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Abstract—Federated learning (FL), as an emerging edge ar-
tificial intelligence paradigm, enables many edge devices to
collaboratively train a global model without sharing their private
data. To enhance the training efficiency of FL, various algo-
rithms have been proposed, ranging from first-order to second-
order methods. However, these algorithms cannot be applied in
scenarios where the gradient information is not available, e.g.,
federated black-box attack and federated hyperparameter tuning.
To address this issue, in this paper we propose a derivative-free
federated zeroth-order optimization (FedZO) algorithm featured
by performing multiple local updates based on stochastic gradient
estimators in each communication round and enabling partial
device participation. Under non-convex settings, we derive the
convergence performance of the FedZO algorithm on non-
independent and identically distributed data and characterize the
impact of the numbers of local iterates and participating edge
devices on the convergence. To enable communication-efficient
FedZO over wireless networks, we further propose an over-the-
air computation (AirComp) assisted FedZO algorithm. With an
appropriate transceiver design, we show that the convergence of
AirComp-assisted FedZO can still be preserved under certain
signal-to-noise ratio conditions. Simulation results demonstrate
the effectiveness of the FedZO algorithm and validate the
theoretical observations.

Index Terms—Federated learning, zeroth-order optimization,
convergence, over-the-air computation.

I. INTRODUCTION

With the rapid advancement of the Internet of Things (IoT),
a massive amount of data is generated and collected by
various edge devices (e.g., sensors, smart phones). Because
of the limited radio spectrum resource and increasing privacy
concerns, gathering geographically distributed data from a
large number of edge devices into a cloud server to enable
cloud artificial intelligence (AI) may not be practical. To this
end, edge AI has recently been envisioned as a promising AI
paradigm [1]. Unlike cloud AI that relies on a cloud server to
conduct centralized training, edge AI exploits the computing
power of multiple edge devices to perform model training
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with their own local data in a distributed manner. Federated
learning (FL) [2], as a representative edge AI framework,
enables multiple edge devices to collaboratively train a shared
model without exchanging their local data, which effectively
alleviates the communication burden and privacy concerns.
Nowadays, FL has found application in various fields, in-
cluding autonomous driving [3], recommendation systems [4],
healthcare informatics [5], etc.

As a result of the popularity of FL, the federated opti-
mization problem for model training has attracted a growing
body of attention from both academia and industry in recent
years. Various algorithms have been proposed to attain a
fast convergence rate and reduce the communication load,
including both first- (e.g., FedAvg [2], FedPD [6], FedNova
[7]) and second-order algorithms (e.g., FedDANE [8]). Most
existing algorithms rely on gradient and/or Hessian informa-
tion to solve the federated optimization problem. However,
such information cannot be obtained in scenarios where the
analytic expressions of the loss functions are unavailable, such
as federated hyperparameter tuning [9] or distributed black-
box attack of deep neural networks (DNN) [10]. In other
words, existing algorithms cannot tackle federated optimiza-
tion problems when gradient information is not available. This
motivates us to develop a communication-efficient federated
zeroth-order optimization algorithm that does not require gra-
dient or Hessian information.

Parallel with the research on algorithm design for FL, the
implementation of FL over wireless networks is also an emerg-
ing research topic. Random channel fading and receiver noise
raise unique challenges for the training of FL over wireless
networks. Guaranteeing the learning performance with limited
radio resource is a challenging task, which requires the joint
design of the learning algorithm and communication strategy.
Along this line of research, the authors in [11] studied the
joint resource allocation and edge device selection to enhance
learning performance. Both studies adopted the orthogonal
multiple access (OMA) scheme, where the number of edge
devices that can participate in each communication round is
restricted by the number of available time/frequency resource
blocks. The limited radio resource turns out to be the main
performance bottleneck of wireless FL. Fortunately, over-
the-air computation (AirComp), as a non-orthogonal multiple
access scheme, allows concurrent transmissions over the same
radio channel to enable low-latency and spectrum-efficient
wireless data aggregation [12]–[14], thereby mitigating the
communication bottleneck [15]. Motivated by this observation,
various AirComp-assisted FL algorithms were proposed in
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[16]–[18] to achieve fast model aggregation, wherein all of
them adopted first-order optimization algorithm. There still
lacks a thorough investigation on AirComp-assisted FL with
zeroth-order optimization.

A. Main Contributions

In this paper, we consider a federated optimization problem,
where the gradient of the loss function is not available. We
propose a derivative-free federated zeroth-order optimization
algorithm, named FedZO, whose key features are performing
multiple local updates based on a stochastic gradient estimator
in each communication round and enabling partial device
participation. We establish a convergence guarantee for the
proposed FedZO algorithm and study its implementation over
wireless networks with the assistance of AirComp, which is
challenging for the following reasons. First, although exe-
cuting multiple local iterates in each communication round
reduces the communication overhead, it also increases the dis-
crepancies among local models due to the data heterogeneity
and may even lead to algorithmic divergence. To reduce the
communication overhead while preserving the convergence,
the relationship between the convergence behavior and the
number of local iterates needs to be characterized. Second,
the stochastic gradient estimator adopted in FedZO is not an
unbiased estimate of the actual gradient, as demonstrated in
[19], [20]. These unique features together with multiple local
iterates and partial device participation per communication
round make the existing convergence analysis framework for
FedAvg not applicable to the proposed FedZO algorithm.
Third, to characterize the convergence of the AirComp-assisted
FedZO algorithm, the impact of the random channel fading
and receiver noise in global model aggregation needs to be
further taken into account. This not only complicates the
convergence analysis but also poses a new problem for the
communication strategy design. In this paper, we develop a
unified convergence analysis framework to address the afore-
mentioned challenges. The main contributions of this paper
are summarized as follows:
• We develop the derivative-free FedZO algorithm, which

inherits the framework of the FedAvg algorithm but only
queries the values of the objective function, to handle
federated optimization problems without using gradient
or Hessian information. To cater for the FL system
with a large number of edge devices and to reduce the
communication overhead, the proposed FedZO algorithm
enables partial device participation and performs multiple
local iterates in each communication round.

• We establish a convergence guarantee for the proposed
FedZO algorithm under non-convex settings and on non-
independent and identically distributed (non-i.i.d.) data,
and then derive the maximum number of local iterates
required for preserving convergence. We demonstrate
that the proposed FedZO algorithm can attain linear
speedup in the number of local iterates and the number
of participating edge devices.

• We study the implementation of the FedZO algorithm
over wireless networks with the assistance of AirComp

for the aggregation of local model updates in the uplink.
With an appropriate transceiver design that can mitigate
the impact of the fading and noise perturbation, we study
the convergence behavior of the AirComp-assisted FedZO
algorithm and characterize the impact of the signal-to-
noise ratio (SNR) on the convergence performance.

We conduct extensive simulations to evaluate the performance
of the proposed FedZO and AirComp-assisted FedZO algo-
rithms. Simulation results show that the proposed FedZO
algorithm is convergent under various parameter settings and
outperforms existing distributed zeroth-order methods. More-
over, simulations illustrate that the performance of the pro-
posed FedZO algorithm is comparable to that of the FedAvg
algorithm, which indicates that our proposed algorithm can
serve as a satisfactory alternative for FedAvg when first-
order information is not available. Results also confirm that,
with an appropriate SNR setting, the AirComp-assisted FedZO
algorithm preserves convergence.

B. Related Works

The study of FL started from the seminal work [2], where
the authors proposed a communication-efficient federated op-
timization algorithm known as FedAvg. Subsequently, various
articles established convergence guarantees for the FedAvg
algorithm [21]–[23]. Following the FedAvg algorithm, many
other first-order methods have been proposed, e.g., FedPD [6],
FedNova [7], FedProx [24], SCAFFOLD [25], and FedSplit
[26]. To further reduce the communication overhead, several
second-order optimization algorithms were proposed, such as
FedDANE [8] and GIANT [27]. Although the aforementioned
first- and second-order algorithms have broad applications,
there are still many FL tasks where the gradient and Hessian
information are unavailable and thus require zeroth-order
optimization.

Recently, several works [10], [28]–[33] focused on studying
distributed zeroth-order optimization. Specifically, the authors
in [28] developed a so-called ZONE-S algorithm based on
the primal-dual technique. In [29], the authors employed
the gradient tracking technique to develop a fast distributed
zeroth-order algorithm. However, ZONE-S requires O (T ) (T
denotes the number of total iterations) sampling complexity
per iteration while the algorithm proposed in [29] considered
the deterministic setting. More recently, the authors in [10]
proposed an algorithm with O (1) sampling complexity per
iteration, which attains linear speedup in the number of edge
devices. [30] proposed a decentralized zeroth-order algorithm
that allows multiple local updates. However, the theoretic
analysis in [30] focused on the strongly convex scenario
and relied on the Lipschitzness of local functions, which is
relatively restrictive [34]. The authors in [31] proposed and
analyzed a distributed zeroth-order Frank-Wolfe algorithm for
constrained optimization. Based on single-point and Kiefer-
Wolfowitz type gradient estimators, the authors in [32], [33]
proposed two distributed zeroth-order algorithms over time-
varying graphs. It is worth noting that the aforementioned
works mainly consider the peer-to-peer architecture while
the studies on the central-server-based architecture are very
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limited. Moreover, most of the existing distributed zeroth-order
algorithms focused on full device participation, which may not
be practical for FL systems with limited radio resources and
a large number of edge devices [22].

AirComp has recently been adopted to support the im-
plementation of FL over wireless networks [16], [35]–[39],
where channel fading and receiver noise inevitably distort the
model aggregation, and in turn introduce a detrimental impact
on the learning performance [16]. The convergence behavior
of various FL algorithms, e.g., vanilla gradient method [35]
and stochastic gradient method [36], showed that the chan-
nel fading and noise perturbation typically introduce a non-
diminishing optimality gap, which can be mitigated by trans-
mit power control [36], beamforming design [35], and device
scheduling [37]. In [38], the authors proposed a joint learning
and transmission scheme to ensure global convergence for
strongly convex problems. By utilizing the communication
strategy in [38], the authors in [39] developed an AirComp-
assisted accelerated gradient descent algorithm. Despite the
above progress, the existing works focused on the first-order
method, while there is no relevant literature studying the
AirComp-assisted zeroth-order optimization algorithm.

C. Organization

The remainder of this paper is organized as follows. We
present the problem formulation and propose a federated
zeroth-order optimization algorithm in Section II. Section III
provides the convergence analysis. Section IV studies the im-
plementation of the proposed FedZO algorithm over wireless
networks using AirComp. The simulation results are provided
in Section V. Finally, we conclude this paper in Section VI.
Notation: We denote the `2 norm of vectors by ‖ · ‖. [T ]
denotes the set {1, 2, . . . , T − 1}. Sd = {v ∈ Rd | ‖v‖ = 1}
denotes a d-dimensional unit sphere. Bd = {v ∈ Rd |
‖v‖ ≤ 1} denotes a d-dimensional unit ball. We denote
uniform distributions over Sd and Bd by U(Sd) and U(Bd),
respectively. We denote ∼ as the uniform sampling. For a
function F , ∇F and ∇̃F denote the gradient and gradient
estimator, respectively.

II. FEDERATED ZEROTH-ORDER OPTIMIZATION

In this section, we first introduce the federated optimization
problem and then propose a federated zeroth-order optimiza-
tion algorithm.

A. Problem Formulation

Consider an FL task over a network consisting of a central
server and N edge devices indexed by {1, 2, . . . , N}. The
goal of the central server is to coordinate all edge devices
to collaboratively solve the following federated optimization
problem

min
x∈Rd

f(x) ,
1

N

N∑
i=1

fi (x) , (1)

where x ∈ Rd denotes the model parameter of dimension d,
and fi(x) and f(x) denote the local loss function of edge

device i and the global loss function at the central server
evaluated at model parameter x, respectively. We assume that
each edge device with a local dataset is equally important for
the global model [23]. In (1), fi(x) measures the expected risk
over the local data distribution denoted as Di at edge device
i, given by

fi (x) , Eξi∼Di [Fi(x, ξi)],

where Fi (x, ξi) represents the loss with respect to ξi evaluated
at model parameter x and ξi denotes a random variable
uniformly distributed over Di. In particular, a realization of ξi
is a single data sample. With sampling information of ξi and x,
edge device i can query the function value of Fi, which serves
as a stochastic approximation of the expected loss fi(x). Note
that the analytic expression and gradient information of Fi are
not available.

Remark 1. The scenarios where the gradient information
is not available arise in many practical applications [40],
including but not limited to federated black-box attacks of
DNN [10] and federated hyperparameter tuning in model
training [9]. To be specific, in federated black-box attacks,
the gradient information cannot be acquired as the deep model
is hidden. In the federated hyperparameter tuning task, there
does not exist an analytic relationship between the training
loss and the hyperparameters.

B. Preliminaries on Stochastic Gradient Estimator

We adopt a mini-batch-type stochastic gradient estimator
[41]. Specifically, for function Fi, the mini-batch-type stochas-
tic gradient estimator is given by

∇̃Fi
(
x, {ξi,m}b1m=1, {vi,n}b2n=1, µ

)
=

1

b1b2

b1∑
m=1

b2∑
n=1

dvi,n
µ

(
Fi(x+µvi,n, ξi,m)−Fi(x, ξi,m)

)
, (2)

where {ξi,m}b1m=1 is a sequence of independent and identically
distributed (i.i.d.) random variables with the same distribution
as ξi, {vi,n}b2n=1 is a sequence of i.i.d. random vectors with
distribution U(Sd), and µ is a positive step size. It has been
shown in [20] that

E
[
dvi,n
µ

(
Fi(x+µvi,n, ξi,m)−Fi(x, ξi,m)

)]
=∇fµi (x), (3)

where the expectation is taken over {ξi,m,vi,n} and fµi (x) =
Eu∼U(Bd) [fi (x + µu)] is a locally averaged version of fi(x).
Furthermore, we have

E
[
∇̃Fi

(
x, {ξi,m}b1m=1, {vi,n}b2n=1, µ

)]
= ∇fµi (x). (4)

where the expectation is taken over {ξi,m}b1m=1 and {vi,n}b2n=1.
As ∇fµi (x) is a biased approximation of ∇fi(x) [40], (2) is
a biased estimate of the actual gradient.

The mini-batch-type stochastic gradient estimator enjoys a
low variance than the two-point stochastic gradient estimator
[28], [31], [41]. Besides, the mini-batch sizes b1 and b2 are
independent of d, and hence the computation complexity of
(2) does not scale with the dimension of variable x.
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C. FedZO Algorithm

Inspired by the FedAvg algorithm, we develop a federated
zeroth-order optimization algorithm summarized in Algorithm
1. The main idea of the FedZO algorithm is to get rid of
the dependence on the gradient and reduce the frequency of
model exchanges, which are achieved by employing a gradient
estimator (2) and performing H steps of stochastic zeroth-
order updates per communication round, respectively. The
FedZO algorithm consists of the following four phases in each
round.
• Global Model Dissemination: At the beginning of the t-

th round, the central server uniformly samples M edge
devices to participate in the local training. The set of
scheduled edge devices in round t is denoted as Mt.
Then, the central server disseminates its current global
model parameter xt to the selected edge devices.

• Local Model Update: After receiving the model parame-
ter xt from the central server, each edge device i ∈ Mt

initializes its local model x(t,0)
i with the received global

model from the central server, i.e., x
(t,0)
i = xt, and

then takes a total of H iterates of stochastic zeroth-
order updates. In particular, at the k-th iteration of the
t-th round, edge device i computes a stochastic gradient
estimator according to (2). For notational ease, we denote
it as

e
(t,k)
i =∇̃Fi

(
x

(t,k)
i ,{ξ(t,k)

i,m }b1m=1,{v
(t,k)
i,n }b2n=1, µ

)
, (5)

where x
(t,k)
i represents the local model of edge device

i at the k-th iteration of the t-th round. Subsequently,
the sampled edge devices update their local models by
performing the following stochastic zeroth-order update

x
(t,k+1)
i =x

(t,k)
i − ηe(t,k)

i , k = 0,1,. . ., H−1, (6)

where η denotes the learning rate. After H local iterates,
edge device i obtains an updated local model x(t,H)

i .
• Local Model Uploading: All edge devices in set Mt

calculate the updates of their local models in this round,
i.e., ∆t

i = x
(t,H)
i −x(t,0)

i , i ∈Mt, and then upload these
updates to the central server.

• Global Model Update: After receiving local model up-
dates from the sampled edge devices, the central server
aggregates these updates, i.e., ∆t = 1

M

∑
i∈Mt

∆t
i, and

then updates the global model, i.e., xt+1 = xt + ∆t.
Although the proposed FedZO algorithm adopts a similar

framework as the FedAvg algorithm, the convergence analysis
of the latter cannot be directly extended to that of the FedZO
algorithm. The key factor hindering the extension is that the
gradient estimator does not preserve specific properties of the
stochastic gradient. For instance, the gradient estimator (5) is
not an unbiased estimate of the true gradient. Besides, the ex-
isting theoretical analysis framework for the distributed zeroth-
order optimization method cannot be applied to the FedZO
algorithm as existing zeroth-order algorithms [10], [28], [29]
do not consider multiple steps of local model updates and
partial device participation. A larger number of local iterates
reduces the communication overhead, but also increases the

Algorithm 1: FedZO Algorithm

Input: Initial model x0, learning rate η, step size µ,
mini-batch sizes b1, b2,

number of participating edge devices M for
t ∈ {0, 1, . . . , T − 1} do

Uniformly sample a subset Mt of M edge devices
Disseminate global model xt to all edge devices in

set Mt

for edge device i ∈Mt in parallel do
Initialize local model x(t,0)

i = xt

for k = 0, . . . ,H − 1 do
Generate {ξ(t,k)

i,m }b1m=1 ∼ Di independently
Generate {v(t,k)

i,n }b2n=1∼U(Sd) independently

Update x
(t,k+1)
i by (6)

end
Compute local model updates
∆t
i = x

(t,H)
i − x

(t,0)
i

Upload local model updates to central server
end
Aggregate local changes ∆t = 1

M

∑
i∈Mt

∆t
i

Update global model xt+1 = xt + ∆t

end

local model discrepancies and may even lead to algorithmic
divergence. To preserve convergence for the developed FedZO
algorithm, it is necessary to bound these discrepancies by
appropriately choosing the number of local updates, i.e., H .
In Section III, we will provide the convergence analysis for
the FedZO algorithm.

III. CONVERGENCE ANALYSIS FOR FEDZO
In this section, we present the convergence analysis of the

FedZO algorithm with full and partial device participation. To
make our analysis applicable for more practical scenarios, we
focus on the settings of non-convex loss functions and the
non-i.i.d. data. We make the following assumptions for the
tractability of convergence analysis.

Assumption 1. The global loss in (1), i.e., f(x), is lower
bounded by f∗, i.e., f(x) ≥ f∗ > −∞.

Assumption 2. Fi (x, ξi), fi(x), and f(x) are L-smooth.
Mathematically, for any x ∈ Rd and y ∈ Rd, we have

‖∇fi(y)−∇fi(x)‖ ≤ L‖y − x‖, ∀i,

f (y) ≤ f (x) + 〈∇f(x),y − x〉+
L

2
‖y − x‖2 .

Assumption 3. The second-order moment of stochastic gradi-
ent ∇Fi (x, ξi) satisfies Eξi‖∇Fi (x, ξi) ‖2 ≤ cg‖∇fi(x)‖2 +
σ2
g , ∀x ∈ Rd, ∀i, where cg ≥ 1.

Assumption 4. The gradient dissimilarity between each local
loss function and the global loss function is bounded as
‖∇f (x) − ∇fi(x)‖2 ≤ ch‖∇f(x)‖2 + σ2

h, ∀x ∈ Rd, ∀i,
where ch is a positive constant.

Assumptions 1-3 are commonly used in stochastic optimiza-
tion [42]. Assumption 4, also known as the bounded gradient



5

dissimilarity assumption [10], is adopted to characterize the
non-i.i.d. extent of the local data distribution. Similar assump-
tions have also been made in the literature [7], [21]–[25] for
the convergence analysis under the non-i.i.d. setting. Note that
these assumptions are only required for convergence analysis
which are standard in zeroth-order optimization [10], [20].

In the following, we first present the convergence analysis
for full device participation and then extend the analysis to
partial device participation.

A. Full Device Participation

We first characterize the convergence of the FedZO algo-
rithm with full device participation in Theorem 1. We take the
squared gradient ‖∇f(xt)‖2 to evaluate the suboptimality of
the iterates. The speed of approaching a stationary point is an
important metric to evaluate the algorithmic effectiveness for
non-convex problems [43].

Theorem 1. Suppose Assumptions 1-4 hold and the learning
rate satisfies

η ≤ min

{
N

72c̃g c̃hL
,

2

NH2L
,

1

3
√
c̃gHL

}
, (7)

the FedZO algorithm with full device participation satisfies

min
t∈[T ]

E
∥∥∇f (xt)∥∥2 ≤4

f
(
x0
)
− f∗

HTη
+ η

24L

N
σ̃2

+
dL2µ

2

12
+ 5L2µ2, (8)

where σ̃2 = 3
(
1+

cgd
b1b2

)
σ2
h +

dσ2
g

b1b2
, c̃g = 1 +

cgd
b1b2

, and c̃h =

1 + ch.

Proof. Please refer to Appendix A.

According to Theorem 1, the upper bound of the minimum
squared gradient among the global model sequence is com-
posed of four terms. The first term shows that the optimality
gap relies on the initial optimality. The second term shows
that the optimality gap depends on the the non-i.i.d. extent of
the local data distribution. The rest of the terms are related
to step size µ for computing the gradient estimator that is
unique in zeroth-order optimization. As pointed out in [43],
we can select an appropriate step size to attain the desired
accuracy. The following corollary follows by substituting a
suitable learning rate η and step size µ into Theorem 1.

Corollary 1. Suppose Assumptions 1-4 hold and let b1b2 ≤ d,
µ = (db1b2NHT )−

1
4 , and η = (Nb1b2)

1
2 (dHT )−

1
2 , which

holds for (7) if T is large enough. The FedZO algorithm with
full device participation satisfies

min
t∈[T ]

E
∥∥∇f (xt)∥∥2 ≤O

(
d

1
2 (NHTb1b2)

− 1
2

)
+O

(
(db1b2NHT )−

1
2

)
, (9)

where the right hand side of (9) is dominated by
O
(
d

1
2 (NHTb1b2)

− 1
2

)
.

We consider the case of b1b2 ≤ d in Corollary 1 since
the dimension d is generally very large in many ML tasks.

TABLE I: Convergence rates of some typical algorithms for stochas-
tic nonconvex unconstrained optimization.

Algorithm Convergence rate Maximum value of H

FL setting
FedZO O

(√
d/NHTb1b2

)
min

{
O
(
(dT )

1
3 (b1b2)

− 1
3 N−1

)
,O (TN−1)

}
FedAvg [21] O

(√
1/NHT

)
O
(
T

1
3N−1

)
Distributed

zeroth-
order

ZONE-S [28] O(d3/T ) —

DZOPA [10] O
(√

d/NT
)

—

Centralized
zeroth-
order

ZO-SGD [44] O
(√

d/T
)

—

Note: T denotes the number of total communication rounds for FedZO and FedAvg, and
the number of total iterations for others.

Besides, when b1b2 ≤ d, the computational consumption of
(5) is lower than that of the Kiefer-Wolfowitz type scheme
[33]. On the other hand, if b1b2 > d, η = N

1
2 (HT )−

1
2 , and

µ = d−
1
2 (NHT )−

1
4 , according to Theorem 1, we obtain a

convergence rate O
(

(NHT )
− 1

2

)
for the FedZO algorithm

which is independent of dimension d. Such a convergence rate
is the same as that of the FedAvg algorithm. The learning rate
of the zeroth-order methods is generally

√
d−times smaller

than that of their first-order counterparts [21], [43], [44], as the
two-point gradient estimator is less accurate than the gradient.
In our work, by adopting the mini-batch-type gradient estima-
tor, we can increase the mini-batch sizes b1 and b2 to enhance
the accuracy of the gradient estimator and also balance the
effects of d and T on the learning rate.

Remark 2. In Corollary 1, we set the learning rate η =
(Nb1b2)

1
2 (dHT )−

1
2 , which decreases as the number of lo-

cal updates (i.e., H) increases. In particular, the progress
of one local update shrinks by 1/

√
H . However, by per-

forming H steps of local updates, we obtain a
√
H-times

speedup per communication round. This accords with the
derived convergence rate O

(
d

1
2 (NHTb1b2)

− 1
2

)
. Accord-

ing to Corollary 1, to reach an ε-stationary solution, the
FedZO algorithm takes O

(
d(Nb1b2)−1ε−2

)
iterations (i.e.,

HT = O
(
d(Nb1b2)−1ε−2

)
) with learning rate η =

(Nb1b2)
1
2 (dHT )−

1
2 . If we increase H , then the learning

rate (i.e., η) decreases, and we can attain a higher-accuracy
solution with the same number of communication rounds (i.e.,
T ). Besides, when the total iteration number (i.e., HT ) and
the learning rate (i.e., η) are fixed, we can increase the number
of local iterations (i.e., H) and reduce the number of commu-
nication rounds (i.e., T ) to reach the same accuracy, which
enhances the communication efficiency. It is worth noting that
the number of local iterations cannot be arbitrarily large.
According to (7), to achieve the largest reduction in commu-
nication overhead while preserving convergence, the optimal
value of H is min

{
O
(

(dT )
1
3 (b1b2)−

1
3N−1

)
,O
(
TN−1

)}
.

Remark 3. From Corollary 1, we notice that the pro-
posed FedZO algorithm can attain convergence rate
O
(
d

1
2 (NHTb1b2)

− 1
2

)
. In particular, FedZO achieves linear

speedup in terms of the number of local iterates and the
number of participating edge devices compared with the cen-
tralized zeroth-order algorithm (i.e., ZO-SGD) that achieves
convergence rate O

(
d

1
2T−

1
2

)
[44]. For fair comparison,

we consider b1 = b2 = 1. To attain the same accuracy,
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compared to DZOPA with convergence rate O
(
d

1
2 (NT )

− 1
2

)
[10], the number of communication rounds required by the
FedZO algorithm can be reduced by a factor of H . Besides,
it is worth noting that the convergence rate of the FedZO
algorithm depends on the dimension of the model parameter. In
particular, the convergence speed of FedZO is

√
d times slower

than that of its first-order counterpart, i.e., FedAvg. Such a
degeneration is the same as its centralized counterpart [44]. In
addition, for FedAvg, the maximum value of H is O

(
T

1
3N−1

)
[21], which is smaller than that of FedZO mentioned in
Remark 2. This is because the learning rate of FedZO is lower
than that of FedAvg, which allows more local updates while
preserving convergence. The detailed comparison between the
proposed algorithm and the related algorithms is summarized
in Table I.

B. Partial Device Participation

In this subsection, we show the convergence of the FedZO
algorithm with partial device participation. By bounding the
minimum squared gradient among the global model sequence,
we characterize the convergence of the FedZO algorithm in
the following theorem.

Theorem 2. Suppose Assumptions 1-4 hold and the learning
rate satisfies

η ≤ min

{
M

192c̃g c̃hL
,

M

72chHL
,

2

MH2L
,

1

3
√
c̃gHL

,

1

3
√
MH3L

}
, (10)

the FedZO algorithm with partial device participation satisfies

min
t∈[T ]

E
∥∥∇f (xt)∥∥2 ≤ 4

f
(
x0
)
− f∗

HTη
+ η

32L

M
σ̃2

+η
36HLσ2

h

M
+
dL2µ

2

24
+13L2µ2, (11)

where c̃g , c̃h, and σ̃2 are defined in Theorem 1.

Proof. Please refer to Appendix B.

By comparing (11) with (8), we notice that the third term
in (11) does not appear in (8), which is induced by the
randomness of device sampling, while full device participation
eliminates this randomness, thereby reducing the optimality
gap.

Similarly, the following corollary follows by substituting
suitable learning rate η and step size µ into Theorem 2.

Corollary 2. Suppose Assumptions 1-4 hold and let b1b2 ≤ d,
µ = (db1b2MHT )−

1
4 , and η = (Mb1b2)

1
2 (dHT )−

1
2 , which

holds for (10) if T is large enough. The FedZO algorithm with
partial device participation satisfies

min
t∈[T ]

E
∥∥∇f (xt)∥∥2 ≤ O

(
d

1
2 (MHTb1b2)

− 1
2

)
+O

(
(b1b2H)

1
2 (dMT )

− 1
2

)
+O

(
(db1b2MHT )−

1
2

)
. (12)

According to (12), to attain a linear speedup in
terms of the number of local iterates and participating

edge devices, the number of local iterates cannot
exceed O

(
d(b1b2)−1)

)
. Combining it with constraint

(10), we can derive the largest value of H as
min

{
O
(
(dT )

1
3 (b1b2)−

1
3M−1

)
,O
(
TM−1

)
,O
(
d(b1b2)−1)

)}
.

IV. AIRCOMP-ASSISTED FEDZO ALGORITHM

In this section, we study the implementation of the proposed
FedZO algorithm over wireless networks using AirComp,
where the edge devices communicate with the central server
via wireless fading channels.

In each communication round, both the downlink model
dissemination phase and the uplink model uploading phase
involve wireless transmissions. As the central server generally
has a much greater transmit power than the edge devices, the
downlink model dissemination is assumed to be error-free as
in most of the existing studies [35]–[39] and we focus on the
uplink model uploading.

A. Over-the-Air Aggregation

For the FedZO algorithm, a key observation is that the
central server is interested in receiving an average of local
model updates of scheduled edge devices rather than each
individual one. In particular, at the t-th round, the central
server aims to acquire

∆t =
1

|Mt|
∑
i∈Mt

∆t
i, (13)

where |Mt| denotes cardinality of setMt. With conventional
OMA schemes, the central server in the t-th round first
receives the local model update, e.g., ∆t

i, from each edge
device, and then takes an average to obtain the desired global
model update, i.e., ∆t. However, these schemes may not be
spectrum-efficient as the number of required resource blocks
or the communication latency linearly increases with the
number of participating edge devices. AirComp, as a new
non-orthogonal multiple access scheme for scalable transmis-
sion, allows all edge devices to concurrently transmit their
local model updates and exploits the waveform superposition
property to achieve spectrum-efficient model aggregation. The
communication resource needed for model uploading using
AirComp is independent of the number of participating edge
devices. Hence, we adopt AirComp for the aggregation of local
model updates in this paper.

Consider a wireless FL system where all edge devices
and the server are equipped with a single antenna. Over
wireless fading channels, the local model updates transmitted
by edge devices suffer from detrimental channel distortion,
which in turn degenerates the convergence performance of the
AirComp-assisted FedZO algorithm. We thus set a threshold
hmin and choose a subset of edge devices Mt = {i | |hti| ≥
hmin} to participate in the training, where hti ∈ C represents
the channel coefficient between edge device i and the central
server in round t. We assume that hti are i.i.d. across different
edge devices and communication rounds [38], [39]. Note that
we can treat the adopted device scheduling strategy as uniform
sampling analyzed in Section III-B.
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With AirComp, the scheduled edge devices concurrently
transmit their precoded model updates, e.g., αti∆

t
i, to the

central server, where αti is the transmit scalar of edge device i
at the t-th round. Note that synchronization is required among
distributed edge devices as in [35]–[39], which can be realized
by sharing a reference-clock across the edge devices [45] or
utilizing the timing advance technique commonly adopted in
4G long term evolution (LTE) and 5G new radio (NR) [46].
We assume that the model update vector ∆t

i of dimension d
can be transmitted within one transmission block while the
channel coefficient is invariant during one transmission block
[35]–[39]. Thus, the aggregated signal received at the central
server can be expressed as

st =
∑
i∈Mt

htiα
t
i∆

t
i + nt, (14)

where nt ∼ CN (0, σ2
wId) represents the additive white

Gaussian noise (AWGN) vector at the central server.

B. Transceiver Design

The transmitted signal at each edge device is subject to
an energy constraint during one communication round, i.e.,
‖αti∆t

i‖
2 ≤ dP , where dP is the total energy of each edge

device in one communication round. We assume that the
channel state information (CSI) is available at both the central
server and edge devices as in [35]–[39]. To meet the energy
constraint of each edge device, we set the transmit scalar of
device i as

αti =
hmin

hti

√
dP

∆t
max

, ∀i, (15)

where ∆t
max = maxi∈Mt ‖∆t

i‖
2. The received signal is thus

given by

st =

√
dPh2

min

∆t
max

∑
i∈Mt

∆t
i + nt. (16)

To recover the desired global model update ∆t in (13) from
st in (16), the central server scales st with a receive scalar

1
|Mt|

√
∆t

max

dPh2
min

, and obtains a noisy version of the global model
update as follows

yt = ∆t + ñt, (17)

where ñt ∼ CN
(

0,
σ2
w∆t

max

|Mt|2dPh2
min

Id

)
. As a result, the global

model at the central server is updated as xt+1 = xt+∆t+ñt.
To facilitate the transceiver design, each edge device needs to
know the maximum of squared norm of local model updates
among the participating edge devices, i.e., ∆t

max, and the
instantaneous channel coefficient between itself and the central
server, i.e., hti, which can be obtained via feedback from the
central server. Before uplink model aggregation, the central
server collects the squared norm of local model update ‖∆t

i‖
2

from each edge device i ∈ Mt, and then broadcasts ∆t
max

to all edge devices. Besides, the central server estimates and
feeds back the channel coefficients to these corresponding edge
devices. It is worth noting that the communication overhead
introduced by the exchange of these scalars is negligible when

compared with the transmission of high-dimensional model
parameters.

Remark 4. Different from most existing studies [16], [35]–
[37] that only focus on compensating for channel fading, the
adopted transmitter design, i.e., (15), takes the scale of the
model update into account. This ensures that the distortion
between the obtained signal and the desired signal, i.e., the
scaled receiver noise, is proportional to the maximum of the
squared norm of local updates. This distortion diminishes
when the local model converges. In other words, with such
a transmitter design, the detrimental effect of the noise can
be eliminated as the iteration proceeds for a convergent
algorithm.

C. Convergence Analysis for AirComp-Assisted FedZO

In the following theorem, we characterize the convergence
of the AirComp-assisted FedZO algorithm described in the
previous two subsections.

Theorem 3. Suppose Assumptions 1-4 hold and the learning
rate satisfies

η ≤ min

{
M̃

288c̃g c̃hL
,

M̃

108chHL
,

3

2NH2L
,

1

3
√
c̃gHL

,

1

2
√

3NH3L
,

√
M̃γ

L
√

2c̃gNH3
,

M̃2γ

36c̃g c̃hNHL

 , (18)

where M̃ = min{|Mt|, t ∈ [T ]}. The AirComp-assisted
FedZO algorithm satisfies

min
t∈[T ]

E
∥∥∇f (xt)∥∥2≤ 4

f
(
x0
)
− f∗

HTη
+η

32L

M̃
Ĉσ̃2

+η
36HLσ2

h

M̃
+Ĉ

dL2µ2

36
+

(
12 +

Ĉ

9

)
L2µ2, (19)

where Ĉ = 1 + NH
8M̃γ

and γ =
Ph2

min

σ2
w

. c̃g , c̃h, and σ̃2 are
defined in Theorem 1.

As can be observed from Theorem 3, the convergence rate
depends on γ, which is the minimum receive SNR. Theorem
3 almost reduces to Theorem 2 when γ goes to infinity, i.e.,
noise-free case. Obviously, a smaller value of SNR leads to a
slower convergence speed, which meets our intuition. In the
following corollary, we show that a same-order convergence
rate as the noise-free case presented in Section III-B can be
achieved with appropriate receive SNR γ, learning rate η, and
step size µ.

Corollary 3. Suppose Assumptions 1-4 hold, 8M̃γ ≥ NH ,
i.e., the communication quality is good enough, and let b1b2 ≤
d, µ = (db1b2M̃HT )−

1
4 and η = (M̃b1b2)

1
2 (dHT )−

1
2 that

holds for (18), we have

min
t∈[T ]

E
∥∥∇f (xt)∥∥2 ≤ O

(
d

1
2 (M̃HTb1b2)

− 1
2

)
+O

(
(b1b2H)

1
2 (dM̃T )

− 1
2

)
+O

(
(db1b2M̃HT )−

1
2

)
. (20)
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Remark 5. From Corollary 3, it can be observed that the
upper bound of the minimum squared gradient among the
global model sequence approaches to zero as T goes to
infinity, while that of the existing algorithms with AirComp
is only shown to be bounded by a non-diminishing optimality
gap [35]–[37]. Moreover, the transceiver design in [35]–[37]
is transformed to an optimization problem aiming to minimize
this gap, which is computationally expensive. In contrast,
our transceiver design follows the principle of COTAF [38]
and mitigates the detrimental impact of channel fading and
receiver noise perturbation without the need of solving opti-
mization problems. Note that the analysis in [38] concentrates
on the first-order algorithm under the strongly convex setup
and relies on the assumption that the second-order moment
of the stochastic gradient is bounded by a constant, which is
restrictive [34] and not required in this paper.

V. SIMULATION RESULTS

In this section, we present simulation results to evaluate the
effectiveness of the proposed FedZO algorithm for applica-
tions of federated black-box attack and softmax regression.

A. Federated Black-Box Attack

The robustness of machine learning (ML) models is an
important performance metric for their practical application.
For example, in an image classification model, the prediction
results of the ML model are expected to be the same as the
decision that humans make. In other words, the same output
should be generated by a robust model if the input image is
perturbed by a noise imperceptible to human. To evaluate the
robustness of ML models, black-box attacks can be adopted,
where the adversary acts as a standard user that does not have
access to the inner structure of ML models and can only query
the outputs (label or confidence score) for different inputs. This
situation occurs when attacking ML cloud services where the
model only serves as an API. Due to the black-box property,
the optimization of black-box attacks falls into the category
of zeroth-order optimization.

We consider federated black-box attacks [10] on the image
classification DNN models that are well trained on some
standard datasets. Federated black-box attacks aim to col-
laboratively generate a common perturbation such that the
perturbed images are visually imperceptible to a human but
could mislead the classifier. For image zi, the attack loss [47]
is given by

ψi(x) = max

{
Φyi

(
1

2
tanh

(
tanh−1 2zi + x

))
− max

j 6=yi

{
Φj

(
1

2
tanh

(
tanh−1 2zi + x

))}
, 0

}
+ c

∥∥∥∥1

2
tanh

(
tanh−1 2zi + x

)
− zi

∥∥∥∥2

, (21)

where yi denotes the label of image zi, Φj(z) repre-
sents the prediction confidence of image z to class j,
1
2 tanh

(
tanh−1 2zi + x

)
is the adversarial example of zi,

1
2 tanh

(
tanh−1 2zi + x

)
−zi is the distortion perturbed by x

in the original image space. The first term of ψi(x) measures
the probability of failing to attack. The last term of ψi(x) rep-
resents the distortion induced by x in the original image space.
The goal of attack is to find a visually small perturbation to
mislead the classifier Φ(·) that can be realized by minimizing
ψi(x). Parameter c balances the trade-off between the adver-
sarial success and distortion loss. We denote the dataset at edge
device n as Dn. The attack loss of device n can be expressed
as fn(x) = 1

|Dn|
∑
i∈Dn ψi(x). Federated black-box attacks of

a DNN model can be formulated as: minx∈Rd
1
N

∑N
n=1 fn(x),

which can be tackled by the proposed FedZO algorithm.
In this experiment setting, all edge devices share one well-

trained DNN classifier1 that has a testing accuracy of 82.3%
on CIFAR-10 dataset [47]. We pick 4992 correctly classified
samples from the training set of image class “deer” (containing
5,000 samples) and then distribute these samples to edge
devices without overlapping. Each edge device is assigned a
random number of samples.

We set the balancing parameter c = 1. The mini-batch sizes
are set to b1 = 25 and b2 = 20. The learning rate and step
size are set to η = 0.001 and µ = 0.001, respectively.

In Fig. 1a, we show the impact of the number of local
updates on the convergence performance of the proposed
FedZO algorithm with full device participation. Specifically,
we vary the number of local updates H ∈ {5, 10, 20, 50} and
present the attack loss versus the number of communication
rounds. It can be observed that the FedZO algorithm can
effectively reduce the attack loss for different values of H .
Besides, as H increases, the convergence speed of the FedZO
algorithm tends to increase. This demonstrates the speedup
in the number of the local iterates as shown in Section III.
We further compare the performance of the proposed FedZO
algorithm with DZOPA [10] and ZONE-S [28]. For DZOPA,
the learning rate (i.e., η) and step size (i.e., µ) are set to 0.005
and 0.001, respectively. For ZONE-S, the penalty parameter
(i.e., ρ, defined in [28]) and step size (i.e., µ) are set to 500
and 0.001, respectively. Note that DZOPA was proposed for
the peer-to-peer architecture which cannot be directly applied
to our considered server-client architecture. For comparison,
we depict the performance of DZOPA under a fully-connected
graph. For fairness, we also upgrade the two-point stochastic
gradient estimator of [10] to a mini-batch-type one as in
(2). Results show that the FedZO algorithm outperforms the
baselines even when H = 5. With a larger number of local
updates, the attack loss of the FedZO algorithm decreases
much faster than that of the baselines.

Fig. 1b shows the convergence performance of the FedZO
algorithm versus the number of participating edge devices
when H = 20. The number of participating edge devices
M takes values from set {5, 10, 25, 50}. It is clear that our
proposed algorithm works well in terms of reducing attack
loss under the four different values of M . As can be observed,
increasing the number of edge devices gives rise to a better
convergence speed. We can observe the speedup in the number
of participating devices, which matches well with our analysis
in Section III.

1https://github.com/carlini/nn robust attacks



9

0 50 100 150 200 250 300
Communication rounds

2

4

6

8

10

12

A
tt
ac
k
lo
ss

ZONE-S

DZOPA

FedZO, H = 5

FedZO, H = 10

FedZO, H = 20

FedZO, H = 50

(a) Impact of number of local updates
when N = 10 and M = 10.

0 50 100 150 200 250 300
Communication rounds

2

4

6

8

10

12

A
tt
ac
k
lo
ss

FedZO, M = 5

FedZO, M = 10

FedZO, M = 25

FedZO, M = 50

(b) Impact of number of participating edge
devices when N = 50 and H = 20.

0 20 40 60 80 100
Communication rounds

2

4

6

8

10

12

A
tt
ac
k
lo
ss

FedZO, noise-free

FedZO, SNR = 0 dB

FedZO, SNR = −5 dB

FedZO, SNR = −10 dB

(c) Impact of SNR when N = 50 and
H = 20.

Fig. 1: Attack loss of the federated black-box attack on CIFAR-10 dataset.
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Fig. 2: Attack accuracy of the federated black-box attack on
CIFAR-10 dataset.

In Fig. 1c, we show the performance of the AirComp-
assisted FedZO algorithm presented in Section IV. With-
out loss of generality, we model the channel as hti ∼
CN (0, 1), ∀i, t, and set the threshold hmin = 0.8. Besides, we
set the number of local iterates to H = 20. We take the FedZO
algorithm with noise-free aggregation as benchmark with
H = 20, where the participating edge devices are the same as
that of the case with noise. We plot the attack loss versus the
number of communication rounds under different SNR, i.e.,
P/σ2

w ∈ {−10 dB, − 5 dB, 0 dB}. As can be observed, the
convergence of the FedZO algorithm can be preserved under
such SNR settings. Besides, increasing the SNR accelerates
the convergence speed of the FedZO algorithm. Especially, the
FedZO algorithm with noise SNR = 0 dB attains a comparable
performance with the noise-free case. These observations are
in line with our theoretical analysis in Section IV-C.

Fig. 2 further demonstrates the superiority of the proposed
FedZO algorithm over the baselines in terms of the attack
accuracy. As can be observed, the proposed FedZO algorithm
achieves a better attack accuracy than ZONE-S and DZOPA
when H is greater than 10. When H = 5, ZONE-S achieves a
higher attack accuracy than FedZO at the cost of incurring a
higher attack loss. This is because the perturbation generated
by ZONE-S brings a large distortion.

B. Softmax Regression

We further validate our algorithm on the task of softmax
regression, which corresponds to the multinomial classifier.
We compare the FedZO algorithm with the FedAvg algorithm
[2], which is the most representative first-order method. We
set the learning rate (i.e., η), step size (i.e., µ), and mini-batch
sizes (i.e., b1 and b2) for the FedZO algorithm as 0.001, 0.001,
25, and 20, respectively. For the FedAvg algorithm, we set the
learning rate (i.e., η) as 0.001.

We apply the softmax regression model to a 10-class-
classification task on Fashion-MNIST [48] dataset. Through
out the experiment, we set the number of devices N = 50.
Our strategy for constructing the non-i.i.d. data distribution
follows the seminal work [2]. In particular, we sort the samples
in the training set according to their labels, and then divide the
training set into 100 shards of size 600. We then assign two
shards to each device, such that each device owns a dataset
of 1, 200 samples. Each edge device is assigned with at most
four distinctive image labels.

As shown in Fig. 3, the convergence speed of the FedZO
algorithm is slightly slower than that of the FedAvg algorithm
under the same number of local updates. This gap is brought
by the uncertainty of the gradient estimator that FedZO
utilizes. Further, we notice that the FedZO algorithm with
H = 20 achieves comparable performance as the FedAvg
algorithm with H = 5. As the FedZO algorithm only relies
on the zeroth-order information, the slightly decreased perfor-
mance is reasonable, and demonstrates the effectiveness of the
FedZO algorithm. This also shows that the FedZO algorithm
can serve as a satisfactory alternative for the FedAvg algorithm
when the first-order information is not available.

In Fig. 4, we take the FedAvg algorithm as a benchmark
when H = 5 and M = 50, and further investigate the
impact of the number of participating edge devices, i.e., M ,
on the convergence behaviour of the FedZO algorithm. The
phenomenon of speedup in M can be witnessed in both the
training loss and testing accuracy. We observe that the FedZO
algorithm with H = 5 and M = 50 attains a comparable
performance with the FedAvg algorithm.

Fig. 5 shows the performance of the AirComp-assisted
FedZO algorithm over wireless networks with the same chan-
nel setting as mentioned in Section V-A. It can be observed
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Fig. 3: The convergence results on
the softmax regression problem with
Fashion-MNIST dataset when N = 50
and M = 20.
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Fig. 4: The convergence results on
the softmax regression problem with
Fashion-MNIST dataset when N = 50
and H = 5.
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Fig. 5: The convergence results on
the softmax regression problem with
Fashion-MNIST dataset when N = 50
and H = 5.

that our proposed algorithm converges as the number of
communication rounds increases and performs well when the
SNR is not very small, e.g., SNR ∈ {−5 dB, 0 dB}. Results
also show that a greater SNR leads to a higher convergence
speed. This result fits well with our analysis.

VI. CONCLUSION

In this paper, we developed a derivative-free FedZO al-
gorithm to handle federated optimization problems without
using the gradient or Hessian information. Under non-convex
settings, we characterized its convergence rate on non-i.i.d.
data, and demonstrated the linear speedup in terms of the num-
ber of participating devices and local iterates. Subsequently,
we established the convergence guarantee for the AirComp-
assisted FedZO algorithm to support the implementation of
the proposed algorithm over wireless networks. Simulation
results demonstrated the effectiveness of the proposed FedZO
algorithm and showed that the FedZO algorithm could serve as
a satisfactory alternative for the FedAvg algorithm. It was also
validated that the AirComp-assisted FedZO algorithm could
attain a comparable performance with that of the noise-free
case under certain SNR conditions.

APPENDIX

To prove Theorems 1 and 2, we first characterize per round
progress by Lemmas 1 and 3, respectively, and then bound
the client drift during H local iterates by Lemma 2. To prove

Theorem 3, we further bound the wireless noise by Lemma
4. The proofs of these lemmas are deferred to Appendix D.
Before presenting the proofs, we first introduce some notations
that are frequently used in this appendix.

Let F (t,k) be a σ-field representing all the historical in-
formation of the FedZO algorithm up to the start of the
k-th iteration of the t-th round. Et and Ekt denote ex-
pectations conditioning on F (t,0) and F (t,k), respectively.
Let ζt =

{
{ξ(t,k)i,m ,v

(t,k)
i,n }

m=1,2,...,b1;n=1,2,...,b2
i=1,2,...,N ;k=0,1,...,H−1

}
and ζkt ={

{ξ(t,τ)i,m ,v
(t,τ)
i,n }

m=1,2,...,b1;n=1,2,...,b2
i=1,2,...,N ;τ=0,1,...,k

}
. Eζt , Eζkt , and EMt

de-
note expectations over ζt, ζkt , and Mt, respectively.

A. Proof of Theorem 1
For notational ease, we denote δt =

Eζt
[

1
N

∑N
i=1

∑H−1
k=0 ‖x

(t,k)
i −xt‖2

]
. Before proving Theorem

1, we present the following two lemmas. The first lemma
characterizes how the global loss, i.e., f(xt), evolves as the
iteration continues.

Lemma 1. With Assumptions 1-4 and full device participation,
by letting η ≤ 1

2HL , we have

Et
[
f
(
xt+1

)]
≤ f

(
xt
)
−
(
ηH

2
−η2 6c̃g c̃hHL

N

)∥∥∇f (xt)∥∥2

+

(
ηL2+η2 6c̃gL

3

N

)
δt+η

2 2HL

N
σ̃2

+ η2 2HL3µ2

N
+η2 d

2HL3µ2

2Nb1b2
+ηHL2µ2. (22)
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Please refer to Appendix D2 for the proof.

Lemma 1 implies that we need to bound δt, which is tackled
by the following lemma.

Lemma 2. With Assumptions 1-4 and η ≤ 1

3HL
√
c̃g

, we have

δt≤3η2c̃g c̃hH
3
∥∥∇f(xt)∥∥2+H3L2η2µ2+η2H3σ̃2+

d2H3L2

4b1b2
η2µ2.

Please refer to Appendix D3 for the proof.

By substituting the upper bound of δt in Lemma 2 into (22),
we obtain

Et
[
f
(
xt+1)]≤ f (xt)−(ηH

2
−3η2c̃g c̃hQ1(η)

)∥∥∇f(xt)∥∥2
+ η2σ̃2Q1(η) +Q1(η)

(
L2η2µ2 +

d2L2

4b1b2
η2µ2)+ ηHL2µ2,

where Q1(η) = 2HL
N + (ηL2 + η2 6c̃gL

3

N )H3. Under condition
(7), we have

Q1(η) ≤
6HL

N
, η2

18c̃g c̃hHL

N
≤ ηH

4
, L2η2µ2 ≤ NLηµ2

72
,

and d2L2η2µ2

4b1b2
≤ d2NLηµ2

288b1b2c̃g c̃h
. Recalling the definition of c̃g and

the fact that cg c̃h ≥ 1, we have d2

b1b2c̃g c̃h
≤ d

cg c̃h
≤ d. With

the above inequalities, we have

Et
[
f
(
xt+1)] ≤f (xt)− ηH

4

∥∥∇f (xt)∥∥2 + η2
6HL

N
σ̃2

+
ηdHL2µ2

48
+

13

12
ηHL2µ2. (23)

By taking expectation on both sides of (23) and telescoping
from t = 0 to T − 1, we obtain

1

T

T−1∑
t=0

E
∥∥∇f (xt)∥∥2 ≤4f (x0

)
− E

[
f
(
xT
)]

HTη
+ η

24L

N
σ̃2

+
dL2µ2

12
+ 5L2µ2. (24)

By Assumption 1, i.e., f(x) ≥ f∗, we obtain Theorem 1.

B. Proof of Theorem 2
We first characterize how the global loss, i.e., f(xt), evolves

as the iteration continues in the following lemma.

Lemma 3. With Assumptions 1-4 and partial device partici-
pation, by letting the learning rate η ≤ 1

2HL , we have

Et
[
f
(
xt+1

)]
≤ f

(
xt
)
−
(
ηH

2
− η2 6c̃g c̃hHL

M
− η2 9H2Lch

M

)∥∥∇f (xt)∥∥2

+

(
ηL2+η2 6c̃gL

3

M
+η218HL3

)
δt+η

2 2HL

M
σ̃2+

9η2H2Lσ2
h

M

+η2 2HL3µ2

M
+η2 d

2HL3µ2

2Mb1b2
+6η2H2L3µ2+ηHL2µ2.

Please refer to Appendix D1 for the proof.

By combining Lemmas 2 and 3, we have

Et
[
f
(
xt+1)]

≤f
(
xt
)
−
(ηH

2
−η2 9H

2Lch
M

−3c̃g c̃hη2Q2(η)
)∥∥∇f(xt)∥∥2

+η2σ̃2Q2(η)+
9η2H2Lσ2

h

M
+Q2(η)

(
L2η2µ2 +

d2L2

4b1b2
η2µ2

)
+6η2H2L3µ2+ηHL2µ2,

where Q2(η) = 2HL
M +

(
ηL2+η2 6c̃gL

3

M +η218HL3
)
H3. Under

condition (10), we have

η2
9H2Lch
M

≤ ηH

8
, Q2(η) ≤

8HL

M
,
24η2c̃g c̃hHL

M
≤ ηH

8
,

L2η2µ2 ≤ MLηµ2

192
,
d2L2η2µ2

4b1b2
≤ d2MLηµ2

768b1b2c̃g c̃h
,

and 6η2H2L3µ2 ≤ 2ηHL2µ2. Recalling the definition of c̃g
and the fact that cg c̃h ≥ 1, we have d2

b1b2c̃g c̃h
≤ d

cg c̃h
≤ d.

With the above inequalities, we have

Et
[
f
(
xt+1)]≤f (xt)− ηH

4

∥∥∇f (xt)∥∥2+η2 8HL
M

σ̃2

+
9η2H2Lσ2

h

M
+
ηHdL2µ2

96
+
(
3+

1

24

)
ηHL2µ2.

By following the similar steps as in Appendix A, we obtain
Theorem 2.

C. Proof of Theorem 3

By denoting x̃t+1 = xt+ 1
|Mt|

∑
i∈Mt

∆t
i as the noise-free

aggregated model, we have xt+1 = x̃t+1 + ñt. By applying
the smoothness of f(x) in Assumption 2, we obtain

f
(
xt+1

)
≤ f

(
x̃t+1

)
+
〈
∇f

(
x̃t+1

)
, ñt
〉

+
L

2
‖ñt‖2 . (25)

We denote s(t,H) = 1
N

∑N
i=1 Eζt‖x

(t,H)
i −xt‖2. By taking

an expectation for (25) conditioning on F (t,0) and utilizing
Eζt
[

maxi ‖x(t,H)
i −xt‖2

]
≤ Ns(t,H), we have

Et
[
f
(
xt+1

)]
≤ Et

[
f
(
x̃t+1

)]
+
L

2γ

N

|Mt|2
s(t,H). (26)

The above result suggests that we need to bound s(t,H), which
can be handled by the following lemma.

Lemma 4. With Assumptions 1-4 hold, we have

s(t,H) ≤6c̃gHL
2η2δt + 6c̃g c̃hH

2η2
∥∥∇f(xt)

∥∥2
+2H2η2σ̃2

+2H2L2η2µ2+
d2H2L2

2b1b2
η2µ2. (27)

Please refer to Appendix D4 for the proof.

By combining Lemmas 2, 3, and 4, we obtain

Et
[
f
(
xt+1)]

≤ f
(
xt
)
−
(ηH

2
−η2 9H

2Lch
|Mt|

−3c̃g c̃hη2Q̃3(η)
)∥∥∇f (xt)∥∥2

+η2σ̃2Q̃3(η)+
9η2H2Lσ2

h

|Mt|
+Q̃3(η)

(
L2η2µ2 +

d2L2

4b1b2
η2µ2

)
+ 6η2H2L3µ2 + ηHL2µ2,

where Q̃3(η)= NH2L
|Mt|2γ +Q3(η) and

Q3(η)=
2HL

|Mt|
+
(
ηL2+η2

6c̃gL
3

|Mt|
+η218HL3+

3c̃gNHL
3η2

|Mt|2γ
)
H3.

Under condition (18), we have

η2
9H2Lch
|Mt|

≤ ηH

12
,
3c̃g c̃hNH

2Lη2

|Mt|2γ
≤ ηH

12
, Q3(η) ≤

8HL

|Mt|
,
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η2
24c̃g c̃hHL

|Mt|
≤ ηH

12
, 6η2H2L3µ2 ≤ 2ηHL2µ2,

L2η2µ2 ≤ |Mt|Lηµ2

288
, and

d2L2η2µ2

4b1b2
≤ d2|Mt|Lηµ2

1152b1b2c̃g c̃h
.

Recalling the definition of c̃g and the fact that cg c̃h ≥ 1, we
have d2

b1b2c̃g c̃h
≤ d

cg c̃h
≤ d. With the above inequalities, we

have

Et
[(
xt+1)] ≤f (xt)−ηH

4

∥∥∇f (xt)∥∥2+η2 8HL|Mt|
Ĉσ̃2

+
9η2H2Lσ2

h

|Mt|
+Ĉ

ηdHL2µ2

144
+

(
3 +

Ĉ

36

)
ηHL2µ2, (28)

where Ĉ = 1 + NH
8M̃γ

and M̃ ≤ |Mt|, ∀t. After reorganizing
(28), we obtain∥∥∇f (xt)∥∥2 ≤ 4

f
(
xt
)
−Et

[
f
(
xt+1

)]
ηH

+η
32L

M̃
Ĉσ̃2

+
36ηHLσ2

h

M̃
+Ĉ

dL2µ2

36
+

(
12 +

Ĉ

9

)
L2µ2. (29)

By following the similar derivation as in Appendix A, we
obtain Theorem 3.

D. Proof of Lemmas

As Lemma 1 is a simplified version of Lemma 3, we first
prove Lemma 3 and then prove Lemma 1.

1) Proof of Lemma 3: Based on Assumption 2 and
η 1
M

∑
i∈Mt

∑H−1
k=0 e

(t,k)
i = xt+1 − xt, we have

f
(
xt+1) ≤f (xt)− η〈∇f (xt) , 1

M

∑
i∈Mt

H−1∑
k=0

e
(t,k)
i

〉

+ η2
L

2

∥∥∥∥∥ 1

M

∑
i∈Mt

H−1∑
k=0

e
(t,k)
i

∥∥∥∥∥
2

. (30)

By taking an expectation for (30) conditioning on F (t,0), we
obtain

Et
[
f
(
xt+1)] ≤f (xt)−ηEζt

[〈
∇f

(
xt
)
,
1

M
EMt

∑
i∈Mt

H−1∑
k=0

e
(t,k)
i

〉]
︸ ︷︷ ︸

T1

+ η2
L

2
Et

∥∥∥∥∥ 1

M

∑
i∈Mt

H−1∑
k=0

e
(t,k)
i

∥∥∥∥∥
2

︸ ︷︷ ︸
T2

. (31)

As Mt is uniformly sampled from N edge devices, by
utilizing [22, Lemma 4], we have

T1 = −ηEζt

[〈
∇f

(
xt
)
,
1

N

N∑
i=1

H−1∑
k=0

e
(t,k)
i

〉]
.

According to (4), we have

Eζt

[
1

N

N∑
i=1

H−1∑
k=0

(
e
(t,k)
i −∇fµi

(
x

(t,k)
i

))]
= 0. (32)

With the above two equalities, we have

T1 = −ηEζt

[〈
∇f

(
xt
)
,
1

N

N∑
i=1

H−1∑
k=0

∇fµi
(
x

(t,k)
i

)〉]
.

Because of the equality 2〈a, b〉=‖a‖2+‖b‖2−‖a−b‖2, we
obtain

T1=−
ηH

2

∥∥∇f (xt)∥∥2− ηH
2

Eζt

∥∥∥∥∥ 1

NH

N∑
i=1

H−1∑
k=0

∇fµi
(
x

(t,k)
i

)∥∥∥∥∥
2

+
ηH

2
Eζt

∥∥∥∥∥ 1

NH

N∑
i=1

H−1∑
k=0

(
∇fµi

(
x

(t,k)
i

)
−∇fi

(
xt
))∥∥∥∥∥

2

︸ ︷︷ ︸
T3

. (33)

For T3, we have

T3 ≤
1

NH
Eζt

[
N∑
i=1

H−1∑
k=0

∥∥∥∇fµi (x(t,k)
i

)
−∇fi

(
xt
)∥∥∥2]

=
1

NH
Eζt

[
N∑
i=1

H−1∑
k=0

∥∥∥∇fµi (x(t,k)
i

)
∓∇fi

(
x

(t,k)
i

)
−∇fi

(
xt
)∥∥∥2]

≤ 2

NH
Eζt

[
N∑
i=1

H−1∑
k=0

∥∥∥∇fµi (x(t,k)
i

)
−∇fi

(
x

(t,k)
i

)∥∥∥2]

+
2

NH
Eζt

[
N∑
i=1

H−1∑
k=0

∥∥∥∇fi (x(t,k)
i

)
−∇fi

(
xt
)∥∥∥2]

≤ 2L2µ2 +
2L2

NH
Eζt

[
N∑
i=1

H−1∑
k=0

∥∥∥x(t,k)
i − xt

∥∥∥2] , (34)

where the first inequality follows by the Jensen’s inequality,
a∓b represents a−b+b, the second inequality holds because of
the Cauchy-Schwartz inequality, and the last inequality follows
by [10, Lemma 2] and the smoothness of fi (x) in Assumption
2. By substituting (34) into (33), we have

T1 ≤ −
ηH

2

∥∥∇f (xt)∥∥2 − ηH

2
Eζt

∥∥∥∥∥ 1

NH

N∑
i=1

H−1∑
k=0

∇fµi (x
(t,k)
i )

∥∥∥∥∥
2

+ ηHL2µ2 + ηL2Eζt

[
1

N

N∑
i=1

H∑
k

‖x(t,k)
i − xt‖2

]
. (35)

For T2, according to the Cauchy-Schwartz inequality, we have

T2 ≤2Et

∥∥∥∥∥ 1

M

∑
i∈Mt

H−1∑
k=0

(
e
(t,k)
i −∇fµi

(
x

(t,k)
i

))∥∥∥∥∥
2

︸ ︷︷ ︸
T4

+ 2Et

∥∥∥∥∥ 1

M

∑
i∈Mt

H−1∑
k=0

∇fµi
(
x

(t,k)
i

)∥∥∥∥∥
2

︸ ︷︷ ︸
T5

. (36)

By denoting hi =
∑H−1
k=0 (e

(t,k)
i −∇fµi (x

(t,k)
i )) and utilizing

(4), we have Eζt [hi] = 0. Due to the independence between
hi and hj , ∀j 6= i, we have Eζt [〈hi,hj〉] = 0. We thus obtain

T4 =
1

M2
EMt

∑
i∈Mt

Eζt

∥∥∥∥∥
H−1∑
k=0

(
e
(t,k)
i −∇fµi

(
x

(t,k)
i

))∥∥∥∥∥
2


=
1

MN

N∑
i=1

Eζt

∥∥∥∥∥
H−1∑
k=0

(
e
(t,k)
i −∇fµi

(
x

(t,k)
i

))∥∥∥∥∥
2

. (37)

According to (4) and [7, Lemma 2], it follows that

T4 =
1

MN

N∑
i=1

H−1∑
k=0

Eζkt
∥∥∥e(t,k)

i −∇fµi
(
x

(t,k)
i

)∥∥∥2 . (38)
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As E‖z − E[z]‖2 ≤ E‖z‖2, we have

T4 ≤
1

MN

N∑
i=1

H−1∑
k=0

Eζkt
∥∥∥e(t,k)

i

∥∥∥2 . (39)

Recalling (2) and (5), we have e
(t,k)
i =

1
b1b2

∑b1
m=1

∑b2
n=1 e

(t,k)
i,m,n by denoting

e
(t,k)
i,m,n =

dv
(t,k)
i,n

µ

(
Fi(x

(t,k)
i +µv

(t,k)
i,n , ξ

(t,k)
i,m )−Fi(x(t,k)

i , ξ
(t,k)
i,m )

)
.

According to (3), we have

Ekt
[
e

(t,k)
i,m,n

]
= ∇fµi

(
x

(t,k)
i

)
, ∀m, n. (40)

Therefore, we can bound Eζkt
∥∥∥e(t,k)

i

∥∥∥2

as follows

Eζkt
∥∥∥e(t,k)

i

∥∥∥2 = E
ζk−1t

[
Ekt
∥∥∥e(t,k)

i

∥∥∥2]

=E
ζk−1t

Ekt
∥∥∥∥∥ 1

b1b2

b1∑
m=1

b2∑
n=1

e
(t,k)
i,m,n−∇f

µ
i (x

(t,k)
i )

∥∥∥∥∥
2

+
∥∥∥∇fµi (x(t,k)

i )
∥∥∥2


=
1

b1b2
Eζkt

∥∥∥e(t,k)
i,1,1−∇f

µ
i (x

(t,k)
i )

∥∥∥2+E
ζk−1t

∥∥∥∇fµi (x(t,k)
i )

∥∥∥2
≤ 1

b1b2
Eζkt

∥∥∥e(t,k)
i,1,1

∥∥∥2+E
ζk−1
t

∥∥∥∇fµi (x(t,k)
i )

∥∥∥2 , (41)

where the second equality follows by E‖z‖2 = ‖E[z]‖2+E‖z−
E[z]‖2, the third equality follows by the fact that e(t,k)

i,m,n and
e

(t,k)
i,m′,n′ are independent when m 6= m′ or n 6= n′, and the

inequality holds because of E‖z−E[z]‖2 ≤ E‖z‖2. We further

bound Eζkt
∥∥∥e(t,k)
i,1,1

∥∥∥2

as follows

Eζkt
∥∥∥e(t,k)
i,1,1

∥∥∥2≤2dEζkt
∥∥∥∇Fi(x(t,k)

i , ξ
(t,k)
i,1 )

∥∥∥2+1

2
d2L2µ2

≤ 2cgdEζk−1t

∥∥∥∇fi(x(t,k)
i )

∥∥∥2+2dσ2
g+

1

2
d2L2µ2, (42)

where the first inequality follows by [20, Lemma 4.1] and the
second inequality follows by Assumption 3. Besides,

E
ζk−1t

∥∥∥∇fµi (x(t,k)
i )

∥∥∥2
= E

ζk−1t

∥∥∥∇fµi (x(t,k)
i )−∇fi(x(t,k)

i )+∇fi(x(t,k)
i )

∥∥∥2
≤ 2E

ζk−1t

∥∥∥∇fµi (x(t,k)
i )−∇fi(x(t,k)

i )
∥∥∥2+2E

ζk−1t

∥∥∥∇fi(x(t,k)
i )

∥∥∥2
≤ 2µ2L2 +2E

ζk−1t

∥∥∥∇fi(x(t,k)
i )

∥∥∥2 , (43)

where the last inequality follows by [10, Lemma 2]. By
combining (41), (42), and (43), we have

Eζkt
∥∥∥e(t,k)

i

∥∥∥2 ≤(2+ 2cgd

b1b2

)
E
ζk−1t

∥∥∥∇fi(x(t,k)
i )

∥∥∥2
+
2dσ2

g

b1b2
+
d2L2µ2

2b1b2
+2L2µ2. (44)

We next bound Eζk−1t

∥∥∥∇fi(x(t,k)
i )

∥∥∥2

as below

E
ζk−1t

∥∥∥∇fi(x(t,k)
i )

∥∥∥2
=E

ζk−1t

∥∥∥∇fi(x(t,k)
i )∓∇fi(xt)∓∇f(xt)

∥∥∥2
≤3L2E

ζk−1t

∥∥∥x(t,k)
i − xt

∥∥∥2 + 3σ2
h + (3ch + 3)

∥∥∇f(xt)∥∥2 , (45)

where the inequality follows by the Cauchy-Schwartz inequal-
ity, Assumption 2, and Assumption 4. According to (39), (44),
and (45), we obtain

T4 ≤
6c̃gL

2

M
Eζt

[
1

N

N∑
i=1

H−1∑
k=0

∥∥∥x(t,k)
i − xt

∥∥∥2]+6c̃g c̃hH

M

∥∥∇f(xt)∥∥2
+

2H

M
σ̃2+

2HL2µ2

M
+
d2HL2µ2

2Mb1b2
, (46)

where σ̃2, c̃g , and c̃h are defined in Theorem 1.
Next, we split T5 as follows

T5 = Eζt

[
EMt

∥∥∥∥∥ 1

M

∑
i∈Mt

H−1∑
k=0

∇fµi
(
x

(t,k)
i

)∥∥∥∥∥
2 ]

=

Eζt

[
EMt

∥∥∥∥∥ 1

M

∑
i∈Mt

H−1∑
k=0

∇fµi
(
x

(t,k)
i

)
− 1

N

N∑
i=1

H−1∑
k=0

∇fµi
(
x

(t,k)
i

)∥∥∥∥∥
2

︸ ︷︷ ︸
T6

+

∥∥∥∥∥ 1

N

N∑
i=1

H−1∑
k=0

∇fµi
(
x

(t,k)
i

)∥∥∥∥∥
2 ]
, (47)

where the equality follows by E‖z‖2 =‖E[z]‖2+E‖z−E[z]‖2.
For T6, we provide the following upper bounds

T6=Et

∥∥∥∥∥ 1

M

∑
i∈Mt

H−1∑
k=0

∇fµi (x
(t,k)
i )∓ 1

M

∑
i∈Mt

H−1∑
k=0

∇fi(x(t,k)
i )

∓ 1

N

N∑
i=1

H−1∑
k=0

∇fi(x(t,k)
i )− 1

N

N∑
i=1

H−1∑
k=0

∇fµi (x
(t,k)
i )

∥∥∥∥∥
2

≤3Et

∥∥∥∥∥ 1

M

∑
i∈Mt

H−1∑
k=0

(
∇fµi (x

(t,k)
i )−∇fi(x(t,k)

i )
)∥∥∥∥∥

2

+ 3Et

∥∥∥∥∥ 1

M

∑
i∈Mt

H−1∑
k=0

∇fi(x(t,k)
i )− 1

N

N∑
i=1

H−1∑
k=0

∇fi(x(t,k)
i )

∥∥∥∥∥
2

+ 3Et

∥∥∥∥∥ 1

N

N∑
i=1

H−1∑
k=0

(
∇fi(x(t,k)

i )−∇fµi (x
(t,k)
i )

)∥∥∥∥∥
2

≤ 3Et

∥∥∥∥∥ 1

M

∑
i∈Mt

H−1∑
k=0

∇fi(x(t,k)
i )− 1

N

N∑
i=1

H−1∑
k=0

∇fi(x(t,k)
i )

∥∥∥∥∥
2

︸ ︷︷ ︸
T7

+ 6H2L2µ2, (48)

where the first inequality follows from the Cauchy-Schwartz
inequality and the second inequality follows by the Jensen’s
inequality and [10, Lemma 2].

By substituting ∓ 1
M

∑
i∈Mt

∑H−1
k=0 ∇fi (xt) and

∓ 1
N

∑N
i=1

∑H−1
k=0 ∇fi (xt) into T7, and then following

a similar derivation for bounding T6, we can bound T7 as
follows

T7 ≤18HL2Eζt

[
1

N

N∑
i=1

H−1∑
k=0

∥∥∥x(t,k)
i − xt

∥∥∥2]

+ 9H2 EMt

∥∥∥∥∥ 1

M

∑
i∈Mt

∇fi
(
xt
)
−∇f

(
xt
)∥∥∥∥∥

2

︸ ︷︷ ︸
T8

. (49)
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We continue by bounding T8 as below

T8 = EMt

∥∥∥∥∥ 1M ∑
i∈Mt

(
∇fi

(
xt
)
−∇f

(
xt
))∥∥∥∥∥

2

=
1

M2
EMt

∑
i∈Mt

∥∥∇fi (xt)−∇f (xt)∥∥2
≤ σ2

h

M
+
ch
M

∥∥∇f (xt)∥∥2 , (50)

where the second identity follows by the fact that devices in
Mt are independently sampled from device set {1, 2, . . . , N}
and Ei∼{1,2,...,N} [∇fi (xt)] = ∇f (xt), and the last inequal-
ity comes from Assumption 4.

By combining (47), (48), (49), and (50), we bound T5 as

T5 ≤ 18HL2Eζt

[
1

N

N∑
i=1

H−1∑
k=0

∥∥∥x(t,k)
i − xt

∥∥∥2]+9chH
2

M

∥∥∇f (xt)∥∥2
+
9H2σ2

h

M
+ 6H2L2µ2+Eζt

∥∥∥∥∥ 1

N

N∑
i=1

H−1∑
k=0

∇fµi
(
x

(t,k)
i

)∥∥∥∥∥
2

. (51)

By combining (31), (35), (36), (46), and (51), we obtain
Lemma 3.

2) Proof of Lemma 1: Most of the intermediary results for
proving Lemma 3 in Appendix D1 can be directly applied here
by replacing M with N . The main difference is that there is
no randomness in Mt, and we thus do not need to construct
an upper bound for T5 in (36). By combining (31), (35), (36),
and (46), we obtain Lemma 1.

3) Proof of Lemma 2: By denoting
1
N

∑N
i=1 Eζk−1t

∥∥∥x(t,k)
i − xt

∥∥∥2

as s(t,k), we have

s(t,τ) = η2
1

N

N∑
i=1

E
ζτ−1t

∥∥∥∥∥
τ−1∑
k=0

e
(t,k)
i

∥∥∥∥∥
2

≤ τη2
τ−1∑
k=0

1

N

N∑
i=1

Eζkt
∥∥∥e(t,k)

i

∥∥∥2 , (52)

where the inequality follows by the Cauchy-Schwartz inequal-
ity. By combining (44), (45), and (52), we have

s(t,τ) ≤6c̃gL
2τη2

τ−1∑
k=0

s(t,k) + 6τ2η2c̃g c̃h
∥∥∇f(xt)

∥∥2

+2τ2η2σ̃2+2L2τ2η2µ2+
d2L2τ2

2b1b2
η2µ2. (53)

By taking summation over τ from 1 to H−1, we obtain

H−1∑
τ=1

s(t,τ) ≤ 6c̃gL
2η2

H−1∑
τ=1

τ

τ−1∑
k=0

s(t,k) + C0

≤ 3c̃gH
2L2η2

H−1∑
k=0

s(t,k) + C0, (54)

where we utilize the property of arithmetic sequence and

C0 =2H3η2c̃g c̃h
∥∥∇f(xt)

∥∥2
+

2

3
H3η2σ̃2+

2

3
L2H3η2µ2

+
d2L2H3

6b1b2
η2µ2.

As s(t,0) =0 and by rearranging (54), we have

(
1− 3c̃gH

2L2η2
)H−1∑
τ=0

s(t,τ) ≤ 2H3η2c̃g c̃h
∥∥∇f(xt)

∥∥2

+
2

3
L2H3η2µ2+

2

3
H3η2σ̃2 +

d2L2H3

6b1b2
η2µ2. (55)

As η ≤ 1

3HL
√
c̃g

, we have 3(1− 3c̃gH
2L2η2) ≥ 2. Note that∑H−1

τ=0 s(t,τ) = δt. We thus obtain Lemma 2.
4) Proof of Lemma 4: Lemma 4 is a byproduct of the

derivation of Lemma 2. It follows from (53) by setting τ = H .
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