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Accurate and efficient band-gap predictions for metal halide
perovskites at finite temperature
Haiyuan Wang 1✉, Alexey Tal1, Thomas Bischoff1, Patrick Gono 1 and Alfredo Pasquarello 1

We develop a computationally efficient scheme to accurately determine finite-temperature band gaps for metal halide perovskites
belonging to the class ABX3 (A= Rb, Cs; B= Ge, Sn, Pb; and X= F, Cl, Br, I). First, an initial estimate of the band gap is provided for
the ideal crystalline structure through the use of a range-separated hybrid functional, in which the parameters are determined non-
empirically from the electron density and the high-frequency dielectric constant. Next, we consider two kinds of band-gap
corrections to account for spin-orbit coupling and thermal vibrations including zero-point motions. In particular, the latter effect is
accounted for through the special displacement method, which consists in using a single distorted configuration obtained from the
vibrational frequencies and eigenmodes, thereby avoiding lengthy molecular dynamics. The sequential consideration of both
corrections systematically improves the band gaps, reaching a mean absolute error of 0.17 eV with respect to experimental values.
The computational efficiency of our scheme stems from the fact that only a single calculation at the hybrid-functional level is
required and that it is sufficient to evaluate the corrections at the semilocal level of theory. Our scheme is thus convenient for the
screening of large databases of metal halide perovskites, including large-size systems.
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INTRODUCTION
Metal halide perovskite solar cells have shown remarkable
progress in power conversion efficiency, which has been boosted
up to 25% within only a few years1. Approximately 2000
perovskites2 can be synthesized but their suitability for photo-
electric devices strongly depends on their electronic band gap. In
particular, this property varies with the specific phase in which
these materials occur, going from the highly symmetric cubic
phase at high temperatures to structures of lower symmetry at
lower temperatures. Given the large variety of available
perovskites, it is important to develop a computational tool to
screen large databases in search of an optimal material. Such a
tool should provide band gaps at finite temperature in a
computationally efficient way without compromising on accu-
racy. In the case of cubic halide perovskites that have small unit
cells, Wiktor et al. have shown that it is possible to achieve an
accurate description of the experimental band gaps by combin-
ing, on the one hand, high-level many-body perturbation theory
for the electronic structure and, on the other hand, ab initio
molecular dynamics to account for the finite temperature, the
two schemes implying extensive computational resources of
comparable order3. Next, Bischoff et al. further demonstrated that
the accuracy by which the electronic structure is described could
be preserved through the use of computationally more advanta-
geous nonempirical hybrid functionals4. However, this develop-
ment needs to be accompanied with a similar reduction of
computational cost for treating the effects of finite temperature
in order to deploy such methodology to a large set of perovskite
materials in an efficient way.
Density functional theory5,6 based on semilocal approximations

for the exchange and correlation energy represents a powerful
tool for predicting ground state properties in materials sciences.
However, it is well-known that such semilocal approximations
generally underestimate the electronic band gap7. In contrast with
this general notion, several previous studies focusing on

perovskites have reported that the semilocal functional proposed
by Perdew, Burke, and Ernzerhof (PBE) gives band gaps in good
agreement with experimental data8–10. This agreement should be
considered accidental because of the neglect of various effects3,
such as spin-orbit coupling (SOC), nuclear quantum effects (NQEs),
and thermal vibrations. Many-body perturbation theory in the GW
approximation11 is currently recognized as the most accurate
scheme for band-gap calculations, especially in its self-consistent
quasiparticle formulation including vertex corrections in the
screening12–15. However, such calculations are computationally
highly demanding and cannot be envisaged as an efficient tool for
screening large databases.
Hybrid functionals like the global PBE016,17 or the range-

separated HSE18,19 are obtained by admixing a fraction of Fock
exchange to the semilocal exchange potential and can serve as
valuable alternatives to GW calculations. These hybrid functionals
are defined through fixed mixing parameters, and thereby
generally fail in providing accurate band gaps for a large class
of materials20–22. It has been shown that higher accuracy can be
achieved through material-specific dielectric-dependent hybrid
(DDH) functionals14,23–28. Alkauskas et al.23 and Marques et al.24

linked the incorporated amount of Fock exchange to the inverse
high-frequency dielectric constant 1/ϵ∞. Next, range-separated
DDH functionals were developed in which 1/ϵ∞ determines the
fraction of Fock exchange in the long range (LR), while retaining a
suitable fraction of Fock exchange in the short range (SR)25,29,30.
Very recently, further developments led to the suggestion of two
kinds of nonempirical range-separated DDH functionals26,27. In the
first one (denoted DD-RSH-CAM) the parameters are determined
through the first-principles calculation of the dielectric screening
function26, while in the second one (denoted DSH) the parameters
are obtained through combining metallic and dielectric screen-
ing27. These two advanced DDH schemes have been shown to
yield band gaps of accuracy comparable to state-of-the-art
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GW calculations for a large variety of materials26,27, but at a
significantly lower computational cost.
To achieve high accuracy at finite temperature, it is further

necessary to account for electron-phonon interactions, which
have been found to significantly affect the band gap through the
zero-point motions and the thermal vibrations3. Widely used
supercell methods to estimate the electron-phonon interaction
are based on the adiabatic approximation and include statistical
sampling through Monte-Carlo31,32 and molecular dynamics
methods3,33,34. Within the context of the adiabatic approximation,
one also finds the so-called special displacement method (SDM),
in which only one single optimal configuration of the atomic
positions is sufficient to evaluate the band-gap renormalization
due to NQEs and thermal vibrations35,36. For polar materials, Poncé
et al. pointed out that the adiabatic approximation leads to a
divergence at small momentum transfer37, but Zacharias and
Giustino remarked that the observed divergency is not intrinsic to
the adiabatic approximation36. In the SDM, the divergence is
found not to build up35,36,38,39, because the periodic boundary
conditions effectively short-circuit the long-range electric field
associated with longitudinal optical phonons35. Recent reports
show that it is necessary to resort to the nonadiabatic formulation
in the evaluation of the zero-point phonon renormalization in the
case of infrared-active materials37,40–42. Nonadiabatic effects are
usually included through a generalized Fröhlich model40,42, which
in its one-band formulation can also be used for an estimation of
the correction39,41,43. Furthermore, the challenge of calculating
band gaps of metal halide perovskites is exacerbated by other
issues associated with thermal vibrations, such as anharmonic
effects44, strong dependence of spin-orbit coupling3 and phonon
renormalization38,41,45 on the adopted electronic-structure theory,
and cross-coupling between spin-orbit coupling and phonon
renormalization3,46.
In this work, we achieve accurate band-gap predictions for

metal halide perovskites at finite temperature in a highly efficient
way by combining dielectric-dependent hybrid functionals for the
electronic structure with the special displacement method for the
nuclear quantum effects and the thermal vibrations. To highlight
the advantage of using dielectric-dependent hybrid functionals,
our investigation also includes standard hybrid functionals, such
as PBE0 and HSE06. Our best band-gap predictions are obtained
by applying the following procedure. We start by calculating initial
band-gap estimates with the dielectric-dependent hybrid func-
tional for the pristine crystalline structure. Next, two corrections
are applied. The first correction results from spin-orbit coupling
effects. The second correction accounts for the nuclear quantum
effects and the thermal vibrations. In this case, the special
displacement method is applied and nonadiabatic effects are
estimated through the one-band Fröhlich model. The band gap of
the supercell structure with the special displacements is extracted
through a procedure similar to the Tauc analysis of experimental
spectra47. We demonstrate that both corrections can be
determined at the semilocal level of theory, which does not lead
to any significant loss of accuracy with respect to hybrid-
functional results of higher level and thus only implies a moderate
computational effort. The sequential inclusion of the two
corrections leads to band gaps that progressively improve with
respect to available experimental references, thereby confirming
the validity of our approach.
This manuscript is organized as follows. In Results, we first

describe the model structures and the calculation of the dielectric
constants. We then report our band-gap predictions focusing on
the corrections due to spin-orbit coupling and to electron-phonon
interactions. The discussion is further developed in Discussion. In
Methods, we briefly outline the main theoretical methodologies
used in this work, i.e., the construction of the dielectric-dependent
hybrid functional and the special displacement method. We also
give the calculation details.

RESULTS
Structural models
Our general motivation is to predict band gaps at room
temperature for metal halide pervoskites. When various struc-
tures of a given material exist at room temperature, we take
under consideration the available competitive structures to
demonstrate the reliability of our approach upon structural
variation. For benchmark purposes, we also consider materials at
higher temperatures when a detailed experimental characteriza-
tion is available.
The materials under consideration in this work all have the

structural formula ABX3, where A and B are metal atoms and X is
a halide atom. These materials come in different structures
identified by the prefix β, γ, δ, R, and M, which indicate that
their phase is tetragonal, orthorhombic with corner-sharing
octahedra, orthorhombic with edge-sharing octahedra, rhom-
bohedral, and monoclinic, respectively. Within this group, all
the structures with corner-sharing BX6 octahedra (R, γ, and β)
are metal halide perovskites, while the other structures (δ and
M) do not formally belong to this class. Representative atomic
structures covering all space groups considered are illustrated
in the Supplementary Fig. 1.
In this study, we do not consider cubic phases because they

are generally unstable at 300 K, the targeted temperature for
photovoltaic materials. The instability results from soft phonon
modes46,48, which can be related to phase transitions48. This
indicates that a harmonic description of the phonons would be
inappropriate. Indeed, cubic structures are generally subject to
important anharmonic effects44,49, which cause the excess
free energy surface to change as a function of temperature49.
The cubic phases at high temperature correspond to average
structures, which differ noticeably from the local atomic-scale
description3,49. For instance, the average B-X-B bond angle
corresponds to 180∘ for the cubic structure, but in molecular
dynamics simulations the distribution is peaked at a lower angle
(~168∘, ref. 3). These structural changes depend on temperature
and have noticeable effects on the band gap. Furthermore,
the cross-coupling between SOC and thermal effect has been
found to be sizable in cubic systems3,46. However, our test
calculations on noncubic δ-CsPbI3 and R-CsPbF3 show that the
error associated to such cross-coupling effects is ~0.1 eV (see the
Supplementary Table 1). For these reasons, cubic structures
would require a different theoretical treatment than the one
proposed in this work.
Here, we make use of the experimentally determined structures

given in Supplementary Table 2. These structures are used in the
calculations of the high-frequency dielectric constant and of the
band gap. Since these structures are taken from experiment, they
already include the thermal expansion effect corresponding to the
temperature at which their structure has been characterized (cf.
discussion in ref. 3).

Dielectric constants
The high-frequency dielectric constants used in the DSH
functional are calculated through finite electric fields50. For fixed
atomic positions, we calculate the variation of the polarization ΔP
as a function of the electric field (cf. Supplementary Fig. 2 for
δ-CsPbI3). More specifically, ΔP ¼ P0 � P0, where P0 and P0 are the
polarizations with and without the applied electric field. The
dependence is close to linear up to a critical value, above which
the calculation no longer converges50. For all materials, we use in
this work a value of 0.001 a.u. for the electric field and determine
the high-frequency dielectric constant through

ϵ1 ¼ 4π
V

ΔP
Eϵ

þ 1; (1)
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where V and Eϵ are the volume of the supercell and the electric
field, respectively.
The dielectric constants ϵ∞ calculated at the PBE level are

reported in Table 1. The values of the dielectric constants used in
this work correspond to the average over the three principal
directions of the dielectric tensor. In these perovskite materials,
the dielectric constant in a given direction remains generally
close to this average value (Supplementary Table 3). For instance,
the material showing the largest spread is δ-RbGeI3, for which we
found 4.93, 5.81, and 4.75, with an average of 5.16. Our calculated
values show good agreement with previous PBE+ U results from
ref. 51, which have been integrated as benchmarks in the Materials
Project52. However, there are only few benchmarks for materials
belonging to M and γ phases. Therefore, to further validate our
calculation of dielectric constants, we take γ-RbGeI3 and
M-CsSnCl3 as representatives of theses phases and calculate ϵ∞
with the higher-level DSH functional that we derived. We obtain
5.09 and 3.15, which show differences of at most 7% compared to
the plain PBE results of 5.10 and 3.38, respectively. This error is
noticeably smaller than the typical mean absolute percentage
error of 15% found for PBE results compared with experiment26.
Furthermore, the effect of this error on the band gap is to a large
extent attenuated because ϵ∞ enters through its inverse into the
hybrid functional26. It has also been shown that the DSH
functional with PBE values for ϵ∞ is generally more accurate for
band-gap predictions than a DSH functional with self-consistently
determined dielectric constants27,53. Hence, we take ϵ∞ values
calculated at the PBE level to derive the parameter αLR = 1/ϵ∞ of
the DSH functionals used in this work.
The inverse screening lengths μ of these materials vary

between 0.67 and 0.82 bohr−1, with an average value of

0.73 bohr−1 (cf. Table 1). This value is close to the average result
of 0.71 bohr−1 that Chen et al. found for a large set of
materials26. To carry out a more detailed comparison, we
consider in the Supplementary Table 4 the μ values for a
selection of materials as obtained with three methods, namely
Thomas-Fermi, DD-RSH-CAM, and DSH. We observe that DSH and
DD-RSH-CAM give close values of μ for most materials, which
result in similar band-gap estimates. At variance, the Thomas-
Fermi values of μ generally differ more significantly, particularly
for wide band-gap materials. These deviations generally lead to
inaccuracies as far as the calculated band gaps are concerned. As
an example, the reader is referred to the case of LiF discussed in
the Supplementary Table 4.

Band gaps
The band structures of the class of materials considered in this
work, both perovskites and non-perovskites, have been heavily
investigated in the literature through a variety of electronic
structure methods going from semilocal to GW methods54–58.
The calculated band gaps typically vary by as much as a factor of
two depending on the method. In our study, we first determine
the fundamental band gap of the ternary ABX3 perovskites with
PBE, PBE0(0.25), HSE06, and DSH (Table 2), including neither spin-
orbit effects nor coupling to phonons. As reference, we also list in
Table 2 band gaps calculated through high-level QSGW under
the same assumptions54,59,60. As expected, the functional PBE
strongly underestimates the band gaps showing the worst mean
absolute error (MAE) of 1.30 eV and the worst mean absolute
relative error (MARE) of 55%. The hybrid functional HSE06 opens
the band gap with respect to the PBE value by 0.50 to 1.05 eV,

Table 1. Parameters defining the DSH functional.

ϵ∞ αLR μ

current work benchmarks current work benchmarks bohr−1

R-CsGeCl3 3.60 3.64a 0.28 0.27a 0.71

R-CsGeBr3 4.76 0.21 0.73

R-CsGeI3 6.33 6.13a 0.16 0.16a 0.69

R-CsPbF3 3.08 0.32 0.78

γ-RbGeBr3 4.15 3.98a 0.24 0.25a 0.75

γ-RbGeI3 5.10 5.09b 0.20 0.20b 0.71

γ-CsSnBr3 5.73 0.17 0.71

γ-CsSnI3 7.24 0.14 0.67

γ-CsPbCl3 3.77 0.27 0.69

γ-CsPbBr3 4.58 4.21a 0.22 0.24a 0.73

γ-CsPbI3 5.45 0.18 0.69

δ-RbGeI3 5.16 0.19 0.72

δ-RbSnI3 5.01 4.84a 0.20 0.21a 0.71

δ-RbPbI3 4.78 4.54a 0.21 0.22a 0.71

δ-CsSnI3 4.87 4.71a 0.21 0.21a 0.71

δ-CsPbBr3 3.89 0.26 0.75

δ-CsPbI3 4.67 4.43a 0.21 0.23a 0.71

β-CsSnI3 7.20 8.04a 0.14 0.12a 0.67

M-RbSnF3 2.62 0.38 0.82

M-CsSnF3 2.65 0.38 0.81

M-CsSnCl3 3.38 3.15b 0.30 0.32b 0.71

Dielectric constants ϵ∞ calculated at the PBE level compared to previous results from ref. 51, the corresponding fraction of Fock exchange in the long range
αLR= 1/ϵ∞, and the inverse screening length μ.
aRef. 51
bObtained in this work with the DSH functional.
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and the hybrid functional PBE0(0.25) further opens the band gap
by about 0.7 eV, in accord with general considerations61. We
remark that the MAEs with respect to the accurate QSGW values
progressively decrease when adopting in sequence PBE, HSE06,
PBE0(0.25), and DSH (cf. Table 2 and Fig. 1). In particular, DSH
yields a MAE of 0.22 eV and a MARE of 9%. To further support the

quality of the DSH description, we perform for β-CsSnI3 a
comparison between the DSH band structure calculated here
and the GW band structure obtained by Huang and Lambrecht54.
As shown in the Supplementary Fig. 3, the band gap occurring at
the Z point is well reproduced and the overall trends of the band
structure are very similar. This level of agreement between
hybrid functionals and GW matches that found for other
materials in the literature62.
We next analyze the general band-gap properties of the

materials considered comparing different phases. As shown in
Table 2, the R, γ, and β phases all have direct band gaps, while the
δ phases show an indirect band gap. For the monoclinic phases,
the band gaps can be either direct or indirect. However, due to the
flatness of the bands54, the difference between the direct and
the indirect bands gaps is generally not large. For instance, in the
case of M-CsSnF3, we find an indirect band gap of 6.59 eV to be
compared with the smallest direct band gap of 6.94 eV.
Additionally, we remark that the δ phases generally have larger
band gaps than the corresponding β or γ phases. This can be
readily understood by their band structures. To illustrate this
property, we calculate the band structures of β-CsSnI3, γ-CsSnI3,
and δ-CsSnI3 with the PBE functional (cf. Supplementary Fig. 4). It
is found that the valence bands of δ-CsSnI3 are much flatter bands
than those of β-CsSnI3 and γ-CsSnI3, which can be related to the
distance between nearest neighbor halogen atoms. This provides
an explanation for the systematically wider band gaps found for
the δ phase compared to the other phases.
Considering chemical variations within the same symmetry

class, we first notice that the calculated band gap Ebare for all
classes decreases for variations of the halide atom going from Cl
to I while keeping the composition in terms of metal atoms
unmodified. For instance, Eγ-CsPbCl3bare >Eγ-CsPbBr3bare >Eγ-CsPbI3bare . This prop-
erty can be understood invoking the electronegativity, which
reduces from Cl to I. Since the character of the valence band is
dominated by the halide atoms54,63,64, such a downward move in
the periodic table results in an upward shift of the valence band
and consequently in a narrower band gap. Second, we consider
band-gap variations when keeping the A and X composition
unmodified and varying the B atom. In this case, the band gap of
Pb-based compounds is always larger than the corresponding
Sn-based counterpart. This effect can also be attributed to a
reduction of electronegativity going from Pb (2.33) to Sn (1.96). In
the absence of any change associated with the halide atom, the
smaller electronegativity of Sn leads to an upward shift for both
the VBM and CBM64. However, Tao et al.64 found that the
replacement of Pb with Sn results in a larger shift for the VBM
than for the CBM because of their different ratios of s and p
character. Therefore, smaller band gaps are found for Sn-based
compounds. Since the electronegativity of Ge (2.01) falls in
between those of Pb and Sn, we infer the following trend:
Eδ-RbPbI3bare > Eδ-RbGeI3bare > Eδ-RbSnI3bare . Third, when changing the A atom,
we do not have a uniform rule for the band-gap variation. Indeed,
we find Eδ-RbPbI3bare < Eδ-CsPbI3bare , but we also find Eδ-RbSnI3bare > Eδ-CsSnI3bare . This
effect can be related to the fact that the A-atom states lie far away
from the VBM and CBM, and thus do not influence their energy
levels directly54,63,64.
In the following, the calculated band gaps are benchmarked

with respect to nine materials for which a careful experimental
characterization of the band gap is available. This experimental set
of ABX3 materials comprises eight perovskites and one non-
perovskite. The B site is occupied by Ge, Sn, and Pb atoms, while
the X site is occupied by Cl, Br, and I atoms. The A site is solely
occupied by Cs atoms, but this site is known not to affect to band
gap in a significant way54,63,64. The band gaps covered by this
experimental set of materials go from 1.25 to 4.46 eV, which is the
relevant range for photovoltaic materials. Overall, these materials
offer a diversified set to benchmark our method.

Table 2. Band gaps as calculated with various schemes.

Ebare

PBE HSE06 PBE0(0.25) DSH QSGW D/I

R-CsGeCl3 2.11 2.95 3.71 4.01 4.37a D

R-CsGeBr3 1.21 2.10 2.85 3.05 2.70a D

R-CsGeI3 0.83 1.55 2.29 2.17 1.69a D

R-CsPbF3 3.31 4.33 5.04 5.77 D

γ-RbGeBr3 1.82 2.68 3.40 3.75 D

γ-RbGeI3 1.44 2.18 2.87 2.94 D

γ-CsSnBr3 0.75 1.37 2.03 2.03 D

γ-CsSnI3 0.62 1.12 1.75 1.55 1.50a D

γ-CsPbCl3 2.05 2.74 3.41 3.57 D

γ-CsPbBr3 1.69 2.43 3.09 3.36 D

γ-CsPbI3 1.56 2.19 2.83 2.87 2.81b D

δ-RbGeI3 2.21 3.06 3.74 3.74 I

δ-RbSnI3 2.00 2.81 3.48 3.51 I

δ-RbPbI3 2.39 3.30 3.97 4.10 I

δ-CsSnI3 1.97 2.76 3.43 3.44 I

δ-CsPbBr3 2.79 3.84 4.53 5.00 I

δ-CsPbI3 2.44 3.31 3.99 4.14 I

β-CsSnI3 0.45 1.03 1.66 1.48 1.49a D

M-RbSnF3 3.66 4.63 5.36 6.25 D

M-CsSnF3 3.79 4.88 5.61 6.59 I

M-CsSnCl3 2.64 3.43 4.14 4.50 D

MAE 1.30 0.64 0.31 0.22

MARE 55% 24% 14% 9%

Fundamental band gaps (in eV), Ebare= ECBM− EVBM, as calculated with the
functionals PBE, HSE06, PBE0 (0.25), and DSH. The VBM and CBM are the
valence band maximum and conduction band minimum obtained from
Kohn-Sham energy levels. The QSGW band gaps are taken from refs. 59,60.
The MAEs and MAREs are given with respect to the QSGW values. The last
column describes the nature of the band gap, direct (D) or indirect (I).
aRef. 59,
bRef. 60.

Fig. 1 Band gap accuracy with respect to GW. Mean absolute
errors (MAEs) of band gaps calculated with various functionals with
respect to the QSGW values59,60. The percentages correspond to the
mean absolute relative errors (MAREs).
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Many of the materials considered contain heavy elements,
which are expected to give significant SOC effects. To estimate
SOC corrections, we consider three different functionals: PBE,
PBE0(0.25), and DSH. The band-gap variations are given in Table 3.
We observe similar variations for the three functionals studied. The
largest differences between PBE and DSH are found for R-CsPbF3
and γ-CsPbF3 and amount to only 0.10 and 0.09 eV. In a study
comprising 103 materials but not including perovskites, Huhn
et al. also found that the SOC corrections calculated with PBE and
HSE06 are overall very similar, with most differences falling below
60meV and the most notable one being 189meV65. However, we
remark that Wiktor et al. found that the SOC corrections on the
band gap are underestimated by as much as 0.3 eV for Pb-based
cubic phases3, indicating that SOC effects need careful evaluation
for high-symmetry structures containing Pb atoms. Hence, we
conclude that the PBE functional is sufficiently accurate to
estimate SOC corrections for all considered materials in this work,
none of which shows the cubic symmetry.
The calculated SOC corrections can be found in Fig. 2(a) and

Table 4. These corrections always lead to a band-gap reduction
with respect to Ebare. The largest corrections correspond to Pb-
based compounds and reach values around −1 eV for γ-CsPbCl3
and γ-CsPbBr3. The largest correction for a Sn-based compound
amounts to ~−0.4 eV and is found for γ-CsSnI3. We remark that
the SOC corrections do not only depend on composition but also
on the underlying atomic structure. Indeed, in the case of CsPbBr3,
we find −0.37 and −1.02 eV for the δ and γ structure, respectively.
This indicates that SOC effects may be large and highly nontrivial.
We then obtain the band gaps ESOC by adding the SOC

corrections to Ebare (cf. Table 4). For the subset of materials for

which experimental estimates are available, the accuracy of the
corrected band gaps improves significantly, with the MAE
reducing from 0.57 to 0.26 eV. Correspondingly, the MARE drops
from 27% to 11%. These errors clearly illustrate the importance of
considering SOC effects for achieving accurate band gaps.
Next, we focus on the coupling to phonons, which affect the

band gap through ZPR and thermal vibrations. For the ZPR and
the vibrational properties, we use experimental lattice constants at
the temperatures given in the Supplementary Table 2. In this way,
thermal expansion effects are already accounted for. For room
temperature, we take T= 300 K in this work. All the modes of the
structures considered in this work show positive frequencies.
To obtain the band-gap renormalization caused by zero-point

motion and thermal vibrations, we use the special displacement
method35 described in the Methods section. The supercell sizes
adopted in this work contain between 160 and 625 atoms (cf.
Supplementary Table 5) and have been chosen in order to achieve
accuracies better than 0.05 eV. We checked this explicitly for all
selected supercells by performing the same calculation with
smaller supercells, leading to differences smaller than 0.05 eV for
the band-gap predictions.
The SDM does not account for the long-range Fröhlich coupling

resulting from the nonadiabatic treatment36,37,39–43. To obtain an
estimate for this contribution, we use the one-band Fröhlich
model (see Supplementary Note 1)43. For a series of perovskites
belonging to the class of materials under investigation in our
work, we obtain estimates ranging between −0.05 and −0.13 eV,
with a mean value of −0.09 eV (see Supplementary Table 6). As
will be seen in the following, the error resulting from the neglect
of this effect is smaller than the final MAE claimed in our work
(0.17 eV). Hence, it can be concluded that the long-range Fröhlich
coupling coming from the nonadiabatic treatment of the electron-
phonon interaction is not susceptible to affect in a significant way
the accuracy of our results for metal halide perovskite materials.
The SDM provides supercells with distorted atomic structures,

which we use to extract the band gap. More specifically, these

Table 3. Band gap corrections due to SOC.

ΔESOC

PBE PBE0(0.25) DSH

R-CsGeCl3 −0.07 −0.07 −0.06

R-CsGeBr3 −0.05 −0.06 −0.07

R-CsGeI3 −0.14 −0.15 −0.16

R-CsPbF3 −0.88 −0.85 −0.78

γ-RbGeBr3 −0.06 −0.11 −0.12

γ-RbGeI3 −0.11 −0.14 −0.15

γ-CsSnBr3 −0.30 −0.31 −0.30

γ-CsSnI3 −0.39 −0.42 −0.41

γ-CsPbCl3 −1.04 −1.08 −1.03

γ-CsPbBr3 −1.02 −1.09 −1.06

γ-CsPbI3 −0.99 −1.10 −1.08

δ-RbGeI3 −0.19 −0.20 −0.20

δ-RbSnI3 −0.17 −0.18 −0.18

δ-RbPbI3 −0.55 −0.63 −0.61

δ-CsSnI3 −0.17 −0.18 −0.18

δ-CsPbBr3 −0.37 −0.38 −0.37

δ-CsPbI3 −0.55 −0.61 −0.59

β-CsSnI3 −0.37 −0.45 −0.43

M-RbSnF3 −0.01 −0.01 −0.01

M-CsSnF3 −0.02 −0.01 −0.01

M-CsSnCl3 −0.04 −0.04 −0.03

The corrections are evaluated with three different functionals: PBE,
PBE0(0.25), and DSH. We give ΔESOC= ESOC− Ebare, where ESOC is the
fundamental band gap including SOC effects. The band gaps are
given in eV.

Fig. 2 Size of band gap corrections. Partial band-gap corrections
a ΔESOC and b ΔEZPR+T, together with c the full band gap correction
ΔEfull=ΔESOC+ΔEZPR+T for all the materials in this work.
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disordered supercells simulating the effect of finite temperature
cannot be characterised with the same Brillouin zone as the ideal
material, because of the lack of translational symmetry. To
conform with the practice in the experimental determination of
optical band gaps at finite temperature47, we, therefore, rely on
extrapolations of the wings in the electronic density of states
(EDOS) to obtain the VBM and CBM. For simplicity, we here
perform a linear extrapolation of the band wings34,66.
In order to perform reliable extrapolations of the band wings,

the calculated eigenvalues in the vicinity of the band edges
should be sufficiently dense. This condition is not guaranteed for
all materials when using the CP2K code, which solely uses the Γ
point. In some cases, the states in vicinity of the band edge are
sparsely distributed and do not connect with the band wing upon
reasonable Gaussian smearing. It is then necessary to use denser
k-point meshes or alternatively larger supercells. We illustrate this
issue for an ideal structure of γ-CsSnI3 in Fig. 3(a). First, we apply
the code VASP67,68 to the primitive unit cell and establish a
converged benchmark by increasing the k-point sampling of the
Brillouin zone (cf. Supplementary Fig. 5). Then, we compare the
converged reference shown in Fig. 3(a) with a CP2K calculation
obtained with a 6 × 4 × 6 supercell and find good agreement for
the band gap within less than 0.005 eV. Hence, the band gap can
be obtained accurately provided a sufficiently large supercell is

used. In the Supplementary Table 5, we give suitable supercell
sizes to obtain converged band gaps for the materials considered
in this work. Once a sufficiently large supercell is ensured, the
EDOS is determined for the ideal structure and for two displaced
structures accounting for ZPR and ZPR+T, as illustrated for
M-RbSnF3 in Fig. 3(b). The linear extrapolation of the band
wings then allows us to extract the VBM [Fig. 3(c)] and the CBM
[Fig. 3(d)]. Such an analysis is performed for each material (cf.
Supplementary Figs. 6 and 7).
The use of hybrid functionals for the EDOS with a dense k-point

mesh or with a large supercell would undermine the efficiency of
our band-gap determinations. There are reports in the literature
with ZPR calculations showing a dependence on the adopted
electronic-structure method38,41,45. Variations are particularly
important for silicon45 and diamond38 and might amount up to
~0.25 eV. For other materials like MgO and LiF, the variation
between functionals is much smaller (~0.05 eV)41. Since it is
difficult to develop a rationale for understanding the size of this
dependence, we explicitly investigate whether thermal corrections
for perovskite materials can be accurately evaluated with the
semilocal PBE functional. For this, we select M-RbSnF3 and
M-CsSnF3, which show noticeable differences between the band
gaps calculated with PBE0(0.25) and DSH (cf. Table 2). We check
the effect of the functional by extracting the ZPR+T band-gap
corrections from the EDOS obtained with PBE, PBE0(0.25), and
PBE0(0.40) (see Table 5 and Supplementary Fig. 8). The functional
PBE0(0.40) can be taken as representative of DSH for M-RbSnF3
and M-CsSnF3, since the bare band gaps calculated with these two
functionals differ by less than 0.08 eV. Additionally, we use PBE
and PBE0(0.25) to test R-CsGeCl3, which shows the largest band
gap renormalization due to ZPR+ T in our work, i.e., of 0.4 eV (cf.
Table 6). In all cases studied, we find that the corrections ΔEZPR+T

obtained with PBE coincide with those obtained with the hybrid
functionals within at most 0.03 eV. Thus, this justifies the use of
the PBE functional for estimating the effect of the band-gap
corrections due to ZPR and thermal vibrations in the case of
perovskite materials.
The band-gap renormalizations due to zero-point motion and

thermal vibrations are given in Table 6 and are illustrated in
Fig. 2(b). In particular, we also give the corrections at T= 0 K
corresponding to the ZPR. The compounds containing the light F
atoms show the most prominent ZPR effects, with the largest one
found for M-RbSnF3 and amounting to −0.20 eV. The next group
of compounds showing sizable ZPRs are those containing Cl
atoms, among which R-CsGeCl3 shows the most significant value
of −0.14 eV. Increasing the temperature from 0 to 300 K produces
further band-gap renormalization. Together with the ZPR, this
leads to ΔEZPR+T corrections ranging between −0.40 and 0.23 eV
(Table 6), which cannot be neglected when aiming at high
accuracies. We account for the combined effect of SOC and
phonons by determining the two band-gap renormalizations
separately, as these effects have been found to give a negligible
cross coupling (see Supplementary Table 1). Adding ΔEZPR+T to
ESOC, we then obtain the band gap estimates Etheory, which further
improve the comparison with experiment leading to a MAE of
0.17 eV and a MARE of 6% (cf. Table 4).
The band-gap renormalization due to thermal vibrations can be

compared with previous work in the literature. The band-gap
variation of γ-CsPbBr3 between 0 and 300 K has been investigated
through constant-volume molecular dynamics simulations69

yielding a shift of 0.01 eV in good agreement with our estimate
of ΔET= 0.02 eV (cf. Table 6). Moreover, for large-size nanocrystals
of γ-CsPbI3, temperature-dependent luminescence spectra show
that the observed band gap remains invariant with temperature70.
This behavior stems from the combined effect of lattice expansion
and phonon renormalization. To establish a connection with our
work, we estimate the correction due to lattice expansion using
the experimental thermal lattice-expansion coefficient of

Table 4. Calculated band gaps based on DSH.

Ebare ΔESOC ESOC ΔEZPR+T Etheory EExpt.

R-CsGeCl3 4.01 −0.07 3.94 −0.40 3.54 3.43a

R-CsGeBr3 3.05 −0.05 3.00 −0.32 2.68 2.38a

R-CsGeI3 2.17 −0.14 2.03 −0.26 1.77 1.63b

R-CsPbF3 5.77 −0.88 4.89 −0.10 4.79

γ-RbGeBr3 3.75 −0.06 3.69 −0.10 3.59

γ-RbGeI3 2.94 −0.11 2.83 −0.26 2.57

γ-CsSnBr3 2.03 −0.30 1.73 0.11 1.84 1.81c

γ-CsSnI3 1.55 −0.39 1.16 0.11 1.27 1.25c

γ-CsPbCl3 3.57 −1.04 2.53 −0.03 2.50 2.99c

γ-CsPbBr3 3.36 −1.02 2.34 0.00 2.34 2.31c

γ-CsPbI3 2.87 −0.99 1.88 −0.07 1.81 1.72c

δ-RbGeI3 3.74 −0.19 3.55 −0.06 3.49

δ-RbSnI3 3.51 −0.17 3.34 −0.10 3.24

δ-RbPbI3 4.10 −0.55 3.55 −0.25 3.30

δ-CsSnI3 3.44 −0.17 3.27 −0.24 3.03

δ-CsPbBr3 5.00 −0.37 4.63 −0.33 4.30

δ-CsPbI3 4.14 −0.55 3.59 −0.19 3.40

β-CsSnI3 1.48 −0.37 1.11 0.23 1.34

M-RbSnF3 6.25 −0.01 6.24 −0.28 5.96

M-CsSnF3 6.59 −0.02 6.57 −0.26 6.31

M-CsSnCl3 4.50 −0.04 4.46 −0.34 4.12 4.46d,e

MAE 0.57 0.26 0.17

MARE 27% 11% 6%

Calculated band gaps (in eV), where Etheory= Ebare+ΔESOC+ΔEZPR+T

where Ebare is obtained through the DSH functional (Table 2), ΔESOC is the
correction due to SOC (Table 3), and ΔEZPR+T the correction accounting for
ZPR and thermal vibrations (Table 6). The MAEs and MAREs are given with
respect to the band gaps EExpt. measured in optical experiments.
aRef. 101,
bRef. 102,
cRef. 64,
dRef. 54,
eRef. 103.
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0.39 × 10−4 K−171. We find a band-gap increase of 0.07 eV over a
thermal range of 300 K, which almost perfectly compensates the
corresponding band-gap reduction of 0.06 eV due to thermal
vibrations (cf. ΔET in Table 6). Hence, our correction is fully
consistent with the null result observed in the experiment70.
Our method relies on the harmonic approximation for

describing the vibrational properties of the investigated materials.
Patrick et al. performed a careful study including anharmonic
effects in both cubic and noncubic CsSnI344. To evaluate possible
contributions coming from anharmonic effects, we applied our
harmonic scheme to the noncubic β-CsSnI3 and γ-CsSnI3 at 380
and 300 K, respectively, finding band-gap renormalizations of 0.23
and 0.11 eV due to ZPR+ T. These values are very close to the
respective results of 0.16 and 0.11 eV found by Patrick et al.
including anharmonic effects. This suggests that anharmonic
effects only lead to small corrections for noncubic perovskites.
However, we emphasize that anharmonic effects can be larger in

the cubic phases because the structure then undergoes noticeable
distortion moving away from the highly symmetric structure,
which only holds on average49.
The correction ΔEZPR+T can either increase or reduce the band

gap. Most materials in our selection exhibit the conventional
Varshni effect, i.e., their band gap decreases with increasing
temperature (red shift)72. The ZPR and the band gap reduction
due to thermal vibrations then contribute in the same direction
with corrections being as significant as −0.40 eV in the case of
R-CsGeCl3. At variance, some materials, most particularly the
Sn-based γ and β phases, show a band gap opening with
increasing temperature (blue shift). This unusual effect is
referred to as anomalous band gap shift and has experimentally
been observed for a variety of hybrid organic-inorganic lead
halide perovskites73.
In the case of structures composed of octahedral units, the

origin of the band-gap renormalizations can be understood in
terms of B-X bond-length and B-X-B bond-angle variations (see
Supplementary Table 7). Indeed, it is well-known that reducing the
B-X bond lengths or the B-X-B bond angles generally leads to
lower band gaps due to enhanced orbital coupling74–76. Practically
all octahedral structures in our selection show reduced bond
angles and increased bond lengths when going from 0 to 300 K
(cf. Supplementary Table 7). These trends oppositely impact the
band gap with a combined effect that can either lead to band-gap
opening or to band-gap closure. More specifically, for the
rhombohedral structures, the effect due to the large bond-angle
reductions (5∘–10∘) apparently dominates, leading to overall band-
gap closing. The larger the bond-angle reduction, the lower the
band gap. For γ phases, the bond-angle reductions are generally
smaller (1∘–4∘) and their effect is similar to the effect due to the

Fig. 3 Band gap determination through linear extrapolations. a EDOS calculated within PBE with VASP for a primitive cell of γ-CsSnI3 using a
k-point mesh of 16 × 16 × 16 and a Gaussian smearing of σ= 0.05 eV, compared with a 6 × 4 × 6 supercell calculation with CP2K using the Γ
point and σ= 0.15 eV. b EDOS for the ideal structure and for the displaced structures accounting for ZPR and ZPR+T (T= 300 K) in the case of
M-RbSnF3 (σ= 0.15, PBE). c and d show the valence and conduction edges, respectively. Dashed lines indicate the linear extrapolations used
to determine the VBM and CBM. The extracted band edges are given for the cases defined by the color code in b.

Table 5. Dependence of thermal band gap correction on functional.

Materials ΔEZPR+T

PBE PBE0 (0.25) PBE0 (0.40)

M-RbSnF3 −0.28 −0.31 −0.30

M-CsSnF3 −0.26 −0.28 −0.28

R-CsGeCl3 −0.40 −0.39 −

Band gap correction (in eV) ΔEZPR+T due to ZPR+T for M-RbSnF3, M-CsSnF3,
and R-CsGeCl3 calculated using different functionals: PBE, PBE0(0.25), and
PBE0(0.40). For more details refer to Supplementary Fig. 8.
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bond-length increases, resulting together in small band-gap
variations, either red-shifted or blue-shifted. The structural
variations of the δ phases are generally less significant, with
bond-angle reductions and bond-length increases amounting to
at most 1∘ and 0.02 Å, respectively. Nevertheless, their combined
effect still yields quite sizable band-gap reductions, the largest
being 0.33 eV in the case of δ-CsPbBr3.

DISCUSSION
In Fig. 4, we show how the calculated corrections progressively
improve the theoretical band gaps. We here consider all the
materials for which experimental band gap values are available.
The corrections due to SOC and ZPR+ T are added in sequence to
the bare band gaps calculated with the DSH hybrid functional.
Moreover, our best estimates for the fundamental band gaps
Etheory are compared with optical band gaps from experiment. We
hereby neglect excitonic effects, which are estimated to be on the
order of 10 to 100 meV for this class of materials77–80. For instance,
photoluminescence experiments on γ-CsSnI3 suggest a binding
energy of 18 meV78. Calculations based on the Bethe-Salpeter
equation also give very small exciton binding energies for CsGeX3
(X= Cl, Br, I), on the order of at most ~1 meV80.
The residual deviations in Fig. 4 between our theoretical

estimates and the experimental values should be assigned to the
intrinsic limitations of the adopted theory. The fact that the errors
are not systematic reinforces this point of view. In fact, neglected
effects such as exciton binding energies, polar corrections due to
LO phonon coupling, anharmonic vibrational effects, errors
resulting from the use of PBE for SOC and phonon renormaliza-
tions, and cross-coupling between SOC and temperature effects,
have all been demonstrated to affect the results to a lower extent

than the residual error. Residual deviations, such as encountered
for R-CsGeBr3, γ-CsPbCI3, and M-CsSnCl3 should therefore not be
attributed to one particular effect. It is likely that the largest
residual errors ranging up to 0.49 eV for an individual perovskite
results from limitations of the adopted electronic-structure
method. It should be remarked that even state-of-the-art GW
calculations show non-systematic behavior with individual errors
ranging up to 0.44 eV15.
As seen in Fig. 4, the agreement with experiment systematically

improves when applying corrections due to ΔESOC and ΔEZPR+T in
sequence. On average, ΔESOC and ΔEZPR+T amount to −0.36 and
−0.15 eV, respectively, corresponding to an average global
correction Efull of 0.51 eV (cf. Fig. 2). The MAEs of Ebare, ESOC, and
Etheory are 0.57, 0.26, and 0.17 eV with respect to experiment, with
respective MAREs of 27%, 11%, and 6% (see also Table 4). The
finally achieved accuracy of 0.17 eV (6%) informs us that the
applied corrections are essential to achieve this level of agreement
with experiment, since they are of the same size or larger on
average. Furthermore, the achieved accuracy is comparable to
that of state-of-the-art GW calculations for extended sets of
materials12,13,15,81.
To support the use of the material-specific functional DSH, we

carry out a comparison starting from standard functionals, such as
PBE, HSE06, and PBE0(0.25). As discussed, our band-gap correc-
tions can all accurately be calculated using the PBE functional. The
use of a different functional then only affects the calculation of the
bare band gap. The detailed results of these calculations are given
in the Supplementary Tables 8, 9, and 10 for PBE, HSE06, and
PBE0(0.25), respectively, and can be directly compared with the
DSH results given in Table 4. To assess the performance of all the
investigated functionals, we have summarized in Table 7 their
respective MAEs and MAREs for the calculated band gaps with
respect to the experimental values. We notice that for the PBE and
HSE06 functionals the agreement with experimental band gaps
steadily deteriorates upon including the corrections. In particular,
the Ebare from HSE06 already shows relatively low MAE and MARE
of 0.36 eV and 14%, respectively. However, this result should be
considered accidental and due to error cancellation. The results in
Table 7 also indicate that the performance of PBE0(0.25) for the
materials investigated is rather good (MAE of 0.28 eV; MARE of
11%) showing systematic improvement upon the inclusion of the
corrections. As seen in Table 7, DSH outperforms all the other
functionals with a MAE of 0.17 eV and a MARE of 6%. We stress

Table 6. Thermal band gap corrections.

T (K) ΔEZPR ΔET ΔEZPR+T

R-CsGeCl3 300 −0.14 −0.26 −0.40

R-CsGeBr3 300 −0.10 −0.22 −0.32

R-CsGeI3 300 −0.08 −0.18 −0.26

R-CsPbF3 148 −0.09 −0.01 −0.10

γ-RbGeBr3 300 −0.03 −0.07 −0.10

γ-RbGeI3 473 −0.03 −0.23 −0.26

γ-CsSnBr3 100 0.00 0.11 0.11

γ-CsSnI3 300 0.05 0.06 0.11

γ-CsPbCl3 300 −0.03 0.00 −0.03

γ-CsPbBr3 300 −0.02 0.02 0.00

γ-CsPbI3 300 −0.01 −0.06 −0.07

δ-RbGeI3 300 0.00 −0.06 −0.06

δ-RbSnI3 300 −0.01 −0.09 −0.10

δ-RbPbI3 300 −0.04 −0.21 −0.25

δ-CsSnI3 300 −0.05 −0.19 −0.24

δ-CsPbBr3 300 −0.06 −0.27 −0.33

δ-CsPbI3 300 −0.02 −0.17 −0.19

β-CsSnI3 380 0.00 0.23 0.23

M-RbSnF3 300 −0.20 −0.08 −0.28

M-CsSnF3 300 −0.16 −0.10 −0.26

M-CsSnCl3 300 −0.12 −0.22 −0.34

Band-gap renormalization (in eV) ΔEZPR+T due to the combined effect of
zero-point motion and thermal vibrations, as obtained from linear
extrapolations of the wings in the EDOS. ΔEZPR corresponds to the
renormalization at T= 0 K and ΔET=ΔEZPR+T−ΔEZPR. The band gap
corrections are evaluated at temperature T (cf. Supplementary Table 2).

Fig. 4 Calculated vs. measured band gaps. Band gaps obtained
with the DSH functional Ebare (yellow triangles), after SOC correction
ESOC (purple circles), and additionally including ZPR and thermal
effects Etheory (green hexagons). The MAEs and MAREs are given
with respect to the experimental values (red squares).
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that the best agreement between theory and experiment is
obtained when all the various contributing physical effects are
properly estimated.
In hindsight, it is of interest to question whether the approach

developed is indeed superior to simple band-gap predictions
made on the basis of trivial PBE calculations. To address this issue,
we develop a simple model based on the PBE band gap and test it
on the nine materials for which experimental band gaps are
available. From Supplementary Fig. 9, one infers that the relation
between PBE and experimental band gaps is approximately linear.
To obtain a model prediction, we then fit the data with a linear
function: Emodel

gap ¼ 1:39 � EPBEgap þ 0:47 eV. Such a model prediction
yields a MAE of 0.30 eV with a maximum error as high as 0.92 eV.
These errors correspond to the data fitted and are susceptible to
increase when a larger set of materials is taken under considera-
tion. Nevertheless, the MAE value and the maximum error of this
simple model are already noticeably worse than the MAE of
0.17 eV and maximal error of 0.49 eV found with the scheme
introduced in this work. This provides further support to the
validity of our scheme.
We remark that the present methodology has here successfully

been applied to the large class of noncubic metal halide
perovskite materials. To validate this methodology to this class
of materials, we verified that the consideration of anharmonicity,
cross-coupling between SOC and phonon effects, and nonadia-
batic effects in phonon renormalization due to long-range polar
interactions, all lead to negligible contributions to the band gap.
Thus, it should be understood that the present methodology can
reach the high level of accuracy found in our work only to extent
that these conditions hold.
To summarize, we have investigated the fundamental band

gaps for a set of inorganic halide perovskites through the use of
various functionals. To ensure a meaningful comparison with
experiment, we have included band-gap corrections due to spin-
orbit coupling and to thermal vibrations including zero-point
motions. In particular, we use the dielectric-dependent hybrid
functional DSH with parameters fixed through the dielectric
function. Among the functionals considered, the functional DSH
stands out providing a high level of accuracy compared to
experimental band gaps (MAE= 0.17 eV; MARE ¼ 6%). The
achieved accuracy relies on the consideration of both corrections,
which lead to a step-by-step improvement of the agreement with
experiment. Our final accuracy is comparable to the state of the
art as far as band-gap estimates are concerned.
Additionally, our scheme is designed to be computationally

efficient. The band gap calculations with the hybrid functional
are performed only once for a single crystalline structure for each
material. We demonstrate that both band-gap corrections due to
spin-orbit coupling and to thermal vibrations including zero-
point motions can accurately be determined with the compu-
tationally more convenient semilocal PBE functional. In particu-
lar, the effects due to zero-point motions and thermal vibrations
are estimated through the special displacement method, which

gives the band-gap correction through a one-shot calculation,
thereby speeding up the effort with respect to more lengthy
molecular dynamics simulations. Consequently, our scheme is
not only highly accurate but also provides band gaps in a
computationally efficient way. Thus, these features make our
approach convenient for material screening procedures82–84 in
which large databases of metal halide perovskites are taken
under consideration.

METHODS
Range-separated dielectric-dependent hybrid functional
We use a range-separated hybrid functional formulation in which
the parameters are determined from the dielectric response of the
system. In such a scheme, the Coulomb potential is partitioned
into a short-range (SR) and a long-range (LR) component through
an error function18,25–27,53,85:

1
jr� r0 j ¼

erfcðμjr� r
0 jÞ

jr� r0 j|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
SR

þ erfðμjr� r
0 jÞ

jr� r0 j|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
LR

;
(2)

where μ is the range-separation parameter. Next, the SR and LR
components appearing in the nonlocal exchange potential are
separately decomposed into nonlocal Fock and semilocal PBE86

exchange terms through admixtures defined by αSR and αLR:

VXðr; r0Þ ¼ αSRV
Fock;SR
X ðr; r0; μÞ þ ð1� αSRÞVPBE;SR

X ðr; μÞδðr� r0Þ
þ αLRV

Fock;LR
X ðr; r0; μÞ þ ð1� αLRÞVPBE;LR

X ðr; μÞδðr� r0Þ:
(3)

Numerous widely used density functionals can be recovered
from Eq. (3). For example, irrespective of the choice of μ, the
semilocal functional PBE (ref. 86) is found for αSR= αLR= 0,
whereas the global hybrid functional PBE0 (ref. 16) can be
obtained by setting αSR= αLR= 0.25. Similarly, the two recently
proposed DDH functionals, i.e., DD-RSH-CAM26 and DSH27, also
belong to this class of functionals and can be found by setting
αSR= 1 and αLR= 1/ϵ∞. However, these two DDH schemes differ
in the way the parameter μ is set. In DD-RSH-CAM, μ is derived
from a fit to the dielectric function calculated through first-
principles linear response4,26, while in DSH this parameter is
approximated through an empirical expression that can be
evaluated analytically27. As we show above, the two proposed
values of μ are nevertheless rather close (see Supplementary Table
4). Therefore, for speeding up the computational effort, we adopt
in this work the dielectric-dependent functional denoted DSH in
ref. 27 with the empirical expression for μ proposed therein.
More specifically, the empirical expression for μ proposed in

ref. 27 stems from the nonlocal screened Coulomb potential
derived by Shimazaki and Asai87:

Vðr; r0Þ ¼ 1� 1
ϵ1

� �
expð�~kTFjr� r0jÞ

jr� r0j þ 1
ϵ1

1
jr� r0j : (4)

Here, ~k
2
TF ¼ k2TF ϵ1 � 1ð Þ�1 þ 1

� �
=α and kTF ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffið3n=πÞ6
p

is the
Thomas-Fermi screening length, which depends on the valence
charge density n. Following refs. 25,27, we include the d electrons in
the valence density when the valence band is dominated by d
orbitals, namely for Ge, Sn, Pb, Br, and I. The coefficient α= 1.563
is considered to be independent of material88,89. Equation (4) can
be well approximated by the error-function expression87,

Vðr; r0Þ ¼ 1� 1
ϵ1

� �
erfcðμjr� r0jÞ

jr� r0j þ 1
ϵ1

1
jr� r0j ; (5)

provided one sets μ ¼ 2~kTF=3. In Eqs. (4) and (5), the first term
considers only the SR contribution that corresponds to metallic
screening, whereas the second term considers the full-range (FR)

Table 7. Band gap accuracy with respect to experiment.

Ebare ESOC Etheory

PBE 0.95 (39%) 1.40 (61%) 1.53 (66%)

HSE06 0.36 (14%) 0.68 (29%) 0.82 (33%)

PBE0(0.25) 0.53 (27%) 0.31 (13%) 0.28 (11%)

DSH 0.57 (27%) 0.26 (11%) 0.17 (6%)

MAEs (in eV) for band gaps obtained with various functionals compared to
experiment. The MAREs is given in parentheses.
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of the Coulomb interaction representing dielectric screening27.
Therefore, the nonlocal Fock exchange found by Shimazaki and
Asai can be expressed as27:

Vnonlocal
X ðr; r0Þ ¼ 1� 1

ϵ1

� 	
VFock;SR
X ðr; r0; μÞ þ 1

ϵ1
VFock;FR
X ðr; r0Þ

¼ 1� 1
ϵ1

� 	
VFock;SR
X ðr; r0; μÞ

þ 1
ϵ1

VFock;LR
X ðr; r0; μÞ þ 1

ϵ1
VFock;SR
X ðr; r0; μÞ

¼ VFock;SR
X ðr; r0; μÞ þ 1

ϵ1
VFock;LR
X ðr; r0; μÞ:

(6)

To use this expression as nonlocal exchange in a hybrid functional
formulation, one needs to add a compensating semilocal
exchange in the long range27. Thus, one obtains

VDSH
X ðr; r0Þ ¼ VFock;SR

X ðr; r0; μÞ þ 1
ϵ1

VFock;LR
X ðr; r0; μÞ

þ 1� 1
ϵ1

� 	
VPBE;LR
X ðr; μÞδðr� r0Þ:

(7)

This expression is formally the same as the one obtained by
Chen et al. following an alternative derivation path26. This
expression is also consistent with Eq. (3), through which it can be
obtained by setting αSR= 1 and αLR= 1/ϵ∞. Hence, we use in this
work the exchange potential given in Eq. (7) with μ ¼ 2~kTF=3.

Special displacement method
Based on the theory introduced by Williams90 and Lax91 (WL) and
the use of the harmonic approximation, the temperature-
dependent band gap can be expressed as35:

ETgap ¼
Y
ν

Z
dQν

exp �Q2
ν= 2σ2

ν;T

� 	h i
ffiffiffiffiffiffi
2π

p
σν;T

EQgap; (8)

where the product runs over all modes ν, and Q is used to indicate
collectively the configuration defined by the normal coordinates
Qν. This expression can be readily understood as the thermal
average of EQgap with weights

Q
ν exp½�Q2

ν=ð2σ2ν;T Þ�=
ffiffiffiffiffiffi
2π

p
σν;T , in

which σν,T is a spatial Gaussian broadening given by

σν;T ¼ lν
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nν;T þ 1

p ¼ σZPRþT ; (9)

with lν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_=ð2MpωνÞ

p
and nν;T ¼ fexp _ων= kBTð Þ½ � � 1g�1 for the

zero-point vibrational amplitude and the Bose-Einstein distribu-
tion, respectively. Mp and ων denote the mass of the proton and
the frequency of the νth normal mode. The broadening σν,T
accounts for both the zero-point and thermal effects, and is
denoted as σZPR+T. For T→ 0 and nν,T→0, the broadening only
results from the zero-point amplitude through

σν;T ¼ lν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_= 2Mpων


 �q
¼ σZPR: (10)

The average in Eq. (8) for a temperature T can be obtained by
considering a single distorted atomic configuration, which is
created by displacing the atoms by an amount of Δτkα from the
equilibrium structure35:

Δτkα ¼
ffiffiffiffiffiffi
Mp

Mk

r X3N�3

ν

�1ð Þðν�1Þekα;νσν;T ; (11)

where ν runs over all the non-translational modes, α indicates a
Cartesian direction x, y or z, Mk is the mass of the kth nucleus, and
ekα,ν is the vibrational eigenmode of the νth normal mode. We
note that depending on whether we use σν,T from Eq. (9) or from
Eq. (10), we either describe the ZPR and thermal effects together
or just the ZPR effects alone. From the study of Zacharias and
Giustino35, we infer that the band gap calculated for the distorted
structure defined by the displacements in Eq. (11) reproduces the
thermally averaged band gap defined in Eq. (8) within an accuracy
of about 50 meV when the adopted supercell contains 150 atoms

or more35. We consider this level of accuracy sufficient for the
purpose of our work.
The special displacement method allows one to obtain band-

gap renormalizations due to phonon-coupling within the context
of the adiabatic approximation35,36. The problematic limit at small
momentum transfers in the summation over the Brillouin zone37 is
effectively handled in our supercell calculations by considering
larger and larger supercells. We systematically considered super-
cells of varying size (containing a number atoms ranging between
160 to 625) and obtained constant results within 0.05 eV. In
practice, the frequencies remain always finite and the ω0 of the
recipe of Zacharias and Giustino36 could be taken to correspond
to the lowest frequency found for the series of considered
supercell sizes. For any lower ω0, the results would remain
unchanged and the obtained values correspond to a finite result.
However, the adiabatic approximation does not account for the
long-range polar coupling to the longitudinal optical phonons,
which results from a nonadiabatic treatment43. In this work, this
effect has been estimated through the one-band Fröhlich model
(see the Band gap Section and Supplementary Note 1).

Calculation details
The DSH band gaps of the ideal crystalline systems are
determined through the implementation of DD-RSH-CAM func-
tionals26 available in the Quantum-ESPRESSO software suites92. We
use fully-relativistic pseudopotentials generated by the optimized
norm-conserving Vanderbilt pseudopotential scheme93 to account
for spin-orbit coupling. All the calculations are carried out with the
stringent set of the Pseudo Dojo (available at http://
www.pseudodojo.org) to ensure band gaps converged within
0.1 eV. A kinetic plane-wave cutoff of 100 Ry is used for all
materials together with sufficiently dense k-point grids. In the
band-gap calculations, we use unit cells with atomic structures
and lattice parameters taken from experiment (cf. Supplementary
Table 2). The high-frequency dielectric constant ϵ∞ is calculated at
the PBE level through the application of finite electric fields50,94

and is used to fix the parameter αLR of the DSH functional.
For the application of the special displacement method35,36, we

use the CP2K suite of codes95, which comprises an efficient tool for
determining the vibrational frequencies and modes through finite
differences. The core-valence interactions are described through
Goedecker-Teter-Hutter (GTH) pseudopotentials96,97. We use
double-zeta basis sets of MOLOPT quality98. The plane-wave
energy cutoff for the electron density is set to 600 Ry to ensure the
convergence of the total energy. The vibrational frequencies ων

and eigenmodes ekα,ν required for the distorted structure specified
in Eq. (11) are obtained through finite displacements of 0.01 Å
from fully relaxed atomic positions. We use Γ-point sampling with
the supercells defined in Supplementary Table 5. As an alternative
scheme for obtaining vibrational properties, the non-diagonal
approach proposed by Lloyd-Williams et al.99 could be used to
further reduce the involved computational cost.
The band gaps are determined from linear extrapolations of the

EDOS obtained for the supercells specified in the Supplementary
Table 5. The CP2K results are systematically obtained at the PBE
level of theory, with the exception of the test results in Table 5,
which required the use of hybrid functionals. In this case, the
auxiliary density matrix method (ADMM) is employed to speed up
the calculations100.
Our efficient band-gap calculations contain several parts that

contribute to the overall computational cost. The first contribu-
tion results from the determination of the dielectric constant, but
the cost of this calculation is not significant since it is carried out
at the PBE level. The first important contribution comes from the
band-gap calculation for the ideal crystalline system with the
DSH functional. Since the cost of this calculation is easy to
evaluate, we use it here to set the unit. The calculation of the
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SOC correction is carried out at the PBE level and is negligible on
the scale of our cost unit. The second important contribution
comes from the determination of the vibrational properties at
the PBE level. The corresponding cost of this part depends on the
number atoms considered, but it is comparable to the cost unit
for systems containing 270 atoms. For some materials, the EDOS
needs to be determined with rather large supercells, but still at
the PBE level. For the largest case considered (2880 atoms), this
part gives a cost that amounts to half a cost unit and is thus quite
negligible in most cases101–103. All together, the dominant costs
for the band-gap determination result from the vibrational
properties and from the DSH hybrid-functional calculation in
comparable amounts.
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