
12: while k ≤ itmax do ▷ k = 0, 1, ..., itmax

13: α⋆
k = r⋆

k
⊤z⋆

k

p⋆
k

⊤K⋆p⋆
k

14: δε̃k = δε̃k + α⋆
kp⋆

k

15: r⋆
k+1 = r⋆

k − α⋆
kK⋆p⋆

k

16: z⋆
k+1 := M⋆−1r⋆

k+1

17: nr⋆
k+1 =

∣∣∣∣∣∣r⋆
k+1

∣∣∣∣∣∣ (or
√

r⋆
k+1

⊤z⋆
k+1)

18: if nr⋆
k+1

nr⋆
0
< tol then ▷ Convergence test

19: return δε̃k+1

20: β⋆
k = r⋆

k+1
⊤z⋆

k+1
r⋆
k

⊤z⋆
k

21: p⋆
k+1 = +z⋆

k+1 + βkp⋆
k

22: k = k + 1
23: return δε̃k ▷ if itmax reached
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5 Non-Convexity

The projection-based spectral scheme (strain-based scheme) and the preconditioned FEM

scheme (displacement-based scheme), explained in Chapter 1, due to their optimal

spectral characteristics of their linearized system (Pultarová and Ladeckỳ (2021)), enable

us to benefit from the computational advantages of iterative solvers such as Newton-CG.

Their favorable spectral characteristics result in great scaling for solving RVEs with

large number of discretization points. However, solving (1.21) with CG solver needs the

Hessian matrix of the linearized system to be SPSD which is not the case in several

mechanical homogenization problems such as system containing meta-materials (Li.

(2017)) or continuum damage (Bažant (1976); Marvi-Mashhadi et al. (2020)).

Therefore, in order to be able to benefit from the computational speed-up offered by

these FFT-accelerated schemes for problems with symmetric non-positive semi definite

(SNPSD) system matrices, we need to employ other iterative solvers. Some quasi-Newton

solvers such as limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS), and trust-

region (TR) Newton solver are among possible candidates capable of handling non-convex

problems. In this chapter, a modified TR Newton solver for homogenization problems

is introduced. The introduced solver is a robust and memory efficient solver capable of

handling non-convexity in an iterative fashion.

The potential of the TR solvers (as well as quasi-Newton solvers) has not been exploited

in computational homogenization, since, in a considerable part of the literature, conven-

tional FEM direct solvers are the standard choice for computational homogenization.
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Chapter 5. Non-Convexity

As a result, the main challenge of using TR and quasi Newton solvers in computational

homogenization, namely missing an explicit expression of the objective function in the

equivalent energy minimization counterpart of the equilibrium solution, has not been

addressed to the authors’ best knowledge. I addressed this problem in the following

of this chapter after a review over the standard TR Newton solver. In this chapter,

we develop a modified TR Newton-CG algorithm based on an introduced first order

approximation incremental energy functional (FAIEF). At the end, some examples are

also presented to exhibit and examine the performance of the presented modified TR

solver.

The content of this chapter is mainly taken from a submitted paper entitled Non-

convex, ringing-free, FFT-accelerated solver using an incremental approximate energy

functional (Falsafi et al. (2022)).

5.1 Method

5.1.1 Trust region solver

The trust-region method (TRM) is a numerical optimization method capable of solving

nonlinear and non-convex optimization problems. Basically, it uses a model (sub-problem)

approximating the original objective function within a trust region around the current

solution iterate. The TRM performs minimization based on the approximation made

by the model (typically quadratic) within the trust region. In contrast to line search

methods, in TRM, the maximum permissible step size is pre-determined; however, the

size of the trust-region at each iterate evolves based on how well the model represents

the actual objective function. The model is expected to be a good representation of the

original objective function inside the trust region.

Figure 5.1 depicts a visual representation of the TRM in a 2D schematic problem. The

black iso-contours represent the non-convex function E(x) we want to minimize, whose

minimizer is indicated by the black + sign. It is assumed that the iterative solution

process starts with the initial guess of x0 noted by orange + in the figure. The red

iso-contours are the contours expressing the second order model m(x) estimating the
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5.1 Method

Figure 5.1: Schematic of TRM in 2D state space

objective function around x0. The global minimizer of these quadratic iso-contours is

depicted as red + in the figure. The blue shaded area is the trust region area (the

hyper-sphere in which we trust the estimation of the model m(x)).

In a single standard trust region solution iteration, the minimizer of the model function

inside the trust region (shown as the blue + sign) is found and taken as the next iteration

if a desirable reduction of the original function E(x) is realized in this step. In other

words, in the trust region solution strategy, optimization is carried out by minimizing a

model function m(x) trusted up to a certain radius (shaded in blue in Figure 5.1) around

the current iterate as a proxy problem (sub-problem). The approximate model is derived

from the local information gathered from the objective function.

If in a trust region solution step the boundary of the trust region is crossed, the intersection

point is taken as the new iterate and it gets accepted if the objective function has reduced

compared to previous iterate. In addition, in case the Hessian becomes SNPSD during

the solution process the intersection of the previous search direction and the boundary of

the trust region is taken as new trial iterate and checked and accepted in case objective

function decreases in the step. In any of these cases, if the new iterate does not realize

objective function reduction, the trust region shrinks and the algorithm retries minimizing

the model in the updated trust region.
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Chapter 5. Non-Convexity

There is no a-priori knowledge of the radius of the trust region in which the model can

adequately approximate the objective function. In addition, the accuracy of the model

degrades by moving away from the current iteration. Therefore, it is crucial to determine

the proper trust region radius and to regulate it consistently during the solution process.

To this end, based on the model’s match with the original objective function, the trust

region is adjusted in each iteration. As a general rule, the trust region can be expanded if

the approximate model fits the original problem well. In contrast, the trust region shrinks

if the approximate model fails to estimate the original function adequately (Hsia et al.

(2017)). It is therefore necessary to access the original objective function of the equivalent

optimization problem if one needs to use a TR solver in its standard formulation.

Let us recall the basic equations that we tend to solve to obtain the equilibrium of the

RVE. Let’s again examine a periodic RVE in which we want to solve for equilibrium,

for illustration purposes see Figure 1.5. We adopt a small strain formulation, in order

to derive the equilibrium equation. The micro-structure is assumed to experience a

displacement field of χ : Ω0 → Ω which maps the grid points from undeformed positions

Ω0 to their deformed configurations Ω. As the material response corresponding to the

position x, given the local strain ε(x), the stress and the tangent of the material can

be computed using the constitutive law of the material at that point. The fields ε and

σ are energy conjugates. Let us consider the total energy function (we do not need to

have the explicit expression for that), equivalent to the original objective function of a

homogenization problem, of the RVE as:

U =
∑
Q

u(εQ, h(xQ))wQ, (5.1)

where u denotes energy at Qs, which are the discretization quadrature points, and h(x)

represents the internal variables of the material.

The solution of the equilibrium equation (1.5), in particular, corresponds to the critical

point of the total energy function (5.1). In the strain-based scheme, the equilibrium

problem is solved in the strain space. According to the fact that the energy conjugate of

strain is stress, the gradient of the energy with respect to strain is actually the stress
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tensor. In addition, the Hessian of the objective function corresponds to the tangent

stiffness of the material at the discretization points,

∇εU = σ, (5.2)

∇2
εU = B. (5.3)

One possible sub-problem model (and probably the most common form) of the TR solver

is a quadratic energy function approximation in form of:

mi(pi) = U(εi) + (∇εU)T pi + 1
2pT

i

(
∇2

εU
)

pi, s.t. ||pi|| < Ri, (5.4)

where, in the Newton TR solver, Bi is taken as the Hessian matrix of the energy evaluated

at quadrature points at ith load step and Ri is the radius of the trust region. pi is a

solution step in the strain space. Here, the energy functional is taken as a direct function

of strain at ith solution step as in the projection based formulation the equations are

solved in the strain space. Other TR solvers are also possible using different choices for

the matrix Bi. Accordingly, the model function in a trust-region Newton solver can be

expressed as:

mi(pi) = U(εi) + σT
i pi + 1

2pT
i Bipi, s.t. ||pi|| < Ri, (5.5)

The agreement of the actual objective function (U(εi + pi)) and the model (mi(pi)) at

the new iterate is evaluated by a scalar variable ρi at the ith iterative step, defined as:

ρi ≡
U(εi)− U(εi + pi)
mi(0)−mi(pi)

. (5.6)

In the trust region algorithm, the value of ρi, as set forth by Nocedal and Wright (2006),

determines how the trust region size will be updated as well as whether or not the

proposed step will be accepted.

It is relatively simple to calculate the denominator of the right hand side of (5.6)

(∆mi = mi(0) − mi(pi)) according to the definition of mi(pi) given in (5.5). For

calculation of the nominator, an explicit expression of the origin objective function
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(equivalent to stored energy in mechanical engineering problems) is necessary in the

standard TR solver. In mechanical homogenization problems, however, the objective

function is often not calculable (at least easily), since the actual energy density function

of most materials is very complex (or even impossible to compute). A FAIEF that allows

us to use TR solvers to solve generic non-convex mechanical homogenization problems is

presented here. In order to derive the incremental energy functional, first, the Taylor

series of the actual energy function U is expanded at both εi and εi + pi points as:

U(εi + pi) = U(εi) + (∇εU |εi)T pi + 1
2pT

i (∇2
εU |εi)pi +O(||pi||3) (5.7a)

U(εi) = U((εi + pi)− pi)

= U(εi + pi)− (∇εU |εi+pi)T pi + 1
2pT

i (∇2
εU |εi+pi)pi +O(||pi||3)

(5.7b)

Subtracting (5.7a) from (5.7b) and dropping higher order terms yields:

U(εi + pi)− U(εi) ≈ (5.8)
1
2
(
(∇εU |εi)T

i pi + (∇εU |εi+pi)T
i pi

)
+

1
4
(
pT

i (∇2
εU |εi)pi − pT

i (∇2
εU |εi+pi)pi

)

Truncating (5.8) up to first order gives:

∆U = U(εi)− U(εi + pi) ≈ ∆U = σ(εi + pi) + σ(εi)
2 : pi. (5.9)

The right hand side of (5.9) consists of the stress tensors before and after incrementing

strain field εi with the trial step pi, which are already evaluated at all of the quadrature

points. To take ∆U as a valid estimation of ∆U , it is necessary to keep the load

increments small. This is usually not a concern since it can be controlled by the size

of the applied load steps, which for nonlinear problems is already small to enable the

nonlinear iterative solvers to converge to equilibrium even in case of nonlinear elliptic

problems (problems with positive semi definite (PSD) matrix).

Furthermore, it is vital that the variation of the resulting displacement field remains
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bounded. For instance, problems such as buckling under a prescribed growing force do

not satisfy boundedness of the displacement field around the critical load; therefore,

does not converge using the modified trust-region solver presented here. On the other

hand, problems such as mechanics damage modeling are solvable despite their non-convex

energy functional, using the modified TR solver presented here given that the applied

load increments are controlled to be small.

The actual system energy reduction, ∆U , in the nominator of (5.6) can be replaced by

∆U calculated according to the FAIEF noted in (5.8) which gives an estimation of ρi;

denoted by ρi according to:

ρ̄i = ∆U
∆mi

. (5.10)

It is notable that the evaluation of ρi needs the stress of the previous solution step to be

stored.

Introducing the FAIEF enables us to use the robust trust region algorithm in cases that

the explicit expression of U function is missing. The pseudo-algorithm of the strain-based

trust-region solver is presented in Algorithm 4, showing how the scalar value ρi (or its

estimated counterpart ρi) is used to make decisions of accepting or rejecting trial step

(δε) as well as shrinking or expanding the trust region. As shown in Algorithm 4, the

memory overhead of using Trust region Newton-CG is, merely, storing the flux (stress)

field at the previous solution step which does not significantly impact the overall memory

requirement of the solver algorithm compared to Newton-CG since the stress field is

smaller than the most memory consuming fields in the algorithm. The stress field is

actually 9 times in 3D and 4 times in 2D smaller than the biggest fields stored in the

algorithm which are the projection and the tangent fields.

The predicted reduction of the model (mi) will always be non-negative since the step pi

is calculated by minimizing the model mi over the region that includes p = 0. Therefore,

if ρi is negative, the first order approximation of the objective function at the new iterate

(U(εi + pi)) is greater than the current value of the objective function value (U(εi)),

thus the step must be rejected. On the other hand, if ρi is close to 1, it is safe to expand

the trust region for the next step since the model mi and the original objective function

U are in good agreement over the solution step pi. When ρi is positive but smaller
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than one, the trust region is not altered, however in the case when ρi is close to zero

or negative, the trust region is shrunk by reducing Ri at the next iteration. How these

decisions are made is detailed in Algorithm 4.

The solution of the subproblem (minimizer of m within the ball of radius R) is easy

to find when B is positive definite and the minimizer is located within the trust region

(equivalent to finding an unconstrained minimizer of the quadratic function m). There is

no such simple solution to the subproblem in other cases, in which the minimizer resides

on the boundary of the trust region. The constrained linear solver used here as the

sub-problem solver is based on the solver introduced by Steihaug (Nocedal and Wright

(2006); Steihaug (1983)) which is used to generate the trial solution step pi.

In addition, in order to make the linear solver robust to numerical rounding error problems

a reset algorithm based on the work of Powell (1977), and Dai et al. (2004) was added to

the linear solver algorithm. The used reset mechanism replaces the conjugate gradient

step with a restart step (for instance, the gradient descent step). Whenever two successive

solution steps inside the linear solver (rj and rj−1) are not sufficiently orthogonal to each

other. The measure expressing the orthogonality of the solution steps can be calculated

via the inner product of consecutive solution steps:

r∢ = |rj · rj−1|
||r2

j ||
. (5.11)

Comparing the measure, r∢, with a constant value in the range of (0.1, 0.9) has been

proposed as the decision criterion for restarting CG, I chose 0.2 as suggested by Powell

(1977), hence the restart procedure is invoked if the measure r∢ is greater than 0.2.

Several quasi-Newton solvers, e.g. LBFGS, also depend on the explicit expression of the

objective function. For instance, in satisfying the first Wolfe condition in determining the

step size in LBFGS, evaluation of reduction of the objective function is neededNocedal

and Wright (2006). Using the approximated strain energy reduction ∆U instead of ∆U

makes use of these quasi-Newton solvers possible as well. As derived here, the introduced

incremental approximation of the objective function, specifically, enables us to use TR

Newton-CG solver following the algorithm given in Algorithm 4 (as the Newton nonlinear

solver) and the algorithm given in Algorithm 3 as the subproblem solver. The introduced
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approximate energy functional can be generalized to solve any other problem in which

the explicit objective function is not available or not easy to calculate while the gradient

and Hessian of the objective function are available.

5.2 Examples and Results

In the following, two examples are presented to demonstrate the performance solver

developed above. As a real world non-convex example using the developed Newton TR

solver, in Chapter 7, I model ASR damage in a meso-scale model with rather complex

constitutive law. In this chapter, I first compare the performance of the modified TR

solver with that of the Newton-CG solver and the standard TR solver on a very simple

example. This example deals with a 1-dimensional (1D) damage spring system where

the potential energy functional of the system is known. The standard TR solver can

therefore be used on this system. Second, I test the correctness of the solution of the

solver considering a convex system. The Eshelby inhomogeneity, whose analytical solution

is available, is selected as the second example. This example allows us to compare the

generated solution of the modified TR solver with the analytical solution of the problem.

5.2.1 Minimal 1D non-convex example

As a simple mechanical system with non-convex energy functional, a periodic 1D spring

system (schematic shown in Figure 5.2a) consisting of three nodes connected with springs

(k0, k1, and k2) is taken as the first example. The springs k1 and k2 are elastic springs

with k1 = k2 = k, while k0 is a bi-linear damage spring, i.e. after a certain deformation

threshold γ0 its mechanical behavior switches from elastic to strain-softening. The

force-displacement response of the k0 spring is depicted in Figure 5.2b, The tangent of

the strain-softening phase of the constitutive behavior is αk. Therefore, the post-peak

stiffness matrix of the system becomes:

K =


(1 + α)k −k −αk

−k 2k −k

−αk −k (1 + α)k

 , (5.12)
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Table 5.1: Solvers used to solve the 1D spring example

Solver Functions needed as input
Objective
(Energy)

Gradient
(Force)

Hessian
(Stiffness)

i Newton-CG
SciPy ✗ ✓ ✓

ii
Trust Region
Newton-CG

Scipy
✓ ✓ ✓

iii
Modified

Trust Region
Newton-CG

✗ ✓ ✓

whose eigenvalues are [λ1 = 0, λ2 = 3k, λ3 = (2α+ 1)k]. The third eigenvalue can be

either positive or negative and for values α < −
(1/2

)
, the system becomes SNPSD, since

it has one negative eigenvalue.

The problem has been solved with k = 1.0, γ0 = 0.1 and for different values of α. The

boundary condition of mean stretch equal to x = 0.11, large enough to invoke post peak

behavior of the k0 spring, is imposed. Three different solvers listed in Table 5.1 are

employed to solve the equilibrium of the 1D spring system. The functions needed to be

explicitly evaluated in the algorithm of these solvers are listed in Table 5.1. The main

difference between the modified and the standard TR solver, as noted in Table 5.1, is

that explicit evaluation of the objective function is not needed in the modified solver.

The strain energy functional of the system as a function of the independent variable x0

(the stretch of 0th spring) for the imposed boundary condition of x = 0.11 is represented

in Figure 5.3 for three different values of α, respectively from left to right, corresponding

to convex, meta-stable, and concave energy surfaces. The variation of energy, and the

final solution of the solvers listed in Table 5.1 are depicted in this figure. It is clear that

in non-convex cases, Newton-CG solver is not capable of finding the energy functional

minimum as it fails finding the minimizer, while both standard and modified trust-region

Newton-CG solvers converged to the minimizer of the energy (equilibrium points). The

hyper-parameters of the standard and the modified TR solvers (such as initial and

maximum trust-region radius) are chosen to be identical. This causes the solution steps

of the solvers to coincide solving the 1D spring system as depicted in Figure 5.3.
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(a)
(b)

Figure 5.2: Periodic 1D spring example schematic and constitutive behavior of the damage
spring 0th spring, a. Schematic of 1-D damage spring example, b. Force-displacement
response of the damage spring

The transition of the energy functional from convexity to non-convexity is depicted

in Figure 5.3 for α < −0.5. In Figure 5.3a, the energy functional is convex over all values

of x0 while in Figure 5.3b and Figure 5.3c, the energy functional around the transition

point (x0 = 0.1) of the spring k0 is non-convex.

This simple example can clearly show the equivalence of the obtained results with that

of the standard trust region algorithm. The availability of the energy functional of

this example makes the standard trust-region solver applicable. However, in general

non-convex homogenization problems, the energy functional is not always available;

therefore, the standard trust-region solver is not an option and one can only use the

modified version with the approximated energy functional.

5.2.2 Convex example

In order to examine the introduced modified trust-region solver for solving convex

problems, a small-strain Eshelby inhomogeneity elasticity problem is chosen here as the

second numerical example. The Eshelby inhomogeneity is an ellipsoidal body embedded

in an infinite elastic medium, where the material properties of the inhomogeneity differ

from those of the matrix. The analytical solution of the problem is known (Eshelby

(1957, 1959); Mura (1982); Meng et al. (2012)). A 2D example identical to the Eshelby

inhomogeneity example presented by Leute et al. (2021) is considered here as our second

example. The linear FE discretization of Leute et al. (2021) is adopted and the problem
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Figure 5.3: The energy of 1D spring system, schematically depicted in Figure 5.2a, over
the solution trajectory of different solvers as a function of x0, for (a) Convex α = 1 (b)
Meta-stable α = −1/2, (c) non-convex α = −1 problems. In non-convex cases ((b), (c)),
there is a concave point located at x0 = 0.1 as the strain-softening behavior of the k0
springs is activated from that point on. Dashed line is the energy functional of the system
as a function of x0

is solved by two solvers, namely the plain Newton-CG solver and our modified TR

Newton-CG solver.

The schematic of the RVE geometry is presented in column (a) of Figure 5.4. Figure 5.4

illustrates the solution of both Newton-CG and modified trust-region Newton-CG (column

(b)). Column (c) shows the difference of the solution of these two solvers. Figure 5.4

depicts that the solution of the two solvers are identical with a relative error tolerance in

the order of magnitude of the tolerance of the solver algorithm (ηNR in Algorithm 4).

The number of CG solver and nonlinear solution steps needed to solve for equilibrium

versus trust radius variation (maximum trust region radius) is plotted in Figure 5.5

showing that, in a convex problem, the number of nonlinear solution steps as well as the

accumulative number of the CG solver steps needed to reach the solution decays to that

of Newton-CG solver as the size of the trust region increases.

Figure 5.5 also shows that, in order to maintain the same number of nonlinear solution

steps for solving a problem with twice as many grid points in each direction (4 times

discretization points), the trust region should be roughly doubled. This correlation

is rooted in the fact that the trust region radius is actually the radius of the hyper-

sphere in the space of problem unknowns (strain in case of strain-based solver). Imagine
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the discretization of a problem is refined by a factor of N in each spatial direction in

a 2D problem. This results in N2 scaling of the number of the discretization points.

Accordingly, the size of an equivalent solution step scales by N , in other words, an

equivalent step in the problem with refined discretization is N times larger. As a result,

to maintain the ratio of the solution step length constant with respect to trust region

radius, the trust region radius should be scaled by a factor of N . This finding suggests

that in order to use the trust region solver effectively one should loosen the trust region

for larger problem sizes. However, it should be noted that the trust region radius is

actively corrected during the solution of non-convex problems according to the accuracy

of the sub-problem model functional.
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Figure 5.4: Solution of the cylindrical Eshelby inhomogeneity problem under mean
spherical strain of 0.01 (εxx = εyy = 0.01, εxy = 0). Column a. shows the phase
distribution of a soft inhomogeneity cylindrical Eshelby inhomogeneity problem (showing
the inhomogeneity in red). Column b. shows solution of cylindrical Eshelby inhomogeneity
with Newton-CG and TR Newton-CG as they look the same. The column (c) consists
the difference of Newton-CG and TR Newton-CG solutions scaled by a factor of 107.
The slight difference shown in this column is below the solution tolerance meaning that
the solutions are numerically equivalent. The first row shows the variation of the shear
strain all over the solution domain. Second row shows the same variable zoomed around
the inhomogeneity. The third row shows the variation of shear strain over the green,
purple and orange cuts (located at the center-line, r/2 below and above of the center-line
of the inhomogeneity) in subfigure a. The third row also corresponds to the zoomed area
around the inhomogeneity.
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Figure 5.5: Number of CG steps (the first row) and number of nonlinear solution steps
(the second row) needed for solving the Eshelby inhomogeneity problems for different
number of grid points for the Newton-CG (column 2) and as a function of initial trust
region radius of TR Newton-CG (column 1). Number of nonlinear steps includes Newton
steps and failed trial or trust region steps during the equilibrium solution
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5.3 Conclusion

In this section, I presented a incremental strain energy approximation functional (FAIEF),

which facilitates the use of fast ringing-free spectral solvers for non-convex problems,

such as damage mechanics. The approximated energy functional derived based on Taylor

expansion of the energy functional of the system enables exploiting the computational

benefits of quasi-Newton solvers as well as TR Newton-CG solvers in computational

homogenization simulations. The modified TR solver presented here is capable of solving

non-convex problems without requiring the explicit formula of the energy functional of

the system. The introduced incremental strain energy functional also makes it possible

to use quasi-Newton solvers such LBFGS in the computational homogenization problems

as well.

The validity of the modified TR solver was tested against the standard TR solver using

a simple non-convex problem. The performance of the modified solver was examined

solving a convex problem and was also validated against a Newton-CG solver. Later,

in Chapter 7 of this dissertation, I will simulate a real-world homogenization problem,

meso-scale ASR damage, with the non-convex energy functional by means of the presented

modified TR solver. The comparison of the outcome of the meso-scale ASR damage

modeling with the literature shows a very good agreement. These validations assure the

effectiveness of the introduced energy functional approximation and the modified TR

solver in practice.
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5.4 Algorithms

Algorithm 3 Pseudo-algorithm of CG-Steihaug solver with reset
1: Solve for r with system Matrix B and initial RHS b0
2: ηCG ▷ CG tol.
3: jCG,max ▷ max iterations of CG
4: Set r0 ← 0, b0 ← b,d0 ← −b0 ▷ initialization

5: if ||b|| ≤ ηcg then
6: Return pi = r0 = 0 ▷ already at solution

7: for j = 0, 1, 2, ..., jCG,max do
8: if dT

j Bidj ≤ 0 then ▷ non-convex
9: find τ such that pi = rj + τdj minimizes mi(pi)

and satisfies ||pi|| = Ri

10: Return pi

11: αj ← rT
j rj/d

T
j Bidj

12: rj+1 ← rj + αjdj ▷ update the iterate

13: if ||rj+1|| ≥ Ri then ▷ hit the boundary of trust region
14: find τ such that pi = rj + τdj minimizes mi(pi)

and satisfies ||pi|| = Ri

15: Return pi

16: if ||rj+1|| ≤ ηcg then ▷ convergence satisfied
17: Return pi = rj+1

18: if rj+1 · rj/rj+1 · rj+1 > 0.2 then ▷ successive steps are not conjugate
19: rj+1 = Brj − bj ▷ reset CG
20: βj+1 ← 0 ▷ reset CG
21: else
22: βj+1 ← rT

j+1 · rj+1/r
T
j · rj

23: dj+1 ← −rj+1 + βj+1dj ▷ compute new update direction
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Algorithm 4 Pseudo-algorithm of strain-based Newton-CG trust-region algorithm in
small strain formulation

1: Initialize:
2: ηeq., ηNR, ηCG, ηup ▷ equilibrium-, Newton, CG and update tol.
3: iNR,max, iCG,max ▷ max iterations Newton-Raphson and CG
4: R,Rmax, ηup. ▷ trust region radius, maximum radius
5: ε = 0 ▷ small-strain initial guess

6: for ∆ε = ∆ε1,∆ε2, . . . do ▷ macroscopic strain increments
7: ε = ε + ∆ε ▷ increment grad with load step
8: εeval = ε + εeig ▷ adding eigenstrain if needed
9: σ, B = σ(εeval), B(εeval) ▷ evaluate stress and tangent

10: b = −G : σ(εeval) ▷ RHS calculation
11: if ||b|| ≤ ηeq. then
12: Newton-Raphson converged

Go to line 6 ▷ linear problem, next load step
13: for i = 0, 1, 2, . . . , iNR,max do ▷ Newton-Raphson iteration
14: Prepare coefficient matrix of the linearized equation G : B : δε = b
15: Solve G : B : δε = b for δε with Steihaug CG Nocedal and Wright (2006):

in iCG,max steps to accuracy ηCG, Algorithm 3
16: ∆mi = σ : δε + 1/2 δε : B : δε ▷ energy model change
17: σtrial = σ(ε + δε) ▷ stress evaluation with trial strain
18: ∆U = 1/2 (σ : δε + σtrial : δε) ▷ 1st order energy approx. change
19: ρ = ∆U/∆mi

20: if ρ < 1/4 then
21: R← 1/4 R ▷ shrink trust region
22: else
23: if ρ > 3/4 and ||δε|| = R then
24: R← min(2R, Rmax) ▷ expand trust region if possible
25: if ρ > ηup. then
26: ε← ε + δε ▷ increment grad with accepted solution step
27: rNR = ||δε|| / ||ε|| ▷ calculating relative residual
28: εeval=ε+εeig ▷ adding eigen strain if needed
29: σ, B = σ(εeval), B(εeval) ▷ evaluate stress and tangent
30: b = −G : σ(εeval) ▷ RHS calculation with updated grad
31: if ||δε|| < R then
32: if ||b|| ≤ ηeq. or rNR ≤ ηNR then
33: Newton-Raphson is converged

Go to line 6 ▷ next load step
34: else

Go to line 14 ▷ next Newton loop iteration
35: else

Go to line 14 ▷ next Newton loop iteration
36: else
37: Trial step rejected

Go to line 14 ▷ next Newton loop iteration
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6 Algorithmically consistent tan-

gent for the strain-based FFT-

accelerated scheme
A large majority of natural and manufactured materials have a heterogeneous or composite

microstructure. Biological tissues (Holzapfel et al. (2000)), concrete (Mehta and Monteiro

(2014)), magno-electronic (Eerenstein et al. (2006)) composites, and shape memory

alloys (Bhattacharya (2003)) are prominent examples of materials. The objective of

homogenization is, essentially, prediction of the effective properties of a heterogeneous

micro-structure of these materials. As a result, the homogenization process involves

equilibrium solution of a RVE followed by effective properties calculation. In multi-scale

models, specifically, the effective properties are passed to the macro-scale model as the

response of the micro-structure of the RVE.

In the mechanical engineering context, the mean stress and effective tangent are the

main effective responses of the micro-structure. Achieving quadratic convergence of a

Newton-Raphson scheme at a macroscopic scale mandates evaluating effective tangent

of the RVEs at the microscopic scale (Göküzüm and Keip (2017)). In addition, in

the meso-scale ASR damage model, which interests me in this thesis, one of the most

important measures to quantify the extent of ASR progress is the stiffness loss of the

RVE. As a result, it is crucial to have a robust and efficient algorithm for calculating the

effective tangent of the RVE.

For simple geometries, analytical homogenization schemes can compute the effective

tangent, for example by using consistent method (Budiansky (1965); Hill (1965)), the Mori-

Tanaka method (Mori and Tanaka (1973)) and the so called differential method (Norris
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(1985)). However, for rather complex micro-structures, analytical methods are no longer

suitable and computational methods should replace them for determining the effective

properties.

Among computational homogenization schemes, an explicit expression of the consistent

tangent for FEM using the localization tensor is developed by Miehe (2003); Keip et al.

(2014); Yvonnet (2019). For the original FFT-accelerated homogenization scheme as

developed by Moulinec and Suquet (1994), a consistent tangent has been introduced

by Göküzüm and Keip (2017). However, for the FG scheme (de Geus et al. (2017)) and

the generalized projection-based FFT-accelerated homogenization scheme with arbitrary

discretization developed by Leute et al. (2021) no closed form expression exists and to

the best knowledge of the author, FD approximation is the most common method for

computing the effective properties. FD approximation computes the effective properties

by means of application of a set of suitable macroscopic perturbation strain fields. FD

tangents are notoriously expensive to compute in terms of computational time, especially

in case of nonlinear constitutive laws; therefore, working out a consistent tangent can

contribute to homogenization speed-up.

In this chapter, I derive an algorithmically consistent macroscopic tangent, in the context

of the strain-based (projection-based FFT accelerated) scheme, by means of minimizing

the variation of strain energy of the micro-structure. The derived form of the consistent

tangent complies with the expression introduced by Miehe et al. (1999) which gives a

closed form expression for consistent tangent in a FEM context. However, the regularity

of the discretization enables us to compute the effective tangent efficiently. The derived

consistent tangent can compute the macroscopic tangent for the general case of geometrical

and material non-linearity and is not limited to any specific application. It also is useful

for this research since it helps fast and convenient quantifying of the ASR advancement.

6.1 Derivation

Let’s assume that the equilibrium of a RVE with a certain micro-structure is solved under

a certain load case, such as mean value of stress or strain as the boundary condition, and

the values of the equilibrium elastic fields εeq(x) and σeq(x) is obtained. In addition, the
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tangent stiffness field of the material points at equilibrium C(x) has been also evaluated

in the equilibrium solution process.

In order to find the Ceff of the RVE at its current state, let us perturb the system

at equilibrium (strain field of εeq(x)) with δεpert, which is applied as mean strain

perturbation. In order to simplify the derivation, all the variables are assumed to be

in Mandel (Voigt) Notation in small strain formulation. The potential energy variation

increment along the path reads:

dUpert =
∫

V

equivalent to dot product

(dε(x))T σ(x, ε(x), g(x)) dV , (6.1)

where ε(x) and g(x) are respectively the strain field and the state variables, while dε(x)

is the strain variation increment. The energy variation after accommodating the strain

perturbation δεpert is integral of (6.1) over the strain path (εeq → εeq + δε) where δε is

the strain variation due to the perturbation. The energy variation can be formulated as:

δUpert =
∫ εeq+δε

εeq

∫
V

(dε(x))T σ(x, ε(x), g(x))dV , (6.2)

where εeq + δε is the strain field of the perturbed cell after reaching the equilibrium.

The strain field variation δε can be divided into its mean value δεpert and its periodic

fluctuation contributions as:

δε(x) = δεpert + δε̃(x) (6.3)

According to the linear assumption around the equilibrium point stress can be calculated

by:

σ(x, ε(x), g(x)) = σ(x, εeq(x), g(x))︸ ︷︷ ︸
σeq

+C(x)(ε(x)− εeq(x))︸ ︷︷ ︸
dσ

. (6.4)

Replacing (6.4) in (6.2) and reordering integrals gives:

δUpert =
∫

V

[∫ εeq+δε

εeq
(dε(x))T σeq + (dε(x))T C(x)(ε(x)− εeq(x))

]
dV . (6.5)
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Taking integral considering that σeq is independent of dε and applying its bounds yield:

δUpert =
∫

V

[
(δε(x))T σeq + 1

2 (δε(x))T C δε(x)
]
dV . (6.6)

We can replace δε(x) in (6.6) according to (6.3) which gives:

δUpert =
∫

V

[(
δεpert + δε̃(x)

)T
(

σeq + 1
2C (δεpert + δε̃(x))

)]
dV . (6.7)

With a suitable quadrature rule applied we can approximate this energy as:

δUpert ≈
∑
Q

(
δεpert + δε̃(xQ)

)T
(

σeq + 1
2C(xQ)(δεpert + δε̃(xQ))

)
wQ (6.8)

where wQ represents the quadrature weights. Considering the fact that δε̃ is a compatible

(periodic gradient) field and we can apply the projection operator G on δε̃ in (6.8) which

yields:

δUpert =
(
δεpert + Gδε̃

)T
(

Wσeq + 1
2Cw(δεpert + Gδε̃)

)
(6.9)

In (6.9), W is a diagonal matrix holding quadrature weights and Cw = WC is the

weighted constitutive tangent matrix. expansion of (6.9) yields:

δUpert =
(
δεpert

)T
Wσeq + (Gδε̃)T Wσeq (6.10)

+ 1
2

[(
δEpert

)T
CwδE

pert + (Gδε̃)T CwδE
pert

]
+ 1

2

[(
δEpert

)T
CwGδε̃ + (Gδε̃)T CwGδε̃

]
.

We need to minimize δUpert with δε̃(x) as the independent variable. As a result, we

differentiate (6.10) with respect to δε̃(x):

∂
(
δUpert)
∂δε̃

= GT Wσeq + GT CwδE
pert + GT CwGδε̃. (6.11)

First, according to the self adjointness of the G operator we can replace all GT s with

G and reorder the application of W and G because W is diagonal. Likewise, we can
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rewrite (6.11) as:

∂
(
δUpert)
∂δε̃

= WGσeq + GCwδE
pert + GCwGδε̃. (6.12)

According to the self adjointness of G, the first term in the right hand side of (6.12) drops

because σeq is actually obtained by equating Gσ to zero (the discretized equilibrium

equation in the strain-based scheme). Therefore, (6.12) simplifies to:

∂
(
δUpert)
∂δε̃

= GCwδE
pert + GCwGδε̃. (6.13)

Equating (6.13) to zero in order to obtain the minimum of δUpert gives:

GCwδε̃ = −GCwδε
pert (6.14)

By solving (6.14) as a linear equation Ax = b with:

A ≡ GT Cw

b ≡ −GT Cwδε
pert,

(for instance using a CG solver) we can obtain values of the periodic fluctuation of the

response to the perturbation around equilibrium δε̃ , i.e. δε̃ becomes known. Afterwards,

we can compute δε according to (6.3). In a 2D RVE setup, the strain solution of (6.14)

for the test macroscopic perturbation strains of:

δεpert
11 =


1 0

0 0

 , δεpert
22 =


0 0

0 1

 , δεpert
12 =


0 1

2

1
2 0

 (6.15)

respectively yield δε̃(11), δε̃(22), and δε̃(12) which are second order tensor fields. collecting

δε̃(11), δε̃(22), and δε̃(12) in a higher rank matrix yields a fourth rank tensor field called
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localization fourth order field A defined as:

A(x) ≡


δε̃

(11)
11 (x) δε̃

(22)
11 (x) δε̃

(12)
11 (x)

δε̃
(11)
22 (x) δε̃

(22)
22 (x) δε̃

(12)
22 (x)

δε̃
(11)
12 (x) δε̃

(22)
12 (x) δε̃

(12)
12 (x)

 . (6.16)

Note that the fourth rank tensor A can be directly constructed from the solution of (6.14)

with perturbations defined in (6.15). According to the definition of the localization tensor

A, a fourth order compilation of the strain responses can be computed by a double

contraction of A and the fourth rank matrix [δε]:

[δε̃(x)] = A(x) :



δεpert
11

δεpert
22

δεpert
12


[δε]

. (6.17)

The matrix form of the linearized system then can be represented in form of:

[δσ̃(x)] = C(x) [δε̃(x)] = C(x)A(x) [δε] (6.18)

The derivative of the stress fluctuation with respect to macroscopic strain averaged over

the solution domain yields:

〈
∂σ̃

∂ε

〉
= 1
V

∫
Ω
C(x)A(x)dΩ. (6.19)

According to the definition of the consistent effective tangent:

Ceff ≡
〈
∂σ

∂ε

〉
= ∂σ

∂ε
+
〈
∂σ̃

∂ε

〉
. (6.20)

The first term of the right hand side of (6.20) can be obtained according to (??) as:

∂σ

∂ε
= 1
V

∫
Ω
C(x)dΩ. (6.21)
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As a result the effective consistent tangent can be obtained with the form of:

Ceff = 1
V

∫
Ω
C(x) (A(x) + I) dΩ (6.22)

By following the same quadrature rule used for solution of the problem one can obtain

the effective tangent in the form of:

Ceff = 1
NP

∑
NP

∑
NQ

CQ (AQ + I) wQ

 , (6.23)

where I is the fourth order Identity matrix, CQ is the elasticity matrix for the material

associated with the quadrature point Q, and wQ is the weight associated with the

quadrature point. AQ is obtained from the local stain response of the system at quadrature

point Q. NP is the counter of the pixels at the RVE. It is also notable that it is not

necessary to construct the AQ completely at once and it can be also calculated row by

row by computing the response of (6.14) by applying each of the perturbation strains

one at a time.

The developed algorithmically consistent tangent is preferable to FD approximation

since the effective tangent calculated by this method depends on the solution of (6.14)

which can be in principle solved up to machine accuracy in constant number of CG steps

(solution complexity does not grow with system size). The FD test approach, on the other

hand, depends both on the perturbation and the convergence of the Newton solver used to

solve each test case. The appropriate perturbation size is actually problem-dependent and

unknown. Furthermore, the linearity of (6.14) is advantageous specifically in nonlinear

problems, where the FD method needs to iterate on nonlinear equations.

In comparison with the consistent tangent algorithm introduced by Göküzüm and Keip

(2017), our derived consistent tangent is preferable, since directly solving for the strains

and being able to apply the local tangent of the quadrature points on the calculated

strain fluctuation makes it unnecessary to construct new intermediate variables and

the rows of the effective stiffness tangent can be populated one at a time directly from

the corresponding mean strain applied on the system.That makes our method memory

efficient as well. In addition, our derivation, in contrast to the derivation presented
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by Göküzüm and Keip (2017), is based on the potential energy minimization principle.

6.2 Examples and results

In order to examine the derived effective tangent calculated via the consistent tangent

expression the following 4 examples are carried out. First, the algorithmically evaluated

tangent is tested against the analytic tangent of a simple problem. In the second

example, we compute the tangent of a RVE with periodic arrangement of cracks and

compare it against semi-analytical stiffness loss calculations of Aboudi (1987). In the

third an fourth examples, algorithmically obtained effective tangent is tested against FD

approximation for two nonlinear problems. In the third example, the effect of variation

of FD step size is studied and in the fourth example, the algorithmic tangent and the FD

tangent approximation are compared in sense of the tangent evaluation error and the

computational time needed for effective tangent computation.

6.2.1 Comparison with the analytical solution of Eshelby

The first example is the comparison of the obtained effective stiffness with the analytical

solution of a micro-structure containing a dilute spherical stiff inclusion with inclusion

volume ratio of ρincl = 1.0%. This example is similar to one of the examples of Göküzüm

and Keip (2017). Choosing a RVE with such a dilute inclusion volume ratio enables us

to compare the algorithmically consistent effective tangent calculated by our developed

method to the analytical value of the tangent that can be computed according to Eshelby

inclusion solution Eshelby (1957) because the periodic duplicates of the inclusion that are

far enough to not interact with each other. Therefore, we can assume that our periodic

homogenization RVE can be taken equivalent to Eshelby inclusion problem in an infinite

medium.

The closed form of the tangent for an Eshelby inclusion problem is briefly explained here

for the sake of completeness. Two variables a and b as functions of the Poisson ratio of
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the matrix material νmatr are defined as:

a = 1
3

1 + νmatr

1− νmatr
and b = 2

15
4− 5νmatr

1− νmatr
. (6.24)

Variables a and b can be used in the definition of another pair of variables A and B which

are respectively function of bulk modulus κ and the shear modulus µ of both phases:

A = κincl + κmatr

(κmatr + κincla− κmatr and B = µincl + µmatr

(µmatr + µinclb− µmatr (6.25)

Based on (6.24) the effective bulk modulus and shear modulus renders as:

κanal = κmatr

1 +Aρincl and µanal = µmatr

1 +Bρincl (6.26)

Accordingly, the analytical effective bulk modulus and shear modulus given the Lame

parameters of the matrix and inclusion phases as κincl = 10GPa, µincl = 5GPa, and

κmatr = 2GPa, µmatr = 1GPa are:

Canal
1111 = 4.044GPa and Canal

1212 = 1.017GPa (6.27)

For the numerical computations of the stiffness (the algorithmic tangent), several RVEs

with different number of pixels have been considered (from 313 to 2593). The corre-

sponding stiffness components Calgo
1111 and Calgo

1212 for considered discretization points are

respectively depicted in Figure 6.1a, and b. The figure shows that the computed stiffness

coefficients converge to the values:

Calgo
1111 = 4.037GPa and Calgo

1212 = 1.015GPa (6.28)

with refining the discretization. The error of stiffness reduction is in order of 0.1% already

for the RVE with 693 pixels and the value for the finest grid sizes that are slightly softer

compared to analytically calculated stiffness (from Eshelby solution) is in agreement with

findings of Göküzüm and Keip (2017) and Schneider et al. (2016b).
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Figure 6.1: The algorithmic bulk and shear modulus of a RVE constaining a spherical
inclusion with volume ratio of 1.0%

6.2.2 Stiffness reduction of cracked solids

Since we intend to use the developed tangent evaluation for computing the stiffness of

an ASR damage model that contains cracks, it is crucial to examine stiffness computation

with the developed method in presence of cracks. Accordingly, the second example for this

chapter is the computation of the effective stiffness of a 2D linear elastic domain containing

a doubly periodic rectangular array of cracks. The geometry of the considered RVE is

depicted in Figure 6.2. The RVE considered is depicted in this figure by dark gray while

the light gray shows the periodic replica of the solution domain. The crack located along

the x-axis and at the center of the RVE with length of d1 is colored as red. The distance

of crack arrays in the direction of the cracks and perpendicular to crack axis are noted in

the figure respectively as d2 and 2L.

The semi-analytical calculation of the stiffness reductions experiencing load cases of

different fracture modes (Mode I, II, III) is carried out by Aboudi (1987), where the

equilibrium equations in conjunction with the continuity conditions for the tractions and

displacements are solved to obtain elastic field variables. Aboudi (1987) approximated

the displacement fields with Legendre polynomials in terms of distance from the center

line. The stiffness loss of the RVE for Calgo
2222 and Calgo

1212 can respectively be corresponded

to the semi-analytical stiffness loss calculations of Aboudi (1987) under Mode I and Mode

II load application.
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Figure 6.2: Geometry of the periodic 2D linear elastic material problem with horizontal
crack and its neighboring periodic replica

The obtained relative stiffness reduction of the RVE schematically depicted in Figure 6.2

is shown in Figure 6.3. The x-axis of both plots is the ratio of the crack length (d1)

divided by the width of the RVE orthogonal to crack axis (2L). Each curve corresponds

to a certain ratio of crack length divided by the length of the RVE in the direction of the

cracks (d1 + d2).

Subfigure a shows the normalized stiffness of C2222 (the normal stiffness in the direction

orthogonal to the crack axis) normalized by C0
2222 which notes the normal stiffness in y

direction with no crack. The solid curve in the figure corresponds to the semi-analytical

relative stiffness loss (Aboudi (1987)) for Mode I. The algorithmic stiffness matches well

with the semi-analytical calculation specifically for RVEs with low crack density, i.e. in

cases with far-apart cracks (from their periodic replica) relative to their length. The

normal stiffness results (loss of C2222) also have better match when their distance in x

direction is higher (blue curves have better match compared to purple ones).

The subfigure b shows the normalized shear stiffness C1212/C0
1212. The algorithmic

tangents and the semi-analytical effective tangent show good agreement also in case
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Figure 6.3: Stiffness reduction of the periodic 2D linear elastic material problem with
horizontal crack

of shear stiffness. The values of algorithmic tangent and semi-analytical tangent show

better match for lower crack density perpendicular to the cracks (d1/2L) here as well.

Generally speaking the algorithmic consistent tangent exhibits good performance for

calculating the effective tangent of a RVE containing cracks.

6.2.3 Homogenization of a Hyper-elasto-plastic micro-structure

In order to study the performance of the algorithmic tangent calculation for RVEs

containing nonlinear phases a RVE containing elasto-plastic material is taken as the

next example. The example is adopted from de Geus et al. (2017) where the micro-

structure of the RVE consists of hyperelasto-plastic material. The constitutive law and the

configuration of the this example is identical to the example presented in Subsection 4.2.1.

The solution domain of the examples, discretized as 441× 441 pixels with two quadrature

points per pixel (domain is discretized with a regular periodic grid presented in column

b of Figure 1.6), consists of two steel phases martensite and ferrite that are identical in

their elastic regime; however, their initial yield stress and hardening coefficients differ
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here by φ = 2 as the phase contrast between martensite and ferrite as:

τ ferrite
y0 × φ = τmartensite

y0 , (6.29)

H ferrite × φ = Hmartensite, (6.30)

The relative error of tangent obtained by the developed algorithm (Calgo) with respect

to the tangent obtained by FD (Cfd):

ϵC = ||C
fd − Calgo||
||Cfd||

, (6.31)

is taken as the measure to quantify the comparison of the tangents.

The value of the tangent calculation error ϵC is plotted for different values of the

perturbation amplitude of the FD method in Figure 6.4. The tolerance of the CG

solver is taken as ηCG = 1 × 10−12 and the tolerance of the newton solver is taken as

ηNewton = 1 × 10−7. The relative difference of Calgo and Cfd are less than 0.1% for all

the tested finite strain step sizes. The error reduces down to 10−7 as the step size is

decreasing from large values but for very small step sizes the numerical error increases

and the error rises with further decrease of the step size.

Figure 6.4: Relative error ϵC of algorthmic tangent Calgo with repsect to the finite
difference tangent Cfd
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6.2.4 Homogenization of an Neo-Hookean elastic RVE

One of the most important advantages of the developed closed form tangent in comparison

to the conventional FD method is tangent evaluation speed gain. In order to quantify

the tangent evaluation acceleration that the developed algorithm offers compared to FD

last example of this chapter is homogenization of an RVE containing material with Neo-

Hookean free-energy function in finite-strain formulation. Due to the non-linearity of the

material and finite-strain formulation, FD tangent evaluation involves d2 times nonlinear

problem solution while the algorithmic tangent calculation just solves linear problems to

obtain the effective tangent. The first Piola-Kirchhoff stress of the Neo-Hookean material

is computed by:

P = µF− µ(det F)−βF−T (6.32)

where µ and β are material parameters.

The geometry of this example is so simple and contains a circular hard inclusion at the

center of the RVE that has a Neo-Hookean constitutive laws and a soft matrix with linear

elastic material. I solve the problem for different phase contrast between the matrix and

the inclusion (µmatr

µincl
). I discretize the solution domain on 101× 101 pixels and with a

regular discretization presented in column b of Figure 1.6. The equilibrium is solved

with ηNewton = 1× 10−7 and ηCG = 1× 10−12 as tolerances. The test step size for FD

approximation is set as 1× 10−6.

The error of the tangent estimation is also quantified in this example with the same

error as the previous example as noted in (6.31). The result of the tangent evaluation is

presented in Figure 6.5. Subfigure 6.5a shows the relative tangent error ϵC which shows

very good agreement of the algorithmic and the finite difference tangent for different

phase contrasts. Having relative error in range of the solution tolerance approves that

both tangent evaluation methods are successful in evaluating the tangent.

Figure 6.5b shows the time consumed for FD and algorithmic tangent evaluation. It

depicts that for all of the phase contrast values the algorithmic tangent evaluation is

faster. In addition, the FD tangent evaluation computation time grows more rapidly

with phase contrast increase up to the point that for phase contrast of 64, the algorithmic
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Figure 6.5: Relative error ϵC of algorthmic tangent Calgo with repsect to the finite
difference tangent Cfd

tangent evaluation is roughly 5 times faster. Tangent evaluation is slower with FD

when phase contrast rises since the nonlinear solution of the perturbed RVE becomes

computationally more expensive.

6.3 Conclusion

In this chapter, I have developed an algorithmically consistent tangent for the projection-

based FFT-accelerated scheme based on the minimization of the incremental strain

energy of the system. The developed consistent tangent algorithm involves solving a set

of linear equations to achieve the mean stress of the perturbed RVE. Due to the linearity

of the equations, they can be combined to make a single higher order linear equation.

Whether to solve linear equations for a column of the effective tangent at a time, or for

all of the components at once is a time and memory consumption matter. The former

approach is less memory intensive but more time consuming, while the latter approach is

more memory demanding and faster. I have opted for the first approach, since I wanted

to use the same memory reserved for the equilibrium solution.

Evaluating the effective tangent using the developed method does not need any further

material stress or tangent evaluation and merely uses those results obtained in solving
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for the equilibrium. This combined with the fact that the tangent evaluation in the

developed method involves only linear equations makes the developed tangent evaluation

method faster compared to FD tangent evaluation. This is empirically shown in the

last example presented in this chapter. We will use the developed consistent tangent,

later in Chapter 7 for evaluation of effective stiffness loss of a concrete micro-structure

undergoing ASR damage.
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7 Meso-scale Alkali-Silica reaction

damage simulation

As set forth in Chapter 2, simulating ASR in a comprehensive damage model needs a fast,

robust and reliable meso-scale model. The meso-scale and multi-scale models presented

by Dunant and Scrivener (2012); Cuba Ramos (2017) could reproduce the crack pattern

and the stiffness loss of ASR damage; however, the high computational costs of using

a FE2 and the constitutive laws employed in their work make their solution prohibitively

expensive. The machinery we have prepared in this research can realize the speed-up

needed and offers a fast and reliable meso-scale ASR damage model.

The specific geometrical characteristics (regular structure) of the RVEs simulated in meso-

scale and multi-scale mechanical problems (cell problems) make the FFT-accelerated

schemes a suitable candidate. The main drawback of the FFT-accelerated methods in the

main part of the literature is the spurious oscillations introduced in the solution field that

are catastrophic in case of damage mechanics. Both strain-based FFT-accelerated method

with FE discretization (Leute et al. (2021)) and the displacement based preconditioned

formulation (Ladecký et al. (2022b)) developed by the µSpectre development team resolve

ringing artifacts. I have actually showed the equivalence of these two schemes in Chapter 4

of this dissertation. Among these two formulations, we have opted for the strain-based

scheme since in order to be able to compare results to literature it is necessary to have

the possibility of imposing mean stress on the RVE (Lucarini and Segurado (2019a)).

Another challenge in the meso-scale ASR damage model is the non-convexity of the me-

chanics damage constitutive laws. The non-convex modified trust region solver introduced
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in Chapter 5 can effectively and robustly handle this issue without need to explicitly

assess the strain energy of the system. The modified trust region solver combined with the

strain-based ringing-free FFT-accelerated scheme discussed in Chapter 1 and Chapter 4

of this dissertation make it possible to conduct the meso-scale ASR damage simulation

significantly faster than convectional FEM solutions. In addition, by using the algorith-

mically consistent tangent presented in Chapter 6 we can also accelerate the evaluation

of the effective tangent of the RVE compared to the FD tangent approximation, for

the RVE containing material with nonlinear damage constitutive law.

In this chapter, first, I explain the micro-structure of the RVE and the method adopted

to construct RVEs with high aggregate density. Next, I will discuss the asymmetric

damage constitutive law used to model concrete phases (aggregate and cement paste).

Afterwards, I explain the method used to apply different boundary conditions is briefly

explained. Finally, the I present results of the meso-scale ASR damage problem.

7.1 RVE preparation

I, explicitly, resolve the cement paste and aggregate phases in the concrete micro-structure

at the meso-scale ASR damage model. In addition, I induce the expansion of ASR products

as expansion of randomly chosen elements that differ from the aforementioned phases

(cement paste and aggregates). The expansion of these elements mimics the expansion

of the ASR gel pockets residing inside them. The expansion of very small ASR gel

pockets is assumed to be smeared inside the gel elements. This approach for modeling

meso-scale ASR damage is successfully used by Cuba Ramos (2017) and Gallyamov et al.

(2022).

One important step of computational homogenization is generating RVEs matching

with available experimental data and RVE characteristics such as volume fraction of the

phases, shape of the inclusions, and the size distribution of the inclusions inside the RVE,

The RVE construction method should be capable of generateing RVE representative

of real micro-structure and respecting the most important characteristics of the micro-

structure. In case of the concrete micro-structure, the most important characteristics

are:
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1. High volume fraction: The RVE generation method should be able to insert non-

intersecting inclusions with high compactness (up to 70%).

2. Inclusion size distribution: The method should also be capable of inserting inclusions

with respect to the concrete aggregate size distribution.

3. Aggregate shapes: The RVE generation method needs to be able to insert arbitrary

shaped inclusions (representing aggregates) inside a matrix (representing mortar).

Polygons and polyhedra, respectively in 2D and 3D, are appropriate inclusion

shapes to construct concrete RVEs since they can represent aggregates with sharp

edges and corners.

The simplest possible method for generating RVEs composed of arbitrary arrangement of

inclusions inside a matrix (concrete RVE) is random sequential addition (RSA). However,

the time complexity of RVE construction grows exponentially with the targeted inclusion

volume fraction (Widom (1966); He (2010)). Sonon et al. (2012) introduced, in their

work, a modification of RSA in which by using level set (LS) approach, they could

reduce the scaling of RVE construction complexity to linear with respect to the inclusion

density. LS functions were originally introduced in computational methods to model

propagation of wave fronts and later used for free surface flows (Carrica et al. (2006);

Mean et al. (2020)).

The LS functions, in the RVE construction methods, are the distance of each point inside

the RVE from the nearest inclusion. Sonon et al. (2012) has used these LS functions

to determine the feasible set of points inside the RVE to insert a new inclusion with

a certain size. This results in a significant reduction in the number of failed insertion

trials compared to plain RSA. As a result, the time complexity of placing new aggregate

becomes constant in time, as it merely involves random selection among feasible points

to insert aggregate with a certain size).

Sonon et al. (2012) have used a pure geometrical approach for updating the LS functions.

Updating LS functions in their approach is based on the fact that the distance of a point

and a polyhedron (convex or not) is the minimum of distances from this point to all

of the vertices, edges and faces of the polyhedron. Therefore, they ought to evaluate
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the distance of each point from all of the vertices, edges, and faces of a newly inserted

polyhedron to update the LS functions.

In contrast, in this research, I adopted a more efficient approach to calculate the LS

function. The method used for calculating LS functions is inspired by the original purpose

of defining the level set functions (wave propagation front solution). The method is based

on the so-called fast marching method for solving an equivalent Eikonal equation (Sethian

(1996); Chacon and Vladimirsky (2012)). Using the fast marching method combined with

the LS-RSA RVE generation scheme, enables us to make RVEs with packing densities

up to 70% reasonably fast. In addition, the arbitrary shape of the inclusions enables us

to construct a geometrically realistic representation of the concrete micro-structure. As

an example, a 2D bi-phase of a RVE made by LS-RSA is presented in Figure 7.1.

Figure 7.1: periodic concrete RVE constructed in 2D with packing density of 60% with
polygon inclusions

7.2 Constitutive laws

Wide range of materials including geomaterials, wood, and concrete and their underlying

phases fail due to the propagation and coalescing of micro-cracks. In structural analysis

and computational homogenization, this phenomenon (called brittle damage) can be

considered as strain softening behavior in constitutive laws. Kachanov (1958), in his
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application of a continuum damage model, introduced the concept of strain softening

through the definition of damage variable D. Various continuum damage models,

using damage variables with differences in the rank of the damage variable; scalar,

vector (Krajcinovic and Fonseka (1981)), or a higher order tensor (Vakulenko and

Kachanov (1971)); and even varying in other aspects (e.g. isotropic/directional, or

tensile-compressive symmetric/asymmetric), have evolved since then.

The general form of the constitutive law of a linear elastic damage material has the form

of:

σ = Λ(D, ε) : ε. (7.1)

In order to yield a positive definite damage release rate, in other words due to the

irreversibility of the damage process, in continuum damage models, the evolution of

D needs to be non-negative (Ḋ ≥ 0). Damage variable growth is governed by a yield

surface of equation f (ε,Λ, κ0), in which κ0 is the initial damage threshold (expressing

the strength of the material). The damage variable evolves according to:

Ḋ =


0 if f < 0 , or f = 0 , ḟ < 0 (i),

Φ (ε,D) if f = 0, and ḟ = 0 (ii)
(7.2)

where Φ (ε,D), called the damage evolution function, is a positive function of strain ε,

and the damage variable, D. The equality f = 0 corresponds to the damage threshold

surface of the material.

For f < 0, the strain state is within the damage surface, thus, there will be no damage

and the damage variable does not grow. However, if f ≥ 0 the damage increases. In

the special case, where Φ can be expressed as an explicit expression of a strain measure

ε̆ = ε̆(ε), the damage variable D can be also written explicitly as a function of ε̆ and the

stiffness reduction of the strain softening part of the constitutive law (7.1) also yields an

explicit function of ε̆ (Λ = Λ(ε̆)). Thus, stress can be evaluated according to

σ(ε) = Λ(ε̆)σ0(ε), (7.3)

where σ0 is the pure elastic stress of the material. Φ and Λ can be correlated according
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to: Φ = ∂Λ/∂ε. Various expressions of f and Λ functions results in different damage

models.

The damage model used in this research as the constitutive model of the aggregate

and mortar phases of the concrete micro-structure is inspired by the damage material

introduced by Mazars (1984). In the adopted damage model, a bilinear strain-stress

behavior with a scalar damage variable D similar to Cuba Ramos (2017) was taken as

the constitutive model. The damage surface f , proposed by Mazars and Pijaudier-Cabot

(1989) with the form of:

f = ε̆− κ (7.4)

has been used. In (7.4), ε̆ is a strain measure and κ is the softening parameter which

takes the largest value of the equivalent strain measure ε̆ ever reached by the material

and therefore is also a function of the strain.

The scalar damage variable D of the constitutive model can be expressed as:

D = κ0 − κ
κ

, (7.5)

where κ0 is the initial strain damage threshold (intact material). The function Λ from (7.3)

can therefore be simply taken as:

Λ (ε̆) = 1−D (ε̆) . (7.6)

We need to have a traction-compression asymmetric material behavior for the concrete

phases in the ASR damage model since both aggregate and cement paste are brittle mate-

rial and their tensile strength is relatively lower. In order to realize a tension-compression

asymmetric material we need to break the strain into its tensile and compressive contribu-

tions and define ε̆ based on those components. To do so, we can isolate compressive and

tensile parts of the strain after calculating the eigenvalues of the strain tensor (spectral

decomposition). After breaking the strain into its tensile
(
ε(t)

)
and compressive

(
ε(c)

)
contributions according to:

ε
(t)
i = H (ϵi) ϵiqi ⊗ qi, ε(c) = ε− ε(t), (7.7)
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where ϵi is is the ith eigenvalue of the strain tensor, qi is its corresponding eigenvector,

and H is the Heaviside function. The operator ⊗ denotes outer product. We take a strain

measure ε̆ formulated as the weighted sum of compressive and tensile strain components

with the form of:

ε̆ = υ(t)
∣∣∣∣∣∣ε(t)

∣∣∣∣∣∣+ υ(c)
∣∣∣∣∣∣ε(c)

∣∣∣∣∣∣ , (7.8)

where υ(t) and υ(c) are respectively weights of tensile and compressive contributions.

Different values of υ(t) and υ(c) (material constants) introduce compression-tension

asymmetry in the material damage behavior. For instance taking υ(c) smaller than υ(t)

stretches the damage surface in the compression part and make it stronger (more resistant

against getting damaged under compression) in case of compressive load scenarios and

taking υ(c) = 0 suppresses compressive damage completely.

In our solution schemes (the strain-based and displacement-based FFT-accelerated

schemes introduced in previous chapters), it is necessary to evaluate tangent stiffness

of the material at discretization points. Therefore, in order to make them efficient, we

need to derive the closed form of the tangent for the damage material. We, need to

differentiate (7.3) with respect to ε by taking C0
.= ∂σ0/∂ε and replacing (7.5) in (7.3)

before differentiation, the material tangent C can be written as:

C = (1−D) C0 + σ0 ⊗
(
∂D

∂κ

∂κ

∂ε

)
. (7.9)

In this equation, all of the terms are straight forward to calculate except ∂κ/∂ε. This

term is a tensor full of zeros for non damage steps (case (i) of (7.2)). However, in case of

damage steps (case (ii) of (7.2)) it becomes:

∂κ

∂ε
= ∂ε̆

∂ε
, (7.10)

which can be rewritten as:

∂κ

∂ε
= υ(t)∂ε(t)

∂ε
+ υ(c)∂ε(c)

∂ε
, (7.11)

considering (7.8). According to the definition of ε(t) and ε(c) (7.7), evaluating ∂κ/∂ε needs

differentiating eigenvalues and eigenvectors of the strain tensor with respect to the strain
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tensor itself. The derivative of eigenvectors of a tensor with respect to the tensor itself

has the closed form of
∂qi,γ

∂εαβ
=
∑
i ̸=j

qi,β qj,α

ϵi − ϵj
qj,γ (7.12)

as given by Petersen et al. (2008). In (7.12), the Greek indices are expressing the index

of the strain tensor and English ones are corresponding to the index of eigenvalues and

their corresponding eigenvectors. For instance qi,γ denote the γth component of the ith

eigenvector.

The closed form of the eigenvector derivative given by (7.12) is prone to numerical

instability due to the singularity. The singularity problem is evident in (7.12) and occurs

when eigenvalues of the strain tensor tends to become equal. This situation arises often

for the strain tensor and the most obvious situation is having a spherical strain state

where the eigenvalues are equal to each other and makes the derivative of eigenvectors

tend to infinity.

In order to resolve this problem, we have introduced a new tensile-compressive separation

method that avoids singularity in differentiating the eigenvectors. To have a mathe-

matically equivalent expression of the tensile and compressive strain contributions, we

introduce the so-called tensile and compressive masking matrices defined as (inspired by

work of Contrafatto and Cuomo (2007)):

M(t) =
d∑

i=1
H (ϵi) qi ⊗ qi, and (7.13)

M(c) = I−M(c). (7.14)

Using M(t) and M(c), the tensile and compressive contributions of the strain tensor can

be defined as:

ε(t) = M(t) ε M(t) (7.15)

ε(c) = M(c) ε M(c). (7.16)
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Accordingly, their differentiation with respect to the strain tensor itself can be written as:

∂ε(t)

∂ε
=
∂
(
M(t)εM(t)

)
∂ε

= ∂M(t)

∂ε
εM(t) + M(t)∂ε

∂ε
M(t) + M(t)ε

∂M(t)

∂ε
, and (7.17)

∂ε(c)

∂ε
=
∂
(
M(c)εM(c)

)
∂ε

= ∂M(c)

∂ε
εM(c) + M(c)∂ε

∂ε
M(c) + M(c)ε

∂M(c)

∂ε
. (7.18)

For carrying out the differentiation of ∂ε(t)
/∂ε and ∂ε(c)

/∂ε according to (7.17) we need to

work out the differentiation of the masking matrices with respect to the strain tensor
∂M(t)

/∂ε. According to (7.14), we can obtain ∂M(c)
/∂ε by:

∂M(c)

∂ε
= −∂M(t)

∂ε
(7.19)

For sake of brevity, the derivation for a 2D problem is reported here. Extension to 3D

can be also carried out following a similar procedure. In order to derive ∂M(t)
/∂ε and

∂M(c)
/∂ε let us assume that the eigenvalues (ϵ1 and ϵ2) are arranged in an ascending order

(ϵ2 ≥ ϵ1). Depending on the sign of the eigenvalues the following cases are possible:

1. ϵ1 < 0, and ϵ2 > 0:

According to (7.13) the tensile masking matrix can be written as:

M(t) = q2 ⊗ q2. (7.20)

As a result we can differentiate M(t) w.r.t ε as:

∂M(t)

∂ε
= ∂q2

∂ε
⊗ q2 + q2 ⊗

∂q2
∂ε

. (7.21)

Replacing the ∂q2/∂ε from (7.12) gives us:

∂M(t)
αβ

∂εθι
=
[

q2,ιq1,θ

ϵ2 − ϵ1
q1,α

]
q2,β + q2,α

[
q2,ιq1,θ

ϵ2 − ϵ1
q1,β

]
(7.22)

which can be rewritten as:(
∂M(t)

∂ε

)
αβθι

= q1,αq2,βq1,θq2,ι + q2,αq1,βq1,θq2,ι

ϵ2 − ϵ1
, (7.23)
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in index notation, which is equivalent to:

∂M(t)

∂ε
= q1 ⊗ q2 ⊗ q1 ⊗ q2 + q2 ⊗ q1 ⊗ q1 ⊗ q2

ϵ2 − ϵ1
. (7.24)

Having M(t) and ∂M(t)

∂ε calculated we compute ∂ε(t)

∂ε using (7.17):

(
∂ε(t)

∂ε

)
αλθι

=
(
∂M(t)

∂ε

)
αβθι

(
εβoM(t)

oλ

)
βλ

+M(t)
αθ M(t)

ιλ +
(
M(t)

αoεoλ

)
αγ

(
∂M(t)

∂ε

)
γλθι

.

(7.25)

According to (7.14) and (7.19) we can calculate M(c) and ∂M(c)

∂ε easily. Having

these two computed, the calculation of ∂ε(c)

∂ε is similar to the calculation of ∂ε(t)

∂ε

expressed in (7.25).

2. ϵ1 < 0, and ϵ2 < 0, or ϵ1 > 0, and ϵ2 > 0:

All other cases are the ones in which all the eigenvalues are positive or all of them

are negative. In such cases, all eigenvalues are positive M(t) = I, M(c) = 0 and

if all of the eigenvalues are negative, the masking matrices are constant and simply

given by: M(t) = 0, M(c) = I.

Either way, the value of M(t) and M(c) does not change as ε varies infinitesimally;

therefore, we can take:
∂M(t)

∂ε
= ∂M(c)

∂ε
= 0. (7.26)

Therefore, for C(t) and C(c) can be obtained (based on (7.25)) according to:

∂ε(t)

∂ε
= M(t)⊗ M(t)T (7.27)

∂ε(c)

∂ε
= M(c)⊗ M(c)T (7.28)

3. special case:

The case that both of eigenvalues are zero and can cause a singularity even with

eigenvalues with different signs. However, such cases do not cause issue as they

cannot be associated with a damage situation, since such load state, certainly. does
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(a)
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Figure 7.2: Constitutive law of the damage material in ASR damage example, a. stress-
strain response of the damage material and b.Failure criterion of the damage material

not cross the damage surface and therefore the material behaves purely elastic.

We take both phases to be merely damaging in tensile loads since the driving damage

mechanism in ASR damage is cracking (failure under tension) rather than crushing

(failure under compression). We have basically adopted υ(t) = 1 and υ(c) = 0 in (7.8) to

realize a constitutive law of the material that gets damaged merely in the tensile regime.

The constitutive behavior of both aggregate and mortar phases is schematically shown

in Figure 7.2 for a 2D material, where Figure 7.2a depicts the strain-stress behavior and

Figure 7.2b illustrates the damage surface.

Following the aforementioned process makes it possible to compute the tangent stiffness of

the tensile-compressive asymmetric material at the quadrature points of the discretization

without any singularity problem.

Using continuum damage models in discretized models leads to so called crack band or

cohesive band damage models (Berton and Bolander (2006); Hoover and Bažant (2014)).

In these models, instead of lumping all the inelastic effects of a damage into a crack

surface (discontinuity in extended-FEM (Belytschko and Black (1999); Moes et al. (1999);

Sukumar et al. (2000)), the inelastic effects of crack is smeared across the width of a band

of a finite thickness H. The corresponding normal strain in the solution is equivalent to

ε = [[u]]/H . where [[u]] is the equivalent displacement jump between two faces of a crack.
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In discretized models, the smallest possible band able to realize the crack is governed

by the discretization size (H ≈ lc where lc is the discretization characteristic length).

Therefore, the rate of damage energy release scales proportionally to the discretization

characteristic size if the energy release volumetric density remains constant.

On the other hand, the mode-I fracture energy per unit area of the crack Gf (the mode

happening in the ASR damage) is a constant and measurable material constant and

needs to be preserved in modeling fracture and the constitutive law should be adjusted to

realize Gf . The constitutive law can be correlated to the fracture energy via the variable

gf ≡ Gf/lc reflecting the dissipation energy per unit volume of the damage localization.

gf can be computed from the constitutive law according to:

gf =
∫ ∞

0
σ(ε)dε. (7.29)

In other words, gf is the area under the stress-strain curve. Without adjusting the

constitutive law, the material response would be pathological and mesh-dependent.

A simple and effective remedy to avoid this pathological mesh-dependence of the material

response is the adjustment of the softening part of the stress-strain law as a function of

the element size. It is notable that such treatment is based on the assumption that the

dissipation takes place in band of one element thick (Colombo and Comi (2019)). The

modification of post-peak material parameters should realize equal energy dissipation per

unit area of the crack for different discretization sizes. In other words, it should make

energy dissipation per unit area invariant with respect to mesh size.

Taking the crack band localized at a band with the width of one element allows us to

attribute the characteristic length lc to the discretization size. For instance, in 2D, lc
can be taken as:

lc =
√

2Ael, (7.30)

where Ael is the area of the discretization elements evaluated numerically (Rizzi (1991)).

However, it should also be noted that modification of strain-softening parameters such as

material strength ft or the ultimate strain εu can also affect the damage initiation and

evolution. For instance, changing the value of the strength affects the damage initiation,
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while manipulating the ultimate strain affects the crack opening at its fully damaged

state. ASR damage modeling necessitates a realistic damage initiation; therefore, we

need to take this into account when choosing a proper regularization. Further details on

the regularization is presented later in the discretization study where the mesh refinement

along with regularization are used to ensure the mesh independence of the simulation

results.

7.3 Stress control in spectral methods

In this section, I present a modified projection operator in the context of the strain-

based FFT-accelerated formulation, which enables us to impose the mean stress to

the RVE. The approach is based on the modification of the projection operator introduced

by Lucarini and Segurado (2019a). Lucarini and Segurado (2019a)’s idea is, here, applied

in the context of the extended projection operator introduced by Leute et al. (2021).

The projection operator presented in its generic format is based on the Helmholtz

decomposition where an arbitrary field T can be divided to its curl-free Tq, gradient-free

T⊢ and mean contributions T as:

T = T⊢ + Tq + T. (7.31)

The application of the projection operator yields the curl-free contribution of the field.

In the Fourier space, application of the projection operator is a contraction:

T̂q = Ĝ : T̂. (7.32)

Leute et al. (2021) derived the operator Ĝ for both small and finite strain formulation

from the discrete gradient operator D in a basis set of choice. Considering that the

introduced projection operator G, similar to FG, is meant to only keep the gradient

contribution by killing the mean and the curl contributions of the field, the case of the

zero wave-vector (k = 0) is taken as a special case and the associated G(k) is taken

to be zero. This projection operator makes it possible to find the fluctuation of the
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strain field by solving the equilibrium for a given mean strain field ε. In this research,

in order to reproduce the boundary condition equivalent to the load scenario of the

experimental ASR setups in the literature (Ben Haha (2006)), namely free expansion

and uni-axial or bi-axial tension, it is necessary to be able to control the mean value of

stress of the RVE.

Similar to Lucarini and Segurado (2019a), let us denote the alternative projection

operator needed to enforce the mean value of the stress as G∗. G∗, unlike the original

projection operator G, should maintain the mean value of the field instead of suppressing

it; therefore, the zero-mean condition is eliminated for G∗. However, when applied to

the stress fluctuation (with zero mean), its influence is identical to the application of the

original projection. As a result, the equilibrium equation has the form of:

G (σ̃) = G (σ − σ) = 0 (7.33)

as derived in Lucarini and Segurado (2019a). Solving (7.33) gives the value of the full

strain field, ε including both fluctuations and the mean value of the field:

Find ε | Ĝ∗ : σ̂(ε) = Ĝ∗ : σ̂, for a given σ. (7.34)

The modified projection operator is identical to the original projection operator for all

non-zero frequencies. For null-frequency in small strain, G∗ returns the symmetrized

average of the input field. This can be achieved by taking the null-frequency component

of the projection operator obtained in a FEM discretization with arbitrary elements

inside a voxel as:

Ĝ∗
ΘΛ,ijkl(0) = 1

2 (δikδjl + δilδjk) , (7.35)

in the small strain formulation. In (7.35), the capital Greek letters (Θ and ∆) denote

quadrature points inside a voxel. similar to the notation of Leute et al. (2021). while the

Latin letters are the tensor components. The zero frequency of the projection operator

was set to the symmetrizing fourth-rank identity tensor for all of the elements of projection

operator 1. Therefore, in the implementation of the Ĝ∗, it is only necessary to change the

zero frequency component of the projection operator considering the type of boundary

1Sufficient in this case since only discretizations with one nodal point per voxel were considered
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condition needed to be imposed on the RVE.

The convergence criterion of the Newton solver of the strain-based scheme with mean

strain as the imposed boundary condition is based on the evaluation of the norm of the

solution step in the strain space normalized with respect to the size of the imposed change

of the mean strain of the RVE. Since the change in the mean strain is unknown in the

case of applying mean stress on the RVE we need to take another termination criterion.

The replacement termination taken here is the L∞ norm of the scalar field of norm of

strain increment tensors at nodal points. In other words, the solution terminates as soon

as the maximum of the norm of the strain field increment get smaller than ηNewton.

7.4 Simulation and results

In this section, I present ASR damage simulations as the use case of all of the machinery

presented in this dissertation. The model I adopt for the meso-scale ASR damage

modeling consists of the cement paste and aggregates as two explicit phases. I employ

the strain-based FFT-accelerated solution scheme with FE discretization. The crack

band damage model introduces a non-convex potential energy functional as the damage

part of this constitutive law leads to a SNPSD system matrix. As a result, I use the

modified trust region solver explained in Chapter 5.

In order to be able to compare our results with available ASR damage meso-scale

simulation results of Cuba Ramos (2017), 2D meso-scale ASR damage model RVEs are

considered here. In order to have same boundary conditions to Cuba Ramos (2017) we

imposed mean stress value as the boundary condition of the RVE by means of modifying

the projection operator as explained in Section 7.3 and according to findings of Lucarini

and Segurado (2019a). Aggregates are placed inside a cement paste matrix in RVEs

according to the Fuller size distribution (MotahariTabari and Shooshpasha (2018)) using

the LS-RSA method explained in Section 7.1. Pixels considered to be containing growing

ASR gel pockets have been randomly inserted inside aggregates. The structure of the 2D

micro-structure is depicted in Figure 7.3a.

The constitutive laws of both aggregate and cement paste phases are bilinear crack
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a. ΔV/V=0.000

b. ΔV/V=0.016 c. ΔV/V=0.032

d. ΔV/V=0.048 e. ΔV/V=0.064

Cement Paste

Aggregate

ASR product D
am

ag
e

Figure 7.3: Evolution of crack pattern in the concrete micro-structure as a result of
application of eigen-strain at ASR product sites shown as dark blue dots in the subfigure
a.subfigures from a to e are arranged in a chronological sense and show snapshots of
crack evolution inside the micro-structure as a function of increasing eigen-strain.
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Table 7.1: Material properties of the non-convex damage example obtained
from Gallyamov et al. (2020) for characteristic size lc = 5× 10−4m

E [GPa] µ[GPa] ν Gf [J/m2] f0
t [MPa]

Aggregates 59 22.6 0.3 160 10
Cement paste 12 4.6 0.3 60 3
ASR product 11 4.7 0.18 - -

band damage with an isotropic damage measure (Mazars and Pijaudier-Cabot (1989)).

Further details of the damage constitutive law is presented in Section 7.2. As discussed

in Section 7.2, the damage material only fails under tensile loads (cracking under mode

I). The parameters of the constitutive law, listed in Table 7.1 are obtained from work

of Gallyamov et al. (2020).

I model the expansion of the ASR product sites by applying eigenstrain on the pixels

containing them similar to Dunant (2009); Giorla et al. (2015); Cuba Ramos (2017);

Gallyamov et al. (2020). Growing eigenstrain is added to the strain associated to these

quadrature points before their constitutive law evaluation. These specific pixels are

modeled as a linear elastic phase and assumed to contain the growing ASR gel pockets

inside them. Line 28 of the Algorithm 4 is where eigenstrain is actually applied on

the system. The mean value of stress is imposed as a boundary condition to be zero

(free expansion) for the RVE. Imposing mean stress value as the boundary condition is

implemented by means of modifying the projection operator following the idea of Lucarini

and Segurado (2019a) explained in 7.3. This choice of boundary condition allows us to

compare the results to similar results in the literature (Cuba Ramos (2017); Gallyamov

et al. (2020)).

Crack pattern advancement inside a sample RVE of physical size of 0.1m × 0.1m is

depicted in Figure 7.3. As shown in Figure 7.3b, the damage initiation sites are adjacent

to the growing gel pixel sites in the RVE. The advancement of the cracks caused by ASR

damage is depicted in Figure 7.3c-e. These subfigures illustrate the crack coalescence

process as the ASR expansion proceeds. Crack coalescence depends on the distance

between the gel pocket and the aggregate boundary as well as the distance to other

gel pockets. Crack coalescence occurs earlier at crack sites near the boundary of the
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Figure 7.4: Discretization (mesh size) and load step study of the stiffness deterioration
of 2D ASR damage simulation expressed as the ratio of the norm of the effective stiffness
||C|| tensor during ASR advancement divided by the norm of the effective stiffness tensor
of the intact RVE ||C0||. in subfigure a) the stiffness reduction of the same problem with
fine (hf = 3.91× 10−4m), medium (hm = 2hf), and coarse (hc = 4hf) grid carried out
with the medium load step size (∆εeig

m = 5.0×10−4) is plotted. In subfigure b) the stiffness
reduction of the same problem with Load step study with small (∆εeig

s = 2.50× 10−4),
medium (∆εeig

m = 2∆εeig
s ) and large load step of (∆εeig

l = 4∆εeig
s ) carried out on hm. is

plotted.
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aggregates or other gel pockets.

I conducted the discretization study and the load step study on a RVE with free expansion

and growing gel pixels. In order to be able to realize nominally equivalent load scenarios

we need to maintain the volume expansion induced. It necessitates variation of the

applied eigenstrain by variation of the discretization size. Accordingly, we have kept

the area expansion of the pixels containing ASR gel pockets constant by scaling the

eigenstrain of the pixels containing ASR product. In other words, the eigenstrain induced

is inversely proportional to the area of the pixels in the RVE.

Figure 7.5: Schematic stress-strain response of a bilinear strain-softening damage consti-
tutive law

In addition, we need to regularize the constitutive behavior, since the crack-band damage

models yield pathological mesh dependent results without regularization as noted in Sec-

tion 7.2. For a material with a bilinear stain-softening damage law (schematically depicted

in Figure 7.5) the crack energy dissipation density (Gf) according to Equation 7.29 can

be formulated as:

Gf =
(
ft εu

2

)
︸ ︷︷ ︸

gf

lc. (7.36)

In order to maintain the value of Gf as a material constant by variation of lc we need to

scale either ft or εu as strain-softening parameters to regularize the constitutive law.

In the ASR meso-scale model, in this research, nominally equivalent load cases have

higher induced eigenstrain for smaller discretization sizes; and therefore the stress level

induced in the pixels under the influence of the ASR gel expansion are also higher

for RVEs with smaller pixels. So we need higher value for the strength, if we want the
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crack to initiate at the same nominal load (area expansion) of the gel pixels. Accordingly,

in the adopted regularization scheme, I take the εu constant and scale ft inversely with

lc of the discretization. This choice of parameter regularization is vital to make the

results mesh independent since it compensates the higher stress levels induced in the

nominally equivalent RVEs for different pixel sizes. In other words, regulating ft realizes

equivalent damage (crack) initiation in equivalent ASR damage RVEs with different

discretization sizes. It should also be noted that the material parameters presented

in Table 7.1 correspond to the lc of 5.00× 10−4m as noted by Gallyamov et al. (2020)

and they need to be regularized for the employed discretization size.

In order to quantify the advancement of ASR I evaluate the effective stiffness reduction

of the RVEs experiencing ASR expansion. I use the algorithmically consistent tangent

evaluation presented in Chapter 6 to evaluate the effective stiffness and then normalize it

with the effective stiffness of the intact RVE. The RVE for conducting the discretization

study and load step study are the RVE depicted in Figure 7.3a.

The results of the discretization size as well as load step size study are presented

in Figure 7.4. The stiffness reduction of the RVE subjected to similar area expansion

of gel pocket pixels is depicted in Figure 7.4a correspond to 3 different discretization

sizes (fine (hf = 3.91× 10−4m), medium (hm = 2hf), and coarse (hc = 4hf) grids). The

stiffness reduction with the advancement of the ASR process shows that the results are

not mesh dependent. In addition, the stiffness reduction of a RVE with discretization size

of hm and three different load step sizes ( ∆εeig
s = 2.50×10−4), medium (∆εeig

m = 2∆εeig
s )

large load step of (∆εeig
l = 4∆εeig

s ) are shown in Figure 7.4a which suggests that the

load step size is taken sufficiently small that the results are invariant with respect to load

step size.

According to the results of the discretization study I have chosen the medium grid size

and a load step size of 5.00× 10−4 (the medium value of the considered load steps) to

conduct the simulations with different randomly generated micro-structures presented in

the following of the chapter whose results are depicted in Figure 7.6. I, then, subjected

100 randomly generated concrete 2D micro-structures to ASR expansion (imposed as

eigenstrain in pixels containing gel pockets) under free expansion boundary condition.
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The shaded blue area in Figure 7.6a shows the distribution of the stiffness loss of these

micro-structure vs imposed volumetric expansion of the gel pixels. The mean of the

distribution is also plotted as solid blue line. The stiffness loss of 3 representative

micro-structures are plotted in Figure 7.6a and the Figure 7.6b-d are their corresponding

final crack pattern.

In addition, the results obtained by Cuba Ramos (2017) modeling ASR damage in a

similar configuration though using a FEM scheme and using a different approach for

addressing the numerical instabilities due to the non-convexity of the problem (namely

SLA) is also plotted in Figure 7.6a labeled as Ref which depicts reasonable agreement

with our obtained results. By using our modified trust region solver in the strain-based

scheme with FE discretization, our solution is much faster than their approach. According

to correspondence with the authors of Cuba Ramos (2017); Gallyamov et al. (2020) their

calculations on 28 cores take roughly 48 hours while our simulations, on average, take

half an hour on 16 cores on the same machine (Fidis cluster at Ecole Polytechnique

Fédérale de Lausanne (EPFL)) which shows significant improvement on a 2D ASR

damage simulation, more than 2 order of magnitudes of speed-up.

The small differences, visible in Figure 7.6 is probably due to subtle differences between

the models, namely we have used rectangular elements containing ASR gel pockets while

they were triangular in their model. The aggregates in their model are assumed to

have circular geometry while they were ellipsoidal in our model. The differences in the

application of the boundary conditions can also be source of difference between the

models as they have traction free boundary conditions while we have applied zero mean

stress on our RVE. However, despite of all this subtle differences our obtained stiffness

loss is in a good agreement with their results.

In addition, I carried out ASR meso scale damage simulations under uni-axial compression.

The compression is applied through imposing the yy component of the mean stress

direction σ22 . The stiffness reduction of the RVE under uni-axial compression with

different stress values is presented in Figure 7.7. Solid lines exhibit C1111/C
0
1111 which is

the normalized C1111 = ∂σ11/∂ε11 component of the tangent, while the dashed lines depict

C2222/C
0
2222 which is the normalized C2222 = ∂σ22/∂ε22 component of the tangent. As
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Figure 7.6: Stiffness reduction of sample micro-structrues are shown in subfigure a).
The light blue area is the area shaped between the maximum and minimum stiffness
reduction of 100 samples. The solid blue line is the mean value of the stiffness reduction
and the other 3 lines are the results corresponding to three represetative micro-structures.
Subfigures b. to d. show the final crack pattern developed in the micro-structure
corresponding to the three samples (sample 1, 2 , and 3) noted in the subfigure a.

depicted, the stiffness reduction of the micro structures changes differently for different

tangent components by variation of the imposed mean stress such that the C1111 tends

to experience more stiffness reduction for higher compression stress imposed in the yy

direction. The reduction of C2222 is less affected by the variation of the imposed mean

stress σ22. It experiences slightly lower damage by increasing the mean stress but for

the highest mean stress as the C1111 get substantially reduced (C1111 reduces to 20% of

its initial value), the C2222 also experience higher reduction.

Opting for FE discretization and basis functions not only enables us to eliminate the

ringing artifact, but also makes it possible for us to choose different FE elements. This

can be specifically advantageous in simulating continuum damage, since the damage

localization bands can be biased by the mesh orientation. i.e, in finite element solutions,

the localization band tends to follow certain preferred directions dictated by the mesh,

such as edges and diagonals (Belytschko et al. (1988); Sluys (1997)). This artifact is

specifically pronounced when regular discretization is employed. Consequently, if the
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Figure 7.7: Stiffness reductions of two 2D concrete micro-structures under uniaxial com-
pression (σ22) experiencing ASR induced expansion. Each of the subfigures correspond
to a micro-structure.

crack band is not aligned with a layer of elements, a zig-zag band forms and the thickness

of the crack band alters, which can introduce a mesh dependent crack band. Freedom in

choosing FE discretization allows using a more isotropic discretization that reduces this

kind of mesh dependence in the solution.

In order to illustrate this effect, I have modeled a 2D concrete micro-structure undergo-

ing ASR damage simulation using 4 different element types. The crack pattern developed

in the micro-structure using different FE discretizations is depicted in Figure 7.8. Firstly,

it is notable that the bilinear element with 1 quadrature point was not successful in

eliminating the ringing artifact and therefore the checker-board damage pattern is visible

in Figure 7.8a. The presence of ringing artifact despite using FE discretization is

due to the hourglass mode that occurs using the bilinear quadrangle elements with 1

quadrature point. Figure 7.8b shows that the vertical and horizontal directions are

the preferred localization directions in a rectangular grided mesh. The bisector of the

second quadrant (↖), and the horizontal and vertical directions afterwards, are the

preferred localization bands for the triangular linear elements with right angle triangles

(discretization shown in column b of Figure 1.6). As a result, the cracks with direction

that are far from these preferred directions cannot localize in a single band of elements

and make zig-zag crack band. This makes the first quadrant (↗) the least favorable crack
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Figure 7.8: Crack pattern of a 2D ASR damage simulation with 4 different finite
elements: a. Rectangular bilinear elements with 1 quadrature point, b. Rectangular
bilinear elements with 4 quadrature point (corresponding to column a of Figure 1.6),
c. Triangular linear elements with right angle triangles (corresponding to column b
of Figure 1.6) , d. Triangular linear elements with equilateral triangles (corresponding to
column c of Figure 1.6)

direction and therefore cracks close to the bisector of the first quadrant cannot localize

in single-pixel band and also less cracks occur in this direction in the resulting crack

pattern of the model. Figure 7.8b shows the crack pattern corresponding to triangular

linear elements with equilateral triangles (the corresponding discretization is depicted in

column c in Figure 1.6). It corresponds to the most isotropic element type that we used.

Because in this discretization, the 3 preferred directions are more uniformly distributed

in the angular coordinate (30◦, 150◦, and 270◦ with respect to x-axis), a crack band

has a better chance of aligning with one of them and localize in a single element band.

The flexibility that using arbitrary regular FE discretization offers allow us opt for the

appropriate discretization for different use cases while enjoying the speed up offered by

the FFT-accelerated solver.

7.5 Conclusion

In this chapter, I have reported how I constructed concrete micro-structure with high

inclusion packing density. I have also worked out the tangent of a traction-compression
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asymmetric damage constitutive law devoid of singularity issue. I also explained how

mean stress boundary condition can be applied in the strain-based scheme with FE

discretization. Afterwards, I presented the result of simulating ASR damage in a

periodic RVE. It is also notable that the using the developed model in a homogenization

application necessitates specific considerations to establish a rigorous coupling between

the scales(Geers et al. (2010); Gitman et al. (2008)).

The results are in good agreement with the results obtained by Cuba Ramos (2017). In

addition, I examined how the variation of the applied mean stress can affect the effective

outcome of the ASR damage and showed that the concrete micro-structure tend to

experience less stiffness reduction in the directions with higher compressive load. Finally

I showed, how the FE discretization enables us to choose the desirable discretization for

solving ASR damage homogenization problem. The solution method I used is roughly 200

times faster than the solution of the same problem with conventional FEM. Therefore,

our solution method, capable of handling non-convex problems, has a great potential

to be used as a fast and robust internal solver for multi-scale ASR damage simulation.

However, it should be also noted that similar to the results of Cuba Ramos (2017) the

developed model and solution scheme in this dissertation overestimates the loss of the loss

of the effective tangent due to ASR damage compared to experimental results (Ben Haha

(2006)). This discrepancy are most probably rooted in overlooking visco-elasticity in the

constitutive law of the constituent phases, specifically the cement paste. This over-brittle

response may also be explained by the 2d representation of ASR-affected concrete and

the fact that ASR cracks contribute to the overall load-bearing capacity.
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8.1 Summary and conclusions

This thesis focused on investigating the mechanical consequences of ASR in concrete

at meso-scale by means of FFT-accelerated solution schemes. The key objective was to

make FFT-based solvers capable of modeling damage mechanics problems and specifically

ASR damage. To achieve this, we resolved the main issues with the existing FFT-based

schemes. With my ringing-free non-convex FFT-based solution scheme, I was able to

model ASR damage roughly 200 times faster than existing models.

The methods and schemes developed in this project have been implemented in a parallel

open-source FFT-based solver library, µSpectre, which can be used to solve a wide range

of problems from solid mechanics to heat transfer. With the developed package, large

sets of simulations could be executed quickly and efficiently utilizing EPFL’s clusters to

model ASR damage at meso-scale. µSpectre’s implementation supports both strain-based

and displacement-based schemes explained in this dissertation. On top of efficient convex

CG solvers, the modified trust region solver explained in Chapter 5 is also available in

µSpectre and can be used for generic RVEs containing materials with non-convex energy

functional. µSpectre comes with a Python user interface that makes its use convenient

for end-users.

Two sub-pixel homogenization methods have been developed and used in this thesis.

Both approaches have been explained in details in finite-strain formulation. Through
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examples, it has been shown that they can mitigate the ringing issue; however, they

cannot eliminate the ringing artifacts. Therefore, modeling ASR with them is not

appropriate. Instead, the FFT-accelerated methods using FEM discretization was taken

as the fast solution schemes capable of eliminating ringing artifacts and was used in the

rest of the thesis.

Two mathematically equivalent schemes namely, strain-based (the projection-based

FFT accelerated with FEM discretization) and displacement-based (FFT-accelerated

preconditioned FEM), as ringing-free FFT-based solution schemes were investigated more

thoroughly and their generalized equivalence (even with arbitrary admissible reference

material) was shown in this dissertation. I demonstrated the identity of strain-based

and displacement-method scheme both in terms of mathematical formulation and their

performance in solving a nonlinear homogenization problem.

Modern FFT-accelerated solvers typically solve elliptic PDEs, i.e. those whose discretized

form is equivalent to solving a convex optimization problem. However, some problems

including damage mechanics are non-elliptic and their equivalent energy functional is

non-convex. By introducing a modified trust region solver, I extended use of FFT-

accelerated solvers to non-convex problems. I demonstrated the performance of the solver

by simulating a strongly non-elliptic localizing damage mechanics problem in Chapter 7.

In addition, I developed an algorithmically consistent tangent based on the minimization

of the potential energy of the simulation RVE. It enables us to compute the effective

tangent of simulation RVEs efficiently and without any extra memory footprint. I have

also shown that our algorithmically consistent tangent is faster than the FD effective

tangent evaluation for nonlinear problems and can be used without the step size study

that is required in the finite difference approximation approach.

I have used the tools and methods developed and implemented in this project to carry

out ASR damage modeling in concrete. I have also worked out a formulation to compute

the tangent of tension-compression asymmetric damage law devoid of singularity that

enables robust use of FFT-based schemes for simulating micro-structures containing dam-

age materials. The stiffness reduction of the micro-structure, as a quantitative measure

of ASR advancement has been evaluated for concrete micro-structures undergoing ASR
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expansion for free expansion and uni-axial loading scenarios. The results obtained are in

agreement with the results obtained in the literature using similar constitutive laws. I

have also shown that by altering the used FE discretization, it is possible to minimized

the mesh-dependence of crack band damage modeling. As a result, we can conclude that

the developed machinery has a great potential to serve as the fast and reliable core solver

for a multi-scale ASR damage modeling.

8.2 Perspectives

As mentioned in Chapter 7, extending the simulations to 3D models is one possible

improvement that might be helpful to make the resulting stiffness loss match with the

corresponding experimental results. The computation time of a RVE discretized as 1282

voxels is 0.5 hour on 16 cores. Considering that the solution methods developed and

discussed in this dissertation scale with O (nlogn), a proper a proper 3D ASR RVE

with 1283 pixels is expected to roughly take 1.5 days (36 hours) on 28 cores of a node

on Fidis high-performance computing (HPC) cluster at EPFL. Therefore, we expect the

developed ringing-free non-convex solution method to serve as a robust RVE solver for a

multi-scale real-world ASR damage modeling.

Another important aspects of the developed meso-scale ASR damage model that has room

and probably requires improvement is complying and improving the constitutive laws

of the underlying phases of the concrete micro-structure in order to be able to achieve

results matching with the experimental findings. One possible modification would be

defining a crack closure constitutive law as proposed by Gallyamov et al. (2020) such that

the parts of the already damaged areas of the micro-structure can experience stiffness

recovery as they are unloaded due to approaching the stress field of another crack. One

other possible improvement would be considering visco-elasticity in the constitutive law

that will definitely reduces the stiffness reduction of a RVE undergoing ASR damage

process.

The introduction of FAIEF allows using modern quasi-Newton solvers such as LBFGS.

It would be interesting to find out how this quasi-Newton solver family can handle

the non-convex damage mechanics homogenization problems. Therefore, implementing
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and using quasi-Newton solvers is also another field to explore in modeling non-convex

problems such as damage mechanics and specifically ASR damage problems.

In this dissertation, a robust and fast solution model for meso-scale ASR damage modeling

was developed by resolving the drawbacks of FFT-accelerated scheme hindering them

from simulating exotic mechanical problems such as damage mechanics. All the required

machinery was implemented in an efficient, parallel, and open-source C++ library

named µSpectre as a generic homogenization solver capable of being adopted as the RVE

solver for a wide range of problems. In order to realize a comprehensive ASR model,

it is required to adopt the developed library (µSpectre) as the core solver of a FEM

solver to be capable to conduct a multi-scale ASR damage modeling and be able to

enjoy the obtained speed-up in a comprehensive model of ASR damage. By doing so,

the weak coupling assumption of macro- and meso-scale can be tested and validated. In

addition, a wide range of parametric studies will also become possible with reasonable

computational costs. This will help make a better understanding the phenomenon and

its driving parameters.
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