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ABSTRACT 

As one of the three most popular sports in the Summer Olympics, competitive 
swimming has always been an attractive subject of study for sports scientists. The intricate nature 
of the swimmer's movements and the variety of techniques have led coaches to require analysis 
systems to gain a more detailed understanding of swimmers' performances, to plan training 
sessions as efficiently as possible and closely monitor the swimmer's progress. Surveys have 
shown that despite recent technological advances in sports, swimming coaches still need a 
measurement device that is accessible, easy to use, and provides easy-to-understand results. 
Conventional analysis systems such as high resolution cameras, while accurate, are too time 
consuming and cumbersome for daily use.  

With the advent of wearable sensors, especially inertial measurement units (IMU), motion 
analysis has gained the ability to not only study new aspects of motion, but also cover in-field 
applications. IMUs have been used to study swimming and provided a credible solution for 
extracting kinematic and spatio-temporal features. However, researchers focused primarily on 
extracting features rather than using them to evaluate performance and provide feedback in the 
field. Free-swimming is the phase that has been most studied with IMUs, and among the major 
swimming styles, front crawl has attracted more attention. However, to win competitions, 
swimmers need to master all phases of swimming in each style. Therefore, a comprehensive 
analysis approach based on IMUs covering all swimming styles and phases can provide the 
swimming community with deeper insight into swimmers' performance and a better solution to 
training needs. 

This thesis presents a novel methodology for swimming training analysis based on inertial 
wearable sensors. The proposed method uses a unified macro-micro analysis approach that scans 
the entire training session for swimming bouts and then narrows down to separating the 
swimming phases from wall to wall. The method is implemented using the IMU data from 
different sensor positions on the swimmer's body for comparison. Based on the results of the 
developed algorithms, sacrum position was determined to be optimal for detecting all swimming 
phases. As a result, the analysis then detects a set of spatio-temporal and kinematic parameters 
based on the IMU data on the sacrum at each phase, which are used for the swimmers' phase-
based performance evaluation. Furthermore, the extracted parameters were shown to reflect 
different aspects of the swimmer's performance, such as propulsion, posture, or efficiency. The 
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developed performance evaluation method estimates a set of velocity-based goal metrics, 
validated against the reference system, that represent how well the swimmer performed during 
the corresponding phase. These goal metrics can provide coaches with knowledge-of-result 
feedback so that they can focus on the swimmers' weaknesses and guide them more efficiently. 
Finally, the system is used to provide weekly feedback to a team of young swimmers to evaluate 
the application of feedback in practice and its impact on swimmers' progress. 

Overall, this thesis proposes a new approach to swimming performance evaluation based on 
IMUs, with a broader scope of application to all phases and styles of swimming. It aims to expand 
the application of IMUs in swimming by providing spatio-temporal and kinematic parameters 
that represent critical aspects of swimming and objectively evaluate swimmers' performance. The 
estimated goal metrics are sensitive to swimmers' progress during weeks of training. In addition, 
the potential of such an analysis system for in-field training sessions is tested and showed 
promising results. Finally, coaches can obtain a more detailed view of swimmers' techniques at 
both macro and micro levels using a single IMU sensor on a daily basis. 

Keywords: Sports biomechanics, swimming, wearable system, inertial sensor, IMU, Macro-
micro analysis, spatio-temporal parameters, kinematics, swimming phases, lap segmentation, 
performance evaluation, swimmer progress, efficient training, feedback.  
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RÉSUMÉ 

En tant que l'un des trois sports les plus populaires des Jeux Olympiques d'été, la 
natation a toujours été un sujet d'étude attrayant pour les scientifiques du sport. La nature 
complexe des mouvements du nageur et la variété des techniques ont conduit les entraîneurs à 
exiger des systèmes d'analyse pour acquérir une compréhension plus détaillée des performances 
des nageurs, pour planifier les séances d'entraînement le plus efficacement possible et suivre de 
près les progrès du nageur. Des enquêtes ont montré que malgré les récentes avancées 
technologiques dans le sport, les entraîneurs de natation ont toujours besoin d'un appareil de 
mesure accessible, facile à utiliser et fournissant des résultats faciles à comprendre. Les systèmes 
d'analyse conventionnels tels que les caméras à haute résolution, bien que précis, sont trop 
chronophages et encombrants pour une utilisation quotidienne. 

Avec l'avènement des capteurs portables, en particulier des unités de mesure inertielle (IMU), 
l'analyse du mouvement a acquis la capacité non seulement d'étudier de nouveaux aspects du 
mouvement, mais également de couvrir des applications sur le terrain. Les IMUs ont été utilisés 
pour étudier la natation et ont fourni une solution crédible pour extraire des caractéristiques 
cinématiques et spatio-temporelles. Cependant, les chercheurs se sont concentrés principalement 
sur l'extraction de paramètres biomécaniques plutôt que sur leur utilisation pour évaluer les 
performances et fournir des retours sur le terrain. La nage libre est la phase qui a été la plus 
étudiée avec les IMUs, et parmi les principaux styles de nage, le crawl a attiré plus d'attention. 
Cependant, pour gagner des compétitions, les nageurs doivent maîtriser toutes les phases de la 
natation dans chaque style. Par conséquent, une approche complète basée sur des IMUs couvrant 
tous les styles et toutes les phases de nage peut fournir à la communauté un aperçu plus 
approfondi des performances des nageurs et une meilleure solution aux besoins d'entraînement. 

Cette thèse présente une nouvelle méthodologie d'analyse de l'entraînement à la natation basée 
sur des capteurs portables inertiels. La méthode proposée utilise une approche d'analyse macro-
micro unifiée qui analyse, dans un premier temps, l'ensemble de la séance d'entraînement afin 
de détecter les épisodes de natation. Puis, dans un deuxième temps, l’algorithme sépare les 
phases de nage d'un mur à l'autre au sein d’un même épisode. Le procédé est mis en œuvre en 
utilisant les données provenant de capteurs placés à différentes positions sur le corps du nageur 
à des fins de comparaison. Sur la base des résultats des algorithmes développés, la position du 
sacrum a été déterminée comme étant optimale pour détecter toutes les phases de nage. En 



Résumé 

 

iv 

conséquence, l'analyse détecte ensuite un ensemble de paramètres spatio-temporels et 
cinématiques basés sur les données du IMU sur le sacrum, qui sont utilisés pour l'évaluation de 
la performance des nageurs dans chaque phase. De plus, il a été démontré que les paramètres 
extraits reflètent différents aspects de la performance du nageur, tels que la propulsion, la posture 
ou l'efficacité. La méthode d'évaluation des performances développée estime un ensemble de 
mesures d'objectifs, basées sur la vitesse de nage, afin de quantifier la performance du nageur au 
cours de chaque phase. Les précisions d’estimation de chacune de ces métriques ont été validées 
par rapport à un système de référence. Ces métriques peuvent fournir aux entraîneurs un 
feedback concret afin qu'ils puissent se concentrer sur les faiblesses des nageurs et les guider plus 
efficacement. Enfin, le système est utilisé pour fournir un feedback hebdomadaire à une équipe 
de jeunes nageurs, dont l’objectif est d'évaluer les effets du feedback dans la pratique et son 
impact sur les progrès des nageurs. 

En général, cette thèse propose une nouvelle approche de l'évaluation des performances de nage 
basée sur des IMUs, avec une portée d'application à toutes les phases et à tous les styles de nage. 
La méthode développée vise à étendre l'application des IMUs à la natation en fournissant des 
paramètres spatio-temporels et cinématiques pertinents à l’évaluation objective de certains 
aspects critiques des techniques de nage et des performances des nageurs. Les mesures d'objectifs 
estimés sont sensibles aux progrès des nageurs au cours des semaines d'entraînement. De plus, 
le potentiel d'un tel système d'analyse pour le suivi des sessions d'entrainement sur le terrain a 
été testé et a montré des résultats prometteurs. Enfin, les entraîneurs peuvent obtenir une vue 
plus détaillée de la technique des nageurs aux niveaux macro et micro en utilisant 
quotidiennement un seul capteur IMU. 

Mots clés : Biomécanique du sport, natation, système portable, capteur inertiel, IMU, Analyse 
macro-micro, paramètres spatio-temporels, cinématique, phases de nage, segmentation des 
longueurs, évaluation des performances, progression du nageur, entraînement efficace, 
feedback. 
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 Introduction 

 

1.1 Overview 
At the 1972 Olympic Games in Munich, Gunnar Larsson won the gold medal in the 

men's 400-meter individual medley swimming event by a margin of two thousandths of a second 
over Tim McKee of the United States. The international swimming rules have been changed to 
use a hundredth of a second as the record resolution, allowing for ties between swimmers with 
identical times. At the 2016 Olympics, the difference between the first and last swimmer in the 
men's 50m front crawl was just 0.68s. Swimming is one of the most competitive sports, where the 
loss of a hundredth of a second can decide the color of a swimmer's medal. Winning such a close 
competition requires months of intense training and extensive preparation. To achieve peak 
performance, elite swimmers gradually increase their training intensity and volume, beginning 
several months before each competition (Hellard et al., 2019). 

There are different distance events in the four main styles of breaststroke, butterfly, backstroke, 
front crawl, and individual medley. Front crawl, medley or mixed relays are team events in which 
four athletes swim consecutively. The international swimming federation (FINA) has established 
several rules for the competitions concerning the acceptable form of stroke in each swimming 
style or phase that swimmers should follow. Sequencing the phases of swimming within the 
limits established for each, swimming underwater versus swimming above water, turning at the 
wrong time, and touching the wall incorrectly can all result in the swimmer being disqualified. 
Therefore, although the main goal of swimming is to be as fast as possible, swimmers must 
consider much more than technique to outperform others, as every detail is intensely scrutinized 
by the referees. 

Beating top competitors while playing by the rules requires a flawless performance. For decades, 
sports scientists and researchers have studied the performance of swimmers from various angles, 
such as energetics and biomechanics (Ferreira et al., 2016), strength and conditioning (Amaro et 
al., 2019), nutrition (Shaw et al., 2014) or psychology (Sheard and Golby, 2006). However, 
biomechanics have been shown to be more important  and more easily improved through 
training (Mooney et al., 2016a). Compared to aquatic mammals and fish, humans are inefficient 
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and clumsy in water due to their different evolution and musculoskeletal system. As a result, 
they have  always struggled to find the optimal swimming techniques to increase propulsion and 
reduce drag, which is the main goal of biomechanical analysis of swimming locomotion (Takagi 
et al., 2021).  

In the study of swimming biomechanics, the kinematics, kinetics, and energy expenditure of 
swimmers with different performance levels are compared and then related to performance. 
Thanks to the increasing knowledge of sports science, man has learned to swim more efficiently 
by understanding the governing rules of swimming biomechanics. From the analysis of the 
movement of the swimmer's body segments using Newton's second law of motion (Maglischo, 
2003; Bao et al., 2021) to the application of computational fluid dynamics models (Barbosa et al., 
2010; Takagi et al., 2016), we now better understand how to generate the greatest possible 
propulsion, avoid water resistance, and increase swimming efficiency. The achievement of new 
world records in international events almost every year is a clear sign of this progress. In 
addition, minute differences in race times between finalists in swimming competitions have 
forced coaches and swimmers to work harder to achieve a "fraction of a second" improvement in 
performance (James et al., 2004). Given the limitations of the human body for fast swimming, it 
is becoming increasingly difficult for swimmers to make worthwhile progress as a competitive 
advantage, and the role of the coach in training is therefore becoming more important.  

1.2 Coaching importance in training 
Efficient training is the basis for swimmers' success in competitions. Therefore, it is important for 
a swimmer to be carefully organized and strictly supervised by the coach. The training plan 
should be adapted to many factors, such as the swimmer's age, performance level and potential, 
and the time remaining until the competitions. The coach should create a detailed, long-term 
training plan and improve various aspects of swimmer’s performance through continuous 
assessment. The coach is responsible for bringing about a positive change in the swimmer's 
performance. This is accomplished through an appropriate and timed training program that 
addresses physical, tactical, mental, and technical aspects (Nathan and Scobell, 2012). At an 
advanced level, swimmers are trained for specific events and can be divided into sprinters or 
short-, middle-, and long-distance swimmers, each of which should be trained differently in 
terms of intensity and volume. Swimmers also perform strength training out of the water and 
aerobic exercise between swim sessions. The coach should determine the profile of each 
swimmer, identify their strengths and weaknesses, and guide them to achieve the best results. In 
doing so, the coach should focus on specific metrics that affect the swimmer's performance to 
accurately identify technique errors and then intervene to improve them. 

1.2.1 Technique analysis and feedback  

"Technique analysis" is the term for a method of analysis used by coaches to understand how 
athletic skills are learned and then to lay the foundation for improved performance. The goal of 
technique analysis is achieved by determining the parameters that characterize technique and 
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using them to represent the athlete's performance (Lees, 2002). A complete process of technique 
analysis includes the three steps of observation and information gathering, diagnosis or 
identification of technique errors, and remediation or intervention to improve performance and 
achieve the desired outcome (McPherson, 1990; Knudson and Morrison, 1997). However, some 
authors believe that the complicated process of diagnosis and intervention requires even more 
steps than technique analysis, especially when it comes to quantitative analysis (Carr and Carr, 
1997; McGinnis, 2013). Given the little attention authors pay to this distinction, we can conclude 
that the role of technique analysis is limited to laying the groundwork for providing feedback 
and should be separated from it. 

Approaches to technique analysis can be either qualitative or quantitative. Starting from 
qualitative analysis, technique analysis develops primarily on the basis of the application of 
mechanical principles, also known as "biomechanical principles of movement," in addition to 
subjective observation and interpretation of movement. As a basis for the systematic approach, 
the ideas of phase analysis, temporal analysis (Knudson, 2013), and critical feature extraction 
(Sewell et al., 2014) have emerged to assist coaches in technique evaluation. With the increase of 
data collection methods in sports, it has become more practical to use them in technique 
evaluation, commonly referred to as quantitative technique evaluation which provides the coach 
with more accurate and detailed information. According to the common approach, a wide range 
of instrumented data collection methods are used to quantify performance skills, such as 
kinematic, and kinetic analysis. By analyzing the collected data, key parameters related to 
technique can be identified.  

One of the most important roles of coaches is to provide regular feedback to the athletes and 
guide them efficiently during training sessions. Using a variety of visualization tools, a coach 
tries to help athletes understand and correct their mistakes. The positive effects of feedback on 
motor learning have been supported by many studies, especially when it comes to complex tasks 
such as sports activities (Wulf and Shea, 2002; Sigrist et al., 2013). New feedback devices such as 
cameras and virtual reality platforms (Mestre et al., 2011), smartwatches (Lopez et al., 2019), or 
data visualization tools (Blandin et al., 2008) combined with data analytics and artificial 
intelligence methods help coaches provide quantitative, more accurate, and detailed feedback to 
athletes, resulting in efficient training sessions. 

To better discuss the metrics a swim coach must consider, the swimming phases a swimmer goes 
through during a trial should be examined. Looking at a complete trial, shown qualitatively in 
Figure 1.1, competitive swimming can be segmented into three main phases start, free-
swimming, and turn (Figure 1.1, A-I to A-III) (Mooney et al., 2016b). From the moment the buzzer 
sounds until the swimmer reaches the 15-metre mark, the start is distinguished, which is usually 
subdivided into more detailed sub-phases such as block, flight, entry, glide, and leg kicking or 
stroke preparation (Figure 1.1, B-I), based on the kinematic motion profile (Vantorre et al., 2010). 
When the swimmer starts swimming from inside the water, the three phases before glide should 
be replaced by the wall push-off phase (Figure 1.1, B-II). According to FINA rules, the start phases 
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can continue to a maximum of 15 m from the wall. The free-swimming phase consists of stroke 
cycles divided into different sub-phases depending on the style. The example for front crawl style 
is described in Figure 1.1, C-I to C-IV on the right arm. The arm phases are entry, pull, push, and 
recovery (Chollet et al., 2000). The turn (tumble turn for front crawl and backstroke or simple 
turn for butterfly and breaststroke) can also be divided into smaller phases (Figure 1.1, D-I to D-
V) of wall approach, rotation, wall contact or push-off, glide, and stroke preparation (Slawson et 
al., 2012).  

 
Figure 1.1 – Competitive swimming phases from wall to wall for a trial in front crawl. (A) The three main 
phases of start, free-swimming and turn. (B) Start phases (I) from the block or (II) from inside the water. 
(C) Stroke cycle phases of (I) entry, (II) pull, (III) push and (IV) recovery on the right arm for front crawl 
style. (D) Turn phases including (I) wall approach, (II) rotation, (III) wall contact or push-off, (IV) glide, 
and (V) stroke preparation. 

Since a swimmer must master all phases to win the race, a detailed training plan to improve 
swimmer's performance in all phases is necessary to prepare them for competition. Coaches can 
be considered as the link between research and practice, and it is important to understand their 
views on optimizing training sessions (Lyle and Cushion, 2010). A survey of 298 competitive 
swimming coaches in the United States was conducted to obtain a general picture of coaching 
practices and perceptions during training sessions (Mooney et al., 2016a). They were asked about 
their coaching experience, key sport science areas they consider during training sessions, and the 
types of analytic devices they commonly use. Based on the survey results, biomechanics (motion 
kinematics and kinetics) was indicated as the most significant area of sport science on the coaches' 
priority list. Given the importance of proper technique in swimming and decades of research on 
the biomechanical principles of the sport, understanding the biomechanics of swimming has 
contributed much to current coaching techniques (Payton et al., 2002; Toussaint and Truijens, 
2005). Among the performance-related indices considered most important in swimming, there 
were the most responses for temporal parameters (e.g., splits), body positioning and posture, 
start and turn phases specific parameters, and kinematic parameters (e.g., stroke length, velocity, 
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acceleration). Although start and turn parameters overlap with the temporal and kinematic 
groups, they are listed separately due to the high response rate among participants. As a result, 
each coach must monitor a variety of metrics to effectively analyse swimmers' technique and 
provide feedback. 

1.3 Objective evaluation for coaching assistance  
Dealing with a team of swimmers with a variety of strengths and weaknesses in each phase, 
coaches must keep detailed records of each individual. They gather information about the 
swimmers' performance, such as body posture, duration and velocity of each phase, velocity loss 
due to drag, body coordination, and stroke efficiency to name a few. In addition to the swimming 
technique, the coach must also consider other aspects such as the physics and physiology of the 
swimmer (Zamparo et al., 2020), the training plan, workload adaptation, fatigue, and injury 
prevention (Matthews et al., 2017) during the training sessions. Coaches usually collect all this 
information through observation and simple measuring tools (e.g., stopwatch), which is 
subjective and prone to error. As a result, accurately obtaining such a large amount of 
information cannot be guaranteed and requires proper measurement systems to monitor the 
swimmer's performance and response to training instructions. 

Swimming locomotion analysis is a powerful tool that can provide detailed information about a 
swimmer's technique and motion biomechanics, helping the coach provide more accurate 
feedback to the swimmer. In-pool stationary instruments such as tethered devices for propulsion 
force (Morouço et al., 2014) or velocity measurement (Clément et al., 2021) are still used as 
reference for velocity measurement. However, it is known that these devices require controlled 
conditions and cause many interventions in the pool to transform it into a laboratory, which in 
most cases changes the natural technique of the swimmers (Samson et al., 2018). Vision-based 
systems are another class of measurement systems that are less intrusive on swimming activity 
and are still considered as the gold standard for swimmers’ motion analysis. 

With the development of cinematography in the last century, the use of motion picture cameras 
has increased in sports (Wilson, 2008). Optoelectronic systems can track the position of reflective 
markers attached to swimmer’s body and analyze the movement. The accuracy of these systems 
depends on the position of the cameras relative to each other, the position, number, and type of 
markers, and the movement of the markers within the capture volume (Maletsky et al., 2007). 
The use of optoelectronic systems is complicated in swimming due to the numerous practical 
shortcomings in aquatic environments. In addition to the time-consuming calibration, manual or 
automatic digitization of landmarks, and complicated procedure of transportation and 
installation underwater, it is inevitable that image distortions and the bubbles in water can cause 
the occlusion of markers in certain body orientations (Magalhaes et al., 2015). Swimming is 
classified as an individual indoor sport that requires a relatively large capture volume for motion 
analysis (Van der Kruk and Reijne, 2018), while optoelectronic systems are limited in terms of 
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capturing volume to a few stroke cycles. The use of several reflective markers on swimmer's body 
increases drag, which significantly impedes swimming movements (Washino et al., 2019).  

Considering the limitations of marker-based motion analysis in aquatic sports, the marker-less 
image processing are more suitable for motion analysis in swimming. The results of feasibility 
studies have shown that marker-less techniques are as reliable as manual digitization approaches 
in swimming, but further research is needed to prove this (Monnet et al., 2014). Thanks to recent 
advances in automatic image processing, new marker-less methods for motion analysis have 
been developed based on the extraction of the swimmer's silhouette in and out of the water and 
matching of the 3D kinematic models (Ceseracciu et al., 2011). The accuracy of silhouette 
recognition has been improved using a new convolutional neural network (Ascenso et al., 2020). 
However, these method needs to have the whole body in view to work properly. It also did not 
allow for the integration of underwater cameras with the cameras out of the water. Because 
marker-less techniques require a great deal of processing, and specialized cameras, they are still 
too expensive for daily training in swimming clubs. 

Novel analysis systems that have emerged as a result of improvements in accuracy, size, and cost 
of microelectromechanical systems (MEMS) have received much attention in both the research 
and commercial communities as alternatives to previous approaches to motion analysis. 
Wearable inertial measurement units (IMUs) are used to measure motion kinematic parameters 
in a variety of activities including swimming. In conjunction with an accelerometer, gyroscope, 
and sometimes a magnetometer, IMUs are now adapted to aquatic environments with 
waterproof coatings and offer a new approach to swim coaching (Mooney et al., 2016b). This 
technology has facilitated the analysis of stroke mechanics, race performance, and training 
intensity, allowing for more efficient coaching with less trial and error. Despite the shortcomings 
of IMUs for motion analysis (e.g., random noise, signal bias and drift effect), IMUs can offer a 
highly portable and cost-effective solution to motion analysis and provide detailed information 
about a swimmer's technique while having minimal impact on performance. They do not impose 
any restriction to the capture volume, can even be a credible option as a replacement for high-
precision optoelectronic systems if carefully positioned and calibrated (Guignard et al., 2021). 
IMUs can also be used to better analyse the fast swimming phases, such as start by the dive or 
turn, where visibility is limited by the change of medium or by bubbles and water reflections. 

1.3.1 IMU-based technique evaluation and feedback 

IMUs have been used to study swimming motion and extract spatio-temporal, kinematic, and 
kinetic parameters from both a general (e.g., number of laps and swimming time in each style) 
and a detailed perspective (e.g., hand trajectory in stroke cycles). Coaches should strive to gather 
information about a team's swimmers at both levels through observation, which is also inaccurate 
and prone to subjectivity. In a general view of the training, IMUs were used to detect major events 
in the pool such as turns (Jensen et al., 2013) between swimming laps or to differentiate between 
swimming styles (Wang et al., 2019). This information can help coaches guide training, but is not 
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useful for competitive swimmers because it does not provide detailed information about their 
performance and coaches are less concerned about them following the training plan. 

In a more detailed level, IMUs have been most commonly used to estimate the number and rate 
of strokes (Mooney et al., 2016b). The acceleration and angular velocity profiles obtained with 
IMU on the wrist revealed subtle changes in motion and its variation during multiple cycles. The 
hand pitch angle at the entry point, the effects of fatigue, and the angle of the elbow (Seifert et 
al., 2014) are examples of observable variables that facilitate a detailed and specific analysis of 
swimmers' hand movements. Quantifying the swimmer's kicking pattern is another relevant 
factor in free-swimming phase for coaches, especially for alternating swimming styles (front 
crawl and backstroke), where the movements of the upper and lower limbs are independent. 
IMUs were used to help the coach by estimating the rate and number of kicks (Fulton et al., 2011). 
With the introduction of advanced signal processing and machine learning techniques, IMUs 
have been used to estimate instantaneous velocity (Clément et al., 2021) or average velocity per 
stroke (Dadashi et al., 2015). Apart from the fact that researchers focus mainly on free-swimming 
phase, most of the extracted parameters are studied in isolation and are less related to swimmer's 
performance (denoted by propulsion, posture and efficiency), which is necessary to show IMUs 
application for performance evaluation.  

Continuous acquisition of swimming characteristics is another advantage of IMUs over vision-
based systems that makes it possible to study the inter-cyclic variability of a performance-related 
parameter such as velocity which is important for the coach to design of pacing strategies 
(Dadashi, 2014). High variability in performance has been shown to indicate fatigue and lack of 
endurance in athletes, which may be particularly the case in long-distance swimmers. The use of 
multiple IMUs on arms and legs allows the temporal phases of arms for alternating styles 
(Dadashi et al., 2013c)  or arm and leg for simultaneous styles (Dadashi et al., 2013b) to be 
compared and the coordination index to be defined as a performance-related metric (Chollet et 
al., 2000, 2004), representing the inter-segmental delay of propulsive phases. However, the use 
of multiple wearable sensors is not practical in swimming because of the additional impact on 
the swimmer's technique and the complexity of their use during training sessions. 

Coaches need to spend a lot of time working on start and turn techniques during training 
sessions, as these phases have been shown to be significantly related to a swimmer's overall 
performance. Due to the high speed of motion and visual errors caused by air bubbles and water 
reflections, these phases are difficult to study by vision-based methods (Guignard et al., 2017b), 
whereas IMUs are not affected by such limitations. Using IMUs to study start and turn phases is 
still at its preliminary stages. Qualitative detection of start sub-phases (block, flight, and glide 
phases) (Le Sage et al., 2012) and turn sub-phases (start and end of rotation) (Lee et al., 2011) for 
technique visualization are examples of studies conducted to date by IMUs on start and turn 
phases. Coaches, however, need more detailed analysis of start and turn, which is currently 
performed qualitatively, such as swimmer timing for turn (Nicol et al., 2019), or push force and 
acceleration (Hermosilla Perona et al., 2020).  
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The next step would be frequent, high-quality feedback at the same time or shortly after the 
activity, which can be considered a goal for successful coaching in swimming (Jefferies et al., 
2012). IMUs have made the process of providing feedback easier and faster by providing low-
volume data that can be easily transferred to other platforms for analysis and visualization with 
lower computational power needed. Therefore, the development of real-time methods for 
providing feedback with IMUs has attracted much attention (Lecoutere and Puers, 2016; Jeng, 
2021). Examples of using IMUs for feedback are communicating the style, laps, and strokes (Silva 
et al., 2011) or hand movement during strokes (Ehab et al., 2020) to the coach. Given the 
challenges of data transmission in aquatic environments, it is expected the time delay between 
training and feedback to decrease as communication protocols achieve viable real-time 
performance (Rana and Mittal, 2021). IMUs can improve the coach feedback effect on swimmer’s 
performance by providing autonomous feedback directly to themselves. A well-known example 
of this mode is movement sonification, which is used to support motor perception, motor control, 
and learning (Effenberg, 2007). Although the application of IMUs to provide feedback in sports 
is profound, swimming coaches do not benefit enough from it and there are fewer studies that 
focused on transferring to the coach. Furthermore, the effect of IMU-based feedback on 
performance has not been well studied in the literature, and researchers have mainly focused on 
the feasibility of swimming analysis with IMUs and have hardly gotten around to applying it in 
practice. 

In general, studies focused more on front crawl style and free-swimming phase than start and 
turn phases when extracting parameters with IMUs. There are not enough data-based studies 
that demonstrate the usefulness of such parameters in practice by relating them to the swimmer's 
performance in each swimming phase. As a result, by providing superficial parameters, current 
solutions are tailored to the needs of recreational swimmers rather than competitive swimmers 
and coaches still rely on their own experience for performance evaluation. The use of IMUs for 
feedback to coaches and swimmers and their impact on performance improvement should also 
be investigated more. Further details on the current gaps in the literature will be provided in 
Chapter 2. 

1.4 Thesis objectives 
In this chapter, swimming was presented as one of the most competitive Olympic disciplines. 
The importance of training and the important role of coaches in the success of swimmers was 
emphasized. It is more difficult for swimmers to gain a worthwhile advantage over their 
competitors as they approach human body limits in swimming with our increasing knowledge 
of swimming biomechanics and its underlying mechanisms. The importance of focusing on all 
swimming phases is explained, and the critical role of the coach in analyzing technique and 
providing feedback for each phase is clarified. Considering the vast amount of information 
needed to manage a team of swimmers, the additional help of new technological analysis systems 
for swimming coaches becomes inevitable. 
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Through a brief introduction to current methods of evaluating swimmer performance, IMUs 
have been shown to be a credible replacement for vision-based or stationary in-pool 
measurement systems as they have overcome the limitations of these systems and are more 
suitable for use as coaching assistance in daily training. They have been used to extract 
parameters related to swimming performance that are useful for technique analysis. These 
studies have mainly focused on validating the extraction of free-swimming phase parameters. 
However, swimmers need to master all swimming phases, and the need for comprehensive 
performance evaluation with IMUs has not yet been met. It should also be considered that front 
crawl is the most commonly studied swimming style, as it is the most common even among 
recreational swimmers. Also, the use of IMUs to convey feedback to coaches and swimmers as 
the end goal of any analysis system has not been adequately explored, and its impact on swimmer 
performance should be evaluated. 

Considering the above gaps and challenges, the research presented in this dissertation aims to 
develop a novel IMU-based analysis system for swimming that can be used in training. In order 
to develop a research strategy beneficial to the coach, their roles during a training session should 
be investigated. Three different but complementary roles can be identified for the coach 
(displayed in Figure 1.2), the first of which is to observe and gather as much information as 
possible about the swimmer’s performance. The coach observes the swimmer or uses simple 
measuring instruments such as a stopwatch to record the swimmer's timing in various exercises. 
They must devote considerable time to each swimmer on the team to extract and record the 
specific data for further analysis, which is usually impractical and results in more qualitative data 
collection. IMUs can contribute to this task by automatically collecting data in all swimming 
phases and swimming styles from multiple swimmers in parallel, giving the coach a 
comprehensive overview of the training session through quantitative values (Figure 1.2 - I). 

Second, after gathering input through observation and measuring devices, there is a subjective 
evaluation of the swimmer's performance based on coach experiences to identify strengths and 
weaknesses. The coach performs this task in parallel with data collection, as the evaluation is 
ongoing while continuously receiving data from the swimmer. Because subjective performance 
evaluation is prone to error due to bias or misconceptions, IMUs can help coaches to improve the 
evaluation by an objective and quantitative analysis. They can verify their advice by a subsequent 
assessment of the swimmer using the IMU results again. Thus, the next main contribution of this 
study is to lay the foundation for comprehensive, objective technique analysis by estimating 
performance-related metrics at each phase, regardless of swimming style (Figure 1.2 - II). 

The third role of the coach is to communicate to the swimmer the choices they are making to 
improve their performance. Verbal comments combined with a visual illustration of the correct 
movement or recorded times are common methods of feedback communication. However, the 
effect of such feedback communication methods is compromised by possible misunderstandings, 
and the swimmer's learning and progress can only be monitored qualitatively. The third 
contribution that IMUs can make is to provide quantitative feedback to both the coach and the 
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swimmer to engage them more effectively in the learning loop. Even though the coach strives to 
remain objective in all three roles, the coach's inherent limitations in taking in information, 
subjectivity in analyzing the swimmer's technique, and inefficiency in providing feedback should 
be considered (Figure 1.2 - III). 

 
Figure 1.2 – Thesis principal objectives and contributions to the roles of swimming coaches in a training 
session.  

With this thesis, I plan to contribute to each of the three roles of the coach in training sessions by 
using wearables for more efficient training and filling the existing gaps in the literature. The 
following objectives are addressed in this thesis: 

i. Development of an easy-to-use novel analysis method that extracts quantitative 
information about swimming without impeding or minimally affecting the swimmer. 
This implies to capture all phases of wall-to-wall swimming with a single IMU in order 
to provide the coach with a comprehensive and detailed overview at the end. The method 
is intended to provide valid information covering the four major swimming styles for 
competitive swimmers. 

ii. Objective technique analysis and performance evaluation of swimmers using the 
developed analysis method. Considering the complexity of evaluating all swimming 
phases simultaneously based on a single sensor, the method aims to provide a phase-
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based performance evaluation allowing the coach a more explicit and individual advice 
based on the swimmer's strengths and weaknesses in each phase. 

iii. Development of a practical strategy for providing feedback to the coach and swimmer 
during training sessions using objective metrics of performance and assessment of the 
effectiveness of such feedback - as an assistant to the coach - on swimmer's progress. 

1.5 Thesis outline 
This thesis first reviews the current state of the art in swimming assessment with IMUs and the 
challenges involved. The three main aspects of acquiring kinematic parameters of swimming, 
evaluating swimmer's performance, and providing feedback with IMUs will be addressed, along 
with their limitations. We will then propose a novel approach to swimming analysis in a training 
session that commences by scanning the entire training session for swimming bout detection and 
extends to the detection of wall-to-wall swimming phases. Based on this approach, the best 
sensor position for subsequent steps is determined. This approach is then used to extract the 
kinematic and spatio-temporal parameters of each swimming phase and perform a 
comprehensive performance evaluation by estimating phase-based goal metrics in each 
swimming phase. The proposed goal metrics will then be evaluated for monitoring swimmers in 
training sessions and tracking their progress. Finally, the proposed performance evaluation 
method is provided to the coach as an assistant named SmartSwim to guide the swimmers more 
efficiently, the effects of which is evaluated on swimmers' performance. 

This thesis consists of seven main chapters divided into four parts, shown in Figure 1.3. For 
clarity, shorter versions of the names of the parts and chapters are used in this figure. 

 

Figure 1.3 – Outline of the dissertation, including four parts and seven chapters. Chapters 3, 4, 5, 
and 6 are based on published work, as indicated in parentheses. 

Part I – Introduction and Background: this part explains the objectives of the work and gives an 
insight into the state-of-the-art studies using IMUs for the analysis of swimming. 

• Chapter 1 – (current chapter) presents the importance of coaching in a competitive sport 
such as swimming. It provides a comprehensive overview of the needs of swimming 
coaches, the role of technology to provide objective evaluation to swimmers, and their 
existing challenges. Among the existing measurement systems, IMUs were given more 
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focus with an introduction to the literature. To define the objectives of this thesis, this 
chapter briefly describes these studies and highlights the main existing research gaps that 
this thesis aims to address. These gaps are more clarified in the next chapter. 

• Chapter 2 – presents the current state of the art in swim training with measurement 
systems, focusing on IMUs. First, the tasks of a sports coach are explained and it is 
clarified how technology can contribute to their duties. Then, the role of IMUs in sports 
is examined in more detail and the types of parameters they can extract are discussed. 
The chapter continues with a detailed overview of the applications of IMUs in swimming 
analysis and the existing gaps on the way to an IMU-based performance evaluation 
system. Finally, a brief overview of existing measurement systems on the market is 
provided to support the coaches' need for a novel approach to the use of IMUs in 
swimming analysis. 

Part II – Phase-based technique analysis with IMU: the second part discusses the proposed 
IMU-based approach to the technique analysis of swimmers and its application to the phase-
based performance evaluation of swimming in all four swimming styles. 

• Chapter 3 – proposes a macro-micro approach to swimming analysis that first deals with 
the entire training session and narrows down to the detection of swimming phases based 
on the IMU signals. The developed algorithms for this approach are discussed in four 
different swimming styles for the acceleration and angular velocity signals of the four 
main sensor positions of wrists, head, sacrum and shanks. The results of the algorithms 
are validated using a series of cameras mounted on the pool wall and recording all 
swimming laps. Event detection errors of the four sensor positions are also compared to 
find an optimal position for a single-sensor measurement system. 

• Chapter 4 – introduces a phase-based performance evaluation method using the 
algorithms developed in Chapter 3. The method proposed in this chapter is an extension 
of the macro-micro approach to extract a set of spatio-temporal parameters in each 
swimming phase. A feature selection algorithm is used to select the parameters that are 
highly associated with the swimmer's performance in each phase. A swimmer’s 
performance is quantified based on a set of phase-specific goal metrics defined using the 
actual swimmer's velocity as measured by a reference tethered speedometer. The selected 
parameters are then used to estimate the goal metrics based on regression models. In this 
chapter, performance evaluation models are developed for each swimming phase in the 
four main swimming styles. 

Part III – Phase-based feedback for coaching with IMU: using the models developed in the 
previous part, we first analyzed the sensitivity of the estimated goal metrics in relation to the 
progress of a swimmer during several months of training. We then provided the goal metrics as 
feedback for a swim team to evaluate its effect on progress. 
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• Chapter 5 – describes the change in phase-based goal metrics in front crawl style during 
two and a half months of training measured by weekly tests. The performance level of 
each swimmer is quantified using lap times recorded by the coach, and the association 
between the phase-based goal metrics obtained by IMU and performance level is 
examined in this chapter.  

• Chapter 6 – investigates the effect of SmartSwim feedback, used as an assistant to the 
coach, on the progress of young front crawl swimmers. Swimmers on a team are divided 
into two groups, an experimental group and a control group, and the coach receives 
feedback only for swimmers in the experimental group. During the study, the coach 
adjusted the swimmers' training based on the feedback and the performances of the two 
groups were compared.  

Part IV – Conclusions: this part summarizes the main achievements of this work for the field, 
the limitations of the proposed analysis system, and future work and perspective. 

• Chapter 7 – discusses the contributions of the current work to swimming analysis with 
IMUs, its limitations, and possible future work.  
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 Coaching and Technology: IMU in 
sports with a focus on competitive swimming 

The purpose of this chapter is to provide an overview of the current state of the art 
regarding the contribution of IMUs to competitive swimmer training and the existing gaps 
that need to be addressed. Since this thesis proposes a novel approach based on wearable 
IMUs to support swim coaches, the first step is to identify the duties of a coach and clarify 
the contribution of IMU technology to them. Therefore, the overview begins with the roles 
of a coach in training and how technology can assist them to enhance the quality of a 
training session. Among the various technologies that have been developed for motion 
analysis, emphasis will be placed on IMU and its role in technique analysis and feedback 
for swimming analysis. The studies in which IMUs have been used for parameter extraction, 
performance evaluation and feedback for competitive swimming will be discussed to 
provide an overview of the latest developments and the existing gaps in this field. A brief 
overview of the IMU-based measurement systems available on the market and the 
parameters they provide follows. The concluding remarks present the gaps that this study 
aims to fill. 

2.1 Sports coaching roles and technology  
Motion analysis is a tool frequently used by coaches that includes personal observation or 
cameras and more sophisticated measurement systems. Since the approach to swimming analysis 
taken in this thesis is based on motion analysis, it is necessary to examine how this approach 
contributes to the coach's duties in training sessions. 

2.1.1 Coaching duties and motion analysis 

To obtain a comprehensive overview of the needs of coaches, the assessments they perform in 
training sessions should be first examined. According to "Sports training principles" by Frank W. 
Dick (Dick, 2007), a coach always struggles with answering four main questions: (i) "What does 
it take to win?", (ii) "What is the athlete's path to success?", (iii) "What are the risks along the 
path?", and (iv) "How do we learn from the process and affect change?". The author indicates 
that the coach should regularly conduct multiple evaluations and analyses to answer these 
questions and guide athletes through the training sessions. 

To determine what it takes to win, the coach should first conduct a competition analysis that 
focuses on the strengths of competitors to realistically situate the athletes among their rivals 
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(Luteberget et al., 2018). The coach should continuously analyze the athletes' technique during 
training to identify the strengths and weaknesses. In fact, the coach measures the mechanical 
features to explain the results of the competition analysis (Lees, 2002). To measure the underlying 
maximal physiological capacity that supports proper technique, the coach should analyze the 
physical and physiological condition of athletes. Developing training programs based on sound 
physiological principles requires an understanding of acute metabolic responses to training and 
their changes over time (Opondo et al., 2015). 

The training plan and comparison between the actual and planned training of each athlete is 
necessary to increase the efficiency of the training sessions, which is the next responsibility of the 
coach to determine the athlete's path to success. Appropriate training load combined with 
adequate recovery is essential to achieve optimal performance while minimizing the risk of 
overexertion, overtraining, injury, and illness (Hamlin et al., 2019). To monitor the potential risks 
on an athlete's path to success, coaches must place safety and injury prevention at the center of 
their training strategies (Verhagen et al., 2010). The simplest method of monitoring injuries and 
illnesses is to record the occurrence and healing process of an athlete's injury and use it to adjust 
the training plan. Finally, the athlete's learning process is tracked by the coach and improved 
through regular feedback, the benefits of which have been demonstrated by numerous studies, 
especially in complex tasks such as most athletic activities (Sigrist et al., 2013). 

Based on the above analyses required for answering the four coaching questions and the 
relationships between them, a block diagram can be conceptualized (Figure 2.1). Coaches begin 
by analyzing competitions to determine the characteristics of success and set realistic goals for 
athletes. The required characteristics are considered in both technique and physiological analysis. 
The coach decides on the required skills or "mechanics" and the underlying physiology to achieve 
the defined goals. By this point, the coach knows what is needed to win the competition and uses 
these ideas to define the training goals. Training should be planned and continuously analyzed 
to achieve the goals set before the competition. The results of the training analysis are also 
relevant to assessing the risk of injury and should be continually updated based on athlete's 
progress. Finally, providing feedback to athletes and helping them learn and improve is a task 
that is ongoing parallel to all coaching responsibilities. Training objectives should be updated 
based on feedback to make training sessions as efficient as possible. 

The correct accomplishment of the above tasks for each athlete requires the support of 
measurement systems and monitoring devices. Based on the current methods and technologies 
used to accomplish each coaching duty, Table 2.1 provides a summary of the analyses with 
examples of technology used for each task. 
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Figure 2.1 – Block diagram of coaching roles (colored blocks) in a training session 

Table 2.1 – The tasks of a coach to answer the four main coaching questions. Examples are given of the 
technical tools used for each evaluation. Adapted from (Dick, 2007). 

According to Figure 2.1 and Table 2.1, the coach's roles are interrelated, and the results of each 
role influence the others. Based on this categorization, motion analysis can be found among the 
examples of several coaching tasks, such as technique analysis, injury surveillance and feedback. 
It can also contribute indirectly to competition analysis or the planning of the training sessions. 
However, the immediate importance of motion analysis technologies in everyday training can be 
identified in the two blocks of technique analysis and feedback and learning. Depending on the 
motor task, nuances in movement technique that are difficult for human to perceive can 
determine victory or defeat. This is where motion analysis can help coaches by capturing the 
movements with high accuracy and resolution (Pueo, 2016). Since providing feedback is related 
to different roles of a coach, it was separated from technique analysis. However, these two duties 
are closely related, as the results of technique analysis form the basis for intervention and 
feedback. Consequently, the use of motion analysis for technique analysis is also directly 
beneficial for feedback to athletes.  

Coaching 
question 

Relevant evaluations 
and analyses Examples of current technology 

(i) 

Competition analysis GPS-based measurement systems, Software based analysis tools 
Technique analysis kinematic and kinetic analysis 
Physical and 
physiological analysis 

VO2 max and other max capability assessments, speed-HR-
lactate assessments, power consumption measurement 

(ii) Training plan and 
monitoring 

Spread sheets, training management platforms 

(iii) Injury surveillance and 
prevention 

Software based recording systems, isokinetic dynamometer, 
goniometer, force plate, kinematic assessment  

(iv) Feedback and learning Various data feedback tools such as smartwatches and other 
wearables with data visualizations  
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2.1.2 Feedback for sports coaching 

Feedback can be categorized by different components such as the origin, modality, and timing. 
From the origin perspective, the feedback can be intrinsic or extrinsic (Magill, 1994). Intrinsic or 
inherent feedback comes from within the body, while extrinsic or augmented feedback is 
additional information provided by an external source, such as a coach or measurement systems. 
Visual, auditory, and tactile modalities are the most commonly used for providing feedback 
(Sigrist et al., 2013). Choosing the correct feedback modality depends on human perceptual and 
cognition abilities during the activity (Jakus et al., 2017). The cognitive load of feedback should 
not be too high, as this leads to a negative effect of distraction (Stojmenova et al., 2018). From 
another important aspect, feedback can be given in three different times: before, during (real-
time or concurrent feedback), and after the movement (terminal feedback) (Mononen, 2007). 
Feedback given before the movement reflects previous tasks the person has performed, such as 
notes from the last session. Concurrent feedback can be received intrinsically or extrinsically 
during the task, in real-time or with a certain short or longer delay depending on the time needed 
for computation and communication. Terminal feedback is given when the task is completed or 
even some time later. 

Feedback is proven to have a positive impact on the motor learning process if understandable 
feedback is given in an appropriate form at the right time (Kos and Umek, 2018a). Sport activities 
are defined as complex learning tasks (Sigrist et al., 2013) and the use of feedback is a proven 
means to enhance the learning process of athletes. The main purpose of using feedback in sport 
is to support and accelerate the motor learning process of athletes (Effenberg and Schmitz, 2018).  
Three types of feedback loops are presented in Figure 2.2 depending on the involvement of the 
coach and technical equipment (Kos and Umek, 2018a). In traditional coaching, the coach 
analyses the technique of the athletes by observation and then provides feedback to them directly 
using his/her own expertise (Figure 2.2, A). Using technological devices, the coach can obtain 
more detailed technical information and then gives a more objective and precise feedback to the 
athlete (Figure 2.2, B). The athlete can receive feedback directly from the measurement equipment 
in different modalities, detect their weaknesses and then learn the motor task in an autonomous 
manner (Figure 2.2, C). 

Motion analysis methods have contributed much to this role of sports coaches. These 
technologies provide the coach with a detailed analysis of the athlete's performance and improve 
their decision-making process. The use of visual feedback from cameras was the first method to 
improve the quality of feedback that athletes receive from the coach. Cinematographic (Wilson, 
2008) and markerless (Colyer et al., 2018) approaches have been used to quantify feedback from 
videos and increase accuracy, but they suffer from several limitations such as cumbersome 
installation and calibration or limited capture volume. Recent technological developments and 
improvements in accuracy, cost and size of MEMS have IMUs as a plausible alternative to other 
motion tracking systems for athletes and providing feedback to them. An IMU consists of an 
accelerometer, a gyroscope, and often a magnetometer. Together with the acceleration and 
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angular velocity provided by the accelerometer and gyroscope modules, the orientation of the 
device can be determined by combining the two (data fusion). The magnetometer measures the 
earth's magnetic field like a compass and helps estimate the orientation of the sensor. 

 
Figure 2.2 – Three types of technique analysis and feedback loops, based on coach involvement and 
measurement devices: (A) coach-based feedback, (B) coach-based feedback with technology equipment, 
and (C) autonomous feedback during technology-enhanced motor learning. Adapted from (Kos and 
Umek, 2018a). 

2.1.3 IMUs in sports 

For using IMUs for sports applications, several factors should be considered to perform effective 
measurements and reliable analysis. The inherent errors of the accelerometer and gyroscope 
caused by the imperfect physical properties of MEMS can lead to drift errors when integrated 
over time, which should be handled by signal processing approaches such as Kalman filter 
(Narasimhappa et al., 2019) or by motion-based techniques such as zero velocity update (Do and 
Tan, 2019). It should be noted that sensor positioning on athlete’s body does not interfere with 
their actions or restrict their freedom of movement. Proper fixation of the sensor is an issue, as it 
can move due to external loads (e.g., water resistance in aquatic sports) and rapid movements, 
the effect of which is not investigated in the literature. In addition to this sensor wiggle, the use 
of IMUs as skin markers also raises the problem of soft tissue artifacts (Barré et al., 2015), which 
originates from the relative motion between the skin and the underlying bones. The motion 
magnitude of the sensor motion with respect to the bone can be in the order of a few centimeters, 
depending on the activity and placement of the sensor (Peters et al., 2010). Consequently, the 
ability of algorithms to accurately measure body motion depends on both sensor position and 
proper fixation.  

Despite the technical limitations, IMUs are the most mobile systems that can be integrated into 
sports equipment, and they do not depend on a base station or external signals. They can detect 
very fast movements, which makes them even more attractive for individual sports. Athletes can 
accurately track their performance using IMU-based parameters not only during each training 
session, but also over weeks and seasons. The use of IMUs does not limit the coach in terms of 
capturing volume which is a big advantage for sports to record the athlete's actual performance. 
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As a result, IMUs can bring a lot of freedom to athletes and coaches in individual sports due to 
their availability, portability, and detailed technique analysis compared to other measurement 
systems. In general, the IMU systems used for athletes should be lightweight and small to 
minimize interference with their activity, and it should be quick to set up for daily use. It should 
function properly in the target environment in terms of temperature, shock and vibration, 
humidity or moisture. For long-term use, such as monitoring a marathon, an energy-efficient 
IMU should be used to avoid the risk of malfunction (Camomilla et al., 2018). Depending on the 
application, the sampling frequency should be high enough to capture all useful information 
from the motion, but at least two times the highest frequency of interest in the signal according 
to the Nyquist-Shannon sampling theorem (Woodman, 2007). 

Parameters derived from IMU signals in sports can be divided into three categories: spatio-
temporal, kinematic, and kinetic. Spatio-temporal parameters are usually extracted by detecting 
certain features in the signals that represent an event or phase of the athlete's activity. Some 
examples are the detection of moments related to the beginning or end of an activity, the 
identification of movement phases and important data segments, and the estimation of time 
intervals or dominant frequencies in cyclic movements. Kinematic parameters refer to the 
parameters obtained using the linear and angular forms of position, velocity, or acceleration 
derived respectively from the accelerometer and gyroscope of the IMUs. Estimation of the 
absolute orientation of the sensor is another important output of IMUs, which is used for 
orientation analysis of the sports equipment or the athlete's limbs. It is also necessary to separate 
gravity acceleration from motion acceleration, which is useful for estimating absolute kinematic 
parameters. Kinetic parameters such as forces, moments, power, or stiffness be estimated using 
the parameters obtained from IMUs along with relevant models of human body (Koning et al., 
2015).  

All of the three above categories can be used for technique analysis of athletes. Spatio-temporal 
parameters were used for technique analysis in both cyclic and non-cyclic tasks. Critical temporal 
events and task phases in ski jumping (Chardonnens et al., 2013), basketball (Straeten et al., 2019), 
baseball swing (Punchihewa et al., 2019), swimming tumble turn (Slawson et al., 2012) or soccer 
turning manoeuvers (Nedergaard et al., 2014) are examples of using IMUs to study non-cyclic 
activities. More studies are being conducted on cyclic tasks because extracting spatio-temporal 
parameters involves identifying a stride, step, or stroke event and then specifying the number, 
rate, and duration of each cycle, or a deeper analysis of the events within each cycle and dividing 
it into smaller phases (Camomilla et al., 2018). Stroke duration and number are extracted in 
canoeing (Galipeau, 2018), kayaking (Fernandes et al., 2021) and swimming on different positions 
and styles (Chakravorti et al., 2013; Fantozzi et al., 2022). The frequency of strides and steps are 
assessed in running (Gouttebarge et al., 2015), skating (Stetter et al., 2016), cycling (Fudickar et 
al., 2020) and cross-country skiing (Fasel et al., 2015) 

IMU data can be used to track the athlete’s body center of mass (CoM) as a commonly used 
reference point for calculations in sport biomechanics. CoM kinematics can be determined by 
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integrating the absolute acceleration after removing the sensor drift effect. The forward velocity 
of CoM is of great importance and has been studied with IMUs in sports such as alpine skiing 
(Fasel et al., 2016) or running based on step rate measurements (Neville et al., 2015). To reduce 
errors in instantaneous velocity estimation, average velocity during a cycle or phase can be 
estimated, e.g., for swimming stroke (Dadashi et al., 2015), swimming lap (Bächlin and Tröster, 
2012), running cycle (Chew et al., 2018). The orientation of the body segment or sports equipment 
can usually be determined by data fusion of multiple sensors, as in the case of hip flexion during 
sprint (Nagahara et al., 2020), running on a track (Strohrmann et al., 2012), during a golf swing 
(Kim and Park, 2020), and snowboarding (Zihajehzadeh et al., 2015). Estimation of dynamic 
parameters with IMUs has been studied in specific cases in sports, such as hand force exerted on 
the javelin during the throw (Särkkä et al., 2016), strike force on a punching bag (Nakano et al., 
2014), or IMU signals cross-correlation with in-sole pressure of skier (Yu et al., 2016), as it is 
difficult to evaluate the external forces and moments for validation (Camomilla et al., 2018). 

Another application of IMUs in sports is identification and classification of athlete’s activity in 
different contexts, e.g., standing walking, jumping and shuffling in netball (Smith and Bedford, 
2020), swimming styles (Tarasevicius and Serackis, 2020), volleyball actions (Vales-Alonso et al., 
2015) or skateboarding (Groh et al., 2016). To monitor the external training load of athletes, trunk 
acceleration is proposed as a relevant parameter. It is assumed that the mean square 
instantaneous rate of change of trunk acceleration is proportional to the external load studied 
with IMUs (Nedergaard et al., 2017). Because this parameter varies by sport, sport-specific 
validation is required, as has been done for volleyball (Jarning et al., 2015) or Gaelic football (O. 
Connor et al., 2016). Estimation of athletes' maximal velocity and strength is necessary to profile 
their motor capacity, which is then used to develop strength training programs. For this purpose, 
IMUs have been used because they can provide acceleration and velocity possible to be used for 
muscle strength determination (Gomez-Piriz et al., 2013; Jidovtseff and Laffaye, 2015). 

As the data provided by IMUs has relatively low-volume and easy to transfer, these sensors have 
been incorporated into sport-specific feedback and coaching systems used for training analysis. 
After adding the proper user interface, IMUs can provide coaches and athletes with real-time 
visual, tactile, auditory or multi-modal information, specifically designed for the target sport. For 
example, IMU-based audio feedback systems have been developed for swimming (Schaffert et 
al., 2019), rowing (Schaffert et al., 2020) and canoeing (Wang et al., 2016b) during start and steady 
rowing conditions based on boat velocity and stroke rate. Aquatic sports like swimming are other 
promising sports for the use of feedback because of the high complexity of the activity and the 
difficulty of giving feedback during the activity. The kinematic parameters such as CoM velocity, 
stroke length, stroke rate, body rotations and balance are possible to extract from IMU data and 
transferred to the coach through a compatible interface (Bächlin and Tröster, 2012). The proof of 
concept for IMU-based feedback for coaching and training in other sports is demonstrated in 
tennis (Yang et al., 2017), skiing (Kos and Umek, 2018b), golf (Ghasemzadeh et al., 2009) and 
volleyball (Vales-Alonso et al., 2015).  
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2.2 IMUs in swimming 
The aforementioned barriers to the quantitative use of cameras, as well as the requirements for 
an optimal analysis system, can be met with IMUs (Callaway et al., 2009). The use of this 
technology has attracted research attention, and commercially available devices have emerged 
to provide coaches with new insights into swimmer performance. A key element in the use of 
IMUs in swimming is minimizing the induced extra drag. Therefore, the use of miniature IMU 
and a minimal number of sensors with as little interaction with the water as possible is preferable. 
Although wrist is the most considered position for wearables in sport, arms are among the most 
dynamic limbs in swimming and generate greater drag. Furthermore, several factors influence 
swimmers' arm movements, such as swimming speed (Seifert et al., 2004), arm dominance 
(Figueiredo et al., 2012b), training intensity (Barden et al., 2011) and performance level (Nikodelis 
et al., 2005). There are a few studies comparing different sensor positions during swimming 
(Pansiot et al., 2010) to find the optimal position that extracts as much information as possible 
with acceptable accuracy for coaching. Despite all the advances in swimming analysis systems, 
the lack of a suitable system is still a major problem for the coaching community, and there is still 
a large gap between the needs of swim coaches for training sessions and the analysis systems 
available on the market (Mooney et al., 2016a). Therefore, a literature review of recent studies on 
swimming with IMUs and the technology available on the market is necessary to accurately 
identify the gaps. 

2.2.1 Spatio-temporal parameters  

Recording the lap time values of swimmer is regularly performed by coaches. Comparing with a 
stopwatch, Bächlin and Tröster estimated the lap time based on the acceleration from a single 
wrist IMU and reported an error of 0.3 s (Bächlin and Tröster, 2012). Callaway suggested a system 
of IMUs on different body locations (wrists, arms, lower and upper back) for extracting a group 
of kinematic parameters including the lap time (Callaway, 2015). The author used the lower back 
sensor data and reached an estimation error of 2.15 ± 1.93% (the absolute error values were not 
reported). Ganzevles et al. estimated the time between two consecutive push-off events as the lap 
time and used the acceleration signals of an IMU on the upper back for its estimation (Ganzevles 
et al., 2017). By thresholding the signal energy level, they managed to estimate the lap time with 
an error value of 0.74 ± 0.18 s compared to underwater cameras. Although lap time is a key metric 
related to the swimmer’s performance, its extraction with IMUs highly depends on the sensor 
positions and it is not accurately investigated. A study over a head-mounted commercially 
available swimming analysis system shows that it can estimate lap time with a mean absolute 
percentage error under 5% for each stroke (Pla et al., 2021). However, most of the current 
commercially available swimming analysis systems did not report the accuracy of lap time 
detection (Mooney et al., 2016b). Therefore, it appears that accurate lap time estimation with 
IMUs is still an open area of research. 

Swim start information that the coach tracks is generally limited to recording the time it takes the 
swimmer to be 15 m from the wall and possibly the reaction time (the time between the buzzer 
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sounding and the swimmer leaving the block) (Cossor and Mason, 2001). Despite the 
performance of IMUs in tracking fast movements, less attention has been paid by researchers to 
the swimming start. Le Sage et al. developed a multi-sensor system that includes high-speed 
cameras above and below water, a force plate on start block, an IMU at the lower back, and a 
pressure pad with the ability to provide real-time audio and visual feedback to monitor elite 
swimmers (Le Sage et al., 2012). Using synchronized video images with the IMU data, the authors 
qualitatively analyzed the IMU acceleration signal during the start and separated the sub-phases 
(block and flight, entry and glide with stroke preparation) to extract key performance-related 
metrics (Figure 2.3). Using IMU as a stand-alone device to separate the sub-phases of start is 
challenging because the corresponding movements vary from place to place on the swimmer's 
body and have no immediate effect on the IMU data. For example, the exact moment at which 
the hand enters the water cannot be captured by the accelerometers based on what is known to 
date.  

 
Figure 2.3 – Qualitative separation of swimming start on the acceleration signals from a back worn IMU 
with the aid of cameras. Adapted with permission from (Le Sage et al., 2012). 

Despite its proven effect on overall swimmer performance in competitions (Sánchez et al., 2021), 
start has been barely studied using IMUs, mainly by estimating specific parameters during the 
sub-phases. Stamm et al. showed that push-off maximum velocity can be estimated as a 
performance-related metric by integrating the forward acceleration of a single IMU at the lower 
back (Stamm et al., 2013a). Compared to a velocity meter, the proposed method achieved a 
correlation coefficient of 0.94. Engel et al. also studied the underwater dolphin kicks during the 
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sub-phase of stroke preparation and compared the duration of kick cycles estimated with IMUs 
and cameras over 110 cycles and found no significant difference between the two systems (Engel 
et al., 2020). 

Analysis of the turn phase is usually performed qualitatively by coaches (e.g., the time between 
5 m before the wall and 10 m after the wall) and has received less attention in IMU-based studies, 
although it makes a significant contribution to the final time of the race (Morais et al., 2018). 
Because the turn phase is easier to track at the body core, IMUs at the lower back were used in 
all studies, regardless of the type of turn (tumble of simple turn). The main findings were the 
qualitative segmentation of a full turn into more detailed sub-phases such as approach, rotation, 
push-off, and glide based on data from a few swimmers in tumble turn (Slawson et al., 2012). As 
a proof of concept, Lee et al. marked the differences between the tumble turns of two swimmers. 
Using the peak detection and zero crossing of the acceleration data, the authors were able to 
detect the temporal events of turn phase with an accuracy of 0.15 s (Lee et al., 2011). A recent 
study analysed the performance of a commercially available head-worn IMU that reports turn 
time, reaching a high coefficient of variation of 10.4% and 12.9% for tumble and simple turn 
respectively (Butterfield et al., 2021). Consequently, a deeper analysis of start and turn phases 
with more participants is needed to extract important performance-related kinematic parameters 
and arrive at more conclusive results in the application of IMU. 

The counting of swimming laps and subsequent calculation of total swimming distance by IMUs 
is side result of studies (Brunner et al., 2019; Félix et al., 2019), as the detection of turns with a 
prior knowledge of pool length is sufficient for this purpose. The determination of swimming 
distance is of little importance for elite swimmers, as they always follow the plan set by the coach. 
However, open water training could benefit more from a swimming distance calculator as an 
alternative to GNSS tracking. 

Most of the literature on the analysis of swimming with IMUs is essentially concerned with the 
free-swimming phase. The first application of IMUs to the analysis of swimming was the 
separation of stroke phases. Using three IMUs at the wrists and lower back, Dadashi et al. 
succeeded in measuring the changing angle between the sensors at the wrists and lower back 
and proposed a new approach for segmenting the stroke cycle (Dadashi et al., 2013c). This 
approach was further used to estimate the coordination index previously found to correspond to 
swimming skill level (Komar et al., 2012). The same concept was then followed for breaststroke 
using two IMUs at the wrist and lower leg within a hidden Markov model, resulting in an average 
correct phase detection of 93.5% for the arm stroke and 94.4% for the leg stroke (Dadashi et al., 
2013b). Recent studies have attempted to more accurately identify the phases of the stroke cycle 
using the 3D trajectory of the wrist (Cortesi et al., 2019). They were able to obtain a low bias (0.8%, 
0.6%, 0.5%, 1.4%) and a low root mean square error (2.9%, 2.8%, 2.3%, 3.5%) for the entry, pull, 
push and recovery phases, respectively. 
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Counting the number of strokes in a lap and the stroke rate are other representatives of 
swimmer’s performance noticed by coaches (Maglischo, 2003). Since the effect of strokes is more 
visible on upper body, researchers used IMUs on wrists (Siirtola et al., 2011; Bächlin and Tröster, 
2012)  and back (Daukantas et al., 2008; Siirtola et al., 2011; Chakravorti et al., 2013) to calculate 
stroke count and rate. Depending on the style, researchers used peak detection techniques over 
acceleration signals to detect the strokes. A misdetection rate less than 1% was reported by 
Siirtola et al. for front crawl, breaststroke and backstroke styles based on wrist sensor. Beanland 
et al. used an IMU sensor on the head that worked well for counting the strokes in butterfly and 
breaststroke (correlations between 0.98 and 1.00 for manual and automatic stroke count 
detection). However, during front crawl and backstroke the swimmer tends to keep the head 
fixed and the stroke count algorithms did not work properly (Beanland et al., 2014).  

Lower limb actions have been shown to contribute to streamlined positioning and propulsion of 
the body depending on the swimming style (Deschodt et al., 1999). The simplest approach to 
extracting the kick pattern is to use IMUs on the lower limbs, which resulted in a correlation 
coefficient of 0.96 with the reference values (Fulton et al., 2009). The same logic was used to 
determine the relationship between peak swimming speed and the kick rate in Paralympic front 
crawl swimmers (Fulton et al., 2011). Following a similar method and using zero-crossing of 
mediolateral angular velocity, Fantozzi et al. detected upward and downward leg motion by two 
IMUs on ankles. They were able to distinguish between propulsion and buoyancy kicks using a 
peak detection threshold of 100 °/s (Fantozzi et al., 2022). Since using wearables on lower limbs 
is uncomfortable and interferes with streamlining, it has been claimed that the front crawl kick 
pattern can be observed on the mediolateral axis of acceleration of a lower back IMU (Andreoni 
et al., 2015). However, the method of distinguishing between upper and lower limb actions via a 
lower back sensor is not explained by the authors. 

2.2.2 Kinematic parameters 

Although it is natural for coaches to track swimmers' performance in each style, it is necessary 
for an analysis system to identify the style type (i.e. front crawl, breaststroke, butterfly, and 
backstroke). For this purpose, signal processing of kinematic signals (e.g. acceleration) with 
minimal computational complexity were initially used, reaching overall recognition accuracy of 
90.8%, 92.6%, and 88.8%, for classifying front crawl, breaststroke, and backstroke styles 
respectively (Siirtola et al., 2011). Ohgi et al. used descriptive statistics (e.g., mean, variance, 
skewness) from accelerometer data from a chest sensor and applied two methods: a multilayer 
neural network and a C4.5 decision tree for style identification. Both methods achieved similar 
accuracy of 91.1% in style classification (Ohgi et al., 2014). Kon et al. used acceleration signal 
features (mean, standard deviation and frequency-domain entropy) and classified the four styles 
with an accuracy greater than 95% (Kon et al., 2015).  

More recent studies used machine learning or neural network classifiers as a more suitable and 
accurate solution for real-time analysis. Wang et al. used a single IMU sensor at lower back and 



Chapter 2 - Coaching and Technology: IMU in sports with a focus on competitive swimming 

 

28 

extracted statistical parameters such as mean, mean absolute deviation, kurtosis, and energy of 
acceleration, angular velocity and magnetometer signals, which were inserted into a Hidden 
Markov model classifier to identify the style. The values for recall, precision, and F1 score for all 
four styles were higher than 0.91 (Wang et al., 2019). Considering the technique diversity between 
swimmers, style identification based on wrist motion is more difficult to handle when based only 
on signal processing approaches. Therefore, recent work has attempted to input acceleration and 
angular velocity signal features for a wrist-worn IMU into multilayer neural networks for a 
stronger, real-time algorithm (Brunner et al., 2019; Tarasevicius and Serackis, 2020), and in the 
best case Brunner et al. were able to achieve an F1 score of 97.4% for style identification. Since 
style identification is an initial step for deeper analysis of swimmer’s performance, one should 
decide about the analysis approach based on the final goal parameters. 

Another potential application of IMUs is to measure body alignment (roll and pitch) or the 
important angles of the swimmer's joints that contribute to performance such as knee, elbow, or 
shoulder, as the angles are important to monitor streamline shape and maximize propulsive 
forces (Toussaint and Truijens, 2005). The head and back have shown promise as locations for 
extracting pitch and roll angles, usually by representing the three-dimensional orientations and 
rotations of the swimmers' limbs using rotation matrices (Pansiot et al., 2010). Félix et al. 
proposed novel indicators based on trunk elevation, body balance and rotation for swimming 
performance evaluation (Félix et al., 2019), using an attitude and heading reference system 
(AHRS), and a gradient decent optimization algorithm (Madgwick et al., 2011). At least two IMUs 
should be used on the limbs attached to a joint to estimate the joint angle, since the angle is 
calculated based on the relative orientations for this purpose. Seifert et al. extracted knee and 
elbow angles during breaststroke and achieved an error between 0.09 rad and 0.15 rad from the 
reference system (Seifert et al., 2014). Elbow angle in front crawl strokes was estimated in a more 
recent study based on an artificial neural network trained by three minutes of ergometer 
swimming and then tested over 10 strokes during a second test. The root mean square difference 
of 7.75° was found between the estimated angle with two IMUs on the arm and the gold standard 
(Macaro et al., 2018). Guignard et al. compared the measured elbow angle based on two IMUs on 
upperarm and forearm with an optoelectronic system (Guignard et al., 2021), showing a median 
bias between the two systems lower than ±4° in the Bland-Altman analysis and a narrow limit of 
agreement (less than 15° amplitude between the 2.5th and the 97.5th percentiles). 

As the most important parameter of performance, swimming velocity can reflect the final result 
of the swimmer's technique. The average velocity of the free-swimming phase (approximate 
stroke length divided by stroke rate) (Hagem et al., 2013b) or the entire lap (pool length divided 
by lap time) (Bächlin and Tröster, 2012) was estimated using the parameters explained so far. 
Thanks to recent advances in signal processing and machine learning, some studies have 
proposed new algorithms to remove the acceleration integration drift and extract the 
instantaneous velocity. Removing gravity acceleration using a Hamming window FIR filter from 
lower back IMU data was used by Stamm et al. for front crawl swimmers and resulted in an 
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estimated instantaneous velocity within 4% of the reference values in the Bland-Altman plot 
(Stamm et al., 2013b). Similar results were reported by Dadashi et al. who used a geometric 
moving average change detection algorithm to account for integration drift (Dadashi et al., 2012). 
The same group then extended their research to a more comprehensive velocity estimation 
applicable in the real world using Gaussian (Dadashi et al., 2013d) and Bayesian (Dadashi et al., 
2015) regression methods. The result was a relative error of 9.2% and 9.7% with respect to the 
reference, respectively. With the aim of extending the estimation of instantaneous velocity in 
swimming to Paralympic swimmers and to other swimming styles, Clément et al. used the 
driftless integration of forward acceleration of an IMU on lower back and validated it with a 
tethered speedometer (Clément et al., 2021). Considering the results of all trials, Bland-Altman 
analyses revealed a bias of 0.03-0.06 m/s with a 95% agreement limit of less than 0.31-0.80 m/s 
and a root mean square error range of 0.14-0.39 m/s between the two systems. 

2.2.3 Kinetic parameters 

Since the acceleration and deceleration of swimmer's body are directly related to the propulsive 
and drag forces, IMUs are likely to be an important tool for kinetic analysis of swimming.  For 
example, propulsive force is shown to be a determinant of swimming velocity (Morouço et al., 
2011). The extraction of kinetic parameters with IMUs has not been studied as much in swimming 
as in other sports due to the complicated nature of propulsive and drag forces in water (Mooney 
et al., 2016b). Dadashi et al. used a linear Bayesian model to estimate the energy expenditure of 
front crawl swimmers based on biomechanically interpretable descriptors extracted from four 
IMUs worn on the swimmers' forearms, sacrum, and right shank. High agreement was shown 
between the model output based on IMU and validation (correlation coefficient of 0.93) with a 
relative estimation error of 0.8 ± 9.4% (Dadashi et al., 2014). 

Hand propulsive force is another important kinetic parameter studied mainly with pressure 
sensors and marker-based motion capture (Tsunokawa et al., 2018), which is mainly affected by 
limitations such as reduced visibility of attached reflective markers due to light scattering around 
the hand caused by bubbles or limited measurement range. Lanotte et al. used two instrumented 
paddles that measure the pressure difference between the palm and the back of the hand, and an 
IMU, which only displays the effects of these forces on hand acceleration (Lanotte et al., 2018). A 
recent study by Kadi et al. used a single IMU on the back of the hand to estimate hand propulsive 
force and compared it to a combination of pressure sensors and an underwater motion capture 
system (Kadi et al., 2022). The two systems showed good agreement in estimated force (19.59 ± 
7.66 N and 19.36 ± 7.86 N for the reference system and IMU, respectively) and an intraclass 
correlation coefficient of 0.966. This study also showed that the additional drag force caused by 
the use of IMUs on hand is proportional to hand angle and velocity with respect to the direction 
of water flow and is significant at angles less than 30°. This is the main reason why IMUs are still 
limited for estimating propulsive forces in water, and further technological advances are needed 
to make them smaller and more reliable for swimming kinetics analysis. 
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Comparably, spatio-temporal and kinematic parameters are more investigated than kinetic 
parameters in swimming mainly due to the complicacy of force estimation under water and the 
extra drag force induced by IMUs. Given the parameters extracted for IMU data in these two 
categories, coaches can benefit from them in two main levels: (i) increasing the estimation 
accuracy of useful parameters in an organized manner and (ii) gaining new insights into the 
details of the swimmer's performance. General information such as lap time or swim distance in 
each swimming style can be recorded and tracked throughout the season for each swimmer. At 
the second level, coaches receive quantified analysis of parameters that were not measurable 
(e.g., duration of start and turn sub-phases, instantaneous velocity) or were only observed and 
measured qualitatively using traditional approaches (e.g., stroke count and rate). However, the 
review shows that researchers have focused on the free-swimming phase in front crawl style and 
neglected other phases and styles. Therefore, we plan to develop a comprehensive and reliable 
approach for swimming analysis that will provide coaches with performance-related spatio-
temporal and kinematic parameters in all swimming phases, regardless of the style. 

2.2.4 Performance evaluation 

As the end goal of a swimmer, swimming faster is the focus of all coaching strategies and training 
procedures in swimming. Theoretically, the swimmer should: (i) produce the highest mechanical 
power to generate the maximum propulsive forces, (ii) avoid water resistance through proper 
body posture, and (iii) maintain the highest mechanical efficiency to achieve peak performance 
(Toussaint and Truijens, 2005). To assess the contribution of IMUs to performance evaluation, the 
extracted parameters should be examined for their relevance to swimming performance. Based 
on the parameters described in previous sections, lap time is the only parameter that reflects the 
swimmer's overall performance. The start and turn parameters extracted by the IMUs are limited 
to the detection of the events corresponding to the sub-phases of each phase and require a more 
detailed analysis to relate to the swimmer's performance. 

For the free-swimming phase, researchers have claimed that some parameters are related to the 
swimmer's performance, while they do not provide evidence to relate them to the propulsion 
generated, the swimmer's posture, or the swimming efficiency. For example, stroke count and 
rate are used as indicators of swimmer performance and are often used in training sessions, while 
swimming at a high stroke rate does not guarantee higher propulsion or higher efficiency or less 
drag. The same is true for stroke cycle sub-phases or kick count and rate as they are not 
independently related to the performance factors and must be optimized based on the swimmer's 
profile. The coordination index is defined with three modalities of opposition, catch-up and 
superposition depending on the delay between arms or arms and legs, each modality being 
suitable for a different purpose (Seifert and Carmigniani, 2021). Opposition is more suitable for 
high-level swimmers, while superposition is a more economical modality appropriate for long-
distance swimming (Chollet et al., 2000). Two new coordination indices are introduced recently 
between arms and legs as index of synchronization between arm and leg actions and inter-limb 
coordination as the relative foot position during successive arm stroke phases (Mezêncio et al., 
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2020). However the coordination index is relevant to the swimming efficiency, it needs to be 
considered along with other parameters (e.g., cycle velocity variation and stroke rate) to be used 
as a reliable performance predictor and assist the coach (Dadashi et al., 2016). 

Head and trunk pitch angles both have crucial effects on the streamline shape of the body. The 
trunk roll angle can represent body rotation, which should have an average value of zero for 
symmetrical styles (Félix et al., 2019). Head rotation angle is another useful parameter that shows 
the effect of breathing on body alignment during front crawl (Pansiot et al., 2010). Developing an 
algorithm based on head pitch and roll angles in front crawl to detect breathing pattern, is 
another attempt towards providing posture information to the coach (Jeng, 2021). These angles 
are easily recorded with a single IMU, which is integrated into the swim cap or swim suit. The 
angles of the body joints can be interpreted as the orientation of the arms and legs, which are 
related to drag and propulsion. The major limitation in estimating body joint angles with IMUs 
is the high number of sensors needed on arms and legs as they move quickly and increase drag.  

Velocity is one of the most important parameters that directly reflects swimming performance 
and can be used as a reliable measure in different swimming phases (Dadashi, 2014). Due to the 
drift problem that occurs when integrating acceleration, researchers have tried a variety of 
techniques to accurately estimate the swimmer's velocity during the free-swimming phase. 
However, velocity during start and turn sub-phases has not been specifically studied with IMUs, 
and researchers have focused primarily on the swimming styles of front crawl and breaststroke 
(Clément et al., 2021). Stroke length, or distance per stroke, is also a parameter relevant to the 
velocity that reflects stroke efficiency. This metric is approximated by multiplying the average 
velocity of the lap by the time per stroke (Bächlin and Tröster, 2012), ignoring the start and turn 
phases. As can be seen from the review, the estimation of metrics related to swimming 
performance with IMUs remains to be explored, as acceleration and angular velocity data are 
directly or indirectly related to propulsion and body posture. This data can also reflect swimming 
efficiency by comparing the acceleration generated in different axes with respect to the forward 
direction. 

2.2.5 IMU-based feedback 

According to a survey of third-level swim coaches in the United States, feedback is among the 
coaches' top four priorities in an analysis system beside ease of use, accessibility, easy-to-
understand results (Mooney et al., 2016a). Converting hydrodynamic pressure on swimmer's 
palm to sound was the first type of concurrent feedback for swimmers that helped the swimmer 
maintain stroke velocity, and improve movement stability (Chollet et al., 1992). The same opinion 
was more recently expressed by Cesarini et al. using a set of piezo probes integrated into a pair 
of gloves for front crawl and breaststroke swimmers (Cesarini et al., 2016). Although IMUs have 
lot of potentials to provide feedback thanks to its portability and low-volume and easy to transfer 
data, few studies have used them for this purpose. 
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Using accelerometers on the wrist, lower back, and upper back, Bächlin proposed visual, tactile, 
and auditory feedback on average swim velocity, stroke time, and body orientation (Bächlin et 
al., 2009). ISwimCoach is a recently developed swim analysis system that detects and transmits 
correct hand movement (correct recovery, high elbow and exit compared to predefined 
trajectories) to the coach based on a wrist IMU, achieving 91% classification accuracy of incorrect 
strokes (Ehab et al., 2020). IMUs have been used in combination with other measurement systems 
such as a heart rate monitor and a temperature sensor to provide a range of kinematic and 
physiological information to the coach as more comprehensive feedback (Rocha and Correia, 
2006). In a pilot study, tactile feedback from an IMU on lower back helped swimmers maintain 
the body rotation within a range of 40° to 50° (Li et al., 2016). Although only four swimmers 
participated in this study, two swimmers performed more balanced when they received 
feedback. Despite the existing studies on the use of IMUs for feedback, researchers have rarely 
reached the field test and only observed a few swimmers over a short period of time to show the 
effect of feedback on their performance. In addition, there are other types of feedback based on 
swimmer performance that have not yet been studied. Examples of useful types of feedback in 
swimming include feedback on the swimmer's performance progress during each training 
session or at the end of each lap. 

2.2.6 Commercialized IMU-based systems  

Regarding the use of IMUs for swimming analysis, several commercial measurement devices are 
now available. For ease of interaction with the device, most companies have opted for a wrist-
worn design. Considering the patent applications that have surfaced in recent years, there is a 
growing interest in IMU-based solutions in sports and specifically swimming. However, few of 
these systems have validated their accuracy against gold standard (Mooney et al., 2016b) and 
researchers have recently begun to conduct studies on the validity of these systems 

Mooney et al. compared the results of two commercially available swim activity monitors (Finis 
Swimsense® and Garmin Swim™) for identifying swimming style and calculating swim 
distance, lap time, stroke count, stroke rate, stroke length, and average speed with video 
recordings. Both devices identified the four swimming styles (overall sensitivity rate of 95.4% for 
Garmin and 96.4% for Finis) and there was no significant difference between the swim distance 
and video recording results. However, lap time and stroke count values were significantly 
different from the gold standard (p < 0.05), resulting in lower accuracy of stroke rate, stroke 
length, and average speed values (Mooney et al., 2017). 

Lee et al. evaluated the accuracy of lap count, stroke count, and energy expenditure from two 
wrist-based monitors (Apple Watch S2, and Garmin Finex 3HR) with a total of 78 swimmers (Lee 
et al., 2018). Energy expenditure was compared with a portable respiratory gas analyzer (K4b2, 
Cosmed, Italy) and a swimming snorkel (Aqua Trainer Snorkel, Cosmed, Italy). The mean 
absolute percentage error of lap and stroke count measurements was less than 10% for Apple 
and about 20% for Garmin. However, the error in energy expenditure was high for both (ranging 
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from 17.1% to 151.7% for Apple and 17.9% to 32.7% for Garmin), showing the poor performance 
of the two devices for this purpose. In another study, the VO2 Max reliability of Garmin 
Forerunner Fitness Watch 935 synchronised with a heart rate chest strap was evaluated by 
Muthusamy et al. in a study of 10 university swimmers in two trials. The results showed an intra-
class correlation coefficient of 0.87 and a standard error of 0.231 ml/kg/min (Muthusamy et al., 
2021). This indicates that improving swimming performance by targeting heart rate and VO2 
Max is a viable option for wearables. 

The validity and reliability of a head-worn device for analysing swimming performance 
(TritonWear, TritonWear Inc.®) was evaluated by Pla et al. in front crawl swimmers using a 
group of spatio-temporal parameters: Average speed, lap time, stroke count, stroke length, stroke 
rate, and stroke index (average speed × distance per stroke × cycle multiplier-2 for front crawl 
and backstroke and 1 for breaststroke and butterfly). The mean absolute percentage error in 
estimating lap time was less than 5% for each style. The accuracy of stroke count was higher for 
symmetrical swimming styles (mean absolute percentage error of 0, 2.4, 7.1 & 4.9% for butterfly, 
breaststroke, backstroke and freestyle respectively). The error value for stroke length, stroke rate, 
and stroke index was less than 5% for all styles (Pla et al., 2021).  

Butterfield et al. evaluated more parameters (split time, stroke count and rate, average speed, 
distance per stroke, turn time, and time underwater) offered by the same device (TritonWear) in 
front crawl and breaststroke and compared them with three cameras above and below water 
(Butterfield et al., 2021). They observed a systematic bias for breaststroke distance per stroke (p 
< 0.05) and the coefficient of variation was lower than 10.4%, except for distance per stroke 
(14.64%) and time underwater (18.15%). The study suggests that the device can be used for basic 
metrics such as split- time, but the error in more complex measurements such as time underwater 
or turn- times makes them unreliable for detecting changes in performance. 

An overview of the currently available products for swimming analysis based on IMUs provides 
valuable information about the favorable sensor position and the most common parameters 
offered (Table 2.2). It can be shown that they are mostly capable of measuring basic metrics such 
as stroke count and rate or average speed. Although useful for recreational swimmers, 
competitive swimmers need more accurate and comprehensive evaluation of different 
swimming phases, swimming styles and performance aspects to improve.  

Most of the available systems used the wrist-worn design because it is more used in sports and 
easier for the swimmer to handle. Although the upper limbs are commonly used by researchers, 
they were able to extract basic parameters from wrist motion signals, which can also be seen in 
Table 2.2. Products based on the wrist provide general parameters that are more interesting for 
recreational swimmers rather than professionals. In addition, the wrist position is the least 
appropriate position in terms of changing the body profile and increasing the resistance force, 
which is an important factor in swimming. Head positioning has recently received more attention 
due to several advantages such as easier integration with swimwear (goggles or swimming cap) 
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and proximity to eyes and ears for visual and auditory feedback. Furthermore, similar to the 
literature discussed, start and turn parameters are still massively ignored by commercial 
products, especially in the wrist-worn design. Feedback is mostly in the form of reports available 
during or shortly after the training session. Providing real-time feedback directly to the swimmer 
or coach has gained more attention with the introduction of head-worn systems (Table 2.2). 

Table 2.2 – Commercially available swimming analysis systems based on IMUs.  
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∆ Exercises done to help swimmer’s technique, usually a modified version of one of the four main swimming styles 

† SWOLF is a value used as a metric of efficiency used by coaches, which is equal to the sum of stroke count and lap time values 
* Start-specific parameters: push-off velocity, underwater time and percent, maximum depth, start average speed, push depth, push 
maximum acceleration 
** Turn-specific parameters: turn type, turn time and turn rate 
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2.3 Concluding remarks 
In this chapter, we began our review with the duties of a coach in sports training to determine 
the contribution of technological tools to the coaching community. Subsequently, the benefits of 
IMUs in different sports were highlighted, especially in the motion analysis of swimmers. We 
took a closer look at the studies and research groups that have used IMUs to analyze swimmers 
in main swimming styles and phases. Spatio-temporal, kinematic and kinetic parameter 
extraction, performance evaluation, and feedback were the three aspects of swimming that have 
been studied with IMUs. A brief look at commercial swimming analysis systems shows that the 
true potential of IMUs in training sessions has yet to be realized in practice. In the following, the 
main outcomes of this review are outlined: 

• A coach performs several analyses to determine the athlete's target and then guide them 
efficiently during training sessions. Based on the duties defined for a coach, it seems that 
technique analysis and feedback are the two tasks to which motion analysis has 
contributed the most. 

• Motion analysis is used in sports because it can give the coach an objective and much 
deeper understanding of the athlete's performance. New technologies give the coach 
feedback based on detailed quantitative technique analysis that was not possible with 
traditional coaching methods. 

• Among the various technologies used for motion analysis, IMU is of particular interest 
for in-field applications because they are easier to use despite technical limitations such 
sensor wobbling as soft tissue artifact or signals bias that might lead to drift in the results. 
For the motion analysis of indoor sports with large capture volumes, such as swimming, 
IMUs are one of the best options.  

• IMUs have been successfully used in swimming to extract mostly spatio-temporal and 
kinematic parameters, evaluate swimming performance, and provide feedback to 
swimmers and coaches. However, given the gaps in the literature, further research is 
needed to develop an analysis system that meets the needs of coaches: 

o The extraction of IMU-based parameters mostly refers to general information 
about a training session. In addition, research groups mostly focused on kinematic 
parameters of front crawl style in free-swimming phase. The sensor positions used 
also depend on the target parameters and there is no comparison to find an 
optimal sensor position that works for parameter extraction in all styles and 
phases. Therefore, in Chapter 3 of this thesis, a novel approach for swimming 
analysis is proposed using IMUs at different viable positions on swimmer's body 
for comparison, covering all swimming phases in four main styles to provide a 
comprehensive evaluation of the swimmer's performance throughout the training 
session 
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o Performance-related parameters such as velocity in various swimming phases 
have received less attention in the literature, and researchers have only attempted 
to show that IMU data can provide detailed information about swimmer's motion. 
There is a gap between the extracted parameters and the performance of a 
swimmer. In Chapter 4, we use the algorithms developed in Chapter 3 beside a 
feature selection method to select the most relevant parameters related to 
swimming propulsion, posture, or efficiency as the three aspects of performance. 
The selected features are then used to estimate a set of goal metrics based on a 
regression model to quantify the swimmer's performance at each phase of all 
swimming styles. 

o Researchers have claimed that giving the extracted parameters to the coach and 
the swimmer can lead to more efficient training sessions and better progress. 
However, few of them have achieved practical application or analysed the effects 
of the given feedback on the swimmer's training routine and performance. 
Therefore, we first evaluated the sensitivity of the estimated phase-based goal 
metrics in relation to swimmers' progress in chapter 5 and then provided them as 
feedback for the coach of a swimming team. The results of the feedback-assisted 
training are discussed in Chapter 6. 
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 A novel IMU-based swimming 
analysis approach 

Publication Note: this chapter is adapted from the following journal paper: 
 
Hamidi Rad, Mahdi, et al. "A Novel Macro-Micro Approach for Swimming Analysis in Main 
Swimming Techniques Using IMU Sensors." Frontiers in bioengineering and 
biotechnology (2021): 1511. 
 
Supplementary materials: 
https://www.frontiersin.org/articles/10.3389/fbioe.2020.597738/full#supplementary-material 

Following the gaps introduced in the previous chapter, this chapter presents the second 
part of the investigation on a comprehensive solution for swimming analysis with IMUs. 
To provide a comprehensive view of swimmers' performance, a new macro-micro analysis 
approach is described in this chapter that is thorough enough to cover a complete training 
session, regardless of swimming style. Seventeen national-level swimmers (5 females, 12 
males, 19.6 ± 2.1 years) were equipped with six IMUs and asked to swim 4×50m in each 
swimming style (i.e. frontcrawl, breaststroke, butterfly, and backstroke) in a 25m pool in 
front of five 2D cameras (four underwater and one above water) for validation. The 
proposed approach detects swimming bouts, laps, and swimming styles at the macro level 
and swimming phases at the micro level at all sensor positions for comparison. The 
swimming phases are the phases that the swimmer goes through from wall to wall (wall 
push-off, glide, stroke preparation, free-swimming and turn), and the micro analysis 
detects the beginning of each phase. In macro analysis, an overall accuracy of 0.83-0.98, 
0.80-1.00, and 0.83-0.99 was achieved for swimming bouts detection, lap detection and 
swimming style identification on selected sensor positions, respectively, with the highest 
accuracy at the sacrum. In micro analysis, the lowest mean and standard deviation were 
obtained at the sacrum for the onset of wall push-off, glide and turn (-20 ± 89 ms, 4 ± 100 
ms, and 23 ± 97 ms, respectively), on shank for the beginning of stroke preparation (0 ± 
88 ms), and at the wrist for the onset of swimming (-42 ± 72 ms). Considering all 
swimming styles, sacrum sensor achieved the smallest range of error mean and standard 
deviation in the micro analysis. By using the same macro-micro approach for different 
swimming styles, this study shows how efficient it is in detecting the main events and 
phases of a training session. Comparing the results of the macro and micro analysis, it can 
be seen that the sacrum has a relatively higher accuracy and a lower mean and standard 
deviation of error for all swimming styles. 

Keywords: Sports biomechanics, Wearable sensor, Swimming, Macro-micro analysis, Lap 
segmentation. 

https://www.frontiersin.org/articles/10.3389/fbioe.2020.597738/full#supplementary-material
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3.1 Introduction 
As a competitive sport, swimming is one of the most popular disciplines for world-class athletes 
who want to optimize their performance. Among the most important tasks of coaches is to 
constantly monitor swimmers, evaluate their performance, and provide feedback for 
improvement (Nathan and Scobell, 2012; Marinho et al., 2020). To help coaches with these tasks, 
research has examined swimming from different perspectives, such as physiology (Pendergast 
et al., 1980; Lavoie and Montpetit, 1986; Zamparo et al., 2005), motor control (Seifert et al., 2011a; 
Morais et al., 2020), and biomechanics (Payton and Bartlett, 1995; Morais et al., 2012). Although 
all these aspects have their own importance, studies show the dominance of biomechanical 
factors over the other aspects (Figueiredo et al., 2013). Moreover, swimming coaches also 
consider biomechanics as the most important area for swimmers' improvement (Mooney et al., 
2016a). 

Using video-based systems is a common tool for motion analysis, which is still considered as the 
most accurate method and  gold standard (Mooney et al., 2015; Seifert et al., 2015). However, as 
a result of its limitations in aquatic environments (Callaway et al., 2010), the number of studies 
on swimming with inertial measurement units (IMUs) has been increased (Guignard et al., 
2017b). There is a multitude of research on measuring the swimming kinematic parameters using 
IMUs in different swimming phases, such as start (Stamm et al., 2013a; Vantorre et al., 2014), 
swimming (Ohgi et al., 2003; Davey et al., 2008), or turn (Slawson et al., 2012; Nicol et al., 2018). 
To evaluate the swimmer’s performance, many studies focused on extracting specific parameters 
such as stroke rate (Siirtola et al., 2011; Beanland et al., 2014), distance per stroke (Bächlin et al., 
2008), velocity (Wright and Stager, 2013; Dadashi et al., 2015), lower limbs actions rate (Fulton et 
al., 2009) or body coordination (Osborough et al., 2010; Silva et al., 2019).  

The general approach of most studies is limited to a specific swimming style or phase. As the 
most prevalent swimming style, front crawl has been more investigated in the literature (Mooney 
et al., 2016b) and development of swimming style specific algorithms is proposed as a future 
application for IMUs (Magalhaes et al., 2015). Swimming phases are the phases swimmers pass 
from wall to wall (wall push-off, glide, stroke preparation, swimming and turn). Among different 
phases, swimming phase has been noticed the most, while start or turn have not captured enough 
attention. It is well established that these phases are of utmost importance for coaches (Mooney 
et al., 2016b). Another downside is focusing only on a small number of swimmers, lacking variety 
of technique among subjects (Slawson et al., 2012; Hagem et al., 2013; Seifert et al., 2014). Using 
the least number of IMUs is another challenge for a wearable analysis system, as they induce 
drag unlike video-based systems. By reducing the number of sensors and providing adequate 
fixation or integrating the wearable sensor into the suit, goggles or watch, swimmers face less 
drag. Only one study performed a qualitative comparison for possibility of direct or indirect 
extraction of kinematic parameters with IMU on lower and upper limbs (Pansiot et al., 2010). 
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Therefore, a comprehensive study of different swimming styles and phases with IMUs at 
different sensor positions during a training session is necessary to obtain a complete overview of 
the swimmer's performance from the macro to the micro level. All four main swimming styles, 
i.e., crawl, breaststroke, butterfly, and backstroke, can be decomposed into different locomotion 
phases from wall to wall. There is an analogy between swimming and gait analysis in terms of 
how to progress from the big picture to the detailed parameters, also known as the macro-micro 
approach (Lord et al., 2013). Using body-worn sensors, such as accelerometers, this approach first 
captures the amount and variability of ambulatory activity (lying, sitting, or standing and gait) 
as the macro level and then moves on to gait phases and spatio-temporal parameters as the micro 
level. Similarly, in the analysis of swimming, the acquisition of the amount of swimming 
(swimming bouts and laps) with different swimming styles in each lap forms the macro level, 
while the micro level aims to capture the swimming phases in each lap and finally extract 
parameters within each swimming phase.  

Following this approach, the main objective of this study was to develop an IMU-based wearable 
system for the analysis of swimming during training sessions, including the four main swimming 
styles. As shown in Figure 3.1, a macro-micro approach was followed, where swimming laps and 
techniques were identified at the macro level and individual phases within each lap were 
identified at the micro level. More detailed parameter extraction within each phase (e.g. detecting 
stroke cycle sub-phases) is the next step of the micro analysis, which is outside the scope of this 
study (Figure 3.1). This approach aims to provide the coach with a comprehensive overview of 
the swimmer's performance during each training session. 

We hypothesized that movement 
and postural changes alter the 
kinematic profile of the wrists, 
sacrum, head, and shanks, which 
could be detected by appropriate 
IMU-based algorithms to 
recognize swimming bouts, laps, 
swimming styles, and later 
swimming phases. The accuracy 
and precision of the detection 
algorithms for each sensor 
position will be estimated and 
compared to find the most suitable location for monitoring swimmers' training using this 
approach. All abbreviations used in this study are explained in a glossary table at the end of this 
chapter. 

 

Figure 3.1 – Macro-micro analysis approach diagram to show the 
scope of this study. 
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3.2 Materials and methods 

3.2.1 Measurement setup 

Seventeen national-level swimmers (with attributes listed in Table 3.1) were asked to perform 
four 50-m trials in each swimming style in a 25-m indoor pool at 80% of their best speed. Since 
the analysis of swimming during training sessions is the main objective of this study, 80% is 
considered a moderate pace that is close to the pace used during training sessions and allows a 
balance between speed and accuracy of movement (Schmidt and Lee, 2019). The moderate pace 
helps swimmers maintain efficient performance while avoiding fatigue during a long training 
session. In addition, the wearable sensors induce more drag on the swimmer's body, especially 
at high pace, and it is necessary to compensate for this effect by reducing the pace (Magalhaes et 
al., 2015; Guignard et al., 2017b). Trials were interrupted with a short rest, resulting in several 
swimming bouts and the total duration of the measurement was one hour per swimmer. During 
the test, the coach observed and evaluated the pace qualitatively and asked the swimmers to 
correct it if it was too fast or too slow. The swimmers were selected from national swimming 
clubs and train more than five times a week for competitions. Each swimmer was informed of 
the procedure and gave written consent before participating. This study was approved by the 
EPFL Human Research Ethics Committee (HREC, No. 050/2018). 

Table 3.1 – Statistics of the measurement population. All variables are presented as mean ± standard 
deviation. 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅50𝑚𝑚, and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹50𝑚𝑚 are the average and standard deviation of 50m record and FINA points 
(for 2019) of the swimmers separately for each swimming style. 

A wearable measurement system with six IMUs (Physilog® IV, GaitUp, CH.) was used. The 
IMUs were attached with waterproof tapes (Tegaderm, 3M Co., USA) to the right and left shanks 
(R/ LS), right and left wrist (R/LW), sacrum (SA), and head (HE). Swimmers were asked to wear 
two swim caps to fix the head sensor to the back of the head as best as possible. The remaining 
sensors were taped directly to the swimmer's skin. Each unit contained a 3D gyroscope (±2000 
ᵒ/s) and a 3D accelerometer (±16 g) with a sampling rate of 500 Hz (Figure 3.2). Five 2D cameras 
(GoPro Hero 7 Black, GoPro Inc., US) were used for validation, four of which were underwater 
(attached to the pool wall, distributed along the length of the pool) to capture all lap events, and 
one camera above water that moved with the swimmer (Figure 3.3), all capturing at a rate of 60 
Hz. A push button used to start data acquisition by the IMUs also provided a flashlight in front 
of the cameras to synchronize the two systems. The rising edge of the signal on the IMU was 
matched with the frame the light turned on from the videos. This procedure is performed at the 
beginning and end of each measurement to ensure that the systems remain synchronized 
throughout the measurement. 

Male Female Age (yrs) Height (cm) Weight (kg) 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝟓𝟓𝟓𝟓𝟓𝟓 (s) 𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝟓𝟓𝟓𝟓𝟓𝟓 

12 5 19.6 ± 2.1 179.5 ± 6.7 74.5 ± 7.1 

Front crawl 24.56 ± 1.26 725 ± 53 
Breaststroke 32.13 ± 1.52 631 ± 42 

Butterfly 26.86 ± 1.68 652 ± 83 
Backstroke 28.63 ± 1.41 612 ± 95 
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Figure 3.3 – IMU-based measurement setup. Six IMUs were attached to shanks, wrists, sacrum and head 
using waterproof tapes. During functional calibration, for each segment, the data will be transformed from 
sensor frame (𝐱𝐱𝐱𝐱𝐱𝐱𝐒𝐒 ) to anatomical frame (𝐱𝐱𝐱𝐱𝐱𝐱𝐀𝐀). 

In order to make the data from 
IMU independent of the exact 
placement of the sensors on the 
swimmers' bodies, a functional 
calibration was performed after 
the sensors were installed. The 
result of this calibration is that the 
data represents the actual 
movement of the limbs, 
regardless of the exact location of 
the sensors, and that the different 
placement of the sensors on 
different swimmers or limbs does 
not affect the data. The purpose of 
this calibration is to find the 
transformation matrix that 
connects the sensor frame (xs, ys, zs)i of each sensor i (i=1,...,6) with the corresponding anatomical 
frame of the body segment (xA, yA, zA)i (Figure 3.2). The functional calibration procedure is 
explained in (Dadashi et al., 2014) and involves simple movements (upright standing, squatting, 
and arm rotation) on land. Based on the alignment of the vertical axis of the sensor and gravity 
during the static postures and the dominance of a mediolateral angular velocity during the 
squats, the data is transferred from sensor frame to the functional frame. According to this 
calibration, each sensor coordinate system has a y-axis along the longitudinal limb axis pointing 
upward (y), an x-axis along the anterior-posterior axis pointing forward (x), and a z-axis along 
the mediolateral axis (z) pointing to the right (Figure 3.2). The pitch and roll motions of the trunk 
during swimming are defined as rotation about the medial-lateral and inferior-superior axes of 
the body, respectively. 

 

Figure 3.2 – Validation system including four cameras (Cam#1 - 
Cam#4) distributed along the pool in the same depth (0.5 m) 
underwater and one camera (Cam#5) moving with swimmer in 
land to capture the events over water 
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3.2.2 Analysis approach 

During a training session, there are several swimming bouts in different swimming styles (front 
crawl, breaststroke, butterfly, backstroke), each one consisting of one or more laps. Within each 
lap, from one pool wall to the other, swimmers pass five main phases: wall push-off (Push), glide 
(Glid), stroke preparation (StPr), free-swimming (Swim) and turn (Turn). 

1. Wall push-off phase starts on the frame with forward motion of swimmer’s trunk and 
finishes upon swimmer’s feet leaving the wall (Slawson et al., 2010; Stamm et al., 2013b). 
This phase is the same for all swimming styles except it happens in supine posture during 
backstroke.  

2. Glide phase continues as long as swimmer’s body glides under water without upper or 
lower limb movement. This phase ends with butterfly lower limbs action (for front crawl, 
butterfly and backstroke) or one upper limbs cycle and then a lower limb action under 
water (for breaststroke) (Stamm, 2013; Vantorre et al., 2014). Although it is allowed to do 
one butterfly lower limbs action for breaststroke, the swimmers were trained to follow 
the traditional method.  

3. Stroke preparation is the phase after glide, which continues up to the first upper limbs 
cycle (Silveira et al., 2011; Vantorre et al., 2014). 

4. Free-swimming phase is usually the longest phase, which lasts as long as the swimmer 
performs upper limbs cycles. During tumble turn, swimming phase ends with the last 
upper limbs cycle and head downward motion for rolling, while during simple turn, it 
finishes by touching the wall (Pereira et al., 2015; Mooney et al., 2016b). 

5. Turn phase happens after free-swimming phase and ends on the frame of the next wall 
push-off phase start (Le Sage et al., 2010; Vannozzi et al., 2010). 

The training session can be conceptualized at a macro level by estimating the training volume, 
i.e., the number and duration of swimming bouts and laps with a given swimming style, and at 
a micro level, which includes the different phases of each lap and the spatio-temporal features of 
swimming within each phase (number, duration, or distance per stroke). Here, the macro-
analysis consists of the detection of swimming bouts detection, the recognition of laps, and the 
identification of swimming style, while the micro-analysis is limited to phase detection within 
each lap (Figure 3.4) and more detailed parameters in each phase are not considered in this study. 
Since these phases occur sequentially, we focused on finding the beginning of each phase for lap 
segmentation. The beginning and end of each phase triggers a specific change in the profile of 
the acceleration and angular velocity of the body segment and requires specific rules for their 
detection, the details of which are explained in the appendix (Table 3.7 and Table 3.8 ). These 
rules are based on common processing functions, which are described in the following section. 
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3.2.3 Common processing functions  

Despite the differences between the movement patterns of body segments, there are common 
function that are used frequently in macro-micro analysis algorithms. These functions are 
explained in Table 3.2 and applied on acceleration (𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 ,𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦,𝐴𝐴𝐴𝐴𝐴𝐴𝑧𝑧) and angular velocity 
(𝐺𝐺𝐺𝐺𝐺𝐺𝑥𝑥 ,𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦 ,𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧) or their norms (|Acc| and |Gyr|) expressed in the bone anatomical frame after 
noise removal with low-pass filtering (second order Butterworth filter, fc = 10Hz). These 
methods are thresholding (Cronin and Rumpf, 2014), extremum detection (Chardonnens et al., 
2012), sharp change detection (Dadashi et al., 2013a), principle component analysis (Jollife and 
Cadima, 2016), frequency analysis (Aung et al., 2013), empirical mode decomposition and 
Hilbert-Huang transform (Ge et al., 2018). For macro-micro analysis algorithms, a mixture of 
these methods are used for all sensor positions. As most of the motions are symmetric, always 
the sensor on the right wrist and shank are used in algorithms unless mentioned otherwise. The 
details of macro and micro algorithms are explained in Table 3.7 and Table 3.8 in the appendix. 

 
Figure 3.4 – Analysis approach and segmentation events considered in this study (sacrum acceleration 
signal during front crawl is used as an example). The steps of the approach are: (A) detection of swimming 
bouts in a training session, (B) separation of laps and identification of swimming style using a short period 
of upper limb cycles, (C) segmentation of the lap into the five swimming phases of wall push-off (Push), 
glide (Glid), stroke preparation (StPr), free-swimming (Swim), and turn (Turn) using the segmentation 
events. 
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Table 3.2 – Common processing methods used for macro-micro analysis 

Method  Description Example 
Thresholding  
(𝐓𝐓𝐓𝐓) 

When the signal goes higher or lower than a 
threshold (TH) due to an event, thresholding can 
detect it. 

Acceleration amplitude 
change for swimming 
bouts detection on wrist  

Extremum detection  
[𝐀𝐀, 𝐭𝐭] =  𝐄𝐄𝐄𝐄𝐄𝐄(𝐬𝐬,𝐓𝐓𝐓𝐓) 

Local increase or decrease of the signal (s) 
generates peaks or troughs comparable with a 
threshold (TH). Extremum detection finds the 
magnitude (A) and time (t) of extremums  

Peak on sacrum forward 
acceleration at the 
beginning of wall push-off 
phase 

Sharp change 
detection 
𝐭𝐭 =  𝐒𝐒𝐒𝐒(𝐬𝐬,𝐓𝐓𝐓𝐓) 

The occurrence time (t) of some events are abrupt, 
easier to detect on the derivative of the signal (s) 
by comparing it with a threshold (TH) 

Swimming bout start and 
end detection with sacrum 

PCA Analysis 
[𝐏𝐏𝐏𝐏𝟏𝟏,𝐏𝐏𝐏𝐏𝟐𝟐,𝐏𝐏𝐏𝐏𝟑𝟑]
=  𝐏𝐏𝐏𝐏𝐏𝐏(𝐯𝐯) 

Finding the principle components (𝑃𝑃𝑃𝑃1,𝑃𝑃𝑃𝑃2,𝑃𝑃𝑃𝑃3) 
of  a vector (𝑣𝑣) is useful for decreasing 
dimensionality to identify the type of movement  

Swimming style 
identification with head 

Frequency analysis 
𝐅𝐅𝐅𝐅𝐅𝐅(𝐬𝐬) 

The single-sided power density spectrum of the 
signal (s) and its analysis reveals the behavior of 
the signal in frequency domain 

Differentiating between 
breaststroke and butterfly 
techniques with sacrum  

Empirical mode 
decomposition  
𝐈𝐈𝐈𝐈𝐈𝐈 =  𝐄𝐄𝐄𝐄𝐄𝐄(𝐬𝐬)  

It decomposes the signal (s) into its intrinsic 
modes to facilitate the change detection in time 
domain 

Detecting the beginning of 
upper limbs cycles on 
sacrum  

Hilbert-Huang 
transform  
𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢 =  𝐇𝐇𝐇𝐇𝐇𝐇(𝐬𝐬) 

It  extracts many features of a signal (s) such as 
instantaneous energy, which is useful to find the 
change start 

Detecting the beginning of 
upper limbs cycles on head 

3.2.4 Macro analysis algorithms 

Swimming bouts detection. Each swimming bout starts and ends with an abrupt change in 
swimmer’s body posture between upright and supine or prone postures. This change is observed 
either after (for swimming bout start) or before (for swimming bout end) a rest period. The 
detection method on all sensor positions except right wrist is to use 𝑆𝑆𝑆𝑆(𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦,𝑇𝑇𝑇𝑇𝐵𝐵), where 𝑇𝑇𝑇𝑇𝐵𝐵 = 
± 0.3 × 𝐸𝐸𝐸𝐸𝐸𝐸(low pass filtered 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦̇ ), and 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦̇  denotes the derivative of 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 (equation 3.1). 
Negative and positive threshold is used for detecting troughs (corresponding to approximate 
start) and peaks (corresponding to approximate end) respectively (equations 3.2 and 3.3). 

For the right wrist sensor, while it has a clear cyclic pattern during swimming phase in all 
swimming styles, its motion is erratic before upper limbs actions. Despite the inter-individual 
variability in swimmer’s wrist motion during swimming phase (Martens et al., 2016), the 
swimming bout was detected as the period where the envelope of |𝐴𝐴𝐴𝐴𝐴𝐴| is higher than an 

𝑡𝑡 =  𝑆𝑆𝑆𝑆 �𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 , 0.3 × 𝐸𝐸𝐸𝐸𝐸𝐸�Low pass filtered 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦̇  �� (3.1) 

App𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  t �negative peaks on 𝐴𝐴𝐴𝐴𝐴𝐴̇ 𝑦𝑦� (3.2) 

Approximate end =  t �positive peaks on 𝐴𝐴𝐴𝐴𝐴𝐴̇ 𝑦𝑦� (3.3) 

https://ch.mathworks.com/help/signal/ref/emd.html#d120e38136
https://ch.mathworks.com/help/signal/ref/hht.html#d120e70510
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empirical threshold (𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵 = 1.6 g). This period starts with the upper limbs cycles in the first lap, 
until the end of the swimming bout. 

Lap detection. In our measurement protocol, each swimming bout consisted of two laps, 
separated by a turn. Therefore, lap detection requires finding the approximate turn. The detection 
algorithm for sacrum, head and right shank finds the highest peak during the swimming bout 
on 𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 and �𝐴𝐴𝑐𝑐𝑐𝑐𝑦𝑦,𝑧𝑧�. For right shank the peak is detected using a threshold with the function 
𝐸𝐸𝐸𝐸𝐸𝐸(𝐴𝐴𝐴𝐴𝐴𝐴𝑧𝑧 or 𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧 (the one happens earlier),𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿 = highest peak in a two-second period during 
swimming phase). As wrist’s angular velocity amplitude decreases during turns (compared to 
swimming phase), the algorithm detects a decrease of |𝐺𝐺𝐺𝐺𝐺𝐺| where low pass filtered |𝐺𝐺𝐺𝐺𝐺𝐺| is less 
than the threshold (𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿 = 200 ᵒ/s). 

Swimming style identification. For head and sacrum, a two-upper-limbs-cycle period was 
chosen. The PCA(𝐺𝐺𝐺𝐺𝐺𝐺𝑥𝑥,𝑦𝑦,𝑧𝑧) to separate swimming styles with dominant trunk pitching motion 
(breaststroke/butterfly) from the techniques with trunk rolling motion (front crawl/backstroke), 
gravity effect (positive versus negative sign of 𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 average to distinguish backstroke) and 
threshold-based Fast Fourier Transform (FFT) of 𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 for sacrum and |𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥,𝑦𝑦| for head (to 
distinguish between butterfly and breaststroke) were used for swimming style identification 
(𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  = 0.2 g, 𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.16 g). Equation 3.4 explains the use of FFT analysis for technique 
identification on sacrum and head. 

A period including five lower limbs actions is chosen during swimming phase for swimming 
style identification with right shank, which was not a limit, as all swimmers did more than five 
lower limbs actions in every lap. Gravity effect (same as head and sacrum to distinguish 
backstroke) and PCA analysis of angular velocity vector are used for swimming style 
identification on right shank. For right wrist, the PCA of acceleration separates backstroke from 
other techniques and the mean and variation of |𝐴𝐴𝐴𝐴𝐴𝐴| are compared with two thresholds 
(𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1.7 g, 𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.01g) to identify butterfly and front crawl respectively. 

3.2.5 Micro analysis algorithms 

The results achieved from macro analysis (approximate start, approximate end, approximate 
turn, and swimming style) were used for further detailed lap components detection. These 
approximate events are enough to find the exact locations of the events for phase detection in 
micro level.  

Beginning of Wall Push-Off (𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝐵𝐵). Wall push-off accompanies a forward acceleration increase 
close to approximate start. For sacrum and head during backstroke, the detection is done with 
EXT(𝐴𝐴𝑐𝑐𝑐𝑐𝑦𝑦) for both sensor positions, while for other techniques with sacrum, concavity change 
of 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 is used to find a negative trough, close to 𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝐵𝐵. For head during other swimming styles, 

EXT (power density spectrum magnitude, 𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 or 𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) →
Butterfly technique 

(3.4) 
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EXT(|𝐴𝐴𝐴𝐴𝐴𝐴|) estimates the answer. Right wrist has a downward motion during wall push-off 
causing a negative trough on 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 and right shank represents a peak on |𝐺𝐺𝐺𝐺𝐺𝐺| close to 𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝐵𝐵. 

Beginning of Glide (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐵𝐵). As the glide phase starts, the whole body glides in water with no 
propulsion. The first trough after 𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝐵𝐵 detected by EXT(-𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦) for sacrum and head or the first 
peak  found by EXT(|𝐺𝐺𝐺𝐺𝐺𝐺|) for right shank is considered as 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐵𝐵. On the right wrist, 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 gets 
close to zero and shows a peak right after beginning of wall push-off, which is 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐵𝐵. 

Beginning of Stroke Preparation (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵). Stroke preparation phase includes underwater lower 
limbs actions (except for breaststroke, which includes one lower limb action and one upper limb 
cycle). Detection method for sacrum, head and right wrist is threshold-based and the idea is using 
thresholds on peak magnitude, peak prominence or signal variation depending on sensor 
position (for sacrum; EXT(|𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥|,𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = g, 𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.06 g), for head; EXT(�𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦�,
𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =-0.5 g, 𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.1 g ), for right wrist;  EXT(|𝐴𝐴𝐴𝐴𝑐𝑐|,𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = -0.9 g). On right 
shank, the first positive peak of 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 is 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 for backstroke, while for other swimming styles, 
the peak is detected with EXT(|𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥|,𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =1.3 g) and then the next sample on |𝐴𝐴𝐴𝐴𝐴𝐴| passing 
from g is 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵. 

Beginning of Swimming (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵). In swimming phase, swimmer’s body starts the rolling (for 
front crawl and backstroke techniques) or pitching motion (for breaststroke and butterfly 
techniques). On sacrum, the detection for front crawl and backstroke is done using EXT(�𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦�, 
𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆−𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =200 ᵒ/s). For breaststroke and butterfly, the second intrinsic mode of low pass 
filtered 𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧 and 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 were obtained. For breaststroke, instantaneous energy of 𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧 increases 
more than 𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆−𝐵𝐵𝐵𝐵𝐵𝐵 =550 ᵒ/s2 at 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵. For butterfly, EXT(second intrinsic mode of 
𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦, 𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆−𝐵𝐵𝐵𝐵 = 0.1 g) detects a peak close to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵. On head, instantaneous energy of  𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦 
(for front crawl) and 𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧 (for breaststroke, butterfly and backstroke) are used. The decrease (for 
backstroke) or increase (for front crawl, breaststroke and butterfly) of instantaneous energy is 
taken as the criterion for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 detection by thresholds 𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆−𝐹𝐹𝐹𝐹 = 5000 ᵒ/s2, 
 𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆−𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =12000 ᵒ/s2 and 𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆−𝐵𝐵𝐵𝐵𝐵𝐵 =1000 ᵒ/s2.  

For wrists during front crawl and backstroke, both wrists are used to find 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵  because upper 
limbs cycles can start on either one. The detection method is to find the trough before the first 
peak on right and left wrists. It is performed over 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 for front crawl and butterfly and over 𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 
for backstroke. The same is done over 𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦 for breaststroke to find an approximation of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵. 
On right shank, the lower limbs action pattern changes after 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵, which is noticeable on the 
second intrinsic mode of 𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 (for front crawl , butterfly and backstroke) or 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 (for 
breaststroke). The trough before the first peak found with EXT(second intrinsic mode of 𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 or 
𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 , 𝑇𝑇𝑇𝑇𝑇𝑇−𝑅𝑅𝑅𝑅 =1.7 g) is considered as 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵. 

Beginning of Turn (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵). Regardless of the turn type (simple or tumble turn), the algorithms 
use approximate turn to find the beginning of turn. During backstroke, approximate turn fits 
greatly as 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵. For the rest of the techniques, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵 on sacrum is the first trough before the 
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large peak on 𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 close to approximate turn. On head, EXT(|𝐴𝐴𝐴𝐴𝐴𝐴|) and EXT(𝐺𝐺𝐺𝐺𝐺𝐺𝑥𝑥) were used 
shortly before approximate turn for tumble turn and simple turn respectively to find 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵. On 
right wrist, EXT(low pass filtered 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦) and EXT(𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦) are used for tumble turn and simple turn 
respectively to find 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵. Right shank motion also shows a peak detectable respectively by 
EXT(𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧) and EXT(𝐴𝐴𝐴𝐴𝐴𝐴𝑧𝑧) for tumble turn and simple turn. 

3.2.6 Validation and error analysis 

For validating the temporal macro and micro events described above, cameras were used as 
ground truth. To validate the macro events the camera over water was used as the main reference, 
while the detection of swimming phases start during micro analysis was done by underwater 
cameras by one observer. For validation of swimming bouts and laps detection, the accuracy, 
sensitivity and precision are defined based on the number of true or false detections (equations 
3.5 to 3.7). Accuracy shows how much the algorithms work correctly and the results match the 
true values. Precision represents how much the algorithm results are correct when it claims the 
detection of an event (if it is truly happened or not), and sensitivity displays how much the 
algorithm is sensitive to occurrence of an event (if it is correctly detected or not). 

For example, the results are checked if the beginning and end of a swimming bout or turns are 
correct (true positive), missed (false negative) or mixed with other motions (false positive). Total 
parameter includes all the cases (e.g. the number of all the turns) and true negative is zero for our 
algorithms, as the purpose is to detect the happening of the event. The same logic holds true for 
swimming style identification, if the technique is correctly identified or mixed with another 
technique. 

Synched with the IMUs, the cameras were used to mark the frames when each phase started and 
finished. The detected event using IMUs was then compared to the corresponding frame on the 
cameras and the mean and standard deviation of the errors were calculated. This method is used 
for validation in swimming for comparing IMUs and cameras in similar studies (Dadashi et al., 
2013c). To assess the reliability of the validation process, two observers detected the events on 
cameras and compared with each other using Bland-Altman plots for the beginning of each 
phase. For each event, mean and standard deviation of the difference between the event observed 
on camera and IMU were calculated.  

Accuracy =  
∑True positive + ∑True negative

∑Total 
 (3.5) 

Sensitivity =
∑True positive

∑True positive +  ∑ False negative
 (3.6) 

Precision =
∑True positive

∑True positive +  ∑ False positive
 (3.7) 
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For phase duration (denoted by Δ of the phase name, e.g. 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥ℎ for wall push-off phase duration) 
confined with its starting and ending event, the absolute and relative error of phase duration are 
calculated. This error is the difference of estimated duration and the true duration (obtained from 
validation system). The relative phase duration error is then calculated by dividing it to the true 
phase duration. Equations 3.9 and 3.10 are examples for Push phase duration error and relative 
error. 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥ℎ denotes the duration of Push phase, 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥ℎ𝐼𝐼𝐼𝐼𝐼𝐼 signifies the duration of Push phase 
estimated by IMUs and 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is the duration of Push phase estimated by cameras. Then 
mean and standard deviation of phase duration error and phase duration relative error was 
calculated. 

Three swimmers were chosen randomly from the dataset (one female and two males, making 
20% of the dataset) who were trained with different coaches and tested in different pools. These 
swimmers were from the same technique level as others and trained regularly as planned by 
coaches. To make the algorithms and the thresholds more generalizable, they were developed 
and adjusted using the data from these three swimmers and then tested over the other fourteen 
swimmers to include as much diversity as possible in the algorithms. 

All the algorithms that use threshold have been analyzed in terms of their results sensitivity to 
the change of threshold values. The results are the accuracy and precision for macro analysis 
algorithms and the error mean and standard deviation for micro analysis algorithms. The 
information about the exact values is presented in Table 3.9 of the appendix. Each threshold is 
changed at least 10% in both directions and the corresponding effect on algorithm results have 
been explored. 

3.3 Results 
To generate the results, the data of all laps are used for swimming style identification and the 
phases are investigated from the beginning of each swimming bout up to the end of the turn to 
have all the phases completely. 

3.3.1 Macro analysis results 

Figure 3.5 shows a typical example of macro analysis using sacrum sensor. As described in 3.2.4, 
posture changes at the beginning and end of swimming bout were detected by the filtered 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦̇  
(Figure 3.5, I-A and I-B). The approximate turn within each swimming bout are detected for 
separating laps (Figure 3.5, III-A). Swimming styles were identified based on PCA(𝐺𝐺𝐺𝐺𝐺𝐺𝑥𝑥,𝑦𝑦,𝑧𝑧), 
gravity effect of 𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 and dominant frequency during a period of swimming phase (Figure 3.5, 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥ℎ = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐵𝐵 − 𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝐵𝐵 (3.8) 

Phase duration error =  𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥ℎ𝐼𝐼𝐼𝐼𝐼𝐼 −  𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (3.9) 

Phase duration realive error, % =
𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥ℎ𝐼𝐼𝐼𝐼𝐼𝐼 −  𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
 (3.10) 
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II-A to II-F). It is worth mentioning that the frequency resolution of fast Fourier transform 
analysis was at least 0.35 Hz considering all swimmers and swimming styles, small enough to 
capture the dominant frequency. 

According to Figure 3.6, sacrum shows the most promising results in terms of both accuracy and 
precision for swimming bouts and lap detection. After lap detection, the swimming style is 
identified with each sensor separately (Table 3.3).  Sacrum represents the best results for all 
swimming styles. It is possible to identify all front crawl and backstroke laps correctly and 
differentiate between breaststroke and butterfly with precision and accuracy higher than 0.97.  

 
Figure 3.5 – Example of macro analysis with sacrum 𝑨𝑨𝑨𝑨𝑨𝑨𝒚𝒚 data. I) Swimming bouts detection: swimming 
bout start causes a change in filtered 𝑨𝑨𝑨𝑨𝑨𝑨𝒚𝒚 amplitude level (I-A), detected using its derivative (I-B) which 
corresponds to 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒂𝒂𝒂𝒂𝒂𝒂 (the rule is the same for swimming bout end). II) Swimming style identification: 
a short period of upper limbs cycles is selected for swimming style identification. Principal component of 
angular velocity (II-A for front crawl or backstroke, II-B for breaststroke or butterfly), gravity effect on 𝑨𝑨𝑨𝑨𝑨𝑨𝒙𝒙 
(II-C for front crawl, breaststroke or butterfly, II-D for backstroke) and FFT of the data (II-E for butterfly, 
II-F for breaststroke) are mainly the tools used for this purpose. III) Lap detection: at the end of each lap 
turning accompnies with a peak on 𝑨𝑨𝑨𝑨𝑨𝑨𝒙𝒙 detected as 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒂𝒂𝒂𝒂𝒂𝒂.  
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Figure 3.6 – Sensitivity, precision and accuracy achieved for swimming bouts and laps detection on all 
sensor positions (SA, HE, RS, RW) 

Table 3.3 – Accuracy and precision for swimming style identification of four swimming styles over 
different sensor positions (SA, HE, RS and RW) 

3.3.2 Micro analysis results 

Figure 3.7 and Figure 3.8 show one example of detecting the beginning of these events on 
corresponding locations and signals. The examples show the estimated values on different 
locations (red dots) are close to each other and to the true value (the black dashed line), such as 
beginning of wall push-off, whereas estimations are more diverse for some other events, such as 
swimming start. The main challenge is whether the phase starts at the same time on all sensor 
positions and which limb is used to define the beginning of the phase. The mean and standard 
deviation of error for the beginning of each phase on all sensor positions are displayed in Table 
3.4.  

 

Sensor 
position SA HE 

Swimming 
style 

Front 
crawl 

Breaststroke Butterfly Backstroke Front 
crawl 

Breaststroke Butterfly Backstroke 

Precision 1.00 0.98 0.97 1.00 1.00 0.86 0.83 1.00 
Accuracy 1.00 0.97 0.98 1.00 0.99 0.82 0.86 0.97 
Sensor 
position RS RW 

Swimming 
style 

Front 
crawl 

Breaststroke Butterfly Backstroke Front 
crawl 

Breaststroke Butterfly Backstroke 

Precision 0.80 0.86 0.93 1.00 0.77 0.76 0.91 0.79 
Accuracy 0.91 0.81 0.82 1.00 0.81 0.73 0.90 0.86 
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Figure 3.7 – An example of the swimming phases beginning event detection, (A) 𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝐵𝐵, (B) 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐵𝐵, (C) 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵, (D) 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵, on all sensor positions during front crawl. The estimated values are represented on the 
corresponding signal with red dots and the true value is shown as a vertical dashed line. 

Table 3.4 – Phases starting event detection error in ms by comparing IMU and camera results on all sensor 
positions (SA, HE, RS, RW). The events are 𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝐵𝐵, 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐵𝐵, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵 and the next 𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝐵𝐵, 
which completes the lap segmentation 

Phase event 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑩𝑩 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑩𝑩 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑩𝑩 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑩𝑩 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑩𝑩 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑩𝑩 
SA -20 ± 89 4 ± 100 -32 ± 107 136 ± 226 23 ± 97 -1 ± 65 
HE -35 ± 76 -35 ± 58 87 ± 214 58 ± 563 53 ± 195 -1 ± 70 
RS -118 ± 77 76 ± 77 0 ± 88 342 ± 473 -47 ± 390 -64 ± 89 
RW 40 ± 71 49 ± 51 -151 ± 124 -42 ± 72* 118 ± 151 44 ± 82 

* Obtained using both right and left wrists 

The accuracy of detecting each event changes with the sensor position and type of event. Based 
on the results, right shank has the highest error mean at the beginning of the lap (for beginning 
of wall push-off and beginning of glide) where the motion is the same for all swimming styles. 
However, right shank provides an estimation with lowest error mean and standard deviation for 
beginning of stroke preparation, while it is detected with negative (on right wrist and sacrum) or 
positive (on head) error mean on other sensor positions. Beginning of swimming seems to be the 
most challenging event since the mean and standard deviation of error is high on all locations 
other than right wrist, where the swimming phase starts. Although beginning of turn results 
depend on turn type, sacrum and head both estimate it with low error mean and standard 
deviation.  

Although the results depend on swimming style, they match with the detected events displayed 
in Figure 3.7 and Figure 3.8. The mean and standard deviation of absolute and relative error for 
each phase duration (ΔPush, ΔGlid, ΔStPr, ΔSwim, ΔTurn) over all sensor positions are displayed 
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in Table 3.5. Depending on the duration of each phase, error percentage vary based on the sensor 
position. For short phases (such as wall push-off), the relative error is higher than long phases, 
since even a small error will cause a high relative error in phase duration estimation. To provide 
a comparison between four swimming styles in terms of micro analysis results, the range of micro 
analysis error is reported in Table 3.6. The table represents the range of both error mean (mean 
range) and standard deviation (standard deviation range) for four techniques. 

 
Figure 3.8 – An example of 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑩𝑩 event detection on all sensor positions. (A) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 detection on SA and 
HE during front crawl,  (B) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 detection on RW and RS during front crawl, (C) an example of the 
process of using EMD technique for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 detection during butterfly technique. It is shown that the 
second intrinsic mode function (IMF) separates the motion after 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵. The estimated values are 
represented on the corresponding signal with red dots. 
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Table 3.5 – Estimated phase duration (with IMU), its phase duration error and phase duration relative error 
compared to the true phase duration (with camera) for each sensor position (SA, HE, RS and RW). All 
value are expressed in ms except for relative error expressed in percent. 

Phase duration ΔPush ΔGlid ΔStPr ΔSwim ΔTurn 
True values (validation data) 218 ± 29 880 ± 476 2673 ± 1268 12423 ± 1905 1223 ± 166 

SA 
Estimated (mean±SD) 242 ± 37 991 ± 560 2732 ± 1439 12241 ± 1754 1180 ± 170 
Error (mean±SD) 22 ± 51 10 ± 218 152 ± 300 -100 ± 286 -26 ± 69 
Relative Error (mean±SD) 12 ± 24 -1 ± 24 4 ± 12 -0.8 ± 2 -2 ± 5 

HE 
Estimated (mean±SD) 211 ± 52 936 ± 442 2424 ± 1185 12263 ± 2700 1069 ± 355 
Error (mean±SD) -7 ± 53 121 ± 218 -27 ± 1124 -14 ± 1255 -149 ± 334 
Relative Error (mean±SD) -2 ± 25 8 ± 27 -1 ± 42 0.6 ± 9 -11 ± 26 

RS 
Estimated (mean±SD) 415 ± 70 815 ± 470 3093 ± 1127 10812 ± 2873 1198 ± 390 
Error (mean±SD) 199 ± 80 -82 ± 113 479 ± 737 -767 ± 1096 -2 ± 393 
Relative Error (mean±SD) 96 ± 46 -7 ± 15 21 ± 35 -6 ± 8 -3 ± 29 

RW 
Estimated (mean±SD) 204 ± 43 775 ± 460 2730 ± 1234* 12358 ± 1732* 1082 ± 225 
Error (mean±SD) 1 ± 46 -188 ± 184 118 ± 147* 154 ± 190* -122 ± 170 
Relative Error (mean±SD) 2 ± 22 -21 ± 19 5 ± 6* 1 ± 1* -10 ± 17 

* Obtained using both right and left wrists 

Table 3.6 – The range of error mean (Mean range) and standard deviation (SD range) during micro analysis 
using four sensor positions (SA, HE, RW, RS) in four swimming styles. The values are in millisecond. 

In order to check the reliability of the validation method, the true frames on cameras are detected 
with a second expert observer and compared with the first observer using Bland-Altman plots. 
Figure 3.9 show the agreement between two observers with a 95% limit of agreement (LoA). The 
plots show that the limit of agreement is higher for swimming start (225 ms), turn start (115 ms) 
and stroke preparation start (100 ms), while it is lower than 65 ms for other phases. All of the 
thresholds have been modified at least 10% depending on their values, while the results changed 
less than 5% for all of them except for 𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  and 𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, which changed the estimated 
beginning of stroke preparation with head result more than 10%, meaning that they should be 
chosen more carefully.  

 

 SA HE RW RS 
Mean 
range 

SD 
range 

Mean 
range 

SD 
range 

Mean 
range 

SD 
range 

Mean 
range 

SD 
range 

Front crawl 78 123 421 346 234 106 427 322 
Breaststroke 314 63 516 306 427 88 358 595 

Butterfly 287 109 152 384 411 37 569 390 
Backstroke 154 186 413 503 455 180 723 306 
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Figure 3.9 – Bland-Altman plot for inter-observer agreement for micro analysis event detection, including 
wall push-off start (A), glide start (B), stroke preparation start (C), swimming start (D), turn start (E) and 
next wall push-off start (F), which completes the lap. 

3.4 Discussion 
In this study, we proposed a novel swimming analysis method with a macro-micro approach 
that applies the same unified analysis to all main techniques. Our hypothesis was that suitable 
IMU-based algorithms can analyze a training session at both macro and micro levels, which was 
confirmed by the results obtained. These results were presented in terms of accuracy and 
precision to find the most suitable sensor position for this approach. To obtain a larger sample 
size, we did not distinguish between male and female swimmers. Although only the right shank 
or wrist was used in the algorithms, the same results can likely be obtained with the left shank 
or wrist due to the similarity of the movements. The range of swimming velocity during the tests 
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for front crawl, breaststroke, butterfly, and backstroke is [1.5-1.9], [1.0-1.4], [1.3-1.7], and [1.3-1.7] 
m/s, respectively. Therefore, the algorithms and discussion are valid for these paces. 

3.4.1 Macro Analysis  

Beginning with macro analysis to detect swimming bouts, the sacrum has the best results among 
all positions (sensitivity = 0.99, precision = 0.97, accuracy = 0.98). Because the sacrum is closer to 
the body's center of mass, the movements of the sacrum and head are more distinguishable in 
macro analysis and more robust in detecting swimming bouts with our analysis method. In some 
cases, our algorithm cannot distinguish between head motion during simple turns and the onset 
of swim bout, which decreases the precision of the algorithm (precision = 0.78). 

The sacrum and head achieve the best results in lap detection. Right shank achieves worse results 
in lap detection (sensitivity = 0.87, precision = 0.89, accuracy = 0.80) than the sacrum or head 
because it is less affected by the sudden change in acceleration pattern due to the fast dynamics 
of the turn. Lap detection with the right wrist works during the swimming bouts starting from 
the first lap swimming phase, which is a disadvantage for this position. As a result, the lap 
detection algorithm worked with the right wrist for a shorter period of time and obtained better 
results (sensitivity = 1.00, precision = 0.98, accuracy = 0.91) than with the right shank. Previous 
studies focused only on detecting laps at the sacrum (Le Sage et al., 2011) and head (Jensen et al., 
2013) and achieved lower accuracies than ours. 

The swimming style identification results show that the sacrum is the most reliable sensor 
position, correctly identifying the front crawl and backstroke, with accuracy and precision 
greater than 0.95 for breaststroke and butterfly. Right wrist motion is the most variant among 
swimmers and produced the worst results. It is well known that hand movement patterns show 
significant variation due to various factors, including individual anthropometric and technique 
differences or performance level (Seifert et al., 2011b). In addition, inter-cyclic variation is another 
important factor (Barbosa et al., 2005; Figueiredo et al., 2012a) that can lead to errors in technique 
identification, which was not investigated in this study. However, our method has a higher 
accuracy compared to results reported in the literature based on sacrum sensor (Davey et al., 
2008; Omae et al., 2017). Some studies use a network of IMUs (Wang et al., 2016a) or a smartphone 
(Pan et al., 2016) to identify swimming style, while we focus on each sensor position individually. 

3.4.2 Micro Analysis  

Performing a Wilcoxon rank sum test on the segmentation error of male and female swimmers 
showed that there is no significant difference (p-value > 0.05) between them and the results can 
be mixed. The results of lap segmentation are shown in Table 3.4. Starting from 𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝐵𝐵, the 
algorithms developed for the sacrum and head achieved lower error means and standard 
deviations. Since 𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝐵𝐵 is defined as the beginning of the forward motion of the trunk, these two 
positions are better suited to capture it. The mean value of the error is negative and higher on the 
right shank for both the first (-118 ms) and second (-64 ms) wall push-off (the 𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝐵𝐵 after the 
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turn). This is because during the wall push-off phase, the swimmer begins to extend the shank 
for push-off, while the body posture changes from vertical to horizontal before moving the 
sacrum forward. 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐵𝐵 is detected with the lowest and highest error mean at the sacrum (4 ms) and the right shank 
(76 ms), respectively. Since the sacrum, right wrist, and head are located above the right shank, 
the transition from the wall push-off to the glide phase is more abrupt at these locations, whereas 
the change in angular velocity of the right shank is smoother at the start of the glide (the peak of 
|Gyr| is difficult to observe in some cases). 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 is detected earlier at the right wrist (-151 ms) and the error standard deviation is high for 
the head (214 ms) and right wrist (124 ms), while the right shank has the lowest error mean and 
standard deviation. Stroke preparation phase accompanies with the generation of a wave 
throughout the body after glide phase. This wave begins on the right shank with the first action 
of the lower limbs, but in many swimmers the wrist movement occurs earlier to generate the 
reaction force during the lower limb actions, resulting in a high negative error for the right wrist. 
When the wave starts in the lower or upper limbs, the standard deviation increases for the sensor 
attached to the upper limbs (right wrist and head). The sacrum, located in the middle of this 
wave, detects motion with a moderate error mean and standard deviation (-32 ± 107 ms). 

Since 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 is defined as upper limbs cycle start on hand, wrists obtain the best result (-42 ± 72 
ms). During front crawl or backstroke, sacrum is delayed (136 ms), sometimes two or three upper 
limbs cycles, in receiving the rolling motion during swimming phase, which is used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 
detection. Right shank is also delayed (342 ms) mostly during butterfly or breaststroke techniques 
since lower limb action starts always after the upper limbs cycle on hand. High standard 
deviation for swimming start detection on sacrum (226 ms), head (563 ms) and right shank (473 
ms) are the result of high variation between swimmers and motion transfer delay to these sensor 
positions. For example, the lower limbs action might start after or before upper limbs cycle during 
front crawl and backstroke as it is not dependent on upper limbs.  

Although the detection of 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵 relies mainly on turn type (simple or tumble turn), sacrum is 
the best location for it (23 ± 97 ms), as the turn motion reaches sacrum right after it starts on head 
(tumble turn) or wrist (simple turn). Right wrist has a late response during tumble turn, which 
causes high positive error mean (118 ms) since the swimmer tries to keep wrists backward and 
right wrist does not necessarily follow the turn quick motion. The wall reaching speed also affects 
the standard deviation of 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵 detection with right shank (390 ms) and head (195 ms). The 
swimmer should estimate the wall distance at the right time before turn and adapt their speed. 
When the swimmer touches the wall with low or high speed in simple turn, the algorithms detect 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵 on head and right shank earlier or later than the true value. 

To understand better the event detection error, the estimated phase duration and its absolute and 
relative error compared to the true value are shown in Table 3.5. Detecting the phase duration 
for short phases accompanies with higher relative error. For example, this value for ΔPush 
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detection on sacrum is 12 ± 24 %, while the same value for ΔSwim on sacrum is -0.8 ± 2 %. Hence, 
the detection of long phases duration such as swimming phase is more reliable than short phases. 
The absolute value of each phase duration error is affected by both phase start and end detection 
error. As shown in Table 3.5, right wrist has the highest amount of error for ΔSwim estimation, 
while it was the best location for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 detection, the reason of which is its poor performance 
for 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵 detection. Although the short phases duration estimation has higher relative error, the 
parameters within these phases are possible to extract. Interesting parameters, such as maximum 
push-off velocity (Stamm et al., 2013a) during wall push-off lies between wall push-off start and 
end.  

The superiority of sacrum for micro analysis over other sensor positions is pointed out by the 
results displayed in Table 3.6. The smallest range of error mean (78 ms for front crawl, 314 ms for 
breaststroke, 287 ms for butterfly and 154 ms for backstroke) and standard deviation (123 ms for 
front crawl, 63 ms for breaststroke, 109 ms for butterfly and 186 ms for backstroke) for all 
swimming styles are achieved with sacrum. In conclusion, this location is the best for micro 
analysis in all swimming styles. Since sacrum also worked better in macro level, this is the best 
candidate for a single sensor analysis system. In macro scale, sacrum data can provide reliable 
results, and in micro level, it captures the events starting from upper limbs and lower limbs with 
less delay than other sensor positions, as it is located in the middle of the body. As shown by 
Bland-Altman plots (Figure 3.9), the inter-observer limit of agreement is 225 ms, 115 ms, and 100 
ms for beginning of swimming, beginning of turn and beginning of stroke preparation detection 
respectively. Since the mean and standard deviation of error for detecting these events were 
higher than others in most cases (e.g. for sacrum and head), part of the error is due to observer 
error in validation. 

In terms of usability, sacrum, head and right wrist are suitable locations, as they can easily fit 
into the swimming suit and goggles or be used as a watch. It is observed that head is capable of 
macro level analysis with lower standard deviation and higher accuracy than wrist or shank. 
Other than its performance for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 detection, head seems to be the second promising location 
for micro analysis. Right wrist or right shank both suffer from high error in both macro and micro 
levels, which might be the result of intra-swimmer variability. As a biomechanically driven 
approach, macro-micro analysis can provide a detailed view about the nature of movements but 
its downside is being prone to error caused by technique diversity or being more sensitive to 
thresholds. Wrist and shank did not perform well with our algorithms and they need further 
investigation for dealing with their pattern variability.  

We included both male and female swimmers, as there was no significant difference between 
them in the results. Comparing the swimmers due to their individual differences is out of the 
scope of this study. Since the measurements started from in-water situation, the algorithms 
cannot cover the dive at the beginning, but it is possible to add to our method. The main influence 
is replacing the wall push-off phase with dive phase. Since we included a moderate pace in our 
measurements (80% of the best speed), the algorithms are not generalizable to all competitive 
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paces and are valid only within the range of paces included in the measurements. However, 
improving technique at a moderate pace and then increasing speed is used in training. The use 
of the highest speed during training is generally required as competitions approach. Therefore, 
our system can be used in most training sessions where the pace is moderate. Although the 
validity of our system is not demonstrated by the highest pace, it nevertheless covers a wide 
range of paces for main swimming styles. Another limit of this study is the observer error while 
using the validation system (cameras), showing itself in lap segmentation into swimming phases. 
Moreover, using camera from the side view, the detection of some events is difficult to observe 
such as swimming phase start during breaststroke or butterfly, as they are easier to detect in front 
view.  

3.5 Conclusion 
The analysis approach proposed in this study recognized important temporal events during a 
training session. It started by identifying swimming bouts and laps during a training session. 
Then, the swimming style in each lap is identified, which is useful in micro analysis to find lap 
components. Then, each lap is divided into five phases: Wall push-off, glide, stroke preparation, 
swimming and turn for all techniques. This study showed that the macro-micro approach with 
the developed algorithms can cover all movement phases during a training session. The sacrum 
was found to provide equally good or more promising results than other sensor positions in both 
levels (except for a few cases such as the start of swimming or stroke preparation). At the macro 
level, the sacrum achieved the highest accuracy within a range of 0.83-0.98 for swimming bout 
detection and a range of 0.73-0.97 and 0.82-0.98 for breaststroke and butterfly technique 
identification, respectively. The mean and standard deviation for swimming lap segmentation 
were also relatively low in most cases. All these results demonstrate that the sacrum is the most 
suitable sensor position for an analysis system with one sensor designed to cover both macro and 
micro level parameters. To improve the algorithms, we are considering investigating machine 
learning methods that can better handle the inter- and intra-variability of swimmers' technique. 
Future studies focusing on the detailed parameters in each swimming phase will be the next step 
of the current analysis approach. 
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3.6 Appendix 

3.6.1 Rules of algorithms  

Table 3.7 and Table 3.8 represent a summary of rules developed for macro and micro 
swimming analysis and related biomechanics hypothesis. Refer to section 2.1 in the main text 
for definition of anatomical axes. 

Table 3.7 – Table of rules for macro analysis. The table includes the hypothesis, rule, involved signals and 
functions for each algorithm developed to find macro parameters on all sensor positions. 

Macro Analysis 
Parameter Location Hypothesis Signal(s) Rule 

Swimming 
bouts 

SA The change in trunk 
posture between 
standing and prone (for 
front crawl, butterfly 
and breaststroke 
techniques) or supine 
(for backstroke 
technique) posture at 
the beginning and end 
of each swimming bout 
will affect sacrum 
acceleration in sagittal 
plane.  

𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 The derivative of the low pass 
filtered 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 (𝑓𝑓𝑐𝑐 = 0.1Hz) shows 
obvious peaks or troughs at the 
beginning and end of each bout 
(trough for start and peak for end) 
because of inclination changes 
(detectable by a threshold (𝑇𝑇𝑇𝑇𝐵𝐵)).  

HE The head posture 
changes along with 
trunk between upright 
and prone or supine 
posture during each 
swimming bout start 
and end which is 
observable on 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦. 

𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 The derivative of the low pass 
filtered 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 (𝑓𝑓𝑐𝑐 = 0.1Hz) shows 
obvious peaks or troughs at the 
beginning and end of each bout 
(trough for start and peak for end) 
because of inclination changes 
(detectable by threshold (𝑇𝑇𝑇𝑇𝐵𝐵)). 

RW High variability of wrist 
motion during upper 
limbs cycles makes this 
period significant in a 
full training session. 
Beginning of a 
swimming bout is not 
observable on wrist 
because no special 
change was observed 
before starting the 
upper limbs cycles. 

|𝐴𝐴𝐴𝐴𝐴𝐴| The envelope of |𝐴𝐴𝐴𝐴𝐴𝐴| increases with 
the start of upper limbs cycles and 
stays high until the end of swimming 
bout, which is detectable using an 
empirical threshold (𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵). 

RS Swimmers bend their 
knee and change their 
shank inclination for 
wall push-off before 

𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 The derivative of the low pass 
filtered 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 (𝑓𝑓𝑐𝑐 = 0.1Hz) shows 
obvious peaks or troughs (detectable 
by threshold (𝑇𝑇𝑇𝑇𝐵𝐵)) because of 



Chapter 3 - A novel IMU-based swimming analysis approach 

 

62 

start or at the end of a 
swimming bout, which 
is observable on 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦. 

inclination changes (troughs for start 
and peaks for end). 

 
 
 
 
 
 
 
 
 
 
 
Swimming 
lap 
 

SA Sudden change in 
moving direction 
during simple or 
tumble turn affects 
sacrum acceleration. 
This change happens in 
all axes but more 
obviously on 𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 and 
𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦. However, 𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 is 
better than 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 
because it has a 
relatively lower 
amplitude during 
swimming bout, while 
it shows the same 
change in turns 

𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 The highest peak of 𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 during a 
full swimming bout represent turns 
(simple or tumble turn). 

HE Tumble turn and simple 
turn have different 
effects on head but 
during both, there is a 
quick head motion in 
one direction 
(downward for tumble 
turn (in sagittal plane) 
and sideways (z axis) 
for simple turn).  

|𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦,𝑧𝑧| The highest peak that exists in 
�𝐴𝐴𝑐𝑐𝑐𝑐𝑦𝑦,𝑧𝑧� during a full swimming bout 
representing the turn (simple or 
tumble turn). 

RW During turns, wrist 
motion has lower 
magnitude than other 
part of a swimming 
bout. Using this 
decrease in angular 
velocity level is the key 
to detecting turns on 
wrist.  

|𝐺𝐺𝐺𝐺𝐺𝐺| The low pass filtered (𝑓𝑓𝑐𝑐 = 3Hz) 
moving average (window size: 1s) of 
|𝐺𝐺𝐺𝐺𝐺𝐺| is used for finding a period 
with relatively lower level of angular 
velocity. Detection is done by 
locating approximate turn with a 
threshold (𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿). 

RS During simple turn, 
shanks move sideways 
(z axis) quickly to start 
pushing the wall, while 
during tumble turn, 
shanks rotate along 
with the whole body (in 
sagittal plane).  

𝐴𝐴𝐴𝐴𝐴𝐴𝑧𝑧 
𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧 

Relatively large peaks (detectable by 
threshold (𝑇𝑇𝑇𝑇𝐿𝐿𝐿𝐿)) appear on 𝐴𝐴𝐴𝐴𝐴𝐴𝑧𝑧 
during simple turn and on 𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧 
during tumble turn. 

Swimming 
style  

SA In four swimming 
styles, sacrum motion is 
different in terms of 
angular velocity, 
gravity direction and 

𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 
𝐺𝐺𝐺𝐺𝐺𝐺𝑥𝑥,𝑦𝑦,𝑧𝑧 

A two-upper-limb-cycle period is 
located by peak detection on 𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 in 
each lap. Front crawl/backstroke 
category separates from 
butterfly/breaststroke category using 
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motion patterns. 
Angular velocity is 
mainly around y axis 
for front crawl and 
backstroke, while it is 
around z axis for 
breaststroke and 
butterfly. Supine 
posture of swimmer 
during backstroke 
causes gravity to be in 
the opposite direction 
compared to other 
techniques. Sacrum 
motion is different in 
breaststroke and 
butterfly in terms of 
motion frequency. 

the axis with maximum value of 
PCA analysis of sacrum 𝐺𝐺𝐺𝐺𝐺𝐺𝑥𝑥,𝑦𝑦,𝑧𝑧.  In 
front crawl, the trunk is downward 
while in backstroke, the trunk is 
upward (the sign of 𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 mean is 
positive for backstroke). Butterfly 
and breaststroke are different in 
terms of dominant frequency of 𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥, 
detected with a threshold (𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆).  

HE Head motion is 
different in terms of 
angular velocity, 
gravity effect and 
motion patterns. 
Angular velocity is 
mainly around y axis 
for front crawl and 
backstroke, while it is 
around z axis for 
breaststroke and 
butterfly. Supine 
posture of swimmer 
during backstroke 
causes gravity to have 
opposite effect 
compared to other 
techniques. Head 
motion is different in 
breaststroke and 
butterfly in terms of 
motion frequency. 

|𝐴𝐴𝑐𝑐𝑐𝑐𝑥𝑥,𝑦𝑦| 
𝐺𝐺𝐺𝐺𝐺𝐺𝑥𝑥,𝑦𝑦,𝑧𝑧 

A two-upper-limb-cycle period is 
located by peak detection on 
|𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥,𝑦𝑦| in each lap. Front crawl and 
backstroke are different in terms of 
gravity effect on |𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥,𝑦𝑦| (the sign of 
|𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥,𝑦𝑦| mean is positive for 
backstroke). Front crawl/backstroke 
techniques separates from 
butterfly/breaststroke techniques 
using PCA analysis of head 𝐺𝐺𝐺𝐺𝐺𝐺𝑥𝑥,𝑦𝑦,𝑧𝑧. 
Butterfly/breaststroke are different in 
terms of dominant frequency of 
�𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥,𝑦𝑦� detectable with a threshold 
(𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝐻𝐻𝐻𝐻). 

RW Wrists motion depends 
on swimmers’ learning 
and technique. The 
principal component of 
acceleration shows its 
highest value on x axis 
for backstroke 
technique. Average of 
acceleration norm is 
used to identify 
butterfly since hands 

𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥,𝑦𝑦,𝑧𝑧 
|𝐴𝐴𝐴𝐴𝐴𝐴| 

A two-upper-limb-cycle period is 
located by peak detection on |𝐴𝐴𝐴𝐴𝐴𝐴| in 
each lap. During backstroke, the 
principal component of acceleration 
is in x direction. The mean and 
variation of |𝐴𝐴𝐴𝐴𝐴𝐴| is higher that a 
threshold (𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) for butterfly 
and front crawl (𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 
respectively. 
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motion has the highest 
average acceleration in 
butterfly. Between 
breaststroke and front 
crawl, the variation of 
acceleration norm is 
higher for front crawl. 

RS From technique to 
technique, shank 
motion is different in 
terms of principal 
component of angular 
velocity and gravity 
effect. Similar to head 
and sacrum, gravity 
effect on shank during 
backstroke is in 
opposite compared to 
other techniques. 
Breaststroke is the only 
technique, in which 
shank motion goes out 
of sagittal plane. 
Symmetrical kicks 
during butterfly is the 
last clue for separating 
this technique from 
front crawl because it 
causes a specific 
rotation in shanks 
during butterfly.  

𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 
𝐺𝐺𝐺𝐺𝐺𝐺𝑥𝑥,𝑦𝑦,𝑧𝑧 

During a five-kick period, gravity 
effect on 𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 separated backstroke 
from other techniques (the sign of 
𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 mean is positive for backstroke). 
Using a PCA analysis, breaststroke 
shows its minimum component in y 
direction because the motion is 
mainly in shank transverse plane. 
During butterfly, second component 
of shank principal angular velocity is 
positive for right shank (or negative 
for left shank) due to outward 
motion of shanks, while it does not 
necessarily happen for front crawl. 

Table 3.8 – Table of rules for micro analysis. The table includes the hypothesis, rule, involved signals and 
functions for each algorithm developed to find micro parameters on all sensor positions. 

Micro Analysis 
Parameter Location Hypothesis Signal Rule 

Wall push-off 
start (𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑩𝑩)  

SA Sacrum has a motion 
with high forward 
acceleration (y axis) at 
the beginning of wall 
push-off. This motion 
leaves a peak in 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦, 
After which the 
acceleration decreases 
due to water drag. 

𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 Backstroke: The maximum of 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 in a 
2-second window after swimming bout 
start is the closest point to push-off 
start. The result is not sensitive to the 
length of this window.  
Other: it is easier to find the trough 
after push-off start and use it to detect 
the push-off start. In a 2-second 
window after swimming bout start, 
𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 concavity changes which is 
detectable on its derivative. If this 
sample is followed by a trough lower 
than zero on 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦, then the peak before 
this trough is the closest point to push-



3.6 - Appendix 

 

65 

off start. The result is not sensitive to 
the length of the window. 

HE Head has a motion 
with high forward 
acceleration (y axis) at 
the beginning of wall 
push-off. This motion 
leaves a peak in 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 
and |𝐴𝐴𝐴𝐴𝐴𝐴|, After which 
the acceleration 
decreases due to water 
drag. 

𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 
|𝐴𝐴𝐴𝐴𝐴𝐴| 

Backstroke: The maximum of 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 in a 
2-second window after swimming bout 
start is the closest point to push-off 
start. The result is not sensitive to the 
length of the window. 
Other: in a 2-second window after 
swimming bout start, the maximum of 
|𝐴𝐴𝐴𝐴𝐴𝐴| provides a rough approximation 
which will be finetuned with a close 
peak on 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦. The result is not sensitive 
to the length of the window.  

RW The swimmer wrists 
goes down in water 
for push-off, which 
causes an acceleration 
against gravity on axis 
y. As the swimmer is 
raising and stretching 
the arms forward, this 
acceleration increases. 

𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 As 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 decreases below zero due to 
wrist downward motion, it increases 
afterwards when the swimmer raises 
their wrists for push-off. The trough 
before this increase in 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 is detected 
as the closest to push-off start. 

RS Swimmer’s knees 
extend during push-
off after an almost 
motionless period, so 
this sharp increase in 
|𝐺𝐺𝐺𝐺𝐺𝐺| is a sign of push-
off start. 

|𝐺𝐺𝐺𝐺𝐺𝐺| As knees starts to extend at the 
beginning of push-off, |𝐺𝐺𝐺𝐺𝐺𝐺| increases 
and shows a peak. The first minimum 
before this peak is the closest point to 
push-off start. 
 

Glide start 
(𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑩𝑩)  

SA Sacrum forward 
acceleration (y axis) 
gets closer and closer 
to zero due to the end 
of push-off period and 
deceleration start.  

𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 The first negative trough on 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 after 
push-off start shows the beginning of 
glide period that the swimmer’s body 
starts to decelerate. 

HE Head forward 
acceleration (y axis) 
should get close to 
zero due to the end of 
push-off period. 

𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 The first negative trough on 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 after 
push-off start shows the beginning of 
glide period that the swimmer’s body 
decelerates. 

RW As the arms are fully 
stretched, 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 at glide 
start will be a sample 
closest to zero after 
push-off start. 

𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 As push-off start on wrist was a 
negative trough, after which the 
acceleration started increasing towards 
zero, the first peak on 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 after push-
off start is the closest to glide start. It is 
close to zero. 

RS |𝐺𝐺𝐺𝐺𝐺𝐺| of Shank 
decreases close to zero 
due to the end of 
push-off period. 

|𝐺𝐺𝐺𝐺𝐺𝐺| The first trough of |𝐺𝐺𝐺𝐺𝐺𝐺| after push-off 
start, where angular velocity is almost 
zero. 
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Stroke 
preparation 
start (𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑩𝑩)  

SA The wave generated in 
swimmer’s body due 
to stroke preparation 
kicks causes a periodic 
change in sacrum 
acceleration after a 
motionless glide. The 
change is clear on 
sacrum 𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 because 
of its upward and 
downward motion. 

|𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥| Start of this phase is detectable by 
using two thresholds on peaks of |𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥| 
(𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) and its variation (𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 
obtained with moving standard 
deviation (100 samples window size). 
As soon as they get higher than the 
thresholds, stroke preparation phase is 
started. The first peak or trough (the 
ones happening earlier) of this period is 
considered as stroke preparation start.   

HE The thrust caused by 
stroke preparation 
kicks will show a 
periodic change on 
head 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦. This 
change happens after 
the motionless period 
of glide. 

�𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦�  The first peak of this periodic change in 
�𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦� is considered as stroke 
preparation start. It is detected using 
thresholds on peak magnitude (𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 
and prominence (𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆).  

RW As wrist is almost 
motionless before 
stroke preparation 
start, its |𝐴𝐴𝐴𝐴𝐴𝐴| remains 
equal to g. Stroke 
preparation kicks 
causes a wave motion 
on wrists too. 

|𝐴𝐴𝐴𝐴𝐴𝐴| The first peak on |𝐴𝐴𝐴𝐴𝐴𝐴|, detected by a 
threshold (𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)  after motionless 
glide phase is considered as stroke 
preparation start. 

RS Upward and 
downward motion of 
shanks during the 
dolphin kicks after a 
motionless period is 
the clue to find stroke 
preparation start. It is 
observable on all axes 
of shank acceleration. 

𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 
|𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥|  
|𝐴𝐴𝐴𝐴𝐴𝐴| 

Backstroke: The first positive peak on 
𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 after glide start caused by kicking 
thrust is the start of stroke preparation 
phase. 
Other: The first peak on |𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥| bigger 
than a threshold (𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) is close to the 
answer. The first sample before this 
peak where |𝐴𝐴𝐴𝐴𝐴𝐴| passes g is the start of 
stroke preparation phase because the 
shanks are motionless and  |𝐴𝐴𝐴𝐴𝐴𝐴| = 𝑔𝑔 
before stroke preparation start 

Swimming 
start (𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑩𝑩)  

SA Sacrum motion 
changes with the start 
of upper limbs cycles. 
For front crawl and 
backstroke, the sacrum 
angular velocity is in 
sagittal plane (XY 
plane) during stroke 
preparation phase 
while it changes to 
frontal plane (XZ 
plane) during upper 
limbs cycles. For 

𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦 
�𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦� 
𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧 
𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 

 

Front crawl & backstroke: 𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦 
becomes prominent after the first upper 
limbs cycle start because of body 
rolling motion. It is detected with a 
threshold (𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆−𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) on �𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦� and 
then finetuned with the closest peak of 
𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦 before this sample. 
Breaststroke: Using Empirical Mode 
Decomposition (EMD) and Hilbert-
Huang transform, abrupt increase in 
instantaneous energy level of second 
mode of filtered 𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧 (𝑓𝑓𝑐𝑐 = 2 Hz) 
happens in free-swimming phase. The 
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breaststroke and 
butterfly the motion 
changes in terms of 
energy increment of 
𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧 and 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 with 
start of free-swimming 
phase. 

sample is detected using a threshold 
(𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆−𝐵𝐵𝐵𝐵𝐵𝐵) and the previous peak on 
𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧 is close to free-swimming phase 
start. 
Butterfly: 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 is decomposed into 
several components using EMD 
method. The second component starts a 
periodic change after free-swimming 
phase start and the first peak on it is 
detected with a threshold (𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆−𝐵𝐵𝐵𝐵). 
The trough before this peak is close to 
free-swimming phase start. 

HE Head motion changes 
due to free-swimming 
phase start varies from 
technique to 
technique. In front 
crawl, head starts to 
roll, causing an 
increase in 𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦 
energy level. For 
butterfly and 
breaststroke, head 
upward and 
downward motion 
intensifies, which 
causes an increase in 
𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧 energy level. In 
backstroke, head 
become steadier after 
upper limbs cycles 
start, which means less 
energy level of 𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧 . 
 

𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦 
𝐺𝐺𝐺𝐺𝑟𝑟𝑧𝑧 

Front crawl: Threshold-based detection 
(𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆−𝐹𝐹𝐹𝐹) of 𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦 energy level 
(obtained with HHT( 𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦)) increase is 
used to find the vicinity of upper limbs 
cycle start. The first trough before this 
increment is chosen as swimming start. 
Butterfly & breaststroke: Threshold-
based detection (𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆−𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) of 𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧 
energy level increase (obtained with 
HHT( 𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧))  is used to find the vicinity 
of swimming start. The first trough 
before this increment is chosen as 
swimming start. 
Backstroke: Threshold-based detection 
(𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆−𝐵𝐵𝐵𝐵𝐵𝐵) of 𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧 energy level 
decrease (obtained with HHT( 𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧)) is 
used to find the vicinity of swimming 
start. The first peak before this 
decrement is chosen as swimming start. 

R&LW Wrists start to move at 
the beginning of free-
swimming phase, 
which is observable on 
acceleration and 
angular velocity. For 
front crawl and 
butterfly, 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 change 
is easier to detect 
because of hands 
downward motion 
right from the 
swimming start. For 
breaststroke, hand 
rotation at the free-
swimming phase start 

𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 
𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 
𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦 

For front crawl and backstroke, the 
algorithm is implemented on both 
wrists and the earlier result was chosen 
as the answer.  
Front crawl & butterfly: The trough 
before the first peak on 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 caused by 
upper limbs cycles after stroke 
preparation start is swimming start. 
Breaststroke: 𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦 first peak after stroke 
preparation start an approximate 
period for the answer. The trough 
before the first peak of filtered 𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 (𝑓𝑓𝑐𝑐 
= 5 Hz) happening in this period is the 
closest to swimming start. 
Backstroke: The trough before the first 
peak on 𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 caused by upper limbs 
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causes a change in 
𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦 and  𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 . 

cycles after stroke preparation start is 
swimming start. 

RS Start of upper limbs 
cycles on shanks 
causes a change in the 
kicking method 
depending on 
swimming style. 
Except for 
breaststroke, kicking 
happens in sagittal 
plane and 𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 is the 
signal that changes 
more obviously. The 
same happens on 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 
for breaststroke. This 
change in kicking is 
possible to detect as 
the beginning of free-
swimming phase. 

𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 
𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 

 

Using EMD method on 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 for 
breaststroke and 𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 for the rest 
techniques, the second mode separates 
the fluctuations after swimming start 
on shanks. Threshold-based peak 
detection (𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆) finds the first peak of 
this mode and the trough before it is 
considered as swimming start. 

Turn start 
(𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑩𝑩)  

SA During tumble and 
simple turn, sacrum 
motion is mainly in 
sagittal and frontal 
plane respectively. In 
both cases, 𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 is 
affected by the motion 
and shows a sudden 
change. Approximate 
turn, which is a 
sample during turn 
phase is already 
detected with lap 
detection algorithm 
and is used here.  

𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥 
 

Backstroke: it happens at a peak caused 
by the rolling before turn. This peak is 
the same as approximate turn already 
detected on 𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥. 
Other: in a period before approximate 
turn, the turn causes a large peak in 
𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥, the trough before which is close 
to turn start. 

HE For tumble turn, head 
starts the downward 
motion, which can be 
observed as a big peak 
on head |𝐴𝐴𝐴𝐴𝐴𝐴|. Before 
turning, head rests for 
a short period 
where|𝐴𝐴𝐴𝐴𝐴𝐴| should be 
close to g. For simple 
turn, the motion is 
basically in frontal 
plane which is 
detectable on head 
𝐺𝐺𝐺𝐺𝐺𝐺𝑥𝑥. 

|𝐴𝐴𝐴𝐴𝐴𝐴| 
𝐺𝐺𝐺𝐺𝐺𝐺𝑥𝑥 

 

Front crawl & backstroke: |𝐴𝐴𝐴𝐴𝐴𝐴| shows 
a peak which is close to approximate 
turn. The sample before this peak 
where acceleration is equal to g is close 
to turn start. 
Butterfly & breaststroke: 𝐺𝐺𝐺𝐺𝐺𝐺𝑥𝑥 has a 
peak close to approximate turn. Turn 
start is the trough before this peak 

RW During tumble turn, 
wrists undergo a 

𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 Front crawl & backstroke: wrist 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 
shows a peak close to approximate 
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complete turn from 
prone to supine along 
with the whole body. 
This change is clear on 
𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦. During simple 
turn, forearm 
orientation changes 
from horizontal before 
turn to vertical  (or 
close to vertical) and 
again to horizontal 
after turn. This change 
is observable on wrist 
𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦. 

turn, clear on high-filtered 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 (𝑓𝑓𝑐𝑐 = 2 
Hz). The trough before this peak is 
close to turn start. 
Breaststroke & butterfly: 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 shows a 
peak close to approximate turn. The 
trough before this peak is close to turn 
start. 

RS During tumble turn, 
shanks rotate with the 
whole body, causing a 
clear change on 𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧, 
while during simple 
turn, they move 
sideways (z axis) to 
reach the wall for 
push-off. 

𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧 
𝐴𝐴𝐴𝐴𝐴𝐴𝑧𝑧 

Front crawl & backstroke: shank 𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧 
increases abruptly during rotation, 
close to approximate turn. The trough 
before this change is turn start. 
Breaststroke & butterfly: 𝐴𝐴𝐴𝐴𝐴𝐴𝑧𝑧 increases 
because of the shank sideway motion, 
close to approximate turn. The trough 
before this increase is turn start. 

3.6.2 Sensitivity analysis of thresholds 

The thresholds are changed in both directions according to the percent declared and the total 
change in algorithm result (accuracy and precision of swimming bouts and lap detection and 
swimming style identification in macro analysis and the estimated values for phase starts in 
micro analysis) is reported. The percent of change depends on how the results changed with a 
least amount of 10% (Table 3.9). 

Table 3.9 – Table of thresholds sensitivity analysis 

Threshold Description 
Threshold 
change (%) 

Results 
change 

(%) 

𝑻𝑻𝑻𝑻𝑩𝑩 
The thresholds used for swimming bouts detection on SA, HE 
and RS 

30 0 

𝑻𝑻𝑻𝑻𝑩𝑩𝑩𝑩 The threshold used for swimming bouts detection on RW 15 5 
𝑻𝑻𝑻𝑻𝑳𝑳𝑳𝑳 The threshold used for swimming lap detection on RW 30 0 
𝑻𝑻𝑻𝑻𝑳𝑳𝑳𝑳 The threshold used for swimming lap detection on RS 15 5 

𝑻𝑻𝑻𝑻𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺  The threshold used for swimming style identification on SA  30 
Less 

than 1 

𝑻𝑻𝑻𝑻𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 The threshold used for swimming style identification on HE 30 Less 
than 1 

𝑻𝑻𝑻𝑻𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 The first threshold used for swimming style identification on W 10 5 

𝑻𝑻𝑻𝑻𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 
The second threshold used for swimming style identification on 
W 

50 1 
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𝑻𝑻𝑻𝑻𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 The first threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 detection on SA  
This threshold is 1g 
and can be justified 

biomechanically 
𝑻𝑻𝑻𝑻𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 The second threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 detection on SA 30 0 
𝑻𝑻𝑻𝑻𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 The first threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 detection on HE  20 12 
𝑻𝑻𝑻𝑻𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 The second threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 detection on HE 10 15 
𝑻𝑻𝑻𝑻𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 The first threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 detection on RW  10 5 
𝑻𝑻𝑻𝑻𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 The first threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 detection on RS  15 5 

𝑻𝑻𝑻𝑻𝑺𝑺𝑺𝑺𝑺𝑺−𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 
The threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 detection on SA for front crawl 
and backstroke 15 5 

𝑻𝑻𝑻𝑻𝑺𝑺𝑺𝑺𝑺𝑺−𝑩𝑩𝑩𝑩𝑩𝑩 The threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 detection on SA for breaststroke 20 Less 
than 1 

𝑻𝑻𝑻𝑻𝑺𝑺𝑺𝑺𝑺𝑺−𝑩𝑩𝑩𝑩 The threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 detection on SA for butterfly 15 Less 
than 1 

𝑻𝑻𝑻𝑻𝑺𝑺𝑺𝑺𝑺𝑺−𝑭𝑭𝑭𝑭 The threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 detection on HE for front crawl 20 Less 
than 1 

𝑻𝑻𝑻𝑻𝑺𝑺𝑺𝑺𝑺𝑺−𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 
The threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 detection on HE for butterfly and 
breaststroke 

10 5 

𝑻𝑻𝑻𝑻𝑺𝑺𝑺𝑺𝑺𝑺−𝑩𝑩𝑩𝑩𝑩𝑩 The threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 detection on HE for backstroke 15 9 
𝑻𝑻𝑻𝑻𝑺𝑺𝑺𝑺𝑺𝑺 The threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 detection on RS 10 5 

3.6.3 Glossary of terms 

Here if the table of glossary of all the terms used for macro/micro approach of swimming 
analysis. 

Table 3.10 – Table of glossary for Chapter 3 

Term Definition 
IMU Inertial measurement unit 
Acc Acceleration data (g) 
Gyr Gyroscope data (°/𝑠𝑠) 
|𝐀𝐀𝐀𝐀𝐀𝐀𝐲𝐲,𝐳𝐳| Sum of the acceleration on y and z axes 
𝐆𝐆𝐆𝐆𝐆𝐆𝐱𝐱,𝐲𝐲,𝐳𝐳 All three axes of gyroscope 
|𝐆𝐆𝐆𝐆𝐆𝐆| Norm of angular velocity 
𝐀𝐀𝐀𝐀𝐀𝐀𝐲𝐲̇  Derivative of 𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 
SA Sacrum  
HE Head 
RW Right wrist 
RS Right shank 
Swimming 
bout 

The swimming parts (in any swimming style) during a training session that 
includes one or more laps. 

Swimming lap The wall-to-wall period of swimming  
Simple turn The turn at the end a the swimming lap during breaststroke and butterfly styles 
Tumble turn The turn at the end a the swimming lap during front crawl and back swimming 

styles 
Swimming 
style 

The style of swimming which is one among this list: Front crawl, Breaststroke, 
Butterfly, Backstroke  

Swimming 
phase 

Each swimming lap is divided in five swimming phases (wall push-off, glide, 
stroke preparation, swimming and turn) 
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PushB Beginning of wall push-off  phase 
GlidB Beginning of glide phase  
StPrB Beginning of stroke preparation phase 
SwimB Beginning of free-swimming phase 
TurnB Beginning of turn phase  
Δ- Stands for the duration of each phase 
𝐓𝐓𝐓𝐓𝐁𝐁 The thresholds used for swimming bouts detection on SA, HE and RS 
𝐓𝐓𝐓𝐓𝐁𝐁𝐁𝐁 The threshold used for swimming bouts detection on RW 
𝐓𝐓𝐓𝐓𝐋𝐋𝐋𝐋 The threshold used for swimming lap detection on RW 
𝐓𝐓𝐓𝐓𝐋𝐋𝐋𝐋 The threshold used for swimming lap detection on RS 
𝐓𝐓𝐓𝐓𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 The threshold used for swimming style identification on SA  
𝐓𝐓𝐓𝐓𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 The threshold used for swimming style identification on HE 
𝐓𝐓𝐓𝐓𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 The first threshold used for swimming style identification on W 
𝐓𝐓𝐓𝐓𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 The second threshold used for swimming style identification on W 
𝐓𝐓𝐓𝐓𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 The first threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵detection on SA  
𝐓𝐓𝐓𝐓𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 The second threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵detection on SA 
𝐓𝐓𝐓𝐓𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 The first threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵detection on HE  
𝐓𝐓𝐓𝐓𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 The second threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵detection on HE 
𝐓𝐓𝐓𝐓𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 The first threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵detection on RW  
𝐓𝐓𝐓𝐓𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 The first threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵detection on RS  
𝐓𝐓𝐓𝐓𝐒𝐒𝐒𝐒𝐒𝐒−𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 The threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵detection on SA for front crawl and backstroke 
𝐓𝐓𝐓𝐓𝐒𝐒𝐒𝐒𝐒𝐒−𝐁𝐁𝐁𝐁𝐁𝐁 The threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵detection on SA for breaststroke 
𝐓𝐓𝐓𝐓𝐒𝐒𝐒𝐒𝐒𝐒−𝐁𝐁𝐁𝐁 The threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵detection on SA for butterfly 
𝐓𝐓𝐓𝐓𝐒𝐒𝐒𝐒𝐒𝐒−𝐅𝐅𝐅𝐅 The threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵detection on HE for front crawl 
𝐓𝐓𝐓𝐓𝐒𝐒𝐒𝐒𝐒𝐒−𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁 The threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵detection on HE for butterfly and breaststroke 
𝐓𝐓𝐓𝐓𝐒𝐒𝐒𝐒𝐒𝐒−𝐁𝐁𝐁𝐁𝐁𝐁 The threshold used for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵detection on HE for backstroke 
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 Phase-based performance 
evaluation with IMU 

Publication Note: this chapter is adapted from the following journal paper: 
 
Hamidi Rad, Mahdi, et al. "Swimming phase-based performance evaluation using a single 
IMU in main swimming techniques." Frontiers in bioengineering and biotechnology (2021): 
1268. 
Supplementary materials: 
https://www.frontiersin.org/articles/10.3389/fbioe.2021.793302/full#supplementary-material 

 

This chapter presents a phase-based performance evaluation of swimming based on the 
macro-micro approach developed in the previous chapter. Regardless of the swimming 
style, the swimmer passes various swimming phases from wall to wall, including a dive 
into the water or wall push-off, then glide and stroke preparation and finally, swimming 
up to the turn. The coach focuses on improving the performance of the swimmer in each of 
these phases. The purpose of this chapter was to assess the potential of using a sacrum-
worn IMU for performance evaluation in each swimming phase (wall push-off, glide, stroke 
preparation and swimming) of elite swimmers in four main swimming styles (i.e. front 
crawl, breaststroke, butterfly and backstroke). Nineteen swimmers were asked to wear a 
sacrum IMU and swim four one-way 25-m trials in each technique, attached to a tethered 
speedometer and filmed by cameras in the whole lap as reference systems. Based on the 
literature, several goal metrics were extracted from the instantaneous velocity (e.g. average 
velocity per stroke cycle) and displacement (e.g. time to reach 15m from the wall) data from 
a tethered speedometer for the swimming phases, each one representing the goodness of 
swimmer’s performance. Following a novel approach, that starts from swimming bout 
detection and continues until detecting the swimming phases, the IMU kinematic 
parameters in each swimming phase were extracted. The highly associated parameters with 
the corresponding goal metrics were detected by LASSO (least absolute shrinkage and 
selection operator) parameter selection and used for estimating the goal metrics with a 
linear regression model. The selected kinematic parameters were relevant to the motion 
characteristics of each phase (e.g. selection of propulsion-related parameters in wall push-
off phase), providing more interpretability to the model. The estimation reached a 
determination coefficient (R2) value more than 0.75 and a relative RMSE less than 10% for 
most goal metrics in all swimming styles. The results show that a single sacrum IMU can 
provide a wide range of performance-related swimming kinematic parameters, useful for 
performance evaluation in four main swimming styles. 

Keywords: Sports biomechanics, swimming, wearable sensor, performance evaluation, 
parameter selection.  

https://www.frontiersin.org/articles/10.3389/fbioe.2021.793302/full#supplementary-material
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4.1 Introduction 
Swimming coaches seek comprehensive monitoring of performance to develop and 

refine a competition model for their top athletes. During a competition, the swimmer goes 
through several swimming phases from wall to wall, including a dive into the water or wall push-
off, then glide and stroke preparation and finally swimming up to the turn at the end of the lap 
and repeating the same sequence in the next lap. Therefore, to have a comprehensive 
performance evaluation, studies have focused on various swimming phases, since the swimmers 
aim to master all of them (Mooney et al., 2016b). As the principal goal of a swimmer is to reduce 
the swimming time by increasing the velocity, performance evaluation goal metrics in different 
phases are based on time records and velocity. Flight distance (Ruschel et al., 2007), time to 15 
meters (Vantorre et al., 2010), average velocity per stroke (Dadashi et al., 2015), swimming phase 
average velocity (Mason and Cossor, 2000), turn time (5m before to 10m after the wall) (Mooney 
et al., 2016b) or lap time are examples of common goal metrics. 

Recently, wearable IMUs (inertial measurement unit) have been used more for swimming motion 
analysis in all competitive swimming styles (Guignard et al., 2017b), because of the challenges of 
video-based systems application in aquatic environments (Callaway et al., 2010). They are used 
in a multitude of studies for parameter extraction in various swimming phases, such as start 
(Vantorre et al., 2014), swimming (Davey et al., 2008), and turn (Slawson et al., 2012). Novel 
orientation analysis algorithms made it possible to estimate the 3-dimensional orientation of IMU 
with high accuracy by fusing accelerometer, gyroscope and magnetometer data (Madgwick et 
al., 2011). This approach is implemented in swimming for inter-segmental coordination 
assessment (Guignard et al., 2017a), posture recognition (Wang et al., 2019) and intra-stroke 
velocity (Worsey et al., 2018). In another study, a new analysis approach is proposed and trunk 
elevation, body balance, and body rotation are used as new indices for swimming analysis (Félix 
et al., 2019; Morouço et al., 2020). Considering the significance of phase related kinematic 
parameters, we have recently proposed a macro-micro approach for swimming analysis using 
IMUs (Hamidi Rad et al., 2021b). In our approach, swimming bouts, laps and swimming style 
are detected in macro analysis. Afterwards in micro level, each lap is segmented into swimming 
phases of wall push-off (Push), glide (Glid), stroke preparation (StPr), swimming (Swim) and turn 
(Turn) from wall to wall. In the next level of micro analysis, the kinematic parameters within each 
swimming phase (micro parameters) are extracted from IMU data. 

These studies show there is still a substantial undiscovered potential for kinematic parameter 
extraction with IMUs in swimming analysis. However, the association between the swimming 
kinematic parameters extracted by IMU and the above-mentioned goal metrics is still unclear. 
Furthermore, as the parameters provided by the IMU are claimed to be associated with the 
swimmers’ performance, they can be used for estimating the goal metrics of performance 
evaluation. As a result, the relationship between IMU kinematic parameters and goal metrics is 
yet to be studied to prove IMU potential not only for swimming kinematic parameter extraction, 
but also for performance evaluation and training optimization. 
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The main objective of this study is to find the association between swimming kinematics 
extracted using a sacrum-worn IMU and goal metrics in different swimming phases. We 
hypothesized that the micro parameters extracted from IMU data are associated with the goal 
metrics used for performance evaluation, regardless of the swimming style. Following the macro-
micro approach for swimming analysis (Hamidi Rad et al., 2021b), within each swimming phase 
(Push, Glid, StPr and Swim), we selected the kinematic parameters that are highly associated with 
goal metrics. We then used the selected kinematics to estimate the goal metrics. Using the 
underlying model, we can explains how kinematics determine the performance. 

4.2 Materials and methods 

4.2.1 Measurement setup 

Nineteen elite swimmers took part in this study, whose attributes are shown in Table 4.1. They 
were informed of the procedure and gave their written consent prior to participation. This study 
was approved by the EPFL human research ethics committee (HREC, No: 050/2018). One IMU 
(Physilog® IV, GaitUp, CH.) was attached to swimmer’s sacrum, using waterproof band 
(Tegaderm, 3M Co., USA). The sensor contained a 3D gyroscope (±2000 o /s) and 3D accelerometer 
(±16 g), with a sampling rate of 500 Hz (Figure 4.1). A functional calibration was performed after 
sensor installation with simple movements in land (upright standing and squats) before the 
measurement to make the data independent of sensor placement on swimmer’s body (Dadashi 
et al., 2013c). The possibility of removing functional calibration and its effect on phase-based 
performance evaluation results will be investigated in section 5.6.2. During the measurements, 
the swimmers were asked to perform four one-way trials in each swimming style (i.e. front crawl, 
breaststroke, butterfly, backstroke) with a progressive velocity (70%-100%) in a 25m indoor pool, 
starting with wall push-off inside water. The trials were separated with one-minute rests, and 
the total duration of the measurement was around one hour per swimmer. 

Table 4.1 – Statistics of the study participants. All parameters are presented as mean ± standard deviation. 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅50𝑚𝑚 is the average and standard deviation of 50m record of the swimmers separately for each 
swimming style 

Male Female Age (years) Height (cm) Weight (kg) 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝟓𝟓𝟓𝟓𝟓𝟓 (s) 

9 10 19.5 ± 2.7 177.5 ± 7.5 67.9 ± 8.3 

Front crawl 25.85 ± 1.65 
Breaststroke 34.76 ± 3.87 

Butterfly 28.55 ± 2.47 
Backstroke 30.19 ± 1.88 

Two systems were used as references in our study to validate the goal metrics estimated by the 
IMU. The first one was a set of four 2D cameras (GoPro Hero 7 Black, GoPro Inc., US) used for 
detecting the swimming phases. The cameras synchronized with the IMU, using the LED light of 
a push-button (Hamidi Rad et al., 2021b) were attached to the pool wall (distributed along the 
length of the pool) to videotape all the lap from wall to wall underwater with a 60 Hz rate (Figure 
4.1). The second reference system was a tethered speedometer (SpeedRT®, ApLab, Rome, Italy), 
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attached with a belt to the waist of the swimmer. The speedometer calculated the displacement 
and velocity of the swimmer at a rate of 100 Hz and was used for finding the reference values of 
goal metrics in different swimming phases. As the speedometer was installed on the starting 
block above the swimmer’s level, it caused a parallax problem (Le Sage et al., 2011). Since the 
device level difference with respect to the still pool water was known (62 ± 1 cm), the velocity 
projection along the swimming direction was separated as the forward velocity of the swimmer.   

 
Figure 4.1 – Measurement setup, including one IMU attached to the sacrum, four cameras to capture the 
whole lap and tethered speedometer to record swimmer’s displacement and velocity. IMU data is 
transferred from sensor frame (x,y,z)S ,first to anatomical frame (x,y,z)A using functional calibration (I), and 
then to the global frame (X,Y,Z)G using the gradient-descend based optimization algorithm (II) .The global 
axes of acceleration, angular velocity and angles are displayed in the figure.   

4.2.2 Performance evaluation  

The general flowchart for performance evaluation is outlined in Figure 4.2. The algorithm 
includes three parts: (i) IMU data preparation (ii) phase detection and phase-based micro 
parameters extraction, (iii) kinematic parameter selection and goal metrics estimation. IMU data 
preparation aims to transfer the data to the global frame to achieve the true motion data of 
swimmer’s sacrum. Then we divided each lap into four phases of Push, Glid, StPr and Swim by 
camera or IMU (Hamidi Rad et al., 2021b). To observe the error induced by IMU-based phase 
detection, the rest of the analysis was done once with swimming phases detected by cameras and 
once by the IMU for comparison, the results of which are illustrated in appendix (Table 4.5). 
Using the data in global frame (acceleration (𝐴𝐴𝐴𝐴𝐴𝐴𝑋𝑋, 𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌, 𝐴𝐴𝐴𝐴𝐴𝐴𝑍𝑍), angular velocity (𝐺𝐺𝐺𝐺𝐺𝐺𝑋𝑋, 𝐺𝐺𝐺𝐺𝐺𝐺𝑌𝑌, 𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍) 
and orientation (Roll, Pitch, Yaw)) within the detected phases, we extracted the micro parameters 
of each phase. 

In the third part of this approach, we used the extracted phase-based micro parameters to 
estimate the goal metrics. First, LASSO (least absolute shrinkage and selection operator) 
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parameter selection is used to rank and select the micro parameters with higher importance 
(Fonti and Belitser, 2017). Using the speedometer and camera data, several goal metrics are 
extracted on the velocity and displacement of the swimmer in different swimming phases. These 
goal metrics are representatives of how well the swimmer performed in the corresponding phase. 
Finally, we used the selected micro parameters to estimate the goal metrics. The principal outputs 
of this analysis are the selected parameters and the error of using them for goal metrics 
estimation. 

 
Figure 4.2 – Flowchart of the performance evaluation algorithm. IMU data preparation including IMU 
calibration and expressing data in the global frame (left), phase detection by cameras (CAM) or IMU 
calibrated data and micro parameter extraction from IMU data in global frame (middle) and parameter 
selection from micro parameters and the goal metrics estimation (right). The actual goal metrics are defined 
and extracted from the velocity and displacement data by tethered speedometer (SRT) during swimming 
phases separated by the cameras (CAM). 

4.2.3 IMU data preparation 

First, the data was calibrated for offset, scale and non-orthogonality (Ferraris et al., 1995). As 
explained in section 4.2, a functional calibration is also performed before each measurement trial. 
The goal of this calibration is to transform the data from sensor frame (𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑆𝑆 to anatomical 
frame (𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝐴𝐴 (Figure 4.1 - I). Following that, the data is ready to be expressed in the global 
frame. The swimmers were asked to hold an upright posture in water before lap start for five 
seconds to find the initial orientation of the sacrum with respect to the pool. The changes from 
the initial orientation are estimated by angular velocity integration from gyroscope data and 
corrected with acceleration using a gradient-descend based optimization algorithm (Madgwick 
et al., 2011). The algorithm provides the orientation changes in quaternion q (represented by four 
elements (𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3, 𝑞𝑞4)) and use them to convert the accelerometer and gyroscope data from 
anatomical frame ((𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝐴𝐴) to global frame ((𝑋𝑋,𝑌𝑌,𝑍𝑍)𝐺𝐺) (Figure 4.1 - II), expressed in equations 
4.1 and 4.2.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐺𝐺  =  𝑞𝑞 ⊗  [0 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴] ⊗𝑞𝑞𝑇𝑇 
(4.1) 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  =  𝑞𝑞 ⊗  [0 𝐺𝐺𝐺𝐺𝐺𝐺𝐴𝐴] ⊗𝑞𝑞𝑇𝑇 (4.2) 
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Where 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  and 𝐴𝐴𝐴𝐴𝐴𝐴𝐺𝐺  are the acceleration in anatomical and global frame respectively, ⊗ 
represents quaternion multiplication and 𝑞𝑞𝑇𝑇 is the transpose of the quaternion q. The same 
notation holds true for gyroscope data in equation 4.2. Moreover, by changing quaternions into 
Euler angles, roll (𝜃𝜃), pitch (𝜑𝜑) and yaw (𝜓𝜓) angles could be found (equation 4.3). The angles 𝜃𝜃, 𝜑𝜑 
and 𝜓𝜓 are defined respectively around the longitudinal, mediolateral, and anterior-posterior axes 
of swimmer’s sacrum. 

4.2.4 Phase-based micro parameters 

For IMU-based detection of swimming phases, we used a macro-micro approach in our previous 
study, started from swimming bouts detection down to lap segmentation into swimming phases 
(Hamidi Rad et al., 2021b). Using the acceleration, angular velocity and orientation data in global 
frame, various kinematic parameters based on motion biomechanics in every swimming phase 
are defined. As frequently discussed in the literature, fast swimming depends on (i) the ability to 
generate high propulsive forces, (ii) the ability to keep the correct posture for reducing the drag, 
while (iii) swimming with the highest efficiency (Toussaint and Truijens, 2005). Therefore, 
knowledge of the propulsion, posture and efficiency is relevant to optimize swimming 
performance. We related the extracted micro parameters to one of these three categories (Table 
4.2). We also added a fourth group for the parameters related to the durations and rates of 
motion, which did not fit into the previous three categories. For example stroke rate in Swim 
phase which is not necessarily a sign of high or low propulsion, good or bad posture and high or 
low efficiency but it is widely used for performance evaluation (Siirtola et al., 2011; Beanland et 
al., 2014). 

We extracted the micro parameters by extremum detection, integration or calculation of the 
average, range, and standard deviation of the signal. The parameters defined per stroke in Swim 
phase need a cycle separation algorithm. For front crawl and backstroke, the duration between 
the two successive positive peaks on the longitudinal angular velocity in anatomical frame (𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦) 
is one cycle (Dadashi et al., 2013c). The same method is used with mediolateral angular velocity 
in anatomical frame (𝐺𝐺𝐺𝐺𝐺𝐺𝑧𝑧) for cycle separation of breaststroke and butterfly techniques. 

 

 

 

 

�
𝜓𝜓 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2( 2𝑞𝑞2𝑞𝑞3 − 2𝑞𝑞1𝑞𝑞4, 2𝑞𝑞12 + 2𝑞𝑞22 − 1) 

𝜃𝜃 =  −𝑠𝑠𝑠𝑠𝑠𝑠−1( 2𝑞𝑞2𝑞𝑞4 + 2𝑞𝑞1𝑞𝑞3)
𝜑𝜑 =  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2( 2𝑞𝑞3𝑞𝑞4 − 2𝑞𝑞1𝑞𝑞2, 2𝑞𝑞12 + 2𝑞𝑞42 − 1) 

 (4.3) 
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Table 4.2 – Categories and description of the phase-based micro parameter defined on IMU data in global 
frame. The name of the functions used for micro parameters extraction are abbreviated in parentheses.  

4.2.5 Goal metrics 

We extracted eight goal metrics from the tethered speedometer data i.e. the velocity and 
displacement of the swimmer, from wall to wall within the swimming phases detected on the 
cameras (Figure 4.3). 

 
Figure 4.3 – The defined goal metrics for different swimming phases from wall to wall 

1. Push maximum velocity: the highest velocity during the lap is generated at start, as the 
swimmer can reach a velocity much greater than other swimming phases (Shimadzu et 
al., 2008). During Push phase, the maximum velocity reached is used to assess wall push-
off (Stamm et al., 2013a). We use this value as the goal metric for Push phase.  

2. Glid end velocity: the velocity decreases during Glid phase because of water drag. The 
swimmer should keep the streamlined horizontal posture and start StPr phase at the right 
time before losing too much velocity (Vantorre et al., 2014). So, we considered the velocity 
of the swimmer at the end of Glid phase as the goal metric for this phase. 

3. StPr average velocity: the average velocity of the swimmer during StPr lower limbs 
actions is shown to have a negative correlation with 15-meter time of the swimmer 
(Cossor and Mason, 2001). We used it as the goal metric for StPr phase. 

Category Description Micro parameters 

Propulsion 

Parameters related to the amount of 
propulsion generated by the 
swimmer 

Mean (Mean), range (Range) and standard 
deviation (SD) of 𝐴𝐴𝐴𝐴𝐴𝐴𝑋𝑋, 𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌 and 𝐴𝐴𝐴𝐴𝐴𝐴𝑍𝑍. 
Maximum (Max), integral (Int), and momentum 
change (Momentum) of 𝐴𝐴𝐴𝐴𝐴𝐴𝑋𝑋, 𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌 and 𝐴𝐴𝐴𝐴𝐴𝐴𝑍𝑍. 

Posture 
Parameters related to the body 
posture and drag effects on 
swimmer’ body 

Mean, Range and SD of 𝜃𝜃 and 𝜑𝜑  

Efficiency 
Parameters related to the efficiency 
of motion which can reflect in 
acceleration  

Ratio of positive 𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌 to |𝐴𝐴𝐴𝐴𝐴𝐴| (Eff_dir) or to 
negative 𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌 (Eff), distance per stroke (DPS) in 
Swim phase 

Duration/ 
rate 

Parameters related to the duration of 
a phase or the rate of movement 

Mean, Range and SD of 𝐺𝐺𝐺𝐺𝐺𝐺𝑋𝑋, 𝐺𝐺𝐺𝐺𝐺𝐺𝑌𝑌 and 𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍. 
phases and cycles duration. Kick rate and count 
in StPr phase. Stroke rate and count in Swim 
phase. 
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During Swim phase, the performance of the swimmer can be studied per cycle or in the whole 
phase. Thus, two goal metrics are defined in this phase:   

4. Swim - average velocity per cycle: the average velocity of the swimmer per cycle provides 
valuable information of swimmer’s performance in every cycle (Dadashi et al., 2015). 

5. Swim - average velocity of Swim phase: for looking at all the cycles together, the average 
velocity of the whole Swim phase is used as the second goal metric for this phase. 

We also used three more goal metrics based on the literature, which include more than one phase. 

6. 𝑻𝑻𝟓𝟓𝟓𝟓: normally Glid phase finishes before reaching five meters from the wall when the 
swimmer starts by wall push-off in all swimming styles. The time it takes the swimmer 
to reach five meters from the wall is a goal metric (Zatsiorsky et al., 1979), which shows 
the combination of swimmer’s performance during Push and Glid phases.  

7. 𝑻𝑻𝟏𝟏𝟏𝟏𝟏𝟏: 15 meters is the limit for the swimmer to re-surface (except for breaststroke 
technique) according to FINA (Federation International de Natation) rules. So the time it 
takes to reach 15 meters from the wall is a goal metric referring to underwater phases 
(Push, Glid and StPr) (Vantorre et al., 2010).  

8. Lap average velocity: considering all the phases together, average velocity of the lap 
(determined by lap time) is the final goal metric, displaying the overall performance of 
the swimmer in all phases (Davey et al., 2008; Mooney et al., 2016b). 

Among the defined goal metrics, Push maximum velocity is calculated with a peak detection 
algorithm in Push phase. The rest of the goal metrics only rely on the beginning or end of 
swimming phases, which are already obtained by phase detection.  

4.2.6 Association between micro parameters and goal metrics 

After extracting the micro parameters from IMU and goal metrics from speedometer and camera 
data, we look for association between every goal metric with the micro parameters of its 
corresponding phase or phases. For example, Push maximum velocity is associated with Push 
phase micro parameters. For goal metrics involving more than one phase, such as 𝑇𝑇5𝑚𝑚, 𝑇𝑇15𝑚𝑚 and 
lap average velocity related to Push/Glid, Push/Glid/StPr and all phases respectively, the micro 
parameters from the relevant phases were used.  

To identify the parameters with higher significance, we ran a parameter selection algorithm. In 
the first step, we normalized each parameter and removed the multicollinearity between them 
using variance inflation factors (VIF) (Mansfield and Helms, 1982). LASSO parameter selection 
is then applied over the parameters related to each goal metric, to select the ones of higher 
importance. LASSO is a forward-looking parameter selectin method for regression, which 
improves both the estimation accuracy and  the interpretability of the model (Muthukrishnan 
and Rohini, 2017). It ranks the parameters and allocates a weight to each one based on their 
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significance in the regression model. Among the selected parameters, we neglected the ones with 
a relative weight less than 5% because of their less important role. Moreover, to quantify the 
contribution of each category to the regression model, we summed the relative weights of 
parameters from each category (propulsion, posture, efficiency, and duration/rate).  

Once the significant parameters were identified, we utilized them to estimate the goal metrics by 
a LASSO regression model with leave-one-out cross-validation to avoid overfitting (Berrar, 2018). 
The cross validated determination coefficient (𝑅𝑅2) is reported as a metric of association between 
true values (reference values from speedometer) and the estimated value (output of the models). 
The error between the true and estimated values of goal metrics is analyzed using the root mean 
square of error (RMSE) and its relative value in percent.  

4.3 Results 
A sample size analysis based on a previous study (Dadashi et al., 2012) that used the same 
speedometer and measurement protocol for velocity estimation is performed. Considering a 
power of 80% (β = 0.2) and 95% (α = 0.05) confidence interval, we reached a sample size of 64 for 
this study. Since the models are generated using the data from all swimmers pooled together, the 
number of observations used to estimate all goal metrics, except for average velocity of the cycle 
in Swim phase was 76 samples. The overall number of cycles used for estimating the average 
velocity per cycle in Swim phase was 1166, 627, 695 and 1052 for front crawl, breaststroke, 
butterfly and backstroke respectively. 

4.3.1 Goal metrics estimation  

The cross-validated values (R2, RMSE and the relative RMSE in percent) of LASSO regression 
model used for estimating the corresponding goal metric are reported in Table 4.3 for each goal 
metric. Table 4.3 shows that LASSO regression model fits the data with an R2 value more than 
0.75 for most goal metrics in all swimming styles. The RMSE of the regression are less than 0.15 
𝑚𝑚 𝑠𝑠⁄   (11%) for all goal metrics defined over velocity and less than 0.21 s (7%) and 0.52 s (5%) for 
𝑇𝑇5𝑚𝑚  and 𝑇𝑇15𝑚𝑚  respectively. The highest value of relative RMSE belongs to Glid end velocity with 
11.1%, while the relative error is less than 10% in all other cases. The results are also calculated 
with swimming phases found by cameras for comparison in appendix (Table 4.5) and showed a 
maximum decrease of 0.05 in R2 when using the true phases detected by IMU. 
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Table 4.3 – The results of evaluating LASSO regression for goal metrics estimation. The determination 
coefficient (R2) and root mean square of error (RMSE) and the relative RMSE (in %) of regression are 
reported for each swimming style. 

Goal metric 
Front crawl Breaststroke 

R2 RMSE (%) R2 RMSE (%) 
Push maximum velocity (m/s) 0.74 0.140 (5.7) 0.75 0.131 (5.3) 
Glid end velocity (m/s) 0.76 0.123 (10.1) 0.64 0.139 (11.1) 
StPr average velocity (m/s) 0.72 0.075 (4.4) 0.58 0.058 (5.9) 
Swim – average velocity per cycle (m/s) 0.89 0.050 (8.3) 0.84 0.044 (5.7) 
Average velocity of Swim phase (m/s) 0.90 0.044 (2.7) 0.71 0.061 (5.3) 
𝑻𝑻𝟓𝟓𝒎𝒎 (s) 0.64 0.158 (7.6) 0.74 0.209 (6.9) 
𝑻𝑻𝟏𝟏𝟏𝟏𝒎𝒎 (s) 0.75 0.369 (4.3) 0.81 0.430 (6.7) 
Lap average velocity (m/s) 0.95 0.032 (2.4) 0.85 0.038 (3.4) 
 Butterfly Backstroke 
Push maximum velocity (m/s) 0.71 0.149 (5.9) 0.72 0.107 (4.9) 
Glid end velocity (m/s) 0.80 0.111 (9.1) 0.84 0.104 (6.4) 
StPr average velocity (m/s) 0.75 0.152 (6.7) 0.75 0.079 (5.3) 
Swim – average velocity per cycle (m/s) 0.88 0.067 (4.9) 0.89 0.076 (5.7) 
Average velocity of Swim phase (m/s) 0.79 0.049 (3.3) 0.73 0.056 (4.3) 
𝑻𝑻𝟓𝟓𝒎𝒎 (s) 0.63 0.209 (7.0) 0.71 0.202 (6.4) 
𝑻𝑻𝟏𝟏𝟏𝟏𝒎𝒎 (s) 0.79 0.344 (4.6) 0.77 0.521 (5.0) 
Lap average velocity (m/s) 0.86 0.049 (3.3) 0.80 0.063 (4.6) 

4.3.2 Micro-parameters selection 

The selected parameters for each goal metric estimation during front crawl technique are listed 
in Table 4.4. Same tables for other swimming styles are brought in appendix (Table 4.6 to Table 
4.8). The parameters were the same for the phases selected by the IMU and cameras. Among 
acceleration axes, 𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌 and its related parameters (e.g. Mean (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Max (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Int (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌)) are 
more selected for different goal metrics. 𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍 and 𝜑𝜑 related parameters seem to be more 
associated with the defined goal metrics than other axes of orientation in front crawl technique. 
For 𝑇𝑇5𝑚𝑚, 𝑇𝑇15𝑚𝑚 and lap average velocity, a mixture of parameters from corresponding phases are 
selected, some of which were already selected for the specific goal metric of these phases.  

The overall contribution of each category in estimating the goal metrics is illustrated in Figure 
4.4 for all four swimming styles. It is observable that propulsion category plays an important role 
in Push phase, while posture-related parameters are more selected in Glid phase. StPr phase is 
less affected by efficiency compared to other categories. Efficiency and propulsion categories are 
both significant in determining the average velocity per cycle in Swim phase. Duration/rate 
category is dominant in estimating average velocity of Swim phase and lap average velocity. 𝑇𝑇5𝑚𝑚 
and 𝑇𝑇15𝑚𝑚 are affected mainly by a mixture of propulsion, posture and duration/rate categories 
depending on the swimming style. 
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Figure 4.4 – Parameter categories contribution to goal metrics estimation for front crawl (A), breaststroke 
(B), butterfly (C) and backstroke (D). The contribution of each category (propulsion: blue, posture: orange, 
efficiency: green, duration/rate: yellow) is represented in percent for estimating the corresponding goal 
metric. The results are based on the parameters with higher than 5% relative weight in LASSO parameter 
selection. 

Table 4.4 – The selected parameters for estimating each goal metric for front crawl technique, written in 
the order of relative weights. The parameters are written in the order of their relative weights. For the 
abbreviated name of functions, see Table 4.2. 

Goal metric Selected parameters 

Push maximum velocity  Range (𝜑𝜑), SD (𝜑𝜑), Int (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Momentum (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Range (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Max (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), 
Mean (𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍), Eff (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) 

Glid end velocity  Glid duration, Momentum (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Int (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Range (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Range (𝜑𝜑), Mean 
(𝜑𝜑) 

StPr average velocity  
Mean (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Eff (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) , Eff_dir (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), SD (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌),  number of kicks, StPr 
duration 

Swim – average velocity 
per cycle  Cycle duration, DPS, Mean (𝜑𝜑) per cycle 

Average velocity of 
Swim phase  Stroke rate, Mean (𝜑𝜑), number of strokes, SD (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Range (𝜃𝜃) 
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4.4 Discussion 
In this research, we studied the association between IMU micro parameters and the performance 
evaluation goal metrics found by camera and speedometer during the swimming phases from 
wall to wall in four main swimming styles. The obtained results confirmed our hypothesis that 
micro parameters extracted from a single IMU placed at sacrum within each phase are associated 
with the corresponding goal metrics used generally for performance evaluation. As a result, 
using a single IMU would be enough for performance evaluation in main swimming styles. Micro 
parameters, showing strong association with the goal metrics, were identified thanks to LASSO 
parameter selection, and used for predicting the goal metrics.  

4.4.1 Goal metrics estimation 

The selected kinematic parameters within each swimming phase were used for estimating the 
corresponding goal metrics (Table 4.3). Estimating the Push maximum velocity and Glid end 
velocity showed similar results in different swimming styles, as the two initial phases are the 
same for them (only for backstroke, the swimmer has a supine posture). The relative RMSE is the 
highest for Glid end velocity estimation (11%) because this goal metric has the lowest value in the 
whole lap. In the StPr phase, the average velocity shows a high amount of variability among the 
swimmers, and determination coefficient (i.e. the proportion of the variance of the true goal 
metric value explained by the regression model) is relatively lower for it (less than 0.8 in all 
techniques) compared to other goal metrics in all techniques, because a linear model is not 
efficient enough in reflecting the variation of this goal metric, and a non-linear model might 
estimate it better.  

Average velocity per cycle is estimated in all techniques with a determination coefficient more 
than 0.84 and an RMSE less than 0.076 m/s and relative error less than 6%. However, estimating 
the average velocity of the whole Swim phase achieved poorer results (R2 of 0.71-0.90 in different 
techniques). As estimating each cycle average velocity is more accurate in all techniques, the 
average value of all cycles in Swim phase can also be used for estimating Swim phase average 
velocity. The regression models for estimating 𝑇𝑇5𝑚𝑚   show less accuracy (R2 less than 0.80 in 
different techniques), making it difficult to trust the estimation results. Depending on swimming 
technique and swimmers’ pace, they might start StPr phase earlier than five meters from the wall. 
So 𝑇𝑇5𝑚𝑚 is partly affected by StPr phase and using only Push and Glid phases might not be enough 
for estimation. On the contrary, the first three phases (Push, Glid and StPr) finish before 15 meters 
from the wall and using them for estimating the 𝑇𝑇15𝑚𝑚   results in more accurate regression models 
(R2 more than 0.75 in different techniques). Finally, the lap average velocity is estimated using a 

𝑻𝑻𝟓𝟓𝒎𝒎  
Momentum (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in Glid, Max (𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍) in Push, SD (𝜑𝜑) in Glid, Range (𝜑𝜑) in 
Push, Max (𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍) in Glid 

𝑻𝑻𝟏𝟏𝟏𝟏𝒎𝒎  
Glid duration, Range (𝜑𝜑) in StPr,  SD (𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍) in StPr, SD (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in Push, StPr 
kick rate, Momentum (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in Push 

Lap average velocity  Stroke rate, number of strokes, Max (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in Push, Mean (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in Glid, 
Mean (𝜑𝜑) in Swim, number of kicks in StPr  
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selection of the kinematic parameters from all phases with a relatively small error (RMSE less 
than 0.063 m/s for all techniques). The results have been only slightly improved when using 
cameras for phase detection (section 4.6.1 of appendix). 

4.4.2 Micro parameters selection 

As shown in Table 4.4 and Figure 4.4 during the Push phase, the kinematic parameters related to 
𝜑𝜑 and 𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌 are ranked as more important, which shows the significance of keeping the right 
posture and generating high propulsion in Push phase. The Mean (𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍) and Eff (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) are 
selected at last. The weight contribution of Push kinematic parameters can be categorized more 
in propulsion and posture groups, which is the same for other techniques (Figure 4.4), as the Push 
movement is the same. During Glid phase, phase duration is chosen the first, since the longer the 
Glid phase is, the more velocity will be lost. Momentum (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) and Int (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) are also considered 
important since they represent the effect of water drag on swimmer’s body. High Range (𝜑𝜑) and 
Mean (𝜑𝜑) during Glid are a sign of bad posture, which causes more drag. In terms of categories, 
none of the micro parameters can be categorized in propulsion because Glid phase does not 
include any propulsive motion. As a result, the categories of posture and duration/rate are the 
dominant groups in this phase, regardless of the technique. 

StPr phase has the highest amount of velocity variation on speedometer data and the average 
velocity during this phase is related to a combination of forward acceleration, accelerating 
efficiency, number of kicks and phase duration. Two types of efficiency-related parameters are 
selected for this phase. Eff (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) represents the ratio of positive to all forward acceleration and 
Eff_dir (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) is the ratio of forward acceleration to the acceleration norm. Since this phase 
includes strong kicking, generating the highest amount of acceleration in forward direction 
(𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) with respect to other axes is selected as an important parameter. StPr phase is the same for 
front crawl, butterfly and backstroke as it includes butterfly kicks in all of them. Figure 4.4 also 
shows similar categories of propulsion, efficiency and duration/rate for the parameters selected 
in this phase. For breaststroke technique, StPr phase includes one upper limbs cycle followed by 
a lower limb action and the posture related parameters are also important compared to other 
categories (Figure 4.4 - B). 

For Swim phase goal metrics, the average velocity per stroke is mainly associated with the 
duration of each cycle and the DPS. The Mean (𝜑𝜑) is also selected which relates to the swimmer’s 
posture. This selection is the same in all swimming styles (Figure 4.4 - B, C, D) as the average 
velocity per stroke can be estimated by dividing the DPS by the cycle duration. The second goal 
metric of Swim phase is the average velocity of the whole phase. The parameters related to the 
rate and number of strokes are more dominant as the swimmers increase the stroke rate for fast 
swimming. The SD (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Mean (𝜑𝜑) and Range (𝜃𝜃) are other kinematic parameters selected for 
estimating this goal metric, highlighting the significance of consistent propulsion and body 
posture in Swim phase. As a result, the three categories of duration/rate, posture and propulsion 
are more pronounced for estimating Swim phase average velocity in all techniques. 
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𝑇𝑇5𝑚𝑚, 𝑇𝑇15𝑚𝑚  and lap average velocity are dependent on more than one phase, and the parameter 
selection algorithm picks several parameters from each phase. Most of the selected parameters 
for these goal metrics were already selected for relevant phases such as selecting Momentum 
(𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) of Glid for 𝑇𝑇5𝑚𝑚, Glid duration for 𝑇𝑇15𝑚𝑚  or stroke rate for lap average velocity, proving the 
significance of such parameters even in a larger scale. Moreover, this shows the dependence of 
overall swimmer’s performance on their local performance in each phase. Among the techniques, 
𝑇𝑇5𝑚𝑚 and 𝑇𝑇15𝑚𝑚  are estimated with a mixture of propulsion, posture and duration/rate categories in 
front crawl, breaststroke and butterfly, whereas during backstroke, the propulsion is dominant 
for both goal metrics. This emphasises on the tendency of the swimmers to longer underwater 
phases in backstroke (De Jesus et al., 2011), that asks for highly propulsive butterfly kicks. 

With an overall observation on Figure 4.4, it is noted that the dominant categories in swimming 
phases are in line with the swimming phase biomechanics. Push phase asks for high propulsion, 
and Glid phase is more about keeping the right posture to avoid the drag. StPr phase is a 
combination of propulsion, posture and efficiency. Since the parameter selection algorithm 
chooses the best parameters for goal metric estimation, the parameters which have the strongest 
relationship with the goal metrics are selected. As a result, we cannot assert that the rest of the 
parameters are of no importance in swimming. For example, the DPS and cycle duration were 
dominant in estimating the average velocity per cycle in Swim phase, while no one can ignore the 
importance of orientation-related parameters (e.g. 𝜃𝜃 angle) (Psycharakis and Sanders, 2010) or 
propulsion (Toussaint, 2002) in this phase. However, having a longer DPS in a shorter cycle 
duration is the result of correct orientation and high propulsion so the selected parameters 
include other parameter categories implicitly.  

This study shows that a single sacrum IMU can provide kinematic parameters relevant to the 
performance of the swimmer, in different techniques and phases for performance evaluation 
without using complex instrumentation such as speedometers or cameras. This offers new tools 
for training, where for example output of the IMU can be transferred to a mobile application for 
coaches and swimmers to easily follow the progress of the swimmers. Although using wearables 
induces more drag on swimmer body (Magalhaes et al., 2015), it needs extremely less effort than 
cameras for preparation and use, and it overcomes many of the limits of video-based systems 
(Callaway et al., 2010). The kinematic parameters that were found dominant in our study were 
already analyzed using IMU of video-based methods but their relationship with the goal metrics 
were not studied. Swimmer’s posture during Push and Glid (Pereira et al., 2015), Glid duration 
(Guimaraes and Hay, 1985), StPr kicking rate (Shimojo et al., 2014), Swim stroke rate (Beanland 
et al., 2014) or DPS (Bächlin et al., 2008) are examples of the micro parameters that were found 
relevant to performance, and we also found them significant in this study.  

Both male and female swimmers were included for generating the results of this study to have a 
larger, more variant dataset. Comparing the swimmers due to their individual differences is out 
of the scope of our study. The estimations are done over all swimming velocities so the results 
are valid for 70 to 100 percent of swimmers’ paces. The synchronization error between the three 
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systems of IMU, cameras and speedometer is a source of error in this study. Since tethered 
speedometer was used as reference in this study, the measurements were done over one-way 
trials without turn and turn motion is not evaluated. In this study, we used linear regression to 
have interpretable models highlighting the main parameters correlated to the goal metrics. More 
complex non-linear models could be used if the goal is more accurate prediction of goal metrics. 

4.5 Conclusion 
Using the IMU data, we extracted numerous kinematic parameters related to propulsion, 
posture, efficiency and duration/rate of motion in four main swimming phases, associated with 
the goal metrics defined over velocity and time of swimming in each swimming phase. These 
kinematic parameters were biomechanically interpretable and were able to predict the goal 
metrics using LASSO linear regression. The generated models fit the data with an R2 value more 
than 0.75 for most goal metrics. The RMSE of the regression were less than 0.15 𝑚𝑚 𝑠𝑠⁄  and 11% for 
goal metrics defined over velocity and 0.52 s and 7.6% for goal metrics defined over time. Our 
study shows that a single sacrum-worn IMU has the potential to evaluate the swimmer 
performance in different swimming phases in line with standard goal metrics. Practically, our 
proposed method can be useful for coaches to identify the weakness and strength of their 
swimmers and track their progress during training sessions with a single IMU. This study can be 
continued with implementation of the regression models on new dataset for validation, using 
more complex models (e.g. non-linear regression) for better goal metric estimation, completing 
the analysis for diving start and turn and using other sensor positions for estimation accuracy 
comparison. 

4.6 Appendix 

4.6.1 Performance evaluation (phase detection via IMU vs. camera) 

We evaluate the impact of phase detection using IMU on goal metrics estimation using LASSO 
regression as the estimator. This can be achieved by incorporating IMU-based swimming phases 
and camera-based swimming phase (CAM) separately and incorporating them as input to the 
regression model. The cross-validated values (R2, RMSE and the relative RMSE in percent) of 
regression are reported for each swimming style using both methods for comparison in Table 4.5. 

In the worst case (Push maximum velocity of butterfly technique), R2 has decreased 0.08, while it 
is affected less than 0.05 for most of other goal metrics. Moreover, the relative RMSE has increased 
no more than 3.5% for any goal metric. This shows that the error of IMU phase detection is small 
enough, not to affect the goal metrics estimation accuracy.  
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Table 4.5 – The results of evaluating LASSO regression for goal metrics estimation using IMU-based or 
camera-based (CAM) phase detection. The determination coefficient (R2) and root mean square of error 
(RMSE) and the relative RMSE (in %) of regression are reported for each swimming style. 

 
 

 

 

 

 

 

 

Goal metric 

Front crawl Breaststroke 
CAM IMU CAM IMU 

R2 RMSE 
(%) 

R2 RMSE 
(%) 

R2 RMSE 
(%) 

R2 RMSE 
(%) 

Push maximum velocity 
(m/s) 

0.80 0.133 (5.4) 0.74 0.140 (5.7) 0.81 0.114 (4.6) 0.75 0.131 (5.3) 

Glid end velocity (m/s) 0.83 0.105 (8.7) 0.76 0.123 (10.1) 0.70 0.135 (11.0) 0.64 0.139 (11.1) 
StPr average velocity 
(m/s) 

0.72 0.075 (4.4) 0.72 0.075 (4.4) 0.64 0.054 (5.8) 0.58 0.058 (5.9) 

Swim – average velocity 
per cycle (m/s) 0.96 0.029 (4.8) 0.89 0.050 (8.3) 0.86 0.062 (5.9) 0.84 0.044 (5.7) 

Average velocity of 
Swim phase (m/s) 0.90 0.044 (2.7) 0.90 0.044 (2.7) 0.76 0.059 (5.1) 0.71 0.061 (5.3) 

𝑻𝑻𝟓𝟓𝒎𝒎 (s) 0.67 0.155 (7.5) 0.64 0.158 (7.6) 0.77 0.206 (6.8) 0.74 0.209 (6.9) 
𝑻𝑻𝟏𝟏𝟏𝟏𝒎𝒎 (s) 0.80 0.345 (4.0) 0.75 0.369 (4.3) 0.82 0.430 (6.7) 0.81 0.430 (6.7) 
Lap average velocity 
(m/s) 0.95 0.031 (2.3) 0.95 0.032 (2.4) 0.90 0.042 (3.8) 0.85 0.038 (3.4) 

 Butterfly Backstroke 
Push maximum velocity 
(m/s) 0.79 0.110 (3.8) 0.71 0.149 (5.9) 0.75 0.105 (4.8) 0.72 0.107 (4.9) 

Glid end velocity (m/s) 0.81 0.104 (8.5) 0.80 0.111 (9.1) 0.86 0.104 (6.5) 0.84 0.104 (6.4) 
StPr average velocity 
(m/s) 0.75 0.153 (6.7) 0.75 0.152 (6.7) 0.77 0.070 (5.2) 0.75 0.079 (5.3) 

Swim – average velocity 
per cycle (m/s) 0.88 0.067 (4.9) 0.88 0.067 (4.9) 0.89 0.076 (5.7) 0.89 0.076 (5.7) 

Average velocity of 
Swim phase (m/s) 0.79 0.048 (3.3) 0.79 0.049 (3.3) 0.73 0.056 (4.3) 0.73 0.056 (4.3) 

𝑻𝑻𝟓𝟓𝒎𝒎 (s) 0.66 0.204 (6.8) 0.63 0.209 (7.0) 0.72 0.197 (6.2) 0.71 0.202 (6.4) 
𝑻𝑻𝟏𝟏𝟏𝟏𝒎𝒎 (s) 0.86 0.342 (3.5) 0.79 0.344 (4.6) 0.82 0.499 (4.8) 0.77 0.521 (5.0) 
Lap average velocity 
(m/s) 0.86 0.048 (3.3) 0.86 0.049 (3.3) 0.84 0.052 (3.8) 0.80 0.063 (4.6) 
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4.6.2 Parameter selection 

Table 4.6 to Table 4.8 represent the parameters that were selected using LASSO method for 
each swimming phase in breaststroke, butterfly, and backstroke techniques. Refer to section 
2.1 in the main text for definition of anatomical axes. 

Table 4.6 – Table of the selected parameters for each goal metric in breaststroke technique. The parameters 
are ordered according to their weights in the regression model. 

Table 4.7 – Table of the selected parameters for each goal metric in butterfly technique. The parameters are 
ordered according to their weights in the regression model. 

Goal metric Selected parameters 

Push maximum velocity  
Int (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Max (𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍), Max (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Range (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), SD (𝜑𝜑), Momentum 
(𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Eff (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) , SD (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Mean (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) 

Glid end velocity  Glid duration, Int (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Momentum (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Max (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Range (𝜑𝜑), 
Mean (𝜑𝜑), Range (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), SD (𝜑𝜑) 

StPr average velocity  Range (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), StPr duration, Range (𝜑𝜑), Mean (𝜑𝜑), Eff (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), SD 
(𝐺𝐺𝐺𝐺𝐺𝐺𝑌𝑌), Mean (𝐺𝐺𝐺𝐺𝐺𝐺𝑌𝑌),   

Swim – average velocity per 
cycle  

Cycle duration, DPS, SD (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Range (𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍), Range (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Range 
(𝐺𝐺𝐺𝐺𝐺𝐺𝑌𝑌) 

Average velocity of Swim phase  SD (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Stroke rate, number of strokes, Range (𝜑𝜑), SD (𝜑𝜑) 

𝑻𝑻𝟓𝟓𝒎𝒎  
Max (𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍) in Push, Momentum (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in Glid, Max (𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍) in Glid, SD 
(𝜑𝜑) in Glid, Range (𝜑𝜑) in Push 

𝑻𝑻𝟏𝟏𝟏𝟏𝒎𝒎  
SD (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in StPr, Range (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in Glid,  Mean (𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍) in Glid, Range 
(𝜑𝜑) in Push, SD (𝜑𝜑) in Push, Range (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in StPr, Max (𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍) in Push, 
Max (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in Glid 

Lap average velocity  
Stroke rate, Max (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in StPr, SD (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in Swim, number of 
strokes, Max (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in Push, SD (𝜃𝜃) in Swim, Momentum (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in 
Push, Eff (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Max (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in Glid  

Goal metric Selected parameters 

Push maximum velocity  
SD (𝜑𝜑), Int (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌),  SD (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Momentum (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Max (𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍), Mean 
(𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Max (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Eff (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌)  

Glid end velocity  
Glid duration, Int (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Range (𝜑𝜑), Range (𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍), Mean (𝜑𝜑), Max 
(𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), 

StPr average velocity  Range (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Eff_dir(𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Mean (𝐺𝐺𝐺𝐺𝐺𝐺𝑌𝑌),  Eff (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Range (𝐺𝐺𝐺𝐺𝐺𝐺𝑌𝑌)  
Swim – average velocity per 
cycle  

Cycle duration, DPS, SD (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Range (𝜑𝜑), SD (𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍) 

Average velocity of Swim phase  SD (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Stroke rate, number of strokes, Range (𝜑𝜑), SD (𝜑𝜑) 

𝑻𝑻𝟓𝟓𝒎𝒎  
Range (𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍) in Glid, Range (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in Glid, Range (𝜑𝜑) in Push, Max 
(𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍) in Push, Momentum (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in Push, Push duration, SD (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) 
in Push, Mean (𝜑𝜑) in Glid  

𝑻𝑻𝟏𝟏𝟏𝟏𝒎𝒎  
Glid duration, Range (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in StPr, SD (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in StPr, SD (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in 
Push, Mean (𝜑𝜑) in Push, Momentum (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in Glid, SD (𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍) in StPr, 
Mean (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in StPr 

Lap average velocity  
Stroke rate, SD (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in Swim, number of strokes, Max (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in 
Push, SD (𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍) in StPr, Range (𝜑𝜑) in Swim, SD (𝜑𝜑) in Swim  
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Table 4.8 – Table of the selected parameters for each goal metric in backstroke technique. The parameters 
are ordered according to their weights in the regression model. 

4.6.3 Performance evaluation based on head IMU  

Since the head is an interesting sensor position for swimmers (easy integration of the sensor 
under the swim cap), a sensor was also used on head for this study. A similar analysis was 
performed with the head sensor acceleration and angular velocity data for comparison. The 
results of goal metrics estimation are shown in Table 4.9 for each swimming style. It is obvious 
that the error values have increased and that this method does not work as well with a head 
sensor data as it does with a sacrum’s. Moreover, if phase detection is performed using data from 
IMU, the error increases in a similar manner to the sacrum, making this position unsuitable for 
performance evaluation. 

Table 4.9 – The results of evaluating LASSO regression for goal metrics estimation based on the data from 
head sensor and using camera-based phase detection (best case). The determination coefficient (R2) and 
root mean square of error (RMSE) and the relative RMSE (in %) of regression are reported for each 
swimming style. 

Goal metric Selected parameters 

Push maximum velocity  Max (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Mean (𝜑𝜑), SD (𝜑𝜑), Momentum (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), SD (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Max 
(𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍), Mean (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Int (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌)  

Glid end velocity  
Int (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Momentum (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Mean (𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍), Glid duration, SD (𝜑𝜑), SD 
(𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Range (𝜑𝜑) 

StPr average velocity  Range (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), Eff(𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), SD (𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍), StPr duration, Range (𝐺𝐺𝐺𝐺𝐺𝐺𝑌𝑌) 
Swim – average velocity per 
cycle  

Cycle duration, DPS, SD (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) 

Average velocity of Swim phase  Stroke rate, SD (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌), number of strokes, Range (𝜑𝜑) 

𝑻𝑻𝟓𝟓𝒎𝒎  
Momentum (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in Push, SD (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in Push, Push duration, Mean 
(𝜑𝜑) in Glid, Mean (𝜑𝜑) in Push 

𝑻𝑻𝟏𝟏𝟏𝟏𝒎𝒎  
Max (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in Push, Momentum (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in Push, SD (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in StPr, 
Eff(𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in StPr, Glid duration, Int (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in Glid, SD (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in Glid, 
Range (𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍) in StPr, 

Lap average velocity  Stroke rate, Momentum (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in Push, Max (𝐴𝐴𝐴𝐴𝐴𝐴𝑌𝑌) in Push, Range 
(𝐺𝐺𝐺𝐺𝐺𝐺𝑍𝑍) in StPr  

Goal metric 
Front crawl Breaststroke 

R2 RMSE (%) R2 RMSE (%) 
Push maximum velocity (m/s) 0.57 0.183 (7.5) 0.50 0.184 (5.1) 
Glid end velocity (m/s) 0.78 0.118 (9.1) 0.46 0.146 (14.2) 
StPr average velocity (m/s) 0.50 0.091 (5.4) 0.51 0.060 (6.2) 
Swim – average velocity per cycle (m/s) 0.55 0.17 (23.4) 0.91 0.035 (3.2) 
Average velocity of Swim phase (m/s) 0.75 0.051 (3.1) 0.64 0.041 (3.7) 
𝑻𝑻𝟓𝟓𝒎𝒎 (s) 0.35 0.21 (13.5) 0.74 0.171(6.5) 
𝑻𝑻𝟏𝟏𝟏𝟏𝒎𝒎 (s) 0.74 0.25 (3.4) 0.72 0.582 (7.7) 
Lap average velocity (m/s) 0.81 0.06 (4.3) 0.70 0.056 (4.4) 
 Butterfly Backstroke 
Push maximum velocity (m/s) 0.45 0.210 (6.9) 0.45 0.149 (6.3) 
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4.6.4 Glossary of terms 

Here is the table of glossary of all the terms used for swimming performance evaluation using 
one sacrum IMU. 

Table 4.10 – Table of glossary for Chapter 4 

Glid end velocity (m/s) 0.69 0.134 (9.2) 0.63 0.139 (7.9) 
StPr average velocity (m/s) 0.57 0.183 (7.2) 0.58 0.085 (6.0) 
Swim – average velocity per cycle (m/s) 0.93 0.032 (3.7) 0.83 0.079 (5.9) 
Average velocity of Swim phase (m/s) 0.64 0.053 (3.8) 0.79 0.051 (4.1) 
𝑻𝑻𝟓𝟓𝒎𝒎 (s) 0.61 0.166 (6.1) 0.57 0.204 (6.8) 
𝑻𝑻𝟏𝟏𝟏𝟏𝒎𝒎 (s) 0.65 0.395 (4.1) 0.76 0.295 (5.9) 
Lap average velocity (m/s) 0.71 0.066 (3.9) 0.84 0.052 (3.8) 

Term Definition 
IMU Inertial measurement unit 
CAM Camera 
Acc Acceleration data (m/𝑠𝑠2) 
Gyr Angular velocity data (°/𝑠𝑠) 
𝐀𝐀𝐀𝐀𝐀𝐀𝐗𝐗,𝐀𝐀𝐀𝐀𝐀𝐀𝐘𝐘,𝐀𝐀𝐀𝐀𝐀𝐀𝐙𝐙 Acceleration on X, Y or Z axis of global frame 
𝐆𝐆𝐆𝐆𝐆𝐆𝐗𝐗,𝐆𝐆𝐆𝐆𝐆𝐆𝐘𝐘,𝐆𝐆𝐆𝐆𝐆𝐆𝐙𝐙 Angular velocity on X, Y or Z axis of global frame 
φ  Pitch angle 
θ Roll angle 
ψ Yaw angle 
q Quaternion 
LASSO least absolute shrinkage and selection operator 
RMSE Root mean square error 
Swimming bout The swimming parts (in any swimming style) during a training session that 

includes one or more laps.  
Swimming lap The wall-to-wall period of swimming (in any swimming style) that starts with 

wall push-off and ends when the swimmer touches the wall. 
Swimming style The technique of swimming which is one among this list: Front crawl, 

Breaststroke, Butterfly, Backstroke  
Swimming phase Each lap is divided in four swimming phases (wall push-off, glide, stroke 

preparation and swimming) 
Push Wall push-off phase 
Glid Glide phase  
StPr Stroke preparation phase 
Swim Swimming phase 
𝐓𝐓𝟓𝟓𝟓𝟓 Time to reach 5 meters from the wall 
𝐓𝐓𝟏𝟏𝟏𝟏𝟏𝟏 Time to reach 15 meters from the wall 
SD The standard deviation of a parameter 
Max Maximum value of a parameter 
Int The integral of a parameter 
DPS Distance per stroke 
Eff Efficiency defined as the ratio of positive to negative forward acceleration  
Eff_dir Directional efficiency defined as the ratio of forward acceleration to total 

acceleration 
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PART III – PHASE-BASED 
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 Sensitivity analysis of phase-
based goal metrics for training 

Publication Note: this chapter is adapted from the following journal paper: 
 
Rad, Mahdi Hamidi, et al. "Monitoring weekly progress of front crawl swimmers using IMU-
based performance evaluation goal metrics." Frontiers in bioengineering and biotechnology 10 
(2022). 
 
Supplementary materials: 
https://www.frontiersin.org/articles/10.3389/fbioe.2022.910798/full#supplementary-material 
 

This chapter takes another step to using the phase-based performance evaluation developed 
in part II to be used as feedback to the swimmers. The purpose of this study was to validate 
the use of a new phase-based performance assessment with a single IMU worn on the 
sacrum during training sessions. Sixteen competitive swimmers performed five one-way 
front crawl trials at their maximum speed wearing an IMU on the sacrum. The coach 
recorded the lap time for each trial, as it represents the swimmer's performance in 
competition. The measurement was carried out once a week for 10 consecutive weeks to 
monitor the improvement in the swimmers' performance. Meaningful progress was defined 
as a time decrease of at least 0.5s over a 25m lap. Using validated algorithms, we estimated 
five goal metrics from the IMU signals representing the swimmer's performance in the 
swimming phases (wall push-off, glide, stroke preparation, free-swimming) and in the 
entire lap. The results showed that the goal metrics for free-swimming phase and the entire 
lap predicted the swimmer's progress well (e.g., accuracy, precision, sensitivity, and 
specificity of 0.91, 0.89, 0.94, and 0.95 for the lap goal metric, respectively). As the goal 
metrics for initial phases (wall push-off, glide, stroke preparation) achieved high precision 
and specificity (≥ 0.79) in progress detection, the coach can use them for swimmers with 
satisfactory free-swimming phase performance and make further improvements in initial 
phases. Changes in the values of the goal metrics have been shown to be correlated with 
changes in lap time when there is meaningful progress. The results of this study show that 
goal metrics provided by the phase-based performance evaluation with a single IMU can 
help monitoring swimming progress. Average velocity of the lap can replace traditional lap 
time measurement, while phase-based goal metrics provide more information about the 
swimmer's performance in each phase. This evaluation can help the coach quantitatively 
monitor the swimmer's performance and train them more efficiently. 

Keywords: Sports biomechanics, swimming, IMU sensor, swimming phase, phase-based 
evaluation, swimmer progress. 

https://www.frontiersin.org/articles/10.3389/fbioe.2022.910798/full#supplementary-material
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5.1 Introduction 
Swimming coaches aim to improve the performance of swimmers in intensive training 

sessions and prepare them for competition. Depending on the event, the swimmer completes 
multiple sets, each of which includes several swimming phases: a dive or wall push-off, a glide 
underwater, a stroke preparation, free-swimming to the end, and a turn to continue the next 
round with the same sequence of phases. Coaches should focus on each phase because a flawless 
performance by the swimmer in every phase is necessary to win (Mooney et al., 2016b).They 
mostly rely on observation and personal experience to monitor and evaluate a swimmer's 
performance. A coach expects swimmers to improve their performance by 1% to 10% during a 
training season, depending on swimmer's level (Zacca et al., 2020; Ferreira et al., 2021), and 
usually tracks this progress by measuring lap time over different swimming distances (most 
commonly 400 m, as it is used to evaluate the swimmer's aerobic performance). However, lap 
time can only reflect the swimmer's overall progress and not their phase-based performance. The 
use of biomechanical parameters such as stroke rate, stroke length, and stroke index (product of 
average velocity and stroke length) (Morais et al., 2013) or body composition (Thng et al., 2022) 
are other methods proposed by researchers to track swimmer's progress.  

The complexity of extracting performance-related parameters has led coaches to use 
technological tools to obtain an objective and quantitative analysis (Payton and Adrian Burden, 
2017). Swimming coaches use a variety of analysis systems such as 2D and 3D cameras (Mooney 
et al., 2015), inertial measurement unit (IMUs) (Guignard et al., 2017b), or physiological 
parameters such as heart rate (Crowcroft et al., 2017), or lactate monitors (Smith et al., 2002) to 
investigate the technical aspects of swimming. Although video-based systems are still the gold 
standard for swimming analysis, they generally suffer from several limitations in aquatic 
environments, such as cumbersome installation and calibration, water splashes and reflections, 
or limited recording volume (Callaway et al., 2010). As a result, there is still a need in the coaching 
community for supportive analysis systems (Mooney et al., 2016a). Improvements in the 
accuracy, scalability, and cost of Micro-electromechanical systems (MEMS) have led to IMUs 
becoming a credible option for swimmer motion tracking, as they can provide quick and easy-
to-use feedback on detailed performance-related metrics (Félix et al., 2019).    

Several studies have investigated the analysis of swimming with IMUs by extracting kinematic 
parameters in different phases and techniques such as stroke rate and stroke count (Davey and 
James, 2008), instantaneous velocity (Dadashi et al., 2012), tumble turn spatio-temporal 
parameters (Slawson et al., 2012) or wall push-off maximum velocity (Stamm, 2013). Although 
these studies have demonstrated the application of IMUs for swimming analysis, they have not 
related the obtained kinematic parameters to the swimmer's performance-related metrics. In our 
previous study, we used IMUs to automatically segment each swimming lap into wall push-off 
(Push), glide (Glid), stroke preparation (StPr), free-swimming (Swim), and turn phases (Hamidi 
Rad et al., 2021b). The algorithms developed in this study take a macro-micro approach by 
swimming bouts detection, lap separation, and swimming style identification at the macro level, 
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and then divide each lap into phases by detecting spatio-temporal events on IMU acceleration 
and angular velocity data at the micro level. Subsequently, a variety of kinematic parameters 
were extracted from each phase and used to estimate phase-based goal metrics (Push maximum 
velocity, Glid end velocity, StPr average velocity, Swim average velocity and lap average velocity) 
for the swimmer’s performance evaluation (Hamidi Rad et al., 2021a), indicating how well the 
swimmer performed the corresponding phase. However, to fully utilize the IMU sensor for 
training, assessing the sensitivity of IMU-based goal metrics to performance progress is of utmost 
importance.  

Therefore, the main objective of this study was to validate the use of IMU-based goal metrics to 
monitor swimming performance during training sessions. Using the macro-micro approach to 
swimming analysis to separate the swimming phases (Push, Glid, StPr, and Swim) and the phase-
based performance assessment on sacrum IMU, we estimated the goal metrics of each phase. We 
then analyzed the sensitivity of goal metrics in relation to the swimmer's progress across multiple 
training sessions. We assumed that (i) lap time is the most important representative of 
performance level and can be used to define meaningful progress, and (ii) the goal metrics 
change in association with lap time when the swimmer makes meaningful progress. 

5.2 Materials and Methods 

5.2.1 Measurement setup and protocol 

Sixteen competitive swimmers from a swimming team participated in this study, and their 
characteristics are shown in Table 5.1. A waterproof band (Tegaderm, 3M Co., USA) was used to 
attach an IMU (Physilog® IV, GaitUp, CH.) to the swimmer's lower back on sacrum bone. The 
sensor recorded 3D angular velocity (±2000 ᵒ/s) and 3D accelerometer (±16 g) at a sampling rate 
of 500 Hz. After installation of the sensor, functional calibration was performed with simple out-
of-water movements (upright standing and squatting) to make the data independent of the 
sensor exact position on swimmer's sacrum (Dadashi et al., 2013c). 

After a brief warm-up, swimmers were asked to swim five times one swimming pool length (one 
lap) in the same direction at maximum velocity, beginning with a five-second upright stance 
before wall push-off in the water (Figure 5.1-A). During a full lap, the swimmer went through all 
swimming phases so that we could analyze the goal metrics of each phase (Figure 5.1-B). The 
coach recorded the lap time of all swimmers with a stopwatch during each attempt (Figure 5.1-
C). Each swimmer had five minutes rest between trials to avoid fatigue. To track the swimmers' 
progress, the same measurement was repeated once a week for ten sessions. Prior to 
participation, the measurement procedure was explained to each swimmer, and they provided 
written informed consent. The measurement protocol of this study was approved by the EPFL 
Human Research Ethics Committee (HREC, No. 050/2018). 
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Figure 5.1 – Measurement protocol with IMU (red box) attached to the sacrum. After functional calibration, 
the swimmer starts in the water with an upright posture (A) and performs all swimming phases at 
maximum speed while swimming to the other side in front crawl (B). The coach records the lap time with 
a stopwatch during each lap (C). 

Table 5.1 – Statistics of the swimmers. The values are presented as mean ± standard deviation. 

5.2.2 Lap segmentation and phase-based performance evaluation 

First, swimming bouts and laps were determined during each training session according to the 
validated algorithms of our macro-micro approach and then divided into four swimming phases 
of Push, Glid, StPr and Swim (Hamidi Rad et al., 2021b). Push phase begins with the forward 
movement of the swimmer's trunk and ends when the feet leave the wall. Glid phase lasts until 
the beginning of the dolphin kicks in front crawl style. StPr phase is the next phase that ends with 
the first arm stroke, which is the beginning of the Swim phase, and Swim phase ends when the 
swimmer's hand touches the wall. The method uses motion biomechanics to identify the events 
corresponding to the beginning and end of each phase for lap segmentation. Subsequently, based 
on our phase-based performance evaluation method (Hamidi Rad et al., 2021a), a set of spatio-
temporal parameters reflecting various aspects of swimmer’s performance were extracted from 
each phase. These parameters are categorized as propulsion, posture, efficiency, and 
duration/rate to represent the most important aspects of performance. They were fed into LASSO 
(Least Absolute Shrinkage and Selection Operator) regression models to estimate five phase-
based goal metrics that quantify the performance within each phase: Push maximum velocity, 
Glid end velocity, StPr average velocity, Swim average velocity, and lap average velocity 
respectively for phases of push, glide, stroke preparation, swim and the entire lap. These goal 
metrics were tracked during the measurements to assess their sensitivity to swimmer progress 
during weeks of training. 

5.2.3 Sensitivity analysis  

Sensitivity analysis was performed to assess how phase-based goal metrics react to swimmer’s 
progress in two steps. In the first step, we considered all sessions of each swimmer with a 
significant change in lap time, as lap time is considered representative of swimming performance 
(Robertson et al., 2009). Using the data from the weekly measurements, we compared the 
swimmer's performance in each session to other sessions to find significant progress. According 
to the measurement protocol, five values (for each goal metric and for lap time) are obtained from 

Male Female Age (yrs) Height (cm) Weight (kg) 50m Front crawl record (s) 
9 7 14.6 ± 0.8 171.6 ± 6.9 55.9 ± 10.1 28.60 ± 2.04 
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each participant per session. Because the sample size for comparison between two sessions is 
small, we used Cliff's Delta (d) effect size analysis as a nonparametric method (Macbeth et al., 
2011). This method allowed us to determine whether the achieved lap times and goal metrics 
differed significantly from one session to another. Each comparison set is assigned an effect size 
value to quantify the change (Equation 5.1). 

Where the cardinality symbol # indicates counting, 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 are the lap time or goal metric values 
of sessions i and j, respectively. 𝑛𝑛1 and 𝑛𝑛2 are the sizes of the two data sets, both equal to five in 
our study (i.e., the number of laps). The value of d estimates the probability that a value selected 
from the ith session is greater than a value selected from the jth session, minus the inverse 
probability. This can be referred to as a measure of dominance, indicating the degree of overlap 
between values from two test sessions. The d value is generally within the closed interval of [-1, 
+1] indicating the degree of overlap between the values from two sessions (effect size of +1.0 or -
1.0 for no overlap and 0 for complete overlap). The effect size is considered significant if the 
confidence interval (CI) does not include zero. The upper and lower bounds of the asymmetric 
CI (range of 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  to 𝛿𝛿ℎ𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒) for Cliff's d are constructed based on Equations 5.2 to 5.4 as a more 
robust and conservative method (Feng and Cliff, 2004). 𝑡𝑡α/2 is the critical value of the t-
distribution for the corresponding confidence level. 

Thus, the effect size values along with the CI ranges were calculated for comparing the five values 
of goal metrics or lap time between every two sessions using Equations 1 to 4 and the significant 
pairs were separated. However, all significant changes in lap time should not be considered as 
meaningful progress. This is because the lap time value itself is subject to recording errors (using 
the stopwatch). Based on the training plan, the coach expected to see real progress in the 
swimmers after at least three weeks of training. Therefore, a meaningful lap time change (MLTC) 
was defined as the minimum threshold for meaningful progress. It is indeed similar to the 
concept of smallest worthwhile enhancement which is defined for competitions to estimate the 
minimum amount of improvement that is beneficial for athletes to win a race (Hopkins et al., 
1999). However, we tend to compare swimmers only with themselves and not with others in 
training sessions. So we calculated the median lap time of comparisons that were three weeks 

𝑑𝑑 =  
#�𝑥𝑥𝑖𝑖 > 𝑥𝑥𝑗𝑗� −  #(𝑥𝑥𝑖𝑖 < 𝑥𝑥𝑗𝑗)

𝑛𝑛1𝑛𝑛2
 (5.1) 

𝑑𝑑𝑖𝑖  =  
#�𝑥𝑥𝑖𝑖 > 𝑥𝑥𝑗𝑗� −  #(𝑥𝑥𝑖𝑖 < 𝑥𝑥𝑗𝑗)

𝑛𝑛1
 ,𝑑𝑑𝑗𝑗  =  

#�𝑥𝑥𝑗𝑗 > 𝑥𝑥𝑖𝑖� −  #(𝑥𝑥𝑗𝑗 < 𝑥𝑥𝑖𝑖)
𝑛𝑛2

 (5.2) 

𝑠𝑠𝑑𝑑2  =  
𝑛𝑛12 ∑ (𝑑𝑑𝑖𝑖 − 𝑑𝑑)2𝑛𝑛1

𝑖𝑖=1 + 𝑛𝑛22 ∑ (𝑑𝑑𝑗𝑗 − 𝑑𝑑)2𝑛𝑛2
𝑗𝑗=1 + 𝑛𝑛22 ∑ ∑ (𝑑𝑑𝑖𝑖𝑖𝑖 − 𝑑𝑑)2𝑛𝑛2

𝑗𝑗=1
𝑛𝑛1
𝑖𝑖=1

𝑛𝑛1𝑛𝑛2(𝑛𝑛1 − 1)(𝑛𝑛2 − 1)
 (5.3) 

𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝛿𝛿ℎ𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒 =  
𝑑𝑑 −  𝑑𝑑3 ± 𝑡𝑡α/2𝑠𝑠𝑑𝑑(1 − 2𝑑𝑑2 + 𝑑𝑑4 + 𝑡𝑡α/2

2𝑠𝑠𝑑𝑑2)1/2

1 − 𝑑𝑑2 + 𝑡𝑡α/2
2𝑠𝑠𝑑𝑑2

 (5.4) 
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apart (session 1 and session 4, session 2 and session 5, etc.). MLTC is then calculated by taking 
the average of the differences of all these comparison pairs over all swimmers. 

In the second step of the sensitivity analysis, among all significant differences identified in step 
one between test sessions, only those with a median change more than MLTC were retained as 
meaningful progress. The entire process of the two steps for detecting significant pairs and then 
selecting the pairs with meaningful progress is explained by the following pseudocode, where m 
and n are two different session numbers that vary across all sessions with two loops and LTi,j is 
ith lap time of jth session. 

START 
     For m = 1 : (number of sessions – 1) 
          For n = m + 1 : number of sessions 
               Calculate d, δlower and δhigher for LT1:5,m and LT1:5,n with Equations 1-4 
                    If 0 ϵ [δlower,δhigher] THEN SignificantChange 
              If Median(LT1:5,m) - Median(LT1:5,n) > MLTC  THEN MeaningfulProgress 
             Else SignificantChange but not MeaningfulProgress 
                    Else InsignificantChange 
END 

After obtaining all the pairs with meaningful progress, the relationship between changes of goal 
metrics and changes in lap time was examined for these pairs to analyze the sensitivity of goal 
metrics to progress by answering three questions: 

I. "Do the goal metrics predict meaningful progress, as does lap time?" 

II. "How well do the goal metrics represent the swimmer's performance compared to the lap 
time?" 

III. "What is the contribution share of each goal metric to swimming progress?" 

To answer the first question, we analyzed the correspondence between progress detection by 
each goal metric and lap time. For each pair of sessions, we calculated whether the change (i.e., 
improvement) in the values of goal metrics was significant (i.e., true) or not significant (i.e., false) 
and then compared it to the meaningfulness of the change in lap time. The performance of goal 
metrics in predicting meaningful progress (i.e., a significant lap time more than MLTC) was 
assessed using the following association rules: 

• True positive (TP): goal metric shows a significant change when there is a meaningful 
progress. 

• True negative (TN): no significant change is observed with goal metric when there is no 
meaningful progress. 

• False positive (FP): no meaningful progress, while the goal metric changes significantly. 
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• False negative (FN): meaningful progress, while the goal metric does not show significant 
change. 

The values for accuracy, precision, specificity, and sensitivity to predict meaningful progress are 
calculated for each goal metric using Equations 5.5 to 5.8. 

To answer the second question, how well the goal metrics represent swimming performance, 
effect size values were estimated for each significant change in the goal metric and compared to 
the effect size of lap time if there was a meaningful progress. The third question is about the 
relationship between the magnitude of change in each goal metric (i.e., change of Push maximum 
velocity (∆Push), Glid end velocity (∆Glid), StPr average velocity (∆StPr), Swim average velocity 
(∆Swim), and lap average velocity (∆Lap)) and the change in lap time (∆LapTime) when there is a 
meaningful progress. This analysis is performed by calculating the Pearson correlation (Benesty 
et al., 2009) between the changes in goal metrics and lap time values. 

5.3 Results 
A post-hoc sample size analysis was performed (Jones et al., 2003) considering the lowest 
acceptable sensitivity and specificity of 0.90 and 0.80, respectively, with a confidence interval of 
90%, resulting in a sample size of 107 for this study. This means that at least this number of 
meaningful comparisons are needed to make a valid comparison between the change in goal 
metrics and the change in lap time. During the ten measurement sessions, there were seven 
absences due to swimmers being unavailable, and a total of 750 swimming laps were recorded. 
Each swimmer is compared to themselves during all measurement sessions, and 642 comparisons 
were made for all swimmers. 272 of the comparisons showed statistically significant progress 
(based on Cliff's delta analysis at a 95% confidence level). The accuracy, precision, sensitivity, 
and specificity of each of the goal metrics used to detect this significant change in lap time (i.e., 
the first step of the sensitivity analysis) can be found in the appendix (Figure 5.4). Next, 
comparison of sessions three weeks apart for the second step of the analysis yielded an MLTC 
value of 0.5±0.2s, resulting in 122 pairs of sessions with meaningful progress which is higher that 
the sample size. Each swimmer showed at least four comparison pairs with meaningful progress. 
The slower the swimmer was during the first test session (higher median of lap time), the higher 
the number of comparison pairs with meaningful progress (significant correlation coefficient of 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (5.5) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (5.6) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (5.7) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (5.8) 
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0.70), because the swimmers who swim relatively slower have more room for performance 
improvement. The accuracy, precision, sensitivity, and specificity of each goal metric for 
detecting meaningful progress are shown in Figure 5.2. 

 
Figure 5.2 – Accuracy, precision, sensitivity and specificity of goal metrics for detecting a meaningful 
progress (lap time change) 

Among the five metrics, lap and Swim average velocity achieved the highest values for accuracy, 
sensitivity, precision, and specificity (≥ 0.87). For the three metrics related to the initial phases of 
Push, Glid and StPr, precision and specificity were relatively high (≥ 0.79), whereas sensitivity 
was low (0.45-0.65). For the comparisons in which both meaningful progress in lap time was 
detected and the goal metric was significant, the effect size values and confidence interval were 
calculated (Table 5.2). Comparison of the effect size values for each goal metric and lap time 
shows lap average velocity and Swim average velocity are the best ones for progress detection 
(difference of 0.04 between effect size values). However, the other three goal metrics achieved 
lower effect size values than lap time. 

Table 5.2 – Effect size and confidence interval of all goal metrics and lap time for the comparisons with 
both meaningful progress and significant goal metric change.  

The final set of results addresses the correlation analysis between the magnitude of changes in 
the goal metrics (∆Push, ∆Glid, ∆StPr, ∆Swim, and ∆Lap) and in lap time (∆LapTime) across all 
comparisons with meaningful progress. Histograms of the changes in the goal metrics are 
displayed in Figure 5.3. The root mean squared error (RMSE) for the estimation of each goal 
metric is extracted from our previous study (Hamidi Rad et al., 2021a) and shown specifically for 
each goal metric in vertical red lines in Figure 5.3.  

Goal metric 
Push maximum 

velocity 
Glid end 
velocity 

StPr average 
velocity 

Swim average 
velocity 

Lap average 
velocity 

Effect 
size 
[CI] 

By goal 
metric 

0.67 
[0.26,0.85] 

0.78 
[0.30,0.90] 

0.75 
[0.26,0.89] 

0.92 
[0.25,0.96] 

0.93 
[0.27,0.97] 

By lap 
time   

0.96 
[0.25,0.98]   
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Figure 5.3 – Histograms of changes in the five IMU goal metrics (∆Push, ∆Glid, ∆StPr, ∆Swim, and ∆Lap) for 
the comparisons with meaningful progress. The estimation RMSE range of each goal metric is displayed 
with red dashed lines.  

The delta values lying inside the range of RMSE (±RMSE range) are too small to be valid as they 
might happen due the model errors and should be removed. After removing the invalid delta 
values for each goal metric, we analyzed the contribution of each metric to the progress of 
swimming performance. Table 5.3 shows the average, standard deviation, and range for the 
changes in the goal metrics, as well as their correlation coefficient (r) with ∆LapTime. Of the five 
goal metrics, ∆StPr shows the highest standard deviation (0.40 m/s). Apart from ∆Push, the 
change values of all goal metrics were significantly correlated with ∆LapTime, however with weak 
correlation coefficients (Table 5.3).  

Table 5.3 – Average, standard deviation, and range of each goal metric change and its correlation coefficient 
(r) with ∆LapTime for all meaningful progress comparisons. The change values that are below RMSE of 
each goal metric are removed. 

*p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001 

Goal metric change  ∆Push ∆Glid ∆StPr ∆Swim ∆Lap 
Average (m/s) 0.49 0.33 0.50 0.14 0.13 
Standard deviation (m/s) 0.09 0.06 0.40 0.02 0.03 
Range (m/s) 0.52 0.44 1.89 0.16 0.17 
Correlation coefficient (r) with ∆LapTime -0.04 -0.21** -0.17** -0.29*** -0.31*** 
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5.4 Discussion 
In this study, a single IMU, worn on sacrum, was used to identify the four major phases of a 
swimming lap and calculate a performance-based goal metric for each of these phases and the 
entire lap. These goal metrics were then used to follow the swimmers' progress over ten training 
sessions. The results obtained confirmed our hypothesis of association between the phase-based 
goal metrics and swimmers' progress, but with varying sensitivity and degree of association in 
each phase.  

As shown in Figure 5.2, lap average velocity and Swim average velocity achieved the highest 
accuracy, precision, sensitivity, and specificity (≥0.87) among all goal metrics to predict 
meaningful progress. Because lap time is used as a representative of performance, lap average 
velocity was expected to be highly associated with it. This goal metric could replace traditional 
lap time because it is not affected by human recording error. Furthermore, since the Swim phase 
is the longest phase of a lap, it should contribute more to lap time compared to other phases. 
Although the sensitivity of Push maximum velocity, Glid end velocity, and StPr average velocity 
are low, their specificity and precision are either at or above 0.80. Considering Equations 6 and 
8, the high specificity and precision is mainly due to a low number of false positives. It can be 
concluded that the three initial goal metrics are less good at detecting meaningful progress than 
the other two metrics. However, when they do detect progress, it is correct, indicating that they 
are relevant to progress assessment despite their low sensitivity. The results represent that the 
coach focused on the free-swimming phase as it contributes the more to the overall performance 
and then improved the initial phases for making more progress, making this method a valuable 
assistant for training sessions. 

Compared with similar results using goal metrics to detect significant (and not meaningful 
defined by MLTC) progress shown in Figure 5.4 of the appendix, using meaningful progress 
improved the results. The accuracy, precision, sensitivity, and specificity of all five goal metrics 
for detecting significant progress were lower because the procedure was affected by the lap time 
recording error. However, the sensitivity of the goal metrics for the initial phase remained low 
for the same reason. Overall, it appears that all phases are important for improving overall 
performance and progress is the result of mastering all phases of swimming. The coach can use 
the three metrics of the initial phases to provide an additional quantitative assessment. However, 
this argument does not apply in reverse, and a change in lap time is not essentially the result of 
better performance in the initial phases. It increases the number of false negatives and lowers the 
sensitivity of the initial phases goal metrics to overall progress. 

In terms of effect sizes and confidence interval ranges, Table 5.2 shows that the effect size values 
of the goal metrics for lap average velocity and Swim average velocity are closest to the effect size 
of lap time, such that these two metrics are as strong as lap time in indicating progress. However, 
the effect size values of the goal metrics Push maximum velocity, Glid end velocity, and StPr 
average velocity are lower than lap time because they cannot represent the overall performance 
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of the swimmers as well as lap time. It can be argued that if the swimmer is not making more 
progress in the Swim phase, there is still room for improvement in the initial phases and the coach 
should focus on these goal metrics to make further progress. 

Figure 5.3 shows that among the five changes in the goal metric, only ∆StPr has worsened in 
some cases, while there is a meaningful progress on lap performance (negative values of the 
histogram). Due to the coaching strategy at this period of the season, the coach did not emphasize 
working on this phase for the swimmers with weak performances, and asked them to focus on 
other phases to compensate. Most of the change values of all goal metrics are outside the range 
of the RMSE of the goal metric estimation. The correlation coefficients of the changes of all goal 
metrics with ∆LapTime are weak (<0.4) (Table 5.3). Since the change values of the goal metrics are 
reliable after removing the samples lying inside the ±RMSE range (Figure 5.3), the main reason 
for the weak correlation is the error in recording the lap time, since it is recorded by the coach 
with a handheld stopwatch, while this analysis requires a more precise method. However, since 
the correlations are significant, we can conclude that improving goal metrics contributes to 
swimmer's progress and the coach should use all these metrics in the training sessions. 

To obtain a larger, more varied data set, both male and female swimmers were used to generate 
our results, and comparison based on individual differences is beyond the scope of this study. 
For technical reasons, only front crawl technique is examined here. However, based on our 
previous research (Hamidi Rad et al., 2021a), similar goal metrics can be extracted from other 
main swimming styles (backstroke, butterfly, and breaststroke) to perform the same study. The 
lap time was recorded using stopwatch which is prone to human error and using more precise 
measurement methods such as cameras can increase the quality of this analysis. Since we had 
only one-way laps in the measurements, the turn phase was not evaluated in this study. The 
number of lap repetitions per swimmer was limited to five to avoid a fatigue effect that could 
affect the assessment of progress. However, collection of a larger data set would be required to 
perform a more powerful statistical analysis. 

This study shows that the goal metrics calculated from a single sacrum IMU can provide valuable 
information about performance in different swimming phases. Coaches can forgo measuring lap 
time with a stopwatch and use the goal metric for lap average velocity, which can be 
automatically estimated based on IMU as a substitute for traditional lap timing. They can then 
focus on the goal metric for each phase to get a more detailed analysis of the swimmer's 
performance. Compared to other studies monitoring swimmers' performance that focused 
mainly on either overall performance or free-swimming phase parameters (Morais et al., 2013, 
2015), our proposed goal metrics allow the coach to track swimming performance in each phase 
separately. Furthermore, tracking progress using conventional methods such as video-based 
systems or heart rate and lactate monitors is very time-consuming and only possible at selected 
times during a season (Ferreira et al., 2021), whereas IMUs have the least impact on swimmers’ 
training and can be used on a daily basis.  
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The dominance of coaching philosophy and qualitative analysis in training sessions invariably 
leads to subjective, inaccurate assessments (Mooney et al., 2016a). Therefore, providing phase-
based goal metrics serves as an assistant to the coach, allowing him or her to quantitatively 
monitor each swimming phase and track a swimmer's progress during training sessions. Using 
this information, the coach can customize training strategies for each swimmer, which usually 
takes a lot of time and effort. Although wearables induce more drag on the swimmer's body 
(Magalhaes et al., 2015), they require an extremely small amount of preparation and analysis 
from the coach to provide personalized feedback. The coach can access performance evaluation 
reports for the entire team after each training session and plan further training for each swimmer 
based on their phase-specific progress. 

5.5 Conclusion 
By using IMU based goal metrics to monitor the performance of a team of swimmers, we have 
demonstrated the possibility of objective evaluation of swimmers' progress during training 
sessions. Of the goal metrics considered in this study, lap average velocity and Swim average 
velocity had the highest accuracy, precision, sensitivity, and specificity (≥ 0.87) to predict 
swimmers' progress. The goal metrics related to Push, Glid and StPr achieved high specificity and 
precision (≥ 0.79) for progress, confirming the role of initial phases in overall swimming 
performance. Lap average velocity and Swim average velocity are as sensitive as lap time to 
swimming progress and can be used as precise performance-related indicators. Other goal 
metrics provide additional quantitative information about the swimmer's phase-related 
performance that is not available in traditional coaching approaches. It is illustrated that the 
value of changes in goal metrics also correlates with swimmer progress. In summary, the coach 
can use the phase-based report to obtain a comprehensive view of the swimmer's performance. 
This study opens new training horizons in swimming by providing objective feedback based on 
goal metrics and analyzing the effects of feedback on the swimmer's performance. 

5.6 Appendix 

5.6.1 Sensitivity analysis with significant progress 

To find meaningful progress, we defined meaningful lap time change (MLTC) based on the 
hypothesis that significant lap time change does not necessarily represent meaningful 
performance change and could be transient. To compare the results before and after using MLTC, 
Figure 5.4 presents the accuracy, precision, sensitivity, and specificity of each goal metric for 
detecting a significant change in lap time (based on Cliff's delta confidence interval only). 
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Figure 5.4 – Accuracy, precision, sensitivity and specificity of goal metrics for detecting a significant 
progress (lap time change). 

5.6.2 Phase-based Goal metrics sensitivity to functional calibration  

As explained in the measurement protocol, a functional calibration is required before each 
measurement because the estimation of the phase-based goal metric is based on the alignment 
between the axes of the sensor and the anatomical frames. This calibration compensates for the 
effects of varying positioning of the sensor on the swimmer's body. Removing the functional 
calibration procedure may facilitate the use of the system but it introduces an error in the 
estimated goal metric. Assuming that the position of the sensor is verified by visual observation 
rather than functional calibration, the impact of possible misalignment due to visual observation 
on the error of the goal metric estimation can be evaluated. Therefore, an analysis is performed 
where the correct sensor position (determined by functional calibration) is manually rotated to 
evaluate the change in each goal metric compared to the values determined with the functionally 
calibrated data. 

For this purpose, data from swimmers during one session (16 swimmers, 80 laps) were used and 
both acceleration and angular velocity data were rotated by three rotation angles of 10°, 20°, and 
30° about each axis (x, y, and z) in both directions (Figure 5.5). The difference between the 
estimated goal metrics based on the calibrated data and the distorted data is plotted in Figure 5.6 
for each goal metric. The RMSE for the estimation of each goal metric (from Chapter 1) and their 
duplicate values are also plotted in Figure 5.6 for comparison, since the changes in the goal 
metrics below the RMSE are negligible.  
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Figure 5.5 – The anatomical coordination system for swimmer’s sacrum. 

As the results show, the larger the angle of rotation about one of the three axes, the higher the 
error values. Up to a rotation angle of 10° about one of the three axes in both directions, the 
changes in the goal metrics are almost within the range of the RMSE. With the increase of the 
rotation angle to 20°, the goal metrics for the stroke preparation phase and swim phase (for the 
entire phase) become unreliable, while the remaining goal metrics do not change more than the 
RMSE range. A rotation of 30° about each axis causes a large change in all goal metrics (more 
than the RMSE) and makes them unreliable. Of the three axes, rotation about the Z axis causes 
the greatest change in estimated value for the goal metric, which should be considered by the 
user when installing the sensor on swimmer's body.  

In case the sensor is integrated into the swimmer's suit, its position and orientation is nearly fixed 
except for small movement with respect to the skin during the training session. Considering the 
robustness of the phase-based performance assessment and the estimation of the goal metrics up 
to a rotation of 10° around each of the three axes, the functional calibration can be removed from 
the protocol if the sensor attachment is reliable enough.  
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Figure 5.6 – Estimated goal metrics change with and without functional calibration along with the 
corresponding estimation RMSE. The rotation angle varies between 10° to 30° about each axis in both 
positive and negative directions.  
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5.6.3 Glossary of terms 

Here if the table of glossary of all the terms used in this research. 

Table 5.4 – Table of glossary for Chapter 5 

Term Definition 
IMU Inertial measurement unit 
LASSO least absolute shrinkage and selection operator 
RMSE Root mean square error 
Push Wall push-off  phase 
Glid Glide phase  
StPr Stroke preparation phase 
Swim Swimming phase 
d Cliff's Delta effect size 
CI Confidence interval 
MLTC Meaningful lap time change  
TP True positive 
TN True negative 
FP False positive 
FN False negative 
∆Push Change in push maximum velocity  
∆Glid Change in glide end velocity 
∆StPr Change in stroke preparation average velocity 
∆Swim Change in swim average velocity 
∆Lap Change in lap average velocity 
∆LapTime Change in lap time 
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 SmartSwim, phase-based 
feedback for training and exercise 

Publication Note: this chapter is adapted from the following journal paper: 
 
Hamidi Rad, Mahdi, et al. "SmartSwim, a Novel IMU-Based Coaching Assistance." 
Sensors 22.9 (2022): 3356. 
 

Having demonstrated the sensitivity of the phase-based performance evaluation method in 
the previous chapter, this chapter presents the impacts of its use as feedback on swimmers' 
performance. Swimming coaches provide regular timed and technical feedback to swimmers 
and guide them efficiently in training sessions. Due to the complexity of swimmers' 
performance, which is not visible in qualitative observation, quantitative and objective 
performance evaluation can better assist the coach in this regard. In this study, we propose 
a new performance evaluation feedback (SmartSwim) using IMU and investigate its effects 
on the swimmer's weekly progress. Measurements were conducted each week with 15 
competitive swimmers for 10 weeks using a Sacrum IMU. The SmartSwim report included 
a comprehensive representation of performance based on goal metrics of each phase 
extracted from the IMU signals. The swimmers were divided into two groups, the 
experimental and control groups. The SmartSwim report for each swimmer in the 
experimental group was given to the coach, who used it to adjust the training accordingly. 
The results showed that the experimental group outperformed the control group when 
comparing each swimmer, each session, and the whole sessions. At the level of each 
individual, more members of the experimental group showed significant downward trend 
of average lap time (Mann-Kendall trend test, 95% confidence level). While comparing the 
sessions, the experimental group showed significantly lower lap time than the control 
group from the sixth session onwards (p-value < 0.05 from T-test). Considering all 
sessions, the experimental group showed significantly higher progress, lower average lap 
time, and more consistent records (Mann-Whitney U-test at 95% confidence level) than the 
control group. This study demonstrated that SmartSwim can assist coaching by 
quantitatively assessing swimmers' performance, leading to more efficient training. 

Keywords: Sports biomechanics, swimming, IMU sensor, performance evaluation, 
feedback 
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6.1 Introduction 
Swimming can be classified as a complex task because it cannot be mastered in a single 

session and has multiple degrees of freedom (Wulf and Shea, 2002). Learning such a complex 
physical activity and mastering the optimal technique for its execution depend on the continuous 
assessment of its performance. When it comes to complex tasks in sport, augmented extrinsic 
feedback has been shown to be necessary and effective for the athlete progress and development 
(Sigrist et al., 2013), regardless of the feedback modality. Therefore, the goal for successful 
coaching in swimming is clear: provide high-quality feedback concurrently or shortly after the 
activity on a frequent basis (Jefferies et al., 2012). 

As in any other sport, swimming coaches rely mainly on their observations and coaching 
experience to monitor and evaluate swimmers' performance. However, such subjective and 
qualitative analysis is not accurate enough to provide precise information about a swimmer's 
strengths and weaknesses (Mooney et al., 2016a). The complex nature of swimming has also led 
the research community to study it with new tools and systems from different perspectives, such 
as physiology (Berger et al., 1997; Pendergast et al., 2003), motor control (Seifert et al., 2011a), and 
biomechanics (Payton and Bartlett, 1995; Nikodelis et al., 2005). As a result, more attention has 
been paid to the use of sophisticated analytical systems by both researchers and coaches to obtain 
an objective and quantitative assessment of swimming performance (Payton and Adrian Burden, 
2017). Despite all the novel analysis methods that have been proposed for swimming analysis, 
there is a lack of an appropriate analysis system that can help both coaches and swimmers in 
better performance analysis (Mooney et al., 2016a). Video-based systems, most commonly used 
as the gold standard in swimming, suffer primarily from shortcomings such as the time-
consuming process of calibrating and digitizing landmarks, image distortion due to water 
reflections and air bubbles, and small capture volume in aquatic environments (Callaway et al., 
2010). In contrast, ease of use, accessibility, easy-to-understand results, and feedback are the top 
four priorities of coaches in an analysis system (Mooney et al., 2016a). 

In one of the oldest studies of feedback in swimming, Chollet et al. converted hydrodynamic 
pressure applied to the swimmer's palm into auditory information. The swimmer was able to 
maintain stroke velocity, and improve motion stability and control through real-time sonification 
(Chollet et al., 1992). Visual feedback using a robot swimming under the swimmer for qualitative 
performance correction (Ukai and Rekimoto, 2013) or a complicated integrated system consisting 
of LED markers, a force plate, a high-speed video camera, an underwater camera, and a pressure 
pad for start, swimming and turn analysis (Le Sage et al., 2012) are examples of other studies 
using bulky systems to provide real-time feedback to swimmers. The use of such complicated 
sensor networks makes it difficult to use these systems in daily training. However, recent rapid 
improvements in the accuracy, size, and cost of inertial measurement units (IMUs) have made 
IMUs a credible option for swimmer motion tracking, as they can provide fast and easy-to-use 
feedback on detailed performance-related metrics (Félix et al., 2019).    
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Many studies have extracted kinematic parameters from IMUs and shown them to be a powerful 
tool for swimming analysis (Slawson et al., 2012; Dadashi et al., 2013c; Stamm et al., 2013a), but 
some of them transmitted the results as feedback to the swimmer or coach. SwimMaster is a 
system based on three accelerometers at the wrist, lower back, and upper back that provides 
visual, tactile, and auditory feedback on average swim velocity, stroke time, and body orientation 
(Bächlin et al., 2009).  Rocha et al. used a network of five IMUs, a heart rate sensor, and a 
temperature sensor in a swimsuit to communicate information about the swimmer's heart rate, 
stroke rate, and body temperature to the coach (Rocha and Correia, 2006). Silva et al. placed an 
IMU on the upper back of the swimmers to transmit information about the type of technique, 
laps, and strokes detection to the coach (Silva et al., 2011). ISwimCoach is another analysis system 
that transmits to the coach the correct hand movement during strokes using a wrist IMU (Ehab 
et al., 2020). The system achieved 91% accuracy in detecting the correct strokes. Mangin et al. 
developed the idea of an instrumented glove that monitors hand movement during strokes and 
differentiates between recreational and elite swimmers using a wrist IMU (Mangin et al., 2015). 
According to the literature, the use of IMUs for feedback is still in its early stages. Although 
performed with a variety of parameters, techniques, and modalities, researchers have focused 
mainly on the strokes of swim phase. These studies also led to numerous interferences in the 
normal swimming style through a complex multi-sensor network. Moreover, the previous 
studies have rarely reached the field test to show the effect of feedback on swimmers' 
performance.  

Using the signals of a single sacrum-worn IMU, we developed a new approach in a previous 
study to segment a swimming lap into push, glide, stroke preparation, and swim phases (Hamidi 
Rad et al., 2021b). Then, a phase-based performance evaluation was conducted to estimate goal 
metrics representing a swimmer's performance in each swimming phase (Hamidi Rad et al., 
2021a). The objective of this study was to evaluate the in-field use of a comprehensive phase-
based performance evaluation obtained from a single IMU as feedback to the coach. The goal 
metrics were shared with the coach to provide objective advice to swimmers in an experimental 
group and to adjust each individual's training. We hypothesize that the objective feedback based 
on SmartSwim will improve the performance of experimental group to a higher degree compared 
to a control group that received routine feedback. 

6.2 Materials and methods 

6.2.1 Measurement setup 

Fifteen swimmers (9 males, 7 females, age: 14.6±0.8 years, height: 171.6±6.9cm, body mass: 
55.9±10.1 kg) of a competitive team participated in this study. They had similar performance 
levels (50m front crawl record: 28.60±2.04s) and were placed on the same team by the swimming 
club. The swimmers had similar training experiences and regularly trained together six days per 
week under the supervision and guidance of the same coach. A single IMU (Physilog® IV, 
GaitUp, CH.) was attached to the swimmer's sacrum with a waterproof tape (Tegaderm, 3M Co., 
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USA) and recorded 3D angular velocity (±2000 ᵒ/s) and 3D accelerometer (±16 g) at a sampling 
rate of 500 Hz. To make the sensor data independent of sensor placement on the swimmer's 
sacrum, a functional calibration with simple movements (standing upright and squats) was 
performed before starting the test out of the water (Dadashi et al., 2013c). 

After a brief warm-up set by the coach, each swimmer completed five laps of one-way front crawl 
at maximum speed. Each participant had five minutes rest between two consecutive trials to 
avoid fatigue. Swimmers were asked to complete all swimming phases (push, glide, stroke 
preparation, swim) so that we could analyze their performance within each phase (Figure 6.1). 
Lap time was measured and recorded by the coach using a stopwatch for each lap during all test 
sessions. The average of the five lap times was used as their performance level. The same 
measurement was repeated once at the end of each week for ten weeks. The order in which the 
swimmers participated was the same in all sessions. The testing procedure was presented to each 
swimmer, and they were asked to provide written informed consent prior to participation. The 
measurement protocol of this study was approved by the EPFL Human Research Ethics 
Committee (HREC, No. 050/2018). 

 
Figure 6.1 – Measurement protocol. The swimmer starts in the water with a wall push-off and performs all 
swimming phases of push, glide, stroke preparation and swim. The coach records the lap time with a stop 
watch, while the phase-based goal metrics were extracted from the IMU (red box) worn on the sacrum. 

6.2.1.1 Experimental and control groups 

The swimmers were divided into two groups, an experimental and a control group. Since 
performance is assumed to be related to lap time as a key metric, the lap times of the first test 
session were considered as the baseline and used to select the swimmers of the two groups. The 
two groups were selected to have similar performance levels (as measured by lap time), similar 
age range, similar physical characteristics (body mass and height), and similar gender. The 
characteristics of the two groups are shown in Table 6.1. The coach received the feedback from 
IMU report only for the experimental group. 

Table 6.1 – Characteristics of the swimmers in the experimental and control groups. The swimmers were 
selected to have similar characteristics 

Group Male Female Age (yrs) Height (cm) Body mass (kg) 
First session record in 

seconds (baseline) 
Experimental 4 4 14.5 ± 0.5 170.1 ± 6.5 55.5 ± 8.3 14.74 ± 0.87 
Control 4 3 14.6 ± 0.4 171.2 ± 7.1 54.9 ± 7.2 14.75 ± 0.79 



6.2 - Materials and methods 

 

115 

6.2.2 SmartSwim solution for swimming analysis and feedback 

The SmartSwim solution proposed in this study consists of two parts. In the first part, we 
performed a phase segmentation of each lap using our previously validated algorithms (Hamidi 
Rad et al., 2021b), and then estimated the goal metrics for performance evaluation in the different 
phases (Hamidi Rad et al., 2021a). In the second part, we introduce a new feedback report based 
on these goal metrics to give the coach a comprehensive view of the performance and progress 
of each swimmer and the group. 

6.2.2.1 Phase-based performance evaluation 

Following our previous study evaluating swimming performance with a sacrum-worn IMU, each 
lap was segmented into the push, glide, stroke preparation, and swim phases (Hamidi Rad et al., 
2021b). The following goal metrics corresponding to each phase were estimated using a selection 
of kinematic parameters by the data obtained from IMU (Hamidi Rad et al., 2021a): 

1. Push phase: push maximum velocity  

2. Glide phase: glide end velocity 

3. Stroke preparation phase:  stroke preparation average velocity  

4. Total Swim phase: swim phase average velocity  

5. Swim phase strokes: average velocity per stroke of the swim phase  

6. Whole lap: lap average velocity 

The errors attributed to lap segmentation and goal metrics estimation are explained in the 
corresponding papers. Although this analysis was performed for both the experimental and 
control groups, only the reports of the experimental group members were given to the coach. 

6.2.2.2 Feedback reports and illustrations 

For the experimental group, three types of feedback were given to the coach: (i) individual 
performance per session, (ii) individual multi-session performance, and (iii) comparison of 
swimmers per session. The reporting format was visually tailored to the coach's needs to facilitate 
understanding and make it more efficient. 

An example of the individual feedback provided after each session is shown in Figure 6.2. For 
each of the five laps (L1 to L5), a goal metric value was provided on each axis of a radar chart. In 
addition, the average and best performance in each phase for all five laps were added (Figure 6.2, 
right). In this type of representation, the pentagon of best performance is an imaginary lap that 
the swimmer can complete if he/she does their best in all swimming phases. In addition to the 
radar chart, a stroke velocity diagram was added to show the average velocity per stroke during 
the five laps (Figure 6.2, left). Furthermore, in this diagram, the stroke regularity can be observed 
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by the variability of the inter-stroke velocity variability represented by the standard deviation 
values of each lap. 

 
Figure 6.2 – Individual feedback for the swimmer after the test session. The performance evaluation chart 
(left) shows the goal metrics for five laps, the average performance (light green) and the best performance 
(dark green). The stroke average velocity chart (right) shows the average velocity per stroke during five 
laps and its variation ("var", corresponding to standard deviation) in the legend. 

The individual multi-session result is the second type of feedback, including the swimmer's 
average performance graphs during all previous sessions (Figure 6.3, left). The graph shows the 
swimmer's progress in each goal metric during multiple sessions and indicates the percentage of 
change from the previous session at the bottom. The average lap time recorded by the coach for 
all previous sessions is also included in the report (Figure 6.3, right), allowing the coach to 
simultaneously observe the effect of the change in the goal metric on the lap time. 

The third type of feedback per session is to compare the swimmers by plotting the average 
performance of each swimmer on the same radar chart (Figure 6.4). The coach can easily compare 
the swimmers at each phase and decide how to adjust the training for each individual, or design 
a specific training modification if all swimmers show the same weaknesses. 

We shared the report of the experimental group's performance with the coach. He considered the 
reports for each swimmer and adjusted the training sessions accordingly. We asked the coach to 
explain his observations and findings from the feedback and then write down the training 
changes planned for the next week for each swimmer. The charts for single session and multi-
session feedback were also explained and shared with the swimmers so they could self-monitor 
during the training sessions. 
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Figure 6.3 – Feedback on Multi-session performance evaluation feedback. The radar chart shows with a 
different color the average performance of all sessions (left) with changes compared to the previous 
session. The bar graph shows the average lap time of all sessions recorded by the coach (right). 

 
Figure 6.4 – Feedback to compare the swimmer's average performance in different swimming phases. The 
coach can see the strengths and weaknesses of each swimmer through this comparison. 
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6.2.3 Feedback effect statistical analysis 

Because lap time is considered as the relevant measure of swimming performance, we evaluated 
the lap times of both groups for performance comparison. The two groups were compared at 
three levels: (i) per person, (ii) per session, and (iii) all sessions. 

At the person-level, the trend of average lap times during the ten sessions for each swimmer was 
analyzed using the nonparametric Mann-Kendall trend test (Gilbert, 1987; Kendall, 1995). The 
purpose of this analysis was to determine how many swimmers in each group showed a 
significant trend of decreasing lap time due to performance progress. The test calculates the S 
value, which is the number of positive minus the number of negative differences when 
comparing all observations (equation 6.1). 

Where 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 denote the average lap time obtained in the ith and jth sessions, respectively, and 
𝑛𝑛 is the total number of sessions. For the populations with 𝑛𝑛 ≤ 40, it is sufficient to determine the 
corresponding probability of the Mann-Kendall trend test for the calculated value of S to find out 
whether the trend is significant or not. The trend significance for the swimmers with absences 
was analyzed for the existing number of records. A significance level of 95% is used for this 
analysis. 

In the level of per session, we compared the lap times of the two groups in each session to 
determine if the experimental group significantly outperformed the control group. For this 
comparison, all lap time values for both groups in each session (40 values for eight swimmers in 
the experimental group and 35 values for seven swimmers in the control group) were compared. 
Since there is enough data for parametric test, first, the normality of the data distribution was 
checked using the Kolmogorov-Smirnov normality test (Lilliefors, 1967) and then an independent 
t-test assuming unequal variances (Kim, 2015) was performed to compare the average values of 
the two groups, accepting a confidence level of p-value < 0.05 as significant. The second analysis 
at this level is the comparison of the standard deviation of lap times in each session. For this 
analysis, the standard deviation of the five lap times for each swimmer was calculated, averaged 
across the group, and then compared to the other group. Because the sample size for this analysis 
is small (eight versus seven), the Mann-Whitney U-test, a non-parametric method (Mann and 
Whitney, 1947; Nachar, 2008) with a 95% confidence level, was used for this comparison.  

Finally, to compare the groups across all test sessions, the mean and standard deviation of the 
five lap times were estimated for each swimmer and then averaged across all swimmers in each 
group. The Mann-Whitney U-test with a 95% confidence level was used to compare between 
groups across the ten sessions. Comparison of the means allows us to understand whether the 
experimental group was faster than the control group, and comparison of the means of the 

𝑆𝑆 =  � � 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)
𝑛𝑛

𝑖𝑖−𝑗𝑗+1

𝑛𝑛−1

𝑗𝑗−1

 (6.1) 
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standard deviations evaluates the regularity of the swimmers between laps as a factor of efficient 
swimming. To test whether the overall progress of the swimmers with feedback was higher, we 
compared the average progress (average change in lap time compared to the first session) of the 
swimmers across all sessions using the Mann-Whitney U-test. 

6.3 Results 
Four swimmers in the control group missed seven sessions due to swimmer unavailability, while 
swimmers in the experimental group participated in all test sessions. The average lap time of all 
swimmers during the ten sessions is shown in Figure 6.5. The swimmers of both groups show 
progress during the ten training sessions.  

 
Figure 6.5 – Average lap time of the swimmers in 10 sessions (Se1-Se10), for eight swimmers of the 
experimental group (Sw1-Sw8, left) and seven swimmers of the control group (Sw1-Sw7, right). 

Comparing the first and the last session of all swimmers, the lap times of the last session are 
significantly lower than those of the first session, based on t-test results (p-value < 0.001 for both 
groups). For a qualitative comparison, the graphs for goal metrics and lap times of the first and 
tenth sessions are shown in Figure 6.8 and Figure 6.9 of section 6.6.1 of the appendix for the 
experimental group and the control group, respectively. On average, each swimmer of the 
experimental group improved 7.4% with respect to the first session while the control group 
swimmers improved 5.3%. However, the progress trend and the amount of lap time change 
seems to be visually different for each swimmer. Moreover, the swimmers who had worse 
performance (higher average lap time) at the beginning of the measurements made more 
progress until the end of the measurements compared to others. 

6.3.1 Coach interpretation  

Based on the reports the coach wrote during the measurements, he used feedback as an 
additional factor to his observation and Figure 6.6 can be conceptualized for his decision-making 
process with SmartSwim. In general, he relied on his experience and knowledge to make 
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decisions. He considered the swimmer's profile and existing constraints, such as time until the 
next competition or injury, to make a decision for each swimmer. SmartSwim provided the coach 
with new knowledge that enabled him to make safer and more reliable decisions to adapt each 
individual's training. 

 
Figure 6.6 – Feedback effect on the training procedure illustrated by the coach 

A summary of the main comments and training adjustments mentioned in the coach's reports 
can be found in Table 6.4 of section 6.6.2 of the appendix. By directly observing the individual 
performance evaluation chart (Figure 6.2, left), the coach identified the swimmer's weaknesses in 
each session and evaluated the room for progress in each phase of swimming (by comparing the 
swimmer's average and best performance). Multi-phase observation was helpful to the coach 
which is mentioned in coach comments. For example, when the swimmer started with a strong 
push (observed by push maximum velocity) but slacked off in the goal metrics of subsequent 
phases, the coach attempted to balance the performance between phases. Stroke average velocity 
chart (Figure 6.2, right) provided further information about the swim phase. The coach 
considered the results with little variation during strokes to be for the swimmers who can swim 
more regularly. He also qualitatively observed the effect of the change in swimming rhythm 
during breathing in the average velocity of the strokes. The coach also observed a decreasing 
velocity trend during strokes. 

Multi-session feedback is used to monitor the effects of training on swimming performance over 
several weeks (Figure 6.3, left). Based on the coach's comments, he assumed that any training 
adjustments would show an effect after three weeks. If he observed satisfactory progress, he 
continued training in the same manner; otherwise, he chose a different strategy for the swimmer. 
In addition, by looking at the lap time values in the same graph (Figure 6.3, right), the coach was 
able to observe the effect of the training adjustment on the swimmer's average lap time and make 
a more reliable decision. As the final feedback type, the swimmer comparison chart (Figure 6.4) 
allowed the coach to see the weaknesses and strengths of each swimmer compared to the others. 
The coach also used this chart to find the swimmers with higher potential to focus on, as the 
swimmers' progress compared to others was clearly visible when looking at this chart over 
several sessions. 

6.3.2 Statistical analysis  

The results of the applied Mann-Kendall trend test for the person-level comparison (Table 6.2) 
show a decreasing trend in lap time for swimmers in both groups. In the experimental group, 
this trend was significant for all but one swimmer, while in the control group only two swimmers 
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showed a significant trend. In addition, stronger significance (higher S values) was observed for 
swimmers in the experimental group. 

Table 6.2 – Person-level comparison between the experimental group and the control group. S value for 
Mann-Kendall trend test of average lap time values during 10 training sessions. A negative sign indicates 
a decreasing trend. 

Experimental group lap time trends – S value 
Sw1 Sw2 Sw3 Sw4 Sw5 Sw6 Sw7 Sw8 
-37* -41* -39* -31* -19 -29* -25* -23* 

Control group lap time trends – S value 
Sw1 Sw2 Sw3 Sw4 Sw5 Sw6 Sw7 
-24* -17* -16 -14 -18 -15 -23* 

* Significant with 95% confidence level 

At the session level comparison, after confirming the normality of the data by Kolmogorov-
Smirnov test, an independent t-test was performed for comparing the groups. The two groups 
showed a significant difference from the sixth session onward (Figure 6.7). The standard 
deviation results of the groups also showed a significant difference from the sixth session (except 
for the eighth session) (Table 6.3).  

Table 6.3 – Session-level comparison between the experimental and control groups. t score and U score 
results for comparison of mean and standard deviation lap times, respectively. 

# Test session 1 2 3 4 5 6 7 8 9 10 
Lap time comp. :  t score 0.27 1.62 1.36 1.81 1.12 2.39* 2.79** 2.09* 2.40* 1.99* 
Standard deviation comp. : U 
score 

25 18 17 16 10 9* 7* 13 5* 9* 

* p-value < 0.05, ** p-value < 0.01  

Finally, the average lap times of the groups in all 10 test sessions are compared. Although both 
groups showed a significant decreasing trend in lap time (significant trend from Mann-Kendall 
test in Figure 6.7), the experimental group scored significantly lower lap times compared to the 
control group based on the Mann-Whitney U-test with a confidence level of 95% (Ustat = 
18, n1 = n2 = 10, p-value < 0.05, two-tailed). The standard deviation of the experimental group is 
also significantly lower than that of the control group (Ustat = 21, n1 = n2 = 10, p-value < 0.05, two-
tailed). By taking the first sessions as the baseline, we quantified the progress of each swimmer 
as the difference between the lap time of each session and the baseline. According to the result of 
the Mann-Whitney test, the average progress of the members of the experimental group was 
significantly higher than that of the control group (Ustat = 21, n1 = 8, n2 = 7, p-value < 0.05, two-
tailed). Considering all swimmers in each group, the swimmers in the experimental group and 
the control group achieved an average progress of 0.65s (4.4%) and 0.35s (2.3%), respectively. 

Since lap average velocity is the division of pool length by lap time, it is expected to correlate 
with progress. Therefore, we performed the same analysis in session level for lap average velocity 
to see if it showed the similar difference between the two groups. The results are explained in the 
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appendix (Table 6.5 and Figure 6.10). Similar to lap time, the average and standard deviation of 
lap average velocity becomes significantly different between the two groups after sixth test 
session. 

 
Figure 6.7 – Average and standard deviation of lap times for the experimental and control groups during 
ten test sessions 

6.4 Discussion 
In this study, we proposed a new approach for performance evaluation and feedback. We 
investigated the effects of training with SmartSwim on the performance of a group of swimmers 
during a 10-week training period. The results obtained confirmed the ability of SmartSwim to 
provide objective feedback during the training sessions with a lightweight and portable IMU. 
After each test session, this feedback was communicated to the coach through a comprehensive 
report that illustrated the main goal metrics of the test to help the coach design the training more 
efficiently until the next measurement. Comparison with a control group that received only the 
usual feedback confirmed our hypothesis that the experimental group achieved better progress 
in terms of target performance (i.e., lap time) when they received advice based on performance-
related goal metrics. 

6.4.1 Using feedback for training 

Based on the evaluations of the coaches' reports, he quickly understood how to use SmartSwim 
feedback. Unlike traditional methods, he could easily identify and focus on the phase with a 
higher chance of progress, while it takes more time to determine a swimmer's potential through 
subjective observation. He also observed the interaction between swimming phases and 
examined how well the swimmer managed to improve all phases together. Finding the optimal 
training for each swimmer requires trial and error (Irwin et al., 2004), which is reduced when the 
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coach has a quantitative assessment of performance. The coach mentioned that he had more 
confidence in leading the swimmers in the experimental group than in the control group. He 
found that the feedback was consistent with his personal judgement, and followed the swimmers 
with numbers rather than pure observation. Using the graph of strokes average velocity, the 
coach recognized the skilled swimmers with low velocity variation (Dadashi et al., 2016), 
detected the breathing effect on swimming rhythm (Lerda et al., 2001) and identified the 
swimmers’ endurance level (Wakayoshi et al., 1992). The swimmers in the experimental group 
also received the feedback and review of their weekly progress with great enthusiasm, as none 
of them missed a single testing session. 

In this study, the SwimSmart feedback report functioned as an assistant to the coach. The 
involvement of the coach is essential because the final decision to optimize training depends on 
the coach's judgment and the swimmer's profile. The coach usually relies on his or her personal 
experience, based on which he or she can usually make a qualitative assessment of the training 
sessions (Mooney et al., 2016a). Our results show that objective and quantitative goal metrics 
complement the coach's qualitative observations and allow him to better personalize his advice 
and test different strategies using the same goal metrics. Compared to similar studies (Mangin et 
al., 2015; Ehab et al., 2020), we were able to provide feedback on all phases of swimming, not just 
the swim phase, allowing the coach to obtain a more comprehensive assessment. Moreover, the 
feedback was tested in-field for the evaluation of its effect on real training sessions of the team.  

6.4.2 Experimental and control group comparison 

Starting with the person-level comparison, the results of Mann-Kendall trend test with 95% 
confidence level showed that the decreasing trend in lap time during the ten training sessions is 
significant for seven out of eight swimmers in the experimental group, while only two swimmers 
in the control group showed such a significant trend. According to the logic of the Mann-Kendall 
trend test, a significant trend exists when the lap time decreases continuously from week to week. 
This confirms that although the swimmers in both groups achieved a lap time at the end of the 
ten weeks that was significantly lower than the baseline time, the swimmers in the experimental 
group made continuous progress during the measurements, which is a crucial factor in efficient 
training (Toner and Moran, 2015). In addition, the S-values calculated for the swimmers in the 
experimental group (a range of [-41, -23]) are consistently lower than those in the control group 
(a range of [-24, -17]), reflecting the stronger improvement trends when using SmartSwim for 
coaching. 

For the session-level assessment, the two groups had a similar lap time average and standard 
deviation in the first session (p-value > 0.05). During the training sessions, the coach trained the 
experimental group based on feedback, while for the control group he relied only on his own 
coaching experience. Consequently, the experimental group's progress in the remaining sessions 
is influenced by feedback-based training. The results show that the average lap time and standard 
deviation of the experimental group are significantly lower than those of the control group from 
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the sixth session (p-value < 0.05). This shows that the swimmers in the experimental group 
performed not only faster, but also more consistent and systematic (Stewart and Hopkins, 2000) 
than the control group. 

Focusing on the swimmers’ weaknesses and comparing personal observation with feedback 
helps the coach sharpen his critical thinking skills (Nash et al., 2017). The coach provided more 
relevant and personalized feedback to each swimmer, which was reflected in higher progress of 
these swimmers during the same period compared to the control group. In addition, based on 
the results of using lap average velocity to perform the session-level assessment shown in Table 
6.5 and Figure 6.10 of section 6.6.3 in the appendix, similar results were obtained and the two 
groups differed significantly from the sixth session. The coach can use the lap average velocity 
as a substitute for lap time and focus on other goal metrics during the training sessions. 

Finally, swimmers in the experimental group show lower lap time and standard deviation and 
higher progress when all test sessions are considered together (Mann-Whitney U-test, p-value < 
0.05). This suggests that the effect of feedback can be observed not only for each swimmer and 
session, but also in the overall picture of long-term training. Considering the importance of 
seasonal evaluations of swimmers (Koutedakis, 1995), this level of comparison helps the coach to 
monitor the performance in entire season and better prepare for competitions. In summary, the 
superiority of the experimental group over the control group is evident when comparing the 
swimmers' performance at three levels: per person, per session, and all sessions. Bielec et al. 
examined the effect of a specific aerobic exercise on the performance of young swimmers and 
found a significant improvement in males over two months of training (Bielec et al., 2008). 

We tried to keep all effective factors the same for the experimental and control groups, but we 
cannot claim that the superiority of the experimental group over the control group is solely due 
to feedback. The effects of factors such as psychology (Sheard and Golby, 2006), nutrition (Shaw 
et al., 2014), or physiology on swimmers' performance were not considered in this study. 
Moreover, the potential room of progress for each swimmer is different and depends on both 
technical and personal interests which was not considered in this study. Our study is limited in 
terms of the number of swimmers, so we had to use non-parametric analyses. A larger data set 
is needed to more conclusively evaluate the effect of feedback. We mixed male and female 
swimmers, regardless of their growth and maturation status, in the two groups and their 
individual comparison is beyond the scope of this study. Among the four main swimming styles, 
front crawl was analyzed, while the same feedback can be given for the other swimming styles. 
Lap times are recorded by coaches using a stopwatch, which is a source of error in our 
measurements. Due to technical limitations, we need to extract the data and analyze it before 
giving feedback to the coach which takes a few hours. However, the coach can compare his 
observations with the feedback report if it is provided during or shortly after each lap. 
SmartSwim also demands the swimmer to perform all swimming phases in sequence, not starting 
from the middle of a phase. 
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The main disadvantage of wearables is the increased water drag on the swimmer's body 
(Magalhaes et al., 2015). The use of a single sensor in SmartSwim minimizes this problem and 
inconvenience to the swimmer. In addition, it does not interfere with the swimmer's normal 
performance and can be used during daily training. The use and attachment of the sensor 
requires extremely little preparation and analysis on the part of the coach, who can therefore 
easily use the system for all swimmers at the same time. The sensor could be integrated and 
industrialized into the swimsuit at a later stage. Regarding the complexities of finding the best 
coaching approach for young swimmers, multiple studies examined the effect of training load 
(Toubekis et al., 2013), mental training (Bar‐Eli et al., 2002) or training intensity (Gussakov et al., 
2021) on the performance of young swimmers, rarely reporting significant performance changes. 
Since technique analysis is of high importance for efficient coaching, training program can be 
improved by SmartSwim feedback. Sharing the phase-based feedback of a larger group of 
swimmers with the coach and developing the appropriate real-time algorithms to provide 
feedback simultaneously can be offered as next steps in this research. 

6.5 Conclusion 
In this study, we examined the effects of coaching with SmartSwim, a new phase-based 
performance evaluation feedback, on swimmers' performance during 10 weeks of training. The 
coach used a comprehensive report of phase-based goal metrics from IMU as an assistant for 
eight swimmers in the experimental group and adjusted their training accordingly, while he 
guided seven swimmers in the control group based only on his observations and coaching 
experience. The results showed that the experimental group outperformed the control group 
when considering the performance of each swimmer, the performance of the group in sessions, 
and the group performance in all training sessions. Most of the swimmers in the experimental 
group showed a significant downward trend in their average lap times in 10 test sessions. The 
experimental group significantly outperformed the control group in terms of lap times from the 
sixth session onward. In addition, the swimmers in the experimental group showed more 
consistent results than those in the control group. Finally, considering all 10 sessions, the 
swimmers in the experimental group showed significantly higher progress, lower average lap 
times, and more consistent records than the control group. The coach found the feedback reports 
very helpful in "diagnosing" the swimmers' weaknesses and monitoring their progress more 
efficiently during the training sessions. This study has helped meet the needs of the coaching 
community and promote objective coaching in swimming.  

6.6 Appendix 

6.6.1 First and tenth weeks comparison 

The average values for five goal metrics and lap times during the first and last test sessions are 
shown in Figure 6.8 and Figure 6.9 for the swimmers in the experimental and control groups, 
respectively. 
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Figure 6.8 – Average values of goal metrics and lap times in first (Se1) and last (Se10) session, for the 
swimmers of the experimental group 
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Figure 6.9 – Average values of goal metrics and lap times in first (Se1) and last (Se10) session, for the 
swimmers of the control group 
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6.6.2 Coach’s observations and interpretations 

The key observations and training adaptations that the coach made based on SmartSwim 
feedback were collected in reports after each session. Table 6.4 shows a list of his observations, 
comments and proposed trainings or tests for the swimmers in four main swimming phases. 

Table 6.4 – Summary of coach observations and training adaptations using SmartSwim 

Phase Sample observations Comments, new training and tests 
Push • Percentage of progress in the report 

shows the room for enhancement in 
each phase. 

• The swimmer is not good at phase A 
but good at phase B. 

• The swimmer is strong in phase A but 
he loses it in the following phases. 

• The training strategy is working as 
the swimmer have improved 
compared to the two previous 
sessions. 

• Swimmer A is weaker than others in 
phase B and he has not improved 
enough. 

• More repetitions with and without fins 
• Decreasing the time to reach 10m 
• Increasing the distance travelled after a 

strong push on the wall with 6 kicks and 
then 2 strokes without breathing 

• More lower body workout in dry-land 
training. 

• Travelling as much distance as possible 
using only the initial push on the wall  

• Several stroke preparation trainings with 
fins to observe the hip motion range. 

• Noticing the balance between the depth 
and length of stroke preparation after start 

Glide 

Stroke 
prep. 

Swim 

• There a lowering trend in stroke 
average velocity chart 

• High variability and irregularity is 
clear in strokes velocity 

• The respiration causes higher velocity 
variation in the lap. 

• Swim phase average velocity is lower 
than previous sessions. 

• Arm positioning and stroke rhythm 
correction 

• More long distance, low intensity trainings 
for increasing the endurance  

• Limiting the number of breaths in 
repetitions 

• Smoother strokes and more use of the force 

6.6.3 Session-level comparison using lap average velocity goal metric 

Lap average velocity is the goal metric that was highly associated with lap time in our previous 
study. Therefore, a similar comparison is made between the experimental group and the control 
group at the session level. After confirming the normality of the data with Kolmogorov-Smirnov 
test for the data of both groups, an independent t-test was performed to compare the differences 
between the two groups. They showed a significant difference from the sixth session (Figure 
6.10). The standard deviation results of the groups also showed a significant difference between 
them from the sixth session (except for 8th session) (Table 6.5). 

Table 6.5 – Session-level comparison between the experimental and control groups. t score and U score 
results for the comparison of the means and standard deviations, respectively, of lap average velocities. 

# Test session 1 2 3 4 5 6 7 8 9 10 
Lap time comp. :  t score 0.29 0.44 0.78 1.02 0.86 2.33* 3.59** 2.63* 2.01* 1.99* 
Standard deviation comp. : U score 26 24 14 23 12 4* 7* 15 8* 9* 

* p-value < 0.05, ** p-value < 0.01  
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Figure 6.10 – Average and standard deviation of lap average velocity goal metric for the experimental and 
control groups during ten test sessions. 

6.6.4 Feasibility study of phase-based performance evaluation system as a minimally 
viable product 

After observing the effects of phase-based feedback on coach performance and subsequently on 
swimmers, we conducted a survey among a group of swimming coaches in Swiss swimming 
clubs to evaluate the feasibility of our solution. In this survey, we asked them about (i) the 
analysis systems they use for swimming analysis, (ii) the parameters they would like to track 
throughout the training session and specifically during each swimming phase, (iii) their opinion 
on the use of wearable motion sensors for monitoring swimmers, and (iv) what they would think 
of the solution offered by SmartSwim. 25 swimming coaches participated in this survey (39.8±8.6 
years old with 14±6 years of professional coaching experience) whose focus is on training 
professional swimmers for regional or national competitions. The survey was conducted with an 
online questionnaire1 and the coaches were informed about the results of the survey. 

6.6.4.1 Swimming analysis systems 

95% of the coaches are familiar with cameras and use them daily, weekly, or quarterly 
underwater or above water for swimmer motion analysis. However, other types of measurement 
systems for kinetic analysis (e.g., force platforms, hand pressure sensors) or physiological 
analysis (e.g., heart rate monitors, blood lactate monitors) are used less (Figure 6.11). Among the 
coaches who used cameras, 65% used the cameras only qualitatively, while the rest used them in 
a mixed qualitative and quantitative manner, with none using them exclusively quantitatively. 

                                                                        

1 The questionnaire is accessible with this link: https://doi.org/10.5281/zenodo.7067156 
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Figure 6.11 – The swimming analysis systems used by coaches along with the usage frequency. 

When asked about the advantages and disadvantages of the measurement systems used, most of 
the coaches mentioned "quick feedback" and "easy to understand results" as the most important 
feature of an ideal analysis system. However, they believed that existing systems on the market 
are very "time-consuming" and require them to put in "a lot of effort" to provide the results, which 
is a well-known drawback of the cameras (Figure 6.12). The survey results indicate that while 
cameras are used by most coaches as a common measurement system, they are dissatisfied with 
the amount of time and effort they have to spend using them, which is consistent with the 
findings of our literature review. 

 
Figure 6.12 – The features of an ideal swimming measurement system (on the left) and the disadvantages 
of the current measurement systems used by swimming coaches (on the right). 
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6.6.4.2 Important parameters to monitor 

Among the general parameters that can reflect the swimmer's overall performance during a 
training session, coaches record the number and duration of swimming laps with stopwatches. 
Regarding the spatio-temporal parameters during the swimming phases of start, free-swimming 
and turn, the response frequency of the coaches to different parameters is shown in Figure 6.13. 
During the start phase, body posture and kinematics (velocity and acceleration during dive or 
push) are the most interesting for the coaches, while kinetic parameters or duration of sub-phases 
are less noticed. During the free-swimming phase, stroke count, and rate and distance per stroke 
receive a great deal of attention, which is consistent with the literature as these are easily 
measured parameters commonly believed to relate to performance. Similar to the start phase, the 
kinetic parameters are ranked lower than the kinematic parameters in relation to the stroke. 
During the turn phase, performance evaluation is qualitative and coaches mainly pay attention 
to the time of the turn or from 5 m before the turn to 10 m after, which is a common rule of thumb 
for turn evaluation. 

 
Figure 6.13 – The start, free-swimming and turn parameters ranked by coaches in order of importance 

6.6.4.3 IMUs and SmartSwim solution 

When asked about the use of wearable motion sensors, most coaches (80%) said they do not use 
them mainly because of high price (52%), unfamiliarity with the technology (28%), or low 
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accuracy (24%). Because of the coaches' deep trust in their subjective training philosophy and 
coaching experience, using a simple waterproof camera is much easier and cheaper for everyone 
than using an IMU sensor for every swimmer. However, both the accuracy and the amount of 
information provided by IMUs are not comparable to that obtained through the qualitative use 
of cameras. After explaining the SmartSwim system, which consists of an IMU sensor integrated 
into the swimsuit that provides phase-based feedback, they rated the comfortability (3.8 out of 5) 
and practicality (3.9 out of 5) of such an analysis system in training. The responses showed that 
most of them are willing to use SmartSwim at every training session (40%) or once a week (36%). 

6.6.4.4 Survey results discussion  

The survey results show that Swiss swimming clubs still use traditional analysis systems such as 
cameras and are not yet sufficiently aware of the possibilities of IMU technology in this sport. 
However, they are well aware that using cameras requires a lot of time and effort, which makes 
them less practical for daily use. Therefore, they need to observe how the detailed parameters 
obtained from a single IMU can help them improve their training strategy, guide swimmers more 
efficiently in training, and subsequently achieve better results in competitions.  

Among the parameters of each swimming phase, a tendency can be observed towards the 
postural and kinematic parameters. They rely on the parameters that are usually measured and 
observed (either qualitatively or with the stopwatch, e.g. stroke count and stroke rate), and the 
IMU-based parameters about the swimmer's velocity and acceleration are of interest to them. The 
fact that IMU technology can give swimming coaches a new insight and is not known to many 
Swiss coaches makes this market more suitable for the introduction of this technology. However, 
this technology would need to become better known in order to show its true potential in practice 
and also to lower the price to compete with other measurement systems. Considering the 
drawbacks shown in Figure 6.12, SmartSwim provides detailed and easy to understand results 
about swimming phases. Compared to cameras, SmartSwim has the advantage of being less time 
consuming and requiring less effort from the coach to use in daily training. SmartSwim goes a 
step further to meet the needs of coaches by providing a new, comprehensive insight into 
swimmer performance that is simple enough to use on a daily basis. The overall promising 
evaluation of SmartSwim by swimming coaches makes it all more encouraging to move it closer 
to a minimally viable product by more conveniently integrating the sensor into the swimming 
suit and transmitting the data during the training after each trial to show the results to the coach 
after each practice. The system also needs further development to analyse the swim start from 
the dive (instead of wall push-off) and the swimming turn

 

 



 

 

133 

PART IV – CONCLUSIONS 

 



 

 

 



 

135 

 Contributions, limitations, and 
future work 

The current chapter summarizes the main contributions of this thesis, limitations, and 
possible future work to continue the proposed system. The main objective of this thesis was 
to develop an IMU-based analysis system for competitive swimming that provides coaches 
with an overview of the entire training session that is both comprehensive and detailed. 
The proposed system, named SmartSwim, is based on a single sensor on sacrum and uses 
validated algorithms to start from a general overview of the training session and then go 
deep into the swimmer's performance in all phases of the wall-to-wall swimming. Such 
insight can help the coach focus on the swimmer's weaknesses and strengths and make the 
training session more efficient. 

7.1 Main contributions 
This thesis has been divided into four parts, each on including different chapters. Part I of this 
thesis contains an introduction to the topic (Chapter 1) and a review of the state-of-the-art in 
application of IMUs in sports with a focus on swimming (Chapter 2). As introduced in Chapter 
1, swimmers require continuous supervision and feedback from a coach to improve their 
performance and perform at their best during competitions. Due to the complicated nature of 
swimming, the coach must perform multiple tasks during each session to optimize the training 
process for the swimmer. The need for measurement systems is unavoidable due to the amount 
and accuracy of data required, as coaches must accurately and objectively monitor performance-
related metrics during each swimming phase, which is impossible with traditional training 
approaches. This assumption is more confirmed with our survey among Swiss swimming 
coaches explained in section 6.6.4. The advantages of using IMU in analysis of swimming 
performance-related parameters, swimming style, and providing feedback have been 
demonstrated. 

In Chapter 2 of this thesis, we took a broader perspective and explored the importance of motion 
analysis for evaluating athletes' technique and providing feedback as two main tasks of a coach 
that contribute to improving performance. Among motion analysis methods for swimming, 
IMUs have shown promising results in providing swimming coaches with detailed and accurate 
estimates of performance-related metrics. This technology has overcome the limitations of vision-
based systems specifically in aquatic environments, allowing for easier application and quick 
feedback to coaches and swimmers. However, despite a large body of research on the use of 
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inertial sensors, coaches still lack a suitable measurement system. In most studies, the main focus 
has been on free-swimming phase, while other phases such as start and turn have been largely 
ignored.  

The literature review in Chapter 2 also showed that the parameters extracted by IMUs in 
swimming have been studied in isolation and the relationship between them and performance is 
still an open discussion. The importance of feedback for learning a skill is undeniable, especially 
in complex activities such as swimming. Typically, coaches provide this feedback during or after 
each trial either verbally, visually on videos or by feedback from wearables. Although the 
detailed parameters measured by IMUs can be used as valuable feedback for the coach and 
swimmers, studies have rarely achieved the in-field application of IMUs to provide feedback. As 
a result, the contribution of this technology to training session has not been adequately explored, 
and its effects on swimmers' progress have yet to be investigated. Therefore, we discussed the 
need of a new approach to IMU-based analysis of swimming to deep-dive into the details of 
swimmer's performance at each phase. This approach provides a phase-based performance 
assessment that is then used as feedback for competitive swimmers to evaluate its application in 
practice. In part II, we introduced the analysis approach and described its underlying logic and 
its potential to provide the coach with more detailed insight into training at both macro and micro 
levels. In part III, we first assessed the sensitivity of the proposed method to swimmers' progress, 
then used it as feedback during training as an assistant to the coach, and examined its impact on 
swimmers' performance. 

7.1.1 Part II – phase-based technique analysis 

In part II of this thesis, we have proposed a new approach to IMU-based swimming analysis to 
provide a solution to the above-mentioned gaps. In Chapter 3, we proposed a macro-micro 
approach for swimming analysis based on IMU data, inspired from gait analysis, and validated 
it against 2D cameras. In macro level, the analysis starts by detecting the swimming bouts in the 
whole test session. Then the swimming bouts were separated into laps and the swimmer’s style 
(i.e. frontcrawl, breaststroke, butterfly, and backstroke) was identified for each lap. The micro 
level algorithms go deeper into each lap and segment them into swimming phases of Push, Glid, 
StPr, Swim and Turn, by processing the acceleration and angular velocity signals based on motion 
and its effect on the IMU data. The algorithms detect the beginning of each phase for lap 
segmentation and the detected sample is compared with the frame on the videos for validation. 
The algorithms were developed for four sensor positions of sacrum, head, wrists and shanks for 
comparison.  

 In macro level, an overall accuracy of 0.83-0.98, 0.80-1.00, and 0.83-0.99 was achieved for 
swimming bouts detection, lap detection and swimming style identification on selected sensor 
positions, respectively, with the highest accuracy at the sacrum. In micro analysis, the lowest 
mean and standard deviation were obtained at the sacrum for the onset of wall push-off, glide 
and turn (-20 ± 89 ms, 4 ± 100 ms, and 23 ± 97 ms, respectively), on shank for the beginning of 



7.1 - Main contributions 

 

137 

stroke preparation (0 ± 88 ms), and at the wrist for the onset of swimming (-42 ± 72 ms). This 
study showed that the macro-micro approach with the developed algorithms can cover not only 
the major events, but also the detailed motions of each limb during all swimming phases. Unlike 
other studies that concentrate on a specific parameter during one of the swimming phases, this 
approach expands the possibility of IMU application in swimming and contributes to a 
comprehensive understanding of a swimming session which is more useful for the coach.  

As an additional outcome, sacrum was found to provide equally good or more promising results 
than other sensor positions in both macro and micro levels. From a practical point of view, using 
the least number of wearable sensors is an important factor in swimming because of its effect on 
swimmer’s body profile and drag. With the idea of a single sensor analysis system for swimming, 
it is essential to find a relatively optimum position. However, there are few studies comparing 
different sensor positions and researchers usually chose the easiest sensor position based on the 
goal measurands. Thus, the next contribution of this chapter would be finding an optimal IMU 
position to monitor swimming at any level, regardless of the swimming style and phase. The 
successful use of macro-micro approach in swimming proves it as a promising approach in sports 
which can be used in other disciplines where athletes’ various activities during each training 
session are important both from general and detailed perspectives. 

Built upon the validated macro-micro approach, in Chapter 4 we continued the micro analysis 
by extracting more detailed spatio-temporal parameters (micro parameters) in each swimming 
phase. A few of these parameters were previously extracted in the literature as they were 
interesting to the coach such as number of strokes or stroke rate. Based on the literature, several 
goal metrics were first extracted from the instantaneous velocity (e.g. average velocity per stroke 
cycle) and displacement (e.g. time to reach 15m from the wall) data from a tethered speedometer 
as the reference system for the swimming phases, each representing how well the swimmer 
performed the corresponding phase(s). Assuming that the micro parameters are related to the 
performance of the swimmer, they should vary between swimmers with different performance 
levels. To show how IMU-based micro parameters can associate with swimming performance, 
we studied the relationship between them and each goal metric. Previously, one goal metric for 
the free-swimming phase (average velocity per stroke) was investigated using a single IMU 
(Dadashi et al., 2013d, 2015) , and we extended it to all swimming phases with a new approach. 

First the micro parameters that are highly associated with the corresponding performance goal 
metrics were identified by parameter selection. It was the first time that the extracted parameters 
from IMUs were shown to be related to the three principle aspects of swimming biomechanics 
which are higher propulsion, correct posture, and higher efficiency. The micro parameters that 
did not fit into any of these categories and reflected the duration or rate of an action were 
classified in a fourth group. So, the selected micro parameters were categorized into four groups 
of propulsion, posture, efficiency and duration/rate. We could show that the phase-based 
selected micro parameters can represent the performance elements that are more needed for the 
corresponding phase. For example, no matter the swimming style, the selected parameters 
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during Push phase are more related to the propulsion and then to posture and efficiency 
categories consistent with the phase biomechanics. This analysis showed that the micro 
parameters extracted by IMUs can be interpreted from a biomechanical point of view and reflect 
various aspects of swimming in each swimming phase and extended the potential of IMUs to 
performance evaluation. 

The selected micro parameters in each phase were then used to estimate the corresponding goal 
metrics by LASSO linear regression models. The generated models fit the data with an R2 value 
more than 0.75 for most goal metrics. The RMSE of the regression were less than 0.15 𝑚𝑚 𝑠𝑠⁄  and 
11% for velocity-based goal metrics and 0.52 s and 7.6% for time-based goal metrics. The results 
of this study showed that a single sacrum-worn IMU has the potential to evaluate the swimmer 
performance in different swimming phases in line with standard goal metrics. Practically, our 
proposed method can be useful for coaches to identify the weakness and strength of their 
swimmers and track their progress during training sessions.  

Following the gaps identified in Part I, the results obtained in Part II have shown that IMU can 
be used to provide a more comprehensive overview of the training session and should not be 
limited to the free-swimming phase or front crawl style. The application of this technology is 
expandable to all swimming phases and swimming styles, which is a key feature for the use of a 
swimming analysis system in daily training. The coach can get an overview of all activities during 
the training session, regardless of the style, and compare them during a training session (between 
the swimming trials at the beginning and end of the session) or even more generally over the 
entire season or year.    

7.1.2 Part III – phase-based feedback 

Part III of the thesis aims to use the phase-based goal metrics for tracking swimmers' progress 
and providing feedback to them and the coach. Few studies have used the parameters obtained 
from IMU in practice for providing feedback and evaluated their effects in real training. So the 
next step after technical validation of the phase-based goal metrics (Chapter 4) for providing 
them as feedback to the coach is assessing the sensitivity of the goal metrics to swimmers’ 
progress. In Chapter 5 we validated the use of phase-based performance evaluation method with 
a single IMU worn on the sacrum for tracking the progress of the swimmers. During 10 
consecutive weeks of measurement, the changes in goal metrics were monitored along with 
swimmers’ lap time change as the principal representative of their performance level. A lap time 
decrease of at least 0.5s over a 25m lap was considered as a meaningful progress. Using the 
algorithms validated in chapters 3 and 4, we estimated five goal metrics from the IMU signals 
representing the swimmer's performance in the swimming phases of Push, Glid, StPr and Swim 
and in the entire lap.  

The results showed that the goal metrics for Swim phase and the entire lap predicted the 
swimmer's progress well (e.g., accuracy, precision, sensitivity, and specificity of 0.91, 0.89, 0.94, 
and 0.95 for the lap goal metric, respectively). The goal metrics for initial phases (Push, Glid, and 
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StPr) achieved high precision and specificity (≥ 0.79) but lower sensitivity and accuracy (≤ 0.67) 
in progress detection, we concluded that these goal metrics improved when the swimmer made 
a meaningful progress, but a meaningful progress is not merely attributed to the initial phases. 
The lap goal metric can replace traditional lap time measurement, other goal metrics provide 
additional quantitative information about the swimmer's phase-related performance that is not 
available in traditional coaching approaches. This evaluation can help the coach quantitatively 
monitor the swimmer's performance and train them more efficiently and the coach can use the 
phase-based report to obtain a comprehensive view of the swimmer's performance. This study 
opens new horizons in swimming by providing objective feedback based on goal metrics and 
analyzing the effects of feedback on the swimmer's performance. 

Finally, Chapter 6 describes the in-field effects of using our validated performance evaluation 
feedback (SmartSwim) on training procedure and swimmer's weekly progress. The SmartSwim 
report was provided for an experimental group of swimmers (vs. a control group with no 
feedback) during 10 consecutive weeks and included a comprehensive representation of 
performance based on goal metrics of each phase during each session and in comparison to other 
sessions. The coach used SmartSwim as an assistant for training swimmers in the experimental 
group and adjusted their training accordingly, while he guided the swimmers of control group 
only based on his observations and coaching experience. The feedback was also shared with the 
swimmers of the experimental group so they could observe the outcome of their training not only 
during each session, but also over the course of multiple weeks.  

The results showed that the experimental group outperformed the control group when 
comparing each swimmer, each session, and all sessions. At the level of each individual, more 
members of the experimental group showed significant decreasing trend of average lap time 
(Mann-Kendall trend test, 95% confidence level). While comparing the sessions, the experimental 
group showed significantly lower lap time than the control group from the sixth session onwards 
(p-value < 0.05 from T-test). Considering all sessions, the experimental group showed 
significantly higher progress, shorter average lap time, and more consistent records (Mann-
Whitney U-test at 95% confidence level) than the control group. This study demonstrated that 
SmartSwim can assist coaching by quantitatively assessing swimmers' performance, leading to 
more efficient training. The coach found the feedback reports very helpful in "diagnosing" the 
swimmers' weaknesses and monitoring their progress more efficiently during the training 
sessions. This study has helped meet the needs of the coaching community and promote objective 
coaching in swimming. 

Part III aimed to use the algorithms developed in part II to provide feedback to swimmers and 
coaches, as another major gap observed in part I was the lack of studies that reach the application 
of IMUs in the field and investigate the feedback effect on swimmers' performance. Although we 
only had access to one swim team of 15 swimmers to test the feedback effect, the coach viewed 
our intervention positively because he gained new insight into the performance of the 
experimental group, which was not possible through routine training. He agreed that the 
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feedback from each swimmer was consistent with and quantified his subjective assessment, and 
also provided additional details that he used to adjust training. As a result, our research in part 
III takes the use of IMUs in the field a step further and proves the potential of this technology to 
replace the existing measurement systems. 

7.1.3 Summary of thesis contributions  

In summary, the results of the present work provide the following contributions to the 
application of IMUs for swimming analysis: 

• Extension of the potential application of IMUs in swimming to all swimming phases 
through a novel macro-micro approach. 

• Comparing the feasible IMU sensor positions on swimmer's body for providing a 
comprehensive performance evaluation  

• Demonstrating the association between parameters extracted from IMUs and the three 
main aspects of swimming - propulsion, posture, and efficiency 

• Bridging the gap between kinematic features extracted from IMU in the literature and 
swimming performance 

• Tracking swimmers' progress using phase-based goal metrics estimated by IMU over 
several weeks of training 

• Showing the positive effect of IMU in practice to support swimming coaches by providing 
personalized, phase-based performance evaluation 

• Collection of a database of accelerometer, gyroscope, magnetometer, and barometer data 
from IMUs (on swimmer's wrists, shanks, sacrum, and head), speedometer synchronized 
with videos from 2D cameras inside and outside the water. 

7.2 Limitations 
Our study limitations are stemming from two sources namely measurement constraints and 
algorithmic limitations, detailed in the next sections. 

7.2.1 Measurement constraints 

Although a big dataset from IMUs, speedometer and cameras were collected, the measurements 
conducted for the thesis were limited in number of participants only form the competitive level, 
which affected the diversity of the datasets collected. To compensate for this limitation, we asked 
swimmers to perform multiple trials (Chapters 3, 5, and 6) or to change pace (Chapter 4) to make 
the datasets richer in terms of technique and performance diversity. We included either a 
moderate pace in our measurements (80% of the best pace in Chapter 3) or a progressive pace 
(70%-100% in Chapter 4); the algorithms are not generalizable to all race speeds and apply only 
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within the range of paces included in the measurements. According to this limitation, male and 
female swimmers were mixed for developing the algorithms of our macro-micro analysis 
approach or training the machine learning models for performance evaluation. It is well known 
that training strategy is gender dependent (Amaro et al., 2019) because of the existing anatomical 
differences between male and female swimmers.  

Depending on the strengths of each swimmer, the coach may direct them to focus on a specific 
swimming style that they should be proficient in. However, we asked every participant to 
perform all four swimming styles, regardless of their training experience and performance in that 
style. While the results are less generalizable, training the models based on a more consistent 
dataset in terms of swimmer’s individual performance can result in style-specific models, more 
accurate and useful for the swimmers who focus on a particular style (e.g., breaststroke 
swimmers). Another limitation with respect to the group studied is that all measurements were 
taken in 25m indoor pools, based on the hypothesis that the phase-based performance difference 
between swimmers is apparent over a short distance. However, endurance swimmers 
participating in middle- or long-distance events are interested in parameters such as the 
cumulative fatigue effect on technique, which is hardly visible in short-distance swimming 
(Morais et al., 2018). 

The use of cameras as a reference system in our study imposes further limitations, as the 
observer's error in using these cameras affects the accuracy of the lap segmentation into 
swimming phases (Bland-Altman plots of Figure 3.9 in Chapter 3). In addition, when using 
cameras from the side view, it is difficult to detect some events, such as the beginning of the free-
swimming phase in breaststroke or butterfly, because they are easier to detect in front view, and 
using multiple cameras from different angles makes validation for accurate. The tethered 
speedometer used as a reference system in Chapter 4 was affected by systematic mechanical 
constraints (e.g., additional overstretching or loosening of the nylon line). In addition, due to the 
attachment of the nylon line, the measurements in Chapter 4 had to be performed only in one 
direction without turn and we could not evaluate turns by estimating the goal metrics of this 
phase. Synchronization between IMU and speedometer is also based on a sudden shock and 
matching of the acceleration peaks on the two systems, which is also prone to error, since the 
speedometer line should overcome the system inertia during the shock motion. In Chapter 5, due 
to practical limitations, lap time was recorded using a stopwatch, which is prone to human error; 
using more precise measurement methods such as cameras could improve the quality of this 
analysis. 

7.2.2 Algorithmic and analytical limitations 

Our algorithm does separate swimming from non-swimming by recognizing swimming bouts, 
but it is trained only on the four main swimming styles and cannot distinguish between training 
drills (e.g., sculling) and main swimming styles. The optimal timing for coaches is to get the 
feedback with the shortest delay after the movement so that they can immediately compare their 
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observation with it. The macro-micro approach needs the entire training session for the analysis 
and it does not provide real-time feedback to the coach but only after each measurement. 
However, it is possible to limit the data to each trial and transfer it for analysis so the coach can 
compare their observations with the feedback report if it is provided shortly after each trial. 
Another limitation in providing real-time feedback to the coach is the data transfer from the IMU, 
located on lower back, to display the results to the coach, which is challenging because the sensor 
is usually underwater during the training session. Possible solutions include using other sensor 
locations with easier data transfer, such as head, or integrating an embedded system into the 
IMU, which analyses the data and transmits only the final results to the coach, reducing the 
feedback delay. 

Based on the results of our method sensitivity to functional calibration, coaches who wish to use 
SmartSwim without functional calibration should consider sensor orientation when attaching to 
the swimmer's lower back. We demonstrated that our method is robust to misalignment of the 
sensor attachment up to 10 degrees for all goal metrics. However, when the misalignment angle 
increases to 20°, the estimation of some goal metrics becomes unreliable and functional 
calibration is recommended. Among the three axes, rotation about the mediolateral axis causes 
the greatest change in the estimated value for the goal metric, which should be considered by the 
user when installing the sensor on the swimmer's body. This limitation can be mitigated by 
integrating the IMU into the swimmers' swimming suit, resulting in a tighter fixation to the body 
and less possibility of sensor motion during measurement. 

The attitude and heading reference system used in Chapter 4 to transfer the data to the global 
frame required a known initial body orientation to be used as a reference and the calculation of 
the subsequent orientation quaternions with respect to it. In addition, since the algorithm is based 
on a gradient-descent optimization method, it may not converge if the initial condition is not 
chosen correctly (Madgwick et al., 2011). Since the measurements started from in-water situation, 
the swimmers were asked to keep the upright posture facing forward at the beginning of each 
trial. In addition, the algorithms did not cover the dive at the beginning, but this can be integrated 
in our proposed method. The main influence is to replace the push-off phase from the wall with 
the dive phase and fine-tune the other algorithms. Also, we asked the swimmer to perform all 
swimming phases in sequence and not to start in the middle of a phase. 

In analyzing the feedback effect on swimmers' performance in Chapter 6, we tried to keep all 
effective factors the same for the experimental and control groups. Our study is limited in this 
sense, and it cannot be claimed that the superiority of the experimental group over the control 
group was due solely to feedback. Furthermore, there is a possibility that the swimmers 
performed differently during the measurement and modified their technique in response to the 
awareness of being observed, which is also known as the Hawthorn effect (Wickström and 
Bendix, 2000). Although it was necessary to include the coach in the feedback loop, his subjective 
opinion of each swimmer influenced the feedback he gave to the swimmers in the experimental 
group, which was unavoidable in this study. 
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7.3 Future developments 
There are several ideas for future research to improve SmartSwim's capabilities and bring it closer 
to being used as a coach's assistant during daily training. 

7.3.1 SmartSwim for low-level swimmers 

SmartSwim feedback was developed based on the needs of competitive swimmers and provides 
coaches with insights into the outcome of technique rather than the details of movement. In the 
models used to estimate the phase-based goal metrics in Chapter 4, several spatio-temporal 
parameters reflecting the swimmer's propulsion, posture, and efficiency were extracted and used 
as inputs to the regression models. However, these parameters can provide valuable insight into 
how the swimmer performed each phase, which is more useful for low-level swimmers who 
want to learn professional swimming. For these swimmers, the coach should focus primarily on 
how the technique is executed, not just the outcome. For example, it is necessary to focus on body 
angles to reduce drag as one of the factors that can contribute to better overall performance. As 
a result, training the models using data from low-level or beginner swimmers and tailoring the 
feedback to them is a possible continuation of this research and expands the potential target 
market for SmartSwim. 

7.3.2 Use of additional sensors 

During the measurements, we isolated the Physilog devices (integrating IMU with barometer) 
with a waterproof tape, making them a closed pressure capsule. When viewing the measured 
pressure from barometer data on wrist Physilog during the free-swimming phase, sudden jumps 
in pressure were observed as the wrist entered the water. Using a high-pass filter, the sudden 
changes in the signal were easily located by sharp peaks on the filtered signal, which is shown 
along with the raw data in Figure 7.1. It is impossible to determine the exact time for hand entry 
using only the acceleration or angular velocity signals, and using the barometer data can help the 
accurate detection of this event. Since the pressure is hypothetically related to force, it can also 
be used to estimate the propulsion during stroke cycles. Thus, additional features can be 
extracted from barometer signals to provide feedback to the coach along with SmartSwim phase-
based goal metrics. 
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Figure 7.1 – Pressure profile of signal measured by the wrist barometer and its high pass component 
illustrating the water entering events. 

7.3.3 Real-life application 

A practical swimming analysis system should be as 
close to a "plug-and-play" system as possible so that 
it can be used more conveniently in daily training. 
Therefore, some improvements are still needed for 
the use of our proposed system in training sessions. 
During the measurements, IMUs were waterproofed 
and attached to swimmer's sacrum with double-
sided tapes and then covered by waterproof tape for 
better fixation, which is impractical for daily use. 
Using a waterproof IMU integrated into the 
swimming suit on the swimmer's lower back can be 
an option for real-life application of our system 
(Figure 7.2). This design might differ for female 
swimmers in terms of fixation and sensor attachment 
due to the different swimsuit designs (one-piece or 
two-piece). In this case, it should be investigated 
how much the sensor moves with respect to 
swimmer’s body during the training session and 
whether this affects the accuracy of goal metric estimation. In addition, the comfort of the 
swimmers should be surveyed after using the system to ensure that the proposed design will 
affect their technique the least possible. Also the additional drag created by the wearable is a 
known disadvantage that should be evaluated for the proposed design. 

 
Figure 7.2 – Possible schematic for sensor 
integration into the swimming suit of 
swimmers (M/F) 
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7.3.4 Real-time feedback 

The benefits of phase-based performance evaluation feedback were demonstrated in Chapter 6, 
but we were only able to provide it in an offline mode after the training session. One of the 
features mentioned by coaches in published surveys (Mooney et al., 2016a) and in our survey 
discussed in Section 6.6.4 is providing the fastest possible feedback to the coach, which is an 
important feature for an ideal swimming analysis system. Coaches can compare their 
observations with the quantitative feedback and take immediate action to improve swimmer's 
training. It can also help the coach gain a stronger biomechanical perspective on the swimming 
movement. To reach a near real-time feedback, several adaptations are required for SmartSwim. 
The developed algorithms for macro-micro analysis (Chapter 3) are based on signal processing 
techniques that look for biomechanics-related features in acceleration and angular velocity 
signals, as the developed algorithms should be justified by the swimmer's movements. However, 
pattern recognition methods followed by deep networks can be used to detect the swimming 
phases through a moving window on the signal, which is the first step towards near real-time 
feedback for each swimming phase.  

The next step should be to extract the micro parameters described in Chapter 4 from each phase, 
most of which are based on the data from the entire phase. Depending on the constraints of the 
embedded system (e.g., available buffer, and computational power) and data transfer (due to 
limitations in an aquatic environment), this procedure can be performed at the end of each trial, 
when the data is transferred and analyzed via cloud computing or on a processing unit with 
sufficient resources. Depending on the computation time required, the goal metrics can be 
estimated using the linear models developed and then provided to the coach via the individual 
feedback charts presented in Chapter 6. Another constraint to consider is that the data must be 
transferred to the global frame for parameter extraction, which requires an initial known 
orientation. This initial orientation can be manually selected by a trigger before the start of the 
trial when the swimmer is asked to keep an upright posture and then start to swim. 

In addition, the current orientation drift is corrected using the gradient decent optimization 
algorithm, which ignores the heading angle (yaw angle), causing the orientation to deviate in the 
long run, e.g., when swimming long distances. In this case, fusion of accelerometer and 
gyroscope signals with magnetometer data is a possible solution to correct the angle (Madgwick 
et al., 2011; Bergamini et al., 2014), since the Earth's magnetic field can provide a sufficiently 
constant vector field for orientation correction. However, magnetometers are highly sensitive to 
ferromagnetic objects, which complicates their application. Since the swimmer generally moves 
away from the walls when swimming, the effects of environmental disturbance on 
magnetometers are likely to be less than for other activities.
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