
Diss. ETH No. 16785

Meshless Lagrangian Methods
for Physics-Based Animations

of Solids and Fluids

A dissertation submitted to

ETH Zurich

for the degree of

Doctor of Sciences

presented by

Richard Keiser
Dipl. Ing. Inf. ETH Zurich, Switzerland
born January 20, 1978
citizen of Krummenau, SG, Switzerland

accepted on the recommendation of

Prof. Mark Pauly, ETH Zurich, Switzerland, examiner
Prof. Markus Gross, ETH Zurich, Switzerland, co-examiner
Prof. Leonidas J. Guibas, Stanford University, USA, co-examiner

2006

“O beatissime lector,
lava manus tuas et sic librum adprehende,

leniter folia turna,
longe a littera digito pone.

Quia qui nescit scribere,
putat hoc esse nullum laborem.

O quam gravis est scriptura:
oculos gravat,
renes frangit,

simul et omnia membra contristat.
Tria digita scribunt,

totus corpus laborat...”

Note of a writer, 8th century.

Abstract
Nature builds very complex systems of mutually interacting and changing mate-
rials. Computer graphics attempts to map these real world phenomena onto sim-
plified physics-based models. The objective of this dissertation is to develop new
methods for physics-based animation of interacting fluids and deformable objects,
including melting and freezing, based on a unified meshless Lagrangian approach.

Discretizing and solving the equations of motion using a meshless particle-
based system has several advantages compared to mesh-based Lagrangian and
Eulerian methods. Material properties are simply advected with the particles
and might change as a function of time, the particles’ position, and properties
of neighboring particles. For strong deformations, the spatial discretization can
be efficiently adapted without the need for complicated remeshing. Furthermore,
grid-based aliasing artifacts from the alignment with boundaries are avoided. A
major drawback of meshless methods is the expensive computation of the parti-
cles’ neighborhood needed for computing the shape functions. In this dissertation,
the benefits of meshless collocation methods are explored for stably animating flu-
ids and objects with arbitrary deformations.

In our framework, the domain of a model is represented by volumetric particles.
We explore the Smoothed Particle Hydrodynamics method to stably and efficiently
solve the continuum mechanics equations for simulating fluids and elasto-plastic
objects including fracturing and contact handling. Based on a unified particle
metaphor, we present a framework that combines solids and fluids, thus enabling
to simulate a broad range of effects such as viscoelastic materials, melting solids,
interactions between solids and fluids, and multiphase effects between liquid and
air such as bubbles and foam. To improve the performance, we present a new
multiresolution approach that adapts the discretization of the domain dynamically
to the characteristics of the simulation, while reducing the overall complexity of
the computations.

High quality animations require a high resolution surface embedded into the
volumetric representation. We present new meshless methods for animating a
point-sampled surface along with the particles. Our surface model exploits the ad-
vantages of both explicit and implicit surface representations. Geometrically com-
plex surfaces of deformable solids are efficiently animated using a rigid motion
invariant free-form deformation approach. Additionally, surface potential fields
can guide the surface deformation such that topological changes are handled im-
plicitly, making the model suitable also for fluid simulations as well as melting

iii

Abstract

and freezing.
In our research we found meshless Lagrangian methods for the volume and

surface animation to be most suitable for the simulation of strongly deforming
objects. The sampling of the physical domain is adapted in case of extreme defor-
mations or topological changes using a simple and efficient resampling scheme.
Similarly, a point-based surface handles topological changes and strong surface
deformations by adapting the point-sampling dynamically without the need for
maintaining the connectivity. We demonstrate the capability of our meshless ani-
mation framework on a large variety of examples, such as the physics-based ani-
mation of deformable objects ranging from stiff elastic to highly plastic, fractur-
ing of both brittle and ductile material, contact handling of colliding deformable
objects, high resolution animations of splashing fluids with bubbles, two-way cou-
pling between solids and fluids, melting solids with highly detailed and textured
surfaces, solidifying flowing liquids to elastic solids, and viscoelastic liquids with
different physical characteristics.

iv

Kurzfassung
In der Natur existieren sehr komplexe Systeme von gegenseitig interagierenden
und sich stetig verändernden Materialien. In der Computer Grafik wird versucht
diese Phänomene aus der reellen Welt auf ein simplifiziertes physikalisch basiertes
Modell abzubilden. Das Ziel dieser Dissertation ist neue Methoden zu entwickeln
um interagierende Flüssigkeiten und deformierbare Objekte, inklusive schmelzen
und erstarren, nach physikalischen Gesetzen zu animieren, basierend auf einem
netzlosen Lagrange-Ansatz.

Das Benutzen eines netzlosen partikelbasierten Systems zur Diskretisierung
und Lösung von den Bewegungsgleichungen hat diverse Vorteile gegenüber netz-
basierten Lagrange- und Euler-Methoden: Materialeigenschaften werden einfach
mit den Partikeln mitgeführt und verändern sich in Abhängigkeit von Zeit, den
Partikelpositionen, und Eigenschaften anderer Partikel. Bei sehr starken Defor-
mationen kann die räumliche Diskretisierung effizient angepasst werden ohne
ein komplizierte Neuvernetzung durchführen zu müssen. Zudem werden gitter-
basierte Aliasing-Artefakte, die durch die Ausrichtung an Grenzflächen entstehen,
vermieden. Ein Hauptnachteil von netzlosen Methoden ist die teure Berechnung
der Partikelnachbarschaften, die benötigt werden um die Shape-Funktionen zu
berechnen. In dieser Dissertation werden die Vorteile von netzlosen Collocation-
Methoden erforscht für eine stabile Animation von Flüssigkeiten und Objekten
mit beliebigen Deformationen.

In unserem System wird die Domäne des Modells mit volumetrischen Par-
tikeln repräsentiert. Wir untersuchen die Smoothed Particle Hydrodynamics Me-
thode um die Gleichungen der Kontinuummechanik für die Simulation von Flüs-
sigkeiten und elasto-plastischen Objekten, inklusive Zerbrechen und Kontaktbe-
handlung, stabil und effizient zu lösen. Basierend auf einer einheitlichen Partikel-
Metapher präsentieren wir ein System welches Festkörper und Flüssigkeiten
kombiniert und damit die Simulation von einer breiten Palette von Effekten er-
laubt, wie zum Beispiel viskoelastische Materialien, schmelzende Festkörper,
Interaktion zwischen Festkörpern und Flüssigkeiten, und Multiphasen-Effekte
zwischen Flüssigkeiten und Luft wie zum Beispiel Luftblasen und Schaum.
Um die Berechnungsleistung zu verbessern präsentieren wir einen neuen Mul-
tiresolution-Ansatz, welcher dynamisch die Diskretisierung der Domäne dem
Charakteristikum der Simulation anpasst, wobei gesamthaft die Komplexität der
Berechnungen reduziert wird.

v

Kurzfassung

Qualitativ hochstehende Animationen benötigen eine hochaufgelöste Ober-
fläche die in die volumetrische Representation eingebettet ist. Wir stellen neue
netzlose Methoden zur Animation von punktbasierten Oberflächen zusammen
mit den Partikeln vor. Unser Oberflächenmodell nutzt die Vorteile sowohl von
expliziten als auch impliziten Oberflächenrepräsentationen aus. Geometrisch
komplexe Oberflächen von deformierbaren Festkörpern werden effizient ani-
miert, wozu ein Free-form-Deformations-Ansatz benutzt wird der invariant ist für
rigide Transformationen. Zusätzlich leiten Oberflächen-Potentialfelder die Ober-
flächendeformation so dass topologische Änderungen implizit behandelt werden,
weshalb das Modell auch für Flüssigkeitssimulationen sowie für die Animation
von Schmelzen und Erstarren geeignet ist.

Die Resultate unserer Forschung zeigen dass netzlose Lagrange-Methoden
für die Volumen- und Oberflächen-Animation dann am Besten geeignet sind
wenn die simulierten Materialien sehr stark deformiert werden. Das Sam-
pling der physikalischen Domäne wird mittels einem einfachen und effizienten
Resampling-Schema bei sehr starken Deformationen oder topologischen Än-
derungen angepasst. Auf eine ähnliche Weise passt sich die punktbasierte Ober-
fläche den topologischen Änderungen und starken Oberflächendeformationen an
indem das Punktsampling dynamisch angepasst wird ohne dass dabei die Konnek-
tivität erhalten werden muss. Wir demonstrieren die Fähigkeiten unseres netzlosen
Animationssystems anhand verschiedener Beispiele, wie z.B. die physikalisch
basierte Animation von deformierbaren Objekten mit Materialeigenschaften von
steif-elastisch bis zu hoch plastisch, das Zerbrechen von sowohl spröden als auch
plastischen Materialien, Kontaktbehandlung von kollidierenden deformierbaren
Objekten, hoch aufgelöste Animationen von spritzenden Flüssigkeiten mit Luft-
blasen, gegenseitige Kupplung von Festkörpern und Flüssigkeiten, schmelzende
Festkörper mit hoch detailierten und texturierten Oberflächen, verfestigen von
fliessenden Flüssigkeiten zu elastischen Festkörpern, und viskoelastische Flüs-
sigkeiten mit verschiedenen physikalischen Charakteristika.

vi

Acknowledgments
Writing a dissertation, like a roller coaster, is filled with ups and downs and hardly
ever goes the way you expect it to go. However, I was in the lucky position of
working together with fantastic people. These people made even the downs seem
fun and helped them to quickly change into ups again, yielding in a very satisfying,
enjoyable and successful experience.

First of all I want to thank Mark Pauly. Mark was more a collaborator and friend
than a supervisor. During this close collaboration, I was able to profit greatly
from his knowledge and experience. My gratitude also goes to Markus Gross.
Markus brought me into the exciting world of meshless physics-based animations
and provided direction to my research with his visionary ideas. I also would like
to thank Leonidas Guibas. Leo often revealed new ways of solving a problem
and working in his lab in Stanford was a great experience. The last member of
this strong team was Bart Adams. Whether working the nights through before
SIGGRAPH, visiting the parks in California, or going for a couple of drinks in
Leuven, we always had an enjoyable time!

Furthermore, I would like to thank the others with whom I collaborated and
who made this dissertation possible, in particular Matthias Müller, Andy Nealen,
and Dominique Gasser.

I would also like to thank everyone from the CGL and AGG in Zurich for their
support and friendship. Especially, big thanks go to Martin Wicke and Miguel
Otaduy for the fruitful discussions and the help I received from them, and for the
great time we had exploring the bars of Zurich. Thanks to my former office mate
Christian Sigg for providing the dissertation template.

Finally, I would like to express my gratitude to my family and friends for their
endless support and motivation.

vii

Acknowledgments

viii

Contents

Abstract iii

Kurzfassung v

Acknowledgments vii

Notations xv

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Animation Loop . 5
1.4 Outline . 5
1.5 Publications and Collaborations . 8

2 Foundations 11
2.1 Continuum Mechanics . 11

2.1.1 Conservation Laws . 12
2.1.2 Stress . 13
2.1.3 Solid Mechanics . 14
2.1.4 Fluid Mechanics . 15
2.1.5 Viscoelastic Materials . 16

2.2 Physics Representations . 16
2.2.1 Eulerian versus Lagrangian Methods 17
2.2.2 Mesh-based versus Meshless Methods 18

2.3 Smoothed Particle Hydrodynamics . 18
2.3.1 SPH Approximation Error . 20
2.3.2 Corrective Smoothed Particle Method 20
2.3.3 Corrected Smoothed Particle Hydrodynamics 21
2.3.4 Moving Least-Squares Particle Hydrodynamics 21

2.4 Surface Representations . 23
2.4.1 Implicit and Explicit Representations 24
2.4.2 Projecting a Point onto an Implicit Surface 26

ix

Contents

2.5 Point-based Representation . 27
2.5.1 Implicit Surface from Points . 27

3 State of the Art 31
3.1 Meshless Lagrangian Methods . 31

3.1.1 Particle Systems . 31
3.1.2 Smoothed Particle Hydrodynamics 35

3.2 Mesh-Based Lagrangian Methods . 36
3.2.1 The Finite Element Method . 36
3.2.2 The Finite Difference Method . 38
3.2.3 The Finite Volume Method . 38
3.2.4 The Boundary Element Method 38
3.2.5 Mass-Spring Systems . 39

3.3 Eulerian and Semi-Lagrangian Methods 40

4 Multiresolution Fluid Simulation 45
4.1 Introduction . 46
4.2 Related Work . 48
4.3 Fluid Model . 49

4.3.1 Initialization and SPH Force Approximation 50
4.3.2 Kernels . 51
4.3.3 Color Field . 51

4.4 Multiphase SPH . 52
4.4.1 Air Generation . 52
4.4.2 Water-Air Interaction . 53

4.5 Multiresolution Particle System . 55
4.5.1 Virtual Particles . 56
4.5.2 Splitting and Merging . 58

4.6 Surface Extraction . 59
4.7 Results & Discussion . 60

4.7.1 Limitations . 62
4.8 Extensions & Future Work . 62
4.9 Summary . 64

5 Deformable Solid Simulation 65
5.1 Introduction . 66
5.2 Related Work . 67

5.2.1 Deformable Modeling . 67
5.2.2 Fracturing . 67
5.2.3 Contact Handling . 68

5.3 Continuum Mechanics Equations . 69
5.4 Elasticity Model . 70

5.4.1 Moving Least-Squares Approximation of ∇u 71
5.4.2 Elastic Force Computation . 73

x

Contents

5.4.3 Rigid Transformation of the Rest Shape 74
5.4.4 Plasticity Model . 75

5.5 Surface Model . 75
5.5.1 Surface Animation . 76
5.5.2 Surface Refinement . 77

5.6 Fracture Model . 77
5.6.1 Introduction . 78
5.6.2 Modeling Discontinuities . 79
5.6.3 Fracture Surface Model . 81
5.6.4 Crack Initiation and Propagation 82
5.6.5 Topology Control . 84
5.6.6 Fracture Control . 86

5.7 Volumetric Sampling . 87
5.8 Contact Model . 88

5.8.1 Overview . 89
5.8.2 Collision Detection . 89
5.8.3 Contact Surface . 91
5.8.4 Collision Response . 92
5.8.5 Contact Handling Pipeline . 95

5.9 Results & Discussion . 96
5.9.1 Limitations . 99

5.10 Extensions & Future Work . 100
5.11 Summary . 101

6 Solid-Fluid Simulation 103
6.1 Introduction . 104
6.2 Related Work . 104

6.2.1 Melting Objects and Viscoelastic Fluids 105
6.2.2 Surface Extraction and Animation 105

6.3 Physics Model . 106
6.3.1 Governing Equations . 106
6.3.2 Force Computations . 108

6.4 Particle Animation . 109
6.4.1 Deformation of the Rest Shape . 109

6.5 Melting and Solidifying . 110
6.6 Surface Animation . 112

6.6.1 Surfel Neighborhoods . 113
6.6.2 Surface Deformation . 114
6.6.3 Resampling . 118
6.6.4 Zombies . 119
6.6.5 Topological Changes . 119
6.6.6 Blending Between Solids and Fluids 121

6.7 Results . 122
6.8 Limitations & Future Work . 127

xi

Contents

6.9 Summary . 128

7 Implementation 129
7.1 Search Data Structures . 129

7.1.1 Hash Grid . 130
7.1.2 kd-Tree . 131
7.1.3 Discussion . 132

7.2 Time Integration . 132
7.2.1 Leapfrog Integration . 133
7.2.2 Discussion . 134

8 Conclusion 135
8.1 Summary . 135
8.2 Discussion . 137

8.2.1 Smoothed Particle Hydrodynamics 137
8.2.2 Point-based Representation . 139

8.3 Future Work . 140

Bibliography 143

Copyrights 171

Curriculum Vitae 173

xii

List of Figures

1.1 Animation loop . 6

2.1 Visualization of the stress tensor . 13
2.2 Eulerian, mesh-based and meshless Lagrangian representations 16

3.1 Simulation of a lava lamp using the SPH method 35
3.2 Artifacts of linear FEM under large rotational deformations 37
3.3 Cloth modeled using a mass-spring system 39
3.4 Melting bunny . 42
3.5 A dripping viscoelastic fluid . 43
3.6 Controlled fluid simulation using the lattice Boltzmann method 44

4.1 Eulerian vs. Lagrangian advection . 47
4.2 Air generation according to colorfield . 52
4.3 Multiresolution fluid simulation and rigid bodies-fluid interaction 54
4.4 Multiresolution coupling with virtual particles 57
4.5 Surface extraction from the color field and Delaunay triangulation 59
4.6 Multiphase fluid simulation of a splashing sphere 61
4.7 Particle-based rigid body collisions and interaction with fluid 61
4.8 Controlled fluid animation . 63

5.1 Deformed objects consisting of volume and surface elements 69
5.2 Effect of Poisson’s ratio . 70
5.3 Particle-based approximation scheme . 71
5.4 Rigid transformation of the rest shape . 74
5.5 Real-time elastic and plastic deformations of Max Planck 75
5.6 Surface animation and refinement . 76
5.7 Brittle fracture of a hollow stone sculpture 78
5.8 Ductile fracture of a bubble gum like material 79
5.9 Comparison of visibility and transparency method 80
5.10 Surfel clipping to create sharp creases and particle resampling 82
5.11 Front propagation and fracture surface sampling 83
5.12 Transparency weights for embedding surfels in the simulation domain . . . 84

xiii

List of Figures

5.13 Topological events during crack propagation 85
5.14 Controlled fracture . 86
5.15 Volumetric sampling scheme . 87
5.16 Dynamic resampling scheme . 88
5.17 Contact handling pipeline . 89
5.18 Contact surface computation . 90
5.19 Contact surface example . 92
5.20 Penalty and friction force computation . 93
5.21 Plastic Max Planck models building a pile and falling apart again 94
5.22 Santa Claus riding the dragon. 95
5.23 Melting the Max Planck model . 96
5.24 Animating a highly detailed octopus model 97
5.25 Newton’s Cradle with stiff elastic spheres 98
5.26 Performance measurement for two colliding Max Planck models 99

6.1 Solidifying a fluid due to the contact with the frozen ground 107
6.2 Force computation pipeline . 109
6.3 Melting two cubes through a funnel . 111
6.4 Melting of a cube with sharp edges . 113
6.5 Particle and surfel neighborhood scheme 114
6.6 Illustration of the guiding, smoothing and attracting force 116
6.7 Texture interpolating example using zombie particles 119
6.8 Surface splitting and merging . 120
6.9 Melting of an elastic solid dropped onto a heated box 121
6.10 Pouring a fluid into a glass . 122
6.11 Freezing a quicksilver fluid that is poured into a glass 123
6.12 Object melted through a funnel into a casting mold 124
6.13 Comparison of viscoleastic fluids . 125

xiv

Notations
Abbreviations and Acronyms

1D one–dimensional
2D two–dimensional
3D three–dimensional
AABB Axis Aligned Bounding Box
ALE Arbitrary Lagrangian-Eulerian
BEM Boundary Element Method
CIP Cubic Interpolated Propagation
CPU Central Processing Unit
CSPM Corrective Smoothed Particle Method
CSPH Corrected Smoothed Particle Hydrodynamics
EMC Extended Marching Cubes
ETH Swiss Federal Institute of Technology
FDM Finite Difference Method
FEM Finite Element Method
FLIP Fluid-Implicit-Particle method
FVM Finite Volume Method
GPU Graphics Processing Unit
LBM Lattice Boltzmann Method
MC Marching Cubes
MD Molecular Dynamics
MLS Moving Least–Squares
MLSPH Moving Least–Squares Particle Hydrodynamics
MM Meshless Method
MPS Moving Particle Semi-implicit method
NS Navier–Stokes
PCA Principal Component Analysis
PIC Particle-In-Cell method
RSPH Regularized SPH
SPH Smoothed Particle Hydrodynamics
VOF Volume-Of-Fluid

xv

Notations

Geometry

x point in R
3 in world coordinates

m point in R
3 in material coordinates

x,y,z scalar coordinates: x = [x,y,z]T

ei coordinate axis: e0,e1,e2 are orthonormal and span R
3

ri j distance vector between two points xi and x j: ri j = xi−x j

Operators & Norms

ẋ first time derivative: ẋ = ∂x
∂t

ẍ second time derivative: ẍ = ∂2x
∂2t

,x,,y,,z first spatial derivative: ,x = ∂
∂x

∇ gradient: ∇=
[

∂
∂x ,

∂
∂y ,

∂
∂z

]T

∇· divergence operator: ∇·= ∂
∂x + ∂

∂y + ∂
∂z

∇2 laplace operator: ∇2 =∇·∇= ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

∇u directional derivative (rate of change in direction u)
D
Dt material/substantial derivative: D

Dt = ∂
∂t +v ·∇

A∗B convolution of two scalar functions A and B
‖.‖ 2-norm (Euclidian norm)
|.| absolute value of a scalar

Approximation Functions & Matrices
Φ shape function
b polynomial basis
a vector of unknown coefficients
A(.) scalar differentiable function
〈A(.)〉 integral or discrete approximation of a scalar differentiable function
M moment matrix
J Jacobian matrix
I identity matrix
δ(r) delta function: δ(r) = 1 if ‖r‖= 0, 0 otherwise
e least-squares error
h support radius (smoothing length scale)
ω(r,h) normalized kernel function with support h and depending on distance vector r
λ eigenvalue
e eigenvector

xvi

Implicit Surface Ψ

F(x) implicit function, defining the surface as Ψ = {x ∈ R
3 |F(x) = 0}

ψ(x) projection of x onto Ψ
ψorth(x) orthogonal projection of x onto Ψ
I isovalue of a potential field

Object Γ
S surface
Ω volume

Surfel si

si position in world coordinates
t1
si
, t2

si
first and second tangent axes in world coordinates

msi position in material coordinates
t1
mi

, t2
mi

first and second orthogonal tangent axes in material coordinates
nsi normalized normal
Si set of surfels in the neighborhood of si
hSi surfel support radius determining the neighborhood range for Si
Pi set of particles in the neighborhood of si
hPi particle support radius determining the neighborhood range of Pi

Particle pi

pi position in world coordinates [m]
mi position in material coordinates [m]
ui displacement vector [m]
vi velocity [m/s]
ai acceleration [m/s2]
Vi volume [m3]
mi mass [kg]
ρi density [kg/m3]
Ti temperature [◦C]
hi support radius [m]
Pi pressure [N/m2]
fi force acting on pi [N]
fi j force exerted from particle p j onto pi [N]
fpressure
i pressure force acting on pi [N]

fviscosity
i viscosity force acting on pi [N]

fcohesion
i cohesion force acting on pi [N]

fcontact
i contact force acting on pi [N]

fext
i sum of external forces acting on pi [N]

ftotal
i sum of all forces acting on pi [N]

xvii

Notations

Physics
t time [s]
∆t simulation time step [s]
ρ0 rest density [kg/m3]
g gravity acceleration [m/s2]
f force [N]
f̃ force density vector field (force per volume) [N/m3]
ϕ color field value [1]
τϕ color field threshold for inserting a new air particle [1]
E Young’s modulus [N/m2]
ν Poisson’s ratio [1]
U energy [Nm]
Ũ energy density field (energy per volume) [N/m2]
εs solid strain tensor without plasticity [1]
σs solid stress tensor without plasticity [N/m2]
εp plastic strain tensor [1]
εe solid strain tensor with plasticity [1]
σe solid stress tensor with plasticity [N/m2]
σf fluid stress tensor [N/m2]
kyield yield strength material constant [1]
kcreep plastic deformation material constant [s−1]
µ material viscosity [Ns/m2]
kgas gas constant (material stiffness) [N/m2]
kcohesion cohesion constant [Nm4/kg2]
T temperature [◦C]
κ thermal conductivity material coefficient [W/(mK)]
kcap material heat capacity [J/K]
kheat heat diffusion constant: kheat = κ/kcap [(ms)−1]

Surface Animation
Θguide guiding potential
fguide guiding force
kguide guiding force influence constant
Θattract attracting potential
fattract attracting force
kattract attracting force influence constant
Θsmooth smoothing potential
fsmooth smoothing force
ksmooth smoothing force influence constant
Θrepel repulsion potential
frepel repulsion force
krepel repulsion force influence constant

xviii

Fracture
c crack node on a fracture surface, consisting of two surfels with opposing normals
d propagation vector at a crack node
t tangent vector to the crack front
kprop propagation speed factor of the crack front
kopacity opacity of a crack defining the visibility between two particles
khist factor for adjusting the propagation direction for controlled fracture simulation

Contact Handling
B object bounding box
sc surfel on the contact surface
sc position of sc in world coordinates
c a contact node consisting of two contact surfels with opposing normals
c position of c in world coordinates
nc normalized normal direction of c
ρc local contact node density at c
hc particle support radius of a contact node, defines the particle neighborhood of c
dc penetration direction of two objects at c
vc relative velocity of two intersecting objects at c
Sc contact surface
Ωc intersection volume between two objects
fpen
c penalty force acting on c

kpen penalty force constant
ffri
c friction force acting on c

µfri frictional material coefficient
kdamp surface force damping constant
fsurface
c total force acting on c

fcontact
i,c force exerted from contact node c onto a particle pi

fcontact
i total contact force acting on a particle pi

xix

Notations

xx

Chapter 1

Introduction
This chapter gives an overview and motivation of this dissertation and our con-
tributions. We briefly discuss the advantages of using a meshless approach to
solid-fluid simulation and the objectives of our work in Section 1.1. The major
contributions to the state of the art in physics-based computer animation of solids
and fluids are listed in Section 1.2. Section 1.3 describes a high-level view of the
animation loop. An outline of the structure of the dissertation is given in Sec-
tion 1.4. We provide a list of publications that resulted from our work on physics-
based animation and point-based representations in Section 1.5, and acknowledge
our collaborators.

1.1 Motivation
Realistic animation of physical phenomena has gained increasing importance in
many fields of computer graphics, including virtual surgery and the game and
special effects industries. Typical examples include the simulation of rigid and
deformable objects, and fluids. Furthermore, in nature solids and fluids are most
often coupled. Thus, for realistic simulations the interaction between solids and
fluids needs to be modeled. This also includes phase transitions between solids
and liquids, i.e., melting and freezing.

A variety of methods exists for solving the equations of motion in physics-
based animation. However, most methods are suitable for simulating either fluids
or deformable bodies, but not both. Generally, these methods fall into two cate-
gories: Lagrangian and Eulerian methods. Mesh-based Lagrangian methods such
as the finite element method and mass-spring systems are most often used to sim-
ulate deformable solids, whereas Eulerian methods using finite differences are
state of the art in fluid simulation in computer graphics. This is due to the com-
plementary advantages and drawbacks of these two approaches. In Lagrangian
methods, the mesh moves with the material and therefore automatically adapts to
the dynamics of the simulation, for instance when compressing or stretching an

1

Chapter 1 Introduction

object. Furthermore, due to the material description, the boundary of an object
is explicitly defined. This not only simplifies the animation of the object’s sur-
face, but also the interaction with other objects and the enforcement of essential
boundary conditions. Furthermore, it enables the simulation of complex effects
such as fracturing. In contrast, Eulerian methods look at the evolution of material
at fixed points in space. Thus, changes of topology are captured implicitly and
even extreme deformations can be handled stably and efficiently without the need
for remeshing of the domain or taking care of degenerated mesh elements. The
biggest disadvantage of Eulerian methods is that the boundary of a fluid is not ex-
plicitly defined, and therefore the surface needs to be advected with the material
flow. Furthermore, correct handling of boundaries and interacting objects that do
not align with the Eulerian mesh is challenging.

Eulerian-based fluids and Lagrangian-based solids are usually coupled by ras-
terizing the solid onto the Eulerian mesh to prescribe velocity boundary conditions
on the fluid and pressure forces on the solid [CMT04, GSLF05, LIGF06]. How-
ever, this is problematic because the discretization of the solid introduces errors
and it is difficult to guarantee that fluid does not leak through [GSLF05]. Fur-
thermore, the transition from a solid into a fluid while melting is very challenging
because it requires changing continuously from the Lagrangian to the Eulerian
representation [LIGF06].

Meshless Lagrangian methods, so-called particle systems, exploit advantages
of both mesh-based Lagrangian and Eulerian methods. As a Lagrangian method,
material properties are advected simply with the particles. The boundary of the
physical domain is defined explicitly by the particles. Moreover, meshless meth-
ods can handle topological changes without the need for remeshing. A draw-
back of meshless collocation methods is that the particle neighborhood needs to
be recomputed in every time step for adapting the shape functions, which is of-
ten the computationally most expensive part in a simulation. Furthermore, the
non-interpolating shape functions render the enforcement of essential boundary
conditions difficult.

To solve the aforementioned problem of coupling fluids and solids, we inves-
tigate meshless Lagrangian methods based on Smoothed Particle Hydrodynamics
(SPH) for both deformable objects and fluids, and their combination. Treating
both solids and fluids with the same representation simplifies handling their in-
teraction, and renders freezing and melting materials possible. Furthermore, we
extend the meshless collocation methods to incorporate fracturing, and develop
a multiresolution approach that dynamically adapts the resolution of the particle
system to the characteristics of the simulation.

Particle-based methods require the definition or extraction of an implicit or ex-
plicit surface from the particles. While an implicit definition of the surface defined
by the particles can handle topological changes automatically by construction,
the surface resolution depends on the (usually coarse) resolution of the particles.
Hence, an explicit surface representation is more suitable for the simulation of
highly detailed objects. On the other hand, fluid surfaces often rapidly change

2

1.2 Contributions

their topology, which is hard to capture using an explicit approach. In our at-
tempt to unify solid-fluid animations, we investigate point-based surface recon-
struction methods that exploit advantages of both implicit and explicit represen-
tations. They are thus suitable for the animation of both deformable solids with
highly detailed surfaces and fluids with smooth surfaces that change their topology
frequently, as well as for the (local) transition between a solid and fluid surface
while melting or freezing.

For engineering purposes, the focus of simulation methods is on accuracy. A
new method is usually tested and compared with examples whose solutions can be
either computed analytically or are known from experiments. However, analytical
solutions often only exists for very simple test cases, and qualitative comparisons
are usually restricted to 1D or 2D simulations. In computer graphics we aim to
simulate highly complex phenomena in 3D that would be prohibitive to model by
hand, for instance for virtual simulators, feature films, and games. Furthermore,
in many applications the user interacts with the animated objects. Thus, the focus
is on stability, physical plausibility, and speed, where usually quite big time steps
are used. At the same time, the system designer often wants to be able to con-
trol the simulation, or even aims to achieve non-physical behavior, for instance,
when animating a fluid character [SY05, TKPR06] such as the tar monster in the
Scooby Doo 2 feature film [WH04]. To fulfill these requirements, accuracy and
correctness is often traded off with computational complexity.

1.2 Contributions
In this dissertation we present meshless Lagrangian methods for the physics-based
animation of both fluids and deformable objects that fracture, as well as the inter-
action between fluids and solids including melting and freezing, based on a unified
particle metaphor. The major contributions are:

• a multiphase fluid approach for simulating two-way coupling between
liquids and air. Air particles are generated dynamically at the liquid inter-
face. Surface tension is simulated by modeling cohesion at the liquid-air
interface. Trapped air particles turn into bubbles. Our multiphase method
enables simulation of arbitrary fluid-fluid interaction. By sampling a solid
with particles and treating it as a (rigid) fluid, the same interaction model as
for fluid-fluid simulation can be used to simulate fluid-solid interactions.

• a meshless collocation model based on continuum mechanics for the an-
imation of elastic, plastic and melting objects. We derive elastic forces in
accordance with a linear displacement, constant strain approach. In contrast
to most standard meshless approaches, which require solving complex in-
tegrals numerically, our method yields simple explicit equations which are
easy to code and result in fast and stable animations.

3

Chapter 1 Introduction

• a free-form deformation approach for animating the surface along with
the particles. A continuous displacement field is computed from the par-
ticles. This field is exploited to efficiently deform a point-sampled surface,
where the deformation is invariant under rigid body motions. To prevent
surface distortions for large deformations, a resampling scheme is applied.

• a method for simulating elastic and plastic materials that fracture.
Fracture surfaces are dynamically created and maintained by continuously
adding surface samples during crack propagation. Dynamic resampling
adapts the particle sampling resolution to handle fracturing and large de-
formations. When new crack surfaces are created or the sampling of the
domain changes, the shape functions adapt dynamically. Our method can
handle complex topological events associated with multiple branching and
merging cracks.

• a collision detection and response algorithm for Lagrangian animations
of deformable bodies, where both the volume and the surface represen-
tation are meshless. The method stably resolves collisions for stiff elastic
as well as highly deformable or plastic models. During collisions, it deforms
the point-sampled surface and exerts forces on the volumetric particles. The
decoupling of collision handling and deformations yields plausible collision
simulations at interactive speed.

• a unified approach for solid-fluid simulation including melting, freez-
ing, and viscoelastic materials. The equations of motion for solids and
fluids are unified such that the same solver can be used for simulating both
fluids and solids as well as viscoelastic materials. Furthermore, the physical
material characteristics can change locally, which can be used to simulate
effects such as melting and freezing.

• a hybrid implicit-explicit surface generation approach that dynamically
constructs a point-sampled surface wrapped around the particles. Po-
tentials are defined which guide the surface deformation. This surface rep-
resentation enables modeling the fine surface detail required for solids, as
well as the smooth surfaces of fluids, and the transition from detailed solid
surfaces to smooth fluid surfaces during melting. Topological changes are
incorporated in a lightweight and efficient manner. Furthermore, blending
artifacts are avoided that typically arise when handling topological changes
using implicit functions.

• a multiresolution approach which automatically adapts the resolution
to the simulation characteristics. We introduce virtual particles to achieve
a consistent coupling of different particle resolutions and use these particles
to locally change the resolution in a consistent fashion. The method is sim-
ple and has only a very small overhead, resulting in a performance gain up
to a factor of six in our examples. Furthermore, the approach is versatile in
that it can be applied to most particle methods.

4

1.3 Animation Loop

1.3 Animation Loop
Figure 1.1 gives a high-level overview of our animation loop. It consists of three
loosely coupled parts, which are executed in the following order: Animation of the
object’s volume, animation of the surface, and contact handling of the surface with
response forces influencing the physics simulation. Before the simulation starts,
the physical domain is sampled with particles and the particles’ properties are
initialized as described in Sections 4.3.1 and 5.7 for fluids and solids, respectively.
Alternatively, the particles are generated randomly in a cylinder by a source with
a given initial velocity.

The physics animation starts with updating the rest shape of an object and re-
computing the neighborhood of particles in case the rest shape of an object has
changed. From the neighborhood, the density of a particle is approximated using
SPH, which is then used for all other SPH approximations. Thus, this is a two-
pass algorithm, which requires storing the particles’ neighborhood. In a next step,
strain and stress are computed, which are then used to derive the elastic forces.
Additionally, fluid forces, such as pressure and viscosity forces, and forces be-
tween fluids and solids are computed. The move of the particles in time due to the
applied forces is computed using the explicit leapfrog time integration scheme.In
a next step, the computed stress is used to determine whether and where new
cracks start or how existing cracks propagate. Changes in the dynamic or due to
fracturing can make a local dynamic resampling of the domain necessary.

After a physics’ step, the surface is animated by exploiting the continuously
defined displacement field which is computed from the displacement of the parti-
cles. The surface is subsequently deformed according to potential fields to adapt
it to the characteristics of the physics.

Finally, the deformed surface is used to detect collisions between deformable
objects. Penalty forces are computed per surface element and distributed to the
particles. These forces are then added to the force computation during the physics
animation and thus influence the dynamic behavior of the objects.

1.4 Outline
The dissertation is organized as follows:

• Chapter 2 introduces the fundamental concepts and definitions used in this
dissertation. In Section 2.1, the governing equations and terms of contin-
uum mechanics are introduced, including a discussion of solid and fluid
mechanics, and viscoelastic materials. In Section 2.2 we discuss and com-
pare three main classes of numerical approximation techniques, namely Eu-
lerian, mesh-based and meshless Lagrangian methods. We then introduce
Smoothed Particle Hydrodynamics and variants of it, which are used in this
dissertation as meshless collocation methods (Section 2.3). Similarly to the

5

Chapter 1 Introduction

Force Computation

Fracture Handling

Dynamic Sampling

Physics Animation

Surface Displacement

Surface Deformation

Surface Animation

Contact Computation

Contact Handling

Collision Response

Leapfrog Time Integration

Strain/Stress Computation

Density Computation

Neighborhood Computation

Rest Shape Update

Figure 1.1: Animation loop. In the physics stage, the deformation of the volume of an
object or fluid is computed and fracturing is handled. In the second stage, the
surface is animated along with the volume and adapted to the particles. In the
third stage, surface penetration is handled and response forces are computed that
influence the physics animation.

6

1.4 Outline

different classes of numerical methods used to solve the physics equations,
two main classes of surface representations exists, namely explicit and im-
plicit representations, which are discussed in Section 2.4. We introduce
point-sampled surfaces and argue that this representation combines the ad-
vantages of explicit and implicit representations (Section 2.5).

• Chapter 3 presents the state of the art in physics-based deformable ob-
ject and fluid simulation in computer graphics. We provide a background
on particle-based systems (Section 3.1) and briefly discuss the most rele-
vant work in mesh-based Lagrangian (Section 3.2), and Eulerian and semi-
Lagrangrian methods (Section 3.3).

• Chapter 4 presents a new multiresolution particle-based method for adapt-
ing the particle resolution to the characteristics of a fluid simulation and a
multiphase approach for two-way air-water and fluid-solid coupling. Sec-
tion 4.3 introduces our fluid model based on Smoothed Particle Hydrody-
namics. This model is extended in Section 4.4 to support the simulation
of multiphase fluids and interaction between fluids and rigid bodies. We
then show in Section 4.5 how to decrease the computational complexity for
fluid simulation using a multiresolution technique based on virtual parti-
cles. These particles yield a consistent coupling between different resolu-
tion levels and dynamic resolution adaption. Finally, we briefly discuss in
Section 4.6 a new Lagrangian technique for extracting the surface.

• Chapter 5 presents a framework for animating deformable objects includ-
ing fracturing and contact handling. First, we derive the governing contin-
uum mechanics equations and resulting forces based on a given deformation
field (Section 5.3). We present in Section 5.4 our discrete elasticity model
based on a moving least-squares approximation of the spatial derivatives
of the displacement field from neighboring particles. Our surface model
is introduced in Section 5.5. It enables fast animation of an embedded,
highly detailed point-sampled surface with dynamic resampling to main-
tain a high quality surface. The elasticity and surface model is extended
in Section 5.6 to support fracturing of both brittle and ductile material by
adapting the shape functions and dynamic creation of the fracture surfaces.
Dynamic adaption of the volumetric sampling to guarantee a stable simula-
tion also for strong deformations and fracturing is discussed in Section 5.7.
In Section 5.8 we introduce a new contact handling method for Lagrangian
animated deformable objects with point-sampled surfaces, where the colli-
sion handling and deformation is decoupled to achieve efficient and stable
simulations.

• Chapter 6 combines and extends the techniques described in the previous
chapters to unify the simulation of fluids and deformable solids, thus en-
abling the simulation of viscoelastic materials and effects such as melting
and freezing. We present a new approach to surface extraction that can

7

Chapter 1 Introduction

handle the animation of objects with highly detailed surfaces, fluids with
smooth surfaces, and melting deformable objects to fluids. We first present
our physics model in Section 6.3 and show how this model can be used to
simulate melting and solidifying by simple adapting the physical parame-
ters (Section 6.5). In Section 6.6 we propose a new surface model based on
potential fields that guide the deformation of the point-sampled surface.

• Chapter 7 provides implementation details of the search data structures
used in this dissertation, namely kd-tree and hash grids, and discusses the
applied time integration schemes.

• Chapter 8 concludes the dissertation with a summary of the previous chap-
ters, a discussion of advantages and drawbacks of the applied approaches,
and an outlook on future work.

1.5 Publications and Collaborations
The work presented in this dissertation is the result of international collaborations
and yielded the following publications:

• The state of the art report given in Chapter 3 draws from a presentation
at Eurographics 2005 and a publication in the Computer Graphics Forum
Journal [NMK+06]. Collaborators are Andrew Nealen from the Techni-
cal University Berlin, Germany, Matthias Müller from AGEIA/NovodeX,
Switzerland, Eddy Boxermann from the University of British Columbia,
Canada, and Mark Carlson from DNA Productions Inc., USA.

• The multiresolution fluid framework including multiphase fluid simulation
presented in Chapter 4 is on-going work and was published as a technical
report [KAG+06]. Collaborators are Bart Adams and Philip Dutré from the
Katholieke Universiteit Leuven, Belgium, Leonidas J. Guibas from Stanford
University, USA, and Mark Pauly from ETH Zurich, Switzerland.

• Chapter 5 resulted in the following publications:

– The basic framework for deforming elasto-plastic objects was pub-
lished and presented at the ACM SIGGRAPH/Eurographics 2004
Symposium on Computer Animation in Grenoble, France [MKN+04].
Matthias Müller from AGEIA/NovodeX, Switzerland, derived the
continuum mechanics equations presented in Section 5.3. Other col-
laborators are Andrew Nealen and Marc Alexa from the Technical
University Berlin, Germany, and Mark Pauly and Markus Gross from
ETH Zurich, Switzerland.

– The free-form surface deformation approach used in the work de-
scribed above draws from a publication in the ACM Transactions on

8

1.5 Publications and Collaborations

Graphics Journal [PKKG03] that was presented at ACM SIGGRAPH
2003 in San Diego, USA. Collaborators are Leif P. Kobbelt from the
Rheinisch-Westfälische Technische Hochschule Aachen, Germany,
and Mark Pauly and Markus Gross from ETH Zurich, Switzerland.

– The extension for fracturing was presented at ACM SIGGRAPH 2005
in Los Angeles, USA, and published in the ACM Transactions on
Graphics Journal [PKA+05]. Collaborators are Bart Adams and Philip
Dutré from the Katholieke Universiteit Leuven, Belgium, Leonidas
J. Guibas from Stanford University, USA, and Mark Pauly and Markus
Gross from ETH Zurich, Switzerland.

– Contact handling of deformable point-based objects was published
and presented at the conference of Vision, Modeling and Visualiza-
tion (VMV) 2004 in Stanford, USA [KMH+04]. Collaborators are
Matthias Müller and Bruno Heidelberger from AGEIA/NovodeX,
Switzerland, Matthias Teschner from University of Freiburg, Ger-
many, and Markus Gross from ETH Zurich, Switzerland.

• The unified approach for solid-fluid simulations presented in Chapter 6
was published and presented at the Eurographics Symposium on Point-
Based Graphics 2005, New York, USA [KAG+05]. Collaborators are Bart
Adams and Philip Dutré from the Katholieke Universiteit Leuven, Belgium,
and Dominique Gasser, Paolo Bazzi and Markus Gross from ETH Zurich,
Switzerland.

Further publications that are related to this dissertation but not thoroughly dis-
cussed in here are:

• Detail-preserving fluid control [TKPR06], which will be presented and pub-
lished at the ACM SIGGRAPH/Eurographics 2006 Symposium on Com-
puter Animation, Vienna, Austria, in collaboration with Nils Thürey and
Ulrich Rüde from the Friedrich-Alexander-Unitersity Erlangen-Nürnberg,
Germany, and Mark Pauly from ETH Zurich, Switzerland.

• Efficient raytracing of deforming point-sampled surfaces [AKP+05], pre-
sented at Eurographics 2005, Dublin, Ireland, and published in the Com-
puter Graphics Forum Journal, in collaboration with Bart Adams and
Philip Dutré from the Katholieke Universiteit Leuven, Belgium, Leonidas
J. Guibas from Stanford University, USA, and Mark Pauly and Markus
Gross from ETH Zurich, Switzerland.

• Particle-based fluid-fluid interaction [MSKG05], presented and published
at the ACM SIGGRAPH/Eurographics 2005 Symposium on Computer An-
imation, Los Angeles, USA, in collaboration with Matthias Müller from
AGEIA/NovodeX, Switzerland, Barbara Solenthaler from the University of
Zurich, Switzerland, and Markus Gross from ETH Zurich, Switzerland.

9

Chapter 1 Introduction

• Consistent penetration depth estimation for deformable collision response
[HTK+04], published and presented at the conference of Vision, Model-
ing and Visualziation (VMV) 2004, Stanford, USA, in collaboration with
Matthias Müller and Bruno Heidelberger from AGEIA/NovodeX, Switzer-
land, Matthias Teschner from University of Freiburg, Germany, and Markus
Gross from ETH Zurich, Switzerland.

• Post-processing of scanned 3D surface data [WPK+04], published and
presented at the Eurographics Symposium on Point-Based Graphics 2004,
Zurich, Switzerland, in collaboration with Tim Weyrich, Mark Pauly, Si-
mon Heinzle and Markus Gross from ETH Zurich, Switzerland, and Sascha
Scandella from Cyfex, Switzerland.

• Multi-scale feature extraction on point-sampled surfaces [PKG03], was
presented at Eurographics 2003, Granada, Spain, and published in the
Computer Graphics Forum Journal, in collaboration with Mark Pauly and
Markus Gross from ETH Zurich, Switzerland.

• Collision detection and response for interactive editing of point-sampled
models [Kei03], Master thesis 2003, ETH Zurich, Switzerland.

10

Chapter 2

Foundations
This chapter introduces the basics of surface and physics representations and the
fundamental equations of continuum mechanics that are relevant for this disser-
tation. Section 2.1 summarizes the conservation laws in physics, introduces the
fundamental concept of stress and strain, and briefly discusses solid and fluid me-
chanics and viscoelastic materials. Different viewpoints on how the dynamics of
material can be computed are given in Section 2.2, where mesh-based and mesh-
less Lagrangian methods are compared. Details about the meshless approximation
methods used in this dissertation are provided in Section 2.3. We then discuss and
compare implicit and explicit surface representations in Section 2.4 and describe
common methods for projecting a point onto an implicit surface. Section 2.5 in-
troduces point-sampled surfaces used in this dissertation as an explicit surface
representation and the underlying implicit representation.

2.1 Continuum Mechanics
In this section we describe the basic equations and introduce the most impor-
tant terms of continuum mechanics, see [Chu96, Fun94, LRK93, Liu02b, BW97,
BLM00] for detailed introductions and [Lov27] for a nice review of the history
of elasticity theory. In continuum theory, matter is regarded as a continuum, i.e.,
indefinitely divisible, where small scale effects coming from molecular, atomic or
sub-atomic interrelations are neglected. Thus, physical quantities such as energy
and momentum can be handled in the infinitesimal limit, resulting in differential
equations. Continuum mechanics is divided into solid mechanics and fluid me-
chanics. The most important difference between solids and fluids is that solids
have a rest shape defined. Elastic forces counteract deformations from this rest
shape. On the other hand, fluids flow because they cannot resist shear stress.
Viscoelastic materials exhibit the characteristics of both fluid and solid. We will
use the theory of continuum mechanics and of the different materials described
below for the numerical simulation of fluids (Section 4.3), for deriving the (dis-

11

Chapter 2 Foundations

crete) elastic forces (Sections 5.3 and 5.4), and for deriving a model for animating
viscoelastic materials (Section 6.3), and melting and freezing (Section 6.5).

We will first summarize the conservation laws of physics that are most rele-
vant for our framework, and then describe an important mechanics quantity, the
stress tensor (Section 2.1.2). We will then have a closer look at solid mechanics
(Section 2.1.3), fluid mechanics (Section 2.1.4), and viscoelastic materials (Sec-
tion 2.1.2). In this section we only consider classical mechanics (also called New-
tonian mechanics), but no quantum mechanics.

2.1.1 Conservation Laws
The constitutive equations describe the relation between physical quantities spe-
cific to the material (see Sections 2.1.3 and 2.1.4), whereas the conservation laws
of physics, which state that a physical quantity in an isolated system does not
change, are valid for all materials. Important quantities that need to be conserved
in our system are mass, energy and momentum. We will describe the govern-
ing equations from a Lagrangian viewpoint (also called material or reference de-
scription, see also Section 2.2.1), i.e., by following a particle that represents an
infinitesimal volume of material.

The conservation of momentum is represented by Newton’s second law, which
describes the trajectory p = p(t) of a particle as a function of time, i.e.,

p̈ = f (ṗ,p, t), (2.1)

where p̈ and ṗ are the second and first time derivatives of p, and f () is a function
depending on the physical model. This second order differential equation can be
written as a coupled set of ordinary differential equations

ṗ = v, (2.2)
v̇ = f (v,p, t), (2.3)

where v is the particle’s velocity.
When following a particle, its volume dV and its density ρ may change, but its

total mass m = ρdV will remain unchanged. The continuity equation represents
the conservation of mass

Dρ
Dt

=−ρ∇·v, (2.4)

where the material derivative (also called substantive, Lagrangian, or advective
derivative)

D
Dt

=
∂
∂t

+v ·∇ (2.5)

describes the rate of change of a physical quantity of a particle in time and ∇· v
is the divergence of the velocity field. Note that the material derivative relates

12

2.1 Continuum Mechanics

xx

τz’y’

σz’z’

τz’x’
τx’z’

σx’x’

τx’y’

τy’x’
τy’z’

x’

y’

p

z’
z

y
σy’y’

σp1

z

y

p

σp0

σp2

τzy

σzz

τzx
τxz

σxx

σyy

τxy

τyx
τyz

z

x

y

p

Figure 2.1: Left: visualization of the components of the symmetric stress tensor at p.
Middle: the same state of stress is represented by a different set of components if
the coordinate axes are rotated. Right: principal stresses.

the Lagrangian description to the Eulerian description (also known as spatial de-
scription) that describes the change of physical quantities at fixed points in space
(known as spatial coordinates).

For an incompressible material the density of a particle does not change, i.e.,
Dρ
Dt = 0. Thus, mass conservation reduces to preserving a divergence free velocity
field

∇·v = 0. (2.6)

The conservation of energy represents the first law of thermodynamics, which
states that the change in internal energy is equal to the heat added to the system
minus the work done by the system.

2.1.2 Stress
In physics, the measurement of force per unit area is called stress. It is described
in 3D by a symmetric 3×3 tensor

σ =

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

 . (2.7)

Both fluids and solids deform due to stresses, where the force df acting on a
differential surface element with area dA and normal vector nA is given by

df
dA

= σ ·nA. (2.8)

A tensor is a multidimensional array that is independent of any chosen frame of
reference, i.e., coordinate system, cf. Figure 2.1. The 3×3 stress tensor has rank 2,

13

Chapter 2 Foundations

which means that it has a magnitude and two directions associated with it (vectors
have rank 1 (magnitude + direction) and scalars have rank 0 (only magnitude)).
The two directions are called normal stress (the force component acting in direc-
tion of nA, denoted by σii) and shear stress (the parallel components of the stress,
denoted by τi j). The shear stress can be further decomposed into two orthogonal
force components in the plane of nA. At a given point, it is always possible to
find three orthogonal axes such that the shear stresses in the plane orthogonal to
these axes vanish, cf. Figure 2.1. These planes are called principal planes and the
stresses along the three axes are called principal stresses. They can be computed
using principal component analysis (PCA) of the stress tensor, where the eigen-
values give the values of the principal stresses and the corresponding eigenvectors
the direction.

The force df acting on an infinitesimal volumetric element dV (a particle) due
to internal stresses can be computed from Equation (2.8) as (for a derivation see
e.g. [GP06])

df
dV

=∇·σ. (2.9)

Applying Newton’s second law mp̈ = f and dividing both sides with the volume
dV = m/ρ of a particle, the momentum equation can be written as

ρp̈ =∇·σ+ f̃ext, (2.10)

where f̃ext is an external force density vector field (force per unit volume).

2.1.3 Solid Mechanics
A solid has a rest shape. If stresses are applied, the material deforms. An elastic
solid has restoring forces for both normal and shear stress and will therefore return
to its rest shape when no stresses are applied anymore. If the shear stress exceeds
a materials elastic range, i.e., the stress is higher then the yield strength kyield

of a material, the deformations are non-reversible and material becomes (locally)
plastic. Brittle materials fracture if the normal stress is too high, whereas ductile
material undergo first plastic deformations under normal stress before they frac-
ture. The simulation of brittle and ductile fracture will be described in Section 5.6,
see also Figures 5.7 and 5.8.

The amount of deviation from the rest shape is described by the strain tensor
ε. For most solids the strain is about proportional to the stress throughout their
elastic range. For these linear-elastic materials (or Hookean materials), Hooke’s
law applies

σs = C ε, (2.11)

where σs is the solid stress and C is a rank four constant tensor that depends
on Young’s modulus E and Poisson’s ratio ν. Young’s modulus (also known as
modulus of elasticity, elastic modulus or tensile modulus) determines the stiffness

14

2.1 Continuum Mechanics

of a given material. Poisson’s ratio is a measurement for the incompressibility of
a material, where ν = 0.5 for a perfectly incompressible material and 0≤ ν < 0.5
otherwise, cf. Figure 5.2. Because Hooke’s law in combination with a linear strain
model yields a linear equation system that can be solved efficiently, it is common
in computer graphics to apply Hooke’s law even for non-Hookean material such
as rubber. In our physics model we derive C for isotropic Hookean materials, but
use a non-linear strain model that handles rotations correctly, see Section 5.3 for
details.

2.1.4 Fluid Mechanics
A fluid (a gas or a liquid) is different from a solid in that it is unable to sustain
shearing stresses without continuously deforming. The amount of resistance of
shearing stresses due to friction is called viscosity. Fluids are called linearly vis-
cous or Newtonian if the viscous stress σviscous depends linearly on the rate of
strain ε̇

σviscous = µ ε̇, (2.12)

where the viscosity µ is a material constant. Most fluids have a constant viscosity
over a wide range of shear rates. Fluids are called non-Newtonian, if their viscosity
changes with the strain rate (see also the next section).

The isotropic stress σpressure in normal direction is defined by the scalar P known
as hydrostatic pressure. The total fluid stress is then the sum of the isotropic
pressure stress and the viscous stress

σf =−PI+σviscous, (2.13)

where I is the identity matrix.
The Navier-Stokes equations [LL87] are a set of partial differential equa-

tions that state the conservation of momentum (Equation (2.14)), mass (Equa-
tion (2.15)) and energy (Equation (2.16)):

ρ
Dv
Dt

= ∇·σf + f̃ext, (2.14)

Dρ
Dt

= −ρ∇·v, (2.15)

ρ
DU
Dt

= σf ·∇v−∇·q, (2.16)

where f̃ext is an external force density vector field, U the internal energy and q the
heat flux. In Section 4.3 we will describe how to solve these equations numerically
using the Smoothed Particle Hydrodynamics method.

15

Chapter 2 Foundations

u(p)

u(p)

v(x)

(a) (b) (c)

Figure 2.2: (a) Eulerian representation with velocity field v(x) at grid points x. The shaded
fields are covered by material. (b) mesh-based Lagrangian representation with
displacement field u(p) at mesh nodes p. (c) meshless Lagrangian representation
with displacement field u(p) at particles p. Each particle has a smoothing kernel
assigned.

2.1.5 Viscoelastic Materials
Generally, a material is classified as solid if it resists a deformation under a weak
constant stress, and as fluid if the material eventually flows. However, if temporar-
ily high stresses are applied, a solid might be unable to resist shearing stresses
anymore and therefore starts to flow (which is called creep), i.e., it becomes plas-
tic. A plastic solid hence shows the typical characteristics of a fluid. On the other
hand, a non-Newtonian fluid changes its viscosity depending on the applied strain
rate, and thus exhibits a typical characteristic of a solid. Thus, material exists that
cannot be clearly classified as either solid or fluid but can be seen as "soft solids"
or "elastic liquids". A viscoelastic material is defined as a material that exhibits
the characteristics of both a viscous fluid and an elastic solid. Examples are soap,
honey, pudding, toothpaste, clay, and many more. The simulation of viscoelastic
material is described in Chapter 6, see for instance Figure 6.13 for a comparison
of different viscoelastic fluids.

2.2 Physics Representations
Many different numerical methods have been developed to solve the partial differ-
ential equations of motion described above. These approaches can be classified as
Eulerian and Lagrangian methods according to the spatial or material description
of the equations, respectively. Lagrangian methods can be further subdivided into
mesh-based and meshless methods. In the following, the fundamental differences,
advantages, and drawbacks of these approaches are discussed.

16

2.2 Physics Representations

2.2.1 Eulerian versus Lagrangian Methods
Eulerian and Lagrangian methods differ in the way they look at the material. Eu-
lerian methods evaluate the material properties at stationary points in space and
compute how these properties change over time, whereas Lagrangian methods fol-
low the moving material elements (material coordinates), cf. Figure 2.2. Because
in Eulerian methods the mesh is fixed in space, solving the equations, for in-
stance, using finite differences, is fast and stable. Furthermore, Eulerian methods
can handle extreme deformations without changing the discretization and topolog-
ical changes are captured implicitly, whereas Lagrangian methods need to adapt
their discretization to avoid numerical problems. However, Lagrangian methods
also have several advantages. Since the mesh is attached to the moving material,
tracking is very simple and exact, and a mesh node can easily store its history. Fur-
thermore, the object or fluid boundary is explicitly defined by the mesh, whereas
with Eulerian methods the boundary has to be tracked, for instance, using level
sets [OS88]. Similarly, interaction with irregular or moving boundaries or ob-
jects is often simpler with Lagrangian methods because they do not need to be
discretized onto the fixed mesh as with Eulerian methods (see e.g. [CMT04]).
Finally, Lagrangian methods are not restricted to a certain area in space, unlike
Eulerian methods where the fixed mesh determines the simulation domain.

Due to the complementary advantages and drawbacks of Eulerian and La-
grangian methods, the method of choice depends on the simulation. Deformable
objects are most often simulated using the (Lagrangian) finite element method
(FEM) because boundary conditions can be solved more accurately than with Eu-
lerian methods. On the other hand, strong deformations often yield distortions in
the Lagrangian mesh, which requires complex remeshing operators to guarantee
numerical robustness. Remeshing is also required if topological changes occur.
Eulerian methods implicitly and stably handle strong deformations and topologi-
cal changes, and therefore are standard in computer graphics for fluid simulations.
However, Eulerian methods suffer from mass dissipation and alignment prob-
lems with deformable and moving boundaries. To circumvent these problems,
meshless Lagrangian methods have been developed, see the next section for a
discussion. Several methods exist that combine Eulerian and Lagrangian meth-
ods. For instance, the particle-in-cell (PIC) [Har63] and fluid-implicit-particle
(FLIP) [BR86] method combine a Eulerian solver with particles. Other methods
combine the interaction of Lagrangian deformable objects with Eulerian fluids
(see e.g. [GSLF05, LIGF06]). Feldmann et al. [FOKG05] exploited the arbi-
trary Lagrangian-Eulerian (ALE) method to simulate fluids in deformable object
boundaries using unstructured tetrahedral meshes [FOK05]. The ALE formu-
lation enables the computational mesh to move with a velocity independent of
the material velocity [DH04]. Recently, this scheme was extended by Klingner
et al. [KFCO06] who generated the tetrahedral meshes in each time step such
that they conform well to moving boundaries, therefore eliminating one of the
major drawbacks of Eulerian methods. So far, this very interesting method does

17

Chapter 2 Foundations

not address free surfaces. Furthermore, degenerated tetrahedra can introduce
instabilities similar to FEM, if they are not treated specially.

2.2.2 Mesh-based versus Meshless Methods
Mesh-based Lagrangian methods such as FEM divide a continuum into discrete
elements that are connected together by a topological map, which is usually called
a mesh (cf. Figure 2.2 (b)). The interpolation functions are built upon this mesh,
which ensures the compatibility of the interpolation [LL02]. However, this is not
always advantageous because the mesh topology is fixed and thus cannot adapt to
physical changes of the continuum, especially in cases of large deformations and
topology changes. Large deformations yield mesh distortions that cause severe
stability and accuracy problems, for example, when using FEM [ITF04,TSIF05].
Topology changes require complex remeshing operations, which introduces nu-
merical errors. Furthermore, maintaining a conforming mesh can be a notoriously
difficult task (see e.g. [OP99]). Meshless methods remedy these problems by
not storing the mesh connectivity, but instead approximate or interpolate mate-
rial properties from interpolation points (also known as collocation points) us-
ing meshless shape functions. In meshless Lagragian methods these interpolation
points, here called particles, move with the material (cf. Figure 2.2 (c)). As will
be shown in this dissertation, the spatial discretization by volumetric particles can
be efficiently and stably adapted over time according to changes in the simulation
domain. The gained flexibility comes at higher computational costs for comput-
ing the meshless shape functions. Furthermore, special treatment is required for
the enforcement of essential boundary conditions due to the lack of the Kronecker
delta property of meshless shape functions (see [FMH04] for a survey).

2.3 Smoothed Particle Hydrodynamics
In this dissertation a meshless Lagrangian method called Smoothed Particle Hy-
drodynamics (SPH) is exploited. The SPH method was initially developed for
the simulation of astrophysical problems such as fission of stars [GM77, Luc77].
Values of physical quantities and their spatial derivatives are approximated from
neighboring interpolation points. Forces are therefore easily derived directly from
the state equations. Furthermore, as a particle-based Lagrangian approach, SPH
has the advantage that mass is trivially conserved and convection is dispensable.
This reduces both the programming and computational complexity and is thus
suitable for interactive applications.

SPH is motivated by ideas from Monte Carlo integration. Given a continuous
function A(x) defined over a domain Ω, an integral interpolant 〈A(x)〉 can be con-

18

2.3 Smoothed Particle Hydrodynamics

structed using a mollification kernel ω (also called smoothing function)

〈A(x)〉= A∗ω =
∫

Ω
A(x′)ω(r,h)dx′, (2.17)

where the support h of the kernel indicates its smoothing scale length, r = x− x′

and dx′ is a differential volume element. Note that the interpolant reproduces A(x)
exactly if ω(r,h) is the delta function δ(r). To obtain a smooth approximation of
A(x), a kernel is used that tends to one if its support tends to zero and is normalized
so that a constant function is interpolated exactly, i.e.,

lim
h→0

ω(r,h) = δ(r),
∫

ω(r,h)dx′ = 1. (2.18)

Most often spline kernels are used that approximate the Gaussian function but
have finite support. More details about the commonly used kernels and how to
construct a specific kernel are given by Monaghan [Mon92] and Liu [Liu02a].

The basic idea of the SPH method is to represent a continuous field A(x) by
a Monte Carlo sampling of interacting smoothed volumetric particles. Each of
the particles represents a material element of finite volume. From a mathematical
point of view, particles are interpolation points from which properties of the field
can be calculated. A discrete approximation of A(x) from these particles can be
achieved by replacing the differential volume element dx′ by the volume V j of a
particle p j with position p j

〈A(x)〉 ∼= ∑
j

A(p j)ω(x−p j,h)Vj (2.19)

The discrete properties of p j are smoothed over the finite region determined by
p j and Vj and hence led to the name SPH [FM03, KBLRP00]. A typical approx-
imation of the particle volume Vi derived from Monte Carlo integration theory
is

V−1
i = ∑

j
ω(pi−p j,h). (2.20)

If ω is a differentiable function then differentiating Equation (2.19) yields

〈∇A(x)〉 ∼= ∑
j

A(p j)∇ω(x−p j,h)Vj, (2.21)

where ∇ω =
x−p j

r j
∂ω
∂r j

and r j =
∥
∥x−p j

∥
∥. Note that the SPH approximation of the

spatial gradient of a field function is determined from the spatial derivative of the
kernel function and the values at the interpolation points. Thus, the gradient of
the field function does not need to be computed which is a major advantage of
SPH. Different ways exist to derive the differentiable interpolant to obtain higher
accuracy. For reviews on the mathematical foundation of SPH see [Ben90,Mon92,
Liu02a, Mon05] and references therein.

19

Chapter 2 Foundations

2.3.1 SPH Approximation Error
When equations are solved numerically, the approximation 〈A(x)〉 of a continuous
function A(x) should be as close to A as possible. The order of an analytical so-
lution that can be approximated without error is called consistency order [FM03].
To have n-th order consistency, the following conditions must be fulfilled:

∑
j

ω(x−p j,h)pm
j Vj = xm for 0≤ m≤ n,x ∈Ω (2.22)

Thus, to have 0-th order consistency, the kernel must satisfy

∑
j

ω(x−p j,h)Vj = 1, x ∈Ω (2.23)

This equation is fulfilled if the kernel is even and the particles are distributed
equally around x. However, during the simulation the particles become disor-
dered. Furthermore, at the boundary of the domain, the kernel is truncated by
the boundary and therefore not even anymore, even if the distribution of parti-
cles is regular. This so-called particle deficiency problem yields spurious bound-
ary effects [CBJ99b]. Particle deficiency can be improved by adding ghost parti-
cles, which are created by reflecting the fluid particles with respect to the bound-
ary [LPC+93]. Another numerical problem are tensile instabilities which occur
when particles are under tensile stress. This results in pairwise particle clumping
or even blow up of the simulation [PM85, SHA95, Bal95]. This instability can be
eliminated by introducing an artificial stress force [Mon00, GMS01] or additional
stress points [DRI97]. However, these approaches do not necessarily improve the
numerical accuracy. Several approaches exist to improve the numerical accuracy
by increasing the consistency order of the interpolation. The three most popu-
lar methods are summarized below. A nice and extensive overview of meshless
methods is given by Fries and Matthies [FM03].

2.3.2 Corrective Smoothed Particle Method
To solve the particle deficiency at the boundary and reduce the tensile instability,
an extension of SPH called the Corrective Smoothed Particle Method (CSPM) has
been proposed [CBC99, CBJ99a, CBJ99b]. The idea is to normalize the function
approximation such that the kernels build a partition of unity, hence the approxi-
mation is zeroth-order consistent:

〈A(x)〉=
1

∑ j ω(x−p j,h)Vj
∑

j
A(p j)ω(x−p j,h)Vj (2.24)

This equation can be derived by looking at the Taylor series expansion for A(x) in
the vicinity of p j. Deriving the gradient of a field function is more involved, and
makes a matrix inversion necessary [Liu02a].

20

2.3 Smoothed Particle Hydrodynamics

2.3.3 Corrected Smoothed Particle
Hydrodynamics
In the Corrected Smoothed Particle Hydrodynamics (CSPH) method the kernel ω
is replaced by a corrected kernel ω̂i for a particle pi

ω̂i(x,h) = ω(x,h)α(x)[1+β(x)(x−pi)], (2.25)

where the correction parameters α and β are evaluated by enforcing the consis-
tency conditions given in Equation (2.22) for n = 1 (first degree correction), see
e.g. [BK00] for details.

Note that CSPM described above is a special case of CSPH. CSPM uses a con-
stant instead of a linear correction, i.e., β(x) = 0, yielding a corrected kernel

ω̂i(x,h) =
ω(x−pi,h)

∑ j Vjω(x−p j,h)
. (2.26)

Further correction terms for improving the pointwise integration have been pro-
posed by Bonet and Kulasegaram [BK00].

2.3.4 Moving Least-Squares Particle
Hydrodynamics
An arbitrary consistency order can be achieved using moving least-squares (MLS)
interpolants. As described above, a smooth continuous field function A(x) can be
approximated in the form

〈A(x)〉= ∑
j

A(p j)Φ j(p j) (2.27)

where Φ(p j) is the shape function of a particle p j, i.e., in the SPH setting Φ(p j) =
ω(x−p j,h)Vj (see Equation (2.19)). Following Fries and Matthies [FM03], A(pi)
can be evaluated as a Taylor series expansion

A(pi) = A(x)+
∞

∑
|α|=1

(pi−p j)
α

|α|!
DαA(x), (2.28)

where α = (α1, . . . ,αd) is a multi-index with αi ≥ 0 and d is the dimension of the
problem domain. If α is applied to x, then

xα = xα1
1 xα2

2 · · ·x
αd
d (2.29)

and DαA(x) is the Frechet derivative of A(x), i.e.,

DαA(x) =
∂|α|A(x)

∂α1x1∂α2x2 · · ·∂αd xd
(2.30)

21

Chapter 2 Foundations

with |α|= ∑d
i=1 αi (see e.g. [RS72] for an introduction to multi-indices).

We write the shape function as a polynomial (shifted by pi for computational
reasons)

Φi(x) = bT (pi−x)a(x)ω(x−pi,h), (2.31)

where b(x) = {xα | |α| ≤ n} is a polynomial basis of consistency order n and a(x)
is a vector of unknown coefficients. Plugging Equations (2.31) and (2.28) into
Equation (2.27), multiplying out and rearranging leads to

〈A(x)〉 = A(x)∑
j

b(p j−x)bT (p j−x)a(x)ω(x−p j,h)

︸ ︷︷ ︸

q1(x)

+

n

∑
k=2

Dαk
A(x)∑

j
b(pi−x)bT (p j−x)a(x)

(p j−x)αk

|αk|!
ω(x−p j,h)

︸ ︷︷ ︸

qk(x)

+

O(xn+1), (2.32)

where a polynomial of degree n is used which yields an approximation order of
degree n. Comparing the left and right hand side of Equation (2.32) one can see
that to reach the exact solution, q1(x) must be equal to one while qk(x) must be
zero for k = 2, . . . ,n so that the derivatives of A(x) cancel out. This yields a n×n
system of equations for the n unknowns of a(x)

∑
j

b(p j−x)bT (p j−x)a(x)ω(x−p j,h) =

1
0
...
0

= b(0) (2.33)

Solving this for a(x) yields the shape function of a particle pi (after shifting the
polynomial basis by adding x)

Φi(x) = bT (x)

[

∑
j

b(p j)bT (p j)ω(x−p j,h)

]

︸ ︷︷ ︸

M(x)

−1

b(pi)ω(x−pi). (2.34)

M(x) is called the moment matrix. Finally, plugging the shape function into Equa-
tion (2.27) gives

〈A(x)〉= bT (x)M−1(x)∑
j

ω(x−p j,h)b(p j)A(p j). (2.35)

Comparing this equation with the regular SPH Equation (2.19) shows the follow-
ing relation between SPH and MLSPH

Viω(x,h) = bT M−1bω(x,h). (2.36)

22

2.4 Surface Representations

Therefore, bT M−1b can be interpreted as a space-dependent volume. However,
this volume is purely numerical and does not have a physical or geometric mean-
ing [Dil99b, FM03]. A careful analysis of MLSPH is given by Dilts [Dil99a].

2.4 Surface Representations

To render an animated object, a surface needs to be extracted from the simu-
lated domain. For mesh-based Lagrangian simulation this can be simply the ob-
ject’s boundary. For particle-based simulations rendering the particles is usually
not sufficient in computer graphics. Instead, the surface is often defined implic-
itly as the isosurface of a potential field from the particles [Bli82]. This sur-
face is then either directly raytraced or converted into a triangle mesh, for in-
stance, using the marching cubes algorithm [LC87]. For Eulerian methods, either
marker particles and/or an implicit level set surface is advected with the mate-
rial flow. Nowadays it is common also in Lagrangian simulations to decouple
the surface representation from the volumetric representation by embedding a sur-
face into the volume which is then advected together with the volumetric ele-
ments [MMDJ01, MG04, MBF04]. Because this is generally much faster than the
actual simulation, it enables using high resolution surface for high quality render-
ing and a low resolution volumetric representation for fast simulation. We also
make use of an embedded surface which is advected (see Section 5.5). After-
wards, the surface deforms according to implicitly and explicitly defined potential
fields such that it adapts to the physics characteristics and enables user control of
the surface properties (see Section 6.6).

For animating a surface one can choose between many different surface rep-
resentations such as splines, polygonal meshes and level set surfaces. These
have often complementary advantages and drawbacks. Following Kobbelt and
Botsch [KB03], surface representations can be divided into two major classes,
namely parametric and volumetric surfaces. Parametric surfaces are explicit rep-
resentations given as the image of a parameter function, whereas volumetric sur-
faces are implicitely defined as the kernel, the so-called zero-set, of a scalar func-
tion. We will next compare implicit and explicit representations. In Section 2.5 we
will discuss the basics of a point-based representation, which is used as a mesh-
less explicit representation in this dissertation (see Sections 5.5 and 6.6). One
advantage of a point-based representation is that it can be easily converted into
an implicit representation based on a local projection operator (Section 2.5.1). In
this dissertation we will argue that due to this efficient conversion, we are able to
exploit the advantages of both implicit and explicit representations.

23

Chapter 2 Foundations

2.4.1 Implicit and Explicit Representations
An explicit parameterization is a mapping from a two-dimensional parameter do-
main Ω into 3D-space given by a function f : Ω ⊂ R

2 → S ⊂ R
3 [KB03]. It is

therefore simple to generate points on the surface S by evaluating f (u,v) for dif-
ferent parameter values u and v. On the other hand, it is often difficult to compute
a parameterization for a given surface S that matches the topological and metric
structure of S.

An implicit surface is given as Ψ = {x ∈ R
3 |F(x) = 0} where F : R

3→ R is
a scalar function. F is usually defined such that a point x is inside the surface if
F(x) < 0 and outside if F(x) > 0. Inside/outside tests thus simplify to checking
the sign of F(x). On the other hand, finding points on the surface is more ad-
vanced, which makes, for instance, rendering more difficult than with an explicit
parameterization.

In computer graphics, polygonal meshes are the most common explicit repre-
sentation, whereas distance fields are most often used as an implicit representa-
tion. For instance, triangle meshes are given by a set of vertices V = {v1, . . . ,vn},
a set of edges E = {e1, . . . ,ek}, ei ∈ V ×V , and a set of faces F = { f1, . . . , fm},
fi ∈ V ×V ×V . Explicit representations can therefore be easily and efficiently
stored in a data structure [Bau75, Kal89].

In distance fields, the function F : R
3→ R is defined as the signed distance to

the surface S, hence distance computations are very simple. An implicit function
is usually stored as values sampled on a 3D grid. Function values in the interior
of voxels are obtained by (usually tri-linear) interpolation. Adaptive grids, which
have a higher resolution close to the surface [FPRJ00], decrease the memory con-
sumption and allow a better representation of surface features. However, since
the implicit function at sharp features is not differentiable, purely implicit repre-
sentations cannot represent sharp edges and corners without taking into account
additional information such as the surface gradient. Furthermore, due to the miss-
ing parameterization it is very difficult to texture dynamically evolving implicit
surfaces consistently.

Interesting for us are also the advantages and drawbacks of implicit and explicit
representations when the surface changes dynamically. An explicit representation
has the advantage that a deformation can be controlled very easily, for exam-
ple, by simply changing the position of vertices. However, strong deformations
yield surface distortions and therefore require remeshing. Even worse, topological
changes and self-intersections have to be detected and handled explicitly, which
is a difficult and time consuming problem. In contrast, because implicit surfaces
are defined as a zero-set of a function, the surface is always consistent, i.e., free
of geometric self-intersections, and changes its topology implicitly. Although this
is often the major reason why implicit surfaces are used, it can also be a disad-
vantage. With implicit surfaces it is very difficult to detect and prevent unwanted
topological changes, for instance, if two separated surface sheets merge because
they come close.

24

2.4 Surface Representations

A special class of implicit surfaces are so-called level set surfaces [OS88],
which are state of the art in surface tracking for fluid simulation [OF02, EMF02,
ELF05a]. A level set surface Ψ(x, t) evolves always along the surface gradient
(i.e., the surface normal) according to a scalar velocity function v(x, t), repre-
sented by the following partial differential equation (known as the level set equa-
tion)

∂Ψ
∂t

=−v|∇Ψ|, (2.37)

where Ψ is often taken as the distance function, thus |∇Ψ| = 1. For level set
surfaces it is sufficient to store only the function values in a narrow-band around
the surface. After a deformation, the function values are updated efficiently using
a fast-marching technique [Set96, Set99]. The topology can be prevented from
changing by modifying the update rules [HXP01].

Implicit surfaces are usually converted into an explicit mesh using the marching
cubes (MC) algorithm [WMW86,LC87]. A faster alternative to the volume-based
MC algorithm is a surface-based approach called marching triangles [HSIW96],
which produces higher quality triangles than MC but is not guaranteed to pro-
duce closed, manifold meshes. The extended marching cubes (EMC) [KBSS01]
and dual contouring [JLSW02,SW02] algorithms enhance the MC method by us-
ing the gradient information to detect and reconstruct sharp features. An explicit
representation can be converted into an implicit distance field by voxelization
and computing for each voxel the signed distance to the surface [Kau87, YT02,
SPG03].

Since implicit and explicit representations have distinct advantages and draw-
backs, the choice depends on the application. The advantages of both can be
combined by forward and backward conversion. However, with every conversion
information might get lost. Thus, a better approach is to combine the two differ-
ent representations and use them simultaneously. This is usually done by sam-
pling the implicit surface with points [FGTV92]. Witkin and Heckbert [WH94]
use an adaptive repulsion method to distribute the points over the surface. They
employ implicit constraints to either move the points with the surface, or to move
the surface with the points. Bischoff and Kobbelt [BK03a, BK03b] place sample
points on the edges of the voxel grid whenever the surface is about to change its
topology to guarantee topology preserving surface evolutions. To alleviate volume
dissipation, Enright et al. [ELF05a] sample the narrow-band around a surface with
particles. These particles are passively advected with the velocity field and guide
the evolving level set surface.

In this dissertation we also propose a combination of implicit and explicit rep-
resentations for surface extraction of Lagrangian animations. Our explicit repre-
sentation consists of oriented surface elements, so-called surfels (see Section 2.5),
which are directly used for rendering. This explicit representation is converted
into an implicit representation using a projection operator as will be described in
Section 2.5.1. Additionally, the explicit point-based surface representation is com-
bined with an implicit representation defined by volumetric particles to exploit the

25

Chapter 2 Foundations

advantages of both representations, namely detailed geometry with sharp features
and implicit topology changes. This approach is described in detail in Section 6.6.

2.4.2 Projecting a Point onto an Implicit Surface
As discussed above, finding points on an implicit surface is not straightforward. In
this section we briefly describe the most common methods for projecting a point
x onto an implicit surface Ψ = {x |F(x) = 0}, where F : R

3 → R is a smooth,
continuous and differentiable function. A projection operator ψ(x) is defined as a
transformation that is idempotent, i.e.,

ψ(ψ(x)) = ψ(x). (2.38)

In our case, ψ(x) is defined such that F(ψ(x)) = 0, hence

ψ(x) = x⇔ x ∈Ψ. (2.39)

Computing F(ψ(x)) = 0 is a typical root finding problem. An excellent problem
description and solutions including code can be found in [PTVF92].

The simplest case is to find the root between two given brackets, i.e., in an
interval (a,b) where F(a) and F(b) have different signs. The bisection method
always takes the midpoint of the interval and replaces one interval point with
the midpoint depending on its sign. This guarantees to find a solution, however,
convergence is only linear. Superlinear and guaranteed convergence is achieved
by the Van Wijngaarden-Dekker-Brent method (often just called Brent’s method),
which combines root bracketing, bisection and inverse quadratic interpolation.

If only one starting point is given, one can either try to bracket the zero-level
or use a method that searches the zero-level along the steepest descent. Neither of
these methods can guarantee convergence. The most popular method of all root-
finding routines is the Newton-Raphson method (often called Newton’s method).
This method is derived from the Taylor series expansion of a function in the neigh-
borhood of a point. Starting with a point x, the projection can be found by itera-
tively performing a Newton step

x′← x−∇F(x)
F(x)

‖∇F(x)‖
, x← x′. (2.40)

This is repeated until |F(x)| is smaller than an error threshold. If the starting point
is close to the zero-level and F is sufficiently smooth, then this method converges
quadratically. However, convergence is not guaranteed. Therefore, one should
always check if the new point decreases |F(x)|, otherwise a smaller step along
∇F(x) should be taken.

A more difficult problem is to efficiently find the closest point to x on Ψ. This is
called an orthogonal projection. Note that for an orthogonal projection ψorth(x),

26

2.5 Point-based Representation

the gradient ∇F(ψorth(x)) is the normal vector of the surface Ψ at ψorth(x) and
points in direction of x−ψorth(x), i.e.,

∇F(ψorth(x))

‖∇F(ψorth(x))‖
=

x−ψorth(x)

‖x−ψorth(x)‖
. (2.41)

We can use this to iteratively solve this problem by performing a Newton step and
evaluate the gradient ∇F(x′) at the new position x′. A new iteration step is then
performed with∇F(x′) as follows:

x′← x−∇F(x′)
‖x−x′‖+F(x′)
‖∇F(x′)‖

, (2.42)

until the change of x′ from one iteration to the next is smaller than an error thresh-
old.

2.5 Point-based Representation
Point-based representations have become popular recently for shape process-
ing [Lin01, PG01, PGK02, PKG03, WPK+04], editing [ZPKG02, AWD+04],
modeling [AD03, PKKG03], rendering [ABCO+01, CH02, DVS03, ZRB+04,
WTG04, BSK04, BHZK05], streaming [Paj05], 3D video [WLG04, WLW+05],
and, as discussed in this dissertation, for physics-based animations [MKN+04,
KMH+04, PPG04, PKA+05, KAG+05, AKP+05, WSG05]. An introduction and
details to all these topics including some parts of this dissertation can be found
in [GP06]. Work on point-based modeling, animation and rendering has been
published recently by Adams [Ada06].

We define a point-sampled surface S = {si}i=1,...,n, as a set of surface elements
si (called surfels). In our case, each surfel si has a position si, two tangent axes t1

si

and t2
si

, and a set of attributes such as color. The tangent axes describe an ellipse
with center si and normal ni = (t1

si
× t2

si
)/
∥
∥t1

si
× t2

si

∥
∥.

2.5.1 Implicit Surface from Points
The point-sampled surface S defined above does not define a manifold due to the
missing connectivity between the surfels. This is a major advantage when the
surface changes dynamically because adapting the sampling of the surface is very
simple and efficient. However, many surface operations require a continuously
defined manifold surface. In general, it is not possible to find a global reference
domain or parameterization for the point set. Instead, reference domains are com-
puted locally and surface patches are defined over these reference domains. In his

27

Chapter 2 Foundations

seminal work, Levin [Lev98, Lev01, Lev04] propose a mesh-independent projec-
tion strategy based on the moving least-squares (MLS) approach. First, a local ap-
proximating tangent plane for a point x is computed. This frame is used as the pa-
rameter domain to fit a local polynomial to the surfels. The resulting smooth MLS
surfaces have widely been used in computer graphics [ABCO+01, ABCO+03,
AA03b, ZPKG02, PKKG03, FCOAS03, FCOS05]. Amenta and Kil [AK04] pre-
sented a more general definition of the MLS surface based on an energy function
and a vector field, yielding so-called extremal surfaces.

The projection onto MLS surfaces has two disadvantages. First, computing the
reference tangent plane requires solving a complicated non-linear optimization
problem. Second, the projection is not orthogonal. Adamson and Alexa [AA04b]
therefore proposed an implicit definition of the surface defined by the surfels,
which is briefly described below.

The implicit function F(x) of an approximating surface Ψ

Ψ = {x ∈ B|F(x) = 0} (2.43)

is defined as
F(x) = n(x) · (x−a(x)), (2.44)

where n(x) is the normalized normal direction defined at x and a(x) is a weighted
average of neighboring surfel positions s j

a(x) =
∑ j ω(

∥
∥x− s j

∥
∥ ,h)s j

∑ j ω(
∥
∥x− s j

∥
∥ ,h)

, (2.45)

where ω is a weighting kernel with support h. The normal direction is estimated
from the surfel normals

n(x) =
∑ j ω(

∥
∥x− s j

∥
∥ ,h)ns j

∥
∥∑ j ω(

∥
∥x− s j

∥
∥ ,h)ns j

∥
∥
. (2.46)

Alternatively, the normal can be estimated by computing the direction of smallest
weighted covariance [AA03a]. Note that Ψ is only defined in the neighborhood B
of the surfels, where B is the union of a set of balls Bi with radius h centered at
the surfels si, or more formally

Bi = {x | ‖x− si‖< h}, (2.47)

B =
⋃

i

Bi. (2.48)

Gradient computation
An advantage of this implicit function definition is that the gradient of f (x) can be
computed analytically, in contrast to the MLS surface where no analytic solution

28

2.5 Point-based Representation

exists. Given an ortho-normal system {e0,e1,e2}, differentiating the vector fields

yields the directional derivative∇F(x) =
(

∂F(x)
∂e0

, ∂F(x)
∂e1

, ∂F(x)
∂e2

)T
of F(x) with

∂F(x)

∂ei
=

∂n(x)

∂ei
· (x−a(x))+n(x) ·

(

ei−
∂a(x)

∂ei

)

. (2.49)

The analytic derivation of ∂n(x)
∂ei

and ∂a(x)
∂ei

can be found in [AA04b].

Projection Operators
Given the implicit surface definition and the exact evaluation of the gradient de-
scribed above, any projection method described in Section 2.4.2 can be used.
When only one starting point x is given, the simplest projection operator is com-
puted by projecting x onto the tangent plane with origin a(x) and normal n(x)

x′← x−n(x) · (x−a(x)) n(x), x← x′ (2.50)

which is then repeated with the new point x′ until ‖x−x′‖ is smaller than an error
threshold.

Unfortunately, this projection is not orthogonal. It can be improved by repeat-
edly projecting from the starting point in direction of the new normal vector n(x′)

x′← x−n(x′) · (x−a(x′)) n(x′), (2.51)

yielding a projection that is almost orthogonal since n(x′)≈∇F(x′)/‖∇F(x′)‖.
To compute an orthogonal projection, a starting point is repeatedly projected

onto the tangent plane in direction of the gradient ∇F(x′)

g←
n(x′) · (x−a(x′))

n(x′) ·∇F(x′)
, x′← x−g∇F(x′), (2.52)

see [AA04b] for details.

29

Chapter 2 Foundations

30

Chapter 3

State of the Art
In this chapter we summarize the state of the art in physics-based deformable mod-
eling and fluids in computer graphics. We first give a historical background on
particle systems before we describe applications of the Smoothed Particle Hydro-
dynamics method. Section 3.2 provides a brief overview of different mesh-based
Lagrangian methods and Section 3.3 describes the state of the art in fluid simula-
tion using Eulerian and semi-Lagrangian methods. For more details we refer to
our state of the art report [NMK+06] and the discussion of relevant work given in
each chapter of this dissertation. A recent survey of real-time deformable mod-
els for surgery simulation is given by Meier et al. [MLM+05]. For an exhaustive
description of the state of the art in point-based graphics we refer to [GP06].

3.1 Meshless Lagrangian Methods

3.1.1 Particle Systems
Particle systems were developed by Reeves [Ree83] for explosion and subsequent
expanding fire simulation in the feature film "Star Trek II: The Wrath of Khan".
The same technique can also be used for modeling other fuzzy objects such as
clouds and water, i.e., for objects that do not have a well-defined surface. Particles
are usually graphical primitives such as points or spheres, however, they might
also represent complex group dynamics such as a herd of animals [Rey87]. Each
particle stores a set of properties, e.g., position, velocity, temperature, shape, age
and lifetime. These attributes define the dynamical behavior of the particles over
time and are subject to change due to procedural stochastic processes. Particles
pass through three different phases during their lifetime: generation, dynamics
and death.

In [Ree83], particles are points in 3D space that represent the volume of an ob-
ject. A stochastic process generates particles in a predetermined generation shape
that defines a region about its origin into which the new particles are randomly

31

Chapter 3 State of the Art

placed. Property values are either fixed or may be determined stochastically. Ini-
tially, particles move outward away from the origin with a random speed. During
the dynamics phase, particle properties might change as a function of time and
properties of other particles. A particle’s position is updated by simply adding
the velocity. Finally, a particle dies if its lifetime reaches zero or if it does not
contribute to the animation anymore, e.g., if it is outside of a region of interest. A
particle is rendered as a point light source that adds an amount of light depending
on its color and transparency property.

An advantage of particles is their simplicity, which enables the animation of
a huge number of particles for complex scenes. The procedural definition of
the model and its stochastic control simplifies the human design of the system.
Furthermore, with particle hierarchies, complicated fuzzy objects such as clouds
can be assembled and controlled. Although the particles are simulated omitting
inter-particle forces, the resulting animations are convincing and fast for inelas-
tic phenomena. The technique has thus been widely employed in movies and
video games. Examples of modeling waterfalls, ship wakes, breaking waves
and splashes using particle systems can be found in [FR86, Pea86, Gos90, Sim90,
OH95].

Particles that interact with each other depending on their spatial relationship are
referred to as spatially coupled particle systems [Ton92]. The interaction between
particles evolves dynamically over time, thus, complex geometry and topological
changes can be easily modeled with this approach. Tonnesen presented a frame-
work for physics-based animation of solids and liquids based on dynamically cou-
pled particles that represent the volume of an object [Ton91,Ton98]. Each particle
pi has a potential energy Θi that is the sum of the pairwise potential energies Θi j
between pi and all other other particles p j, i.e.,

Θi = ∑
j 6=i

Θi j. (3.1)

The force fi exerted on pi with position pi is then

fi =−∇piΘi =−∑
j 6=i
∇piΘi j. (3.2)

So far, all particles interact with each other, resulting in O(n2) complexity where
n is the number of particles. The computational costs for computing the force
can be reduced to O(n) when restricting the interaction to a neighborhood within
a certain distance, and O(n logn) for neighbor searching (see Section 7.1). To
avoid discontinuities at the neighborhood boundary, the potentials are weighted
with a continuous, smooth and monotonically decreasing weighting function that
depends on the distance to the particles and ranges from one at the particle position
to zero at the neighborhood boundary.

For deriving inter-particle forces, the Lennard-Jones potential ΘLJ is used:

ΘLJ(r) =
b
rn −

a
rm , (3.3)

32

3.1 Meshless Lagrangian Methods

where r is the distance between two particles, and n, m, b and a are constants. The
Lennard-Jones potential is well known in molecular dynamics for modeling the
interaction potential between pairs of atoms. It creates long-range attractive and
short-range repulsive forces, yielding particles arranged into hexagonally ordered
2D layers in absence of external forces. A more convenient formulation, called
the Lennard-Jones bi-reciprocal function, is written as

ΘLJ(r) =
−eo

m−n

(

m
(r0

r

)n
−n
(r0

r

)m)
, (3.4)

where r0 is the equilibrium separation distance, and −e0 is the minimal potential
(the magnitude is called the dissociation energy). Increasing the dissociation en-
ergy increases the stiffness of the model, whereas the width of the potential well is
controlled with the exponents n and m. Thus, large dissociation energy and high
exponents yield rigid and brittle material, whereas low dissociation energy and
small exponents result in soft and elastic behavior of the object. This enables the
modeling of a wide variety of physical materials ranging from stiff to fluid-like
behavior. By coupling the dissociation energy with thermal energy such that the
total system energy is conserved, objects can be melted and frozen. Furthermore,
thermal expansion and contraction can be simulated by adapting the equilibrium
separation distance r0 to the temperature.

One problem of particle systems is that the surface is not explicitly defined. To
extract a smooth surface from the particles, an algorithm is used which was devel-
oped to model electron density maps of molecular structures [Bli82]. A Gaussian
potential

ϕi(x) = be−ar2
, (3.5)

which is often called a blob, is assigned to each particle, where a and b are con-
stants and r = ‖x−pi‖ is the distance from an arbitrary point x in space to the
particle’s position pi. A continuously defined potential field ϕ(x) in space is ob-
tained by summing the contribution from each particle

ϕ(x) = ∑
i

ϕi(x). (3.6)

The surface ΨI is then defined as an isovalue I of ϕ(x). This yields an implicit
coating of the particles, which adapts to topological changes such as splitting and
merging by construction. For a more intuitive control of the surface, the constants
a and b can be computed as a = −β/r2 and b = Ie−β, where r is the radius in
isolation and β the blobiness.

The implicit coating of particles for soft inelastic substances undergoing topo-
logical changes pose challenging problems such as volume preservation, avoiding
unwanted blending and contact modeling. These were addressed by Desbrun and
Cani in a series of papers [Can93a, DC94, DC95]. A hybrid model is applied that
is composed of two layers: Particles are used to simulate soft inelastic substances
as described above, whereas an elastic implicit layer defines the surface of an ob-
ject and is locally deformed during collisions. A problem of the implicit coating is

33

Chapter 3 State of the Art

that the volume may change significantly during deformation, especially for split-
ting and merging. However, efficiently computing the volume of a soft object is
not trivial. A territory of a particle pi is defined as the (volumetric) part Vi of the
object where the field contribution of pi is the highest. Note that territories form
a partition of the implicit volume of an object. Each particle samples its territory
boundary by sending a fixed number of points called seeds in a set of distributed
directions until they reach the boundary. The volume of a particle is approximated
by simply summing up the distances from the particle to the seeds. The local
volume variation can then be easily approximated for each particle, and the field
function is changed accordingly such that the volume is preserved. Another prob-
lem is that split object parts might blend with each other when they come close.
To avoid this, an influence graph is built at each animation step by recursively
adding the neighbors of a particle that are in its sphere of influence to the same
connected component. Only the particles of the same component can interact and
their field functions are blended. However, the problem arises that two or more
separated components might collide. For detecting a collision, the seed points on
the isosurface ΨI are tested against the field function of another component. For
resolving interpenetrations between two components with potential functions ϕ1
and ϕ2, exact contact surfaces are computed by applying negative compressing
potentials g2,1 and g1,2 such that ϕ1 + g2,1 = ϕ2 + g1,2 = I, resulting in a local
compression. To compensate the compression and ensure C1 continuity of the de-
formed surfaces, positive dilating potentials are applied in areas defined around
the interpenetration zone [Can93a, OC97]. For collision response, the compres-
sion potentials gi, j are computed for each colliding seed and then transmitted as
response force to the corresponding particle. Additionally, the two components
might be merged locally where the collision force exceeds a threshold.

Szeliski and Tonnesen introduced oriented particles for deformable surface
modeling [ST92, Ton98], where each particle represents a small surface element
(similar to surfels, see Section 2.5). Each particle has a local coordinate frame,
given by the position of the particle, a normal vector and a local tangent plane to
the surface. To arrange the particles into surface-like arrangements, interaction
potentials are defined that favor locally planar or locally spherical arrangements.
The Lennard-Jones potential described above is used to control the average inter-
particle spacing. The weighted sum of all potentials yields the energy of a particle,
where the weights control the bending and stiffness of the surface. Variation of
the particle energy with respect to its position and orientation yields forces acting
on the positions and torques acting on the orientations, respectively. Using these
forces and torques, the Newtonian equations for linear and angular motion are
solved using explicit time integration.

Recently, Bell et al. presented a method for simulating granular materials, such
as sand and grains, using a particle system [BYM05]. A (non-spherical) grain is
composed of several round particles, which move together as a single rigid body.
Therefore, stick-slip behavior naturally occurs. Molecular dynamics (MD) is used
to compute contact forces for overlapping particles. The same contact model is

34

3.1 Meshless Lagrangian Methods

Figure 3.1: Simulation of a lava lamp using the SPH method [MSKG05].

used for collision of granular materials with rigid bodies, or even between rigid-
bodies, by simply sampling the rigid body surface with particles (see Section 4.4.2
for more details).

3.1.2 Smoothed Particle Hydrodynamics
The Smoothed Particle Hydrodynamics (SPH) method is a particle-based La-
grangian technique where discrete, smoothed particles are used to compute
approximate values of needed physical quantities and their spatial derivatives.
Forces can be easily derived directly from the state equations. As a particle-based
Lagrangian approach mass is conserved exactly and convection is dispensable.
A drawback of the SPH method is that it is difficult to exactly maintain the in-
compressibility of material. A detailed description of the SPH method is given in
Section 2.3. In the following, we will discuss applications of SPH in computer
graphics.

SPH was introduced independently by Gingold and Monaghan [GM77] and
Lucy [Luc77], for the simulation of astrophysical problems such as fission of stars.
Stam and Fiume introduced SPH to the computer graphics community to depict
fire and other gaseous phenomena [SF95]. They solve the advection-diffusion
equation for densities composed of "warped blobs". Desbrun and Cani solve the
state equations for the animation of highly deformable bodies using SPH [DC96].
They achieve the animation of inelastic bodies with a wide range of stiffness and
viscosity. Considering the object as a set of smeared-out masses, they define the
surface as an isosurface of the mass density function. To introduce surface ten-
sion and control surface characteristics such as constant volume, an active surface
that evolves depending on the velocity field, similar to snakes [KWT88], is pro-
posed [DC98]. An adaptive framework where the resolution of particles is adapted
in both space and time based on a particle splitting and merging approach is pre-
sented in [DC99].

SPH has also become popular recently for fluid simulations. Stora et al.
[SAC+99] animate lava flows by coupling viscosity with a temperature field
and simulated heat transfer between the particles. By considering hair as a

35

Chapter 3 State of the Art

fluid-like continuum, Hadap and Magnenat-Thalmann [HMT01] used a modified
formulation of SPH to simulate hair-hair interactions. Premože et al. [PTB+03]
introduced the moving particle semi-implicit method (MPS) [KTO95] to the com-
puter graphics community for simulating incompressible multiphase fluids. Nice
visual results were produced by coupling the physical particles with level sets for
surface reconstruction. Müller et al. [MCG03] presented a method based on SPH
and new smoothing kernels, with which fluids with free surfaces can be simulated
at interactive rates with up to 5000 particles. In [MSHG04], the interaction of
Lagrangian fluids and mesh-based deformable solids are modeled by placing vir-
tual boundary particles, so-called ghost particles [Mon94], on the surface of the
solid objects according to the Gaussian quadrature rule. This method is extended
in [MSKG05] so that the simulation of phenomena such as boiling water, trapped
air and the dynamics of a lava lamp are possible (Figure 3.1). Liquids with dif-
ferent polarities are simulated by computing a body force that acts perpendicular
to the interface of two liquids. The force is proportional to the curvature of the
interface and the surface tension. Additionally, air particles are generated and
deleted dynamically where air pockets are likely to be formed, making it possible
to simulate trapped air. Clavet et al. [CBP05] achieve viscoelastic fluid behavior
by coupling the SPH method with springs, where plastic effects are achieved by
increasing the springs’ rest lengths, similar to [TPF89]. Wicke et al. [WHP+06]
define the initial hexagonal lattice sampling as rest shape and compute restoring
forces by matching the particle positions to their assigned lattice positions. Thus,
no neighborhood information needs to be stored, making the method suitable for
melting and freezing animations.

3.2 Mesh-Based Lagrangian Methods

3.2.1 The Finite Element Method
The finite element method (FEM) is a very popular and well studied method for
approximating the solution of partial differential equations (PDEs), where the vol-
ume of an object is discretized using an irregular mesh (see e.g. [CMPW89] for
a nice introduction). In Newtonian mechanics, the PDE has the form (see Sec-
tion 2.1.1)

ẍ = f (ẋ,x, t), (3.7)

where x(p, t) is a spatially continuous function. This function can be approxi-
mated by solving for the nodal positions pi(t) of the mesh

〈x(p, t)〉= ∑
i

pi(t)Φi(p), (3.8)

where Φi(p) are fixed nodal basis functions that are (in the original FEM) one at
node i and zero at all other nodes. Substituting 〈x(p, t)〉 into Equation (3.7) yields

36

3.2 Mesh-Based Lagrangian Methods

Figure 3.2: The pit bull with its inflated head (left) shows the artifact of linear FEM
under large rotational deformations. The correct deformation is shown on the
right [MG04]. Image courtesy of Matthias Müller, AGEIA/NovodeX.

a set of algebraic equations, which are then solved numerically. Note that choosing
constant linear basis functions results in the finite difference method described in
the next section.

Instead of solving this equation system, a popular method (sometimes called
explicit FEM [DCA99, OH99]) in computer graphics is to compute nodal forces
by treating the nodes like mass points in mass-spring systems, where each element
is a spring connecting the adjacent nodes [OH99, DDCB01, MDM+02]. The new
nodal positions are then computed by simply integrating the forces in time using
an explicit or implicit scheme. For stable simulations, non-linear equations are of-
ten linearized such that an implicit integration scheme with a linear equation solver
can be applied. Unfortunately, linearized elastic forces are only valid for small
deformations, whereas large rotational deformations yield inaccurate restoring
forces [MDM+02]. To eliminate these artifacts, Müller et al. [MDM+02, MG04]
extract the rotational part of the deformation for each finite element and compute
the forces with respect to the non-rotated reference frame (cf. Figure 3.2).

O’Brien et al. [OH99,OBH02b] simulated fracturing of elastic and elastoplastic
material using tetrahedral finite elements with linear basis functions and explicit
integration. Müller et al. [MMDJ01] achieve real-time deformations and frac-
ture by solving for static equilibrium configurations except for collision events.
Debunne et al. [DDCB01] use a linear elastic model based on the Lamé formu-
lation for computing the deformation of an object. Applying FEM to this linear
PDE results in a linear equation system. This system is solved efficiently using a
hierarchy with volumetric meshes of different resolutions. Wu et al. [WDGT01]
describe an adaptive nonlinear FEM simulation based on precomputed progressive
meshes [Hop96]. Instead of refining the mesh elements, Grinspun et al. [GKS02]
refine basis functions in their framework called CHARMS (conforming, hierarchi-
cal, adapative refinement methods). Irving et al. [ITF04] address the problem of
element inversion by deriving forces from the deformation gradient. Cubical finite
elements with an embedded high resolution surface have been employed by Müller
et al. [MTG04] for stable and efficient fracture simulation. To support topological
changes while maintaining well-shaped elements, Molino et al. [MBF04] create
duplicates of the original elements which are animated as virtual nodes.

37

Chapter 3 State of the Art

3.2.2 The Finite Difference Method
FEM approximates the solution of a differential equation, whereas the Finite Dif-
ference Method (FDM) approximates the equation itself. A major disadvantage
of this simple and efficient scheme is its difficulty to approximate the boundary of
an arbitrary object with a regular mesh.

Terzopoulos et al. [TPBF87] derive an energy functional as the weighted matrix
norm of the difference between the metric tensors of the deformed and original.
The elastic forces are computed by discretizing the continuous directional deriva-
tive of this energy term using FDM. Finally, the forces are integrated in time us-
ing semi-implicit integration. Further work covers viscoelasticity, plasticity and
fracture [TF88]. Furthermore, Terzopoulos and Witkin [TW88] propose to de-
compose the deformation into a reference and a displacement component. The
reference component is moved rigidly with the displaced component. The forces
are then computed relative to this reference component to improve the numerical
stability.

3.2.3 The Finite Volume Method
Although the finite volume method (FVM) is used in many CFD packages, it has
been largely ignored in computer graphics. Debunne et al. [DDCB00] improved
their finite difference approach for multiresolution animation of deforming ob-
jects [DDBC99] using a finite volume integration technique to approximate the
Laplacian and the gradient of the divergence operators. Teran et al. [TBHF03] use
FVM to simulate skeletal muscle. Similar in spirit to the geometrically motived
FVM, they propose a geometric way to compute strain which leads to an intuitive
way of integrating the equations of motions.

3.2.4 The Boundary Element Method
Unlike the volumetric FEM method, the Boundary Element Method (BEM) solves
the equation of motion at the boundary (surface) of an object, see [Hun05] for an
introduction. This is achieved by transforming the volume integral form into a
surface integral by applying the Green-Gauss theorem. Thus, the 3D problem
is reduced into a 2D problem, which results in a substantial speedup for solving
the equation. However, BEM can only be applied to homogeneous material, and
topological changes are difficult to handle.

James and Pai employ BEM for accurate real-time simulation of deformable
objects. Based on a linear elastic model, reference boundary value problems are
precomputed [JP99]. These are combined at run-time using a fast update method
that exploits coherence. They extended this framework for the simulation of multi-
zone elastokinematic models [JP02] and augment it by a multiresolution technique
based on wavelets to reduce the memory requirements [JP03].

38

3.2 Mesh-Based Lagrangian Methods

Figure 3.3: Cloth modeled using a mass-spring system [BFA02]. Image courtesy of Robert
Bridson, UBC.

3.2.5 Mass-Spring Systems

Mass-spring systems discretize the space by simply connecting mass points to-
gether by a network of massless springs. This network is fixed, whereas in par-
ticle systems described in Section 3.1.1 the network is recomputed in every time
step. Mass-spring systems have been popular in computer graphics for modeling
faces [PB81, Wat87], soft tissues [CHP89, TW90, WT91], and the locomotion of
simple creatures [Mil88, TT94]. Melting has been simulated by decreasing the
spring stiffness according to a mass-points temperature, and finally the spring is
removed completely [TPF89, MP89, CBP05].

Breen et al. [BHW94] state that mass-spring systems are suitable for cloth sim-
ulation due to the fact that cloth is a mechanism of warp and weft fibres, and not a
continuum. Since then, mass-spring systems have dominated the cloth simulation
literature [EWS96, VMT97, BW98, CK02, EGS03]. A bending model for cloth
has been presented by Bridson et al. [BMF03] and for discrete shell simulation
by Grinspun et al. [GHDS03]. Adaptive meshing techniques for cloth simulation
have been presented in [HPH96,VB02,LV05]. Teschner et al. [THMG04] present
a versatile and efficient model that can be applied for both deforming surfaces and
volumes using tetrahedral and triangle meshes. Spring forces are computed from
potential energy that preserve distances between vertices, the surface area of the
object, and the volume of tetrahedra.

Spring constants usually need to be tuned manually because they do not di-
rectly correspond to physical values. To search for these parameters, simulated
annealing [BTH+03] and a genetic algorithm [BSSH04] have been proposed.

A lot of research has been done in developing time integration scheme that
preserve the large scale folding and wrinkling of cloth while stably and efficiently
solving the stiff equation systems. A discussion of this topic is out of the scope of
this dissertation, we refer to [NMK+06] for a nice survey.

39

Chapter 3 State of the Art

3.3 Eulerian and Semi-Lagrangian
Methods
So far, we discussed meshless and mesh-based Lagrangian methods. In this sec-
tion we will look at Eulerian and semi-Lagrangian methods used for fluid simu-
lation in computer graphics. Furthermore, we will explore how fluid boundaries
are represented in the Eulerian setting. See Section 2.2 for a discussion of the
fundamental differences between Eulerian and Lagrangian methods.

Foster and Metaxas popularized fluid simulation by a series of papers [FM96,
FM97b,FM97a]. They solve the Navier-Stokes (NS) equations for incompressible
fluids (Section 2.1.4)

∇·v = 0, (3.9)
∂v
∂t

= g
︸︷︷︸

ext. force

−(v ·∇)v
︸ ︷︷ ︸

advection

+
1
ρ
∇· (µ∇v)

︸ ︷︷ ︸

viscosity

−
1
ρ
∇P

︸ ︷︷ ︸

pressure

, (3.10)

using finite differences on a regular voxel grid. The fluid velocity is stored on
the cell faces of the grid, whereas the pressure and other scalar values are stored
at the cell center to avoid pressure oscillations. This is known as staggered (or
MAC) grid. For solving the NS equations, the single terms are solved separately
(so-called operator splitting). First, the external force is simply integrated in time.
Stam [Sta99] proposed a method to stably solve the (non-linear) advection term for
arbitrary time steps using a semi-Lagrangian technique. The idea is to backtrack
the considered grid point xt in time to find the position xt−∆t in the last time step
t−∆t, at which a particle would have moved to xt . The considered attribute is then
interpolated at xt−∆t from the neighboring grid cell attributes at t−∆t. Finally, the
attribute at xt is updated with this value. Following, the (linear) viscosity term
is solved, e.g., using finite differences. The obtained velocity ṽ after these three
steps is called a best guess velocity, where the pressure and mass conservation
(Equation (3.9)) has not been taken into account yet. In the so-called pressure
projection step, the missing pressure term is added to this velocity

vnew = ṽ−∆t∇P, (3.11)

where ∆t is the used time step. This equation is then plugged into Equation (3.9),
yielding (after rearranging the terms) a Poisson equation for the unknown pressure

∆t∇2P =∇· ṽ. (3.12)

Solving this symmetric and positive definite system of equations yields the pres-
sure, which is then plugged back into Equation (3.11) to obtain the final vnew, re-
sulting in a divergence free (and thus incompressible) fluid. These techniques can
also be applied on an adaptively refined grid, such as an octree [SY04, LGF04].

40

3.3 Eulerian and Semi-Lagrangian Methods

Irving et al. [IGLF06] couple a 2D technique similar to fluid methods based on
height fields [KM90, OH95] with a full 3D Navier-Stokes solver at the surface.
This enables speeding up the simulation of large bodies of water while capturing
detailed surface motion.

To simulate smoke, Stam [Sta99] used a scalar density field to define quanti-
ties of smoke on the grid, and adds buoyancy forces based on the local smoke
density. The density field is advected with the semi-Lagrangian technique de-
scribed above. This approach is unconditionally stable, but the field is smoothed
due to the interpolation of the values, especially on coarse grids. To reintroduce
the lost small scale swirling motion in smoke simulations, Fedkiw et al. [FSJ01]
add an artificial vorticity confinement force. A different approach was taken by
Kim et al. [KLLR05] who applied back and forth error compensation and cor-
rection to the semi-Lagrangian technique to greatly reduce the dissipation while
maintaining its stability. A different semi-Lagrangian technique for computing
the advection coined particle-in-cell (PIC) method has been presented already in
1963 by Harlow [Har63]. The grid cells are sampled with particles. In a first
step, the velocity of the particles are interpolated onto the grid cells. Second, all
fluid terms except of the advection are computed on the grid. Third, the computed
cell velocities are interpolated back onto the particles, which are then moved in
time. Thus, the velocities are smoothed two times, yielding a very viscous fluid.
Brackbill and Ruppert get rid of the smoothing in the third step by only interpo-
lating the difference of old and new velocity of a cell back to the particles [BR86].
This approach is coined fluid-implicit-particle (FLIP) method. Recently, Zhu and
Bridson used a model for sand in combination with either PIC or FLIP to animate
sand as a fluid [ZB05], and Guendelman et al. [GSLF05] used FLIP to reduce the
dissipation in the adaptive octree method [LGF04]. Selle et al. [SRF05] combine
Lagrangian vortex particles with Eulerian methods to preserve small scale detail,
where the vorticity confinement force is used to drive the grid based velocity field
towards the particles’ vorticity.

To render the fluid boundary, Foster and Metaxas [FM96] passively advect
massless marker particles, which are rendered in [FM97b] as smoothed ellipsoids
with an orientation based on the velocity of the particle and a normal computed
from the position of the nearby particles. Carlson et al. [CMVT02] improved on
this technique by splatting the particles and extract an isosurface as a polygonal
mesh. For smoke visualization, Stam advects a scalar smoke density field using
the semi-Lagrangian technique described above. This density field is then volume
rendered. Foster and Fedkiw [FF01] were the first in computer graphics to ani-
mate the fluid boundary as level sets [OS88] (see Section 2.4.1). Level set values
are only defined at Eulerian grid nodes, yielding numerical dissipation of mass in
under-resolved, high curvature regions [EFFM02]. This problem has been allevi-
ated by Enright et al. [EMF02, EFFM02, ELF05b] by sampling the fluid interface
on both sides with massless particles, which are passively advected with the flow
and periodically reseeded. Particles that escape the implicit surface are then used
to correct errors in the level set representation. Losasso et al. [LSSF06] extend

41

Chapter 3 State of the Art

Figure 3.4: Melting bunny [CMVT02, Car04]. Image courtesy of Mark Carlson, DNA
Productions, Inc.

the level set algorithm such that multiple interacting liquids can be simulated, and
couple liquid and fire [NFJ02] simulation. Rasmussen et al. [REN+04] introduce
two additional kind of level set particles: viscosity particles for melting, and veloc-
ity divergence particles for controlling the expansion and contraction of the liquid.
Air marker particles that become trapped inside the fluid are simulated as bubbles
by Greenwood and House [GH04]. Guendelman et al. [GSLF05] advect and ren-
der water marker particles that escaped the reconstructed surface as splashes and
spray. Kim et al. [KCC+06] go one step further and convert these marker particles
into physical particles, which are then simulated using the PIC and FLIP method
described above. A description of a particle level set library including source
code is given by Mokhberi and Faloutsos [MF]. An efficient scheme for storing
level sets based on run-length encoding (RLE) has been proposed by Houston et
al. [HWB04, HNB+05, HNB+06].

Instead of using marker particles, loss of volume can be decreased by using
the error compensation and correction method described by Kim et al. [KLLR05].
Bargteil et al. [BGOS06] circumvent the dissipation problems due to interpolation
of level sets by combining the advection of a distance field with an explicit sur-
face. In every step, they compute the distance value of a grid point to the surface
by backtracking the point in time using the semi-Lagrangian approach described
above. The distance value of the found point is computed exactly by computing
the distance of the point to the surface given as a triangle mesh. The new surface is
then extracted with an adapted version of the marching cubes algorithm [LC87],
where the position of the triangle vertices on the grid edges are found using a
secant method. Thus, interpolation is avoided altogether.

Several extensions of the standard fluid solver have been proposed to simulate
various effects. Hong and Kim [HK05b] use the ghost fluid method [Fed02] to
simulate surface tension of both free and bubble surfaces by modeling the dis-
continuity at the interface between water and air. For obtaining accurate deriva-
tives, both pressure and velocity are extrapolated across interfaces. Carlson et
al. [CMVT02] add a temperature and variable viscosity field to simulate melting
of solid objects into liquid. Solid objects are simply modeled as a fluid with very
high viscosity. Solids are melted by decreasing their viscosity, which is coupled to

42

3.3 Eulerian and Semi-Lagrangian Methods

Figure 3.5: A dripping viscoelastic fluid [GBO04]. Image courtesy of Tolga G. Goktekin,
UC Berkeley.

the temperature (Figure 3.4). To cope with the stiff equations due to high viscosity,
an implicit integration scheme is used. Goktektin et al. [GBO04] add an elastic
term to the NS equations for animating viscoelastic substances (Figure 3.5), where
the strain tensor field is advected throughout the fluid grid. Carlson et al. [CMT04]
simulate the interaction between rigid bodies and fluids by projecting the rigid
body on a Eulerian grid and treating it as a rigid fluid. This is achieved by adding
an extra term to the NS equations due to the deformation stress inside the solid.
Thus, the same solver as for the fluid is used to compute the cell velocities of the
rigid body, which are then used in the next time step by the rigid body solver.
Discretizing the objects on the grid is avoided by Guendelman et al. [GSLF05],
who couple water and smoke with thin deformable and rigid shells by casting rays
from the cell center to the neighboring cell centers to find intersection with the
objects. The velocity of the object at the intersection point is then used as bound-
ary condition. The aforementioned works used a coupling technique called time
splitting, where solids and fluids are computed alternately while fixing the fluid
pressure and the solid’s velocity, respectively. Klingner et al. [KFCO06] combine
both the fluid pressure projection and the implicit solid velocity integration step
into one set of equations, which are then solved simultaneously. While this in-
creases the accuracy of the coupling and therefore allows to take larger time steps,
it results in a large non-symmetric linear equation system that is composed of all
fluid and solid degrees of freedom, which is computationally more expensive to
solve. Losasso et al. [LIGF06] combine standard FEM solid simulation with Eu-
lerian fluid solvers to simulate melting and burning of solids. The boundary is
defined as the level set stored on the mesh nodes in material coordinates where the
mesh is static. The transition from solid to fluid is achieved by adapting the nodal
level set values.

The volume-of-fluid (VOF) method [HN81] stores in each voxel the volume
fraction of liquid in a voxel. The interface crosses those cells that are only par-
tially filled, i.e., where the fraction is smaller than one. This additional informa-
tion can be also used to compute surface slopes and curvatures, which is needed,
for instance, to simulate surface tension. Because the curvature computation is
less accurate than with level sets, Sussman and Puckett [SP00,Sus03] coupled the

43

Chapter 3 State of the Art

Figure 3.6: Controlled fluid simulation with detail preservation using the lattice Boltzmann
method [TKPR06].

VOF and level set methods (called CLSVOF) to combine the advantages of both,
namely volume preservation and smooth surfaces. Hong and Kim [HK03] model
surface tension forces for rising bubbles. Takahasi et al. [TFK+03] employ the cu-
bic interpolated propagation (CIP) [TNY85, TY87] method to simulate splashes
and foam. The CIP method advects additionally to the velocity also the surface
gradient to obtain a sharp interface between water and air. Song et al. [SSK05]
adopt the semi-Lagrangian advection to reduce numerical dissipation, and con-
vert dissipative cells into droplets or bubbles. Subsequently, these fragments un-
dergo Lagrangian motion. Mihalef produce impressive results of 3D breaking
waves [MMS04]. The 3D simulation is controlled using 2D slices generated by a
2D fluid solver with prescribed initial conditions derived from linear wave theory.

Instead of regular grids it is also possible to use unstructured meshes. These
have the advantage that they conform better to irregular boundaries [FOK05,
ETK+05]. Feldman et al. [FOKG05] used the arbitrary Lagrangian-Eulerian
(ALE) method to adapt the computational mesh to deforming boundaries. Klinger
et al. [KFCO06] go one step further and remesh the domain every time step such
that it conforms also to moving objects.

A different approach coined lattice Boltzmann method (LBM) [FdH+87] solves
the Boltzmann equation to approximate the NS equations (see [Suc01] for an
overview of the method). It works similar to a cellular automaton, where the phys-
ical domain is discretized into grid cells. A cell only interacts with cells in its di-
rect neighborhood. LBM performs well for complex geometries and, if combined
with a VOF method, is fully mass conserving. Wei et al. [WZF+03, WZF+04]
used LBM to simulate wind fields interacting with light-weight objects such as
soap bubbles and a feather, where they exploit graphics hardware for parallel
computations. Furthermore, they achieve to simulate gaseous phenomena at in-
teractive rates [WLMK04]. Thürey and Rüde [TR04] apply LBM for interactive
simulation of liquids with free surfaces. Implementation details and an adaptive
time stepping scheme is given in [TKR05]. In [TKPR06], force fields defined by
particles are introduced to control the fluid flow. The whole framework has been
integrated into Blender [Thü06]. A hybrid simulation method that couples a 2D
shallow water simulation with a 3D free surface fluid simulation, augmented with
particles for the animation of drops, is given in [TRS06].

44

Chapter 4

Multiresolution Fluid
Simulation

In this chapter a new multiresolution particle method for fluid simulation is pre-
sented. The discretization of the fluid dynamically adapts to the characteristics of
the flow to resolve fine-scale visual detail, while reducing the overall complexity
of the computations. We introduce the concept of virtual particles to implement
efficient refinement and coarsification operators. Furthermore, a consistent cou-
pling between particles at different resolution levels is achieved, i.e., our scheme
guarantees that only particles of the same size interact and thus momentum is pre-
served. Our multiresolution method leads to speedups of up to a factor of six as
compared to single resolution simulations. Our system supports multiphase effects
such as bubbles and foam, as well as rigid body interactions, based on a unified
particle interaction metaphor. The water-air interface is tracked with a Lagrangian
level set approach using a novel Delaunay-based surface contouring method that
accurately resolves fine-scale surface detail while guaranteeing preservation of
fluid volume.

In our fluid model (Section 4.3), the fluid is sampled with particles which are
used as interpolation points by the Smoothed Particle Hydrodynamics method
(Section 2.3) for solving the Navier-Stokes equations. Additionally to water par-
ticles, air particles are generated on the fly at the water-air interface and two-way
coupling between water and air is modeled by simulating cohesion at the interface
(Section 4.4). With the same interaction model, also fluid-rigid body interactions
can be simulated efficiently. The fluid model is enhanced with virtual particles,
which provide a consistent and robust coupling between particles of different reso-
lutions and enable to dynamically adapt the particle resolution (Section 4.5) with-
out introducing visual discontinuities. The surface is extracted as the isovalue of
a color field using Delaunay triangulation and tetrahedra marching (Section 4.6).

45

Chapter 4 Multiresolution Fluid Simulation

4.1 Introduction
Capturing the multi-scale nature of fluid flow, such as turbulence, bubbles, co-
hesion, and Rayleigh-Taylor instabilities, typically requires a high-resolution dis-
cretization of the computational domain. Since uniform methods, such as regular
grids or constant-mass particle systems, suffer from cubic complexity and thus
high computation and memory demands, spatially adaptive methods have been
proposed to improve scalability. When designing such an adaptive scheme, two
main questions need to be addressed: How to compute and dynamically update
the adaptive discretization of the domain, and how to define the discrete differen-
tial operators on this non-uniform discretization? Clearly, an adaptive method can
only be successful, if the savings in memory and processing time are not surpassed
by the overhead for maintaining the adaptive spatial data structures. Similarly, an
appropriate discretization of the underlying fluid flow equations is crucial to ob-
tain a consistent and efficiently computable solution.

Losasso et al. [LGF04] recently introduced such a scheme based on an un-
restricted octree decomposition. A careful design of the divergence and gradi-
ent operators yields a symmetric discretization of the Poisson equation, which
can be efficiently solved even for large simulation domains (see also [SY04]).
Adaptive mesh refinement [BO84, SAB+99] is a different Eulerian strategy that
uses a set of uniform grids at different resolution, see [LFO05] for a compari-
son. Irving et al. [IGLF06] couple two and three dimensional techniques to re-
duce the simulation complexity. Similar in the spirit to our approach, they use
a full 3D Navier-Stokes solver at the surface to capture detailed surface motion,
while further away of the surface tall cells are used similar to 2D height field
approaches [KM90, OH95].

Spatial adaptivity in the Eulerian setting can be problematic, however. Fluid
moving through space requires constant refinement and coarsening of the under-
lying mesh, which leads to frequent memory updates and thus high computational
cost. Consider a simple drop falling down as illustrated in Figure 4.1. Since high
spatial resolution is desired close to the interface, the mesh has to be continuously
refined and coarsened as the drop moves through the spatially fixed grid, even
when nothing interesting is happening in terms of fluid dynamics. Another diffi-
culty in grid-based methods is that solid boundaries have to align with the voxel
structure of the grid, which can lead to aliasing artifacts for irregularly shaped
domains. To address this issue, Feldman et al. [FOK05] introduced a method for
simulating gases on hybrid meshes that conform to irregular domain boundaries.
By mixing regular hexagonal meshes with unstructured tetrahedral meshes, their
method leads to improved accuracy near irregular boundaries. Similarly, Elcott
et al. [ETK+05] presented a method for simulating flow on arbitrary tetrahedral
meshes using circulation preserving local operators to avoid numerical diffusion
of vorticity. For simulating fluids in deforming meshes, Feldman et al. [FOKG05]
use the arbitrary Lagrangian-Eulerian (ALE) formulation, which they solve using

46

4.1 Introduction

Figure 4.1: Advection of spatial detail requires substantial re-organization of adaptive Eu-
lerian grids (top row). In Lagrangian methods updates of the discretization are
directly coupled to the dynamics of the flow (bottom row).

a semi-Lagrangian method. This method has further been extended by Klingner
et al. [KFCO06] who efficiently and accurately remesh the domain in every time
step from scratch to conform the mesh to the boundary and moving objects. So
far, this approach does not address free surfaces.

We propose a new multiresolution particle-based method that avoids grid-
related aliasing artifacts as well as the complexity of maintaining conformity to
dynamic object boundaries. At the same time, the spatial discretization is directly
coupled to the dynamics of the flow. New particles are created near the interface
to resolve visually important fine-scale surface detail. Thus, simple advection of
spatial detail requires no updates in the discretization (Figure 4.1, bottom), avoid-
ing the numerous interpolation and averaging operations that adversely affect
numerical accuracy.

A crucial ingredient in our approach is a new method for coupling the inter-
action between particles of different size. As noted by Koumoutsakos [Kou05],
variable-sized particles lead to inconsistencies in the standard mollified kernel ap-
proximation of the differential operators. We avoid this problem by allowing only
a discrete set of particle sizes, analogous to an octree discretization in the Eule-
rian setting. The coupling between particles at different levels is achieved using
a new type of virtual particles that guarantee the consistency of the approxima-
tion. These virtual particles at the same time provide a natural way to dynami-
cally refine and coarsen the discretization during the simulation. Our multiresolu-
tion scheme is based on the Smoothed Particle Hydrodynamics method (see Sec-
tion 2.3), but can be applied to other particle-based methods as well. We model
two-phase coupling to simulate air-water interaction and extend this scheme to
also implement solid-fluid and solid-solid interactions.

47

Chapter 4 Multiresolution Fluid Simulation

4.2 Related Work
State of the art Eulerian and semi-Lagrangian methods for fluid simulations are
described in Section 3.3, and meshless Lagrangian methods are discussed in Sec-
tion 3.1. In this section we will briefly discuss related work in surface track-
ing, adaptive simulations, multiphase flows, fluid-object interaction, and particle-
based fluid simulations.

Most state of the art Eulerian fluid simulation algorithms use level set meth-
ods [OS88, Set99, OF03] to track the free surface. The semi-Lagrangian particle
level set method [Str99,EFFM02,ELF05b] was introduced to reduce volume loss.
An alternative adaptive contouring method based on octrees and backwards advec-
tion to obtain distance values was recently proposed by Bargteil et al. [BGOS06].

Adaptivity in the Eulerian setting is achieved by using an octree data struc-
ture as proposed by Losasso et al. [LGF04] and Shi and Yu [SY04]. Irving et
al. [IGLF06] combine 2D and 3D solvers to speedup the simulation while hav-
ing full detail close to the surface. A similar idea has been used by Thürey et
al. [TRS06], who compute the full fluid flow only in a bounded region of inter-
est that can change over time, whereas outside of this region a 2D shallow-water
simulation is performed. Hong and Kim [HK03, HK05b] simulated effects such
as bubbles and surface tension by modeling the discontinuity at the interface be-
tween air and water. The simulation of multiple interacting fluids is achieved
in [LSSF06] by extending the particle level set algorithm. Carlson et al. [CMT04]
simulate two-way coupling between rigid bodies and fluid by projecting the rigid
body on the Eulerian grid. Génevaux et al. [GHD03] couple solids and fluids by
computing repulsion forces between the fluid marker particles and the solid’s La-
grangian nodes. Guendelman et al. [GSLF05] presented a technique for coupling
water and smoke with shells. Klingner et al. [KFCO06] combine velocity and
pressure constraints into one set of equations, enabling to compute the interac-
tion between fluids and rigid bodies simultaneously, which has been extended to
deformable objects by Chenatenz et al. [CGFO06]. Losasso et al. [LIGF06] simu-
late melting and burning of solids by coupling Eulerian fluid solvers with standard
FEM solvers for deformable objects.

As an alternative to Eulerian schemes, particle-based methods for fluid simu-
lation have recently become popular. Premoze et al. [PTB+03] used the moving-
particle semi-implicit (MPS) method for solving the Navier-Stokes equations. An
interactive system for water simulation using Smoothed Particle Hydrodynam-
ics (SPH) has been presented by Müller et al. [MCG03, MSHG04, MSKG05].
Desbrun and Cani [DC96] used SPH for animating elastically and plastically de-
formable solids. For computational efficiency, they adapted the particle system
over space and time [DC99] by enabling particles to split and merge while adapt-
ing the integration time steps automatically. Because there is no transition between
refined or coarsened particles, splitting and merging introduces a discontinuity in
the force computation, which is a potential source of instabilities. To speed-up

48

4.3 Fluid Model

particle systems, O’Brien et al. [OFL01] propose a subdivision scheme for clus-
tering particles and compute the dynamics on these clusters.

In particle-based methods, the free surface is most often defined as an iso-
surface of a color field defined by the particles [Mor00]. Hieber and Koumout-
sakos [HK05a] denote this as Lagrangian particle level sets and show how both
color fields and distance fields can be used to define the level set function. Müller
et al. [MCG03] propose to convert SPH particles near the isovalue to surface par-
ticles for interactive visualization using surface splatting.

Recent work on SPH in computational fluid dynamics focuses on improving the
accuracy by remeshing the particles onto a grid [CPK02] or regularizing the dis-
tribution of the particles [BOT01,BOT05]. Colagrossi and Landrini [CL03] show
how interfacial flows such as splashing and sloshing can be accurately simulated
using SPH.

4.3 Fluid Model
In our fluid framework, fluid forces are derived from the Navier-Stokes equation
using SPH (see Section 2.3 for an introduction of SPH). Below we provide a brief
summary and derive the relevant equations for the following sections.

The Navier-Stokes (NS) equations in the Lagrangian form are written as (see
also Section 2.1.4)

ρ
Dv
Dt

=−∇P+µ∇2v+ρg, (4.1)

Dρ
Dt

=−ρ∇·v. (4.2)

The fluid density is denoted by ρ, the pressure P is the force per unit area that the
fluid exerts on anything, µ is the (constant) kinematic viscosity of the fluid, v is
the fluid velocity and g the acceleration due to gravity. Additional external forces
(so-called body forces) are lumped into g. The material derivative Dq

Dt = ∂q
∂t +v ·∇q

denotes the change of a physical quantity q(x, t) over time (see Section 2.1.1). In
the Eulerian viewpoint, this is the change of q over time plus the in-flow and out-
flow, respectively, of this quantity at a fixed point x in space. In the Lagrangian
viewpoint, q moves with the fluid (i.e. the particles), therefore the material deriva-
tive is equal to the partial time derivative, i.e., Dq

Dt = ∂q
∂t .

The first part of the NS-equations (Equation (4.1)) is simply Newton’s equation
f = ma and is therefore often called momentum equation. This can be easily seen
by looking at the equation from a Lagrangian (particle) viewpoint. By multiplying
both sides of the equation with the volume Vi = mi/ρi of a particle element pi we
get

mi
Dvi

Dt
=−Vi∇P
︸ ︷︷ ︸

fpressure
i

+Viµ∇2vi
︸ ︷︷ ︸

fviscosity
i

+ mig
︸︷︷︸

fext
i

, (4.3)

49

Chapter 4 Multiresolution Fluid Simulation

where fpressure
i and fviscosity

i are the internal forces and fext
i the external force acting

on pi with mass mi.
Equation (4.2) is the so-called continuity or mass-conservation equation (see

Section 2.1.4). For an incompressible fluid the density does not change, i.e., Dρ
Dt =

0, and therefore the velocity field must be divergence free, i.e.,

∇·v = 0. (4.4)

4.3.1 Initialization and SPH Force Approximation
The forces fpressure

i and fviscosity
i can be derived using the SPH approximation de-

scribed in Section 2.3. Applying Equation (2.19) to the density of a particle pi
yields the so-called summation density

〈ρi〉= ∑
j

m jωpoly(ri j,h), (4.5)

where ri j = xi− x j is the distance vector of a particle pair. Initially, the fluid
domain is sampled in a hexagonal grid which yields a closest sphere packing that
is energetically ideal. All particles have the same mass mi, which is chosen such
that the average density corresponds to the physical density ρ0 of the fluid. The
volume Vi is computed as Vi = mi/ρi.

Unfortunately, forces derived with Equation (2.21) are not symmetric. In the
literature several variants of symmetrization exists, here we use the forces and
smoothing kernels proposed by Müller et al. [MCG03]

〈
fpressure
i

〉
= −Vi ∑

j
Vj

Pi +Pj

2
∇ωspiky(ri j,h) and (4.6)

〈

fviscosity
i

〉

= µVi ∑
j

Vj(v j−vi)∇
2ωlaplace(ri j,h). (4.7)

The pressure Pi is computed via the constitutive equation

Pi = kgas
((

ρi

ρ0

)γ
−1
)

, (4.8)

where kgas is a gas constant that determines the stiffness of the fluid and γ ≥ 1
controls the relative density fluctuation. Note that these forces do not exactly en-
force incompressibility, i.e., a divergence free velocity field is not guaranteed (see
Equation (4.4)). The pressure force repels particles if the density ρ is larger than
the rest density ρ0, and attracts particles if ρ≤ ρ0. A larger γ prevents strong den-
sity fluctuations, but requires smaller time steps. Since we operate in computer
graphics with quite large time steps (Section 1.1), we choose γ = 1 (in the physics
literature, usually γ ≈ 7 is chosen). Other approaches approximate ρ by solving
the continuity equation (4.2) directly. Whereas this so-called continuity density

50

4.3 Fluid Model

avoids spurious boundary effects [Liu02a], it does not guarantee mass preserva-
tion exactly, and in our experiments showed to be less stable than the summation
density. For the following sections we will omit 〈〉 for brevity.

4.3.2 Kernels
The kernels ω used for SPH approximations can be designed depending on the
application. The standard kernel ωpoly used for SPH approximations in this thesis
is similar to a Gaussian but has finite support h [MCG03]:

ωpoly(r,h) = kpoly

(

1− r2

h2

)3
if r < h,

0 otherwise,
(4.9)

where r = ‖r‖ and kpoly is computed such that the kernel is normalized, i.e.,
∫

ωpoly(r,h)dr = 1. This gives kpoly = 315
64Πh3 for a kernel in 3D and kpoly = 4

Πh2 in
2D.

To avoid clustering under high pressure, Desbrun and Cani [DC96] suggested a
spiky kernel with non-vanishing gradient at the center of the kernel:

ωspiky(r,h) = kspiky

{

(h− r)3 if r < h,

0 otherwise
(4.10)

with kspiky = 15
Πh6 in 3D and kspiky = 10

Πh5 in 2D.
Both of the kernels described above can have a negative second derivative.

Instead of smoothing the velocity field by averaging the velocity of neighbor-
ing particles, their relative velocity might be increased as discussed by Müller et
al. [MCG03]. Therefore, they propose a third kernel

ωlaplace(r,h) = klaplace

{

− r3

2h3 + r2

h2 + r
2h −1 if r < h,

0 otherwise
(4.11)

whose Laplacian

∇2ωlaplace(r,h) = klaplace(−
3r
h3 +

2
h2) (4.12)

is positive everywhere and klaplace =− 30
11h3Π in 3D and klaplace =− 30

11h2Π in 2D.

4.3.3 Color Field
The boundary of the fluid discretized by particles can be found using a so-called
color field [Mor00], which is needed for dynamically creating air particles and

51

Chapter 4 Multiresolution Fluid Simulation

Figure 4.2: Automatic air generation. Left: color field computed by assigning the value +1
to water (gray) and air (white) particles. Right: color coding of magnitude of color
field gradient (scaled and clamped so that white corresponds to the threshold τϕ).
The air particles near the interface generate new particles in gradient direction.

surface extraction as described below. The idea is to assign a constant value ϕi to
each particle pi. A smooth color field ϕ(x) is then defined using SPH as

ϕ(x) = ∑
j

Vjϕ jωspiky(r,h). (4.13)

Assigning ϕi = 1 to each particle yields a color field whose gradient ∇ϕ(x) in-
creases at the boundary of the particles and points in normal direction into the
fluid, cf. Figure 4.2. Hence, the color field can be used for instance to determine
the fluid boundary particles.

4.4 Multiphase SPH
Air influences the behavior of water both at the free surface and as air pockets
(bubbles) enclosed by water. By simulating both fluids at the same time, two-way
coupling between water and air can be achieved. The simulation of air is most im-
portant in our case at the interface, where the air is used for extracting the surface
(Section 4.6) and bubbles are built. Thus, instead of having a full simulation of
both fluids, the adaptivity of particle-based methods can be exploited by generat-
ing air particles dynamically during the simulation. A narrow band of air particles
is maintained everywhere around the interface to model two-way coupling at the
free surface. Furthermore, we extend this coupling also to solid objects, such that
fluid-fluid and fluid-solid interaction are simulated using a unified particle-based
approach.

4.4.1 Air Generation
For two-way coupling between water and air as well as for an accurate recon-
struction of the free surface (see Section 4.6), a narrow band within a distance

52

4.4 Multiphase SPH

dmin from the interface needs to be adequately sampled with air particles. Air
particles further away than a distance dmax are deleted dynamically. Applying the
color field definition described above, the color field gradient ∇ϕ(pi) is approx-
imated using SPH for all air particles pi with a distance smaller than dmin. At
the boundary of the narrow band, ∇ϕ(pi) is orthogonal to this boundary. A new
air particle is inserted if ‖∇ϕ(pi)‖ is larger than a threshold τϕ and if the vector
∇ϕ(pi) points in opposite direction to the interface, see Figure 4.2. The position
pnew of the new air particle is computed by displacing it from the position pi of pi
in direction of the color field gradient:

pnew = pi + s∇ϕ(pi)/‖∇ϕ(pi)‖ , (4.14)

where s is the average particle spacing, in our case s = h/2. For all our simulations
we use dmin = h, dmax = 2h, and τϕ = 0.8h.

4.4.2 Water-Air Interaction
Between two immiscible fluids, surface tension due to molecular cohesion gives
rise to a sharp pressure jump at the interface, which prevents fluids from mixing
freely [HK05b]. By computing the density of the fluids using Equation (4.5) in-
dependently of each other, we get the desired discontinuity at the interface. To
model the pressure jump at the interface, we add a cohesion term −kcohesionρ2

i to
the pressure equation (4.8) similar to [NP00] and [CL03] and obtain

P′
i = kgas

(
ρi

ρ0 −1
)

− kcohesionρ2
i . (4.15)

The sharpness of the interface is controlled with the constant kcohesion. The pres-
sure force is then computed using Equation (4.6). When we apply this equation
only for the cohesion term we get the following force

fcohesion
i = kcohesionVi ∑

j
Vj

ρ2
i +ρ2

j

2
∇ωspiky(ri j,h). (4.16)

This force points in normal direction to the interface, thus giving rise to surface
tension.

Rigid Bodies-Fluid Interaction
Although in this chapter we only consider water-air interaction, the method de-
scribed above can be used for simulating arbitrary (immiscible) interacting fluids.
In the following, we go even one step further and use the same scheme also for
simulating rigid body-fluid interaction, where a rigid body is treated as a rigid

53

Chapter 4 Multiresolution Fluid Simulation

Figure 4.3: Multiresolution fluid simulation and rigid bodies-fluid interaction using a uni-
fied particle-based approach.

fluid. Thus, a rigid body is sampled with particles the same way as a fluid (see Fig-
ure 4.3), where the density and mass of the particles depend on the rigid body ma-
terial properties. During the simulation, the forces acting between rigid body and
fluid particles are computed exactly as for water-air interaction described above.
The net force and torque acting on the rigid body are computed from the sum of its
rigid body particle forces. Integration in time then yields the linear and angular ve-
locity of the rigid body, from which we compute the new particle positions. Note
that this interaction model can also be applied to deformable solids as described
in the next chapter.

To simulate rigid body collisions we use the approach of Bell et al. [BYM05].
They propose to sample an offset surface of a rigid body with particles and derive
the contact forces between overlapping particles from molecular dynamics. This
showed to be efficient and yields very good results even for the case of rigid body
stacking. Instead of sampling the surface with another set of particles, we use the
rigid body volume particles for computing the contact forces.

For completeness, we give here a short description of the computed and sym-
metrically applied contact force between two interacting rigid body particles p1
and p2 of two rigid objects Γ1 and Γ2 (see [BYM05] for a derivation). The contact
force is composed of a normal force fper

1,2 and shear force fshear
1,2 . The overlap ξ1,2 of

the particles and the normalized distance vector r̂1,2 is defined as

ξ1,2 = max(0, 2h−‖p1−p2‖), (4.17)
r̂1,2 = (p2−p1)/‖p2−p1‖ , (4.18)

54

4.5 Multiresolution Particle System

where h is the support radius of the particles (we use the same support as for the
fluid particles). Given the relative velocity vector vrel

1,2 = v1−v2 of the two objects
and the relative velocity in normal direction vper

1,2 = vrel
1,2 · r̂1,2, the contact force in

normal direction is computed as

fper
1,2 =−

(

kr
1,2ξ

3
2
1,2− kdξ

1
2
1,2vper

1,2

)

r̂1,2, (4.19)

where kr
1,2 is the elastic restoration coefficient controlling the stiffness and kd is the

viscous damping coefficient controlling the energy dissipation during collisions.
Hertz theory [LL86] relates kr

1,2 to the material properties as follows:

kr
1,2 =

4
3

E1,2
√

h/2 with (4.20)

1
E1,2

=
1−ν2

1
E1

+
1−ν2

2
E2

, (4.21)

where Ei is Young’s modulus and νi is Poisson’s ratio of an object Γi (see Sec-
tion 2.1.3). The shear friction force accounts for the Coulomb law with friction
coefficient µfri, in combination with a viscous damping term kv:

fshear
1,2 =−min(µfrifper

1,2, kv∥∥vtan
1,2
∥
∥)

vtan
1,2

∥
∥
∥vtan

1,2

∥
∥
∥

, (4.22)

where vtan
1,2 = vrel

1,2− vper
1,2r̂1,2 is the relative velocity vector in tangential direction.

4.5 Multiresolution Particle System
The multiphase SPH fluid model defined above allows complex simulations of wa-
ter and its interaction with the surrounding air. The visual quality and numerical
accuracy of these simulations directly depend on the number of particles, which,
when sampling uniformly, increases cubically with respect to the inverse of the
smallest resolved scale. Since the computational complexity is superlinear in the
number of particles, high-resolution simulations quickly become intractable. Spa-
tially adaptive sampling that concentrates more particles in regions close to the
interface, can thus lead to significant savings in memory and computation time.
Such a sampling scheme should also be temporally adaptive, i.e., dynamically
adjust the discretization if the flow is non-stationary and detail is generated or
destroyed during the simulation.

In the fluid model introduced above it is assumed that two interacting parti-
cles have the same smoothing length to guarantee bidirectional consistency in
the particle force computation (Section 2.3). If this condition is violated, New-
ton’s third law is no longer satisfied, i.e., particle pi can exert a force on particle

55

Chapter 4 Multiresolution Fluid Simulation

p j even though p j has no influence on pi. Thus, any spatially adaptive scheme
requires an adaptation of the way particles interact to ensure conservation of mo-
mentum. A straightforward solution is to apply some averaging of the smooth-
ing lengths or the interpolation kernels [LL03]. However, as shown by Borve et
al. [BOT01], this yields errors in the order of 10% already for a factor two differ-
ence in the kernel width and leads to severe instabilities with larger kernel varia-
tions. A different approach has been coined Regularized SPH (RSPH) by Borve et
al. [BOT01, BOT05]. Since SPH is derived from Monte-Carlo interpolation with
the particles as interpolation points, they propose the use of additional interpo-
lation points, either defined on a background lattice or using auxiliary particles.
While substantial improvements in numerical accuracy were reported for station-
ary flows, dynamically changing flows are difficult to model using this method.

We propose a new, general approach for temporally and spatially adaptive parti-
cle simulations that provides a consistent approximation, while minimizing com-
putational overhead. Similar to [BOT01], we only allow kernel widths of size
2lh, where l = 0,1, . . . denotes the particle resolution level and h is the smoothing
length at the highest resolution. To dynamically adapt the discretization during
the simulation, particles can transition from one level to another by splitting or
merging (Section 4.5.2). The key idea of our approach is the concept of virtual
particles that serve two main purposes: They allow a consistent coupling of par-
ticles at different resolution levels and they provide a mechanism for modeling
particle splitting and merging without introducing temporal visual discontinuities.

4.5.1 Virtual Particles
As will be described below, a splitting criterion ensures that neighboring particles
at most differ by one level, similar to a balanced octree decomposition in the
Eulerian setting. To simplify the exposition we thus only consider two resolution
levels l and l +1, as shown in Figure 4.4 (a). Three types of real (i.e., non-virtual)
particles are distinguished: Particles of level l + 1 close to level l particles carry
virtual level l children particles (4 in 2D, 8 in 3D). Particles of level l close to
level l +1 particles are assigned to a virtual level l +1 parent particle. These two
types are called transient particles. Other real particles of either level are regular
particles that are not associated with any virtual particles.

SPH forces are computed only for real particles. When evaluating Equa-
tions (4.6) and (4.7), only particles of the same level, be they virtual, transient, or
regular, are considered as neighbors. This means that if a particle finds a transient
particle in its neighborhood, it either selects this particle or the associated virtual
particle(s) when computing the interaction forces, depending on their level. If
a force is computed between a real and a virtual particle, this force is symmet-
rically applied to the virtual particle to ensure preservation of momentum and
redistributed uniformly to the associated real particle(s) (see Figure 4.4 (b)). This
coupling between real and virtual particles ensures the consistency of the force

56

4.5 Multiresolution Particle System

virtual

children

virtual

parent

symmetric

passive force

force distributed

to regular particle

bonding

forces

centroid

level l

level l+1
(a)

(b) (c)

transient

particles

regular regulartransient transient
(d)

splitting

merging

regular

particles

real particles: virtual particles:

level llevel l+1

Figure 4.4: Multiresolution coupling with virtual particles. (a) two levels of particles with
neighborhoods (dashed circles), (b) distribution of SPH forces, (c) bonding forces
for virtual particles, (d) splitting and merging.

57

Chapter 4 Multiresolution Fluid Simulation

computations. In effect, transient particles behave like intermediates between two
levels.

Virtual particles are passively advected with the flow using the SPH approxima-
tion of the velocity field. In order to keep virtual and associated real particles close
together we introduce additional bonding forces that act only on virtual particles.
As illustrated in Figure 4.4 (c), virtual child particles are attached to the associ-
ated transient parent particle using a linear spring force with a rest length equal
to half the sample spacing of the corresponding level. Virtual parent particles are
pulled toward the centroid of the associated transient child particles using a zero
rest length spring.

4.5.2 Splitting and Merging
The transition of particles from one level to another is guided by two counter-
acting principles: On the one hand, the particle resolution should be high enough
to resolve visually important fine-scale surface detail. On the other hand, we want
as few particles as possible to minimize computational overhead.

The adaptation to the characteristics of the flow is achieved by enforcing that
particles at the air-water interface always have smoothing length h, i.e., are at the
highest resolution. This ensures that we capture all surface detail up to scale h,
since our surface model is directly coupled to the particle resolution (see Sec-
tion 4.6). The hierarchy is determined by ensuring that only same-sized particles
interact, i.e., by guaranteeing that no real particle has regular particles of a differ-
ent level within its neighborhood.

The transition from a regular level l + 1 to a regular level l particle consists of
three steps as shown in Figure 4.4 (d), from left to right: A regular level l + 1
particle becomes a transient level l + 1 particle, if it finds a real (regular or tran-
sient) level l particle in its neighborhood. Virtual children are created using a
precomputed uniform sampling on the sphere. They are assigned half the support
radius of their parent particle and 2−d of its mass and volume with d the number
of dimensions. If a transient l +1 particle has a regular level l particle in its neigh-
borhood, its virtual children become transient real particles and itself turns into a
virtual parent for its children. Transient level l particles are released from their
relation with their virtual parent particle and turn into regular level l particles, if
they have separated beyond their kernel smoothing length, i.e., if the maximum
distance between two child particles exceeds 2lh. A split operation is also initi-
ated, if all transient child particles of a common virtual parent have no virtual level
l particles in their neighborhoods. Note that splitting always proceeds from coarse
to fine, i.e., the splitting criterion is first evaluated for the coarse level particles.
This ensures that smaller particles will not find higher level regular particles in
their neighborhoods, as these would have been split already.

Merging operations proceed in the opposite direction (see Figure 4.4 (d), from
right to left). In general, particles are merged whenever the new (type of) parti-

58

4.6 Surface Extraction

Figure 4.5: Surface extraction from the zero level set of the color field and Delaunay trian-
gulations. Left: water particles (gray) and air particles (white) and corresponding
color field. Middle: triangulation of narrow band particles. Right: surface con-
struction from bichromatic triangles and color field.

cle potentially created by the merging operation does not fulfill the corresponding
splitting criterion. The transition from regular to transient child particles requires
some special treatment. To force the total number of particles to be as small as
possible, even single regular particles are allowed to become transient child par-
ticles with a single virtual parent. If two such virtual parents are neighbors, their
children are merged to a common parent if their total number does not exceed the
allowed maximum (4 in 2D, 8 in 3D). This approach has the additional advan-
tage that the merging can be performed incrementally and therefore a full set of
eight children is not required before a merging operation can be applied. Note that
this approach does not lead to undesirable fragmentation, since merging is always
performed at the transition layer between two resolutions.

When a particle is split, the child particles are assigned the same velocity as the
parent particle. Contrary, if a particle p j is merged into a parent particle pi (which
has initially a velocity vi = 0), the new velocity and mass of pi is

vi←
(mivi +m jv j)

mi +m j
, mi←mi +m j. (4.23)

This way, kinetic energy and linear momentum of the system are preserved. An-
gular momentum is approximately preserved because the particles are distributed
about uniformly due to the pressure forces.

4.6 Surface Extraction
The fluid is sampled with water and air particles from which an interface needs to
be extracted for visualization. We define the interface as the zero level set ϕ(x) = 0
of the color field function ϕ(x) described in Section 4.3.3, where we assign a con-
stant value ϕw = +1 to water particles pw and ϕa =−1 to air particles pa (see also

59

Chapter 4 Multiresolution Fluid Simulation

surface re-

construction

air

handling

#rig. body

particles

#air

particles

spatial

queries

#real

particles

time

integration

total time

per frame

splitting,

merging

#virtual

particles

Sphere

Ducks

103k

34k

85k

73k

64

472

460

54

170k

641k

641k

166k

91

513

504

81

1.1

1.4

110k

0k

0k

107k

9

9

0

0

9

6

21

25
8

Table 4.1: Statistics for the animations shown in Figure 4.6 and Figure 4.7. The upper row
shows the averaged data per frame for a multiresolution simulation, the equivalent
single resolution results are shown in the lower row. All timings are in seconds,
measured on a 2.8 GHz Pentium IV with 2 GB memory.

Figure 4.5). In Section 6.6 an algorithm is presented that constructs an explicit
point-based representation from an implicit function by sampling it with surface
elements (surfels). Here we use a different novel approach that exploits the fact
that the interface separates air and water particles. The idea is to compute a De-
launay triangulation of the particles that have different colored particles in their
neighborhood. The surface is then extracted using a variant of the marching tetra-
hedra algorithm [Hop94], where the surface needs to go through the bichromatic
edges of two different colored particles. For a detailed description of the algorithm
see [KAG+06] or [Ada06].

4.7 Results & Discussion
The crucial argument for multiresolution is scalability. While single resolution
simulations in 3D require O(m3) with m the number of particles per dimension,
multiresolution reduces the complexity to O(m2). Clearly, the efficiency gains
depend on the characteristics of the flow. We demonstrate the effectiveness of our
approach in both memory and computation time savings on two examples where
a speedup of a factor of six is obtained (see also Table 4.1).

Figure 4.6 shows the break-up of a water crown and illustrates the capabilities
of our multiresolution approach for resolving fine-scale detail. Preserving mass at
small scales is crucial in this example as it avoids visually disturbing loss of fluid,
e.g., for the drops splashing against the walls. Also note the tiny bubbles at the
front of the sphere created by air particles being dragged under the water surface.

Figure 4.7 shows multiple rigid bodies, fluid, and air interacting with each
other. This example demonstrates the effectiveness of our particle-based cou-
pling method that requires only minimal adaptations to incorporate rigid or even
deformable solids.

As shown in Table 4.1, the overhead for the multiresolution computation is
very small (around 1%), and in fact even for simulations where all particles are on
the highest level it does not increase the computational time noticeably as shown
in [KAG+06]. Thus, the multiresolution approach can be applied independent of
the application.

60

4.7 Results & Discussion

Figure 4.6: Multiphase fluid simulation of a splashing sphere. Note the small splashes
(left) and bubbles (right) shown in the close-ups in the bottom row.

Figure 4.7: Rigid body collisions and interaction with fluid. The interaction between rigid
bodies and fluids is based on a unified particle metaphor.

61

Chapter 4 Multiresolution Fluid Simulation

4.7.1 Limitations
An inherent limitation of particle-based approaches is the computational overhead
caused by the particle neighborhood computations. As shown in Table 4.1, spa-
tial queries amount to up to 80% of the total simulation time (more timings can
be found in our technical report [KAG+06]). All neighborhood computations are
performed using kd-trees as described in Section 7.1.2, which are re-initialized in
each time step. Rebuilding a kd-tree is fast (in the range of 0.1− 0.5 seconds in
our examples or below 0.6% of the total time), and in our experiments kd-trees
showed to yield better performance than hash grids (Section 7.1.1). Furthermore,
kd-trees are more suitable than hash grids in a multiresolution setting where choos-
ing an appropriate cell size is difficult, see Section 7.1 for a thorough discussion
and comparison of kd-trees and hash grids. We believe that substantial perfor-
mance gains can be achieved using more efficient caching schemes that exploit
temporal coherence. Nevertheless, the implicit neighborhood relations of regular
grids are clearly a performance advantage of Eulerian methods. Another strength
of grid-based approaches is incompressibility. While methods for SPH have been
proposed to make the velocity field (approximately) divergence free [CR99], the
computational overhead is substantial. However, the choice of the stiffness con-
stant kgas (we use kgas = 400k) in Equation (4.8) is non-trivial as it depends on the
time step (1ms in our simulations). With larger kgas, the fluid is less compressible
but the time step needs to be reduced to guarantee a stable simulation. Another
limitation is that due to the smoothing inherent in the SPH method, fine-scale
turbulences are often damped out.

4.8 Extensions & Future Work
Our multiresolution fluid framework can be extended in various ways.

A view-dependent fluid simulation could potentially lead to additional perfor-
mance gains. Additional to the splitting criteria described in Section 4.5.2, the
distance to the camera and the view frustum could be used as a splitting and merg-
ing criteria to reduce the resolution in regions that are not visible or far away from
a certain viewpoint.

Another possible application of our multiresolution method is for hybrid
molecular-continuum simulations (see e.g. [Kou05] for an overview). The al-
gorithms would need to be adapted such that virtual particles can differ more than
a factor of two to their associated real particles.

The presented multiresolution approach proved to be stable and yields plausi-
ble results in our empirical experiments. However, to make this approach useful
also for physically accurate simulations as in CFD, an analytical error analysis
and qualitative comparisons between multi- and single-resolution animation are
required.

In Section 4.4 we discussed interaction of liquid and air. Similarly, liquid-liquid

62

4.8 Extensions & Future Work

Figure 4.8: Fluid following the shape of an animated model using the SPH method. Control
particles are created by sampling the interior of the horse.

interactions can be simulated. In [MSKG05], we propose methods to simulate the
interaction of multiple fluids with different characteristics, such as immiscible
liquids. Furthermore, dynamic phase changes are modeled by simply changing
the attributes of particles. To avoid a full SPH simulation of air as described in
this chapter, we generate air only where air pockets are likely to be formed. These
techniques enable the simulation of phenomena such as boiling water, trapped air
and the dynamics of a lava lamp (cf. Figure 3.1).

Our interface tracking method allows the advection of surface parameter infor-
mation, which could be used to advect surface textures. Given a bichromatic edge,
we can compute the intersection of this edge with the surface of the previous time
step and transfer the parameter coordinates to the current time step, similar to the
approach of Bargteil et al. [BGOS06]. This can be done efficiently by exploiting
that most bichromatic edges in one time step also exist in the next and therefore
only a small amount of edges needs to be tested for intersection.

In Chapter 6 we will show how the framework can be extended to enable two-
way coupling between deformable objects and fluids, and simulate melting of
deformable objects to fluids and solidifying fluids to solid objects. This poses
great challenges for the surface extraction.

In [TKPR06], we propose a new fluid control technique that uses scale-
dependent force control to preserve small-scale fluid detail. Control particles

63

Chapter 4 Multiresolution Fluid Simulation

define local force fields and can be generated automatically from either a physical
simulation (Figure 3.6) or a sequence of target shapes (Figure 4.8). We use a
multi-scale decomposition of the velocity field and apply control forces only to
the coarse-scale components of the flow. Small-scale detail is thus preserved in
a natural way avoiding the artificial viscosity often introduced by force-based
control methods.

4.9 Summary
Methods have been presented for the animation of multiresolution particle-based
fluids. Immiscible fluids are prevented from mixing by simulating the pressure
jump at the interface, rising surface tension. This enables two-way coupling be-
tween water and air to simulate multiphase effects such as bubbles and foam. The
same model is used for simulating the interaction between fluids and solids, where
the solid’s volume is also sampled with particles. Based on molecular dynamics
forces, these solid particles are also used for rigid body collision handling. Thus,
the simulation of fluids and rigid bodies is based on a unified particle metaphor,
which will be extended in the next chapter to handle also deformable solids.

With the proposed multiresolution method, the discretization of the fluid vol-
ume dynamically adapts to the characteristics of the flow to resolve fine-scale
visual detail. The spatially and temporally adaptive sampling leads to substan-
tial savings in memory and computation time, thus enabling significantly more
complex flow simulations with the same processing resources. The concept of
virtual particles achieves a consistent coupling of particles at different levels and
provides an efficient mechanism for dynamic resampling. It is lightweight, simple
to implement, and can easily be incorporated into other particle-based simulation
environments. In the next chapter, the multiresolution approach will be exploited
for dynamically adapting the resolution to robustly handle strong volume defor-
mations and fracturing of elastic objects.

Using a meshless Lagrangian simulation technique revealed several advantages
compared to Eulerian methods. Mass is tracked exactly with the particles, thus
preventing mass dissipation. Air particles are created dynamically where needed,
and particles in air pockets are simulated as bubbles. Updates of the discretization
are efficient and directly coupled to the dynamics of the simulation. Similarly, our
novel Delaunay-based interface tracking method enables advection of the surface
together with the particles and efficiently generates high-quality surfaces that au-
tomatically adapt to the resolution of the simulation. Thus, even tiniest bubbles
and splashes are captured correctly. Drawbacks of the SPH method are the ap-
proximate incompressibility and difficulties in handling thin sheets of liquid. Fur-
thermore, neighborhood computations require a significant amount of the whole
computation time.

64

Chapter 5

Deformable Solid
Simulation

In this chapter a method is presented for modeling and animating a wide spectrum
of elastic objects with material properties anywhere in the range form stiff elastic
to highly plastic, including brittle and ductile fracture as well as contact handling.
In our system, both the volume and the surface representation are point-based.
Central to our method is a highly dynamic surface and volume sampling, which
enables large deviations of an object from the original shape, supports arbitrary
crack initiation, propagation and termination, and the computation of a consistent
contact surface for collision response. The point-based surface representation is
decoupled from the physics representation, therefore a coarse volumetric repre-
sentation can be used in combination with a highly detailed object surface, which
enables efficient, stable and high quality animations.

In our elasticity model (Section 5.4), which is derived from continuum mechan-
ics (Section 5.3), the spatial derivatives of the displacement field and elastic body
forces are computed from the local neighborhood of the volumetric particles. The
surface of the object is sampled with oriented surface elements (hereafter called
surfels), which are advected along with the particles (Section 5.5). This frame-
work is extended to incorporate fracturing by creating complex fracture patterns of
interacting and branching cracks according to the internal stress, where the propa-
gating crack fronts directly affect the coupling between particles (Section 5.6). To
guarantee numerical stability also for strong deformations and frequent fracturing,
the sampling of the simulation domain is adapted on the fly (Section 5.7). For han-
dling contact between deformable objects, collision handling and deformation are
decoupled, yielding stable and efficient collision response (Section 5.8). Putting
all parts together and exploiting dynamic caching, an efficient and stable frame-
work is obtained for the simulation of elasto-plastic solids including fracturing
and collision (Section 5.9). Finally, extensions of this framework and possible
directions for future research are presented (Section 5.10).

65

Chapter 5 Deformable Solid Simulation

5.1 Introduction

The animation of deformable objects in virtual systems has been a challenging
problem for years and combines several research subjects in computer graphics.
For instance, in a virtual surgery simulator, human body parts are simulated as de-
formable bodies (so-called soft objects) based on measurements and experiments,
where the materials span a wide range from stiff elastic to highly plastic. A sur-
geon might interact with the body parts using a haptics device. These then deform
due to the external forces exerted from the haptics device and might collide with
other objects. Alternatively, the surgeon might cut parts of with a virtual blade.
Due to the impact of the blade or colliding objects, parts might get damaged and
fracture. As this simple example shows a framework for deformable solid simula-
tion must be able to handle elasto-plastic deformations of objects due to external
forces and collisions, fracturing due to high internal stresses (cutting is a special
case of fracturing where the blade is considered to be a user manipulated crack),
and contact handling between colliding objects. Other important requirements on
a virtual system are robustness and interactivity, i.e., the methods have to be both
stable and efficient.

A majority of previous simulation methods in computer graphics use 2D and 3D
meshes. Most of these approaches are based on mass-spring systems, or the more
mathematically motivated finite element (FEM), finite difference (FDM) or finite
volume (FVM) methods, in conjunction with elasticity theory. In mesh-based
approaches, complex physical effects, such as fracturing, melting, and solidify-
ing, pose great challenges in terms of restructuring. Additionally, under large
deformations the original meshes may become arbitrarily ill-conditioned. For the
simulation of these complex physical phenomena, efficient and consistent surface
and volume representations are needed that allow simple restructuring. Meshless
Lagrangian methods have several advantages over finite element methods. Most
importantly, meshless methods avoid complex remeshing operations and the as-
sociated problems of element cutting and mesh alignment sensitivity common in
FEM. Maintaining a conforming mesh can be a notoriously difficult task when the
topology of the simulation domain changes frequently [OP99]. Repeated remesh-
ing operations can adversely affect the stability and accuracy of the calculations,
imposing undesirable restrictions on the time step. Finally, meshless methods are
well suited for handling large deformations due to their flexibility when locally
refining the sampling resolution. Our goal is to unify the simulation of materials
ranging from stiff elastic to highly plastic into one framework, using a mesh-
less, point-based volume and surface representation which entirely omits explicit
connectivity information and thus implicitly encompasses the complex physical
effects described above.

66

5.2 Related Work

5.2 Related Work
In this section we give a short overview of existing work on physics-based de-
formable models that is most relevant for us, including fracturing and collision
handling.

5.2.1 Deformable Modeling
Pioneering work in the field of physics-based animation was carried out by Ter-
zopoulos and his co-workers [TPBF87, TF88, TW88, TPF89]. They compute the
dynamics of deformable models from the potential energy stored in the elastically
deformed body using finite difference discretization.

A large number of mesh-based methods for both off-line and interactive simu-
lation of deformable objects have been proposed in the field of computer graphics.
Examples are mass-spring systems used for cloth simulation [BW98,DSB99], the
boundary element method (BEM) [JP99] and the finite element method (FEM),
which has been employed for the simulation of elastic objects [DDCB01,GKS02],
plastic deformation [OBH02b] and fracture [OH99].

Desbrun and Cani were among the first to use meshless models in computer
graphics. In [DC95], soft, inelastic substances that can split and merge are ani-
mated by combining particle systems with simple inter-particle forces and implicit
surfaces for collision detection and rendering. The Smoothed Particle Hydrody-
namics (SPH) method (see Section 2.3) is applied in [DC96]: discrete particles
are used to compute approximate values of physical quantities and their spatial
derivatives. Space-adaptivity is added in [DC99]. Szeliski and Tonnesen [ST92,
Ton92,Ton98] derived elastic inter-particle forces using the Lennard-Jones poten-
tial energy function (commonly used to model the interaction potential between
pairs of atoms in molecular dynamics) for surface modeling and physics-based
animation of deformable solids.

5.2.2 Fracturing
Terzopoulos et al. extended their work on deforming objects using finite differ-
ences [TPBF87] to handle plastic materials and fracture effects [TF88]. Mass-
spring models [HTK98] and constraint-based methods [SWB00] have also been
popular for modeling fracture in graphics, as they allow for easy control of fracture
patterns and relatively simple and fast implementations.

Recent efforts have focused on finite element methods that directly approximate
the equations of continuum mechanics. O’Brien et al. were the first to apply this
technique for graphical animation in their paper on brittle fracture [OH99]. Using
element cutting and dynamic remeshing, they adapt the simulation domain to con-
form with the fracture lines that are derived from the principal stresses. [OBH02a]

67

Chapter 5 Deformable Solid Simulation

introduces strain state variables to model plastic deformations and ductile fracture
effects.

Element splitting has also been used in virtual surgery simulation, where Bielser
et al. [BGTG03] introduced a state machine to model all configurations of how a
tetrahedron can be split. Müller et al. [MMDJ01, MG04] demonstrate real-time
fracturing using an embedded boundary surface to reduce the complexity of the
finite element mesh. The virtual node algorithm of Molino et al. [MBF04] com-
bines the ideas of embedding the surface and remeshing the domain. Elements
are duplicated and fracture surfaces are embedded in the copied tetrahedra. This
allows more flexible fracture paths, but avoids the complexity of full remeshing
and associated time stepping restrictions.

5.2.3 Contact Handling

Collision detection for deformable surfaces has recently gained increasing atten-
tion. A survey of recent research is presented by Teschner et al. [TKH+05].

Many different approaches exist for collision handling of deforming objects.
Penalty methods, pioneered by Moore and Wilhelms [MW88], are probably the
most widely used solutions in computer graphics. However, these methods can-
not ensure that the objects do not penetrate. Baraff and Witkin [BW92] use
a constraint-based method to prevent objects from penetration. This requires
solving a linear complementary problem (LCP), which is computationally ex-
pensive for complex objects. Impulse-based methods [Hah88, MC95] assume
short contacts only, and therefore are not suitable for soft objects. Desbrun and
Cani [Can93b, DC95] presented a system for animation and collision handling
of implicit surfaces generated by skeletons. Exact contact surfaces are achieved
by deforming the implicit layer. The compression of the surface yields response
forces which are transmitted to the skeleton. However, the generated implicit
models tend to be blobby.

Point-sampled object surfaces have become popular in recent years. In this
context, the problem of collision detection and response has only been addressed
very recently. Collision detection of point-sampled objects was first handled in
our shape modeling system [PKKG03, Kei03]. Klein and Zachmann [KZ04] pre-
sented an approach for time-critical collision detection of point clouds using a
sphere bounding hierarchy. However, they do not deal with collision response.
Pauly et al. [PPG04] model contact for point-sampled quasi-rigid objects, i.e.,
rigid objects with an elastic layer at the surface. They compute exact contact sur-
faces by setting up linear complementarity constraints and solving for the tractions
that act on these surfaces. The wrench on the rigid object is then computed from
these tractions.

68

5.3 Continuum Mechanics Equations

Figure 5.1: The physical volume elements (particles in yellow) and the surface elements
(surfels in blue) are both represented as points. The model presented in the Sec-
tions 5.3–5.5 allows the simulation of elastic, plastic, melting, and solidifying
objects (from left to right).

5.3 Continuum Mechanics Equations
The continuum elasticity equations describe how to compute the elastic stresses
inside a volumetric object, based on a given deformation field [Coo95, Chu96].
Consider a model of a three-dimensional body whose material coordinates are
m = (x,y,z)T . To describe the deformed body in world coordinates, a continuous
displacement vector field u(m) = (u(m),v(m),w(m))T is used where the scalar
displacements u(m), v(m) and w(m) are functions of the material coordinates.
The world coordinates x of a point with material coordinates m are x = m+u(m)
in the deformed model. The Jacobian of this mapping is given by

J = I+∇uT =

u,x +1 u,y u,z
v,x v,y +1 v,z
w,x w,y w,z +1

 , (5.1)

with the following column and row vectors

J =
[
Jx,Jy,Jz

]
=

JT
u

JT
v

JT
w

 . (5.2)

The subscripts with commas represent partial derivatives (e.g. u,x = ∂u(m)
∂x). To

measure strain, we use the quadratic Green-Saint-Venant strain tensor

εs = JT J− I =∇u+∇uT +∇u∇uT . (5.3)

This symmetric quadratic tensor has the advantage that it is rotation invariant,
in contrast to the linearized version most often used in computer graphics for
performance reasons, which fails for larger deformations (see e.g. [MDM+02]).
In our model we assume a Hookean material, i.e., a linear relationship between
force and deformation (see Section 2.1.3):

σs = C εs, (5.4)

69

Chapter 5 Deformable Solid Simulation

Figure 5.2: The effect of Poisson’s ratio: the undeformed model (left) is stretched using a
Poisson ratio of zero (middle) and 0.49 (right).

where C is a rank four tensor, approximating the constitutive law of the material,
and both εs and σs are symmetric 3× 3 (rank two) tensors. For an isotropic ma-
terial, C has only two independent coefficients, namely Young’s modulus E and
Poisson’s ratio ν (Section 2.1.3). Therefore, Hooke’s law is written as

σs
xx

σs
yy

σs
zz

σs
xy

σs
yz

σs
zx

= ks

1−ν ν ν 0 0 0 0
ν 1−ν ν 0 0 0 0
ν ν 1−ν 0 0 0 0
0 0 0 0 1−2ν 0 0
0 0 0 0 0 1−2ν 0
0 0 0 0 0 0 1−2ν

εs
xx

εs
yy

εs
zz

εs
xy

εs
yz

εs
zx

(5.5)

with ks = E
(1+ν)(1−2ν) . Anisotropic materials can be simulated by modifying C

accordingly.
The elastic body forces can be computed via the strain energy density Ũ strain

(energy per unit volume), which is the potential energy stored in a deformed ma-
terial

Ũ strain =
1
2
(εs ·σs) =

1
2

(
3

∑
i=1

3

∑
j=1

εs
i jσ

s
i j

)

. (5.6)

The elastic force per unit volume at a point m is the negative gradient of the
strain energy density with respect to this point’s displacement u(m) (the direc-
tional derivative∇u). For a Hookean material, this expression is written as

f̃elastic =−∇uŨ strain =−
1
2
∇u(εs ·C εs) =−σs∇uεs. (5.7)

5.4 Elasticity Model
In order to use the continuous elasticity equations described above in a numerical
simulation of a dynamic elastic object, we need to discretize the volume of the

70

5.4 Elasticity Model

Vi

ui

uj

εi σi

mj

mi

Ui

∇u f i

f jhi

m m u+

i
pi

Figure 5.3: As a basic unit, we consider a particle with material coordinates mi and its
neighbors at m j within distance hi. The gradient of the displacement field ∇u is
computed from the displacement vectors ui and u j, the strain εs

i from ∇u j, the
stress σs

i from εs
i , the strain energy U strain

i from εs
i , σs

i and the volume Vi and the
elastic forces as the negative gradient of U strain

i with respect to the displacement
vectors.

object into volumetric elements dV . Similarly to the fluid model described in
Section 4.3, the object is sampled with smoothed particles pi with position mi in
material coordinates and fixed mass mi. The sampling algorithm is described in
Section 5.7. The density ρi is approximated using SPH according to Equation (4.5)
and the particle volume is computed as Vi = mi/ρi, see Section 4.3.1 for details.

In our meshless framework, quantities of a particle pi, such as strain εs
i , stress

σs
i , strain energy U strain

i and the elastic body force felastic
i , are computed from its

neighbors p j which are placed within its support radius hi (cf. Figure 5.3). While
the stress is in our case a linear function of the strain, the strain is computed from
the spatial derivative of the displacement, i.e., ∇ui. We will next discuss how we
compute ∇ui using a first order approximation scheme, and then show how the
strain energy and elastic forces are computed.

5.4.1 Moving Least-Squares Approximation of∇u
For computing εs

i , the spatial derivative of the displacement field ∇ui at mi is
needed. To guarantee zero elastic forces for rigid body modes, the approximation
of ∇ui from the displacement vectors u j of the neighboring particles must be at
least first order accurate. Hence, the moving least-squares (MLS) method with a

71

Chapter 5 Deformable Solid Simulation

linear basis can be used, which yields first order accurate interpolation of point-
sampled functions, see also Section 2.3.4. In the following, we will only consider
the x-component u of the displacement field u(m) = (u(m),v(m),w(m))T and
m = (x,y,z)T . The basic idea is to approximate a continuous scalar field u(m) in
the neighborhood of mi using a Taylor approximation:

u(mi +∆m) = ui +∇u|mi ·∆m+O(‖∆m‖2), (5.8)

where ∇u|mi = (u,x,u,y,u,z) at particle pi with material coordinates mi (the index
after the coma denotes a spatial derivative). For particles p j close to pi we get a
first order approximation

〈
u j
〉

of the values u j as
〈
u j
〉

= ui +∇u|mi · ri j = ui + rT
i j ∇u|mi, (5.9)

where ri j = (xi j,yi j,zi j)
T = m j−mi. The weighted least-squares error ei of the

approximation
〈
u j
〉

is given by

ei = ∑
j

(
〈
u j
〉
−u j)

2ωi j, (5.10)

where ωi j = ω(ri j,hi) is a smoothing kernel (we use the spiky kernel ωspiky, see
Equation (4.10)). Substituting Equation (5.9) into Equation (5.10) and expanding
yields

ei = ∑
j
(ui +u,x xi j +u,y yi j +u,z zi j−u j)

2 ωi j. (5.11)

We want to find the unknowns u,x, u,y and u,z such that the error ei is minimized.
Therefore, the derivatives of ei with respect to u,x, u,y and u,z are set to zero,
yielding three equations for the three unknowns

0 = 2∑
j

ri j
(
ui + rT

i j ∇u|mi−u j
)

ωi j. (5.12)

Multiplying out and rewriting yields
(

∑
j

ri j rT
i jωi j

)

∇u|mi = ∑
j

(u j−ui)ri jωi j. (5.13)

Finally, the spatial derivatives of u(m) at mi are obtained as

∇u|mi = M−1
i

(

∑
j
(u j−ui)ri jωi j

)

, (5.14)

where the inverse of the so-called moment matrix Mi = ∑ j ri jrT
i jωi j is used for

computing the derivatives of v and w as well. Note that Mi of a particle pi needs
to be recomputed only if the neighborhood of pi changes due to resampling (Sec-
tion 5.7), introduced discontinuities (Section 5.6.2), or if the material position of
the particles changes due to a (non-linear) update of the rest shape (Section 6.4.1).

72

5.4 Elasticity Model

5.4.2 Elastic Force Computation
Given the spatial derivative∇ui of a particle pi we can update the Jacobian Ji, the
strain εs

i and the stress σi at the particle position mi using Equations (5.1), (5.3)
and (5.4):

Ji←

∇u|Tmi
∇v|Tmi
∇w|Tmi

+ I, εs
i ← (JT

i Ji− I), σs
i ← (C εs

i). (5.15)

Based on Equation (5.6) the strain energy stored around a particle pi is esti-
mated as

U strain
i =

1
2

Vi(εs
i ·σ

s
i) (5.16)

assuming that strain and stress are constant within the rest volume Vi of particle pi,
equivalent to using linear shape functions in FEM. The strain energy is a function
of the displacement vector ui of pi and the displacements u j of all its neighbors.
Taking the derivative with respect to these displacements using Equation (5.7)
yields the force felastic

ii acting at particle pi and the forces felastic
i j acting on all its

neighbors p j

felastic
ii = −∇uiU

strain
i =−Viσs

i∇uiε
s
i , (5.17)

felastic
i j = −∇u jU

strain
i =−Viσs

i∇u jε
s
i (5.18)

The force felastic
ii acting on pi turns out to be the negative sum of all felastic

i j acting
on its neighbors p j, i.e., felastic

ii =−∑ j felastic
i j . Thus, the total force

felastic
i = felastic

ii +∑
k

felastic
ki (5.19)

acting on particle pi conserves linear and angular momentum. Note that the sum
is not over the neighbors of pi but over all particles pk that have pi in their support
radius hk. In our case where all particles have the same support radius h, the
particles pk are exactly the neighbors of pi and

felastic
i = 2∑

j
felastic
i j . (5.20)

Applying Equation (5.14), Equations (5.17) and (5.18) can be further simplified
to the compact form (see [MKN+04] for details)

felastic
ii = FeM−1

i

(

−∑
j

ri jωi j

)

(5.21)

felastic
i j = FeM−1

i
(
ri jωi j

)
(5.22)

with Fe = −2ViJiσs
i . Note that the matrix product FeM−1 is independent of the

individual neighbor j and needs to be computed only once for each particle pi.

73

Chapter 5 Deformable Solid Simulation

u

u

t,R

Figure 5.4: Left: a discrete set of displacement vectors ui define the deviation of the de-
formed shape from the rest shape. Right: numerical errors can be reduced by
applying an optimal rigid body transformation to the rest shape.

5.4.3 Rigid Transformation of the Rest Shape
If the object departs far from its rest shape, the displacements can become arbitrar-
ily large. This yields two problems. First, computing spatial derivatives of large
quantities is numerically unstable. Second, if the moment matrices have bad con-
dition numbers due to volume undersampling, small orientation dependent ghost
forces can occur. Both problems are solved by transforming the rest shape af-
ter each time step (see Figure 5.4), similar to [TW88]. Unlike their method, we
compute the optimal global rotation and translation of the rest shape based on
geometric algebra [LFDL98].
Translation. The optimal translation t = x−m is the difference between the cen-
ter of mass x in world coordinates and the center of mass m in material coordinates
of the particles with

x = ∑
j

m jp j, (5.23)

m = ∑
j

m jm j, (5.24)

m j = m j/∑
j

m j, (5.25)

where m j is the mass of a particle p j and m j and p j are its position in material
and world coordinates, respectively.
Rotation. The optimal rotation R = VUT is computed in a least-squares sense by
computing the singular value decomposition of S = UWVT , where

S = ∑
j

m2
j(m j−m)(p j−x)T . (5.26)

This linear transformation (R, t) is applied to the surface representation as well
(Section 5.5). Other possibilities on how to transform the rest shape non-rigidly
are discussed in Sections 5.10 and 6.4.1.

74

5.5 Surface Model

Figure 5.5: Max Planck is elastically and plastically deformed in real-time while switching
between material properties on the fly.

5.4.4 Plasticity Model
The standard way in computer graphics for simulating plastic behavior is by using
strain state variables [OBH02b]. Every particle pi stores a plastic strain tensor
εp

i . The strain considered for elastic forces εe
i = εs

i − εp
i is the difference between

measured strain εs
i and the plastic strain. Thus, in case the measured strain is equal

to the plastic strain, no forces are generated. Since εe
i is considered constant within

one time step, the restoring forces (Equations (5.21) and (5.22)) are computed
using σe

i = C εe
i instead of σs

i . The plastic strain is updated at every time step ∆t
according to the following rule

if ‖εe
i ‖> kyield then εp

i ← εp
i +∆t · kcreep · εe

i , (5.27)

where kyield and kcreep are material constants. If the 2-norm of the strain exceeds
the material yield strength kyield, plasticity starts (Section 2.1.3). In this case, the
constant kcreep controls how much of the actual deformation is absorbed in the
plastic strain state per second.

5.5 Surface Model
For the physical simulation, a coarse sampling of the object with particles is often
sufficient to capture the object’s elastic behavior. However, the object’s surface
might be highly detailed with fine geometric features. Therefore, decoupling the
surface representation from the physics representation allows efficient simulation
of the (coarse) physical model with a highly detailed surface. As a representation
we use a point-sampled surface due to its simple structure, which enables effi-
ciently refining the surface for strong deformations (Section 5.5.2). Furthermore,
new surface sheets can be created by simply sampling them with surface points,
for instance, during fracturing (Section 5.6), for contact handling (Section 5.8.3),
and for adapting to topological changes (Section 6.6).

75

Chapter 5 Deformable Solid Simulation

particles pj

surfels si

(a) (b) (c)

Figure 5.6: Surface animation and refinement. The top row shows the surfels from the
side view with the neighboring particles (connect by dashed black lines), the bot-
tom row shows the surfels from the front view. (a) surfels/particles in material
coordinates. (b) surfels/particles in world coordinates after a deformation. (c)
surfels/particles in world coordinates after splitting.

5.5.1 Surface Animation
We start with an object whose surface S is sampled with oriented surface elements
(surfels) s ∈ S. A surfel s has a position ms and two orthogonal tangent vectors
t1
m and t2

m, which define the surfel center and the (elliptic) area covered by s in
material coordinates, respectively. The surfel normal is computed as t1

m× t2
m. The

surfel position in world coordinates is denoted as s, and the tangent axes as t1
s and

t2
s .

For animating S, i.e., computing the surfel positions in world coordinates, we
make use of the continuous displacement vector field u(m) defined by the parti-
cles. This means that the surfels are advected along with the particles (see Fig-
ure 5.6). The displacement vector u(m) at a known surfel position ms is com-
puted from the displacements u j of the neighboring particles p j. For this we need
to define a smooth displacement vector field in R

3 that is invariant under rigid
transformations. This is achieved by using a first order moving least-squares ap-
proximation (Section 2.3.4). However, we have already obtained such an approx-
imation of ∇u j for the particles (see Section 5.4.1), which is reused here. Thus,
the displacement vector u(m) is approximated as

〈u(m)〉=
∑ j ωpoly(m−m j,hP)

(

u j +∇uT
j (m−m j)

)

∑ j ω(m−m j,hP)
, (5.28)

where we use the smoothing kernel ωpoly as a weighting function (see Equa-
tion (4.9)). The u j are the displacement vectors of particles at m j that are within

76

5.6 Fracture Model

a distance hP to ms.
We apply Equation (5.28) to both the surfel center and its tangent axis. This

gives the surfel position s in world coordinates as s = ms +u(ms), and the tangent
vector in world coordinates as t1

s = (u(ms + t1
m)−u(ms)) and analogously for t2

s .

5.5.2 Surface Refinement
When the surface deforms surfels are stretched or compressed. For large defor-
mations this can yield distortions due to the (local) undersampling of the sur-
face [Pau03]. Thus, the sampling of the surface needs to be refined to maintain a
high quality surface. Initially, the tangent axes in world coordinates t1

s and t2
s of a

surfel s are equal to the orthogonal tangent axes in material coordinates. During
a deformation, the world coordinates are shifted. Thus, if a surface is stretched
or compressed, the tangent axes in world coordinates are no longer orthogonal to
each other and their length changes. A measurement of this local distortion can
be found by looking at the first fundamental form at s, which is defined as

[
t1
s · t1

s t1
s · t2

s
t1
s · t2

s t2
s · t2

s

]

. (5.29)

The eigenvalues of the matrix in Equation (5.29) give the minimum and maximum
stretch factors and the corresponding eigenvectors define the principal directions
of the stretching. Thus, the ratio of the two eigenvalues is a measurement of the
local anisotropy. When this ratio is larger than a threshold, the surfel is split into
two new surfels which are positioned on the main axis of the ellipse as shown in
Figure 5.6.

Ideally, if an object is first stretched and then compressed to its original shape,
the surface should not change. We use a simple approach to achieve this. Instead
of deleting a split surfel si, it is kept in material coordinates. If both children of this
surfel are compressed (the ratio of the eigenvalues is smaller than one), also the
world coordinates of si are computed. If si does not fulfill the splitting criterion, its
children are simply deleted and the parent surfel is used again instead. Note that
the overhead is small because for inactive surfels only the rigid transformation of
the rest shape needs to be applied to them (see Section 5.4.3).

5.6 Fracture Model
The previous section described a framework for the animation of elasto-plastic
materials. In the following, we will discuss how this framework can be extended
for simulating fracturing solids. Central to the method is a highly dynamic surface
and volume sampling method that supports arbitrary crack initiation, propaga-
tion, and termination, while avoiding many of the stability problems of traditional

77

Chapter 5 Deformable Solid Simulation

Figure 5.7: Brittle fracture of a hollow stone sculpture. Forces acting on the interior create
stresses which cause the model to fracture and explode. Initial/final sampling:
4.3k/6.5k particles, 249k/310k surfels, 22s/frame.

mesh-based techniques. Advancing crack fronts are modeled explicitly and as-
sociated fracture surfaces are embedded in the simulation volume. When cutting
through the material, crack fronts directly affect the coupling between particles,
requiring a dynamic adaptation of the particle shape functions. Complex fracture
patterns of interacting and branching cracks are handled using a small set of topo-
logical operations for splitting, merging, and terminating crack fronts. This allows
continuous propagation of cracks with highly detailed fracture surfaces, indepen-
dent of the spatial resolution of the particles, and provides effective mechanisms
for controlling fracture paths. The method is applicable for a wide range of ma-
terials, from stiff elastic to highly plastic objects that exhibit brittle and/or ductile
fracture.

5.6.1 Introduction
Physically, fracturing occurs when the internal stresses and the resulting forces are
so large that the interatomic bounds cannot hold the material together anymore.
Fracturing has been studied extensively in the physics and mechanics literature.
However, due to the complexity of the problem, the studies and simulations usu-
ally deal only with "simple" fractures such as the creation or propagation of a
single crack. In computer graphics, we often trade physical accuracy for visual
realism. By simplifying the physical model, realistic animations of very complex
fractures such as the shattering of glass into hundreds of pieces can be achieved.
However, changing the topology of a simulated object is challenging for both the
animation of the volume and the surface. When a solid fractures, the surface needs
to adapt to the cracks that propagate through the volume of the solid. To achieve
a high degree of visual realism, cracks should be allowed to start anywhere on
the surface and move in any direction through the volume. Furthermore, cracks
might branch into several cracks, or different cracks can merge to a single crack
within the solid. While fracturing, not only the topology of the surface changes,
but also the discontinuities introduced by the cracks in the volume have to be
modeled accordingly to achieve physically plausible fracture behavior. The frac-
turing characteristics depend on the material. We differentiate between ductile and
brittle fracture. While brittle material splits without experiencing significant irre-

78

5.6 Fracture Model

Figure 5.8: Highly plastic deformations and ductile fracture. The bubble gum like material
is first deformed beyond recognition. It is then stretched until the stress in the
material is too high and it fractures along a complex fracture surface. Initial/final
sampling: 2.2k/3.3k particles, 134k/144k surfels, 2.4s/frame.

versible deformation (i.e., only elastic deformation), ductile material experience
some amount of plastic deformation before fracture [OBH02a]. Two examples
for brittle and ductile materials are shown in Figure 5.7 and Figure 5.8. A force
acting on the hollow stone sculpture in Figure 5.7 causes the model to explode.
Due to the simulated brittle material this results in a shattering of the object into
pieces. Figure 5.8 shows ductile fracture of a highly plastic bubble gum like mate-
rial which is deformed beyond recognition before splitting along a single complex
fracture surface.

5.6.2 Modeling Discontinuities
We will first discuss how the discontinuity can be modeled that is introduced by
a propagating crack into the domain of a simulated solid. For that, the so-called
visibility criterion [BLG94] can be used where particles are allowed to interact
with each other only if they are not separated by a surface. This is done by testing
if a ray connecting two particles intersects the boundary surface.

To see what happens when we use the visibility criterion we look at the dis-
cretization 〈u〉 of the continuous displacement field u. As shown in Section 2.3.4,
we can approximate u in the form

〈u(m)〉 ≈∑
j

Φ j(m j)u j, (5.30)

79

Chapter 5 Deformable Solid Simulation

Φi
ω
i Φi

ω
i

mi

mj

ms

crack

support of

(a) (b)

Φi
ω
i

(c) (d)

ds

pi

Figure 5.9: Comparison of visibility criterion (a) and transparency method (b) for an ir-
regularly sampled 2D domain. The effect of a crack, indicated by the horizontal
white line, on weight function ωi and shape function Φi is depicted for particle pi
marked by the cross. A schematic view of the transparency method is shown in
(c) and the effect of dynamic upsampling is illustrated in (d).

where Φ j(m j) is the shape function of a particle p j with position m j in material
coordinates and u j is the field value at m j, i.e., in our case the displacement of
p j into world coordinates p j. As described in Section 2.3.4, an approximation
with consistency order n can be achieved by using moving least-squares (MLS)
interpolants. Given a complete polynomial basis b(m) = [1 m . . . mn]T of order n
and a weight function ω, the meshless shape functions are derived as

Φi(m) = bT (m)M−1(m)b(m)ωi(m−mi,hi), (5.31)

where M is the moment matrix defined as

M(m) = ∑
j

b(m j)bT (m j)ω j(m−m j,h j), (5.32)

see Section 2.3.4 for details.
Figure 5.9 (a) shows the weight and shape functions when using the visibility

criterion. The crack not only introduces a discontinuity along the crack surface,
but also undesirable discontinuities of the shape functions within the domain. The
transparency method proposed by Organ et al. [OFTB96] alleviates potential sta-
bility problems due to these discontinuities. The idea is to make the crack more
transparent closer to the crack front. This allows partial interaction of particles in
the vicinity of the crack front. Suppose the ray between two particles pi and p j

80

5.6 Fracture Model

intersects a crack surface at a point ms (Figure 5.9 (c)). Then the weight function
ωi (and similarly for ω j) is adapted to

ω̃i(ri j,hi) = ωi

(

ri j

(

1+hi

(
2ds

kopacityhi

)2
)

,hi

)

(5.33)

where ds is the distance between ms and the closest point on the crack front,
and kopacity controls the opacity of the crack surfaces. Effectively, a crack pass-
ing between two particles lengthens the interaction distance of the particles until
eventually, in this adapted distance metric, the particles will be too far apart to
interact. As shown in Figure 5.9 (b) this method avoids the discontinuities of the
shape functions within the domain and thus leads to increased stability.

To compute the ray intersection with the crack surface sampled with surfels, the
implicit surface defined by the surfels is used (see Section 2.5.1). The intersec-
tion point ms on this surface is then found using Brent’s method as described in
Section 2.4.2.

5.6.3 Fracture Surface Model
Introducing cuts into the model exposes interior parts of the solid which need to
be bounded by new surface sheets. Previous approaches based on FEM define
fracture surfaces using faces of the tetrahedral elements, which requires complex
dynamic remeshing to avoid unnaturally coarse crack surfaces [OH99]. To sim-
plify the topological complexity and avoid stability problems during the simula-
tion, mesh-based approaches impose restrictions on where and how the material
can fracture. These restrictions can be lifted by embedding a surface and explicitly
creating new fracture surface sheets whenever the material is cut. In this section
we will describe how we extend our point-based surface model described in Sec-
tion 5.5 for creating these surface sheets. We will show that this extension is
simple and efficient, since no explicit connectivity information needs to be main-
tained between surfels. Sharp creases and corners are represented implicitly as
the intersection of adjacent surface sheets using a CSG method. The precise lo-
cation of crease lines is evaluated at render time (cf. Figure 5.10), avoiding costly
surface-surface intersection calculations during simulation.

A crack consists of a crack front and two separate surface sheets which are
connected at the front to form a sharp crease. The crack front itself is defined by
a linear sequence of crack nodes c1, . . . ,cn. Surfels are added continuously to the
fracture surfaces while propagating through the material. For surface cracks the
end nodes of the front lie on a boundary surface or a fracture surface of a different
crack. Interior cracks have circularly connected crack fronts, i.e., the two end
nodes c1 and cn coincide (cf. Figures 5.11 and 5.13).

To animate the boundary surface of the solid, the free-form deformation ap-
proach described in Section 5.5.1 is used. To ensure that the displacement field

81

Chapter 5 Deformable Solid Simulation

Figure 5.10: Surfels are clipped to create sharp creases with dynamically created fracture
surfaces, whose visual roughness is controlled using 3D noise functions for bump
mapping. The sampling of the simulation domain is shown on the right, where
green spheres denote resampled particles.

is smooth at the crack front, the transparency weights ω̃ described above are also
used in Equation (5.28) for the displacement computation of the surfels (cf. Fig-
ure 5.12). Because the changes of the transparency weights are localized to a
small region around the crack front, only a small fraction of the weights need to
be updated in every time step, leading to an efficient implementation.

5.6.4 Crack Initiation and Propagation
Crack initiation is based on the stress tensor σe. A new crack is created where
the maximal eigenvalue of σe exceeds the threshold for tensile fracture (opening
mode fracture [And95]). This condition is evaluated for all particles. To allow
crack initiation anywhere on the surface or in the interior of the model, a stochas-
tic scheme can be applied to initiate crack fronts. A random set of surface and
interior sample points are created and the stress tensor at these points is evaluated
using weighted averaging from adjacent particles. The inherent smoothing is usu-
ally desired to improve the stability of the crack propagation. If a crack front is
initiated at one of these spatial locations, the fracture thresholds of all neighboring
samples are increased to avoid spurious branching.

A new crack is initialized with three crack nodes, each of which carries two
surfels with identical position and tangent axes, but opposing normals. These
surfels form the initial crack surfaces which will grow dynamically as the crack
propagates through the solid (Figure 5.11). Crack propagation is determined by
the propagation vectors di = kpropλi(ei× ti), where λi is the maximal eigenvalue
of the stress tensor at ci, and ei is the corresponding eigenvector. The vector ti
approximates the tangent of the crack front as ti = (ci+1− ci−1)/‖ci+1− ci−1‖,
where c0 = c1 and cn+1 = cn for surface cracks. The parameter kprop depends on
the material and can be used to control the speed of propagation. The new position
of a crack node ci at time t +∆t is then computed as ci +∆tdi, where ∆t is the sim-

82

5.6 Fracture Model

projection resampling

projection

c
i

d
i

propagation

propagation
crack front

crack node

Figure 5.11: Front propagation and fracture surface sampling. The upper row shows a top
view of an opening crack, the lower part shows a side view of a single fracture
surface. After propagating the crack nodes ci according to di, end nodes are pro-
jected onto the surface. If necessary, the front is resampled and new surfels are
added to the fracture surface sheets.

ulation time step. Additionally, the end nodes of surface cracks are projected back
onto the surface that they originated from using the projection method described in
Section 2.5.1. Since propagation alters the spacing of crack nodes along the front,
the sampling resolution of the crack nodes are adjusted dynamically after each
propagation step. If two adjacent crack nodes are further apart than the radius of
their associated surfels, a new node is inserted using cubic spline interpolation to
determine the new node’s position. Redundant crack nodes are removed when the
distance to the immediate neighbors becomes too small. Fracture surface sheets
are sampled by inserting new surfels if the propagation distance exceeds the surfel
radius, indicating that a hole would appear in the surface. This spatially (along
the crack front) and temporally (along the propagation vectors) adaptive sampling
scheme ensures uniformly sampled and hole-free crack surfaces (cf. Figure 5.11).

During crack propagation, the simulation is adjusted automatically to the newly
created fracture surfaces by adapting the shape functions using the transparency
method described above. The transparency weight ω̃i(ri j,hi) for a pair of particles

83

Chapter 5 Deformable Solid Simulation

fracture surfacesreplicated surfel

new simulation nodes

crack initiation

simulation nodes

surfels

invisible nodecrack front

Figure 5.12: Transparency weights for embedding surfels in the simulation domain. The
thickness of the lines indicates the influence of a particle on the displacement of
a surfel. During crack propagation, new surfels and particles are created using
dynamic resampling as described below.

is adapted by computing the intersection point on the fracture surface of the ray
connecting the two particles (see Section 5.6.2). The distance ds to the crack front
is approximated as the shortest Euclidean distance to the line segments defined by
adjacent crack nodes. To avoid stability problems with curved fracture surfaces,
weights are allowed to only decrease from one time step to the next.

5.6.5 Topology Control
The major challenge when explicitly modeling fracture surfaces is the efficient
handling of all events that affect the topology of the boundary surface and the
simulation domain. Apart from crack initiation, three fundamental events are suf-
ficient to describe the often intricate constellations that occur during fracturing:
Termination, splitting, and merging of crack fronts:

• A crack is terminated if the crack front has contracted to a single point.

• Splitting occurs when a crack front penetrates through a surface as shown
in Figure 5.13 (a). The signed distance of a crack node to a surface sheet
can be estimated using the projection operator described in Section 2.5.1. A
splitting event is initiated when a sign change occurs from one time step to
the next. The front is split at the edges that intersect the surface, discarding
all nodes that are outside the solid, except the ones that are connected to an
interior node. These nodes become new end nodes by moving them to the
intersection point with the surface. As shown on the left of Figure 5.13 (a),
a surface crack is split into two new crack fronts that share the same crack
surfaces, i.e., independently add surfels to the same fracture surface sheets
during propagation. An interior crack becomes a surface crack after split-
ting, as illustrated on the right.

• A merging event is triggered when two surface end nodes of two crack fronts
meet by creating the appropriate edge connections (Figure 5.13 (b)). Two

84

5.6 Fracture Model

(a)

(b)

Figure 5.13: Topological events during crack propagation. (a) Splitting, (b) merging. The
top and bottom rows show a cutaway view with one crack surface exposed. The
sketches in the center rows show this fracture surface in gray, end nodes of crack
fronts are indicated by white dots.

surface cracks are merged into a single surface crack (left), while a circular
front is created if the two end nodes are from the same crack front (right).
Typically, when cracks merge, their fracture surfaces create a sharp corner,
so we maintain separate fracture surface sheets that intersect to create a
crease.

As can be seen in Figure 5.13, splitting and merging are dual to each other. The
former introduces two new end nodes, whereas the latter decreases the number of
end nodes by two. Similarly, crack initiation and termination are dual topologi-
cal operations. Note that the intersection of two crack fronts at interior nodes is
handled automatically by first splitting both fronts and then merging the newly
created end nodes.

One useful technique to improve the stability of the simulation is snapping.
Snapping guarantees that problematic small features, such as tiny fragments or
thin slivers, do not arise. It works by forcing nodes very near other nodes to be-
come coincident and projects nodes onto the surface if they are very close to it

85

Chapter 5 Deformable Solid Simulation

Figure 5.14: Controlled fracture. While the sphere blows up it fractures along the pre-
scribed smiley face. Initial/final sampling: 4.6k/5.8k particles, 49k/72k surfels,
6s/frame.

to ensure that any features present are of size comparable to the local node spac-
ing. Similar methods have been proven to guarantee topological consistency with
the ideal geometry in other settings [GM95]. Specifically, when a front inter-
sects a surface, all crack nodes are projected that are within snapping distance
d to the surface onto the surface. This avoids fragmenting the front into small
pieces that would be terminated anyway within a few time steps. Furthermore,
fronts are merged when the end nodes are within distance d by moving both end
nodes to their average position. This avoids small slivers of material to be cre-
ated, which would require adding a significant number of new particles to the
model (see Section 5.7). Similarly, the intersection of two crack fronts can lead to
multiple splitting and merging events, which are combined into a single event to
avoid the overhead of creating and subsequently deleting many small crack fronts.
Snapping can also be applied to front termination, where a crack front is deleted
when all its nodes are within distance d from each other.

5.6.6 Fracture Control
The course of the simulation can be influenced by specifying material properties.
However, often direct control over the fracture behavior is crucial, especially in
production environments and interactive applications where the visual effect is
usually more important than physical accuracy. By exploiting the explicit point-
based representation of the fracture surfaces, the fracture framework can be ex-
tended to support precise control of where and how a model fractures. One possi-
bility is to use a painting interface (see e.g. [ZPKG02,AWD+04]) that allows fast
prototyping of fracture simulations by prescribing fracture patterns directly on the
object boundary. The user can paint arbitrary networks of cracks on the surface
and explicitly specify stress thresholds for these cracks. Additionally, a propaga-
tion history can be used to control the propagation of cracks through the material.
The adjusted propagation vector at time t is computed as the weighted average
dt

i = khistdt−∆t
i + (1− khist)dt

i, where khist ∈ [0,1] is the history factor. A purely
stress-based propagation is achieved for khist = 0, while khist = 1 yields purely
geometric cracks and fracture surfaces. Other possibilities include volumetric tex-

86

5.7 Volumetric Sampling

(a) (b) (c)

Figure 5.15: Volumetric sampling: (a) octree decomposition, (b) initial adaptive octree
sampling, (c) dynamic resampling during fracturing.

tures for adjusting the fracture thresholds within the material, and pre-scoring
techniques, where the stress tensor is modified according to an embedded level
set function [MBF04]. Figure 5.14 shows an example of an explicitly controlled
fracture, using a combination of crack painting, propagation history, and adaptive
fracture thresholds.

5.7 Volumetric Sampling
One of the main advantages of meshless methods lies in the fact that they sup-
port simple and efficient sampling schemes. Initially, the volume Ω bounded by
a surface S of an object Γ is discretized by sampling Ω with particles. Similar
to adaptive finite element meshing, we want a higher particle density close to the
boundary surface and fewer particles towards the interior of the solid. An appro-
priate sampling of the particles can be computed, for instance, using a balanced
octree hierarchy as shown in Figure 5.15. Starting from the bounding box of S,
a cell of the octree is recursively refined, if it contains parts of S. The final num-
ber of particles is controlled by prescribing a maximum octree level at which the
recursive refinement is stopped. Given this adaptive decomposition, a particle is
created at each octree cell center that lies within Ω.

During simulation, the discretization of the simulation domain needs to be
adjusted dynamically. Without dynamic resampling, frequent fracturing would
quickly degrade the numerical stability of the simulation even for an initially ad-
equately sampled model. New particles need to be inserted in the vicinity of the
crack surfaces and in particular around the crack front. At the same time, strong
deformations of the model can lead to a poor spatial discretization of the simula-
tion volume, which also requires a dynamic adaptation of the sampling resolution.
This is particularly important for highly plastic materials, where the deformed
shape can deviate significantly from its original configuration.

A simple local criterion can be used to determine under-sampling at a particle

87

Chapter 5 Deformable Solid Simulation

original

configuration

re-sampled

configuration

re-sampled

configuration

crack

propagation

volume

deformation

x
i

Figure 5.16: Dynamic resampling at the particle pi due to strong deformation (left) and
fracturing (right).

pi. Let
wi = ∑

j
ω̃i(ri j,hi)/ωi(ri j,hi) (5.34)

be the normalized sum of transparency weights (see Section 5.6.2). Without visi-
bility constraints, wi is simply the number of particles in the support of pi. During
simulation wi decreases, if fewer neighboring particles are found due to strong
deformations, or if the transparency weights become smaller due to a crack front
passing through the solid. If wi drops below a threshold wmin, new particles are
inserted within the support radius of pi (see Figure 5.16). For the dynamic up-
and downsampling and robust interaction between particles with different sup-
port radii the multiresolution approach described in Section 4.5 can be exploited,
where wi ≤ wmin is used as a splitting criterion.

To prevent excessive resampling for particles very close to a fracture bound-
ary, particle splitting is restricted by prescribing a minimal particle support radius
h. Note that resampling due to fracturing is triggered by the crack nodes passing
through the solid, similar to adapting the visibility weights (see Section 5.6.3).
Performing these checks comes essentially for free, since all the required spatial
queries are already carried out during visibility computation. Figure 5.15 (d) and
Figure 5.10 illustrate the dynamic adaptation of the sampling rates when fractur-
ing. The effect on the shape functions is shown in Figure 5.9 (d).

5.8 Contact Model
Soft objects deform due to external forces exerted during collisions with the en-
vironment or with other objects such as a user guided tool. Therefore, both the
collision detection algorithm as well as the collision response model play a central
role in the simulation of deformable objects.

In this section the framework for elasto-plastic and fracturing objects Γi, where
the object volume Ωi is sampled with particles p and the surface Si is represented
by surfels s (see Section 5.4) is extended for collision detection and response.
Collisions are stably detected using the implicit surface representation described

88

5.8 Contact Model

Collision Detection

Contact Surface

Collision Response

colliding surfels

contact nodes

deformed surfels

Animation

co
n

ta
ct fo

rce
s

p
a

rt
ic

le
s

Figure 5.17: Overview of the contact handling pipeline (gray shaded). After the physics
and surface animation, the colliding surfels are detected and the contact surface is
computed. The collision response forces are computed for the contact nodes on
the contact surface and distributed to the particles.

in Section 2.5.1. In case of a collision, response forces are computed for pene-
trating surfels and distributed to particles. The decoupling of collision handling
and deformation allows for a very stable collision response while maintaining in-
teractive update rates of the dynamic simulation for environments with moderate
complexity.

5.8.1 Overview
Figure 5.17 gives an overview of our collision detection and response algorithm
which is built on top of the deformation and fracturing framework described
above. After each animation step, the collision detection algorithm gets the point-
sampled surfaces as input and computes the colliding surfels (Section 5.8.2). From
the colliding surfels, a contact surface is computed which resolves the intersecting
surfaces in a plausible way (Section 5.8.3). For the surfels on the contact surface
(called contact nodes), penalty forces are computed and distributed to the neigh-
boring particles such that momentum of the system is preserved (Section 5.8.4).

5.8.2 Collision Detection
Collision detection for point-based objects amounts to finding surfels that are in-
side other surfel-bound objects. Bounding volume hierarchies are a means to re-
duce the number of primitives (surfels in our case) to be tested for intersection.
However, because we deal with highly deformable models, the update of such a

89

Chapter 5 Deformable Solid Simulation

Γ1

Γ2

Γ1

Γ2

Γ1

Γ2

Ωc

(a) (b) (c)

Figure 5.18: (a) Detection of colliding surfels by first intersecting the bounding boxes.
The points in the shadowed region are collision candidates. Colliding points are
outlined in red. (b) In the case where both objects have the same stiffness, the
contact surface is the middle of the intersecting volume, shown as red line. It
is initialized by moving the colliding points onto it. (c) The final surfaces after
resampling the contact surface.

hierarchy is often very costly. Therefore, we approximate the objects by only one
bounding volume to efficiently discard collisions if the bounding volumes do not
overlap.

We choose axis aligned bounding boxes (AABBs) [van97] because they can be
computed very efficiently. Furthermore, the intersection volume of two overlap-
ping AABBs is again an AABB, here denoted with B. Only the surfels si that
are inside B are candidates for a collision. These surfels are efficiently found
by first inserting all surfels into a uniform spatial grid and then intersecting B
with the cells of this grid (see Figure 5.18 (a)). The grid is used afterwards as a
search data structure for range and neighbor queries (see Section 7.1.1). A simi-
lar approach is suggested by Teschner et al. for collision detection of tetrahedral
meshes [THM+03].

In a next step, it is determined whether the collision candidates in B are actually
penetrating other objects. For that, the implicit surface representation Ψ defined
by the surfels as described in Section 2.5.1 is used. With such an implicit repre-
sentation it can be efficiently computed if the center si of a surfel s is inside an
object Γ as follows:

si∩Γ⇐⇒
(

si−ψorth(si)
)

·nψorth(si)
< 0, (5.35)

where ψorth(si) is the orthogonal projection operator described in Section 2.5.1,
which gives the projected position of si onto Ψ, and nψorth(si)

is the normal vector
of Ψ at ψorth(si) (Section 2.5.1). We define that a surfel is penetrating an object if
its center is inside the object.

For simplicity, we assume in the following sections that we have only two pos-
sibly colliding objects Γ1 and Γ2. In Section 5.8.5 the contact handling for an
arbitrary number of objects is discussed.

90

5.8 Contact Model

5.8.3 Contact Surface
At the time of collision two colliding surfaces intersect. We get a visually consis-
tent contact surface by assuming that the surface is elastic. Thus, we temporarily
recompute the intersecting surfaces such that they touch. The displacement of
the surface to the contact surface is used for computing the collision response, as
described in the next section, and for rendering. Thus, in the next time step the
contact surface is discarded, and the surface before contact handling is used for
the further animation of the surface.

Assume that we have two intersecting objects Γ1 = {S1,Ω1} and Γ2 = {S2,Ω2},
where Si is the surface and Ωi the volume of Γi. We aim to efficiently compute
a reasonable contact surface Sc that lies in the intersection volume Ωc of Ω1 and
Ω2, i.e., Ωc = Ω1∩Ω2.

Using the orthogonal projection operator ψorth(x) described in Section 2.5.1 we
can efficiently compute the closest distance of a point x to the implicit surface
representation Ψi of Γi as

∥
∥ψorth

i (x)−x
∥
∥. We define a function

F(x) =
1

kc
1 + kc

2

(

kc
1

∥
∥
∥ψorth

1 (x)−x
∥
∥
∥− kc

2

∥
∥
∥ψorth

2 (x)−x
∥
∥
∥

)

. (5.36)

We use this function to define the contact surface Sc implicitly as

Sc = {x ∈Ωc | F(x) = 0}, (5.37)

where kc
1 and kc

2 are constants depending on the surface material. If kc
1 is much

larger than kc
2, then the contact surface will approach the intersection surface of

Γ1, i.e., the surface of Γ1 behaves rigidly during the contact, whereas the surface
of Γ2 is elastic. We choose kc

i = Ei, where Ei is Young’s modulus of a material
and thus determines the object’s stiffness (see Section 5.3). Hence, the surface of
elastic objects (low E) adapts to stiff objects (high E).

To get an initial sampling of Sc, the colliding surfels are moved onto Sc, see
Figure 5.18 (b). The sampling points on Sc are called contact nodes. A contact
node c consists of two surfels with identical positions but opposing normals, sim-
ilar to crack nodes (Section 5.6.4). For finding the position c ∈ Sc of a surfel
s1 ∈ S1 such that F(c) = 0, the Newton-Raphson method could be used (Sec-
tion 2.4.2). However, this would require computing ∇F(s1), e.g., using finite
differences. Furthermore, this method might not converge to a solution. We there-
fore reduce the problem of finding the root to a 1D problem by projecting s1 onto
the implicit surface representation Ψ2 of Γ2 using the (not necessarily orthogonal)
projection operator ψ2(x) described in Section 2.5.1. The point c with F(c) = 0
lies on the line between s1 and ψ2(s1), where c can be found iteratively using
Brent’s method as described in Section 2.4.2. If the boundary of the intersecting
volume is not convex, it might happen that the line between s1 and ψ2(s1) is not
inside the intersection volume Ωc. Thus, a new contact node is created only if
c ∈Ωc.

91

Chapter 5 Deformable Solid Simulation

Figure 5.19: Left: collision of Igea with plane without surface contact handling. Middle
and right: surface response of Igea and plane, respectively.

To get an even and hole free sampling of the contact surface, a resampling
scheme is applied consisting of relaxation and resampling steps similarly to the
one in Section 6.6.3. A relaxation force, derived from a repulsion potential, lo-
cally distributes the surfels evenly. After each repulsion step, the contact nodes
are projected onto Sc. Afterwards, contact nodes are inserted or deleted depending
on the number of neighboring nodes within a certain distance, see Section 6.6.3
for details. This series of relaxation, projection and resampling steps is repeated
until the displacement of nodes is below an error threshold and no resampling
takes place anymore, resulting in a fully covered and locally uniformly sampled
surface. The combination of both relaxation and resampling results in an effi-
cient algorithm for covering a certain area, as was already stated by Witkin and
Heckbert [WH94].

For visual accuracy, the normal vectors are recomputed using principal compo-
nent analysis (PCA), i.e., the eigenvectors of the covariance matrix of the local
neighborhood are computed, where the eigenvector corresponding to the smallest
eigenvalue gives the normal direction [HDD+92].

5.8.4 Collision Response
We have shown above how a contact surface can be computed from the colliding
surfels and how it is sampled with contact nodes. The information gained during
the creation of the contact surface is used to apply a penalty method that sepa-
rates intersecting objects, i.e., forces are computed that act against the penetration.
While penalty methods are efficient to compute and yield stable animations, they
do not prevent objects from penetrating. However, since we have already han-
dled penetration by deforming the surface, a simple penalty method is sufficient
as collision response model for the volume.

In the following subsections an approach is described that computes a penalty
and friction force for each contact node. These forces are then distributed to the
particles of the colliding objects. We consider two colliding objects Γ1 and Γ2 and
derive the forces for Γ1. The forces for Γ2 are computed analogously.

92

5.8 Contact Model

S2

f
fri

c

n

Γ1

Γ2

c

c

S1x
1

x
2

f
pen

c

Sc

Figure 5.20: Penalty and friction force computation for a contact node c on the contact
surface Sc between two objects Γ1 and Γ2 with surface S1 and S2, respectively.
The forces depend linearly on the distance between x1 and x2.

Penalty Force Computation
A penalty force is defined for each contact node such that two intersecting objects
are separated along the penetration direction. A reasonable approximation of this
direction at a contact node c in case of small penetrations is to take the normal
vector nc at c, see Figure 5.20.

By shooting a ray from c along nc and −nc and intersect it with S1 and S2 we
get the points x1 ∈ S1 and x2 ∈ S2, respectively (if the surface is in the middle,
i.e., E1 = E2, then it is sufficient to compute only x1, mirroring it at c gives x2).
We then set up a force-displacement relationship between x1 and x2. We choose
a linear elastic model depending on the penetration direction dc = x1− x2, i.e., a
linear spring of rest length ‖dc‖/2 is attached between x1 and x2 resulting in the
following force

fpen
c =−

1
2
(kpendc + kdampḋc), (5.38)

where kpen is the spring stiffness. This stiffness is a parameter of our collision
response model. It controls the trade-off between quality, i.e., small penetrations,
and the stability of the simulation. The stability problems in connection with stiff
springs is reduced by adding damping. The time derivative of the penetration
direction ḋc at c is equal to the relative velocity of Γ1 and Γ2 at c in direction dc,
i.e.,

ḋc = vper
c =

(vrel
c ·dc)dc

‖dc‖
2 . (5.39)

The relative velocity is computed as

vrel
c = vΓ1(c)−vΓ2(c), (5.40)

where the velocity vΓi(c) of object Γi at c is computed using a normalized SPH
approximation of the velocity of particles p j within the range hc:

vΓi(c) =
∑p j∈Ωi ω(c−p j,hc)Vjv j

∑p j∈Ωi ω(c−p j,hc)Vj
, (5.41)

93

Chapter 5 Deformable Solid Simulation

Figure 5.21: Plastic Max Planck models building a pile and falling apart again.

where we use the kernel ωpoly as a weighting function (see Equation (4.9)).

Friction Force Computation
To prevent two objects from freely sliding relative to one another, we apply a
Coulomb friction force as proposed in [MC95] to each contact node c

ffri
c =−µfri ‖fpen

c ‖
vtan

c
‖vtan

c ‖
, (5.42)

where µfri is the coefficient of friction and vtan
c the velocity vector tangential to the

penetration direction dc

vtan
c = vrel

c −vper
c , (5.43)

where vrel
c is the relative velocity and vper

c the velocity in direction of the penalty
force as defined in the previous section.

Force Distribution
The total collision response force fsurface

c of a contact node c ∈ Sc is the sum of the
forces defined in Equations (5.38) and (5.42)

fsurface
c = ρc(fpen

c + ffri
c), (5.44)

where ρc denotes the local contact node density at c. This scales the force such
that it is independent of the contact surface sampling. We use a simple estimation
for ρc as suggested by Pauly [Pau03]

ρc =
k

πd2
c
, (5.45)

where dc is the distance to the farthest of the k nearest neighbor nodes of c.
So far the computed contact forces fsurface

c are defined per contact node. To
influence the object’s dynamics, these forces need to be distributed to the particles.

94

5.8 Contact Model

Figure 5.22: Santa Claus riding the dragon.

A contact node c exerts a force fcontact
i,c onto a particle pi ∈ Ω1 within its support

radius hc

fcontact
i,c =

ω(pi− c,hc)fsurface
c

∑ j ω(p j− c,hc)
, (5.46)

where ω is a weighting kernel (we use again ωpoly). The force for particles pi ∈Ω2
is computed analogously, but with the negative contact force −fsurface

c .
The total force acting on a particle pi is then

fcontact
i = ∑

c∈Sc

fcontact
i,c . (5.47)

This force will act on pi like an external force at the next time step. Note that the
sum of all contact node collision forces is equal to the sum of all particle forces
acting on an object, i.e., ∑c fsurface

c = ∑i fcontact
i . Because a contact node always

exerts the same force onto both objects, the total sum of all exerted forces is zero.
The forces therefore conserve linear and angular momentum of the system.

5.8.5 Contact Handling Pipeline
We will now summarize the different steps needed for contact handling between
an arbitrary number of objects. After particles and surfels are animated, collision
handling for each pair of objects is performed. A bounding box is computed for
both objects and the surfels in the intersecting box are checked for collision as de-
scribed in Section 5.8.2. The colliding surfels are moved to the contact surface Sc.
Afterwards, Sc is resampled and for visual accuracy the normals are recomputed
using PCA (Section 5.8.3). The penalty forces are computed for each contact sur-
fel on Sc and then distributed to the neighboring particles (Section 5.8.4). Finally,
the new surface Snew

i consists of the non-colliding surfels unified with one set of
surfels of Sc. Note that after having computed the penalty forces, the new collision
free surface Snew

i is used only for rendering. The next time step operates on the
original surface Si. However, Snew

i is also used for contact handling with further
objects. Contact handling depends thus on the order of the object pairs. However,
in practice there is only little difference.

95

Chapter 5 Deformable Solid Simulation

Figure 5.23: A soft elastic Max Planck model is initially held by the cranium, then melted
and dropped to the ground plane: 200 particles, 10k surfels, 28 frames/s

5.9 Results & Discussion
With the algorithms described above we developed a framework for the simulation
of deformable elasto-plastic objects including fracturing and contact handling. In
this section we will discuss the achieved results and limitations of our approaches.
For all timings we used a standard Pentium IV 3 GHz PC and a NVidia GeForce
FX 5900 GPU.

Our framework allows to change physical properties during run-time, as illus-
traed in Figure 5.5, where we let an elastic model with E = 0.5 ·106N/m2 bounce
off the ground plane. The model exhibits realistic elastic behavior. Shortly be-
fore hitting the ground a second time, we switch to a plastic material, resulting
in an irreversible dent. Afterwards, we switch back to a stiff elastic material with
E = 0.5 ·107N/m2. The model has taken considerable damage, but the surface is
still skinned correctly. A real-time melting animation with an adaptively sampled
surface is shown in Figure 5.23, where the model exhibits realistic elastic, plastic,
melting and flowing effects. For elastic deformations we achieve real-time anima-
tions with about 30 frames/s for models that are sampled with approximately 200
particles and 10k surfels, where OpenGL is used for rendering.

A complicated and highly detailed octopus model (Figure 5.24) with 2.7k par-
ticles and 465k surfels shows the stability and efficiency of our method. In Fig-
ure 5.2 we demonstrate the effect of Poisson’s ratio ν for volume conservation.
For the image in the middle we set ν to zero. When the model is pulled vertically,
its width does not change and its volume is not conserved. In contrast, with a
ratio of 0.49 the width adjusts to the stretch thereby approximately conserving the
volume of the object (right).

Figure 5.7 shows brittle fracture of a stiff elastic object, computed at an aver-
age of 22 seconds per frame. The initial model is sampled with 4.3k particles
and 249k surfels. During fracturing the number of particles increases to 6.5k,
while 61k additional surfels have been created to define the new fracture surfaces.
Compared to FEM-based approaches that use the faces of simulation elements
to define the object surface, we achieve a significantly higher level of surface
detail without requiring a proportionally large number of particles. This decou-

96

5.9 Results & Discussion

Figure 5.24: Animating a highly detailed octopus model: 2.7k particles, 465k surfels,
2s/frame

pling of the simulation domain from the representation of the boundary surface
leads to increased performance and provides essential control in computer ani-
mation, where visual quality is typically favored over physical accuracy. On the
other end of the spectrum of material properties that our method can handle is
the example of Figure 5.8. The highly plastic bubble gum is deformed beyond
recognition before splitting along a complex fracture surface. The initial sam-
pling resolution is 2.2k particles and 134k surfels, increasing to 3.3k and 144k,
respectively, in the final model. Average simulation time is 2.4 seconds per frame.
Figure 5.14 shows how we can explicitly control fracture, using a combination
of crack painting, propagation history, and adaptive fracture thresholds. Initially,
the model is sampled with 4.6k particles and 49k surfels, fracturing increases
the number of particles to 5.8k and the number of surfels to 72k, with an aver-
age of 6 seconds per frame. The images of the animation sequences shown in
Figures 5.7, 5.8 and 5.14 were created using the open-source renderer POV-Ray
(http://www.povray.org), which we extended to handle ray intersections
with surfels as described in [AA03a, AA04a, AKP+05]. As mentioned above,
we avoid an explicit representation of the intersection curve of two adjacent sur-
face sheets by deferring the surface-surface intersection problem to the rendering
stage, where it can be solved efficiently. We adapt the CSG rendering technique
for point-sampled surfaces proposed by Wicke et al. [WTG04]. During fracturing,
we maintain a list of all intersecting surface sheets that form a sharp crease. With
this minimal topological structure all surface-surface intersections can be resolved
by the renderer during ray-casting (see Figure 5.10).

Note that all fractured models have been resampled substantially during the
simulation to match the increased geometric and topological complexity after
fracturing. The simplicity of this dynamic resampling of the simulation domain
highlights one of the main benefits of meshless methods for physics-based ani-
mation. A similar argument holds for our surface sampling method. Instead of
maintaining a consistent surface mesh and dynamically cutting and remeshing
during simulation, our sampling scheme simply inserts and moves surfels during
crack propagation.

An example for contact handling is shown in Figure 5.21, where three plastic

97

Chapter 5 Deformable Solid Simulation

Figure 5.25: Newton’s Cradle with stiff elastic spheres. Middle: Contact surface of left
sphere.

Max Planck busts fall onto each other building a pile, fall apart again and finally
come to rest. Stiff elastic spheres are used to simulate Newton’s Cradle, see Fig-
ure 5.25. In the middle picture the contact surface of the first sphere is shown.
The Santa Claus riding the dragon, shown in Figure 5.22, is an example for con-
tact handling between two highly complex models. To prevent that the mouth of
the dragon self-intersects we store all neighbors within the influence distance. If
two particles come close that were not in the influence region before, a simple
penalty force is applied to the two particles.

In the last example shown in Figure 6.7, a highly plastic object first stretches and
then fractures (see Section 6.7 for details). The two separated parts are detected
and converted into two separated objects. Afterwards, contact handling between
the two objects is performed as described above.

In Figure 5.26, we show the time measurements of two colliding Max Planck
busts with each 10k surfels and 390 particles. We made the busts elastic such that
the physical animation performs in about constant time. The red line shows the
total time needed for the animation including contact handling and rendering. The
time needed for contact handling is shown in blue, and the number of colliding
surfels is shown in orange. There are many factors influencing the performance:
For large intersections that yield contact surfaces with many contact nodes, dis-
tributing the node forces to the particles is the most expensive step. This can be
done in O(c ·q), where c is the number of contact nodes and q is the average num-
ber of particles within the support radius hc of a contact node, where we assume
that range queries can be done in constant time using a hash data structure (see
Section 7.1.1). The time complexity for computing the colliding surfels depends
linearly on the number of surfels in the intersected bounding box. For computing
the contact surface, the penetration depth is crucial for the performance. Deeper
penetration usually means that more iterations are needed to project surfels onto
the contact surface and to resample it.

98

5.9 Results & Discussion

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350

time steps

ti
m

e
 [

m
s
]

0

200

400

600

800

1000

1200

1400

#
 c

o
ll

id
in

g
 s

u
rf

e
ls

Figure 5.26: Performance measurement for two colliding Max Planck models with each
10k surfels and 390 particles. Red: total animation time. Blue: contact handling
time. Orange: number of colliding surfels.

5.9.1 Limitations
The presented framework has several limitations (some are discussed as future
work in the next section).

The used elasticity model assumes a Hookean material, i.e., materials with a
linear stress-strain relationship. However, this does not restrict us to isotropic
materials. Anisotropic materials can be simulated by modifying the constitutive
matrix C described in Section 5.3.

The moving least-squares approximation method used for first-order accurate
approximation of the gradient of the displacement field (Section 5.4.1) only works
well if each particle has at least three neighbors at non-degenerated locations.
The approach thus only works for volumes, not for 2D layers or 1D strings of
particles. Note that a minimum number of neighbors can be enforced using the
resampling algorithm described in Section 5.7. However, if, for instance, during
fracturing many small fragments are created, the number of particles increases
drastically which slows-down the computation significantly. Therefore, we resort
to modeling small pieces of material as rigid bodies, assuming that the internal
deformations are negligible. Fortunately, large numbers of very small fragments
are mainly created by stiff objects that experience brittle fracture, where such an
approximation is reasonable.

In the model described in this chapter, the rest shape is fixed or transformed
rigidly. Thus, the neighborhood of the particles does not change which prevents
from recomputing the moment matrices and weights after each time step. How-
ever, changes in topology, which are not modeled explicitly as was done for frac-
turing, cannot be handled. This restriction will be lifted in the next chapter by
using a deformable rest shape, see Section 6.4.1.

99

Chapter 5 Deformable Solid Simulation

Extremely stiff objects require very small time steps to obtain an accurate distri-
bution of stress within the material. This problem can be alleviated using implicit
or semi-implicit integration schemes. A derivation of the stiffness matrix and the
implicit dynamic equations are given in [MKN+04].

The presented collision handling algorithm uses penalty forces to separate pen-
etrating objects. The computation of these forces depends on an accurate estima-
tion of the penetration direction. The algorithm is therefore especially susceptible
to fail for deep penetrations, where the penalty force might point to other direc-
tions than the actual deformation direction. Also the computation of the contact
surface can be very costly for deep penetrations. Furthermore, the algorithm is not
capable to detect and resolve self-intersections.

5.10 Extensions & Future Work
The framework has been extended in several ways and opens up various research
directions.

As described in Section 5.4.3, the rest shape is transformed rigidly to reduce
numerical problems and ghost forces. This works fine as long as the whole object
undergoes more or less rigid transformations. However, if two or more parts of
an object are transformed independently, these problems can still occur. A pos-
sible solution is to divide the set of particles into overlapping clusters, similar
to [MHTG05]. The shape matching is then done per cluster, and the obtained po-
sitions blended with overlapping clusters. If we increase the number of clusters
so that at the end every particle with its surrounding neighbors build a cluster, the
rigid transformations are extracted per particle. However, then it will take longer
for a deformed object to turn back to its rest shape. Furthermore, it increases the
needed computation time per particle significantly.

Our fracturing algorithms can also be used for cutting, as demonstrated by
Steinemann et al. [SOG06]. To make it suitable for interactive simulations, they
construct a visibility graph that stores proximity information. The visibility graph
is updated dynamically when a crack propagates.

In Section 4.4 an approach has been presented for fluid-rigid body interaction.
The rigid body is sampled with particles and then treated as a rigid fluid, i.e.,
forces between fluid and rigid body particles are computed the same way as for
multiphase fluids and then integrated onto the rigid object to achieve rigid body
motion. We can use the same approach for simulating the interaction between fluid
and deformable objects. The forces applied from the fluid onto the deformable
object particles are added as external forces. Experiments show that this works
very stably. As with rigid bodies, the sampling density of the deformable object
should be similar to the sampling of the fluid. Unlike with rigid bodies where
it is sufficient to only sample the object with particles within the distance of the
support radius, the whole volume of the deforming objects needs to be sampled.

100

5.11 Summary

However, to reduce the number of solid particles in the interior of the object, the
multiresolution approach described in Section 4.5 can be used.

The presented contact handling algorithm can only detect collisions between
separated objects or object parts. Efficient detection of self-collisions is a difficult
problem, especially in the case of point-sampled surfaces due to the missing con-
nectivity. Exploiting spatial and temporal coherence for contact handling would
make our algorithm more efficient. In [HTK+04] we propose a method to compute
a consistent penetration depth and direction even in case of large penetrations. Al-
though this approach requires a volumetric mesh, it could be adapted to particles.

In [AKP+05] we exploit the surface animation scheme presented in Section 5.5
to accelerate building a bounding sphere hierarchy for efficient raytracing of de-
forming point-sampled objects. Due to the decoupling of the (high-resolution)
surface and the (coarse) volumetric representation, a reduced deformation model
similar to [JP04] is used, where the displacement of the surface can be expressed
with significantly fewer parameters than the number of degrees of freedom of the
surface itself. Furthermore, a novel technique for rendering sharp edges and cor-
ners in point-sampled models is presented. The update of the bounding sphere
hierarchy could also be used for accelerating the collision detection described in
Section 5.8.2.

In the next chapter we will describe how to combine fluids and deformable ob-
jects to simulate viscoelastic materials as well as phase-transitions, i.e., melting
and freezing. This also requires an extension of the surface animation such that
implicit changes in topology can be handled and a smooth transition from a de-
tailed solid surface to a smooth fluid surface can be achieved.

5.11 Summary
With the meshless framework described above, deformable objects with material
properties ranging from stiff elastic to highly plastic can be simulated at interactive
rates for moderate complexity. The forces are derived from continuum mechanics
and computed locally based on the neighborhood of a particle. Physical param-
eters can be modified at run-time, resulting in visually plausible and interesting
effects such as melting and solidifying as also described in the next chapter.

Extending this framework for fracturing is straightforward and shows several
advantages compared to FEM simulation. Instead of maintaining a consistent
volumetric mesh using continuous cutting and restructuring of finite elements, the
shape functions of the particles are adjusted dynamically based on simple visibility
constraints.

The space discretization is continuously adapted using insertions of new parti-
cles. The simplicity of this dynamic resampling of the simulation domain high-
lights one of the main benefits of meshless Lagrangian methods for physics-based
animation. Due to minimal consistency constraints between neighboring parti-

101

Chapter 5 Deformable Solid Simulation

cles, dynamic resampling is efficient and easy to implement, as compared to the
far more involved remeshing methods used in FEM simulations.

A point-based representation is built for the boundary surface, which allows
efficient dynamic sampling of fracture and contact surfaces as well as surface
refinement to maintain a high quality surface also for large deformations. Further-
more, it facilitates explicit control of the object topology (see also Section 6.6).
The decoupling of the surface from the volumetric representation enables efficient
animations of highly detailed surfaces.

This decoupling is also exploited for resolving object-object collisions. By us-
ing a high resolution surface for contact handling and a low resolution represen-
tation for the deformation, the animation is both stable and efficient. Due to the
smoothing effect of the distribution of the surface forces to the particles, oscilla-
tions for resting contacts are avoided.

A general limitation of the meshless approach is that even very small fragments
must be sampled sufficiently dense in order to obtain a stable evaluation of the
shape functions. This inflates the number of particles when an object is fractured
excessively, which slows down the computations.

102

Chapter 6

Solid-Fluid Simulation

In this chapter we want to extend and combine the fluid and deformable solids
animation frameworks described in Chapter 4 and Chapter 5 such that we can
simulate also materials that are in-between fluids and solids, so-called viscoelas-
tic materials. We briefly discuss how to derive a common equation for both solids
and fluids from a Lagrangian viewpoint. Using our particle-based approach, we
are able to employ a unified method to animate both solids and fluids as well as
viscoelastic materials and melting and freezing. Central to our framework is a
hybrid implicit-explicit surface generation approach that is capable of represent-
ing fine surface detail as well as handling topological changes at interactive rates
for moderately complex objects. We thus extend the point-based surface model
described in the last chapter such that the surface adapts to the new position of the
particles by minimizing a potential energy subject to geometric constraints.

Our physics model is based on Newtonian mechanics and the combination of
fluid and elastic solid stresses (Section 6.3). Arbitrary plastic deformations can
be achieved by adapting the rest shape to the deformation (Section 6.4). By intro-
ducing temperature diffusion and a simple model for coupling temperature with
physical parameters, melting and freezing effects can be simulated (Section 6.5).
To cope with these effects, potential fields are defined due to which the surface de-
forms such that it adapts to the physics representation (Section 6.6). Our surface
model combines the advantages of explicit and implicit representations in that it
can explicitly represent high detailed surfaces for solids, but continuously changes
to an implicit representation while melting to a fluid with a smooth surface (Sec-
tion 6.6.6). We illustrate our algorithm on a variety of examples ranging from
stiff elastic and elasto-plastic materials to fluids with variable viscosity, as well as
melting objects and freezing fluids (Section 6.7).

103

Chapter 6 Solid-Fluid Simulation

6.1 Introduction
Simulation of special effects, such as melting and freezing or the animation of
viscoelastic materials, play an important role in computer graphics applications
such as feature films and games. A prominent example is the terminator sequence
from the well-known feature film, where the metallic terminator is shattered, af-
ter which the individual pieces melt and fuse, before retaining the old shape and
freezing to a solid. Filming these effects is often not possible, be it because it is
too costly or too complex. Simulation on the computer has the advantage that it
is comparably cheap, and even materials can be animated that do not necessarily
exist. However, even if the simulated materials are artificial, the animations still
have to look physically plausible.

The main difference between solids and fluids is that solids have restoring forces
due to stresses, whereas an ideal Newtonian fluid stores no deformation energy.
However, many materials cannot be classified clearly as solid or fluid. Solids
often start to flow plastically when a high continuous stress is applied. On the
other hand, some (so-called non-Newtonian) fluids can withstand small shearing
stress, see also Section 2.1.5. To simulate all kinds of these so-called viscoelastic
materials, a method has to be able to handle the full range from stiffelastic solids
to elasto-plastic materials to fluids. In Chapters 4 and 5 we applied the meshless
Smoothed Particle Hydrodynamics (SPH) method to simulate fluids and elasto-
plastic solids, respectively. In this chapter we will combine these approaches such
that arbitrary viscoelastic materials can be simulated. Furthermore, we will show
how we can continuously change between the material properties depending on a
temperature scalar value to animate materials that melt and freeze.

Meshless particle-based methods require the definition or extraction of an im-
plicit or explicit surface, for instance, for rendering and contact handling. In the
context of a unifying framework for solid-fluid animations the surface must be
able to fulfill various requirements. Solid surfaces are often very detailed, whereas
fluid surfaces are smooth due to surface tension. For phase transitions from solids
to fluids the detail should disappear, whereas from fluids to solids the existing de-
tail has to be preserved. Additionally, the surface should be temporally smooth,
i.e., temporal aliasing such as popping artifacts have to be avoided. Finally, topo-
logical changes such as splashes must be handled by the surface. We will show
how to fulfill these requirements by dynamically maintaining a point-sampled sur-
face wrapped around the particles.

6.2 Related Work
In this section we give a short overview of work that has been done in physics-
based animation of melting and solidifying of objects and the simulation of vis-
coelastic fluids. Furthermore, we will discuss research in surface extraction and

104

6.2 Related Work

animation for simulated deforming objects and fluids.

6.2.1 Melting Objects and Viscoelastic Fluids
Terzopoulos et al. extended their work on physics-based animation of deformable
objects [TPBF87, TF88] for heating and melting [TPF89]. In their mass-spring
system, they achieved a (local) phase transition from solids to fluids by simply
varying the spring constant and finally removing a spring. Tonnesen [Ton91,
Ton98] couple particles based on potential energies (see Section 3.1.1 for de-
tails). Applying the heat equation to this particle system changes the potential
energies, thus, soft objects start to melt. Carlson et al. [CMVT02] used an Eu-
lerian grid-based fluid simulation method for melting, flowing and solidifying of
objects. Their method is capable of modelling different materials, ranging from
rigid solids to fluids, by varying the viscosity. Stora et al. [SAC+99] simulated
the flow of lava using SPH by coupling viscosity with temperature. Viscoelastic
and plastic materials are achieved by Clavet et al. by combining the SPH method
with a mass-spring system [CBP05]. Wicke et al. [WHP+06] discard explicit
connectivity information completely. Instead, they use the initial regular particle
sampling as a rest state in combination with shape matching techniques.

Goktekin et al. [GBO04] added elastic terms to the Navier-Stokes equations
which they solve using Eulerian methods, thus obtaining viscoelastic fluids that
can model a variety of materials such as clay and pudding. Our work is similar
to theirs in that we also combine fluid and solid characteristics. Solving an equa-
tion that combines solid mechanics and the Navier-Stokes equations allows us to
animate materials from stiff elastic and elasto-plastic objects to fluids with low
viscosity. Losasso et al. [LIGF06] use a FEM simulation for deformable objects
and a Eulerian solver for fluids. A level set representation for the surface is used
to couple the two methods, thus enabling melting and burning of solids. However,
the representation of fine surface detail is difficult using level sets.

6.2.2 Surface Extraction and Animation
State of the art methods in Eulerian fluid simulation use level sets, introduced
by Osher and Sethian [OS88], to render the fluid [FF01]. Level sets start with
an implicit function that is evolved over time using a velocity field. This al-
lows temporally smooth surface animation. However, level set evolution can suf-
fer from severe volume loss, especially near detailed features such as splashes.
As a solution, Enright et al. propose to combine level sets with surface parti-
cles [EMF02, ELF05a]. Volume loss is avoided by Bargteil et al. [BGOS06] who
compute the advected grid distance values to an explicit mesh, thus obtaining ex-
act values. This comes at the price of lower computational speed.

Desbrun and Canni model soft inelastic objects that split and merge by coat-
ing a set of skeletons using an implicit representation [DC95]. They extend their

105

Chapter 6 Solid-Fluid Simulation

work by introducing active implicit surfaces [DC98], which move according to a
velocity field. The velocity field is chosen such that the surface is attracted to a ge-
ometric coating, but other terms such as surface tension and volume conservation
are also applied.

The techniques discussed above animate the surface by solving a PDE on a
grid, followed by isosurface extraction for rendering. Witkin and Heckbert define
constraints to keep surface particles on a moving implicit surface [WH94]. Sur-
face particles adaptively sample the surface using a splitting and merging scheme.
Szeliski and Tonnesen introduced oriented particles for surface modeling [ST92].
Additional to long-range attraction and short-range repulsion forces, they define
potentials that favor locally planar or locally spherical arrangements. Their parti-
cle system can handle geometric surfaces with arbitrary topology. Similar to them,
we use surfels as oriented particles. Our explicit surface representation deforms
by internal and external forces and geometric constraints, similar to active implicit
surfaces [DC98]. We derive the forces by minimizing a potential energy term that
depends on both the surface and the physical particles. Besides gaining efficiency
in computation and memory, we can exploit all advantages of explicit surfaces
such as the simple representation of fine surface details.

6.3 Physics Model
The difference in the physics model between fluids and elastic solids is that solids
have a rest shape defined and thus elastic restoring forces due to internal stress. In
the next section we will briefly discuss the equations for fluids and solids, and de-
rive a unified momentum equation that enables also the simulation of viscoelastic
materials.

6.3.1 Governing Equations
As described in Section 2.1 (see also [MG04]), we can write the equations for an
elastic solid as

ρ
∂2u
∂t2 =∇·σs(u)+ f̃ext, (6.1)

and for an incompressible Newtonian fluid as

ρ
Dv
Dt

=∇·σ f (v)+ f̃ext. (6.2)

Both Equations (6.1) and (6.2) describe the change in momentum, which is equal
to internal force density fields due to stresses and body force density vector fields
f̃ext, where ρ denotes the density, u the displacement from the material coordinates
m, v the velocity and σ the stress tensor. Dv

Dt is the material derivative of the

106

6.3 Physics Model

Figure 6.1: Solidifying a fluid due to the contact with the frozen ground.

velocity field. Conservation of mass is represented as

∂ρ
∂t

+ρ∇·v = 0. (6.3)

These equations can be simplified when using a particle-based Lagrangian ap-
proach. By assigning each particle pi a constant mass mi, mass conservation is
guaranteed and Equation (6.3) can be omitted. Furthermore, because the particles
move with the fluid, the material derivative Dv

Dt of the velocity field is equal to the
partial time derivative of the particles’ velocity (see Equation (2.5)). Using that
v = ∂u

∂t , Equations (6.1) and (6.2) can be written in the Lagrangian form as

ρ
∂2u
∂t2 =∇·σs(u)+ f̃ext, (6.4)

ρ
∂2u
∂t2 =∇·σf(v)+ f̃ext. (6.5)

The fluid stress tensor σf is composed of the viscous stress σviscous and the
isotropic pressure stress σpressure, i.e., σf = σviscous +σpressure. Note that the solid
stress σs is related to shape deformations, whereas the viscous stress σviscous is
due to “sliding forces” that do not change the volume and the isotropic pressure
stress σpressure is due to volume changes. For materials that do not change their
volume, we can thus merge Equations (6.4) and (6.5) as follows

ρ
∂2u
∂t2 =∇·σ(u,v)+ f̃ext, (6.6)

where σ(u,v)= σs(u)+σf(v) is the sum of the elastic, viscous and pressure stress.

107

Chapter 6 Solid-Fluid Simulation

6.3.2 Force Computations
For computing the stresses σs(u) and σf(v) and the resulting forces, the SPH
method described in Sections 4.3 and 5.4 is used. We give here a short summary
of the derived forces.
Elastic Force. As described in Section 5.3, the elastic force for a particle pi can
be computed via the strain energy

U strain
i =

1
2

Vi(εs
i ·σ

s
i), (6.7)

where εs
i is the strain and σs

i the elastic stress of pi. We use a linear stress-strain
relationship (Hooke’s law), i.e., σs

i = Cεs
i . For an isotropic material, the consti-

tutive matrix C only depends on Young’s modulus E and Poisson’s ratio ν. The
strain is measured using the quadratic Green-Saint-Venant strain tensor

εs
i =

1
2
(∇ui +∇uT

i +∇ui∇uT
i), (6.8)

where ui is the displacement of a particle from its rest shape. The elastic force
felastic
i of a particle pi is computed as the directional derivative of the strain energy

felastic
i =−∇uiU

strain
i =−Viσs

i∇uiε
s
i , (6.9)

where Vi is the volume of pi, computed as Vi = mi/ρi. For modeling plasticity we
use the approach described in Section 5.4.4.
Viscosity and Pressure Force. The viscous stress σviscous

i and the isotropic pres-
sure stress σpressure

i for a particle pi are computed as

σviscous
i = µi∇vi and (6.10)

σpressure
i = −PI, (6.11)

where µi is the viscosity coefficient, P the scalar pressure and I the identity matrix.
The pressure is computed using the constitutive equation given in Equation (4.8).
Note that for melting and freezing, µi can locally differ and is subject to change.
Applying the SPH approximation, we get the following forces

fpressure
i = −Vi ∑

j
Vj

Pi +Pj

2
∇ωspiky(ri j,h) and (6.12)

fviscosity
i = Vi ∑

j
Vj

µi +µ j

2
(v j−vi)∇

2ωlaplace(ri j,h), (6.13)

where ri j = pi−p j is the distance vector between two particles pi and p j and h is
the support radius.

108

6.4 Particle Animation

Integration

Elastic Force

Strain/Stress

Density

Fluid Force

Pressure

Figure 6.2: Force computation pipeline. The fluid forces are computed only once per time
step, whereas the elastic force is computed in every sub time step. This pipeline
is part of the animation loop shown in Figure 1.1.

6.4 Particle Animation
Depending on the application, we either sample the volume of an object (see Sec-
tions 4.3.1 and 5.7) or use a source that creates a stream of particles. In each
iteration, we first compute for each particle pi its particle neighborhood using ei-
ther a kd-tree or hash grid as a search data structure (see Section 7.1). The forces
are then computed as described in the previous section, yielding the total force

ftotal
i = fpressure

i + fviscosity
i + felastic

i + fext
i (6.14)

where fext
i = mig+fcontact

i is the external body force due to gravity and the collision
response force fcontact

i (see Section 5.8.4). For integration we use the leapfrog
scheme (see Section 7.2.1), which showed to be both efficient and stable for our
animations.

6.4.1 Deformation of the Rest Shape
All elastic forces are computed relative to a rest shape to counteract derivations
of the deformed shape in world coordinates to the rest shape in material coordi-
nates (Section 2.1). To avoid numerical problems, a method has been proposed in
Section 5.4.3 to rigidly transform the rest shape such that it optimally matches the
shape in world coordinates. However, this does not change the neighborhood of a
particle, even if in world coordinates the neighborhood might be completely dif-
ferent. In case of melting, the object can deviate far from its original shape and the
topology might change completely. Thus, storing the original neighborhood is not
useful anymore. Instead, we suggest to update the reference system by absorbing

109

Chapter 6 Solid-Fluid Simulation

the deformation completely while storing the built up strains εs
i of a particle pi in

the plastic strain state variable εp
i (see Section 5.4.4), i.e.,

εp
i ← εp

i − εs
i , mi←mi +ui, ui← 0, (6.15)

where the strain εs
i is computed as described in Section 5.4. Note that when we

update the rest shape, all information about the original shape is lost and thus the
object will not go back to its original shape anymore. Because generally several
iterations are needed to bring a deformed mesh back to its original shape, only
highly plastic materials can be simulated if the rest shape is updated in every
time step. Instead, we update the rest shape only every n-th time step, where
n = 10 showed to be sufficient for small elastic deformations. It turned out that
the required time step for stably integrating the elastic forces is about ten times
lower than for integrating the fluid forces (for fluid simulation (Chapter 4) we
used a time step ∆t = 1ms and for simulation of deformable objects (Chapter 5)
we used ∆t = 0.1ms). The simulation can thus be speeded up by first computing
both elastic and fluid forces, but then integrate these forces during ten sub time
steps (i.e., with a time step ∆t/10), where the elastic forces are recomputed in
every sub time step (cf. Figure 6.2). This results in a significant performance gain
because the neighborhood does not need to be recomputed until the rest shape is
updated.

6.5 Melting and Solidifying
In our setting a material can be defined by the following main properties: Stiffness
(Young’s modulus E), compressibility (Poisson’s ratio ν), plasticity (kyield and
kcreep), viscosity (µ) and cohesion for particles at the interface (kcohesion, modeled
as pressure jump, see Section 4.4.2). As long as these values are chosen in a
(physically) reasonable range, they can be arbitrarily combined. Therefore, also
materials that do not exist in the physical world, such as stiff elastic fluids, can be
simulated.

For melting and solidifying the material parameters need to change together
with the changing aggregation state. To allow local changes, each particle stores
its own material parameters. If the material melts from solid to fluid, the stiffness
and viscosity decrease, whereas cohesion at the surface and plasticity increase,
and vice versa for solidifying.

Note that here we are not interested in the (highly complex) physical accurate
modeling of phase transitions. Instead, the user can set the parameters described
above for two materials. We assign to each particle pi a scalar value Ti which is
used to interpolate between the two materials. We call Ti the temperature of pi.
Assuming a scalar material parameter a is set by the user to amin and amax for T min

and T max, ai is computed using linear interpolation from the current temperature

110

6.5 Melting and Solidifying

Figure 6.3: Melting two cubes through a funnel with different plasticity constants. The
melted cubes freeze on the ground.

111

Chapter 6 Solid-Fluid Simulation

Ti

ai = amin +
Ti−T min

T max−T min (amax−amin) (6.16)

Heat transfer between particles is modeled by solving the heat conduction equa-
tion [MHW05]

kcap dT
dt

=
1
ρ
∇(κ∇T), (6.17)

where kcap is the heat capacity per unit mass at constant pressure, ρ the density and
κ the thermal conductivity coefficient. Assuming that κ is constant and that the
heat capacity is constant within the rest volume Vi of a particle pi (i.e., kcap/mi =
const, where mi is the mass of pi), we can discretize this equation as follows

kcap dTi

dt
= Viκ∇2T, (6.18)

where ∇2 is the Laplacian. Solving this equation using SPH yields

dTi

dt
= kheatVi ∑

j
Vj(Tj−Ti)∇

2ωlaplace(ri j,h), (6.19)

where kheat = κ/kcap and ωlaplace is the same kernel as we used for computing
the viscosity forces (see Section 4.3.2). For computing the heat transfer from
boundaries to fluid particles we use a model similar to [SAC+99]

dT ext
i

dt
=

{

kheat
ext Vi(h2−d2

i)π(Text−Ti), if di < h
0 otherwise

(6.20)

where di is the distance of pi to the boundary, (h2−d2
i)π is the approximation of

the contact surface area with the boundary, kheat
ext = κext/kcap

ext , and h is the charac-
teristic smoothing length.

6.6 Surface Animation
In Section 5.5 a surface model has been presented where a point-sampled surface
is embedded into the particle representation by advecting the surfels along with
the displacement field defined by the particles. While this approach is fast and
yields good results in case of deformations, it cannot handle topological changes
of the surface, cf. Figure 6.7. In this section we will show how to extend the
surface displacement approach such that arbitrary changes of topology defined by
the particles can be handled.

To be able to animate and deform the surface, each surfel stores a set of neigh-
boring particles and a set of neighboring surfels (Section 6.6.1). After performing
an animation step of the particles, we get an estimation of the new surface by ad-
vecting the surfels along with the neighboring particles. Similar to active contour

112

6.6 Surface Animation

Figure 6.4: Melting of a cube with sharp edges.

models [KWT88, DC98], the surface adapts to the new position of the particles
by minimizing a potential energy term while fulfilling geometric constraints (Sec-
tion 6.6.2). The surface resolution is adapted using a simple resampling scheme
that ensures a hole-free surface (Section 6.6.3). Disjoint components of the sur-
face are identified and the particles and surfels are separated accordingly (Sec-
tion 6.6.5). We detect intersections of separated surfaces and merge the intersect-
ing surface parts (Section 6.6.5). Finally, we show how the surface can be blended
smoothly between detailed solid and smooth fluid surfaces (Section 6.6.6).

6.6.1 Surfel Neighborhoods
Each surfel si stores a set Pi of neighboring particles and a set Si of neighboring
surfels of the same object (Figure 6.5). The neighboring particles are used to
estimate the displacement of the surfels after an animation step. From the surfel
neighborhood, forces are computed to update the surface as described below.
Particle Neighborhood. The neighboring particles are computed in a pre-
animation step. We reuse the search data structure of the particles (Section 6.4)
to determine the neighboring particles p j that are within the (particle) support
radius hP of a surfel si with position si. Furthermore, a weight ωpoly(si−p j,hP)
is stored for each neighbor particle, where the kernel ωpoly is used as a smoothly
decaying weight function (see Equation (4.9)).
Surfel Neighborhood. Additional to the particle neighborhood, a surfel si also
stores the neighboring surfels within the (surfel) support radius hS . This neighbor-
hood is recomputed after the surface has been displaced along with the particles.
During surface update, the position of the surfels change frequently and therefore
this surfel neighborhood needs to be updated quite often. Instead of doing an up-
date of the search data structure and expensive recomputation of the neighbors
each time the position of a surfel changes, the following update scheme is used.

113

Chapter 6 Solid-Fluid Simulation

particles pj

surfels si

particle neighborhood Pi surfel neighborhood Si

Figure 6.5: Left: the surfels si are wrapped around the particles p j. Middle and right: each
surfel si stores a particle neighborhood Pi and a surfel neighborhood Si.

Assume that a surfel si changes its position. Let the new neighborhood be the
(initially empty) set S ′i . First, all surfels in Si with an Euclidean distance smaller
than hS are added to S ′i . We then iterate through all neighbors of the neighbors in
Si and add them to S ′i if their Euclidean distance is smaller than hS . By tagging
neighbors that were already visited, this update procedure can be performed very
fast. Note that not necessarily all neighbors are found, however, as the surfel
position does not change significantly during the surface deformation, this update
procedure showed to be sufficient. Some of the following algorithms will only use
the k nearest neighbors from the neighbor set Si (we use k = 10). We denote this
subset as Ssub

i .

6.6.2 Surface Deformation
The surface animation is divided into two steps: First, the surfels are displaced
along with the particles. They are then updated to reflect the new particle po-
sitions by minimizing the surface energy, where constraints restrict the possible
movements .

Surface Displacement
In the first step, each surfel s with material coordinates ms is displaced using the
approach described in Section 5.5.1

s = ms +
1

∑ j ωpoly(rs, j,hP) ∑
j

ωpoly(rs, j,hP)
(
u j +∇uT

j (rs, j)
)
, (6.21)

where rs, j = ms−m j is the distance vector between the surfel s and a neighbor-
ing particle m j in the rest shape, and s is the position of s in world coordinates.
Similarly, the tangent vectors of s are displaced yielding the surfel normal ns, see
Section 5.5 for details.

114

6.6 Surface Animation

Surface Update
After advecting the surface along with the particles,
it is deformed in normal direction under the action
of surface forces, similar to balloons [Coh91]. The
forces are derived by minimizing the potential en-
ergy of the surface. The potential energy is com-
posed of external potentials that depend on the par-
ticles and internal potentials that depend on the sur-
fels. We derive an implicit and an attracting potential
such that the energy is minimized when the surfels
are attracted to an implicit surface and to the parti-
cles, respectively. Minimizing the internal potentials, consisting of the smoothing
potential and the repulsion potential, yields a locally smooth and uniformly sam-
pled surface. From the potential energy we derive forces acting on the surfels. The
derived forces from the guiding, attracting and smoothing potential act in normal
direction, whereas the repulsion force is applied in tangential direction. Note that
these forces are defined for deforming the surface only, and thus have no influence
on the particles.
Guiding Potential. We define a purely geometric implicit coating of the particles
that attracts our explicit surface, similar to Desbrun and Cani [DC98]. Each parti-
cle p j defines a local field function. A potential field is defined by computing the
weighted sum of the field functions at an arbitrary position in space [Bli82]. We
use the color field ϕ(x) described in Section 4.3.3 as a potential field. The guiding
potential Θguide

si is defined as the squared distance from the position si of a surfel
si to its projected position ψI(si) on an isovalue I of the potential field, i.e.,

Θguide
si

=
1
2
(ψI(si)− si)

2. (6.22)

The projection ψI(si) is found using the Newton-Raphson method (see Sec-
tion 2.4.2). Note that for efficiency reasons, we do not enforce this projection to
be orthogonal. However, as the actual point-sampled surface is generally close
to the isosurface, the difference is not significant. The normal nguide

si at ψI(si) is
equal to the gradient of the color field , i.e.,

nguide
si

=∇ϕ(ψI(si)). (6.23)

Attracting Potential. Generally, we want the surface to coat the particles as tight
as possible. Thus, a potential is defined such that the surfels are attracted to the
particles. The attracting potential Θattract

si
is computed as the sum of weighted

squared distances from a surfel si to its neighboring particles p j ∈ Pi, i.e.,

Θattract
si

=
1
2 ∑

p j∈Pi

(p j− si)
2ωpoly(si−p j,hP). (6.24)

115

Chapter 6 Solid-Fluid Simulation

Figure 6.6: Illustration of the impact of the guiding, smoothing and attracting force. Left:
guiding force only (kguide = 0.2). Middle: guiding and smoothing force (kguide =
0.2, ksmooth = 0.6). Right: guiding, smoothing and attracting force (kguide = 0.2,
ksmooth = 0.6, kattract = 0.1).

Smoothing Potential. Minimization of the implicit and attracting potential yields
the well-known blob artifacts due to the discretization of the volume with particles
(see Figure 6.6). Hence, a potential Θsmooth is defined that yields a smooth sur-
face. The implicit surface described in Section 2.5.1 is a smooth surface Ψsmooth
that approximates the surfels. To ensure that only surfels of the same surface sheet
are considered, the neighborhood for computing Ψsmooth is restricted to neighbor
surfels whose normals have an angle to the normal of si smaller than a thresh-
old (we choose π/4). The smoothing potential Θsmooth

si
is then computed as the

squared distance from si to Ψsmooth

Θsmooth
si

=
1
2

(

ψorth(si)− si

)2
, (6.25)

where ψorth(si) is the orthogonal projection operator described in Section 2.5.1.
The normal nsmooth

si
on Ψsmooth at ψorth(si) is

nsmooth
si

=
(

si−ψorth(si)
)
(
si−ψorth(si)

)
·nsi

‖si−ψorth(si)‖
2 . (6.26)

Repulsion Potential. To achieve a locally uniform distribution, we define a re-
pulsion potential Θrepel similar to Pauly et al. [PGK02]. It is minimal when the
neighboring particles s j ∈ S

sub
i of a surfel si have a distance hS to si:

Θrepel
si

=
1
2 ∑

s j∈S
sub
i

(
hS−

∥
∥si− s j

∥
∥
)2

. (6.27)

Minimizing Forces. The potential energy of the surfels si is minimized by apply-

116

6.6 Surface Animation

ing forces that are derived from the energy fields

fguide
si

= −∇siΘ
guide
si

= ψI(si)− si, (6.28)

fattract
si

= −∇siΘ
attract
si

= ∑
p j∈Pi

(

ωsi,p j rp j,si−
1
2
∇ωsi,p jr

2
p j,si

)

, (6.29)

fsmooth
si

= −∇siΘ
smooth
si

= ψorth(si)− si, (6.30)

frepel
si

= −∇siΘ
repel
si

= ∑
s j∈S

sub
i

(
hS−

∥
∥rsi,s j

∥
∥
)

∥
∥rsi,s j

∥
∥

rsi,s j , (6.31)

where rxi,x j = xi−x j and ωsi,p j = ωpoly(si−p j,hP).
Similar to balloons [Coh91] and level sets [OS88], the surface is deformed only

in normal direction. We thus restrict the guiding, smoothing and attracting poten-
tial to act only in direction of a surfel’s normal, whereas the repulsion force only
acts in tangential direction to achieve a locally uniform and hole free sampling.
First, a new surfel normal nsi is computed as the average of the implicit gradient
nguide

si and the smoothed normal nsmooth
si

,

nsi ←
kguidenguide

si + ksmoothnsmooth
si∥

∥
∥kguidenguide

si + ksmoothnsmooth
si

∥
∥
∥

(6.32)

. The tangential force ftan
si

is then defined as the projection of the repulsion force
frepel
si onto the tangent plane defined by the new surfel normal nsi :

ftan
si

= frepel
si
− (nsi · f

repel
si

)nsi. (6.33)

The force in normal direction fnormal
si

is computed as the projection of the implicit,
attracting, smoothing and optional external forces

fnormal
si

= (nsi · f
sum
si

)nsi, (6.34)

where

fsum
si

= kguidefguide
si

+ kattractfattract
si

+ ksmoothfsmooth
si

+ kextfext
si

. (6.35)

The weights are user defined parameters that allow to trade smoothness for close-
ness of the surface to the particles, see Figure 6.6. The external force fext

si
comes

from an external force field and can be used, for instance, to attract the surface to
a model surface (see Figure 6.12).
Integration. Finally, we get the new surfel position using explicit Euler integra-
tion as

si← si +α(fnormal
si

+ ftan
si

), (6.36)

where 0 < α≤ 1 is the integration time step. Note that applying the forces along
the new surfel normal vector nsi can be seen as a semi-explicit Euler integra-
tion, yielding a very stable integration if all weights are smaller than one, as nsi is

117

Chapter 6 Solid-Fluid Simulation

smooth (assuming that the isovalue I is chosen such that the isosurface is smooth).
To avoid oscillations, we damp the system by multiplying α at each iteration with
a damping constant. The integration is repeated until the maximal displaced dis-
tance of all surfels of a surface component is below a threshold.

Constraints
Constraints restrict the position and movement of the surface. We propose to use
two constraints which are applied in the following order:
Guiding Constraint. Optionally, a surfel can be restricted to be within a minimal
isolevel (see the guiding force description in the previous section), which is useful
for splitting of solid objects as will be shown in Section 6.6.5. If the color field
value ϕ(si) of a surfel si is smaller than a user defined minimal isovalue Imin, then
si is projected onto Imin. This can also be seen as a maximum allowed distance to
the particles.
External Constraints. External constraints are used to restrict the surface to a
certain area, for example, when doing collision detection with an obstacle such
as a glass. For collision detection with fixed boundaries only the particles are
considered but not the surface. It can thus happen that surfels still penetrate the
boundary although the particles do not. These penetrating surfels are projected
onto the boundary. The projection is performed (if necessary) after each surface
deformation iteration. Note that the surface remains smooth at the border of the
projected surfels due to the smoothing potential.

6.6.3 Resampling
Resampling is important to adapt the number of surfels when the surface is
stretched or compressed. Each time before a surface force is computed, we test
if the number of neighbors |Si| of a surfel si is smaller or larger than a minimum
or maximum threshold, respectively. In the former case the number of missing
neighbors are randomly distributed around si, where the new surfels inherit the
neighbors of si. A neighbor update is then performed for the new surfels and
the neighbors of si as described in Section 6.6.1. If the number of neighbors is
too large, the surfel is deleted and removed from all its neighbors. We make the
neighbor thresholds dependent on the radius of a surfel. Assume that all surfels
have the same radius rs and that the surfels are distributed uniformly, i.e., they lie
on a hexagonal grid. Then a distance between two neighbors on this grid equal or
smaller than rs guarantees a hole free surface. We choose 6hS/rs as the minimum
threshold and 9hS/rs as the maximum threshold.

This resampling scheme is also used to create an initial surface enclosing the
particles, e.g., when using a source. Initially, a surfel is created at each particle po-
sition. These surfels are projected onto the implicit surface by setting the surface
constants kguide = 1 and kattract = ksmooth = 0. Performing a few steps of surface

118

6.6 Surface Animation

Figure 6.7: A melting model of Igea that splits. The split parts are detected and contact
handling prevents them from merging again. So-called zombie surfels are used for
interpolating the object texture.

deformation with resampling yields one or more closed surface components. Fi-
nally, the surface constants are reset to the user values, and applying the surface
deformation scheme once again yields the final surface.

6.6.4 Zombies
An advantage of having a point-sampled surface is that every surfel carries its
own information about both geometry and texture. During resampling, however,
this information is distorted due to the movements and generation/deletion of sur-
fels. Applying the surface update described in Section 6.6.2 yields the correct
geometry information, however, the texture is distorted after a resampling step.
To retain the texture, the initial surfels are copied and used for interpolating the
color value. Because these copies are not part of the current geometry description,
they are called zombies (see also [PKKG03]). Zombies are displaced as described
in Section 6.6.2 and projected onto the new surface. The color of a surfel is then
approximated from the neighboring zombies according to Equation (2.24). An
example where zombies have been used is shown in Figure 6.7.

6.6.5 Topological Changes
By recomputing the neighborhood and using the forces and constraints described
above, the surface implicitly handles topological changes such as disjoint com-
ponents and merging (see Figure 6.8). The implicit constraint ensures that a (lo-
cally) stretched surface is always split even if the implicit force weight is chosen
to be small. Furthermore, two intersecting surface components are merged au-
tomatically by recomputing the surfel neighborhood and the applied forces. A
well known problem of handling topological changes implicitly is that two sur-
face components will blend rather than collide, i.e., they are merged before they
intersect which results in considerable artifacts. We suggest a method to detect
disjoint surface components similar to the blending graph described by Desbrun

119

Chapter 6 Solid-Fluid Simulation

split

merge

Figure 6.8: Top row: when a surfel is outside the minimal isovalue it is projected onto it.
Flood filling over all the surfels results in the construction of separated compo-
nents. Bottom row: merging is performed by detecting and removing colliding
surfels from different components.

and Cani [DC95]. These components are then handled as separated objects. We
show how intersecting separated objects are merged.

Splitting
To detect two disjoint components of a surface after having deformed the surface, a
flood-fill is performed over all surfels in the restricted surfel neighborhoods S rest

i .
A neighbor s j ∈ S

sub
i is added to S rest

i if the angle between its normal and the
normal of si is smaller than a threshold (we choose π/4). Starting with an arbitrary
surfel si, we add si and the surfels in S rest

i to a set Ssep. The neighbors of the
restricted neighborhood of the surfels in S rest

i are then added recursively to Ssep,
until no neighbors are left. This procedure is repeated (with new sets) as long as
there are surfels that do not belong to a set yet. By tagging surfels that belong to
a set already, the detection can be done in linear time to the number of surfels,
assuming a constant maximum number of neighbors.

After separating the surfels, the particles are assigned to the appropriate set by
performing an inside/outside test, see Equation (5.35). A particle is added to a set
if it is inside the surface represented by the surfels. Each set then builds a separated
surface component. The surfel neighbors Si and the particle neighbors Pi of a
surfel si are always computed from the surfel and particle set of its separated
component.

Merging
When two disjoint components intersect they either need to be merged or contact
handling has to separate them as described in Section 5.8. For merging we require
that not only the surfaces intersect, but also that at least one particle is inside the
other surface. This guarantees that the surfaces are merged smoothly.

We first compute a bounding box for each object surface part (see Figure 6.8).

120

6.6 Surface Animation

Figure 6.9: An elastic solid is dropped onto a heated box and slowly melts to a viscous
fluid. 3.9k particles, 56k surfels, 25s/frame

From two intersecting bounding boxes, the colliding particles can be efficiently
computed (see Section 5.8.2). If a set of colliding particles is found, the penetrat-
ing surfels are computed and deleted before the two objects are merged. The sur-
fel neighborhoods are then recomputed and the separated objects merge smoothly
through the acting surface forces. Note that this way we avoid the unnatural blend-
ing typically arising when using the implicit function for merging, i.e., blending
of two separated surface parts before they intersect is avoided.

6.6.6 Blending Between Solids and Fluids
Whereas solids often have a very detailed surface, fluid surfaces are usually rather
smooth. The particles account for this by surface tension (cohesion, see Sec-
tion 4.4.2). However, to smooth the surface this is not sufficient. Assume we
start with a highly detailed solid that melts. In this case we expect the detail to
disappear. On the other hand if we freeze a fluid, the existing detail should be
preserved.

If we only apply the surfel displacement according to the particles, all the detail
is preserved, but if we additionally update the surface using the potential fields,
the detail vanishes and the surface approaches the implicit surface defined by the
particles. To get a smooth transition between solids and fluids, we perform both
approaches and blend between them.

Assume that after particle animation, a surfel si is displaced to the position

121

Chapter 6 Solid-Fluid Simulation

Figure 6.10: Pouring a pure fluid into a glass. 3k particles, 3.4k surfels, 1.4s/frame.

si. Let s′i be the positions after applying the surface deformation forces and con-
straints. We get the blended position sblend

i and normal nblend
si

by simple interpola-
tion

sblend
i = (1−βi)xsi +βis′i, (6.37)

nblend
si

=
(1−βi)nsi +βin′

si∥
∥(1−βi)nsi +βin′

si

∥
∥
. (6.38)

For melting and freezing, we use the temperature Tsi as a blending factor (see
Section 6.2.1). The temperature of a surfel is approximated from the neighboring
particles

Tsi =
1

∑p j∈Pi ωpoly(si−p j,hP) ∑
p j∈Pi

ωpoly(si−p j,hP)Tp j . (6.39)

The normalized temperature is then used as a transition factor, i.e., βi = (Tsi −
T min)/(T max − T min), where T max and T min are the temperature thresholds de-
scribed in Section 6.2.1.

6.7 Results
We have tested our physics framework and the surface generation on a variety of
examples that demonstrate melting, freezing and the different elasto-plastic and
viscoelastic behaviors depending on the parameters.

In the first example we have a pure fluid (no elastic forces) to test our surface
reconstruction. Our surface is able to handle all topological changes like split-
ting, merging, and self-intersections of the surface. Merging of disjoint surface
components prevents from blending two components before they intersect (see
Section 6.6.5), resulting in less artifacts compared to implicit merging.

Two examples of solidification are shown in Figures 6.1 and 6.11. In the former
example, we show the fluid particles created by a source. When the particles
get in contact with the ground, their temperature cools down and they solidify.

122

6.7 Results

Figure 6.11: Freezing a quicksilver fluid that is poured into a glass. After removing the
glass, the elastic solid bounces onto the ground and fractures. 2.4k particles, 3.4k
surfels, 2s/frame.

The ground has a temperature of 0◦C and the initial particle temperature is 20◦C.
Heat diffusion between particles is kheat = 0.5 and between ground and particles
kheat

ext = 1. The particle temperature locally affects the stiffness, plasticity, viscosity
and surface tension of the object as described in Section 6.5. Particles with a
temperature of 0◦C, shown in blue, are completely solid, whereas particles with
20◦C, shown in red, are completely fluid (E = 0).

Figure 6.11 shows a quicksilver-like fluid (µ = 10kNs/m2) that is poured into
a glass. While it is flowing the temperature is decreased of all particles within 10
iterations from T max to T min. Therefore, the fluid freezes to an elastic solid with
stiffness E = 500kN/m2. At the same time we remove the glass. The solidified
fluid elastically bounces onto the ground where it splits.

Three examples demonstrate the versatility of our framework for melting. In
Figure 6.3, a solid deformable cube with 143 particles is dropped into a heated
funnel where it melts. When it hits the cool ground it solidifies again. Two simu-
lations with different plasticity are shown, where the plastic strain εp in the sim-
ulation shown on the left is twice as big as in the one shown on the right hand
side. The images are taken at corresponding time steps. Naturally, the object with
higher plasticity flows faster through the funnel, whereas the cube on the right is
more rigid and therefore takes longer until it melts. The different behavior can also
be seen once the melted object solidifies again on the ground. The one with higher
plasticity distributes more, whereas the one on the right stays more compact.

In the example shown in Figure 6.9, we start with an elastic bust of the Nefertitis
(57k surfels) which is dropped onto a heated box. When a particle collides with
the box, its temperature increases and diffuses to the other particles (kheat = 0.04,

123

Chapter 6 Solid-Fluid Simulation

Figure 6.12: A melting model of Max Planck flows through a funnel into the Igea casting
mold. The melting surface is attracted by the mold by an external surface force
field.

kheat
ext = 1). The model first bounces elastically and then slowly melts to a viscous

fluid (µ = 10kNs/m2). Note that the surface detail is still preserved even though
large parts of the model are already liquid. The phase state of the Nefertitis is
color coded from blue for solid to red for fluid.

In Figure 6.4 we show an example with an ini-
tial surface with sharp edges. The left side of the
cube is heated immediately, with low heat diffu-
sion. As expected, the edges of the heated part
smooth out during melting, whereas the edges
on the right hand side are preserved. The cube
is sampled with 153 particles and the initial sur-
face with 3.9k surfels. Note that the rippling ar-
tifacts in the cube come from the coarse particle
resolution and the regular particle sampling (see
Figure 6.4 upper row).

Three viscoelastic fluids with different stiff-
ness E are compared in Figure 6.13. 2.5k par-

ticles are sprayed on a glass wall with a rate of 3.5k particles/s and an initial
velocity of 2.5m/s. The viscosity of the fluids is set to µ = 4kNs/m2. The fluid
on the left has no restoring elastic forces, i.e., E = 0. The fluid splashes into
many drops and droplets due to the collision with the wall. The large number of
droplets cause a high increase in surface area, resulting in up to 45k surfels used
during the simulation. Nevertheless, it demonstrates the stability of our surface
extraction method. For the fluid in the middle we chose Young’s modulus to be
E = 400kN/m2. The fluid does not splash anymore but stays very compact and
sticky. Finally, for the simulation shown on the right we set E = 900kN/m2. The
restoring elastic forces are strong enough to make the fluid stiff. The fluid there-
fore folds there where it hits the boundary. After all fluid is out of the source, it
elastically drops onto the ground.

Our last examples demonstrate the versatility of our surface animation ap-
proach. In the example shown in Figure 6.7 the shock of hair of the Igea model

124

6.7 Results

Figure 6.13: Comparison of viscoelastic fluids. Left: purely viscous fluid (no restoring
elastic forces). Middle: fluid with median stiffness. Right: stiff elastic fluid.

125

Chapter 6 Solid-Fluid Simulation

Animation Particles/Surfels Physics Surface fps
Fluid 3k/3.4k 0.13 s 1.3 s 0.7

Freezing 2.4k/3.4k 0.4 s 1.2 s 0.5
Melting 3.9k/56k 3.1 s 20 s 0.03

Table 6.1: Average timings for the sequences shown in Figures 6.10, 6.11 and 6.9, running
on a 3 GHz Pentium 4 with a GeForce FX GPU. Timings are shown for one
physics animation step and one surface deformation iteration step, followed by
the resulting frame rate.

is fixed initially. Due to gravitation, part of the model splits off and drops to the
plane. The guiding constraint (Section 6.6.2) restricts the distance of the surfels to
the particles, therefore the surface also splits naturally. The split surface parts are
detected automatically (Section 6.6.5). Afterwards, the shock of hair is released.
The two split surface parts are treated as separate objects. Thus, contact handling
(Section 5.8) prevents the two parts from merging again. Note that the texture
of the model is preserved due to the interpolation of zombies (Section 6.6.4).
Initially, the Igea model has 134k surfels. This number increases to 340k surfels
during the animation due to topological changes. At the end of the animation
sequence, the number of surfels is 165k.

The second example shown in Figure 6.12 exploits an external surface force. A
highly plastic model of Max Planck with 53k surfels and sampled by 600 particles
flows through a funnel into the Igea model (134k surfels). The Igea model de-
fines an external surface force field that attracts the surfels (Section 6.6.2). Thus,
the melted Max Planck fills the fine surface detail of the Igea mold. At the end
the model is solidified and exhibits realistic elastic behavior when it is dropped
onto the ground. Due to the resampling (Section 6.6.3), the final solidified model
consists of 115k surfels.

The physics animation runs in interactive time for up to 3900 particles, see
Table 6.1. The performance of the surface generation algorithm depends on the
surface resolution and the surfel neighborhood radius hS . For the fluid example
shown in Figure 6.10 (average number of 3.4k surfels) our algorithm needs on
average 1.3 seconds per frame. For the same example with smaller neighborhood
(average number of 1.2k surfels) the animation runs with 1.5 frames per second.
We use a low resolution surface for interactive animations and prototyping, and
increase the resolution for making production animations. The pictures in this
chapter were created with the open-source renderer POV-Ray (http://www.
povray.org), which we modified for raytracing point-sampled objects.

126

6.8 Limitations & Future Work

6.8 Limitations & Future Work
Both your meshless physics framework and the point-based method for surface
extraction showed to be versatile and enable the simulation of viscoelastic mate-
rial as well as melting and solidifying of objects. Nevertheless, there are many
possible improvements and open problems for future research.

Using a meshless volume representation, the rest shape can easily adapt to the
deformed shape as discussed in Section 6.4.1, which highlights one of the advan-
tages of using a representation with no explicit connectivity. However, a disadvan-
tage of this update is that the original shape information is lost, yielding plastic
deformations. Therefore, for stronger non-plastic deformations this approach is
not suitable. Although it is possible to change at run time from a rigidly trans-
formed rest shape to a rest shape that is deformed every time step and vice versa,
so far we can only use one approach for the whole object. It is therefore difficult
to model an object that is elastically deformed at one place and melts at another.
An approach could be to compute the forces for both the rigid and the deformable
rest shape, and compute a weighted average between them according to particle
temperature (see Section 6.5). More advanced methods for computing a suitable
rest shape need to be explored.

The heat transfer model and especially the change of physical parameters de-
pending on the temperature is rather ad hoc and not according to a physical model.
In the future, a more accurate model should be derived from the physics literature.
However, once a suitable model has been identified, it will be easy to incorporate
it into this framework.

Although the point-based surface model is very flexible, there are also sev-
eral disadvantages of this representation. To represent small drops in a strongly
splashing fluid a prohibitive high number of surfels with small radii are needed.
Instead of using the same surfel sizes everywhere, the density of the surfels could
be chosen depending on whether they lie on a flat or on a highly curved surface.
A point-based representation is most suitable where the topology of the object
changes frequently, otherwise using a mesh representation can be advantageous.
An interesting direction for future research is therefore to use a combination of
both. Also the representation of sharp creases is more difficult with a point-based
representation. In Section 5.5 creases and corners are handled by the renderer us-
ing CSG between surfels. This is more difficult to apply in this dynamic surface
model because surfels change their position after resampling. Surfels on an edge
would therefore not be allowed to move, while new surfels that overlap the edge
also have to be clipped. Depending on the melting state and the angle between
two corresponding surfels, the edge would finally disappear.

Because the surface update is based on an implicit model (Section 6.6.2), the
surface is always consistent and intersection free. However, the surface displace-
ment approach might yield self-intersections. In this case, the blended surface
might have self-intersections as well. Generally, this hybrid implicit-explicit

127

Chapter 6 Solid-Fluid Simulation

model might cause problems during blending if the topology of the implicit and
explicit surface are not similar. A model that avoids blending all together would
be desirable.

Implicit blending artifacts between two objects that come close are avoided by
separating disjoint surface components and merging them explicitly when two
components intersect (Section 6.6.5). However, these artifacts still occur when
surface parts come close that have not been split. Similar to the surface consis-
tency problem described above, detection of self-intersections would be necessary
which is a very difficult problem.

A well-known problem in SPH based animations is volume preservation. Fur-
thermore, also our surface generation approach is not volume preserving. This
could be improved by adding an additional force that lets the volume shrink or
grow, similar to the volume preservation constraint suggested by Desbrun and
Cani [DC98].

So far we use a global termination criterion for the iterative integration of the
surface forces for surface deformation (see Section 6.6.2). Because the forces are
defined locally, efficiency could be improved significantly by computing and inte-
grating the forces only for surfels si whose position changed and for the neighbors
of si.

6.9 Summary
In this chapter a method for simulating viscoelastic materials has been derived
which proved to be versatile and stable. It enables modeling a variety of materi-
als that could not be simulated before, like elastic fluids, fluids that solidify, and
solids that melt to splashing fluids. Melting and freezing are modeled by locally
changing the material parameters according to the particles’ temperature.

The presented hybrid implicit-explicit point-based surface model fits the needs
to represent both highly detailed solids and smooth fluids with rapidly changing
topology. Surfels showed to be suitable as an explicit representation because no
mesh needs to be maintained.

Exciting research directions are the derivation of a more accurate physical
model for melting and freezing, and exploring a new surface model. The surface
representation needs to guarantee temporal and topological consistency, while it
is also suitable for modeling sharp features and detailed geometry. Furthermore,
both real-time and high quality surface animation should be possible with the
same surface model, for instance, in a progressive manner using a multiresolution
approach.

128

Chapter 7

Implementation
In this chapter a discussion and implementation details are provided of the search
data structures we use to speedup neighbor queries (Section 7.1), and of the time
integration schemes applied to solve the equations of motion (Section 7.2).

7.1 Search Data Structures
The Smoothed Particle Hydrodynamics method (Section 2.3) as well as opera-
tions defined on a point-based surface representation (Section 2.5) are meshless
methods. Both rely on local operators based on the spatial proximity between
points (particles or surfels) instead of the geodesic proximity given by the mesh
(e.g. tetrahedra or triangles). Thus, performing range queries (also called dis-
tance queries), i.e., finding all points within a distance h to a point x ∈ R, is very
important and in fact most often the performance bottleneck of a simulation (see
Section 4.7.1 for a discussion and timings). Searching for neighbors within a
certain distance h sequentially needs time O(n), where n is the number of data
points. Several data structures have been proposed to reduce this time. Examples
are (with increasing complexity) uniform grids, hash grids, octrees, kd-trees and
bsp-trees, and combination of different data structures (see Samet [Sam89,Sam05]
for a thorough discussion). These data structures differ in the computational com-
plexity for building or updating it and performing range queries, as well as in
memory consumption. Non-hierarchical data structures such as grids can be build
and updated very efficiently, whereas hierarchical data structures such as octrees,
kd-trees and bd-trees are usually more expensive to build or change, but often al-
low faster queries than grids. However, the performance depends largely on the
number and distribution of the data points, as well as the queries.

We will next discuss the two search data structures that are used in this dis-
sertation, namely hash grids (Section 7.1.1) and kd-trees (Section 7.1.2).We then
compare them and try to give a statement in what situation which search data
structure is preferable (Section 7.1.3).

129

Chapter 7 Implementation

7.1.1 Hash Grid
A hash grid can be seen as a uniform grid, where each grid cell (an axis-aligned
box) is mapped onto a 1D hash table index. Given a 3D grid cell with size l, a
point x = [x,y,z]T is mapped onto an index j as follows

j = f (bx/lc ,by/lc ,bz/lc), (7.1)

where f is a hash function and bc rounds the coordinates down to integer values.
Data points are stored in the hash grid by mapping them onto j and storing them
in a hash table in the bucket at index j. Note that building a hash table is very
efficient: data points can be inserted in constant time O(1), resulting in a building
complexity of O(n) for n data points.

The mapping has the advantage compared to a uniform grid [Hec97] that the
hash grid is defined over the whole space. The mapping is non-injective, meaning
that different grid cells can be mapped to the same index. Thus, the bigger the
table size (the more buckets) the less likely it is that two or more cells map onto
the same index (this is called a collision). Because collisions decrease the com-
putational performance, a trade-off between the number of collisions and memory
management (especially memory caching) due to the size of the table has to be
made. Since only cells containing at least one data point are mapped, the table
size is independent of the spatial size of the domain spanned by the data points
but depends only on the number of data points and the size l of a grid cell. Best
performances are achieved if the hash table size is a prime number [CLR90] and
significantly larger than the number of data points [THM+03].

The number of collisions depends besides the number of buckets also on the
size of a cell and the distribution of the data points. With bigger cell size, i.e., less
cells, the chance of a collision decreases, but at the same time a cell contains more
data points that are mapped to the same bucket and need to be processed.

A perfect hash table that guarantees that there are no collisions has been pre-
sented recently by Lefebvre and Hoppe [LH06]. However, due to the long com-
putational time needed for building the hash table it is not suitable for dynamic
data.

In our implementation the hash function of Teschner et al. [THM+03] is used:

f (i, j,k) = (i · p1 xor j · p2 xor k · p3) mod m, (7.2)

where p1 = 73856093, p2 = 19349663 and p3 = 83492791 are large prime num-
bers and m is the hash table size. Given a maximum query distance hmax, we
choose the cell size l to be at least hmax. This has the advantage that for any query
we need to search only the cell that contains the query point and its 27 neigh-
boring cells. This can be implemented very efficiently. First, the query point is
mapped onto a bucket. For the data points in this bucket and in the neighboring
cells that intersect the query ball, the squared distance to the query point is tested
to filter out data points that are further away than the query distance h. Note that

130

7.1 Search Data Structures

this has to be done even for cells that are completely inside the query ball because
of possible mapping collisions.

Assuming that there are no collisions, the expected time complexity for such
a query is Θ(q), where q is the average number of data points in a cell. If the
distribution of the data points is about uniform, then the time complexity is even
constant.

7.1.2 kd-Tree

A kd-tree (short for k-dimensional tree) is a special case of a binary space parti-
tioning tree (BSP-tree), originally developed for indexing multi-dimensional data
point sets in higher dimensions [Ben75, FBF77, AM93]. The root cell (an axis-
aligned box) contains the whole space R

3. In every level of the hierarchy, an
axis-aligned plane splits a cell into two sub-cells, where the split axes are cycled
when moving down the tree. The leaf nodes are called buckets and contain at least
one data point. Thus, the union of all buckets represents the whole space.

Because the position of the splitting plane can be chosen arbitrarily within a
cell, the kd-tree can partition the space better than a (hash) grid or an octree. This
is especially important if the distribution of the data points is very uneven. If the
split plane is chosen such that it goes through the median of the data points of a
node, i.e., cuts them into equal halves, the tree is balanced and thus has height
O(logn) with n the total number of data points. The time complexity for building
the kd-tree is O(n logn) and takes O(kn) space with k the number of dimensions.
A point can be inserted into or deleted from a balanced kd-tree in time O(logn),
however, efficient rebalancing the kd-tree afterwards is a notoriously difficult task.

For range queries of a point x ∈ R
3, the tree is traversed from the root until the

bucket containing x is found, where cells can be discarded if they do not intersect
the query ball. The distance of a cell to the query point can be efficiently computed
using an incremental update while traversing down the tree as shown by Arya
and Mount [AM93]. From a leaf node, the data points within the query ball are
determined by backtracking towards the root. Finding the leaf node can be done
in O(logn), whereas the time for backtracking is on average roughly proportional
to the number j of found data points, yielding an average time complexity of
Θ(j + logn) (see Chancy et al. [CDZC01] for a careful analysis). The worst time
query complexity is O(n1−1/k + j), see e.g. Lee and Wong [LW77].

We use a kd-tree similar to [Mou05], where we build the kd-tree with a top-
down approach using the Sliding-Midpoint rule [AF00] and store the data points
only in the leaf nodes. Details and an analysis of your implementation can be
found in [Kei03].

131

Chapter 7 Implementation

7.1.3 Discussion
As already discussed above, the choice of the best search data structure depends
on the query and the size, distribution and dynamics of the data. A hash grid is
build in linear time, and therefore faster than building a kd-tree which takes time
O(n logn). Furthermore, updating (inserting, deleting or moving a data point) of
hash grids is usually fast, whereas rebuilding a kd-tree from scratch is often faster
than updating it [Rob81]. Thus, it is often proposed to use a kd-tree for static
data and a hash grid if the data changes dynamically. However, a kd-tree has
many advantages even in the dynamic case. Generally, a query is faster using a
kd-tree. In our experiments a kd-tree query in 3D clearly outperforms the hash
grid with large number of data points. We assume that this is because the hash
grid cannot profit as much from cache memory anymore as with fewer data points.
Furthermore, with larger data sets and many queries, the time for querying is much
higher than building the kd-tree, thus rendering the building time insignificant as
shown in our experiments described in Section 4.7. Another advantage of kd-trees
is that we do not have to know the query distance when building the data structure.
Even more important, arbitrary query distances can be used as, for instance, in our
multiresolution framework (Chapter 4). Remember that for the hash grid the cell
size is set equal to the largest query distance, thus decreasing the performance for
queries with a much smaller distance. Finally, a kd-tree can be used for j nearest
neighbor queries with the same time complexity as for range queries. Especially,
a kd-tree is very efficient in finding the closest neighbor to a point.

Thus, we can state that a hash grid should be used for interactive applications,
where the number of data points and queries is small (a few thousands) and there-
fore the costs for building the data structure matters. Furthermore, hash grids have
the advantage that they can be implemented exploiting hardware (see [Sig06] for
a description of a two-layered hash grid implemented on the GPU). However, the
size of the hash grid is restricted to fit into memory. For larger data sets and many
queries, we recommend to use a kd-tree because the building time is insignificant
compared to the time needed for queries. So far, we do not know any implemen-
tation of kd-trees exploiting hardware.

7.2 Time Integration
To compute the position, velocity and other properties of the particles and surface
at a certain point in time, we need to integrate the equation of motion in time. As
already discussed in Section 2.1.1, this equation can be rewritten as a coupled set
of two first order equations

ṗ = v, (7.3)
v̇ = f (v,p, t), (7.4)

132

7.2 Time Integration

where p is the position of a particle, v its velocity, and f () a general function given
by the physical model.

Various methods exists for numerical time integration, see [HES03] for a nice
overview in the context of deformable modeling in computer graphics. Generally,
the techniques are classified either as explicit or implicit integration depending
on whether the unknown quantities are computed considering the current state
only, or whether they are implicitly given as the solution of a system of equations
involving both the current state and the unknown state of the system, respectively.
While explicit methods are easy to implement and fast to compute, they are only
conditionally stable depending on the chosen time step ∆t. Furthermore, explicit
integration is only convergent if the time step fulfills the Courant-Friedrichs-Lewy
(CFL) condition [CFL28]. On the other hand, implicit time integration is stable
for arbitrary time steps, but it requires solving an algebraic system that is often
non-linear. Furthermore, time steps that are too big yield overdamping of the
system.

7.2.1 Leapfrog Integration
We found the leapfrog scheme [FLS63] to be the most attractive explicit integra-
tion scheme due to its simplicity and second-order accuracy. In this scheme the
velocities are evaluated at the midpoint of the time intervals, thus they are stag-
gered with respect to the positions

vi(t +
1
2

∆t) ← vi(t−
1
2

∆t)+∆t
fi(t)
mi

, (7.5)

pi(t +∆t) ← pi(t)+∆tvi(t +
1
2

∆t), (7.6)

where vi(t) is the velocity of a particle pi at time t, pi(t) its position, fi(t) the
total force acting on pi, and mi its mass. This integration scheme is as simple
as the first-order accurate explicit Euler integration, but is second-order accurate.
Furthermore, it has the very nice property that it is symmetric and thus time re-
versible [McM06], i.e., we can follow the trajectory of a particle back in time as
follows

vi(t−
1
2

∆t) ← vi(t +
1
2

∆t)−∆t
fi(t)
mi

, (7.7)

pi(t−∆t) ← pi(t)−∆tvi(t−
1
2

∆t). (7.8)

This backtracking is precise, i.e., if a particle starts at a point and is integrated
n time steps forward and then n time steps backward in time, the particle arrives
exactly at the starting point. Note that this is not the case for other integration
schemes such as explicit Euler, midpoint or fourth-order Runge-Kutta integration.
Time reversibility is important in physics because only then conservation of en-
ergy and momentum is guaranteed. But also in computer graphics this is very

133

Chapter 7 Implementation

useful as it allows to start at an arbitrary point in time and then compute the sim-
ulation forward and backward. For instance, a designer can first manually set
up the desired state of a system such as a breaking wave, or use a time reversed
fluid animation that flows up a stair to control another fluid simulation as shown
in [TKPR06]. A drawback of the leapfrog technique is that the velocity at time t
is not given explicitly. Where needed we compute it as the average of the previous
and following velocity

v(t) =
1
2

(

vi(t−
1
2

∆t)+vi(t +
1
2

∆t)
)

. (7.9)

Furthermore, an additional computation step is needed to compute the initial ve-
locity vi(

1
2∆t), for instance, using explicit Euler integration.

7.2.2 Discussion
For simulating deformable bodies we implemented both an explicit (leapfrog, see
above) and implicit (implicit Euler, see [MKN+04]) time stepping scheme. Al-
though larger time steps can be used for implicit time integration, solving the
linearized equation system showed to be more expensive then performing several
iterations of explicit integration with a smaller time step. Furthermore, smaller
time steps are advantageous for contact handling due to smaller penetrations. Be-
cause of the big time steps we use, implicit integration tends to smooth out fine
scale wobbling of soft material, which, however, is advantageous when simulating
stiff objects. In our system, where we combine fluids and elastic solids, the explicit
leapfrog scheme gives a good trade-off between stability, efficiency and damping.
However, choosing the right integration scheme and time steps is extremely im-
portant for the stability and accuracy of a simulation as demonstrated by Hauth et
al. [HES03]. They present a simple variant of Newton’s method coined inexact
Newton’s method [Rhe98] for efficiently solving non-linear equation systems, and
use the number of Newton iterations to adapt the time step. Recently, Kharevych
et al. [KYT+06] proposed geometric, variational integrators of arbitrary accuracy-
order that are efficient and preserve momentum and energy. In future work, we
want to experiment with different explicit and implicit time integration schemes
and compare their accuracy to a reference solution. Furthermore, adaptive time
stepping could yield significant speedups. Additionally, time steps can also be
adapted to the resolution to even further improve the performance of multiresolu-
tion simulations, as shown by Desbrun and Cani [DC99].

134

Chapter 8

Conclusion
This chapter concludes the dissertation with a summary of the main contributions
and achieved results, a discussion of the advantages and drawbacks of the pre-
sented approaches, and possible directions for future research.

8.1 Summary
The objective of this dissertation is to explore meshless Lagrangian methods for
physics-based animation of fluids and solids and simulating their interactions, and
the use of point-based surface representations in this context.

Smoothed Particle Hydrodynamics has been used as a numerical approximation
method for solving the Newtonian equations of motion for fluids and deformable
solids. New contributions to the computer graphics community in this context are:

• a particle-based multiphase approach for two-way coupling of immiscible
fluids of arbitrary density. Fluids are separated by modeling cohesion as a
pressure jump at the interface. We exploit this approach to simulate cou-
pling between water and air, including the animation of bubbles as trapped
air.

• a derivation of elastic forces from a model based on continuum mechanics.
A first order approximation of the displacement field is computed using the
moving least-squares approach. This results in stable animations of deform-
ing elasto-plastic objects that are invariant under rigid body motion and run
at interactive rates for models with moderate complexity.

• Application of the transparency method to model discontinuities in the
smooth shape functions. This enables the simulation of discontinuities
in the phyiscal domain introduced by fracture surfaces. Fracturing of both
brittle and ductile material has been achieved, as well as controlled fracture.

• a multiresolution method based on the concept of virtual particles to
achieve consistent coupling between different resolution levels and to dy-

135

Chapter 8 Conclusion

namically adapt the resolution to the simulation characteristics. This ap-
proach proved to be stable and has very little computation and memory
overhead. For our fluid simulations, a performance gain up to a factor of six
has been achieved. Similarly, the discretization of the physical domain is
adapted to handle fracturing and large deformations of deformable objects.

• enhancing fluids with elastic forces to simulate viscoelastic materials. By
introducing an adaptive rest shape that is used to compute restoring elastic
forces, materials in the range of stiff elastic to elasto-plastic and viscoelas-
tic can be simulated. Furthermore, melting and freezing effects have been
achieved by locally adapting the material properties.

• solid-fluid interaction based on a unified particle metaphor. Solids are
treated as (rigid) fluids, i.e., the same forces as for multiphase fluids are ap-
plied to solid particles. Additionally, collision handling between rigid bod-
ies is based on forces derived from molecular dynamics, which act between
particles of different objects. Thus, interaction handling between solids and
fluids is purely particle-based without considering the surface, yielding sta-
ble and fast simulations.

A surface sampled with oriented point samples (surfels) has been used to ani-
mate and deform the boundary of deforming objects and fluids. New contributions
in the context of surface modeling for animations are:

• a free-form deformation approach for advecting an embedded surface with
the particles. A first order approximation of the displacement field from the
neighboring particles is computed at the surfel positions to determine their
displacement from the rest shape. This approach is suitable for fast defor-
mations of geometrically detailed surfaces that do not undergo topological
changes.

• surfel splitting for efficiently adapting the surface sampling to avoid surface
distortions for large deformations.

• a contact handling scheme for deforming objects that decouples collision
detection and deformation. A non-penetrating contact surface is computed
from the detected colliding surfels and sampled with contact nodes. Penalty
forces are then computed for each contact node and distributed to the par-
ticles. This decoupling of surface collision detection and volumetric defor-
mations results in efficient and stable contact handling.

• a crack model for generating fracture surfaces and handling of topological
events. Propagating cracks are dynamically sampled by adding surfels. Ter-
mination, splitting and merging of cracks are detected and handled. With
our simple scheme, complex crack patterns and detailed fracture surfaces
can be achieved.

• the derivation of potential fields to dynamically adapt the surface to the
physics characteristics. Forces acting on the surfels are computed from the

136

8.2 Discussion

potential fields that guide the surface deformation and enable the implicit
handling of topological changes. Smoothness and distance of the surface
to the particles can be controlled by the user. This approach yields stable
surface animations for both deformable objects with geometrically detailed
surfaces, and object animations with smooth surfaces and rapid topological
changes such as splashing fluids. Furthermore, it enables the (local) transi-
tion from detailed solid surfaces to smooth fluid surfaces while melting.

• surface texture preservation for extreme deformations and melting by ad-
vecting the texture information. Copies of the original surfels, so-called
zombies, are animated but not resampled. Texture and other appearance
information of the new surface are approximated from the zombies.

8.2 Discussion
During our research with Smoothed Particle Hydrodynamics and point-based rep-
resentations we have become acquainted with the advantages, drawbacks and lim-
itations of these meshless approaches in the context of physics-based animations.
Generally, we can state that meshless methods are very versatile and most suitable
for animations with strong deformations or topological changes. By combining
particle-based methods for volume simulation and a point-sampled surface, new
effects can be achieved such as the melting of solid objects with textured and ge-
ometrically detailed surfaces to fluids. We will next discuss our findings for SPH
and point-based representations in more detail.

8.2.1 Smoothed Particle Hydrodynamics
The strength of meshless methods (MMs) is their adaptivity. The applied numer-
ical methods to solve the PDEs do not depend on the distribution of interpolation
nodes and their connectivity. This makes MMs especially suitable for strong de-
formations and topological changes. Furthermore, the volume is discretized by
simple sampling the domain, whereas mesh generation for the domain is prob-
lematic for both Eulerian and mesh-based Lagrangian methods. In the former the
mesh has to align with complex deformable boundaries, whereas in mesh-based
Lagrangian methods such as FEM the treatment of large deformations requires
special remeshing techniques that are tedious and time consuming. The adaptivity
of the shape functions of MMs to the distribution of the interpolation points comes
at the price of higher computational costs for computing them. MMs that solve
the PDEs in the strong form (such as collocation methods) have the advantage that
they are simple to implement and efficient. However, they are often less stable
and less accurate than weak form methods (such as the Galerkin method [LM54]),
especially when dealing with Neumann boundary conditions.

137

Chapter 8 Conclusion

SPH is a simple and efficient meshless collocation method. Unlike other MMs,
the particles are not just used as interpolation points but carry material properties,
thus SPH combines the advantages of meshless and Lagrangian methods. There-
fore, material quantities such as mass are guaranteed to be preserved, in contrast
to Eulerian methods where mass dissipation is a common problem. Furthermore,
material properties can change as a function of time, position and neighboring
particles, which can be used, for instance, to visualize the mixture of two differ-
ently colored fluids, or to simulate local melting and freezing as shown in this
dissertation. Interacting with particles is very simple because external forces can
be applied directly onto the particles. Furthermore, particles are suitable for con-
trolling simulations as we have shown in [TKPR06], and hard constraints can be
easily enforced by simply displacing particles, which is often useful in computer
graphics applications.

We found that particle-based methods are very suitable for dynamically adapt-
ing the particle resolution. Generating new particles or merging particles is sim-
ple, and shape functions automatically adapt to the changed sampling. Similarly,
discontinuities in the physical domain can be easily introduced with no need to
align the discontinuities to a mesh or to remesh the domain.

A major advantage of SPH is that differentiating the field functions is simply
done by differentiating the smoothing kernel, thus, no equation system needs to
be solved. Hence, the gradient terms of PDEs can be written in terms of the prop-
erties of the particles. However, the simplicity of SPH comes at the price that
the approximation does not fulfill the partition of unity property. This makes nu-
merical analysis of the method very challenging. So far, accuracy and convergence
properties of the SPH method are, to the best of our knowledge, only done for uni-
formly distributed particles or for certain idealized scenarios, and often only for
one-dimensional cases [Mon82,SHA95,MV96]. Gingold and Monaghan [GM78]
state that the accuracy of SPH is in practice much better than predicted from inter-
polation errors due to the energy preserving properties of the equation of motion.
However, it seems hard to argue why SPH actually works that well. Other meth-
ods that are at least zeroth order consistent, such as the Moving Least-Squares
Particle Hydrodynamics method, have the disadvantage that conservation of mo-
mentum is not preserved and they are considerably slower than the standard SPH
method [Mon05].

The particle deficiency and tensile instability problem discussed in Section 2.3.1
is a direct consequence of not having a partition of unity. We could improve this
by mirroring particles at the boundary that are then used as ghost particles for the
field function computations. However, this is only applicable if the boundary is
simple, and is especially difficult to apply at the interface.

One of the major difficulties we faced with the SPH method is due to the ap-
proximation of incompressibility. Pressure forces are applied that repel particles
to achieve a desired rest density (see Section 4.3). These forces can be seen as
springs with different rest lengths. Thus, we get the well known oscillation prob-
lems around the rest position. By making the spring stiffer (higher kgas) the fluid

138

8.2 Discussion

is less compressible but requires smaller time steps. This is a problem in com-
puter graphics where often big time steps are used and stability is a major re-
quirement. If we reduce the spring stiffness, the oscillations are visually very
disturbing. However, making the velocity field divergence free requires solving a
global linear system, which is quite expensive and we loose the nice property that
all computations are performed locally.

A related problem is that the simulated fluids appear quite viscous. This is due
to the slow propagation of a local change in the particle positions to the rest of
the fluid. We believe that enforcing incompressibility yields less viscous fluids
because a local change would result in an immediate global adaption of the parti-
cles.

Eulerian fluid simulation in combination with (particle) level sets are capable
to simulate smooth, thin water sheets due to the smoothing inherent in the level
set method. Particles align naturally in a hexagonal grid to minimize the internal
energy. To counteract this at the interface, surface tension forces are applied for
particles close to the interface. However, these surface tension forces tend to
cluster small groups of particles rather than aligning them in a sheet. This makes
it very hard to model thin water sheets.

To conclude, SPH is due to its adaptive nature especially suited for strong de-
formations and topological changes where the spatial discretization needs to be
adapted, or when discontinuities are introduced into the domain. Furthermore,
we believe that due to its versatility, the SPH method is suitable for combining
solid and fluid animations for simulating their interaction including melting and
freezing. As discussed above, there are several problems that have to be solved so
that SPH fluid simulation can compete with state of the art fluid solver. However,
SPH is a comparably new technique that gained increasing attention recently, es-
pecially also in the CFD community. Thus, we are confident that the SPH method
will emerge as an interesting particle-based alternative to standard techniques such
as the Finite Difference and Finite Element methods for solid and fluid simulation.

8.2.2 Point-based Representation
In this dissertation a point-based representation has been used for animating a sur-
face that is embedded into the particles. This yields similar advantages as with
particle-based volumetric representations, namely that the surface points (surfels)
can be moved or resampled without remeshing. However, one has to be aware that
volumetric remeshing, e.g., of tetrahedra, is much more involved than remeshing
of a surface. Especially, distorted volumetric meshes can result in drastic degrada-
tion of accuracy or even end the computation altogether, whereas bad aspect ratio
surface triangles are not very problematic for rendering. However, in case where
the surface changes its topology frequently, maintaining the mesh connectivity is
a computational burden that can be avoided by using a point-based representa-
tion. Another advantage of our point-based representation is the underlying im-

139

Chapter 8 Conclusion

plicit surface definition that gives access to efficient inside/outside tests, distance
to surface computations and projection of points. A major disadvantage of point-
sampled surfaces is that sharp features have to be modeled explicitly. However,
this can be done efficiently at render time as discussed in Section 5.6.3.

A problem of our resampling algorithm is that there is no guarantee that the
whole surface is covered with surfels. Thus, the number of iterations where the
surface forces are applied has to be chosen conservatively. Furthermore, for highly
splashing fluids the number of surfels increases drastically, which slows down the
surface animation.

We showed that point-sampled surfaces are suitable for combining the modeling
of surfaces with geometric details and implicit handling of topological changes.
This is achieved by blending between the detailed explicit representation and the
implicit representation defined by the particles according to a scalar value. This
works well because this value also indicates if topological changes are likely to
occur. However, as long as the surface does not fully correspond to the implicit
representation a consistent surface without self-intersections is not guaranteed.

To conclude, surfels are a versatile surface primitive suitable for embedding a
surface into the volumetric particles. This meshless representation is very efficient
for strongly deforming surfaces or surfaces that change their topology frequently
during a simulation because no mesh needs to be maintained. The combination
of explicit and implicit representation of the surface defined by the surfels is very
powerful, and can be further extended to adapt to the isosurface defined by the
underlying particles.

8.3 Future Work
Research of physics-based meshless Lagrangian animation, where both the vol-
ume and the surface are point-based, has only just started. Thus, many open prob-
lems remain in this interesting area.

As discussed above, one of the major shortcomings of SPH is its approxi-
mation of incompressibility. For strictly enforcing incompressibility, and thus
guaranteeing a divergence free velocity field, a Poisson equation for the pressure
has to be solved. Approaches exist to solve this equation directly on the parti-
cles [KTO96, CEL06]. This yields a n× n sparse linear equation system with n
the number of particles. Thus, with hundreds of thousands of particles, solving
this system becomes intractable. Another possibility is to use a similar approach
to the Fluid-Implicit-Particle (FLIP) method [BR86, ZB05], where a staggered
(MAC) mesh (or grid) is used for pressure projection. The face velocities are
approximated from the particle velocities, for instance, using MLS. The new ve-
locity is then computed, and the difference between the new and old velocity is
interpolated back onto the particles. Using a mesh has the advantage that the grid
resolution is independent of the particle resolution. Because the mesh is only used

140

8.3 Future Work

to compute a divergence free velocity field, a different mesh can be used in every
time step. Similar to Klingner et al. [KFCO06], an unstructured mesh could be
used that aligns to the boundary, where the resolution of the mesh could adapt
to the particles. Furthermore, each separated fluid part can be handled indepen-
dently, thus keeping the advantage that the simulation is not restricted to a certain
area in space.

For computing accurate solutions with SPH, sufficient overlap of the smoothed
particles must be guaranteed. Furthermore, the approximation of field functions
is sensitive to particle disorder, especially for higher derivatives. To remedy these
problems, Chaniotis et al. [CPK02] suggest to reinitialize the particle locations
periodically onto a uniform grid by interpolating the particle properties using high
order interpolation kernels that conserve the total momentum. However, the re-
sampling introduces numerical errors and extra diffusion that can be quite large as
pointed out by the authors. Nevertheless, this approach could be interesting, for
instance, in connection with solving for incompressibility as described before.

We use a two-pass algorithm for computing the SPH forces. First, the density is
computed (Equation (4.5)), which is then used to approximate the field variables.
This requires storing the neighbors of a particles, which can become a bottleneck
with large number of particles. SPH forces can be computed together with the
density if the continuity equation (Equation (4.2)) is solved directly, however, in
our experiments this yielded instabilities due to the large time steps that are used
for our animations. Thus, we want to look for different approaches to compute the
density.

Besides the surface, the bottleneck of our physics simulation for large numbers
of particles is the neighborhood computations. Therefore, new search data struc-
tures and neighbor caching schemes need to be developed that exploit the temporal
coherence of neighborhoods.

Because all computations in the SPH method are local, they can be easily par-
allelized on a cluster [GJ01] or the GPU [HCM06], including the neighborhood
queries. For parallel computations, a one-pass SPH algorithm would yield even
stronger performance gains than for the CPU.

The two-way coupling between air and water particles described in Section 4.4
requires a band of air particles sampled around the water interface. This drastically
increases the number of particles that have to be animated, especially because
these particles are all on the highest resolution. Instead of a full simulation, the
air particles could be simply advected. However, ensuring a sufficient sampling
around the interface without introducing a discontinuity in the surface computa-
tion due to changes in the color field is challenging. Furthermore, a consistent
transition from advected air to simulated bubbles is needed.

The bottleneck in the surface animation is the repulsion and resampling scheme,
which is applied to ensure a hole free surface and a locally uniform distribution.
An improved sampling scheme would change the particle position only where
necessary and can guarantee a hole free surface sampling.

A problem of the implicit surface definition from the particles (Section 2.5.1) is

141

Chapter 8 Conclusion

that the applied Euclidian distance function is not adapted to topology, which can
result in a bad approximation of the point-sampled surface with even wrong topol-
ogy. To prevent this, the geodesic distance of the neighbors has to be considered
instead of the Euclidian distance. Klein and Zachmann [KZ04] build a proximity
neighbor graph either from a Delaunay or sphere-of-influence graph. Efficiently
maintaining this graph during a simulation is an interesting task for future work.

Detection of self-intersections for deforming objects is a hard problem, es-
pecially for point-sampled surfaces because the surfels overlap by definition.
Image-based techniques have been used to detect self-collisions of triangle
meshes [BW02, HTG04]. Similarly, image-based methods in combination with
splatting on the GPU might be exploited for our purposes.

As already discussed in the introduction, in computer graphics it is often more
important that an animation looks realistic than that it is physically accurate. Thus,
we believe that user studies are needed to find out when an animation looks realis-
tic and where the deficiencies are. Furthermore, animation are often only useful if
they can be controlled by the designer. For instance in fluid animations, she might
want to control the fluid flow, position and strength of vortices, the amount of
splashes, the interaction with objects, the "fluid shape", bubbles, hard constraints
for where the fluid (including splashes) is allowed to enter, and so on. The con-
trol can take place on different scales. For instance, the user might only want
to control the fluid flow on a low scale and preserve the fine scale detail, or she
might want to change the high frequency behavior of the fluid to generate more
splashes. In [TKPR06] we have shown that particles are suitable for these kind
of controls, in the future we want to explore additional control possibilities. To
make control more intuitive, sketch-based techniques could be applied. Sketch-
based interfaces have already been applied successfully for free-form shape mod-
eling [IMT99, KH02, DE03, NSACO05, KH06]. Similarly, a simulation could be
designed and controlled with simple and intuitive drawing operations.

142

Bibliography

[AA03a] Anders Adamson and Marc Alexa. Approximating and intersecting surfaces
from points. In SGP ’03: Proceedings of the Eurographics/ACM SIGGRAPH
symposium on Geometry processing, pages 230–239. Eurographics Associa-
tion, 2003.

[AA03b] Anders Adamson and Marc Alexa. Ray tracing point set surfaces. In Pro-
ceedings of Shape Modeling International, pages 272–279, 2003.

[AA04a] Anders Adamson and Marc Alexa. Approximating bounded, non-orientable
surfaces from points. In Proceedings of Shape Modeling International 2004.
IEEE Computer Society, 2004. accepted for publication.

[AA04b] Anders Adamson and Marc Alexa. On normals and projection operators for
surfaces defined by point sets. In Proceedings of the Eurographics/ACM SIG-
GRAPH Symposium on Point-Based Graphics, pages 149–156. Eurographics
Association, 2004.

[ABCO+01] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David
Levin, and Cláudio T. Silva. Point set surfaces. In Proceedings of the con-
ference on Visualization ’01, 2001.

[ABCO+03] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David
Levin, and Cláudio T. Silva. Computing and rendering point set surfaces.
IEEE Transactions on Computer Graphics and Visualization, 9(1):3–15,
2003.

[AD03] Bart Adams and Philip Dutré. Interactive boolean operations on surfel-
bounded solids. ACM Transactions on Graphics (SIGGRAPH 2003 Proceed-
ings), 22(3):651–656, July 2003.

[Ada06] Bart Adams. Point-based Modeling, Animation and Rendering of Dynamic
Objects. PhD thesis, Katholieke Universiteit Leuven, Belgium, May 2006.

[AF00] Sunil Arya and Ho-Yam A. Fu. Expected-case complexity of approximate
nearest neighbor searching. In Proceedings of the Eleventh Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 379–388. Society for In-
dustrial and Applied Mathematics, 2000.

143

Bibliography

[AK04] Nina Amenta and Yong Kil. Defining point-set surfaces. ACM Transactions
on Graphics (SIGGRAPH 2004 Proceedings), 23(3):264–270, 2004.

[AKP+05] Bart Adams, Richard Keiser, Mark Pauly, Leonidas J. Guibas, Markus Gross,
and Philip Dutré. Efficient raytracing of deforming point-sampled surfaces.
Computer Graphics Forum (Eurographics 2005 Proceedings), 24(3):677–
684, 2005.

[AM93] S. Arya and D.M. Mount. Algorithms for fast vector quantization. In Data
Compression Conference, pages 381–390. IEEE Computer Society Press,
1993.

[And95] Ted L. Anderson. Fracture Mechanics. CRC Press, 1995.

[AWD+04] Bart Adams, Martin Wicke, Philip Dutré, Markus Gross, Mark Pauly, and
Matthias Teschner. Interactive 3D painting on point-sampled objects. In Pro-
ceedings of the Eurographics Symposium on Point-Based Graphics, pages
57–66, 2004.

[Bal95] Dinshaw S. Balsara. von neumann stability analysis of smoothed particle hy-
drodynamics - suggestions for optimal algorithms. Journal of Computational
Physics, 121(2):357–372, 1995.

[Bau75] Bruce G. Baumgart. A polyhedron representation for computer vision. In
Proceedings of National Computer Conference, volume 44, pages 589–596,
1975.

[Ben75] Jon L. Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, 1975.

[Ben90] W. Benz. Smooth particle hydrodynamics: a review. The Numerical Mod-
elling of Nonlinear Stellar Pulsation, pages 269–288, 1990.

[BFA02] R. Bridson, R. Fedkiw, and J. Anderson. Robust treatment of collisions,
contact and friction for cloth animation. ACM Transactions on Graphics,
21(3):594–603, August 2002.

[BGOS06] A.W. Bargteil, T.G. Goktekin, J.F. O’Brien, and J.A. Strain. A semi-
lagrangian contouring method for fluid simulation. ACM Transactions on
Graphics, 25(1), 2006.

[BGTG03] Daniel Bielser, Pascal Glardon, Matthias Teschner, and Markus Gross. A
state machine for real-time cutting of tetrahedral meshes. In Pacific Graphics,
pages 377–386, 2003.

[BHW94] D. Breen, D. House, and M. Wozny. Predicting the drape of woven cloth
using interacting particles. In SIGGRAPH ’94, pages 365–372, New York,
NY, USA, 1994. ACM Press.

144

Bibliography

[BHZK05] Mario Botsch, Alexander Hornung, Matthias Zwicker, and Leif Kobbelt.
High-quality surface splatting on today’s GPUs. In Proceedings of Sympo-
sium on Point-Based Graphics 2005, pages 17–24, 2005.

[BK00] J. Bonet and S. Kulasegaram. Correction and stabilization of smooth parti-
cle hydrodynamics methods with applications in metal forming simulations.
International Journal for Numerical Methods in Engineering, 47(6):1189–
1214, 2000.

[BK03a] Stephan Bischoff and Leif Kobbelt. Parameterization free active contour
models with topology control. In 4th Isreal-Korean Binational Conference
on Geometric Modeling and Computer Graphics, pages 69–74, 2003.

[BK03b] Stephan Bischoff and Leif Kobbelt. Sub-voxel topology control for level-set
surfaces. Computer Graphics Forum, 22(3):273–280, September 2003.

[BLG94] T. Belytschko, Y. Lu, and L. Gu. Element-free galerkin methods. Interna-
tional Journal for Numerical Methods in Engineering, 37:229–256, 1994.

[Bli82] James F. Blinn. A generalization of algebraic surface drawing. ACM Trans-
actions on Graphics, 1(3):235–256, 1982.

[BLM00] Ted Belytschko, Wing Kam Liu, and Brian Moran. Nonlinear Finite Ele-
ments for Continua and Structures. John Wiley & Sons Ltd., 2000.

[BMF03] R. Bridson, S. Marino, and R. Fedkiw. Simulation of clothing with folds and
wrinkles. In ACM SIGGRAPH/Eurographics Symposium Computer Anima-
tion, pages 28–36. ACM Press, 2003.

[BO84] M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial
differential equations. Journal of Computational Physics, 53, 1984.

[BOT01] S. Borve, M. Omang, and J. Trulsen. Regularized smoothed particle hydro-
dynamics: A new approach to simulating magnetohydrodynamic shocks. The
Astrophysical Journal, 561(1):82–93, November 2001.

[BOT05] S. Borve, M. Omang, and J. Trulsen. Regularized smoothed particle hydrody-
namics with improved multi-resolution handling. Journal of Computational
Physics, 208(1):345–367, 2005.

[BR86] J.U. Brackbill and H.M. Ruppel. Flip: A method for adaptively zoned,
particle-in-cell calculations of fluid flows in two dimensions. Journal of
Computational Physics, 65(2):314–343, 1986.

[BSK04] Mario Botsch, Michael Spernat, and Leif Kobbelt. Phong splatting. In Pro-
ceedings of Symposium on Point-Based Graphics 2004, pages 25–32, 2004.

145

Bibliography

[BSSH04] G. Bianchi, B. Solenthaler, G. Székely, and M. Harders. Simultaneous topol-
ogy and stiffness identification for mass-spring models based on fem refer-
ence deformations. In MICCAI (2), pages 293–301, 2004.

[BTH+03] Kiran Bhat, Christopher Twigg, Jessica K. Hodgins, Pradeep Khosla, Zo-
ran Popovic, and Steven Seitz. Estimating cloth simulation parameters from
video. In ACM SIGGRAPH/Eurographics Symposium on Computer Anima-
tion, July 2003.

[BW92] David Baraff and Andrew Witkin. Dynamic simulation of non-penetrating
flexible bodies. In Proceedings of the 19th annual conference on Computer
graphics and interactive techniques, pages 303–308. ACM Press, 1992.

[BW97] J. Bonet and R.D. Wood. Nonlinear continuum mechanics for finite element
analysis. Cambridge Univ. Press, NY, 1997.

[BW98] David Baraff and Andrew Witkin. Large steps in cloth simulation. In
Proceedings of SIGGRAPH 1998, Computer Graphics Proceedings, Annual
Conference Series, pages 43–54. ACM, ACM Press / ACM SIGGRAPH,
1998.

[BW02] George Baciu and Wingo Sai-Keung Wong. Hardware-assisted self-collision
for deformable surfaces. In VRST ’02: Proceedings of the ACM symposium
on Virtual reality software and technology, pages 129–136, New York, NY,
USA, 2002. ACM Press.

[BYM05] Nathan Bell, Yizhou Yu, and Peter J. Mucha. Particle-based simulation
of granular materials. In SCA ’05: Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 77–86,
New York, NY, USA, 2005. ACM Press.

[Can93a] Marie-Paule Cani. An implicit formulation for precise contact modeling be-
tween flexible solids. In SIGGRAPH ’93, pages 313–320, 1993.

[Can93b] Marie-Paule Cani. An implicit formulation for precise contact modeling be-
tween flexible solids. In Proceedings of the 20th annual conference on Com-
puter graphics and interactive techniques, pages 313–320. ACM Press, 1993.

[Car04] Mark T. Carlson. Rigid, Melting, and Flowing Fluid. PhD thesis, Georgia
Institute of Technology, 2004.

[CBC99] J.K. Chen, J.E. Beraun, and T.C. Carney. A corrective smoothed particle
method for boundary value problems in heat conduction. International Jour-
nal for Numerical Methods in Engineering, 46(2):231–252, 1999.

[CBJ99a] J.K. Chen, J.E. Beraun, and C.J. Jih. Completeness of corrective smoothed
particle method for linear elastodynamics. Computational Mechanics,
24:273–285, 1999.

146

Bibliography

[CBJ99b] J.K. Chen, J.E. Beraun, and C.J. Jih. An improvement for tensile instability
in smoothed particle hydrodynamics. Computational Mechanics, 23(4):279–
287, 1999.

[CBP05] Simon Clavet, Philippe Beaudoin, and Pierre Poulin. Particle-based vis-
coelastic fluid simulation. In Symposium on Computer Animation 2005,
pages 219–228, July 2005.

[CDZC01] Philippe Chanzy, Luc Devroye, and Carlos Zamora-Cura. Analysis of range
search for random k-d trees. Acta Informatica, 37(4/5):355–383, 2001.

[CEL06] F. Colin, R. Egli, and F.Y. Lin. Computing a null divergence velocity field
using smoothed particle hydrodynamics. Journal of Computational Physics,
2006. to be published.

[CFL28] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen differenzengle-
ichungen der mathematischen physik. Mathematische Annalen, 100:32–74,
1928.

[CGFO06] Nuttapong Chentanez, Tolga G. Goktekin, Bryan E. Feldman, and James F.
O’Brien. Simultaneous coupling of fluids and deformable bodies. In Pro-
ceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation. ACM Press, 2006. To appear.

[CH02] Liviu Coconu and Hans-Christian Hege. Hardware-oriented point-based ren-
dering of complex scenes. In Proceedings Eurographics Workshop on Ren-
dering, pages 43–52, 2002.

[CHP89] J. Chadwick, D. Haumann, and R. Parent. Layered construction for de-
formable animated characters. In SIGGRAPH ’89, pages 243–252, New
York, NY, USA, 1989. ACM Press.

[Chu96] T.J. Chung. Applied Continuum Mechanics. Cambridge Univ. Press, NY,
1996.

[CK02] Kwang-Jin Choi and Hyeong-Seok Ko. Stable but responsive cloth. In SIG-
GRAPH ’02: Proceedings of the 29th annual conference on Computer graph-
ics and interactive techniques, pages 604–611, New York, NY, USA, 2002.
ACM Press.

[CL03] Andrea Colagrossi and Maurizio Landrini. Numerical simulation of interfa-
cial flows by smoothed particle hydrodynamics. Journal of Computational
Physics, 191(2):448–475, 2003.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-
tion to Algorithms. MIT Press/McGraw-Hill, 1990.

147

Bibliography

[CMPW89] Robert D. Cook, David S. Malkus, Michael E. Plesha, and Robert J. Witt.
Concepts and Applications of Finite Element Analysis. John Wiley & Sons,
New York, 1989.

[CMT04] Mark Carlson, Peter John Mucha, and Greg Turk. Rigid fluid: Animating
the interplay between rigid bodies and fluid. ACM Transations on Graphics,
23(3):377–384, August 2004.

[CMVT02] Mark Carlson, Peter Mucha, Brooks Van Horn III, and Greg Turk. Melting
and flowing. In Proceedings of the 2002 ACM SIGGRAPH Symposium on
Computer Animation. ACM Press / ACM SIGGRAPH, 2002.

[Coh91] Laurent D. Cohen. On active contour models and balloons. CVGIP: Image
Underst., 53(2):211–218, 1991.

[Coo95] R.D. Cook. Finite Element Modeling for Stress Analysis. John Wiley & Sons,
NY, 1995.

[CPK02] A.K. Chaniotis, D. Poulikakos, and P. Koumoutsakos. Remeshed smoothed
particle hydrodynamics for the simulation of viscous and heat conducting
flows. Journal of Computational Physics, 182(1):67–90, 2002.

[CR99] Sharen J. Cummins and Murray Rudman. An sph projection method. Journal
of Computational Physics, 152, 1999.

[DC94] Mathieu Desbrun and Marie-Paule Cani. Highly deformable material for
animation and collision processing. In Fifth Eurographics Workshop on Ani-
mation, Simulation, September 1994.

[DC95] Mathieu Desbrun and Marie-Paule Cani. Animating soft substances with
implicit surfaces. In Robert Cook, editor, SIGGRAPH 95 Conference Pro-
ceedings, volume 29 of Annual Conference Series, pages 287–290. ACM
SIGGRAPH, Addison Wesley, aug 1995. Los Angeles, California, published
under the name Marie-Paule Gascuel.

[DC96] Mathieu Desbrun and Marie-Paule Cani. Smoothed particles: A new
paradigm for animating highly deformable bodies. In 6th Eurographics
Workshop on Computer Animation and Simulation ’96, pages 61–76, 1996.

[DC98] Mathieu Desbrun and Marie-Paule Cani. Active implicit surface for anima-
tion. In Proceedings of Graphics Interface, pages 143–150, 1998.

[DC99] Mathieu Desbrun and Marie-Paule Cani. Space-time adaptive simulation of
highly deformable substances. Technical report, INRIA Nr. 3829, 1999.

[DCA99] Hervé Delingette, Stéphane Cotin, and Nicholas Ayache. A hybrid elas-
tic model allowing real-time cutting, deformations and force-feedback for
surgery training and simulation. In CA ’99: Proceedings of the Computer
Animation, page 70, Washington, DC, USA, 1999. IEEE Computer Society.

148

Bibliography

[DDBC99] Gilles Debunne, Mathieu Desbrun, Alan Barr, and Marie-Paule Cani. In-
teractive multiresolution animation of deformable models. In Eurograph-
ics Workshop on Computer Animation and Simulation ’99, pages 133–144,
1999.

[DDCB00] Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan H. Barr.
Adaptive simulation of soft bodies in real-time. In Computer Animation ’00,
pages 15–20, 2000.

[DDCB01] Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan Barr. Dy-
namic real-time deformations using space & time adaptive sampling. In
Computer Graphics Proceedings, Annual Conference Series, pages 31–36.
ACM SIGGRAPH 2001, August 2001.

[DE03] Geoffrey M. Draper and Parris K. Egbert. A gestural interface to free-
form deformation. In Graphics Interface, pages 113–120. CIPS, Canadian
Human-Computer Commnication Society, A K Peters, June 2003. ISBN 1-
56881-207-8, ISSN 0713-5424.

[DH04] Jean Donea and Antonio Huerta. Finite Element Methods for Flow Problems.
John Wiley & Sons, December 2004.

[Dil99a] Gary A. Dilts. Moving-least-squares-particle hydrodynamicsă–ăi. consis-
tency and stability. International Journal for Numerical Methods in Engi-
neering, 44(8):1115–1155, 1999.

[Dil99b] Gary A. Dilts. Moving-least-squares-particle hydrodynamicsă-ăi. consis-
tency and stability. International Journal for Numerical Methods in Engi-
neering, 44(8):1115–1155, 1999.

[DRI97] C.T. Dyka, P.W. Randles, and R.P. Ingel. Stress points for tension insta-
bility in sph. International Journal for Numerical Methods in Engineering,
40(13):2325–2341, 1997.

[DSB99] Mathieu Desbrun, Peter Schröder, and Alan H. Barr. Interactive animation
of structured deformable objects. In Graphics Interface ’99, 1999.

[DVS03] Carsten Dachsbacher, Christian Vogelgsang, and Marc Stamminger. Sequen-
tial point trees. In ACM Transactions on Graphics (SIGGRAPH 2003 Pro-
ceedings), pages 657–662. ACM Press, 2003.

[EFFM02] Douglas Enright, Ronald Fedkiw, Joel Ferziger, and Ian Mitchell. A hybrid
particle level set method for improved interface capturing. Journal of Com-
putational Physics, 183(1):83–116, 2002.

[EGS03] Olaf Etzmuss, Joachim Gross, and Wolfgang Strasser. Deriving a particle
system from continuum mechanics for the animation of deformable objects.

149

Bibliography

IEEE Transactions on Visualization and Computer Graphics, 9(4):538–550,
2003.

[ELF05a] Douglas Enright, Frank Losasso, and Ronald Fedkiw. A fast and accurate
semi-lagrangian particle level set. Computers and Structures, 83:479–490,
2005.

[ELF05b] Douglas Enright, Frank Losasso, and Ronald Fedkiw. A fast and accurate
semi-lagrangian particle level set method. In Computers and Structures, vol-
ume 83, pages 479–490, 2005.

[EMF02] Douglas Enright, Stephen Marschner, and Ronald Fedkiw. Animation and
rendering of complex water surfaces. In ACM Transactions on Graphics
(SIGGRAPH 2002 Proceedings), pages 736–744, 2002.

[ETK+05] S. Elcott, Y. Tong, E. Kanso, P. Schröder, and M. Desbrun. Discrete,
circulation-preserving, and stable simplicial fluids. Technical report, Cal-
tech, 2005.

[EWS96] Bernhard Eberhardt, Andreas Weber, and Wolfgang Strasser. A fast, flexi-
ble, particle-system model for cloth draping. IEEE Computer Graphics and
Applications, 16(5):52–59, 1996.

[FBF77] Jerome H. Freidman, Jon L. Bentley, and Raphael A. Finkel. An algorithm
for finding best matches in logarithmic expected time. ACM Transactions on
Mathematical Software, 3(3):209–226, 1977.

[FCOAS03] Shachar Fleishman, Daniel Cohen-Or, Marc Alexa, and Cláudio T. Silva.
Progressive point set surfaces. ACM Transactions on Graphics, 22(4):997–
1011, 2003.

[FCOS05] Shachar Fleishman, Daniel Cohen-Or, and Cláudio T. Silva. Robust mov-
ing least-squares fitting with sharp features. ACM Transactions on Graphics
(SIGGRAPH 2005 Proceedings), 24(3):544–552, 2005.

[FdH+87] Uriel Frisch, Dominique d’Humieres, Brosl Hasslacher, Pierre Lallemand,
Yves Pomeau, and Jean-Pierre Rivet. Lattice gas hydrodynamics in two and
three dimensions. Complex Systems, 1:649–707, 1987.

[Fed02] Ronald P. Fedkiw. Coupling an eulerian fluid calculation to a lagrangian solid
calculation with the ghost fluid method. Journal on Computational Physics,
175(1):200–224, 2002.

[FF01] Nick Foster and Ronald Fedkiw. Practical animation of liquids. In Computer
Graphics, SIGGRAPH 2001 Proceedings, pages 23–30, 2001.

150

Bibliography

[FGTV92] Luiz Henrique de Figueiredo, Jonas de Miranda Gomes, Demetri Terzopou-
los, and Luiz Velho. Physically-based methods for polygonization of implicit
surfaces. In Proceedings of the conference on Graphics interface ’92, pages
250–257, San Francisco, CA, USA, 1992. Morgan Kaufmann Publishers Inc.

[FLS63] R.P. Feynman, R.B. Leighton, and M. Sands. The Feynman Lectures on
Physics, volume 1. Addison-Wesley, 1963.

[FM96] Nick Foster and Dimitri Metaxas. Realistic animation of liquids. Graphical
Models and Image Processing, 58(5):471–483, 1996.

[FM97a] Nick Foster and Dimitri Metaxas. Controlling fluid animation. In Proceed-
ings of CGI ’97, pages 178–188, 1997. Winner of the Androme Award 1997.

[FM97b] Nick Foster and Dimitri Metaxas. Modeling the motion of a hot, turbulent
gas. In SIGGRAPH ’97, pages 181–188, 1997.

[FM03] Thomas-Peter Fries and Hermann G. Matthies. Classification and overview
of meshfree methods. Technical report, TU Brunswick, Germany Nr. 2003-
03, 2003.

[FMH04] S. Fernandez-Mendez and A. Huerta. Imposing essential boundary condi-
tions in mesh-free methods. Computer Methods in Applied Mechanics and
Engineering, 193:1257–1275, 2004.

[FOK05] Bryan E. Feldman, James F. O’Brien, and Bryan M. Klingner. Animating
gases with hybrid meshes. ACM Transactions on Graphics (SIGGRAPH
2005 Proceedings), 24(3), 2005.

[FOKG05] Bryan E. Feldman, James F. O’Brien, Bryan M. Klingner, and Tolga G. Gok-
tekin. Fluids in deforming meshes. In SCA ’05: Proceedings of the 2005
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages
255–259, New York, NY, USA, 2005. ACM Press.

[FPRJ00] Sarah F. Frisken, Ronald N. Perry, Alyn P. Rockwood, and Thouis R. Jones.
Adaptively sampled distance fields: A general representation of shape for
computer graphics. In Kurt Akeley, editor, Siggraph 2000, Computer Graph-
ics Proceedings, pages 249–254. ACM Press / ACM SIGGRAPH / Addison
Wesley Longman, 2000.

[FR86] Alain Fournier and William T. Reeves. A simple model of ocean waves. In
SIGGRAPH ’86, pages 75–84, New York, NY, USA, 1986. ACM Press.

[FSJ01] Ronald Fedkiw, Jos Stam, and Henrik W. Jensen. Visual simulation of smoke.
In SIGGRAPH ’01, pages 15–22, 2001.

[Fun94] Y.C. Fung. A First Course in Continuum Mechanics. Prentice-Hall, Engle-
wood Cliffs, N.J., third edition, 1994.

151

Bibliography

[GBO04] Tolga G. Goktekin, Adam W. Bargteil, and James F. O’Brien. A method for
animating viscoelastic fluids. ACM Transactions on Graphics (SIGGRAPH
2004 Proceedings), 23:463–468, 2004.

[GH04] S.T. Greenwood and D.H. House. Better with bubbles: enhancing the visual
realism of simulated fluid. In SCA ’04: Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 287–296,
New York, NY, USA, 2004.

[GHD03] Olivier Génevaux, Arash Habibi, and Jean-Michel Dischler. Simulating
fluid-solid interaction. In Graphics Interface, pages 31–38. CIPS, Canadian
Human-Computer Commnication Society, A K Peters, June 2003. ISBN 1-
56881-207-8, ISSN 0713-5424.

[GHDS03] Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Peter Schröder. Dis-
crete shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 62–67. Eurographics Associa-
tion, 2003.

[GJ01] R.J. Goozee and P.A. Jacobs. Distributed and shared memory parallelism
with a smoothed particle hydrodynamics code. In Proceedings of CTAC
2001, 2001.

[GKS02] E. Grinspun, P. Krysl, and P. Schröder. CHARMS: A simple framework for
adaptive simulation. In Proceedings of SIGGRAPH 2002, Computer Graph-
ics Proceedings, Annual Conference Series, pages 281–290. ACM, ACM
Press / ACM SIGGRAPH, 2002.

[GM77] R.A. Gingold and J.J. Monaghan. Smoothed particle hydrodynamics - theory
and application to non-spherical stars. Royal Astronomical Society, Monthly
Notices, 181:375–389, 1977.

[GM78] R.A. Gingold and J.J. Monaghan. Binary fission in damped rotating poly-
tropes. Monthly Notices of the Royal Astronomical Society, 184:481–499,
1978.

[GM95] Leonidas J. Guibas and David H. Marimont. Rounding arrangements dy-
namically. In SCG ’95: Proceedings of the eleventh annual symposium on
Computational geometry, pages 190–199. ACM Press, 1995.

[GMS01] J.P. Gray, J.J. Monaghan, and R.P. Swift. Sph elastic dynamics. Computer
Methods in Applied Mechanics and Engineering, 190(49):6641–6662, 2001.

[Gos90] Michael E. Goss. Motion simulation: A real time particle system for display
of ship wakes. IEEE Comput. Graph. Appl., 10(3):30–35, 1990.

[GP06] Markus Gross and Hanspeter Pfister. Point-Based Graphics. 2006. to appear.

152

Bibliography

[GSLF05] Eran Guendelman, Andrew Selle, Frank Losasso, and Ronald Fedkiw. Cou-
pling water and smoke to thin deformable and rigid shells. ACM Transactions
on Graphics (SIGGRAPH 2005 Proceedings), 24(3):973–981, 2005.

[Hah88] J.K. Hahn. Realistic animation of rigid bodies. In Proceedings of the 15th
annual conference on Computer graphics and interactive techniques, pages
299–308. ACM Press, 1988.

[Har63] F.H. Harlow. The particle-in-cell method for numerical solution of problems
in fluid dynamics. Experimental arithmetic, high-speed computations and
mathematics, 1963.

[HCM06] Kyle Hegeman, Nathan A. Carr, and Gavin S.P. Miller. Particle-based fluid
simulation on the gpu. In Vassil N. Alexandrov, Geert D. van Albada, Pe-
ter M.A. Sloot, and Jack Dongarra, editors, Computational Science – ICCS
2006, volume 3994 of LNCS, pages 228–235. Springer, 2006.

[HDD+92] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner
Stuetzle. Surface reconstruction from unorganized points. Computer Graph-
ics (Proceedings of SIGGRAPH 92), 26(2):71–78, July 1992.

[Hec97] Paul S. Heckbert. Fast surface particle repulsion. Technical report, CMU
Computer Science, 1997.

[HES03] Michael Hauth, Olaf Etzmuss, and Wolgang Straßer. Analysis of numerical
methods for the simulation of deformable models. The Visual Computer,
19:581–600, December 2003.

[HK03] Jeong-Mo Hong and Chang-Hun Kim. Animation of bubbles in liquid. Com-
puter Graphics Forum, 22(3), 2003.

[HK05a] Simone E. Hieber and Petros Koumoutsakos. A lagrangian particle level set
method. Journal of Computational Physics, 210(1):342–367, nov 2005.

[HK05b] Jeong-Mo Hong and Chang-Hun Kim. Discontinuous fluids. ACM Transac-
tions on Graphics (Proceedings of SIGGRAPH 2005), 24(3):915–920, 2005.

[HMT01] S. Hadap and N. Magnenat-Thalmann. Modeling dynamic hair as contin-
uum. Computer Graphics Forum (Proceedings of Eurographics 2001), 20(3),
2001.

[HN81] C.W. Hirt and B.D. Nichols. Volume of fluid (vof) method for the dynamics
of free boundaries. Journal of Computational Physics, 39:201–225, 1981.

[HNB+05] Ben Houston, Michael B. Nielsen, Christopher Batty, Ola Nilsson, and Ken
Museth. Gigantic deformable surfaces. In Proceedings of the SIGGRAPH
2005 on Sketches & Applications, New York, NY, USA, 2005. ACM Press.

153

Bibliography

[HNB+06] Ben Houston, Michael B. Nielsen, Christopher Batty, Ola Nilsson, and Ken
Museth. Hierarchical rle level set: A compact and versatile deformable sur-
face representation. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH 2006), 25(1):151–175, 2006.

[Hop94] Hugues Hoppe. Surface reconstruction from unorganized points. PhD thesis,
Department of Computer Science and Engineering, University of Washing-
ton, June 1994.

[Hop96] Hugues Hoppe. Progressive meshes. In SIGGRAPH ’96: Proceedings of the
23rd annual conference on Computer graphics and interactive techniques,
pages 99–108, New York, NY, USA, 1996. ACM Press.

[HPH96] D. Hutchinson, M. Preston, and T. Hewitt. Adaptive refinement for
mass/spring simulations. In Proceedings of the Eurographics workshop on
Computer animation and simulation ’96, pages 31–45, New York, NY, USA,
1996. Springer-Verlag New York, Inc.

[HSIW96] A. Hilton, A. Stoddart, J. Illingworth, and T. Windeatt. Marching triangles:
Range image fusion for complex object modeling. In International Confer-
ence on Image Processing, 1996.

[HTG04] Bruno Heidelberger, Matthias Teschner, and Markus Gross. Detection of col-
lisions and self-collisions using image-space techniques. Journal of WSCG,
12:145–152, 2004.

[HTK98] Koichi Hirota, Yasuyuki Tanoue, and Toyohisa Kaneko. Generation of crack
patterns with a physical model. The Visual Computer, 14:126–137, 1998.

[HTK+04] Bruno Heidelberger, Matthias Teschner, Richard Keiser, Matthias Müller,
and Markus Gross. Consistent penetration depth estimation for deformable
collision response. In Proceedings of Vision, Modeling, Visualization
VMV’04, pages 339–346, 2004.

[Hun05] Peter Hunter. FEM/BEM Notes. University of Oakland, New Zealand, 2005.
http://www.bioeng.auckland.ac.nz/cmiss/fembemnotes/fembemnotes.pdf.

[HWB04] Ben Houston, Mark Wiebe, and Christopher Batty. Rle sparse level sets. In
Proceedings of the SIGGRAPH 2004 on Sketches & Applications, New York,
NY, USA, 2004. ACM Press.

[HXP01] X. Han, C. Xu, and J. Prince. A topology preserving deformable model
using level sets. In Computer Vision and Pattern Recognition Proceedings
01, pages 765–770, 2001.

154

Bibliography

[IGLF06] Geoffrey Irving, Eran Guendelman, Frank Losasso, and Ronald Fedkiw. Ef-
ficient simulation of large bodies of water by coupling two and three di-
mensional techniques. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH 2006), 25(3):805–811, 2006.

[IMT99] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: a sketching
interface for 3d freeform design. In SIGGRAPH ’99: Proceedings of the
26th annual conference on Computer graphics and interactive techniques,
pages 409–416, New York, NY, USA, 1999. ACM Press/Addison-Wesley
Publishing Co.

[ITF04] G. Irving, J. Teran, and R. Fedkiw. Invertible finite elements for robust
simulation of large deformation. In Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 131–140.
ACM Press, 2004.

[JLSW02] Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. Dual contouring of
hermite data. ACM Transactions on Graphics (Proceedings of SIGGRAPH
2002), 21(3):339–346, 2002.

[JP99] Doug L. James and Dinesh K. Pai. ArtDefo: accurate real time deformable
objects. In SIGGRAPH ’99: Proceedings of the 26th annual conference on
Computer graphics and interactive techniques, pages 65–72, New York, NY,
USA, 1999. ACM Press/Addison-Wesley Publishing Co.

[JP02] Doug L. James and Dinesh K. Pai. Real time simulation of multizone elas-
tokinematic models. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 927–932, 2002.

[JP03] Doug L. James and Dinesh K. Pai. Multiresolution green’s function meth-
ods for interactive simulation of large-scale elastostatic objects. ACM Trans.
Graph., 22(1):47–82, 2003.

[JP04] Doug L. James and Dinesh K. Pai. Bd-tree: output-sensitive collision detec-
tion for reduced deformable models. ACM Transactions on Graphics (SIG-
GRAPH 2004 Proceedings), 23(3):393–398, 2004.

[KAG+05] Richard Keiser, Bart Adams, Dominique Gasser, Paolo Bazzi, Philip Dutré,
and Markus Gross. A unified lagrangian approach to solid-fluid animation.
In Proceedings of the Eurographics Symposium on Point-Based Graphics,
pages 125–148, 2005.

[KAG+06] Richard Keiser, Bart Adams, Leonidas J. Guibas, Philip Dutré, and Mark
Pauly. Multiresolution particle-based fluids. CS Technical Report 520, Com-
puter Science Department, ETH Zurich, Switzerland, 2006.

155

Bibliography

[Kal89] Y.E. Kalay. The hybrid edge: a topological data structure for vertically inte-
grated geometric modelling. Computer Aided Design, 21(3):130–140, 1989.

[Kau87] A. Kaufman. Efficient algorithms for 3d scanconversion of parametric
curves, surfaces, and volumes. In Computer Graphics, SIGGRAPH 87 Pro-
ceedings, pages 171–179, 1987.

[KB03] Leif Kobbelt and Mario Botsch. Freeform shape representations for efficient
geometry processing. smi, 00:111, 2003.

[KBLRP00] S. Kulasegaram, J. Bonet, T.-S.L. Lok, and M. Rodriguez-Paz. Corrected
smooth particle hydrodynamics - a meshless method for compoutational me-
chanics. Technical report, EC-COMAS, 2000.

[KBSS01] Leif Kobbelt, Mario Botsch, Ulrich Schwanecke, and Hans-Peter Seidel.
Feature sensitive surface extraction from volume data. In Computer Graph-
ics, SIGGRAPH 2001 Proceedings, pages 57–66, 2001.

[KCC+06] Janghee Kim, Deukhyun Cha, Byungjoon Chang, Bonki Koo, and Insung
Ihm. Practical animation of turbulent splashing water. In Proceedings of the
2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
ACM Press, 2006. To appear.

[Kei03] Richard Keiser. Collision detection and response for interactive editing of
point-sampled models. Master’s thesis, ETH, Zürich, Switzerland, 2003.

[KFCO06] Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and James F.
O’Brien. Fluid animation with dynamic meshes. ACM Transactions on
Graphics (SIGGRAPH 2006 Proceedings), August 2006. to appear.

[KH02] Olga Karpenko and John F. Hughes. Free-form sketching with variational
implicit surfaces. Computer Graphics Forum, 21(3), 2002.

[KH06] Olga A. Karpenko and John F. Hughes. Smoothsketch: 3d free-form shapes
from complex sketches. ACM Transactions on Graphics, 25(3):589–598,
2006.

[KLLR05] ByungMoon Kim, Yingjie Liu, Ignacio Llamas, and Jarek Rossignac. Flow-
fixer: Using bfecc for fluid simulation. Eurographics Workshop on Natural
Phenomena, pages 51–56, 2005.

[KM90] Michael Kass and Gavin Miller. Rapid, stable fluid dynamics for computer
graphics. In SIGGRAPH ’90: Proceedings of the 17th annual conference on
Computer graphics and interactive techniques, pages 49–57, New York, NY,
USA, 1990. ACM Press.

156

Bibliography

[KMH+04] Richard Keiser, Matthias Müller, Bruno Heidelberger, Matthias Teschner,
and Markus Gross. Contact handling for deformable point-based objects. In
Proceedings of Vision, Modeling, Visualization (VMV) ’04, pages 339–347,
November 2004.

[Kou05] Petros Koumoutsakos. Multiscale flow simulations using particles. Annu.
Rev. Fluid Mech., 37, 2005.

[KTO95] S. Koshizuka, H. Tamako, and Y. Oka. A particle method for incompressible
viscous flow with fluid fragmentation. Computational Fluid Dynamics, 4:29–
46, 1995.

[KTO96] S. Koshizuka, H. Tamako, , and Y. Oka. A particle method for incompress-
ible viscous flow with fluid fragmentation. Journal of Computational Fluid
Dynamics, 29, 1996.

[KWT88] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active contour models.
International Journal of Computer Vision, 1(4):321–331, 1988.

[KYT+06] Liliya Kharevych, Weiwei Yang, Yiying Tong, Mathieu Desbrun, Peter
Schroeder, Eva Kanso, and Jerrold E. Marsden. Geometric, variational in-
tegrators for computer animation. In Proceedings of the 2006 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. ACM Press,
2006. To appear.

[KZ04] J. Klein and G. Zachmann. Point cloud collision detection. Computer Graph-
ics Forum (Proceedings of EUROGRAPHICS), 23:567–576, 2004.

[LC87] William Lorensen and Harvey Cline. Marching Cubes: A High Resolution
3D Surface Reconstruction Algorithm. In Computer Graphics Vol. 21, No.
4, pages 163–169, August 1987.

[Lev98] David Levin. The approximation power of moving least-squares. Math.
Comput., 67(224):1517–1531, 1998.

[Lev01] David Levin. Mesh-independent surface interpolation. In Advances in Com-
putational Mathematics, 2001.

[Lev04] David Levin. Mesh-independent surface interpolation. In Guido Brunnett,
Bernd Hamann, Heinrich Müller, and Lars Linsen, editors, Geometric Mod-
eling for Scientific Visualization. Springer, 2004.

[LFDL98] J. Lasenby, W.J. Fitzgerald, C.J.L. Doran, and A.N. Lasenby. New geometric
methods for computer vision – an application to structure and motion esti-
mation. International Journal of Computer Vision, 26(3):191–213, 1998.

157

Bibliography

[LFO05] Frank Losasso, Ronald Fedkiw, and Stanley Osher. Spatially adaptive tech-
niques for level set methods and incompressible flow. Computers and Fluids,
2005.

[LGF04] Frank Losasso, Frederic Gibou, and Ronald Fedkiw. Simulating water and
smoke with an octree data structure. ACM Trans. Graph., 23(3):457–462,
2004.

[LH06] Sylvain Lefebvre and Hugues Hoppe. Perfect spatial hashing. ACM Transac-
tions on Graphics (SIGGRAPH 2006 Proceedings), August 2006. to appear.

[LIGF06] Frank Losasso, Geoffrey Irving, Eran Guendelman, and Ron Fedkiw. Melt-
ing and burning solids into liquids and gases. IEEE Transactions on Visual-
ization and Computer Graphics, 12(3):343–352, 2006.

[Lin01] Lars Linsen. Point cloud representation. Technical Report 2001-3, Faculty
for Computer Science, Universität Karlsruhe, 2001.

[Liu02a] G. R. Liu. Mesh-Free Methods. CRC Press, 2002.

[Liu02b] I-Shih Liu. Continuum Mechanics. Springer-Verlag, Berlin, 2002.

[LL86] L.D. Landau and E.M. Lifshitz. Theory of elasticity. Pergamon Press, Ox-
ford, 1986.

[LL87] L.D. Landau and E.M. Lifshitz. Fluid Mechanics: Course of Theoretical
Physics, volume 6. Butterworth-Heineman, 2nd edition, 1987.

[LL02] S. Li and W.K. Liu. Meshfree and particle methods and their applications.
Appl. Mech. Rev., 55:1–34, 2002.

[LL03] G.R. Liu and M.B. Liu. Smoothed Particle Hydrodynamics, A Meshfree Par-
ticle Method. World Scientific Publishing, 2003.

[LM54] P.D. Lax and A.N. Milgram. Parabolic equations. Annals of mathematics
studies, 33:167–190, 1954.

[Lov27] A.E.H. Love. A Treatise on the Mathematical Theory of Elasticity. Cam-
bridge University Press, 1927.

[LPC+93] Larry D. Libersky, Albert G. Petschek, Theodore C. Carney, Jim R. Hipp,
and Firooz A. Allahdadi. High strain lagrangian hydrodynamics: a three-
dimensional sph code for dynamic material response. Journal of Computa-
tional Physics, 109(1):67–75, 1993.

[LRK93] W. Michael Lai, David Rubin, and Erhard Krempl. Introduction to Contin-
uum Mechanics. Pergamon Press, Headington Hill Hall, Oxford, England,
1993.

158

Bibliography

[LSSF06] Frank Losasso, Tamar Shinar, Andrew Selle, and Ronald Fedkiw. Multiple
interacting liquids. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH 2006), 25(3):812–819, 2006.

[Luc77] L.B. Lucy. A numerical approach to the testing of the fission hypothesis. The
Astronomical Journal, 82(12):1013–1024, 1977.

[LV05] Ling Li and Vasily Volkov. Cloth animation with adaptively refined meshes.
In ACSC ’05: Proceedings of the Twenty-eighth Australasian conference on
Computer Science, pages 107–113, Darlinghurst, Australia, Australia, 2005.
Australian Computer Society, Inc.

[LW77] D.T. Lee and C.K. Wong. Worst-case analysis for region and partial region
searches in multidimensional binary search trees and balanced quad trees.
Acta Informatica, 9(1):23 – 29, March 1977.

[MBF04] Neil Molino, Zhaosheng Bao, and Ron Fedkiw. A virtual node algorithm for
changing mesh topology during simulation. ACM Transactions on Graphics
(SIGGRAPH 2004 Proceedings), 23(3):385–392, 2004.

[MC95] B. Mirtich and J. Canny. Impulse-based simulation of rigid bodies. In Pro-
ceedings of the 1995 symposium on Interactive 3D graphics, pages 181–188.
ACM Press, 1995.

[MCG03] Matthias Müller, David Charypar, and Markus Gross. Particle-based fluid
simulation for interactive applications. In SCA ’03: Proceedings of the 2003
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages
154–159. Eurographics Association, 2003.

[McM06] Steve McMillan. Computational physics course notes, 2006. [Online; ac-
cessed 3-August-2006].

[MDM+02] Matthias Müller, Julie Dorsey, Leonard McMillan, Robert Jagnow, and Bar-
bara Cutler. Stable real-time deformations. In Proceedings of the 2002 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pages 49–
54, New York, NY, USA, 2002. ACM Press.

[MF] Emud Mokhberi and Petros Faloutsos. An implementation of a parti-
cle level set library. http://www.magix.ucla.edu/software/
levelSetLibrary/.

[MG04] Matthias Müller and Markus Gross. Interactive virtual materials. In Proceed-
ings of the 2004 conference on Graphics Interface, pages 239–246. Canadian
Human-Computer Communications Society, 2004.

[MHTG05] Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross.
Meshless deformations based on shape matching. ACM Transactions on
Graphics (SIGGRAPH 2005 Proceedings), 24(3):471–478, 2005.

159

Bibliography

[MHW05] Joseph J. Monaghan, Herbert E. Huppert, and M. Grae Worster. Solidifi-
cation using smoothed particle hydrodynamics. Journal of Computational
Physics, 206(2):684–705, 2005.

[Mil88] Gavin S.P. Miller. The motion dynamics of snakes and worms. In SIG-
GRAPH ’88, pages 169–173, New York, NY, USA, 1988. ACM Press.

[MKN+04] Matthias Müller, Richard Keiser, Andrew Nealen, Mark Pauly, Markus
Gross, and Marc Alexa. Point based animation of elastic, plastic and melting
objects. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation, pages 141–151. ACM Press, 2004.

[MLM+05] U. Meiser, O. Lopez, C. Monserrat, M.C. Juan, and M. Alcaniz. Real-time
deformable models for surgery simulation: a survey. Computer Methods and
Programs in Biomedicine, 77:183–197, 2005.

[MMDJ01] Matthias Müller, Leonard McMillan, Julie Dorsey, and Robert Jagnow. Real-
time simulation of deformation and fracture of stiff materials. In Proceedings
of the Eurographic workshop on Computer animation and simulation, pages
113–124, New York, NY, USA, 2001. Springer-Verlag New York, Inc.

[MMS04] Viorel Mihalef, Dimitris Metaxas, and Mark Sussman. Animation and con-
trol of breaking waves. In SCA ’04: Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 315–324,
New York, NY, USA, 2004. ACM Press.

[Mon82] J.J. Monaghan. Why particle methods work. SIAM Journal on Scientific and
Statistical Computing, 3:422–433, 1982.

[Mon92] J.J. Monaghan. Smoothed particle hydrodynamics. Annu. Rev. Astron. and
Astrophysics, 30:543–574, 1992.

[Mon94] J.J. Monaghan. Simulating free surface flows with SPH. Journal on Compu-
tational Physics, 110(2):399–406, 1994.

[Mon00] J.J. Monaghan. Sph without a tensile instability. Journal of Computational
Physics, 159(2):290–311, 2000.

[Mon05] J.J. Monaghan. Smoothed particle hydrodynamics. Rep. Prog. Phys.,
68:1703–1758, 2005.

[Mor00] J.P. Morris. Simulating surface tension with smoothed particle hydrodynam-
ics. International Journal for Numerical Methods in Fluids, 33(3):333–353,
2000.

[Mou05] D. Mount. Ann programming manual, 2005.

160

Bibliography

[MP89] Gavin Miller and Andrew Pearce. Globular dynamics: A connected particle
system for animating viscous fluids. Computers and Graphics, 13(3):305–
309, 1989.

[MSHG04] Matthias Müller, Simon Schirm, Bruno Heidelberger, and Markus Gross. In-
teraction of fluids with deformable solids. In Computer Animation and Vir-
tual Worlds (CAVW), pages 159–171, 2004.

[MSKG05] Matthias Müller, Barbara Solenthaler, Richard Keiser, and Markus Gross.
Particle-based fluid-fluid interaction. In Proceedings of the 2005 ACM SIG-
GRAPH/EurographicsSymposium on Computer Animation, pages 237–244,
New York, NY, USA, 2005. ACM Press.

[MTG04] Matthias Müller, Matthias Teschner, and Markus Gross. Physically-based
simulation of objects represented by surface meshes. In CGI ’04: Proceed-
ings of the Computer Graphics International (CGI’04), pages 26–33, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[MV96] B.B. Moussa and J.P. Vila. Convergence of sph method for scalar nonlinear
conservation laws. SIAM Journal on Applied Mathemathics, 37:863–887,
1996.

[MW88] M. Moore and J. Wilhelms. Collision detection and response for computer
animation. In Proceedings of the 15th annual conference on Computer
graphics and interactive techniques, pages 289–298. ACM Press, 1988.

[NFJ02] Duc Quang Nguyen, Ronald Fedkiw, and Henrik Wann Jensen. Physically
based modeling and animation of fire. In Proceedings of the 29th annual
conference on Computer graphics and interactive techniques, pages 721–
728. ACM Press, 2002.

[NMK+06] Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxermann, and
Mark Carlson. Physically based deformable models in computer graphics.
Computer Graphics Forum, 25(4), 2006. To appear.

[NP00] S. Nugent and H.A. Posch. Liquid drops and surface tension with smoothed
particle applied mechanics. Phys. Rev. E, 62(4):4968–4975, October 2000.

[NSACO05] Andrew Nealen, Olga Sorkine, Marc Alexa, and Daniel Cohen-Or. A sketch-
based interface for detail-preserving mesh editing. ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2005), 24(3):1142–1147, 2005.

[OBH02a] James F. O’Brien, Adam W. Bargteil, and Jessica K. Hodgins. Graphical
modeling and animation of ductile fracture. ACM Transactions on Graphics
(SIGGRAPH 2002 Proceedings), pages 291–294, 2002.

161

Bibliography

[OBH02b] J.F. O’Brien, A.W. Bargteil, and J.K. Hodgins. Graphical modeling and an-
imation of ductile fracture. In Proceedings of SIGGRAPH 2002, Computer
Graphics Proceedings, Annual Conference Series, pages 291–294. ACM,
ACM Press / ACM SIGGRAPH, 2002.

[OC97] Agata Opalach and Marie-Paule Cani. Local deformations for animation of
implicit surfaces. In Wolfgang Strasser, editor, 13th Spring Conference on
Computer Graphics, pages 85–92, 1997.

[OF02] J.S. Osher and R.P. Fedkiw. Level Set Methods and Dynamic Implicit Sur-
faces. Springer, 2002.

[OF03] S. Osher and R. Fedkiw. The Level Set Method and Dynamic Implicit Sur-
faces. Springer-Verlag, New York, 2003.

[OFL01] D. O’Brien, S. Fisher, and M.C. Lin. Automatic simplification of particle
system dynamics. In Computer Animation 2001, 2001.

[OFTB96] D. Organ, M. Fleming, T. Terry, and T. Belytschko. Continuous meshless
approximations for nonconvex bodies by diffraction and transparency. Com-
putational Mechanics, 18:1–11, 1996.

[OH95] J. F. O’Brien and J. K. Hodgins. Dynamic simulation of splashing fluids. In
CA ’95: Proceedings of the Computer Animation, page 198, 1995.

[OH99] James F. O’Brien and Jessica K. Hodgins. Graphical modeling and anima-
tion of brittle fracture. In Computer Graphics, SIGGRAPH 99 Proceedings,
pages 287–296. ACM, ACM Press / ACM SIGGRAPH, 1999.

[OP99] M. Ortiz and A. Pandolfi. Finite-deformation irreversible cohesive elements
for three-dimensional crack-propagation analysis. International Journal for
Numerical Methods in Engineering, 44:1267–1282, 1999.

[OS88] Stanley Osher and James A. Sethian. Fronts propagating with curvature-
dependent speed: algorithms based on Hamilton–Jacobi formulations. Jour-
nal of Computational Physics, 79:12–49, 1988.

[Paj05] Renato Pajarola. Stream-processing points. In Proceedings IEEE Visualiza-
tion, pages 239–246. Computer Society Press, 2005.

[Pau03] Mark Pauly. Point Primitives for Interactive Modeling and Processing of 3D
Geometry. PhD thesis, Department of Computer Science, ETH Zürich, 2003.

[PB81] Stephen M. Platt and Norman I. Badler. Animating facial expressions. In
SIGGRAPH ’81, pages 245–252, New York, NY, USA, 1981. ACM Press.

[Pea86] Darwyn R. Peachey. Modeling waves and surf. In SIGGRAPH ’86, pages
65–74, New York, NY, USA, 1986. ACM Press.

162

Bibliography

[PG01] Mark Pauly and Markus Gross. Spectral processing of point-sampled geom-
etry. In Computer Graphics, SIGGRAPH 2001 Proceedings, pages 379–386.
ACM Press, 2001.

[PGK02] Mark Pauly, Markus Gross, and Leif Kobbelt. Efficient simplification of
point-sampled surfaces. In Proceedings of the conference on Visualization
’02, pages 163–170, 2002.

[PKA+05] Mark Pauly, Richard Keiser, Bart Adams, Philip Dutré, Markus Gross, and
Leonidas J. Guibas. Meshless animation of fracturing solids. ACM Transac-
tions on Graphics (SIGGRAPH 2005 Proceedings), 24(3):957–964, 2005.

[PKG03] Mark Pauly, Richard Keiser, and Markus Gross. Multi-scale feature extrac-
tion on point-sampled surfaces. Computer Graphics Forum (Eurographics
2003 Proceedings), 22(3):281–290, 2003.

[PKKG03] Mark Pauly, Richard Keiser, Leif P. Kobbelt, and Markus Gross. Shape mod-
eling with point-sampled geometry. ACM Transactions on Graphics (SIG-
GRAPH 2003 Proceedings), 22(3):641–650, 2003.

[PM85] G.J. Phillips and J.J. Monaghan. A numerical method for three-dimensional
simulations of collapsing, isothermal, magnetic gas clouds. Monthly Notices
of the Royal Astronomical Society, 216:883–895, October 1985.

[PPG04] Mark Pauly, Dinesh K. Pai, and Leonidas J. Guibas. Quasi-rigid objects in
contact. In In Proceedings of the ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, pages 109–119. ACM Press, 2004.

[PTB+03] Simon Premoze, Tolga Tasdizen, James Bigler, Aaron Lefohn, and Ross T.
Whitaker. Particle-based simulation of fluids. In Proceedings of Eurograph-
ics 2003, pages 401–410, 2003.

[PTVF92] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes in C - The Art of Scientific Computing. Cam-
bridge University Press, 2nd edition, 1992.

[Ree83] W.T. Reeves. Particle systems – a technique for modeling a class of fuzzy
objects. ACM Transactions on Graphics, 2(2):91–108, 1983.

[REN+04] N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner, W. Geiger,
S. Hoon, and R. Fedkiw. Directable photorealistic liquids. In SCA ’04: Pro-
ceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, New York, NY, USA, 2004.

[Rey87] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral
model. In SIGGRAPH ’87, pages 25–34, New York, NY, USA, 1987. ACM
Press.

163

Bibliography

[Rhe98] W. Rheinboldt. Methods for solving systems of nonlinear equations. In
CBMS-NSF regional conference series in applied mathematics, volume 70,
1998.

[Rob81] John T. Robinson. The k-d-b-tree: A search structure for large multidimen-
sional dynamic indexes. In SIGMOD Conference, pages 10–18, 1981.

[RS72] Michael Reed and Barry Simon. Methods of Modern Mathematical Physics
I: Functional Analysis. Academic Press, London, San Diego, 1972.

[SAB+99] M. Sussman, A. Almgren, J Bell, P. Colella, L. Howell, and M. Welcome.
An adaptive level set approach for incompressible two-phase flows. Journal
of Computational Physics, 148, 1999.

[SAC+99] Dan Stora, Pierre-Olivier Agliati, Marie-Paule Cani, Fabrice Neyret, and
Jean-Dominique Gascuel. Animating lava flows. In Proceedings of Graphics
Interface, pages 203–210, 1999.

[Sam89] Hanan Samet. The Design and Analysis of Spatial Data Structures. Addison
Wesley, Reading, Massachusetts, 1989.

[Sam05] Hanan Samet. Foundations of Multidimensional and Metric Data Structures.
Morgan Kaufmann, 2005. ISBN 0-12-369446-9.

[Set96] James A. Sethian. A fast marching level set method for monotonically ad-
vancing fronts. In Proceedings of the National Academy of Science, pages
1591–1595, 1996.

[Set99] James A. Sethian. Level Set Methods and Fast Marching Methods. Cam-
bridge University Press, 1999.

[SF95] Jos Stam and Eugene Fiume. Depicting fire and other gaseous phenomena
using diffusion processes. In SIGGRAPH ’95, pages 129–136, New York,
NY, USA, 1995. ACM Press.

[SHA95] J.W. Swegle, D.L. Hicks, and S.W. Attaway. Smoothed particle hydrodynam-
ics stability analysis. Journal of Computational Physics, 116(1):123–134,
1995.

[Sig06] Christian Sigg. Representation and Rendering of Implicit Surfaces. PhD
thesis, Federal Institute of Technology (ETH) of Zurich, March 2006.

[Sim90] Karl Sims. Particle animation and rendering using data parallel computation.
In SIGGRAPH ’90, pages 405–413, New York, NY, USA, 1990. ACM Press.

[SOG06] Denis Steinemann, Miguel A. Otaduy, and Markus Gross. Fast arbitrary
splitting of deforming objects. In SCA ’06: Proceedings of the 2006 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, 2006. To
appear.

164

Bibliography

[SP00] M. Sussman and E.G. Puckett. A coupled level set and volume of fluid
method for computing 3d and axisymmetric incompressible two-phase flows.
Journal of Computational Physics, 162:301–337, 2000.

[SPG03] Christian Sigg, Ronald Peikert, and Markus Gross. Signed distance trans-
form using graphics hardware. In VIS ’03: Proceedings of the 14th IEEE
Visualization 2003 (VIS’03), page 12, Washington, DC, USA, 2003. IEEE
Computer Society.

[SRF05] Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. A vortex particle
method for smoke, water and explosions. ACM Transactions on Graphics
(SIGGRAPH 2005 Proceedings), 24(3):910–914, 2005.

[SSK05] Oh-Young Song, Hyuncheol Shin, and Hyeong-Seok Ko. Stable but nondis-
sipative water. ACM Transactions on Graphics, 24(1):81–97, 2005.

[ST92] Richard Szeliski and David Tonnesen. Surface modeling with oriented parti-
cle systems. Computer Graphics, 26(2):185–194, 1992.

[Sta99] Jos Stam. Stable fluids. In SIGGRAPH ’99, pages 121–128, 1999.

[Str99] John Strain. Semi-lagrangian methods for level set equations. J. Comput.
Phys., 151(2):498–533, 1999.

[Suc01] S. Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond.
Oxford University Press, 2001.

[Sus03] M. Sussman. A second order coupled level set and volume-of-fluid method
for computing growth and collapse of vapor bubbles. Journal of Computa-
tional Physics, 187(1):110–136, 2003.

[SW02] S. Schaefer and J. Warren. Dual contouring: "the secret sauce". Technical
report, Rice University, 2002.

[SWB00] Jeffrey Smith, Andrew Witkin, and David Baraff. Fast and controllable simu-
lation of the shattering of brittle objects. In Graphics Interface, pages 27–34,
May 2000.

[SY04] L. Shi and Y. Yu. Visual smoke simulation with adaptive octree refinement.
In Computer Graphics and Imaging, 2004.

[SY05] Lin Shi and Yizhou Yu. Taming liquids for rapidly changing targets. In SCA
’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, pages 229–236, New York, NY, USA, 2005. ACM
Press.

165

Bibliography

[TBHF03] J. Teran, S. Blemker, V. Ng Thow Hing, and R. Fedkiw. Finite volume meth-
ods for the simulation of skeletal muscle. In SCA ’03: Proceedings of the
2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
pages 68–74. Eurographics Association, 2003.

[TF88] Demetri Terzopoulos and Kurt Fleischer. Modeling inelastic deformation:
viscolelasticity, plasticity, fracture. In Computer Graphics, SIGGRAPH 88
Proceedings, pages 269–278. ACM Press, 1988.

[TFK+03] Tsunemi Takahashi, Hiroko Fujii, Atsushi Kunimatsu, Kazuhiro Hiwada,
Takahiro Saito, Ken Tanaka, and Heihachi Ueki. Realistic animation of fluid
with splash and foam. Journal of Computer Graphics (Proceedings of Euro-
graphics 2003), 22(3):391–400, September 2003.

[THM+03] M. Teschner, B. Heidelberger, M. Müller, D. Pomeranerts, and M. Gross.
Optimized spatial hashing for collision detection of deformable objects. In
Proceedings of Vision, Modeling, Visualization VMV, pages 47–54, 2003.

[THMG04] Matthias Teschner, Bruno Heidelberger, Matthias Müller, and Markus Gross.
A versatile and robust model for geometrically complex deformable solids.
In Proceedings of Computer Graphics International (CGI), pages 312–319,
Jun 2004.

[Thü06] Nils Thürey. Fluid simulation with blender. Dr. Dobb’s Journal, January
2006.

[TKH+05] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi,
A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnetat-Thalmann, W. Strasser, and
P. Volino. Collision detection for deformable objects. Computer Graphics
Forum, 24(1):61–81, March 2005.

[TKPR06] Nils Thürey, Richard Keiser, Mark Pauly, and Ulrich Rüde. Detail-preserving
fluid control. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. ACM Press, 2006. To appear.

[TKR05] Nils Thürey, Carolin Körner, and Ulrich Rüde. Interactive free surface fluids
with the lattice boltzmann method. Technical Report 05–4, Computer Sci-
ence Department, Friedrich-Alexander-Universitä Erlangen-Nürnberg, 2005.

[TNY85] H. Takewaki, A. Nishiguchi, and T. Yabe. The cubic-interpolated pseudo-
particle (cip) method for solving hyperbolic-type equations. Journal of Com-
putational Physics, 61, 1985.

[Ton91] David Tonnesen. Modeling liquids and solids using thermal particles. In
Graphics Interface, pages 255–262, June 1991.

166

Bibliography

[Ton92] David Tonnesen. Spatially coupled particle systems. In SIGGRAPH 92
Course 16 notes: Particle System Modeling, Animation, and Physically
Based Techniques, pages 4.1–4.21, 1992.

[Ton98] David Tonnesen. Dynamically Coupled Particle Systems for Geometric Mod-
eling, Reconstruction, and Animation. PhD thesis, University of Toronto,
November 1998.

[TPBF87] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elastically
deformable models. In Computer Graphics, SIGGRAPH 87 Proceedings,
pages 205–214, July 1987.

[TPF89] Demetri Terzopoulos, John Platt, and Kurt Fleischer. Heating and melting
deformable models (from goop to glop). In Graphics Interface ’89, pages
219–226, 1989.

[TR04] Nils Thürey and Ulrich Rüde. Free surface lattice-boltzmann fluid simula-
tions with and without level sets. In Proceedings of Vision, Modeling, and
Visualization (VMV), pages 199–208. IOS Press, 2004.

[TRS06] Nils Thürey, Ulrich Rüde, and Marc Stamminger. Animation of open water
phenomena with coupled shallow water and free surface simulations. In Pro-
ceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation. ACM Press, 2006. To appear.

[TSIF05] Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. Robust
quasistatic finite elements and flesh simulation. In SCA ’05: Proceedings of
the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Anima-
tion, pages 181–190, New York, NY, USA, 2005. ACM Press.

[TT94] Xiaoyuan Tu and Demetri Terzopoulos. Artificial fishes: physics, locomo-
tion, perception, behavior. In SIGGRAPH ’94, pages 43–50, New York, NY,
USA, 1994. ACM Press.

[TW88] Demetri Terzopoulos and Andrew Witkin. Physically based models with
rigid and deformable components. IEEE Computer Graphics and Applica-
tions, 8(6):41–51, 1988.

[TW90] D. Terzopoulos and K. Waters. Physically-based facial modeling, analysis,
and animation. Journal of Visualization and Computer Animation, 1(1):73–
80, 1990.

[TY87] Hideaki Takewaki and Takasi Yabe. The cubic-interpolated pseudo parti-
cle (cip) method: application to nonlinear and multi-dimensional hyperbolic
equations. Journal of Computational Physics, 70(2):355–372, 1987.

[van97] Gino van den Bergen. Efficient collision detection of complex deformable
models using aabb trees. Journal of Graphics Tools, 2(4):1–13, 1997.

167

Bibliography

[VB02] J. Villard and H. Borouchaki. Adaptive meshing for cloth animation. In 11th
International Meshing Roundtable, pages 243–252, Ithaca, New York, USA,
15–18 September 2002. Sandia National Laboratories.

[VMT97] Pascal Volino and Nadia Magnenat-Thalmann. Developing simulation tech-
niques for an interactive clothing system. In Proceedings of the 1997 Inter-
national Conference on Virtual Systems and MultiMedia, page 109, Wash-
ington, DC, USA, 1997. IEEE Computer Society.

[Wat87] Keith Waters. A muscle model for animation three-dimensional facial ex-
pression. In SIGGRAPH ’87, pages 17–24, New York, NY, USA, 1987. ACM
Press.

[WDGT01] Xunlei Wu, Michael S. Downes, Tolga Goktekin, and Frank Tendick. Adap-
tive nonlinear finite elements for deformable body simulation using dynamic
progressive meshes. Computer Graphics Forum (Proceedings of Eurograph-
ics 2001), 20:349–358, September 2001.

[WH94] Andrew P. Witkin and Paul S. Heckbert. Using particles to sample and con-
trol implicit surfaces. In Proceedings of the 21st annual conference on Com-
puter graphics and interactive techniques, pages 269–277. ACM Press, 1994.

[WH04] Mark Wiebe and Ben Houston. The tar monster: Creating a character with
fluid simulation. In Proceedings of the SIGGRAPH 2004 Conference on
Sketches & Applications. ACM Press, 2004.

[WHP+06] Martin Wicke, Philipp Hatt, Mark Pauly, Matthias Müller, and Markus Gross.
Versatile virtual materials using implicit connectivity. In Proceedings of the
Eurographics Symposium on Point-Based Graphics, July 2006. to appear.

[WLG04] Stephan Würmlin, Edouard Lamboray, and Markus Gross. 3D video frag-
ments: Dynamic point samples for real-time free-viewpoint video. Comput-
ers & Graphics, 28(1):3–14, 2004.

[WLMK04] Xiaoming Wei, Wei Li, Klaus Mueller, and Arie E. Kaufman. The lattice-
boltzmann method for simulating gaseous phenomena. IEEE Transactions
on Visualization and Computer Graphics, 10(2):164–176, 2004.

[WLW+05] Stephan Würmlin, Edouard Lamboray, Michael Waschbüsch, Peter Kauf-
mann, Aljoscha Smolic, and Markus Gross. Image-space free-viewpoint
video. In Vision, Modeling, Visualization VMV’05, 2005.

[WMW86] G. Wyvill, C. McPheeters, and B. Wyvill. Data structure for soft objects. The
Visual Computer, 2, 1986.

168

Bibliography

[WPK+04] Tim Weyrich, Mark Pauly, Richard Keiser, Simon Heinzle, Sascha Scandella,
and Markus Gross. Post-processing of scanned 3d surface data. In Proceed-
ings of the Eurographics Symposium on Point-Based Graphics, pages 85–94,
2004.

[WSG05] Martin Wicke, Denis Steinemann, and Markus Gross. Efficient animation of
point-based thin shells. In Proceedings of Eurographics ’05, pages 667–676,
2005.

[WT91] K. Waters and D. Terzopoulos. Modeling and animating faces using scanned
data. Journal of Visualization and Computer Animation, 2(2):123–128, 1991.

[WTG04] Martin Wicke, Matthias Teschner, and Markus Gross. CSG tree rendering
of point-sampled objects. In Proceedings of Pacific Graphics 2004, pages
160–168, 2004.

[WZF+03] X. Wei, Y. Zhao, Z. Fan, W. Li, S. Yoakum-Stover, and A. Kaufman.
Blowing in the wind. In SCA ’03: Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 75–85.
Eurographics Association, 2003.

[WZF+04] Xiaoming Wei, Ye Zhao, Zhe Fan, Wei Li, Feng Qiu, and Suzanne Yoakum-
Stover. Lattice-based flow field modeling. IEEE Transactions on Visualiza-
tion and Computer Graphics, 10(6):719–729, 2004.

[YT02] G. Yngve and G. Turk. Robust creation of implicit surfaces from polygonal
meshes. In IEEE Transactoins on Visualization and Computer Graphics,
pages 346–359, 2002.

[ZB05] Yongning Zhu and Robert Bridson. Animating sand as a fluid. ACM Transac-
tions on Graphics (Proceedings of ACM SIGGRAPH 2005), 24(3):965–972,
2005.

[ZPKG02] Matthias Zwicker, Mark Pauly, Oliver Knoll, and Markus Gross. Pointshop
3D: an interactive system for point-based surface editing. ACM Transactions
on Graphics (SIGGRAPH 2002 Proceedings), pages 322–329, 2002.

[ZRB+04] Matthias Zwicker, Jussi Räsänen, Mario Botsch, Carsten Dachsbacher, and
Mark Pauly. Perspective accurate splatting. In Proceedings of Graphics
Interface, pages 247–254, 2004.

169

Bibliography

170

Copyrights
Several figures published in this dissertation reproduce image and data sets cour-
tesy of the following companies and institutions:

• The goblinko model on page ii is copyright of Turbo Squid, Inc.

• The image in Figure 3.2 is courtesy of Matthias Müller, AGEIA/NovodeX.

• The image in Figure 3.3 is courtesy of Robert Bridson, UBC.

• The image in Figure 3.4 is courtesy of Mark Carlson, DNA Productions,
Inc.

• The image in Figure 3.5 is courtesy of Tolga G. Goktekin, UC Berkeley.

• The duck model used in Figures 4.3 and 4.7 is copyright of Turbo Squid,
Inc.

• The horse model used in Figure 4.8 is copyright of Robert W. Sumner, ETH
Zurich.

• The Max Planck model used in Figures 5.1, 5.2, 5.5, 5.21, 5.23 and 6.12 is
copyright of the MPI.

• The pharaoh model used in Figures 5.7 and 6.9 is copyright of Turbo Squid,
Inc.

• The Igea model used in Figures 5.8, 5.19, 6.7 and 6.12 is copyright of Cy-
berware, Inc.

• The dragon head model used in Figure 5.22 is copyright of the Stanford
Computer Graphics Group.

• The Santa Claus model used in Figure 5.22 is copyright of Cyberware, Inc.

• The octopus model used in Figure 5.23 is copyright of Mark Pauly, ETH
Zurich.

171

Copyrights

172

Curriculum Vitae

Personal Data
Name Richard Keiser

E-Mail keiser@inf.ethz.ch

Address Computer Graphics Laboratory
ETH Zentrum
Haldeneggsteig 4
8092 Zurich
Switzerland
http://graphics.ethz.ch/~rkeiser/

Date of Birth January 20, 1978

Nationality Swiss

Education
Jun. 2003 – Aug. 2006 Ph.D. Student at the Computer Graphics Laboratory

and Applied Geometry Group
Computer Science Department, ETH Zurich, Switzerland

Aug. 2005 – Sep. 2005 Visiting Researcher at the Leonidas Guibas Laboratory
Computer Science Department, Stanford University, USA

Jul. 2004 – Sep. 2004 Visiting Researcher at the Leonidas Guibas Laboratory
Computer Science Department, Stanford University, USA

Apr. 2003 Diploma Degree in Computer Science (ETH Medal)
Computer Science Department, ETH Zurich, Switzerland

Oct. 1998 – Mar. 2003 Undergraduate Studies in Computer Science
Computer Science Department, ETH Zurich, Switzerland

173

Curriculum Vitae

Scientific Publications

ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2006
Nils Thürey, Richard Keiser, Mark Pauly, Ulrich Rüde: Detail-Preserving
Fluid Control.

Computer Graphics Forum 2006
Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxermann, Mark
Carlson: Physically Based Deformable Models in Computer Graphics.

ETH CS Technical Report 520, 2006
Richard Keiser, Bart Adams, Leonidas J. Guibas, Philip Dutré, Mark Pauly:
Multiresolution Particle-Based Fluids.

ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2005
Matthias Müller, Barbara Solenthaler, Richard Keiser, Markus Gross:
Particle-Based Fluid-Fluid Interaction.

Eurographics Symposium on Point-Based Graphics 2005
Richard Keiser, Bart Adams, Dominique Gasser, Paolo Bazzi, Philip Dutré,
Markus Gross: A Unified Lagrangian Approach to Solid-Fluid Animation.

Eurographics 2005
Bart Adams, Richard Keiser, Mark Pauly, Leonidas J. Guibas, Markus
Gross, Philip Dutré: Efficient Raytracing of Deforming Point-Sampled Sur-
faces.

ACM SIGGRAPH 2005
Mark Pauly, Richard Keiser, Bart Adams, Philip Dutré, Markus Gross,
Leonidas J. Guibas: Meshless Animation of Fracturing Solids.

Vision, Modeling & Visualization 2004
Richard Keiser, Matthias Müller, Bruno Heidelberger, Matthias Teschner,
Markus Gross: Contact Handling for Deformable Point-Based Objects.

Vision, Modeling & Visualization 2004
Bruno Heidelberger, Matthias Teschner, Richard Keiser, Matthias Müller,
Markus Gross: Consistent Penetration Depth Estimation for Deformable
Collision Response.

ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2004
Matthias Müller, Richard Keiser, Andrew Nealen, Mark Pauly, Markus
Gross, Marc Alexa: Point Based Animation of Elastic, Plastic and Melting
Objects.

Eurographics Symposium on Point-based Graphics 2004
Tim Weyrich, Mark Pauly, Richard Keiser, Simon Heinzle, Sascha Scan-
della, Markus Gross: Post-Processing of Scanned 3D Surface Data.

174

Eurographics 2003
Mark Pauly, Richard Keiser, Markus Gross: Multi-Scale Feature Extraction
on Point-Sampled Surfaces.

ACM SIGGRAPH 2003
Mark Pauly, Richard Keiser, Leif Kobbelt, Markus Gross: Shape Modeling
with Point-Sampled Geometry.

Diploma thesis, Computer Graphics Laboratory, ETH Zurich, 2003
Richard Keiser: Collision Detection and Response for Interactive Editing of
Point-Sampled Models.

Semester thesis, Computer Graphics Laboratory, ETH Zurich, 2002
Richard Keiser: Feature Detection and Reconstruction on Point-Sampled
Models.

175

