Large-format SPAD arrays and imagers for molecular imaging

Claudio Bruschini and Edoardo Charbon Francesco Gramuglia, Emanuele Ripiccini, Andrada Muntean Arin Ulku, Andrei Ardelean, Paul Mos, Michael Wayne

> MEDAMI 2022, Portorož, Slovenia 05/09/2022

ROTT

École
 Polytechnique
 Fédérale de
 Lausanne

EPF

- Introduction
- SPAD arrays for PET
- SPAD imagers for molecular imaging
- Conclusions

Introduction – SPAD, SPAD arrays & imagers, SiPM

SPAD: single-photon avalanche diode SiPM: silicon photomultiplier

EPFL Example: FLIM image

- FLIM: Fluorescence Lifetime Imaging Microscopy
- Widefield, stitched 936
 (3.64 Mpx)+ ANNbased lifetime processing

EPFL Analog vs. Digital Silicon Photomultiplier

7

SPAD arrays for PET

EPFL Device-level optimisation

EPFL SPAD & chip structure and read-out PCB

No pre-amplifier

- Lindner, *et al.* IEEE EDL 2018, F. Gramuglia, *et al.*, JSTQE 2021
- $00 \,\mu m$ Chip: 25 µm diameter CMOS SPAD Passive quenching and active reset circuit Tunable dead time (down to 3 ns) System-on-board: Single external power supply source All voltages provided through DACs controlled with serial protocol, reduced cable noise
 - Si-Ge comparator for 50 Ohm coupling
 - High signal slew rate (≥ 1.6 V/ns)

EPFL Time resolution with **SPADs** 50 . d = 0.5 µm $\mathbf{d} = \mathbf{1} \ \mu \mathbf{m}$ 10 $1/\gamma v^{*}$ (ps) $\mathbf{d} = \mathbf{2} \ \mu \mathbf{m}$ $1/\gamma_{\rm max} v^*$ 5 $1/(\alpha+\beta)v^*$ Bias voltage 27 V (MIP) A REAL PROPERTY AND A REAL PROPERTY A Bias voltage 28 V (Photons) 1 0.5 3 2 5 6 4 E (10⁵ V/cm)

W. Riegler, P. Windischhofer, P. Time Resolution and Efficiency of SPADs and SiPMs for Photons and Charged Particles. *Nucl Instr Methods Phys Res Section A: Acc Spectrometers, Detectors Associated Equipment* (2021)

EPFL

EPFL Chip Architecture

Multi digital SiPM:

- 2 cores
- 64 clusters per core
- 64 SPADs per cluster
- Array of 8192 SPADs (2×4096)

EPFL Chip Architecture

Multi digital SiPM:

- 64 clusters per core
- 64 SPADs per cluster
- Random access readout architecture
- Single SPAD masking
- TDC calibration
- Fixed priority scheduling system

EPFL Blueberry TOF Sensor

3D Stacked Chip:

- Array size: ~ 7.5×4.2mm²
- Number of SPADs: 8192
- Technology node: 180nm CMOS

EPFL Imaging Inspection

- X-Ray tomography
 - Voxel 1.42 μm
 - Not destructive inspection of TSV structure on large area

 SEM images of Microbump detail before (top) and after (bottom) 3D bonding

17

SPAD imagers for molecular imaging

SPAD imagers for molecular imaging **#1 Drug target engagement**

Jason T. Smith, Alena Rudkouskaya, Shan Gao, Arin Ulku, Claudio Bruschini, Edoardo Charbon, Shimon Weiss, Margarida Barroso, Xavier Intes and Xavier Michalet, Optica 9(5), 2022, DOI: 10.1364/OPTICA.454790

EPFL NIR MFLI (Macroscopic FLI) validation *in vitro*

Short lifetime measurements: IRDye 800CW-2DG

Photon \rightarrow decay \rightarrow lifetime \rightarrow local environment influence

Intensity Images

EPFL Noninvasive NIR MFLI-FRET: Trastuzumab

Experimental Design

EPFL Noninvasive NIR MFLI-FRET: Trastuzumab

FLI-FRET Quantification

EPFL

SPAD imagers for molecular imaging #2 Depth profiling

Petr Bruza, Arthur Petusseau, Arin Ulku, Jason Gunn, Samuel Streeter, Kimberley Samkoe, Claudio Bruschini, Edoardo Charbon, and Brian Pogue, *Optica* 8(8), 2021, DOI: 10.1364/OPTICA.431521 23

Claudio Bruschini & Edoardo Charbon, EPFL

First ex-vivo fluorescence LiDAR data with SPAD – head & neck tumor ABY-029 (anti-epithelial growth factor receptor Affibody molecule coupled with IRDye 800CW, 0.63 ns lifetime)

Integral fluorescence intensity map

Ī (a.u.)			
	0	0.5	1

Rising edge delay map

Bruza P, et al. Optica 8(8), 2021.

Fluorescence LIDAR

SFDI: Spatial Frequency-Domain Imaging

Fluorescence LIDAR

Sub-millimeter resolution for simple objects

EPFL

pissimaging

SPAD imagers for molecular imaging #3 Neurosurgery

Michel Antolovic, ISSW 2022, Les Diablerets (CH)

Claudio Bruschini & Edoardo Charbon, EPFL

Protoporphyrin IX Fluorescence Imaging

Visualizing 5-ALA-induced PpIX fluorescence in malignant glioma surgery

Mikael T. Erkkilä, *et al.*, "Widefield fluorescence lifetime imaging of protoporphyrin IX for fluorescence-guided neurosurgery: An ex vivo feasibility study", J. Biophotonics. 2019;12:e201800378. DOI: 10.1002/jbio.201800378

EPFL PpIX Lifetime Imaging

- PpIX dissolved in DMSO exhibits strong monoexponential fluorescence signal
- One can retrieve a lifetime of 16.5±1.5 ns coherent with literature

EPFL PpIX Lifetime Imaging – increasing frame rate

15 gate positions

EPFL Acknowledgments & Sources KJ T-Micro

SPAD arrays for **PET**:

- Sub-10 ps FWHM SPADs: Francesco Gramuglia, Ming-Lo Wu, Myung-Jae Lee, Claudio Bruschini, Edoardo Charbon
 - JSTQE(28) 2021, Frontiers in Physics(10) 2022
- 3D-stacked digital SiPM ("Blueberry"): Francesco Gramuglia, Andrada Muntean, Carlo Alberto Fenoglio, Esteban Venialgo, Myung-Jae Lee, Scott Lindner, Makoto Motoyoshi, Andrei Ardelean, Claudio Bruschini, Edoardo Charbon
 - NSS-MIC 2021, IISW 2021
- MIP detection: Francesco Gramuglia, Emanuele Ripiccini, Carlo Alberto Fenoglio, Ming-Lo Wu, Lorenzo Paolozzi, Claudio Bruschini, Edoardo Charbon
 - Frontiers in Physics(10) 2022

Acknowledgments & Sources

SPAD imagers for molecular imaging

- #1 Drug target engagement: Arin Ulku, Claudio Bruschini, Edoardo Charbon; Jason Smith, Xavier Intes, Xavier Michalet, and colleagues @RPI
 - *Optica* 9(5), 2022, DOI: 10.1364/OPTICA.454790; SPIE PW 2022
- #2 Fluorescence LIDAR: Arin Ulku, Claudio Bruschini, Edoardo Charbon; Petr Bruza, Arthur Petusseau, Brian Pogue, and colleagues @Dartmouth
 - Optica 8(8), 2021, DOI: 10.1364/OPTICA.431521
- #3 Neurosurgery: Michel Antolovic and colleagues @Pi Imaging
 - ISSW 2022

