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Abstract
During the Artificial Intelligence (AI) revolution of the past decades, deep neural networks have

been widely used and have achieved tremendous success in visual recognition. Unfortunately,

deploying deep models is challenging because of their huge model size and computational

complexity. Therefore, compact neural networks of small model size have been remarkably

demanded for embedded/mobile/edge devices, which are omnipresent in our modern AI age.

The main goal of this thesis is to improve the training of arbitrary, given compact networks. To

achieve this, we introduce several methods, including linear over-parameterization and two

novel knowledge distillation, to facilitate the training of such compact models, and thus to

improve their performance.

Over-parameterization was shown to be key to the success of conventional deep models, being

essential to facilitate the optimization during training, even though not all the model weights

are necessary at inference. Motivated by this observation, in this thesis, we firstly present a

general optimization method, ExpandNets, leveraging linear over-parameterization to train

a compact network from scratch. Specifically, we introduce two expansion strategies for

convolutional layers and one for fully-connected layers by linearly expanding these linear op-

erations into consecutive linear layers, without adding any nonlinearity. Our proposed linear

expansion empirically improves the optimization behavior and generalization ability during

network training. At test time, such an expanded network can be algebraically contracted back

to the original compact network without any information loss, but yields better prediction

performance. The effectiveness of ExpandNets is evidenced on several visual recognition

tasks, including image classification, object detection, and semantic segmentation.

Our first knowledge distillation approach is for object detection, motivated by the fact that

the recent knowledge distillation literature remains limited to the scenario where the student

and the teacher tackle the same task, with similar network architectures. By contrast, we

propose a classifier-to-detector knowledge distillation method for object detection, instead of

the standard detector-to-detector distillation strategy. Our method improves the performance

of the student detector on both classification and localization. In other words, our method

successfully transfers the knowledge not only across architectures but also across tasks.

We then extend our knowledge distillation work to the task of 6D pose estimation, where
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Abstract

knowledge distillation has been completely unstudied. Specifically, we observe that, for this

task, the keypoint-based models are less sensitive than the dense prediction ones to a decrease

in the model size. We therefore introduce the first knowledge distillation method for 6D pose

estimation by relying on optimal transport theory to align the keypoint distributions of student

and teacher networks. Our experiments on several benchmarks show that our distillation

method predicts better keypoints and yields state-of-the-art results with different compact

student models.

To summarize, this thesis contributes to multiple investigations to improve the training phase

of arbitrary, given compact networks for different visual recognition tasks. Our diverse strate-

gies consistently improve the performance of the compact networks at inference time.

Keywords: compact neural networks, visual recognition, over-parameterization, knowledge

distillation, classifier-to-detector, distribution alignment

iv



Résumé
Au cours de la révolution de l’intelligence artificielle (IA) des dernières décennies, les réseaux

de neurones profonds ont été largement utilisés et ont remporté un énorme succès pour la

reconnaissance visuelle. Malheureusement, le déploiement de modèles profonds est difficile

en raison de leur taille énorme et de leur complexité de calcul. Par conséquent, les réseaux de

neurones compacts de petites tailles ont été remarquablement demandés pour les appareils

embarqués/mobiles/de périphérie, qui sont omniprésents à notre ère moderne de l’IA.

L’objectif principal de cette thèse est d’améliorer l’apprentissage de réseaux compacts

arbitraire et donnés. Pour y parvenir, nous introduisons plusieurs méthodes, dont la

sur-paramétrisation linéaire et deux nouvelles distillations de connaissances, pour faciliter

l’apprentissage de tels modèles compacts, et ainsi améliorer leurs performances lors de

l’inférence.

La sur-paramétrisation s’est avérée être la clé du succès des modèles profonds conventionnels,

étant essentielle pour faciliter l’optimisation leur de leur entraînement, même si tous les

poids du modèle ne sont pas nécessaires lors de l’inférence. Motivés par cette observation,

dans cette thèse, nous présentons d’abord une méthode d’optimisation générale, ExpandNets,

tirant parti de la sur-paramétrisation linéaire pour former un réseau compact. Plus précisé-

ment, nous introduisons deux stratégies d’expansion pour les couches convolutionnelles et

une pour les couches entièrement connectées en augmentant linéairement ces opérations

en couches linéaires consécutives, sans ajouter de non-linéarité. Notre expansion linéaire

améliore empiriquement le comportement de l’optimisation et la capacité de généralisation

pendant l’entraînement du réseau. Lors de l’inférence, un tel réseau étendu peut être ramené

algébriquement au réseau compact d’origine sans aucune perte d’informations, mais donne

de meilleurs résultats. L’efficacité des ExpandNets est mise en évidence sur plusieurs tâches

de reconnaissance visuelle, notamment la classification d’images, la détection d’objets et la

segmentation sémantique.

Notre première approche de distillation de connaissances est pour la détection d’objets, moti-

vée par le fait que la littérature récente sur la distillation des connaissances reste limitée au

scénario où l’étudiant et l’enseignant s’attaquent à la même tâche, avec des architectures de

réseau similaires. En revanche, nous proposons une méthode de distillation des connaissances

d’un classificateur à un détecteur pour la détection d’objets, au lieu de s’appuyer sur la straté-
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Résumé

gie standard de distillation de détecteur à détecteur. Notre méthode améliore les performances

du détecteur étudiant à la fois pour la classification et la localisation. En d’autres termes, notre

méthode transfère avec succès les connaissances non seulement entre les architectures mais

aussi entre les tâches.

Nous étendons ensuite notre travail de distillation des connaissances à la tâche d’estimation

de pose 6D, où la distillation des connaissances n’a pas été étudiée. Plus précisément, nous

observons que, pour cette tâche, les modèles basés sur les points clés sont moins sensibles

que ceux de prédiction dense à une diminution de la taille du modèle. Nous introduisons donc

la première méthode de distillation des connaissances pour l’estimation de pose 6D en nous

appuyant sur la théorie du transport optimal pour aligner les distributions des points clés des

réseaux étudiant et enseignant. Nos expériences sur plusieurs base de données montrent que

notre méthode de distillation prédit mieux les points clés et donne des résultats de pointe

avec différents modèles étudiants compacts.

Pour résumer, cette thèse contribue à de multiples aspects de l’amélioration de la phase

d’apprentissage de réseaux compacts arbitraire et donnés pour différentes tâches de recon-

naissance visuelle. Nos diverses stratégies améliorent constamment les performances des

réseaux compacts lors de l’inférence.

Mots-clés : réseaux de neurones compacts, reconnaissance visuelle, sur-paramétrisation,

distillation des connaissances, classificateur-à-détecteur, alignement de distribution
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1 Introduction

Visual recognition, or computer vision, is a fundamental research topic in computer science

and one of the key application domains for artificial intelligence (AI). It takes digital visual

signals as input, such as images and videos, and derives meaningful high-level information,

aiming to achieve automatic visual observation, perception and understanding for computers

and machines as the human visual system does.

Before the deep learning era, researchers spent several decades in designing sophisticated

handcrafted descriptors, e.g., SIFT (Lowe, 1999, 2004) or HOG (Dalal and Triggs, 2005), and

classifiers, e.g., SVM (Cortes and Vapnik, 1995), for different visual recognition tasks. These

descriptors can usually easily be interpreted by humans. However, they tend to be highly task-

specific, and not to generalize well to other tasks. With the rapidly growing availability of large-

scale datasets and advanced computational resources, the community has shifted its attention

to deep learning models. The main advantage of the deep learning algorithms compared

to the old-fashion handcrafted methods is their ability to learn general, highly-expressive

feature descriptors from large amounts of data. Such descriptors can nicely generalize to

different tasks by fine-tuning the model weights. The tremendous progress and remarkable

performance of deep neural networks on several benchmark visual recognition tasks, including

image classification (Krizhevsky et al., 2012a; Simonyan and Zisserman, 2015; He et al., 2016;

Dosovitskiy et al., 2021), object detection (Ren et al., 2015; Redmon et al., 2016; Kehl et al.,

2017; He et al., 2017a), semantic segmentation (Long et al., 2015; Chen et al., 2014; Papandreou

et al., 2015), and 6D pose estimation (Kendall et al., 2015; Hu et al., 2019; Di et al., 2021), make

them widely used in many real-world applications, such as autonomous driving, robotics,

virtual reality.

Over the past decade, to maximize their performance on given tasks, the neural networks

has evolved from shallow ones to significantly deeper and wider ones, with over hundreds

of layers and tens of millions of parameters. Let us consider the task of image classification

as an example because it has been widely studied to benchmark modern deep learning

architectures. In this context, the use of convolutional neural networks (CNNs) began with

LeNet-5, which was designed by LeCun et al. (1998) in 1998. LeNet-5 has 60K parameters,
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Chapter 1. Introduction

with only 2 convolutional layers (ConvLayers) and 2 fully-connected layers (FCLayers), and

was designed for hand-written digits recognition, where the input images are gray-scale

with a resolution of 32 × 32. The massive growth of CNNs’ sizes essentially started in 2012,

with the release of the large-scale ImageNet dataset (Russakovsky et al., 2015)1 for visual

recognition. The dataset contains over 1 million labeled color images for 1000 object classes,

with a much higher resolution of 256 × 2562. The first successful CNN applied to this data

was AlexNet (Krizhevsky et al., 2012b), with 61 million parameters in 5 ConvLayers and 3

FCLayers. AlexNet significantly increased the top-1 classification accuracy to 57.2% compared

with previous handcrafted approaches. Subsequently, VGGNets (Simonyan and Zisserman,

2015) were proposed, stacking more 3×3 kernels, and thus resulting deeper models, such

as the famous VGG16 with 13 ConvLayers and 3 FCLayers, resulting in over 138 million

parameters, increasing the top-1 accuracy on ImageNet to 68.5%. This was followed by the

idea of residual blocks with skip connection layers proposed by He et al. (2016), making

possible the training of networks with over hundreds layers. For example, ResNet50 has 25.5

million parameters with 49 ConvLayers and 1 FCLayer, reaching a top-1 accuracy on ImageNet

of 76.1%. Nowadays, the ResNet family remains one of the most popular architecture for

visual recognition because it balances computational complexity and prediction performance.

Multiple variants of ResNet have been developed in the following years, such as ResNeXt (Xie

et al., 2017), DenseNet (Huang et al., 2017), and SENet (Hu et al., 2018), further boosting the

accuracy on ImageNet.

Ultimately, “Wider and deeper are better” has become the rule of thumb to develop neural net-

work architectures. However, with the ever-increasing size of the state-of-the-art (SOTA) neural

networks, the performance improvement comes at the significant cost of resources such as

hardware storage, software memory, and computational energy. These drawbacks reduce the

suitability and deployment of these deep neural network models for resources-constrained de-

vices and embedded platforms. Furthermore, despite the growth of computational resources,

the deeper models suffer from latency. There is therefore a clear need for compact models

performing fast inference for real-time applications.

As a consequence, AI on the edge with efficient deep learning models (Howard et al., 2017;

Iandola et al., 2016; Ma et al., 2018; Sandler et al., 2018) and algorithms (Alvarez and Salzmann,

2016, 2017; Reed, 1993; Hinton et al., 2015) has drawn increasing attention in recent years,

particularly with the growing presence of mobile devices and applications. This is the area to

which this thesis contributes. Specifically, we investigate several novel approaches to improve

the training process of compact neural networks. We introduce both general algorithms for

multiple visual recognition tasks and methods for specific tasks. In particular, throughout the

thesis, we consider the following four visual recognition tasks, illustrated in Figure 1.1:

1Referring to ImageNet-1K if not specified.
2224, 384 and even larger image sizes are also used in recent research.
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Image 
Classification

Object
Detection

Semantic 
Segmentation

6D Pose
Estimation

Cat Cat, Cat, Duck, Dog

Car, Building, 
Road, Sky, Tree

Holepuncher, Driller, 
Duck, Can

Figure 1.1: Visual recognition tasks. Image Classification takes an image depicting a single
object as input and outputs the category of the object. Object Detection takes an image with
multiple objects as input and outputs the categories and corresponding bounding boxes of
all objects. Semantic Segmentation takes a single image as input and outputs the category
of each pixel. 6D pose estimation takes an image with multiple objects as input and outputs
their category and their 6D pose (3D translation and 3D rotation).

• Image classification, which recognizes the category of a single object;

• Object detection, which classifies and localizes multiple objects;

• Semantic segmentation, assigns a category to every image pixel;

• 6D pose estimation, which determines the category of multiple objects and estimates

their 3D translation and 3D rotation w.r.t. the camera.

We have shown our work to improve the representations learned by compact neural networks,

thus yielding better performance at inference time for these different visual recognition tasks.

1.1 Problem Definition

The compact and efficient deep learning models we study in this thesis are ones with fewer

network layers, fewer parameters, fewer computational operations and faster inference speed.

3
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Compared with conventional, gigantic deep learning models, they have the following technical

and environmental benefits:

• Hardware storage and software memory. The over-parameterized and redundant na-

ture of deep neural networks leads to huge model sizes, with millions or even billions

of parameters, and high computational complexity, requiring considerable on-device

hardware storage for the trained weights and powerful computational units for com-

puting and processing the deep networks. In the resources-constrained scenario, these

requirements are hard to satisfy. This makes storage- and memory-efficient compact

models, with fewer parameters and computational operations, more suitable for edge

platforms and mobile devices.

• Inference speed. The training and inference time of deep models are often long, which

hinders their deployment for mobile applications. By contrast, compact models with

fewer layers, fewer parameters and lower computational complexity are faster to train

and make prediction with, thus making it possible to meet the real-time requirements

of many tasks on edge devices.

• Energy consumption. Embedded platforms and mobile devices are usually also battery-

constrained, and the applications should thus be energy saving. Compact models

consume less energy compared to deeper ones, which enhances their suitability for

deployment on such energy-constrained devices. Moreover, deeper models have an

important carbon footprint on the environment (Hao, 2019), and compact models can

therefore contribute to reducing this carbon impact.

Several lines of research have been proposed to produce efficient networks and improve

the performance of given compact models, and the field is still evolving at an incredible

pace. These approaches roughly fall into three categories: Efficient network architecture

design, network compression, including network pruning, network quantization and matrix

factorization, and knowledge distillation, aiming to train an arbitrary student model from a

deeper teacher network. Below, we briefly discuss these three approaches.

Efficient network architecture design proposes new network architectures specifically opti-

mized for mobile devices with some well-designed compact modules. This is illustrated in

Figure 1.2 with methods such as MobileNet (Howard et al., 2017) with depthwise separable

convolutions, MobileNetV2 (Sandler et al., 2018) with linear bottleneck and inverted residual

block, ShuffleNet (Ma et al., 2018) with channel shuffling, and SqueezeNet (Iandola et al., 2016)

with squeeze and expand fire module. Moreover, with the development of Neural Architecture

Search (NAS), compact and efficient networks, such as MobileNetV3 (Howard et al., 2019),

MnasNet (Tan et al., 2019), can be searched automatically. These compact and efficient net-

works can be trained from scratch while preserving the accuracy and speeding up inference

with lightweight architectures.

Network compression usually starts from a pretrained deep neural network and reduces the
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1.1 Problem Definition

Figure 2. ShuffleNet Units. a) bottleneck unit [9] with depthwise convolution (DWConv) [3, 12]; b) ShuffleNet unit with pointwise group
convolution (GConv) and channel shuffle; c) ShuffleNet unit with stride = 2.

ply channel sparse connections, for example group convo-
lutions, also on 1 × 1 layers. By ensuring that each con-
volution operates only on the corresponding input channel
group, group convolution significantly reduces computation
cost. However, if multiple group convolutions stack to-
gether, there is one side effect: outputs from a certain chan-
nel are only derived from a small fraction of input channels.
Fig 1 (a) illustrates a situation of two stacked group convo-
lution layers. It is clear that outputs from a certain group
only relate to the inputs within the group. This property
blocks information flow between channel groups and weak-
ens representation.

If we allow group convolution to obtain input data from
different groups (as shown in Fig 1 (b)), the input and out-
put channels will be fully related. Specifically, for the fea-
ture map generated from the previous group layer, we can
first divide the channels in each group into several sub-
groups, then feed each group in the next layer with differ-
ent subgroups. This can be efficiently and elegantly im-
plemented by a channel shuffle operation (Fig 1 (c)): sup-
pose a convolutional layer with g groups whose output has
g × n channels; we first reshape the output channel dimen-
sion into (g, n), transposing and then flattening it back as
the input of next layer. Note that the operation still takes
effect even if the two convolutions have different numbers
of groups. Moreover, channel shuffle is also differentiable,
which means it can be embedded into network structures for
end-to-end training.

Channel shuffle operation makes it possible to build
more powerful structures with multiple group convolutional
layers. In the next subsection we will introduce an efficient
network unit with channel shuffle and group convolution.

3.2. ShuffleNet Unit

Taking advantage of the channel shuffle operation, we
propose a novel ShuffleNet unit specially designed for small
networks. We start from the design principle of bottleneck
unit [9] in Fig 2 (a). It is a residual block. In its residual
branch, for the 3 × 3 layer, we apply a computational eco-
nomical 3 × 3 depthwise convolution [3] on the bottleneck
feature map. Then, we replace the first 1 × 1 layer with
pointwise group convolution followed by a channel shuffle
operation, to form a ShuffleNet unit, as shown in Fig 2 (b).
The purpose of the second pointwise group convolution is
to recover the channel dimension to match the shortcut path.
For simplicity, we do not apply an extra channel shuffle op-
eration after the second pointwise layer as it results in com-
parable scores. The usage of batch normalization (BN) [16]
and nonlinearity is similar to [9, 41], except that we do not
use ReLU after depthwise convolution as suggested by [3].
As for the case where ShuffleNet is applied with stride, we
simply make two modifications (see Fig 2 (c)): (i) add a
3 × 3 average pooling on the shortcut path; (ii) replace the
element-wise addition with channel concatenation, which
makes it easy to enlarge channel dimension with little extra
computation cost.

Thanks to pointwise group convolution with channel
shuffle, all components in ShuffleNet unit can be com-
puted efficiently. Compared with ResNet [9] (bottleneck
design) and ResNeXt [41], our structure has less complex-
ity under the same settings. For example, given the input
size c × h × w and the bottleneck channels m, ResNet
unit requires hw(2cm + 9m2) FLOPs and ResNeXt has
hw(2cm + 9m2/g) FLOPs, while our ShuffleNet unit re-
quires only hw(2cm/g + 9m) FLOPs, where g means the
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Input Operator t c n s

2242 ⇥ 3 conv2d - 32 1 2
1122 ⇥ 32 bottleneck 1 16 1 1
1122 ⇥ 16 bottleneck 6 24 2 2
562 ⇥ 24 bottleneck 6 32 3 2
282 ⇥ 32 bottleneck 6 64 4 2
142 ⇥ 64 bottleneck 6 96 3 1
142 ⇥ 96 bottleneck 6 160 3 2
72 ⇥ 160 bottleneck 6 320 1 1
72 ⇥ 320 conv2d 1x1 - 1280 1 1
72 ⇥ 1280 avgpool 7x7 - - 1 -

1 ⇥ 1 ⇥ 1280 conv2d 1x1 - k -

Table 2: MobileNetV2 : Each line describes a sequence
of 1 or more identical (modulo stride) layers, repeated
n times. All layers in the same sequence have the same
number c of output channels. The first layer of each
sequence has a stride s and all others use stride 1. All
spatial convolutions use 3 ⇥ 3 kernels. The expansion
factor t is always applied to the input size as described
in Table 1.

Size MobileNetV1 MobileNetV2 ShuffleNet
(2x,g=3)

112x112 64/1600 16/400 32/800
56x56 128/800 32/200 48/300
28x28 256/400 64/100 400/600K
14x14 512/200 160/62 800/310
7x7 1024/199 320/32 1600/156
1x1 1024/2 1280/2 1600/3

max 1600K 400K 600K

Table 3: The max number of channels/memory (in
Kb) that needs to be materialized at each spatial res-
olution for different architectures. We assume 16-bit
floats for activations. For ShuffleNet, we use 2x, g =
3 that matches the performance of MobileNetV1 and
MobileNetV2. For the first layer of MobileNetV2 and
ShuffleNet we can employ the trick described in Sec-
tion 5 to reduce memory requirement. Even though
ShuffleNet employs bottlenecks elsewhere, the non-
bottleneck tensors still need to be materialized due to the
presence of shortcuts between the non-bottleneck ten-
sors.

5. Implementation Notes

5.1. Memory efficient inference

The inverted residual bottleneck layers allow a partic-
ularly memory efficient implementation which is very
important for mobile applications. A standard effi-

(a) NasNet[23]

input

Dwise 3x3,
stride=s, Relu6

conv 1x1, Relu6

(b) MobileNet[27]

(c) ShuffleNet [20] (d) Mobilenet V2

Figure 4: Comparison of convolutional blocks for dif-
ferent architectures. ShuffleNet uses Group Convolu-
tions [20] and shuffling, it also uses conventional resid-
ual approach where inner blocks are narrower than out-
put. ShuffleNet and NasNet illustrations are from re-
spective papers.

cient implementation of inference that uses for instance
TensorFlow[31] or Caffe [32], builds a directed acyclic
compute hypergraph G, consisting of edges represent-
ing the operations and nodes representing tensors of in-
termediate computation. The computation is scheduled
in order to minimize the total number of tensors that
needs to be stored in memory. In the most general case,
it searches over all plausible computation orders ⌃(G)
and picks the one that minimizes

M(G) = min
⇡2⌃(G)

max
i21..n

2
4 X

A2R(i,⇡,G)

|A|

3
5 + size(⇡i).

where R(i,⇡, G) is the list of intermediate tensors that
are connected to any of ⇡i . . .⇡n nodes, |A| represents
the size of the tensor A and size(i) is the total amount
of memory needed for internal storage during operation
i.

For graphs that have only trivial parallel structure
(such as residual connection), there is only one non-
trivial feasible computation order, and thus the total
amount and a bound on the memory needed for infer-
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amount and a bound on the memory needed for infer-
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Figure 2: Macroarchitectural view of our SqueezeNet architecture. Left: SqueezeNet (Section 3.3);
Middle: SqueezeNet with simple bypass (Section 6); Right: SqueezeNet with complex bypass (Sec-
tion 6).

3.3.1 OTHER SQUEEZENET DETAILS

For brevity, we have omitted number of details and design choices about SqueezeNet from Table 1
and Figure 2. We provide these design choices in the following. The intuition behind these choices
may be found in the papers cited below.

• So that the output activations from 1x1 and 3x3 filters have the same height and width, we
add a 1-pixel border of zero-padding in the input data to 3x3 filters of expand modules.

• ReLU (Nair & Hinton, 2010) is applied to activations from squeeze and expand layers.
• Dropout (Srivastava et al., 2014) with a ratio of 50% is applied after the fire9 module.
• Note the lack of fully-connected layers in SqueezeNet; this design choice was inspired by

the NiN (Lin et al., 2013) architecture.
• When training SqueezeNet, we begin with a learning rate of 0.04, and we lin-

early decrease the learning rate throughout training, as described in (Mishkin et al.,
2016). For details on the training protocol (e.g. batch size, learning rate, parame-
ter initialization), please refer to our Caffe-compatible configuration files located here:
https://github.com/DeepScale/SqueezeNet.

• The Caffe framework does not natively support a convolution layer that contains multiple
filter resolutions (e.g. 1x1 and 3x3) (Jia et al., 2014). To get around this, we implement
our expand layer with two separate convolution layers: a layer with 1x1 filters, and a layer
with 3x3 filters. Then, we concatenate the outputs of these layers together in the channel
dimension. This is numerically equivalent to implementing one layer that contains both
1x1 and 3x3 filters.

We released the SqueezeNet configuration files in the format defined by the Caffe CNN frame-
work. However, in addition to Caffe, several other CNN frameworks have emerged, including
MXNet (Chen et al., 2015a), Chainer (Tokui et al., 2015), Keras (Chollet, 2016), and Torch (Col-
lobert et al., 2011). Each of these has its own native format for representing a CNN architec-
ture. That said, most of these libraries use the same underlying computational back-ends such
as cuDNN (Chetlur et al., 2014) and MKL-DNN (Das et al., 2016). The research community has
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7.2. Disentangling Search Space and Reward

To disentangle the impact of our two key contributions:
multi-objective reward and new search space, Figure 5 com-
pares their performance. Starting from NASNet [36], we
first employ the same cell-base search space [36] and sim-
ply add the latency constraint using our proposed multiple-
object reward. Results show it generates a much faster
model by trading the accuracy to latency. Then, we ap-
ply both our multi-objective reward and our new factorized
search space, and achieve both higher accuracy and lower
latency, suggesting the effectiveness of our search space.

Reward Search Space Latency Top-1 Acc.

Single-obj [36] Cell-based [36] 183ms 74.0%
Multi-obj Cell-based [36] 100ms 72.0%
Multi-obj MnasNet 78ms 75.2%

Table 5: Comparison of Decoupled Search Space and
Reward Design – Multi-obj denotes our multi-objective
reward; Single-obj denotes only optimizing accuracy.

7.3. MnasNet Architecture and Layer Diversity

Figure 7(a) illustrates our MnasNet-A1 model found by
our automated approach. As expected, it consists of a vari-
ety of layer architectures throughout the network. One in-
teresting observation is that our MnasNet uses both 3x3 and
5x5 convolutions, which is different from previous mobile
models that all only use 3x3 convolutions.

In order to study the impact of layer diversity, Table
6 compares MnasNet with its variants that only repeat a
single type of layer (fixed kernel size and expansion ra-
tio). Our MnasNet model has much better accuracy-latency
trade-offs than those variants, highlighting the importance
of layer diversity in resource-constrained CNN models.

8. Conclusion
This paper presents an automated neural architecture

search approach for designing resource-efficient mobile
CNN models using reinforcement learning. Our main ideas
are incorporating platform-aware real-world latency infor-
mation into the search process and utilizing a novel factor-
ized hierarchical search space to search for mobile models
with the best trade-offs between accuracy and latency. We
demonstrate that our approach can automatically find sig-
nificantly better mobile models than existing approaches,
and achieve new state-of-the-art results on both ImageNet
classification and COCO object detection under typical mo-
bile inference latency constraints. The resulting MnasNet
architecture also provides interesting findings on the impor-
tance of layer diversity, which will guide us in designing
and improving future mobile CNN models.
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Figure 7: MnasNet-A1 Architecture – (a) is a representa-
tive model selected from Table 1; (b) - (d) are a few cor-
responding layer structures. MBConv denotes mobile in-
verted bottleneck conv, DWConv denotes depthwise conv,
k3x3/k5x5 denotes kernel size, BN is batch norm, HxWxF
denotes tensor shape (height, width, depth), and ×1/2/3/4
denotes the number of repeated layers within the block.

Top-1 Acc. Inference Latency

MnasNet-A1 75.2% 78ms
MBConv3 (k3x3) only 71.8% 63ms
MBConv3 (k5x5) only 72.5% 79ms
MBConv6 (k3x3) only 74.9% 116ms
MBConv6 (k5x5) only 75.6% 146ms

Table 6: Performance Comparison of MnasNet and Its
Variants – MnasNet-A1 denotes the model shown in Figure
7(a); others are variants that repeat a single type of layer
throughout the network. All models have the same number
of layers and same filter size at each layer.
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Figure 1.2: Efficient network architectures are designed for the edge mobile devices. E.g.,
MobileNet (Howard et al., 2017), MobileNetV2 (Sandler et al., 2018), ShuffleNet (Ma et al.,
2018), SqueezeNet (Iandola et al., 2016) and MnasNet (Tan et al., 2019).

model size and computational complexity to produce a compact model, as illustrated in

Figure 1.3. We discuss some existing strategies below.

Network pruning (Reed, 1993; Han et al., 2016; Molchanov et al., 2017; Liu et al., 2018) is one

of the most popular techniques, which evaluates and cuts off the unimportant, redundant,

or unnecessary parts of the deep neural network, such as connections or weights (Han et al.,

2015; Guo et al., 2016; Lee et al., 2019), neurons (Hu et al., 2016), filters (He et al., 2019b),

channels (He et al., 2017b; Zhuang et al., 2018) or layers (Wen et al., 2016; Lemaire et al., 2019).

Connections or weights pruning leads to irregular kernels and unstructured architectures,

which are hard to exploit in the current deep learning frameworks and thus hard to accelerate.

By contrast, neurons, filters, channels or layers pruning removes entire units of the network,

producing a structured pruned model with fewer computational units and a smaller model

size. These pruning methods achieve real model size reduction and speed acceleration.
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Chapter 1. Introduction

(1) Network Pruning (2) Network Quantization (3) Matrix Factorization

Pretrained deep network

Figure 1.3: Network compression. Starting from a pretrained deep network, (1) Network
pruning removes the unimportant weights, connections, neurons, channels and layers; (2)
Network quantization represents the weights and outputs of the network with lower precision,
shown with dotted connections and smaller nodes; (3) Matrix factorization decomposes the
original layers into several (two in the figure) smaller matrices to achieve the approximation.

Network quantization (Cai et al., 2017; Li et al., 2017; Lin et al., 2016; Wu et al., 2018) aims to

represent the parameters in a neural network with lower precision or even binary represen-

tations (Rastegari et al., 2016; Courbariaux et al., 2016). Typically, deep networks are trained

and inferred with floating point (e.g. 32-bit) precision, which comes with a significant cost in

computation, memory, and storage requirements. With quantization, the precision of floating

point numbers is reduced from 32-bit to much lower bit width, and in the extreme case to

binary and ternary states, or even a single bit with the vector quantization (Stock et al., 2020).

Thus, network quantization not only reduces the model size but also accelerates the inference

of the resulting neural network.

Matrix factorization (Rigamonti et al., 2013; Jaderberg et al., 2014; Novikov et al., 2015; Yu et al.,

2017) approximates the original informative kernels in the deep networks by incorporating

low-rank matrix decomposition for both fully connected layers and convolutional layers. In

these methods, the heavy original kernel matrices is decomposed and replaced by low-rank

matrices. As such, they reduce the number of parameter and speed up the inference process.

The compact models produced by network compression approaches are expected to be

suitable for deployment to mobile devices for fast inference without significant drops in

accuracy. Thus, the trade-off between accuracy and efficiency should be always considered

when designing these algorithms. Moreover, while network compression indeed produces
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1.1 Problem Definition

Pretrained teacher network

Student-1

Student-2

Student-3

Knowledge

prediction-level
feature-level
…

Figure 1.4: Knowledge distillation transfers knowledge at different levels from a deep teacher
network to a lightweight student network with an arbitrary yet given architecture.

networks that are smaller than the original ones, some of the techniques, such as network

pruning approaches do not provide one with the flexibility of designing a network with a

specific architecture or of a specific size because the resulting compact models have an

unpredictable network structure, and might be still too large to be deployed on some tiny

mobile devices.

Knowledge distillation aims to facilitate the training, and thus boost the performance, of

a given compact model with an arbitrary architecture. It is achieved by supervising the

training of such a compact student model with knowledge encoded by the predictions (Hinton

et al., 2015), the intermediate features (Romero et al., 2014; Zagoruyko and Komodakis, 2017;

Heo et al., 2019a) or the relations between features (Yim et al., 2017; Tian et al., 2020) of a

pretrained, more powerful teacher model. The key to knowledge distillation is to define,

build and transfer the learned knowledge. Therefore, recent research has aimed to design

task-specific knowledge distillation techniques for object detection (Chen et al., 2017a; Zhang

and Ma, 2021; Guo et al., 2021b) and semantic segmentation (Liu et al., 2019). The advantage

of knowledge distillation relies on its flexibility to be extended to other tasks with arbitrary

student models and its natural complementary to other efficient deep learning methods as it

can boost the performance of a compressed network or of a designed compact architectures.

Overall, the research in the efficient deep learning field has evidenced that deep neural

networks are over-parameterized with significantly redundant weights or neurons. While this

large number of parameters and computational complexity are required to achieve better

performance during training, they are not necessary at inference time. However, the smaller

number of parameters in compact and efficient neural networks make it difficult to learn good

representations from the data.

The philosophy of this thesis is to study approaches to improve the representation learning

ability of given compact and efficient neural networks for resource-constrained edge devices

and achieve better performance at inference. We tackle this problem from three different

perspectives: The design of linear over-parameterization strategies for training, which applies

generally to multiple visual recognition tasks; the idea of cross-task and cross-architecture

7



Chapter 1. Introduction

knowledge distillation for object detection; and a task-driven knowledge distillation solution

for 6D pose estimation, for which knowledge distillation has never been studied. Tackling

the challenges of improving the representation learning ability and performance of given

compact and efficient neural networks will increase their applicability to a broader range of

applications.

1.2 Contribution

To boost the performance of given compact neural networks with arbitrary architectures, in

this thesis, we present novel techniques based on linear over-parameterization and knowledge

distillation to improve the representation learning ability of these compact models. We

evidence the effectiveness of our work on a variety of visual recognition tasks. The main

contributions of this thesis are:

ExpandNets: Improving the training of compact neural networks for multiple visual recog-

nition tasks.

Conventional deep networks are known to be heavily over-paramenterized, which, while

beneficial for training, is not required at inference. Motivated by this observation, we propose

to introduce more parameters in a given compact neural network during training by lin-

early expanding its convolutional layers and fully-connected layers. At inference, the linearly

expanded layers can be contracted algebraically without any information loss and perfor-

mance drop. We analyze the optimization behavior and generalization ability of training

such ExpandNets. Furthermore, we conduct experiments on multiple visual recognition tasks,

including image classification, object detection and semantic segmentation, which evidence

the effectiveness of our proposed expansion strategies. Moreover, we show that they are

complementary to knowledge distillation methods. This work was accepted as a spotlight at

the NeurIPS2020 conference (Guo et al., 2020):

• Guo, S., Alvarez, J. M., and Salzmann, M. (2020). Expandnets: Linear over-parameterization

to train compact convolutional networks. Advances in Neural Information Processing

Systems (NeurIPS2020 Spotlight).

• Code: https://github.com/GUOShuxuan/expandnets

Classifier-to-detector knowledge distillation: A cross-task and cross-architecture knowledge

distillation approach for object detection.

Existing knowledge distillation approaches for visual recognition have only been demon-

strated when the student and teacher networks exploit the same architecture family and

tackle the same task, e.g., ResNet to ResNet, Wide ResNet to Wide ResNet; classifier to clas-

sifier, or detector to detector. As a second contribution of this thesis, we investigate the use

of knowledge distillation across tasks and develop strategies to distill the knowledge of an

image classification teacher to an object detection student. We observe that our proposed

8
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1.3 Thesis Outline

classifier-to-detector knowledge distillation method decreases both the classification and

localization errors of the detector student. Furthermore, the classifier teacher can be used

to complement a detector teacher to jointly boost the performance of the student detector,

outperforming the use of only one teacher. This contribution opens the door to the research

direction of cross-task and cross-architecture knowledge distillation. This work was published

at the NeurIPS2021 conference (Guo et al., 2021b):

• Guo, S., Alvarez, J. M., and Salzmann, M. (2021b). Distilling image classifiers in object

detectors. Advances in Neural Information Processing Systems ( NeurIPS2021).

• Code: https://github.com/NVlabs/DICOD

Keypoint distribution alignment: A task-driven knowledge distillation approach for 6D

pose estimation.

Knowledge distillation has achieved great progress on multiple visual tasks, such as image

classification, object detection, and semantic segmentation. However, it has never been

studied for image-based 6D object pose estimation. In this part of the thesis, we observe

that, for 6D pose estimation, the keypoint based models are less sensitive to the network

size than the dense prediction based ones. Therefore, we propose a knowledge distillation

method based on optimal transport to align the keypoint distribution from a teacher model

to that of a student model. Specifically, we leverage both the predicted segmentation scores

and locations of the keypoints during the distribution alignment process. We show that our

proposed task-driven knowledge distillation method for 6D pose estimation improves the

performance of lightweight student models. This work is currently under review (Guo et al.,

2022):

• Guo, S., Hu, Y., Alvarez, J. M., and Salzmann, M. (2022). Knowledge Distillation for 6D

Pose Estimation by Keypoint Distribution Alignment. arXiv Preprint.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 introduces our proposed ex-

pansion algorithm based on linear over-parameterization to facilitate the training of arbitrary,

given compact networks, improving both their optimization and generalization and yielding

better performance at inference for multiple visual recognition tasks. Chapter 3 presents our

classifier-to-detector knowledge transfer framework for training compact object detectors and

demonstrates the effectiveness of this approach not only across architectures but also across

tasks. Chapter 4 focuses on the 6D pose estimation task and introduces our keypoint distribu-

tion alignment knowledge distillation approach based on optimal transport theory. Finally,

Chapter 5 concludes the thesis with a summary of our contributions and a brief discussion of

future research directions.

9
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2 ExpandNets

Over-parameterization is widely acknowledged to facilitate network training by improving

both neural network optimization and generalization. In this chapter, we introduce an ap-

proach leveraging over-parameterization to train a given compact convolutional network with

arbitrary architecture. Specifically, we propose to expand each linear layer of the compact

network into multiple consecutive linear layers, without adding any nonlinearity. As such,

the resulting expanded network, or ExpandNet, can be contracted back to the compact one

algebraically at inference. In particular, we introduce two convolutional expansion strate-

gies and demonstrate their benefits on several tasks, including image classification, object

detection, and semantic segmentation. As evidenced by our experiments, our approach

outperforms both training the compact network from scratch and performing knowledge

distillation from a teacher. Furthermore, our linear over-parameterization empirically reduces

gradient confusion during training and improves the network generalization.

The contents of this chapter are mainly from the following paper. I am the primary contributor.

• Guo, S., Alvarez, J. M., and Salzmann, M. (2020). Expandnets: Linear over-parameterization

to train compact convolutional networks. Advances in Neural Information Processing

Systems (NeurIPS2020 Spotlight).

2.1 Introduction

With the growing availability of large-scale datasets and advanced computational resources,

convolutional neural networks have achieved tremendous success in a variety of tasks, such

as image classification (He et al., 2016; Krizhevsky et al., 2012a), object detection (Redmon

and Farhadi, 2016, 2018; Ren et al., 2015) and semantic segmentation (Long et al., 2015; Ron-

neberger et al., 2015). Over the past few years, “Wider and deeper are better” has become

the rule of thumb to design network architectures (He et al., 2016; Huang et al., 2017; Si-

monyan and Zisserman, 2015; Szegedy et al., 2015). This trend, however, raises memory- and

computation-related challenges, especially in the context of constrained environments, such

as embedded platforms.
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Figure 2.1: ExpandNets. We propose 3 strategies to linearly expand a compact network.
An expanded network can then be contracted back to the compact one algebraically, and
outperforms training the compact one, even with knowledge distillation.

Deep and wide networks are well-known to be heavily over-parameterized, and thus a compact
network, both shallow and thin, should often be sufficient. Unfortunately, compact networks
are notoriously hard to train from scratch. As a consequence, designing strategies to train a
given compact network has drawn growing attention, the most popular approach consisting
of transferring the knowledge of a deep teacher network to the compact one of interest (Heo
et al., 2019b,a; Hinton et al., 2015; Passalis and Tefas, 2018; Romero et al., 2014; Tian et al.,
2020; Yim et al., 2017; Zagoruyko and Komodakis, 2017).

In this chapter, we introduce an alternative approach to training compact neural networks,
complementary to knowledge transfer. To this end, building upon the observation that net-
work over-parameterization improves both optimization and generalization (Allen-Zhu et al.,
2018a,b; Arora et al., 2018; Kawaguchi et al., 2018; Reed, 1993; Sankararaman et al., 2019; Zhang
et al., 2017), we propose to increase the number of parameters of a given compact network
by incorporating additional layers. However, instead of separating every two layers with a
nonlinearity, we advocate introducing consecutive linear layers. In other words, we expand
each linear layer of a compact network into a succession of multiple linear layers, without any
nonlinearity in between. Since consecutive linear layers are equivalent to a single one (Saxe
et al., 2014), such an expanded network, or ExpandNet, can be algebraically contracted back
to the original compact one without any information loss.
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2.2 Related Work

While the use of successive linear layers appears in the literature, existing work (Arora et al.,

2018; Baldi and Hornik, 1989; Kawaguchi, 2016; Laurent and von Brecht, 2018; Saxe et al., 2014;

Zhou and Liang, 2018) has been mostly confined to fully-connected networks without any

nonlinearities and to the theoretical study of their behavior under fairly unrealistic statistical

assumptions. In particular, these studies aim to understand the learning dynamics and the

loss landscapes of deep networks. Here, by contrast, we focus on practical, nonlinear, compact

convolutional neural networks, and demonstrate the use of linear expansion as a means to

introduce over-parameterization and facilitate training, so that a given compact network

achieves better performance.

Specifically, as illustrated by Figure 2.1, we introduce three ways to expand a compact network:

(i) replacing a k ×k convolution by three convolutional layers with kernel size 1×1, k ×k and

1×1, respectively; (ii) replacing a k ×k convolution with k > 3 by multiple 3×3 convolutions;

and (iii) replacing a fully-connected layer with multiple ones. Our experiments demonstrate

that expanding convolutions is the key to obtaining more effective compact networks.

In short, our contributions in this chapter are (i) a novel approach to training a given com-

pact, nonlinear convolutional network by expanding its linear layers; (ii) a strategy to expand

convolutional layers with arbitrary kernels; and (iii) a strategy to expand convolutional lay-

ers with kernel size larger than 3. We demonstrate the benefits of our approach on several

tasks, including image classification on ImageNet, object detection on PASCAL VOC and

image segmentation on Cityscapes. Our ExpandNets outperform both training the corre-

sponding compact networks from scratch and using knowledge distillation. We empirically

show over-parameterization to be the key factor for such better performance. Furthermore,

we analyze the benefits of linear over-parameterization during training via experiments

studying generalization, gradient confusion and the loss landscape. Our code is available at

https://github.com/GUOShuxuan/expandnets.

2.2 Related Work

Very deep convolutional neural networks currently constitute the state of the art for many tasks.

These networks, however, are known to be heavily over-parameterized, and making them

smaller would facilitate their use in resource-constrained environments, such as embedded

platforms. As a consequence, much research has recently been devoted to developing more

compact architectures.

Network compression constitutes one of the most popular trends in this area. In essence, it

aims to reduce the size of a large network while losing as little accuracy as possible, or even

none at all. In this context, existing approaches can be roughly grouped into two categories:

(i) parameter pruning and sharing (Carreira-Perpinan and Idelbayev, 2018; Courbariaux et al.,

2016; Figurnov et al., 2016; Han et al., 2016; LeCun et al., 1990; Lee et al., 2019; Molchanov et al.,

2017; Ullrich et al., 2017), which aims to remove the least informative parameters, yielding an

arbitrary compact network with information loss; and (ii) low-rank matrix factorization (Denil
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https://github.com/GUOShuxuan/expandnets


Chapter 2. ExpandNets

et al., 2013; Jin et al., 2015; Lebedev et al., 2014; Liu et al., 2015; Sainath et al., 2013), which

uses decomposition techniques to reduce the size of the parameter matrix/tensor in each

layer. While compression is typically performed as a post-processing step, it has been shown

that incorporating it during training could be beneficial (Alvarez and Salzmann, 2016, 2017;

Wen et al., 2016, 2017). In any event, even though compression reduces a network’s size, it

neither provides one with the flexibility of designing a network with a specific architecture, nor

incorporates over-parameterization to improve the performance of compact network training.

Furthermore, it often produces networks that are much larger than the ones we consider here,

e.g., compressed networks with O(1M) parameters vs O(10K) for the SmallNets used in our

experiments.

In a parallel line of research, several works have proposed design strategies to reduce a net-

work’s number of parameters (Howard et al., 2017; Ma et al., 2018; Romera et al., 2018; Sandler

et al., 2018; Szegedy et al., 2016; Wu et al., 2016). Again, while more compact networks can

indeed be developed with these mechanisms, they impose constraints on the network archi-

tecture, and thus do not allow one to simply train a given compact network. Furthermore, as

shown by our experiments, our approach is complementary to these works. For example, we

can improve the results of MobileNets (Howard et al., 2017; Sandler et al., 2018) by training

them using our expansion strategy.

Here, in contrast to the above-mentioned literature, we seek to train a given compact network

with an arbitrary architecture. This is also the task addressed by knowledge transfer ap-

proaches (Heo et al., 2019a,b; Hinton et al., 2015; Passalis and Tefas, 2018; Romero et al., 2014;

Tian et al., 2020; Yim et al., 2017; Zagoruyko and Komodakis, 2017). To achieve this, existing

methods leverage the availability of a pre-trained very deep teacher network. In this chapter,

we introduce an alternative strategy to train compact networks, complementary to knowledge

transfer. Inspired by the theory showing that over-parameterization helps training (Allen-Zhu

et al., 2018a,b; Arora et al., 2018; Kawaguchi et al., 2018; Reed, 1993; Sankararaman et al., 2019;

Zhang et al., 2017), we expand each linear layer in a given compact network into a succession

of multiple linear layers. Our experiments evidence that training such expanded networks,

which can then be contracted back algebraically, yields better results than training the original

compact networks, thus empirically confirming the benefits of over-parameterization. Our

results also show that our approach outperforms knowledge distillation, even without using a

teacher network.

Note that linearly over-parameterized neural networks have been investigated both in the

early neural network days (Baldi and Hornik, 1989) and more recently (Arora et al., 2018;

Gunasekar et al., 2018; Kawaguchi, 2016; Laurent and von Brecht, 2018; Saxe et al., 2014; Zhou

and Liang, 2018). These methods, however, typically study purely linear networks, with a

focus on the convergence behavior of training in this linear regime. For example, Gunasekar

et al. (2018) demonstrated that a different parameterization of the same model dramatically

affects the training behavior; Arora et al. (2018) showed that linear over-parameterization

modifies the gradient updates in a unique way that speeds up convergence; Wu et al. (2019)
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Figure 2.2: Matrix representation of a convolutional layer (best viewed in color).

collapsed multiple FC layers into a single one by removing the non-linearities from the MLP
layers of a graph convolutional network. In contrast to these methods, which focus on fully-
connected layers, we develop two strategies to expand convolutional layers, and empirically
demonstrate the impact of our expansion strategies on prediction accuracy, training behavior
and generalization ability.

The concurrent work ACNet of Ding et al. (2019) also advocates for expansion of convolutional
layers. However, the two strategies we introduce differ from their use of 1D asymmetric convo-
lutions, and our experiments show that our approach outperforms theirs. More importantly,
this work constitutes further evidence of the benefits of linear expansion.

2.3 Methodology

Let us now introduce our approach to training compact networks by linearly expanding their
layers. Below, we focus on our two strategies to expand convolutional layers, and then briefly
discuss the case of fully-connected ones.

2.3.1 Expanding Convolutional Layers

We propose to linearly expand a convolutional layer by replacing it with a series of convo-
lutional layers. To explain this, we will rely on the fact that a convolution operation can be
expressed in matrix form. Specifically, let Xb£m£w£h be the input tensor to a convolutional
layer, with batch size b, m input channels, height h and width w , and Fn£m£k£k be the tensor
encoding the convolutional filters, with n output channels and kernel size k. Ignoring the bias,
which can be taken into account by incorporating an additional channel with value 1 to X, a
convolution can be expressed as

Yb£n£w 0£h0 =Xb£m£w£h §Fn£m£k£k = reshape(W F
nw 0h0£mwh £Xv

mwh£b) , (2.1)

where Yb£n£w 0£h0 is the output tensor, W F
nw 0h0£mwh is a highly structured sparse matrix

containing the convolutional filters, and Xv
mwh£b is a matrix representation of X. This process,
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Chapter 2. ExpandNets

which is a bijection, is depicted by Figure 2.2 for b = 1, m = 1 and n = 1.

With this matrix representation, one can therefore expand a layer linearly by replacing the ma-

trix W F with a product of an arbitrary number of matrices. However, using arbitrary matrices

would ignore the convolution structure, and thus alter the original operation performed by the

layer. Fortunately, multiplying several convolution matrices still yields a valid convolution, as

can be confirmed by observing the pattern within the matrix in Figure 2.2. Nevertheless, one

cannot simply expand a convolutional layer with kernel size k ×k as a series of convolutions

with arbitrary kernel sizes because, in general, the resulting receptive field size would differ

from the original one. To overcome this, we propose the two expansion strategies discussed

below.

Expanding general convolutions. For our first strategy, we note that 1× 1 convolutions

retain the computational benefits of convolutional layers while not modifying the receptive

field size. As illustrated in Figure 2.1, we therefore propose to expand a k ×k convolutional

layer into 3 consecutive convolutional layers: a 1×1 convolution; a k ×k one; and another

1×1 one. Importantly, this allows us to increase not only the number of layers, but also the

number of channels by setting p, q > n,m. To this end, we rely on the notion of expansion

rate. Specifically, for an original layer with m input channels and n output ones, given an

expansion rate r , we define the number of output channels of the first 1×1 layer as p = r m

and the number of output channels of the intermediate k ×k layer as q = r n. Note that other

strategies are possible, e.g., p = r i m, but ours has the advantage of preventing the number of

parameters from exploding.

Once such an expanded convolutional layer has been trained, one can contract it back to the

original one algebraically by considering the matrix form of Eq. 2.1. That is, given the filter ten-

sors of the intermediate layers, F1
p×m×1×1, F2

q×p×k×k and F3
n×q×1×1, the matrix representation

of the original layer can be recovered as

W F
nw ′h′×mwh =W F3

nw ′h′×qw ′h′ ×W F2

qw ′h′×pwh ×W F1

pwh×mwh , (2.2)

which encodes a convolution tensor. At test time, we can thus use the original compact net-

work. Because it applies to any size k, we will refer to this strategy as expanding convolutional

layers.

Expanding k × k convolutions with k > 3. While 3 × 3 kernels are popular in very deep

architectures (He et al., 2016), larger kernel sizes are often exploited in compact networks, so

as to increase their expressiveness and their receptive fields. As illustrated in Figure 2.1, k ×k

kernels with k > 3 can be equivalently represented with a series of l 3×3 convolutions, where

l = (k −1)/2. Note that k is typically odd in CNNs. We then have

Y=X∗Fn×m×k×k =X∗F1
p1×m×3×3 ∗·· ·∗Fl−1

pl−1×pl−2×3×3 ∗Fl
n×pl−1×3×3 . (2.3)

16



2.3 Methodology

As before, the number of channels in the intermediate layers can be larger than that in the

original k ×k one, thus allowing us to linearly over-parameterize the model. For an expansion

rate r , we set the number of output channels of the first 3×3 layer to p1 = r m and that of

the subsequent layers to pi = r n. The same matrix-based strategy as before can be used to

algebraically contract back the expanded unit into Fn×m×k×k . We will refer to this strategy as

expanding convolutional kernels.

2.3.2 Expanding Convolutions in Practice

Padding and strides. In modern convolutional networks, padding and strides are widely used

to retain information from the input feature map while controlling the size of the output one.

To expand a convolutional layer with padding p, we propose to use padding p in the first

layer of the expanded unit while not padding the remaining layers. Furthermore, to handle a

stride s, when expanding convolutional layers, we set the stride of the middle layer to s and

that of the others to 1. When expanding convolutional kernels, we use a stride 1 for all layers

except for the last one whose stride is set to s. These two strategies guarantee that the resulting

ExpandNet can be contracted back to the compact model without any information loss.

Depthwise convolutions. Depthwise convolutions are often used to design compact net-

works, such as MobileNet (Howard et al., 2017), MobileNetV2 (Sandler et al., 2018) and Shuf-

fleNetV2 (Ma et al., 2018). To handle them, we make use of our general convolutional ex-

pansion strategy within each group. Specifically, we duplicate the input channels r times

and employ cross-channel convolutions within each group. This makes the expanded layers

equivalent to the original ones.

2.3.3 Expanding Fully-connected Layers

Beacuse the weights of a fully-connected layer can naturally be represented in matrix form,

our approach directly extends to such layers. That is, we can expand a fully-connected layer

with m input and n output dimensions into l layers as by noting that

Wn×m =Wn×pl−1 ×Wpl−1×pl−2 ×·· ·×Wp1×m , (2.4)

where we typically define p1 = r m and pi = r n, ∀i ̸= 1. In practice, considering the compu-

tational complexity of fully-connected layers, we advocate expanding each layer into only

two or three layers with a small expansion rate. Note that this expansion is similar to that

used in (Arora et al., 2018), which we discuss in more detail in Section 2.7. However, as will be

shown by our experiments, expanding only fully-connected layers, as in (Arora et al., 2018),

does typically not yield a performance boost. By contrast, our two convolutional expansion

strategies do.

Altogether, our strategies allow us to expand an arbitrary compact network into an equivalent
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Chapter 2. ExpandNets

deeper and wider one, and can be used independently or together. Once trained, the resulting

ExpandNet can be contracted back to the original compact architecture in an algebraic manner,

i.e., at no loss of information.

2.4 Experiments

In this section, we demonstrate the benefits of our ExpandNets on image classification, object

detection, and semantic segmentation.

We denote the expansion of convolutional layers by CL, of convolutional kernels by CK, and of

fully-connected layers by FC. Specifically, we use FC(Arora18) to indicate that the expansion

strategy is similar to the one used in (Arora et al., 2018). When combining convolutional

expansions with fully-connected ones, we use CL+FC or CK+FC.

2.4.1 Image Classification

We first study the use of our approach with very small networks on CIFAR-10 and CIFAR-

100 (Krizhevsky and Hinton, 2009), and then turn to the more challenging ImageNet (Rus-

sakovsky et al., 2015) dataset, where we show that our method can improve the results of the

compact MobileNet (Howard et al., 2017), MobileNetV2 (Sandler et al., 2018) and ShuffleNetV2

0.5× (Ma et al., 2018).

CIFAR-10 and CIFAR-100

Table 2.1: Top-1 accuracy (%) of SmallNet with 3×3 kernels vs ExpandNets with r = 4 on
CIFAR-10 and CIFAR-100.

Model Transfer CIFAR-10 CIFAR-100

SmallNet w/o KD 73.32±0.20 40.40±0.60
FC(Arora18) (Arora et al., 2018) w/o KD 73.78±0.83 40.52±0.71

SmallNet w/ KD 73.34±0.31 40.46±0.56

ExpandNet-CL
w/o KD

73.96±0.30 40.91±0.47
ExpandNet-CL+FC 74.45±0.29 41.12±0.49

ExpandNet-CL+FC w/ KD 74.52±0.37 41.51±0.49

Experimental setup. For CIFAR-10 and CIFAR-100 (Krizhevsky and Hinton, 2009), we use

the same compact network as in (Passalis and Tefas, 2018). It is composed of 3 convolutional

layers with 3×3 kernels and no padding. These 3 layers have 8, 16 and 32 output channels,

respectively. Each of them is followed by a batch normalization layer, a ReLU layer and a

2×2 max pooling layer. The output of the last layer is passed through a fully-connected layer

with 64 units, followed by a logit layer with either 10 or 100 units. All networks, including

our ExpandNets, were trained for 150 epochs using a batch size of 128. We used standard
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Table 2.2: Top-1 accuracy (%) of SmallNet with 7×7 kernels vs ExpandNets with r = 4 on
CIFAR-10 and CIFAR-100.

Model Transfer CIFAR-10 CIFAR-100

SmallNet w/o KD 78.63±0.41 46.63±0.27
FC(Arora18) (Arora et al., 2018) w/o KD 78.64±0.39 46.59±0.45

ACNet (Ding et al., 2019) w/o KD 79.37±0.52 47.18±0.57
SmallNet w/ KD 78.97±0.37 47.04±0.35

ExpandNet-CL

w/o KD

78.47±0.20 46.90±0.66
ExpandNet-CL+FC 79.11±0.23 46.66±0.43

ExpandNet-CK 80.27±0.24 48.55±0.51
ExpandNet-CK+FC 80.31±0.27 48.62±0.47

ExpandNet-CL+FC
w/ KD

79.60±0.25 47.41±0.51
ExpandNet-CK+FC 80.63±0.31 49.13±0.45

stochastic gradient descent (SGD) with a momentum of 0.9 and a learning rate of 0.01, divided

by 10 at epochs 50 and 100. With this strategy, all networks reached convergence. To evaluate

our kernel expansion method CL and CK, we also report results obtained with a similar

network where the 3×3 kernels were replaced by 7×7 ones with a padding of 3, because

the CK one does not apply to 3×3 kernels. In this set of experiments, the expansion rate

r is set to 4 to balance the accuracy-efficiency trade-off. Since our expansion strategy is

complementary to knowledge transfer, i.e., an ExpandNet can act as student in knowledge

transfer, we further demonstrate its benefits in this setting by conducting experiments using

knowledge distillation (KD) (Hinton et al., 2015), hint-based transfer (Hint)(Romero et al.,

2014) or probabilistic knowledge transfer (PKT) (Passalis and Tefas, 2018) from a ResNet18

teacher.

We then evaluate our expansion strategies on MobileNet (Howard et al., 2017), Mo-

bileNetV2 (Sandler et al., 2018), which we train for 350 epochs using a batch size of 128.

We use stochastic gradient descent (SGD) with a momentum of 0.9, weight decay of 0.0005 and

a learning rate of 0.1, divided by 10 at epochs 150 and 250. Note that training an ExpandNet

takes slightly more time than training the compact network because of the extra parameters,

as reported in Table 2.3. Therefore, to confirm that our better results are not just due to longer

training, we also report the results of the baselines trained for the same amount of time as our

ExpandNets.

Results. We first report the results over 5 runs of the model with 3×3 kernels in Table 2.1,

expanding the convolutional layers by CL expansion strategy yields higher accuracy than the

small network. This is further improved by also expanding the fully-connected layer. We then

focus on the SmallNet with 7×7 kernels, for which we can evaluate all our expansion strategies,

including the CK ones. Table 2.2 provides the results over 5 runs of all our networks with and

without KD, which we have found to be the most effective knowledge transfer strategy, as

evidenced by comparing these results with those obtained by Hint and PKT in Table 2.16 in
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Table 2.3: Top-1 accuracy (%) of MobileNets vs ExpandNets with r = 4 on CIFAR-10 and CIFAR-
100.

Model Epoch Time CIFAR-10 CIFAR-100

MobileNet 13.08s 89.61 (88.87†) 67.93 (68.18†)
ExpandNet-CL 22.78s 91.79 69.75

MobileNetV2 24.88s 91.64 (90.85†) 71.66 (71.41†)
ExpandNet-CL 49.22s 92.58 72.33

† Accuracy with the same training time as ExpandNet-CL.

‡ Epoch Time was evaluated on CIFAR-10 on 2 32G TITAN V100 GPUs.

Table 2.4: Top-1 accuracy (%) on the ILSVRC2012 validation set (ExpandNets with r = 4).

Model MobileNet MobileNetV2 ShuffleNetV2

original 66.48 63.75 56.89
ACNet (Ding et al., 2019) 67.61 64.29 52.43

original (w/ KD) 69.01 65.40 57.59

ExpandNet-CL 69.40 65.62 57.38
ExpandNet-CL (w/ KD) 70.47 67.19 57.68

Section 2.6. As shown in the top portion of the table, only expanding the fully-connected layer,

as in (Arora et al., 2018), yields mild improvement. However, expanding the convolutional

ones clearly outperforms the compact network, and is further boosted by expanding the

fully-connected one. Overall, expanding the kernels yields the best results; it outperforms

even the concurrent convolutional expansion ACNet of Ding et al. (2019). Note that even

without KD, our ExpandNets outperform SmallNet with KD. The gap is further increased when

we also use KD, as shown in the bottom portion of the table.

In Table 2.3, we provide the results for MobileNet and MobileNetV2, including the baselines

trained for a longer time, denoted by a †. These results confirm that our expansion strategies

also boost the performance of these MobileNet models, even when the baselines are trained

longer.

ImageNet

Experimental setup. For ImageNet (Russakovsky et al., 2015), we use the compact Mo-

bileNet (Howard et al., 2017), MobileNetV2 (Sandler et al., 2018) and ShuffleNetV2 (Ma et al.,

2018) models, which were designed to be compact and yet achieve good results. We rely

on a pytorch implementation of these models. For our approach, we use our CL strategy to

expand all convolutional layers with kernel size 3×3 in MobileNet and ShuffleNetV2, while

only expanding the non-residual 3×3 convolutional layers in MobileNetV2. We trained the

MobileNets using the short-term regime advocated in (He et al., 2016), i.e., 90 epochs with a

weight decay of 0.0001 and an initial learning rate of 0.1, divided by 10 every 30 epochs. We
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employed SGD with a momentum of 0.9 and a batch size of 256. For ShuffleNet, we used the

small ShuffleNetV2 0.5×, trained as in (Ma et al., 2018). We also applied KD from a ResNet152

(with 78.32% top-1 accuracy), tuning the KD hyper-parameters to the best accuracy for each

method.

Results. We compare the results of the original models with those of our expanded versions in

Table 2.4. Our expansion strategy increases the top-1 accuracy of MobileNet, MobileNetV2

and ShuffleNetV2 0.5× by 2.92, 1.87 and 0.49 percentage points (pp). It also yields consistently

higher accuracy than the concurrent ACNet of Ding et al. (2019). Furthermore, our ExpandNets

without KD outperform the MobileNets with KD, even though we do not require a teacher.

2.4.2 Object Detection

Table 2.5: YOLO-LITE vs ExpandNet with
r = 4 on the PASCAL VOC2007 test set.

Model mAP (%)

YOLO-LITE 27.34

ExpandNet-CL 30.97

Our approach is not restricted to image classifi-

cation. We demonstrate its benefits for one-stage

object detection.

Experimental setup. YOLO-LITE (Huang et al.,

2018), which was designed to work in constrained

environments. The YOLO-LITE used here is very

compact, consisting of a backbone with only 5

convolutional layers and of a head. We expanded

the 5 backbone convolutional layers using our CL strategy with r = 4, and trained the resulting

network on the PASCAL VOC2007 + 2012 (Everingham et al., 2007, 2012) training and validation

sets in the standard YOLO fashion (Redmon and Farhadi, 2016, 2018). We report the mean

average precision (mAP) on the PASCAL VOC2007 test set.

Results. The results are reported in Table 2.5. As for object detection, our expansion strategy

boosts the performance of the compact network. Specifically, we outperform it by over 3.5pp.

2.4.3 Semantic Segmentation

Table 2.6: U-Net vs ExpandNet with r = 4 on
the Cityscapes validation set.

Model mIOU mRec mPrec

U-Net 56.59 74.29 65.11

ExpandNet-CL 57.85 76.53 65.94

We then demonstrate the benefits of our ap-

proach on semantic segmentation using the

Cityscapes dataset (Cordts et al., 2016).

Experimental setup. For this experiment,

we rely on the U-Net (Ronneberger et al.,

2015), which is a relatively compact network

consisting of a contracting and an expansive

path. We apply our CL expansion strategy

with r = 4 to all convolutions in the contracting path. We train the networks on 4 GPUs using

the standard SGD optimizer with a momentum of 0.9 and a learning rate of 1e −8. Following
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the standard protocol, we report the mean Intersection over Union (mIOU), mean recall

(mRec) and mean precision (mPrec).

Results. Our results on the Cityscapes validation set are shown in Table 2.6. Note that our

ExpandNet outperforms the original compact U-Net.

2.5 Analysis

To further analyze our approach, we first study its behavior during training and its generaliza-

tion ability. For these experiments, we make use of the CIFAR-10 and CIFAR-100 datasets, and

use the settings described in detail in our ablation study in Section 2.6. We then propose and

analyze two hypotheses to empirically evidence that the better performance of our approach

truly is a consequence of over-parameterization during training. We also evaluate the com-

plexity of the models in terms of number of parameters, multiply-and-accumulate operations

(MACs), and training and testing inference speed. Note that, since our ExpandNets can be

contracted back to the original networks, at test time, they have exactly the same number of

parameters, MACs, and inference time as the original networks, but achieve better performance.

2.5.1 Training Behavior

To investigate the benefits of linear over-parameterization on training, we make use of the

gradient confusion introduced by Sankararaman et al. (2019) to show that the gradients of non-

linearly over-parameterized networks were more consistent across mini-batches. Specifically,

following (Sankararaman et al., 2019), we measure gradient confusion (or rather consistency)

as the minimum cosine similarity of gradients over 100 randomly-sampled pairs of mini-

batches at the end of each training epoch. It measures the negative correlation between

the gradients of different mini-batches, and thus indicates a disagreement on the parameter

update. As in (Sankararaman et al., 2019), we also combine the gradient cosine similarity

of 100 pairs of sampled mini-batches at the end of training from each independent run and

perform Gaussian kernel density estimation on this data.

We run each experiment 5 times and show the average values across all runs on CIFAR-10 in

Figure 2.3 and on CIFAR-100 in Figure 2.4 corresponding to networks with kernel sizes of 3, 5,

7, 9, respectively. The training and test curves in almost all cases show that our ExpandNets-

CL/CK speed up convergence and yield a smaller generalization error. They also yield lower

gradient confusion (higher minimum cosine similarity) and a more zero-peaked density of

pairwise gradient cosine similarity. This indicates that our networks are easier to train than

the compact model. By contrast, only expanding the FC layers, as in (Arora et al., 2018), does

not facilitate training.
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(a) kernel size: 3

(b) kernel size: 5

A

(c) kernel size: 7

(d) kernel size: 9

Figure 2.3: Training behavior of networks on CIFAR-10 (best viewed in color). Left: Training
and test curves over 150 epochs. Middle: Minimum pairwise gradient cosine similarity at the
end of each training epoch (higher is better). Right: Kernel density estimation of pairwise
gradient cosine similarity at the end of training (over 5 independent runs).
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(a) kernel size: 3

(b) kernel size: 5

(c) kernel size: 7

(d) kernel size: 9

Figure 2.4: Training behavior of networks on CIFAR-100 (best viewed in color). Left: Training
and test curves over 150 epochs. Middle: Minimum pairwise gradient cosine similarity at the
end of each training epoch (higher is better). Right: Kernel density estimation of pairwise
gradient cosine similarity at the end of training (over 5 independent runs).
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Table 2.7: Complexity analysis on CIFAR-10 for different expansion rates r . The baseline
network is the SmallNet with kernel size 7 (#Params:150.35K, #MACs: 6.12M, Epoch Time:
4.05s). Note that, for a given training setting, the wall-clock time only moderately increases as
r grows.

r FC(Arora18) ExpandNet-CL ExpandNet-CK

2
#Params 339.40K 562.95K 237.72K
#MACs 6.30M 25.16M 14.38M

Epoch Time 4.09s 4.13s 4.10s

4
#Params 675.91K 2.17M 653.25K
#MACs 6.64M 98.39M 42.64M

Epoch Time 3.94s 4.61s 4.12s

8
#Params 1.74M 8.58M 2.07M
#MACs 7.70M 389.35M 141.10M

Epoch Time 4.02s 9.39s 5.50s

Table 2.8: ExpandNet complexity analysis on CIFAR-10, ImageNet, PASCAL VOC and
Cityscapes. Note that, within each task, the metrics are the same for all networks, since
we can compress our ExpandNets back to the small network.

Model
# Params(M) # MACs GPU Speed (imgs/sec)
Train Test Train Test Train Test

SmallNet (7×7) 0.07

0.07

4.49M

4.49M

147822.51

154850.52
ExpandNet-CL 0.55 57.49M 64651.81

ExpandNet-CL+FC 2.11 59.04M 61379.95
ExpandNet-CK 0.19 23.95M 75065.09

ExpandNet-CK+FC 1.75 25.5M 68679.89

MobileNet 4.23
4.23

0.58G
0.58G

3797.21
3829.81

ExpandNet-CL 4.96 1.76G 729.78

MobileNetV2 3.50
3.50

0.32G
0.32G

3417.20
3419.43

ExpandNet-CL 3.67 1.34G 1009.25

ShuffleNetV2 0.5× 1.37
1.37

0.04G
0.04G

5404.06
5434.58

ExpandNet-CL 1.41 0.6G 4228.10

YOLO-LITE 0.57
0.57

1.81G
1.81G

7.94
19.82

ExpandNet-CL 4.48 28.59G 6.07

U-Net 7.76
7.76

389.26G
389.26G

8.25
8.25

ExpandNet-CL 82.97 2586.02G 2.98

Computational overheads and complexity analysis.

To evaluate the influence of r on the complexity of training, we report the number of param-

eters, MACs and wall-clock training time of a SmallNet with kernel size 7 on CIFAR-10 on

a single 12G TITAN V. As shown in Table 2.7, our expansion strategies better leverage GPU

computation, thus leading to only moderate wall-clock time increases as r grows, particularly

for our CK strategy. We also provide further comparisons of the complexity of our expanded

networks and of the original ones in terms of number of parameters, MACs and GPU speed

with full use of GPUs for both training and testing in Table 2.8. During training, because our
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Figure 2.5: Loss landscape plots on CIFAR-10 (We report top-1 error (%)).

approach introduces more parameters, inference is 2 to 5 times slower than in the original net-

work for an expansion rate of 4. Overall, as for very compact networks, our ExpandNets better

exploit the GPU to make full use of its capacity, leading to similar training time to the original

networks. For larger networks, such as MobileNets in Table 2.3, the GPU usage saturates, and

thus the training time of ExpandNets increases. Nevertheless, since our ExpandNets can be

contracted back to the original network, at test time, they have exactly the same number of

parameters, MACs and inference time as the original networks, but our networks achieve

better performance.

2.5.2 Generalization Ability

We then analyse the generalization ability of our approach. To this end, we first study the loss

landscapes using the method in (Li et al., 2018). We plot the loss landscapes of SmallNets and

corresponding ExpandNets on CIFAR-10 in Figure 2.5, showing that our ExpandNets with CL

and CK expansion produce flatter minima, which, as discussed in (Li et al., 2018), indicates

better generalization.

As a second study of generalization, we evaluate the memorization ability of our ExpandNets

on corrupted datasets, as suggested by Zhang et al. (2017). To this end, we utilize the open-

source implementation of (Zhang et al., 2017) to generate three CIFAR-10 and CIFAR-100

training sets, containing 20%, 50% and 80% of random labels, respectively, while the test set

remains clean.
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Table 2.9: Generalization ability on Corrupted CIFAR-10. We report the top-1 error (%). Note
that our ExpandNets yield smaller generalization errors than the compact network in almost
all cases involving convolutional expansion. By contrast expanding FC layers often does not
help.

Dataset Model
Kernel size k

3 5
Best Test Last Test Train Best Test Last Test Train

20%

SmallNet 22.20±0.43 22.33±0.40 34.85±0.18 20.90±0.16 21.09±0.20 32.05±0.31
FC(Arora18) 22.40±0.29 22.61±0.27 35.12±0.07 20.87±0.29 21.06±0.26 32.04±0.12

ExpandNet-CL 21.55±0.27 21.71±0.30 34.89±0.26 20.47±0.46 20.62±0.43 31.80±0.23
ExpandNet-CK N /A N /A N /A 19.42±0.20 19.63±0.17 31.55±0.25

50%

SmallNet 25.74±0.25 25.94±0.15 56.48±0.25 25.38±0.45 25.68±0.52 54.49±0.41
FC(Arora18) 25.54±0.47 25.80±0.41 56.37±0.15 25.36±0.63 25.71±0.77 54.44±0.08

ExpandNet-CL 25.48±0.35 25.66±0.43 56.41±0.33 24.27±0.33 24.63±0.44 54.29±0.24
ExpandNet-CK N /A N /A N /A 22.82±0.27 23.00±0.29 53.93±0.23

80%

SmallNet 37.49±0.62 37.87±0.63 77.46±0.16 37.99±0.64 39.33±0.75 76.14±0.15
FC(Arora18) 37.26±0.16 37.63±0.14 77.54±0.07 38.35±0.59 39.61±0.87 76.51±0.15

ExpandNet-CL 35.86±0.43 36.05±0.44 77.56±0.11 36.75±0.64 38.08±0.50 76.09±0.11
ExpandNet-CK N /A N /A N /A 33.29±1.04 34.24±0.85 75.77±0.22

Dataset Model
Kernel size k

7 9
Best Test Last Test Train Best Test Last Test Train

20%

SmallNet 21.64±0.36 21.98±0.42 30.42±0.32 22.56±0.39 22.93±0.18 29.61±0.36
FC(Arora18) 21.92±0.23 22.35±0.43 30.39±0.19 22.95±0.39 23.48±0.38 29.83±0.34

ExpandNet-CL 21.25±0.41 21.54±0.40 30.36±0.24 22.13±0.49 22.73±0.53 29.76±0.19
ExpandNet-CK 19.11±0.33 19.30±0.35 31.14±0.11 19.32±0.31 19.55±0.30 31.65±0.17

50%

SmallNet 26.99±0.69 27.87±0.71 53.27±0.21 28.64±0.46 30.44±0.57 52.67±0.45
FC(Arora18) 26.86±0.46 28.23±0.61 53.14±0.20 28.46±0.43 30.89±0.38 52.51±0.36

ExpandNet-CL 26.05±0.31 26.99±0.15 53.21±0.16 27.42±0.35 29.28±0.50 52.67±0.27
ExpandNet-CK 22.43±0.47 22.61±0.49 53.74±0.16 22.77±0.14 22.99±0.15 54.37±0.12

80%

SmallNet 39.08±0.41 43.33±0.77 74.69±0.26 41.73±0.58 47.96±1.07 74.01±0.32
FC(Arora18) 40.51±0.39 44.82±0.62 75.38±0.23 42.31±0.46 49.36±1.44 74.59±0.35

ExpandNet-CL 39.40±0.93 42.77±0.96 75.24±0.22 41.44±0.46 46.75±0.49 74.46±0.08
ExpandNet-CK 32.62±0.28 33.86±0.37 75.65±0.16 33.29±0.58 33.75±0.49 76.27±0.23

In Tables 2.9 and 2.10 by using different networks with kernel sizes of 3, 5, 7, 9, respectively, we

report the top-1 test errors of the best model and of the one after the last epoch, as well as the

training errors of the last model. Our method consistently improves the generalization error

gap across all kernel sizes and corruption rates (20%, 50%, 80%) and yields from around 1pp to

over 6pp error drop in testing. These results evidence that CL and CK expansion typically yields

lower test errors and higher training ones, which implies that our better results in the other

experiments are not due to simply memorizing the datasets, but truly to better generalization

ability.
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Table 2.10: Generalization ability on Corrupted CIFAR-100. We report the top-1 error (%).
Note that our ExpandNets yield smaller generalization errors than the compact network in
almost all cases involving convolutional expansion. By contrast expanding FC layers often
does not help.

Dataset Model
Kernel size k

3 5
Best Test Last Test Train Best Test Last Test Train

20%

SmallNet 55.30±0.42 55.48±0.41 62.20±0.31 53.95±0.33 54.16±0.34 58.53±0.30
FC(Arora18) 56.15±0.22 56.35±0.23 62.60±0.19 54.84±0.71 55.05±0.76 59.47±0.32

ExpandNet-CL 54.85±0.27 55.04±0.33 61.62±0.43 53.50±0.35 53.71±0.38 58.09±0.31
ExpandNet-CK N /A N /A N /A 51.98±0.28 52.10±0.26 57.67±0.63

50%

SmallNet 62.54±0.74 62.71±0.75 78.81±0.39 61.84±0.29 62.16±0.21 76.78±0.28
FC(Arora18) 63.65±0.50 63.88±0.47 79.40±0.18 62.99±0.69 63.21±0.60 77.85±0.31

ExpandNet-CL 61.95±0.61 62.11±0.59 78.78±0.48 61.49±0.39 61.70±0.43 76.73±0.26
ExpandNet-CK N /A N /A N /A 58.96±0.32 59.14±0.41 76.24±0.30

80%

SmallNet 78.35±0.83 78.52±0.86 93.78±0.18 78.59±0.27 78.81±0.35 93.10±0.12
FC(Arora18) 80.36±0.55 80.47±0.55 94.38±0.12 80.97±0.51 81.15±0.53 94.10±0.16

ExpandNet-CL 79.44±0.72 79.66±0.75 94.02±0.16 79.87±0.29 80.04±0.29 93.59±0.20
ExpandNet-CK N /A N /A N /A 77.22±0.47 77.38±0.41 93.15±0.25

Dataset Model
Kernel size k

7 9
Best Test Last Test Train Best Test Last Test Train

20%

SmallNet 55.36±0.44 55.66±0.43 56.33±0.51 56.59±0.72 57.26±0.64 55.16±0.32
FC(Arora18) 56.31±0.78 56.58±0.77 57.93±0.29 57.82±0.23 58.07±0.22 57.09±0.52

ExpandNet-CL 54.87±0.47 55.22±0.55 55.52±0.49 56.05±0.75 56.51±0.76 54.99±0.48
ExpandNet-CK 51.24±0.60 51.40±0.66 56.40±0.21 52.36±0.54 52.55±0.47 57.76±0.50

50%

SmallNet 63.76±0.59 64.08±0.58 75.45±0.23 64.83±0.41 65.63±0.40 75.21±0.31
FC(Arora18) 64.54±0.72 64.91±0.55 76.75±0.39 66.11±0.45 66.73±0.41 76.44±0.40

ExpandNet-CL 63.36±0.49 63.73±0.54 75.25±0.45 64.36±0.54 65.25±0.37 74.84±0.28
ExpandNet-CK 58.74±0.25 58.98±0.20 75.24±0.24 60.42±0.86 60.65±0.86 76.73±0.40

80%

SmallNet 79.73±0.47 79.95±0.36 92.58±0.20 81.02±0.92 81.70±0.97 92.54±0.26
FC(Arora18) 82.97±0.83 83.20±0.83 94.13±0.34 83.42±0.72 83.82±0.71 93.94±0.35

ExpandNet-CL 80.79±0.54 81.09±0.62 93.22±0.30 81.02±0.44 81.58±0.46 93.25±0.56
ExpandNet-CK 78.51±0.41 78.64±0.36 93.24±0.15 80.15±0.50 80.32±0.55 94.04±0.21

2.5.3 Is Over-parameterization the Key to the Success?

In the previous experiments, we have shown the good training behavior and generalization

ability of our expansion strategies. Below, we explore and reject two hypotheses other than

over-parameterization that could be thought to explain our better results.

Hypothesis 1: The improvement comes from the different initialization resulting from expan-

sion.

The standard (e.g., Kaiming) initialization of our ExpandNets is in fact equivalent to a non-

standard initialization of the compact network. In other words, an alternative would consist

of initializing the compact network with an untrained algebraically-contracted ExpandNet. To

investigate the influence of such different initialization schemes, we conduct several experi-

ments on CIFAR-10, CIFAR-100 and ImageNet.

The results are provided in Table 2.11. On CIFAR-10, the compact networks initialized with

FC(Arora18) and ExpandNet-CL yield slightly better results than training the corresponding

ExpandNets. However, the same trend does not occur on CIFAR-100 and ImageNet, where, with
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Table 2.11: Top-1 accuracy (%) of compact networks initialized with different ExpandNets on
CIFAR-10, CIFAR-100 and ImageNet.

Model Initialization CIFAR-10 CIFAR-100

SmallNet

Standard 78.63±0.41 46.63±0.27
FC(Arora18) 79.09±0.56 46.52±0.36

ExpandNet-CL 78.65±0.36 46.65±0.47
ExpandNet-CL+FC 78.81±0.52 46.43±0.72

ExpandNet-CK 78.84±0.30 46.56±0.23
ExpandNet-CK+FC 79.27±0.29 46.62±0.29

ExpandNet-CK+FC Standard 80.31±0.27 48.62±0.47

Model Initialization ImageNet

MobileNet Standard 66.48
MobileNet ExpandNet-CL 66.44
ExpandNet-CL Standard 69.40

MobileNetV2 Standard 63.75
MobileNetV2 ExpandNet-CL 63.07
ExpandNet-CL Standard 65.62

ShuffleNetV2 0.5× Standard 56.89
ShuffleNetV2 0.5× ExpandNet-CL 56.91
ExpandNet-CL Standard 57.38

Table 2.12: Top-1 accuracy (%) of SmallNet with 7×7 kernels vs ExpandNets with different r s
on CIFAR-10 and CIFAR-100.

r #params(K)† CIFAR-10 CIFAR-100

0.25 37.91/43.76 72.32±0.62 39.23±0.84
0.50 42.81/48.66 76.77±0.36 43.68±0.51
0.75 48.43/54.28 78.70±0.42 46.41±0.52
1.00 54.77/60.62 79.22±0.52 47.25±0.40

SmallNet 66.19/72.04 78.63±0.41 46.63±0.27

2.0 87.32/93.17 79.97±0.18 48.13±0.42
4.0 187.0/192.8 80.27±0.24 48.55±0.51

† #params(K) denotes the number of parameters (CIFAR-10 / CIFAR-100).

ExpandNet initialization, MobileNet, MobileNetV2 and ShuffleNetV2 0.5× reach results similar

to or worse than standard initialization, while training ExpandNet-CL always outperforms the

baselines. Moreover, the compact networks initialized by ExpandNet-CK always yield worse

results than training ExpandNets-CK from scratch. This confirms that our results are not due

to a non-standard initialization.
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Hypothesis 2: The improvement is due to an intrinsic property of the CK expansion.

The amount of over-parameterization is directly related to the expansion rate r . Therefore,

if some property of the CK strategy was the sole reason for our better results, and not over-

parameterization, setting r ≤ 1 should be sufficient. To study this, we follow the same experi-

mental setting as for Table 2.2 but set r ∈ {0.25,0.50,0.75,1.0,2.0,4.0}. As shown in Table 2.12,

for r < 1, the performance of ExpandNet-CK drops by 6.38pp on CIFAR-10 and by 7.09pp on

CIFAR-100 as the number of parameters decreases. For r > 1, ExpandNet-CK consistently

outperforms SmallNet. Interestingly, with r = 1, ExpandNet-CK still yields better performance.

This shows that our method benefits from both ExpandNet-CK and over-parameterization.

2.6 Ablation Study

In this part, we conduct multiple ablation study to further evidence the effectiveness of our

proposed ExpandNets. We provide an ablation study to analyze the influence of different

expansion strategies and expansion rates.

2.6.1 Hyper-parameter Choices

In this section, we evaluate the influence of the hyper-parameters of our approach, i.e., the

expansion rate r and the kernel size k. We study the behavior of our different expansion

strategies, FC, CL and CK, separately, when varying the expansion rate r ∈ {2,4,8} and the

kernel size k ∈ {3,5,7,9}. Compared to our previous CIFAR-10 and CIFAR-100 experiments,

we use a deeper network with an extra convolutional layer with 64 channels, followed by a

batch normalization layer, a ReLU layer and a 2×2 max pooling layer. We use SGD with a

momentum of 0.9 and a weight decay of 0.0005 for 150 epochs. The initial learning rate was

0.01, divided by 10 at epoch 50 and 100. Furthermore, we used zero-padding to keep the size

of the input and output feature maps of each convolutional layer unchanged.

The results of these experiments are provided in Table 2.13. We observe that our different

strategies to expand convolutional layers outperform the compact network in almost all cases,

while only expanding fully-connected layers doesn’t work well. In particular, for kernel sizes

k > 3, ExpandNet-CK yields consistently higher accuracy than the corresponding compact

network, independently of the expansion rate. For k = 3, where ExpandNet-CK is not appli-

cable, ExpandNet-CL comes as an effective alternative, also consistently outperforming the

baseline. In almost all cases, the performance of convolutional expansions improves as the

expansion rate increases.

2.6.2 Initializing ExpandNets

As demonstrated by our experiments in Section 2.4, training an ExpandNet from scratch yields

consistently better results than training the original compact network. However, with deep
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Table 2.13: Small networks vs ExpandNets on CIFAR-10 (Top) and CIFAR-100 (Bottom). We
report the top-1 accuracy for the original compact networks and for different versions of our
approach. Note that our ExpandNets yield higher accuracy than the compact network in
almost all cases involving expanding convolutions. By contrast expanding FC layers does often
not help.

Model r
Kernel size k

3 5 7 9

SmallNet 79.34±0.42 81.25±0.14 81.44±0.20 80.08±0.48

FC(Arora18)
2 79.13±0.47 81.26±0.33 80.98±0.25 80.43±0.22
4 78.92±0.36 81.13±0.46 80.85±0.24 80.13±0.29
8 79.64±0.41 81.21±0.18 80.75±0.45 80.16±0.16

ExpandNet-CL
2 79.46±0.21 81.50±0.31 81.30±0.30 80.26±0.66
4 79.90±0.21 81.60±0.15 81.15±0.36 80.62±0.32
8 79.78±0.20 81.75±0.40 81.53±0.33 80.78±0.25

ExpandNet-CK
2 N /A 81.72±0.31 82.19±0.24 81.60±0.11
4 N /A 82.34±0.43 82.34±0.22 81.73±0.33
8 N /A 82.37±0.25 82.84±0.28 82.53±0.30

SmallNet 48.14±0.29 50.44±0.07 49.62±0.50 48.70±0.38

FC(Arora18)
2 47.21±0.46 48.39±0.77 47.88±0.41 46.36±0.34
4 47.44±0.66 48.92±0.47 48.43±0.56 46.90±0.34
8 47.55±0.25 49.44±0.65 48.66±0.49 47.15±0.28

ExpandNet-CL
2 47.68±0.85 50.39±0.45 49.78±0.33 48.68±0.70
4 48.25±0.13 50.68±0.27 49.81±0.31 48.87±0.65
8 48.93±0.13 50.95±0.42 49.95±0.37 48.85±0.42

ExpandNet-CK
2 N /A 51.18±0.44 51.09±0.41 50.40±0.35
4 N /A 52.13±0.36 51.82±0.67 50.62±0.65
8 N /A 52.05±0.59 52.48±0.54 51.57±0.15

networks, initialization can have an important effect on the final results. While designing an

initialization strategy specifically for compact networks is an unexplored research direction,

our ExpandNets can be initialized in a natural manner. To this end, we exploit the fact that

an ExpandNet has a natural nonlinear counterpart, which can be obtained by incorporating

a nonlinear activation function between each pair of linear layers. We therefore propose to

initialize the parameters of an ExpandNet by simply training its nonlinear counterpart and

transferring the resulting parameters to the ExpandNet. The initialized ExpandNet is then

trained in the standard manner.

We applied this initialization scheme to the SmallNets with 7×7 and 3×3 kernels used in our

CIFAR-10 and CIFAR-100 experiments, and report the results in Table 2.14, respectively, where

+Init denotes the use of our initialization strategy. We also report the result of this initialization

scheme on object detection in Table 2.15.

Note that this strategy yields an additional accuracy boost to our approach. In particular, since

31



Chapter 2. ExpandNets

Table 2.14: Top-1 accuracy (%) of SmallNet vs ExpandNets with the initialization with r = 4 on
CIFAR-10 and CIFAR-100 with 3×3 kernels and with 7×7 kernels(bottom).

Model Transfer CIFAR-10 CIFAR-100

SmallNet (3×3) w/o KD 73.32±0.20 40.40±0.60
SmallNet (3×3) w/ KD 73.34±0.31 40.46±0.56

ExpandNet-CL
w/o KD

73.96±0.30 40.91±0.47
ExpandNet-CL+FC 74.45±0.29 41.12±0.49

ExpandNet-CL+FC+Init 75.16±0.23 42.41±0.21

ExpandNet-CL+FC
w/ KD

74.52±0.37 41.51±0.49
ExpandNet-CL+FC+Init 75.17±0.51 42.67±0.67

SmallNet (7×7) w/o KD 78.63±0.41 46.63±0.27
SmallNet (7×7) w/ KD 78.97±0.37 47.04±0.35

ExpandNet-CL+FC

w/o KD

79.11±0.23 46.66±0.43
ExpandNet-CL+FC+Init 79.98±0.28 47.98±0.48

ExpandNet-CK+FC 80.31±0.27 48.62±0.47
ExpandNet-CK+FC+Init 80.81±0.27 49.82±0.25

ExpandNet-CL+FC

w/ KD

79.60±0.25 47.41±0.51
ExpandNet-CL+FC+Init 80.29±0.25 48.62±0.34

ExpandNet-CK+FC 80.63±0.31 49.13±0.45
ExpandNet-CK+FC+Init 81.21±0.17 50.37±0.39

YOLO-LITE is very compact, this scheme boosts performance by more than 4pp.

Table 2.15: YOLO-LITE vs ExpandNets with r =
4 on the PASCAL VOC2007 test set.

Model mAP(%)

YOLO-LITE 27.34

ExpandNet-CL 30.97

ExpandNet-CL+Init 35.14

Note that, on ImageNet and Cityscapes, the

nonlinear counterparts of the ExpandNets

did not outperform the ExpandNets, and

thus we did not use our initialization strategy.

As a general rule, when the nonlinear coun-

terparts achieves better performance than

the ExpandNets, we recommend using them

for initialization. This suggests interesting

directions for future research on the initial-

ization of our ExpandNets and of compact

networks in general.

2.6.3 Knowledge Transfer with ExpandNets

In Section 2.4, we claim that our ExpandNet strategy is complementary to knowledge transfer.

Following (Passalis and Tefas, 2018), on CIFAR-10, we make use of the ResNet18 as teacher.

Furthermore, we also use the same compact network with kernel size 3×3 and training setting
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Table 2.16: Knowledge transfer from the ResNet18 on CIFAR-10. Using ExpandNets as
student networks yields consistently better results than directly using SmallNet.

Network Transfer Top-1 Accuracy

SmallNet Baseline 73.32±0.20

SmallNet
KD 73.34±0.31

Hint 33.71±4.35
PKT 68.36±0.35

ExpandNet
KD 74.52±0.37

Hint 52.46±2.43
(CL+FC) PKT 70.97±0.70

ExpandNet
KD 75.17±0.51

Hint 58.27±3.83
(CL+FC+Init) PKT 71.65±0.41

Table 2.17: Top-1 accuracy (%) of AlexNet vs ExpandNets with r = 4 on the ILSVRC2012
validation set for different number of channels in the last convolutional layer. Note that,
while our expansion strategy always helps, its benefits decrease as the original model grows.

# Channels 128 256 (Original) 512

Baseline 46.72 54.08 58.35
ExpandNet-CK 49.66 55.46 58.75

↑ 2.94 1.38 0.4

as in (Passalis and Tefas, 2018). In Table 2.16, we compare the results of different knowledge

transfer strategies, including knowledge distillation (KD) (Hinton et al., 2015), hint-based

transfer (Hint)(Romero et al., 2014) and probabilistic knowledge transfer (PKT) (Passalis and

Tefas, 2018), applied to the compact network and to our ExpandNets, without and with our

initialization scheme. Note that using knowledge transfer with our ExpandNets, with and with-

out initialization, consistently outperforms using it with the compact network. Altogether, we

therefore believe that, to train a given compact network, one should really use both knowledge

transfer and our ExpandNets to obtain the best results.

2.6.4 Working with Larger Networks

We also evaluate the use of our approach with a larger network. To this end, we make use of

AlexNet (Krizhevsky et al., 2012a) on ImageNet. AlexNet relies on kernels of size 11 and 5 in its

first two convolutional layers, which makes our CK expansion strategy applicable.

We use a modified, more compact version of AlexNet, where we replace the first fully-connected

layer with a global average pooling layer, followed by a 1000-class fully-connected layer with

softmax. To evaluate the impact of the network size, we explore the use of different dimen-
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sions, [128,256,512], for the final convolutional features. We trained the resulting AlexNets and

corresponding ExpandNets using the same training regime as for our MobileNets experiments

in Section 2.4.

As shown in Table 2.17, while our approach outperforms the baseline AlexNets for all feature

dimensions, the benefits decrease as the feature dimension increases. This indicates that our

approach is better suited for truly compact networks, and developing similar strategies for

deeper ones will be the focus of our future research.

2.7 Discussion

In this section, we discuss in more detail the two works that are most closely related to ours.

These two works also evidence the benefits of linear over-parameterization, thus strengthening

our argument, but differ significantly from ours in terms of specific strategy. Note that, as

shown by our experiments, our approach outperforms theirs. Furthermore, we also provide

a concrete example of the matrix representation of a convolution operator and provide the

source code in Appendix A.

2.7.1 Discussion of (Arora et al., 2018)

Arora et al. (2018) worked mostly with purely linear, fully-connected models, with only one

example using a nonlinear model, where again only the fully-connected layer was expanded.

By contrast, we focus on practical, nonlinear, compact convolutional networks, and we propose

two ways to expand convolutional layers, which have not been studied before. As shown

by our experiments and ablation study, our convolutional linear expansion strategies yield

better solutions than vanilla training, with higher accuracy, more zero-centered gradient

cosine similarity during training and minima that generalize better. This is in general not

the case when expanding the fully-connected layers only, as proposed by Arora et al. (2018).

Furthermore, in contrast with (Arora et al., 2018), who only argue that depth speeds up

convergence, we empirically show, by using different expansion rates, that increasing width

helps to reach better solutions. We now discuss in more detail the only experiment in (Arora

et al., 2018) with a nonlinear network.

In their paper, Arora et al. (2018) performed a sanity test on MNIST with a CNN, but only ex-

panding the fully-connected layer. According to our experiments, expanding fully-connected

layers only (denoted as FC(Arora18) in our results) is typically insufficient to outperform

vanilla training of the compact network. This was confirmed by using their code, with which

we found that, in their setting, the over-parameterized model yields higher test error. We

acknowledge that Arora et al. (2018) did not claim that expansion led to better results but sped

up convergence. Nevertheless, this seemed to contradict our experiments, in which our FC

expansion was achieving better results than that of (Arora et al., 2018).
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Figure 2.6: Product L2 vs Normal L2 (best viewed in color). Top Left: Training curves of the
overall loss function. Top Right: Training curves of the cross-entropy. Bottom Left: Curves of
training errors. Bottom Right: Curves of test errors. (Note that the y-axis is in log scale.)

While analyzing the reasons for this, we found that Arora et al. (2018) used a different weight

decay regularizer than us. Specifically, considering a single fully-connected layer expanded

into two, this regularizer is defined as

Lr = ∥W̃ f c∥2
2 = ∥W f c1W f c2∥2

2 , (2.5)

where W f c1 and W f c2 represent the parameter matrices of the two fully-connected layers after

expansion. That is, the regularizer is defined over the product of these parameter matrices.

While this corresponds to weight decay on the original parameter matrix, without expansion, it

contrasts with usual weight decay, which sums over the different parameter matrices, yielding

a regularizer of the form

Lr = ∥W f c1∥2
2 +∥W f c2∥2

2 . (2.6)

The product L2 norm regularizer used by Arora et al. (2018) imposes weaker constraints on the

individual parameter matrices, and we observed their over-parameterized model to converge

to a worse minimum and lead to worse test performance when used in a nonlinear CNN.

To evidence this, in Figure 2.6, we compare the original model with an over-parameterized one
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relying on a product L2 regularizer as in (Arora et al., 2018), and with an over-parameterized
network with normal L2 regularization, corresponding to our FC expansion strategy. Even
though the overall loss of Arora et al. (2018)’s over-parameterized model decreases faster
than that of the baseline, the cross-entropy loss term, the training error and the test error
do not show the same trend. The test errors of the original model, Arora et al. (2018)’s over-
parameterized model with product L2 norm and our ExpandNet-FC with normal L2 norm
are 0.9%, 1.1% and 0.8%, respectively. Furthermore, we also compare Arora et al. (2018)’s
over-parameterized model and our ExpandNet-FC with an expansion rate r = 2. We ob-
serve that Arora et al. (2018)’s over-parameterized model performs even worse with a larger
expansion rate, while our ExpandNet-FC works well.

Note that, in the experiments and ablation study part above, the models denoted by FC(Arora18)
rely on a normal L2 regularizer, which we observed to yield better results and makes the com-
parison fair as all models then use the same regularization strategy.

2.7.2 Discussion of ACNet (Ding et al., 2019)

k

k

k

k

1

1

k

k
+

Figure 2.7: One ACNet block (best
viewed in color).

The work of Ding et al. (2019), concurrent to ours, also
proposed a form of expansion of convolutions. Specifi-
cally, as shown in Figure 2.7, their approach consists of
replacing a convolutional layer with k £k kernels with
three parallel layers: One with the same square k £k
kernel, and two with 1D asymmetric convolutions of
size 1£k and k£1. These three different convolutions
are then applied in parallel on the same input feature
map, and their outputs are combined via addition.

As argued in (Ding et al., 2019), the goal of this op-
eration is to increase the representation power of a
standard square kernel by strengthening the kernel skeletons. While effective, the over-
parameterization resulting from this approach remains limited; by using 1D convolutions in
parallel to the original ones, it can only add 2kmn parameters for every k £k kernel with m
input and n output channels. By contrast, by incorporating new convolutional layers in a serial
manner, we can modify the number of channels of the intermediate layers so as to increase the
number of parameters of the network much more drastically, and in a much more flexible way,
thanks to our expansion rate. Specifically, with an expansion rate r , our CL expansion strategy
yield r m2+k2r 2mn+r n2 parameters instead of k2mn for the original convolution. Ultimately,
while ACNet can indeed improve the image classification performance, as shown in (Ding
et al., 2019) and confirmed by our experiments, the greater flexibility of our approach yields
significantly better results, particularly for networks relying on depthwise convolutions, as
evidenced by our ImageNet results, and networks with kernel sizes larger than 3, as evidenced
by our results with a SmallNet with 7£7 kernels. Furthermore, note that, in contrast to Arora

36
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et al. (2018) and Ding et al. (2019), we also demonstrate the effectiveness of our expansion

strategy on object detection and semantic segmentation.

2.7.3 Matrix Representation of a Convolution Operator

We provide an example of the matrix representation of a convolutional layer, following Eq. 2.1

in the Section 2.3. Given an input X1×1×3×3 and convolutional filters F1×1×2×2, expressed as

X1×1×3×3 =




x11 x12 x13

x21 x22 x23

x31 x32 x33




 , F1×1×2×2 =
[[[

k11 k12

k21 k22

]]]
, (2.7)

the matrix representation of a convolution can be obtained by vectorizing the input as

Xv
9×1 =

[
x11 x12 x13 x21 x22 x23 x31 x32 x33

]T
, (2.8)

and by defining a highly-structured matrix containing the filters as

W F
4×9 =


k11 k12 0 k21 k22 0 0 0 0

0 k11 k12 0 k21 k22 0 0 0

0 0 0 k11 k12 0 k21 k22 0

0 0 0 0 k11 k12 0 k21 k22

 . (2.9)

Then, the convolution operation (∗) can be equivalently written as

Y1×1×2×2 =X1×1×3×3 ∗F1×1×2×2 = reshape(W F
4×9 ×Xv

9×1) , (2.10)

where × denotes the standard matrix-vector product.

To contract an ExpandNet, one can then compute the matrix product of its expanded layers

to obtain a single matrix representing these multiple operations. This matrix can then be

transferred back to a standard convolution filter tensor representation following the reverse

strategy to the one explained above. For the details of how we contract our ExpandNets in

practice, we invite the reader to check our published code (https://github.com/GUOShuxuan/

expandnets.). Note that, in our implementation, we take advantage of the Pytorch tensor

operators.

2.8 Conclusion

We have introduced an approach to training a given compact network from scratch by ex-

ploiting linear over-parameterization in this chapter. Specifically, we have shown that over-

parameterizing the network linearly facilitates the training of compact networks, particularly
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Chapter 2. ExpandNets

when linearly expanding convolutional layers. Our analysis has further evidenced that over-

parameterization is the key to the success of our approach, improving both the training

behavior and generalization ability of the networks, and ultimately leading to better perfor-

mance at inference without any increase in computational cost. Our technique is general

and can also be used in conjunction with knowledge transfer approaches to further boost

performance. Finally, as shown in our ablation study, initializing an ExpandNet with its trained

nonlinear counterpart can further boost its results. This motivates us to investigate the design

of other effective initialization schemes for compact networks in the future.
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3 Distilling Image Classifiers in Object
Detectors

We have shown the generality of our ExpandNets in the former chapter not only on multiple

visual recognition tasks, but also used in conjunction with several knowledge distillation

approaches. In this chapter, we dive into knowledge distillation itself, focusing on the task of

object detection. The knowledge distillation literature remains limited to the scenario where

the student and the teacher tackle the same task. In this chapter, we investigate the problem

of transferring knowledge not only across architectures but also across tasks. To this end, we

study the case of object detection and, instead of following the standard detector-to-detector

distillation approach, introduce a classifier-to-detector knowledge transfer framework. In

particular, we propose strategies to exploit the classification teacher to improve both the

detector’s recognition accuracy and localization performance. Our experiments on several

detectors with different backbones demonstrate the effectiveness of our approach, allowing

us to outperform the state-of-the-art detector-to-detector distillation methods.

The contents of this chapter are mainly from the following paper. I am the primary contributor.

• Guo, S., Alvarez, J. M., and Salzmann, M. (2021b). Distilling image classifiers in object

detectors. Advances in Neural Information Processing Systems ( NeurIPS2021).

3.1 Introduction

Object detection plays a critical role in many real-world applications, such as autonomous

driving and video surveillance. While deep learning has achieved tremendous success in

this task (Lin et al., 2017b; Liu et al., 2016; Redmon and Farhadi, 2018; Ren et al., 2015; Yang

et al., 2019), the speed-accuracy trade-off of the resulting models remains a challenge. This

is particularly important for real-time prediction on embedded platforms, whose limited

memory and computation power impose strict constraints on the deep network architecture.

To address this, much progress has recently been made to obtain compact deep networks.

Existing methods include pruning (Alvarez and Salzmann, 2016, 2017; Han et al., 2016; Lee

et al., 2019; Ullrich et al., 2017) and quantization (Courbariaux et al., 2016; Rastegari et al.,
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2016; Zhao et al., 2019), both of which aim to reduce the size of an initial deep architecture, as

well as knowledge distillation, whose goal is to exploit a deep teacher network to improve the

training of a given compact student one. In this chapter, we introduce a knowledge distillation

approach for object detection.

While early knowledge distillation techniques (Hinton et al., 2015; Romero et al., 2014; Tian

et al., 2020) focused on the task of image classification, several attempts have nonetheless

been made for object detection. To this end, existing techniques (Chen et al., 2017b; Guo

et al., 2021a; Wang et al., 2019) typically leverage the fact that object detection frameworks

consist of three main stages depicted by Figure 3.1(a): A backbone to extract features; a neck

to fuse the extracted features; and heads to predict classes and bounding boxes. Knowledge

distillation is then achieved using a teacher with the same architecture as the student but a

deeper and wider backbone, such as a Faster RCNN (Ren et al., 2015) with ResNet152 (He et al.,

2016) teacher for a Faster RCNN with ResNet50 student, thus facilitating knowledge transfer

at all three stages of the frameworks. To the best of our knowledge, Zhang and Ma (2021)

constitutes the only exception to this strategy, demonstrating distillation across different

detection frameworks, such as from a RetinaNet (Lin et al., 2017b) teacher to a RepPoints (Yang

et al., 2019) student. This method, however, requires the teacher and the student to rely on a

similar detection strategy, i.e., both must be either one-stage detectors or two-stage ones, and,

more importantly, still follows a detector-to-detector approach to distillation. In other words,

the study of knowledge distillation remains limited to transfer across architectures tackling

the same task. Our classification teacher tackles a different task from the detection student

and is trained in a different manner but on the same dataset. Therefore, the classification

teacher is capable of providing a different knowledge to the student, for both classification

and localization, than that extracted by a detection teacher.

In this chapter, we investigate the problem of transferring knowledge not only across ar-

chitectures but also across tasks. In particular, we observed that the classification head of

state-of-the-art object detectors still typically yields inferior performance compared to what

can be expected from an image classifier. Thus, as depicted by Figure 3.1(b), we focus on

the scenario where the teacher is an image classifier while the student is an object detector.

We then develop distillation strategies to improve both the recognition accuracy and the

localization ability of the student.

Our contributions in this chapter can thus be summarized as follows:

• We introduce the idea of classifier-to-detector knowledge distillation to improve the

performance of a student detector using a classification teacher.

• We propose a distillation method to improve the student’s classification accuracy, appli-

cable when the student uses either a categorical cross-entropy loss or a binary cross-

entropy one.

• We develop a distillation strategy to improve the localization performance of the student

be exploiting the feature maps from the classification teacher.
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We demonstrate the effectiveness of our approach on the COCO2017 benchmark (Lin et al.,

2014) using diverse detectors, including the relatively large two-stage Faster RCNN and single-

stage RetinaNet used in previous knowledge distillation works, as well as more compact

detectors, such as SSD300, SSD512 (Liu et al., 2016) and Faster RCNNs(Ren et al., 2015)

with lightweight backbones. Our classifier-to-detector distillation approach outperforms

the detector-to-detector distillation ones in the presence of compact students, and helps

to further boost the performance of detector-to-detector distillation techniques for larger

ones, such as Faster RCNN and RetinaNet with a ResNet50 backbone. Our code is avlaible at:

https://github.com/NVlabs/DICOD.

3.2 Knowledge Distillation in Object Detection

Object detection is one of the fundamental tasks in computer vision, aiming to localize the

objects observed in an image and classify them. Recently, much progress has been made via

the development of both one-stage (Duan et al., 2019; Law and Deng, 2018; Liu et al., 2016;

Redmon and Farhadi, 2018; Tian et al., 2019) and two-stage (Cai and Vasconcelos, 2018; He

et al., 2017a; Lin et al., 2017a; Ren et al., 2015) deep object detection frameworks, significantly

improving the mean average precision (mAP) on standard benchmarks (Everingham et al.,

2007, 2012; Lin et al., 2014). However, the performance of these models typically increases

with their size, and so does their inference runtime. This conflicts with their deployment on

embedded platforms, such as mobile phones, drones, and autonomous vehicles, which involve

computation and memory constraints. While some efforts have been made to design smaller

detectors, such as SSD (Liu et al., 2016), YOLO (Redmon and Farhadi, 2018) and detectors with

lightweight backbones (Howard et al., 2017; Sandler et al., 2018), the performance of these

methods does not match that of deeper ones.

Knowledge distillation offers the promise to boost the performance of such compact networks

by exploiting deeper teacher architectures. Early work in this space focused on the task of

image classification. In particular, Hinton et al. (2015) proposed to distill the teacher’s class

probability distribution into the student, and Romero et al. (2014) encouraged the student’s

intermediate feature maps to mimic the teacher’s ones. These initial works were followed by a

rapid growth in the number of knowledge distillation strategies, including methods based on

attention maps (Zagoruyko and Komodakis, 2017), on transferring feature flows defined by

the inner product of features (Yim et al., 2017), and on contrastive learning to structure the

knowledge distilled from teacher to the student (Tian et al., 2020). Heo et al. (2019a) proposed

a synergistic distillation strategy aiming to jointly leverage a teacher feature transform, a

student feature transform, the distillation feature position and a better distance function.

Compared to image classification, object detection poses the challenge of involving both

recognition and localization. As such, several works have introduced knowledge distillation

methods specifically tailored to this task. This trend was initiated by Chen et al. (2017b),

which proposed to distill knowledge from a teacher detector to a student detector in both
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the backbone and head stages. Then, Wang et al. (2019) proposed to restrict the teacher-

student feature imitation to regions around positive anchor boxes; Dai et al. (2021) produced

general instances based on both the teacher’s and student’s outputs, and distilled feature-

based, relation-based and response-based knowledge in these general instances; Guo et al.

(2021a) proposed to decouple the intermediate features and classification predictions of the

positive and negative regions during knowledge distillation. All the aforementioned knowledge

distillation methods require the student and the teacher to follow the same kind of detection

framework, and thus typically transfer knowledge between models that only differ in terms of

backbone, such as from a RetinaNet-ResNet152 to a RetinaNet-ResNet50. In (Zhang and Ma,

2021), such a constraint was relaxed via a method able to transfer knowledge across the feature

maps of different frameworks. This allowed the authors to leverage the best one-stage, resp.

two-stage, teacher model to perform distillation to any one-stage, resp. two-stage, student.

This method, however, still assumes that the teacher is a detector.

In short, existing knowledge distillation methods for object detection all follow a detector-

to-detector transfer strategy. In fact, to the best of our knowledge, distillation has only been

studied across two architectures that tackle the same task, may it be image classification,

object detection, or even semantic segmentation (He et al., 2019a; Liu et al., 2019). In this

chapter, by contrast, we investigate the use of knowledge distillation across tasks and develop

strategies to distill the knowledge of an image classification teacher to an object detection

student.

3.3 Classifier-to-detector Distillation

Our goal is to investigate the transfer of knowledge from an image classifier to an object detec-

tor. As illustrated in Figure 3.1, this contrasts with existing knowledge distillation techniques

for object detection, which typically assume that the teacher and the student both follow a

similar three-stage detection pipeline. For our classifier-to-detector knowledge distillation to

be effective, we nonetheless need the student and teacher to process the same data and use the

same loss for classification. To this end, given a detection dataset Ddet depicting C foreground

object categories, we construct a classification dataset Dcl s by extracting all objects from Ddet

according to their ground-truth bounding boxes and labels. We then train our classification

teacher Ft , with parameters θt , on Dcl s in a standard classification manner. In the remainder

of this section, we introduce our strategies to exploit the resulting teacher to improve both the

classification and localization accuracy of the student detector Fs , with parameters θs .

3.3.1 KDcl s : Knowledge Distillation for Classification

Our first approach to classifier-to-detector distillation focuses on the classification accuracy

of the student network. To this end, we make use of the class-wise probability distributions

obtained by the teacher and the student, softened by making use of a temperature parameter

T . Below, we first derive our general formulation for distillation for classification, and then
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Figure 3.1: Overview of our classifier-to-detector distillation framework. (a) Existing meth-
ods perform distillation across corresponding stages in the teacher and student, which restricts
their applicability to detector-to-detector distillation. (b) By contrast, we introduce strategies
to transfer the knowledge from an image classification teacher to an object detection student,
improving both its recognition and localization accuracy.

discuss in more detail how we obtain the teacher and student class distributions for the two
types of classification losses commonly used by object detection frameworks.

Formally, given K positive anchor boxes or object proposals, which are assigned with one
of the ground-truth labels and bounding boxes during training, let ps,T

k denote the vector of
softened class probabilities for box k from the student network, obtained at temperature T ,
and let pt ,T

k denote the corresponding softened probability vector from the teacher network.
We express knowledge distillation for classification as a loss function measuring the Kullback-
Leibler (KL) divergence between the teacher and student softened distributions. This can be
written as

Lkd°cl s =
1
K

KX

k=1
KL(pt ,T

k “ ps,T
k ) . (3.1)

The specific way we define the probability vectors ps,T
k and pt ,T

k then depends on the loss
function that the student detector uses for classification. Indeed, existing detectors follow two
main trends: some, such as Faster RCNN and SSD, exploit the categorical cross-entropy loss
with a softmax, accouting for the C foreground classes and 1 background one; others, such as
RetinaNet, employ a form of binary cross-entropy loss with a sigmoid1, focusing only on the C
foreground classes. Let us now discuss these two cases in more detail.

1In essence, the RetinaNet focal loss follows a binary cross-entropy formulation.
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Categorical cross-entropy. In this case, for each positive object bounding box k, the student

detector outputs logits zs
k ∈ (C +1). We then compute the corresponding softened probability

for class c with temperature T as

p s,T
k (c|θs) = ez s

k,c /T∑C+1
j=1 ez s

k, j /T
, (3.2)

where zs
k,c denote the logit corresponding to class c. By contrast, as our teacher is a C -way

classifier, it produces logits z t
k ∈C . We thus compute its softened probability for class c as

p̃ t ,T
k (c|θt ) = ez t

k,c /T∑C
j=1 ez t

k, j /T
, (3.3)

and, assuming that all true objects should be classified as background with 0 probability,

augment the resulting distribution to account for the background class as p t ,T = [p̃ t ,T ,0].

The KL-divergence between the teacher and student softened distributions for object k can

then be written as

KL(p t ,T
k ∥ p s,T

k ) = T 2
C+1∑
c=1

p t ,T
k,c log p t ,T

k,c −p t ,T
k,c log p s,T

k,c . (3.4)

Binary cross-entropy. The detectors that rely on the binary cross-entropy output a score

between 0 and 1 for each of the C foreground classes, but, together, these scores do not form a

valid distribution over the C classes as they do not sum to 1. To nonetheless use them in a KL-

divergence measure between the teacher and student, we rely on the following strategy. Given

the student and teacher C -dimensional logit vectors for an object k, we compute softened

probabilities as

p̃ s,T
k (c|θs) = (1+e−z s

k,c /T )−1 ,

p̃ t ,T
k (c|θt ) = (1+e−z t

k,c /T )−1 .
(3.5)

We then build a 2-class (False-True) probability distribution for each category according to the

ground-truth label l of object k. Specifically, for each category c, we write

p s,T
k,c = [1− p̃ s,T

k,c , p̃ s,T
k,c ], (3.6)

for the student, and similarly for the teacher. This lets us express the KL-divergence for object

k as

KL(p t ,T
k ∥ p s,T

k ) = T 2

C

C∑
c=1

1∑
i=0

p t ,T
k,c (i ) log p t ,T

k,c (i )−p t ,T
k,c (i ) log p s,T

k,c (i ) , (3.7)

where p t ,T
k,c (i ) indicates the i -th element of the 2-class distribution p t ,T

k,c .
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3.3.2 KDloc : Knowledge Distillation for Localization

While, as will be shown by our experiments, knowledge distillation for classification already

helps the student detector, it does not aim to improve its localization performance. Never-

theless, localization, or bounding box regression, is critical for the success of a detector and

is typically addressed by existing detector-to-detector distillation frameworks (Chen et al.,

2017b; Dai et al., 2021). To also tackle this in our classifier-to-detector approach, we develop

a feature-level distillation strategy, exploiting the intuition that the intermediate features

extracted by the classification teacher from a bounding box produced by the student should

match those of the ground-truth bounding box.

Formally, given an input image I of size w ×h, let us denote by Bk = (x1, y1, x2, y2) the top-

left and bottom-right corners of the k-th bounding box produced by the student network.

Typically, this is achieved by regressing the offset of an anchor box or object proposal. We

then make use of a Spatial Transformer (Jaderberg et al., 2015) unit to extract the image region

corresponding to Bk . It is a non-parametric differentiable module that links the regressed

bounding boxes with the classification teacher to yield an end-to-end model during training.

Specifically, we compute the transformer matrix

Ak =
[

(x2 −x1)/w 0 −1+ (x1 +x2)/w

0 (y2 − y1)/h −1+ (y1 + y2)/h

]
, (3.8)

which allows us to extract the predicted object region Op
k with a grid sampling size s as

Op
k = fST (Ak , I , s) , (3.9)

where fST denotes the spatial transformer function. As illustrated in the right portion of

Figure 3.1(b), we then perform distillation by comparing the teacher’s intermediate features

within the predicted object region Op
k to those within its assigned ground-truth one Og t

k .

Specifically, for a given layer ℓ, we seek to compare the features F ℓ
t (Op

k ) and F ℓ
t (Og t

k ) of the

positive box k. To relax the pixel-wise difference between the features, we make use of the

adaptive pooling strategy of (McFee et al., 2018), which produces a feature map AP (F ℓ
t (O))

of a fixed size M ×W ×H from the features extracted within region O. We therefore write our

localization distillation loss as

L L
kd−l oc =

1

K LM HW

K∑
k=1

L∑
ℓ=1

1ℓ∥AP (F ℓ
t (Op

k ))− AP (F ℓ
t (Og t

k ))∥1 , (3.10)

where K is the number of positive anchor boxes or proposals, L is the number of layers at

which we perform distillation, 1l is the indicator function to denote whether the layer ℓ is used

or not to distill knowledge, and ∥ ·∥1 denotes the L1 norm. As both the spatial transformer and

the adaptive pooling operation are differentiable, this loss can be backpropagated through the

student detector.
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Note that, as a special case, our localization distillation strategy can be employed not only

on intermediate feature maps but on the object region itself (ℓ0), encouraging the student to

produce bounding boxes whose underlying image pixels match those of the ground-truth box.

This translates to a loss function that does not exploit the teacher and can be expressed as

L 0
kd−loc (Op ,Og t ) = 1

K M HW

K∑
k=1

∥AP (Op
k )− AP (Og t

k )∥1 . (3.11)

Depending on the output size of the adaptive pooling operation, this loss function encodes

a more-or-less relaxed localization error. As will be shown by our experiments, it can serve

as an attractive complement to the standard bounding box regression loss of existing object

detectors, whether using distillation or not.

3.3.3 Overall Training Loss

To train the student detector given the image classification teacher, we then seek to minimize

the overall loss

L =Ldet +λkcLkd−cl s +λkl Lkd−loc , (3.12)

where Ldet encompasses the standard classification and localization losses used to train the

student detector of interest. λkc and λkl are hyper-parameters setting the influence of each

loss.

3.4 Experiments

In this section, we first introduce how to train the classification teacher used in our method,

and then conduct a full study of our classification and localization distillation methods on

several compact detectors. Furthermore, we compare our classifier-to-detector approach

to the state-of-the-art detector-to-detector ones. Finally, we perform an extensive ablation

study of our method and analyze how it improves the class recognition and localization in

object detection. All models are trained and evaluated on MS COCO2017 (Lin et al., 2014). Our

implementation is based on MMDetection (Chen et al., 2019) with Pytorch (Paszke et al., 2019).

Together with MMDetection, we also use the MMCV library, which is a dependent library for

MMDetection. Otherwise specified, we take the ResNet50 as the classification teacher. We

will use the same teacher for all two-stage Faster RCNNs and one-stage RetinaNets in our

classifier-to-detector distillation method. We consider this to be an advantage of our method,

since it lets us use the same teacher for multiple detectors.

Codebase and Dataset

Here, we provide the details and licenses of the existing assets we used in our experiments,

such as the MS COCO2017 (Lin et al., 2014) dataset and the MMDetection (Chen et al., 2019)

codebase. Both of them are open source and available for non-commercial academic research.
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MS COCO2017 (Lin et al., 2014)2 is a large-scale object detection, segmentation, key-point

detection and captioning dataset. We use its detection benchmark, which consists of 118k

training images and 5k validation ones, depicting 80 foreground object classes. The annota-

tions for object detection are bounding boxes and object labels. In this work, we respect the

terms of use listed on the website. The annotations in this dataset, along with their website,

belong to the COCO Consortium and are licensed under a Creative Commons Attribution 4.0

License.

MMDetection (Chen et al., 2019)3 is an open source object detection toolbox based on Py-

torch (Paszke et al., 2019), which is released under the Apache 2.0 license. Together with

MMDetection, we also use the MMCV library4, which is a dependent library for MMDetection.

MMCV is mainly released under the Apache 2.0 license, while some specific operations in this

library fall under other licenses. Please refer to LICENSES.md in their website.

3.4.1 Training Classification Teachers

At the beginning, we provide the details of our experimental classification setup and of training

classification teachers.

Experimental setup. To train and validate our classification teachers, we use the MS

COCO2017 (Lin et al., 2014) detection dataset and crop all the objects according to their

ground-truth bounding boxes. The resulting classification dataset consists of 849,902 objects

for training and 36,334 objects for validation. We then train the teacher models in an image-

classification manner, using the same data augmentation strategy and loss function as the

student detector. Specifically, Faster RCNNs and RetinaNets share the same data augmenta-

tion methods, denoted as “general”, but use the categorical cross-entropy loss (CEL) and focal

loss (FL) for their classification heads, respectively; SSDs have their own data augmentation

strategy and use the categorical cross-entropy loss (CEL). To train this classification teacher, we

use the losses from Faster RCNN and RetinaNet frameworks jointly. Since SSDs use different

data augmentation, we train another ResNet50 classification teacher for them.

In our experiments, we take ResNet50 as the teacher model. In Section 3.5, we conduct an

ablation study with different teachers. Furthermore, we investigate the influence of different

input sizes to our classification teachers because the objects in object detection have different

resolutions than they typically have in image classification. Therefore, we train the classifi-

cation teacher with input sizes in [56×56,112×112,224×224]. Because Faster RCNNs and

RetinaNets share the same data augmentation, we train a teacher for both frameworks using

the two losses jointly. All the teacher models are trained using ImageNet-pretrained weights

for 90 epochs with an initial learning rate of 0.0001, divided by 10 at epoch 50.

2 https://cocodataset.org
3 https://github.com/open-mmlab/mmdetection
4 https://github.com/open-mmlab/mmcv
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Table 3.1: Top-1 accuracy of classification teacher ResNet50 on the COCO2017 classification
validation dataset.

Data Aug. + Loss
Input resolution

56 × 56 112 × 112 224 × 224

SSD + CEL 76.26 80.30 80.41
general + CEL 76.92 80.81 81.42

general + FL 72.86 77.50 77.04
general + CEL + FL 77.01 81.02 81.67

Results. In Table 3.1, we report the top-1 accuracy of our ResNet50 classification teacher on the

COCO2017 classification validation dataset. The teacher models trained with the categorical

cross-entropy loss benefit from larger input sizes, as shown by the top-1 accuracy increasing

by more than 4 points when the input size increases from 56 to 224. Surprisingly, with the

focal loss, increasing the input size to 224 yields slightly worse results than with an input of

size 112. Note that the teacher trained with the focal loss underperforms those trained with

categorical cross-entropy loss by more than 3 points. Furthermore, training the classification

teacher with both losses always yields better top-1 accuracy than training with a single loss.

To this end, we will use the same classification teacher for all two-stage Faster RCNNs and

one-stage RetinaNets in our classifier-to-detector distillation method. We consider this to be

an advantage of our method, since it lets us use the same teacher for multiple detectors.

3.4.2 Classifier-to-Detector Distillation on Compact Students

We then demonstrate the effectiveness of our classifier-to-detector distillation method on com-

pact detectors, namely, SSD300, SSD512 (Liu et al., 2016) and the two-stage Faster RCNN (Ren

et al., 2015) detector with lightweight backbones, i.e., MobileNetV2 (Sandler et al., 2018) and

Quartered-ResNet50 (QR50), obtained by dividing the number of channels by 4 in every layer

of ResNet50, reaching a 66.33% top-1 accuracy on ImageNet (Russakovsky et al., 2015).

Experimental setting. All object detectors are trained in their default settings on Tesla V100

GPUs. The SSDs follows the basic training recipe in MMDetection (Chen et al., 2019). The

lightweight Faster RCNNs are trained with a 1× training schedule for 12 epochs. Let us now

specify the details for the training settings of the compact student models. All experiments in

this chapter were performed on Tesla V100 GPUs.

SSD300 and SSD512. For data augmentation, we first apply photometric distortion transfor-

mations on the input image, then scale up the image by a factor chosen randomly between 1×
and 4× by filling the blanks with the mean values of the dataset. We then sample a patch from

the image so that the minimum IoU with the objects is in [0.1,0.3,0.5,0.7,0.9], with the precise

value chosen randomly. Afterwards, the sampled patch is resized to 300×300 or 512×512,

normalized by subtracting the mean values of the dataset, and horizontally flipped with a

48



3.4 Experiments

Table 3.2: Analysis of our classifier-to-detector distillation method with compact students
on the COCO2017 validation set. R50 is ResNet50, MV2 is MobileNetV2, QR50 is quartered
ResNet50.

Method mAP AP50 AP75 APs APm APl mAR ARs ARm ARl

SSD300-VGG16 25.6 43.8 26.3 6.8 27.8 42.2 37.6 12.5 41.7 58.6
+ KDcl s 26.3 (↑ 0.7) 45.2 27.2 7.3 28.5 43.6 38.4 12.8 42.6 59.1
+ KD0

loc 27.1 (↑ 1.5) 43.2 28.4 7.5 29.4 43.3 40.0 13.4 44.4 60.6
+ KDloc 27.2 (↑ 1.6) 43.3 28.5 7.5 29.5 43.5 40.2 13.2 44.7 61.5
+ KDcl s + KDloc 27.9 (↑ 2.3) 45.1 29.2 8.1 30.1 45.4 40.4 13.9 44.7 61.4

SSD512-VGG16 29.4 49.3 31.0 11.7 34.1 44.9 42.7 17.6 48.7 60.6
+ KDcl s 30.3 (↑ 0.9) 51.1 31.7 12.7 34.6 45.5 43.3 19.4 49.0 60.4
+ KD0

loc 30.8 (↑ 1.4) 48.8 32.9 12.8 35.8 46.2 44.7 18.8 51.1 63.4
+ KDloc 31.0 (↑ 1.6) 49.1 32.8 12.6 35.8 46.2 45.0 18.9 51.6 63.2
+ KDcl s + KDloc 32.1 (↑ 2.7) 51.0 34.0 13.3 36.6 47.9 45.3 20.1 51.2 63.1

Faster RCNN-QR50 23.3 40.7 23.9 13.1 25.0 30.7 40.2 22.7 42.8 51.8
+ KDcl s 25.9 (↑ 2.6) 45.5 26.2 15.3 27.9 34.0 42.8 25.5 46.0 54.9
+ KD0

loc 24.2 (↑ 0.9) 41.1 25.0 13.7 25.8 32.1 41.7 23.8 44.3 54.8
+ KDloc 24.3 (↑ 1.0) 41.0 25.1 13.0 25.9 32.5 41.6 22.7 44.6 54.7
+ KDcl s + KDloc 27.2 (↑ 3.9) 46.0 27.7 15.2 29.3 36.2 44.5 25.9 48.1 58.3

Faster RCNN-MV2 31.9 52.0 34.0 18.5 34.4 41.0 47.5 29.7 50.9 60.4
+ KDcl s 32.6 (↑ 0.7) 53.3 34.6 18.9 34.8 42.3 48.1 29.7 51.2 61.5
+ KD0

loc 32.2 (↑ 0.3) 51.9 34.2 18.3 34.4 41.8 47.9 29.0 50.8 61.5
+ KDloc 32.3 (↑ 0.4) 52.0 34.7 18.1 34.8 41.6 48.0 28.7 51.3 61.6
+ KDcl s + KDloc 32.7 (↑ 0.8) 52.9 35.0 19.0 35.0 42.9 48.4 29.9 51.8 61.9

probability of 0.5. We use SGD with an initial learning rate of 0.002 to train the SSDs for 24

epochs, where the dataset is repeated 5 times. The batch size is 64, and the learning rate

decays by a factor of 0.1 at the 16th and 22nd epoch.

Faster RCNN with lightweight backbones. For data augmentation, the input image is first

resized so that either the maximum of the longer side is 1333 pixels, or the maximum of the

shorter side is 800 pixels. Then, the image is horizontally flipped with a probability of 0.5.

Afterwards, it is normalized by subtracting the mean values and dividing by the standard

deviation of the dataset. The Faster RCNN-MobileNetV2 is trained by SGD for 12 epochs with

a batch size of 16, and an initial learning rate set to 0.02 and divided by 10 at the 8th and 11th

epoch. Faster RCNN-QR50 is trained with a larger batch size of 32 and a larger initial learning

rate of 0.04. Note that, in practice, increasing the batch size and the learning rate enables us to

shorten the training time while keeping the same performance as with the default 1× training

setting in MMDetetion (Chen et al., 2019).

We use a ResNet50 with input resolution 112×112 as classification teacher for all student

detectors. We report the mean average precision (mAP) and mean average recall (mAR) for

intersection over unions (IoUs) in [0.5:0.95], the APs at IoU=0.5 and 0.75, and the APs and ARs

for small, medium and large objects.

49



Chapter 3. Distilling Image Classifiers in Object Detectors

Results. The results are shown in Table 3.2. Our classification distillation yields improvements

of at least 0.7 mAP for all student detectors. It reaches a 2.6 mAP improvement for Faster RCNN-

QR50, which indicates that the classification in this model is much weaker. The classification

distillation improves AP50 more than AP75, while the localization distillation improves AP75

more than AP50. As increasing AP75 requires more precise localization, these results indicate

that each of our distillation losses plays its expected role. Note that the SSDs benefit more

from the localization method than the Faster RCNNs. We conjecture this to be due to the

denser, more accurate proposals of the Faster RCNNs compared to the generic anchors of

the SSDs. Note also that a Faster RCNNs with a smaller backbone benefits more from our

distillation than a larger one.

3.4.3 Comparison with Detector-to-detector Distillation

We then compare our classifier-to-detector distillation approach with the state-of-the-art

detector-to-detector ones, such as KD (Chen et al., 2017b), FGFI (Wang et al., 2019), GID (Dai

et al., 2021) and FKD (Zhang and Ma, 2021). Here, in addition to the compact students used

in Section 3.4.2, we also report results on the larger students that are commonly used in the

literature, i.e., Faster RCNN and RetinaNet with deeper ResNet50 (R50) backbones.

Experimental setting. Following (Zhang and Ma, 2021), the Faster RCNN-R50 and RetinaNet-

R50 are trained with a 2× schedule for 24 epochs. To illustrate the generality of our approach,

we also report the results of our distillation strategy used in conjunction with FKD (Zhang

and Ma, 2021), one of the current best detector-to-detector distillation methods. Note that,

while preparing this work, we also noticed the concurrent work of (Guo et al., 2021a), whose

DeFeat method also follows a detector-to-detector distillation approach, and thus could also

be complemented with out strategy.

Results. We report the results in Table 3.3. For compact student detectors, such as Faster

RCNN-QR50 and SSD512, our classifier-to-detector distillation surpasses the best detector-

to-detector one by 1.1 and 0.9 mAP points, respectively. For student detectors with deeper

backbones, our method improves the baseline by 0.8, 0.4 and 0.5 points. Furthermore, using it

in conjunction with the FKD detector-to-detector distillation method boosts the performance

to the state-of-the-art of 28.0, 32.6, 34.2, 41.9 and 40.7 mAP. Overall, these results evidence that

our approach is orthogonal to the detector-to-detector distillation methods, allowing us to

achieve state-of-the-art performance by itself or by combining it with a detector-to-detector

distillation strategy.

3.5 Ablation Study

In this section, we investigate the influence of the hyper-parameters and of different classifica-

tion teachers in our approach. To this end, we use the SSD300 student detector.
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Table 3.3: Comparison to detector-to-detector distillation methods on the COCO2017 valida-
tion set.

Method mAP APs APm APl

Faster RCNN-QR50 23.3 13.1 25.0 30.7
+ FKD (Zhang and Ma, 2021) 26.1 14.6 27.3 35.0
+ Ours 27.2 15.2 29.3 36.2
+ Ours + FKD 28.0 15.4 29.8 38.5

SSD512-VGG16 29.4 11.7 34.1 44.9
+ FKD (Zhang and Ma, 2021) 31.2 12.6 37.4 46.2
+ Ours 32.1 13.3 36.6 47.9
+ Ours + FKD 32.6 13.5 37.6 48.3

Faster RCNN-MV2 31.9 18.5 34.4 41.0
+ FKD (Zhang and Ma, 2021) 33.9 18.3 36.3 45.4
+ Ours 32.7 19.0 35.0 42.9
+ Ours + FKD 34.2 18.5 36.3 45.9

Faster RCNN-R50 38.4 21.5 42.1 50.3
+ KD (Chen et al., 2017b) 38.7 22.0 41.9 51.0
+ FGFI (Wang et al., 2019) 39.1 22.2 42.9 51.1
+ GID (Dai et al., 2021) 40.2 22.7 44.0 53.2
+ FKD (Zhang and Ma, 2021) 41.5 23.5 45.0 55.3
+ Ours 38.8 22.5 42.5 50.8
+ Ours + FKD 41.9 23.8 45.2 56.0

RetinaNet-R50 37.4 20.0 40.7 49.7
+ FGFI (Wang et al., 2019) 38.6 21.4 42.5 51.5
+ GID (Dai et al., 2021) 39.1 22.8 43.1 52.3
+ FKD (Zhang and Ma, 2021) 39.6 22.7 43.3 52.5
+ Ours 37.9 20.5 41.3 50.5
+ Ours +FKD 40.7 23.1 44.7 53.8

3.5.1 Ablation Study of KDcl s

We first study the effect of the loss weight λkc and the temperature T for classification dis-

tillation. As shown in Table 3.4a, these two hyper-parameters have a mild impact on the

results, and we obtain the best results with λkc = 0.4 and T = 2, which were used for all other

experiments with SSDs.

We then investigate the impact of different classification teacher networks. To this end,

we trained three teacher networks ranging from shallow to deep: ResNet18, ResNet50 and

ResNext101-32×8d. We further study the impact of the input size to these teachers on classifi-

cation distillation, using the three sizes [56×56, 112×112, 224×224]. As shown in Table 3.4b,

51



Chapter 3. Distilling Image Classifiers in Object Detectors

Table 3.4: Ablation study of KDcl s . We evaluate the impact of the hyper-parameters and of
various classification teachers on our classification distillation.

(a) Varying λkc and T .

λkc T mAP AP50 AP75

baseline / 25.6 43.8 26.3

0.1 1 25.8 44.2 26.6
0.1 2 25.4 44.4 25.7
0.2 1 25.8 44.2 26.6
0.3 1 26.0 44.6 26.7
0.4 1 26.1 44.8 26.6
0.4 2 26.3 45.2 27.2
0.4 3 26.0 45.2 26.7

(b) Varying the teacher network.

Teacher Top-1 mAP AP50 AP75

ResNet18 75.78 25.9 44.4 26.4
ResNet50 80.30 26.3 45.2 27.2

ResNeXt101 83.35 25.3 43.3 25.8

Input size Top-1 mAP AP50 AP75

56×56 76.26 26.2 44.8 26.9
112×112 80.30 26.3 45.2 27.2
224×224 80.41 26.2 44.9 26.9

even the shallow ResNet18 classification teacher can improve the performance of the student

detector by 0.3 points, and the improvement increases by another 0.4 points with the deeper

ResNet50 teacher. However, the performance drops with the ResNeXt101 teacher, which is

the teacher with the highest top-1 accuracy. This indicates that a deeper teacher is not always

helpful, as it might be overconfident to bring much additional information compared to the

ground-truth labels. As for the input size, we observe only small variations across the different

sizes, and thus use a size of 112 in all other experiments.

3.5.2 Ablation Study of KDl oc

We then evaluate the influence of the two main hyper-parameters of localization distillation,

i.e., the grid sampling size of the spatial transformer and the adaptive pooling size of the

feature maps. To this end, we vary the sampling size in [14,28,56,112,224] and the pooling

size in [2×2,4×4,8×8,16×16].
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Table 3.5: Ablation study of KDloc . We investigate the effect of the sampling size, the pooling
size and the choice of distilled layers on our localization distillation.

(a) Varying the sampling size.

Sampling size mAP AP50 AP75

14×14 26.4 43.0 27.0
28×28 26.7 43.2 27.8
56×56 26.8 43.3 28.0

112×112 27.0 43.5 28.1
224×224 27.0 43.4 28.2

(b) Varying the pooling size.

Pooling size mAP AP50 AP75

2×2 26.6 43.5 27.5
4×4 27.0 43.5 28.1
8×8 27.1 43.2 28.4

16×16 26.9 42.8 28.1

(c) Varying distilled layers.

ℓ0 ℓ1 ℓ2 mAP

✓ 27.1
✓ 26.8

✓ ✓ 27.2
✓ ✓ ✓ 26.9

As shown in Table 3.5a, our localization distillation method benefits from a larger sampling size,

although the improvement saturates after a size of 112. This lets us use the same classification

teacher, with input size 112, for both classification and localization distillation. The adaptive

pooling size has a milder effect on the performance, as shown in Table 3.5b, with a size of

8 yielding the best mAP. In our experiments, we adopt either 4 or 8, according to the best

performance on the validation set.

We further study the layers to be distilled in our localization distillation. To this end, we extract

features from the first convolutional layer ℓ1, and from the following bottleneck block ℓ2 of the

ResNet50 teacher. As shown in Table 3.5c, distilling the knowledge of only the object regions

(ℓ0) yields a better mAP than using the ℓ1 features. However, combining the object regions

(ℓ0) with the feature maps from ℓ1 improves the results. Adding more layers does not help,

which we conjecture to be due to the fact that these layers extract higher-level features that

are thus less localized.
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Table 3.6: Results of our classifier-to-detector distillation method with Faster RCNN-QR50 on
the COCO2017 validation set for 1×, 2× and 4× training schedulers.

Scheduler 1× 2× 4×
Faster RCNN-QR50 23.3 23.6 24.5

+ Ours 27.2 (↑ 3.9) 27.7 (↑ 4.1) 28.4 (↑ 3.9)

Table 3.7: APs for IoUs ranging from 0.5 to 0.95 on the COCO2017 validation set.

Method mAP AP50 AP55 AP60 AP65 AP70 AP75 AP80 AP85 AP90 AP95

SSD300 25.6 43.8 41.3 38.4 35.1 31.2 26.3 20.3 13.0 5.2 0.5
+ KDcl s 26.3 45.2 42.6 39.9 36.1 31.6 27.2 21.0 13.5 5.1 0.5
+ KDloc 27.2 43.3 41.3 38.8 36.0 32.9 28.5 23.0 16.5 8.4 1.3
+ KDcl s + KDloc 27.9 45.1 42.8 40.2 37.0 34.0 29.2 23.9 17.0 8.8 1.2

3.5.3 Training Longer with 1×, 2× and 4× Schedulers

To study the effects of longer training on our approach, we trained Faster RCNN-QR50 with 1×,

2× and 4× schedulers, and reported the mAP in the Table 3.6. Our distillation method yields

consistent and significant improvements with all training schedulers. This indicates that our

method can make the student model converge to a better solution, not just train faster.

3.6 Analysis

To further understand how our classifier-to-detector distillation method affects the quality

of the classification and localization, in Table 3.7, we report the APs obtained with IoUs in

[0.5,0.95] with a step of 0.05. These results highlight that our classification and localization

distillation strategies behave differently for different IoU thresholds. Specifically, KDcl s yields

larger improvements for smaller IoUs, whereas KDloc is more effective with IoUs larger than

0.75. This indicates that KDloc indeed focuses on precise localization, while KDcl s distills

category information. The complementarity of both terms is further evidenced by the fact

that all APs increase when using both of them jointly.

3.6.1 Detection Error Analysis

We analyze the different types of detection errors using the tool proposed by Bolya et al. (2020)

for the baseline SSD300 and the distilled models with our KDcl s and KDloc . We focus on the

classification and localization errors first, which are the main errors in object detection. As

shown in Figure 3.2a, KDcl s decreases the classification error especially for IoUs smaller than

0.65. By contrast, as shown in Figure 3.2b, the effect of KDloc increases with the IoU. This

again shows the complementary nature of these terms.

We then discuss the details of all 6 types of detection errors discussed by Bolya et al. (2020),
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(a) Classification error.
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(b) Localization error.

Figure 3.2: Classification and localization error analysis in detection.

namely, classification (cls) error, localization (loc) error, both cls and loc error, duplicate

detection error, background error, missed ground-truth error (missedGTerror).

In essence, as shown by Figure 3.3, localization error increases significantly as the foreground

IoU increases, while all other errors decrease. The classification-related errors typically drop

by using our classification distillation strategy. See, for example, the classification error for

IoUs smaller than 0.65, and the error of both cls and loc for all IoUs. By contrast, our local-

ization distillation decreases the localization-related errors, including localization error and

duplicate detection errors. Specifically, with localization distillation, the localization error

drops by more than 2 mAP points for IoUs larger than 0.7, albeit with a marginal increase in

missedGTerror and background error. Overall, while there is a tradeoff between our classifica-

tion and localization distillation strategies, they play complementary roles in improving the

performance of the student detector.
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Figure 3.3: Detection errors (better viewed in color). We show 6 types of detection errors
for the baseline SSD300, and with our classification and localization distillation methods.
Note that we scaled the plots according to the magnitude of the errors they represent; the
localization error, classification error and missedGTerror are the main sources of errors.

3.6.2 Qualitative Analysis

Figure 3.4 compares the detection results of the baseline model and of our distilled model on

a few images. We observe that (i) the bounding box predictions of the distilled model are more

precise than those of the baseline; (ii) the distilled model generates higher confidences for the
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Figure 3.4: Qualitative analysis (better viewed in color). The ground-truth bounding boxes are
in blue with their labels, and the predictions are in red with predicted labels and confidence.

correct predictions and is thus able to detect objects that were missed by the baseline, such as

the boat in Figure 3.4c and the giraffe in Figure 3.4d.

3.7 Conclusion

In this chapter, we have introduced a novel approach to knowledge distillation for object de-

tection, replacing the standard detector-to-detector strategy with a classifier-to-detector one.

To this end, we have developed a classification distillation loss function and a localization dis-

tillation one, allowing us to exploit the classification teacher in two complementary manners.

Our approach outperforms the state-of-the-art detector-to-detector ones on compact student

detectors. While the improvement decreases for larger student networks, our approach can

nonetheless boost the performance of detector-to-detector distillation. We have further shown

that the same classification teacher could be used for all student detectors if they employ the

same data augmentation strategy, thus reducing the burden of training a separate teacher for

every student detector. Ultimately, we believe that the work in this chapter opens the door to

a new approach to distillation beyond object detection: Knowledge should be transferred not

only across architectures, but also across tasks.
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4 Keypoint Distribution Alignment for
6D Pose Estimation

In the previous chapters, we have seen that knowledge distillation has achieved great success in

many visual tasks. However, it remains completely unstudied for image-based 6D object pose

estimation. In this chapter, we explore and introduce the first knowledge distillation method

for 6D pose estimation. Specifically, we follow a standard approach to 6D pose estimation,

consisting of predicting the 2D image locations of object keypoints. In this context, we observe

the compact student network to struggle predicting precise 2D keypoint locations. Therefore,

to address this, instead of training the student with keypoint-to-keypoint supervision, we

introduce a strategy based the optimal transport theory that distills the teacher’s keypoint

distribution into the student network, facilitating its training. Our experiments on several

benchmarks show that our distillation method yields state-of-the-art results with different

compact student models.

The contents of this chapter are mainly from the following paper. I am the primary contributor.

• Guo, S., Hu, Y., Alvarez, J. M., and Salzmann, M. (2022). Knowledge Distillation for 6D

Pose Estimation by Keypoint Distribution Alignment. arXiv Preprint.

4.1 Introduction

Estimating the 3D position and 3D orientation, a.k.a. 6D pose, of an object relative to the

camera from a single image has a longstanding history in computer vision, with many real-

world applications, such as robotics, autonomous navigation, and virtual and augmented

reality. While modern methods (Xiang et al., 2017; Peng et al., 2019; Kendall et al., 2015; Hu et al.,

2019, 2021; Li et al., 2019; Wang et al., 2021; Di et al., 2021) now all rely on deep networks to

address this task, the most effective ones draw their inspiration from the traditional approach,

which consists of establishing correspondences between the object’s 3D model and the input

image and compute the 6D pose from these correspondences using a Perspective-n-Point

(PnP) algorithm. In particular, the state-of-the-art methods, GDR-Net (Wang et al., 2021)

and SO-Pose (Di et al., 2021), achieve this by combining an object detection module, a large

encoder-decoder to predict multiple intermediate dense representations, including 2D-3D
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Figure 4.1: Performance vs number of param-
eters. We show the SOTA dense prediction-
based SO-Pose (orange diamond) and the
keypoint-based WDRNet+1(blue circles). Al-
though SO-Pose outperforms WDRNet+ with
a large backbone, its performance drops more
rapidly than that of WDRNet+ as the number of
parameters decreases. Our KD method (stars)
further boosts the performance of WDRNet+
with lightweight backbones.

Ground-truth TeacherStudent

(a) Student (b) Teacher

Figure 4.2: Student vs teacher keypoint
predictions. The large backbone of the
teacher allows it to produce accurate key-
points, indicated by tight clusters. By con-
trast, because of its more compact back-
bone, the student struggles to predict accu-
rate keypoints when trained with keypoint-
to-keypoint supervision. We therefore pro-
pose to align the student’s and teacher’s
keypoint distributions.

correspondences, and a learnable PnP module to output the final pose. Unfortunately, the

intermediate dense feature maps they extract incur many parameters, thus yielding huge

models that are impractical for deployment on embedded platforms and edge devices. In

principle, one could reduce the models’ size by employing smaller backbones. However, as

shown in Figure 4.1 for SO-Pose, the resulting accuracy drops quickly.

By contrast, we have observed keypoint-based methods (Hu et al., 2019; Peng et al., 2019;

Hu et al., 2020, 2021) to yield better robustness to the use of lightweight backbones. This is

illustrated in Figure 4.1 for WDRNet (Hu et al., 2021) whose performance undergoes a much

smaller drop than that of SO-Pose as the number of parameter decreases. We believe this to

be due to the fact that these methods aggregate multiple votes, originating from the individual

feature-map locations containing the object, for the 2D image positions of a sparse set of

3D keypoints, as shown in Figure 4.2 where the keypoints are the 8 corners of the 3D object

bounding box. Nevertheless, the resulting compact architectures still incur a significant drop

in pose accuracy. In this chapter, we address this by introducing a knowledge distillation

strategy for such keypoint-based 6D pose estimation networks.

1WDRNet+ is a modified version of WDRNet (Hu et al., 2021) that incorporates a detection step to be consistent
with SO-Pose (Di et al., 2021).
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4.2 Related Work

Knowledge distillation aims to transfer some information from a deep teacher network to

a compact student one. The research on this topic has tackled diverse tasks, such as image

classification (Hinton et al., 2015; Zagoruyko and Komodakis, 2017; Romero et al., 2014), object

detection (Zhang and Ma, 2021; Guo et al., 2021b,a) and semantic segmentation (Liu et al.,

2019; He et al., 2019a). While some techniques, such as feature distillation (Romero et al., 2014;

Zhang and Ma, 2021; Zagoruyko and Komodakis, 2017; Heo et al., 2019a), can in principle

generalize to other tasks, no prior work has studied knowledge distillation in the context of 6D

pose estimation.

In this chapter, we introduce a knowledge distillation method for 6D pose estimation mo-

tivated by the following observation. As shown in Figure 4.2, predicting accurate keypoint

locations with keypoint-to-keypoint supervision is much harder for a compact student net-

work than for a deep teacher one. We therefore argue that knowledge distillation for 6D

pose estimation should not be performed by matching the individual student and teacher

keypoints but instead by encouraging the student’s keypoint distribution to become similar to

the teacher one, which leaves more flexibility to the student and thus facilitates its training.

To achieve this, we follow an Optimal Transport (OT) formalism (Villani, 2009), which lets us

measure the distance between the two keypoint sets. We express this as a loss function that

can be minimized using a weight-based variant of Sinkhorn’s algorithm (Cuturi, 2013), which

further allows us to exploit predicted object segmentation scores in the distillation process.

Our strategy is invariant to the order and the number of predicted keypoints within a cluster,

making it applicable to unbalanced teacher and student predictions that are not in one-to-one

correspondence.

We validate the effectiveness of our approach by conducting extensive experiments on the

popular LINEMOD (Hinterstoisser et al., 2012) and Occluded-LINEMOD (Brachmann et al.,

2014) datasets. Our keypoint distribution alignment strategy consistently outperforms both a

keypoint-to-keypoint distillation baseline and the state-of-the-art feature distillation method

(Zhang and Ma, 2021) using diverse lightweight backbones and architecture variations. In-

terestingly, our approach is orthogonal to feature distillation, and we show that combining it

with the state-of-the-art approach of (Zhang and Ma, 2021) further boosts the performance of

student network.

Our main contributions can be summarized as follows. (i) We investigate for the first time

knowledge distillation in the context of 6D pose estimation. (ii) We introduce an approach

that aligns the teacher and student keypoint distributions together with their predicted object

segmentation scores. (iii) Our approach can be used in conjunction with feature distillation to

further boost the student’s performance. We will make our code publicly available.

4.2 Related Work

6D pose estimation. With the great development and success of deep learning in computer

vision (Krizhevsky et al., 2012b; He et al., 2016; Liu et al., 2016; He et al., 2017a; Romera et al.,
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2018; Long et al., 2015), many works have explored its use for 6D pose estimation. The first

attempts (Xiang et al., 2017; Kendall et al., 2015; Kehl et al., 2017) aimed to directly regress

the 6D pose from the input RGB image. However, the representation gap between the 2D

image and 3D rotation and translation made this task difficult, resulting in limited success.

Therefore, most methods currently predict quantities that are closer to the input image space.

In particular, the state-of-the-art approaches (Li et al., 2019; Wang et al., 2021; Di et al., 2021)

output dense correspondences between the input image and the object 3D model, typically

by predicting a 3D coordinate at every input location containing an object of interest. A

consequence of the resulting accuracy boost, however, is a significant increase in the number

of learnable parameters, arising from the use of larger encoder-decoder architectures to

obtain dense intermediate representations in the two best-performing frameworks, namely

GDRNet (Wang et al., 2021) and SO-Pose (Di et al., 2021). Although we have tried to reduce the

size of these models, as shown in Figure 4.1 for SO-Pose, we have observed a rapid performance

drop, even when retaining a relatively large number of parameters. By contrast, we have found

that networks predicting a sparser set of 2D-to-3D correspondences, such as WDRNet+ (Hu

et al., 2021) in Figure 4.1, offered a better robustness to the use of lightweight backbones.

In essence, these methods jointly segment the object by classifying learned local features

and predict either the image locations (Hu et al., 2019, 2020, 2021) or the 2D displacements

from the cells’ center (Peng et al., 2019) or 3D object keypoints, typically taken as the corners

of the object bounding box. Nevertheless, the original backbones used by these methods

remain cumbersome, and reducing them yields a performance drop. Here, we address this by

introducing a knowledge distillation for keypoint-based 6D pose estimation.

Knowledge distillation. Knowledge distillation has been proven effective to transfer informa-

tion from a deep teacher to a shallow student in several tasks. This trend was initiated in the

context of image classification, where Hinton et al. (2015) guide the student’s output using the

teacher’s class probability distributions, and Romero et al. (2014); Zagoruyko and Komodakis

(2017); Tian et al. (2020) encourage the student’s intermediate feature representations to

mimic the teacher’s ones. Recently, many works have investigated knowledge distillation for

other tasks, evidencing the benefits of extracting task-driven knowledge. For example, in

object detection, Zhang and Ma (2021) adapt the feature distillation strategy of (Romero et al.,

2014) to object detectors; Wang et al. (2019) restrict the teacher-student feature imitation to

regions around the positive anchors; Guo et al. (2021a) decouple the intermediate features

and the classification predictions of the positive and negative regions; Guo et al. (2021b) distill

detection-related knowledge from a classification teacher to a detection student. In semantic

segmentation, Liu et al. (2019) construct pairwise and holistic segmentation-structured knowl-

edge to transfer. All of these works evidence that task-driven knowledge distillation boosts the

performance of compact student models. Note that the feature distillation strategy of (Zhang

and Ma, 2021), although developed for object detection, is general and can be applied to 6D

pose estimation. However, such a general distillation method does not leverage the specific

properties of 6D pose estimation. Here, we introduce an approach that does so, and show that

it outperforms the general FKD method (Zhang and Ma, 2021) and can be combined with it to
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obtain a further performance boost.

Optimal transport (OT) has received a growing attention both from a theoretical perspec-

tive (Villani, 2009; Cuturi, 2013; Santambrogio, 2015) and for specific tasks, including shape

matching (Su et al., 2015), generative modeling (Arjovsky et al., 2017), domain adaptation

(Courty et al., 2017), and model fusion (Singh and Jaggi, 2020). In particular, OT has the advan-

tage of providing a theoretically sound way of comparing multivariate probability distributions

without approximating them with parametric models. Furthermore, it can capture more useful

information about the nature of the problem by considering the geometric properties of the

underlying space. Our work constitutes the first attempt at using OT to align student and

teacher keypoint distributions for knowledge distillation in 6D pose estimation.

4.3 Methodology

Let us now introduce our method to knowledge distillation for 6D pose estimation. As dis-

cussed above, we follow a keypoint-based approach (Hu et al., 2019; Peng et al., 2019; Hu

et al., 2020, 2021) to 6D pose estimation. Given a single RGB image captured by a calibrated

camera, this approach aims to predict the 2D locations of 3D object keypoints in the image

plane. This is illustrated in Figure 4.3 for keypoints taken as the 8 corners of the 3D object

bounding box. More precisely, the deep network classifies each local cell, i.e., anchor, in the

feature map to obtain a rough object segmentation, and predict the 2D keypoint locations

for each active anchor, i.e., each anchor classified as belonging to the object. As such, each

bounding box corner corresponds to a cluster of 2D locations in Figure 4.2. These locations

then form 2D-to-3D correspondences that can act as input to a RANSAC-based PnP solver,

e.g., (Lepetit et al., 2009) or to a shallow PnP network (Hu et al., 2020) to estimate the 6D pose.

In essence, the key to the success of such a correspondence-based approach is the prediction

of accurate 2D keypoint locations. However, as shown in Figure 4.2, the predictions of a

shallow student network differ significantly from those of a deep teacher one; they are less

concentrated around the true keypoint locations, and thus yield less accurate 6D poses.

Below, we first present a naive distillation strategy to addressing this, and then introduce our

approach.

4.3.1 Naive Keypoint-to-keypoint Distillation

The most straightforward way of performing knowledge distillation is to encourage the stu-

dent’s predictions to match those of the teacher. In our context, one could therefore think of

minimizing the distance between the locations predicted by the teacher and those predicted

by the student. Formally, with N anchors in the feature map, this can be expressed as

Lnai ve−kd (P s ,P t ) =
N∑

i=1
λi

8∑
k=1

∥P s
i k −P t

i k∥p , (4.1)
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Figure 4.3: Overview of our method (better viewed in color). The teacher and student follow
a segmentation-driven approach to 6D pose estimation, which, given an RGB input image,
outputs both a segmentation score map by classifying the individual cells in the feature
map and 2D keypoint locations, with each cell voting for the locations of the 8 corners of
the 3D object bounding box. The keypoint locations with the bounding box corners form
correspondences, which are passed to a RANSAC-based PnP solver (Lepetit et al., 2009) or
a simple PnP network (Hu et al., 2020) to obtain the final 3D translation and 3D rotation.
Instead of performing keypoint-to-keypoint distillation, we propose an optimal transport-
based strategy that lets us jointly distill the teacher’s keypoint distribution and segmentation
score map into the student.

where P s
i k , resp. P t

i k , represent the student’s, resp. teacher’s, 2D prediction for keypoint k in

anchor i , λi ∈ {0,1} indicates whether the anchor is active or not, and p ∈ {1,2}.

One drawback of this strategy comes from the fact that the teacher and student network

may disagree on which anchors are active and which are not, as illustrated in Figure 4.3. In

other words, the λi s may be taken from either the student, the teacher, or the intersection

of their segmentation results. However, in any case, the distillation may be suboptimal, as

some student’s predictions would be either unsupervised by the teacher or supervised by

potentially unconfident teacher predictions. Furthermore, and as argued above, a compact

student tends to struggle when trained with keypoint-to-keypoint supervision, and such a

naive KD formulation still follows this approach. Therefore, and as will be shown in our

experiments, this naive strategy does not outperform the direct student training. Below, we

therefore introduce a better-suited approach to keypoint-based knowledge distillation.

4.3.2 Keypoint Distribution Alignment

As discussed above and illustrated in Figure 4.3, the number of active student anchors N s may

differ from that of active teacher anchors N t , making a direct match between the individual
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teacher and student predictions ill-suited. To address this, and account for the observation

that keypoint-to-keypoint supervision is ill-suited to train the student, we propose to align

the distributions of the teacher and student keypoint predictions. Specifically, we achieve this

using optimal transport, which can handle the case where N s ̸= N t .

Formally, to allow the number of student and teacher anchors to differ, we leverage Kan-

torovich’s relaxation (Kantorovitch, 1958) of the transportation problem. In our context,

assuming that all the keypoints have the same probability mass, i.e., 1
N t for the teacher predic-

tions and 1
N s for the student ones, we derive a distillation loss based on Kantorovich’s optimal

transport problem as

L̄kd (P s ,P t ) =
8∑

k=1
min
πk

N s∑
i=1

N t∑
j=1

πk
i j∥P s

i k −P t
j k∥p

s.t. ∀k, i ,
N t∑
j=1

πk
i j =

1

N s , ∀k, j ,
N s∑
i=1

πk
i j =

1

N t .

(4.2)

Note that we consider separate costs for the individual keypoints, thus preventing a 2D location

corresponding to one particular corner to be assigned to a different corner. In our experiments,

we found p = 2 to be more effective than p = 1 and thus the ℓ2 norm below.

The above formulation treats all keypoint predictions equally. However, different predictions

coming from different anchors might not have the same degree of confidence. In particular,

this can be reflected by how confident the network is that a particular anchor contains the

object of interest, or, in other words, by the segmentation score predicted by the network. Let

αs
i denote such a score for anchor i in the student network, and αt

j a similar score for anchor

j in the teacher network.2 We then re-write our distillation loss as

L̃kd (P s ,P t ) =
8∑

k=1
min
πk

N s∑
i=1

N t∑
j=1

πk
i j∥P s

i k −P t
j k∥2

s.t. ∀k, i ,
N t∑
j=1

πk
i j =αs

i , ∀k, j ,
N s∑
i=1

πk
i j =αt

j .

(4.3)

In essence, because this loss involves both the 2D keypoint locations and the anchor-wise

classification scores, it distills jointly the correspondences and the segmentation results from

the teacher to the student.

To solve this optimal transport problem, we rely on Sinkhorn’s algorithm (Cuturi, 2013), which

introduces a soft versions of the contraints via Kullback-Leibler divergence regularizers. This

then yields the final distillation loss

2Note that these scores do not depend on the keypoint index k as a single score is predicted for each anchor.
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Lkd (P s ,P t ) =
8∑

k=1
min
πk

N s∑
i=1

N t∑
j=1

πk
i j∥P s

i k −P t
j k∥2

+
8∑

k=1

(
ε2KL(πk ,αs ⊗αt )+ρ2KL(πk1,αs)+ρ2KL

(
(πk )⊤1,αt

))
,

(4.4)

where αs and αt concatenate the classification score values for the student and the teacher,

respectively. This formulation was shown to be amenable to fast parallel optimization on GPU

platforms, and thus well-suited for deep learning (Cuturi, 2013; Feydy et al., 2019). In our

experiments, we normalize the predicted 2D keypoints by the image size to the [0,1]2 space

and set ε to 0.001, and ρ to 0.5 to handle outliers.

4.3.3 Network Architecture

Our approach can be applied to any network that predicts the 2D locations of 3D object

keypoints. Without loss of generality, we use WDRNet (Hu et al., 2021) as our base network,

which is a typical keypoint-based framework. WDRNet employs a feature pyramid strategy to

predict the 2D keypoint locations at multiple stages of its decoder network. These multi-stage

predictions are then fused by an ensemble-aware sampling strategy, ultimately still resulting in

8 clusters of 2D locations, i.e., one cluster per 3D bounding box corner. To make our baseline

consistent with the state-of-the-art methods (Li et al., 2019; Wang et al., 2021; Di et al., 2021),

we also use a detection pre-processing step that provides an image patch as input to WDRNet.

We refer to this as WDRNet+. As will be shown in our results, the pre-processing detection step

allows WDRNet to outperform the state-of-the-art SO-Pose (Di et al., 2021) with lightweight

backbones. Nevertheless, as also evidenced by our experiments, the success of our distillation

strategy does not depend on it.

In our experiments, the teacher and student networks follow the same general architecture,

only differing in their backbones. Note that different backbones may also yield different

number of stages in the feature pyramid, but our distribution matching approach to knowledge

distillation is robust to such differences.

To train our WDRNet+ networks, we rely on the focal loss for the segmentation branch and the

3D regression loss proposed in (Hu et al., 2021) for the keypoint prediction one. When per-

forming distillation to a student network, we complement these loss terms with our distillation

loss of Eq. 4.4. To implement it, we rely on the GeomLoss library (Feydy et al., 2019)3.

4.4 Experiments

In this section, we first discuss our experimental settings, and then demonstrate the effective-

ness and generalization ability of our approach on two widely-adopted datasets, LINEMOD

and Occluded-LINEMOD. Finally, we analyze different aspects of our method and evaluate it

on variations of our architecture.

3 https://github.com/jeanfeydy/geomloss
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4.4 Experiments

4.4.1 Experimental Settings

Datasets. We conduct experiments on the standard LINEMOD (Hinterstoisser et al., 2012)

and Occluded-LINEMOD (Brachmann et al., 2014) 6D pose estimation benchmarks. The

LINEMOD dataset contains around 16000 RGB images depicting 13 objects, with a single

object per image. Following Brachmann et al. (2016), we split the data into a training set

containing around 200 images per object and a test set containing around 1000 images per

object. The Occluded-LINEMOD dataset was introduced as a more challenging version of

LINEMOD, where multiple objects heavily occlude each other in each RGB image. It contains

1214 testing images. For training, following standard practice, we use the real images from

LINEMOD together with the synthetic ones provided with the dataset and generated using

physically-based rendering (Hodaň et al., 2020).

Teacher & student architectures. For our teacher models, we use DarkNet53 (Redmon and

Farhadi, 2018) as backbone, as in the original WDRNet (Hu et al., 2021). For the compact stu-

dents, we experiment with different lightweight backbones, including DarkNet-tiny (Redmon

et al., 2016) and a further reduced model, DarkNet-tiny-H, containing half of the channels of

DarkNet-tiny in each layer.

Baselines. We compare our method to the direct training of the student without any distillation

(Student), the naive knowledge distillation strategy introduced in Section 4.3.1 (Naive-KD),

and the state-of-the-art feature distillation method (FKD) (Zhang and Ma, 2021), which,

although only demonstrated for object detection, is applicable to 6D pose estimation. For these

baselines, we report the results obtained with the best hyper-parameter values. Specifically,

for FKD, the best distillation loss weight on both datasets was 0.01; for Naive-KD, the best

weight was 0.1, and the best norm was p = 1 for DarkNet-tiny and p = 2 for DarkNet-tiny-H,

respectively. For our method, the distillation loss was set to 5 for LINEMOD and to 0.1 for

Occluded-LINEMOD. We provide the results of the hyper-parameter search in Section 4.6.

Evaluation metric. We report our results using the standard ADD-0.1d metric. It is computed

as the percentage of images for which the average 3D point-to-point distance between the

object model in the ground-truth pose and in the predicted one is less than 10% of the object

diameter. For symmetric objects, the point-to-point distances are computed between the

nearest points. Note that, on LINEMOD, we report the results obtained using the ground-truth

2D bounding boxes to remove the effects of the pretrained detectors. On Occluded-LINEMOD,

we report the results obtained with the same detector as in (Wang et al., 2021; Di et al., 2021)

to evidence the effectiveness of our knowledge distillation method.

4.4.2 Comparison with the State of the Art

Results on LINEMOD. We report the results of our method and the baselines for all classes

of the LINEMOD dataset in Table 4.1 and Table 4.2 for DarkNet-tiny and DarkNet-tiny-H,

respectively. While Naive-KD slightly improves direct student training with the DarkNet-tiny
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Table 4.1: Results of DarkNet-tiny backbone on LINEMOD dataset. We report the ADD-0.1d
for the baseline model, Naive-KD, FKD (Zhang and Ma, 2021) and our KD method for each
class. Our method not only outperforms Naive-KD and FKD, but can also be combined with
FKD to obtain a further performance boost, yielding state-of-the-art results.

Class Teacher Student Naive-KD FKD Ours Ours+FKD

Ape 82.6 73.4 74.1 74.8 74.7 76.2
Bvise 95.5 95.2 95.4 94.2 95.5 96.7
Cam 93.8 91.2 89.7 91.3 91.3 92.0
Can 95.7 92.4 92.7 94.4 92.2 94.0
Cat 92.0 87.2 85.0 87.5 88.4 88.6

Driller 94.8 92.2 93.1 94.8 93.3 94.8
Duck 76.0 70.9 74.4 73.6 73.5 74.7

Eggbox∗ 99.1 99.3 98.7 98.9 99.1 99.3
Glue∗ 96.4 97.2 97.1 96.2 97.7 97.7
Holep 86.2 78.0 82.1 79.5 82.4 82.2

Iron 93.6 92.1 92.1 91.4 93.5 93.2
Lamp 97.7 96.6 95.3 96.9 97.0 96.8

Phone 91.2 87.5 88.4 89.4 88.2 89.6

AVG. 91.9 88.7 89.1 89.4 89.9 (↑ 1.2) 90.4 (↑ 1.7)

Table 4.2: Results of DarkNet-tiny-H backbone on LINEMOD dataset. We report the ADD-
0.1d for the baseline model, Naive-KD, FKD (Zhang and Ma, 2021) and our KD method for each
class. As in Table 4.1, we achieve the state-of-the-art results on the reduced tiny-H backbone.

Class Teacher Student Naive-KD FKD Ours Ours+FKD

Ape 82.6 65.4 64.1 68.4 69.4 69.9
Bvise 95.5 92.0 91.4 92.8 93.8 93.7
Cam 93.8 78.4 79.1 83.8 84.5 84.5
Can 95.7 82.2 81.0 83.3 83.9 83.9
Cat 92.0 81.5 78.7 80.7 81.8 81.6

Driller 94.8 85.5 87.4 90.5 90.0 90.3
Duck 76.0 64.3 63.6 66.8 66.5 68.9

Eggbox∗ 99.1 95.8 95.0 96.3 96.4 96.4
Glue∗ 96.4 90.7 91.2 91.0 91.9 93.2
Holep 86.2 73.2 72.3 77.5 74.1 76.3

Iron 93.6 86.3 86.3 87.6 88.7 90.5
Lamp 97.7 93.6 94.2 93.4 94.8 94.6

Phone 91.2 76.0 75.8 80.6 78.2 79.2

AVG. 91.9 81.9 81.6 84.1 84.2 (↑ 2.3) 84.8 (↑ 2.9)
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Table 4.3: Results on OCC-LINEMOD. We report the ADD-0.1d for each class. Our method
performs on par with FKD, combining it with FKD yields a further performance boost.

Class SO-Pose Teacher Student FKD Ours Ours + FKD

Ape 29.0 33.4 25.5 26.7 25.7 26.9
Can 51.8 70.9 46.6 53.9 53.5 54.7
Cat 19.1 45.1 31.4 31.1 32.2 32.9

Driller 46.2 70.9 51.2 52.1 52.9 52.9
Duck 29.7 27.0 22.5 25.3 25.7 27.0

Eggbox∗ 31.3 53.7 43.4 49.0 48.2 50.0
Glue∗ 46.8 70.7 54.5 55.6 55.8 56.9
Holep 45.4 59.7 49.3 52.2 52.1 54.5

AVG. 37.3 53.9 40.5 43.2 43.2 (↑ 2.7) 44.5 (↑ 4.0)

backbone, it degrades the performance with DarkNet-tiny-H. This matches our analysis in

Section 4.3; the fact that the student’s and teacher’s active anchors differ make keypoint-to-

keypoint distillation ill-suited.

Both FKD and our approach boost the student’s results, with a slight advantage for our ap-

proach. In particular the accuracy improvement is larger, i.e., 2.3 points, for the smaller

DarkNet-tiny-H backbone, for which the gap between the student and the teacher perfor-

mance is also bigger. Note that the improvement of our approach over the student is consistent

across the 13 objects. Interestingly, the types of distillation performed by FKD and by our

approach are orthogonal; FKD distills the features while we distill the predictions. As such,

the two methods can be used together. As can be seen from the table, this further boosts the

results, reaching a margin over the student of 1.7 points and 2.9 points with DarkNet-tiny

and DarkNet-tiny-H, respectively, and thus constitutes the state of the art on the LINEMOD

dataset for such compact architectures.

Results on Occluded-LINEMOD. We now show the generality of our approach by evaluating it

on the more challenging Occluded-LINEMOD. Here, we use only FKD (Zhang and Ma, 2021)

as baseline and drop Naive-KD due to its inferior performance shown before. The results

are provided in Table 4.3. Our keypoint-based knowledge distillation method yields results

on par with the feature-based FKD on average. Note, however that FKD requires designing

additional adaptive layers to match the misaligned feature maps, while our method does not

incur additional parameters. More importantly, jointly using our method with FKD achieves

the state-of-the-art results with 4.0 points improvements over the baseline student model. For

some classes, such as can, eggbox and holepuncher, the improvements surpasses 5 points.

69



Chapter 4. Keypoint Distribution Alignment for 6D Pose Estimation

Table 4.4: Ablation study on LINEMOD: With vs without segmentation scores.

Model #Param(M) ADD-0.1d

SO-Pose† 14.2 85.4

WDRNet+(tiny)
8.5

88.7
Ours-NoScores 89.1

Ours 89.9

SO-Pose† 13.1 66.7

WDRNet+(tiny-H)
2.3

81.9
Ours-NoScores 83.1

Ours 84.2

† SO-Pose model with the corresponding backbone.

4.5 Analysis

4.5.1 With vs Without Segmentation Scores

We compare the results of our approach without and with the use of the segmentation scores

in the optimal transport formulation, i.e., Eq. 4.3 vs Eq. 4.2. The comparison in Table 4.4 shows

the benefits of jointly distilling the predicted 2D locations and the segmentation scores. In the

table, we also report the results of the baseline SO-Pose (Di et al., 2021) and WDRNet+. The

numbers show that, despite its larger number of weights, SO-Pose yields worse results than our

student baseline for a comparable backbone. Moreover, its performance drops significantly

from 85.4 to 66.7 as the number of parameters decreases, while that of WDRNet+ degrades

more gracefully.

4.5.2 Without Detection Pre-processing

Note that we incorporated the pre-processing detection step in WDRNet only to show that

keypoint-based methods could match the performance of the state-of-the-art dense prediction

ones, such as SO-Pose, which also estimate the pose based on detected image patches. In other

words, the success of our knowledge distillation strategy does not depend on the detection. To

demonstrate this, in the left portion of Table 4.5, we report the results of our approach applied

to the original WDRNet with a DarkNet-tiny backbone. As a matter of fact, the gap between

direct student training and our approach is even larger (1.2 vs 2.1), showing the benefits of our

approach on weaker networks.

4.5.3 With a Simple PnP Network

In the right portion of Table 4.5, we compare the results of our approach with those of the

baselines on an architecture obtained by incorporating a simple PnP network at the end of

70



4.5 Analysis

Table 4.5: Evaluation under different network settings on LINEMOD. We report the ADD-0.1d
with the original WDRNet framework and with an additional simple PnP network. Our method
improves the performance of the student network in both settings.

Class
WDRNet (Hu et al., 2021) WDRNet + PnPNet (Hu et al., 2020)

Teacher Student Ours Teacher Student Ours

Ape 70.3 41.2 43.0 50.6 29.4 35.1
Bvis 94.2 81.5 86.1 91.7 72.9 80.8

Cam 89.0 67.6 69.8 90.5 56.1 73.3
Can 90.6 72.1 73.8 88.3 57.5 75.9
Cat 87.1 54.3 61.5 62.5 61.8 48.5

Driller 93.6 78.3 79.3 87.1 68.6 71.9
Duck 64.5 35.9 39.6 38.1 32.0 39.6

Eggbox∗ 95.4 79.3 83.8 99.3 91.8 96.6
Glue∗ 93.4 83.4 82.7 92.8 87.3 92.2
Holep 77.1 44.2 46.9 70.9 46.4 49.9

Iron 90.9 75.8 75.1 93.3 76.1 80.3
Lamp 96.3 84.8 86.8 95.8 68.7 87.2

Phone 85.3 69.6 67.3 92.3 57.0 76.6

AVG. 86.7 66.8 68.9 (↑ 2.1) 81.0 62.0 69.8 (↑ 7.8)

WDRNet, following the strategy of (Hu et al., 2020). With such an architecture, the 2D keypoint

locations only represent an intermediate output of the network, with the PnP module directly

predicting the final 3D translation and 3D rotation from them. As can be seen from these

results, our distillation strategy still effectively boosts the performance of the student with

this modified architecture, further showing the generality of our approach, which can distill

keypoint-based knowledge both for PnP solvers and PnP networks.

4.5.4 Qualitative Analysis

In this section, we provide additional comparisons of the predicted 2D keypoints distributions

obtained with the baseline student model and with our distilled model on several examples

from Occluded-LINEMOD. As shown in Figure 4.4, the predicted 2D keypoints clusters from

our distilled models are closer to the ground-truth object corners than those of the baseline

model. Furthermore, our distilled model mimics the teacher’s keypoints distributions. As a

result, our distilled model yields more accurate pose estimates than the baseline student one.
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Student OursTeacher

(b.1) Pose

(a.1) Keypoints

(a.2) Keypoints

(b.2) Pose

Student OursTeacher

(a.3) Keypoints

(b.3) Pose

Student OursTeacher

Figure 4.4: Qualitative Analysis (better viewed in color). In (a), we compare the 2D keypoints
predictions from our distilled model (3rd column with orange dots) and the baseline student
model (2nd column with blue dots). With our proposed keypoint distribution alignment
distillation method, the model predicts tighter keypoint clusters, closer to the ground-truth
corners (pink cross) than the baseline model. Furthermore, our distilled model is able to
mimic the teacher’s keypoint distributions (1st column with orange dots). Light-green boxes
highlight some keypoints clusters, which are also zoomed in on the side of the image. In (b),
we show the estimated poses. The blue boxes are the predicted 3D bounding boxes while the
gray ones are the ground-truth bounding boxes. Our distilled model generates better pose
estimates than the student model.
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Table 4.6: Results of Naive-KD with DarkNet-tiny-H backbone on Ape and Duck. We report
the ADD-0.1d for the Naive-KD with p = 1 and p = 2.

Class Teacher Student
p = 1 p = 2

0.01 0.1 1.0 0.01 0.1 1.0

Ape 82.6 65.4 63.2 64.4 65.7 63.8 64.1 64.8
Duck 76.0 64.3 59.4 63.3 60.3 59.0 63.6 62.2

AVG. 79.3 64.8 61.3 63.9 63.0 61.4 63.9 63.5

Table 4.7: Results of Naive-KD on LINEMOD dataset. We report the ADD-0.1d for the Naive-
KD with DarkNet-tiny-H and DarkNet-tiny backbones with ps and weights searched from
Table 4.6.

Class Teacher
DarkNet-tiny-H DarkNet-tiny

Student
p = 1 p = 2

Student
p = 1 p = 2

0.1 0.1 0.1 0.1

Ape 82.6 65.4 64.4 64.1 73.4 74.1 74.0
Bvise 95.5 92.0 90.6 91.4 95.2 95.4 96.6
Cam 93.8 78.4 77.8 79.1 91.2 89.7 90.0
Can 95.7 82.2 78.7 81.0 94.4 92.7 92.9
Cat 92.0 81.5 77.8 78.7 87.2 85.0 82.0

Driller 94.8 85.5 87.6 87.4 92.2 93.1 93.2
Duck 76.0 64.3 63.3 63.6 70.9 74.4 73.9

Eggbox∗ 99.1 95.8 95.3 95.0 99.3 98.7 99.4
Glue∗ 96.4 90.7 92.6 91.2 97.2 97.1 96.9
Holep 86.2 73.2 71.6 72.3 78.0 82.1 81.0

Iron 93.6 86.3 86.4 86.3 92.1 92.1 91.9
Lamp 97.7 93.6 93.3 94.2 96.6 95.3 96.5

Phone 91.2 76.0 75.7 75.8 87.5 88.4 87.4

AVG. 91.9 81.9 81.2 81.6 88.9 89.1 88.9

4.6 Ablation Study

4.6.1 Hyper-parameters for Naive-KD and FKD

In this section, as mentioned in Section 4.4, we provide the details of the hyper-parameter

search for Naive-KD and FKD (Zhang and Ma, 2021). In both cases, this search was mostly

focused on models with a DarkNet-tiny-H backbone and on 2 difficult LINEMOD classes, i.e.,

Ape and Duck.
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Table 4.8: Weight searching for FKD on LINEMOD dataset (Ape and Duck). We report the
ADD-0.1d for FKD (Zhang and Ma, 2021) with different weights.

Class Teacher Student 0.001 0.01 0.1 1.0

Ape 82.6 65.4 66.5 68.4 66.5 65.0
Duck 76.0 64.3 65.2 66.8 61.2 60.3

AVG. 79.3 64.8 65.9 67.6 63.8 62.7

Table 4.9: Results of FKD on Occluded-LINEMOD dataset. We report the ADD-0.1d for
FKD (Zhang and Ma, 2021) with different weights. Note that due to the worse results on Ape
and Duck with a weight of 0.1, we didn’t extend this setting to other classes.

Class Teacher Student 0.001 0.01 0.1

Ape 33.4 25.5 26.8 26.7 22.6
Can 70.9 46.6 52.8 53.9 -
Cat 45.1 31.4 31.0 31.1 -

Driller 70.9 51.2 52.3 52.1 -
Duck 27.0 22.5 24.7 25.3 19.8

Eggbox∗ 53.7 43.4 47.9 49.0 -
Glue∗ 70.7 54.5 54.3 55.6 -
Holep 59.7 49.3 51.0 52.2 -

AVG. 53.9 40.5 42.6 43.2 -

Naive-KD. As shown in Table 4.6, the best results are obtained with a norm p = 1 and a

distillation loss weight of 0.1, and with a norm p = 2 with a weight of 0.1. We therefore

provide the corresponding results for all classes and for the DarkNet-tiny-H and DarkNet-tiny

backbones in Table 4.7. Note that p = 2 with a weight of 0.1 yields the best results for DarkNet-

tiny-H, and p = 1 with a weight of 0.1 gets the best performance for DarkNet-tiny. Therefore,

we report the best results for each backbone in Section 4.4.

FKD (Zhang and Ma, 2021). We follow the same strategy as above, and report the results for

Ape and Duck with FKD in Table 4.8. The best results are obtained with a distillation weight of

0.01. As the weight increases, the performance decreases significantly. We therefore adopted

0.01 as FKD weight for both the DarkNet-tiny-H and DarkNet-tiny backbones on the LINEMOD

dataset. For FKD, we also conducted a hyper-parameter search on Occluded-LINEMOD. As

shown in Table 4.9, a distillation weight of 0.01 also achieves the best results. Note that we did

not test a weight of 0.1 on all classes because of the worse results it gave on Ape and Duck.
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Table 4.10: Results of our proposed KD with DarkNet-tiny-H backbone on LINEMOD dataset
(Ape and Duck). We report the ADD-0.1d for our proposed KD with different ps and weights.

Class Teacher Student
p = 1 p = 2

1.0 10.0 1.0 5.0 10.0

Ape 82.6 65.4 61.9 61.5 66.5 69.4 67.0
Duck 76.0 64.3 61.2 61.9 65.1 66.5 65.8

AVG. 79.3 64.8 61.6 61.7 65.8 67.9 66.4

Table 4.11: Results of our proposed KD on Occluded-LINEMOD dataset. We report the ADD-
0.1d for our proposed KD with different weights.

Class Teacher Student 0.01 0.1

Ape 33.4 25.5 23.5 25.7
Can 70.9 46.6 51.2 53.5
Cat 45.1 31.4 31.3 32.2

Driller 70.9 51.2 51.5 52.9
Duck 27.0 22.5 20.0 25.7

Eggbox∗ 53.7 43.4 47.9 48.2
Glue∗ 70.7 54.5 54.3 55.8
Holep 59.7 49.3 51.0 52.1

AVG. 53.9 40.5 41.3 43.2

4.6.2 Hyper-parameters for our Approach

In this section, we include the hyper-parameter search for our proposed keypoint distribution

alignment distillation method, including the norm ps and the weight of our distillation loss.

As for the baseline, we focused this search on DarkNet-tiny-H for the Ape and Duck classes.

As shown in Table 4.10, p = 2 yields much better results than p = 1, and we therefore use

p = 2 in Section 4.4. As for the loss weight, on the LINEMOD dataset, 5 yields the best results,

which we use to report the results on the 13 classes in Section 4.4. For Occluded-LINEMOD, as

shown in Table 4.11, we obtain the best results with a weight of 0.1. Note that our preliminary

experiments with a weight of 1 showed worse performance, and we thus did not compute full

results with weights larger than 0.1.
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4.7 Conclusion

We have introduced the first approach to knowledge distillation for 6D pose estimation. Our

method is driven by matching the distributions of predicted 2D keypoint locations from a deep

teacher network to a compact student one. We have formulated this as an optimal transport

problem that lets us jointly distill the predicted 2D locations and classification scores that

segment the object in the image. Our experiments have demonstrated the effectiveness of

our approach and its benefits over a naive point-to-point distillation strategy. Furthermore,

our formalism is complementary to feature distillation strategies and can further boost its

performance. In essence, the work in this chapter confirms the importance of developing

task-driven knowledge distillation methods, and we hope that it will motivate others to pursue

research in this direction, may it be for 6D pose estimation or for other tasks.
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5 Conclusion and Future work

In summary, this thesis has presented a variety of solutions for improving the representation

learning ability and increasing the performance at inference of arbitrary, given compact neural

networks. We have demonstrated the effectiveness of our solutions in multiple visual recogni-

tion tasks, namely, image classification, object detection, semantic segmentation and 6D pose

estimation. We have started with a general approach based on over-parameterization, which

generalizes to a wide range of visual recognition tasks, and then we have moved to designing a

cross-architecture and cross-task knowledge distillation method for object detection. Finally,

motivated by the inherent properties of 6D pose estimation, we have proposed to distill key-

point distribution knowledge for this task. Below, we first summarize the accomplishments

and contributions presented in this thesis, and then discuss the remaining limitations of our

approaches and identify some potential directions for future research in this field.

5.1 Summary

In Chapter 2, we have proposed an general algorithm to facilitate the training of any given

compact model. Our algorithm is applicable to a broad range of visual recognition tasks,

including those demonstrated in our experiments, i.e., image classification, object detec-

tion and semantic segmentation, but not limited to them. This work was motivated by the

observation that over-parameterization is important for network training while it is not neces-

sary at inference. We have therefore introduced additional parameters by linearly expanding

the convolutional and fully connected layers in the compact networks to improve both the

optimization behavior and generalization ability of the compact network.

In Chapter 3, we have presented our classifier-to-detector distillation approach. In contrast

to detector-to-detector distillation methods, which rely on different teachers for one-stage

and two-stage detectors, our approach allows us to train a single general classification teacher

applicable to multiple detector types. Our classifier-to-detector strategy yields state-of-the-art

results for compact detectors and is complementary to detector-to-detector distillation thus

further boosting its performance on the detection benchmark. The proposed distillation is
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capable of improving the representation ability of student detectors by reducing both the

classification and localization errors. This chapter has illustrated the potential for cross-

architecture and cross-task knowledge distillation.

In Chapter 4, we have explored knowledge distillation for image-based 6D pose estimation,

for which knowledge distillation was unstudied. We have first studied both dense prediction

based models and keypoint based ones with lightweight backbones and observed that the

keypoint based models are more robust to compact backbones than the dense prediction

ones, whose performance drops significantly as the size of the model decreases. The key to

the success of keypoint based models lies in predicting tight keypoint distributions. Motivated

by this, we have proposed to align the keypoint distribution from the student model to that

of the teacher model. This was achieved by building upon optimal transport theory, and has

allowed us to improve the keypoints prediction and the final performance of the compact 6D

pose estimation models.

5.2 Limitations and Future Work

While bringing some major improvements in the field of efficient deep learning for multiple

visual recognition tasks, much work remains to be done to obtain much better performance

with compact neural networks at low cost. This section discusses the main limitations of our

proposed methods and suggests potential directions for future work.

ExpandNets build on the theoretical research on over-parameterization, but provide practical

and effective ways to facilitate the training of convolutional layers, with extensive experiments

and empirical analysis of our expansion strategies and of their impact on training behavior

and generalization ability. However, the expansion rate in the proposed method is manually

set. Thus, one extension of this work is to automatically search for the appropriate expansion

rate of the given compact model. Moreover, our results on AlexNet seem to indicate that

expansion is not as effective on large networks as it is on compact ones. Another future

research direction could involve studying the reason for this and propose solutions for this

scenario. From an ecological standpoint, even though our expanded networks make better

use of the GPU resources than the compact ones, they require more training resources, thus

increasing their carbon footprint for training. Therefore, exploring more efficient expansion

strategies is also an interesting future direction.

Classifier-to-Detector knowledge distillation introduces a simple yet general approach to

knowledge distillation for object detection by transferring knowledge across architectures

and tasks. Our approach enables distilling knowledge from a single classification teacher into

different student detectors. As such, our work reduces the need for a separate deep teacher

detector for each student network; therefore, we reduce training resources and memory

footprint compared to the detector-to-detector knowledge distillation approaches. However,

in our work, we only studied the classification and detection cross-task scenario. Investigating

solutions for more tasks via the proposed cross-task and cross-architecture strategy would
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strengthen our claim and open the door to a new research direction for knowledge distillation.

Keypoint distribution alignment successfully improves keypoint distribution prediction for

compact 6D pose estimation models, thus achieving better performance. However, our results

show that some object classes benefit more from our knowledge distillation approach than

others. A future direction in this area would consist of analyzing this in more detail, with a view

to designing a class-adaptive version of our method. Furthermore, our current framework

is designed for keypoint-based 6D pose estimation methods. Although these methods are

highly effective, extending our distribution-based approach to frameworks that perform dense

prediction for 6D pose estimation would be of interest to the field.
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A Appendix

Pytorch Code of Toy Example for Matrix Representation of a Convolution Operator

In the appendix, we provide the Pytorch code of the toy example for matrix representation

in Chapter 2. Here, we list the toy code to expand a convolutional layer with either standard

or depthwise convolutions and contract the expanded layers back. This code is based on our

published code and can also be found in dummy_test.py.

Pytorch code to expand and contract back a standard convolutional layer:

1 import torch
2 import torch .nn as nn
3

4 m = 3 # input channels
5 n = 8 # output channels
6 k = 5 # kernel size
7 r = int (4) # expansion rate
8 imgs = torch . randn ((8 , m, 7, 7)) # input images with batch size as 8
9

10 # original standard convolutional layer
11 F = nn. Conv2d (m, n, k)
12

13 # Expand -CL with r
14 F1 = nn. Conv2d (m, r*m, 1)
15 F2 = nn. Conv2d (r*m, r*n, k)
16 F3 = nn. Conv2d (r*n, n, 1)
17

18 # contracting
19 from exp_cifar . utils . compute_new_weights \
20 import compute_cl , compute_cl_2
21 tmp = compute_cl (F1 , F2)
22 tmp = compute_cl_2 (tmp , F3)
23 F. weight .data , F.bias.data = tmp['weight '], tmp['bias ']
24

25 # test
26 res_cl = F3(F2(F1(imgs)))
27 res_F = F(imgs)
28 print ('Contract from Expand -CL: %.7f' % (res_cl - res_F ).sum ())# <10^ -5
29

30 # Expand -CK
31 # k = 5, l=2
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32 F1 = nn. Conv2d (m, r*m, 3)
33 F2 = nn. Conv2d (r*m, n, 3)
34

35 # contracting
36 from exp_cifar . utils . compute_new_weights import compute_ck
37 tmp = compute_ck (F1 , F2)
38 F. weight .data = tmp['weight ']
39 F.bias.data = tmp['bias ']
40

41 # test
42 res_ck = F2(F1(imgs))
43 res_F = F(imgs)
44 print ('Contract from Expand -CK: %.7f' % (res_ck - res_F ).sum ())# <10^ -5

Listing A.1: Expansion and contraction of a standard convolutional layer

Pytorch code to expand and contract back a depthwise convolutional layer with a kernel size

of 3:

1 # for depthwise conv , input channels =out channels
2 m = 4 # input channels
3 n = 4 # output channels
4 k = 3 # kernel size
5 r = int (4) # expansion rate
6 imgs = torch . randn ((8 , m, 7, 7))
7

8 # original depthwise convolutional layer
9 F = nn. Conv2d (m, n, k, groups =m, bias= False )

10

11 # Expand -CL with r
12 F1 = nn. Conv2d (m, r*m, 1, groups =m, bias= False )
13 F2 = nn. Conv2d (r*m, r*m, k, groups =m, bias= False )
14 F3 = nn. Conv2d (r*m, n, 1, groups =m, bias= False )
15

16 # contracting
17 from exp_imagenet . utils . compute_new_weights \
18 import compute_cl_dw_group , compute_cl_dw_group_2
19

20 tmp = compute_cl_dw_group (F1 , F2)
21 tmp = compute_cl_dw_group_2 (tmp , F3)
22

23 F. weight .data = tmp['weight ']
24

25 # test
26 res_depthwise_cl = F3(F2(F1(imgs)))
27 res_F = F(imgs)
28 print ('Contract from depthwise Expand -CL: %.7f' % ( res_depthwise_cl - res_F ).sum ())

# <10^ -5

Listing A.2: Expansion and contraction of a depthwise convolutional layer
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