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ABSTRACT OF THE DISSERTATION

ANIMATION RECONSTRUCTION

OF DEFORMABLE SURFACES

by

Hao Li

Doctor of Sciences

ETH Zurich, 2010

Prof. Dr. Mark Pauly, Chair

Accurate and reliable 3D digitization of dynamic shapes is a critical component

in the creation of compelling CG animations. Digitizing deformable surfaces has ap-

plications ranging from robotics, biomedicine, education to interactive games and film

production. Markerless 3D acquisition technologies, in the form of continuous high-

resolution scan sequences, are becoming increasingly widespread and not only capture

static shapes, but also entire performances. However, due to the lack of inter-frame

correspondences, the potential gains offered by these systems (such as recovery of fine-

scale dynamics) have yet to be tapped. The primary purpose of this dissertation is to

investigate foundational algorithms and frameworks that reliably compute these corre-

spondences in order to obtain a complete digital representation of deforming surfaces

from acquired data. We further our explorations in an important subfield of computer

graphics, the realistic animation of human faces, and develop a full system for real-time

markerless facial tracking and expression transfer to arbitrary characters. To this end, we

complement our framework with a new automatic rigging tool which offers an intuitive

way for instrumenting captured facial animations.

We begin our investigation by addressing the fundamental problem of non-rigid

registration which establishes correspondences between incomplete scans of deforming

surfaces. A robust algorithm is presented that tightly couples correspondence estimation

and surface deformation within a single global optimization. With this approach, we

xiii



break the dependency between both computations and achieve warps with considerably

higher global spatial consistency than existing methods. We further corroborate the deci-

sive aspects of using a non-linear space-time adaptive deformation model that maximizes

local rigidity and an optimization procedure that systematically reduces stiffness.

While recent advances in acquisition technology have made high-quality real-time

3D capture possible, surface regions occluded by the sensors cannot be captured. In this

respect, we propose two distinct avenues for dynamic shape reconstruction. Our first

approach consists of a bi-resolution framework which employs a smooth template model

as a geometric and topological prior. While large-scale motions are recovered using

non-rigid registration, fine-scale details are synthesized using a linear mesh deformation

algorithm. We show how a detail aggregation and filtering procedure allows the transfer

of persistent geometric details to regions that are not visible by the scanner. The second

framework considers temporally-coherent shape completion as the primary target and

skips the requirement of establishing a consistent parameterization through time. The

main benefit is that the method does not require a template model and is not susceptible

to error accumulations. This is because the correspondence estimations are localized

within a time window.

The second part of this dissertation focuses on the animation reconstruction

of realistic human faces. We present a complete integrated system for live facial pup-

petry that enables compelling facial expression tracking with transfer to another person’s

face. Even with just a single rigid pose of the target face, convincing facial animations

are achievable and easy to control by an actor. We accomplish real-time performance

through dimensionality reduction and by carefully shifting the complexity of online com-

putation toward offline pre-processing. To facilitate the manipulation of reconstructed

facial animations, we introduce a method for generating facial blendshape rigs from a set

of example poses of a CG character. The algorithm transfers controller semantics from

a generic rig to the target blendshape model while solving for an optimal reproduction

of the training poses. We show the advantages of phrasing the optimization in gradient

space and demonstrate the performance of the system in the context of art-directable

facial tracking.

The performance of our methods are evaluated using two state of the art real-time

acquisition systems (based on structured light and multi-view photometric stereo).
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Hao Li

Doktor der Wissenschaften

ETH Zurich, 2010

Prof. Dr. Mark Pauly, Leiter

Die genaue und zuverlässige Digitalisierung von dynamischen Objektoberflächen

ist ein wichtiger Bestandteil für die automatische Erstellung von realistischen Comput-

eranimationen. Anwendungen befinden sich sowohl im Bereich der Robotik, Biomedizin

und Bildung als auch bei der Produktion von interaktiven Computerspielen und Fil-

men. Markierungslose 3D-Scantechnologien die nicht nur eine statische Oberfläche er-

fassen sondern eine vollständige Sequenz von hochaufgelösten Scans aufnehmen finden

immer häufiger Verwendung. Aufgrund der fehlenden Korrespondenzen zwischen der

einzelnen Aufnahmen, ist eine Ausschöpfung deren Potenzials (z.b. die Gewinnung der

Dynamik von feinen Details) bislang nicht möglich. Das primäre Ziel dieser Dissertation

besteht darin fundamentale Algorithmen und Systeme zu untersuchen welche durch die

Berechnung dieser Korrespondenzen eine vollständige digitale Rekonstruktion eines er-

fassten Objekts ermöglichen. Weiterhin untersuchen wir die realistische Animation von

Gesichtern als wichtigen Aspekt der Computergrafik und entwickeln dabei ein in Echtzeit

operierendes vollständiges System welches sowohl die markierungslose Verfolgung von

Gesichtern als auch die Übertragung von Ausdrücken auf beliebige Gesichter ermöglicht.

Anschliessend ergänzen wir das System mit einem neuartigen Rigging-Verfahren welches

erfasste Gesichtsanimationen intuitiv Kontrollierbar macht.

Wir beginnen unsere Untersuchung mit der fundamentalen Problemstellung der

nicht-starren Registrierung welches es möglich macht Korrespondenzen zwischen un-

xv



vollständigen Oberflächenerfassungen von deformierbaren Objekten herzustellen. Wir

stellen einen robusten Algorithmus vor welcher eine feste Kopplung zwischen geschätzte

Korrespondenzen und Oberflächendeformation durch einen einzigen globalen Optimierung

ermöglicht. Dieses Verfahren entfernt Abhängigkeiten zwischen den beiden Berechnun-

gen und erlauben es Deformationen mit signifikant höherer räumlichen Kohärenz zu

erzielen. Zu den weitere wichtigen Aspekten unseres Verfahrens gehören sowohl das nicht-

lineare Raum-Zeit-adaptives Deformationsmodell zur Maximierung der lokalen Starrheit

als auch ein Optimierungsablauf welcher in der Lage ist systematisch Steifheitseigen-

schaften des Modells schrittweise zu reduzieren.

Währen neuartige Erfassungstechnologien die Aufnahme von hochwertigen 3D

Daten ermöglicht, können verdeckte Oberflächen nicht gescannt werden. Wir stellen

deswegen zwei unterschiedliche Rekonstruktionsverfahren für die Gewinnung von vollstän-

digen Objektoberflächen vor. Der erste Ansatz besteht aus einem Zwei-Skalen-Systems

das geometrisches und topologisches A-priori-Wissen durch ein geglättetes Template

einsetzt. Während grobe Bewegungen durch eine nicht-starre Registrierungsverfahren

berechnet werden, können feine Details durch einen linearen Deformationsmodell gewon-

nen werden. Wir zeigen wie diese Details durch eine Akkumulations-und Filterprozedur

effektiv in verdeckten Regionen transferiert werden kann. Der zweite Ansatz besteht

primär darin Löcher von verdeckten Oberflächen durch zeitlich-kohärente Geometrien

zu vervollständigen. Der Vorteil dieses Verfahrens besteht vor allem darin das weder

eine global konsistente Oberflächenparametrisierung noch ein Template-Modell benötigt

wird. Da zusätzlich Korrespondenzen nur lokal innerhalb eines Zeitfensters berechnet

werden können sich bei längeren Aufnahmen keine Fehler akkumulieren.

Der zweite Teil dieser Arbeit konzentriert sich auf die Animationsrekonstruktion

von realistischen Gesichter. Wir stellen ein vollständig integriertes System für die Verfol-

gung von komplexen Gesichtsausdrücken und deren Übertragung auf anderen Gesichter

vor. Glaubhafte Animationen von Gesichtern sind sogar dann möglich wenn nur eine

einzige Zielpose zu Verfügung steht, wobei ein Schauspieler die erzeugte Animation sehr

einfach steuern kann. Die Berechnungen erfolgen dabei in Echtzeit durch die Verwendung

von Dimesionsreduktion und eines sorgfältigen Vorverarbeitungsschritts. Um die Manip-

ulation der rekonstruierten Gesichtsanimationen zu ermöglichen, führen wir eine Meth-

ode zur Erzeugung von Gesichts-Blendshapes ein die lediglich einige wenige Beispiele-

posen eines computergenertiertedn Characters benötigt. Der beschriebene Algorithmus

xvi



überträgt semantische Bedeutung eines generischen Rigs auf einem Zielmodell, wobei

die Beispielposen optimal nachgebildet werden. Ausserdem zeigen wir dass es vorteil-

haft ist diese Optimierung im Gradientenraum durchzuführen und demonstrieren die

Leistungsfähigkeit unseres Systems im Kontext einer, durch einen Künstler kontrolliert-

baren, Gesichtsverfolgungsmethode.

Unsere Methoden werden mithilfe von zwei modernen Echtheit-Erfassungssysteme

evaluiert (basierend auf strukturiertem Licht und Multi-View-Photometric-Stereo-Verfah-

ren).

xvii
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Preface

What is Animation Reconstruction? Animation reconstruction is the inverse

process of generating computer animation. For example, instead of sculpting a person’s

face by hand, we may simply capture and reconstruct its shape using a 3D scanner

(surface reconstruction). Rather than creating the movement of someone jumping and

getting the timings right, we can directly record the animation using a motion capture

system (motion capture). An alternative way to customizing animation controls by hand

is to train the system with inputs of real artists so that it is capable of performing the

same task automatically in the future (training).

modeling animationrigging rendering

user input

animated content creation

Standard content creation pipeline for computer animation.

To illustrate some inefficiencies of the standard animated content creation pipeline,

let us consider the simple example of animating a CG character. First, an artist is in-

volved in the creative process of modeling a 3D object which consists of sculpting a sur-

face. A careful placement and configuration of a skeleton (rigging) for the handcrafted

model then allows the artist to intuitively create new poses. A frequently practiced

way to animate a character consists of specifying key poses at specific time frames and

1



interpolate the motions (keyframing). Once the animation is ready, each frame of the

animated 3D object may then be rendered as a two-dimensional image, given a virtual

camera, light sources, textures, and more. Because each stage of the traditional pipeline

involves a significant amount of manual work and artistic skills, recreating realistic ani-

mation is remarkably time-consuming and difficult.

surface
reconstruction

motion
capture

automatic
rigging rendering

training

physical
subject

performance

standard animation reconstruction

Standard animation reconstruction pipeline. In the traditional setting, surface recon-

struction and motion capture are separate stages.

Animation reconstruction considers any computational aspects that supports each

stage of the standard pipeline through direct measurements from reality. Its pipeline is

depicted in the above figure and proposes a shift from laborious human interpretation

of real-world geometry and motion to an accurate and automatic acquisition process.

At the very core of animation reconstruction are the design of computational models

for effective processing of captured input data, the involvement of meaningful geometric

and kinetic priors, and the investigation of algorithms that allow those models to evolve

their behaviors based on sampled training data.

2



CHAPTER 1. INTRODUCTION

1
Introduction

Ever since the birth of computer animation, intuitive modeling and animation

tools were developed to support scientists, engineers, educators, and artists in creating

compelling animated visual content. Through computer generated (CG) animation, con-

veying the functionality of complex systems can be more accurate, learning experiences

become more intuitive, and fascinating animated feature films are made. Because the

traditional graphics pipeline relies on a considerable amount of human input, produc-

ing realistic animation remains a challenging and time-consuming process. As a result,

the field of computer graphics has substantially expanded over the past ten years with

techniques to automate this process. A predominant number of digital models and

phenomena are inspired or directly adopted from the real-world. This observation has

stimulated the development of sensing technologies that directly measure the shape and

motion of actual dynamic objects—significantly reducing the effort required for a person

to model and animate from scratch. However, obtaining a complete representation of

the shape and motion of highly deformable objects (such as human bodies, faces, and

cloths) remains a challenging problem because the subject may exhibit arbitrary com-

plex deformations or have large occlusions. While resolution and accuracy are constantly

3



CHAPTER 1. INTRODUCTION

improving with each generation of new imaging sensors, capturing the entire shape at a

single instance is generally impossible even when multiple viewpoints are used. We argue

that increasing 3D scan coverage is therefore on a fundamentally different “technology

curve,” and is unlikely to be solved by improvements in scanning technology.

Hypothesis: The premise of this work is that aggregating a continuously captured se-

quence of incomplete data through time can be appropriate to derive sufficient knowledge

of an object’s shape and deformation. This information can be further used to effec-

tively support animators in creating and manipulating compelling CG animations for

challenging dynamic subjects such as human faces.

This dissertation investigates frameworks and geometric techniques that accu-

rately reconstruct dynamic three-dimensional models of deforming surfaces captured

with high-resolution real-time 3D scanners. While striving to develop robust and general

purpose algorithms that can handle a wide range of deformations (such as human perfor-

mances, skin deformation, garment wrinkling, etc. . . ), we further emphasize on modeling

highly complex facial animation and present tools for intuitive manipulation and trans-

fer of facial expressions to other characters. The goal of this work is to establish a new

foundation for inverse engineering computer animation and to push the boundaries of

pure geometric and data-driven approaches developed over the past decade.

dynamic 
object

real-time 3D scanner

occlusion
in datascan sequence

Figure 1.1: Our real-time structured light scanner based on active stereo delivers high

resolution input scans from a single view.
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CHAPTER 1. INTRODUCTION

Acquisition. The first step in animation reconstruction consists of capturing dynamic

objects. Traditionally, shape and motion are both separately captured before being

combined to create an animated model. In particular, shapes are obtained through 3D

scanning and motion is recovered typically by tracking markers that are placed on the

subject. While optical shape acquisition has become widely accepted as a mature technol-

ogy for digitizing static objects [FHM+96, MTSA97, NWN96, RTG97, Cur97, MBR+00,

LPC+00, Li05, RGB, SCD+06a, BBB+10], only relatively recently can accurate and

dense geometries be captured at sustained “video” rates [RHHL02, DRR03, ZSCS04,

ZH04, MES, WLG07, HVB+07, BPS+08, VPB+09, BHPS10], enabling detailed acqui-

sition of surfaces that undergo complex deformations (hundreds of thousands of surface

samples per frame).

dynamic shape
reconstruction

automatic
rigging rendering

training

performance

our animation reconstruction

Figure 1.2: Our proposed animation reconstruction pipeline. Note how geometry and

motion are captured within a single dynamic shape reconstruction stage.

The animation reconstruction algorithms in this dissertation are designed around

two such real-time acquisition systems: one that is based on structured light [WLG07]

and one on multi-view photometric stereo [VPB+09]. Both state of the art systems

capture dense geometries at 30 frames per second (fps) and do not involve any markers

(c.f., Figure 1.1). The main advantages over traditional marker-based motion capture

systems [Vic, PH06] are as follows: the ability to recover fine-scale dynamics (since

motion can be acquired at the same resolution as the geometry), no requirement to

place and calibrate markers (which is impractical and time-consuming), and also, the

ability to capture surface textures simultaneously. Consequently, these new acquisition

technologies suggest a new animation reconstruction pipeline as illustrated in Figure 1.2.
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Figure 1.3: Incomplete correspondences. Because of occlusions and deformations in the

subject, establishing surface correspondences across the entire recording is particularly

challenging.

Correspondences. To recover the full motion without the use of markers, dense inter-

frame correspondences need to be established across the captured data. Even though

similar geometric features and reflection properties (such as color) are important in-

dicators for matching surface regions, they can significantly differ when the subject is

deforming. Furthermore, optical scanners can only acquire a portion of the full surface

at each frame due to occlusions. For instance, when a hand is grasping, parts of the palm

are visible in one frame but hidden at a later time as shown in Figure 1.3. Typically,

real-time sensing devices also suffer from noise and outliers as a result of algorithmic and

hardware limitations, and non-cooperative surface materials. A thorough discussion on

issues with correspondence computation for continuous scans can be found in Li [LP07]

Dynamic Shape Reconstruction. This thesis investigates novel optimization tech-

niques and the use of effective geometric and topological priors to establish dense spatio-

temporal correspondences of deforming surfaces in the aforementioned ill-posed setting.

While no prior knowledge about correspondences or physical properties is needed,

we do assume a moderate amount of temporal coherence in the input data. We develop a

method that automatically computes correspondences and a warping field between pairs

of scans by imposing a smooth and continuous detail preserving deformation model.

Bringing two deformed and partially overlapping shapes into alignment is called non-

rigid registration and it has long been believed that a fully automatic approach can

only reliably handle small-scale warps such as those due to hardware calibration in-

accuracies [IGL03, HTB03, BR04, BR07]. Larger deformations were typically recov-
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ered using a complete model (template) of the scanned subject and often assisted with

user-specified, sparse correspondences [ACP03, ASP+04, BBK06, ARV07]. Several re-

searchers have identified the need for and importance of more robust and automatic

techniques, which has led to a revival of research on pairwise non-rigid registration

algorithms [HAWG08, LSP08, CZ08, CZ09, LAGP09, CLM+10] which can handle sig-

nificantly larger deformations.

We further extend our non-rigid registration technique to robustly process longer

sequences using only a coarse geometric template model as a prior, and scan sequences

recorded from no more than a single view. In particular, our geometry and motion re-

construction framework [LAGP09] produces consistent dynamic meshes where geometric

details hidden by occlusions are propagated from observations in other time instances.

We also demonstrate that temporally coherent and hole-free mesh sequences can be

computed [LLV+10] without involving any templates. These sequences enable valuable

applications such as free viewpoint video.

scan scan + 
reconstruction reconstruction

Realistic Facial Animation. Having

set the foundations for dynamic shape re-

construction, we can immediately apply

our methods to realistic facial animation.

Why faces? Humans are highly social

animals—we interact with each other ev-

ery day. As a result, we are particularly sensitive to the subtlest details that appear

unnatural in CG faces. Creating compelling facial expressions is therefore a challenging

and important aspect of computer graphics. Using motion capture data to produce real-

istic facial animation is generally more accurate and efficient than relying on traditional

keyframing techniques, even though digital artists may be highly trained for this pur-

pose. While the dense input data we use in this work captures the necessary fine-scale

dynamics, as opposed to standard marker-based methods, it comes at the price of solving

the significantly more challenging correspondence problem which is necessary for facial

tracking.

On top of our exploration on geometry and motion reconstruction, this disser-

tation presents a complete and practical system [WLGP09] that covers two important

aspects of facial animation, namely markerless, real-time facial tracking and expression

retargeting to another person’s face. We achieve convincing facial animations by careful

7
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integration of state of the art registration and tracking techniques, efficient deformation

models, and transfer algorithms. Furthermore, we investigate a novel approach for intu-

itive manipulation of reconstructed facial animations [LWP10]. Our approach consists of

automatically generating a model (facial rig) for instrumenting semantically meaningful

expression parameters such as “raise left eyebrow.” Personalized rigs are obtained by

providing example facial poses as training data. We show that our rigging technique

may be easily integrated as a data-driven module for facial tracking and allows intuitive

editing of facial animations via blendshape controls.

1.1 Objectives and Challenges

This dissertation investigates the fundamental question in animation reconstruc-

tion: how can the full motion of deformable surfaces be accurately recovered from incom-

plete time-varying input data? In particular, we are interested in knowing the positions

of all surface points during the entire recording while the subject undergoes complex

deformations. Because of occlusions, only a subset of the full geometry can be captured

at a time, and as a result, surface regions disappear and (re-)appear. At the same time,

surface reconstruction from scans captured at a particular frame can only deliver high

resolution details in regions that are visible. The question arises as to whether geometric

details that are hidden in one frame can be reconstructed once it is observed at another

time as the subject exposes new surface. How can we distinguish between geometric

details that are persistent or transient since the object deforms? When a full model

(template) of the subject is unavailable, can we use recovered surface motion to better

approximate missing geometry in hole regions?

Different geometric techniques will be presented in this thesis to address each of

these questions. As we will further show, these foundational algorithms yield enabling

technologies for realistic facial animation reconstruction and data-driven facial rigging.

This thesis will find answers to the following problems:

initial alignment registration output

Pairwise Non-Rigid Registration.

To determine a dense motion field across a

sequence of 3D input scans, we first need

to develop an algorithm that automat-

ically establishes full inter-frame corre-

spondences. Given two consecutive scans,

8
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the problem consists of finding dense surface correspondences within overlapping regions

and an optimal deformation that brings the source shape (frame t) into alignment with

the target shape (frame t+ 1). As a result, we obtain a more complete surface at frame

t+ 1 as additional geometry is propagated from frame t. However, the more the subject

deforms the larger the difference becomes between the source and target shape. The

problem becomes even more challenging as surface correspondences only exist within

a common subregion which is not known a priori. Because pairwise registration will

serve as a central building block for computing spatio-temporal correspondences of en-

tire recordings, efficient computation will be a critical factor for practical considerations.

Figure 1.4: Full geometry and motion reconstruction computed from the single-view

scans shown in Figure 1.1.

Geometry and Motion Reconstruction. From a sequence of partial scans acquired

using a real-time 3D scanner, our goal is to reconstruct an animated sequence of a full

digital model with consistent parameterization across the entire recording as illustrated

in Figure 1.4. Since a full model can be easily obtained by a separate template building

step using static surface reconstruction, pairwise correspondences may be directly used

to track the template model. However, important geometric details that are hidden

due to occlusions but exposed at a different frame should be reconstructed as well.

Moreover, it is crucial to distinguish between static and dynamic details, since static

ones will be persistent in the shape without being affected by the deformation of the

object. We therefore consider both surface reconstruction and motion capture as a

single reconstruction problem. The algorithm should be sufficiently resistant to error

accumulations and robust enough to rely on observations from a single view where less

than half of the object’s surface is visible in each scan. In fact, most active optical

acquisition systems (e.g., structured light scanner) are designed to capture from a single

direction due to light interference issues.

9
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input scan free-view point videocompletion

Temporal-Coherent Shape Comple-

tion. Reconstructed meshes that are in

full correspondence have the advantage for

being ideal for editing operations through-

out the motion such as texturing, shape

editing, and deformation transfer. How-

ever, dynamic objects that involve topol-

ogy changes cannot be represented by a single static template. Consider the example

when a cloth is gliding on a human skin: two disconnected templates would be necessary

to faithfully represent the process.

To deal with complex topology changes and still obtain a sequence of complete,

watertight meshes, our goal consist of filling holes in occluded surface regions. Even

when the subject is fully surrounded by 3D sensors, large holes cannot be avoided due

to occlusions. Naively filling holes in each frame independently would however yield

strong flickering in the output as no temporal information is taken into account. Our

goal is therefore to develop a shape completion technique that is temporally coherent

while accurate correspondences have to be reliably established across incomplete scans

of topology changing subjects.

Figure 1.5: Accurate 3D facial expressions

can be transferred in real-time from an actor

(top) to a different face (bottom).

Real-time Facial Expression Track-

ing and Retargeting. Our findings on

non-rigid registration and dynamic shape

reconstruction will ensure direct impact in

the field of facial animation. The ability

to establish accurate correspondences be-

tween shapes helps to reliably track com-

plex facial expressions and automate the

process of building consistent parameteri-

zations across faces of different people. To

fully explore the potentials of our mark-

erless, real-time acquisition system, we propose to develop a complete framework for

real-time tracking of an actor specific facial model and expression retargeting to another

person’s face as illustrated in Figure 1.5. Facial tracking should be able to handle fast

and instantaneous expression changes and be sufficiently accurate to capture any sub-
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tle motion. We must also ensure that tracking remains robust for an indefinite length

of input scans and does not suffer from error accumulations. Eventually, both, high-

resolution facial tracking and expression transfer must be achieved in real-time to enable

live facial puppetry as an integrated system for real, practical applications.

Automatic Facial Rigging Based on Examples. Let us consider the problem of

how to manipulate reconstructed facial animations with intuitive expression controls.

The process of manually rigging a custom character is time consuming, especially when

we have realistic human expressions in mind. In film production, for instance, it is not

atypical to build several hundreds of controls to animate or fine-adjust the expressions

of a single digital face. Automatic facial rigging considers two objectives: equipping

an input facial model with semantically meaningful expression controls and personaliz-

ing the model through training. The latter should be scalable in the sense that very

few training samples (examples) would be sufficient to capture a person’s facial charac-

teristics. Figure 1.6 illustrates the influence of input examples on the generated facial

blendshapes. Because personalized expressions may now be triggered by a set of controls

(e.g., “move lower lip up”), we can simply transfer these semantic parameters to another

rigged character instead of entire deformations as done traditionally. In particular, the

generated rigs must be accurate enough to describe the “true” expressions of the target

person so that more convincing retargeting can be achieved as when source expressions

are being transferred. Furthermore, to allow intuitive editing of captured data, we also

require seamless integration of personalized rigs into our facial tracking framework.

training 
example

no 
training

with 
training

training 
example

no 
training

with 
training

whistleevil 
laugh

smile surprise

prior prior

Figure 1.6: Example-based facial rigging allows transferring expressions from a generic

prior to create a blendshape model of a virtual character. This blendshape model can

be successively fine-tuned toward the specific geometry and motion characteristics of the

character by providing more training data in the form of additional expression poses.
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1.2 Motivating Applications and Impact

In addition to computer graphics, the methods unearthed through this disserta-

tion have a wide range of applications and impact in other sciences and industries:

• Robotics. Computer vision systems of autonomous robots can benefit from faith-

ful 3D reconstructions of dynamic shapes for a more complete understanding of

scene events which may facilitate tasks such as interaction with humans. Addi-

tionally, our facial animation framework may support the development of lifelike

humanoid robots where biomechatronic systems can be directly trained with accu-

rately recorded human facial expressions.

• Communication. Compelling animated digital replicas of oneself provide new

means for telepresence and virtual collaboration. For example, a full 3D footage of

a virtual news correspondent who is stationed in a remote location can be directly

broadcasted to the studio and interviews be conducted as if the person was actually

there making the communication experience richer and more natural than conven-

tional 2D videoconferences. A quasi-real-time holographic system for telepresence

was recently introduced by Blanche and colleagues [BBV+10].

• Medicine. Physically accurate capture of human individuals in motion can aid

physicians with surgery planning, improved medical diagnosis, and enable the de-

sign of advanced prosthetics. In oncology, when cancer patients undergo radiation

therapies, the locations of pre-identified malignant tumors can be constantly up-

dated using our reconstructions for accurate treatment.

• Biology. Biologists will have a powerful new tool for studying animals and complex

ecosystems. For example, the shape and deformation of endangered animals can

be digitized to provide compelling archives if they become extinct. Also, statistical

analysis of humans can be used to explore shape changes as infants develop into

adults.

• Security. Law enforcement agencies can benefit from digitized individuals for

purposes such as criminal documentation: collecting motion biometrics for data-

mining and surveillance services. In particular, geometric signatures (e.g., scars,

tattoos, etc...) and motion patterns may help to identify suspicious persons.

12



CHAPTER 1. INTRODUCTION

• Film Production. Applications of our research carry over to feature film produc-

tions where real actors are being replaced by digital clones (c.f. Figure 1.7) and

their performances captured at very high resolution without involving any mark-

ers. In addition, accurate pre-visualization of facial animations can be achieved

with live feedbacks so that individual shots can be carefully planned before filming

begins.

© Paramount Pictures. All Rights Reserved.

motion capture

© Paramount Pictures. All Rights Reserved.

pre-visualization

animation previewshape capture

final rendering

Figure 1.7: In feature films, actors are often replaced by digital doubles for shots that

are impossible to realize. Capturing shape and motion from real actors is an impor-

tant process to recreate compelling animated characters. Pre-visualization is becoming

increasingly popular as an effective tool for planning and conceptualizing movie scenes.

1.3 Contributions

The principal contributions of this dissertation are:

• A non-rigid registration algorithm that automatically computes surface correspon-

dences and a warping field between two partial scans of a deforming subject.
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• A framework and algorithms for geometry and motion reconstruction of complex

deforming shapes captured from only a single view of a real-time 3D scanner.

• A temporal-coherent shape completion technique for dynamic shapes captured us-

ing a multi-view acquisition system.

• A full integrated framework for markerless, real-time facial tracking and expression

transfer to a different character’s face using a structured light scanner.

• A method that automatically generates a facial blendshape rig for an input face

model and personalizes them with user provided example expressions.

1.4 Organization

The remainder of this dissertation is organized as follows:

Chapter 2, Real-Time Data Capture Revisited. This chapter formalizes the no-

tion of shape and motion in a discrete setting and provides an extensive overview of state

of the art 3D acquisition techniques that are able to capture high-resolution scans of de-

forming subjects at “video” rates. We also describe several fundamental algorithms for

post-processing of scanned data. Real-time 3D scanning is the first step for recovering

high-quality shape and motion and provides the necessary input data for our animation

reconstruction algorithms.

Chapter 3, Registration of Deformable Surfaces. In order to determine the mo-

tion of surface points, correspondences need to be established between partial data cap-

tured between two frames. This is equivalent to bringing a pair of 3D scans into alignment

by warping one shape onto another. Non-rigid registration is a fundamental component

for all reconstruction and tracking algorithms presented in the chapters ahead. Before

introducing our novel registration algorithm, we begin this chapter with a comprehen-

sive introduction to the subject of rigid registration, surface deformation, and non-rigid

alignment.

Chapter 4, Dynamic Shape Reconstruction. This chapter covers a framework

that simultaneously reconstructs detailed shape and motion of deforming objects cap-

tured from a single view. A robust non-rigid registration algorithm based on space-time

adaptive deformation and techniques for effective detail propagation are presented here.
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To deal with inevitable occlusions in multi-view acquisitions, we also introduce a hole-

filling technique to obtain watertight temporally coherent meshes.

Chapter 5, Facial Animation Reconstruction. We introduce in this chapter a

complete system for markerless, real-time facial expression tracking with transfer to

the face of an arbitrary digital character. Efficiency is accomplished through a shift of

costly computation toward offline pre-preprocessing. Furthermore, various specialized

techniques for robust treatment of complex facial deformations are covered here.

Chapter 6, Directable Facial Animation. This chapter presents a scalable tech-

nique that automatically generates a personalized facial rig from a set of user provided

example expressions. These examples may be both handcrafted or 3D scans of real

actors. In particular, we demonstrate that the generated rig can be directly used for

art-directable facial tracking.

Chapter 7, Conclusion and Future Directions. We summarize this dissertation

with a few take-home messages and suggest ideas for future research.
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2
Real-Time Data Capture Revisited

animation reconstruction

dynamic shape
reconstruction

automatic
rigging

training

performance

In animation reconstruction, captured

dynamic data are the main driving force be-

hind the creation of compelling animated digi-

tal models. This chapter formalizes the notion

of shape and motion acquisition, and presents

several state of the art techniques for real-time

acquisition of deforming surfaces. Because of

hardware and algorithmic restrictions, scans are typically affected by noise and outliers.

To obtain clean input data, we will introduce several effective geometry post-processing

tools. The goal is to produce high-resolution input data with negligible artifacts for our

dynamic shape reconstruction stage (c.f., illustration on the right).

In general, we are interested in capturing the shape of a subject together with

its motion. Traditionally, the relevance of the two aspects may vary depending on the

nature of the problem. For example, when the purpose consists of cloning realistic digital

human faces, both geometry and motion need to be captured at very high resolution.

On the other hand, when retargeting the performance of an actor onto a different digital
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character, the actor’s geometry might not be required and sparsely captured motion

data is often sufficient (e.g., when skeleton rigs are used). Hence, depending on the

application, certain acquisition technologies may be more suitable than others.

Nevertheless, we argue that data acquired at high spatial and temporal resolution

can be pertinent for a wide range of purposes other than recreating dynamic digital

doubles. For instance, captured fine-scale deformations and second order dynamics (such

as muscle jiggling) may be resynthesized onto other characters or used to produce large

sets of dynamic shape priors for data-driven methods. The main advantage of using

high resolution captured data over alternative animation techniques such as physical

simulation or key-framing, is that realistic and complex surface dynamics come for free.

While recent advances in 3D scanning facilitate the acquisition of detailed dynamic

shapes, the motion is typically not given explicitly but can be robustly determined using

non-rigid registration which we describe in more detail in Chapter 3.

As noted in Chapter 1, we focus on 3D range sensors that are able to continuously

capture dense surface geometry at high frame rates. Although resolution and accuracy

are constantly improving with each generation of new optical devices, image sensors,

and scanning techniques, acquiring geometry remains an inverse problem and usually

relies on a set of assumptions about the scanned subject and the scene. For example,

stereo approaches generally require the shape of the subject to be locally continuous

(for effective stereo matching). Methods with active illuminations often assume the

surface reflectance to be close to Lambertian (i.e., free from specularities and non-linear

color distortions). Hence, the scans are generally still affected by high-frequency noise

and incomplete due to occlusions and non-cooperative surface materials. Even though

multiple sensors can be placed around the subject to increase coverage, obtaining a

hole-free mesh is generally not possible. Moreover, for interactive applications (e.g., live

facial puppetry presented in Chapter 5), not only must the recording be in real-time,

but a dense range map also has to be delivered instantly. In particular, passive stereo

matching algorithms that involve costly off-line computations cannot be used in this

scenario. Active illumination techniques such as structured light projection simplify the

matching problem by changing the scene with a known signal. While these systems are

able to generate a continuous stream of high-quality scans in real-time, they usually

produce a strong distracting light and are often unsuitable for a multi-view setup due to

light-interference.
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Starting with Section 2.1, we formalize the concept of shape and motion, and

describe acquisition as a mapping from a continuous to a discrete setting. Section 2.2

summarizes the most important acquisition techniques that are relevant in our animation

reconstruction setting, namely 3D scanning with high spatial and temporal resolution.

We compare these different approaches and discuss their advantages and disadvantages

for different scenarios. Section 2.3 and 2.4 give a more detailed look into the two 3D

scanners used in this work. After acquisition, we obtain a discretized 3D representation

of dynamic shapes which are usually affected by noise and outliers. Section 2.5 presents

basic tools for effective representation and post-processing of these data, such as outlier

removal, Laplacian smoothing, and isotropic remeshing.

2.1 Formalizing Shape, Motion, and Acquisition

This section introduces a formal specification of our input data and their proper-

ties. We start by describing the notion of shape, motion, and temporal correspondences

of the scanned subject using concepts from differential geometry. During acquisition,

only exterior surfaces are observable. Hence, we dedicate a section discussing topology

changes for these surfaces. While real-world performances take place in a continuous set-

ting, our captured depth maps are discretized as well as incomplete and noisy. Here, we

illustrate how real-time 3D sensors sample the dynamic surface and how temporal corre-

spondences are lost during acquisition. In particular, we will define overlapping regions

between scans of deforming objects which will play a central role for correspondence

computation and non-rigid registration.

2.1.1 Scanned Subject

Shape and Motion. We describe the shape of a dynamic object as an orientable time-

varying two-manifold surface M(t) ⊆ R3 possibly with boundaries and t as the time axis

(c.f., Figure 2.1). In particular, spatial local parameterization u ∈ U ⊆ R2 exists at any

instance in time around each point p(u, t) (c.f., DoCarmo [dC76] and Lee [Lee00]).

Later on, we will discover that the notion of local parameterization will play a central

role for surface processing algorithms which rely on the existence of tangent planes and

(infinitesimal) local geodesic neighborhoods, and also for optimizations that are based on

continuous surface representations. When the subject deforms, the position of a surface

point p(t) ∈M(t) describes a continuous trajectory in the space-time domain. Each time

curve p(t) characterizes a global continuous motion of a surface point. In particular, we
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tt1 t2

p(t1)

p(t2)

u

v

u(t1)

dynamic subject

parameterization

correspondence

Φt1→t2deformation

M(t1) M(t2)

Figure 2.1: We represent the dynamic shape of a deforming object as a two-manifold

embedded in a space-time continuum. Every surface point and its local neighborhood

can be mapped from a parametric domain in R2 and has a corresponding point at any

instance in time. The continuous mapping between both shapes is called deformation.

assume p(t) to be a C∞ curve, but it is not regular as stationary surface points have

vanishing derivatives. We call p(t1) and p(t2) pairwise temporal correspondences between

two time instances t1 and t2. In the most general sense, we define the surjective and

continuous mapping Φt1→t2 :M(t1)→M(t2) as the deformation (or warping) of M(t)

from t1 to t2 where Φt1→t2(p(t1)) = p(t2). In animation reconstruction neither temporal

correspondences nor the deformations are known in advance.

M(t)

∂extM(t)

Topology. While M(t) can be of arbitrary genus

G, we only consider surfaces of solid matter where G
remains constant through time (as opposed to liquid

state objects for instance). Although most real objects

may be represented by multiple two-manifolds that are

homeomorphic to disjoint sets in parametric domains,

recovering these separate manifolds is non-trivial. Con-
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sider the example when two finger tips are touching: while in reality the handM(t) would

have a genus G = 0, the only genus that can be deduced from an observable exterior

surface ∂extM(t) is G = 1. In addition, observations are typically incomplete due to

occlusions which makes it even harder to extract the correct number of disconnected

objects and their topologies. To simplify the problem, we typically consider any subject

as a single connected manifold with predefined topologies (e.g., Section 4.2) which we

will refer later as the template T (t). Many objects however may consist of multiple

disconnected surfaces and cannot be represented by a single connected manifold (e.g.,

gliding surface sheets on human skin). To model these shapes, we will propose a tech-

nique in Section 4.3 that skips the requirement of using a prior template and facilitates

modeling with a single connected manifold surface by allowing the shape to change its

topology over time. In particular, we assume the subject to be simply represented by

its exterior points where p(t) ∈ ∂extM(t). In this case, surface points might not have

temporal correspondences at certain time frames. In this case, the points that lie in the

inside mouth region for example (c.f., Figure 2.1) would disappear when the mouth is

closed.

2.1.2 Captured Data

Incomplete Scans. Ideally we would like to capture the entire manifold surfaceM(t)

at any time instance t, i.e., recovering all temporal correspondences and deformations.

Unfortunately, the continuous shape representation gets partly lost during the optical ac-

quisition process. In general, only a non-occluded subset of the exterior surface ∂extM(t)

can be acquired. We consider the subset S(t) ⊆ ∂extM(t) as the scanned manifold sur-

face visible to the sensors at time t. The amount of surface regions that can be captured

also depends on the underlying scanning technology. For example, multi-view stereo

approaches can only capture shapes that have sufficient surface albedo and are simulta-

neously visible in at least two pairs of sensors. When the scene is illuminated, shadows

created by light sources also need to be taken into account. An extensive discussion of

visibility issues and scan configurations for optical scanners can be found in Li [Li05]

and Curless [Cur97]. We measure surface area of S(t) by integrating the length of the

normal of each point s(u, t) ∈ S(t) over the scan parameterization region US :

A(S(t)) =

∫ ∫

US
‖su(u, t)× sv(u, t)‖2 du dv (2.1)

with su(u, t) and su(u, t) the partial derivatives in u and v directions respectively.
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Figure 2.2: While the subject deforms, a 3D sensor captures the exterior surface

∂extM(t) and produces depth samples on the image plane. The resulting scans are

typically surface samples s(t) that are incomplete due to occlusions and low surface

albedo. Furthermore, the discretized depth samples are usually affected by quantization

errors, noise, and outliers.

Spatial Discretization. We now describe how a continuous scan S(t) becomes dis-

crete after acquisition. W.l.o.g., we consider a single-view acquisition setup which ob-

serves a sequence of continuous depth maps fs : R2 × R → R of a deforming subject

in real-time. In particular, fs(u, t) is the depth measured at time t and position u

on the image plane. For unobserved surface samples we set fs(u, t) = ∞. Note that

S(t) = {fs(t) : R2 → R \ {∞}}. Because digital sensors have finite resolutions, the

actual captured depth map is a discretized two-dimensional sampling f td : R2 → R with

step size lu and lv in u and v-direction respectively. We obtain:

f td(u) = fs(u, t)

Nu∑

m=0

Nv∑

n=0

δ(u−mlu, v − nlv) (2.2)

with δ(u) a two-dimensional impulse function and (Nu − 1)× (Nv − 1) the image reso-

lution. Hence, in order to capture the full geometric details of a continuous shape S(t)

the sampling frequencies νu = 1
lu

and νv = 1
lv

must be at least twice as large as the hor-

izontal and vertical frequencies of fs(t)—satisfying the Nyquist criterion. When higher

frequency details are present, the captured depth map f td(u) may exhibit artifacts be-
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cause of aliasing and quantization noise. Aliasing can be suppressed by low-pass filtering

the discretized shape (c.f., Section 2.5). Note that for most scanning systems based on

image sensors (CCD or CMOS), each light detector captures more than the intensity of

a single point i(s(t)) because of diffraction, lens aberration, and inaccurate focussing.

While this side-effect results in a slight deviation from an ideal-sampling, we obtain a

natural low-pass filtering which is characterized by the so called point spread function of

an optical system.

While the two-manifold surface of a depth map captured from a single view

describes a discrete graph s(u) = [u, f td(u)]> ∈ R3, the integration of 2.5D shapes

obtained from multiple views at time t becomes a dense point cloud of surface samples

si(t) ∈ S(t) as illustrated in Figure 2.2 with i = (1, . . . , N). When concatenating point

samples obtained from multiple views, overlapping regions will have a denser sampling

and thus capture more details. The sampling density in those regions is no longer

measured by uv -step sizes but the average distance to point samples lying in the one-

ring neighborhood (in case connectivity is given as for meshes) or k-nearest neighbors

for point clouds (c.f. Section 2.5). Note that we can also compute a parameterization

for {si(t)}i as long as it remains a two-manifold surface [HLS07].

Temporal Discretization. Analogous to the spatial domain, we discretize the cap-

tured range map over time t as follows:

fd(u, t) = fs(u, t)

Nt∑

k=0

Nu∑

m=0

Nv∑

n=0

δ(u−mlu, v −mlv, t− klt) (2.3)

with Nt the length of the recording and νt = 1
lt

the frame rate. In a real-time setting

we typically assume νt > 25 Hz. Note that for a sample point si(t1) = p(t1) observed

at t1 it generally holds that si(t2) 6= p(t2) as both points might not correspond. Hence,

the motion of a surface sample si(t1) can only be determined if a sj(t2) exists such that

sj(t2) = p(t2). Because of possible topological changes in ∂extM(t), such a correspond-

ing point sj(t2) might not even exist. Hence, the subset of S(t1) that guarantees valid

existing corresponding points sj(t2) is defined as:

S∃t2(t1) = { si(t1) | si(t1) ∈ S(t1) ∧ Φt1→t2(si(t1)) ∈ ∂extM(t2) } . (2.4)

Furthermore, we define the overlapping region St1∩t2 at time t1 between both scans S(t1)

and S(t2) as follows:

St1∩t2(t1) = {si(t1) | si(t1) ∈ S(t1) ∧ Φt1→t2(si(t1)) ∈ S(t2) } ⊆ S(t1) . (2.5)
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Within this region, one-to-one surface correspondences exist between S(t1) and S(t2) and

Φt1→t2 : S(t1)→ S(t2) is surjective as multiple source points can be warped to the same

position. Therefore, it follows that Φt1→t2(St1∩t2(t1)) = St1∩t2(t2) and Φ−1
t1→t2(p(t2)) =

Φt2→t1(p(t2)).

Correspondence Problem. We may now define a pairwise correspondence problem

between S(t1) and S(t2) as the task of determining a one-to-one assignment for all

samples si(t1) = pi(t1) ∈ St1∩t2(t1) where i = 1, . . . , N to the closest sample sj(t2).

Note that St1∩t2(t1) is generally not known in advance and needs to be determined as

part of the pairwise correspondence computation. In Chapter 3, we will present pairwise

non-rigid registration algorithms which, in addition to solving pairwise correspondences,

compute all deformations Φt1→t2(si(t1)) for i =, . . . , N , provided si(t1) ∈ S∃t2(t1).

Captured Shape and Motion. Suppose we successfully compute non-rigid registra-

tion for time t1. We obtain an accumulated shape represented by the samples {si(t1)}i∪
{Φt2→t1(sj(t2))}j . Motion can be represented by a dense motion displacement field

{ds(t1)} with time step dt ≈ t2 − t1. For each original samples si(t1) we obtain an

instantaneous 3D velocity vector

dsi(t1)

dt
≈ Φt1→t2(si(t1))− si(t1)

t2 − t1
(2.6)

and for the accumulated ones Φt2→t1(sj(t2)), velocity is given by

dsj(t1)

dt
≈ sj(t2)− Φt2→t1(sj(t2))

t2 − t1
. (2.7)

When the subject undergoes a globally rigid motion we may express Φt2→t1 as a simple

Euclidean transformation Φrigid with rotation matrix R ∈ SO(3) and translation vector

t ∈ R3. Hence, for all i = 1, . . . , N :

Φrigid(si(t1)) = R si(t1) + t . (2.8)

In particular, we may consider a global velocity field that is decomposed into a rotational

and a translational component. Let us suppose that sj(t2) = Φrigid(si(t1)). The instanta-

neous velocity vector field of a rigid motion follows immediately from Equation 2.8 and

is linear (c.f. [Bot79]):

dsi(t1)

dt
≈ dsj(t2)

dt
=

dR

dt
si(t1) +

dt

dt
= w × si(t1) +

dt

dt
(2.9)

with w the angular velocity tensor and dt
dt

the translational velocity.
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Noise and Outliers. All stages in an optical 3D acquisition pipeline (from hardware

calibration, scan configuration, scene geometry, surface properties, optical device, imag-

ing sensor to scanning algorithm) can lead to measurement inaccuracies and produce

noise and outliers in the scans S(t).

In a real-time setting, where the subject is moving, the problem of noise becomes

even more prominent as a full scan has to be accomplished within milliseconds. In addi-

tion to imaging problems (e.g., short exposure, motion blur. . . ), scanning methods that

require multiple shots can only use limited frames and have to deal with deformations

of the subject in the acquisitions.

Depending on the scanning technique the amount and distribution of noise can

vary. As described in [HLP93], noise is often being modeled as an ellipsoidal distribution

function with principal axis in the direction of the sensor’s reference viewpoint. Outliers

may also be modeled as samples which uncertainty ellipse does not intersect with the ray

of sight. Consequently, we can incorporate measurement inaccuracies in the definition

of captured depth map as follows:

f̂d(u, t) = fd(u, t) + εn(u, t) + εo(u, t+ εs(u, t) (2.10)

where εn(u, t) and εo(u, t) are noise and outlier functions respectively. In many ac-

quisition system we might observe an additional structured noise term εs(u, t) that

correlates over space and time. For example, scans produced by phase-shift meth-

ods [HZ06, ZH04, WLG07] typically exhibit unwanted vertical lines that remain over

several frames for fast motions in z-direction (temporal aliasing). While it might be

reasonable to assume εn(u, t) to be normal distributed (Gaussian noise), modeling the

statistical occurrence of εo(u, t) is not straightforward and highly depends on the acqui-

sition method. For the remaining of this dissertation, we assume that surface samples

captured from a single-view are discretized as f̂d(u, t).

2.2 Dynamic Shape Acquisition Techniques

With our formal specification of shape, motion, and acquisition, we now explore

different methodologies for real-time 3D capture. For an extensive survey on static

scanning, we refer the reader to the following literature [Rus01, Cur97, SS01, Li05,

SCD+06b]. The focus herein is on the real-time aspect and we propose a taxonomy

that mainly distinguishes between marker-based and markerless methods as illustrated

in Figure 2.3. For most techniques geometry is obtained through optical triangulation or
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time-of-flight. In general, tracking is either performed in 3D after geometry acquisition

or on each 2D sensor independently.

real-time 
data capture

marker-based markerless

sparse dense active
illumination passive

Figure 2.3: A taxonomy for real-time data capture. The aim is to facilitate shape

and motion acquisition. Our work focuses on input scan sequences obtained from active

illumination techniques.

For marker-based approaches, shape and motion are recovered by either placing

landmarks on the subject or by manipulating surface properties other than geometry

(typically texture). The advantage is that motion is immediately deduced by tracking

the markers. Three-dimensional positions of the markers are typically obtained through

optical triangulation but other techniques exist (e.g., inertial sensors). Because the

subject is augmented with easily detectable tracking features, marker-based approaches

are independent of surface textures and less susceptible too poor illumination conditions.

Consequently, they are still widely accepted as the method of choice for pure motion

capture purposes due to their robustness and accuracy. Nevertheless, using markers

is unsuitable for simultaneous acquisition of dynamic shape and its original texture.

Moreover, they typically involve expensive studio equipments and a time-consuming set

up process (marker-calibration, applying make-up. . . ). While technologies using sparse

markers have limited geometry resolution, state-of-the-art dense marker based techniques

can produce highly compelling results but are less reliable.

Markerless acquisition systems are divided into active and passive approaches. In

both cases, real-time data capture can be described as in Section 2.1.2. Active techniques

facilitate geometry acquisition by controlling illumination in a scene. Although shape is

being continuously captured, no explicit correspondence information is available. Dense

motion is typically recovered using non-rigid registration between consecutive 3D scans,

26



CHAPTER 2. REAL-TIME DATA CAPTURE REVISITED

and/or by tracking features from the image recording. Passive acquisition methods are

the least restrictive in the sense that no special light emission device is required and

the subject does not need to wear markers. Another characteristic is that a single

shot is usually sufficient for acquisition. Hence, passive methods are inherently suitable

for multi-view and dynamic shape acquisition (provided exposure is sufficiently short).

However, they are often less accurate and robust than active methods as they typically

rely on the texture quality of the subject and lighting conditions. For example, the

geometry of a diffuse lit surface that does not have any textures cannot be resolved.

Most sophisticated passive methods (with global matching and occlusion handling) are

also unable to produce high-resolution scene geometry in real-time as they generally

involve prohibitively high computational costs [BBH03].

Regardless of versatility and cost, we are mainly interested in systems that are

able to deliver high-resolution input scans (possibly textured) with minimal noise and

outliers. In addition, we wish to process long 3D scan sequences that, in some cases, need

to be produced in real-time. Less reliable technologies that require time-consuming man-

ual data clean-up are therefore not suitable. Currently, the only techniques that satisfy

all our requirements are markerless approaches based on active illumination. Neverthe-

less, recent progress in stereo algorithms [BBB+10, BHPS10] are likely to unleash the

potential of passive systems as future game-changers.

Sparse Marker. Motion capture systems that track a sparse set of markers are char-

acterized by their exceptional robustness and accuracy. The idea is to facilitate tracking

by placing a set of markers mi(t) with i = 1, . . . , Nm that maximizes invariance to the

subject’s texture and scene illumination. As opposed to markerless approaches, corre-

spondences between mi(t1) and mi(t2) are easier to establish. Moreover, they usually

employ sensors with very fast update rates resulting in highly accurate approximation

of instantaneous velocity

dmi(t1)

d(t)
≈ mi(t2)−mi(t1)

t2 − t1
.

In the past two decades, several motion capture technologies have been proposed.

An exhaustive survey of the most important techniques can be found in [MAB92, HB01,

WF02].

Marker-based systems that use optical sensors [Wol74] achieve sub-millimeter ac-

curacy but can only be detected if the markers are not (self-) occluded, i.e., if mi(t) ∈
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image
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mi(t1)

mi(t2)

Figure 2.4: Dynamic data acquisition using sparse markers and optical sensors. Several

non-optical motion capture systems do not lose track of correspondences but are less

accurate than optical ones.

S(t). The precise positions of visible mi(t) are typically computed through optical tri-

angulation using images recorded from multiple views. Because of indistinguishable

markers and occlusions, initial 3D positions reconstruction is often aided by a skele-

ton model and a rigid link assumption. To capture the motion, frame-to-frame marker

correspondences can be either based on tracking or identification, depending on the

technology. Markers ranging from painted dots [Wil90, cLO05] to passive retroreflective

markers [Vic] and active light-emitting diodes (LEDs) may use high-speed acquisitions

(several hundreds frames per second) and/or motion constraints (e.g., underlying skele-

ton) to disambiguate between identical looking markers. These methods are based on

tracking and thus, “marker swapping” cannot be fully avoided. Markers are often used

to extract skeletal motion. However, when several hundreds of markers are tracked, a

rough geometry of the surface can be extracted together with highly accurate dynamics

as demonstrated by Park and Hodgins [PH06]. In addition to being beneficial for long

range acquisitions, active markers such as LEDs can be time modulated [Pha] in order to

emit a unique signal to resolve the correspondence problem via identification. However,

only limited number of LEDs can be uniquely identified and attaching them on certain

surfaces can be difficult (e.g., faces, cloth. . . ).
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Non-optical marker-based systems such as inertial, magnetic, or acoustic systems

are not restricted by marker visibility issues. In particular, the markers mi(t)s are fully

visible anywhere on Mi(t) for any t. However, the main issue with these systems is

the lack of precision. Inertial motion capture systems use gyroscopes or accelerometers

to measure rotation on articulated joint angles from previous frames without direct 3D

position computation [MJKM04]. As a result, measurements accumulate errors over

extended time periods. Marker-based techniques based on magnetic systems [Asc] cal-

culate position and orientation by relative magnetic flux on a transmitter and receiver.

The accuracy of these systems is highly sensitive to the presence of metallic materials.

Acoustic systems determine range using time-of-flight of an ultra-sonic signal [WJH97].

Nevertheless, pulses emitted by ultrasonic beacons are susceptible to deflections due to

obstacles resulting again in lost of accuracy.

Dense Markers. We speak of dense markers, when carefully designed geometry inde-

pendent properties such as surface textures are densely applied on the subject’s surface to

improve shape reconstruction and motion tracking. So far, only optical acquisition sys-

tems are used in connection with dense markers. Hence, they also suffer from occlusions

but are generally less susceptible to low surface albedo than markerless methods. White

and coworkers [WCF07] capture the shape of complex deforming cloth using custom

color patterns directly printed on the cloth. The texture consists of densely tessellated

triangles with random colors that maximize entropy per captured pixel. Using a cus-

tom texture with markers that are easy to distinguish facilitates optical triangulation

as correspondences between multiple views can be determined with a known reference

parametric domain.

In practice, these type of patterns are unsuitable for surfaces such as human

skin. Several examples in Furukawa and Ponce [FP08, FP09a] adapted the idea of using

“unstructured” stipple make-up, pioneered by Mova LLC [Mov], that are applied on

faces. The method consist of exploiting high-frequency noise for more reliable multi-view

stereo matching (dense shape reconstruction) and temporal correspondences (detailed

motion recovery). Their approach captures shape and motion in three-steps. First,

a multi-view stereo algorithm is used to reconstruct high-resolution input scans. The

second stage uses a rigid motion model to locally align a large set of small surface patches

with the scan of the next frame. Because erroneous motion estimates are likely to occur,

the final step regularizes the overall deformation using a global non-rigid deformation
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model. Due to the greedy nature of their inter-frame correspondences, the approach

highly depends on the photo-consistency of local surface patches textures.

While these methods are highly reliable and accurate for capturing realistic de-

formations, simultaneous capture of dynamic shape and the subject’s original texture

is difficult if the pattern obstructs with the latter. To address this problem, Mova

LLC [Mov] proposes a real-time acquisition system that applies fluorescent make-up on

an actor’s face (or cloth). The random patterns are only visible under fluorescent light

(see illustration). The capture process consists of rapidly switching between pure UV-

light and illumination in the visible spectrum. In this way, both problems, tracking and

reconstruction, are facilitated while simultaneous capture of skin texture is possible.

The input data captured with dense marker-based systems are suitable for most

of our animation reconstruction algorithms. Because shape acquisition is typically based

on techniques used for passive markerless acquisition (enriched with evenly distributed

dense texture features), they also involve a time-consuming off-line reconstruction pro-

cess for high-resolution data and are not yet suited for interactive applications on com-

modity hardware. Nevertheless, due to the rapid growth of (consumer-level) graphics

accelerators, it is likely that real-time performance is achievable in the near future.

Active Illumination. Active optical acquisitions are markerless and use controlled

illuminations for geometry capture without (fully) relying on surface texture. Surface

motion is typically recovered by first sampling the shape of each frame (i.e., determin-

ing {si(t)}i), followed by non-rigid registration between consecutive shapes yielding the

velocity vectors dsi(t)/dt as described in Equation 2.6 and 2.7. Different methodologies

are used to determine the range. As opposed to static acquisition, sufficient information

must be captured within a very short time (usually t2 − t1 ≤ 40 ms) to reconstruct

all samples covering S(t). Fast multiple shots techniques can also be used for real-time

acquisition, but usually use very few frames for reconstruction and assume that motion

within the frames are negligible. The most established avenues to compute continuous

high-resolution depth maps are either based on optical triangulation, shape from shading,

or time-of-flight, or combinations thereof.

Optical triangulation techniques sample the subject’s geometry by intersecting

rays of corresponding points between two cameras or between a camera and a light

emitted as depicted in Figure 2.5. While the principles of camera-to-camera triangu-

lation are the same as in passive acquisition, active-stereo techniques [SS01, DRR03,
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Figure 2.5: Camera-to-projector triangulation. When stripe patterns are projected as

with phase-shift, a surface sample si is obtained by simple ray-plane intersection.

ZSCS04, Art, Kin] enrich the scene with the projection of detailed textures (often ran-

dom noise) to facilitate stereo matching. The projected patterns are also called unstruc-

tured light. Real-time camera-to-projector triangulation techniques typically project a

set of carefully designed stripes on the subject where 3D positions on captured stripes

can be easily obtained by ray-plane intersection. As opposed to active-stereo meth-

ods, correspondences are determined between a known projected pattern and a camera

(structured light techniques) which in many cases can be computationally more effi-

cient [RHHL02, ZCS02, LSP06]. However, matching becomes ineffective for subjects with

unknown and highly non-linear surface reflectance properties. Due to the limited resolu-

tion of projected patterns, a common technique (three-phase shifting) consists of project-

ing at least three sine wave modulated at different phases in order to resolve higher res-

olution subpixel accurate correspondences through phase unwrapping [HZ06]. The main

disadvantage of solely relying on this method is that large depth discontinuities in the

subject can yield outliers due to wrong correspondences. As shown in [ZH04, WLG07],

phase unwrapping can be combined with active stereo, yielding accurate high-resolution

shape reconstructions in real-time. Because of limited depth of field and diminishing

light-levels with increasing distances, the working volumes of projector-camera systems

are often limited to 1 m3, hence not suitable for full-body performances. Moreover, be-

cause of possible light interferences, structured light scanners are not always suitable

for acquisitions with many view-points. Nevertheless, we demonstrate in this work how

single-view reconstruction of geometry and motion is possible using the low-cost struc-

tured light system of Weise and coworkers [WLG07]. Although surface textures can be

31



CHAPTER 2. REAL-TIME DATA CAPTURE REVISITED

captured simultaneously, a strong distracting light needs to be projected in the scene,

making those systems not always favorable for practical performance capture. Recent

developments in high-speed IR emitters have enabled high-quality structured light ac-

quisition with imperceptible light. Several systems such as the LogicDP projectors [Log]

or Microsoft’s Kinect 3D camera are readily available for the consumer market.

Another active range measuring technology that uses light invisible to the human

visual spectrum are time-of-flight cameras [LSBS99, MES] . These cameras use LEDs to

send a near IR light pulse to the subject and calculate the traveled distance by measuring

the time difference between pulse emission and reception. Moreover, multiple time-of-

flight sensors that are modulated at different frequencies can operate simultaneously.

Although current systems lack in accuracy and resolution (320× 240) due to their weak

signal in the presence of background illumination, methods that use multiple slightly

displaced shots were introduced to reduce noise and achieve super-resolution [STDT08].

The quality of scans produced by current time-of-flight scanners are still much infe-

rior to those captured with active optical triangulation techniques, but we expect their

resolution and accuracy to improve in the near future.

© Paramount Pictures. All Rights Reserved.

photometric acquisition normal map reconstruction

Figure 2.6: Photometric stereo estimates surface normals of an object observed under

different lighting conditions. High-resolution reconstructions (down to the pore level)

can be reliably obtained as shown on the right.

Photometric stereo techniques [Woo89] use light sources emitted from different

directions to estimate surface normals. Assuming Lambertian surface, dense local surface

orientations can be reliably determined by solving a simple linear system (c.f. Figure 2.6).
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Surface shape can then be obtained using normal integration by adding depth constraints

(e.g., on the occlusion boundaries [HVB+07]). Another approach consists of solving an

linear optimization problem that uses soft constraints from an initial geometric prior

such as the visual hull [VPB+09] or structure from motion [ZCHS03]. A survey on pho-

tometric stereo has been recently conducted by Barsky and coworkers [BP03]. While

extremely high-frequency details such as pores can be reliably recovered, low frequency

geometry is typically biased and inaccurate. For this reason, a more accurate but lower

resolution geometry is often reconstructed separately [MHP+07, MJC+08, LLV+10] and

then augmented with dense normal maps using the method proposed by Nehab and col-

leagues [NRDR05]. For fast acquisition, Hernandez and colleagues [HVB+07] propose

a one-shot technique that simultaneously emits colored lights from different positions.

However only surfaces with uniform albedo can be recovered. The Light Stage acquisi-

tion system described in [MJC+08, CEJ+06, VPB+09] uses synchronized and fast time-

multiplexed lighting as well as high-speed cameras for recording. To our knowledge this

is currently the only practical solution for real-time acquisition based on shape from

shading. The advantages of such systems is the ability to capture high-resolution dy-

namic shapes from multiple views with a large working volume. As shown in [MHP+07],

geometry acquired using normal maps can have superior surface details than laser scans.

This dissertation will present a technique for multi-view shape completion of dynamic

shapes from data captured using the technique presented in [VPB+09].

Passive Acquisition. Depth measurements with passive acquisition techniques are

mostly based on (multi-view) stereo approaches. Similar to active stereo techniques, op-

tical triangulation determines 3D positions of surface samples by finding corresponding

points on two or more 2D images. The only difference is that no controlled illumina-

tion is used to promote correspondence finding. Correspondence computation for each

pixel of a reference camera is typically reduced to a 1D search problem by exploiting

epipolar geometry. Since a surface sample and its projection on two camera sensors

are on a same plane (epipolar plane), the correspondence of each observed pixel lies

on its conjugate epipolar lines. Epipolar lines can be easily determined once extrinsic

and intrinsic camera parameters are computed (e.g., with an automatic calibration pro-

cess [Tsa92, HS97, FP09b, Bou08]). Nonetheless, it generally holds that search becomes

more difficult when a wide baseline between cameras is used. On the other hand, using

a too small baseline decreases accuracy.
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Figure 2.7: Passive stereo acquisition of dynamic shapes.

Because of possible suboptimal surface textures (e.g., homogeneous regions) and

illumination conditions, determining correspondences is the most difficult element in

passive stereo acquisition. A comprehensive overview of stereo matching algorithms can

be found in [SS01, BBH03] (binocular stereo) and [SCD+06b] (multi-view stereo). After

roughly three decades of research in stereo algorithms, we have witnessed a shift from

pure local matching techniques to global optimization frameworks that are particularly

effective in extracting continuous surfaces and handling occlusions. Some of the most

popular approaches model the disparity map as a Markov Random Field (MRF) and use

inference algorithms such as Graph Cuts [RC98, BVZ01, KZ02, FP10] or Belief Propaga-

tion [YFW03, SySnZ03, KSK06] to extract an optimal set of connected surfaces. A nice

evaluation between both optimization techniques is given in [TF03]. Generally, passive

acquisition methods are known to be less reliable and accurate than active techniques.

Furthermore, many parameters need to be manually specified for optimal reconstruction

which can result in long turn around times for parameter tuning. For certain scenar-

ios however (such as facial reconstruction), some recent work have demonstrated that

skin pores can be effectively used for stereo matching and generate results with ac-

curacies comparable to those obtained from structured light scanners [BBB+10]. The

requirements are very bright and diffuse lighting conditions as well as high-definition

recordings [BBB+10, BPS+08]. In addition, band-pass filtered high-frequency details

(mesoscopic structures) can be synthesized on top of the (multi-view) reconstruction for

more compelling visual quality as demonstrated in Beeler and colleagues [BBB+10].
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Because passive methods are one-shot techniques, they can be directly used for

real-time dynamic capture [BPS+08, BPS+08, Ima] using at least two video cameras for

recording. Some of the early work on 3D motion recovery from passive stereo systems

involve rather naive local scene flow estimations [CK01, LS08, NA02, VBK05, KF06].

These methods independently track a densely sampled set of local surface patches across

input frames using geometry and texture information. As opposed to registration algo-

rithms for deformable surfaces, global constraints such as spatio-temporal consistency

are not fully exploited. As a result, pure scene flow computation algorithms are lim-

ited to slowly deforming subjects with minimal occlusions, and are highly sensitive to

error accumulations. Analogous to dense-marker based systems or active acquisition

methods, surface motion can be recovered using non-rigid surface registration algo-

rithms when high-quality 3D scan sequences can be reconstructed. For colored scans,

texture-based tracking [BBPW04, BTVG08] that exploits local photo-consistency can

be employed to promote tracking accuracy and robustness along surface tangents [FP08,

FP09a, BPS+08, LLV+10]. The passive facial tracking system developed by Bradley

and coworkers [BPS+08] for example exploits skin pores for optical-flow based track-

ing [HS81, BBPW04].

While most previous work on non-rigid registration relies on the quality of tracked

features (geometry and/or texture based), we argue in Chapter 3 that a coupled opti-

mization between surface deformation and 3D correspondences can effectively resolve for

this dependency. While texture based constraints can be easily incorporated [LLV+10]

(for input data with rich texture information), pure geometric correspondences can be

robustly determined even for large deformations and occlusions. Our key insight is that

correspondence search that incorporates global deformation constraints achieves a very

large funnel of attraction for the minimization problem.

2.3 Single-View Structured Light Scanning

projector monochrome cameras

color cameras

Our first source of input data is

obtained from the stereo phase-shift struc-

tured light scanner developed by Weise an

coworkers [WLG07] and is used through-

out this work. The system combines the

robustness of active stereo techniques and

the accuracy of structured light techniques
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with phase-shift patterns. Dense 3D scan sequences with textures (640 × 480 pixes)

are produced at 30 fps from a single view-point. The capture volume is approximately

40×30×60cm3 which makes it suitable for facial performance capture and reconstruction

of small dynamic objects. Depending on the subject, each scan has approximately 100 K

vertices and achieves sub-millimeter accuracy when the subject is not moving. While ac-

quisition works under normal lighting conditions, the brightness of the projected pattern

needs to be sufficiently high.

The real-time 3D scanner uses off-the-shelf components and consists of a standard

DLP projector (120Hz), two high-speed monochrome cameras (200fps) and color camera

for texture recording. To fully exploit projection speed, the 4-segment RGBW color

wheel of the projector has been removed—achieving effectively 360Hz (W channel is only

used to increase brightness). Consequently, each RGB channel can be used to project

individual temporal patterns. The third color camera operates at longer exposure to

capture textures free from sine patterns.

phase-shift
artifacts

motion
compensation

motion in
z-direction

estimated
motion

bad phase estimation
The structured light scanner se-

quentially projects three phase-shifted

sinusoidal pattern which are used to

uniquely determine the phase for each ob-

served pixel. However, we need corre-

spondences between projector and cam-

era instead of phases for optical triangula-

tion. When Nphase number of phases are

being projected, an observed pixel may

correspond to Nphase different possible po-

sitions (period) on the projector image

plane. Hence the system uses a second

monochrome camera to solve for the opti-

mal period using stereo matching between

two cameras (phase unwrapping). The proposed stereo correspondence technique per-

forms a two step-algorithm. First, a greedy sum-of-squared-differences (SSD) matching

is performed for each pixel (Nphase possibilities per correspondence). Due to mismatches,

many discontinuities and holes appear in the temporary disparity map. The second step

consist of maximizing local surface continuity which is equivalent to a labeling problem
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(each surface segment being a label). Loopy Belief Propagation as described in [KSK06] is

used for this optimization followed by a left-right consistency check of the disparity maps.

An inherent problem of phase-shift techniques is that for fast motions in z-direction leads

to aliasing artifacts (unwanted vertical line structures). A simultaneous estimation of

surface motion compensates for these distortions as described in [WLG07].

The main advantage of single-view 3D scanners is the simplicity of the acquisition

setup, requiring no calibration or synchronization of multiple sensing units. However,

single-view reconstruction of dynamic shapes is particularly challenging, since every scan

covers a small section of the object’s surface. Our non-rigid registration algorithm in

Chapter 3 and dynamic shape reconstruction framework in Chapter 4 are designed to

deal with single-view data. To produce 3D point clouds in real-time, most of the compu-

tations run on graphics processing units (GPU ) except for the Loopy Belief Propagation

optimization.

2.4 Multi-View Photometric Stereo

In Section 4.3, we propose a shape

completion algorithm that processes high-

resolution scan sequences of full body per-

formances captured from multiple views.

We consider input data that emanate from

the Lightstage 6 acquisition system (orig-

inally proposed in [CEJ+06]) where high-

resolution dynamic shapes are reconstructed

using the photometric stereo method from

Vlasic and colleagues [VPB+09]. In addition to detailed scans that are captured at

60 Hz from a 360 ◦ surrounding, the system delivers surface textures and orientations

(normal maps) at 1024×1024 resolution captured from 8 high speed cameras. To enable

photometric stereo, 901 uniformly-spaced light sources are placed on the top two-third

of an 8 m tall geodesic sphere and 299 are placed on the floor. This spherical lighting

configuration is able to produce sufficient lighting without blinding the actor and also

facilitates the process of calibration and time-multiplexing. The Lightstage 6 has a large

working volume for human-size acquisition and produces scans with millimeter accuracy.

Shape reconstruction for each frame is split into multiple stages. For each output

frame, each synchronized camera captures 8 images at 240fps with different lighting con-
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normal map computation (8 cameras)

spherical gradient illumination (8 lighting conditions)

Figure 2.8: Under 8 spherical gradient illumination (top) we can extract dense normal

maps from different views placed around the subject (bottom).

ditions (spherical gradient illumination as proposed in [MHP+07]). The time-multiplexed

light patterns consist of 6 principal lighting directions and two interleaved full illumina-

tions. A robust and efficient data-driven technique calculates a high-resolution normal

map for each camera. Optical-flow [HS81, BBPW04] is used to compensate for subtle

motions within the 8 frames. In parallel, the subject’s silhouette is extracted from each

view and combining them produces the shape’s visual hull which forms a rough geo-

metric prior. The next step consists of calculating a depth map from each normal map

using normal integration. This under-constrained problem is solved by incorporating the

visual hull as additional soft constraints which yields an over-determined linear system.

Due to low frequency distortions in the scans (as the visual hull is only an approxi-

mation), the depth maps from each view are slightly misaligned. Hence, scans between

adjacent views need to be non-rigidly aligned. In particular, the (one-step) non-rigid reg-

istration technique uses a thin-plate spline deformation model and correspondences that

minimize the shape of local surface patches. Once the scans are aligned, a merging pro-

cess produces a single consistent surface using the VRIP algorithm proposed by Curless

and Levoy [CL96b]. Optionally, the remaining holes that are due to occlusions and low

surface albedo can be filled using Poisson reconstruction [KBH06] and surface samples

obtained from the visual hull. Because filling each frame independently causes strong

flickering in those hole filled regions, we propose a temporally coherent shape completion
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technique in Section 4.3 that considers scans from adjacent frames for spatio-temporal

filtering.

The bulk of this engineering effort focusses on fast and detailed shape acquisition

of human-size subjects. The advantage of using large spherical area light sources enables

short exposure acquisitions (minimizing motion blur) while remaining sufficiently com-

fortable for the subject to perform (since irradiance is generally better distributed than

for example point-light sources). Compared to pure passive techniques, shape reconstruc-

tion is more reliable especially for regions with fine geometric details and homogenous

textures such as garment.

2.5 Data Representation and Processing

depth map triangle mesh
x

y

y

x

From Depth Maps to Triangle Meshes.

Our captured dynamic surface data is dis-

cretized as either a sequence of depth maps or

unorganized point clouds {si(t)}i (c.f. Sec-

tion 2.1). In both cases, polygonal mesh con-

nectivity might or might not be provided by

the scanning method. For range maps, ad-

jacent vertices of a depth image are often

connected to form a continuous piecewise lin-

ear surface (c.f. illustration). However, the

shapes produced by many scanning technolo-

gies may be too strongly affected by noise

and outliers to be reconstructed via simple data interpolation (e.g., time-of-flight scan-

ners). In this case, it might be appropriate to strip away mesh connectivity and use

a robust volumetric method [LC87, CL96b, KBH06, GG07] to reconstruct a smooth,

two-manifold surface. Similarly, when merging range data from multiple-views (sur-

face integration), mesh connectivity is often discarded and a consistent mesh extracted

through surface reconstruction.

This thesis primarily considers input data in the form of dense, regularly sam-

pled triangle mesh sequences. We directly obtain triangle meshes from the two scanning

systems presented in Section 2.3 and 2.4. While a large variety of surface representa-

tion methods exist [Far02, PBP02] (higher order NURBS surfaces, subdivision surfaces,
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implicit surfaces. . . ), triangle mesh representations have the advantage of being (in our

case) easy to obtain, flexible, and efficient to process. Triangle meshes have powerful

shape approximation properties and are particularly effective in representing the exterior

surface of complex geometries such as ∂extM(t). Compared to NURBS surfaces, trian-

gles meshes can represent arbitrary topologies without being decomposed into multiple

surface patches. Furthermore, the stability of many numerical optimization techniques

for geometry processing relies on the fact that input shapes are densely and uniformly

discretized (e.g., meshes with triangles that are close to equilateral).

A triangle mesh Sd ⊆ R3 is an explicitly defined surface representation embedded

in 3-space and, in contrast to spline surfaces (such as NURBS), not defined in terms of

a surface parameterization. Nevertheless, triangle meshes that describe a two-manifold

S(u) may be decorated with a surface parameterization u ∈ US . Depth maps for ex-

ample, inherently carry a surface parameterization and dedicated algorithms exist to

generate parameterizations for general surfaces [HLS07]. In general, Sd discretizes a

smooth manifold S into geometric and topological elements and describes a continuous

piecewise linear surface. More specifically, Sd consists of a set of vertices (geometry):

V = {v1, . . . ,vNV} with vi ∈ R3 (2.11)

and a set triangular faces (topology or connectivity):

F = {f1, . . . , fNF} with fi ∈ V × V × V . (2.12)

Alternatively, we may describe mesh connectivity using edges which, in some cases, can

be a more efficient:

E = {e1, . . . , eNE} with ei ∈ V × V . (2.13)

The beauty of using triangle meshes for approximating smooth geometries lies in its

quadratic approximation power. In particular, halving the edge lengths would reduce

the error by a factor of 1
4 which can be shown using Taylor expansion. At the same time,

the number of faces NF is inversely proportional to the discretization error of Sd.
As pointed out in Section 2.1, we consider surfaces that are 2-manifolds with

possible boundaries since our algorithms rely on the existence of local geodesic neighbor-

hoods and tangent planes. To test whether a triangle mesh is locally homeomorphic to a

disc (or half-disc at boundaries) in a parametric domain Ud, it is sufficient to verify if Sd
is free from non-manifold edges (more than 2 incident triangles), non-manifold vertices

(multiple incident triangle fans), and self-intersections.
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In addition to efficient random element access and fast mesh traversal, many

fundamental geometry processing algorithms require a local neighborhood query of an

arbitrary surface point. For triangle meshes, a frequently performed access is the one-

ring neighborhood N (i) of a vertex vi ∈ Sd. The neighborhood N (i) consists of all

vertices, edges, and faces incident to vi. Depth maps for example have neighborhood

information implicitly encoded in their parametric domain where the neighborhood of a

surface sample is determined by adjacent pixels. However, we need to consider general

surfaces and fast one-ring neighborhood access can be achieved in O(1) using a suitable

polygonal mesh data structure (e.g., face-based representation, winged-edge data struc-

ture, half-edge data structure. . . ). All implementations in this work use the efficient

(computation and memory-wise) directed half-edge data structure [CKpS] as underlying

representation for triangle meshes. For sufficiently dense meshes, we may accurately

approximate the normal ni of a vertex vi by averaging the unit normals of all triangles

fj ∈ N (i).

Another important geometric operation is the distance query of an arbitrary point

in space p ∈ R3 to a triangle mesh Sd which is analogous to determining the closest point

c ∈ Sd. The point c may lie exactly on a vertex, inside a triangle, or on an edge. Hence,

naively querying each closest point would result in a linear search in the elements of

Sd. Typically, acceleration data structures for spatial query (e.g., uniform grids, kd-tree,

hash data structures, BSP trees, octrees, or bounding volume hierarchies,. . . ) are used

to significantly speed up the closest point computation. Throughout this dissertation, we

employ a kd-tree data structure [Ben75] for triangle primitives which achieves a search

performance of O(log(NF )) per query. Note that building the data structure involves

a computational cost of O(NF log(NF )). For many applications (outside this work)

that involve regular updates of dynamic geometry, acceleration methods with faster

construction may be more suitable (bottom-up techniques such as bounding volume

hierarchies, GPU parallelized kd-trees [ZHWG08]. . . ). In the case of dense meshes, a

simpler kd-tree that only determines the closest vertex vj (as opposed to the closest point

on c ∈ Sd) may also be considered. Because the set of vertices V is finite, the query

can be further generalized to determine the k closest points with the same run-time

complexity.

Outlier Removal. We pointed out in Section 2.1 that raw scan data are often affected

by a certain amount of outliers (especially in early generations of scanning technology).
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In general, it is rather difficult to specify a criterion for detecting outliers as they de-

pend on shape and material properties of the subject and the scanning technology. An

effective, semi-automatic tool for treating outliers based on classification heuristics can

be found in [WPH+04]. Fortunately, due to the robustness of the acquisition tech-

niques [WLG07, VPB+09], outliers can be easily detected and removed in our input

scans.

outliers

We mostly observe outliers in the

form of false mesh triangulations at oc-

clusion boundaries where there is a large

depth disparity (see figure on the right).

Several strong artifacts such as jumping

peaks can also be identified in regions

which surface normals that are mostly per-

pendicular to the sensor’s viewing direc-

tion (unconfident surface regions). Be-

cause our input scans are densely and uniformly sampled, triangles with an extremely

large edge can be regarded as those outliers. Consequently, we simply discard trian-

gles with edge length greater than a threshold of 0.5 cm. Additionally, we aggressively

delete all fragmented components in Sd with fewer than 200 triangles within a single

connected surface patch. The fragments are mainly caused by noise in the volumetric

reconstructions [KBH06] when combining multiple range maps [VPB+09].

Mesh Smoothing. The use of mesh smoothing (or fairing) in a surface reconstruc-

tion pipeline is typically associated with noise removal of captured input data (c.f. Fig-

ure 2.10), but also finds its place within the context of geometric modeling and multi-

resolution techniques. Similar to low-pass filtering in signal processing, the purpose

of mesh smoothing is to reduce unwanted high-frequency details while preserving low-

frequency components of a surface (its global shape). Unlike for example image signals,

a triangle mesh may not have a parameterization (except for depth maps). We therefore

require an efficient low-pass filtering technique that reduces high curvature variations

by simply moving the vertices without changing mesh connectivity. Mesh smoothing

based on signal processing analysis is a well-understood topic [Tau95, FDCO03] and

it has been shown that it is directly related to discrete Laplacian diffusions defined

on meshes [DMSB99]. We now summarize the basic concepts of Laplacian smoothing
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which we describe as stationary surfaces of Laplacian flows. We will later extend these

ideas to hole-filling and surface deformation techniques based on linearized membrane

or thin-plate energy minimization. From a signal processing standpoint, the first step

vi

vj

A(vi)

vi

vj

vj−1

vj+1

αj

βj

Figure 2.9: A vertex vi and its incident faces (left) and the terms of the cotangent

weights (right).

of an ideal low-pass filter consists of converting a discrete signal from spatial domain

to frequency domain where high-frequency components are discarded. This is typically

achieved using a discrete (fast) Fourier transform (DFT ) in which an orthonormal basis

of shifted and scaled sine waves is constructed. Once the signal is truncated in Fourier

domain, the inverse DFT is performed to obtain the low-pass filtered result. In the case

of triangle meshes, the formulation of discrete Fourier transform is different from para-

metric functions. Note that the second derivatives of these basis functions in Fourier

domains are multiples of themselves. As demonstrated in [Tau95], we may construct an

orthonormal basis function that shares the exact same properties by taking the eigenvec-

tors of a discretized Laplace operator ∆S . The discrete surface signal of a triangle mesh

Sd is described by concatenating the vertices into the matrix V = [vi, . . . ,vNV ]> where

a symmetric neighborhood structure is defined by the one-ring neighborhood N (i). The

discrete Laplacian (Laplace-Beltrami operator [dC76]) defined on the signal V can then

be formulated as a weighted average over the neighborhood:

∆Svi =
∑

vj∈N (i)

wij(vj − vi) (2.14)

where
∑

vj∈N (i)wij = 1 and wij ≥ 0. A good choice for these weights wij are the

cotangent-weights described in [PJP93, MDSB02, DMSB99] as they preserve local ge-
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ometry properties such as edge lengths and angles. The discretized Laplace-Beltrami

operator becomes:

∆Svi =
2

A(vi)

∑

vj∈N (i)

(cotαj + cotβj)(vj − vi) (2.15)

where αj = ∠(vi,vj−1,vj), βj = ∠(vi,vj+1,vj), and A(vi) the Voronoi area around vi

as depicted in Figure 2.9. In theory, we may consider the matrix form of the discrete

Laplacian ∆V = −K V and compute its eigenvectors E, i.e., −K E = D E with D the

diagonal matrix of eigenvalues. This step can be followed by discarding the eigenvalues

in D corresponding to the high frequencies and transforming back in spatial domain.

While this approach is computationally equivalent to performing a DFT on V , there

is no known extension of fast Fourier transform algorithm in this setting. A practical

solution consists of taking a convolution approach with a smoothing kernel which is linear

in the number of vertices NV . We observe that the following update rule:

vi ← vi + λ∆Svi (2.16)

with time-step 0 < λ < 1 is equivalent to a projection onto the low frequencies. In fact,

Equation 2.16 can be written in matrix form yielding V ← (I−λK)V = E(I−λD)E−1V .

In particular, the damping factor λ attenuates the high-frequency components of V . Note

that repeating this Laplacian update is equivalent to performing an explicit forward Euler

integration solving the following (heat) diffusion equation:

∂vi
∂t

= λ∆Svi . (2.17)

Using a sufficiently small time-step λ ensures convergence to the steady state of a diffusion

flow ∆Svi = 0 when (numerically!) integrating this 2nd order linear PDE over time.

For arbitrarily large time-steps, Desbrun and coworkers [DMSB99] use an implicit fairing

approach and successively solve the following sparse linear system:

(I − λK)V n+1 = V n (2.18)

where V n is the nth iteration of the diffusion process. This discrete diffusion flow can

also be regarded as the mean curvature flow [dC76] since the following relation holds:

∆Svi = −2H(vi)ni (2.19)

with mean curvature H(vi) = κ1+κ2
2 , maximum curvature κ1, and minimum curvature

κ2. In particular, mesh smoothing through mean curvature flow is the same as moving
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each vertex vi along the surface normals ni with a speed equal to H(vi). Notice that

each integration step solving the unbounded diffusion equation in Equation 2.17 causes

shrinkage of the two manifold. Anti-shrinking is typically accomplished through volume

normalization with the initial shape [DMSB99] or by carefully amplifying low frequencies

with the λ|ν method [Tau95].

original mesh smoothed mesh

n = 10 λ = 0.8n = 0

Figure 2.10: Laplacian smoothing used to low-pass filter a 3D scan affected by high-

frequency noise. This example shows n = 10 iterations of explicit Laplacian updates.

Isotropic Remeshing. While depth-scans are dense and regular surface samplings,

robustly merging them into a consistent surface generally involves a volumetric mesh ex-

traction step based on the marching cubes algorithm [LC87, CL96b, KBH06, GG07]. For

sufficiently high resolution of the grid discretization of marching cubes, the correct topol-

ogy of the subject can be extracted (except when the subject exhibits (self-) contacts).

However, because mesh vertices are connected at intersections between an (implicit) sur-

face and a regular grid, the extracted mesh has highly varying edge lengths which are

often close to zero. Recall that non-uniform and singular edge lengths are likely to cause

numerical instabilities for many geometric optimizations on discrete surfaces (whenever

N (i) is involved). Another important application of isotropic remeshing is to convert

resolutions between uniformly sampled meshes. When fitting a template mesh Td to a

target scan Sd (e.g., for tracking or shrink-wrapping purposes), the sampling density

of both meshes must be compatible. Although the Nyquist criterion suggests a higher
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resolution sampling of Td, we typically choose the same resolution for efficiency reasons.

The aim of isotropic remeshing is to resample a given polygonal mesh and recon-

nect the vertices in a topologically consistent way. For triangle meshes, we eventually

obtain triangle faces that are close to equilateral. While methods exist that locally

adapt the edge length according to the scale of geometric details [SAG03], we focus on

remeshing algorithms that produce uniform samplings (i.e., homogenous edge lengths)

according to a user-specified target edge length l. Additionally, we require vertex posi-

tions to closely stay on the original mesh surface so that shape is being preserved after

remeshing.

A number of methods have been proposed that exploit surface parameteriza-

tion [AMD02, AVDI03, ACSD+03] to produce high-quality remeshing. In particular,

resampling and tesselation is efficiently computed in the two-dimensional parameter do-

main. Since obtaining a global parameterization for Sd is known to be an expensive step,

several techniques were introduced that only use local mesh operations and/or local patch

parameterizations [SG03, SAG03, VRpS03]. These algorithms either impose hard error

bounds for highly uniform triangulation or locally adapt the resolution according to

the mesh curvature. Since we are mainly interested in obtaining isotropic meshes with

uniform edge lengths, we resort to a fast and easy-to-implement remeshing algorithm

proposed by Botsch and Kobbelt [BK04]. The isotropic remeshing algorithm unifies

original mesh resampled mesh

l = 0.1 l = 0.3 l = 0.45

Figure 2.11: Isotropic remeshing of the UCSD Bear.

edge length equalization, vertex valence optimization, and vertex distribution given an

input target edge length l (c.f. Figure 2.11). Each criterion is optimized separately, but
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a tight interleaved process approximates a more difficult to solve coupled optimization.

In particular the following steps are iteratively performed:

1. All edges are split at their midpoint if their length exceeds lmax = 4
3 l.

2. All edges are collapsed if their edges are shorter than lmin = 4
5 l.

3. All edges are flipped if they improve the valence of the influenced vertices. Vertex

valence should be 6 (or 4 at mesh boundaries).

4. To improve uniformity of the vertex distribution, area-weighted tangential smooth-

ing is performed for each vertex.

Very few iterations (generally only 5) are sufficient to produce triangle meshes with

edge lengths close to l and triangles with inner angles close to 60 ◦. Note that the

local mesh operations (edge split, edge collapse, and edge flipping) only change the local

mesh connectivity but preserve the global mesh topology. The maximum edge lengths

lmax = 4
3 l can be derived from the fact that an edge split operation only improves the

tesselation if |lmax − l| > |12 lmax − l|. Simply consider the case when 1
2 lmax < l. The lower

threshold lmin = 4
5 l can be derived analogously.

We perform valence equalization in a greedy fashion. We iterate over each edge

ei ∈ E and evaluate the local energy Eval that measures deviation from the optimal

valence valenceopt before and after the flip. If Eval decreases after the flip, we keep the

new connectivity, otherwise we revert to the original local triangulation. We may derive

valenceopt = 6 (and valenceopt = 4 on mesh boundaries) from the Euler characteristic for

triangle meshes χ(Sd) [Cox89]. The valence deviation energy is defined as follows:

Eval(ei) =
4∑

j=1

(valence(vij )− valenceopt)
2 (2.20)

where vij are the 4 vertices of the two incident triangles of ei.

The last step of the iterative remeshing procedure consists of a continuous edge

length equalization (mid-point splits and collapses are discrete operations). In this refine-

ment step, each vertex is locally relocated using an area-weighted tangential smoothing

process. We may describe an Voronoi area-weighted smoothing with the following update

rules:

vi ← vi + λ∆gravvi (2.21)
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with

∆gravvi =
1∑

vi∈N (i) A(vi)

∑

vi∈N (i)

A(vi) . (2.22)

As opposed to the cotangent-based Laplace-Beltrami ∆mathcalS operator, this smoothing

operation causes the vertices to move toward a gravity-weighted centroid and involves a

normal and tangential surface motion. To enforce a purely tangential motion (since the

aim is to equalize edge lengths), the update rule can be extended with a projection on

the tangent plane of vi:

vi ← vi + λ (I − ni n>i )(∆gravvi − vi) . (2.23)

In particular, vertices with larger Voronoi area A(vi) have a higher gravitational force,

attracting those with smaller Voronoi areas. Restricting the motion on tangent planes

(defined by vi and ni) is a linear discretization of tangent motion on a parameterized

smooth surface. Due to blurring caused by this linear approximation, the relocated ver-

tices are reprojected onto the original surface. Reprojection only needs to be performed

once after several cycles of iterations and can be efficiently computed using a kd-tree

data-structure as discussed previously.
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3
Registration of Deformable Surfaces

Given partial acquisitions of deforming objects, we consider the fundamental

problem of recovering full 3D models in motion. Even when multiple range sensors are

simultaneously used in order to maximize coverage, the captured shape is generally still

incomplete because of (self-) occlusions or low surface albedo. To obtain a complete

digital representation, the subject has to move around in space and expose new surface

geometry to the sensors. While the subject is changing its position and undergoing

deformations, the surface portions that are previously captured must be repositioned

and non-rigidly aligned to the current scan. As mentioned in Chapter 2, the purpose of

non-rigid registration algorithms is exactly to compute these alignments and to establish

surface correspondences between partial scans.

In addition to being a key element for dynamic shape reconstruction, non-rigid

registration is an essential tool for dense markerless motion capture, template track-

ing, shrink-wrapping (deforming a generic 3D model to fit scan data), and establishing

correspondences between different objects. A large variety of non-rigid registration tech-

niques exist, each of them typically being attuned to a specific application, scenario, or

acquisition technology. This chapter reviews the basic concepts of surface registration
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for static (Section 3.1) and deformable objects (Section 3.3). To better illustrated the

latter, we provide an extensive overview of the most established surface deformation

techniques developed over the past few years (Section 3.2). Since the right choice of

the deformation model is an essential step for a successful non-rigid registration, we will

focus on explaining their strengths, weaknesses, and how they relate to each other from a

geometrical and physical perspective. Additionally, a thorough investigation on different

non-rigid registration techniques is covered in Section 3.3.2.

Our goal is to develop a fully unsupervised, pairwise non-rigid registration algo-

rithm that is robust and accurate enough to process long scan sequences without severe

accumulation of errors. In particular, it is highly desirable that the proposed method

is able to handle significantly larger deformations than existing techniques. We propose

in Section 3.4 a unique approach that unifies deformation and correspondence compu-

tation within a single non-linear optimization framework. Our initial method proposes

a continuous optimization of correspondence positions which requires the target scan

to have a surface parameterization which is inherently given for single-view depth map

acquisitions.

To remove some of the implementation headaches when dealing with general

shapes that are not directly equipped with surface parameterization (e.g., multi-view

acquisitions), we derive in Section 3.5 an easier to implement non-rigid iterative closest

point (ICP) variant that can be equally effective and accurate (in practice!). We establish

a link between the two algorithms and explain why they both solve correspondences and

deformations simultaneously.

The registration of deformable surfaces is one of the most difficult and crucial

steps in animation reconstruction. To give a better intuition and to highlight some of

the challenges, let us discuss everything again, but in more detail and with the notations

introduced in Section 2.1:

What is Surface Registration? Consider the example where two scans, S(t1) and

S(t2), are captured at two different time instances, t1 and t2, while the object M(t)

is deforming (c.f. Figure 3.1). The surface region S(t1) \ St1∩t2(t1) that is exposed

in t1 but not in t2 should supplement S(t2). On the other hand, common subregions,

St1∩t2(t1) and St1∩t2(t2), between both scans must perfectly overlap. The goal is therefore

to determine the warping Φt1→t2 of S(t1) toward S(t2) as if both scans were captured

at the same time t2. Computational methods to this problem are called registration
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(or alignment) algorithms and we mainly distinguish between rigid and non-rigid ones.

We call them pairwise when dealing with two input shapes and multi-frame otherwise.

Rigid registration problems are easier to solve because only 6 parameters of a Euclidean

transformation Φrigid need to be computed (c.f. Equation 2.8).

Depending on the purpose, non-rigid registration algorithms may involve complex

deformation models Φdeform with several orders of magnitude the number of unknowns

as for the rigid case. Hence, we generally consider Φt1→t2 = Φdeform unless explicitly

specified to be rigid.

non-rigid registrationsource

S(t1)

target

S(t2) Φt1→t2(S(t1)) ∪ S(t2)

overlap
St1∩t2(t2)St1∩t2(t1)

overlap
si(t1)

Φt1→t2(si(t1))
correspondence

Figure 3.1: Correspondences reside within the overlapping regions (depicted in orange).

After pairwise non-rigid registration, the shape becomes more complete (right).

Link to Surface Correspondences. As seen in Section 3.5, surface registration relies

on establishing correspondences between the common subregions St1∩t2(t1) shared by two

independently captured shapes. To find the deformation Φdeform between two shapes,

we must ensure that corresponding surface points, si(t1) and Φt1→t2(si(t1)), coincide

after the warp. Unless provided through human intervention or explicitly tracked using

marker based systems, correspondences are generally not known a priori. From a purely

geometric standpoint, the problem of automatically finding correspondences between

S(t1) and S(t2) is rather non-trivial. In fact, only a limited number of surface points

may have local geometries that are sufficiently unique and similar for being matched

without ambiguity. Moreover, we have no prior knowledge about where the common

subregion St1∩t2(t1) is and how the subject would deform (i.e., the mapping Φt1→t2).

Consequently, the common approach to this ill-posed problem is to incorporate effective

(but limiting) prior assumptions about the shape of the subject and how it may deform.
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Remark: Note that knowing the surface deformation Φt1→t2 of a source scan

S(t1) toward its target S(t2) trivially yields the full correspondence between both shapes

and vice versa. Likewise, the more correspondences we are able to establish, the easier

the problem of determining the deformation of the subject.

Link to Surface Motion. In animation reconstruction, we are interested in capturing

the motion of deforming surfaces in addition to reconstructing the full geometry. As we

continuously capture scans at short and regular time intervals dt, a dense motion field

dsi(t) can be immediately inferred from correspondences (source and target positions)

as described in Equation 2.6 and 2.7. As a result, non-rigid registration is often regarded

as the key element for markerless motion capture of deforming geometries.

How to Classify Registration Problems? Surface registration appears frequently

in geometric problems where shape matching is involved. Due to the fast growing devel-

opment in novel non-rigid registration techniques, many methods are difficult to catego-

rize since they are often combinations of others. We therefore propose a taxonomy that

is motivated by the nature of the input data instead of their computational methodolo-

gies. As illustrated in Figure 3.2, we can classify registration problems into the following

categories:

• Cat I (Static): Registration is performed between scans of a same static sub-

ject (such as a building, a statue, or a person who attempts to hold still). Only

small scale warps are allowed in this scenario. More specifically, we may assume

max
i,t
{‖dsi(t)‖22} ≤ ε for outlier-free S(t).

• Cat II (Continuous Motion): Registration is consecutively performed between

pairs of scans (of the same subject) that are continuously captured using a real-

time acquisition system. Unfortunately, it is non-trivial to quantify the amount of

allowed deformation Φdeform. Consequently, we assume a sufficiently small temporal

sampling tj+1− tj ≤ σt, a reasonable amount of temporal coherence in the motion

max
i,t
{‖dsi(t)‖22} ≤ σΦ, and sufficiently large common subregion A(Stj∩tk(t)) ≥ σA.

• Cat III (Arbitrary Poses): Registration is performed between shapes of dif-

ferent poses but originating from the same subject (e.g., registration between an

angry and smiling face or sitting and standing person). In this scenario the input
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Figure 3.2: A taxonomy on registration problems based on the nature of input data

(top) and important applications for each class of problem (bottom). Our proposed

non-rigid registration algorithm is general and effective for the scenarios shown in green.
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data are independently captured, where tj and tj+1 can be arbitrary time instances,

and may exhibit large pose variations ‖dsi(t)‖22.

• Cat IV (Anatomically Compatible): Registration is performed between shapes

of different subjects that have the same anatomy (e.g., a generic face model and

the face scan of a specific person). For simplicity, the same pose (e.g., neutral facial

expression) is usually used for both the source and the target. However, semanti-

cally meaningful correspondences are sometimes hard to define. For example, how

can we correspond a human head to that of a chameleon (the ears are missing)?

Similar to Cat III, there is no temporal element in this type of registration. How-

ever, when source and target shapes are bounded by thresholds σΦ and σA, the

algorithms from Cat II may be applied here as well.

• Cat V (Unrelated): Registration (or rather global shape matching) is performed

between completely unrelated entities (e.g. faces, cars, buildings, trees, etc. . . ).

This class of registration problem does not make any assumption about the shape

or pose of the objects. While having potential impacts in animation reconstruction,

the applications here are primarily focussed on shape retrieval.

Remark: The categories of registration problems listed above are special cases

of one another and gradually less restrictive w.r.t. the amount and variability of defor-

mation. In practice, additional assumptions need to be made before these techniques to

become truly robust and effective for real applications. For example, articulated motion

may be imposed to facilitate matching between shapes in arbitrary poses.

3.1 Rigid Registration

A substantial amount of research has been devoted to the registration of rigid

objects. In analogy to the more general non-rigid setting, rigid registration is primarily

used for shape completion and (rigid) motion tracking from incomplete 3D input scans.

There are three possible scenarios: either the object is moving, the 3D sensor, or both

simultaneously. In all cases, the relative motion between two captured scans, S(t1)

and S(t2) can be described by a single Euclidean transformation φrigid which aligns

their overlapping regions St1∩t2 . As mentioned above, it only requires us to solve for 6

parameters and, w.l.o.g., we assume only the subject undergoes a rigid transformation.

Because many important ideas can be extended to the non-rigid case, we now summarize
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the basic concepts of rigid shape alignment and use dense uniform triangle meshes to

describe our surfaces. For an extensive overview we refer the reader to the excellent

course presented by Rusinkiewicz and coworkers [RBK05].

Let us consider the general case when two scans are captured at arbitrary time

instance, t1 and t2, the objective consists of determining φrigid such that the distance

between St1∩t2(t1) and St1∩t2(t2) are minimized (since both regions might be affected by

noise and outliers). More specifically, we are dealing with a minimization problem with

energy functional:

Efit =
∑

vi∈V(t1)∩St1∩t2 (t1)

‖(R vi + t)− ci‖22 with ci ∈ V(t2) ∩ St1∩t2(t2) . (3.1)

While the correct solution minimizes this equation, minimizing Efit does not in general

yield the correct transformation φrigid. Consider the simple example when Sd(t1) and

Sd(t2) are two planes where no unique solution can be found. In practice, we assume

the existence of a certain amount of discriminating geometric features to facilitate the

computation of argmin
R,t

Efit. Furthermore, recall that neither corresponding points ci nor

overlapping regions St1∩t2 are known. It becomes obvious that optimizing for all possible

unknowns is intractable over all possible correspondence combinations and the group of

rigid body transformations.

The general approach to this alignment problem is to reduce the search space by

decoupling the optimization into three steps. First, (salient) features are independently

identified in Sd(t1) and Sd(t2). These features between both scans are then matched

to produce a set C = R3 × R3 of point-to-point correspondence, (vi, ci) ∈ C where

i = 1, . . . , NC . When more than three pairs of correspondences are found, the optimal

transformation φrigid can be uniquely determined by minimizing the sum of squared

distances between corresponding points.

3.1.1 Closed Form Solution

A closed form solution to this last step is described in Horn [Hor87] and uses

quaternions [Sal79] obtained via spectral decomposition of cross-correlated data (in a

4D quaternion space) to describe the rotation. Alternatively, one may consider a simpler

approach based on SVD proposed by Arun and colleagues [AHB87] which solves the

exact same problem. This algorithm is a special case of the well-known Procrustes

analysis method [Ber98] which also handles isomorphic scaling. Let us summarize the
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SVD approach using the set of pairwise correspondences C. The cross-covariance matrix

between the points vi and ci is defined as:

Σ =
1

NC

∑

vi,ci

(vi − gv)(ci − gc)
> (3.2)

with source centroid gv = 1
NC

∑NC
i=1 vi and target centroid gc = 1

NC

∑NC
i=1 ci. From the

SVD Σ = U Λ V >, we may extract the optimal rotation R = U V >. To ensure that

R ∈ SO(3), we detect unwanted reflections whenever det(R) = −1. In case reflection

occurs, we invert the sign of the jth column vector in V if the diagonal component λj ∈ Λ

is zero. Eventually, we obtain the optimal translation t = gc −R gv.

Because of the discrete nature of identifying features and computing correspon-

dences, it is, in most cases, practically impossible to determine the correct solution in

a single step. This forcefully means that even when the local features are perfectly

discriminating, each vertex vi might have multiple ambiguous correspondences due to

incompleteness or local symmetries in the shape. Consequently, the registration prob-

lem is further divided into a coarse alignment step and a refinement step. As opposed to

coarse registration, the refinement process assumes φrigid to be rather small and tightly

couples correspondence estimation and transformation computation (typically an itera-

tive process).

3.1.2 Coarse Alignment

Bringing two scans (that are separated by a large rigid motion) into rough align-

ment requires the identification of sufficient corresponding feature points between both

surfaces. Since only a subset St1∩t2 is shared by the two scans, globally aligning both

data, Sd(t1) and Sd(t2), is generally not possible by simply looking at the distribution

of the entire surface geometry (e.g., via PCA normalization). However, when looking at

a small geodesic patch Pr(vi) ⊆ Sd(t1) of geodesic radius r and center vi, a matching

patch Pr(ci) ⊆ Sd(t2) could be determined if Pr(vi) ⊆ St1∩t2(t1). From this observation,

many coarse alignment techniques sparsely sample both triangle meshes and use shape

descriptors to characterize local surface geometries about each of these samples. Simi-

lar local shape descriptors between two scans form a set of candidate correspondences.

Due to noise, incomplete data, incoherent sampling, and possible false correspondences,

the estimated motion Φrigid usually remains suboptimal. Note that more discriminative

descriptors produce less ambiguous matches, but are also more sensitive to noise and

partial data. On the other hand, less discriminative descriptors (e.g., by simply choosing

56



CHAPTER 3. REGISTRATION OF DEFORMABLE SURFACES

a small radius r) are more robust but also introduce additional ambiguity, increasing the

difficulty of correspondence computation.

Pose-Invariant Shape Descriptors. Many types of shape descriptors have been in-

vestigated, some being directly adapted from global shape matching algorithms. The

goal is to define a local signature for a patch Pr in the form of a compact feature vector

with fixed dimensions. Similarity between two feature vectors is typically measured by

their L2 distance. Global shape matching techniques are generally designed to be invari-

ant w.r.t. Euclidean transformations. For instance, the shape histograms from Ankerst

and colleagues [AKKS99] characterize 3D geometry by decomposing the enclosing space

into a set of concentric shells. Since a local patch is described by a statistical distribution,

their shape descriptor is invariant of the underlying coordinate frame. Shape descriptors

based on spherical harmonics [KFR03] store a set of rotation invariant frequency com-

ponents and represent another pose-invariant approach. Translation invariance can be

obtained by translating the centroids to the origin. Note that feature vectors of large di-

mensions can be assisted with dimension reduction techniques (such as PCA) or indexing

techniques for better efficiency.

spin image

height

radius

source scan

target scan

Figure 3.3: Example of global rigid motion invariant shape descriptor based on spin

images.

Surface Oriented Shape Descriptors. A different type of descriptor considers sur-

face orientation and measures local geometry distribution about a surface sample and

uses its normal to normalize for two of the three degrees of rotational freedom. In

particular, transformation invariance is reduced to a single angular dimension (around
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the normal) leading to potentially higher discriminative power than pose-invariant de-

scriptors. Johnson and Herbert’s spin images [JH97], for example, store the average of

the surface area of a normal ring with fixed radius and height (c.f. Figure 3.3). The

method of Frome and coworkers [FHK+04] suggests storing amplitudes of frequency com-

ponents of each normal ring. Finally, a more descriptive method, known as 3D Shape

context [BMM00], performs an exhaustive 1D search over all normal angles of rotation

to determine the alignment with the maximum response. Note that the latter approach

should be used carefully as it is highly sensitive to noise and local symmetries. While

originally designed for approximate and partial symmetry detection, the curvature-based

descriptors used in [MGP06] can also be used for rigid motion estimation. The method

densely samples the surface and defines a two-dimensional local signature simply as a

pair of principal curvatures (k1, k2). Although each signature is highly ambiguous, a

clustering of a large set of possible correspondences in a Euclidean transformation space

may reveal the most likely rigid motion. This approach provides a more refined and

complete description of the underlying surface but also incurs a higher computational

cost (due to the clustering step).

Pairwise Correspondence Assignment. Shape descriptors characterize local ge-

ometric features and establish potential candidates for correspondences between two

different scans. Potential candidates are samples on the target mesh with feature vector

distance below a certain threshold. We now describe several fundamental techniques

for establishing one-to-one correspondences between two sets of surface samples. As

mentioned above, searching over all possible candidate correspondences and determining

the transformation that minimizes Efit leads to an exponential explosion in complexity.

While a greedy approach of iteratively picking the best possible assignment among the

candidates (and discarding this assignment from subsequent matches) would be most

efficient, it is in practice not robust enough.

Branch and Bound Approach. One way to leverage the combinatorial intractability

when matching independent features is to exploit spatial consistency of feature locations.

Gelfand and colleagues [GMGP05] propose a branch and bound approach that incremen-

tally adds two pairs of correspondences, (vi, ci) and (vj , cj) into a decision tree. Early

termination can be predicted in the hierarchy when inter-feature distances are not pre-

served, i.e., ‖vi − vj‖22 − ‖ci − cj‖22 > 2r.
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RANdom SAmple Consensus. In the presence of multitudinous outliers, robust

estimators such as random sample consensus (RANSAC ) approach [FB87] could be

more effective. The idea consists of randomly picking three feature points on the source

scan and candidates on the target. These three pairs of correspondences form a unique

candidate rigid body motion (R̃, t̃). For every other source samples vi, we determine the

candidate correspondences ci that are closest to R̃ vi + t̃ and measure Efit. The entire

process is repeated m times and the resulting rigid motion is the one with minimal

Efit. Lately, Aiger and colleagues [AMCO08] extended the idea of RANSAC with the

extraction of coplanar 4-points sets that are approximatively congruent under rigid body

motion. This method enables robust alignment with an order of magnitude faster than

previous randomized algorithms.

Spectral Approach for Spatially Consistent Correspondences. An alternative

to RANSAC based matching that also considers spatial consistency is to use the spectral

correspondence approach developed by Leordeanu and Hebert [LH05]. In this method, a

graph adjacency matrix (affinity) matrix is constructed that takes into account matching

scores between candidate features as well as how compatible pairs of these correspon-

dences are. Using Raleighs ratio theorem, it can be shown that the principal eigenvector

of the affinity matrix maximizes the score of the matrix in a continuous setting. To

extract a discrete assignment, they employ a greedy algorithm that iteratively picks the

assignment of the maximum eigenvector and discards all potential candidates in conflict

with this assignment. The process is repeated until no correspondences are possible.

The accuracy and robustness of this method has been successfully demonstrated on a

variety of 3D registration problems [LH05, HAWG08, dAST+08].

3.1.3 Registration Refinement

initial
alignment

final
registration

sourcetargetHaving described the fundamental algo-

rithms for coarse shape registration, we may ask

ourselves why the refinement computation would

take a conceptually different approach. How should

refinement algorithms be designed to maximize ef-

fectiveness? Firstly, coarse alignment methods dis-

cretize a pair of scans by sparsely sampling sur-

faces and quantifying the local neighborhoods with

shape descriptors. While a dense sampling would
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better approximate the surface, it is computationally intractable. Since both shapes

are being sampled independently, both surfaces have a different discretization. Even

when the solution of the combinatorial correspondence problem is globally optimal, it is,

in practice, unlikely that their (higher resolution) representative surfaces are optimally

aligned (discretization error). Furthermore, since individual features are described by

pose-independent shape descriptors, the optimal transformation is the same regardless

of the initial orientation of the source scan. On one hand, a coarse alignment algorithm

has the ability to resolve for arbitrarily large rigid transformation, on the other hand, the

correspondence search of each feature is completely independent of the global transfor-

mation, resulting in possible outlier correspondences (decreasing reliability). Note that

the latter observation is partly leveraged (in a combinatorial sense) by RANSAC and

spectral methods but not fully exploited as in the continuous setting of refinement tech-

niques. In particular, none of the coarse alignment methods determine correspondences

based on the quality of the initial pose, while registration refinement methods do.

The structure of refinement techniques differs from their sister algorithms for

coarse alignment in two ways: they involve dense surface sampling and unify correspon-

dence and transformation optimization during alignment. To enable the latter, they

approximate a continuous optimization problem with a tight coupling between corre-

spondence estimation in small steps (similar to gradient descent methods) and optimal

rigid motion computation. This coupling is typically achieved using an iterative ap-

proach interleaving the two steps. Ideally, both subproblems should improve each other

in each iteration. Note that methods exist that solve both steps within a single opti-

mization [Fit01]. In this way, outlier correspondences can be better prevented as each

optimal transformation step introduces a certain regularization into the optimization

(in terms of global spatial consistency). To summarize, we need a correspondence es-

timation method that is efficient enough to enable dense surface sampling and can be

improved with each step of transformation optimization. The general approach herein is

to use correspondences based on proximity heuristics (e.g., closest points) and to assume

that the transformation Φrigid that separates source and target scans are within a certain

threshold.

Iterative Closest Point Algorithm. The most widely adapted pairwise refinement

technique is the iterative closest point (ICP) algorithm originally developed by Besl and

McKay [BM92]. The algorithm is conceptually trivial and is guaranteed to converge to a
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Figure 3.4: Rigid ICP pipeline for registration refinement.

local optimum. Assuming source and target are sufficiently close, ICP first computes for

each vertex vi ∈ Sd(t1) the closest point ci on the target surface Sd(t2). For very large

meshes, a random resampling of surface points might suffice. The second step consists of

solving for the optimal rigid motion Φrigid = (R, t) by minimizing Efit from Equation 3.2.

Note that correspondence pairs that are very far apart can be regarded as outliers and

rejected. One option is to discard pairs (vi), ci) with distances larger than a scalar

multiple of their median, i.e., ‖vi−ci‖ > k lmedian. The entire process is repeated until

Efit converges. A simple convergence criteria can be |Ekfit − Ek−1
fit | < ε (1 + Ekfit) where

Ekfit is the energy in the kth iteration. The success of ICP mainly relies on how well the

geometric features between both scans can be used for matching (c.f. Figure 3.5). For

featureless regions and ambiguous features, the algorithm simply converges to the closest

matching one.

Since its introduction, a large number of ICP variants have been proposed and

their convergence behavior well-studied [PHYH06]. An extensive survey on different ICP

adaptations can be found in Rusinkiewcz and Levoy [RL01]. Following their classification

methodology, most rigid registration refinement algorithms can be described with the

pipeline shown in Figure 3.4. We will now recapitulate the most important techniques.

Most ICP methods are characterized by the following stages:

61



CHAPTER 3. REGISTRATION OF DEFORMABLE SURFACES

initial 
alignment

final 
registration

ICP 
iterations

Figure 3.5: The iterative closest point algorithms alternates between closest point

computation and optimal transformations.

Sampling. Before computing correspondences, the source scan may be resampled with

a lower vertex density V̂ ⊆ V(t1) ⊂ Sd(t1)) in order to avoid dealing with overly high

resolution meshes. Note that the target scan is not resampled as opposed to coarse

alignment techniques. While random resampling is often used due to its efficiency, there

might still be chances that V̂ does not fully capture all the features that are crucial

for accurate matching with the target scan. Since it is unknown in advance which

geometric features should be used for matching (i.e., those residing in St1∩t2), a good

solution consists of simply uniformly resampling the original mesh. While the isotropic

remeshing algorithm in Section 2.5 may be used to obtain a uniformly sampled mesh with

user specified density, the algorithm does not perform well for disconnected and cluttered

surfaces which is common for scanned data. Additionally, since all vertices are relocated,

an extra closest point search to the original mesh needs to be performed in order to keep

the original vertex positions. A straightforward resampling method designed for dense

regular meshes (with possible clutters and holes) consists of iteratively discarding all

vertices within a ball of radius r and keeping the center position of the ball. This

algorithm can be summarized as follows:

1. Initialize resampling list V̂ = {v1}.
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2. For all vertices vi ∈ V(t1) with i = 2, . . . , NV :

• If ‖vi − v̂j‖22 > r for all vertices v̂j ∈ V̂, add vi into V̂.

It becomes obvious that for a reasonably small size of r, the algorithm performs linearly

on average (worst case scenario is O(NV NV̂)). In some cases the input mesh discretiza-

tion might be highly irregular possibly due to mesh simplification algorithms or because

it emanates from a handcrafted 3D model. For these polygonal surfaces, uniform re-

sampling can be achieved using Turk’s particle repulsion approach [Tur92]. Note that

in some applications with highly imbalanced ratio of (very little) geometric details and

(large) featureless regions, the sampling strategy can have a significant impact in the

alignment accuracy and convergence speed. In the context of cultural heritage, Gelfand

and coworkers [GRIL03] propose a stability analysis which maximizes the relevance of

surface samplings to constraint all different degrees of freedom of the transformation.

A simpler and more efficient technique based on normal space sampling is presented

in [RL01] and selects surface samples in such way that the resulting points have a uni-

form distribution of their normals.

Correspondence. Since we are attempting to minimize the distance of overlapping

surface regions, a natural choice for proximity heuristics for a vertex vi ∈ V(t1) are the

closest vertices on the target mesh ci ∈ V(t2). They can be efficiently determined in

O(log NV) using a spatial data-structure such as a kd-tree [Ben75]. Note that for target

meshes with irregular samplings or low polygonal count, it is often more convenient to

compute the closest point on the target triangle mesh ci ∈ Sd(t2). For simplicity, this

thesis mainly considers high-resolution uniform meshes as input.

Certain applications, such as real-time shape completion [RHHL02] or online fa-

cial tracking [WLGP09], require closest point queries at interactive rates. Being the

slowest component of the ICP pipeline, using a kd-tree would be still too slow. Alterna-

tively, we may assume the scans, Sd(t1) and Sd(t2), to be sufficiently close such that the

closest point can be approximated with a projection in z direction. For depth maps, we

simply assume vi = si(u) to have the closest point ci = sj(u) with same uv coordinates.

This projection is constant in time as it only consists of evaluating the depth value on

Sd(t2).

Weighting. Especially for uniformly resampled source scans Sd(t1), using all corre-

spondences for the minimization argmin
R,t

Efit would generally yield a suboptimal rigid
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motion. In fact, only correspondences within St1∩t2 should be used for the matching.

Since this region of overlap is unknown, we may assign discrete weights wi ∈ {0, 1} for

each correspondence pair (vi, ci) and optimize for those as well. The energy functional

becomes:

Efit =
∑

vi∈V(t1)

wi‖(R vi + t)− ci‖22 . (3.3)

The discrete optimization of wi is typically performed after correspondence estimation

and before rigid transformation computation. In this way, we tightly couple correspon-

dence estimation, overlapping regions computation, and optimal rigid transformation.

Note that setting wi = 0 is equivalent to pruning the correspondences (i.e., removing

them from the equation of Efit). The only difference lies in the implementation trading-

off between pre-processing and run-time efficiency [RBK05]. While a combinatorial ap-

proach such as for coarse rigid alignment can be employed, simple heuristics are usually

sufficiently effective. The most utilized pruning strategies include setting wi = 0 when:

• The corresponding points are further away than a prescribed threshold as in the

original ICP formulation using medians or simply by discarding correspondences

with ‖vi − ci‖22 > σdistance.

• The corresponding point ci lies on the boundary of the target mesh Sd(t2). This

heuristic is based on the observation that, for scanned data, source vertices outside

the overlap regions vi ∈ Sd(t1)\St1∩t2(t1) often have their closest points mapped on

the target mesh boundary. In practice, this pruning criterion should be combined

with distance thresholding since the closest point outside the overlap region might

also lie inside Sd(t2) (especially when the source shape is a closed manifold).

• The normals of source and target vertex, n(vi) and n(ci), are incompatible, i.e.,

n(vi)
> n(ci) > σangle. For noisy data, robustly estimated surface normals should

be used such as those described in Mitra and Nguyen [MN03]. When mesh connec-

tivity is available, we may simply use normals obtained through mesh smoothing.

Note that in each ICP iteration these weights are re-evaluated. In addition to identi-

fying the region of overlap, these heuristics also improve the robustness of the closest

point heuristics. Additionally, an interesting pruning technique based on bi-directional

reprojection of closest points has been introduced in [PMG+05]. The method repro-

jects the closest point ci ∈ Sd(t2) of a source vertex vi ∈ Sd(t1) onto the closest point
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of the original surface Sd(t1) and evaluates the new distance. If this distance is larger

than a threshold, the correspondence is considered incompatible and discarded. While

faster convergence can be achieved in some cases, this approach comes at the price of

constructing a new kd-tree construction on the source scan in each iteration.

Rigid Transformation. Once the correspondences are specified and weighted (or

pruned), we may update the pose of the source scan Sd(t1) by minimizing the fitting

energy of Equation 3.3. As described in the original version of ICP [BM92], the closed

form solution from Section 3.1.1 minimizes this integration of squared point-to-point

distances between the correspondences. Although correspondence and transformation

optimizations are tightly coupled in this iterative framework, it is well-known that, for

point-to-point error metric, large featureless regions may penalize tangential surface mo-

tion and, hence, cause low convergence rate. Consider the example where a large number

of correspondences are being found on a relatively large region that does not exhibit sig-

nificant details. Even if some correspondences suggest the source scan to glide in this

region to match a certain feature, Efit would be dominated by positional constraints in

those featureless regions. This observation suggests the use of an energy term that does

not penalize gliding of correspondence points on the target surface.

Point-to-Plane Distance. A common approach is to use the point-to-plane error

metric for optimal rigid body alignment introduced by Chen and Medioni [CM92]. In-

stead of minimizing the distance between each source vertex vi and its corresponding

point ci, the idea is to locally approximate the shape of the target surface at each point

ci by the tangent plane T (ci) = {x ∈ R3|n>i (x − ci) = 0} and minimize the distance

of vi to this plane. Here, ni is the normal of ci. The point-to-plane metric yields the

following energy functional term:

Efit =
∑

vi∈V(t1)

wi

(
n>i (R vi + t− ci)

)2
. (3.4)

Notice how transformation computation is now coupled with (approximate) correspon-

dence optimization within a single step of Efit minimization. This coupling and first order

approximation of the target surface drastically improves convergence rate as well as ro-

bustness as demonstrated in the thorough analysis by Pottmann and colleagues [PHYH06].

We now look at how to solve for the optimal rigid motion (R, t) subject to the mini-

mization of the energy term in Equation 3.4.
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Since no closed form solution exist for this non-linear optimization problem, we

may directly linearize Efit and solve for an over-constrained linear system. Linearization

is obtained by assuming rotations to be sufficiently small and taking the first-order

approximations of the sine and cosine functions in the rotation matrix R. In particular,

we make the assumption that sin θ ≈ θ and cos θ ≈ 1 for small angles θ = ε. Substituting

the matrix representation of Euler angles, i.e., R = Ry(θy)Rx(θx)Rz(θz), we obtain the

following approximation:

R ≈ R̂ =




1 −θz θy

θz 1 −θx
−θy θx 1


 = I +




0 −θz θy

θz 0 −θx
−θy θx 0


 = I + S (3.5)

with S the corresponding skew-symmetric matrix of R. The energy term with linearized

rotation matrix and Euler angles θ = (θx, θy, θz)
> becomes:

Êfit =
∑

vi∈V(t1)

wi

(
n>i (R̂ vi + t− ci)

)2
(3.6)

=
∑

vi∈V(t1)

wi

(
n>i (I + S) vi + n>i t− n>i ci

)2
(3.7)

=
∑

vi∈V(t1)

wi

(
n>i vi + n>i (−vi × θ) + n>i t− n>i ci

)2
(3.8)

=
∑

vi∈V(t1)

wi

(
(vi × ni)

> θ + n>i t− (n>i (ci − vi))
)2

(3.9)

Setting x = (θ>, t>)>, the matrix notation of the linearized energy term becomes Êfit =

‖A x− b‖22 which is simply an ordinary least squares problem. Hence, the minimizer of

Êfit is the solution of the overdetermined linear system Ax = b which can be solved using

normal equation (provided A>A ∈ R6×6 is invertible), i.e., x = (A>A)−1A>b. However,

it is well-known that the normal equation may be ill-conditioned in some cases (squaring

very small numbers may cause numerical instabilities). Alternatively a QR-factorization

approach can be numerically more stable and equally efficient using implicit solvers based

on Householder transformations. To obtain R ∈ SO(3) we simply orthonormalize it using

polar decomposition [FAT07].

Putting It All Together. When only mesh vertices on the target surface are consid-

ered, computing the closest point becomes a discrete process. Consequently, undesirable

oscillations between the rigid motion estimation may appear toward the end of the ICP
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refinement. To improve stability, a typical approach consists of combining the point-to-

plane and point-to-point metric, Eplane (c.f. Equation 3.3) and Epoint (c.f. Equation 3.4),

and solve for the motion x that minimizes Eplane + α Epoint. In particular, incorporating

the point-to-point constraint helps to promote convergence of the overall energy. We

typically choose a small weight α = 0.1. To summarize, when carefully combining all

the fundamental techniques discussed in the ICP stages, extremely large rigid motions

can be accurately recovered—even without intervention of coarse rigid alignment algo-

rithms. In particular, our robust non-rigid registration framework in Section 3.4 will set

its foundations based on these key insights.

3.2 Surface Deformation

Before we proceed to non-rigid registration algorithms, we first summarize the

most important surface deformation techniques that are relevant for non-rigid alignment

and other problems in animation reconstruction. In general, we may describe surface

deformation of a triangle mesh Sd as a mapping Φ : Sd → R3 where vi 7→ Φ(vi) = ṽi. If

we knew the mapping of all vertices, the deformation for Sd would be fully defined. How-

ever, this is not the case for many applications such as mesh editing where users provide

only a few geometric constraints to manipulate the shape (e.g., vertex displacements,

orientation of local frames. . . ). For non-rigid registration problems, only a subset of cor-

respondences can be reliably determined within the overlap St1∩t2—again, how should

the remaining surface S(t1) \ St1∩t2 deform? When some of the correspondences are

wrong, can we compensate those with a plausible deformation model? It becomes ap-

parent that finding the right surface deformation is closely related to an interpolation

or data-fitting problem. Since it is hard to characterize the deformation of an arbitrary

subject, our deformation model must be flexible enough to capture a maximum range of

shapes but also has to be resistant to unnatural distortions.

Regularization. Deformation models are typically associated with a regularization or

smoothness component that specifies the overall change of shape subject to certain ge-

ometric and/or physical surface properties (e.g., as smoothness, lengths, curvature. . . ).

The characterization of regularization varies largely depending on the underlying model.

In the context of geometric design for example, spline and subdivision surfaces can

be directly deformed through control vertices [PBP02, Far02] to produce smooth sur-

faces. However, it is difficult to automatically generate such surface representation from

scanned data as a large number of carefully laid out patches would be necessary to
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model complex shapes. We therefore consider deformation models that are decoupled

from the surface representation. Consequently, prescribed geometric constraints (either

from captured data or user guided) should prevent neighboring parts of vertices to get

mapped to disparate positions. As we will see later, certain deformation models allow us

to specify the amount of regularization during deformation which often helps to model

the “stiffness” of a certain surface.

Hard vs. Soft Constraints. While for mesh editing purposes, it is generally desirable

to exactly interpolate user-prescribed constraints, fitting scanned data might not be the

case. Hard constraints are appropriate to use when the data is highly reliable such as with

sparse markers obtained from motion capture [BLB+08]. However, in many scenarios,

imposing soft constraints can be crucial for several reasons. For example, since a reliable

and accurate correspondence estimation on markerless data is hard, we may not want

to fully rely on these matches, but rather trust the deformation prior. Furthermore,

we also know that the scanned subject may change its shape in unknown ways and its

scans are generally affected by noise and outliers. Using soft constraints, deformations

usually do not exactly interpolate the input data, but rather attempt to satisfy the

regularization imposed by the deformation model. Depending on the approach and the

surface representation, soft constraints may also be considered to avoid over-fitting issues.

Local vs. Global Deformation. We may further distinguish between deformation

models that operate only within a region of interest (local support) and some that change

the entire shape (global support). When aligning scans, it is important to not only warp

the common subregion between the two surfaces, but also define the deformation for

S(t1) \ St1∩t2 . In these cases, we often use the regularization parameter to describe how

spatially consistent the overall deformation should be. Notice that a global support

may be defined in space or on the surface. Deformation models with global support

are crucial elements in a registration framework since they promote a tighter coupling

between global transformation and correspondence computation. Intuitively, when a

large number of good correspondences are found, the motion of non-overlapping regions

will follow these matchings. On the other hand, errors due to false correspondences

would be evenly distributed across the entire shape instead of being localized.

Space Deformation. Some of the first deformation algorithms that are designed to

handle arbitrary input surface representations are based on spatial deformations. A

survey is presented in Bechmann [Bec94]. The idea is to first define a warping field on
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the ambient space Φ : R3 → R3 which, in a second step, infers the deformation on the

points of the embedded surface S ⊂ R3. Early work on spatial deformation techniques

include the intuitive local and global geometric operations used for designing new solid

shapes by Barr [Bar84]. For general deformations, these operations are too restrictive

and unsuitable for data-fitting or interpolation problems.

One way to improve flexibility consists of using a control object (3D lattice)

as a proxy to parameterize spatial deformations. While early free form deformation

techniques [SP86] use lattices that simply consist of a discretized bounding box, most

modern cage-based techniques provide a better approximation of the underlying sur-

face [JSW05, LKCOL07, JMD+07]. These methods differ mainly in the way they in-

terpolate the interior of the cage and how well they preserve local features. However,

most cage-based deformation algorithms require carefully hand-crafted lattices around

the underlying subject.

Approaches based on radial basis function (RBF ) [CFB97, KSSH02, BK05] are

often used to warp 3D models to captured data [CLK01, CK05] due to their efficiency

and stability. The drawback however is that their influence regions do not capture

surface geodesics and local features may not be well preserved. Hence, they are suitable

for handling extremely large data but are restricted to small deformations. For the

alignment of very large scan data, the use of more sophisticated spatial technique based

on thin-plate splines [SS91] was first proposed in Brown and Rusinkiewicz [BR04] where a

global deformation is computed that minimizes spatial curvature of the warping field. A

regularization term allows the user to specify the optimal balance between interpolation

and smoothness depending on the amount of noise and distortion in the input data.

Because the method uses soft-constraints, it permits inaccurate correspondence estimates

as opposed to RBF methods. However, regularization is expressed by a global support

in space which makes it less suitable for large deformations. Since spatial deformation

techniques are particularly effective and robust for partial and cluttered data (such as

scans) we will present an efficient graph-based method in Section 3.2.4 which defines

global regularization over the surface and can handle large deformations.

Surface-Based Deformation. Surface-based deformation techniques directly oper-

ate and define regularization on the surface. While being inappropriate for warping sets

of disconnected surface portions (such as scans), they optimally exploit surface topology

and are remarkably effective in preserving intrinsic surface properties. In data fitting
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and tracking problems, surface deformation models are typically employed whenever tem-

plates are involved as they generally represent a complete surface. The most prominent

techniques include physically-inspired models and several approaches based on differ-

ential coordinates (Laplacian and gradient-based representations). A recent survey on

linear surface-based methods is described in Botsch and Sorkine [BS08]. We will review

these methods in more detail in Section 3.2.1, 3.2.2, and 3.2.3. Let us first analyze two

simple deformation models that are often used in shape matching problems with dense

triangles meshes.

Suppose the deformation of a triangle mesh with vertices vi ∈ Sd is described

by an additive displacement field ṽi = Φ(vi) = vi + di ∈ S̃d with i = 1, . . . , NV . An

uncomplicated way to deform the mesh would be to specify a few positional constraints

cj ∈ R3 such that the distance between vj and cj is minimized. W.l.o.g., we assume

the first NC ≤ NV vertices to have correspondences, i.e., j = 1, . . . , NC . To this end, we

formulate the data fitting as an energy minimization of point-to-point squared distances:

Efit =

NC∑

i=1

‖vi + di − ci‖22 (3.10)

For a fitting problem with soft constraints, we would like to determine the displacement

di of all vertices vi subject to a global regularization term. Obviously, fitting the data

by ignoring regularization and keeping the unconstrained vertices in their original posi-

tions would not result in an attractive mesh. One straightforward approach consists of

encouraging neighboring vertices to displace similarly, as described in the facial tracking

framework [ZSCS04]. This regularization is described with the following energy term:

Ereg =

NV∑

i=1

∑

vj∈N (i)

1

‖vi − vj‖22
‖di − dj‖22 . (3.11)

Notice how neighboring displacements are normalized with the distance of the edges

that connect their source vertices. In this way, the displacements of vertices that are

closer have more influence on each other. The final step consists of solving for the di by

minimizing the combined energy:

Etot = Efit + αreg Ereg (3.12)

with regularization parameter αreg. Choosing a large value for αreg would increase stiff-

ness of the deformation and a small value would better interpolate the constraints. From
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a differential geometry stand point, we may note that this simple formulation is equiva-

lent to an approximation of a (linearized!) bending energy and the same as performing

a deformation using Laplacian coordinates (c.f. Section 3.2.2). In fact, the minimizer

of Equation 3.11 alone are the roots of a sum of discrete Laplacians weighted with

inverse edge lengths ∆Sdi =
∑

vj∈N (i)
1

‖vi−vj‖2 (di −dj), as originally proposed by Fuji-

wara [Fuj95]. However, determining the least squares minimizer of the overdetermined

system in Equation 3.12 requires solving a normal equation. Consequently, the solution

closely approximates a bi-Laplacian equation which minimizes surface bending. In Sec-

tion 3.2.1, we will present a more rigorous derivation for bending-minimizing surfaces

which clarifies how this solution relates to the minimization of change in curvature in

unconstrained regions. While this particular choice of discrete Laplacian attempts at

preserving the edge length ratios before and after deformation, it does not consider un-

evenly distributed angles of the triangles as with cotangent weights (c.f. Equation 2.15).

This simple deformation model is particularly effective when dense and reliable corre-

spondences are available such as for template tracking with high-resolution input scans.

When correspondences are sparse and not evenly distributed, larger regions without ver-

tex constraints may in certain scenarios deform unnaturally. In particular, when the

deformed subject is supposed to change its volume, this deformation model would loose

its accuracy. Nevertheless, we call this type of deformation physically-inspired since it

mimics real-world elastic behaviors.

Alternatively, several researchers [ACP03, PMG+05, SP04] suggest a purely ge-

ometric approach where deformation regularization is accomplished by enforcing the

affine transformations of neighboring vertices to be alike. The difference with the

previous approach lies in the deformation representation which is now generalized to

Φ(vi) = Ai vi + ai where Ai ∈ R3×3 and a ∈ R3. Describing a deformation with local

affine transformations is more flexible than with pure displacements, since, in addition

to a shift component, rotation, shear, and scale are implicitly expressed in the model.

Let us be more concrete. The new fitting term is now formulated as:

Efit =

NC∑

i=1

‖Ai vi + ai − ci‖22 (3.13)

and the regularization term:

Ereg =

NV∑

i=1

∑

vj∈N (i)

‖ [Aj |aj ]− [Ai|ai] ‖2F (3.14)
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where ‖ · ‖2F denotes the Frobenius norm. When minimizing the new combined term

Etot = Efit + αreg Ereg, the deformation energy required to minimize Efit is no longer

concentrated in the translational component a but evenly diffused over the linear com-

ponent A. Simultaneously, Ereg promotes unconstrained surface regions to scale, rotate,

and shear according constrained areas. As a result, deformation models that are based

on affine transformations are able to capture more general deformations than the previ-

ous one. For example, even when the regularization parameter αreg is set to be a large

value, it would not penalize a global linear transformation (such as scaling). One draw-

back however is that over-fitting is likely to occur for large unconstrained regions. This

problem is often exhibited by drastic shape distortions as observed in the original work of

Sumner and Popović [SP04]. The authors tackle this issue by introducing a stabilization

term which encourages the non-translational component to be the identity:

Estab =

NV∑

i=1

‖Aj − I‖2F . (3.15)

We immediately see that this stabilization causes the overall deformation to minimize

bending, similarly to the first technique (since it forces Efit and Eref to be similar to

the earlier formulation). To summarize, when Estab is added to the total energy Etot =

Efit + αreg Ereg + αstab Estab with a control parameter αstab, we may interpolate between

the behavior of an affine transformation-based deformation and a bending minimization

model. In practice, a more general deformation model can capture a wider range of

shapes without being penalized, but is also more susceptible to the problem of over-

fitting. At this point, it becomes clearer why, for purely bending-minimizing models,

transformations such rotations, scaling, and shearing are not explicitly captured by a

linear matrix (such as Ai) but implicitly encoded in each displacement di. As we will

clarify in Section 3.2.1, the regularization term is only a linear approximation of a true

(non-linear) bending-minimization constraint which may cause local geometric details to

be distorted for deformations with large rotations.

Linear vs. Non-Linear. The two deformation models presented above are linear,

since they can be solved by setting up a large (but sparse) linear system. Notice that

even for a linear deformation model, the minimization of Etot may become non-linear as

it is the case when using a point-to-plane distance metric for Efit, similarly to the case of

ICP algorithms. Consequently, we call a deformation model linear if its characterizing

regularization energy Ereg is linear. As mentioned above, linear deformation techniques
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which attempt to approximate non-linear deformations may fail at capturing important

local transformations (such as rotations in the case of bending minimizing energies).

While certainly less efficient, non-linear deformations can be solved to some ex-

tent depending on the optimization formulation and the underlying non-linear solver.

Most of the practical and reliable solutions perform a linearization at a more refined

stage (e.g., Gauss-Newton method). Instead of linearizing a continuous shell energy

using discrete Laplacians, Grinspun and coworkers [GHDS03] propose to directly de-

fine a discrete energy with similar non-linear properties such as stretching and bending.

Their approach is especially well suited for simulating dynamic behaviors because of

the physical accuracy. However, for large positional constraints, numerical instabilities

may occur. A numerically stable non-linear deformation technique, named PriMo, was

introduced by Botsch and colleagues [BPGK06] and trades off physical accuracy with

physical plausibility. The idea is to simulate thin-shell behaviors by discretizing the sur-

face into fine volumetric rigid cells that are coupled through non-linear, elastic forces.

While having a complex structure and being computationally more expensive than many

other techniques, this method can achieve highly appealing results. Similar results can

also be achieved using a purely geometric approach. In fact, we may consider the previ-

ously presented model based on affine transformations and locally maximize its rigidity

(instead of only prescribing local smoothness). As-rigid-as possible deformations were

introduced around the same time by Sumner and coworkers [SSP07] and Sorkine and

Alexa [SA07]. In particular, local rigidity can be accomplished by enforcing the non-

translational components Ai to maximize their rotations (which introduces non-linear

terms). Consequently, local features can be better preserved and over-fitting problems

avoided without involving physically-inspired regularization terms. Section 3.2.4 will be

present one efficient variant, called embedded deformation [SSP07], which yields compa-

rable results to PriMo. Since this method is based on space deformations, it is immedi-

ately applicable to fragmented surfaces such as scanned data. This thesis will show that

locally as-rigid-as-possible deformations are particularly important for achieving highly

accurate and robust non-rigid registrations since they encourage detail preservation.

3.2.1 Physically-Based Linear Deformation

This section condenses the linear surface-based deformation model, beautifully

assessed in Botsch and Sorkine [BS08], which is characterized by the minimization of

elastic energies known from physics-based simulations [TPBF87]. The idea is to regular-
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ize the deformation by penalizing stretching and bending energies given an initial (rest

shape) configuration. By doing so, we simulate the deformation behavior of a continuous

thin shell surface.

Again, we consider a smooth two-manifold surface S with surface parameteriza-

tion p : U ⊂ R2 → S and its deformed state S̃. A smooth deformation Φ(p) transforms

a point p ∈ S such that p̃ = p + d ∈ S̃. In particular, the displacement d(u) also has a

parameterization and p̃(U) = S̃.

The thin shell energy that is used to regularize Φ(p) can be phrased as a mea-

sure based on parameterization independent (i.e., intrinsic) surface properties derived

from the first and second fundamental forms, I(u) and II(u) ∈ R2×2. More concretely,

stretching is described by the change of surface area after deformation and bending

by the change of curvature. Following [TPBF87], we may formulate the (rigid motion

invariant) thin shell energy as follows:

Eshell(d) =

∫

U
αs‖Ĩ− I‖2F + αb‖ĨI− II‖2F (3.16)

with Ĩ and ĨI, the fundamental forms of S̃. The stiffness parameters for stretching and

bending are αs and αb. Linearization of this regularization term can be accomplished

by substituting the change of the first and second fundamental forms with the first and

second order partial derivatives. This approximation leads to the following quadratic

energy:

Êshell =

∫

U
αs

(
‖ ∂
∂u

d‖22 + ‖ ∂
∂v

d‖22
)

+αb

(
‖ ∂

∂u∂u
d‖22 + 2 ‖ ∂

∂u∂v
d‖22 + ‖ ∂

∂v∂v
d‖22
)

dudv

(3.17)

This energy term is minimized when its derivative becomes zero. More specifically, it

can be shown through variational calculus that the minimizer is exactly the solution of

the following (fourth order) Euler Lagrange PDE:

−αs∆d + αb∆
2d = 0 (3.18)

with Laplacian and bi-Laplacian operator:

∆d = div∇d =
∂

∂u∂u
d +

∂

∂v∂v
d , (3.19)

∆2d = ∆(∆d) =
∂

∂u∂u∂u∂u
d + 2

∂

∂u∂u∂v∂v
d +

∂

∂v∂v∂v∂v
d . (3.20)

Solving Equation 3.18 subject to some boundary constraints (e.g., hard constraints)

yields the deformed surface S̃ with stretching and bending regularization. Notice that
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the solutions of ∆d = 0 and ∆2d = 0 are each the minimizers of the pure stretching and

bending energies. In general, the solution of the Euler-Lagrange PDE (−1)k∆dk = 0

provides a Ck−1 continuous surface deformation.

Since our triangle meshes S may not have a surface parameterization, we perform

the same Laplace discretization as for Laplacian mesh smoothing (c.f. Section 2.5). We

use the same discrete Laplace-Beltrami operator from Equation 2.15 which is now defined

on displacement vectors instead of surface points:

−αs∆Sd + αb∆
2
Sd = 0 . (3.21)

Link to diffusion on meshes. Observe that this variational minimization is closely

linked to the steady-state of the diffusion equation defined on two-manifolds (c.f. Equa-

tion 2.17). In fact, we may translate the linearized stretching and bending energies to

surface points and obtain the linearized membrane and thin-plane energies:

Êmemb =

∫

U
‖ ∂
∂u

p‖22 + ‖ ∂
∂v

p‖22 (3.22)

Êplate =

∫

U
‖ ∂

∂u∂u
p‖22 + 2 ‖ ∂

∂u∂v
p‖22 + ‖ ∂

∂v∂v
p‖22 . (3.23)

The minimum of the linearized membrane energy Êmemb (which measures surface area)

is obtained when the steady state of the diffusion equation is reached, i.e. ∆p = 0

(for unbounded systems!). In particular, this observation explains the shrinking effect of

Laplacian mesh smoothing.

Solving the PDE with hard constraints. After discretization with the Laplace-

Beltrami operator, we may directly solve Equation 3.21 subject to some (hard) boundary

constraints. Notice the difference between the problem of mesh deformation and Lapla-

cian smoothing. The latter typically considers an unbounded system and user-specified

time step λ as the steady state might not be the desired solution. In mesh deforma-

tion, we wish to directly minimize the linearized thin shell energy Êshell given certain

constraints. When no constraints are provided, the mesh remains in its rest pose.

Let us rephrase the discretized Laplace-Beltrami operator ∆S (from Equation 2.15)

applied to the deformation of the entire mesh Φ(Sd) in matrix notation:




∆Sd1

...

∆SdNV


 = M−1Ls




d1

...

dNV


 (3.24)
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where M is a diagonal “mass” matrix containing per vertex weights and Ls a

symmetric matrix containing per edge weights. The Euler-Lagrange PDE from Equa-

tion 3.21 then becomes a sparse NV ×NV linear system:

(−αsL+ αbL
2)d = 0 (3.25)

where L = M−1Ls. When incorporating hard constraints, i.e., dj = ṽj − vj for j =

1, . . . , NS , we may move each column of L with a constrained vertex to the right-hand

side and remove the respective rows of the system. The resulting system becomes:

(−αsL̄+ αbL̄
2)d = b (3.26)

with non-zero right-hand side b ∈ RNV̄×3 and submatrix L̄ ∈ RNV̄×NV̄ . While the linear

system is still sparse, it is not symmetric anymore which is a problem for fast linear

systems solvers. This can be easily fixed by pre-multiplying the above system by M

which leads to the following symmetric and positive definite system:

(−αsL̄s + αbL̄sM̄
−1L̄s)d = M b (3.27)

which can be efficiently solved using a sparse direct Cholesky solver [SG04]. The advan-

tage of using a Cholesky solver (as opposed to for example multi-grid methods) is that

by pre-factorizing the matrix, only a back-substitution need to be performed whenever

the right-hand side changes. In many real-time applications (such as mesh editing or

template-based facial tracking), only the right-side is updated since the vertices that

have constraints remain the same (only their positions change). Nevertheless, even when

the matrix needs to be updated, a sparse symmetric system can still be solved efficiently

since both, factorization and back-substitution, can be computed in linear time.

Solving the PDE with soft constraints. We illustrated an efficient solution for

linearized shell energy-minimizing deformation bounded by hard constraints. We now

look at how to incorporate soft constraints. Soft constraints are relatively easy to in-

tegrate into a deformation framework that solves the bi-Laplacian equation (bending)

but surprisingly harder for the case of a Laplacian equation (stretching). As we will see

next, this observation is due to the least-squares nature of the minimization. A bend-

ing energy-based deformation with soft constraints can be obtained by minimizing the

following energy term:

Etot = αfitEfit + Eb = αfit

NC∑

i=1

‖di − (ci − vi)‖22 +

NV∑

i=1

‖∆Sdi‖22 (3.28)
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where the weight αfit is used to control how close the deformation should interpolate

the constrained points. Notice that since the Laplacian ∆Sdi is linear, the minimizer of

its squared norm is the solution the bi-Laplacian equation ∆2
Sdi = 0. The minimizer of

the above energy term is then given by the following over-determined system:


 αfit I

NC×NC | 0
L







d1

...

dNV


 =




αfit (c1 − v1)
...

αfit (cNC − vNC)

0




(3.29)

The corresponding normal equation is represented by the following NV ×NV system:


L>L+


 α2

fitI
NC×NC 0

0 0









d1

...

dNV


 =




α2
fit(c1 − v1)

...

α2
fit(cNC − vNC)

0




. (3.30)

Notice that for a large fitting weight αfit, the solution of this equation converges to

the (bending energy minimizing) solution of L>L d = 0 with hard constraints. How-

ever, when αfit is too large, numerical problems may arise as observed by Botsch and

Sorkine [BS08]. In those cases, using hard constraints with exact interpolations might

be a better choice.

By looking at Equation 3.30, it becomes clear that in order to minimize stretch-

ing, we must compute the square-root of the Laplacian matrix L. However, we know

that L is symmetric and positive definite and there exists 2NV distinct square root matri-

ces. We may simply ignore this ambiguity and consider the unique positive semi-definite

matrix L
1
2 . After diagonalizing L = E D E> = E D

1
2 E> E D

1
2 E>, we immediately

obtain the square root L
1
2 = E D

1
2 E> where D

1
2 is simply the square root of each

diagonal components of the diagonal matrix D. For large and sparse matrices, special

diagonalization solvers are required. A widely adapted approach is the iterative David-

son method [Saa92, PTVF97]. However, as documented in Taubin [Tau95], the spectral

decomposition of large Laplacian matrices is generally impractical.

3.2.2 Laplacian Deformation

Surface deformation based on Laplacian differential coordinates was first sketched

in Alexa [Ale01] and further pursued in [SCOL+04, LSCO+04]. These deformation mod-

els were later shown in Botsch and Sorkine [BS08] to be conceptually equivalent to a
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linearized bending-energy minimizing deformation. As opposed to thin shell techniques,

Laplacian deformations can be controlled by manipulating differential coordinates in-

stead of only spatial positions. The idea here is to operate and define regularization

directly over an intrinsic surface representation which can help to preserve geometric de-

tails as much as possible. Since Laplacians ∆Svi encode vertices relative to the centroids

of their one-ring neighborhoods, they can be seen as a form of differential coordinate—

we call them Laplacian coordinates (or differentials). Notice that these coordinates are

invariant to translations but sensitive to linear transformations (rotations, scaling, shear-

ing).

Again, given an initial triangle mesh Sd and positional constraints ci for some

vertices vi, we wish to find the deformed mesh S̃d by minimizing an energy functional

Etot = Efit + αregEreg. As before, we consider the point-to-point fitting term Efit =
∑NC

i=1 ‖ci−ṽi‖22 where ṽi = vi+di ∈ S̃d. In its most basic formulation, the regularization

is defined to minimize the change of Laplacian (hence, preserving surface laplacian):

Ereg =

NV∑

i=1

‖∆S ṽi −∆Svi‖22 (3.31)

=

NV∑

i=1

‖∆S(vi + di)−∆Svi‖22 (3.32)

=

NV∑

i=1

‖∆Sdi‖22 . (3.33)

We immediately see that the minimizer of Ereg is the bi-Laplacian equation ∆2
Sdi = 0.

Consequently, the regularization in Laplacian coordinates minimizes the linearized bend-

ing energy. However, in order to promote rotation and isotropic scale invariance, Sorkine

and coworkers [SCOL+04] suggests to couple the basic Laplacian representation with an

implicit transformation derived from the one-ring neighborhood with the following reg-

ularization functional:

Ereg =

NV∑

i=1

‖∆S ṽi − Ti(Ṽ,∆Svi)‖22 (3.34)

where Ṽ are the vertices of S̃d and Ti a similarity transformation which linear components

consist of a linearized rotation (with small angle assumption) and isotropic scaling. It

can be shown that Ti linearly depends on Ṽ and, hence, Etot can be minimized by solving

for ṽi using simply normal equations. In short, the difference between deformation in
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Figure 3.6: The “hat” basis functions are used to derive the gradients of the mesh

coordinate functions.

Laplacian representation and linearized bending minimization lies in the way details are

being preserved. In the former case, implicitly incorporating Ti in the regularization term

helps to rotate and scale the detail structure of the shape according to the prescribed

constraints. Instead of implicitly solving for Ti (by linearly linking it with Ṽ), it is often

explicitly specified through user-specified affine transformations in the context of mesh

editing. For further details on how to manipulate Ti, we refer to the work on Laplacian

surface editing [SCOL+04].

3.2.3 Gradient-Based Deformation

Like Laplacian-based deformations, gradient-based techniques also set their foun-

dations on differential coordinates [YZX+04, BSPG06]. Instead of manipulating Lapla-

cians coordinates, they operate on the mesh gradient field and fit a surface to mach

a transformed gradient field. We first introduce some basic differential calculus for

triangle meshes before we explore deformations. Let p(u) be the parameterization

of a surface S ⊂ R3, the gradient of the surface’s coordinate function is given by

∇p(u) =
[
∂
∂xp, ∂∂yp,

∂
∂zp

]
∈ R3×3. Consider the continuous representation of its corre-

sponding triangle mesh Sd where its piecewise linear coordinate function v(u) is simply

expressed by barycentric interpolation of vertex coordinates vi = v(ui) ∈ V:

v(u) =

NV∑

i=1

φi(u)vi (3.35)

with φi(u) the per vertex, piecewise linear “hat” basis functions where φi(uk) = δik (c.f.

Figure 3.6). To this end, we may associate a gradient ∇v(u) per triangle face fj where

j = 1, . . . , NF . The gradient ∇v(u) is constant within fj and may be defined w.r.t. the
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vertices v1 = v1, v2, and v3 of fj :

∇v(u) = ∇φ1(u)v>1 +∇φ2(u)v>2 +∇φ3(u)v>3 (3.36)

= [∇φ1,∇φ2,∇φ3]




v>1

v>2

v>3


 = Gj (3.37)

with Gj ∈ R3×3 the (now discrete) surface gradient of the triangle fj . As described in

Botsch and coworkers [BSPG06], the basis functions φi(u) within a triangle fj can be

deduced using its local frame:

[∇φ1,∇φ2,∇φ3] =




(v1 − v3)>

(v2 − v3)>

n>




−1 


1 0 −1

0 1 −1

0 0 0


 (3.38)

where n is the normal of fj . Using all triangles fj ∈ N (i) incident to the vertex vi,

we may phrase the discrete Laplacian as the divergence of piecewise constant gradient

fields:

∆Svi = div∇vi =
∑

fj∈N (i)

A(fj) (∇φi,j)>Gj (3.39)

where A(fj) is the area of fj and φi,j the gradient of the basis function corresponding

to the vertex vi and face fj .

By concatenating all per-face gradients Gj , we may establish a linear relationship

with the vertices vi using a 3NF ×NV matrix G which we call the gradient operator on

the triangle mesh Sd: 


G1

...

GNF


 = G




v>1
...

v>NV


 (3.40)

Returning to our original task of surface deformation, we first examine an energy

functional that minimizes the change in surface gradients. Let ṽ(u) = v(u)+d(u) be the

surface coordinate function of the deformed surface S̃d, the gradient-based regularization

term is then given by:

Ereg =

∫

U
‖∇ṽ(u)−∇v(u)‖22dudv (3.41)

Again, with added positional constraints ci we may solve for di by minimizing Efit =
∑NC

i=1 ‖ci−ṽi‖22 regularized with Ereg as before. In this setting, the mesh deformation with

point constraints has a serious handicap as it preserves the original mesh gradients. Since
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the surface gradients are defined w.r.t. the global coordinate frame, the deformation

will, for example, tend to keep the original orientation, hence its rotation. Especially for

constraints where local surface rotation is expected, the deformation will ignore this fact

and result in unintuitive shapes.

However, we may consider surface deformations where local differentials (i.e.,

mesh gradients) are directly manipulated. Because local coordinate frames are directly

encoded in the gradients Gj , any (non-translational) linear transformation Aj ∈ R3 that

is applied to the local frames can be captured while keeping the resulting mesh connected.

To be more concrete, we simply minimize the following energy term:

Ereg =

∫

U
‖∇ṽ(u)− T (∇v(u))‖22dudv (3.42)

where

T (∇v(uj)) = [∇φ1,∇φ2,∇φ3] (Aj [v1,v2,v3])> = Ḡj (3.43)

for v(uj) ∈ fj . Observe that the basis function matrix [∇φ1,∇φ2,∇φ3] remains un-

changed as we wish to express the transformation w.r.t. the original local frame. In

particular, we obtain a right multiplication with the transposed linear transformation

Ḡj = GjA
>
j . To compute the deformed vertex positions ṽi, we simply solve the following

linear least squares system:

(G> D)G




v>1
...

v>NV


 = (G> D)




Ḡ1

...

ḠNF


 (3.44)

where D is a diagonal weighting matrix containing the triangle areas. Notice that

G> D G = L is exactly the Laplacian and G> D the divergence operator. In par-

ticular Equation 3.44 is a standard Poisson equation and we may substitute L = M−1Ls

with the matrix form of our previous cotangent-weighted discrete Laplace-Beltrami oper-

ator. To summarize, gradient-based deformations are exceptionally effective when local

transformations T (·) (with user-prescribed orientations) are provided. Furthermore, the

reconstructed meshes are mostly free of local self-intersections. In fact, solving the

(global) Poisson equation encourages local errors in the resulting gradient field to evenly

spread over the entire surface.

Deformation Transfer. One important application of a gradient-based approach is

deformation transfer which has been introduced by Sumner and Popović [SP04]. A
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Figure 3.7: Deformation transfer can be divided into a deformation gradient computa-

tion followed by solving a Poisson equation.

direct connection with gradient-based representations was later established by Botsch

and colleagues [BSPG06]. The aim of deformation transfer is to map the deformation of

a source mesh Sd onto an arbitrary target mesh S ′d. The local deformation is expressed

by a linear transformation, i.e., deformation gradients, between the source mesh in its

rest pose Sd and its deformed state S̃d. The deformation gradients are then applied

to the local frames of S ′d. Thus we perform a right-multiplication with the transposed

of the deformation gradients as described above. To obtain the resulting mesh S̃ ′d, we

perform a linear least-squares optimization that solves the Poisson equation in gradient

space (c.f. 3.44) which enforces mesh connectivity in S̃ ′d.

Let us be more concrete. The deformation gradients between a source mesh Sd
and its deformed pose S̃d are defined as a linear mapping between the local frames of

their corresponding triangles:

Aj = [(ṽ1 − ṽ3), (ṽ2 − ṽ3), ñ] [(v1 − v3), (v2 − v3),n]−1 (3.45)

Note that Aj = (G−1
j Ḡj)

> 6= G̃j G
−1
j as the name deformation gradient might mislead-

ingly suggest. To transfer Aj to the target mesh in rest pose S ′d we simply compute the

surface gradients of the deformed target mesh Ḡ′j = G′jA
>
j . Finally, we may efficiently
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solve for S̃ ′d using the following sparse linear system:

(G′> D′)G′




v′>1
...

v′>NV


 = (G′> D′)




Ḡ′1
...

Ḡ′NF


 (3.46)

where G′ is the mesh gradient operators and D′ the diagonal matrix with area weights of

the undeformed target mesh. Since the deformation gradients do not encode translational

components, the resulting target mesh might be translated in space from the position

of the source mesh. Hence, deformation transfer is translation invariant. Moreover,

deformation transfer is general not invariant to rigid transformations w.r.t. the global

coordinate system since the linear transformation Aj depends on the coordinate system,

i.e. Aj 6= R−1 Aj R where R ∈ SO(3) is a rotation matrix. However, the closer the

deformation gradient gets to a true rotation, the less distortions we obtain between

results of different global coordinate frames. One way to avoid this dependency is to

perform a polar decomposition on the deformation gradients as described in [FAT07]

and treat the non-rotation components separately.

3.2.4 Embedded Deformation

In non-rigid surface registration, we need to deform a scan in order to align with

another scan. However, the scanned data may exhibit holes and consist of multiple

disconnected surface fragments. Additionally, in the presence of largely incomplete and

possibly inaccurate correspondences, we require a deformation model that preserves local

shape details as much as possible, even under drastic deformations. The above presented

deformation models are therefore only suitable when the undeformed mesh is a single

connected surface (e.g., a template) and both scans are sufficiently close for reliable

estimation of dense correspondences.

This section presents embedded deformation which is an efficient non-linear space-

deformation technique introduced in the context of direct shape manipulation by Sumner

and coworkers [SSP07]. The deformation model favors high-quality, natural shape defor-

mations by locally maximizing rigidity in the transformation. The algorithm was shown

to produce results that are comparable to another non-linear technique, PriMo [BPGK06].

Compared to the latter, embedded deformation can effectively handle multiple discon-

nected surfaces as it is designed to accommodate any type of geometric primitive (polygon

soups, mesh animation, particle systems. . . ).
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In contrast to other space-deformation methods, this technique avoids a domain-

specific solution, such as a kinematic skeleton that would have to be customized a priori

for each source model. Instead, a deformation graph is (automatically) constructed from

the embedded surface where each node defines an affine transformation that induces a

warping on the nearby space. The nodes are sparsely distributed over the surface to

decouple surface deformation from mesh complexity while retaining the global shape.

In particular, surface deformation is obtained by solving for the graph nodes instead of

the usually much denser mesh vertices, largely reducing the computational complexity

typically associated with non-linear approaches.

Using this reduced model, the embedded mesh is then deformed by blending the

transformations with overlapping influence. Further, the (undirected) edges of this graph

are used to form a neighborhood structure to enable regularization on the surface de-

formation. In particular, globally consistent deformation can be achieved by connecting

nodes of overlapping influence regions. An important feature of embedded deformation

is that the optimization procedure maximizes rigid motion in the affine transformations

of the nodes which naturally preserves details in largely unconstrained regions. Let us

now describe the framework in more detail.

Deformation Graph. The source scan Sd is first augmented with a reduced de-

formable model in the form of a deformation graph. Graph nodes, defined by their

positions x1, . . . ,xNG , may be chosen by uniformly sampling the mesh as discussed in

Section 3.1.3. One affine transformation is associated with each node and induces a

deformation on the nearby space. The influence of nearby nodes is blended by the em-

bedded deformation algorithm in order to deform the scan vertices v1, . . . ,vNV and the

graph nodes themselves. Undirected edges connect nodes of overlapping influence to

indicate local dependencies. The affine transformation for node xi is specified as before

by a matrix Ai ∈ R3×3 and a translation vector bi ∈ R3. In this way, the collection

of all per-node affine transformations expresses a non-rigid deformation of the graph

and the scan. The number of nodes characterizes the degrees of freedom of this specific

deformation model.

Along the lines of linear blend skinning [MTLT88], a vertex vj is transformed to

ṽj by the nodes xi according to a weighted linear combination of affine transformations:

ṽj = Φ(vj) =

NV∑

i=1

wi(vj) [Ai(vj − xi) + xi + bi] . (3.47)
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The weights wi(vj) are nonzero for the k-nearest nodes (typically k ≥ 4) and defined by

wi(vj) =
1− ‖vj − xi‖/dmax∑k
p=1 1− ‖vj − xp‖/dmax

, (3.48)

where dmax is the distance to the k+ 1-nearest node which can be efficiently determined

using a kd-tree or any spatial data structure for fast query (c.f. Section 2.5). Once the

weights are computed, we may connect the nodes with edges. More specifically, two nodes

share an edge if there exists a vertex which has nonzero weights to the nodes. In practice,

we reduce the edge complexity by setting a small threshold σedge and only connect an

edge if both weights are above this threshold (we typically choose σedge = 0.15). To

summarize, the initial process of deformation graph construction can be divided into

the following stages: uniform node sampling, assigning the k + 1 closest nodes to each

vertex, computing the k + 1 influence weights for each vertex, and, finally, determining

the graph edges by evaluating these weights.

Local Rigidity Maximization. Once the deformation graph is initialized, we may

specify a regularization that prescribes a globally consistent deformation. In embedded

deformation, two energy functionals control the deformation. The Erigid term penalizes

the deviation of each transformation from a pure rigid motion. Consequently, local

features deform as rigidly as possible avoiding shearing or stretching artifacts. This is

accomplished by minimizing the deviation of Ai from orthogonality and unit length:

Erigid =

NV∑

i=1

Rot(Ai) (3.49)

where

Rot(A) = (a>1 a2)2 + (a>1 a3)2 + (a>2 a3)2 +

(1− a>1 a1)2 + (1− a>2 a2)2 + (1− a>3 a3)2

and a1, a2, and a3 are the column vectors of Ai.

A second energy term, Esmooth, serves as a regularizer for the deformation by

indicating that the affine transformations of adjacent graph nodes should agree with one

another:

Esmooth =

NV∑

i=1

∑

vj∈N (i)

γij‖Ai(xj − xi) + xi + bi − (xj + bj)‖2 (3.50)

where N (i) consists of all nodes that share an edge with node i. The weight γij should

be proportional to the degree to which the influence of nodes xi and xj overlap. For
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uniformly sampled nodes, we simply use γij = 1.0. While other weighting schemes were

assessed in [SSP07], no significant differences were observed in their experiments.

The smoothing term Esmooth is similar to the regularization term used for defor-

mation based on affine-transforms (c.f. Section 3.2). The main difference here is that we

compare transformed node positions rather than the transformations themselves which

leads to fewer equations when solving for the minimizer of Esmooth. Another difference is

that the per-node transformations are centered around the node positions instead of the

global coordinate system which simplifies Esmooth and also improves numerical accuracy.

Non-Linear Optimization. Finally, a fitting term Efit =
∑NC

i=1 ‖ci − ṽi‖22, where ṽi

is defined as in Equation 3.47, provides the desired positional constraints and is the

impetus that induces deformation. Once again, we combine the different energy terms

to form a global objective function:

Etot = Efit + αrigidErigid + αsmoothEsmooth . (3.51)

Both terms, Erigid and Esmooth, serve as deformation regularization. Ultimately the shape

deformation framework minimizes Etot in order to solve for the 12 NG unknowns in

the per-node affine transformations Φi = (Ai,bi) where i = 1, . . . , NG . We repre-

sent the optimization variables of Φi by a vector with concatenated components γi =

[a>1,i,a
>
2,i,a

>
3,i,b

>
i ]>. Since the partial derivatives of Erigid are quadratic in the optimiza-

tion variables, the overall minimization of Efit is non-linear.

A popular approach to this unconstrained non-linear least squares problem is to

use the Gauss-Newton method [MNT04] which takes multiple linear steps to approximate

the solution. The Gauss-Newton algorithm iteratively solves for γ by considering the

first-order Taylor approximation of f(γ):

Etot(γ
k+1) = ‖f(γk+1)‖22 ≈ ‖f(γk) +Jf (γ

k+1−γk)‖22 = ‖f(γk) +Jf (γ
k)∆(γk)‖22 (3.52)

where γk = [γk0 . . .γ
k
NG

] is the minimizer in the kth iteration, Jf (γ
k) the Jacobian matrix

of f(γk), and ∆(γk) the forward difference vector of γk. The optimization is initialized

with γ0
i = [[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]]. Since Jf (γ

k) is linear in its unknowns γ,

the linear approximation of the Taylor expansion becomes particularly accurate. Each

Gauss-Newton step results in a linear least squares problem:

J>f (γk)Jf (γ
k)∆(γk) = −J>f (γk)f(γk) (3.53)
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which solves for ∆(γk). Because J>f (γk)Jf (γ
k) is sparse, we may efficiently solve the

normal equation in each iteration using a direct solver that employs Cholesky factor-

ization [SG04]. We update γk+1 = γk + ∆(γk) until convergence, i.e., (Etot(γ
k+1) −

Etot(γ
k)) < ε(1 + Etot(γ

k)).

Taken as a whole, embedded deformation offers a number of advantages. It

naturally generates plausible deformations that maximize rigidity and avoid unrealistic

scaling or shearing. The deformation graph is a reduced deformable model that dissoci-

ates the complexity of the source scan from the complexity of the deformation system,

enhancing performance greatly. The flexible nature of the deformation graph allows

to deform scans that contain many different disconnected components in a coordinated

fashion.

3.3 Non-Rigid Registration

We develop the concept of non-rigid registration based on the foundations on

correspondence computation, rigid registration, and surface deformation, discussed in

Section 3.1 and 3.2. Naively, the notion of rigid registration can be directly translated to

the non-rigid case by replacing a rigid transformation Φrigid with a surface deformation

Φdeform and using correspondences as position constraints. However, it is rarely the

case that correct correspondences can be found by simply comparing the geometry of

both shapes. Even when sophisticated shape descriptors are used, false correspondences

are likely to occur. However, unlike the case of rigid transformations, a single wrong

correspondence can create large distortions in the deformation if its regularization is

too weak. On the other hand, with a regularization being too strong (high stiffness),

the source shape would end up behaving like a rigid transformation and not be able

to accurately match the target surface. We observe that deformation computation is

tightly coupled with correspondence estimation as both measurements contribute to

the ill-posed question of what is a correct match. For this reason, non-rigid alignment

algorithms often employ multiple passes of interleaved correspondence and deformation

computations similar to registration refinement. Let us discuss some of the important

design decisions when addressing a non-rigid registration problem:

3.3.1 Design Decisions

Correspondences. While correspondences computation methods that are invariant

of the initial source pose (e.g., shape descriptors) can capture extreme pose variations
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in the scans, they should be used with extra care. In fact, most shape descriptors

illustrated in Section 3.1 are designed to capture rigid shapes, i.e., local patches that

are matching should be almost identical. In a non-rigid setting, the captured data is

subject to unknown deformations. Consequently, a lower threshold needs to be set for

potential correspondence candidates which leads to higher ambiguity and more false

positives. Additionally, smaller (unfortunately, also less discriminative) patches should

be considered as opposed to the rigid case, since details are generally less distorted in the

high-frequency components. Although in many cases, they might define a good initial

set of correspondences, further refinement based on the measurement of deformation

smoothness is usually necessary to improve accuracy and prune wrong estimates.

Within the context of iterative (or global correspondence optimization) meth-

ods, correspondence computations that take into account the previous pose during opti-

mization (such as the closest point estimation) are particularly interesting for non-rigid

registration. Firstly, dense correspondences can be efficiently computed as opposed to

pose-invariant methods which increases the overall alignment accuracy. Secondly, the

correspondences are no longer searched independently of each other but a globally con-

sistent regularization can be introduced through the deformation and promote correspon-

dence computations in later iterations. Note that an elastic deformation model should

be considered (rather than a plastic one) where the initial shape would represent the

rest state of the deformation.

Deformation Model. As described in 3.2, a large variety of deformation models ex-

ist. The right choice depends on the underlying surface representation, the availability

of prior knowledge about the scanned subject, as well as the accuracy and density of the

correspondence computation. If the deformed surface is a template model, surface-based

deformation techniques are suitable since the surface topology is implicitly defined. On

the other hand, space deformation techniques are necessary when dealing with frag-

mented surfaces such as scanned data.

Most deformation models allow the specification of a regularization (stiffness) pa-

rameter. For shapes, wherein small warps are expected, the use of a strong regularization

is encouraged as it prevents arbitrary distortions due to possible false correspondences.

In general, we also wish to capture large deformations which require more flexibility in

the deformation. In this case, even with a reduced regularization, largely unconstrained

regions should deform in a natural way, i.e., preserve details. This becomes an impera-
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tive requirement whenever correspondences are sparse or the regions of overlap between

both scans are small. Nevertheless, even when dense correspondences are available, de-

tail preserving deformations help to compensate for inaccurate matches in the case of

iterative non-rigid registration methods.

We have seen in Section 3.2 that space deformation techniques, such as embed-

ded deformation, decouple the degrees of freedom of the deformation from the surface

complexity by sparsely resampling the surface. Another example are kinematic skeletons

which are often used in performance capture to restrict the tracking to plausible poses.

The observation here is that natural deformations can be assumed to be smooth, i.e.,

large deformations are more likely to occur in low-frequencies of the surface, rather than

high-frequency ones. A deformation model that has a large number of degrees of freedom

increases the number of optimization variables and, thus, introduces more local minima

in the optimization landscape. Consequently, using the right amount of degrees of free-

dom not only improves efficiency, but also increases robustness during optimization. The

idea of using a coarser level representation can also be translated to surface-based defor-

mation using mesh simplification procedures as described in [KCVS98, BK03, BS08].

Optimization. Non-rigid registration is an inherently ill-posed problem and in con-

trast to the rigid case, it is hard to define whether the determined correspondences

are correct or not. More specifically, when aligning rigid shapes, the problem can be

simply phrased as minimizing the distance between their overlapping regions. For de-

formable shapes, using the same criteria would lead to the trivial solution of minimizing

the correspondence distances and using a very low regularization. Obviously, this would

not yield very meaningful alignments. Regularization energies of (elastic) deformation

models characterize the plausibility of a specific shape deformation by measuring its

deviation from its rest state (which represents a known prior shape). Therefore, a non-

rigid registration problem should be formulated as one that simultaneously minimizes a

deformation energy and a fitting metric (which is specified by correspondences) .

Regardless of the employed deformation model and technique for correspondence

computation, a common strategy for improving robustness in an iterative optimization

framework is to manipulate the energy landscape. The idea consists of gradually chang-

ing certain global parameters in the problem formulation to effectively avoid local minima

in a coarse-to-fine fashion. While in general a global optimum cannot be guaranteed, the

impact of such scheduling procedure can be dramatic in finding the correct solution. One
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important approach consists of progressively reducing the regularization of the deforma-

tion model. Here, the global shape is being aligned first, followed by more and more local

registrations. Another effective coarse-to-fine strategy considers the amount of degrees

of freedom. Starting with a low resolution deformation model, a scheduling procedure

gradually adds new degrees of freedom whenever convergence is detected. Instead of

homogeneously introducing resolution or diminishing regularization, a more optimal so-

lution consists of adaptively modifying these global parameters according to how much

they contribute to the optimization. For example, we may wish to introduce additional

degrees of freedom only in specific regions where strong deformation has been detected.

An important observation here is that a coarse-to-fine approach also improves the cou-

pling between correspondences and deformation as a coarse energy landscape promotes

global consistency during optimization. Besides improving robustness, a multi-resolution

approach can be important for improving computational efficiency. For instance, a non-

linear registration technique could be performed at a coarse resolution level and further

refined with a more efficient linear method at higher resolution.

3.3.2 Related Work

A substantial amount of research has been devoted to non-rigid registration

impacting dynamic shape reconstruction, motion capture, and shape analysis. Most

approaches are specifically designed for particular applications and make special prior

assumptions about the scanned subjects.

Following the taxonomy presented in Figure 3.2, methods for non-rigid alignment

of rigid objects fall into problems of Cat I. Template-based registration methods appear

in a variety of registration problems ranging from Cat II to Cat IV. All registration tech-

niques designed for input scans that are captured from a real-time 3D scanner address

problems of Cat II. Finally, several advanced techniques which make very specific prior

assumptions about the deformation belong to problems of Cat III.

Non-Rigid Alignment of Rigid Objects. Non-rigid scan registration was first in-

troduced to align rigid objects which are affected by low frequency warps, such as those

caused by device non-linearities and calibration errors. To correct such distortions,

Ikemoto and coworkers [IGL03] introduce a non-rigid registration technique that de-

composes the input scans using a coarse-to-fine hierarchy of locally rigid pieces that

are allowed to translate and rotate with respect to one another. The advantage of this
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method is that no specific characterization of the warp is required since a continuous de-

formation is approximated from the convergence of the piecewise rigid model. However,

the running time of this technique is quadratic in the number of patches.

Brown and Rusinkiewicz [BR04] address this scalability issue using thin-plate

splines to represent smooth warps and a hierarchical ICP method to find good feature

correspondences between subdivided patches. An extension of this method for the si-

multaneous alignment of a large number of scans with locally weighted ICP matching

has been recently presented by the same authors [BR07].

Remark: This class of registration assumes little deformation in the scanned

subject. For improved robustness and efficiency, very few degrees of freedom (less un-

knowns) are typically used in the deformation model. A strong regularization in the

deformation also helps to avoid outlier correspondences to tear the shape apart.

Template-Based Registration for Large Deformations. The registration of scans

with large-scale deformations, such as those of an articulated body, requires a more

general and flexible deformation model. Moreover, local shape matching techniques

might fail if the shape is distorted beyond a certain limit. Earlier solutions to this

problem commonly involve the use of template models that are warped toward the input

scans [BV99, ACP03, PMG+05, ASK+05, ARV07]. The template model provides a

strong geometric prior and thus leads to high-quality reconstructions with automated

hole-filling and noise removal.

Correspondence estimation is often facilitated by the use of tracked marker points

or hand-selected feature correspondences. Park and Hodgins [PH06] propose using a large

set of markers to accurately capture the dynamic motion of human bodies.

An algorithm that does not require hand selected markers has been developed

by Anguelov and colleagues [ASP+04] where a joint probabilistic model over all point-

to-point correspondences is optimized between two shapes. While the method is fully

automatic and is able to recover significant movements of articulated parts and non-rigid

deformations, it requires that one of the input shapes is a subset of the other.

A different approach that also requires a template model has been proposed by

Bronstein and colleagues [BBK06]. They address the partial matching problem with

a multi-dimensional scaling algorithm that aims at minimizing the distortion of the

mapping between two surfaces.
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Remark: Because the scanned subject may deform arbitrarily, deformation mod-

els used for this type of registration use a large number of degrees of freedom. While a

weak regularization in the deformation allows the registration to capture large motions,

the correspondence problem becomes more challenging. As a result, these registration

methods either rely on user assistance or automatic but computationally expensive cor-

respondence algorithms which typically also require a template model.

Registration of Real-time Range Scans. Real-time 3D scanners as used in this

dissertation enable the continuous capture of deforming objects and produce dense se-

quences of range scans. In the most general setting, no prior template shape is given and

no markers or explicit feature point correspondences are available. In this case, a true

partial matching problem must be solved, as opposed to a part-in-whole matching as

for template-based techniques. Existing work on the pairwise alignment of dense scans

typically assumes that pairwise scans undergo small deformations while having a signif-

icant amount of overlap. Mitra and colleagues [MFO+07] present a registration method

for dense time-series of point clouds that does not explicitly compute correspondence.

Instead, they aggregate all scans into a 4-D space-time surface and estimate inter-frame

motion from kinematic properties of this surface. This technique requires the deforma-

tion of adjacent frames to be sufficiently small as it is designed primarily for articulated

motions.

Wand and coworkers [WJH+07] introduce a statistical framework that computes

a globally optimal shape and deformation of the complete model over every frame. The

method relies on an initial pairwise registration of all adjacent scans using a non-rigid ICP

variant based on a deformation model proposed in [HTB03]. Pairwise correspondences

are then iteratively improved during the optimization assuming the input scans deform

smoothly over time. Because the surfaces in [HTB03] are represented by point clouds,

deformation is achieved using a skeletal link structure which connects neighboring points.

For manifold surfaces, non-rigid ICP algorithms often use a deformation model

based on smooth local affine transforms. As many degrees of freedom are introduced

in the deformation model, a procedure that iteratively reduces the stiffness improves

robustness to local minima [ACP03, SP04]. While a template model is still required, the

optimal step non-rigid ICP proposed by Amberg and colleagues [ARV07] demonstrates

several successfully aligned examples without the use of hand selected correspondences.
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Remark: Non-rigid registration techniques that are designed to find correspon-

dences in scan sequences also use a large degree of variability in the deformation model.

Because the recording is achieved in real-time, most parts of the surface can be assumed

temporally coherent. While spatial proximity heuristics can be used for correspondence

search between pairs of scans, accuracy is crucial to avoid accumulation of errors when

an entire recording is processed.

Advanced Methods for Non-Rigid Registration. Several researchers have pro-

posed automatic non-rigid registration algorithms that are specifically designed to han-

dle large deformations. Based on recent work on symmetry detection [MGP06] and

extending the caveats of the correlated correspondence algorithm [ASP+04] Chang and

Zwicker [CZ08] solve a discrete labeling problem to detect the set of optimal correspon-

dences and apply graph cuts to optimize for a consistent deformation from source to

target. This global optimization entails a high computational cost (more than an hour

for pairwise registration of meshes with less than 10k vertices) which renders the method

impractical for multi-frame alignment of continuous input scans.

They extend their scheme in [CZ09] using a reduced space deformation model

represented by a volumetric grid that encloses the underlying scan. Linear blend skin-

ning is used to embedded the underlying surface deformation. A decoupled optimization

approach solves for deformation and skinning weights in an interleaved way which makes

the approach particularly well suited for handling articulated subjects. Although sig-

nificant motion and occlusions can be handled, their deformation field representation

breaks down for topologically difficult scenarios such as shapes with nearby or touching

surfaces.

Huang and colleagues [HAWG08] suggested a registration technique that finds

an alignment by diffusing consistent closest point correspondences over the target shape

while preserving isometries as much as possible. Their implementation has proved to be

efficient for large isometric deformations, yet the correspondence search is sensitive to

topological changes and holes that commonly occur in partial acquisition systems.

Salzmann and coworkers [SPIF07] propose a model for isometric deformation

based on dihedral angles of a triangle mesh. Using dimensionality reduction techniques,

they obtain a reduced deformable model that yields excellent results for shape recovery

of inextensible surfaces such as cloth or paper from video sequences.

93



CHAPTER 3. REGISTRATION OF DEFORMABLE SURFACES

Remark: Advanced techniques for non-rigid registration are designed to deal

with significantly larger deformations while no templates are involved. These techniques

often make higher level geometric assumptions about the deformation such as isometry

preservation or quasi-articulated motion. To capture more general deformations, one

common strategy consists of using a tighter coupling between shape matching and warping

in the optimization process.

3.4 Global Correspondence Optimization

Building on the foundational algorithms, introduced in earlier chapters, we now

present a general registration algorithm for partial scans of deforming shapes. We address

the challenges of non-rigid registration within a single non-linear optimization. Our

algorithm simultaneously solves for:

• Correspondences between points on source and target scans.

• Confidence weights that measure the reliability of each correspondence and iden-

tifies non-overlapping areas.

• A warping field that brings the source scan into alignment with the target geometry.

The optimization maximizes the region of overlap and the spatial coherence of

the deformation while minimizing registration error. Poor local minima are avoided

with an iterative execution schedule that detects sub-optimal convergence and repeats

the optimization with improved initial conditions so that a better result is obtained. This

method employs the embedded deformation model, introduced in Section 3.2.4, which

separates the geometric complexity of the scans from the complexity of the optimiza-

tion, thereby enhancing performance and robustness. The non-linear deformation energy

avoids unnatural shearing artifacts by maximizing local rigidity in the deformation.

The proposed approach is robust to considerable deformations and does not re-

quire high-speed acquisition. The method is not restricted to part-in-whole matching,

but addresses the general problem of partial matching where the overlap region is a

subset of both shapes.

Finally, this algorithm requires no explicit prior correspondences or feature points,

which makes it more robust to settings where markers are hard to place and track on

the scanned subject or when feature extraction methods yield unreliable key points.
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Figure 3.8: Our non-rigid registration algorithm simultaneously solves for the affine

transformations of each node of the deformation graph, the corresponding points on the

target shape, and the confidence weights. The latter evolve during the optimization to

identify the region of overlap.

Overview. The core task of our system is the registration of two partial scans of a

deforming object: a source scan is registered to a target scan captured at a different

point in time (c.f., Figure 3.8). Each scan represents only a portion of the entire object.

Since new parts of the object may have come into view and other parts may have become

occluded in between the two captures, the region of overlap is a subset of both scans.

Furthermore, the object may have undergone both rigid and non-rigid deformation, such

as global Euclidean motion, pose changes, or changes in facial expression.

We employ a non-linear deformation system that favors natural deformations by

maximizing both rigidity and consistency. The deformation is controlled by correspon-

dences expressed at points distributed evenly over the source so that each point has

a corresponding position on the target shape. The optimization solves simultaneously

for both the deformation parameters as well as the correspondence positions. Since the

deformation algorithm is designed to favor the most natural deformations, the optimizer

will update the target correspondence positions so as to achieve a natural deformation.

Inconsistent correspondences are penalized and the features of the source and target are
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naturally aligned with one another, since such an alignment leads to a lower deformation

energy state. Since some source points have no corresponding position on the target due

to partial overlap, we augment each correspondence with a weight that is also solved

for by the optimizer. We design an energy functional so that this weight is naturally

brought to zero when an appropriate correspondence cannot be found. In doing so, the

zero-weighted correspondences indicate non-overlapping regions and do not influence the

deformation.

Depth Map Representation. We first develop our work in the context of depth

maps, in which a 2D image in the xy-plane stores a depth value along the z-direction. A

more general technique will be presented in Section 3.5. Our data is acquired using the

range scanner based on structured light [WLG07] described in Section 2.3. Please note

that, although the scanner has a high frame rate, our registration algorithm is robust

under much lower frame rates. We demonstrate examples where the registered scans are

spaced as many as 20 frames apart. A different 3D triangle mesh is extracted for both

the source and target scans from their respective depth maps by triangulating the pixel

grid and assigning the z-direction of each vertex to be the corresponding depth value.

More details on how we process the data can be found in Section 2.5.

3.4.1 Coupled Global and Local Deformation

Although the embedded deformation method (c.f. Section 3.2.4) can, in principle,

represent both rigid and non-rigid deformations, the performance of our registration

system is enhanced by modeling these two quantities separately. Thus, we augment

the embedded deformation framework with a global rigid transformation defined by a

rotation matrix R (parameterized in axis-angle form) and a translation vector t. The

rotation is relative to the center-of-mass g of the scan. The source graph nodes and mesh

vertices are deformed by first applying the local non-rigid embedded deformation routine

and then the rigid transformation so that a vertex vj is transformed to ṽj according to:

ṽj = Φglobal ◦ Φlocal (vj) , (3.54)

where

Φglobal (vj) = R(vj − g) + g + t (3.55)

and

Φlocal (vj) =

n∑

i=1

wi(vj) [Ai(vj − xi) + xi + bi] . (3.56)
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This deformation model forms the first building block in our overall optimization

strategy. Both the global rigid transformation and the per-node affine transformations

are treated as unknowns in the optimization and only affect the fitting energy as shown

in Section 3.4.2. The two regularization functionals Erigid and Efit remain unchanged

from this original formulations in Section 3.2.4.

3.4.2 Correspondences

For each graph node, we associate one correspondence value that indicates the

corresponding position on the target shape. This position is initialized via a closest

point computation and subsequently updated by the optimizer. Since our range scans

are created from captured depth maps, the depth map itself provides a natural param-

eterization for each scan. Thus, we represent the correspondence position for node i by

its (ui, vi) values in the parameter domain of the target depth map. The function c(ui)

maps from the parameter domain back to the 3-D position:

c(ui) =


 ui

c(ui)


 , (3.57)

where ui = [ui, vi]
t and c(ui) is a scalar function that gives the z-value of the mapped

point.

In practice, we obtain better performance by allowing (ui, vi) to be transformed

by the deformation model’s rigid transformation and define the transformed coordinates

ũi according to:

ũi =


 1 0 0

0 1 0


 (R(c(ui)− g) + g + t) + di. (3.58)

We introduce the energy term Efit, which strives to move each source graph node

to its corresponding position on the target shape:

Efit =

n∑

i=1

‖x̃i − c(ũi)‖22 , (3.59)

where x̃i is the deformed position of node i. The (ui, vi) parameters for each graph node

become unknowns of the optimization, which allows the corresponding points to move

along the surface of the target scan. This parameterization of the target scan is a key

ingredient of our method, since it automatically constrains the corresponding points to

lie on the target scan and avoids the need for re-projection during the optimization as

in the case of non-rigid ICP approaches.
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Subsequent numeric computations (Section 3.4.4) require computing partial deriva-

tives with respect to the target scan’s parameter domain. For efficiency and numeric

robustness, we precompute the required derivatives by first building a continuous ap-

proximation of the target shape. Since our shape is defined on a function graph rather

than a manifold, we favor a weighted least squares (WLS) approximation using a 2-D

quadratic polynomial basis [1, u, v, uv, u2, v2] and a Wendland function of degree 5 as

a weighting function (see [Wen05] for details). Partial derivatives are precomputed for

each pixel in the depth map and bilinearly interpolated at runtime.

3.4.3 Partial Overlap

Figure 3.9: Weighted

least squares (WLS) ap-

proximation.

One principle challenge of our registration frame-

work is the ambiguity introduced by scans that only par-

tially overlap one another. For some portions of the source

mesh, no corresponding point exists on the target and this

region of overlap is not known a priori. Instead, our sys-

tem computes it automatically. We accomplish this task by

making a modification both to the data representation and

the correspondence energy functional.

Each range image contains portions where object

measurements were obtained and “empty” regions where no

object was detected. We preprocess the target range image

by filling each empty pixel with a large value l so that the empty regions are replaced

by deep holes after the mesh is reconstructed (see Figure 3.9). We set l to be twice

the maximum depth value measured by the scanner so that hole regions lead to a large

penalty in the fitting energy Efit. One consequence of this change is that the hole regions

will be treated as outliers in the WLS reconstruction due to the disparity between the

object depths and the hole depth, leading to artifacts in the reconstruction. Thus, we

perform a feathering operation in which a morphological erosion detects the border of the

object region, and a smoothing filter is applied to the hole and border regions to ensure

a smooth blend between the two [HSZ87]. The closest point variables (Section 3.4.2)

do not distinguish between object geometry and hole geometry and are free to move

between the two via the (u, v) mapping. Second, we associate a weight parameter ωi
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with each correspondence and modify Efit as follows

E∗fit =
n∑

i=1

ω2
i ‖x̃i − c(ũi)‖22 . (3.60)

Finally, we introduce the confidence energy term

Econf =
n∑

i=1

(1− ω2
i )

2. (3.61)

Values of ωi close to one indicate a reliable correspondence, while values close to zero

indicate that no appropriate correspondence is found. The Econf energy aims at maximiz-

ing the number of reliable correspondences by pushing the weights towards one, and thus

maximizes the region of overlap. Now we consider what the optimization may do when a

portion of the source mesh has no match on the target. First of all, we force each graph

node to have some correspondence on the target regardless of whether there actually is

an overlap between that portion of the source and the target. Without the modifications

presented in this section, partial overlap would result in many bad correspondences and

cause significant artifacts in the computed deformation, since the bad correspondences

would pull the target shape in incompatible directions. Such unnatural deformations

are high energy states, since the deformation model favors smooth deformations that

maximize rigidity.

However, using our ω formulation, the source regions that are not present in the

target can freely match to the hole regions. There is a high cost in terms of E∗fit to

such matches as the hole region is far away. Again, deforming the source to the position

of correspondence in the hole also yields a high energy, since such large deformations

are penalized. Thus, the minimum energy configuration naturally occurs when the ωi

parameter is reduced to zero by the optimizer. While this incurs some cost from Econf,

the cost is less than the alternatives. As a consequence, the optimizer naturally detects

non-overlapping regions via the ωi parameters (Figure 3.8).

3.4.4 Optimization

We sum the individual energy terms from the previous sections to form the full

objective function of our optimization:

E = αrigidErigid + αsmoothEsmooth + αfitE
∗
fit + αconfEconf. (3.62)

The unknowns comprise the global rigid transformation, the affine transformations of

the deformation graph, the (u, v) parameter domain coordinates for each graph node
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correspondence, and the confidence weights ωi for each node. The number of optimization

variables is thus 15n+ 6 with n the number of deformation graph nodes.

We solve this nonlinear least-squares problem using the Levenberg-Marquardt

algorithm [MNT04]. Since the system matrix is sparse, we solve the normal equations in

each iteration using a direct solver that employs sparse Cholesky factorization [SG04]. A

simple heuristic is employed to automatically adapt the optimization weights. Initially,

αrigid = 1000, αsmooth = 100, and αconf = 100. Each value is halved whenever |Fk −
Fk−1| < 10−5(1 + Fk), with Fk = E(θk), until αrigid < 1, αsmooth < 0.1, and αconf < 1.

The weight αfit is held constant at 0.1 during the optimization. The adaptation of weights

initially favors global rigid alignment and subsequently lowers the stiffness of the object to

allow increasing deformation as the optimization progresses. This automatic procedure

is used for all shown examples.

Iterative Improvement. We detect convergence when |Fk − Fk−1| < 10−6(1 + Fk).

As with any non-linear optimization, our system converges to a local optimum that may

not represent the best possible global solution. We employ an iterative improvement al-

gorithm to find a better local minimum by teleporting the solution to a different position

in the energy landscape and restarting the optimizer from this new position. When the

system converges, all correspondences are recalculated via a closest-point computation.

Next, poor correspondences are detected using three criteria. A correspondence is poor

if it is in a hole region, if the distance from the source graph node to the corresponding

point on the target is greater than 2 cm, or if normals are inconsistent. A surface normal

is maintained for each graph node and transformed along with the graph deformation. If

the dot product of this transformed normal with the surface normal at the corresponding

position on the target shape is less than 0.6, then the normals are considered inconsistent.

The ω value for each poor correspondence is set to zero, and the ω value for all others

is set to one. These heuristics are executed every time the optimization converges, and

the optimizer is restarted with the new correspondence and ω values. The entire process

(including the iterative improvement) converges when |Fk − Fk−1| < 10−8(1 + Fk).

3.4.5 Results

To illustrate the performance of the coupled correspondence optimization method,

we conduct a series of experiments on synthetic data and real scans. The results are then

compared with those of two recent non-rigid ICP variants. Our proposed global corre-
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spondence optimization algorithm and N-ICP 1 implementation were both performed on

a 3.0 GHz Quad-Core Intel Xeon machine with 8 GB RAM. The longest computation

was for the torso example from Figure 3.14 and required 219 iterations until convergence

which took 2 min 19 s in total.

Convergence and Robustness. Our first test case (Figure 3.10) evaluates the per-

formance of our method on synthetic data with given ground truth correspondence. The

source depth map is created by sampling a digital model of an elephant. We simulate

a pose change by applying a warp to this model in order to obtain the deformed target

shape. In addition, parts of both surfaces have been removed so that only subsets of

both models are in correspondence.

source
21,365 vts.

target
20,444 vts.

initial
alignment

final
registration

deformation graph
329 nodes

Figure 3.10: Evaluation with synthetic data.

The optimization correctly classifies this region of overlap by solving for appro-

priate correspondences and confidence weights as indicated by the color-coded energy

terms in Figure 3.11. Large fitting errors Efit are balanced by low confidence weights and

hence a high value in Econf. Since the objective function includes the augmented fitting

term E∗fit, where the squared distances to the corresponding points are scaled by the

confidence weights, an optimal trade-off between alignment and deformation is found.
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The graph in Figure 3.12 illustrates how the distance of the corresponding points with

respect to the ground truth data evolves as the optimization progresses.

min

max

Econf Efit Esmooth Erigid

Figure 3.11: Different energy terms of the objective function.

optimization

correspondence error

error

max

RMS

iterations
0 100
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Figure 3.12: Left: Evolution of distance to ground truth correspondences during op-

timization. Right: Maximum and RMS error relative to the bounding box diagonal.

In Figures 3.13 to 3.15 we apply our method to real range scans. To simulate the

effects of fast motion, we skipped several frames for the target shape. Figure 3.13 shows

non-rigid registration of scans of a human face.

Our algorithm accurately captures the deformation on the cheeks, a mostly

feature-less region. At the same time the relevant features of the face, such as nose,

mouth, eyes, and ears are correctly aligned. Figures 3.14 and 3.15 show registration of

scans of articulated objects, where most of the deformation is concentrated on a small

region of the model. These examples are challenging for a marker-less algorithm, since

the surface parts that contain most of the important features, the face or the fist, are

substantially different in both scans and overlap only partially. Most of the correspon-

dences are located on the torso and the arm, so that these regions dominate the energy

terms of the objective function. Still, our algorithm is capable of aligning the facial
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source
44,233 vts.

target
44,360 vts.

initial
alignment final registration

deformation graph
798 nodes

source
40,143 vts.

target
42,657 vts.

initial
alignment final registration

deformation graph
731 nodes

Econf Efit Esmooth Erigid

Econf Efit Esmooth Erigid

Figure 3.13: Registration of face scans. The deformation energies Esmooth and Erigid

illustrate that most of the deformation is concentrated on the cheeks. Both examples

also contain a substantial rigid motion that is accurately solved for by the optimization.
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features and accurately determines the regions of overlap.

source
120,555 vts.

target
119.518 vts.

initial
alignment final registration

deformation graph
336 nodes

Econf Efit Esmooth Erigid

Figure 3.14: Registration of a torso. As indicated by Econf, large regions in the face

are only present in one of both models.

In this respect, the coupled optimization of correspondence points and deforma-

tion can be seen as a form of point-to-plane metric used for rigid ICP (c.f., [CM92])

where sliding along the surface is allowed and featureless regions would not penalize the

optimization. The main difference is that in this optimization, the correspondence points

with high confidence weights remain on the target surface, reducing the effect of approx-

imation errors using a point-to-plane metric. Section 3.5 will show that for sufficiently

high resolution of the target scan mesh, the point-to-plane strategy can achieve similarly

accurate results.

In Figure 3.15, the algorithm correctly captures the bending of the arm but

produces a slight misalignment in the fist. As the visualizations of the Econf energy

show, few reliable correspondences have been found in this region. This is mostly due

to the inferior quality of the input data that leads to a poor WLS approximation of the

depth map.
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source
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target
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Figure 3.15: Registration of a bending arm. From this acquisition direction, the motion

of the subject is considerably tangential w.r.t. to the surface.

N-ICP 1 N-ICP 2 our methodinput datasource

target

Figure 3.16: Performance comparison of the registration between two depth scans of a

draping table cloth. While non-rigid ICP methods fail to preserve isometry, our method

converges to the correct result.

Comparison to Related Work. The performance of different registration methods is

shown in Figure 3.17. For each algorithm, we examine four test cases on the torso in order

to visualize how different the poses of the input data can be, so that the registration

is still able to converge successfully. We increase the number of frames between the
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source and target input scans for each test as shown in the first four columns. The last

column shows the first occurrences of notable misalignments for each approach. The

initial alignment of our input data as shown in the first row is followed by a sequence

of rigid alignments performed using rigid ICP with geometric stable sampling [GRIL03],

normal compatibility pruning, and the point-to-plane metric. Subtle misalignments are

already visible between frame 0 and 2.

N-ICP 1: The third row of Figure 3.17 shows the best results we could achieve using

our implementation of the optimal step non-rigid ICP method (N-ICP 1) from [ARV07].

Instead of using the deformation model from [ACP03] as in the original work, we em-

ployed the the model from [SP04] which is known to produce comparable results The

input meshes were decimated to 5% of the original size using the algorithm from [GH97]

as the registration algorithm relies on dense correspondences which cannot be handled

efficiently by the deformation model for our high resolution input scans.

Although a correct alignment could be found for the easiest test case, the regis-

tration fails for a registration between frame 0 and 6. The primary issue here is that the

employed point-to-point metric in N-ICP 1 penalizes sliding of correspondences during

the deformation process. A noticeable shrinking can also be observed which is due to

the employed deformation model which only enforces smoothness over the local affine

transforms.

N-ICP 2: The non-rigid ICP method described in [PHYH06, PMG+05] uses a com-

bination of point-to-plane and point-to-point metric is used. The deformation model is

also based on smooth affine transformations [ACP03]. The artifacts on the boundaries

are due to the fact that correspondences to boundary edges were not pruned.

Besides the slight misalignment of the arm region for the pair of frames 0 and

6, the method breaks down more severely on the face region for the frames 0 and 12.

The warped source shape is geometrically closer to the target scan than our approach.

However the correspondences are semantically wrong as illustrated on the texture visu-

alization in last row of Figure 3.17. We can depict semantic regions such as the mouth,

the nose, the eyes, and the ears on the deformed source mesh. Ideally, the texture of each

semantic region should correspond to its geometry. In addition to the slight geometric

distortions on the nose, we observe that N-ICP 2 fails in matching the mouth region.

The texture of the upper lip is matched to the geometry of the lower lip. Our method

does not show any visible misalignments.
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Figure 3.17: We compare the performance of our method with two recent non-rigid

ICP methods (blue) and highlight misalignments (yellow). While for the frames 0 and

12 the results of N-ICP 2 are geometrically closer to the target, the texture visualization

below (purple) shows that our method yields a semantically more correct alignment.
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All methods break down for the registration between frame 0 and 20. As the

amount of overlaps is too small for this pair of input data, our method cannot find

reliable correspondences and a faithful alignment is not returned.

Table Cloth: We perform a comparison for the registration between two frames of a

draping cloth falling onto an invisible sphere as shown in Figure 3.16. This example was

created using a cloth simulation [GHF+07] and then depth sampled. The cloth input

is exceptionally challenging as the deformation is more complex than for articulated

objects and no stationary rigidness is present. Correspondence search is therefore more

difficult and a correct registration would basically rely on an appropriate regularization

during the deformation process. Unlike earlier non-rigid ICP methods, the alignment of

our registration algorithm is able to recover the amount of isometry between the source

and target shapes. The superior quality of our method is amplified when comparing the

distortion of the checkers around the folded regions.

Final Warp. The continuous WLS approximation of the target scan is essential for the

optimization, since it allows a unified treatment of valid depth samples and holes, and

gives access to derivative information of the corresponding points c(ui, vi) with respect

to the unknowns (ui, vi). As a result, the above registration procedure computes a warp

between the source scan and the WLS approximation of the target. Since the WLS

approximation smooths some features, our algorithm performs one final step to find a

deformed source scan that matches the target scan more accurately. The correspondence

positions are projected from the WLS approximation onto the target scan. Any projected

correspondence that is farther than 2 cm from its source graph node is discarded. The

remaining correspondences are used to solve one final deformation problem in which they

are fixed as constants and are not controlled by the optimization. The per-node ω values

are also removed from the optimization, so that only the deformation model parameters

are solved for. This essentially warps the source scan directly to the target scan using

the valid correspondences found during the optimization.

Limitations This framework relies on the fact that the target surface is parameterized.

Although most acquisition systems provide a parameterization implicitly (e.g. depth

maps or 2D sweep patterns), we will generalize this coupled optimization in Section 3.5

to handle manifold surfaces without the requirement of computing a parameterization on

the target surface. In particular, we will replace the explicit correspondence optimization

by an implicit point-to-plane error metric in the deformation computation.
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Combining the correspondence and deformation estimation into a single, non-

linear optimization is essential for the effectiveness of this method. However, this global

scheme leads to a comparatively high computational cost for real-time acquisitions.

One important means to improve performance is the reduced deformable model

that decouples the computational complexity from the size of the input scans. We observe

that a uniformly sampled graph does not adapt to the geometry or the deformation of the

processed data. Consequently, the smallest feature that we want to capture determines

the resolution of the graph and thus leads to highly over-sampled graphs in mostly

rigid regions. On the other hand, if the graph is too coarse, small-scale deformations

cannot be captured accurately. This effect is noticeable for the bending arm example

(see Figure 3.15), where the fingers are not appropriately matched due to inadequate

resolution of the deformation graph. Section 4.2.3 will introduce an adaptive graph

refinement method to overcome this limitation.

Another limitation is that our deformation complexity is decoupled from the

mesh resolution. This fact prevents us from capturing very fine detail changes such

as wrinkles in facial expressions. To overcome this problem, we consider an additional

detail synthesis pass that uses dense correspondences and a linear deformation model for

better efficiency. One such method is described in Section 4.2.5.

3.5 A Robust Non-Rigid ICP Algorithm

To ground our preliminary findings, we now derive a simpler algorithm that

consolidates all the important ideas presented in earlier sections. In short, we wish to

extend our global correspondence optimization [LSP08] to handle general surface (i.e.,

not a depth map) but, at the same time, avoid the headaches associated with the con-

struction of a parameterized proxy. To this end, we develop a special variant of non-rigid

ICP that achieves comparable accuracy and robustness for (smooth!) polygonal meshes.

Additionally, the new algorithm is considerably easier to implement and can handle in-

complete general surfaces. Finally, we successfully demonstrate the effectiveness of this

method for solving non-rigid registration problems in several applications: geometry and

motion reconstruction [LAGP09], dynamic shape completion [LLV+10], and even facial

rigging [LWP10].
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3.5.1 Requirements

Global Consistency. The key insight given by our previous global correspondence

optimization framework is the importance of coupling correspondence and deformation

optimization. When both elements are coupled, correspondences can be determined in

a globally spatial consistent fashion, i.e., matching a point would affect all other points.

While earlier non-rigid ICP algorithms interleave the two procedures in an attempt to

achieve the same effect, each deformation step is bounded by the closest point estimate

(or some other proximity heuristic). Our correspondence optimization framework, how-

ever, overcomes this issue by allowing the correspondences to move along the target

surface within the continuous optimization.

Local Rigidity Maximization. As-rigid-as possible deformations are essential for

non-rigid matching. Since we consider an iterative approach, any surface distortion

during the optimization procedure, would prevent accurate matches in further iterations.

We discovered that non-linear deformation models that locally maximize rigidity (such

as embedded deformation) are remarkably effective in preserving details for accurate

surface matching.

Stiffness Reduction. Our experiments show that non-rigid registration should gener-

ally begin with a strong stiffness which is progressively reduced whenever convergence is

detected. Conceptually, this strategy follows a coarse-to-fine pattern (similar to a branch

and bound approach) in the energy landscape where additional degrees of freedoms are

introduced step-by-step. Even when the stiffness is known a-priori, this heuristic is able

to greatly avoid local minima.

3.5.2 Implementation

The non-rigid ICP pipeline is directly derived from the rigid case as detailed in

Section 3.1.3. Instead of a rigid transformation, we now have a deformation optimization

stage (c.f. Figure 3.18) in which we can can control its regularization (i.e., global consis-

tency). The non-rigid framework is divided into an inner an outer loop. The rationale

behind this design principle is associated with the stiffness reduction strategy. The rule

consists of keeping the same deformation regularization (i.e. same energy landscape)

and solve the best we can using multiple iterations of closes point estimation until we

reach convergence (inner loop). Once convergence is detected we may reduce the stiffness

and repeat the entire procedure until the regularization parameter has reached a user

prescribed threshold.
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Figure 3.18: Our robust non-rigid ICP algorithm follows the design principles of a

standard rigid ICP pipeline. As opposed to the rigid case, the transformation stage is

replaced with a deformation optimization and regulates the stiffness of the deformation

in the outer loop.

Starting with an initial alignment (can be quite far apart in practice) between a

source and target mesh, Sd(t1) and Sd(t2), the objective is again to compute the deformed

mesh S̃d(t2) = Φ(Sd(t1) such that St1∩t2(t1) overlaps and S(t1) \ St1∩t2(t1) deforms in

an “natural” way. Depending on the density of Sd(t1), we may wish to downsize the

resolution in order to reduce redundant computation for more efficiency. The uniform

resampling algorithm presented in Section 3.1.3 is generally a good choice and produces a

new set V̂ containing NC vertices. We usually choose a target sampling distance lC equal

to half of the average edge length distance for a uniformly sampled target mesh Sd(t2).

Once the closest points ci ∈ Sd(t2) are determined for each source vertex vi ∈ Sd(t1), we

obtain a set of correspondence pairs expressed by the tuple (vi, ci) where i = 1, . . . , NC .

We decorate each correspondence ci with a discrete confidence weight wi ∈ {0, 1} and

initialize ot with wi = 1. Next, a pruning procedure sets wi = 0 for all correspondences

ci that lie on the mesh boundaries of Sd(t2), are too far from their source vertices vi,

or disagree with their normals (c.f. Section 3.1.3). The pruning step is an essential for

handling the general part-in-part problem and can be viewed as a discrete form of overlap

region St1∩t2(t1) optimization. So far, we reused the same components of a standard rigid

ICP implementation.
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Deformation Optimization. We consider embedded deformation as the underlying

deformation model (c.f. Section 3.2.4) and use the closest points ci ∈ Sd(t2) as initial

constraint estimates. Graph nodes should sample the target surface with a slightly lower

density than V̂. We generally use the same uniform sampling algorithm as for V̂ and use a

target sampling distance lG = 2 lC . The regularization energies Erigid and Esmooth remain

unchanged. We simply replace the fitting term which originally prescribes positional

constraints with a combined point-to-plane and point to point energy:

Efit = Eplane + αpoint Epoint

=
(
n> (ci − vi)

)2
+ αpoint ‖ci − vi‖22 , (3.63)

where n ∈ R3 is the unit normal vector of ci. The point constraint Epoint is only used

to stabilize convergence since the correspondence point estimations are discrete. We

typically choose a small weight αpoint = 0.1. The point-to-plane term Eplane allows the

correspondences ci to glide along the surface tangents of Sd(t2) during the optimization.

In this way we approximate the coupling of correspondence and deformation optimization

within a single continuous optimization. We accomplish global consistency by incorpo-

rating the regularization terms into a global objective function:

Etot = Efit + αrigid Erigid + αsmooth Esmooth , (3.64)

where the choice of αrigid and αsmooth is subject to a stiffness relaxation procedure ex-

plained in the next paragraph. Like Erigid, the partial derivatives of the point-to-plane

energy Eplane are also quadratic in their optimization variables. Similarly, the Gauss-

Newton method is ideal for this non-linear optimization. Notice that the non-linear

optimization of Etot might itself take multiple cycles depending on the scale of αrigid

and αsmooth. Therefore, it is essential to let Etot converge before recomputing the closest

points (omitting this step is a common mistake!). We refer to Section 3.2.4 for more

details on how to efficiently solve for the deformation Φ(Sd(t1).

Stiffness Reduction. For each pairwise alignment, we initialize the registration with

high stiffness weights αsmooth = 100 and αrigid = 1000. We then alternate in each

iteration between correspondence computation and deformation by minimizing Etot. If

the relative total energy did not change considerably between iterations j and j+ 1 (i.e.,

|Ej+1
tot −Ejtot|/Ejtot < σ), we relax the regularization weights to αsmooth ← 1

2 αsmooth and

αrigid ← 1
2 αrigid. As mentioned previously, this relaxation strategy effectively improves
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the robustness by avoiding suboptimal local minima and allows handling pairs of scans

that undergo significant deformations. In all our experiments we use σ = 0.005. The

iterative optimization is repeated until αrigid < 0.1 or until a maximum number of

iterations Nmax = 100 is reached.

3.5.3 Results and Discussion

This simple non-rigid formulation of our global correspondence framework faith-

fully translates the concept of correspondence optimization to an ICP pipeline. As

before, this method is designed for acquisition settings where the region of overlap is not

known a priori, no explicit correspondences are provided, and minimal assumptions on

the type of deformation are made. Although this approach involves additional closest

point computations, it is in practice more efficient than performing a global correspon-

dence optimization since surface parameters u need not to be solved. Additionally,

the construction of a continuous proxy representation (WLS approximation) can also

be disregarded. Large deformations can be recovered using this algorithm without the

help of any (usually less reliable) high level and pose invariant shape descriptors. The

performance of our non-rigid ICP algorithm is depicted in Figure 3.19, 3.20, and 3.21.

optimization

initial
alignment

final
registration

Figure 3.19: Pairwise non-rigid registration of torso. The red dots describe the cor-

responding points ci on the target surface where red means wi = 1 and black wi = 0

The only requirement here is that the target mesh Sd(t2) should be smooth and

dense enough such that its tangent planes n>x = 0 provide a good local approximation

of the surface, i.e., S(t2) should be differentiable. Note that this local linearization is just

the first order bi-variate Taylor approximation of S(t2)(u) about ci. Although higher-

order Taylor expansions may be considered for better approximation, we have not yet

fully examined this option.
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Figure 3.20: High accuracy non-rigid registration for ear-to-ear reconstructions. Three

Light Stage scans (left, center, right) are aligned with each other in the first two rows.

The third row shows a result after mesh integration using Poisson reconstruction where

the textures are simply blended by linear combination.

While Erigid itself enforces detail preservation through local rigidity maximization,

combining it with Esmooth can be interpreted as a form of elasticity constraint w.r.t. a

rigid motion invariant rest-state pose R Sd(t1) + t. This is a reasonable assumption for

performing registration between deformed shapes of the same subject (problems of type

Cat II). For shrink-wrapping purposes (Cat IV problems), such as warping a generic

template model onto a custom scan, one might consider reinitializing the initial pose in

an interleaved fashion in order to achieve a plastic deformation behavior. This can be

easily achieved by simply restarting the entire process and updating the new initial pose

Sd(t1)m+1 → S̃d(t2)m.
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Figure 3.21: Fully unsupervised shrink-wrapping of a generic human body template to

a target scan. Even from an extremely different initial alignment (shapes are looking in

opposing directions), the registration can be successful. Notice that no sparse feature

were involved.

This non-rigid registration framework is flexible in the sense that arbitrary sparse

constraints (user-guided, marker-based, or automatically computed) can be trivially in-

corporate using an additional point-to-point constraint. However, for many applications

such as multi-frame tracking, adding positional constraints based on shape descriptors

can be highly unreliable as single wrong correspondence may hinder a successful con-

vergence. We therefore argue that reliability can be effectively satisfied only based on a

combination of proximity heuristics and global consistency.

Limitations. As highlighted above, this non-rigid ICP requires the target surface to

be smooth and densely sampled. If this is not the case, a surface parameterization

is required and we may resort to our more complex global correspondence optimization

framework. Furthermore, depending on the initial pose, the algorithm does not guarantee

convergence as we use a standard Gauss-Newton solver. It also remains unclear, how

far apart source and target mesh can be, such that the optimization still leads to the

correct answer. Unfortunately, for very large deformations, convergence to a suboptimal

local minimum cannot be fully avoided as illustrated in Figure 3.22. Ultimately, the
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optimization

initial
alignment

final
registration

failed registration

Figure 3.22: Failed shrink-wrapping example. While the right arm is well-aligned, the

left one converged to the body instead of the arm.

problem of partial registration of deforming scans is inherently ill-posed and no algorithm

will be applicable for all acquisitions scenarios. Hence, the performance of different

algorithms is generally assessed through empirical experiments using appropriate ground

truth information (such as texture markers).
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4
Dynamic Shape Reconstruction

animation reconstruction

dynamic shape
reconstruction

automatic
rigging

training

Real-time acquisition techniques pro-

duce continuous sequences of incomplete

scans; non-rigid registration methods estab-

lish correspondences between these consecu-

tively captured scans by warping one shape

onto another. All in all, these algorithms are

foundational building blocks for the central goal of this thesis, namely the reconstruc-

tion of complete digital models in motion. Until now, we have been only looking at

pairs of shapes. Now we will extend our ideas to process longer recordings with numbers

of frames up to two orders of magnitude larger. Consequently, this step will allow us

to capture dense surface motion in addition to high-resolution shapes. Having the goal

in mind to recreate an animated, complete shape and to fulfill the first stage of our

animation reconstruction pipeline (figure on the right) we propose the following:

Hypothesis: Through transitivity, high-resolution geometric details can travel across

multiple frames to fill in all the occluded regions (where detail is missing) and better

estimate the surface dynamics in those regions.
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This chapter investigates two important problems in dynamic shape reconstruc-

tion:

Problem 1: The first objective consists of recreating a full digital representation of a

deforming subject that is consistent across a sequence of input scans. In particular, high

frequency dynamics have to be accurately captured and separated from acquisition noise,

and fine-scale geometric details must be reproduced in occluded areas. For regions with

largely missing data due to insufficient coverage or (self-) occlusions, we need to resort

to additional geometric priors. We show that tracking a coarse template model (using

our correspondences) in an initial pass considerably simplifies the problem of hole-filling

and dealing with complex deformations.

Problem 2: While being often difficult to build, template models also have the disad-

vantage of having a fixed topology. In particular, they do not explicitly model multiple

surface layers (such as cloth gliding on a human body) and topology variations in the

subject. Therefore, our second goal consists of simply filling holes in incomplete acquisi-

tions with challenging topology changes by skipping the requirement of tracking surface

points through the entire recording. While shape completion is a well-studied problem

for static surfaces, we require in a dynamic setting to fill holes with patches that naturally

deform with the rest of its surroundings. Hence, temporally coherent shape completion

requires accurate correspondences to be established (at least) within a short temporal

window and should be sufficiently robust to handle severe topology variations.

Both problems highly depend on the quality of inter-frame correspondences which

we obtain through non-rigid registration. Thus, we are faced with the same challenges

as those presented in the previous chapter, namely deformations that are too large and

overlapping regions that are too small. Unfortunately, processing multiple frames consec-

utively brings additional headaches. While we assume that our input scan sequences are

reasonably coherent over time (moderate deformations), we cannot fully avoid misalign-

ments in each non-rigid registration step. By successively computing correspondences

through the entire recording, tracking accuracy may deteriorate and result in accumula-

tion of errors and drifts.

We begin this chapter with an overview of recent techniques (c.f., Section 4.1)

developed for reconstructing dynamic shapes from sequences of real-time input scans.

For completeness, we also discuss several hole-filling techniques designed for subjects
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that are statically captured (i.e., no temporal coherence).

The framework in Section 4.2 addresses the first problem and uses input data

captured from the single-view real-time structured light scanner presented in Weise and

coworkers [WLG07]. The approach solely relies on a crude approximation of a template

model and uses it to reconstruct large scale deformations. Aggregated fine-scale dynamics

are being reintroduced in a second pass. While primarily designed for a single-view setup,

this algorithm can be easily extended to multi-view reconstruction.

To tackle the second problem, we develop a system in Section 4.3 that generates

a sequence of watertight meshes by filling large holes in scanned data with temporally

coherent patches. To eliminate the requirement of using a template, our framework

processes input data obtained from the multi-view photometric stereo system introduced

in Vlasic and colleagues [VPB+09].

4.1 Related Work

There are generally three ways to obtain a complete, animated digital model

from a sequence of incomplete scans captured in real-time:

• Template-based methods inherently produce a complete representation of the

scanned subject. The dynamics of the template are typically inferred using tracking

or non-rigid registration techniques. In particular, a full motion field can be directly

deduced from the surface points on the template.

• Methods that do no involve a template address a significantly more challeng-

ing problem of 4D space-time surface reconstruction with time being treated as an

additional dimension to a given 3D point cloud. This approach is typically charac-

terized by requiring the subject to deform smoothly over time and not permitting

fast complex motions.

• Filling holes in each frame independently would also produce to a sequence of

watertight meshes. However, because of large (self-) occlusions (even in a multi-

view acquisition setup), hole-filling patches will have inconsistent dynamics. While

most shape completion techniques are limited to static objects, some recent meth-

ods were introduced to lift these restrictions. These algorithms can handle very

large pose variations but are limited to quasi-articulated motions. Approaches in

this category do not deliver any motion vectors.
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Let us review some of the major research dedicated to these three different av-

enues in more detail:

Template-Based Methods. Template models are particularly useful in closing large

holes and handling complex deformations during registration as highlighted in Sec-

tion 3.3.2 for the pairwise case [BV99, ACP03, PMG+05, ARV07]. The same holds

in a multi-frame setting where surface data is tracked or correspondences established

in order to animate the template. As opposed to a pairwise setting, manual inter-

vention between each frame is impractical when processing entire recordings. Also,

because some of these automatic methods are prohibitively expensive in terms of com-

putation [ASP+04, BBK06], they are usually not suitable for long scan sequences.

While motion capture systems [Vic] are still widely spread in the industry, Park

and Hodgins [PH06, PH08] developed a system that uses a very dense and large set of

markers to capture and synthesize dynamic motions such as muscle bulging and flesh

jiggling. While high resolution motions can be captured accurately, marker-based motion

capture systems typically have a time-consuming calibration process and high hardware

cost, and require actors to wear unnatural skin-tight clothing with optical beacons.

Marker-less methods are widely used in the acquisition and modeling of facial

animations. In [ZSCS04], the deformation of an accurate face template is driven by

time-coherent optical flow features and geometric closest point constraints. Since many

features in a human face are persistent, their system can robustly handle long sequences

of facial animations.

More recently, several papers avoid the use of markers to reproduce complex ani-

mations of human performances and cloth deformations from multi-view video [BPS+08,

dAST+08, VBMP08]. The latter two methods initialize the recording process with a high

resolution full-body laser scan of the subject in a static pose. A low-resolution template

model is created to robustly recover complex motions by combining various tracking and

silhouette fitting techniques. Details of the high resolution models are then transferred

back to the animated template. While large-scale deformations such as flowing garments

are nicely captured, fine-scale geometric details such as folds that are not persistent in the

surface are captured in the high-resolution model, remaining permanently throughout

the reconstructed animation and possibly yielding unnatural deformations.

An extension of this approach has been presented in [ATD+08] that follows a

similar rationale to our method presented in Section 4.2. A low-resolution template is
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tracked and subsequently enriched with local detail extracted from the acquired data.

However, the specifics of this system differ substantially from our solution. The input

stems from a multi-view acquisition system using eight video cameras, the template

tracking is based on a shape-skeleton and silhouette matching, and the detail synthesis

is performed based on surface normals reconstructed using shape from shading.

Registration Without A Template. Since creating an accurate and sufficiently

detailed template of a deforming object can be difficult, various methods have been

proposed that do not rely on a complete model.

Explicitly computing correspondences over long sequences is an error-prone pro-

cess. To avoid these issues Mitra and colleagues [MFO+07] cast the problem of computing

hole-free surfaces from unregistered dynamic performance geometry as a spatio-temporal

4D interpolation problem.

Süssmuth and coworkers [SWG08] introduced a space-time approach that first

computes an implicit 4D surface representation. A template is extracted from the initial

frame and warped to the subsequent frames by maximizing local rigidity. These methods

require adjacent frames to be sufficiently dense in space and time and are mainly designed

for articulated motions.

Similarly, the method described in [WJH+07] uses a statistical framework to

solve for the dynamic shape under an as-rigid-as-possible motion and impose temporal

smoothness.

Significant performance improvements were achieved in a follow-up work using

a volumetric meshless deformation model [WAO+09]. Here, they globally solve for an

optimal deforming representative shape and minimize the effects of drift by employing a

hierarchical scheme to register pairs of surfaces.

Sharf and colleagues [SAL+08] introduced a volumetric space-time reconstruction

technique that represents shape motion as an incompressible flow of material through

time. This strong regularization makes the method particularly suitable for very noisy

input data. However, this introduces noticeable flickering in the reconstructions. More-

over, the deformation of most real-world objects do not exactly preserve volume (e.g.,

loose clothing). As opposed to the methods heretofore presented, this technique does no

provide correspondences between frames. Hence, temporal smoothing is non-trivial.
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Hole-Filling Techniques. Hole filling is commonly used in surface reconstruction

for static objects. Various strategies exist that either explicitly operate on polygo-

nal meshes [Hel98, Lie03] or implicitly via a volumetric representation [CL96c, CFB97,

DMGL02, KBH06]. Regardless of the heuristic used to fill in the missing geometry, the

end result is a hole-free surface. We refer to [Ju09] for an in-depth discussion of various

hole filling strategies and heuristics. While these methods generate compelling hole-free

static surfaces, naively applying them to every surface in a dynamic performance sep-

arately will result in topological incorrectness and temporally incoherent sequence of

surfaces.

For dynamic objects, shape completion techniques were introduced that aggre-

gate incomplete static scans that are arbitrarily captured. These methods are character-

ized by strong assumptions imposed on the deformation model (often quasi-articulation)

and by the limited number of scans being used.

Pekelny and Gotsman [PG08] assume that the dynamic performance consists

of articulations of rigid parts. Starting from a manual segmentation, an optimal rigid

motion is computed for each part. Finally, information is accumulated (forward in time)

for each rigid part to fill holes and improve the quality of the reconstructed surface.

Chang and Zwicker [CZ09] propose a method that does not require any manual

segmentation or template. However, their method is limited to quasi-articulated motion

of the subject.

Zheng and colleagues [ZST+10] automatically extract a consensus skeleton to

derive a consistent temporal topology. However it also assumes that the underlying

shape is clearly articulated, which is not always the case for subjects wearing loose

clothing.

4.2 Geometry and Motion Reconstruction

We extend our findings on robust pairwise non-rigid registration developed in

Chapter 3 and introduce a novel template-based dynamic registration algorithm that

offers significant improvements in terms of accuracy and robustness over previous meth-

ods. A key feature of our approach is the separation of large-scale motion from small-

scale shape dynamics. We introduce a time- and space-adaptive deformation model that

robustly captures the large-scale deformation of the object with minimal assumptions

about the dynamics of the motion and without requiring an underlying physical model or
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transient detail

noise

15 47 50 84. . . . . . . . .

Figure 4.1: Deforming shapes typically contain both permanent detail, such as the face

region of the puppet, and transient detail, such as the dynamic folds in the cloth. Tran-

sient detail still persists over a number of adjacent frames and can thus be distinguished

from temporally incoherent noise.

kinematic skeleton. Our method dynamically adds degrees of freedom to the deformation

model where needed, effectively extracting a generalized skeleton for the acquired shape.

Small-scale dynamics are handled by a novel detail-synthesis method that computes a

displacement field to adjust the deformed template to match the high-resolution input

scans. The combination of these tools allows the efficient processing of extended scan

sequences and yields a complete high-resolution geometry representation of the scanned

object with full correspondences over all time instances.

We make a clear distinction between static and dynamic detail. Static detail

includes all small-scale geometric features that are persistent in the shape and are not

affected by the motion of the object. In the example shown in Figure 4.1, the mouth, eyes,

and nose of the hand-puppet are static detail, since the entire face region is rigid. Dy-

namic detail consists of features that are transient. Deformation of the object can cause

dynamic detail to appear and disappear, such as the folds in the body of the puppet. Our

non-rigid registration method makes use of a template model to reconstruct the overall
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motion of the shape and provide a geometric prior for shape completion and topology

control. In contrast to recent methods in performance capture [dAST+08, VBMP08],

we deliberately remove fine-scale detail from the template to avoid confusing static de-

tail with dynamic detail. High-resolution templates from rigid scans typically have all

detail “baked in”, even transient features that are then erroneously transferred to all

reconstructed surfaces (see also Figure 4.12). Our detail synthesis method automatically

extracts detail from the high-resolution 3D input scans, propagates detail into occluded

regions, and separates salient features from high-frequency noise.

The methods introduced in this framework are general in that they are not specif-

ically designed for a certain acquisition setup or particular motion models. Our tool re-

quires no user interaction beyond aligning the template with the first scan and specifying

a few global parameters.

The reconstructed surface meshes come with temporally consistent correspon-

dences, which enables further applications such as mesh editing, texturing, or signal

processing to be applied to the animation sequence. We demonstrate the versatility

of our approach by showing high-resolution reconstructions of highly deformable shapes

such as cloth, as well as the more coherent motion of articulated shapes. In addition, our

purely data-driven algorithm is able to accurately reproduce subtle secondary motions

such as hand tremor, or the behavior of complex materials such as the crumpling of a

paper bag.

4.2.1 Overview

We perform our reconstructions on the data obtained from the real-time acqui-

sition system of [WLG07]. The scanner provides dense depth maps with a high spatial

resolution of 0.5mm. This allows us to capture fine-scale geometric detail of deforming

objects at high temporal resolution. As highlighted in Section 2.1.2, input scans are typ-

ically highly incomplete and contain considerable amounts of measurement noise. We

found that a template model is essential as a geometric and topological prior for the

robust reconstruction of shapes that undergo complex deformations, in particular for

single-view acquisition, where large parts of the object are occluded.

Figure 4.2 gives an overview of our processing pipeline. Static acquisition is

used to reconstruct the initial template. We remove all high-frequency detail from the

template using low-pass filtering, as described in Section 2.2, to avoid transferring poten-
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Figure 4.2: Bi-resolution geometry and motion reconstruction framework overview.

tially transient features to future scans. This significantly simplifies template construc-

tion since we do not require high geometric precision. To initialize the computations,

we manually specify a rigid alignment of the template to the first frame of the scan

sequence and apply one step of the pairwise non-rigid registration method described in

Section 4.2.2.

fine scale 
dynamics

large scale
deformations

Our bi-resolution approach (see Figure 4.2)

reconstructs a complete and consistent surface for

each frame. Template registration uses a non-linear

reduced deformable model to recover the large-scale

motion and align the template to each of the input

scans (Section 4.2.2). The template-to-scan regis-

tration makes use of detail coefficients estimated in the previous frame to enable feature

locking and improve the alignment accuracy. This requirement is crucial since estab-

lishing correspondence at the resolution of fine scale details is highly susceptible to

ambiguous matches (see illustration). The final reconstruction is then obtained using

a separate detail synthesis pass that runs once forward and once backward in time to

aggregate and propagate detail into occluded regions (Section 4.2.5).
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4.2.2 Template Registration

static
acquisition

dynamic
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Figure 4.3: Template registration is used to reconstruct large scale deformations.

The registration stage captures the large-scale motion of the subject by fitting

a coarse template shape to every frame of the scan sequence. Scans do not have to

be a subset of the geometry described by the template, as in most previous methods

(e.g. [ACP03]). Our method robustly handles part-in-part registration, as opposed to

the simpler part-in-whole matching (see e.g. Figure 4.10). We assume minimal prior

knowledge about the acquired motion and thus employ a general deformation model

to capture a sufficiently large range of shape deformations. We extend the non-rigid

registration framework presented in Section 3.5 to automatically adapt to the motion

of the captured data. This allows recovering unknown complex material behavior and

improves the robustness and efficiency of the registration.

Surface-Based Embedded Deformation. The embedded deformation algorithm

presented in Section 3.2.4 computes a warping field using a deformation graph to dis-

cretize the underlying space. We now exploit the topological prior of the template and

replace Euclidean distances in the original formulation by geodesic distances measured

on the template mesh. This improvement avoids distortion artifacts that often occur
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when geodesically distant parts of the object come into close contact (Figure 4.8).

Recall that each node xi of the graph induces a deformation within a local in-

fluence region of radius ri. Again, local deformation are represented as an affine trans-

formation specified by a Ai ∈ R3×3 and bi ∈ R3 and graph nodes are connected by

an edge whenever two nodes influence the same vertex of the mesh. Our surface-based

formulation suggests that the vertex vj should now be mapped to the following position:

ṽj =
∑

xi

w(vj ,xi, ri) [Ai(vj − xi) + xi + bi] , (4.1)

where w(vj ,xi, ri) are the normalized weights w(vj ,xi, ri) = max(0, (1−d2(vj ,xi)/r
2
i )

3)

with d(vj ,xi) the distance between vj and xi. We use a variant of the fast marching

method to efficiently compute approximate geodesic distances [KS98].

During non-rigid registration we solve for the unknown transformations (Ai,bi).

While local rigidity is maximized using the same energy Erigid, we extend the smoothness

term Esmooth using the geodesic distance weights to handle non-uniformly sampled graph

nodes:

Esmooth =
∑

xi

∑

xj

w(xi,xj , ri + rj) ‖Ai(xj − xi) + xi + bi − (xj + bj)‖22 . (4.2)

Minimizing these combined energies with the fitting term defined below yields affine

transformations for each node, which in turn define a smooth deformation field on the

template mesh. We solve this non-linear problem using the standard Gauss-Newton

algorithm described in Section 3.2.4.

Robust Pairwise Registration. Since our input data is sufficiently coherent in time,

we repeatedly perform pairwise non-rigid registration between the template and each

input scan to determine the optimal deformation. Except for the reworked energies

Esmooth and Efit, the registration procedure is identical to our robust non-rigid ICP

algorithm from Section 3.5.

In order to obtain an accurate fit, we augment the smooth template with detail

information extracted from the previous frame. Template vertices vji of frame j are

displaced in the direction of the corresponding surface normal nji yielding ṽji = vji +

dj−1
i nji , where dj−1

i is the detail coefficient of frame j − 1 (see Section 4.2.5). The

correspondence energy combines the point-to-point and the point-to-plane metric to
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avoid incorrect correspondences in large featureless regions:

Efit =
∑

(vj
i ,c

j
i )∈C

αpoint

∥∥∥ṽji − cji

∥∥∥
2

2
+ αplane

(
nT
cji

(ṽji − cji )
)2
, (4.3)

where cji denotes the closest point on the input scan from ṽji with corresponding surface

normal n
cji

. We use αpoint = 0.1 and αplane = 1 in all our experiments. Again, correspon-

dences are discarded if they are too far apart, have incompatible normal orientations,

lie on the boundary of the partial input scans, or stem from back-facing or self-occluded

vertices of the template.

Notice that detail information of the previous frame is only used to improve

the accuracy of the registration by enabling geometric feature locking. The resulting

continuous space deformation is applied to the template vertices without added detail.

As discussed in Section 4.2.5 the final detail coefficients are obtained through a separate

detail synthesis pass.

4.2.3 Dynamic Graph Refinement.

We replace the static, uniform sampling of the deformation graph with a spatially

and temporally adaptive node distribution. While the idea of adaptive mesh deformation

has been explored in previous work, for instance in the context of multi-resolution shape

modeling from images [ZS00], we propose to adapt the degrees of freedom of the defor-

mation model instead of the geometry itself in order to improve registration robustness

and efficiency.

A hierarchical graph representation is pre-computed from a dense uniform sam-

pling of graph nodes by successively merging nodes in a bottom-up fashion. The initial

uniform node sampling corresponds to the highest resolution level l = Lmax of the defor-

mation graph that we restrict to roughly one tenth of the number of mesh vertices. We

thus avoid over-fitting in regions of small-scale deformations, which are instead captured

by our detail synthesis method (Section 4.2.5). We uniformly sub-sample the nodes of

each level by repeatedly increasing their average sampling distance rl−1 = 4 rl until l

reaches Lmin. Each of the remaining nodes xli from level l ∈ Lmin . . . Lmax form a cluster

Cli which contains every node from the level below xl+1
i that is not closer to any other

cluster from l. The resulting cluster hierarchy is then used for adaptive refinement. We

choose Lmin = Lmax/2 for all our experiments.
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initial final
t

initial final initial final initial final

Figure 4.4: The deformation graph is dynamically refined during non-rigid registration

to adapt to the deformation of the scanned object. Color-coded images indicate the

regularization energy that determines where new nodes are added to the graph. The

bottom row shows the initial and final deformation graphs for the hand and the sumo

reconstruction.

Refinement Criterion. Registration starts with a coarse uniform graph at level Lmin

and dynamically adapts the graph resolution by inserting nodes in regions with high reg-

ularization residual (Esmooth), which indicates a strong discrepancy of neighboring node

transformations (see Figure 4.4). In all our examples we set the threshold for refinement
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to 10% of the highest regularization value. One step of refinement substitutes every node

xli that exhibits high regularization with all nodes contained in Cli. To avoid unnecessary

refinements for every new upcoming target frame, adaptive refinement is only performed

if the global regularization term is still above a certain threshold, i.e. Esmooth > 0.01,

for the maximum number of iteration Nmax = 100 of pairwise registration.

The dynamic refinement effectively learns an adaptive deformation model that

is consistent with the motion of the scanned object. Additional nodes will be inserted

automatically in regions of high deformation, while large rigid parts can be accurately

deformed by a single graph node. In addition to being less susceptible to local min-

ima, this leads to significant performance improvements (up to a factor of four in our

examples) as compared to a uniform sampling with a high level of node redundancy. As

illustrated in Figure 4.4, our adaptive model is suitable for a wide variety of dynamic

objects, from articulated shapes to complex cloth folding.

4.2.4 Multi-Frame Stabilization.

The warped template T j−1 obtained after alignment to scan j − 1 is the zero-

energy state when aligning to scan j for each frame of the entire template warping

process. For surface regions that are visible in the scan, dynamic details, such as cracks

and fissures in paper-like materials can be accurately captured, since the method prevents

the template from deforming back to its initial undeformed state. However, unobserved

template parts are inherently prone to accumulation of misalignments, especially for

lengthier scan sequences as illustrated in Figure 4.5. In contrast to our formulation,

classical template fitting methods [ZSCS04, dAST+08, VBMP08] warp the same initial

template to each recorded frame and thus, use a deformation model that behaves globally

elastic in time. For complex articulated subjects, such as human bodies, missing data

in occluded regions would pull the template back to its original shape, which can be

very different to the one of the current frame. Therefore, multi-view acquisition systems

are usually used in combination with sparse and robust feature tracking [dAST+08] and

sometimes enhanced with manual intervention [VBMP08] to ensure reliable tracking.

In our dense acquisition setting, the surface coverage of the template by the input

scans is spatially and temporally coherent over time. Thus, for non-occluded regions,

the template shape from a closer time instance represents in general a more likely shape

prior than the initial template Tinit. On the other hand, we make the assumption that
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no better knowledge exists than Tinit for template regions that are never observed or not

seen for an extended period.

To address this issue we introduce a time-dependent combination of plastic and

elastic deformation to accurately track exposed surface regions and reduce the accumu-

lation of errors in less recently observed parts of the scanned object. After the pairwise

registration of T j−1 to scan j as presented in Section 4.2.2, we obtain the plastically

deformed template T j . A weight cji for visibility confidence can then be defined for each

vertex vji ∈ T j as cji = max{0, (P + jlast
i − j)/P} with jlast

i the last frame where vi has

been observed, and P a constant (we chose P = 30 in all our examples) that defines a

temporal confidence range of visibility. All template vertices with cji = 1 are visible in

the current frame, while cji = 0 represent those that are no longer considered confident.

For the same frame, an elastically deformed template T̃ j with vertices ṽji is created by

warping Tinit to the current frame j using the linearized thin-plate energy as described

in [BS08]. Hard positional constraints are defined for all vertices with confidence cji = 1.

The resulting template T̄ j with vertices v̄ji is obtained by linearly blending T j and T̃ j

with the confidence weights for visibility yielding the vertices v̄ji = cjiv
j
i + (1− cji )ṽ

j
i .

4.2.5 Detail Synthesis

Non-rigid registration aligns the template sequentially with all input scans. The

resulting deformation fields induced by the graph capture the large-scale deformation

but might miss small deformations that give rise to dynamic detail such as wrinkles and

folds. To recover fine-scale detail at the spatial resolution of the scanner, we perform

a separate detail synthesis stage that is composed of two steps: First, a per-vertex

optimization from local correspondences is applied to estimate detail coefficients for

each vertex of the template. These preliminary detail coefficients are the ones used for

template alignment as detailed in Section 4.2.2. After the template has been registered

to the entire scan sequence, we perform an additional pass that exploits the temporal

coherence of the scan sequence to improve the reconstruction quality by propagating

detail into occluded regions.

Linear Mesh Deformation. Since the deformed template is already well-aligned with

the input scan, we employ an efficient linear mesh deformation algorithm similar to

[ZSCS04] to estimate detail coefficients. For each vertex vi in the template mesh, we

trace an undirected ray in normal direction ni and find the closest intersection point on

the input scan. In case an intersection point ci is found, a point-to-point correspondence
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Figure 4.5: A hybrid plastic and elastic deformation model is used to stabilize the

registration for multiple input frames as repeated pairwise alignment is susceptible to

error accumulation. The accumulation of misalignments is shown on frame 30 of the

sumo sequence.

constraint is created, if both points have the same normal orientation and are sufficiently

close. Since the template has no high-frequency detail, its normal vector field is smooth,

leading to spatially coherent correspondences. We compute the detail coefficients di

by minimizing the energy resulting from the extracted correspondences subject to a

regularization constraint

Edetail =
∑

i∈V
‖vi + dini − ci‖22 + β

∑

(i,j)∈E

|di − dj |2, (4.4)

where V and E are index sets of mesh vertices and edges, respectively. The parameter β

balances detail synthesis with smoothness and is set to β = 0.5 in all our experiments.

The resulting system of equations is linear and sparse and can thus be solved efficiently.

Notice that the rationale behind the regularization term of Equation 4.4 is essentially

the same as the smooth displacement approach from Section 3.2. The only difference

here is that the displacement is constrained to the surface normal.
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Figure 4.6: Detail synthesis. Reconstructing detail from the current frame leads to

lack of detail in occluded regions. Aggregating detail over temporally adjacent frames

propagates detail into hole regions and reduces noise. The color-coded images show the

magnitude of the detail coefficients relative to the bounding box diagonal.

coverage
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Figure 4.7: The color-coded images

show the number of frames a certain re-

gion has been observed.

Aggregation. The linear mesh deformation

method described above estimates detail coef-

ficients independently for each frame in those

regions of the object that are observed by a

particular scan. To transfer detail to occluded

regions we perform a separate processing pass

that aggregates detail coefficients using a so-

called exponentially weighted moving average.

We use the formulation of Roberts [Rob59] and

define this moving average as

d
j
i = (1− γ)d

j−1
i + γdji (4.5)

with γ set to 0.5 in all our examples. The influence of past detail coefficients decays

quickly in this formulation, which is important, since transient or dynamic detail such

as wrinkles and folds might not persist during deformation. Note that details in the

template only disappear when they vanish in the input scans of succeeding frames. For

instance, the details of a rigid object will persist and not fade toward zero coefficients

since only observed coefficients are combined during detail synthesis. When processing

scan j, we first update the vertices vji ← vji + d
j−1
i nji and perform the linear mesh

deformation described in the previous section. This yields the new detail coefficients dji

that are then used to update the moving average d
j
i , which will in turn be employed to

process the subsequent scans.
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The entire detail aggregation process is performed by running sequentially once

forward and once backward through the scans while performing the linear mesh defor-

mation and updating the moving averages. Going back and forth allows us to back-

propagate persistent details seen at future instances to earlier scans (see Figure 4.6). As

a final step, we apply a band-limiting bilateral filter [AW95] that operates in the time

domain and detail range to further reduce temporal noise.

4.2.6 Results

input scans

reconstruction

input scan warped 
template reconstruction

Figure 4.8: The zooms illustrate how

high-frequency detail such as the skin

folds is faithfully transferred to occluded

regions. Even though the scan is con-

nected at the fingertips, shape topology

is correctly recovered (red circle).

We show a variety of acquired geome-

try and motion sequences processed with our

system that exhibit substantially different dy-

namic behavior. Accurate reconstruction of

these objects is challenging due to the high

noise level in the scans, missing data caused

by occlusions or specularity, unknown corre-

spondences, and the large and complex mo-

tion and deformations of the acquired objects.

The statistics for the results are shown in Ta-

ble 4.1.

All templates were constructed by per-

forming an online rigid registration technique

similar to [RHHL02] on our acquired data, fol-

lowed by a surface reconstruction technique

based on algebraic point set surfaces described

in [GG07]. Given the roughly aligned tem-

plate mesh, our system runs completely auto-

matically without any user intervention. Only

few parameters (such as the weighting coeffi-

cients of the different energy terms) have to

be chosen manually. For all examples, we use

the same initial parameter settings. During

optimization we automatically adapt the pa-

rameters using the approach detailed in Sec-

tion 4.2.2.
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Figure 4.9 shows the warped template and final reconstruction of the puppet.

This example is particularly difficult due to the close proximity of multiple surface sheets

when closing the puppet’s hands. The reconstruction of a hand in Figure 4.8 demon-

strates that our detail synthesis method is capable of capturing the intricate folds and

wrinkles of human skin, even though the scans contain a large amount of measurement

noise. Figure 4.10 illustrates how detail is propagated correctly into occluded regions,

which leads to a plausible high-resolution reconstruction even for parts of the model

that have not been observed in a particular scan. Figure 4.11 shows the reconstruction

of a crumpling paper bag. Despite substantial holes caused by oversaturation in the

reflections, the dynamics of the material as well as sharp geometric creases are faithfully

captured.

4.2.7 Evaluation

Figure 4.12 illustrates the difference between tracking a high-resolution template

versus our two-scale approach that separates global shape motion and dynamic detail

reconstruction. For comparison we use the first frame of our two-scale reconstruction as

the high-resolution template, which is then aligned with the input scan sequence using

the registration method of Section 4.2.2. As can be seen in the zoom, dynamic detail

created by the motion, in particular in the cloth, is not captured accurately. In contrast,

our detail synthesis approach avoids the artifacts created by “baked-in” geometric detail

Puppet Head Hand Paper Bag Sumo

# Scans 100 200 35 85 34
Min # Points per Scan 23k 53k 19k 82k 85k
Max # Points per Scan 37k 68k 25k 123k 86k
Input Data Size (Mb) 430 1,690 120 145 430

# Template Vertices 48k 64k 46k 64k 107k
Begin # Graph Nodes 20 152 77 37 52
End # Graph Nodes 100 458 1238 86 110

Output Data Size (Mb) 530 2,030 180 960 540

Registration Time 39 247 15 65 26
Detail Synthesis Time 26 92 8 36 23

Total Time 65 339 23 101 49

Table 4.1: Statistics for the results shown in this paper. All computations were per-

formed on a 3.0 GHz Dual Quad-Core Intel Xeon machine with 8 GB RAM. Timings

are measured in minutes and include I/O operations.

135



CHAPTER 4. DYNAMIC SHAPE RECONSTRUCTION

input 
scans

warped 
template

reconstruction

textured
reconstruction

physical
subject

input scans (side) warped template (side)

Figure 4.9: The global motion of the puppet’s shape as well as fine-scale static and dy-

namic detail are captured accurately using the template registration and detail synthesis

algorithm. The intricate folds of the cloth are handled robustly in the registration.
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input scans

warped template
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Figure 4.10: Our method faithfully recovers both the large-scale motion of the turning

head, as well as the dynamic features created by the expression, such as wrinkles on the

forehead or around the mouth. Intricate geometric details such as the ears are accurately

captured, even though they are only observed in few frames.

and leads to a high-quality reconstruction of both static and dynamic detail. While a

fairly large range of template smoothness can be tolerated, an overly coarse template

can deteriorate the reconstruction as shown in Figure 4.13.

The necessity of using a template for robust reconstruction of complex deforming

shape is illustrated in Figure 4.14. The method of [WAO+09] that avoids the use of a

template cannot track the motion of the fingers accurately. In particular, the correspon-

dence estimation fails when previously unseen parts of the shape, such as the back of the

fingers, come into view. Figure 4.15 shows a comparison of our method to the dynamic

registration approach of [SWG08] using the same template in both reconstructions.

We evaluate the robustness of the template tracking and detail synthesis method

using the ground truth comparison shown in Figure 4.16. The scanning process has
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input scans warped template textured reconstructionreconstruction

Figure 4.11: Sharp creases and intricate folds created by the complex, non-smooth

deformation of a crumpling paper bag are captured accurately.

been simulated by creating a set of artificial depth maps from a fixed viewpoint. The

ground-truth animation of the 3D model was obtained from dense motion capture data

provided by [PH06]. In order to test the stability of the template tracking, we sampled

the entire sequence at successively lower temporal resolution. The non-rigid registra-

tion robustly aligns the template with the scans for a temporally sub-sampled sequence

consisting of only 34 frames. The large inter-frame motion, especially of the arms and

legs, is tracked correctly, even though our correspondence computations do not make

use of feature points, markers, or user assistance. Template tracking breaks down at 17

frames, where the fast motion of the arms cannot be recovered anymore (see Figure 4.17

(a)). Detail synthesis for the 34-frame sequence reliably recovers most of the fine-scale

geometry correctly. Artifacts appear in the fingers and toes due to the coarse approx-

imation of the template. In addition, drawbacks of the single-view acquisition become
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warped high-res template

reconstruction vs. high-res template reconstruction with detail synthesis

10−40

Figure 4.12: Warping a high-resolution template without detail synthesis leads to

inferior results as compared to our two-scale reconstruction approach (cf. Figure 4.9).

The color coding shows the distance between both results relative to the bounding box

diagonal.

apparent in regions that are not observed by the scanner, such as the back of the sumo.

Quantitatively, we measured the maximum of the average distance over all frames as

0.0012, the maximum of the maximum distance over all frames as 0.0283 as a fraction

of the bounding box diagonal.

Limitations. We make few assumptions on the geometry and motion of the scanned

objects. The correspondence estimation based on closest points, however, requires a

sufficiently high acquisition frame-rate as otherwise, misalignments can occur, as shown

in Figure 4.17 (a). Similarly, for parts of the shape that are out of view for an extended

period of time, registration can fail if these regions have undergone deformations while

not being observed by the scanner. In such a case, our system would require user

interaction to re-initialize the registration. This is an inherent limitation of single-view

systems where more than half of the object surface is occluded at any time instance.

However, even some multi-view systems (e.g. [VBMP08]) permit user assistance to
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smooth templates reconstruction (front) reconstruction (side)

frame 1 frame 50

Figure 4.13: Evaluation of the reconstruction (frame 1 and 50) for three different

initial templates. The upper row shows the original template. The coarser template

in the second row is produced by surface reconstruction from points that are uniformly

subsampled at half of the density of the original template. The last row illustrates the

reconstruction using an even coarser template. This is obtained from only 25% of the

initial point density.

adjust incorrect optimizations. Similar manual assistance might be required for longer

sequences, where the scanner infrequently produces inferior data in certain frames. These

frames need to be removed manually and the registration re-started with user assistance.

While none of our sequences required such manual intervention, the acquisition of longer

sequences was inhibited by this limitation of our scanning system.

Global aspects, such as the loop closure problem well-known in multi-view rigid

alignment problems [Pul99] are currently not considered in our system. To address these

limitations, more sophisticated feature tracking would be required in order to establish
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Figure 4.14: Reconstruction without a template is particularly challenging for single-

view acquisition. The results in the center have been produced by the authors of [Wand

et al. 2008].

reliable correspondences across larger spatial and temporal distances. We currently do

not prevent global self-intersections of the reconstructed meshes. However, as shown

in Figure 4.17 (b), our method robustly recovers, mainly due to the use of geodesic

distances on the template mesh and the correspondence pruning strategy based on normal

consistency and visibility. Avoiding self-intersections entirely would require an additional

self-collision handling step in the shape deformation optimization algorithm, which would

add a significant overhead to the overall reconstruction pipeline. Our method does not

discover topological errors in the template, as shown in Figure 4.17 (c). In the template

reconstruction the pinky has been erroneously connected to the paper bag, which leads

to artifacts in the final frames of the sequences, where the finger is lifted off the bag.

4.2.8 Discussion.

We have presented a robust algorithm for geometry and motion reconstruction

of dynamic shapes. One of the main benefits of this method is simplicity. Our scanning

system requires no specialized hardware or complex calibration or synchronization, and

can be readily deployed in different acquisition scenarios. We do not require silhouette

or feature extraction, manual correction of correspondences, or the explicit construction

of a shape skeleton. The framework demonstrates that even for single-view acquisition,

high-quality results can be obtained for a variety of scanned objects, with a realistic

reconstruction of shape dynamics and fine-scale features. Key to the success of our

algorithm is the robust template tracking based on an adaptive deformation model.
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input scans

[SWG08]

our approach

Figure 4.15: Comparison of two template based reconstruction methods. The results

in the bottom right have been produced by the authors of [Süssmuth et al. 2008].

Our novel detail synthesis method exploits the accurate registration to aggregate and

propagate geometric detail into occluded regions.

As future work, aforementioned limitations need to be resolved and global self-

collision handling should be incorporated. Additionally, the proposed registration al-

gorithm can be potentially used to acquire and learn material behavior (such as the

crumpling of paper or folding of skin). Such information would be useful to improve the

realism of physically-based simulation algorithms.

4.3 Temporally Coherent Shape Completion

Many common geometries cannot be modeled by a single mesh (e.g. gliding

cloth, exposing new body parts, etc.). As a consequence, we need a dynamic shape re-

construction method that does not rely on templates which implicitly define a watertight

surface.

We consider the problem of obtaining temporally coherent watertight 3D meshes

from high-resolution scan sequences of a dynamic performance recorded from multiple

views [LLV+10]. We assume that the input scans have reasonable coverage and that

most noise and outliers are suppressed, either by using an improved scanning technology

or by effectively post-processing the data.
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Figure 4.16: Ground truth comparison for a synthetic full-body example with fast

motion. The top row shows every frame of the input sequence. The color-coded image

indicates the number of frames in which a certain part of the shape is covered by the

scans. The graph shows the maximum and average error distance between the ground

truth and the reconstruction for each frame.
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Figure 4.17: Limitations: (a) registration can fail if the frame-rate is too low relative to

the motion of the scanned object; (b) self-intersections are not prevented during template

alignment; (c) wrong template topology leads to artifacts when the finger is lifted off the

paper bag.

In human performance capture, large holes are typically observed between legs,

regions occluded by arms, and those parts exhibiting significant grazing angles to the

cameras. While a deforming shape can expose newly observed regions over time, these

holes are usually so large that full coverage is only possible after longer recording. Most

current techniques for temporally consistent shape completion assume that the dynamic

subject is represented by a single deformable surface (template). The template model

is usually obtained by a separate rigid reconstruction step (e.g., [LAGP09, dAST+08,
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Figure 4.18: Left: Real-time 3D acquired dynamic performance geometry typically ex-

hibits holes that are often temporally persistent. Right: Hole-filled, temporally coherent

and detailed sequence of watertight surfaces reconstructed using our method.

VBMP08]) or by globally aggregating all surface samples through time (e.g., [WAO+09,

MFO+07, SWG08]). Both approaches rely on establishing full inter-frame correspon-

dences of surface points across entire recordings for the template. However, we do not

wish to restrict the degree of deformation or fix the topology. Deformations that involve

topology changes or interactions between multiple disconnected components cannot be

accurately modeled with a single template (e.g., gliding cloth, exposing new body parts,

etc.). Thus the correct shape is unlikely to be recovered by simply propagating geometry

across long sequences without knowledge of full inter-frame correspondences in occluded

regions. Moreover, error accumulation is likely to occur when correspondences need to

be repeatedly determined between pairs of input scans. Consequently, none of these

techniques can guarantee drift-free reconstruction for complex deformations and largely

incomplete input data.

Our proposed method does not require globally consistent correspondences or

a template model. The key insight is that only accurate pairwise correspondences are

needed for temporally consistent shape completion, as the relevance of surface informa-

tion decreases with time. For example, a fold on a dress observed in one frame is likely

to disappear or completely change its shape at a later time. To establish dense pairwise

correspondences, we employ a novel two-stage registration algorithm that (1) performs

our coarse non-rigid registration algorithm [LAGP09] equipped with deformation graph

prediction and sparse texture-based constraints for higher accuracy and robustness, and

(2) refines this coarse correspondence computation using an improved version of a fine-

scale alignment algorithm [BR07]. Because surface correspondences only reside within

a subset of two consecutive pairs of incomplete scans, more coverage leads to improved
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alignment quality. We maximize coverage by accumulating newly observed surfaces using

an interleaved registration/merging method in a forward-and-backward fashion.

Given the original scanned surfaces and their pairwise correspondences, our shape

completion approach starts by filling the holes in each frame independently using the

visual hull as a topological prior. We further optimize vertex positions to satisfy spatial

smoothness across hole boundaries [Lie03]. The use of the visual hull as a topological

prior helps to resolve ambiguous hole filling strategies (e.g., when the arm is close to the

body). To minimize temporal flicker, we unwarp all watertight shapes within a time win-

dow into the current frame using the precomputed dense pairwise correspondences. The

aggregation of nearby frames forms a temporally coherent shape which we reconstruct by

weighted integration of surface samples [KBH06]. We design our weighting scheme to act

similarly to a temporal bilateral filter, but instead of preserving motion discontinuities,

we maximize the aggregation of non-occluded regions. However, fine-scale geometrical

details tend to be blurred out by the integration of the unwarped shapes. To resynthesize

these fine-scale details, high-frequency details from partial input scans or user-provided

normal maps are reapplied to the integrated surface using the method of Nehab and

colleagues [NRDR05].

Our framework is designed to handle input data with large occlusions, topological

changes, and complex deformations. Because an interleaved registration/merging scheme

is employed, only a few adjacent meshes are needed simultaneously, leading to modest

memory requirements. This also makes our method well suited for very high-resolution

input data. We illustrate our method on the meshes of Vlasic et al. [VPB+09] and

compare our results with recent work on space-time reconstruction. While the absence

of globally corresponded meshes precludes certain applications, our method is the first

to enable free-viewpoint video of watertight and temporally-coherent high-resolution

dynamic geometries (c.f. Figure 4.22 and 4.23).

Overview. The proposed shape completion method employs a three-step algorithm to

synthesize temporally coherent watertight surfaces from scanned sequences of non-rigidly

deforming shapes:

1. We start by filling the holes in each frame separately, employing the visual hull

as a topological prior. Furthermore, to promote temporal smoothness and avoid

unnatural discontinuities across hole boundaries, we optimize the hole filled vertex
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Figure 4.19: Shape completion pipeline.

positions by minimizing a bending energy fairness functional.

2. We proceed with a weighted surface integration scheme that reconstructs a tem-

porally coherent watertight surface from adjacent time frames, thus minimizing

temporal artifacts. We warp the resulting shapes using pairwise correspondences

computed in a preprocessing step (detailed in Section 4.3.4).
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3. Finally, we resynthesize the details lost during warping and integration onto the

final temporally coherent watertight mesh.

The complete three-step process is schematically depicted in Figure 4.19.

4.3.1 Single Frame Hole Filling

As illustrated in Figure 4.18, scanning human performances typically results in

large holes which persist in close proximity over many frames. Filling these holes can

become ambiguous when two separate incomplete surfaces get close.

input scan

without visual hull

with visual hull

Visual Hull Prior. As suggested in [VPB+09], the visual hull

provides a robust estimate for obtaining watertight shapes. We there-

fore initialize our hole filling by combining the vertices of the original

partial scans with those of the visual hull. We set a weight w = 1 for

each surface sample located on the scans and w = ε for visual hull

samples. A hole-free mesh is then obtained by Poisson surface recon-

struction [KBH06] using the weighted oriented surface samples. As

each frame is being completed independently, considerable flickering

artifacts are likely to occur in hole-filled regions for dynamic input

geometry.

before fairing

after fairing

Surface Fairing. To enforce smooth transitions with the sur-

roundings of a hole-filled mesh region, we solve for new vertex po-

sitions by minimizing a fairness functional constrained by the hole

boundaries, similar to [Lie03]. In particular, we minimize the lin-

earized bending energy of the patched mesh’s non-boundary vertices

using the standard cotangent bi-Laplacian [BS08]. Since only limited

views are provided for computing the visual hull, optimizing surface

fairness in hole regions yields spatially smooth and more plausible

reconstructions for curved surfaces such as folds in a garment. While spatial smoothness

for hole regions can be directly obtained by carefully estimating sample weights at hole

boundaries during Poisson reconstruction, this extra fairing step avoids the need for ad-

ditional feathering parameters. While the fairing significantly reduces strong discontinu-

ities across boundaries, flickering still persists as each frame is processed independently.
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4.3.2 Temporal Filtering

Temporal flicker is present both in the original data (due to independent per-

frame reconstruction) and our hole filled surfaces (due to visual-hull-based optimization).

We address this with a temporal filter that combines each frame with its neighbors, and

only requires knowledge of pairwise correspondences between neighboring frames in the

original sequence.. The correspondences are computed in a preprocessing step (detailed

in Section 4.3.4).

Our temporal filtering process starts with the incomplete reconstructed mesh

(original data) and the hole filled regions at each frame. We warp the hole filled regions

into the neighboring frames using a mesh deformation based on the pairwise correspon-

dences and Laplacian coordinates [Ale03], where the reconstructed meshes define the

constraints. At this point, we have the reconstructed meshes from the current and the

neighboring frames, as well as the hole filled regions from those three frames, all aligned

to a common pose. We combine them all using Poisson surface reconstruction [KBH06]

with the following weights: 100 for the reconstructed mesh of the current frame, 10 for

the reconstructed mesh of the neighboring frames (deformed to the current frame), 2

for the hole-filled regions of the current frame, and 1 for the hole-filled regions of the

neighboring frames (also deformed to the current frame). This imposes a mild temporal

filter on the reconstructed surfaces, and a strong filter on the hole-filled regions. This

step reduces the temporal flicker, and propagates some of the reconstructed surface detail

from the neighboring frames onto the current frame (this stems from the neighboring

reconstructed mesh weight being larger than any hole-filled region weight).

4.3.3 Detail Resynthesis

While the weighted temporal filtering approach reduces flicker between the hole

filled meshes, it also tends to remove some fine geometric details mainly due to the

Poisson surface reconstruction step. Since our input data is only affected by very little

noise, the stability of the high frequency details in non-boundary regions allows us to

reintroduce details and compensate for this loss. We employ the method of Nehab

and coworkers [NRDR05] to resynthesize high frequency detail, which can either come

directly from the original input scans, or alternatively from measured normal maps. In

our case, stable normal information is available in the form of normal maps [VPB+09].
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4.3.4 Pairwise Correspondences

A crucial component in the proposed shape completion algorithm are the accu-

rate pairwise correspondences between consecutive frames of a dynamic performance.

Several short- and long-range correspondence algorithms exist (e.g., [ZST+10, WAO+09,

LAGP09, SAL+08]). However, we found that none of these methods gave the necessary

accuracy to obtain high quality shape completions (see Section 4.3.5 for a qualitative

comparison). In this work, we develop a novel two-scale approach. We start by comput-

ing coarse correspondences that are globally coherent and capture large-scale deforma-

tions (Section 4.3.4). Next, we refine these coarse correspondences to accurately align

the fine-scale geometric details (Section 4.3.4).

Registration Based on Deformation Graphs

deformation graph

To compute the pairwise coarse-scale registration, we

extend our robust non-rigid ICP algorithm from Section 3.5

with (1) a prediction-based initialization and (2) sparse posi-

tional constraints computed from input video data. The pro-

posed improvements increase robustness to large deformations

and minimize tangential drift, improving accuracy over short

time windows (as validated in Section 4.3.5).

As detailed in Section 3.5, our subspace deformation

technique uses a graph with nodes that are uniformly sampled

on the scan surface to warp the scan mesh vertices via linear blend skinning. The

optimization solves for the affine transformations on the graph nodes and is regularized

with the energy terms Erigid and Esmooth. By iteratively computing the closest points, the

method minimizes the point-to-point and point-to-plane distances specified by Efit.

In addition to the original energy terms, we introduce a term Etex for sparse 3D

positional constraints obtained from texture correspondences. At each deformation step

we solve a non-linear optimization with the objective function:

Etot = αfitEfit + αtexEtex + αrigidErigid + αsmoothEsmooth, (4.6)

where αfit = 1 and αtex = 100. As before, we ensure robustness against sub-optimal local

minima by starting the registration with a high regularization (αrigid = 100 and αsmooth =

10) and successively halving the weights whenever the deformation step converges. We

stop the optimization when αsmooth = 0.01.
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Graph Prediction. While effective for a large range of deformations, the above reg-

istration technique is likely to converge to an incorrect local minimum when there is

significant motion between consecutive frames (e.g., a fast kick) or in regions with few

geometric features. Convergence to the correct deformation can be promoted by employ-

ing a prediction that provides an initial deformation close to the desired deformation.

The deformation graph in frame f + 2 is predicted by linear extrapolation from frames f

and f + 1. In short, for each edge of the deformation graph, we extract the smallest 3D

transformation that deforms that edge from frame f to f + 1. We then transform each

vertex of the deformation graph in frame f + 1 by the average of all the transformations

corresponding to its incident edges.

Sparse Texture-Based Constraints. So far, Efit is used to bring the source scan

closer to the target. However, this does not preclude tangential drifts (even with the

above prediction). For regions with very little detail, using only geometric constraints

can yield suboptimal alignment (e.g., sliding versus stretching). Thus, we add texture

constraints (obtained from image recordings that are projected onto the mesh) and use

them as sparse positional constraints for the optimization.

To determine these sparse features we compute 2D feature descriptors from the

video recordings of 8 different camera positions between consecutive frames. In our

implementation we used SURF feature descriptors [BTVG08], though many other 2D

descriptor can be employed. In the case of SURF, features tend to be concentrated at

the silhouette of the subject, and do not represent true surface features. Therefore, only

those features that lie away from some preset distance (8 pixels) of the silhouette are

considered.

Next, we match each detected feature point to the best corresponding feature

point in the subsequent frame. To speed-up detection and minimize false positive

matches, we restrict the search space using an optical flow based prediction [BBPW04]

and search for the best matching SURF descriptor in a small neighborhood around this

predicted feature point location. We discard the pairwise match if the error on the fea-

ture descriptors exceeds a certain threshold. We search in a radius of min(10, d) around

the predicted point, with d being the distance of the predicted displacement. We reject

matches with a descriptor error above 0.2. To improve robustness, we only consider

correspondences that can be reliably tracked for at least 3 consecutive frames.

Finally, we project every tracked 2D feature back on the original geometries to

151



CHAPTER 4. DYNAMIC SHAPE RECONSTRUCTION

obtain 3D positional constraints. Section 4.3.5 validates that the found texture-based

correspondences (up to 1000 per frame) greatly improve the registration quality.

Fine-scale Alignment

After the coarse non-rigid alignment, we perform fine-scale registration using a

non-rigid locally weighted ICP algorithm based on [BR07]. This improves the alignment

of small geometric details. Our algorithm improves on [BR07] by taking the following

two observations into account:

1. The main goal is to locally improve the alignment, hence the weight distribution

function should have local support. Otherwise, far-away points can bias the local

alignment. We use a Compactly Supported Radial Basis Function (CSRBF).

2. Gelfand and coworkers [GRIL03] showed that the stability of the ICP matching

algorithm depends on the local geometry. If the matched geometry does not contain

enough surface detail, drift may occur. Ideally, the size of the matched geometry

should adapt to the local feature size.

These observations define the following three-step algorithm:

Sampling. We start by sampling an optimal set of feature points on the deformed

mesh according to the alignment error which is defined by the distance between source

mesh and nearest point on the target mesh after non-rigid ICP. This step ensures that

regions with median alignment error gain average sampling weights, while the influence

of large outliers is decreased.

coarse alignment

fine alignment

distance to target (cm)
0 1

Matching. Next, we find correspondences using a local ICP al-

gorithm based on [BR07]. However, we differ in that we employ

a CSRBF for point-selection near a feature point and iteratively

select the best radius of CSRBF according to the local geometric

stability. Specifically, we use a quadratically decreasing CSRBF

f(x) = max{1 − (x/r)2, 0}, where r is an adaptively selected sup-

port radius. To optimally select the support radius, we iteratively

apply ICP, reducing the radius at each step as long as the alignment

error decreases and the stability of the sampled points is above 0.02,

a threshold that empirically prevents drifting. The iterative scheme

proves to be robust since the relatively large initial CSRBF radii
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avoid suboptimal local matching. We further improve robustness by rejecting correspon-

dences whose nearest vertices are on the mesh boundaries.

Warping. We employ the RBF deformation model proposed by [KSSH02] to avoid

known numerical instabilities of thin-plate splines as described in [SS91]. The resulting

linear system is sparse, due to the local support of the CSRBF, and can thus be solved

efficiently.

Shape Accumulation

The above two-scale registration algorithm is capable of producing accurate cor-

respondences between mutually visible surface regions. However, in order to produce

temporally consistent watertight surfaces, we also need accurate correspondences in hole

regions. In order to ensure maximum accuracy in these regions, we propose an interleaved

registration/merging shape accumulation approach. Pairwise correspondences between

consecutive frames f ′i (merged) and fi+1 (original) are used to warp f ′i and merge it with

fi+1, yielding an accumulated shape f ′i+1. We repeat this process for every frame starting

from the first frame going to the last frame, and vice versa.

We employ an interleaved method. First, as the scanned subject moves and

deforms over time, newly visible surface regions are being exposed at each frame. To

maximize the use of previously observed surfaces, we accumulate the deformed incom-

plete mesh f ′i and its target fi+1 after each pairwise alignment. Second, as we allow our

subject to change topology, tracking with a single consistent mesh (as with template-

based approaches) is not possible. Merging the deformed mesh f ′i with its target fi+1

would not only improve computational efficiency (since the vertices will not be dupli-

cated), but it would also allow source sample positions of the correspondences to adapt

to the topology of the current frame.

We employ a mesh deformation based on Laplacian coordinates [Ale03] to warp

frame f ′i to frame fi+1, and merge them by accumulating vertices of both meshes, followed

by the Poisson surface reconstruction of Kazhdan et al. [KBH06]. Note that holes from

fi+1 are reintroduced in the watertight Poisson reconstruction. Because of incomplete

shapes, finding correspondences in unobserved surface regions for extended periods can

result in accumulation of errors. As a result, the geometry of these areas can deteriorate

over time and nearby surfaces can erroneously merge into a single surface. We therefore

perform visual hull based pruning by disregarding vertices that fall outside the visual hull.
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Furthermore, we only use the accumulated surfaces for correspondence computations,

and do not use them for hole filling due to the same error accumulation.

4.3.5 Results

We demonstrate our method on three of the sequences (Saskia, Abhijeet, and

Jay) made publicly available by Vlasic and colleagues [VPB+09]. Those high resolution

scans were captured from 8 cameras placed around a human body and cover, on average,

approximately 75% of the entire surface. For efficiency, we operate on down-sampled

meshes, and up-sample when resynthesizing the detail. The statistics of our input and

output data are as follows (we measure size of holes as the ratio between hole area over

the area of the completed mesh):

dataset #frames #input vert #output vert size of holes

Saskia 113 132k∼140k 353k∼380k 25%∼27%

Jay 187 95k∼119k 278k∼335k 27%∼38%

Abhijeet 112 142k∼153k 369k∼412k 20%∼29%

Figure 6.9 and the accompanying video show intermediate results from those

sequences at different stages of our pipeline. In addition, our reconstructions are suitable

for free viewpoint video applications and can be seamlessly integrated into a virtual scene

with different illuminations as demonstrated in Figure 4.22 and 4.23.

Compared to the original data, our meshes are complete and watertight, exhibit

less temporal noise, and contain an equivalent or increased amount of surface detail.

Naively closing the holes with visual hulls (as mentioned in [VPB+09]) produces water-

tight surfaces, but introduces even more temporal noise. More sophisticated methods

([WJH+07]) attempt to accumulate surface information over time. However, they have

a hard time finding correspondences over many frames of non-rigid incomplete surfaces

(second row in Figure 4.25). Consensus skeleton [ZST+10] may be used to determine a

consistent topology throughout the whole motion, but we observe similar issues with our

data, as it assumes clearly articulated and well-sampled underlying shapes (third row

in Figure 4.25). Sharf and colleagues [SAL+08] can accumulate surface over time from

sparse data such as ours, but may exhibit artifacts with flowing clothes that violate their

volume-preserving assumption.

Timing. Ignoring data transfer, the whole pipeline runs at about 9 minutes per frame

on a modern machine. The per frame hole-filling (Section 4.3.1) takes 40 seconds, Lapla-

cian deformation and Poisson reconstruction (Section 4.3.2) adds 50 seconds, final detail
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Figure 4.20: Comparison between full pipeline and leaving out individual stages of the

correspondence computation. The last column clearly shows the importance of surface

fairing.

resynthesis (Section 4.3.3) 90 seconds, coarse frame-to-frame alignment (Section 4.3.4)

45 seconds, and the fine-scale alignment (Section 4.3.4) an additional 320 seconds. The

process can be run in parallel for each frame independently, which makes processing

many frames of motion reasonable.

Limitations. Our method produces detailed watertight meshes that are smooth over

time, but also lends to some limitations. First, the topology of our meshes will always

match the (changing and sometimes incorrect) topology of the visual hull since we use

it as the initial guess for shape completion (Figure 4.24 left). Ideally, we would like to
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hole-filled filtered resynthesizedoriginal data

Figure 4.21: Left to right: original mesh, hole-filled mesh, temporally filtered mesh,

two views of the final mesh with resynthesized detail.

extract a single consistent topology for the whole motion. Second, our temporal corre-

spondences are valid between nearby frames, but they cannot be accurately propagated

throughout the whole motion. This stands in the way of producing congruent moving
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Figure 4.22: Our surfaces in conjunction with texture blending [CLB+09] are suitable

for free-viewpoint video. Top: example with gliding cloth, impossible to faithfully re-

produce with conventional template-based methods. Bottom: a complete digital models

produce correct shadows.

meshes that are useful for analysis and editing, and should be addressed with a global

approach. Third, the unobserved regions in each frame have no geometric details in

them (Figure 4.24 right). With correspondences throughout the whole motion, the de-

tail could be transferred from frames where those regions are visible. Nevertheless, we

see our method as the next logical step towards the ultimate goal of dynamic shape

capture, which is to acquire a single moving mesh, consistently parameterized over time,

that exhibits all the observed detail and propagates it to the occluded regions throughout

the whole motion.

4.3.6 Discussion

Due to the rapid advances in real-time 3D acquisition technology, the importance

of obtaining temporally coherent watertight mesh sequences will be undeniable for many

157



CHAPTER 4. DYNAMIC SHAPE RECONSTRUCTION

albedo reconstruction reconstruction (side view)

Figure 4.23: Reconstructed human performance with full albedo integrated into a

virtual scene with different illuminations.

visual hull-based hole filling missing details in occluded regions curvature

Figure 4.24: Although two recent methods (second and third row, with our resynthe-

sized detail for fair comparison) produce single topologies over the complete motion, our

method (first row) is able to recover more faithful per-frame surfaces.

applications involving digitization of dynamic objects. We present the first framework

to automatically fill holes with temporal coherent patches without relying on a geomet-

rical template. We have shown that the maturity of non-rigid registration techniques

enables us to compute accurate and reliable correspondences for our purpose of filling
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[Wand et al. 2009]
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[Zheng et al. 2010]

frame 183
frame 203 frame 213

Figure 4.25: Although two recent methods (second and third row, with our resynthe-

sized detail for fair comparison) produce single topologies over the complete motion, our

method (first row) is able to recover more faithful per-frame surfaces.

holes in dynamic shapes. As opposed to other approaches, our method is specifically

designed to handle changes in topology. Another advantage is that we can process scan

sequences of arbitrary lengths without error accumulation because our correspondence

computations are temporally localized. All presented results were produced from high

resolution captured data of real-life performances that are publicly available [VPB+09].

Our key contribution is the interleaved registration/merging scheme which is propagated
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in a forward-and-backward fashion, the weighted temporal filtering of patches filled using

the visual hull, and the integration of the all these components into a complete shape

completion framework.

In considering shape completion of dynamic scans as a crucial step in digitization

of real-world objects, we anticipate several challenges for future research. Since our

proposed approach is purely geometric, a more accurate reproduction of deformations in

occluded regions could possibly take into account physical properties that are either user

guided or even learned from the captured data. Ultimately, we would like to address

the problem of finding dense global correspondences through entire recordings and we

postulate that determining them using hole-free surfaces is a simpler problem than using

incomplete ones.
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5
Facial Animation Reconstruction

With our feet wet, it is now time to dive into an important field of animation

reconstruction, namely facial animation. So far, we introduced dynamic shape recon-

struction as an essential tool for modeling shape and motion of arbitrarily deforming

objects (such as human bodies, cloths, etc. . . ). We even demonstrated that compelling

facial expressions can be accurately recreated. So what motivates us to dedicate the

rest of our investigation to facial animation? While many problems emphasize on high-

quality reconstruction of unknown shape deformations (typically requiring several min-

utes of computation per frame), many others are of a different nature. For instance,

in interactive applications or previsualization, the system requires a tight feedback loop

in order to coordinate between user input and the resulting animation without sacrific-

ing visual quality. Since general purpose reconstruction methods require a particularly

flexible deformation model, many degrees of freedom (unknowns) are required. Hence,

their computational costs present a significant bottleneck for real-time applications. In

addition, the large dimensionality of their search space brings additional challenges in

avoiding local minima, especially when the subject exhibits large deformations.
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We consider dimensionality reduction

based on a data-driven training process as an

effective approach to lift these restrictions and

thus, an integral part of the animation recon-

struction pipeline (c.f., diagram). Because the

space of facial expressions is considerably smaller than for example a full body perfor-

mance or cloth deformation, facial animation presents an ideal playground to explore

the idea of using training data.

This chapter introduces a complete integrated system for markerless interactive

facial animation and enables the following:

• High-resolution real-time facial tracking

• Live expression transfer to another person’s face.

The system utilizes the same real-time structured light scanner as in previous

chapters without requiring markers or specialized tracking hardware. In addition to

geometry, we also track texture information which is crucial for improved robustness

and accuracy. By using a template model for tracking, we directly obtain consistent

correspondences across the entire recording. As a first step, we build this template by

fitting a generic facial model to a rigid surface reconstruction of an actor’s face (shrink-

wrapping).

Our objective is to achieve real-time performance by shifting complexity from

online computation to an off-line training stage. Training includes robust and accurate

tracking of a large set of facial performances in order to cover a maximum space of

possible expressions. We then build a reduced linear subspace from this training data.

In this way, we simplify the general tracking algorithm to its essentials for robust online

tracking. Note that this technique dramatically reduces error accumulation for extended

scan sequences. Similarly, real-time transfer of facial expressions onto a different face

is achieved by a linear model based on preprocessed deformation transfer [SP04]. This

allows plausible live animations of different characters, even when only a single rigid

model of the target face is available.

Background and Motivation. Convincing facial expressions are essential to cap-

tivate the audience in stage performances, live-action movies, and computer-animated

films. Producing compelling facial animations for digital characters is a time-consuming
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and challenging task, requiring costly production setups and highly trained artists. The

current industry standard in facial performance capture relies on a large number of mark-

ers to enable dense and accurate geometry tracking of facial expressions. The captured

data is usually employed to animate a digitized model of the actor’s own face or transfer

the motion to a different one. While recently released feature films such as The Curious

Case of Benjamin Button demonstrated that flawless retargeting of facial expressions

can be achieved, film directors are often confronted with long turn-around times as map-

ping such a performance to a digital model is a complex process that relies heavily on

manual assistance.

Figure 5.1: Real-time facial expression transfer to CG characters permits high-quality

previsualization of complex facial expressions.

Markerless live puppetry enables a wide range of new applications. In movie

production, our system complements existing off-line systems by providing immediate

real-time feedback for studying complex face dynamics. Directors get to see a quick 3D

preview of a face performance, including emotional and perceptual aspects such as the

effect of the intended makeup (see Figure 5.1). In interactive settings such as TV shows

or computer games, live performances of digital characters become possible with direct

control by the actor.

Besides specifying a few feature points for the initial non-rigid alignment of the
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template to the scanned actor’s face, no manual intervention is required anywhere in our

live puppetry pipeline. The automatic processing pipeline in combination with a minimal

hardware setup for markerless 3D acquisition is essential for the practical relevance of

our system that can easily be deployed in different application scenarios.

5.1 Related Work

Due to the great amount of research in facial modeling and animation, we only

discuss previous work most relevant to our online system and refer to [PW96] and [DN07]

for a broader perspective. Facial animation has been driven by different approaches, in

general using parametric [Par82, CM93], physics-based [TW90, SSRMF06], and linear

models [Par72, BV99, VBPP05].

Linear Face Models. Linear models represent faces by a small set of linear compo-

nents. Blendshape models store a set of key facial expressions that can be combined to

create a new expression [Par72, PSS99, Chu04, JTDP03]. Statistical models represent

a face using a mean shape and a set of basis vectors that capture the variability of the

training data [Sir87, BV99, KMG04, VBPP05, LCXS07]. This allows modeling of a full

population, while blendshape models are only suitable for an individual person. Global

dependencies between different face parts arising in linear models are generally handled

by segmenting the face into independent subregions [BV99, JTDP03].

Facial Performance Capture. Performance-driven facial animation uses the perfor-

mance of an actor to animate digital characters and has been developed since the early

80s [PB81]. Marker-based facial motion capture [Wil90, CXH03, DCFN06, LCXS07,

BLB+08, MJC+08] is frequently used in commercial movie projects [Hav06] due to the

high quality of the tracking. Drawbacks are substantial manual assistance and high cal-

ibration and setup overhead. Methods for offline facial expression tracking in 2D video

have been proposed by several authors [PSS99, BBPV03, VBPP05, BHPS10]. The latter

system uses 14 high definition video cameras in order to enable optical flow tracking at

skin pore levels. Hiwada and co-workers [HMN03] developed a real-time face tracking

system based on a morphable model, while Chai and colleagues [CXH03] use feature

tracking combined with a motion capture database for online tracking. To the best of

our knowledge, our system is the first real-time markerless facial expression tracking sys-

tem using accurate 3D range data. [KMG04] developed a system to record and transfer
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speech related facial dynamics using a full 3D pipeline. However, their system has no

real-time capability and requires some markers for the recording. Similarly, [ZSCS04]

present an automatic offline face tracking method on 3D range data. The resulting facial

expression sequences are then used in an interactive face modeling and animation appli-

cation [ZSCS04, FKY08]. We enhance their method for offline face tracking and use the

facial expression data for online tracking and expression transfer. While all the above

methods use a template model, techniques exist that do not require any prior model and

are able to recover non-rigid shape models from single view 2D image sequences [BHB00].

Although only a rough shape can be reconstructed, features such as eyes and mouth can

be reliably tracked.

Facial Expression Transfer. Noh and Neumann [NN01] introduced expression cloning

to transfer the geometric deformation of a source 3D face model onto a target face. Sum-

ner and Popovic [SP04] developed a generalization of this method suitable for any type

of 3D triangle mesh. More closely related to our method, [CXH03] perform expression

cloning directly on the deformation basis vectors of their linear model. Thus expression

transfer is independent of the complexity of the underlying mesh. A different approach is

taken by [PSS99, Chu04, ZLG+06] who explicitly apply tracked blendshape weights for

expression transfer. The latter one does not require example poses of the source. [CB05]

extended the method to reproduce expressive facial animation by extracting informa-

tion from the expression axis of speech performance. Similarly, [DCFN06] map a set

of motion capture frames to a set of manually tuned blendshape models and use radial

basis function regression to map new motion capture data to the blendshape weights. In

contrast, Vlasic and colleagues [VBPP05] use multi-linear models to both track faces in

2D video and transfer expression parameters between different subjects.

5.2 Real-time Markerless Facial Expression Retargeting

Our facial puppetry system [WLGP09] allows live control of an arbitrary target

face by simply acting in front of a real-time structured light scanner projecting phase

shift patterns. Geometry and texture are both captured at 25 fps. All necessary details

of the scanning system can be found in [WLG07]. The actor’s face is tracked online and

facial expressions are transferred to the puppet in real-time.

As shown in Figure 5.2, our system consists of three main components: Person-
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Figure 5.2: Our system is composed of three main parts: Personalized template build-

ing, facial expression recording, and live facial puppetry. All components rely on input

from a real-time structured light scanner. During template building a generic template

is fit to the reconstructed 3D model of the actor’s face. Dynamic facial expressions of

the actor are then recorded and tracked using non-rigid registration. A person-specific

facial expression model is constructed from the tracked sequences. The model is used

for online tracking and expression transfer, allowing the actor to enact different persons

in real-time.

alized template building, facial expression recording, and live facial puppetry. These

components are described in more detail in Sections 5.2.1. 5.2.2, and 5.2.3, respectively.

The key to online performance is to first record a set of facial expressions of the actor

that are processed offline, and then build a simplified facial expression model specific to

the actor for efficient online tracking and expression transfer.

For template building, non-rigid registration is used to deform a generic template

mesh to the 3D reconstruction of the actor’s face. This personalized template is then

tracked offline through a set of expression sequences. We take advantage of face specific
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constraints to make the tracking accurate and robust. The recorded expression sequences

are used to build a simplified representation of the facial expression space using principal

component analysis (PCA). The reduced set of parameters of the model enables efficient

online tracking of the facial expressions. We propose a simple yet effective method for

real-time expression transfer onto an arbitrary target face: We build a linear face model

of the target face that uses the same parameters as the actor’s facial expression model,

reducing expression transfer to parameter transfer. To build the linear model we use

deformation transfer [SP04] (c.f. Section 3.2.3) on the facial expression sequences of the

actor and then find the optimal linear facial expression space for the target.

Deformable Face Model. Building the personalized template and recording facial

expressions both require a non-rigid registration method to deform a face mesh to the

given input geometry. Non-rigid registration methods typically formulate deformable

registration as an optimization problem consisting of a mesh smoothness term and several

data fitting terms as described in Section 3.2.

We consider deformations with displacement vectors di = ṽi − vi for each mesh

vertex vi ∈ V and deformed mesh vertex ṽi ∈ Ṽ. Deformation smoothness is achieved by

minimizing a bending energy term Ebend =
∑

i∈V ‖∆di‖2 on the displacement vectors,

using the standard cotangent discretization of the Laplace-Beltrami operator ∆ (see

Section 3.2). Notice that the minimization of Ebend leads to the bi-Laplacian equation

∆2 = 0. The resulting linear deformation model is suitable for handling a wide range of

facial deformations, while still enabling efficient processing of extended scan sequences.

We prefer the bending model with co-tangent weighted Laplacian over minimiz-

ing vertex displacement differences as in [ZSCS04] (see Section 3.2), since the latter is

equivalent to a Laplace discretization with inversely-weighted edge length and results in

less natural deformations as illustrated in Figure 5.3.

Our experiments showed that these differences are particularly noticeable when

incorporating dense and sparse constraints simultaneously in the optimization.

When personalizing the template (Section 5.2.1) we employ dense closest-point,

and point-to-plane constraints [CM92], as well as manually selected sparse geometric

constraints each formulated as energy terms for data fitting. For the automated expres-

sion recording, a combination of sparse and dense optical flow texture constraints [HS81]

replaces the manually selected correspondences (Section 5.2.2). In both cases, face defor-

mations are computed by minimizing a weighted sum of the different linearized energy
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Figure 5.3: The bending model with co-tangent weighted Laplace discretization (right)

allows for more natural deformations than using Laplacians with inversely-weighted edge

length (left). The difference is particularly visible in the corners of the mouth.

terms described below. The resulting over-determined linear system is sparse and can

be solved efficiently via Cholesky decomposition [SG04].

5.2.1 Personalized Template Building

We generate an actor-specific templateM by deforming a generic template mesh

Mneutral to the rigid reconstruction of the actor’s face (see Figures 5.2 and 5.4). Besides

enabling a hole-free reconstruction and a consistent parameterization, using the same

generic template has the additional benefit that we obtain full correspondence between

the faces of the different characters.

Rigid Reconstruction. The face model is built by having the actor turn his head in

front of the scanner with a neutral expression and as rigidly as possible. The sequence of

scans is combined using on-line rigid registration similar to [RHHL02] to obtain a dense

point cloud P of the complete face model. Approximately 200 scans are registered and

merged for each face.
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Figure 5.4: Personalized template building: 24 manually labeled reference points are

used for the rigid registration and subsequent iterative non-rigid alignment. The mesh

is then deformed by additionally using closest point constraints to fit the reconstructed

mesh.

Template Fitting. We use manually labeled reference points rj ∈ P for initial rigid

ICP registration of the generic template and the reconstructed face model (Figure 5.4).

The reference points also provide sparse correspondence constraints in a subsequent non-

rigid registration that deforms the templateMneutral towards P to obtainM using the

sparse energy term Eref =
∑

j ‖ṽj − rj‖22. Our manually determined correspondences

are mostly concentrated in regions such as eyes, lips, and nose, but a few points are

selected in featureless areas such as the forehead and chin to match the overall shape

geometry. A total number of 24 reference points were sufficient for all our examples.

To warp the remaining vertices vi ∈ Mneutral toward P, we add a dense fitting

term based point-to-plane minimization with a small point-to-point regularization as

described in [MGPG04]:

Efit =

N∑

i=1

wi(|n>ci(ṽi − ci)|2 + 0.1 ‖ṽi − ci‖22). (5.1)
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The closest point on the input scan from ṽi is denoted by ci ∈ P with corresponding

surface normal nci . We prune all closest point pairs with incompatible normals [RL01]

or distance larger than 10 mm by setting the corresponding weights to wi = 0 and

wi = 1 otherwise. Combining correspondence term and fitting term with the bending

model yields the total energy function Etot = Efit+αrefEref+αbendEbend. The weights

αbend = 100 and αref = 100 are gradually reduced until αbend = 5 and αref = 1. For

all our examples we use the same scheduling for the energy weights (see also [LSP08]).

Texture Reconstruction. The diffuse texture map for the personalized face template

is retrieved from the online rigid registration stage by averaging the textures of all input

scans used for rigid reconstruction. The scan textures are the recorded video frames

and have a resolution of 780 × 580 pixels. We use the projector’s light source position

to compensate for lighting variations assuming a dominantly diffuse reflectance model.

Similarly, we remove points that are likely to be specular based on the half angle. The

resulting texture map is over-smoothed, but sufficient for the tracking stage and has a

resolution of 1024× 768.

5.2.2 Facial Expression Recording

To generate the facial expression model we ask the actor to enact the different

dynamic expressions that he plans to use for the puppetry. In the examples shown in our

accompanying video, the actors perform a total of 26 facial expression sequences including

the basic expressions (happy, sad, angry, surprised, disgusted, fear) with closed and

open mouth as well as a few supplemental expressions (agitation, blowing, long spoken

sentence, etc.). The personalized template M is then tracked through the entire scan

sequence. For each input frame we use rigid ICP registration to compensate for global

head motion yielding a rigid motion (R, t). The generic non-rigid registration method

described above then captures face deformations by adding to each rigidly aligned vertex

v̄i = Rvi+ t the displacement vector di = ṽi− v̄i. Note that a rigid head compensation

is essential for robust tracking, since our globally elastic deformation model is a linear

approximation of a non-linear shell deformation and thus cannot handle large rotations

accurately [BS08]. Because of high temporal coherence between the scans, projective

closest-point correspondences are used to compute ci for Equation 5.1. In addition, we

set wi in Efit to zero if ci maps to a hole. Besides the dense geometric term Efit and

smoothness energy Ebend, we introduce a number of face specific additions, including
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Figure 5.5: Offline facial tracking for expression recording.

dense and sparse optical flow texture constraints to improve accuracy and robustness of

the tracking. Most notably, we explicitly track the mouth, chin, and eyelids.

Dense Optical Flow Constraints. Optical flow is used to enhance template track-

ing by establishing inter-frame correspondences from video data. Instead of using an

independent optical flow procedure as in [ZSCS04], we directly include the optical flow

constraints into the optimization, similar to model-based tracking methods [DM00]. We

thus avoid solving the difficult 2D optical flow problem and integrate the constraints

directly into the 3D optimization:

Eopt =
N∑

i=1

hi

(
∇g>t,i Π

(
ṽt+1
i − ṽti

)
+ gt+1,i − gt,i

)
(5.2)

where gt,i = gt(Π(ṽti)) is the image intensity at the projected image space position

Π(ṽti) of 3D vertex ṽti at time t. Vertices at object boundaries and occlusions that pose

problems in 2D optical flow are detected by projecting the template into both the camera

and projector space and checking each vertex for visibility. We set the per vertex weight
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Figure 5.6: Lip segmentation considerably improves the tracking results for the mouth

region. The contrast enhancement due to lip classification can be seen on the right.

to hi = 1 if visible and hi = 0 otherwise. To ensure linearity in the optical flow energy

Eopt we use a weak perspective camera model that we define as

Π(xi) =
f

z̄i


 1 0 0

0 1 0


 (Rcam xi + tcam), (5.3)

where z̄i is the fixed depth of the current template vertex ṽi, f the focal length, and

(Rcam, tcam) the extrinsic camera parameters.

Optical flow is applied in a hierarchical fashion using a 3 level Gaussian pyramid,

where low resolution video frames are processed first to allow for larger deformations.

In each optimization step, we re-project all visible vertices to the image plane and recal-

culate the spatial image gradient ∇gt,i using a standard Sobel filter, and the temporal

derivative of the image intensity using forward differences.

Mouth Tracking. Optical flow is calculated sequentially and assumes that vertex

positions in the previous frame are correct. This inevitably leads to drift, which is

particularly noticeable in the mouth region as this part of the face typically deforms the
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most. We employ soft classification based on binary LDA [Fis36] to enhance the contrast

between lips and skin. The normalized RGB space is used for illumination invariance.

Soft classification is applied both to the scan video frame gt and the rendering of the

textured template g∗t leading to two gray level images with strong contrast ĝt and ĝ∗t ,

respectively (Figure 5.6). Optical flow constraints between the template and the scan are

then applied for the mouth region, in addition to the scan-to-scan optical flow constraints:

E∗opt =
∑

j∈VM

hj

(
∇ĝ∗>t,j Π

(
ṽt+1
j − ṽtj

)
+ ĝt+1,j − ĝ∗t,j

)
(5.4)

where VM is the set of vertices of manually segmented mouth and lips regions in the

generic face template.

Thus mouth segmentation not only improves optical flow but also prevents drift

as it is employed between scan and template texture which does not vary over time. The

Fisher LDA is trained automatically on the template texture as both skin and lip vertices

have been manually marked on the template mesh, which only needs to be performed

once.

Chin Alignment. The chin often exhibits fast and abrupt motion, e.g., when speak-

ing, and hence the deformable registration method can fail to track the chin correctly

(Figure 5.7). However, the chin typically exhibits little deformation, which we exploit in

an independent rigid registration for the chin part to better initialize the correspondence

search for both geometry and texture. As a result, fast chin motion can be tracked very

robustly.

Eyelid Tracking. Eyelids move very quickly and eye blinks appear often just for a

single frame. Neither optical flow nor closest point search give the appropriate constraints

in that case (Figure 5.10). However, the locations of the eye corners can be determined

by a rigid transformation of the face. Assuming a parabolic shape of the eyelid on the

eyeball, we can explicitly search for the best eyelid alignment using texture correlation.

The resulting correspondences are included into the optimization using a specific fitting

term Eeye of closest-point constraints, similar to Efit. A full statistical model [HIWZ05]

was not required in our experiments, but could be easily incorporated into the framework.

Border constraints. The structured light scanner observes the geometry only from a

single viewpoint. The sides of the face are mostly hidden and thus underconstrained in
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Figure 5.7: Fast motion can lead to registration failure (left). Explicit rigid tracking of

the chin significantly improves the robustness and convergence of the non-rigid registra-

tion algorithm (right). The chin region is marked in green and needs only be determined

once on the generic template face.

the optimization. For stability we fix the border vertices to the positions as determined

by rigid registration.

Iterative Optimization. To improve convergence in the facial expression recording,

we schedule M = 5 optimization steps for each input scan by recalculating closest points

and using a coarse-to-fine video frame resolutions. After rigid alignment, we perform

three steps of optimization with increasing resolution in the Gaussian pyramid for esti-

mating image gradients and two optimization at the highest resolution. Each optimiza-

tion step minimizes the total energy Etot = Efit + αoptEopt + α∗optE
∗
opt + αeyeEeye +

αbendEbend with constant energy weights αopt = 5, α∗opt = 100, αeye = 0.5, and

αbend = 10.

5.2.3 Live Facial Puppetry

Online Face Tracking

Face tracking using the deformable face model is very accurate and robust, but

computationally too expensive for online performance. Even though all constraints are

linear and the resulting least-squares problem is sparse, solving the optimization requires

approximately 2 seconds per iteration and 5 iterations per frame since the left hand side

of a sparse but large linear system need to be updated in each step.

174



CHAPTER 5. FACIAL ANIMATION RECONSTRUCTION

...

= w1 + w2 + w3 + w4 + w5 + ...

tracked facial expressions

PCA modesarbitrary 
expression

Principal Component Analysis (PCA)

Figure 5.8: PCA dimensionality reduction. Given a large set of input facial expressions

that are in correspondence, we only retain the most dominating PCA modes.
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Figure 5.9: Construction of optimal linear subspace in space of deformation transfer

In order to achieve real-time performance we employ PCA dimensionality reduc-

tion in facial expression space similar to [BV99]. We also manually segment the face into
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several subparts to break global dependencies. In our case this is the mouth and chin

region, and symmetrically each eye and forehead (see illustration below).

three PCA segments

The effectiveness of PCA depends on the quantity,

quality, and linearity of the underlying data. Linearity

has been demonstrated in previous PCA-based face mod-

els [Sir87, BV99, VBPP05]. One important advantage of

our system is that we can easily generate a large number

of high-quality training samples by recording a continuous

sequence of facial expression tracked using our offline regis-

tration method (Figure 5.11). This allows us to accurately

sample the dynamic expression space of the actor, which is

essential for live puppetry. As opposed to previous methods

based on linear dimension reduction, our approach uses dense batches of scans for the

recording of each sequence.

frame 1 frame 8

without
lid tracking

with
lid tracking

open eye lids

Figure 5.10: Eyelid tracking enables the system to track eye blinks correctly. Without

explicit eyelid tracking the system fails to track the closing of the eyes.

Online Registration. PCA represents the expression space by a mean face and a set

of K components. At run-time, the system registers the facial expression by searching

for the K coefficients that best match the data.

In principle, all the constraints used in offline face tracking can be included in

the optimization. We found that due to the much lower dimensionality of the problem,

projective closest-point correspondence search with point-plane constraints is usually
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Figure 5.11: A small subset of the roughly 250 expressions used for the generation of

the PCA expression model for a specific actor.

sufficient to faithfully capture the dynamics of the face. However, we include rigid chin

tracking to improve stability. We currently use K = 32 PCA components divided appro-

priately between the three face segments, which proved to be sufficient for representing

more than 98% of the variability of the training data. More components did not add any

significant benefit in tracking quality. We avoid discontinuities at the segment borders

by pulling the solution towards the mean of the PCA model [BV99]. Online registration

is achieved by optimizing Etot = Efit + 0.1
∑K

i=1 ‖ki‖22 where ki are the PCA coefficients

replacing the previous optimization variables di.

All algorithms except the rigid registration are implemented on the GPU using

shading languages and CUDA. With all these optimizations in place, our system achieves

15 frames per second, which includes the calculation of the structured light scanning

system, rigid registration, chin registration, PCA-based deformation, and display.

Expression Transfer

Online face tracking allows the actor to control an accurate digital representa-

tion of his own face. Expression transfer additionally enables mapping expressions onto

another person’s face in real-time. The actor becomes a puppeteer.
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Figure 5.12: Expression retargeting. After establishing correspondences between a

source and target model, we may transfer the deformation of source face onto an arbitrary

target model in neutral pose.

To accomplish expression transfer, we consider the optimization in gradient space

introduced by Sumner and Popović [SP04]. The goal is to map the deformation of a

source mesh S onto an arbitrary target mesh T. As described in Section 3.2.3, we use

the per-triangle deformation gradients defined between a source mesh in its rest pose S

and deformed state S̃. The deformation gradients are then transferred to T by enforcing

mesh connectivity by solving a Poisson equation. Since the template mesh provides

correspondences, we can directly determine the deformation gradients between a face in

neutral pose Sneutral and each captured expression Si. Thus, only a single target pose

in neutral position Tneutral is required to determine all corresponding target expressions

Ti.

In our experiments we found that deformation transfer from one face to another

yields very plausible face animations (Figure 5.13), giving the impression that the target

face has the mimics of the actor. We note that we are not considering the problem of

animating a different character with a non-human face. In that case models based on

blendshapes [Chu04] seem more appropriate as deformations in the source and target

face may not correlate geometrically.
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Linear Deformation Basis. Unfortunately, deformation transfer on the high reso-

lution template mesh (25 K vertices) is too inefficient for real-time performance. To

enable live puppetry, we generate a linear subspace that optimally spans the space of

deformation transfer. For this purpose we compute the PCA bases of all S̄ = [S1 . . .Sn]

and find the least squares optimal linear basis for the target face T̄ = [T1 . . .Tn] that is

driven by the same coefficients W as the actor’s PCA model. Thus, expression transfer

is reduced to applying the coefficients of the actor PCA model to a linear model of the

target shape.

Assume the training shapes of the actor can be expressed by the linear combina-

tion of PCA basis vectors S̃i:




S1

. . .

Sn


 =




w11 . . . w1k

. . .

wn1 . . . wnk







S̃1

. . .

S̃k


 (5.5)

We look for the linear basis
[
T̃1 . . . T̃k

]>
that best generates the target shapes [T1 . . .Tn]>

using the same weights:




T1

. . .

Tn


 =




w11 . . . w1k

. . .

wn1 . . . wnk







T̃1

. . .

T̃k


 (5.6)

We solve this overdetermined linear least-squares problem using normal equations, where

W is determined by simple projection of Si onto the PCA bases S̃i and
[
T̃1 . . . T̃k

]>
=

[W>W]−1W> T̄. The resulting basis vectors of the linear model are not orthogonal,

but this is irrelevant for transfer. The training samples are already available from the

offline facial expression tracking, and thus all expressions that are captured by the PCA

model can also be transfered to the target face. For segmented PCA, each segment is

transfered independently.
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5.2.4 Results

Figure 5.13: Real-time ex-

pression transfer: The tracked

face is shown in magenta, the

transferred expression in green.

Our system achieves accurate 3D facial track-

ing and real-time reconstruction at 15 fps of a complete

textured 3D model of the scanned actor. In addition,

we can transfer expressions of the actor at the same

rate onto different face geometries. All computations

were performed on an Intel Core Duo 3.0 Ghz with 2

GB RAM and a GeForce 280 GTX.

We demonstrate the performance of our ap-

proach with two male actors (Caucasian and Asian)

and one female actress (Caucasian) as shown in Fig-

ure 5.13. Live puppetry is conducted between each

actor and with two additional target models, a 3-D

scanned ancient statue of Caesar (Figure 5.14) and a

digitally sculpted face of the asian actor to impersonate

the Joker (Figure 5.1). For both supplemental target

meshes, no dynamic models were available. Building

the personalized template requires rigid reconstruction

of the actor’s face and interactive reference point selec-

tion in order to warp the generic template onto the re-

construction. This whole process takes approximately

5 minutes. For each actor we capture 26 different fa-

cial expressions (another 5 minutes) as described in

Section 5.2.2 resulting in approximately 2000 frames.

We track the deformation of the personalized template

over all input frames (10 seconds per scan) and sample

200 shapes at regular intervals. These are then used

to compute the reduced PCA bases which requires ad-

ditional 5 minutes. The extracted 200 face meshes are

also used for deformation transfer on an arbitrary tar-

get model to generate the entire set of target expres-

sions (about 30 minutes). All results are obtained with

a fixed set of parameters and no manual intervention
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as described in the previous sections. Once set up, the online system can run indefi-

nitely for extended live puppetry performances. Figure 5.15 shows an evaluation of the

accuracy of the online tracking algorithm for a typical sequence with considerable facial

deformations. The maximum error between the online registered template and the noisy

scans mostly vary between 2 and 4 mm, while the root-mean-square error lies below 0.5

mm.

Figure 5.14: Bringing an ancient Roman statue to live. The actor (magenta) can

control the face of Caesar (green) that has been extracted from a laser scan of the

statue.

As illustrated in Figures 5.1 and 5.13, expression transfer achieves plausible facial

expressions even though the target face geometries can differ substantially. Especially the

facial dynamics are convincingly captured, which is best appreciated in the accompanying

video. Note that all expression transfers are created with a single 3D mesh of the target

face. No physical model, animation controls, or additional example shapes are used or

required to create the animations.

Limitations. Our tracking algorithm is based on the assumption that the acquisition

rate is sufficiently high relative to the motion of the scanned actor. Very fast motion or

large occlusions can lead to acquisition artifacts that yield inaccurate tracking results.
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Figure 5.15: Online tracking accuracy for a sequence of 200 frames of a speaking actor.

The graph shows the maximum (MAX) and root-mean-square (RMS) distance between

the input scans and the warped template. On the right we show the comparison between

the scan (a) and corresponding template (b) that differs the most in the entire sequence.

Their overlap is shown in (c) and the distance for each vertex is visualized in (d), where

black denotes a hole region. Error measurements are in mm.

However, as Figure 5.16 illustrates, our system quickly recovers from these inaccuracies.

Since online tracking can be achieved real-time, slight matching inaccuracies between

the input scans and the template as illustrated in Figure 5.15 are visually not apparent.

Our system does not capture all aspects of a real-live facial performance. For

example, we do not explicitly track eyes, or represent the tongue or teeth of the actor.

Similarly, secondary effects such as hair motion are not modeled in our system due to

the substantial computation overhead that currently prevents real-time computations in

the context of facial puppetry.

Facial expressions that are not recorded in the pre-processing step are in general

not reproduced accurately in the online stage (Figure 5.16 right). This general limitation

of our reduced linear model is mitigated to some extent by our face segmentation that

can handle missing asymmetric expression. Nevertheless, high-quality results commonly

require more than one hundred reconstructed scans to build an expression model that

covers a wide variety of expressions suitable for online tracking. Fortunately, a 5-minute

recording session per actor is typically sufficient, since the expression model can be

reconstructed offline from a continuous stream of input scans.
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extreme pose occlusion pose not captured in training set

Figure 5.16: The online tracking algorithm robustly handles difficult cases such as

poses where the actor faces away from the camera (left), or occlusions that invalidate

parts of the scan (middle). If the actor’s expression is substantially different than any of

the training samples, a plausible, but not necessarily accurate reconstruction is created

(right). The gray image on the screen shows the acquired depth map, the green rendering

is the reconstructed expression transferred to a different face.

5.2.5 Discussion.

Our system is the first markerless live puppetry system using a real-time 3D

scanner. We have demonstrated that high-quality real-time facial expression capture

and transfer is possible without costly studio infrastructure, face markers, or extensive

user assistance. Markerless acquisition, robust tracking and transfer algorithms, and

the simplicity of the hardware setup, are crucial factors that make our tool readily

deployable in practical applications. In future work we may wish to enrich this system

with a number of components that would increase the realism of the results. Realistic

modeling of eyes, tongue, teeth, and hair, are challenging future tasks, in particular in

the context of real-time puppetry.
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6
Directable Facial Animation

To specify how input motion deforms a surface, we have introduced non-rigid

registration for general dynamic shape reconstruction. For real-time facial animation,

we have proposed dimension reduction of linear face models. While we now have unsu-

pervised ways to recreate compelling dynamic shapes, it is not immediately clear how to

intuitively manipulate the resulting animation.

In character animation, an established technique for instrumenting realistic facial

models is to use blendshape rigs where a set of controls are used to specify individual ex-

pressions. Since they are art-directable, blendshape parameterizations are often used for

retargeting detailed recordings of facial performances to digital faces that differ strongly

from the source model. For instance, an artist has maximum control over the appear-

ance of wrinkles and folds for a particular facial pose, as opposed to physics-based muscle

rigs. However, hundreds of separately sculpted shapes are typically needed to achieve

realism. The ability to both efficiently generate a complete customized facial rig and

automatically adjust blendshapes to match the specific look of the actor’s expressions

(while retaining the controller semantics) is thus an important asset for the artist.
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animation reconstruction

dynamic shape
reconstruction

automatic
rigging

training

We consider automatic rigging as an

essential stage of the animation reconstruction

pipeline (c.f. diagram on the right). Anal-

ogous to dynamic shape reconstruction, cus-

tomizing a rig to a specific person can be

achieved through training.

This chapter introduces a framework [LWP10] that automatically creates optimal

blendshapes from a set of example poses of a digital face model (c.f. Figure 6.1). A

predefined blendshape rig of a generic face is used as a prior to determine the semantics

of each blendshape expression that we solve for. While in a traditional setting a precise

pose needs to be provided for every blendshape, we only require a reduced set of example

poses.

example-based
facial rigging... ...

...
...

input training poses prior generic rig

input 
neutral face

output blending weights output blendshapes

correspondences

Figure 6.1: Example-based facial rigging. Given an arbitrary input model in neu-

tral pose and a small set of training poses, our system produces a full set of output

blendshapes with meaningful semantics derived from a generic prior rig. In addition the

blending weights of the corresponding training poses can be determined.
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We illustrate the versatility of our system with applications to art-directable

rigging for sculpted virtual characters and automated rigging from 3D scans of real

actors. A key aspect of our approach is that the blendshape reconstruction can be

edited and adapted iteratively by either generating additional training expressions or

adapting the blending weights of the example poses. This provides full control over the

resulting blendshape model and facilitates easy integration into existing workflows such

as facial tracking. Without our technique, an artist would have to adapt each blendshape

to match all desired input examples.

6.1 Related Work

A large variety of different methods for facial rigging have been proposed in the

past. Some are based on skeletons and joints [MTLT88], physically-based muscle models

[Wat87], linear blendshapes [BL85], or combinations thereof. Skeleton-based rigs are

most often employed for full-body animation due to their intuitive control for articulated

motion. While skeletons are often used for face animation of cartoon characters, this

approach is less suited to produce detailed facial expressions that exhibit wrinkles and

folds. Automatic rigging using skeleton-embedding was proposed by [BP07], but with

the focus on full-body animation.

Physically-based muscle models are well suited for creating realistic expression

dynamics and secondary motions [SNF05]. However, artistic control can be difficult to

achieve. [TW90] proposed a semi-automatic rigging of a muscle-based model to image

data. Similarly, [KHpS01] fit a complex anatomical model to partial 3D scan data.

[OZS08] introduced a general rigging method by transferring a generic facial rig to 3D

input scans or hand-crafted models.

Linear blendshape models [BL85] provide a good compromise between realism

and control. However, hundreds of blendshapes are usually necessary to capture real-

istic facial expression and are often used to mimic the effect of facial muscle groups as

described by Ekman’s Facial Action Coding System [EF78]. In particular, FACS decom-

poses facial behavior into 46 basic poses which are often complemented with a multitude

of combined expressions and visemes. Building such a linear facial rig for highly real-

istic animation was recently demonstrated by [ARL+09], though each blendshape was

still hand-crafted by animators. [PHL+98] build a rig automatically from photographs,

and, similarly, [ZSCS04, WLGP09] from 3D scan data where all facial expressions are

required as input. Automatic creation of facial models using (multi-) linear PCA models
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prior blendshape model output blendshape model

neutral generic input neutral character

input
example expressions

corresponding semantics

target charactergeneric  model

A0 B0

B0 + BiA0 + Ai
   regularization
weights wi ≈ 1

Figure 6.2: Conceptual overview of our method. The generic template, illustrated

with a subset of the blendshapes (left), serves as a geometry and motion prior for an

actor-specific blendshape model (right). The optimization solves for the target blend-

shapes such that a set of example expressions are best reproduced while maintaining the

semantic correspondence between template and target models. We ensure semantically

correct transfer of expressions using additional per vertex regularization weights in our

optimization (shown in red).

was proposed in [BV99, BBPV03, VBPP05], though the resulting linear blendshapes are

not necessarily meaningful for facial animation control. To circumvent this problem, we

propose to use a predefined generic blendshape rig as a semantic prior. This has the

benefit that only a subset of expressions is sufficient to build a complete model, and

moreover, the resulting blendshapes match the controller semantics of the prior.

Linear blendshape models are especially suited for retargeting [Chu04]. An

overview of current methods is given by [PL06]. Choe and Ko [CK05] proposed op-

timizing a generic predefined blendshape rig to fit sparse motion capture data of an

actor. Liu et al. [LMX+08] extended this method using expression cloning [NN01] as

a prior to handle under-constrained cases where less training data is available than the

number of blendshapes. In this work, we focus on building a blendshape model that has

the same semantics as the input model. This is achieved by formulating the optimization

problem in deformation gradient space [SP04].

6.2 Example-Based Facial Rigging

We propose an interleaved optimization that refines the blending weights and

solves for the optimal blendshapes in two alternating steps. We regularize the optimiza-

188



CHAPTER 6. DIRECTABLE FACIAL ANIMATION

tion with meaningful blendshape expressions transferred from a generic face to accurately

capture both the example poses and the semantics of the individual blendshapes. Ex-

pression transfer is achieved by mapping the deformation gradients between the neutral

and blendshape pose triangles of the generic face to the target mesh triangles. Since

we optimize for all blendshapes simultaneously, weighting local variations between the

blendshapes in neutral and deformed pose is crucial in the regularization to prevent se-

mantically incorrect blendshapes. We introduce an optimization that operates directly

in gradient space (c.f. Section 3.2.3) in order to efficiently solve for blendshapes with

semantics that corresponds to those of a generic facial rig prior.

When manipulating or fine-tuning blendshape sliders, artists often impose ac-

tivation constraints to disallow pairs of blendshapes to simultaneously contribute to a

pose. For instance, a mouth which lies exactly on the reflective symmetry plane of the

face is often constrained to not squeeze to the left and to the right at the same time.

The optimization for the blending weights is therefore only allowed to set a weight for

either the left or right mouth squeezing blendshape. In order to prevent combinatorial

explosion for the optimal solution, We design a continuous formulation of the objective

function to efficiently handle the resulting non-linear constraints, while enforcing the

weights to be positive.

6.2.1 Bi-Linear Optimization

We address the problem of generating a full set of blendshapes from a user-

provided handcrafted character or scanned 3D model in neutral expression. The user

can specify an arbitrary number of additional expressions to refine the model toward the

specific geometry and motion characteristics of the actor. The algorithm then determines

the optimal blendshapes that best reproduce the input examples, while preserving the

controller semantics by matching the deformation gradients of a generic blendshape

model rig (c.f. Figure6.2). For complex input expressions, such as an angry face, it

can be difficult to determine the blending weights for a given example pose and those

values can vary substantially for different characters. Thus, in addition to computing

the optimal blendshapes, we also solve for blending weights given a rough initial guess

provided by the user.

We consider a generic blendshape model as a set of meshes A = {A0, . . . , An},
where A0 is the rest pose and the Ai, i > 0 are additive displacements. Expressions can

be generated as Tj = A0 +
∑n

i=1 αijAi, where αij are the blending weights of pose Tj .
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= + 0.5 + 0.9 + 0.9

laughing neutral mouth open smile squint

Our method is general in the sense that we can process input from various sources.

In the case of 3D scans, we align the generic rest pose A0 to the input shapes using the

non-rigid registration method [LAGP09] presented in Section 3.5. This produces a set

S = {S1, . . . , Sm} of complete meshes with connectivity of the prior model and shape of

the respective scan. For hand-crafted models, we either perform the same registration

operation or directly sculpt from the rest pose. We call these meshes training poses.

Our aim is to compute a new blendshape model B = {B0, . . . , Bn} that matches

the geometry and motion of the actor. Thus we need to find blendshapes Bi and

corresponding weights αij such that the training poses are faithfully reproduced, i.e.,

Sj ≈ B0 +
∑n

i=1 αijBi. To solve this bi-linear problem, we need to address two main

challenges: Firstly, how can we compute the target blendshapes Bi, if only very few

training poses are given, i.e., when the problem is under-constrained (m < n)? And sec-

ondly, how can we achieve the right controller semantics, i.e., ensure that similar weight

settings lead to semantically similar expressions for both the template and the target

blendshape models?

Our solution proceeds iteratively by alternating between two steps: step A keeps

the blending weights αij fixed and optimizes for the blendshapes, while step B keeps

blendshapes fixed and solves for the optimal weights (c.f. Figure 6.3). As an important

means of control, the user establishes a semantic correspondence between each training

pose Sj and the generic template. For this purpose, the user selects appropriate blending

weights on the template to model a pose Tj that roughly corresponds to the training

pose Sj . This yields (approximate) weights α∗ij that provide initial values for step A

of the optimization and semantic constraints for step B. We show in Section 6.2.2 that

the α∗ij can be intuitively determined by the user and do not need to be very accurate.

Typically, the blending weights of only a few but sufficiently expressive poses (usually

not more than 4) need to be manually activated in the beginning for each training pose.
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output blendshapes

output blending weights

...
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step A

...

step B

initial weights

iteration 
loop
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i=1

αijBi ≈ Sj
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n�

i=1

αijBi ≈ Sj

Figure 6.3: Our bilinear problem is solved using a decoupled optimization approach.

We repeatedly alternate between step A and step B.

A: Optimizing Blendshapes.

To be able to reconstruct target blendshape models from few training poses, we

incorporate additional constraints derived from the expression space of the template.

The idea is to preserve the motion characteristics of the template by mapping the rel-

ative change between rest pose and blendshapes from the template to the target. This

relative change can be encoded effectively using the deformation gradients defined in

Section 3.2.3. For a triangle t with vertices v1, v2, v3, we define a non-orthogonal local

frame as the 3× 3 matrix Mt = [v3− v1,v2− v1,n], where n = (v3− v1)× (v2− v1) is

the triangle normal vector. The deformation gradient that maps a source triangle s to a

target triangle t is then given as Gs→t = Mt ·M−1
s .

One of the key insights of this paper is that we can formulate the blendshape op-

timization in gradient space and reconstruct the final blendshapes from the local triangle
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frames. As we show in Section 6.2.2, this leads to significant improvements compared to

a direct optimization of blendshape vertex positions. Since the following optimization is

performed independently for each triangle, we omit triangle indices and write e.g., MB
i

for the (unknown) frame of each triangle in blendshape Bi.

For the actor’s rest pose B0 and each of the training poses Sj , we can compute

the frames MB
0 and MS

j , respectively. To faithfully reproduce the training poses, we

define the fitting energy

Efit = ‖MS
j − (MB

0 +
n∑

i=1

αijM
B
i )‖2F

which measures the deviation of the training poses Sj in the space of triangle frames

from the best possible reconstruction in the unknown blendshape model. To account

for insufficient training data we postulate that the deformation gradients of actor blend-

shapes Bi and template blendshapes Ai should be similar. Since the Ai and Bi for i > 0

are additive displacements, this means that GB0→B0+Bi ≈ GA0→A0+Ai . We can write

GB0→B0+Bi = (MB
0 + MB

i )(MB
0 )−1 and define the regularization energy as

Ereg =
n∑

i=1

wi‖MB
i −MA∗

i ‖2F

where the MA∗
i := GA0→A0+Ai ·MB

0 −MB
0 can be computed from the template blend-

shapes and the target rest pose. We incorporate additional regularization weights wi as

an essential means for maintaining the semantics of the generic prior. If a triangle of

the template blendshape moves a little or not at all, we want to ensure that the same

holds for the reconstructed target blendshape. However, if the template blendshape ex-

hibits a strong motion, we want to allow the target deformation gradients to deviate

more from the template prior to account for geometric and motion differences of the

two characters. Our experiments showed that evaluating the regularization weights as

wi = ((1 + ‖MA
i ‖F )/(κ + ‖MA

i ‖F ))θ with κ = 0.1 and θ ≥ 1 adequately guides the

optimization toward these semantics. We use θ = 2 for all our results, yet similar results

are obtained with other values. Note that constraining the vertices using the regulariza-

tion weights does not limit the range of expressions for the target character, since other

complementary blendshapes will be activated by the optimization to achieve a specific

expression.

We combine both energy terms to yield the global energy EA = Efit + βEreg,

where β is a parameter that allows balancing fitting and regularization. Due to the
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cross-product in the definition of the normal vector that constitutes the third column

in the matrix MB
i , the energy EA is non-linear in the vertex positions. Fortunately, as

shown in [BSPG06], we can safely ignore the normal component for the reconstruction

and only solve for the linear components, i.e., the first two columns of the matrices MB
i .

Thus, minimizing EA amounts to simply solving a linear system. Given the MB
i , we

can reconstruct the vertex positions of each blendshape by solving a Poisson equation

as described in Section 3.2.3. To prevent undesirable drifting, we constrain all vertices

that are stationary in a template blendshape to remain fixed in the corresponding target

blendshapes as well.

B: Optimizing Weights.

Given the computed set B of blendshapes, we can solve for the optimal weights

αij to reconstruct the training poses Sj using least-squares fitting. We include the user-

specified weights α∗ij as soft constraints and define the energy EB as a function of the

unknowns αij as

EB =

N∑

k=1

‖vSj

k − (vB0
k +

n∑

i=1

αijv
Bi
k )‖22 + γ

n∑

i=1

(αij − α∗ij)2

where v
Sj

k and vBi
k are the vertices of the training pose Sj resp. the blendshapes Bi, and

N is the total number of vertices. The parameter γ balances fitting and regularization.

Note that even for γ = 0, the resulting weights are likely to match the semantics of the

template controllers, since the regularization energy Ereg of the blendshape optimization

couples corresponding template and target blendshapes. However, the weights α∗ij allow

the user to adapt the controller semantics and thus control the resulting expression space.

Since blendshape weights are typically constrained between zero and one, we use

quadratic programming to solve the constrained system. Moreover, when manipulating

or fine-tuning blendshape sliders, artists often impose activation constraints to disallow

pairs of blendshapes to simultaneously contribute to a pose. For instance, a mouth

which lies exactly on the reflective symmetry plane of the face is often constrained to

not squeeze to the left and to the right at the same time. This can be formulated as

non-linear constraints of the form αijαkj = 0 for two mutually exclusive blendshapes

Bi and Bk. We replace these non-linear constraints by corresponding non-linear penalty

terms and apply a second optimization to update the blending weights αij using a solver

for non-linear least-squares problems with linear constraints [CL96a].
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|x| = 0 |x| = 0.3 |x| = 0.5 |x| = 1

Figure 6.4: When the initial blending weights are perturbed by ±x, the fitting quality

using the optimized blendshape model start to decrease when |x| > 0.3.
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Figure 6.5: Comparison between vertex and gradient domain optimization.

6.2.2 Results

To evaluate our method, we created two sets of training poses using geometric

modeling tools and two sets using a 3D scanner [WLG07]. The generic template model

A is taken from the book Stop Staring [Osi07] and consists of 11K vertices, which is con-

sidered high for artists to start sculpting from. While our model is triangulated from a

subdivision quad mesh, we still retain a one-to-one correspondence between our mesh and

the initial model. The facial rig includes 29 different blendshapes with 6 pairs of modes

that must not be activated simultaneously. For 14 training poses, our unoptimized imple-

mentation requires 45 seconds per iteration. Approximately equal computation time is
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spent on blendshape optimization, reconstruction, and alpha optimization respectively.

In a typical setting, the artist mainly controls the parameters β and γ to adjust

the output blendshapes. When β � 1 the resulting blendshape model is close to the

results achieved via pure deformation transfer. In this case, even when γ = 0, no visible

artifacts were observed in any of our examples. When β is closer to 0.1, the resulting

blendshape is able to accurately capture the input examples, but its quality can be

sensitive for β � 0.1. In particular, when γ = 0 some artifacts can appear for some

blendshapes, but these are prevented when γ is large enough. For all our results, we

simply apply 10 iterations of alternating blendshape and weight optimizations, with

β = 0.5 and γ = 1000 for the first iteration. The weights are gradually decreased to

β = 0.1 and γ = 100 in the last iteration. Weight scheduling ensures robustness to local

minima while enabling detailed adaption to the input after optimization.

Our optimization is robust to variations in the initial selection of the blending

weights α∗ij . We perturbed the user-provided initial values by randomly adding a value

between −x and x. Up to |x| = 0.3, we did not obtain any noticeable differences in the

reconstructed blendshapes for all examples. Figure 6.4 shows the impact of increasing

variations of random α∗ij when fitting the kiss expression with the optimized blendshape

model.

weighted deformation 
gradient optimization

weighted vertex 
optimization

without examples 
(deformation transfer)

unweighted 
optimization

Figure 6.6: Different blendshape optimization methods. Without training data, the

reconstructed blendshapes correspond to pure deformation transfer. Without weighting,

undesirable mixing of blendshape modes occurs, noticeable in the motion of the eye

brows in the smile blendshape. The optimization formulated in vertex space leads to

visible artifacts, while our approach avoids these errors and achieves the desired semantic

separation of blendshapes.
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Figure 6.6 demonstrates the importance of the weights wi in the regularization

energy Ereg. Without weighting, the optimization creates a combination of semantically

separate blendshapes, i.e., mixes undesirable eyebrow motion into the smile blendshape.

However, using a weighted optimization when solving for the vertex positions directly

leads to artifacts, as each vertex is considered independently. These artifacts are absent

in our method as the optimization of the deformation gradient is followed by a subsequent

blendshape reconstruction step.

Figure 6.8 illustrates the influence of the parameter β on the blendshape energy

EA. While the fitting improves with decreasing weight, at around β = 0.05 over-fitting

occurs that leads to artifacts in the reconstructed blendshapes. We found that β = 0.1 is

a good compromise between accuracy and robustness for both 3D scan data and hand-

crafted models.

Figure 6.9 provides qualitative results for three complex expressions of two car-

toon characters (see also Figure 4.18) and one model derived from 3D scans. Without

training examples our method effectively performs deformation transfer on the blend-

shapes, which results in expressions that mimic the poses of the generic template. With

more training examples, the expressions adapt closer to the characteristics of the tar-

get model while still conforming to the same controller semantics. For instance, our

method automatically includes the wrinkles of the joe model that appear in the training

examples.

input example optimal fit error

10

0

Figure 6.7: Not all training poses can be expressed by the reconstructed blendshape

model for the given semantics. In such cases, additional blendshapes are required in the

prior to introduce more degrees of freedom.
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Figure 6.8: Influence of the parameter β that balances fitting term Efit (in mm) and

regularization term Ereg. Effectively, β controls the relation between deformation trans-

fer from the generic template and example poses provided by the user. Over-fitting can

occur when β is too small.

We also tested our algorithm in the context of markerless facial tracking (Fig-

ure 6.10) by using a generic model that contains all 46 FACS poses and 28 supplemental

expressions [Sta10]. We used the system described in [WLGP09] and replaced the PCA

model with our optimized rig. Now our approach enables artists to intuitively tweak

blending weights after tracking. Also, our technique demonstrates that very few training

poses (17) are sufficient to accurately express a dense facial expression space. Without

examples, the blendshapes are not expressive enough.

Limitations. Our method assumes training examples to semantically correspond to

valid blendshape combinations of the generic rig. The blow expression in Figure 6.7

cannot be represented by the prior model and therefore the optimization fails to fit

this expression. However, we can easily detect the case when poses are missing in the

generic model by verifying if Efit exceeds a certain threshold. Semantically differing

expressions would thus need to be added as additional blendshapes. Currently, the

algorithm is not fast enough for interactive rates. The algorithmic complexity scales

linearly with the number of training examples and mesh vertices, but the non-linear solver

has cubic complexity in the number of blendshapes. More sophisticated solvers and an

optimized GPU implementation may allow artists to get direct feedback on the facial rig

while sculpting the example expressions. When only using a few example expressions,

only those blendshapes are being optimized that influence these expressions. Every

other created blendshape will look like deformation transfer, which creates plausible

deformations, but may not catch the exact expressions of the character.
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generic face
joe 

without examples
joe 

with 5 examples
joe 

with 15 examples
3D scan 

without examples
3D scan 

with 15 examples
Ogre 

with 6 examples
joe 

zoom

Figure 6.9: Without training examples, our method simply transfers the expression

dynamics of the generic face toward the actor. With more training expressions, the

reconstructed blendshape model adapts toward the geometry and motion characteristics

of the actor.

neutral generic 
FACS model

character in
neutral pose

angry

angry fit
without examplestracking with 17 training examples

yawnsmile

Figure 6.10: Art-directable facial tracking. Our optimized blendshapes can be directly

used for facial tracking by solving for optimal blending weights for each frame of a 3D

scan sequence. Compared to PCA approaches, our method allows intuitive control over

the blending weights.

6.2.3 Discussion

Example-based facial blendshape rigging is intended to increase the productivity

of professional artists and allow even inexperienced users to quickly generate actor-

specific blendshape models. Instead of solely relying on sculpting and fine-tuning every

single blendshape to match the intended expressions of an animation, our method only

requires a small subset of these expression. This enables a scalable design process and

effective reuse of existing rigs.
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Key contribution of this algorithm is the formulation of the blendshape optimiza-

tion in gradient space. In combination with appropriate weighting schemes, we obtain

a consistent integration of expression transfer and reconstruction of example poses to

yield high-quality customized blendshape rigs with pre-defined controller semantics.

In the future, we may wish to investigate how combining multiple template mod-

els improves expression transfer by providing a more general prior that can more closely

adapt to the target model. In order to handle input examples that cannot be expressed

by a given generic template model due to insufficient blendshapes, we may also consider

methods that suggest supplemental expressions of the generic model that can maximize

orthogonality.
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CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS

The good ideas will survive!

—Quentin Jerome Tarantino

7
Conclusion and Future Directions

We have presented robust reconstruction algorithms that are aimed at facilitating

the creation of compelling CG animations through the use of incomplete but densely sam-

pled real-time data. We have focussed our investigation on general deformable surfaces

which includes human performances, dynamic cloths, and faces in a markerless acqui-

sition setting. Special emphasis was put on recurring themes such as the fundamental

problems of non-rigid registration and correspondence computation.

Our distinct non-rigid registration approach unifies the computation of corre-

spondences, the identification of common subsets, and global consistent warps through

time. Earlier instances of multi-frame static surface reconstruction and shape comple-

tion were extended and generalized to the dynamic setting using a novel bi-resolution

framework. We applied our algorithms to the field of facial animation where new tools

for real-time expression transfer and intuitive instrumentation were further developed.

This chapter summarizes our work and discoveries, then suggests several directions for

future explorations.
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7.1 Summary and Take-Home Messages

Fine-Scale Dynamics: No Free Lunch! Real-time markerless capture is inherently

limited by the lack of explicit correspondence information. Moreover, it is impossible,

like any other optical acquisition technology, to instantaneously obtain a complete digital

representation of the scanned subject. These obstacles prevent us from an easy access to

valuable fine-scale shape dynamics which are often difficult to model using a traditional

approach such as physical simulation. Simply take as an example the challenge of ac-

curately modeling the physical properties and complex interactions of a realistic human

face. Even though existing prior models can be, in some cases, reused and adapted to

specific input data, the process is still subject to a refinement procedure requiring robust

correspondence and deformation computations.

Correspondence and Deformation Coupling. Most of the existing works initialize

the problem of correspondence computation based on proximity heuristics or invariances

w.r.t. some local transformations. Generally, this strategy is further corrected by exploit-

ing spatial consistency constraints through deformation modeling. Several researchers

have identified the effectiveness of incorporating the notion of plausible (i.e., smooth)

deformation in a registration framework to eliminate outlier correspondences and equal-

ize inaccuracy. Instead of simply performing a regularized deformation with prescribed

correspondences, our approach incorporates correspondence refinement directly into the

continuous deformation optimization. In this way, we forcefully break the dependency

between correspondence and deformation computation and naturally achieve warps with

considerably higher global spatial consistency. To this end, when no high-level shape

descriptors are involved, we show that our method can handle significantly larger defor-

mations and holes in the scans than existing non-rigid registration techniques.

Local Rigidity Maximization and Stiffness Relaxation. Fine-scale details should

be preserved and not neglected in deformable registration. From a geometric standpoint,

the optimal non-rigid alignment between a pair of shapes should be regarded as the one

that minimizes their distances and remains locally as-rigid-as-possible. Earlier work of-

ten considered deformation smoothness as a sufficient prerequisite for deformable align-

ment. This is appropriate when dense correspondences can be accurately determined.

In an iterative optimization context, the positions of correspondences are repeatedly

updated based on their local matches. Consequently, we argue, that for considerable de-

formations, details are best preserved when maximizing local rigidity. We identified the
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embedded deformation framework as an ideal model for accurate feature locking under

large deformations in the subject.

While stiffness reduction is a common practice for scheduling a coarse-to-fine

optimization problem, previous works typically proposed a succession of pre-defined reg-

ularization values. This assumption is valid for specific scenarios but any new type of

input subject is subject to a careful fine-tuning procedure. We proposed a systematic

stiffness relaxation approach based on the rate of energy convergence within an iterative

non-rigid registration framework. Consequently, our approach can handle a larger vari-

ability in the input deformation without further manual intervention. In particular, we

used the same parameters for all our pairwise non-rigid registration cases.

Adaptive Deformation Model and Multi-Frame Detail Aggregation. Flexible

deformation models introduce many local minima in the energy landscape, and when

they can be avoided, they should be. Several non-rigid registration frameworks consider

spatial adaption of regularization weights in the course of an iterative registration pro-

cess. This strategy is reasonable for the segmentation of rigid components for articulated

subjects provided correspondences are sufficiently accurate and a large number of degrees

of freedom are available in the deformation model. We found that spatially adapting the

degrees of freedom of the deformation model creates an important advantage for solving

the non-rigid registration. Our extension of embedded deformation with a dynamic de-

formation graph showed that suboptimal local minima can be effectively avoided when

new optimization variables are only introduced in relevant regions. At the same time,

we still allow the manipulation of regularization weights as they are crucial for stiffness

relaxation. As an additional advantage, our method remains efficient since redundant

computation in rigid regions is avoided.

The difference between pure correspondence computation and non-rigid regis-

tration is that the latter additionally estimates the shape in hole regions. Our novel

bi-resolution framework reconstructs both geometry and motion, for extended scan

sequences—even when the data is captured from a single-view. Through the use of

a coarse template (obtained from a static reconstruction procedure), we are not only

able to provide a more robust geometric prior for largely unobserved regions, but we also

circumvent the highly non-trivial problem of topology extraction. As opposed to past

template-based methods, we intentionally remove geometric details from the template

and treat them separately during reconstruction, in order to effectively distinguish be-
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tween static and dynamic ones. A forward and backward aggregation process propagates

those dynamic details across the entire recording while synthesizing them consistently

in unobserved regions. As a result, our proposed framework is able to fully harness the

high sampling resolution of our acquired input data for improved registration accuracy

and synthesis of dynamic details in occlusions.

Shape Completion of Topology Varying Data. Many subjects (e.g., gliding cloth

on human body) cannot be faultlessly represented by a single connected two-manifold

template model. To avoid the hassle of explicitly recovering these highly complex struc-

tures in this ill-posed setting, we took the first step of completing sequences of incomplete

data while the subject may undergo complicated topology changes. We extended previ-

ous hole-filling algorithms (for static shapes) with state-of-the art non-rigid registration

techniques to produce temporally coherent data which deformations are temporally co-

herent and compatible with the observed data. Furthermore, our system is resistant

to error accumulations since correspondence computations are localized within a time

window. We demonstrated a first prototype system for generating free-viewpoint video

using watertight and temporally coherent geometries of human performance that are

acquired using a multi-view 3D scanner.

Real-time Facial Animation. Our preceding contributions have impacted the field

of facial animation. We further investigated critical components for efficient and robust

tracking of compelling facial models and the expression transfer to arbitrary CG charac-

ters. In this respect, we have presented the first markerless live facial puppetry system

using a real-time 3D scanner. One key factor for achieving real-time performance is

the shift of costly computations to an off-line preprocessing stage. The expensive tasks

include a collection of face-specific tracking techniques (rigid head alignment, separation

between facial deformation and rigid chin motion, model-based optical flow using color

textures and lip segmentations), deformation transfer, and the computation of linear

subspaces for dimension reduction. While PCA dimension reduction is a well-known

technique for achieving efficient tracking, we extended the idea of dimension reduction

for expression transfer. In particular, we have shown how to construct a linear subspace

for target expressions whose semantics are compatible with the source model by a simple

linear least-squares optimization.

Blendshape Rigging in Gradient Domain. Rigging is a critical bottleneck in any

animated content creation pipeline. For facial animations, we propose an example-based
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approach for the automatic generation of blendshape rigs. Blendshapes with semantic

meanings are determined through the use of a generic prior model with the corresponding

expressions. We identified the task as a bi-linear problem where blendshapes and their

blending weights are simultaneously solved in an iterative and decoupled fashion. With

only little training data, a full blendshape rig can be generated within minutes. We have

successfully produced high quality customized blendshapes from handcrafted cartoon

characters as well as facial scans from real actors (using FACS poses). Furthermore, we

explored the true potential of our character specific rigs in the context of art-directable

facial tracking using our real-time puppetry system. By simply replacing the dimension

reduced PCA model with the generated blendshapes, we are now able to instrument

meaningful expressions through user-intuitive controls. From an algorithmic perspective,

we learned that a per-triangle optimization in gradient domain followed by globally

solving a Poisson equation was a key factor for generating artifact free blendshapes.

Closing Remarks. The core algorithms herein were mainly designed to improve ro-

bustness and accuracy over existing work on animation reconstruction. Specifically for

our robust non-rigid registration approach, the reader may be misled and attribute the

whole difference between related methods and ours to the fact that different optimiza-

tion parameters were chosen. Besides that most comparisons were conducted with the

involvement of the original authors, we support our ideas with the right choice of defor-

mation model and, foremost, the importance of tight coupling between correspondence

and deformation optimization where global spatial consistency is enforced.

In our shape completion and facial animation system, the complex interplay

of a several building blocks accounts for the robust and efficient tracking. Here, we

emphasize on the conceptual ideas rather than specific implementation details. The

algorithmic choice of several modules stem from a cautious engineering design process

but is also based on whether or not they meet the desired deeds. We believe that higher

quality results can be attained by simply replacing those low-level components with more

sophisticated algorithms without violating the overall architecture of the two systems.

7.2 Open Problems and Future Directions

Accurate 3D digitization of deformable surfaces, including human performances

and facial expressions, remains one of the biggest challenges in computer animation.

Digitally cloning an actor realistically is still not possible without the intervention of

skilled artists. The work herein has covered an important aspect of animation recon-
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struction which is purely based on geometric measurements and assumptions. Perhaps

the greatest limitations of such an approach is that we cannot fully prevent error accu-

mulation for very long recordings and implausible shapes (self-intersections) to occur in

large hole-regions.

While current data-driven techniques (which use a statistical database containing

plausible poses) can effectively sidestep the problem of drifts, they are not suitable for

all types of subjects. In particular, the number of necessary input shapes would be too

high to realistically span a sufficiently large space for fitting to arbitrary input data,

such as all degrees of freedom of a human performance (possibly wearing cloth). For

general deformations, it is still unclear how to optimally combine these approaches with

captured data and also, how to easily build such a database in the first place.

In reality, many complex behaviors such as (self-)collisions and secondary motions

cannot be predicted by pre-computation. For instance, without a sophisticated physical

model and simulation, it would be hard to derive the accurate geometry of the palm of

a grasping hand. Unfortunately, building such model is still subject to a non-trivial and

time-consuming manual process. At this point, physically-based simulation is still very

difficult to control and computationally too expensive. While physics is often considered

as part of a post-processing stage, it is still unclear how to integrate it in the problem

formulation of dynamic shape reconstruction.

Another unsolved problem is the extraction of a consistent topology from a se-

quence of incomplete scans. While several attempts were made to address this problem,

existing algorithms are still limited to very simple examples (very slow deformations and

simple topology changes). Our two dynamic shape reconstruction frameworks basically

circumvent an explicit topology estimation by providing a coarse template model (ge-

ometry and motion reconstruction) or ignoring the requirement of globally consistent

correspondences for the whole motion (temporally-coherent shape completion). For the

latter, a large number of shape analysis and manipulation tools cannot be applied.

Although we demonstrated the capabilities of current real-time and markerless

acquisition systems for creating compelling facial animations, a faithful modeling of com-

plex skin behavior that is indistinguishable from reality has not yet been achieved. In

this respect, we are convinced that several problems still need to be solved in order to

effectively cross the uncanny valley. For example, recreating complex non-linear defor-

mations that arise around eye regions when a person squints is still a challenging topic
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since a significant portion of the surface is occluded and self-colliding. Additionally, in

the context of real-time puppetry, several critical components for realistic facial anima-

tions were not explored in our work. Those include dedicated modeling techniques and

representations of eyes, tongues, and human hair. Finally, the two addressed problems,

expression retargeting and facial rigging, require accurate shrink-wrapping between a

generic prior model and a custom character. For extremely dissimilar shapes (different

anatomy), this is not always easy to achieve and is subject to considerable manual work.

To our knowledge, there is no general method at the moment that fully automates this

process.

In a nutshell. We have investigated several new dynamic shape reconstruction av-

enues from a purely geometric standpoint and discussed the relevant state of the art

methods. However, there is still no universal solution for correspondence computations

between arbitrary shapes and drift-free reconstruction of complex deforming geometries,

especially when the scanned subjects exhibit (self-)contacts.

Future Work. The research conducted in this dissertation opens new doors for future

explorations and improvements. Several problem specific and low-level suggestions can

be found at the end of each chapter. We now highlight a few promising and more general

research directions.

In terms of dynamic shape reconstruction, an immediate extension might involve

a directable physical simulation module as depicted in Figure 7.1. Because our geometric

approach does not consider self-contacts and secondary motions in occluded regions (e.g.,

palm of a grasping hand), one might imagine that incorporating a physical simulation

would result in more plausible deformations in those areas and even improve the accuracy

of correspondences. However, as highlighted earlier, physical simulations are generally

difficult to control and computationally costly. One possible option would be to extract

physical properties from (reliable) visible regions and reapply these estimated parameters

on the remaining parts of the surface. Ultimately, the reconstruction problem could be

phrased as a global optimization that determines a deformation field which is represented

by external forces coupled with the simulation of realistic material behaviors.

Additionally, we anticipate future work in further improving the robustness w.r.t.

fast input motions and the avoidance of error accumulations. While traditional data-

driven approaches or methods that involve a kinematic skeleton can reach a certain

degree of pose invariance during non-rigid registration, their potentials are certainly
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Figure 7.1: One promising direction for future research is to complement our animation

reconstruction pipeline with a physically-based simulation component.

not fully unleashed. Recent advances in tracking techniques based on machine learning

algorithms have demonstrated to be very agile in capturing a wide range of motions and

exceptionally efficient to compute (exploiting parallelization). In this sense, one general

way of improvement might be to unify the problem of correspondence estimation with a

robust statistical model which should be easy to trained and adapt to specific subjects

So far, we mainly considered shrink-wrapping as a non-rigid registration problem

where a source (generic) model is deformed to match a (customized) target model. When

matching very dissimilar shapes, simply prescribing a smooth warp may no longer be

a sufficient criterion. One could imagine extending present surface deformation models

(which attempt to preserve details) to progressively adapt the shape of the source mesh

to the target once the correspondences are sufficiently accurate. In particular, local

geometries in the target model would be continuously transferred to the source (e.g. via

differential coordinate-based representations).

On the acquisition side, we assessed our algorithms using data produced by two

state-of-the-art dense real-time 3D scanning systems. For practical considerations in an

everyday surrounding, these prototype systems are still limited by technological issues

such as the projection of disturbing lights (structured light scanner) or costly studio setup

(Light Stage 6). Nonetheless, the field of real-time 3D is likely to grow significantly in

the next few years, thereby motivating further research problems including, geometry
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and motion reconstruction from purely passive systems (under arbitrary illumination

conditions), high-resolution facial tracking using a monocular system, and more. . .
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shapes: reconstruction and parameterization from range scans. ACM Trans.
Graph., 22:587–594, 2003.

[ACSD+03] Pierre Alliez, David Cohen-Steiner, Olivier Devillers, Bruno Lévy, and
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