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Abstract– CMOS SPAD image sensors have reached 1Mpixel 
in 2020 after two decades of evolution. The core peculiarity of 
SPADs is an excellent timing resolution, at the center of the 
success of these sensors in time-resolved imaging. 
Applications have literally exploded, with 3D-stacking 
enabling deep-learning processors and complex processing in 
situ, hence reducing power consumption. Another recent trend 
is the use of SPADs in quantum imaging and quanta burst 
photography, that are notoriously computationally intensive. 
Recent examples include particle sensing in HEP experiments, 
FLIM/FRET, and various super-resolution microscopy styles. 
In this paper we review all these trends and the newest results 
achieved with advanced technologies.
 

Introduction 
Single-photon avalanche diodes (SPADs) are 
photodiodes biased above breakdown, where sustained 
avalanche can be achieved through impact ionization 
upon electron-hole generation caused by photons or by 
thermal generation [1,2]. Fig. 1 shows the operation of 
a photodiode in conventional mode and in Geiger mode. 
The figure also shows the typical cross-section of the 
SPAD, comprising an anode, cathode, and guard rings 
to prevent early edge breakdown. 

In this mode of operation, SPADs can detect single 
photons or perform photon counting by generating a 
digital signal upon photon detection. This operation 
occurs in a few nanoseconds, yielding photon detection 

at high timing resolution [3-8]; it is illustrated in Fig. 2, 
where passive quenching is performed with a ballast 
resistor to avoid destruction of the SPAD and to 
transform the avalanche current into a voltage, which, in 
turn, can be converted into a digital signal [9,10].   

SPADs can also be gated, i.e. activated in a few tens of 
picoseconds and deactivated as fast. Time gating is used 
to reconstruct fast processes, such as fluorescence 
response, to extract lifetime, for instance [11-17]. 
Fluorescence lifetime imaging microscopy (FLIM) is 
one such modality, for which SPADs can be effectively 
used. Fig. 3 shows the process of reconstruction 
achieved by successive exposures of a molecule to light 
pulses and subsequent histogram building for lifetime. 
As shown in the figure, the histogram bin size is 
determined by the minimum delay achieved by the 
gating process, even if the time gate itself could be 
longer, typically several nanoseconds.  
 

Large-format SPAD image sensors 
In order to achieve widefield FLIM, one can either scan 
the scene in a confocal microscope or use a large number 
of pixels synchronized with a laser source. In the latter 
case a high frame rate may be achieved, provided that 
the gate skew is small over the whole SPAD array. To 

 
Fig. 1. Single-photon avalanche diode principle and cross-
section of a SPAD. 
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Fig. 2. SPAD detection cycle. 
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Fig. 3. Time gating technique for lifetime reconstruction. The 
time-of-flight (TOF) of the photon reflection may also be 
extracted. The time gate may be significantly longer than the 
histogram bin, which is only determined by the delay of the gating 
process. 
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Fig. 4. SPAD pitch evolution (in purple) vs. CIS technology. 
Source: A. Theuwissen, H.A.R. Homulle, and E. Charbon. 

 
 
 

Source: Albert Theuw
issen, Harald Hom

ulle, 
and Edoardo

Charbon

CIS

Tech. Node

ITRS



 

 

achieve large pixel counts, one needs to reduce SPAD 
size and pixel pitch [15]. Fig. 4 shows pitch evolution in 
SPADs, compared to conventional image sensor 
technology over the years following the ITRS feature 
size reduction. As can be seen from the figure, SPADs 
have followed CMOS IS (CIS) pitch reduction with 
some delay, mostly due to the constraints imposed on 
the device by high voltages and the need for lower 
doping profiles that prevented the use of more advanced 
CMOS technology nodes [18-25]. In addition, new pixel 

architectures were required to perform biomedical 
imaging [26-29] or quantum key distribution [30].  
As an example, Fig. 5, shows the design of a gated 
SPAD in 180nm CIS technology achieving a pitch of 
9.4µm in the chip MegaX. The pixel is an evolution of 
[31] and it comprises a quenching mechanism through 
transistor MQ and gating through MG, MF, and MRS, 
which resets the pixel [32]. The information of the 
detection of a photon is stored in MRAM and read out 
through MPDO and MSEL. The MegaX chip is shown in 
Fig. 6, which includes the first SPAD array of 1Mpixel 
ever achieved.  

Fig. 7 shows the characterization of the MegaX chip in 
terms of dark count rate (DCR) and photon detection 
probability (PDP) as a function of population, excess 
bias, and temperature. A second pixel (Pixel B) was also 
implemented in this architecture that enabled a better fill 
factor thanks to the sharing of readout transistors groups 
of 2×2 pixels.  

 

3D-stacked architectures 
In order to enable further pixel pitch reduction, one can 
stack two or more chips, one hosting the detectors and 
one the electronics supporting them.  

A simplified cross-section of such a scheme can be seen 
in Fig. 8, which shows a SPAD cross-section, flipped, 
thinned and hybrid-bonded with a chip implemented in 
the same or in another technology node. This structure 
is known as backside-illuminated (BSI) 3D-stacked 
configuration [20,33,34]. The bottom-tier chip may host 
quenching and gating transistors but it may also include 
much more electronics, including advanced processing 
and even machine-learning engines. 3D-stacked chips 
may also be built to implement frontside-illuminated 
(FSI) SPADs [35]. In this case, the SPAD will require a 
through-silicon via (TSV), to establish the connection 
with the bottom-tier chip. Though the principle is the 
same, FSI SPADs have different performance, 
especially in the PDP and wavelength response than BSI 
SPADs. Fig. 9 shows a comparison between FSI and 
BSI SPADs as a function of wavelength and excess bias.  

Further pitch reduction can be achieved with techniques 
ranging from guard ring sharing to the use of more 
advanced CMOS technology nodes, whereas the 
currently smallest pitch was demonstrated in [36]. Fig. 
10 shows a demonstration of small pitch using guard 
ring sharing (left) and with the use of a BCD 55-nm 
technology node (right) [37-39]. 

Biomedical and HEP applications 

In FLIM, large-format SPAD image sensors have been 
successfully employed in recent years [26]. Phasors 
have also been successfully used to represent lifetime 
with data obtained by sensors like SwissSPAD2 [31]. 
Phasors are derived from the lifetime as a projection to 
the sine and cosine planes as seen in Fig. 11a. Fig. 11b 

 
 

Fig. 6. The MegaX chip [32]. 
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Fig. 9. BSI vs. FSI PDP as a function of wavelength and excess bias 
[20]. 
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Fig. 8. Backside-illuminated (BSI) SPAD and 3D-stacked 
configuration. 
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Fig. 10. Pitch improvements. 
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Fig. 7. MegaX characterization. 
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shows an example of two fluorophores, while Fig. 11c 
shows the result of mixture of dyes. All these 
measurements were obtained with 16 gate positions and 
13.1ns gate width. 

Recently, more powerful SPAD sensors have appeared, 
with shorter gate width, as low as 1ns, and faster 
continuous readout speed [40]. PDP has been enhanced 
in red and NIR, while dynamic range and signal-to-noise 
ratio have been modeled and used in advanced 
applications [41-44]. 

In high energy physics, SPAD image sensors can be 
used to track high-energy particles directly without use 
of scintillators, thus achieving the best possible timing 
resolution in the extraction of the time-of-flight of the 
particles and their trajectory. In [37] for instance pions 
have been detected directly using fast SPADs; in the 
presence of an array of fast SPADs the trajectory could 
have been derived more extensively and thus more 
research is needed in this field. 

Conclusions 
Large-format SPAD image sensors are now a reality, 
with SPAD multi-megapixels being marketed by 
Panasonic and Canon. While individual SPADs have 
reached a timing resolution as high as 7.5ps (FWHM) 
and a maximum PDP of over 60% with a dead time as 
low as 1.5ns, large arrays can be used already in a 
number of applications, including FLIM and phasors. 
Tab. 1 summarizes the current state-of-the-art in 

SPAD’s salient performance measures. We expect that 
the introduction of 3D-stacked SPAD image sensors 
will enable important advances in computationally 
intensive image sensing, adding more powerful 
computational capabilities at chip, pixel cluster, or even 
pixel level. 
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