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Abstract

The alkali-silica reaction (ASR), also known as concrete cancer, is one of the most
prevalent causes of concrete degradation. In this chemical reaction, amorphous silica in the
aggregates reacts with alkalis in the pore solution. By absorbing water, hydrophillic ASR
products generate highly localized internal pressure that causes expansion and cracking.
The detrimental effects of ASR on concrete pose a major threat to the safety and
operability of concrete infrastructure in all parts of the world.

The long lifespan of concrete structures and their high economic significance make it
crucial to evaluate the effect of ASR-induced degradation. ASR has therefore been the
subject of extensive research over the past few decades. Modeling and experimental
studies have provided fundamental insight into the physics of ASR at the meso-scale
of concrete. However, the impact of the mesoscopic ASR damage evolution on the
macro-scale, or structural scale, on concrete is not well understood yet. Investigating the
structural outcome of the ASR damage necessitates robust meso-scale solvers faster than
the existing meso-scale models that conventionally use finite element method (FEM) as
the solution scheme.

Over the past 30 years, fast Fourier transform (FFT)-based methods have gained much
attention as fast and reliable alternatives to conventional FEM solvers because they can
exploit regular grid structures, use lightweight iterative solvers, and speed up meso-scale
simulations by orders of magnitude. However, it has not been feasible to effectively
utilize them in damage mechanics problems due to two shortcomings: ringing artifacts
and incapability to solve non-elliptic problems, in their recent efficient implementations,
where conjugate gradient (CG) is used as the linear solver.

In the present thesis, we have resolved the shortcomings of the FFT-based solution
scheme for being effectively used in damage mechanics problems. All of the developed

methods are implemented in an open-source FFT-accelerated software package capable
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Abstract

of solving generic homogenization problems for other use cases as well. The developed
library is capable of solving non-convex problems (non-elliptic partial differential equation
(PDE)) containing phases with extremely high contrast with a ringing-free scalable FFT-
accelerated solver.

The developed fast and robust numerical framework is employed to conduct ASR meso-
scale simulations. The obtained results show good agreement with the results obtained
using the conventional FEM solver. The developed solution scheme is 200 times faster
than the solution of the same problem with conventional FEM solvers. Therefore, it
enables comprehensive multi-scale structural ASR damage modeling with reasonable

computational costs.

Keywords: Alkali-Silica Reaction, FFT-accelerated homogenization, Non-convex solvers,
Ringing-free spectral solver, FFT-accelerated solver with FEM discretization, Precondi-

tioned FEM

iv



Zusammenfassung

Die Alkali-Kieselsdure-Reaktion (AKR), auch bekannt als Betonkrebs, ist eine der
héufigsten Ursachen fiir die Zerstorung von Beton. Bei dieser chemischen Reaktion
reagiert amorphes Siliziumdioxid in den Zuschlagstoffen mit Alkalien in der Porenlésung.
Durch die Absorption von Wasser erzeugen hydrophile AKR-Produkte einen hohen
lokalisierten Innendruck, der zu Ausdehnung und Rissbildung fiihrt. Die nachteiligen
Auswirkungen der AKR auf Beton stellen eine grofie Gefahr fiir die Sicherheit und die
Funktionsfahigkeit von Betoninfrastrukturen in allen Teilen der Welt.

Die lange Lebensdauer von Betonbauwerken und ihre hohe wirtschaftliche Bedeutung
machen es entscheidend, die Auswirkungen der AKR-induzierten Degradation zu bewer-
ten. AKR ist daher in den letzten Jahrzehnten Thema umfangreicher Forschungsarbeiten
gewesen. Modellierung und experimentelle Studien haben einen grundlegenden Einblick
in die Physik der AKR im Mesomafstab des Betons geliefert. Allerdings sind die Aus-
wirkungen der mesoskopischen AKR-Schadensentwicklung auf die Makroebene bzw. die
strukturelle Skala des Betons, ist noch nicht gut verstanden. Die Untersuchung der struk-
turelle Ergebnis des ASR-Schadens erfordert eine robuste Mesoskala Loser, die schneller
als die bestehenden mesoskaligen Modelle (die herkémmlich FEM als Losungsschema
verwenden) sind.

In den letzten 30 Jahren haben FFT-basierte Methoden viel Aufmerksamkeit als schnelle
und zuverlédssige Alternativen zu konventionellen FEM-Lésern gewonnen. Der Grund dafiir
ist, dass sie regelmaflige Gitterstrukturen ausnutzen kénnen, leichtgewichtige iterative
Loser verwenden und Simulationen im Meso-Mafistab um Groéflenordnungen beschleunigen.
Allerdings ist es bisher nicht durchfiihrbar, sie bei Problemen der Schadensmechanik
effektiv zu nutzen, da zwei Unzuldnglichkeiten: Ringing-Artefakte und die Unfdhigkeit,
nicht-elliptische Probleme zu 16sen, wenn CG als linearer Loser verwendet wird.

In der vorliegenden Arbeit haben wir die Unzulédnglichkeiten des FFT-basierten Losungs-



Zusammenfassung

schemas fiir den effektiven Einsatz bei Problemen der Schadensmechanik gelost. Alle
entwickelten Methoden sind in einem quelloffenen, FFT-beschleunigten Softwarepaket
implementiert, das in der Lage ist, generische Homogenisierungsprobleme zu 16sen. Die
entwickelte Bibliothek ist in der Lage, nicht-konvexe Probleme (nicht elliptische PDE)
enthalten extrem hoch kontrastierte Phasen mit einem schwingungsfreien, skalierbaren
FFT-beschleunigten Loser zu losen.

Der entwickelte schnelle und robuste numerische Rahmen wird zur Durchfiihrung von
ASR-Simulationen im Meso-Mafistab eingesetzt. Die erzielten Ergebnisse zeigen eine gute
Ubereinstimmung mit den Ergebnissen, die mit dem herkémmlichen FEM-Loser erzielt
wurden. Das entwickelte Losungsschema ist etwa 200-mal schneller als die Losung dessel-
ben Problems mit herkémmlichen FEM-Solvern. Daher erméglicht es eine umfassende

mehrskalige strukturelle AKR Schadensmodellierung mit angemessenen Rechenkosten.

Stichworter: Alkali-Kieselsdure-Reaktion, FFT-beschleunigte Homogenisierung, Nicht-
konvexe Loser, Ringing-freier Spektral-Loser, FFT-beschleunigter Loser mit FEM-Diskretisierung,
Vorkonditionierte FEM

vi



Résumé

La réaction alcali-silice (RAS), également connue sous le nom de cancer du béton, est
I'une des causes les plus courantes de la dégradation interne du béton. Dans cette réaction,
la silice amorphe des agrégats réagit avec les alcalis présents dans la solution des pores.
En absorbant 1’eau, les produits hydrophiles de la RAS générent une pression interne tres
localisée qui provoque ’expansion du béton et sa fissuration. Les effets néfastes de la RAS
constituent une menace majeure pour la sécurité et 'exploitabilité des infrastructures en
béton dans toutes les régions du monde. La durabilité des structures en béton et leur
grande importance économique rendent cruciale ’évaluation de la dégradation du béton
induite par la RAS.

La RAS a donc été I'objet de recherches approfondies au cours des dernieres décennies.
Des études expérimentales et de modélisation ont fourni des informations fondamentales
sur la physique de la RSA & I’échelle méso. Cependant, I'impact a I’échelle macro - ou
échelle structurelle - de I’évolution mésoscopique des dommages causés par le RAS n’est
pas encore bien compris. L’étude des conséquences structurelles des dommages causés
par la RAS nécessite I'utilisation des solveurs a 1’échelle méso plus rapides que ceux
existants, typiquement basés sur la méthode des éléments finis (FEM). Au cours des
30 derniéres années, les méthodes basées sur la transformée de Fourier rapide (FFT)
ont gagné beaucoup d’attention en tant qu’alternatives rapides et fiables aux solveurs
FEM conventionnels, car elles peuvent exploiter des structures de grille régulieres, utiliser
des solveurs itératifs légers, et accélérer les simulations a méso-échelle. Cependant, il
n’a pas été possible de les utiliser efficacement dans les problémes de mécanique de
I’endommagement en raison de deux inconvénients : les artéfacts d’oscillations parasites
et l'incapacité a résoudre des problémes non-elliptiques.

Dans la présente thése, nous avons résolu les défauts du schéma de solution basé sur la FFT

pour leur utilisation efficace dans les problémes de mécanique de I’endommagement. Toutes
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Résumé

les méthodes développées sont implémentées dans un logiciel open-source capable de
résoudre des problémes d’homogénéisation génériques. La librairie développée est capable
de résoudre des problémes non convexes (non-elliptiques PDEs) avec un solveur accéléré
par FFT sans oscillations parasites. Le schéma numérique développé, rapide et robuste,
est employé pour réaliser des simulations méso-échelle de la RAS. Les résultats obtenus
montrent un bon accord avec les résultats obtenus en utilisant le solveur conventionnel
FEM. Le schéma numérique développé est 200 fois plus rapide que la solution du méme
probléme avec les solveurs FEM conventionnels. Par conséquent, il permet de modéliser
des dommages structurels multi-échelles de maniere exhaustive et avec des cotits de calcul

raisonnables.

Mots-clés : Réaction alcali-silice, homogénéisation accélérée par FFT, solveurs non
convexes, solveur spectral sans oscillations parasites, solveur accéléré par FFT avec

discrétisation FEM, FEM préconditionnée.

viii



Contents

Acknowledgements

Abstract (English/Deutsch/Francais)
List of Figures

List of Tables

Introduction
Motivation and objectives . . . . . . . . .. ..o

Outline . . . . . . e

1 State of the art computational homogenization

1.1 Notation . . . . . . . . . . e

1.2 Nonlinear small-strain elasticity . . . . . . .. .. .. .. ... ... ...

1.3 Strain-based (projection-based FFT-accelerated) scheme . . . . . . . ..
1.3.1 Projection operator. . . . . . . . . .. ... L oL
1.3.2 Discretization . . . . . . . .. L Lo
1.3.3 Linearization . . . . .. . . ... ... L o

1.4 Displacement-based (preconditioned FFT-accelerated FEM) scheme
1.4.1 Discretization . . . . . . .. . L Lo oo
1.4.2 Linearization . . . . . . . . . ... ... o
1.4.3 Preconditioning . . . . . . . . ... L

1.4.4 Preconditioner inversion . . . . . . . . . . . ...

2 State of the art ASR simulation
2.1 ASR Process. . . . . . . . . e

iii

xi

xiv

13
13
15
17
18
20
22
22
24
25
27

29
29

ix



Contents

2.2 ASR simulation . . . . . . . .

3 Voigt and laminate homogenized pixels
3.1 Derivation . . . . . . . Lo
3.1.1 Voigt homogenization . . .. .. .. ... ... .. ........
3.1.2 Laminate homogenization . . . . .. .. ... ... ........
3.2 Examplesandresults . . . . . .. ... L
3.2.1 Inclined square inclusion example . . . . . . . .. ... ... ...
3.2.2 Circular square inclusion example . . . . ... ... ... ....
3.2.3 Simple square example . . . . . . ...

3.3 Conclusion . . . . . . . .

4 Equivalence of the strain-based and displacement-based schemes
4.1 Derivation . . . . . . ..o
4.1.1 Projection operator with a reference material . . . . . .. .. ..
4.1.2 Termination criterion . . . . .. . ... .. Lo L.
4.2 Examples and Result . . . . . . ... .. L oo
4.2.1 Homogenization of a hyper-elasto-plastic micro-structure
4.3 Conclusion . . . . . ...

4.4 Algorithms . . . . . . . . ..

5 Non-Convexity
5.1 Method . . . . .. ..
5.1.1 Trust region solver . . . . . . . . .. .. ... ..
5.2 Examplesand Results . . . . . . . ... .. ... .. ... ... ...,
5.2.1 Minimal 1-dimensional (1D) non-convex example . . . . . . . ..
5.2.2 Convex example . . . . . .. ..
5.3 Conclusion . . . . . . ..

5.4 Algorithms . . . . . . . . .

6 Algorithmically consistent tangent for the strain-based FFT-accelerated
scheme
6.1 Derivation . . . . . . . . ..

6.2 Examplesandresults. . . .. .. .. ... ... .. ...

31

37
38
39
40
46
47
48
50
53

55
58
59
61
64
64
67
68

71
72
72
79
79
81
86
87

89
90
96



Contents

6.2.1 Comparison with the analytical solution of Eshelby . . . . . . .. 96
6.2.2  Stiffness reduction of cracked solids . . . . . ... ... ... ... 98
6.2.3 Homogenization of a Hyper-elasto-plastic micro-structure . . . . 100

6.2.4 Homogenization of an Neo-Hookean elastic representative volume

element (RVE) . . .. .. ... . . L 102

6.3 Conclusion . . . . . . . . .. e 103

7 Meso-scale Alkali-Silica reaction damage simulation 105
7.1 RVE preparation . . . . . ... ... ... o 106
7.2 Constitutive laws . . . . . . . . . 108
7.3 Stress control in spectral methods . . . . .. ... ... ... ... .. 117
7.4 Simulation and results . . . . . ... ... L L 119
7.5 Conclusion . . . . . . . .. e 128

8 Conclusion 131
8.1 Summary and conclusions . . . . . . .. .. ... L. 131
8.2 Perspectives . . . . . . .. 133
Bibliography 135
Abbreviations 148

Curriculum Vitae

Xi






List of Figures

1.1
1.2
1.3
1.4
1.5
1.6

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1

5.1
5.2
5.3
5.4

multi-scale simulation scheme alkali silica reaction induced damage . . .

Regular and irregular meshes at interface boundaries . . . . . . . . . ..

Hourglassmode . . . . . . .. ... .. ...

Arbitrary displacement expression in voxel grid . .

Crack pattern in a concrete micros-structure, with and without ringing .

2D cell illustration . . . . . . . .. . ... ... ..

Regular finite element meshes . . . . . . . ... ..

Alkali silica reaction across scales . . . . . . . . ..

Alkali silica reaction: a chemo-mechanical process .

Laminate homogenization scheme . . . . . . . . ..
Inclined square example geometry . . . . ... ..
Square inclusion problem strain response . . . . . .
Square inclusion problem stress response . . . . . .
Circular inclusion example geometry . . . . . . ..
Circular inclusion example strain response . . . . .
Circular inclusion example stress response . . . . .

Simple square example solution step count . . . . .

Global plastic strain of a two-phase elasto-palstic RVE . . . . . .. ...

Schematic of trust region method in a 2-dimensional (2D) state space

1D spring example schematic . . ... ... .. ..
1D spring example results . . . . ... ... .. ..

Cylindrical Eshelby example geometry and solution

10
10

14
21

31
32

41
47
49
49
50
51
92
92

66

81
82
84



List of Figures

Xiv

5.5

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4
7.5

7.6

7.7

7.8

Cylindrical Eshelby example solution step count . . . . .. .. .. ...

Spherical inclusion bulk and shear modulus . . . . . .. .. .. .. ...
Geometry of a solid domain containing a single crack . . . . . . .. ...
Effective tangent of the single cracked solid domain . . . . . .. .. ..
Effective tangent calculation error of the hyper-elasto-plastic example

Error and time consumption of Effective tangent computation of the

Neo-Hookean example . . . . .. .. .. .. ... . ..

2D concrete micro-structure . . . . .. .. ... oL
Schematic of the damage constitutive law . . . . . . . ... .. .. ...
Alkali silica reaction crack evolution . . . . . .. ... ... ... ....
Discretization and load step study of alkali reaction silica damage

Schematic stress-strain response of a bilinear strain-softening damage
constitutive law . . . . . . . . ... L
Stiffness reduction of concrete microstructures due to Alkali silica reaction
damage with zero mean stress . . . . . . . .. ...
Stiffness reduction of concrete microstructures due to Alkali silica reaction
damage under uniaxial stress . . . . . . ... ... L.

Crack pattern for different regular finite element discretizations . . . . .

100

101

103

108
115
120
122

123

126



List of Tables

3.1
3.2

4.1

5.1

7.1

interlaminar and intralaminar categorization of tensor components . . . 42

Blocks of the stiffness tangent based on the type of the components. . . 44
Solution step count for solution schemes and different reference materials 67
Solvers used to solve the 1D spring example . . . . . . .. .. ... ... 80

Material properties of concrete phases . . . . . ... ... ... ..... 121

XV






Introduction

Motivation and objectives

The alkali-silica reaction (ASR) is the most common type of the alkali-aggregate reaction,
which occurs when silica within concrete aggregates react with alkaline of concrete pore
solution. ASR manifests itself at the scale of an aggregate in the form of local silica
dissolution; expansion of ASR products; initiating micro-cracks; and the expansion of
the aggregates, cement paste, and concrete. Cracking and expansion caused by ASR
impact negatively on the civil engineering infrastructure including bridges and concrete
dams worldwide. ASR consequences have considerable financial implications for large
structures like dams, bridge piers, and sea walls. It is therefore necessary to study
ASR in order to have a better understanding of its process, predict its severity in the
existing structures, determine if any remedial action is necessary and also prevent its

manifestation in new structures

Clusters of alkali-silicate gel are formed as a result of the ASR products accumulating
inside pre-existing cracks (Gaboriaud et al. (2002)). The newly formed alkali-silicate
clusters are referred to as pockets. The expansion of ASR gel pockets, due to their
water absorption, cause internal loading on aggregates, which can lead to cracking. The
resulting cracks originate in the aggregates and extend into the cement paste. The
openings of induced cracks could be much larger than those of the pre-existing cracks and
the initial ASR gel pocket sizes. As the ASR process advances, its outcomes, expansion
and cracks also reveal in the structural scale. The Swiss Committee on Dams (Sellier
et al. (2017)) reported that approximately 50% of 154 Swiss dams are affected by this

problem. As engineering structures of great economic significance, dams is the focus of



Introduction

discussions about the macro-scale effects of ASR.

Field observations and experimental data suggest that ASR involves a combination
of multiple phenomena that occur at the same time and chemical, structural, and
environmental factors are all involved in this process. It is indispensable to use numerical
modelling in order to understand and predict the behavior of such a complex system.
Results obtained by Dunant and Scrivener (2010); Cuba Ramos (2017) show that the meso-
scale and macro-scale damage processes can not be separated in modeling ASR damage.
At the structural scale, a model of a concrete dam with sufficiently fine discretization
size yields 10'* — 10% elements (discretizing a concrete dam with volume of 10° m? to
elements with size of 1 mm3?). This makes full resolution of structural ASR damage
modeling unfeasible with existing computational infrastructure. Multi-scale modeling
(as depicted in Figure 1) reduces the complexity of the model. Finite element method
(FEM) is commonly used for both micro-scale and macro-scale simulations, resulting
in FE squared (FE?) schemes. Despite using the FE? model to model ASR, multi-scale
modeling is still extremely computationally challenging due to the large gap between the
spatial scale of the ASR gel formation and initiating damage at microscopic scale and the
scale of the concrete dam structure. As a result of the simple and regular structure of
the meso-scale model, schemes such as fast Fourier transform (FFT)-accelerated schemes

can be used to accelerate the solution process.

Continuum meso-scale modeling (or computational homogenization) involves computing
the overall response of periodic unit cells of material, a representative volume element
(RVE), to an average strain (i.e., macroscale). FEM is commonly used for this purpose.
However, generally, FFT-accelerated solvers are computationally advantageous since
unlike FEM they can leverage the simplicity of the geometry of the regular periodic
solution domain. On the other hand FEM cannot benefit from its main strength, the
capability of handling complex geometries. By introducing spectral methods, Moulinec
and Suquet (1994) have developed a faster alternative method for modeling periodic RVEs
compared to FEM. In terms of computation cost and memory footprint, this new
method is considerably superior to FEM for solving the core problem of computational
homogenization (Eisenlohr et al. (2013)), but has not been fully exploited yet for the

present problem.
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Specifically, for meso-scale ASR damage modeling the following characteristics of the
problem make use of FFT-accelerated schemes challenging: i. ringing artifacts ubiquitous
in the FFT-accelerated solution schemes make the results of continuum damage modeling
non-physical, ii. In the modern and efficient implementations FFT-accelerated solver,
employed iterative solvers (e.g. conjugate gradient (CG)) are incapable of handling non-
convex problems such as damage mechanics. Note that the solver (fixed-point) originally
used by Moulinec and Suquet (1994) despite its capability of handling non-convexity
suffers from other major issues like conditional convergence and also cannot cope with
cell containing phases with high contrasts. Overcoming these problems enables to reduce
the complexity of a multi-scale ASR damage modeling to 106 — 107 instead of 104 — 1015

in a fully resolved FEM model, which makes ASR damage modeling feasible.

The goal of this project is to overcome and resolve the existing challenges in meso-scale
modeling of ASR damage with the FFT-accelerated homogenization scheme. This creates
the possibility of fast and efficient ASR damage modeling. In addition, a robust and fast
algorithmic consistent tangent evaluation scheme is introduced in this thesis. Besides,
all the developed and introduced methods are implemented in an open source software
package uSpectre. The puSpectre project, is an open-source platform for efficient FFT-
based continuum mesoscale modeling (Junge et al. (2022)) applicable to solve generic

homogenization problems.

Outline

The following chapters of this dissertation are organized as follows:

Chapter 1 discusses the literature on computational homogenization. This chapter
elaborates on FFT-accelerated homogenization schemes and presents two recent FFT-

accelerated homogenization schemes developed by the pSpectre team in detail.

Chapter 2 reviews the literature on ASR expansion and cracking mechanisms. The

existing models for concrete deterioration due to ASR are described and categorized.

Chapter 3 introduces two ringing mitigation schemes based on two different local ho-

mogenization schemes at the interphases of the solution domain. With the examples
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[Problem complexity oc # of elements = 104 — 1015]

ASR damage simulation | (Micro-scale

in a concrete dam ’ l

( 7

Model size ~ 1 m3
Element size ~ 1073 to 1072 m
# elements ~ 107

Model size ~ 108 m3
Element size ~ 10 m

# elements ~ 10>

Feasible with FEM Speed-up needed
Speed-up possible
w.r.t. conventional FEM
using FFT-accelerated solvers

102 to 10°

Accurate multi-scale
ASR damage simulation [+
in a concrete dam ’

[Problem complexity o 10% x 106~(23) ~ 106 to 107]

Figure 1: schematic of the multi-scale model of ASR damage

presented in this chapter, the effectiveness of proposed methods is evaluated.

In Chapter 4, the equivalence of two ringing-free FFT-accelerated homogenization schemes
developed by pSpectre development team, namely the generalized projection based solver
with finite element (FE) discretization scheme (strain-based scheme developed by Leute
et al. (2021)) and the preconditioned FFT-accelerated FEM scheme (displacement-base
scheme developed by Ladecky et al. (2022b)) is shown. I am a co-author of both of
these papers. Their equivalence is first expressed both in their mathematical formulation.
Afterwards, their equivalence is also empirically shown through the comparison of their
solution to a nonlinear homogenization problem. The strain-based scheme is used

in Chapter 7 to simulate ASR damage.

Chapter 5 introduces a modified trust region solver that uses a first order approximation
for the energy functional. This solver, as a non-convex solver that does not require
explicit energy functional, enables us to benefit from the speed-up of FFT-accelerated
homogenization schemes for non-convex problems. This solver is used in Chapter 7 to

solve non-convex ASR damage problem.

4
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Chapter 6 describes an algorithmic consistent tangent I introduced for the strain-based
solution scheme. The introduced algorithmic consistent tangent merely involves solution
of the linearized RVE problem at equilibrium. I have used potential energy minimization
to derive the tangent. The developed effective tangent evaluation algorithm is exact
within the limits (tolerance) of the solver used to solve the corresponding linear system
of equations. The accuracy of the developed and implemented algorithmic consistent
tangent is validated against analytical solutions. In addition, the accuracy and the
speed-up of the algorithmic consistent tangent is compared to finite difference (FD)
tangent approximation in presented examples in the chapter. The algorithmic consistent
tangent is used in Chapter 7 for evaluating the reduction of the tangent due to ASR

damage.

In Chapter 7, the machinery prepared in the previous chapters (chapters 3-6) is employed
to model ASR damage in a regular periodic RVE. A compression-tension asymmetric
damage material devoid of singularity issue in its tangent evaluation is also presented
in this chapter and used as the constitutive law of the aggregate and the cement paste
composing the RVE. The obtained results are tested against the literature and the
influence of the external load (mean stress in uni-axial compression) is studied. The

effect of using different regular FE discretization is also studied in this chapter.

The thesis is concluded, in Chapter 8, by the summary of the main results and an outlook

on the possible further developments.






I} State of the art computational

homogenization

Mechanical homogenization, motivated by the idea of representing a heterogeneous
micro-structure as an equivalent homogeneous medium, aims to calculate effective me-
chanical properties of micro-structures, including homogenized elastic constants and the
stress-strain response given the micro-structure and constitutive laws of the individual
components. For simple micro-structures (e.g. micro-structures containing only linear
elastic phases and simple geometries) the effective properties of a heterogeneous material
can be estimated analytically (Budiansky (1965); Mori and Tanaka (1973); Norris (1985);
Hill (1985); Milton and Sawicki (2003); Milton (1995); Nemat-Nasser and Hori (2013)).
However, when the micro-structure gets more complex, analytical methods are generally

no longer suitable for the determination of the effective properties.

Computational homogenization, on the other hand, is an effective method in up-scaling
the behavior of complex micro-structures especially those consisting of, i. highly nonlinear,
or ii. evolving phases (Hill (1963); Geers et al. (2010)). Computational homogenization
methods are based on the construction of a micro-scale boundary value problem, the so-
called cell problem, discretizing the solution domain and solving the governing equation,
equilibrium equation for instance, using numerical schemes such as FEM (Schroder

(2014)) or spectral methods (Moulinec and Suquet (1994); Eisenlohr et al. (2013)).

For solving the homogenization problem numerically, the spectral Fourier-basis solvers
(Boyd (2000)) are efficient with a potential speed up compared to FEM solvers (Eisenlohr

et al. (2013)). They are also appropriate for homogenization problems as the periodic
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boundary condition is the most robust and realistic boundary condition among the
possible RVE boundary conditions, namely, i. uniform displacement ii. uniform traction

iii. periodic boundary conditions).

Following the seminal works of Moulinec and Suquet (1994, 1998), FFT based homoge-
nization methods developed rapidly ; see, e.g. work of Schneider (2021); Lucarini et al.
(2021). The spectral solvers can be efficiently used to solve partial differential equation
(PDE)s corresponding to the quasi-dynamic mechanical equilibrium of microstructure.
The availability of highly optimized FFT implementations (like FFTW Frigo and Johnson
(2005) and PFFT Pippig (2013)) enabled the development of efficient spectral solvers that
can beat standard FEM implementations significantly in terms of computational costs and
computationally accessible system sizes. Increasing the resolution and improving solution
accuracy is straightforward in spectral methods. As a result, large-scale micro-structures

simulations are more efficient using spectral methods compared to conventional FEM.

In spite of their simplicity and efficiency for solving multiphase elastic problems, FFT
methods suffer from mathematical artifacts in the form of spurious oscillations. These
numerical artifacts appear in the homogenization solution as oscillatory overshoots
specifically pronounced in the vicinity of abrupt phase transitions. Since the introduction
of spectral solvers, several studies have tried to find the causes of the numerical artifacts
in the solution of homogenization problem solved with spectral solvers and resolving
them (see e.g. Miiller (1996); Willot et al. (2014); Brisard and Dormieux (2012); Willot
(2015); Schneider et al. (2016b); Kabohm et al. (2006); Khorrami et al. (2020); Ma et al.
(2021)). Based on the findings in the literature, the following are the main causes of

numerical artifacts persisting in the solution of the spectral solvers:



(a) Stair-shaped boundary in (b) Boundary-conforming tri- (c) Pixelation of a circle, in-
pixelated discretization angular FE mesh. terface pixels are shaded.

Figure 1.1: Comparison of a boundary-conforming and a regular voxel mesh obtained
from Kabel et al. (2015)

1. In his work, Doitrand et al. (2015) proposed that voxel-shaped discretization is the
cause of oscillations. In voxel meshes, in contrary to conventional FE discretization,
non-smooth "zig-zag" interfaces between phases are inevitable (see Figure 1.1c), and
modeling interfaces that are not aligned with the regular grid results in stair-shaped
interface boundary (depicted in Figure 1.1c). This shortcoming results in artificial
oscillatory behavior, specifically, in modeling curvilinear interfaces. The stair-cased
shape transition contributes to spurious oscillations in the solution of spectral

methods.

2. In accordance with Moulinec and Suquet (1998), Gibbs ringing might be caused by
the fact that discrete Fourier transform (DFT) cannot satisfy Shannon’s theorem
for heterogeneous fields, in other words, DFT is not equal to Fourier Transform.
To be consistent with Shannon’s theorem, the cutoff frequency (i.e. the frequency
above which the Fourier transform disappears) must be lower than half the sampling
frequency. However, in mechanics, a heterogeneous field does not have a cut-off

frequency.

3. Another possible origin of numerical artifacts in Fourier-accelerated method is re-
ported to be the hourglass effect (Riiter (2019)), which is well known to cause numer-
ical oscillations in FEM and has also been observed in spectral methods (Leuschner
and Fritzen (2018)). The specific type of discretization employed in spectral meth-

ods (voxels) produces non-physical and oscillatory solutions due to the presence of

9
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deformation modes that are not associated with energy changes. A typical example
of such deformation for a rectangular 2-dimensional (2D) element with only one
integration point in the center is depicted in Figure 1.2. The deformation depicted
in Figure 1.2 yields a strain of zero at the integration point (noted as @ in Figure 1.2)
and therefore corresponds to zero energy in the integration scheme of the element.
This problem in a more general form corresponds to the incapability of voxel grided
domain to express arbitrary compatible deformation field (x in Figure 1.3a), i.e.
only one strain or placement gradient tensor per voxel is insufficient to represent
a general deformation and can merely present parallelograms. An example of a

deformation making a parallelogram is depicted as 1 in Figure 1.3b.

| |Deformed
| | Undeformed

Figure 1.2: Hourglass mode in a single rectangular element with only one integration
(quadrature point) at its center.

71

Figure 1.3: (a) arbitrary deformation vs (b) parallelogram deformation of a rectangular
voxel. The undeformed voxel is shown in both subfigures in light blue while in subfigure
(a) the dark blue shows arbitrary deformation noted with x while the green shape in
subfigure (b) shows the closest parallelogram deformed shape to the arbitrary deformation
field that is obtainable in voxel grid discretization with one node per voxel (Figure is
obtained from Leute et al. (2021)).

A sharp phase transition can cause oscillations in the solution field due to ringing artifacts,

which are exacerbated by the increasing contrast between the touching phases. Damage

10



mechanics problems are the most susceptible to Gibbs ringing artifacts among all me-
chanical homogenization problems for the following reasons. Firstly, The most important
phenomenon that drives damage mechanics is localization, i.e. local overestimation of the
solution field causes non-physical damage initiation or growth, which makes the solution
path of the system non-physical. Solving a damage mechanics problems by the original
spectral method yields checker-board damage pattern (as shown in Figure 1.4a) which is
obviously non-physical.

(a) Fourler projection b) Linear ﬁnlte element

-y - : ¥
i~ ot e SIETEET A

W Aggregates Cement paste ASR gel pockets M Damaged pixels

Figure 1.4: Crack pattern in a concrete micro-structure using a.spectral method suscepti-
ble to ringing artifacts, b.ringing-free solver using a finite element discretization (Figure
is obtained from Leute et al. (2021)).

In addition, the high phase contrast between the damaged and intact phases (ratio of
infinity in practice) also makes the solution particularly prone to high ringing artifacts.
Therefore, for carrying out a physical solution for homogenization of damage mechanics

and specifically ASR damage modeling, it is essential to address the ringing artifact.

Different strategies have been adopted, in the literature, to address the ringing artifact
in spectral methods. Generally, the approaches can be categorized into the following

groups.

1. Smoothing the phase interfaces: remedies in this category try to smooth the
interface of the underlying phases of the solution domain Doitrand et al. (2015);
Kabel et al. (2015); Chariere et al. (2020); Ma et al. (2019) by introducing the

11
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composite voxels as an example. We derive, implement, and test two sub-pixel
homogenization approaches in Chapter 3. These methods can merely mitigate the

artifacts in the solution.

2. Employing standard finite difference derivatives: These methods focus on the basis
function used in the spectral method which implicitly is the Fourier basis in the
original spectral scheme introduced by Moulinec and Suquet (1994). Some of the
studies in the literature employed finite difference discrete derivatives. For instance,
Miiller (1996) utilized finite difference discretization, whereas Willot (2015) and
Schneider et al. (2016b) describe a central-difference scheme on a staggered grid.
In the literature, there are also other FFT-accelerated solution schemes using finite
differences (Lebensohn and Needleman (2016); Vidyasagar et al. (2017)). These

methods also can mitigate the ringing artifacts.

3. Altering the discretization: These methods focus on altering the discretization
(regular voxel grid) as well as the basis function conventionally employed in spectral
methods. Schneider et al. (2016a) also used linear hexahedral discretization in
their FFT-accelerated solution scheme and Leuschner and Fritzen (2018) have
developed an accelerated solution scheme based on Galerkin discretization with
a FE basis. Recently, Leute et al. (2021) have developed a ringing free version of
the projection-based spectral scheme using FE discretization and basis function
and Ladecky et al. (2022b) have developed a FFT-accelerated preconditioned FEM
scheme that is mathematically equivalent to the scheme of Leute et al. (2021).
These methods can completely eliminate the ringing artifacts from the solution of
the spectral methods. As shown in Figure 1.4b, such schemes are proper to model

problems with localized phenomena such as damage mechanics.

In the rest of this chapter, after defining the nonlinear small-strain elasticity problem, I
will elaborate on the projection-based spectral scheme using FE basis function that I co-
developed with Leute et al. (2021), called, afterwards strain-based scheme since the degree
of freedom (DoF) of the scheme is strain, and the FFT-accelerated preconditioned FEM
scheme ( Ladecky et al. (2022b)), called, from here on, displacement-based scheme since

the DoF of the scheme is displacement, similar to previous work of Lucarini and Segurado

12



1.1 Notation

(2019b) where the authors also used displacement as the DoF of a FFT-accelerated
solution scheme. I co-developed these two schemes with the uSpectre development team
and implemented them in pSpectre Junge et al. (2022). They are used as the numerical

solver in this dissertation.

1.1 Notation

We denote d-dimensional vectors and matrices by boldface letters: a = (aq)%_; € R? or
A= (Aaﬂ)i, g1 € R9*4 Matrix-matrix and matrix-vector multiplications are denoted as
C = BA and ¢ = Ba , which in the Einstein summation notation reads as Cy = BagAg
and ¢, = Bgypgag respectively. Greek letters («, 3,7 etc.) will be reserved for spatial
indexes in range of 1 to d. The colon : is the double dot product, a tensor contraction

over two indices; therefore, A : B can be noted in the index notation as A,3Bgq-

Vectors and matrices arising from the discretization will be denoted by a and A, to
highlight their special structure. These notations correspond to matrices and vectors
defined on a d-dimensional grid and defined on all of the discretization points of the grid.
The (I)-th component of a will be denoted as a[I] and (I, J)-th component of A will be
denoted as A[I, J]. We consider a general d-dimensional setting throughout the paper.
However, for the sake of readability, I use d = 2 in the expanded form of matrices, such

as in equation (1.2).

1.2 Nonlinear small-strain elasticity

A d-dimensional rectangular periodic cell {2 = Hizl [—%ﬂ, %*} is considered as the solution

domain corresponding to the RVE schematically shown in 2D in Figure 1.5. The schemes
explained in the following use the Mandel notation for the derivation as the symmetry of
the small strain formulation elasticity allows. Doing so, we can reduce the dimension of
the symmetric strain tensor from

e =0u:Q— R (1.1)

sym
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Chapter 1. State of the art computational homogenization

A X2

<3

Figure 1.5: Rectangular two-dimensional cell with outlined periodic micro-structure
obtained from Ladecky et al. (2021).

1

to Ou : Q — R% where d,,, = % and the symmetrized gradient operator @ is in

2D defined as:

(Vsu)n % 0
Uy
Uz
VaVan) \Ba Bk

Accordingly, the fourth rank C :  — R#¥4%dxd cap be represented as C — RIm*dm

defined in the 2D case as:

Ciin Ci122 V2Ci112
C=| Con Caza2  V2Ca912 | - (1.3)
V2Ci211 V2Ci1222  2Ci212

We split the overall strain of the RVE, g, to its mean, E, and periodic fluctuation &€ = 94

contributions,
e(x) =E+ 0u(x) Voe. (1.4)

The placement field @ belongs to the space of admissible functions V' {f) : Q-periodic — Rd}

and [, ¥ dx = 0. The mechanical equilibrium equation as the governing equation can be

14



1.3 Strain-based (projection-based FFT-accelerated) scheme

written in our notation as (Belytschko et al. (2014)):
d"o(x,E + di(z),h(x) =0 Ve ecQ, (1.5)

where h represents the internal parameters of the materials and o is the stress field and
0" denotes the divergence operator. Various phases of a micro-structure can be described
by different material models in a finite- or small-strain formulation. As mentioned earlier
we take small-strain as the formulation; however, it is straightforward to extend the

derivation to finite-strain.

The equilibrium equation (1.5) can be reformulated in the weak form as:
/ i()" (870 (2. E + &(x), h(z))) dz =0 Vi eV (1.6)
Q

where ¥ is the test function.

1.3 Strain-based (projection-based FFT-accelerated) scheme

Homogenization schemes, mostly, combine equations (1.1) and (1.6) , which yield a set
of 2" order differential equations. In the case of small strain formulation, they become
the well-known Navier-Lamé equations. By contrast, equilibrium solution with Fourier
techniques, typically, treat equations (1.6) and (1.1) as two sets of first-order differential
equations separately (e.g. Lahellec et al. (2003); Vondrejc et al. (2014); Zeman et al.
(2017); de Geus et al. (2017)). In such methods, the strain tensor e is the DoF of the
solution (in small strain), i.e. the equations are solved to directly obtain e. Equation (1.1)
can be regarded as a constraint that enforces compatibility of the strain tensor, i.e. being

the symmetric gradient of the respective placement map.

As proposed in the Fourier-Galerkin (FG) scheme developed by Zeman et al. (2017);
de Geus et al. (2017), the projection based solution solves equations (1.5) and (1.1)
in the subspace of compatible second-order tensors such that the pair of first-order
differential equations reduces to the single first-order differential Eq. (1.5). This is
formulated mathematically by a projection operator G that maps any second-order

tensor onto its compatible part and thereby into the subspace of compatible tensors.
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The compatibility projection operator can be mathematically formulated according to

Helmholtz decomposition.

In the strain-based scheme, the equilibrium equation (1.6) using the divergence theorem

can be reformulated as:

/Q <C~°(w)) o(xz,E+&(x),h(x))dx =0,

VE € & ={0u(x),a(x) : periodic} (1.7)

with E = 97. The space of the compatible strain fields is denoted as £. Note that the
boundary terms vanish due to periodicity of the domain. It is also notable that, in
addition to E , €(x) also needs to belong to £ which is often overlooked in the derivations
in the literature. This is because the employed iterative solvers update the solution
with iterates that are in the compatible field. This automatically makes the &(x) to
be a compatible field (Vondfejc et al. (2014)). This makes explicit application of the

compatibility operator on the resultant fluctuation strain field unnecessary.

¥

The test function in the strain-based scheme, ¢ in (1.7), should be in a compatible strain
space while in the FEM formulation, the test function is a displacement field. Therefore,
the test function of the strain-based scheme is not an arbitrary field (unlike FEM). On
the other hand, proceeding with the Galerkin discretization necessitates having a fully
arbitrary test function. As a result, in order to apply the Galerkin discretization on (1.7),
it is necessary to impose compatibility on the test variable. Zeman et al. (2017) have
introduced a compatibility projection operator G based on the Fourier discretization to
impose compatibility. The Operator G maps any second-order tensor to its compatible
(periodic gradient) contribution. Applying the projection operator on the test variable
() makes it possible to continue with the Galerkin discretization and solve directly for

strain field.
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1.3 Strain-based (projection-based FFT-accelerated) scheme

1.3.1 Projection operator

The key element of the strain-based scheme is the projection operator G which enforces

compatibility on an arbitrary field (z) as:

(@)= [6+{] (@)

= /Q(G}(ac —y):Cly) dy Vx e Q. (1.8)

Applying the projection yields the compatible contribution ¢ (x) of the original field ¢ ().
In (1.8), * denotes the convolution operator. The convolution format of Eq. (1.8) makes
its application in Fourier space convenient, since convolution in real space is equivalent

to contraction in Fourier space. Accordingly, (1.8) can be rewritten as:
((x) = FHC(k) : F{L(k)}} (1.9)

where @(k) is the compatibility operator in the Fourier space, and k is the discrete
frequency vector in the Fourier domain. Leute et al. (2021) derived a general expression
for the operator G which can be expressed as an explicit function of a second rank
tensor g: (@ =G (§)> Considering that the objective of the G operator is projecting a
field as close as possible to its compatible contribution, they derived the operator g by

minimizing the difference of the E‘ and 97 as:
~ ) * -1,
Gas(k) = Da(k) (D (k)D(k))  Dj (k) (1.10)

in index notation, where D is the derivative operator (0) in Fourier space, and * denotes
the Hermitian transpose, the derivation will be worked out in :FEM. The form of the
projection operator G as a function of g is different in small strain and finite strain

formulations (further details can be found in Zeman et al. (2017); Leute et al. (2021)).

In the original projection based method developed by Zeman et al. (2017), D was

expressed based on the Fourier basis as ﬁ(k) = 1k which yields a second rank tensor of
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g of the form:

- 0 if k=0,
Gapk) =1 (1.11)
L )

ks are normalized discrete Fourier wave-vectors. Leute et al. (2021) showed that, based
on the general form of the projection operator according to (1.10) it is possible to derive
projection operators using gradient operator (13) obtained from different discretizations
and basis sets of choice. For instance, Leute et al. (2021) worked out a projection operator
based on a linear FE discretization and showed that using the basis functions of a FE
discretization results in elimination of Gibbs ringing artifact. This makes use of FE
discretization suitable for problems with localized phenomena such as damage mechanics

which is the target problem in this dissertation.

Choosing different Dina projection based spectral method is equivalent to choosing
different element types and shape functions in the conventional FEM formulation. The
operator 13, in case of using FE discretization, is calculated using the derivative of the
corresponding shape functions. Similar to a FE scheme, the strain, stress, and tangents
are evaluated at the quadrature point of the FE discretization. In the following, the

discretized equilibrium equation is derived following a FE discretization process.

The projection operator, corresponding to a regular discretization grid, is denoted as G.
The Fourier parts of the application of the projection operator is dropped from now on
for sake of brevity and the action of the projection operator on a discretized field ¢ is in

the discretized format is, in the following, noted as:

(=GZ¢. (1.12)

1.3.2 Discretization

The weak form (1.7) can be discretized using the Galerkin method with FE basis functions
conforming to a regular space-filling discretization. Such a discretization can be generated

by periodic repetition of a space-filling discretization stencil, examples of which in 2D
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1.3 Strain-based (projection-based FFT-accelerated) scheme

are shown in Figure 1.6. Inspired by the standard FE discretization procedure, the weak

form (1.7) can be written as:

| €@)o@ B+ 2(e). h(z)) da
No | (1.13)
~ (C(mQ))TU(wQ,E+ é(wQ),h(wQ))wQ,
Q=1

where Ng is the number of the quadrature points x¥. Strain and stress fields are evaluated
at quadrature points qu, Q €{1,2,...,Ng }. On the other hand, the displacement fields
are evaluated at discretization (nodal) points. Every component i, of the unknown
vector @ is approximated by a linear combination of interpolating finite element basis

functions

T () ~ @Y Z al ol (x) forall x € Q, (1.14)

the coefficients @}, = @ (x!) correspond to the values of @Y at the discretization points

x! and ¢! are the FE interpolation basis functions.

As noted before, the compatibility of the é, ¢ is not primarily satisfied. By definition g,

¢ are formulated as:

Ni 1(7Q « Nt I(2Q
N Q) N N1 00 (25) 4 N (2Q) = N N (1) 29 (@) 115
€ap(x”) 12—:1% (') =5 —— gry ™ Cap(T™) Iz::lva (") ry (1.15)

The compatibility can be enforced using the discrete operator G € RémNaxdmnNg intro-

duced in (1.12) and accordingly left hand of (1.13) can be rewritten as:
(GOHTWo(E+G& h)=0 VvV ({eRinMNa, (1.16)

where W € RémNexdnNe are quadrature weight matrices in 2D with form of:

W, 0 0
W = w, 0|, (1.17)
0 0 w,
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consisting of d,, identical diagonal matrices W,,[Q, Q] = w®. considering that the test

field ¢ is now arbitrary, the discretized equilibrium (1.16) casts to:
G'Wo (E 4 G&,h) = 0, (1.18)

Where the strain field is defined on quadrature points of the FEM discretization. It is

notable that the action of GT operator is equivalent to the divergence operator.

1.3.3 Linearization

Using Newton’s method to solve the nonlinear system of equilibrium equation (1.18)
iteratively, the (i + 1) update of the strain field €(i+1) in the iterative scheme can be
calculated from the previous approximation of the strain field €(;) incremented by a strain

increment (finite increment) de ;1 1),

€(i+1) = E(Z) + 5€(i+1)' (119)

starting from an initial strain approximation &g, the strain increment at each step is

given by solution of the linear system:

Here weighed constitutive tangent matrix CW(,;) = WC;) absorbs quadrature weights W.
Based on the findings of Zeman et al. (2010); Vondfejc et al. (2014) and according to the
fact that using the G ensures the compatibility of the solution steps (the solution steps
belong to a compatible strain field £), right projection in the left hand side of (1.20) can

be dropped and the linearized version of the equilibrium equation casts to:

G 5 = —~GTWo (E + G&(;), hy;)). (1.21)
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Figure 1.6: Example of regular periodic FE grids with associated discretization stencils
for a two-dimensional cell Q. All grids consist of 16 pixels (N, = 16). Row (1) shows:
(a.1) a grid with 16 discretization nodes (N7 = 16) and quadrature points (Nq = 64),
(b.1) a grid with 16 discretization nodes (N1 = 16) and 32 quadrature points (Nq = 32),
(c.1) a grid with 32 discretization nodes (Ny = 32) and 64 quadrature points (Nq = 64).
Row (2) shows: (a.2) a one-node stencil (/V, = 1) with one bilinear rectangular element
and four quadrature points with quadrature weights w® = %Vp, (b.2) a one-node stencil
(Nn = 1) with two linear triangular elements and two quadrature points with quadrature
weights w®? = 1V}, (c.2) a two-node stencil (N, = 2) with four linear triangular elements
and four quadrature points with quadrature weights w® = %Vp, Here, V,, denotes pixel
volume, such that V, N, = [Q|. This figure is obtained from Ladecky et al. (2022b).
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1.4 Displacement-based (preconditioned FFT-accelerated
FEM) scheme

In this scheme, after applying the divergence theorem on the weak form noted in (1.6), in-
stead of taking 89 as ¢, the Galerkin discretization scheme is followed for the displacement

test function of ¢ similar to standard FEM framework which yields:

/ﬂafz(a:)Ta(ac,E + du(x), h(@)dz =0 VoeV, (1.22)

1.4.1 Discretization

The weak form (1.22) can be discretized following a process similar to what is ex-
plained in Subsection 1.3.2. Strain and stress fields are evaluated at quadrature points
:L'qQ, Q € {1,2,...,Ng}, and the displacement fields are sampled at nodal points
xl, I € {1,2,...,Nr}, cf. Figure 1.6. The count of nodal points is the product of
the number of pixels N, and the number of nodal points per pixel N,,. Here, we follow
standard FE theory and approximate ¥ and @ by continuous element-wise polynomial
of degree k and, therefore, their gradients are also expressable with polynomials with
degree up to k. This enables us to proceed with discretizing the weak form equilibrium

equation (1.22) with a suitable Gaussian quadrature rule:

9%(x) o (x, E + dii(x), h(x)) de

Q
N (1.23)
~ Z 86(qu)Ta'(:I:§, E + 3’&(53(?)7 h(ﬁcg)) w?,
Q=1

where the choice of the quadrature rule determines the position of the quadrature points

wg and the quadrature weights w®. Components of i, are approximated with a linear

combination of the basis functions ¢! (shape function corresponding to N;) as:
Ny

lio () ~ @l (x) = Z al (xl)p! (x) v e Q, (1.24)
=1
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N
a

1

where @) (z;,

(x!) are the nodal values for all @) at nodal points .. Taking partial derivative

of (1.24) and evaluating at quadrature points yields:

ou (xd) _ Ay, 00" (xd)
Txﬂ_lzlua (xn)Tm fOI'Q—l,...,NQ. (125)

Using (1.25) one can evaluate the symmetrized gradients at quadrature points based on

the nodal values. According to (1.25) one can define the partial derivative operator 825

in the matrix format as:

09" (x3)

Ds(Q. 1] = a5

forQ=1,...,Ngand I =1,...,Ny. (1.26)

Accordingly (1.25) can be written as:

6~N Q Ny
M:Zag(m{l)oﬂ[@ﬂ for @ =1,..., No. (1.27)
dg =1

Subsitution of (1.27) in (1.2) yields:

i
], (1.28)

as the approximation of the symmetrized gradient of displacement fluctuation (strain
fluctuation) evaluated at quadrature points based on i, (the placement fluctuation
evaluated at nodal points in the direction ). The matrices Dy are sparse due to the local
support of the FE basis function and block circulant due to periodicity of the domain.
Using regular FE discretization enables expressing the discretized gradient with the same
gradient stencil for all of the pixels in the RVE. Therefore, the gradient of displacement
field @i can be obtained by a convolution of &t with a short kernel, namely the gradient

stencil.

According to (1.28), one can write the weak form (1.23) in a discretized format which
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becomes:
V'D"We (E + Dii,h) =0 Vv € R, (1.29)

with W € R¥mNexdmNg “defined in (1.17). Since the test vector ¥ is an arbitrary field,

the discrete nonlinear equilibrium equation takes the form of:

D"Wa (e + Dii,h) = 0. (1.30)

1.4.2 Linearization

In order to solve (1.30) iteratively we use Newton’s method to linearize it. Suppose
the (i + 1) approximation of the nodal values Ug1) € RN is given as the previous

approximation @) € RN incremented by a finite displacement increment Uiy1) € RNT:
Gigiy1) = U@ + 0l 1 1), (1.31)

with an initial approximation i) € RN7. The displacement increment dti(j41) follows

from the solution of the linear system

D"WC ;D 5ii; 1) = —D"Wo (E + Dii(;), h;)), (1.32)
K b
(1) (4)

do

e (e+ Dﬁ(i), h(z)) € Rd"LNQdeNQ,

where the discrete constitutive tangent matrix C(;) =
Cihir Cwrz Cups

Ci) = |Char Crpz Cryzsls (1.33)
Cis1 Caysz Cryss

oo

Oe
uated at quadrature points given the @) the displacements at nodal points and the

is obtained from the constitutive tangent C;)(x) (x, E + 0t (x), h;)(x)), eval-

material internal variables h;. K¢ € RN *dNT denotes the matrix of the linear system

(1.32), and b, € RINT stands for its right-hand side. So far, we have worked out the
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1.4 Displacement-based (preconditioned FFT-accelerated FEM) scheme

standard FE discretized equilibrium equation.

Equation (1.32) is the linearized FE equilibrium equation for a regular, space-filling, and
periodic discretized RVE resulting in a symmetric system matrix K;) that is also positive
definite for a wide range of homogenization problems. This makes the CG method
the method of choice for solving (1.32), when combined with a proper preconditioner
optimizing spectral characteristics of the system matrix. The preconditioner, presented in
the following, is most conveniently applied in Fourier space according to its mathematical

characteristics.

1.4.3 Preconditioning

The linearized equilibrium equation (1.32) is spectrally badly conditioned, i.e. the
distribution of the eigenvalues of the system matrix do not make clusters and are
distributed sparsely. The spectral characteristics of the system matrix are a crucial
factor to the solution of linear systems with iterative solvers such as CG (Ganesh and
Morgenstern (2020)). Undesired spectral properties (distribution of eigenvalues) of
the linearized system makes use of iterative solver such as CG inefficient for solving
equation (1.32) and also their solution complexity does not scale well with problem
size (Bercovier and Rosenthal (1986)). The preconditioning is meant to improve the
performance of iterative solvers solving a modified linear system of equation by clustering
the distribution of its eigenvalues:

My K diigi1) = M5 by, (1.34)
The preconditioned system of equation (1.34) should have more favorable spectral

properties compared to (1.32) (Saad (2003); Golub and Van Loan (2013)).

In addition, another important characteristic of a proper preconditioner is having a
computationally inexpensive inversion, since the inversion is basically an overhead to
the solution process. It is notable that the matrix MG)IK(Z-) is not symmetric which
makes CG inapplicable; however, given that both M(_Z)1 and K(;) are symmetric, the

system (1.34) solved with preconditioned conjugate gradient (PCG) becomes equivalent
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to the symmetric form:

—-1/2

M 2K oMy, 20250y = M, by (1.35)

(i) (i)
where, z(;,1) = M(li/)zdﬁ(iﬂ), Therefore, (1.34) is solvable with PCG (Saad (2003)).

The preconditioner M;) proposed by Ladecky et al. (2021) has the format of the original
system matrix of (1.32) though the material tangent stiffness in K;) is replaced by a

spatially uniform material data (tangent) of a reference material (C*f € Rém*dm),

M) = K5} = D"WCD € RN =T, (1.36)

Based on the results recently obtained by Gergelits et al. (2019); Pultarova and Ladecky
(2021); Ladecky et al. (2021) that eigenvalues of the preconditioned system matrix

M&;K(i) reside in the following bounds independent of the system size:

—1
A= min A ((cgg)f) C(Z-)(chQ)>, I=1,...,]N, (1.37)

xS e supp ¢!

AV = o Amax ((c?;)f)1 c@@q@)) . I=1,...,]N, (1.38)
where supp ¢! denotes the support of shape function ¢!, and Amin, Amax are the minimal
and maximal generalized eigenvalues, respectively. Based on (1.37) and (1.38), the
conditioning number of the preconditioned system is independent of the discretization
size (characteristic element length) and does not grow with mesh refinement. The
preconditioner (Ksz)f)—l clusters the eigenvalues of the system matrix and the number
of the resulting clusters is independent of the discretization size of the solution domain.
This is shown in Ladecky et al. (2022b) by showing that the number of required CG steps
(representing the number of eigen value clusters) does not growing with mesh refinement.
The proposed preconditioner is similar to the preconditioner proposed by Lucarini and

Segurado (2019b).
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1.4 Displacement-based (preconditioned FFT-accelerated FEM) scheme

1.4.4 Preconditioner inversion

Regular FE discretization yields spatially invariant D since the stencil of all the pixels

ref

are identical. Therefore, for a spatially uniform Cfle)f the preconditioning matrix K(i) €

RN NpxdNoNp consists of (dN,,)? block-circulant blocks of Kf%fag € RNoXNp,

€ R¥ex2Ne — (for dN,, = 2). (1.39)

K = [Kﬁ” Ko

i K

The block circulant structure of Kff)f ap makes its Fourier counterpart:

Kias = FK{asF" (1.40)

The details are elaborated on by Ladecky et al. (2022b). The expanded version of the

linearized equilibrium equation reads as:

)

(D"WCD) ™ D"WC;)D 6ii(;1.1) = — (D" WC[D) "' D"Wo (e + Dii(;), b)) . (1.41)

CH K& (k)™ b

According to the findings of Ladecky et al. (2022b) the spectral characteristics of precondi-
tioned FFT-accelerated scheme are as favorable as the projection-based FFT-accelerated
scheme and given same discretization (e.g. identical FE discretization) the two methods

are equivalent.

Optimal spectral characteristics of the system matrix in (1.21) and (1.41) makes linear
iterative solvers and specifically CG solver ideal for solving the linearized equilibrium
equation (1.21) (Pultarova and Ladecky (2021)). However, solving (1.21) with CG solver
needs Hessian matrix C to be symmetric positive semi definite (SPSD) which is not the
case in several mechanical homogenization problems such as meta-materials(Li. (2017))
or continuum damage (Bazant (1976); Marvi-Mashhadi et al. (2020)). This issue is
discussed and resolved in Chapter 5 by choosing a different iterative solver capable of
handling non-convexity. After enabling the non-convex optimization in the strain-based

scheme it will be used in Chapter 7 for modeling ASR damage.
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ASR is one of the most prevalent causes of concrete deterioration Hobbs (1988); Swamy
(1991). ASR, reported for the first time by Stanton (1942), has caused deterioration to
many concrete structures, such as dams and bridges (Sellier et al. (2017)). The ASR
outcomes, on a structural level, include concrete expansion, loss of stiffness and strength,
and even failure. This chapter discusses the state of the art of ASR modeling, after

briefly introducing the ASR process.

2.1 ASR process

The ASR process begins with the formation of "gels" that are the result of chemical
reactions between silica (SiO2) in the aggregates and alkali in the pore solution (Fernandes
et al. (2004); Ramyar et al. (2004); Peterson et al. (2006); Glasser and Kataoka (1981,
1982)),

Si—-O0-Si+RT+0OH" — Si—-O-R+H-0-Si, (2.1)
H-O0-Si +Rt +OH  — Si— O — R +H0. (2.2)
ASR gel

Due to its hydrophilicity, the formed gel absorbs a significant amount of moisture, causing
it to expand significantly (Pan et al. (2012)). Gel pockets are contained within the pores
of the aggregates, and as they grow, they subject concrete structures to highly localized

stress. The induced stress in concrete may cause microcracks inside aggregates (Ponce
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and Batic (2006); Garcia-Diaz et al. (2006)), which grow and propagate as the alkali
silica reaction advances. The coalescence of these cracks can cause stiffness loss and even

failure at structural scale.

Concrete structures such as concrete dams are meant to last for decades or even centuries.
Therefore, it is important to study ASR damage consequences on their structure that
might appear in time scale of several years or decades. Various experiments have been
conducted to determine how ASR affects concrete structures (Swamy and Al-Asali (1988);
Marzouk and Langdon (2003)). Based on their findings, the ASR process and its effects on
the mechanical properties of concrete may be influenced by a variety of factors including
the mineralogy of the rock, the size of the aggregate, the alkali content, the relative
humidity, temperature, and the confining stress, etc. Therefore, it is necessary to model
the structures affected by ASR to evaluate the ASR influence on them and make a better

understanding of the effects of different parameters.

ASR outcome depends on different mechanisms going on at various spatial scales from
micro-scale where the ASR gels form (micro-scale) to the meso-scale where microcracks
inside concrete aggregate coalesce and propagate into the cement paste, and, finally,
macro-scale, where the structural outcome appears as macroscopic expansion, stiffness loss
and structural failure. The multi-scale, multi-physics nature of the ASR damage process
has always been an obstacle in developing a comprehensive predictive and practical model.
To the author’s best knowledge, previous investigations of the effects of micro-cracking
on the structural scales have not been successfully scaled due to their prohibitively
high computational costs (Cuba Ramos (2017)). In other words, explicit modeling
of the underlying phenomena at the micro-structure using conventional methods yield
computationally unacceptable problem sizes. On the other hand, it is vital for a predictive
engineering model to resolve and probe the ongoing phenomena with sufficient resolution
and capture the structural behavior at the same time. This means that the ASR process

needs to be studied in a multi-scale scheme.
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Figure 2.1: Different scales in modeling ASR (Figures adopted from Walker et al. (2006)
and Papilloud (2019))

2.2 ASR simulation

There are two basic aspects involved in the the ASR damage process, namely chemical
and mechanical aspects of ASR as depicted in Figure 2.2. Based on findings of Dunant
(2009) and the review conducted by Pan et al. (2012), the interaction of the chemical and
the mechanical aspect of ASR is unidirectional and the gel formation pace is independent
of mechanical phase of the process. Accordingly, the chemical (left half of the process
shown in Figure 2.2) and the mechanical aspect (right half of the process in Figure 2.2)
of the ASR process are separable and can be studied independently of each other. As
shown by Cuba Ramos (2017), the mechanical part of the process does not influence
on its chemical part. Therefore, in a comprehensive ASR damage model we can detach

these two phases and only focus on the mechanical part.

Explicit modeling of underlying phenomena in the concrete micro structure using conven-
tional methods (such as conventional FEM) yields computationally prohibitive models.
My research focuses on the mechanical aspect of the ASR damage process and more

specifically on speeding up ASR modeling at the meso scale.

Modeling the mechanical aspects of ASR can be addressed at different spatial scales as
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Figure 2.2: Separation of chemical and mechanical aspects of ASR

shown in Figure 2.1 and briefly described hereunder:

32

e Micro scale: The models at this scale are capable of capturing the smallest feature

of ASR damage explicitly, i.e. the ASR gel pockets and their interaction with
other phases (Zdenek et al. (2000); Schlangen and Copuroglu (2007); Garcia-
Diaz et al. (2006); Dunant and Scrivener (2010)). Accordingly, the resolution of
micro scale models are in order of magnitude of 107 m (smallest scale shown
in Figure 2.1a). This resolution allows to resolve crack initiation due to gel
pocket expansion (Gallyamov et al. (2022)). The upper bound of the micro scale
simulation setups is bounded by computational facilities. Models at this scale
cannot currently involve multiple ASR product sites. The findings of micro scale
models are valuable to study the influences of gel growth on localization and damage

initiation mechanisms on ASR damage (Suwito et al. (2002)).

Meso scale: The models at this scale should be big enough to be able to statistically
represent concrete micro-structure with a random distribution of aggregate and
cement paste phases; therefore, the size of the model setup should be in the order of
the magnitude of 10~ — 10° m where one can resolve concrete micro-structure, as
shown in Figure 2.1b (Comby-Peyrot et al. (2009); Dunant and Scrivener (2012);
Cuba Ramos (2017); Gallyamov et al. (2020)). Models at this spatial scale can be
used RVEs for larger spatial scales. This is the scale that is mainly targeted to

improve in my research.

Macro scale: The models at this scale are used to predict the structural response of

the structures experiencing ASR, damage like the Salanfe dam shown in Figure 2.1c.



2.2 ASR simulation

Most of existing models at this scale utilize phenomenological laws for modeling
the ASR damage (Multon and Toutlemonde (2006)). The main characteristic of
macro-scale ASR damage models is considering concrete as a homogeneous medium.
One way of treating ASR expansion in these models is applying a local eigenstrain
at the elements including the ASR product sites (Charlwood and Scrivener (2011);
Charlwood et al. (1992)). The induced ASR expansion can also be taken a function
of temperature, moisture and other environmental inputs to study the variation

of ASR damage with respect to these parameters Léger et al. (1996).

Based on the findings of Cuba Ramos (2017), the load state imposed on the structure and
the load scenarios do not influence the ASR expansion at the reactive ASR sites. Therefore,
the phenomenon resolved in the micro-scale mechanical ASR damage modeling category
(the first category presented above) can be separated from the other two categories
dealing with larger spatial scales. Accordingly, in order to have a predictive ASR damage
model in a structural scale, it is sufficient to resolve the problem discretized with the
resolution of 1073 — 1072 m where the cement paste and the aggregates can be taken
as explicit phases in the model. In other words, the resolution that is considered in
the meso-scale models is necessary to model the ASR damage process accurately at the

structural scale.

Accordingly, the required simulation setup sizes in a three dimensional setup results in
10'2 — 10" elements which is clearly beyond the computational power of the existing
computational facilities and is computationally prohibitive. A possible solution is using a
multi-scale model that breaks the problem into meso- and macro-scale models as depicted
in Figure 1 in the introduction chapter. By adopting a multi-scale model, we can break
the problem into a macro scale model with the element count in the order of 10® and a
meso-scale model with element count of 107 (as depicted in Figure 1). The meso-scale part
of the model is computationally expensive and the focus of this research is accelerating it

in order to make comprehensive ASR modeling computationally affordable.

Cuba Ramos (2017) has developed one of the most promising multi scale models for
simulating ASR damage. In their developed model, a FE? approach was adopted; however,

it was not successful for simulating 3D ASR damage simulation and hampered by its high
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computational costs. In FE? models, the underlying meso scale RVEs use FEM to solve
the governing equations. FEM is designed to solve problems with complex geometries.
The geometry of the RVEs (solution domain at meso-scale) are generally very simple

and most of FEM machinery is actually wasted in solving such problems.

Cuba Ramos (2017) has adopted a continuum damage constitutive law, first introduced
by Kachanov (1958), to model the ASR damage model at meso-scale. In this constitutive
law, material is linear elastic before the damage threshold and switches to strain-softening
after reaching a certain load state (Mazars (1984)). Strain softening is applied by a scalar
damage variable D. The strain softening constitutive law, in their model, is isotropic
and the Young modulus of the damaged material decays according to E = Ey(1 — D)
where FEjy is the intact Young modulus. The scalar damage variable D ranges between
0 for the virgin material to 1 for complete failure. The damage surface (f), proposed

by Mazars and Pijaudier-Cabot (1989) has the form of:
f=¢e—k(D) (2.3)

where £ is a strain measure and k is softening parameter which takes the largest value of
the equivalent strain measure € ever reached by the material. The most simple strain
measure that results in the most simple strain-softening damage law is the norm of
the strain tensor. One other possible strain measure appropriate for modeling concrete

constitutive behavior used by Cuba Ramos (2017) has the form of:
d
g=)Y He) (2.4)

where, d is the number of the dimensions of the problems , €; is the i'" eigenvalue of the
strain tensor, and H is the Heaviside function. As a result of this strain measure, the

material is only damaged in tensile conditions.

The strain softening part of the constitutive law introduces a non-convex potential
energy which makes non-linear FEM solvers susceptible to instabilities (Pijaudier-Cabot
and Bazant (1987)). Cuba Ramos (2017) adopted the sequential linear algorithm
(SLA) (explained in details in Rots (2001); Rots and Invernizzi (2004); Rots et al. (2008);
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DeJong et al. (2008)) to circumvent non-convexity of the problems. SLA is based on
breaking the non-linear non-convex problem to a sequence of linear convex problems.
In SLA, in each solution step, only one integration point is allowed to soften by certain
reduction of its stiffness due to damage (Pari et al. (2022)). SLA is an event-driven
algorithm and therefore it does not scale with problem size since by increasing problem size
damage sites (possible event sites) increases rapidly; therefore, SLA becomes inefficient.
This is a major drawback of a cell problem in the multi-scale model of Cuba Ramos

(2017).

The combined complexity of meso- and macro-scale in the multi-scale model (as developed
by Cuba Ramos (2017)) is proven to be prohibitively high and significant further speed
up is necessary to have a comprehensive ASR damage modeling. In the multi-scale ASR
model depicted in Figure 1, I have deliberately divided the problem in an unbalanced
fashion (the meso-scale model is larger in sense of number of elements). This is because,
in the meso-scale model, due to the regular geometry of the solution domain, one can use
solution schemes faster than conventional FEM. In this research, I use FFT-accelerated
solution schemes to speed up the solution in the meso scale model (at least 2 orders
of magnitude).My modifications enabling effectively use of FFT-accelerated methods

for ASR damage modeling are elaborated on in the following chapters of this thesis.

Spectral methods introduced first by Moulinec and Suquet (1994, 1998) can be significantly
faster than FEM in solving periodic problems. Therefore, they look to be an efficient
choice for modeling RVEs in a multi scale model. Replacing the numerical solver of
the inner problem of FE? with a spectral method implementation results in drastic
acceleration in simulations. In this research, a specific spectral method implementation
introduced by Vondrejc et al. (2014) will be adopted, modified and extended to be able

to model ASR damage at meso-scale.
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pixels

As discussed in Chapter 1, numerical artifacts in the form of spurious ringing is one of
the major issues of FFT-accelerated methods with Fourier basis in solving numerical
homogenization of multi-phase elastic problems. It has been shown in the literature (Ma
et al. (2021)) that the regular discretization of the interface causes staired interface of
phases. This staired interphase is shown to be contributing to spurious oscillations near
the phase change in FFT-accelerated schemes. Contrary to conventional FEM, spectral
methods require a regular mesh (see Figure 1.1). As a result, general geometries cannot
be discretized in spectral methods in a boundary-conforming manner. Thus, assigning
material to the elements at the interface of different phases is challenging in spectral
methods. In Figure 1.1, it is unclear what material property should be assigned to
the shaded pixels in Figure 1.1.c that lie at the interface between two phases, while in
conventional FEM, one can discretize the solution domain with an arbitrary interface
profile using a boundary-conforming FE mesh. Such numerical artifacts are not of great
importance in a wide range of problems; however, in problems with highly localized
phenomena such as non-linear plasticity or continuum damage (targeted in this research),
these artifacts are of high significance, since they can hugely affect the outcome of the

simulation.

One of the approaches adopted in the literature for mitigating the ringing artifacts is to
smooth the interphase (phases at the interface) by applying a homogenization scheme in

pixels located at the interphase. In other words, a combination of materials involved in
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a boundary pixel is considered for stress evaluation. As mentioned in Chapter 1, this
approach is a ringing mitigation (and not an elimination) approach. In this chapter, I
have examined the effectiveness of two strategies based on smoothing the sharp interfaces

of the touching phases in suppressing the ringing artifacts.

I present two consistent methods for fabricating interface voxels with effective properties
through the use of Voigt and laminate homogenization. These ideas are inspired by the
work of Kabel et al. (2015); Lahellec et al. (2003); Brisard and Dormieux (2012). In both
Voigt and laminate approaches, an effective interphase pixel is derived from a mixture
of the underlying phases of the materials inside the pixel, i.e. the phase transition is
smoothed by a local homogenization of tangent of the pixels at the interface. Therefore
pixels consisting of more than one material in the full-scale resolution will be internally
homogenized. Unlike most of the literature that is primarily focusing on extending
the original spectral scheme proposed by Moulinec and Suquet (1994), I focus on the
projection-based FFT-accelerated scheme as introduced by Zeman et al. (2017); de Geus
et al. (2017) explained in Chapter 1.

3.1 Derivation

In this chapter, I present two homogenization schemes adopted at pixel level in the finite
strain formulation. The derivation is identical for small strain in Voigt homogenization
as it merely involves taking weighted average of the stress and tangent at the interface
voxels. Here, I have conducted all the derivation in finite-strain formulation and the
small strain derivation is straightforward. The implementation exists for both small- and

finite-strain formulations in pSpectre.

In the case of the laminate homogenization, the small strain derivation is simpler than
finite-strain and rather straightforward, since, in small strain formulation, it is not
necessary to consider the rotation of the interface inside a voxel due to deformation
as the assumption of small strain does not allow such deformations. As a result, it is
not necessary to consider different stress types, such as P and S (respectively first and
second Piola-Kirchhoff stresses) while solving for RVE equilibrium and internal voxel

equilibrium.
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3.1.1 Voigt homogenization

This approach applies the simplest homogenization which is basically the weighted
averaging of the stress and tangent of the underlying phases (Milton and Sawicki (2003)).
The internal voxel homogenization merely involves weighted arithmetic averaging of the
tangent of the constituent phases. This approximation gives the upper bound of the
effective tangent of pixels. Given that the volume fraction of the phases L, and R in an
interfacial pixel are respectively a and (1 — «), the effective stress and tangent of the

pixel are:

P = oPL + (1 — )PR (3.1)

KT = oK + (1 — o)KR. (3.2)

Where P is the first Piola-Kirchhoff stress tensor, F is placement gradient and K is the
finite strain tangent defined as: K = aP/ oF. First Piola-Kirchhoff stress P and placement
gradient F' are energy conjugate pairs that I have used for solving the equilibrium of
the RVE in finite-strain formulation. As a result, after the evaluation of the material
stress and tangent according to their constitutive law (possibly in different stress or
strain measures), the mixing rules (3.1) and (3.2) are applied after their conversion to P
and K. It is notable, that this conversion is also necessary for simple pixels since the
equilibrium of the RVE is also expressed in terms of first Piola-Kirchhoff stress P as
V P = 0 and all the evaluated stresses in finite strain formulation needs to be converted

to first Piola-Kirchof stress.

The Voigt homogenization scheme can be generalized to pixels consisting of more than
two underlying phases by taking the effective stress and tangent of the pixel as the
weighted average of those phases. In the Voigt homogenization, only the volume fraction
of the different phases is important in calculating the effective tangent, while other

aspects such as structure morphology are not influential at all.
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3.1.2 Laminate homogenization

In the laminated pixel approach, the orientation of the interface of the underlying phases
is also taken into account when calculating the effective stress and tangent. In this
approach, the interface of the phases in a single voxel is approximated by a line in 2D
and a plane in 3-dimensional (3D). We compute the orientation of the interface of the
underlying phases by taking a weighted average of the normal vectors of the actual
interface of the interface of the phases bounded inside the voxel. For instance, in the
case of the interface of a polygon inclusion in 2D, the normal vector of the sides of the
polygons bounded inside the pixel, with the lengths of the bounded sides as the weights
is considered as the effective normal of the interface. In the case of polyhedron inclusion
in 3D, the weighted sum of the faces of the polyhedron bounded in the voxel with the

area of the faces as the weights is taken as the effective normal vector n.

The general procedure of internal homogenization of the laminated pixels , as implemented,

includes the following steps:

¢ Rotating the coordinate axis to align the X-axis with the normal of the laminate

surface

e Solving the compatibility conditions for the stress and strain components contribut-

ing to the traction at the interface plane

e Calculating the effective stress and tangent from the resolved stress and tangent of

the sub-phases of the pixel (Milton and Sawicki, 2003, Section 9.2).

« Rotating back the effective stress and tangent of the pixel to the main coordinate

axis.

The procedure of approximating the inter-pixel interface with a laminate with a straight
interface and the rotation to align the X’-axis with interface normal vector is schematically
shown in the Figure 3.1. The general procedure, described above and elaborated on
below, is applicable to materials with generally nonlinear constitutive laws. The rotation

needed to align the normal vector of the laminate interface with the X-axis is applied by
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Figure 3.1: 2D schematic of the laminate homogenization approximation.

a rotation matrix with the form of:

1
1+e¢

R=1+V+V? (3.3)

where ¢ = n - ex is the cosine of the angle between the unit normal vector of the laminate
interface (n) plane and the unit vector in the ex direction. V is the skew-symmetric

cross product of n and ex and is defined as:

0 —U3 V2
V= V3 0 —U1|> (3'4)
—V9 V1 1

with v being the cross product of n and ex (v = n x ex). This rotation is schemat-
ically shown, in 2D, as the transformation of the middle shape to the right shape in

the Figure 3.1.

In the rotated coordinate axis, the stress and strain elements can be easily categorized as
intralaminar (in-plane, noted as L in the formula below) and interlaminar (across-plane,
noted as || in the formula below) components. The intralaminar components of a tensor

T with respect to a surface with normal vector n’ are:
T =T 7 (3.5)

In case of the stress tensor, as a general rule, all the components contributing to the

41



Chapter 3. Voigt and laminate homogenized pixels

traction force transmitted through the laminate interface are considered intralaminar P+
and the remaining elements are interlaminar components Pl In the rotated coordinate
axis, where the laminate interface normal vector (N') and X’-axis are aligned, the
intralaminar and interlaminar components of a tensor T are listed in Table 3.1. In the
following, I explain the solution to the compatibility in the case of having two phases

with arbitrary constitutive law inside a laminate pixel.

By imposing an average deformation F to a pixel, I need to solve for the effective stress
Pef and tangent K response of the equivalent laminate approximation of the voxel.
To this end, we first solve for the deformation of the underlying materials L and R
(respectively standing for left and right sub-pixel materials). F® and F¥, In a general 3D
case, are composed of 18 components (9 placement gradient F components for each of

the R and L phases) to be solved.

Table 3.1: Categorizing of a tensor T into interlaminar and intralaminar stress/strain
components with the interface of the phases normal being aligned to the X-axis

intralaminar (T+) interlaminar (T
2D Tz, Toy Tyy, Tys
3D Trzv sza T1‘27 Tyy7 Tzza Tyzv Tzz: Tym sz

We divide stress tensors PR and P and strain tensors F® and FU into interlaminar and
intralaminar elements according to Table 3.1. For all of the interlaminar components
(noted as ||), one can equate the deformation in both phases with that of the input strain
(FIl = FL I = FRI). This yields 12 unknowns of 18 unknowns (6 Fll components of each
of R and L phases), the interlaminar components of both L and R phases. The other 6
unknowns remained to be solved are the intralaminar components, FR+ and FI-. For
solving them, we satisfy the internal pixel equilibrium at the interface of the laminate

layers. Therefore we equate the traction t at the interface of the underlying phases,
th =& (3.6)

In order to make sure the segregation of elements into interlaminar and intralaminar

components remains valid, I express the vector of traction forces t in the undeformed
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3.1 Derivation

configuration in terms of first Piola-Kirchof stress according to
t=P-n (3.7)

Since the normal vector of the phases R and L at their interface, n’ ® and n’ L, are
collinear with opposing directions and according to (3.7), the equilibrium at the laminate

interface expressed in terms of stress components has the form of:
PLE(FY) = —PRE(FR), (3.8)

which is a system of equations composed of 3 nonlinear equations. The complementary
equations for solving 6 remaining unknowns is based on that the weighted average of
the intralaminar strain components of the underlying phases is equal to the intralaminar

strain components of the imposed strain on the pixel.
Ft=aoF 4 (1-a) FRY (3.9)

The 3 independent linear equations expressed in (3.9) can be easily solved for either
of the phases. for instance, the intralaminar strain components of the phase R can be

obtained as:
pri_ Fr—aF
a 1—a

: (3.10)

substituting (3.10) in (3.8) gives:

FJ_ _ FLJ_
pLt (FL) = _pRL <10‘> . (3.11)
—

Which is now a set of 3 nonlinear equations with 3 unknowns F'-. By defining

AP+ = Pl 4+ PRL the set of equations can be expressed as:
AP (FM) =0 (3.12)

We have used iterative Newton-Raphson scheme for solving the set of nonlinear equa-
tions (3.12). Note that in case of small strain elasticity problem with linear elastic

materials (3.12) becomes a linear system of equations. After solving for F+, I obtain
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Chapter 3. Voigt and laminate homogenized pixels

the intralaminar strain components of the other phase F®+ according to (3.10). Having
the full F® and F" solved, I evaluate the stress and the tangent of the both phases
L and R phases according to their constitutive laws. Now I have the stresses P® and
P and the tangents of both phases KR and K". The mixture rule of the stresses are
straightforward and can be generally taken as (3.1) similar to Voigt homogenization.
However, for applying the mixture rule for the tangent I have taken the approach obtained
from Milton and Sawicki (2003) and therefore I need to have the stress expressed as the
second Piola-Kirchof stress S that can be obtained for each sub-phase knowing the first

Piola-Kirchof and the placement gradient according to:
S=F'P (3.13)

Using the second Piola-Kirchof stress allows for definition of symmetric tangent matrix
C = 98/ where F is the Cauchy strain tensor. the tangent C can be obtained according
to:

C=[FoI 'K-I@S|Fel " (3.14)

as derived by Curnier (1994). The operator ® denotes outer under product. R = AQB
can be expressed as R, g = AgrB,¢ in index notation. Having the symmetric tangents
CY and C® T can proceed with the mixture rule derived in Milton and Sawicki (2003).
The symmetric tangent C correlates the strain and stress components. I already have
categorized strain and stress components into interlaminar and intralaminar components.

Following the same logic I divide the tangent C into 4 blocks as expressed in Table 3.2.

Table 3.2: Blocks of the stiffness tangent based on the type of the components (inter-
laminar || or intralaminar 1) of the strain and stress tensors they correlate. Each row
correspond to the components related to one category of the stress tensor and each
column correspond to a category of the strain tensor.

Fl  F-
Pl Ay AL

P+ ALH A
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3.1 Derivation

I construct these matrices (As) from components of the tangent matrix C according to:

Ci11 - V2C1113 V2Ci119

ALL= V201113 2C1313  2Ci31 | (3.15)

V2Ci112 2C1312 201219

Cii2e V2C1133 V2Ci123

AL = | V2015 V203313 2Cos13 | (3.16)

V2C12 V2C5312  2Ca319

Ca222 Caazs V2092293

A= Caass Cszaz V2C3303) (3.17)

V202923 V2C5323  2Ca2303

and A = A . Using these matrices we obtain the effective tangent blocks according

to:

AT = (a7})” (318)
AT = <Aﬂ>_l (ATiAL) (3.19)
Aff = (A - ALATL A ) + (A AT <Ai>_1 (ATLAL) (3.20)

where () denotes weighted arithmetic average. We obtain the effective symmetric tangent
C°f by reconstructing it from A blocks based on the blocks given in (3.18), (3.19),
and (3.20). Then we compute the effective tangent K by applying the inversion of (3.14)

as:

Kf=T798f + [FoI Ccf 1o F’. (3.21)

The effective stress and the effective tangent of a laminate pixel can be obtained according
to (3.1) and (3.21). Following the procedure explained above, I can compute the stress

and effective tangent of the pixel under an imposed placement gradient F and can take
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Chapter 3. Voigt and laminate homogenized pixels

that as the evaluated stress and stiffness of the pixel for the RVE homogenization.

The internal homogenization overhead of laminate pixels can cause massive impact on
speed of solution of the whole RVE domain, because some pixels (interphase pixels) need
internal homogenization that involves an iterative solution process (Newton’s method).
In addition, by using laminate pixels we cannot anymore benefit from all the speed-up
that we could achieve by optimizing the material evaluation (implementing the stress and
tangent evaluation statically) because making laminate pixels hard-coded for material
pairs results in combinatory growing laminate material count which is not feasible

(combination of the underlying phases as template parameters).

Some possible solutions that might enable effective use of laminate homogenized pixels
feasible are: the followings. ¢ Hard coded laminate materials made from two predetermined
materials defined as a new material. This needs definition of a new material whenever a
new pair of materials need to be used as a laminate pixel. 4 Another approach might
be smart distribution of resources such as scheduling for stress and tangent evaluation.
These approaches seem to be non-trivial to implement and are actually harmful for
general performance. Having a scheduler for material stress and tangent evaluation at
quadrature point as a general strategy is extremely harmful to performance when the
evaluation expense of majority of material points is in the same range such as cases where

laminate pixels do not exist.

3.2 Examples and results

Even though ringing artifacts are not unique to stair-shaped discretization, it is necessary
to use a stair-shaped discretization to observe effectiveness of Voigt or laminate sub-
pixel homogenization strategies suppressing ringing artifacts. Two examples using such
discretization are presented here in order to demonstrate how much these approaches

can mitigate ringing artifacts.
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3.2 Examples and results

3.2.1 Inclined square inclusion example

In the first example, we take a 2D RVE containing an inclined rectangular inclusion located
at the center of the RVE. The RVE experiences a spherical mean strain with amplitude
of 1 x 1074, In addition, in each corner of the RVE, a triangular inclusion is inserted
(depicted in Figure 3.2a). These triangular inclusions make the RVE geometrically
equivalent to a RVE containing a straight square at its center. The problem is solved
by using a spectral solver with Fourier-basis functions (as developed by de Geus et al.
(2017)) with simple, split (Voigt homogenized), and laminate homogenized interphase
pixels. The material assigned to the pixels at the interphase pixels (hatched pixels in 3.2b)

Figure 3.2: The phases in inclined square example, blue represents the inclusions and
red represents matrix, a. Whole solution domain, b. zoomed over the boundary of a
inclusion. Pixels located at the boundary of phases are hatched.

is determined by the location of the center of the voxel in the simple pixel approach. In
Voigt homogenized pixels, however, the intersection of the boundary phase (modeled
as a polygon in 2D) is intersected with the pixels edges and the contribution of each
material at each pixel is determined by the surface ratio associated with each phase in
that pixel. In the laminate pixel approach, in addition to the surface ratio, the normal
vector of the intersection between the phase boundary and the pixel (the part of the

interface bounded inside a pixel) is calculated and stored for each pixel.

This computational geometry process of intersecting two ploygons in 2D and polyhedra
in 3D is not straightforward. I have adopted and slightly modified an open source
library named Cork (Bernstein (2007)) is to automate the task in pSpectre. The RVE is

subjected to a spherical mean strain with an amplitude of 1.0 x 10~*. The domain is
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Chapter 3. Voigt and laminate homogenized pixels

discretized with 283 pixels in each direction. The Poisson ratio of both phases is 0.3 and
their Young moduli are respectively 7.0 x 10'GPa for the matrix and 7.0 x 10*GPa for

the inclusion that make a contrast of 10% between their Young moduli.

Figure 3.3 and Figure 3.4, respectively, illustrate the shear strain and the Von-Mises
stress of the RVE at equilibrium. In each of these figures, the first row depicts the entire
solution domain while the second row zooms in on the subdomain near the inclusion at
the center of the RVE, where ringing artifacts are more evident. In both of the figures,
the left column corresponds to the solution obtained using simple pixels, the middle
column represents the response of the RVE obtained by split pixel approach, and the

right column shows the response of the RVE obtained using laminate pixels.

Figure 3.3 and Figure 3.4 show that the Voigt homogenization approach can reduce the
amplitude of the ringing artifact, but neither of them can eliminate it. In comparison to
the solution of the simple cell, the highest shear strain value shown in Figure 3.3 and the
highest von Mises stress in Figure 3.4 are lower in the split pixel solution. Additionally,
the laminate pixel approach appeared to be more effective than Voigt homogenization in
mitigating the ringing, and they can suppress the ringing in some areas of the solution

domain; however, they are unable to completely eliminate the artifacts.

3.2.2 Circular square inclusion example

A circular inclusion is inserted at the center of the periodic RVE in the second example.
This example generates stairs as well when discretized in a regular voxel grid. The
geometry of the example is shown Figure 3.5a, the shaded pixels in Figure 3.5b correspond
to the pixels residing on the boundary of the phases. In this example, both phases are
taken as linear elastic materials with Poisson ratio of 0.3 and the Young moduli of
inclusion and the matrix are respectively are 7.0 GPa for the matrix and 70.0 GPa which

makes a hard inclusion problem with contrast ratio of 10.

The shear strain and the von Mises stress of the solution of the RVE under a spherical
mean strain with amplitude of 1 x 1073 are respectively shown in Figure 3.6 and Figure 3.7.

The first row in each of these figures represents the solution for the entire RVE. The same

48



3.2 Examples and results

)
a.2) simple '
¢.2) laminate 0.0002
=
z
—
%
0.0000
]
<
9
~0.0002

Shear strain

a.2) simple b.2) Voigt i

) simp ) Voig ¢.2) laminate 0.0002
0.0000
~0.0002

Figure 3.3: Shear strain inclined square example, a. Over whole solution domain, b.
zoom over the right corner of the inclusion at the center of the RVE
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Figure 3.4: Von-Mises stress strain inclined square example, a. Over whole solution
domain, b. zoom over the right corner of the inclusion at the center of the RVE
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Chapter 3. Voigt and laminate homogenized pixels

Figure 3.5: The phases in circular inclusion example, blue represents the inclusions and
red represents matrix, a. Over whole solution domain, b. zoom over the boundary of a
inclusion. Pixels located at the boundary of phases are hatched.

variable is shown zoomed over a region of the RVE including the phase boundaries (where
the laminate and split pixels are located). The box at the top of the first row shows
the area over which the zoom is placed in the second row of the same figure. In these
figures, and specifically in the Von-Mises stress plots shown in Figure 3.7, it is evident
that the Voigt pixel homogenization approach can suppress very high overshoots (pure
black) stress values in the domain even though the ringing (checker-board) oscillations
persist. It is also depicted that laminate sub-pixel homogenization approach is actually
more effective than Voigt homogenization in mitigating ringing artifacts; however, it also

cannot eliminate the ringing artifact.

3.2.3 Simple square example

Two previous examples are helpful to express the effectiveness of split and laminate pixel
approaches visually and qualitatively. The third example is arranged to make a quanti-
tative evaluation of the Voigt homogenization and laminate inter-pixel homogenization.
In this example, a RVE containing a square inclusion occupying /9 of RVE length in
both directions is considered. The RVE is once discretized in a 9 x 9 structured grid and
solved for equilibrium experiencing a spherical mean strain of 10~2 which will be used as
a reference solution. Afterwards, the same RVE discretized in 3 x 3 grid is solved with

both Voigt and laminate homogenized interphase pixels. The schematic of the RVE is
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Figure 3.6: Shear strain strain of the circular inclusion example, a. Over whole solution
domain, b. zoom over the region in the box depicted in the first row to show the
oscillations at the boundary of the phases.

Shear strain

Shear strain

depicted in Figure 3.8a.

Both materials phases used in this test case are linear elastic materials. In the laminate
homogenization scheme, the direction of the interface is taken as the weighted average of
the normal vectors of the interfacial faces at each pixel. The direction of these normal

vectors are shown as arrows in each interphase pixel in Figure 3.8a.

The test case is solved for interface pixels using either Voigt homogenization or laminate
homogenization. The resultant elastic energy of the RVE solved with these two inter-pixel
homogenization schemes is then compared with the reference value of the energy from the
reference solution (6 x 6 cell solved with simple pixels). This comparison is repeated for
different phase contrasts between the inclusion and the matrix phases of the RVE (shown
respectively as white and gray in Figure 3.8a. Figure 3.8b illustrates the relative error of
both approaches approximating the elastic potential energy of the RVE using laminate
sub-pixel homogenization approach going under a spherical strain with amplitude of
10~* for different phase contrast ratios. Figure 3.8b depicts that the range of the error

in estimation of the strain energy of the RVE is roughly one order of magnitude less
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Figure 3.7: Von-Mises stress of the circular inclusion example, a. Over whole solution
domain , b. zoom over the region in the box depicted in the first row to show the
oscillations at the boundary of the phases.

compared to Voigt homogenization approach.
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Figure 3.8: Test case for comparing the Voigt homogenization and the laminate homoge-
nization, a. The configuration utilized for the test. b. The relative error of calculated

elastic energy for different phase contrasts (E; and Es respectively correspond to the
Young modulus of materials 1 and 2 shown in Figure 3.8a)
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3.3 Conclusion

3.3 Conclusion

I have derived and implemented two different sub-pixel homogenization schemes in this
chapter namely, Voigt and laminate homogenization schemes. Two possible approaches
to reduce (mitigate) the Gibbs ringing artifacts in spectral methods have been presented.
Unlike other similar implementations we have applied these two schemes in the projection-
based FFT-accelerated solution scheme of de Geus et al. (2017). I have used the
computational geometry means provided by Cork in order to automate generation of

split and laminate pixels as well.

The first two examples of this section depict that although the Voigt and laminate pixel
homogenization approaches can mitigate the ringing artifact to some extent, they cannot
eliminate it. It seems that the ringing artifact persists even in low phase contrasts
(10) between phases in the circular inclusion example. I intentionally picked examples
in which the phase boundaries form a stair-shaped discretization, in which the Voigt
and laminate homogenizations are the most effective. In the cases where stair-shaped
boundaries do not exist, both approaches (laminate and Voigt inter-pixel homogenization
schemes) are actually not sufficiently effective for making continuum damage mechanics

solution devoid of non-physical checker-board crack patterns.

In addition, it should be noted that the laminate homogenization process can result in high
computational costs due to its internal iterative homogenization, which severely reduces
the appeal of using spectral solvers (solution speed-up) in the first place. In conclusion,
these observations indicate that Voigt and Laminate homogenization approaches are not
sufficient to simulate damage mechanics problems and that other methods are required

to resolve the ringing artifact.

Even though both sub-pixel homogenization schemes presented here can mitigate the
ringing artifact, they cannot eliminate long-range oscillatory fluctuation in the solution
fields of the homogenization problem and therefore they do not enable us to use FFT-
accelerated solvers for modeling damage at meso-scale. The Gibbs ringing elimination
approaches based on altering the discretization are suitable to resolve the Gibbs ringing

issue. Two examples of such methods are presented in Chapter 1 and will be elaborated
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Chapter 3. Voigt and laminate homogenized pixels

on in Chapter 4. Different groups including our development group (uSpectre team)
have altered the basis functions to eliminate the ringing artifacts in the FFT-accelerated
scheme. For instance, the FFT-accelerated solution scheme developed by Leute et al.
(2021) and already presented in Chapter 1 using FE discretization seems really promising
and will be used in Chapter 7 for ASR damage modeling, where it is crucial to have a

ringing free
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%! Equivalence of the strain-based

and displacement-based schemes

As stated in Chapter 1, FFT-accelerated spectral solvers, implicitly, use the Fourier
polynomials as basis functions to express the variables in the solution domain. This
choice of basis functions is closely linked to the Gibbs-ringing artifacts that are ubiquitous
in almost all of Fourier accelerated solvers in the literature (Schneider (2021); Leute et al.
(2021)). Based on our findings explained in Leute et al. (2021) (uSpectre development
team), opting for FE basis functions for defining the gradient operator, from which the
projection operator is constructed, can eliminate the Gibbs-ringing artifact. The FEM
shape function gradients introduced by Leute et al. (2021) allows simulating RVEs even
with infinite phase contrast at the interfaces, for instance RVEs containing free surfaces
or completely degraded materials due to damage. Resolving these two shortcomings of
FFT-accelerated solvers (ringing artifacts and incapability of handling infinite phase
contrast) makes it possible to tackle homogenization of problems with highly localizing
phenomena such as strain softening. This also enables one to use the efficient and well
scaling iterative linear solvers such as CG for homogenization of sophisticated problems

such as damage mechanics.

Achieving fast, efficient, and ringing-free FFT-accelerated solver using FE basis functions
raises the question whether a pure FEM scheme can realize similarly efficient scaling
solution (as efficient as FFT-accelerated schemes). Earlier, Schneider et al. (2016a)
used linear hexahedral discretization in their FF'T accelerated solution scheme. They

also noted that the scheme can be expressed in a displacement-based scheme where the
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unknowns of the problem are actually the displacement of the nodes similar to FEM.
Leuschner and Fritzen (2018) have worked out a displacement-based FFT-accelerated
solution scheme using the FE Galerkin discretization and also showed that using a
preconditioned CG with the discretized periodic Green’s operator of a uniform reference

material as the preconditioner improves the efficiency of the solution.

Ladecky et al. (2022b) (uSpectre development team) have developed a pure FE solution
scheme that solves the linearized system with a geometrically optimal preconditioner based
on the discretized periodic Green’s function of a reference material. Their displacement-
based formulation successfully extended the concepts introduced by Leuschner and Fritzen
(2018) to arbitrary regular FE discretizations. For specific choice of the reference material
(4™ rank symmetrizing identity tensor I, = %(5ik5jl + 01051)), Their solution scheme
is already shown to realize the same distribution of eigenvalues (of the corresponding
linearized system of equations) as the strain-based method introduced by Leute et al.
(2021). This equivalence is achieved naturally using the same discretization. We have
also shown the equivalence mathematically by showing that the solutions steps of the two
schemes generates same series of iterates (Ladecky et al. (2022b)). By using the same
iteration termination criteria, we have also shown the equivalence of the strain-based
and the displacement-based schemes numerically. Ladecky et al. (2022b) presented the
scheme on a small-strain elasticity micro-mechanical formulation discretized on a regular

periodic grid. The extension of the scheme to finite-strain is also straightforward.

In this chapter, I show the equivalence of the displacement-based preconditioned FEM
scheme (Ladecky et al. (2022b)) and an extended form of the strain based scheme (Leute
et al. (2021)). This equivalence is already shown by Ladecky et al. (2022b) for a specific
case of reference material (4" rank symmetrizing identity tensor ly). The projection

operator we introduced in Leute et al. (2021), implicitly, uses the 4

rank symmetrizing
identity tensor I as a reference material in the equivalent displacement-based formulation.
Therefore, their introduced projection operator is from now on denoted as Gy, (Projection
with the 4" rank symmetrizing identity tensor I, as the corresponding reference material

in the subscript).

Ladecky et al. (2022b) has empirically shown that using a reference material capable of
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expressing the anisotropy of the system response (including the Poisson effect) accelerates
the solution, at least, by roughly 50% in a nonlinear problem (as also indicated later here
in Table 4.1). As an extension to Gy, here, I incorporate a reference material defined
by elastic tangent tensor C**f into the definition of the projection operator explained
in Chapter 1 and introduce a modified projection operator with an arbitrary admissible
reference material with elastic tensor C™. The subscript of the projection operator (Geret)
denotes the reference material of the projection operator. For instance, the standard
projection operator introduced by Leute et al. (2021) is denoted here as G;, and the
projection operator with a generic C™! as the reference material is noted as Gerer. 1
also will show empirically that using Gerer with a C™f better reflecting the anisotropy of
the RVE can also speed up the solution of the strain-based solution compared to using

G

s°

I, in this chapter, will show that solving the equilibrium equation (1.18) using the
introduced projection operator Gerer is equivalent to using the displacement-based scheme
with a preconditioner defined with the discretized periodic Green’s operator of a reference
material C* as the reference material. The equivalence of these two approaches is first
shown in their formulation where the solution iterates are shown to be equivalent in both

schemes.

It is also notable that the DoF these solution schemes differ and to be able to compare them
same termination criterion for the iterative solvers is needed. This needs modification
in the definition of the solution error (which is by default the quadratic norm of the
solution step in the state space of the DoF of the scheme). This is the reason of the
difference of the default termination criterion of these two schemes non-conforming as
their solution DoF differ. The required modification in the termination criterion is also
introduced in this chapter and solvers with modified termination criteria are used for

solving the example presented here.

The content of this chapter is partly taken from a submitted paper from pSpectre
development team ( Ladecky et al. (2022b)) and another manuscript (Ladecky et al.
(2022a)) that is under preparation and is almost ready.
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4.1 Derivation

To show the equivalence of the strain-based and displacement-based approaches we start
from the final form of the linearized equation system of the discretized equilibrium
equation (1.41). For sake of simplicity, the FFTs are omitted from the formulation and
the quadrature weights w® of the quadrature points are assumed to be uniform; therefore,

the weight matrices can be dropped for now. The equilibrium equation (1.41) yields:

—1
(D”Cip)  D'C(;D i) = — (DTCD) ' DYo (E+ Diiy, hy ) - (4.1)
-1 K7, ref) —1 —b¢;
(kreh) @ (Ke&) @

The PCG algorithm for solving (4.1) is presented in Algorithm 1. Next, considering
that dii;) = Dd;), in the left hand side of (4.1), we substitute Dddi, with 59 (i.e.
re-interpreting the gradient of displacement increment as the increment of displacement
gradient) and rewrite (4.1) as:

(p"cp) T DTC 0 = — (p"cp) D’ (E+0ag),hy),  (42)
with I'Ef)f standing for the periodic discretized Green’s operator of a reference medium
with elastic tensor C**!. Considering that the U(;41) belongs to a gradient field with zero
average, the mean of the right hand side of (4.2) is also zero. Generally speaking, if the
gradient of two fields with zero mean are equal then the two fields are equal. Therefore,

we can take discrete derivative of both sides of (4.2) which yields:

D (D7CED) D7 €001y = — D (DTCED) DT o (E + diigy. hey) . (4.3)

ref ref
e i)

By taking the 4" rank symmetrizing identity tensor as the elastic tensor of the reference

materials (Cff)f = ly), the operator I'ff)f boils down to the compatibility projection
-1

G,=D (DT ls D) D" (equivalent to the definition of the projection operator presented

in (1.10) in Chapter 1) projecting an arbitrary field to its closest compatible part in the

least square sense considering the L2-norm of difference with a gradient field (shown
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by Leute et al. (2021)). The linearized equation (4.3) becomes:

D (D1, D)71 D” C(;)081i(;41) = — D (D1, D)*1 D" o (E+ di, hy)  (44)

Gi, Gi,

G| C()0é(41) =—Gl.o (E +Ea, h(i)) : (4.5)

which is identical to (1.21) given that the solution iterates are compatible (periodic
gradient) fields. As a result, we have actually shown that the strain-based and the

displacement-based schemes are identical in case of C‘(”f)f = ;.

4.1.1 Projection operator with a reference material

I extend the derivation of the projection operator introduced by Leute et al. (2021)
and introduce a general projection operator that with an arbitrary admissible refer-
ence material C™ instead of I,. This allows proving the general equivalence with the
displacement-based scheme with an arbitrary admissible reference material. To this end,
I follow a similar approach to the derivation of the projection operator proposed by Leute

et al. (2021).

Assume that ¢ : © — R is an arbitrary tensor field. The difference between ¢ and
a compatible gradient field v € £ (gradient of arbitrary field ¥ with zero mean) can
be simply noted as (8% — ¢) which needs to be minimized to make ¢ the compatible

contribution of v.

As an extension of the derivation of Leute et al. (2021), I take an energy norm of the

residual (taking C™f = I, yields the same projection as that of Leute et al. (2021)),
IR(@) s = [ (95~ ) €™ (05 - ¢) da, (4.6)
Q

as we want to minimize the difference of ¢ and OV we can take || R(@)||cret as an objective
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function, which using a quadrature rule, in discrete form reads as:

R = [IR(@)lcg;, = (DF— ¢)" Cify (DV— ), (@.7)

where Cref(i) is the weighted discretized elastic tensor of the reference materials with the

weights taken from the quadrature rule applied. Cref( ;) can be obtained from the wight

matrix W and the elastic matrix of the reference material C*! according to C{,‘f,f(i) =wc!

Now, by minimizing R we can find a displacement field that minimizes the norm of the

ref

difference of the tensor field ¢ and the gradient of ¥ in a space with the metric of CW(i)'

For this end we need to differentiate R with respect to v:

%g—oncremev DT C(¢ — ¢TCRD = 0. (48)

Solving for ¥ yields the linear system of equation:

DTC{,?,f() = DTC{,‘f,f(Z.)C. (4.9)
————
Kref
Solution of (4.9) gives V as
~ T ~ref - T ref
| —
K~ 1

ref

The compatible contribution of the field ¢ is actually the gradient of ¥; therefore, we can

write compatible contribution of ¢ as:

T
* T ~ref T ref
¢ =DV :D(D C D) D" Cip ¢ = Gy ¢ (4.11)
Gcref

W(i)

As a result, the general projection operator Gcrei) = D(Kref) DTCfﬁ,f(i) with Kpef =
DTCref(i)D can be used instead of Gy, in the strain-based method. In general, the closer
CW() can reconstruct the anisotropy of the effective tangent of the RVE the more

speed-up gain it gives for solving the linearized equilibrium equation (Ladecky et al.
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(2022b)). It is notable that, in solid mechanics, the anisotropy includes both anisotropy
in geometrical coordinate directions as well as anisotropy between different components
of the stress and strain, for instance the Poisson effect. Ladecky et al. (2021) have shown
that taking the C*! with a Poisson ratio roughly resembling that of the RVE accelerates
the solution roughly by 50%.

A closer look to (4.11) and comparing it with the expression of Gy, reveals that, there is
an extra Cf,‘f,f(i) appearing on the right side of the definition of the GC\rﬁfi) that is missing
in the linearized strain-based equilibrium equation (4.3). This causes two problems in
solving the linearized equilibrium equation for the strain field. i. The solution field is
in a stress field space S mapped from the strain field £ with the transformation matrix
C{,f,f(i), ii. The coefficient matrix of the linearized equilibrium equation is not symmetric
in case of using Gerer which makes CG inapplicable to solve the equation iteratively.
One possible solution to format the strain-based linearized equation equivalent to the

displacement based equation resolving the aforementioned problems is pre-multiplying
-1
both sides of the equation with (C{,ﬁ’,f(l)) . Accordingly, we can rewrite (4.3) as:
-1 -1
f T = _ f T =
(C{;\al(l)) Gc‘rﬁii)C(i)5€(i+1) = — (CW(,L)) Gc{/\elii)o- (E + E(i)? h(l)) . (412)
-1

One efficient way of handling the pre-multiplied (Cf,?,f(l)) is taking it as a preconditioner
in the linear solver algorithm and solving the linearized equilibrium using a PCG solver.
The PCG algorithm used to solve the preconditioned strain-based with arbitrary Cf,ﬁ’,f(i) is
presented in Algorithm 2. We have adopted this scheme for examining the equivalence of
the displacement-based scheme and the generalized strain-based scheme in the presented

example in the following of the chapter.

4.1.2 Termination criterion

As mentioned earlier, in order to compare the performance of the strain-based and
displacement-based scheme, numerically, we need to adopt an identical termination
criterion for the linear solvers (PCG) used to solve the linearized equations ((4.1) and

(4.12)) and also for the nonlinear solver (Newton solver here).
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Chapter 4. Equivalence of the strain-based and displacement-based schemes

The termination criterion of the linear solvers used in the strain-based and the displacement-
based schemes is based on the L?-norm of the residual (stress in strain-based and force in
displacement-based scheme). Clearly these are not identical and make the comparison of
solution step count with equal tolerance infeasible. Therefore, here we define an energy
norm as the measure used in the termination criterion of the linear solvers by contracting
the energy conjugate pairs in both the methods; strain and stress in the strain-based

method; and displacement and force in the displacement based method.

This choice of convergence measure aligns with the nature of conjugate gradient method
which minimizes the energy norm of the error. As shown by Vondrejc and de Geus (2017)
the quality of the homogenized properties of a RVE is actually proportional to the energy

N
norm He,(;) ’ )K of the solution error defined as:

& i Nk i i i i
He,(c) K:Hx()—x,i) K:(x()—x,g))TK(x()—x,(C)). (4.13)

with K being the system matrix and x(¥) being the displacement field in the displacement-

based method and K being the tangent and x(9) being the strain field in the strain-based

scheme. xl(f) is basically the value of the DoF field at k'™ iteration of the linear solver.

As explained earlier, the usual termination criterion is based on the L?-norm of the

residual r,(f) which can be written as function of e,(f) as:

* — o kel = [|of|[

‘ ]r,(j) (4.14)

KTK’

because r,(f) =b-— Kx,(f) = Kx( — Kng) = K(x(®) — x,(j)) = Ke,(f). We propose to measure

Hr](j) instead of Hr,(f) ’

2
M—l

2

2

D? a0 kT M-1ke® — ||o
Hrk vt = Gk KM~ "Ke,’ = Hek KTM-1K ° (4.15)
If M is a good approximation of K, then M~'K ~ | and
()| ~ |le®|]? .
Hek KTM-1K He’f K’ (4.16)

the approximation of the error in the energy norm.
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4.1 Derivation

In our case, M is built in the same way as K, but for constant reference material C{,‘f,f(i)

-1
(see (Kff)f) and K;) in (4.1)). M always approximates K better than I and thus energy

2
‘ . Therefore, it is

OIF s a bett imation of ||e(”||” rather than ||r(’
norm rk, M-1 1S a better approximation o ek K ratner an rk

a better measure to terminate the PCG algorithm. In addition, it can be easily computed

by contracting 2 of the existing fields in the algorithm as explained in the following.

3112
In order to normalize these measures, we normalize them to the initial residual Hr(()l) ‘ ‘M* L
For initial guess aff) = 0 we get

9 = = 68 = [ e 000

’ﬂ(i)

the approximation of the energy norm of the solution @(?. From the computational
viewpoint, the evaluation of the approximate energy norm is of nearly zero cost, as
T M1, _ ||, @]
we need the product (r M~ ry” = |1y M-
that z,(j) = M_lr,(f) is already defined and computed in the PCG algorithm the only
(4)

is contracting (computing inner product of) r;

, in every PCG iteration. Considering

A112
calculation needed to compute Hrg) ‘ ‘M_

and z,(;). These modifications are presented in lines 9 and 19 of Algorithm 1 and lines 9

and 17 of Algorithm 2.

1

In addition, we need to make the termination criterion of the nonlinear solvers also
identical. The termination criterion of the Newton solver that we use as the nonlinear
solver is based on the norm of the difference of the DoF field after and before the linear
solver call (solution increment). It is basically the squared norm of the difference of the
strain field in the strain-based scheme and the displacement in the displacement-based
scheme, i.e. the size of the step caused by solution of the linear solver. Therefore, the

termination criteria are clearly different in case of these two schemes.

We have chosen to modify the termination criterion of the displacement solver as the
value of the strain field is basically available in the nonlinear solver as the strain value is
calculated at the quadrature points since they are needed for material stress and stiffness
evaluation. Accordingly, by changing the termination criterion of the displacement-based
nonlinear solver we can make the termination criterion of the two schemes identical with,
basically, no overhead. For the strain-based solver, on the other hand, doing the same

NP
trick and taking error with Hr((f) ‘ ‘C*l yields similar energy norm of the reference material.

63



Chapter 4. Equivalence of the strain-based and displacement-based schemes

Having identical termination criteria (for both linear and nonlinear solvers) allows us to
compare the number of linear and nonlinear solution steps of the two schemes by keeping
the tolerances constant. The explained termination criteria were incorporated into the
schemes and are used in the example presented in Section 4.2 to compare strain-based

and displacement-based schemes in practice.

4.2 Examples and Result

In Section 4.1, we explained the equivalence of an extended form of strain-based FFT-
accelerated scheme we developed ( Leute et al. (2021)) and the geometrically optimal
preconditioned displacement based FE scheme we developed (Ladecky et al. (2022Db)).
The necessary modifications needed for observing this equivalence in practice (such
as solving the strain-based method using PCG in the general case of the projection
defined with a reference material with elastic tensor C* and the changes needed in the
termination criterion) were elaborated in Section 4.1. Here, by using the concepts and
the modifications explained in Section 4.1, we compare solving equilibrium of a RVE
containing nonlinear materials with identical FE discretization and show that under
equivalent circumstances (same discretization and same termination criterion). The
number of solution steps of two solution schemes solving a nonlinear homogenization

problem are the same.

4.2.1 Homogenization of a hyper-elasto-plastic micro-structure

The example is adopted from de Geus et al. (2017) where the micro-structure of the RVE
consists of hyperelasto-plastic material. The constitutive law of such materials is explained
in detials in (Simo (1992); Geers (2004); Simo and Hughes (2006); de Souza Neto et al.
(2008)). The yield criterion of the hyperelasto-plastic constitutive law which bounds the

elastic domain of the material response has the form:

Teqg — Ty(€p) <0 (4.18)
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where €, is the accumulated plastic strain, 7, is the yield stress which is a function of €,
and T4 is a function of the elastic contribution of the strain at equilibrium. The yield

stress 7,(€p) can be obtained as a linear function of €, as:

Tyo(Ep) =Tyo + H.E‘p (4.19)

where 7, (initial yield stress) and H (hardening coefficient) are material parameters.

I discretized the solution domain of the example by 441 x 441-pixel grid. It consists of two
steel phases martensite and ferrite that are identical in their elastic regime (mechanically
identical as far as they are both in their elastic regime);however, their initial yield stress
and hardening coefficients are contrasted here by ¢ = 2 as the phase contrast between

martensite and ferrite as:

ferrite __ _martensite
T X P =Ty (4.20)
errrite X o= Hmartensite (421)

Total macroscopic deformation gradient

V3 [0.995 0 ] (4.22)

F=-""
2 0  —0.995

is applied in 5 load increments.

I solved the problem with both strain-based and displacement-based schemes. The
solution domain is discretized in both schemes with linear triangular elements. 1 set the
Newton tolerance to W = 1075 and (P)CG tolerance to G = 107°. We solve three
cases with identity C*f = I, symmetrized identity C™f = I, and mean value C*f = Ccan
reference materials, where the preconditioner is made with a reference material with the

stiffness matrix of weighted average RVE of the tangent of the underlying phases.

The distributions of global plastic strain €, obtained for two solution schemes are shown
in the first row of Figure 4.1, which shows that the solution of the two schemes are
identical. The regions of details of the ¢, (the second row) also approves the identity of

the solution fields in further detail. In addition, the number of Newton’s method steps and
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strain-based displacement-based
FE projection linear FE
(a.1) (b.1)
o N
Ep \
x 1072 :
2 O N AN o
LNy LNy
N N
1

Figure 4.1: Global plastic strains ¢, in dual-phase steel with applied deformation
gradient (4.22) in row (1) with local detials in row (2). Row (3) shows accompanying
normalized shear stresses Pj2 in detailed area. Discretization schemes in columns: (a)
the strain-based scheme with FE projection operator with two linear triangular elements
and (b) the displacement-based FE scheme with two linear triangular elements. All
quantities are averaged per pixel.
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cref strain- displacement-
based(SB) based (DB)
Newton steps 9 9
| 861 861
(P)CG steps Is 609 609
Cinean 457 457

Table 4.1: The number of Newton’s method steps and the total number of (P)CG steps
required to solve the finite strain elasto-plastic problem of Section 4.2 for a three choices of
reference material, with Newton tolerance W = 1075 and (P)CG tolerance G = 107°.
solution schemes from left to right: the strain-based scheme with FE projection operator
with two linear triangular elements, the displacement based FE scheme with two linear
triangular elements. The count of solution steps exhibits the equivalence of displacement
FE scheme presented by Ladecky et al. (2022b) and strain-based FE scheme presented
by Leute et al. (2021).

the total number of (P)CG iterations needed to solve the problem with strain-based and

displacement-based approaches are shown in Table 4.1 which highlights their equivalence.

4.3 Conclusion

In this chapter, we have shown the equivalence of the displacement-based scheme presented
by Ladecky et al. (2021) and an extended version of the strain-based scheme presented
by Leute et al. (2021). Their equivalence has been shown in terms of the linearized
equilibrium equations of both of the schemes. It has been also tested and validated
in practice in a nonlinear finite element problem presented in Section 4.2. As a result,
displacement-based and strain-based formulations converge equally and the only decision-
making consideration regarding the possibility of efficient implementation. However, we
have opted to use the strain-based method for ASR damage homogenization problem
due to some minor advantages, for instance, imposing macroscopic loads in form of stress
is more straightforward in the strain-based formulation and has been already worked out
by Lucarini and Segurado (2019a). Accordingly, the simulations in Chapter 7 are carried

out using the strain-based formulation with FE discretization.
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4.4 Algorithms

Algorithm 1 displacement-based preconditioned CG

Num. scheme: (DTCD) ! DTC\(/il)D S+ _
! K
e —

— (DTC D) ! D"Wo (E + Di, A1) (4.1)

M- —b
1: &l > Initial displacement
2: E > Macroscopic gradient field
3 M=D'CD > Preconditioner
1+ K=D"c{)D > System (Stiffness) matrix
5: b= —D"We(E+ Dii”, b)) > Right hand side

6: procedure DB PCG(dg, K, b, M, tol, ityax)
7 ro := b — Kétg

8: zy 1= Mflro
9: nro := ||ro||m-1 = rd 2o > initial residual
10: pO = ZO
11: k=0
12: while k < it,,q, do > k=0,1,...,itmaer
r,zp

14: o = —&

k P;ka
15: 5ﬁk+1 = (S'ak- + Odk-pk
16: Vel =Fp — akak
17:

—1
18: Zp1 =M1
- T
19: Nre41 = ||rk+1|||\/|*1 =rpz;
20: if % < tol then
21: return 4y
T
. — k41 %Rl

22: B, = Tt
23: Pri1 = Zk+1 + BrPy
24: k=k+1

28 return oy > if it,qz reached




4.4 Algorithms

Algorithm 2 strain-based preconditioned CG with C™f as preconditioner

Num. scheme: (Cref )_1 Ggrefc(i) 5é(i+1) = — (Cref )_1 Ggrefd (E -+ é(i), h(@), (4.12)
———

—_———
M-1 K M-1 b

1: &y = Dotig > Initial displacement gradient

2: E > Macroscopic gradient field

3 M*=Ce > Preconditioner

4. K* = Ggefc(i) > System (Stiffness) matrix

5 b* = Gl (E+&3), b)) = Gluo (E + Diigs), by ) > Right hand side

6: procedure SB PCG(d€y, M*, K*, b*, tol, ity ax)
T I’a =b* — K*5§Q

8 z5 =M}

9

nrg = |65l =) (or r5 ' zp) > initial residual
10: p; = z;
11: k:=0
12: while k < itr_rrlax do > k=0,1,...,itnmax
rr ' zx
13: ap = Aok
k kaK P
14: 0&L = 0& + Ozzpz
. * . 4 * * ok
15: Ver1 = r — xR P
. * R T S
16: z; =M
. * _ * N
17: nrk+1—“rk+1“(or1/rk+1 z; )
. nry
18: if —'t < tol then > Convergence test
0
19: return 0y
e
* k *k *
21: Priy1 = T2q1 + OrPy
22: k=k+1
23: return €y, > if itax reached
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51 Non-Convexity

The projection-based spectral scheme (strain-based scheme) and the preconditioned FEM
scheme (displacement-based scheme), explained in Chapter 1, due to their optimal
spectral characteristics of their linearized system (Pultarova and Ladecky (2021)), enable
us to benefit from the computational advantages of iterative solvers such as Newton-CG.
Their favorable spectral characteristics result in great scaling for solving RVEs with
large number of discretization points. However, solving (1.21) with CG solver needs the
Hessian matrix of the linearized system to be SPSD which is not the case in several
mechanical homogenization problems such as system containing meta-materials (Li.

(2017)) or continuum damage (Bazant (1976); Marvi-Mashhadi et al. (2020)).

Therefore, in order to be able to benefit from the computational speed-up offered by
these FFT-accelerated schemes for problems with symmetric non-positive semi definite
(SNPSD) system matrices, we need to employ other iterative solvers. Some quasi-Newton
solvers such as limited-memory Broyden—Fletcher—-Goldfarb—Shanno (LBFGS), and trust-
region (TR) Newton solver are among possible candidates capable of handling non-convex
problems. In this chapter, a modified TR Newton solver for homogenization problems
is introduced. The introduced solver is a robust and memory efficient solver capable of

handling non-convexity in an iterative fashion.

The potential of the TR solvers (as well as quasi-Newton solvers) has not been exploited
in computational homogenization, since, in a considerable part of the literature, conven-

tional FEM direct solvers are the standard choice for computational homogenization.
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As a result, the main challenge of using TR and quasi Newton solvers in computational
homogenization, namely missing an explicit expression of the objective function in the
equivalent energy minimization counterpart of the equilibrium solution, has not been
addressed to the authors’ best knowledge. I addressed this problem in the following
of this chapter after a review over the standard TR Newton solver. In this chapter,
we develop a modified TR Newton-CG algorithm based on an introduced first order
approximation incremental energy functional (FAIEF). At the end, some examples are
also presented to exhibit and examine the performance of the presented modified TR

solver.

The content of this chapter is mainly taken from a submitted paper entitled Non-
convex, ringing-free, FFT-accelerated solver using an incremental approximate energy

functional (Falsafi et al. (2022)).

5.1 Method

5.1.1 Trust region solver

The trust-region method (TRM) is a numerical optimization method capable of solving
nonlinear and non-convex optimization problems. Basically, it uses a model (sub-problem)
approximating the original objective function within a trust region around the current
solution iterate. The TRM performs minimization based on the approximation made
by the model (typically quadratic) within the trust region. In contrast to line search
methods, in TRM, the maximum permissible step size is pre-determined; however, the
size of the trust-region at each iterate evolves based on how well the model represents
the actual objective function. The model is expected to be a good representation of the

original objective function inside the trust region.

Figure 5.1 depicts a visual representation of the TRM in a 2D schematic problem. The
black iso-contours represent the non-convex function E(x) we want to minimize, whose
minimizer is indicated by the black 4+ sign. It is assumed that the iterative solution
process starts with the initial guess of @y noted by orange + in the figure. The red

iso-contours are the contours expressing the second order model m(x) estimating the
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»in Trust Region

minimizer of m

ln(xl’ x2)

E(xls x2)

Figure 5.1: Schematic of TRM in 2D state space

objective function around x”. The global minimizer of these quadratic iso-contours is
depicted as red + in the figure. The blue shaded area is the trust region area (the

hyper-sphere in which we trust the estimation of the model m(x)).

In a single standard trust region solution iteration, the minimizer of the model function
inside the trust region (shown as the blue + sign) is found and taken as the next iteration
if a desirable reduction of the original function E(x) is realized in this step. In other
words, in the trust region solution strategy, optimization is carried out by minimizing a
model function m(x) trusted up to a certain radius (shaded in blue in Figure 5.1) around
the current iterate as a proxy problem (sub-problem). The approximate model is derived

from the local information gathered from the objective function.

If in a trust region solution step the boundary of the trust region is crossed, the intersection
point is taken as the new iterate and it gets accepted if the objective function has reduced
compared to previous iterate. In addition, in case the Hessian becomes SNPSD during
the solution process the intersection of the previous search direction and the boundary of
the trust region is taken as new trial iterate and checked and accepted in case objective
function decreases in the step. In any of these cases, if the new iterate does not realize
objective function reduction, the trust region shrinks and the algorithm retries minimizing

the model in the updated trust region.
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There is no a-priori knowledge of the radius of the trust region in which the model can
adequately approximate the objective function. In addition, the accuracy of the model
degrades by moving away from the current iteration. Therefore, it is crucial to determine

the proper trust region radius and to regulate it consistently during the solution process.

To this end, based on the model’s match with the original objective function, the trust
region is adjusted in each iteration. As a general rule, the trust region can be expanded if
the approximate model fits the original problem well. In contrast, the trust region shrinks
if the approximate model fails to estimate the original function adequately (Hsia et al.
(2017)). It is therefore necessary to access the original objective function of the equivalent

optimization problem if one needs to use a TR solver in its standard formulation.

Let us recall the basic equations that we tend to solve to obtain the equilibrium of the
RVE. Let’s again examine a periodic RVE in which we want to solve for equilibrium,
for illustration purposes see Figure 1.5. We adopt a small strain formulation, in order
to derive the equilibrium equation. The micro-structure is assumed to experience a
displacement field of x : Q9 — © which maps the grid points from undeformed positions
Qo to their deformed configurations ). As the material response corresponding to the
position x, given the local strain e(x), the stress and the tangent of the material can
be computed using the constitutive law of the material at that point. The fields € and
o are energy conjugates. Let us consider the total energy function (we do not need to
have the explicit expression for that), equivalent to the original objective function of a

homogenization problem, of the RVE as:

U= Zu(sQ, h(z?))w?, (5.1)
Q

where u denotes energy at @s, which are the discretization quadrature points, and h(x)

represents the internal variables of the material.

The solution of the equilibrium equation (1.5), in particular, corresponds to the critical
point of the total energy function (5.1). In the strain-based scheme, the equilibrium
problem is solved in the strain space. According to the fact that the energy conjugate of

strain is stress, the gradient of the energy with respect to strain is actually the stress
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tensor. In addition, the Hessian of the objective function corresponds to the tangent

stiffness of the material at the discretization points,

VU = o, (5.2)
ViU = B. (5.3)

One possible sub-problem model (and probably the most common form) of the TR solver
is a quadratic energy function approximation in form of:

1
mi(p;) = U(ei) + (VEU)T pi + §piT (ng) Di, s.t. ||pil| < Ry, (5.4)

where, in the Newton TR solver, B; is taken as the Hessian matrix of the energy evaluated
at quadrature points at i*" load step and R; is the radius of the trust region. p; is a
solution step in the strain space. Here, the energy functional is taken as a direct function
of strain at i*" solution step as in the projection based formulation the equations are
solved in the strain space. Other TR solvers are also possible using different choices for
the matrix B;. Accordingly, the model function in a trust-region Newton solver can be
expressed as:

1
mi(pi) = U(e:) + o) pi + 5??15311% st [|pil| < Ri, (5.5)

The agreement of the actual objective function (U(e; + p;)) and the model (m;(p;)) at
the new iterate is evaluated by a scalar variable p; at the i*! iterative step, defined as:

o = U(Ei)_U(Ei‘f’pi).

mi(0) —mi(pi)

(5.6)

In the trust region algorithm, the value of p;, as set forth by Nocedal and Wright (2006),
determines how the trust region size will be updated as well as whether or not the

proposed step will be accepted.

It is relatively simple to calculate the denominator of the right hand side of (5.6)
(Am; = m;(0) — m;(p;)) according to the definition of m;(p;) given in (5.5). For

calculation of the nominator, an explicit expression of the origin objective function
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(equivalent to stored energy in mechanical engineering problems) is necessary in the
standard TR solver. In mechanical homogenization problems, however, the objective
function is often not calculable (at least easily), since the actual energy density function
of most materials is very complex (or even impossible to compute). A FAIEF that allows
us to use TR solvers to solve generic non-convex mechanical homogenization problems is
presented here. In order to derive the incremental energy functional, first, the Taylor
series of the actual energy function U is expanded at both g; and g; + p; points as:

1

Ulei +pi) = Uley) + (VeU|e) pi + 5

pi (V2Uls)pi + O(Ipil) (5.7a)

U(e;) = U((ei +pi) — pi)

1 (5.7b)
=Ulei +pi) = (VeUlerrp) ' Pi + 5pi (VeUlerip )i + O(|[pil )
Subtracting (5.7a) from (5.7b) and dropping higher order terms yields:
U(E,’ + pz') — U(Ei) ~ (5.8)
1
D) ((VEU‘Ei)lTpi + (vsU|Ei+pi)z‘Tpi> +
1
7 (PT(V2U1e)pi =PI (V2U ei4p)P)
Truncating (5.8) up to first order gives:
AU =Ul(e;) —Ule; + pi) =~ AU = olei+ p;) +ole) . pi. (5.9)

The right hand side of (5.9) consists of the stress tensors before and after incrementing
strain field &; with the trial step p;, which are already evaluated at all of the quadrature
points. To take AU as a valid estimation of AU, it is necessary to keep the load
increments small. This is usually not a concern since it can be controlled by the size
of the applied load steps, which for nonlinear problems is already small to enable the
nonlinear iterative solvers to converge to equilibrium even in case of nonlinear elliptic

problems (problems with positive semi definite (PSD) matrix).
Furthermore, it is vital that the variation of the resulting displacement field remains
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bounded. For instance, problems such as buckling under a prescribed growing force do
not satisfy boundedness of the displacement field around the critical load; therefore,
does not converge using the modified trust-region solver presented here. On the other
hand, problems such as mechanics damage modeling are solvable despite their non-convex
energy functional, using the modified TR solver presented here given that the applied

load increments are controlled to be small.

The actual system energy reduction, AU, in the nominator of (5.6) can be replaced by
AU calculated according to the FAIEF noted in (5.8) which gives an estimation of p;;

denoted by p; according to: o
_ AU
pi = Amz

(5.10)

It is notable that the evaluation of p; needs the stress of the previous solution step to be

stored.

Introducing the FAIEF enables us to use the robust trust region algorithm in cases that
the explicit expression of U function is missing. The pseudo-algorithm of the strain-based
trust-region solver is presented in Algorithm 4, showing how the scalar value p; (or its
estimated counterpart ;) is used to make decisions of accepting or rejecting trial step
(de) as well as shrinking or expanding the trust region. As shown in Algorithm 4, the
memory overhead of using Trust region Newton-CG is, merely, storing the flux (stress)
field at the previous solution step which does not significantly impact the overall memory
requirement of the solver algorithm compared to Newton-CG since the stress field is
smaller than the most memory consuming fields in the algorithm. The stress field is
actually 9 times in 3D and 4 times in 2D smaller than the biggest fields stored in the

algorithm which are the projection and the tangent fields.

The predicted reduction of the model (m;) will always be non-negative since the step p;
is calculated by minimizing the model m; over the region that includes p = 0. Therefore,
if p; is negative, the first order approximation of the objective function at the new iterate
(U(e; + pi)) is greater than the current value of the objective function value (U(g;)),
thus the step must be rejected. On the other hand, if p; is close to 1, it is safe to expand
the trust region for the next step since the model m; and the original objective function

U are in good agreement over the solution step p;. When p; is positive but smaller
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than one, the trust region is not altered, however in the case when p; is close to zero
or negative, the trust region is shrunk by reducing R; at the next iteration. How these

decisions are made is detailed in Algorithm 4.

The solution of the subproblem (minimizer of m within the ball of radius R) is easy
to find when B is positive definite and the minimizer is located within the trust region
(equivalent to finding an unconstrained minimizer of the quadratic function m). There is
no such simple solution to the subproblem in other cases, in which the minimizer resides
on the boundary of the trust region. The constrained linear solver used here as the
sub-problem solver is based on the solver introduced by Steihaug (Nocedal and Wright
(2006); Steihaug (1983)) which is used to generate the trial solution step p;.

In addition, in order to make the linear solver robust to numerical rounding error problems
a reset algorithm based on the work of Powell (1977), and Dai et al. (2004) was added to
the linear solver algorithm. The used reset mechanism replaces the conjugate gradient
step with a restart step (for instance, the gradient descent step). Whenever two successive
solution steps inside the linear solver (r; and r;_1) are not sufficiently orthogonal to each
other. The measure expressing the orthogonality of the solution steps can be calculated
via the inner product of consecutive solution steps:

_riorial

re = (5.11)
: 1eel

Comparing the measure, r, with a constant value in the range of (0.1, 0.9) has been
proposed as the decision criterion for restarting CG, I chose 0.2 as suggested by Powell

(1977), hence the restart procedure is invoked if the measure r4 is greater than 0.2.

Several quasi-Newton solvers, e.g. LBFGS, also depend on the explicit expression of the
objective function. For instance, in satisfying the first Wolfe condition in determining the
step size in LBFGS, evaluation of reduction of the objective function is neededNocedal
and Wright (2006). Using the approximated strain energy reduction AU instead of AU
makes use of these quasi-Newton solvers possible as well. As derived here, the introduced
incremental approximation of the objective function, specifically, enables us to use TR
Newton-CG solver following the algorithm given in Algorithm 4 (as the Newton nonlinear

solver) and the algorithm given in Algorithm 3 as the subproblem solver. The introduced
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approximate energy functional can be generalized to solve any other problem in which
the explicit objective function is not available or not easy to calculate while the gradient

and Hessian of the objective function are available.

5.2 Examples and Results

In the following, two examples are presented to demonstrate the performance solver
developed above. As a real world non-convex example using the developed Newton TR
solver, in Chapter 7, I model ASR damage in a meso-scale model with rather complex
constitutive law. In this chapter, I first compare the performance of the modified TR
solver with that of the Newton-CG solver and the standard TR solver on a very simple
example. This example deals with a 1-dimensional (1D) damage spring system where
the potential energy functional of the system is known. The standard TR solver can
therefore be used on this system. Second, I test the correctness of the solution of the
solver considering a convex system. The Eshelby inhomogeneity, whose analytical solution
is available, is selected as the second example. This example allows us to compare the

generated solution of the modified TR solver with the analytical solution of the problem.

5.2.1 Minimal 1D non-convex example

As a simple mechanical system with non-convex energy functional, a periodic 1D spring
system (schematic shown in Figure 5.2a) consisting of three nodes connected with springs
(ko, k1, and ko) is taken as the first example. The springs k1 and ko are elastic springs
with k1 = ko = k, while kg is a bi-linear damage spring, i.e. after a certain deformation
threshold ~g its mechanical behavior switches from elastic to strain-softening. The
force-displacement response of the kg spring is depicted in Figure 5.2b, The tangent of
the strain-softening phase of the constitutive behavior is ak. Therefore, the post-peak

stiffness matrix of the system becomes:

14+a)k -k —ak
K=| -k 2 —k |, (5.12)
—ak  —k (L+a)k
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Table 5.1: Solvers used to solve the 1D spring example

Solver Functions needed as input
Objective | Gradient | Hessian
(Energy) | (Force) | (Stiffness)
. | Newton-CG
i SciPy X v v
Trust Region
ii | Newton-CG v v v
Scipy
Modified
iii | Trust Region X v v
Newton-CG

whose eigenvalues are [A\; = 0, Ao = 3k, A3 = (2a + 1)k]. The third eigenvalue can be
either positive or negative and for values o < — (1/2), the system becomes SNPSD, since

it has one negative eigenvalue.

The problem has been solved with £ = 1.0, 79 = 0.1 and for different values of a. The
boundary condition of mean stretch equal to T = 0.11, large enough to invoke post peak
behavior of the kg spring, is imposed. Three different solvers listed in Table 5.1 are
employed to solve the equilibrium of the 1D spring system. The functions needed to be
explicitly evaluated in the algorithm of these solvers are listed in Table 5.1. The main
difference between the modified and the standard TR solver, as noted in Table 5.1, is

that explicit evaluation of the objective function is not needed in the modified solver.

The strain energy functional of the system as a function of the independent variable x
(the stretch of 0*" spring) for the imposed boundary condition of Z = 0.11 is represented
in Figure 5.3 for three different values of «, respectively from left to right, corresponding
to convex, meta-stable, and concave energy surfaces. The variation of energy, and the
final solution of the solvers listed in Table 5.1 are depicted in this figure. It is clear that
in non-convex cases, Newton-CG solver is not capable of finding the energy functional
minimum as it fails finding the minimizer, while both standard and modified trust-region
Newton-CG solvers converged to the minimizer of the energy (equilibrium points). The
hyper-parameters of the standard and the modified TR solvers (such as initial and
maximum trust-region radius) are chosen to be identical. This causes the solution steps

of the solvers to coincide solving the 1D spring system as depicted in Figure 5.3.
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Figure 5.2: Periodic 1D spring example schematic and constitutive behavior of the damage
spring 0" spring, a. Schematic of 1-D damage spring example, b. Force-displacement
response of the damage spring

The transition of the energy functional from convexity to non-convexity is depicted
in Figure 5.3 for a < —0.5. In Figure 5.3a, the energy functional is convex over all values
of zp while in Figure 5.3b and Figure 5.3c, the energy functional around the transition

point (xg = 0.1) of the spring k¢ is non-convex.

This simple example can clearly show the equivalence of the obtained results with that
of the standard trust region algorithm. The availability of the energy functional of
this example makes the standard trust-region solver applicable. However, in general
non-convex homogenization problems, the energy functional is not always available;
therefore, the standard trust-region solver is not an option and one can only use the

modified version with the approximated energy functional.

5.2.2 Convex example

In order to examine the introduced modified trust-region solver for solving convex
problems, a small-strain Eshelby inhomogeneity elasticity problem is chosen here as the
second numerical example. The Eshelby inhomogeneity is an ellipsoidal body embedded
in an infinite elastic medium, where the material properties of the inhomogeneity differ
from those of the matrix. The analytical solution of the problem is known (Eshelby
(1957, 1959); Mura (1982); Meng et al. (2012)). A 2D example identical to the Eshelby
inhomogeneity example presented by Leute et al. (2021) is considered here as our second

example. The linear FE discretization of Leute et al. (2021) is adopted and the problem
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Figure 5.3: The energy of 1D spring system, schematically depicted in Figure 5.2a, over
the solution trajectory of different solvers as a function of xg, for (a) Convex a =1 (b)
Meta-stable o = —1/5, (c) non-convex a = —1 problems. In non-convex cases ((b), (c)),
there is a concave point located at o = 0.1 as the strain-softening behavior of the kg
springs is activated from that point on. Dashed line is the energy functional of the system
as a function of xg

is solved by two solvers, namely the plain Newton-CG solver and our modified TR

Newton-CG solver.

The schematic of the RVE geometry is presented in column (a) of Figure 5.4. Figure 5.4
illustrates the solution of both Newton-CG and modified trust-region Newton-CG (column
(b)). Column (c) shows the difference of the solution of these two solvers. Figure 5.4
depicts that the solution of the two solvers are identical with a relative error tolerance in

the order of magnitude of the tolerance of the solver algorithm (nypg in Algorithm 4).

The number of CG solver and nonlinear solution steps needed to solve for equilibrium
versus trust radius variation (maximum trust region radius) is plotted in Figure 5.5
showing that, in a convex problem, the number of nonlinear solution steps as well as the
accumulative number of the CG solver steps needed to reach the solution decays to that

of Newton-CG solver as the size of the trust region increases.

Figure 5.5 also shows that, in order to maintain the same number of nonlinear solution
steps for solving a problem with twice as many grid points in each direction (4 times
discretization points), the trust region should be roughly doubled. This correlation
is rooted in the fact that the trust region radius is actually the radius of the hyper-

sphere in the space of problem unknowns (strain in case of strain-based solver). Imagine
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the discretization of a problem is refined by a factor of IV in each spatial direction in
a 2D problem. This results in N? scaling of the number of the discretization points.
Accordingly, the size of an equivalent solution step scales by N, in other words, an
equivalent step in the problem with refined discretization is N times larger. As a result,
to maintain the ratio of the solution step length constant with respect to trust region
radius, the trust region radius should be scaled by a factor of N. This finding suggests
that in order to use the trust region solver effectively one should loosen the trust region
for larger problem sizes. However, it should be noted that the trust region radius is
actively corrected during the solution of non-convex problems according to the accuracy

of the sub-problem model functional.
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Figure 5.4: Solution of the cylindrical Eshelby inhomogeneity problem under mean
spherical strain of 0.01 (g4, = eyy = 0.01,e4, = 0). Column a. shows the phase
distribution of a soft inhomogeneity cylindrical Eshelby inhomogeneity problem (showing
the inhomogeneity in red). Column b. shows solution of cylindrical Eshelby inhomogeneity
with Newton-CG and TR Newton-CG as they look the same. The column (c) consists
the difference of Newton-CG and TR Newton-CG solutions scaled by a factor of 107.
The slight difference shown in this column is below the solution tolerance meaning that
the solutions are numerically equivalent. The first row shows the variation of the shear
strain all over the solution domain. Second row shows the same variable zoomed around
the inhomogeneity. The third row shows the variation of shear strain over the green,
purple and orange cuts (located at the center-line, "/5 below and above of the center-line
of the inhomogeneity) in subfigure a. The third row also corresponds to the zoomed area

around the inhomogeneity.
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Figure 5.5: Number of CG steps (the first row) and number of nonlinear solution steps
(the second row) needed for solving the Eshelby inhomogeneity problems for different
number of grid points for the Newton-CG (column 2) and as a function of initial trust
region radius of TR Newton-CG (column 1). Number of nonlinear steps includes Newton
steps and failed trial or trust region steps during the equilibrium solution
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5.3 Conclusion

In this section, I presented a incremental strain energy approximation functional (FAIEF),
which facilitates the use of fast ringing-free spectral solvers for non-convex problems,
such as damage mechanics. The approximated energy functional derived based on Taylor
expansion of the energy functional of the system enables exploiting the computational
benefits of quasi-Newton solvers as well as TR Newton-CG solvers in computational
homogenization simulations. The modified TR solver presented here is capable of solving
non-convex problems without requiring the explicit formula of the energy functional of
the system. The introduced incremental strain energy functional also makes it possible
to use quasi-Newton solvers such LBFGS in the computational homogenization problems

as well.

The validity of the modified TR solver was tested against the standard TR solver using
a simple non-convex problem. The performance of the modified solver was examined
solving a convex problem and was also validated against a Newton-CG solver. Later,
in Chapter 7 of this dissertation, I will simulate a real-world homogenization problem,
meso-scale ASR damage, with the non-convex energy functional by means of the presented
modified TR solver. The comparison of the outcome of the meso-scale ASR damage
modeling with the literature shows a very good agreement. These validations assure the
effectiveness of the introduced energy functional approximation and the modified TR

solver in practice.
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5.4 Algorithms

Algorithm 3 Pseudo-algorithm of CG-Steihaug solver with reset

1:
2:
3:
4:

>«

Solve for r with system Matrix B and initial RHS b,

Nca > CG tol.
JCG,max > max iterations of CG
Set rg < 0,bg < b,dy + —bg > initialization

if ||b|| < 1y then
Return p; =r9 =0 > already at solution

7. for ] = 0, 1727 ~--7jCG,max do

®

10:

11:
12:

13:
14:

15:

16:
17:

18:
19:
20:
21:
22:

23:

if dJTIBSidj < 0 then > non-convex
find 7 such that p; = r; + 7d; minimizes m;(p;)
and satisfies ||p;|| = R;
Return p;

Qi < T?Tj/d?Bidj
Tyl & T+ a;d; > update the iterate

if ||7j41]] > R; then > hit the boundary of trust region
find 7 such that p; = r; + 7d; minimizes m;(p;)
and satisfies ||p;|| = R;
Return p;

if ||7j41]|| < neg then > convergence satisfied
Return p; = 71

if rj11-7;/rj41-7j41 > 0.2 then > successive steps are not conjugate
rjt1 = Br; —b; > reset CG
Bj+1+ 0 > reset CG
else

T T
Bt < Ty T /Ty T

djy1 — —1jp1 + Bj+1d; > compute new update direction
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Algorithm 4 Pseudo-algorithm of strain-based Newton-CG trust-region algorithm in
small strain formulation

1: Initialize:

2t Neq.s INR, 1CGs Tup > equilibrium-, Newton, CG and update tol.
3: INR,max, %CG,max > max iterations Newton-Raphson and CG
4: R, Ryaz, Nup. > trust region radius, maximum radius
5:e=0 > small-strain initial guess
6: for Ae = Aej,Aey,... do > macroscopic strain increments
7: e=¢e+ Ae > increment grad with load step
8: Eeval = € + Eeig > adding eigenstrain if needed
9: o, B=o0(ccval), B(Ecval) > evaluate stress and tangent
10: b=-G:o(eeval) > RHS calculation
11: if |[b]| < Neq. then
12: Newton-Raphson converged
Go to line 6 > linear problem, next load step
13: for i =0,1,2,...,iNR,max dO > Newton-Raphson iteration
14: Prepare coefficient matrix of the linearized equation G : B : e = b
15: Solve G : B : de = b for de with Steihaug CG Nocedal and Wright (2006):
in icq,max Steps to accuracy ncq, Algorithm 3
16: Am;=0:0e+1/20e:B: e > energy model change
17: o'l = g (e + de) > stress evaluation with trial strain
18: AU =1/2 (o : e + o'rial : §g) > 15 order energy approx. change
19: p= TU/ Am;
20: if p <1/4 then
21: R+ 1/4R > shrink trust region
22: else
23: if p > 3/4 and ||de|| = R then
24: R <+ min(2R, Rpax) > expand trust region if possible
25: if p > nyy. then
26: €+ e+ 0e > increment grad with accepted solution step
27 rnr = |[0€l] /||€]| > calculating relative residual
28: Eeval=e+tecig > adding eigen strain if needed
29: o, B=0(ecval), B(€eval) > evaluate stress and tangent
30: b=—-G: o(eeval) > RHS calculation with updated grad
31: if ||de|| < R then
32: if HbH < Neq. O "NR < INR then
33: Newton-Raphson is converged
Go to line 6 > next load step
34: else
Go to line 14 > next Newton loop iteration
35: else
Go to line 14 > next Newton loop iteration
36: else
37: Trial step rejected
Go to line 14 > next Newton loop iteration
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A large majority of natural and manufactured materials have a heterogeneous or composite
microstructure. Biological tissues (Holzapfel et al. (2000)), concrete (Mehta and Monteiro
(2014)), magno-electronic (Eerenstein et al. (2006)) composites, and shape memory
alloys (Bhattacharya (2003)) are prominent examples of materials. The objective of
homogenization is, essentially, prediction of the effective properties of a heterogeneous
micro-structure of these materials. As a result, the homogenization process involves
equilibrium solution of a RVE followed by effective properties calculation. In multi-scale
models, specifically, the effective properties are passed to the macro-scale model as the

response of the micro-structure of the RVE.

In the mechanical engineering context, the mean stress and effective tangent are the
main effective responses of the micro-structure. Achieving quadratic convergence of a
Newton-Raphson scheme at a macroscopic scale mandates evaluating effective tangent
of the RVEs at the microscopic scale (Gokiiziim and Keip (2017)). In addition, in
the meso-scale ASR damage model, which interests me in this thesis, one of the most
important measures to quantify the extent of ASR progress is the stiffness loss of the
RVE. As a result, it is crucial to have a robust and efficient algorithm for calculating the

effective tangent of the RVE.

For simple geometries, analytical homogenization schemes can compute the effective
tangent, for example by using consistent method (Budiansky (1965); Hill (1965)), the Mori-
Tanaka method (Mori and Tanaka (1973)) and the so called differential method (Norris

89



Chapter 6. Algorithmically consistent tangent for the strain-based
FFT-accelerated scheme

(1985)). However, for rather complex micro-structures, analytical methods are no longer
suitable and computational methods should replace them for determining the effective

properties.

Among computational homogenization schemes, an explicit expression of the consistent
tangent for FEM using the localization tensor is developed by Miehe (2003); Keip et al.
(2014); Yvonnet (2019). For the original FFT-accelerated homogenization scheme as
developed by Moulinec and Suquet (1994), a consistent tangent has been introduced
by Gokiiziim and Keip (2017). However, for the FG scheme (de Geus et al. (2017)) and
the generalized projection-based FFT-accelerated homogenization scheme with arbitrary
discretization developed by Leute et al. (2021) no closed form expression exists and to
the best knowledge of the author, FD approximation is the most common method for
computing the effective properties. FD approximation computes the effective properties
by means of application of a set of suitable macroscopic perturbation strain fields. FD
tangents are notoriously expensive to compute in terms of computational time, especially
in case of nonlinear constitutive laws; therefore, working out a consistent tangent can

contribute to homogenization speed-up.

In this chapter, I derive an algorithmically consistent macroscopic tangent, in the context
of the strain-based (projection-based FFT accelerated) scheme, by means of minimizing
the variation of strain energy of the micro-structure. The derived form of the consistent
tangent complies with the expression introduced by Miehe et al. (1999) which gives a
closed form expression for consistent tangent in a FEM context. However, the regularity
of the discretization enables us to compute the effective tangent efficiently. The derived
consistent tangent can compute the macroscopic tangent for the general case of geometrical
and material non-linearity and is not limited to any specific application. It also is useful

for this research since it helps fast and convenient quantifying of the ASR advancement.

6.1 Derivation

Let’s assume that the equilibrium of a RVE with a certain micro-structure is solved under
a certain load case, such as mean value of stress or strain as the boundary condition, and

the values of the equilibrium elastic fields e®d(x) and o°4(x) is obtained. In addition, the
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tangent stiffness field of the material points at equilibrium C(x) has been also evaluated

in the equilibrium solution process.

In order to find the C*ff of the RVE at its current state, let us perturb the system
at equilibrium (strain field of €%I(x)) with §gP*', which is applied as mean strain
perturbation. In order to simplify the derivation, all the variables are assumed to be
in Mandel (Voigt) Notation in small strain formulation. The potential energy variation

increment along the path reads:

equivalent to dot product

dUPert — /V (de())” o, (@), g(x)) AV, (6.1)

where e(x) and g(x) are respectively the strain field and the state variables, while de(x)
is the strain variation increment. The energy variation after accommodating the strain
perturbation 6gP'? is integral of (6.1) over the strain path (e°4 — €°1 + §e) where de is

the strain variation due to the perturbation. The energy variation can be formulated as:

suret = = [ (el oo, (@), g(@)av. (62)

where €4 + Je is the strain field of the perturbed cell after reaching the equilibrium.

pert

The strain field variation de can be divided into its mean value dgP*" and its periodic

fluctuation contributions as:
Se(x) = 6P 4 5&(x) (6.3)

According to the linear assumption around the equilibrium point stress can be calculated
by:
o(z,e(x), g(x)) = o(z,e(x),9(x)) + C(z)(e(x) — (). (6.4)

o°d do

Replacing (6.4) in (6.2) and reordering integrals gives:

e®l4-de
wpe“:/vl/e " (de(@)) o + (de(@) C@)(el@) - (@) | AV, (65)

eq
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Taking integral considering that o4 is independent of de and applying its bounds yield:

6Upert — /
\%4

We can replace de(x) in (6.6) according to (6.3) which gives:

5Upert — /
\%4

With a suitable quadrature rule applied we can approximate this energy as:

(Ge(@)) o + % (6e(@))T C (56(:13)] qv. (6.6)

(57 + 5§(w))T (aeq + %C (5&Pert 4 55(33)))] dav. (6.7)

SUPT 3 (5§Pert + 5g(xQ))T <aeq + %C(gﬂ)(agpert + 5%(:,;@))) w?  (6.8)
Q

where w® represents the quadrature weights. Considering the fact that 6 is a compatible
(periodic gradient) field and we can apply the projection operator G on € in (6.8) which
yields:

AT 1 ~
supert — <6§pert + G(Se) (Wa’eq + §Cw(5épert + G5€)> (6.9)

In (6.9), W is a diagonal matrix holding quadrature weights and C,, = WC is the

weighted constitutive tangent matrix. expansion of (6.9) yields:

T
sSUPert — (5§pert) Wod + (Gog)T Wod (6.10)

T
+ % {(wmft) C,0EP + (Gog)” cwaEPert}

1 T ~ - ~
+5 {(5Epe“) C., Gz + (Go&)" cwcas] .
We need to minimize §UP®* with d&(x) as the independent variable. As a result, we
differentiate (6.10) with respect to de(x):

o (sUPer)

oor = G'Wo® + G''C,0E**™ + GTC,,GdE. (6.11)

First, according to the self adjointness of the G operator we can replace all G''s with

G and reorder the application of W and G because W is diagonal. Likewise, we can
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rewrite (6.11) as:

d (sUPer)

25 = WGo™ + GC, 6 EP”"" + GC,,GJE. (6.12)

According to the self adjointness of G, the first term in the right hand side of (6.12) drops
because o is actually obtained by equating Go to zero (the discretized equilibrium

equation in the strain-based scheme). Therefore, (6.12) simplifies to:

pert
‘% = GC,,0FP" + GC,,GJE. (6.13)

Equating (6.13) to zero in order to obtain the minimum of §UP®™ gives:
GC,,0¢ = —GC,,d&P"" (6.14)
By solving (6.14) as a linear equation Ax = b with:

A =G'c,
b= —GTCw(SEpert,

(for instance using a CG solver) we can obtain values of the periodic fluctuation of the
response to the perturbation around equilibrium d¢ , i.e. §& becomes known. Afterwards,
we can compute de according to (6.3). In a 2D RVE setup, the strain solution of (6.14)

for the test macroscopic perturbation strains of:

10 0 0
6§pert11 — , 6§pert22 — , 6§pert12 = (615)

0 0 0 1

o
N|—=

N[ =

12)

respectively yield 5§(11), 55(22), and 621%) which are second order tensor fields. collecting

5?5(11), 5E(22), and 0 in a higher rank matrix yields a fourth rank tensor field called
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localization fourth order field A defined as:

el (@) 0ei (@) 6P ()
Alz) = |elM (@) 630 (x) 68120 ()] - (6.16)

02 (@) 057 (@) dEL,) ()

Note that the fourth rank tensor A can be directly constructed from the solution of (6.14)
with perturbations defined in (6.15). According to the definition of the localization tensor
A, a fourth order compilation of the strain responses can be computed by a double

contraction of A and the fourth rank matrix [0€]:

5gpert11
[68(x)] = Az) : | ggpert,, (6.17)
5§pert12
[02]
The matrix form of the linearized system then can be represented in form of:
[0 ()] = C(x) [0 (x)] = C(z)A(x) [o¢] (6.18)

The derivative of the stress fluctuation with respect to macroscopic strain averaged over

the solution domain yields:
oo 1
—)=— [ C(x)A(x)dS2. 6.19
(52) =7 | c@ae) (6.19)
According to the definition of the consistent effective tangent:

eff — /Y% \ _ Y9 )

The first term of the right hand side of (6.20) can be obtained according to (??) as:

g‘: _ ‘l//gc(:(m)dfz. (6.21)
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As a result the effective consistent tangent can be obtained with the form of:
1
cf = - / C(z) (Alz) +1)dQ (6.22)
Q

By following the same quadrature rule used for solution of the problem one can obtain

the effective tangent in the form of:

Ceff = o Y3 Cohg+1) wg |, (6.23)

where I is the fourth order Identity matrix, Cg is the elasticity matrix for the material
associated with the quadrature point ), and wg is the weight associated with the
quadrature point. Ag is obtained from the local stain response of the system at quadrature
point (). Np is the counter of the pixels at the RVE. It is also notable that it is not
necessary to construct the Ag completely at once and it can be also calculated row by
row by computing the response of (6.14) by applying each of the perturbation strains

one at a time.

The developed algorithmically consistent tangent is preferable to FD approximation
since the effective tangent calculated by this method depends on the solution of (6.14)
which can be in principle solved up to machine accuracy in constant number of CG steps
(solution complexity does not grow with system size). The FD test approach, on the other
hand, depends both on the perturbation and the convergence of the Newton solver used to
solve each test case. The appropriate perturbation size is actually problem-dependent and
unknown. Furthermore, the linearity of (6.14) is advantageous specifically in nonlinear

problems, where the FD method needs to iterate on nonlinear equations.

In comparison with the consistent tangent algorithm introduced by Gokiiziim and Keip
(2017), our derived consistent tangent is preferable, since directly solving for the strains
and being able to apply the local tangent of the quadrature points on the calculated
strain fluctuation makes it unnecessary to construct new intermediate variables and
the rows of the effective stiffness tangent can be populated one at a time directly from
the corresponding mean strain applied on the system.That makes our method memory

efficient as well. In addition, our derivation, in contrast to the derivation presented
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by Gokiiziim and Keip (2017), is based on the potential energy minimization principle.

6.2 Examples and results

In order to examine the derived effective tangent calculated via the consistent tangent
expression the following 4 examples are carried out. First, the algorithmically evaluated
tangent is tested against the analytic tangent of a simple problem. In the second
example, we compute the tangent of a RVE with periodic arrangement of cracks and
compare it against semi-analytical stiffness loss calculations of Aboudi (1987). In the
third an fourth examples, algorithmically obtained effective tangent is tested against FD
approximation for two nonlinear problems. In the third example, the effect of variation
of FD step size is studied and in the fourth example, the algorithmic tangent and the FD
tangent approximation are compared in sense of the tangent evaluation error and the

computational time needed for effective tangent computation.

6.2.1 Comparison with the analytical solution of Eshelby

The first example is the comparison of the obtained effective stiffness with the analytical
solution of a micro-structure containing a dilute spherical stiff inclusion with inclusion
volume ratio of p*°! = 1.0%. This example is similar to one of the examples of Gokiiziim
and Keip (2017). Choosing a RVE with such a dilute inclusion volume ratio enables us
to compare the algorithmically consistent effective tangent calculated by our developed
method to the analytical value of the tangent that can be computed according to Eshelby
inclusion solution Eshelby (1957) because the periodic duplicates of the inclusion that are
far enough to not interact with each other. Therefore, we can assume that our periodic
homogenization RVE can be taken equivalent to Eshelby inclusion problem in an infinite

medium.

The closed form of the tangent for an Eshelby inclusion problem is briefly explained here

for the sake of completeness. Two variables a and b as functions of the Poisson ratio of
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the matrix material v,,4:, are defined as:

_ 11 + Vmatr

- 24— 5Vmat7‘
31— Vmatr

d == .
o 15 1— Vmatr

a (6.24)

Variables a and b can be used in the definition of another pair of variables A and B which

are respectively function of bulk modulus k and the shear modulus p of both phases:

incl matr incl matr
W e _ and B=—t T g (6.25)
(Kmar+,€1nca_ﬂmar (Iulmar_’_ulncb_lumar
Based on (6.24) the effective bulk modulus and shear modulus renders as:
matr matr
b R 1_ _H
ety ama wd Y =pa (6:26)

Accordingly, the analytical effective bulk modulus and shear modulus given the Lame
parameters of the matrix and inclusion phases as £ = 10GPa, p"! = 5GPa, and

KM — 9GPa, ™ = 1GPa are:

C31 = 4.044GPa and  C353% = 1.017GPa (6.27)

For the numerical computations of the stiffness (the algorithmic tangent), several RVEs
with different number of pixels have been considered (from 313 to 259%). The corre-
sponding stiffness components €159 and C£%, for considered discretization points are
respectively depicted in Figure 6.1a, and b. The figure shows that the computed stiffness

coefficients converge to the values:
C28 =4.037GPa and  C8 = 1.015GPa (6.28)

with refining the discretization. The error of stiffness reduction is in order of 0.1% already
for the RVE with 692 pixels and the value for the finest grid sizes that are slightly softer
compared to analytically calculated stiffness (from Eshelby solution) is in agreement with

findings of Gokiiziim and Keip (2017) and Schneider et al. (2016b).
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Figure 6.1: The algorithmic bulk and shear modulus of a RVE constaining a spherical
inclusion with volume ratio of 1.0%

6.2.2 Stiffness reduction of cracked solids

Since we intend to use the developed tangent evaluation for computing the stiffness of
an ASR damage model that contains cracks, it is crucial to examine stiffness computation
with the developed method in presence of cracks. Accordingly, the second example for this
chapter is the computation of the effective stiffness of a 2D linear elastic domain containing
a doubly periodic rectangular array of cracks. The geometry of the considered RVE is
depicted in F<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>