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ABSTRACT

One approach to understand the chaotic dynamics of nonlinear dissipative systems is the study of non-chaotic yet dynamically unstable invari-
ant solutions embedded in the system’s chaotic attractor. The significance of zero-dimensional unstable fixed points and one-dimensional
unstable periodic orbits capturing time-periodic dynamics is widely accepted for high-dimensional chaotic systems, including fluid tur-
bulence, while higher-dimensional invariant tori representing quasiperiodic dynamics have rarely been considered. We demonstrate that
unstable 2-tori are generically embedded in the hyperchaotic attractor of a dissipative system of ordinary differential equations; tori can be
numerically identified via bifurcations of unstable periodic orbits and their parameteric continuation and characterization of stability prop-
erties are feasible. As higher-dimensional tori are expected to be structurally unstable, 2-tori together with periodic orbits and equilibria form
a complete set of relevant invariant solutions on which to base a dynamical description of chaos.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0119642

Two-dimensional torus-shaped manifolds capturing non-chaotic
quasiperiodic behavior, and invariant under the dynamics, can
be embedded within the state space of dynamical systems. Such
invariant tori have long been studied, for example, in the transi-
tion to chaos or as foliations of Hamiltonian systems. We show
that invariant tori are also generically present in sufficiently
chaotic dissipative systems, are structurally stable, and support
the dynamics. Invariant tori, thus, provide a way of quantifying
chaos in such systems.

I. INTRODUCTION

Chaotic dynamics arise naturally from simple interactions in
many physical systems ranging from fluid dynamics to electrical
circuits and nonlinear optics. Studying the chaotic dynamics in
terms of unstable non-chaotic invariant solutions to the underly-
ing evolution equations, which are embedded within a stable chaotic
attractor, provides key insights into the observed physics. Two types
of unstable invariant solutions are mostly studied: equilibria, zero-
dimensional unstable fixed points in the system’s state space; and
periodic orbits, non-chaotic time-periodic solutions corresponding
to one-dimensional loops in state space. Together with their entan-
gled stable and unstable manifolds, equilibria form a skeleton of the

chaotic attractor, while periodic orbits are often dense in the chaotic
attractor and allow the computation of statistical averages of a
chaotic dissipative out-of-equilibrium system. Indeed, the density of
periodic orbits is sometimes taken as one of the criteria for a system
to be called chaotic.1 Trajectories within chaotic attractors closely
shadow unstable periodic orbits; therefore, periodic orbits are often
described as the “backbone” of chaos. For systems with dense peri-
odic orbits, the construction of dynamical zeta functions2 allows
statistical quantities to be evaluated as sums over the collection of
all periodic orbits.3–5

While the importance of unstable zero-dimensional equilibria
and one-dimensional periodic orbits is widely accepted, higher-
dimensional unstable invariant tori have never, to our knowledge,
been considered generic invariant structures embedded in a chaotic
attractor and instead have only been studied as isolated exotic
objects. Here, we show that unstable tori are generically embedded
in the chaotic attractor of a dissipative system and can be identified
numerically. Moreover, unstable tori can be continued parameter-
ically, and their stability properties are computed. Consequently,
including tori in a dynamical system description of chaos now based
on the complete set of invariant solution types appears feasible.

In systems exhibiting a continuous symmetry, only a small
number of periodic orbits are found, and instead “relative periodic
orbits,” a special case of 2-tori, take their role.6 More generally, as
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the dimension of the chaotic attractor increases, we should expect to
see higher-dimensional invariant structures. Spatiotemporal chaos,
as is common in fluid dynamical situations, is associated with a large
number of positive Lyapunov exponents (so-called hyperchaos) and
consequently a high-dimensional attractor,7 and invariant tori are,
thus, presumed to be generic and conjectured to be as important as
the periodic orbits, which have been extensively studied heretofore.

For M ≥ 3, in the absence of symmetries, M-tori are struc-
turally unstable,8,9 and therefore, we do not expect them to play an
important role in chaotic dynamics, even for higher-dimensional
systems. In cases with a continuous symmetry, 2-tori become “rela-
tive” 2-tori, a special case of 3-tori, which are structurally stable due
to the symmetry, so become relevant, but these can be handled by
careful modifications of the algorithms for 2-tori, analogously to the
study of relative periodic orbits. Therefore, the equilibria, periodic
orbits, and 2-tori represent a complete collection of non-chaotic
solutions, which form the skeleton of chaos.

In Hamiltonian dynamics, invariant tori have long been stud-
ied, playing a crucial role in KAM theory where they foliate phase
space in integrable regions and act as boundaries between sepa-
rate chaotic regions. In dissipative chaotic systems, by contrast,
invariant tori (except invariant 1-tori, i.e., periodic orbits) have
been largely neglected. The canonical example of such a system,
the Lorenz system, on which much previous research in this area
has concentrated,4,10,11 has only three dimensions, and therefore,
an invariant 2-torus would partition state space, and could not be
embedded within the chaotic attractor. Stable tori have nevertheless
been studied in dissipative systems as the breakdown of a 2-torus is
one of the possible routes to chaos.12–14

Various authors15–22 have developed methods for the continua-
tion of tori and have successfully applied these to converge attracting
tori and continue them as they become unstable or to converge
specific tori that arise from bifurcations. These methods are now
routine in Hamiltonian systems. However, to our knowledge, no
previous work has attempted to find the generic unstable tori, which
are expected to be embedded within dissipative hyperchaos. Generic
invariant tori could allow the study of key phenomenology within
certain dissipative chaotic systems, for which periodic orbits are
seemingly rare. For example, in wall-bounded turbulence, it has
proven difficult to find periodic orbit solutions, which capture the
interaction between different processes at different length-scales.23

In the absence of phase locking, we expect the different temporal fre-
quencies associated with these length-scales to lead to the dynamics
manifesting as invariant tori rather than periodic orbits.

We use the method of Lan et al.24 for converging invariant tori
with irrational rotation number, which they applied to converge a
2-torus in the Kuramoto–Sivashinsky partial differential equation.
Though unstable in the full chaotic system, this torus is a stable
attractor when the dynamics are restricted to the anti-symmetric
subspace in which it was detected. Our strategy for finding unsta-
ble 2-tori embedded in the chaotic attractor is based on one generic
mechanism creating invariant tori, the bifurcation of an unstable
periodic orbit. We will, therefore, find unstable periodic orbits and
continue these in parameter space until a complex-conjugate pair
of Floquet multipliers loses or gains stability and attempt to find
the two-torus that is born from the resulting Neimark–Sacker bifur-
cation. For this to be possible, a minimum of five dimensions and

three positive Lyapunov exponents is necessary since an unstable
periodic orbit, which then undergoes a Neimark–Sacker bifurcation
will have at the very least one real unstable Floquet multiplier, a
complex-conjugate pair, and one stable Floquet multiplier (to ensure
a dissipative system), as well as the neutral direction. It should be
possible for invariant 2-tori to exist in four-dimensional chaotic
systems, but these cannot be continued from periodic orbits by
Neimark–Sacker bifurcations, and thus, it is not clear how they
could arise.

II. THE MODEL SYSTEM

We study, as a simple example, the 5D system proposed by
Vaidyanathan et al.,25 a modification of the Lorenz system,

ẋ1 = a(x2 − x1)+ x4 + x5,

ẋ2 = cx1 − x1x3 − x2,

ẋ3 = x1x2 − bx3,

ẋ4 = −x1x3 + px4,

ẋ5 = qx1.

The system has one discrete symmetry, (x1, x2, x3, x4, x5) 7→

(−x1,−x2, x3,−x4,−x5), and, unlike in the standard Lorenz system,
only one fixed point exists, at the origin. With the choice of parame-
ters a = 10, b = 8/3, and c = 28—as is standard for the Lorenz sys-
tem—and p = 1.3, q = 2.5, the chaotic attractor was found to have
Lyapunov exponents L1 = 0.4195, L2 = 0.2430, L3 = 0.0145, L4 =

0, and L5 = −13.0405. We will vary p as a bifurcation parameter and
keep all other parameters fixed.

We employ the customary Poincaré section for the Lorenz
attractor, x3 = c− 1, as shown in Fig. 1. This yields a 4D subspace
with which chaotic trajectories regularly intersect. Periodic orbits
manifest as fixed points after a set number of iterations of the return
map F(x) of this Poincaré section back to itself, and 2-tori manifest
as invariant cycles, closed loops in the Poincaré section.

III. CONVERGENCE OF TORI

Below, we will assume for clarity of notation that only one iter-
ation of the Poincaré return map is necessary, though in general, this
is not the case. We follow the method of Lan et al.,24 which param-
eterizes such a loop on the Poincaré section as x(s) ∈ R

5 with the
cyclic variable s ∈ [0, 2π) so that x3(s) = c− 1 for all s.

For every point on the loop, we require that the return map
rotates around the loop by an amount ω so that

x(s+ ω)− F(x(s)) = 0. (1)

We assume the rotation number ω/2π to be constant around the
loop, which is valid when it is irrational, and therefore, Denjoy’s
theorem26 applies. Equation (1) is solved using a Newton-like itera-
tion for the fields x1(s), x2(s), x4(s), and x5(s) and the scalar quantity
ω. We solve

1x(s+ ω)+
dx

ds
(s+ ω)1ω − J(x(s))1x(s)

= F(x(s))− x(s+ ω) (2)
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FIG. 1. A typical trajectory of the system, at p = 1.3, of length T = 50, pro-
jected onto the first three variables. The Poincaré section employed, x3 = 27, is
also shown, here appearing as a two-dimensional surface, though it is actually a
four-dimensional sub-manifold.

subject to the phase constraint

∫ 2π

0

dx

ds
(s) ·1x(s) ds = 0 (3)

for x(s) and ω and update

x← x+ ε1x, ω← ω + ε1ω. (4)

Here, J(x) is the Jacobian of the Poincaré return map at a given point.
With ε = 1, this method is equivalent to the classical New-

ton–Raphson iteration and converges quadratically. However, in
this case, the algorithm will diverge unless a very good initial guess
is available. Using a smaller value of ε increases the likelihood of
convergence at the cost of speed. We set the value of ε adaptively
with the following procedure. At each step, the residual is compared
with its value of the previous step. If it has improved, we increase ε

by a factor of 1.1 and continue. Otherwise, we reset the state to its
previous value and halve the value of ε. In this way, the algorithm
is guaranteed to decrease the residual monotonically. However, it
can still asymptotically approach a non-zero value and, thus, is not
guaranteed to converge.

Equation (2) is particularly simple to solve in the case that x(s)
is given by a finite Fourier series.24 A Fourier representation gener-
ally works well for x(s), but near an Arnold tongue (see Sec. IV B),
where the points on the loop cluster together, we see the effects of
the Gibbs phenomenon. In this case, we switch to a piecewise linear
interpolation.

Given a periodic orbit that intersects the Poincaré section at
x0, near a Neimark–Sacker bifurcation such that the Jacobian of the
return map has a complex-conjugate pair of eigenvectors e and e∗

with eigenvalues re±iθ where r ≈ 1, we construct an initial guess for

FIG. 2. An unstable 2-torus T3 (red), embedded within the chaotic attractor,
together with the periodic orbit from which it arises (thick line) P3 with period
T ≈ 5.51, at p = 0.5033. A trajectory of duration 200 initialized very close to
the torus is also shown (thin line), which briefly shadows the torus before being
repelled away in the chaotic attractor. As with the previous figures, this is a
projection showing only the variables x1, x2, and x3.

the loop on the Poincaré section as

x(s) = x0 + R eise+ R e−ise∗, (5)

where R is a guess of the radius to be found by trial and error. An
initial guess for the rotation number is given by ω = θ .

Once a torus has been converged at a given set of parame-
ters, continuation is usually straightforward, by reconverging at new
parameter values using the same algorithm, with the initial guess
being given by constant, linear, or quadratic extrapolation.

IV. RESULTS

A recurrent flow analysis was applied, at p = 1.3, to find eight
unique unstable periodic orbits. Of these, six had an unstable con-
jugate pair of eigenvalues, which were then continued down in p
until a Neimark–Sacker bifurcation was found in four of the cases.
In this way, four different invariant tori were converged. One such
example that we call T3 is shown in Fig. 2. With a more robust recur-
rent flow analysis, we are confident that more, longer, periodic orbits
could be found, which would give rise to more tori. In this case, the
computations would take much longer to converge, and indeed, we
already struggle when many reintersections of the Poincaré section
are necessary.

Table I lists the tori we converged and their bifurcation points,
and a diagram is given in Fig. 4. Two of the four converged tori are
invariant under the symmetry transformation (x1, x2, x3, x4, x5) 7→

(−x1,−x2, x3,−x4,−x5), including T1, pictured in Fig. 3. In all cases,
the continuation eventually failed either because of the presence
of phase locking (see Sec. IV B) or simply because of the sensitive
numerical precision required, resulting from the chaotic nature of
the system.
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FIG. 3. The torus T1 at p = 0.7. This three-dimensional projection of a two-di-
mensional manifold embedded in a five-dimensional space appears to self-inter-
sect, but in reality, the invariant torus does not. Note that this torus is invariant
under the symmetry of the system.

In the case of T4, the converged torus was found, by trial and
error, some distance away from the bifurcation point. The numer-
ical continuation of this, the most complicated of the tori that we
successfully converged, failed before connecting back to the periodic
orbit, hence the visible gap in Fig. 4.

FIG. 4. Bifurcation diagram showing all tori listed in Table I and their associated
periodic orbits. For the periodic orbits Pn (red), the vertical axis shows the argu-
ment θ of the complex eigenvalue. For the tori Tn (blue), which bifurcate from
these orbits, the vertical axis shows the rotation number multiplied by 2π , ω.

TABLE I. The successfully converged tori, including the parameter value of the

Neimark–Sacker bifurcation at which they appear, the number of intersections of the

Poincaré section necessary to close the torus, and whether the torus is invariant under

the discrete symmetry of the system.

Torus NS bifurcation No. of intersections Symmetric

T1 p= 0.776 2 Yes
T2 p= 0.430 6 No
T3 p= 0.503 8 No
T4 p= 0.327 8 Yes

A. Stability analysis

Following Jorba,27 we measure the stability of the tori by cal-
culating the eigenvalues of T−ωJ, where J is the Jacobian of the
return map applied to every point simultaneously and T−ω is the
operator that rotates points around the loop by −ω, to counter-
act the action of the return map. The set of eigenvalues is pruned
for numerical accuracy to give circles whose radius, greater than or
less than unity, determines how many stable and unstable directions
the torus has. In total, in this system, there are four circles: one for
each of the dimensions of the Poincaré section. There is one circle
with a very small radius corresponding to the contracting direc-
tion, one with a unit radius corresponding to a rotation around the
loop, and two others, at least one of which must be unstable for a
torus to be embedded within the chaotic attractor. All four of the
Neimark–Sacker bifurcations for which tori were converged were
found to be subcritical, implying that the tori initially had fewer sta-
ble directions than the periodic orbits from which they were born.
Figure 5 shows the eigenvalues for T3 and its associated periodic
orbit, P3, near bifurcation. For three of the four tori, a fold bifur-
cation was found close to the initial Neimark–Sacker bifurcation so
that the tori then became more stable, as in Fig. 7.

B. Continuation past Arnold tongues

The rotation number ω/2π of a torus varies continuously as the
parameters of the system are varied. Rational rotation numbers exist
for finite regions of parameter space called Arnold tongues.28 At any
rational rotation number, the dynamical behavior is quite different
from the dense quasiperiodic orbit that exists on the torus at irra-
tional rotation numbers. Instead, a phase locking is present, and at
least two periodic orbits—one attracting and one repelling—exist on
the torus. In general, these periodic orbits will have extremely long
periods, much longer than the period of the orbit from which the
torus bifurcates, and the dynamics will be computationally indistin-
guishable from an irrational rotation number. Indeed, between any
two steps with different rotation number in a numerical continu-
ation of a torus, an infinite number of Arnold tongues have been
crossed. However, for rotation numbers that are fractions with low
denominators, such as 1/3, 1/2, and 1, the phase locking is suffi-
ciently strong that the Arnold tongues are wide regions of parameter
space and the resulting periodic orbits have relatively short periods.
In these cases, most algorithms for converging tori, including that
of Lan et al.24 break down, as we can no longer appeal to Denjoy’s
theorem to enforce a loop parameterization equivalent to a constant
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FIG. 5. Eigenvalues of the Poincaré return map for the periodic orbit P3 and the
torus T3 at p = 0.5033. P3 has four eigenvalues (red dots) in addition to the neu-
tral direction along the orbit. Here, we are close to the bifurcation point so that the
complex-conjugate pair has modulus slightly less than unity. The eigenvalues for
T3 should be smooth circles in the limit asN→∞ (see Jorba27). In addition to the
neutral direction that manifests as a circle with radius 1, there are three circles:
an unstable direction with radius about 9, a weakly stable direction with radius
very slightly less than one (barely perceptible here), and a strongly contracting
direction, which appears to be a point at the origin.

phase shift. Figure 6 shows the two periodic orbits that exist on the
torus T3 in the phase-locked region where ω = 2π/7.

To continue a torus past an Arnold tongue, special care has
to be taken. Suppose the rotation number is given by the irre-
ducible fraction p/q in the phase-locked region. Then, as the region
is approached, the points on the discretized loop will tend to clus-
ter around q locations. Reducing the number of points N to q and
replacing the constraint (3) with ω = 2πp/q, the stable periodic
orbit on the torus can be converged directly—and continued round
the fold bifurcations at the boundaries of the phase-locked region
to additionally give the unstable periodic orbit. It is then possible to
reconverge the full torus on the other side of the tongue, though this
requires some care. Simply adding points between those describing
the periodic orbit with some interpolation strategy does not work, in
general, since the chaotic nature of the system and the high dimen-
sionality mean that the new points are unlikely to be close to the
torus. The procedure we follow is, thus,

1. Just past the phase-locked region, we converge as well as we
are able to use q points with linear interpolation and the usual
constraint (3).

FIG. 6. Periodic orbits on the torus T3 at p = 0.5157. The orbit shown with a
thick red line is stable when the dynamics are restricted to the torus and has
period T ≈ 40.28, roughly seven times longer than that of the original orbit P3.
The orbit shown with a thin black line is unstable, with T ≈ 40.40. The full torus
at p = 0.51 is also shown to aid visualization.

FIG. 7. Bifurcation diagrams for the periodic orbit P3 and the torus T3, which
arises from its Neimark–Sacker bifurcation (NS) at p ≈ 5.034, before undergo-
ing a fold bifurcation (F). The upper figure shows a zoom of Fig. 4. For P3, the
argument θ of the complex eigenvalue is plotted (red), and for T3, the rotation
number is multiplied by 2π , ω (blue). The lower figure shows the value of x1 on
the Poincaré section, which for P3 is a single point and for T3 is a range. Between
p ≈ 0.515 and p ≈ 0.519, an Arnold tongue is encountered so that the rotation
number is constant ω = 2π/7 and the full torus cannot be converged, but a pair
of stable and unstable periodic orbits exists on the torus, each intersecting the
Poincaré section seven times.
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2. We replace each of the q points with two points very close
together and reconverge.

3. We repeat this process until the resolution is sufficiently high
that we can continue the full torus without artifacts.

This leaves us with N = 2kq points for some integer k. We aim for
around N = 64, which was found to be sufficient. After continuation
some distance away from the phase-locked region until the cluster-
ing of points is not pronounced, we switch from linear interpolation
to a Fourier representation of the loop, which requires reconverging.

Figure 7 shows the continuation of T3 from its Neimark–Sacker
bifurcation, past a fold bifurcation and past an Arnold tongue with
rotation number 1/7. Only T3 was successfully continued past an
Arnold tongue. In the case of T1, two different phase lockings, with
ω = 2π/13 and ω = 6π/38, were found at p = 0.675, indicating
that the invariant torus no longer exists and continuation with a
single parameter is impossible.28

V. CONCLUSION

We have demonstrated the generic existence of dynamically
unstable invariant tori embedded within the chaotic attractor of a
dissipative dynamical system. The two-dimensional tori are identi-
fied by following Hopf-type bifurcations of unstable periodic orbits
that are themselves embedded in the attractor. We moreover charac-
terize the stability of the tori and continue them as parameters vary,
including past an Arnold tongue. We have clearly demonstrated
that such tori are structurally stable and exist in finite regions of
parameter space. With sufficiently many long periodic orbits, we are
confident that a large number of tori could be found at any param-
eter value. As three- and higher-dimensional tori are, in general,
structurally unstable, 2-tori together with previously studied equi-
libria and periodic orbits form a complete set of generic invariant
solutions that a dynamical description of dissipative chaos should
take into account. We expect tori to be especially significant when
included in a generalized form of periodic orbit theory aimed at
quantitatively describing statistical properties of a hyperchaotic sys-
tem via expansions over invariant solutions. A 2-torus intuitively
captures more dynamical information than an individual periodic
orbit, suggesting that it would be associated with a larger statistical
weight and leading to more accurate expansions involving invariant
solutions than a pure periodic orbit expansion.

How exactly to incorporate 2-tori into periodic orbit expan-
sions remains an open question. Ad hoc formulas for the weights
based on the unstable eigenvalues, such as those suggested for peri-
odic orbits,5,29,30 are straightforward to invent, but a more rigorous
derivation matching that of periodic orbits by Cvitanović et al.31

is not straightforward since tori do not appear in the trace for-
mulas derived from the assumption of dense periodic orbits. One
may alternatively attempt to consider the periodic orbits existing
on the tori at arbitrarily close parameter values yielding rational
rotation numbers. However, such periodic orbits will typically have
very long periods rendering them practically indistinguishable from
quasiperiodic dynamics but causing them to be discarded in a series
truncation. Furthermore, the periodic orbits exist only for small
regions of parameter space and are not suitable for continuation.

Consequently, unstable invariant tori embedded in the chaotic
attractor should be detected in physically relevant dissipative chaotic
systems, though extending the studies to high-dimensional prob-
lems, including fluid dynamical and other complex spatiotemporal
systems, will require significant advances in efficiency and robust-
ness of methods for both finding guesses for the tori and for
converging them.
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