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Abstract

The ability to forecast human motion, called “human trajectory forecasting", is a critical require-
ment for mobility applications such as autonomous driving and robot navigation. Humans plan
their path taking into account what might happen in the future. Similarly, the decision-making
algorithm of autonomous systems should predict how their environment will evolve in the future.
This thesis focuses on developing deep learning methods for forecasting human motion.
In the first part of this thesis, we tackle the fundamental challenges of social interaction modelling
and multimodality. Social interactions dictate how the motion of a human is affected by others.
Current deep learning methods often struggle to model these interactions between trajectory
sequences. To promote interaction-awareness in forecasting models, we develop a training
paradigm that explicitly focuses on samples that undergo interactions and incorporates model
uncertainty. Furthermore, we build a taxonomy of existing interaction encoders and propose
an optimal design that is robust to the real-world noise. In addition to modelling interactions,
a good trajectory forecasting model must account for the multimodal nature of the prediction,
i.e., the possibility of having multiple plausible futures given the past observations. To tackle
multimodality, we present a socially-aware generative adversarial network that leverages recent
advances in sequence modelling, and has the ability to model the temporal evolution of social
interactions. Furthermore, we develop a collaborative sampling technique that refines the bad
generated predictions at test time.
In the second part of this thesis, we focus on two challenges specific to the real-world deployment
of forecasting models: interpretability and adaptability. While neural networks have the capacity
to learn complex interactions, it is difficult to understand the reason behind their predictions.
Thus, we develop a framework that combines the interpretability of the classical models with
the predictive power of neural networks. With regards to adaptability, existing deep forecasting
models suffer from inferior performance when they encounter novel scenarios. We develop a
strategy to adapt a pre-trained forecasting model to a target domain using limited samples. In
particular, we introduce motion style adapters that identify and adjust the target domain-specific
features. Throughout this thesis, experiments on synthetic and real-world forecasting datasets
validate the effectiveness of our proposed methods.

Keywords: trajectory forecasting, deep learning, social interactions, generative adversarial
networks, interpretability, adaptation, benchmark
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Résumé

La capacité de prévoir le mouvement humain, appelée "prévision de la trajectoire humaine", est
essentielle pour les applications de mobilité telles que la conduite autonome et la navigation des
robots. Les humains planifient leur trajectoire en tenant compte de ce qui pourrait se passer dans le
futur. De même, l’algorithme de prise de décision des systèmes autonomes doit prévoir comment
leur environnement évoluera dans le futur. Cette thèse se concentre sur le développement de
méthodes d’apprentissage profond pour la prévision du mouvement humain.
Dans la première partie de cette thèse, nous abordons les défis de la modélisation des interactions
sociales et de la multimodalité. Les interactions sociales dictent la façon dont le mouvement d’un
humain est affecté par les autres. Les méthodes actuelles d’apprentissage profond ont souvent du
mal à modéliser ces interactions entre les séquences de trajectoires. Pour promouvoir la prise
en compte des interactions dans les modèles de prévision, nous développons un paradigme de
formation qui se concentre explicitement sur les échantillons qui subissent des interactions. En
outre, nous construisons une taxonomie des codeurs d’interaction existants et proposons une
conception optimale qui est robuste au bruit du monde réel. Pour aborder la multimodalité, nous
présentons un réseau adversarial génératif socialement conscient qui tire parti des avancées
récentes en matière de modélisation des séquences, et qui a la capacité de modéliser l’évolution
temporelle des interactions sociales. En outre, nous développons une technique d’échantillonnage
collaborative qui affine les mauvaises prédictions générées au moment du test.
Dans la deuxième partie, nous nous concentrons sur deux défis spécifiques au déploiement de
modèles de prévision dans le monde réel : l’interprétabilité et l’adaptabilité. Alors que les réseaux
neuronaux ont la capacité d’apprendre des interactions complexes, il est difficile de comprendre
la raison de leurs prédictions. Ainsi, nous développons un cadre qui combine l’interprétabilité
des modèles classiques avec le pouvoir prédictif des réseaux neuronaux. En ce qui concerne
l’adaptabilité, les modèles de prévision profonde existants souffrent de performances inférieures
lorsqu’ils sont confrontés à de nouveaux scénarios. Nous développons une stratégie pour adapter
un modèle de prévision pré-entraîné à un domaine cible en utilisant des échantillons limités. Nous
introduisons des adaptateurs de style de mouvement qui identifient et ajustent les caractéristiques
spécifiques au domaine cible. Tout au long de cette thèse, des expériences sur des ensembles de
données de prévision synthétiques et réelles valident l’efficacité de nos méthodes proposées.

Mots clés : prévision de trajectoire, apprentissage profond, interactions sociales, réseaux adversa-
riens génératifs, interprétabilité, adaptation, référence
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1 Introduction

1.1 Motivation

One of the great endeavors of research is equipping machines with intelligence to co-exist
alongside humans. Recent developments in deep learning have made giant strides in this direction,
with models achieving remarkable performance on a variety of visual perception tasks ranging
from image classification [1, 2] and object detection [3, 4, 5] to image segmentation [6, 7, 8]
and remote sensing [9, 10]. Such advances promise to reshape the future of mobility where
autonomous systems will be moving alongside humans in everyday life. In fact, several large-
scale efforts are already underway to realize this goal [11, 12, 13]. Despite the great progress
in this field, several important questions require further exploration before we can realize our
objective of ubiquitous autonomous systems.

Till date, there have been several instances of erroneous human-robot interactions by autonomous
systems, leading to failures like getting stuck in crowds, and in rare, unfortunate cases even
resulting in human fatalities [14, 15]. Such cases highlight one of the most critical challenges
preventing the widespread deployment of autonomous systems in society: the ability to forecast
the motion of surrounding humans. Humans can naturally navigate through social situations as
they have the ability to infer other people’s intents, thereby making decisions based on predictions
of what might happen in the future. Similarly, the decision-making algorithm of autonomous
agents is required to not only perceive the surroundings but also predict how their dynamic
environment will evolve in the future. Thus, developing methods to forecast the motion of
humans forms the core objective of this thesis. To improve the performance of motion forecasting,
we address the shortcomings of current methods and subsequently equip these models with
desirable attributes to facilitate real world deployment.
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Figure 1.1: One of the fundamental challenges in human motion forecasting is modelling social
interactions among pedestrians. A collection of interaction encoders have been proposed in
literature, which are neural network blocks that learn social interactions in a data-driven fashion.
In this work, we present a taxonomy of these interaction encoders.

1.2 Our Approach

This thesis represents a culmination of efforts towards the goal of improving human trajectory
forecasting along four major fronts: (1) social interaction modelling, (2) multimodality and
trajectory refinement, (3) injecting interpretability in the data-driven framework, and (4) efficient
model adaptation to unseen scenarios.

To assist in the definition of human trajectory forecasting, we introduce the notion of a trajectory
and a scene. We define a trajectory as the time-profile of human motion states. Generally, a
motion state is composed of the position and velocity of a human. However, it can comprise
more complex attributes like body pose that can help glean more information about a person’s
movement. A scene is defined as a collection of human trajectories in a social setting, which may
include physical context that affects the human trajectories, e.g., walls, doors, and elevators. We
define human trajectory forecasting as follows:

Given the past trajectories of all humans in a scene, forecast the most likely future trajectories
which conform to the social norms.

Human motion forecasting can be viewed as a sequence prediction problem: given the past
motion states of all pedestrians, predict their future motion states. However, there is a crucial
difference between this task and other sequence prediction tasks such as language modelling and
weather forecasting: the trajectory of a pedestrian is affected by the motion of the others in its
surroundings. Thus, one of the fundamental challenges in human motion forecasting is modelling
these social interactions among pedestrians. Specifically, the forecasting model is required to
capture the dependencies (social interactions) between multiple correlated sequences (pedestrian
trajectories). We refer to this task as social interaction modelling.

In recent times, numerous neural network designs that learn social interactions in a data-driven
fashion have been proposed in literature [16, 17, 18]. We refer to them as interaction encoders.
Fig. 1.1 illustrates these encoders within the data-driven pipeline for trajectory forecasting. To
shed light on the key design choices that contribute towards modelling social awareness, we
build a taxonomy of these interaction encoders based on their underlying components. Given our
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findings, we propose a novel design that empirically outperforms existing encoders.

Another pivotal aspect that affects the interaction modelling capability of deep forecasting models
is the training strategy. The prevalent paradigm is to predict and penalize all pedestrians in a scene
simultaneously. However, a significant portion of trajectories in real world datasets are fairly easy
to forecast while the safety-critical scenarios are rare [19]. We tackle this data-imbalance issue
using a novel training strategy that forecasts and penalizes only one interacting pedestrian per
scene, while utilizing the ground truth for the others at training time. Additionally, we stress the
importance of incorporating the model variance within the training objective so that the model is
penalized less for uncertain samples.

Correctly evaluating a network’s ability to model social interactions is as important as designing
the architecture itself. Currently, the improvement in distance-based metrics serves as the indicator
of a model’s ability to learn social interactions [16, 17, 20]. While these metrics are appropriate
for evaluating forecasting results on an individual pedestrian level, they do not explicitly evaluate
the predictions on the scene level. We posit that it is equally, if not more, important to evaluate
the collision rate as the measure of social awareness. Furthermore, there does not exist a fixed
test set to benchmark various forecasting models, unlike other fields like vision [21, 22] and
language [23]. Thus, to objectively and meaningfully evaluate the performance of forecasting
models, we develop a interaction-centric trajectory forecasting benchmark, a significant yet
missing component in the field.

Given the past observations in a scene, multiple socially plausible futures exist. We refer to this
property as multimodality. In addition to social interaction modelling, a forecasting network
is required to exhibit multimodality. The problem of multi-modal trajectory forecasting is
often approached from the perspective of learning a generative model over future trajectories.
Generative adversarial networks (GANs) [24] are a popular choice of generative models owing to
successful applications in vision. Indeed, several forecasting works utilize GAN-based designs to
output multiple futures [17, 25, 26]. However, we discover that these models output predictions
that undergo collisions as well as fail to cover all the future modes.

The failure to output collision-free trajectories can be attributed to the fact that the current
discriminator designs do not fully model human-human interactions; hence the discriminator is
incapable of differentiating real trajectory data from fake data. Only when the discriminator is
capable of differentiating real data from fake data, can the supervised signal from it be meaningful
to teach the generator. Additionally, current works do not leverage the recent advances in sequence
modelling and utilize an LSTM-based discriminator. These observations motivate our proposed
GAN design for safety-compliant multimodal forecasting.

Learning a perfect generative model for trajectory forecasting remains a challenging task. An
imperfect generator can potentially output bad predictions at test time: predictions which undergo
collision. It is easier for the discriminator to recognize that the real distribution is not being
modeled correctly than for the generator to model the underlying distribution accurately. Thus,

3



Chapter 1 Introduction

Maintain 
Direction

Leader 
Follower

Collision 
Avoidance

Avoid 
Occupancy

+ + +

DCM Map

Figure 1.2: In discrete choice modelling, the next-step pedestrian choice can be explained by the
underlying expert-designed functions like leader follower, collision avoidance.

to handle bad predictions, a potential solution is to leverage the information within the weights
of the learned discriminator at test time. Given this intuition, we develop a novel collaborative
sampling technique between the generator and discriminator to refine the predictions during test
time.

Forecasting models are envisioned to be a key component of autonomous systems. The safety-
critical nature of such applications brings forth the requirement of interpretability: the model
should provide an easy-to-interpret rationale behind its behavior, so that one can understand
what triggered a particular decision. While neural networks have the capacity to learn complex
interactions, it is difficult to understand the “why” or simply the impact of pedestrians on
others’ trajectories. On the other hand, analyzing the independent components behind the
decision-making of the hand-crafted classical models [27, 28] naturally provides a backbone
for interpretability (as shown in Fig. 1.2). However, the manually chosen functions limit the
expressibility of these models. Thus, we develop a framework that combines the interpretability
of discrete choice models [27] with the predictive power of neural networks.

During real world deployment, forecasting models can come across unseen scenarios, which
can result in a distribution shift. Such shifts can negatively impact the performance and lead
to undesirable consequences [29, 30]. Thus, it is important to develop an adaptation algorithm
that can update the pre-trained forecasting model to perform well in the unseen target domain.
The standard approach is to fine-tune the whole pre-trained model on data collected from target
domain. However, directly updating the model is often sample inefficient, as it fails to exploit the
inherent structure of the distributional shifts in motion context.

In the forecasting setup, the physical laws behind motion dynamics are generally invariant across
different domains such as geographical locations and agent types: all agents move towards their
goal and avoid collisions. The distribution shift can be largely attributed to the changes in the
motion style: the way an agent interacts with its surroundings. For instance, pedestrians maintain
a larger inter-personal distance in a park as compared to a railway station. Given this decoupling
of motion dynamics, we propose an efficient adaptation algorithm that only accounts for the
updates in the target motion style.
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One of the main applications of developing socially-aware trajectory forecasting methods is
improving downstream tasks like planning in autonomous robots [31, 32]. Current reinforce-
ment learning policies are trained on real-world data using log-replay or using simulators like
CARLA [33] and SUMO [34]. However, these simulators utilize hand-coded rules for surround-
ing agents’ motion that tends to be unrealistic and display a limited variety of behaviors. To
address this issue, we develop an open-source environment that allows to simulate the surrounding
agents using deep trajectory forecasting methods.

1.3 Thesis Contributions

The thesis focuses on identifying and addressing the shortcomings of current motion forecasting
methods in modelling social interactions and outputting multiple futures, developing a data-driven
forecasting framework that incorporates interpretability in its decision-making and devising a
novel adaptation strategy for forecasting models. Further, we present a large-scale interaction-
centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory
forecasting. Concretely, our key contributions are:

Social Interaction Modelling. We provide an analysis of existing designs of data-driven
interaction encoders. We propose a new design that utilizes domain knowledge and is empirically
robust to noise in real-world datasets. To promote interaction awareness in forecasting models,
we develop a novel training paradigm that explicitly focuses on samples that undergo interactions
and incorporates model uncertainty. [Details in : Chapter 2]

Multimodality. We present a novel generative adversarial network, coined SGANv2, that
incorporates three components for safety-compliant multimodal forecasting: (1) spatio-temporal
interaction modelling in both the generator and the discriminator, (2) transformer-based dis-
criminator, (3) collaborative sampling between the generator and discriminator at test time. Our
architecture reduces the collisions and distance-based metrics, while preventing mode collapse.
[Details in : Chapter 3]

Incorporating Interpretability. We present a framework that combines the interpretability of
discrete choice models with the expressibility of neural networks. We show that our framework
outputs accurate future trajectories as well as provides a high-level rationale behind its predictions.
[Details in : Chapter 4]

Adapting Forecasting Models. We propose a sample-efficient adaptation strategy that exploits
the inherent structure of motion style shifts. We introduce a low-rank motion style adapters
that project and adjust the target style features at a low-dimensional bottleneck. To further
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boost efficiency, we propose a modular adaptation strategy facilitating a fine-grained choice of
adaptation layers. [Details in : Chapter 5]

Forecasting Benchmark. We present TrajNet++, an interaction-centric trajectory forecasting
benchmark comprising explicit agent-agent scenarios. Our benchmark provides proper indexing
of trajectories by defining a hierarchy of trajectory categorization. In addition, we provide an
extensive evaluation system to benchmark various models in an objective manner. [Details in :
Chapter 2]

Realistic Simulator. We present DriverGym, an open-source gym-compatible environment
specifically tailored for developing planning algorithms for autonomous driving. In addition to
access to more than 1000 hours of expert logged data, DriverGym also supports reactive and
data-driven agent behavior. Moreover, the performance of a policy can be easily validated on
real-world data using our extensive and flexible closed-loop evaluation protocol. This chapter
results from an applied research project in collaboration with the autonomous driving company
Lyft Level 5 (now, Woven Planet). [Details in : Chapter 6]

1.4 Thesis Structure

The body of this thesis is organized into seven chapters, the first of which is the introduction.

Chapter 2 focuses on modelling social interactions which dictate how the motion of a human
affects others. We present a taxonomy of the interaction encoders based on their underlying
components. Subsequently, we propose a novel design that incorporates domain knowledge, and
is empirically robust to the noise in real-world datasets. To promote interaction-awareness in
forecasting models, we propose a novel training paradigm that explicitly focuses on samples that
undergo interactions and incorporates model uncertainty. Finally, we describe our interaction-
centric benchmark TrajNet++ to objective compare trajectory forecasting models. Experiments
on TrajNet++ quantitatively validate the effectiveness of our proposed interaction encoder and
training strategy, as well as the need for incorporating collision-based metrics in model evaluation.
This chapter expands on the paper published in T-ITS’21 [35].

Chapter 3 tackles the challenge of predicting socially acceptable multimodal output. We present
our novel GAN design called SGANv2 for safety-compliant multimodal forecasting. In particular,
we equip both the generator and the discriminator with the ability to model the temporal evolution
of spatial interactions. In addition, we design a transformer-based discriminator to better guide
the learning process of the generator. Furthermore, we develop a novel collaborative sampling
technique between the generator and discriminator that re-uses the learned discriminator at test
time to refine the generator predictions. Experiments on real-world datasets demonstrate the
effectiveness of our proposed architecture to reduce collisions, and its potential to prevent mode
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collapse. The work in this chapter condenses two publications: a T-ITS (accepted) and a AAAI’20
[36] one.

Chapter 4 incorporates high-level interpretability within the deep motion forecasting models. We
introduce our social anchor framework that combines interpretability of discrete choice models
with the expressibility of neural networks. Our framework can be viewed as disentangling high-
level interpretable intents and lower-level scene-specific nuances of human motion. Experiments
on TrajNet++ show that our framework outputs a high-level rationale behind its predictions
without compromising on the distance-based metrics. This chapter expands on the paper we
presented at CVPR’21 [37].

Chapter 5 tackles the problem of adapting pre-trained forecasting models to unseen scenarios
using limited samples. We introduce motion style adapters (MoSA), that are new modules
inserted in parallel to the encoder layers, which project and adapt the target domain features
at a low-dimensional bottleneck. To further improve efficiency, we describe a modularized
adaptation strategy that disentangles the features of scene context and motion history to facilitate
a fine-grained choice of adaptation layers. We demonstrate that our method outperforms existing
fine-tuning methods on three real-world datasets in low-shot transfer. This chapter is based on
the paper accepted at CoRL’22 [38].

Chapter 6 presents the internal working of DriverGym, an open-source gym environment for
training reinforcement learning (RL) policies for autonomous driving. We address the issue
of non-realism of surrounding agent behavior during simulations and provide the flexibility
to incorporate data-driven forecasting models. Furthermore, our environment supports more
than 1000 hours of real-world expert data and provides a configurable and extensible evaluation
protocol. We provide behavior cloning baselines using supervised learning and RL, trained in
DriverGym. This chapter is based on the paper accepted at NeurIPS’21 Workshop on Autonomous
Driving [39].

Finally, Chapter 7 concludes with a summary of the contributions presented in this thesis and
outlines directions for future work. Note that we do not have a common Related Work chapter,
rather we build the related works of each chapter on top of one another.

1.5 Related Publications

This thesis is based on the material published in the following papers:

• Parth Kothari, Danya Li, Yuejiang Liu and Alexandre Alahi, Motion Style Transfer:
Modular Low-Rank Adaptation for Deep Motion Forecasting, CoRL (2022) [URL]

• Parth Kothari and Alexandre Alahi, Safety-compliant Generative Adversarial Networks
for Human Trajectory Forecasting, Accepted, IEEE Transactions on Intelligent Transporta-
tion Systems

• Yuejiang Liu, Parth Kothari, Bastien van Delft, Baptiste Bellot-Gurlet, Taylor Mordan,
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and Alexandre Alahi, TTT++: When Does Self-Supervised Test-Time Training Fail or
Thrive?, NeurIPS (2021) [URL]

• Parth Kothari, Christian Perone, Luca Bergamini, Alexandre Alahi and Peter Ondruska,
Drivergym: Democratising reinforcement learning for autonomous driving, Machine
Learning for Autonomous Driving, NeurIPS Workshop (2021) [URL]

• Parth Kothari, Brian Sifringer and Alexandre Alahi, Interpretable Social Anchors for
Human Trajectory Forecasting in Crowds, CVPR (2021) [URL]

• Parth Kothari, Sven Kreiss, and Alexandre Alahi, Human Trajectory Forecasting in
Crowds: A Deep Learning Perspective, IEEE Transactions on Intelligent Transportation
Systems (2021) [URL]

• Yuejiang Liu*, Parth Kothari*I and Alexandre Alahi, Collaborative Sampling in Genera-
tive Adversarial Networks, AAAI (2020) [URL]

• Parth Kothari and Alexandre Alahi, Adversarial Loss for Human Trajectory Prediction,
hEART 2019: 8th Symposium of the European Association for Research in Transporta-
tion [URL]

Idenotes equal contribution
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2 Learning Social Interactions for Hu-
man Trajectory Forecasting

This chapter is based on the article:

Parth Kothari, Sven Kreiss, and Alexandre Alahi, Human Trajectory Forecasting in Crowds: A
Deep Learning Perspective, IEEE Transactions on Intelligent Transportation Systems (2021)

2.1 Introduction

This chapter tackles the most crucial aspect of human trajectory forecasting: modelling social
interactions between pedestrians. Humans possess the natural ability to easily navigate through
complex social scenarios. In other words, when people move in crowded spaces like airports and
mall, they effortlessly follow the social etiquette of human motion like respecting personal space,
yielding right-of-way, avoiding to walk through people belonging to the same group. These social
interactions lead to various interesting pattern-formation phenomena in crowds, for instance, the
emergence of lanes of pedestrians with uniform walking direction, oscillations of the pedestrian
flow at bottlenecks.

The ability to model these interactions and consequently forecast motion dynamics in real-world
environments is extremely valuable for a wide range of applications: infrastructure design [40,
41, 42], traffic operations [43], crowd abnormality detection systems [44], evacuation situation
analysis [45, 46, 47, 48, 49], planning of intelligent transport systems [31, 32, 50, 51, 52] and
recently helping in the broad quest of building a digital twin of our built environment.

We re-iterate the notion of a trajectory and a scene. We define a trajectory as the time-profile
of human motion states. Generally, the motion state is composed of the position and velocity
of a human. However, it can comprise more complex attributes like body pose that can help
glean more information about a person’s movement. A scene is defined as a collection of human
trajectories interacting in a social setting. Additionally, a scene can include physical objects and
non-navigable areas that affect the human trajectories, e.g., walls, doors, and elevators. Wherever
necessary, we refer to a particular human of interest in the scene as the primary pedestrian. We
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Figure 2.1: Human trajectory forecasting is the task of forecasting the future trajectories (dashed)
of all humans which conform to the social norms, given the past observed scene (solid). The
presence of social interactions distinguish human trajectory forecasting from other sequence
modelling tasks: the primary pedestrian (X1) deviates from his direction of motion to avoid a
collision, by forecasting the trajectory of the child (X2).

tackle the following objective:

Given the past trajectories of all humans in a scene, forecast the future trajectories which conform
to the social norms.

Human trajectory forecasting is primarily a sequence modelling task. It comprises the typical
challenges for a sequence modelling task like encoding observation sequence and modelling
long-term dependencies. However, there exist two crucial challenges that differentiate it from
other sequence prediction tasks such as language modelling, weather forecasting, and stock
market forecasting (see Fig 2.1):

• Presence of social interactions: the trajectory of a person is affected by the motion of other
people in his/her surroundings. Modelling how the observation of one sequence affects the
forecast of another is an essential requirement for a good human trajectory forecasting model.

• Physically acceptable outputs: a good human trajectory forecasting model should provide
physically acceptable outputs, for instance, the model prediction should not undergo collisions.
Further, quantifying the physical feasibility of a model prediction is crucial for safety-critical
applications.

We view the problem of human trajectory forecasting from the perspective of learning a represen-
tation of human social interactions. Modelling social interactions is an extremely challenging
task as there exists no fixed set of rules that govern human motion. Early works handcrafted this
representation based on domain knowledge [27, 53]. However, social interactions in crowded
environments are not only diverse but often subtle. Following the success of Social LSTM [16],
a variety of neural network-based modules have been proposed in literature that model social
interactions in a data-driven manner.

In this chapter, we focus on the design and evaluation of interaction modules, which are neural
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networks that capture social interactions in crowds. The challenge in designing these interaction
modules lies in handling a variable number of neighbours, identifying the neighbours of interest
and modelling how they collectively influence the future trajectories of a pedestrian. Given the
large number of existing designs, we present a taxonomy encompassing most of the designs of
interaction modules. Based on our taxonomy, we propose an effective interaction module which
incorporates domain knowledge into the neural network design. As a consequence, our module is
better equipped to learn social etiquette like collision avoidance and leader-follower.

In addition to designing interaction modules, it is equally important to develop training techniques
that help to better learn the underlying social interactions. We propose a training strategy to
train socially-aware trajectory forecasting models. Specifically, we introduce a novel training
paradigm that only forecasts the trajectory of pedestrians that undergo interactions during training.
Furthermore, to improve the model training, we highlight the importance of incorporating the
model variance within the loss objective such that the model is penalized less for uncertain
samples. We empirically demonstrate that our training algorithm helps to output accurate as well
as physically acceptable trajectories.

A long-standing question in data-driven trajectory forecasting models is to explore techniques
that help to explain the model decisions. Explaining model decisions is particularly important in
our setup due to the potential model deployment in safety-critical applications. In this chapter,
we propose to utilize the popular Layer-wise Relevance Propagation (LRP) [54] to explain the
decisions of our trajectory forecasting models. To the best of our knowledge, this is the first
work that applies LRP, in a forecasting setting, to infer inter-sequence (neighbours) effects on the
model output.

To demonstrate the efficacy of a trajectory forecasting model, one needs to have the means
to objectively compare with other forecasting baselines on good quality datasets. However,
current methods have been evaluated on different subsets of available data without a proper
sampling of scenes in which social interactions occur. As our final contribution, we introduce
TrajNet++, a large scale interaction-centric trajectory forecasting benchmark comprising explicit
agent-agent scenarios. Our benchmark provides proper indexing of trajectories by defining a
hierarchy of trajectory categorization. In addition, we provide an extensive evaluation system to
test the gathered methods for a fair comparison. In our evaluation, we go beyond the standard
distance-based metrics and introduce novel collision metrics that measure the capability of a
model to emulate pedestrian behavior in crowds.

We demonstrate the efficacy of our proposed methods and training techniques on TrajNet++.
Our proposed interaction module reduces the collisions in the real-world by 20%, without
compromising the distance-based metrics. We highlight the effectiveness of our proposed training
strategies in reducing both distance-based and collision metrics. Finally, we illustrate that the
decisions of our proposed model architecture can be well-explained using LRP in real-world
scenarios.
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To summarize, our main contributions are as follows:

1. We provide an in-depth analysis of existing designs of data-driven interaction encoders
along with their source code. We propose an interaction model design driven by domain
knowledge that reduces collisions by 20% in the real-world.

2. To promote interaction-awareness in forecasting models, we develop a novel training
paradigm that explicitly focuses on samples that undergo interactions, and incorporates
model uncertainty.

3. We explain the decision-making of our models by extending layer-wise relevance propaga-
tion to the trajectory forecasting setting.

4. We present TrajNet++, a large scale interaction-centric trajectory forecasting benchmark
with novel evaluation metrics that quantify the physical feasibility of a model.

2.2 Related Work

Developing models of pedestrian motion in crowds has been an active area of research for the
last few decades [16, 27, 28, 55, 56, 57, 58, 59]. In the 1980s, the motivation of developing
such models lay in their application for designing and planning pedestrian areas such as railway
stations and shopping malls. The earliest works focused on macroscopic approaches [55, 56] that
directly modelled the flow of crowds as a whole. The crowd modelling paradigm later shifted
to microscopic approaches, where the behavior of individual pedestrians became the basis for
developing models that describe pedestrian groups or pedestrian crowds.

On a high level, the classical microscopic models [27, 28, 57, 58] cast the observed rules of
individual pedestrian behavior into different mathematical frameworks such that the resulting
formulation fitted the collected crowd data well. These rules refer to commonly observed
individual pedestrian behavior such as (i) the attraction of an individual towards its destination,
(ii) influence of neighbours on an individual’s motion, and (iii) the attraction to specific individuals
(e.g., friends) and physical objects (e.g., window display). For instance, the social force model
[28] casts the rules into hand-crafted equations of motion, similar to Newtonian mechanics.
These equations resulted in the physical production of an acceleration or deceleration force that
governed the motion of individuals in crowds. Another prominent model for simulating human
motion is Reciprocal Velocity Obstacles (RVO) [60], which guarantees safe and oscillation-free
motion, assuming that each agent follows identical collision avoidance reasoning.

Classical microscopic models showcased a variety of commonly observed crowd phenomenon
very realistically such as formation of dynamically varying lanes of pedestrians walking in
the same direction [28], formation of freely forming groups and queue behavior [61]. They
have also proved useful in applications like automatic video surveillance [27], tracking [62]
and anomaly detection [44]. Crowd behavior modelling has also been approached from several
other perspectives such as continuum dynamics [59], interaction gaussian processes [63], and
additional functions have been defined to model different groups types [64, 65, 66]. Despite such
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intensive modelling process, the manually designed functions and potentials within the various
mathematical frameworks limit the predictability power of these models. These functions impose
not only strong priors but also have limited capacity when modelling complex interactions. In
recent times, methods based on neural networks that infer interactions in a data-driven fashion
have been shown to outperform the works mentioned above.

In the last decade, with the advent of computational resources and publicly available large-scale
datasets [21, 22], deep learning began to demonstrate great potential to learn several vision and
language tasks [1, 67, 68]. This served as an inspiration to explore neural network architectures
that can learn human-human interactions and forecast human motion in a data-driven fashion.
Inspired by the application of recurrent neural networks (RNNs) in diverse sequence prediction
tasks [69, 70, 71, 72], Alahi et al. [16] proposed Social LSTM, the first neural network model
for human trajectory forecasting. Social LSTM is a Long-Short Term Memory network (LSTM)
[73] with a novel social pooling layer to capture social interactions of nearby pedestrians.

Following the success of Social LSTM, the social pooling module has been extended to incorpo-
rate physical space context [74, 75, 76, 77, 78, 79, 80] and various other grid designs interaction
modelling have been proposed [17, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93]. Pfieffer et
al. [81] proposed an angular pooling grid for efficient computation while Shi et al. [83] proposed
an elliptical pooling grid placed along the direction of movement of the pedestrian with more
focus on the pedestrians in the front. Bisagno et al. [84] proposed to consider only pedestrians
not belonging to the same group during social pooling while, Hasan et al. [91, 92] only consider
the pedestrians in the visual frustum of attention [94].

Other designs of interaction modules incorporated different aggregation strategies to pool neigh-
bour information. Gupta et al. [17] proposed to use of a permutation-invariant (symmetric)
max-pooling function, while Ivanovic et al. [87] and Salzmann et al. [93] proposed to sum-pool
the neighbour states. Several works [25, 26, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105,
106, 107] propose attention mechanisms [108, 109] to identify the neighbours which affect the
trajectory of the person of interest. The attention weights are either learned or handcrafted based
on domain knowledge (e.g., euclidean distance). Zhang et al. [85] proposed to refine the state of
the LSTM cell using message passing algorithms.

Many interaction module designs differ in their input modalities. Liang et al. [88] proposed to
utilize geometric relations obtained from the spatial distance between pedestrians, to derive the
interaction representation. [89, 90] propose to input the relative position and relative velocity of k
nearest neighbours. For an extensive survey of all human forecasting methods , one can refer
to Rudenko et al. [110]. In this work, we focus on the underlying components of data-driven
interaction modules and present a taxonomy encompassing most designs in literature.
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Figure 2.2: The data-driven pipeline for human trajectory forecasting. Different designs of
interaction encoders have been proposed in literature, which are neural network blocks that
learn social interactions in a data-driven fashion. In this chapter, we build a taxonomy of these
interaction encoders.

2.3 Method

A global data-driven pipeline for forecasting human motion is illustrated in Fig 2.2. It comprises
of the motion encoding module, the interaction module and the decoder module. On a high level,
the motion encoding module is responsible for encoding the past motion of pedestrians. The
interaction module learns to capture the social interactions between pedestrians. The motion
encoding module and the interaction module are not necessarily mutually exclusive. The output of
the interaction module is the social representation of the scene. The social representation is passed
to the decoder module to predict a single trajectory or a trajectory distribution depending on the
decoder architecture. Since the objective of this chapter is to model human social interactions,
we focus on investigating the design choices for the interaction module.

2.3.1 Problem statement

The forecasting model inputs the trajectories of all the people within a scene denoted by X =

{X1,X2, . . . ,XN}, where Xi is the trajectory of person i and N denotes the total number of people
in the scene. The objective is to forecast the corresponding ground-truth future trajectories
Y = {Y1,Y2, . . . ,YN}. Specifically, we are provided the motion states of all pedestrians at
time-steps t = 1, . . . ,Tobs (input trajectory) and we need to forecast the future motion states
from time-steps t = Tobs+1 to Tpred (output trajectory). We denote the model predictions using
Ŷ = {Ŷ1, Ŷ2, . . . , ŶN}.

At time-step t, we denote the motion state of pedestrian i by st
i . The state can comprise different

attributes of a person, for instance, the position concatenated with velocity (st
i = [xt

i,vt
i], where xt

i
denotes the x-y position coordinates and vt

i denotes the x-y velocity coordinates of pedestrian i at
time t). The problem statement can be extended to input additional attributes like body pose, as
well as predicting k most-likely future trajectories.
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Figure 2.3: Illustration of the grid-based interaction encoding modules. (a) Occupancy pooling:
each cell indicates the presence of a neighbour (b) Our proposed directional pooling: each cell
contains the relative velocity of the neighbour with respect to the primary pedestrian. (c) Social
pooling: each cell contains the LSTM hidden-state of the neighbour. The constructed grid tensors
are passed through an MLP-based neural network to obtain the interaction vector.

2.3.2 Interaction module

Humans have the capability to navigate with ease in complex, crowded environments by following
unspoken social rules, which result in social interactions. In recent years, these social interactions
are captured effectively by designing novel interaction modules. In this section, we broadly
categorize the different data-driven interaction encoders studied in literature, based on their
underlying components. Following this, in the experimental section we empirically analyze the
effectiveness of each of these components and provide recommendations for designing improved
interaction modules. The existing designs can be broadly categorized into (1) Grid based and
(2) Non-Grid based. We now discuss in detail the different components of these interaction
encoders.

Grid Based Interaction Models

In grid-based models, the interaction module takes as input a local grid constructed around the
primary pedestrian. Each cell within the grid represents a particular spatial position relative to
the primary pedestrian. The design of grid-based modules largely differ based on neighbour state
representation.

Neighbour state: Consider a grid constructed around the primary pedestrian, where each cell
contains information about neighbours located in the corresponding position as shown in Fig. 2.3.
Existing designs provide the information of neighbours in two main forms: (a) Occupancy
Pooling [16, 77] where each cell in the grid indicates the presence of a neighbour (Fig 2.3a)
(b) Social Pooling [16, 75, 76, 77, 79, 80, 84] where each cell contains the entire history of the
neighbour, represented by, e.g., the LSTM hidden state of the neighbours (Fig 2.3c). The obtained
grid is flattened and subsequently embedded using an MLP to get the interaction vector pt

i .
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Directional pooling: In this chapter, based on our domain knowledge, we propose to addi-
tionally provide the relative velocity of each neighbour in the corresponding grid cell. When
humans navigate in crowded environments, in addition to relative positions of the neighbours,
they naturally tend to focus on their relative velocities [18]. For the same positional configuration,
the relative velocities of neighbours lead to the concepts of leader-follower [111] and collision
avoidance. In particular, leader-follower behavior arises when a neighbour is in front of the
primary pedestrian and walks along the same direction, while this same positional configuration
results in collision avoidance when the neighbour moves in the opposite direction. Having access
to relative velocities can therefore significantly improve accuracy and reducing model prediction
collisions.

Due to the complex nature of real-world movements combined with the possibility of noisy
measurements, the current design of social pooling [16] may fail to become robust with regards
to avoiding collisions. The forecasting models are expected to learn the notion of collision
avoidance implicitly, as they are trained to minimize the displacement errors [16, 25] and not
collisions. Explicit focus on relative velocity configurations can help to alleviate this issue as they
provide more control over the design of the input grid. When the model explicitly focuses only
on relative velocity configuration (rather than abstract hidden-state configurations), the resulting
simple design has the potential to output safer predictions.

With regards to providing domain knowledge-driven inputs to the interaction module, it can be
beneficial to only consider the neighbours in front of the primary pedestrian as proposed in [94].
We will demonstrate in the experimental section that directional pooling discovers this concept
of focusing on the neighbours in the field-of-view of the primary pedestrian, directly from the
data. In terms of computational efficiency, our proposed directional pooling is faster to deploy in
real-time applications compared to social pooling due to the reduced size of input (N×N×2 in
comparison to N×N×Hdim where Hdim is the hidden-state dimension).

Non-Grid Based Interaction Models

Non-grid based modules, as the name suggests, capture the social interactions in a grid-free
manner. The challenge in designing non-grid based models lies in (1) handling a variable
number of neighbours and (2) aggregating the state information of multiple neighbours to obtain
the interaction vector pi

t . As illustrated in Fig 2.4, the design choices of these modules can
be categorized based on four factors: (a) neighbour state, (b) state embedding, (c) neighbour
information aggregation strategy, and (d) aggregated vector embedding.

Neighbour state: Non-grid based methods do not contain an implicit notion of the spatial
position of neighbours with respect to the primary pedestrian, unlike the grid-based counterparts.
Hence, almost all the existing designs in literature take as input the relative spatial position of the
neighbours. Another popular input choice is the hidden-state of the neighbouring pedestrian [17,
25] as the hidden-state has the ability to encode information regarding the motion history of the
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Figure 2.4: Illustration of the non-grid based encoding modules to obtain the interaction vector.
The challenge lies in handling a variable number of neighbours and aggregating their state
information to construct the interaction vector (a) Neighbour information is aggregated via
attention mechanism (b) Neighbour information is aggregated utilizing a symmetric function (c)
Neighbour information is aggregated via concatenation.

corresponding pedestrian. Amirian et al.[26] models the neighbour state using interaction-centric
geometric features like bearing angle between agents and distance of closest approach [112].
Ivanovic et al. [87] takes as input the velocity of neighbours.

Input state embedding: The input states of the neighbours are then embedded, usually with
an MLP. However, recent works [18, 100] based on graph neural network designs[113], embed
the input states using an LSTM. Each connection of the primary pedestrian to his neighbour is
modelled using a different LSTM. The LSTM helps to capture the temporal evolution of the
neighbour states, unlike the first-order MLP.

Aggregation strategy: Given the embeddings of the neighbours, the most important challenge
for non-grid based models is to design the ideal strategy to aggregate the information of all the
neighbours. Gupta et al. [17] proposed to aggregate the interaction information by applying a
symmetric max-pool function on the obtained neighbour state embeddings. Ivanovic et al. [87]
and Hasan et al. [91] utilized the symmetric sum-pooling function.

A large body of works utilize the attention mechanism [108, 109] to determine the weights of
different neighbours in predicting the future trajectory. These weights can be either hand-crafted
[96] or learnt in a data-driven manner [25, 26, 98]. The attention mechanism can be applied
multiple times to model higher-order spatial interactions [25].

The above aggregation strategies are benchmarked against a simple baseline that concatenates
the neighbour embeddings. To handle a variable number of neighbours, the top-k neighbours
are selected based on a defined criterion, (e.g., euclidean distance). Despite the simplicity, we
demonstrate that the concatenation strategy performs at par with its sophisticated counterparts.

Aggregated vector embedding: The aggregated neighbour vector is passed through an MLP,
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Acronym (P-Q-R-S) Input (P) Embed-I (Q) Aggreg. (R) Embed-II (S) References
O-Grid Position None Grid MLP [16, 77, 81]
S-Grid H-State None Grid MLP [16, 75, 76, 77, 79, 80, 84, 91]
D-Grid Velocity None Grid MLP Directional Pooling [Ours]

D-MLP-Attn-MLP Velocity MLP Attn MLP [83]
S-MLP-Attn-MLP H-State MLP Attn MLP [25, 26, 95, 96, 98, 101, 105]

S-MLP-MaxP-MLP H-State MLP MaxPool MLP [17]
D-MLP-ConC-MLP Velocity MLP Concat MLP [89, 90]

D-MLP-SumP-LSTM Velocity MLP SumPool LSTM [87]
O-LSTM-Att-MLP Position LSTM Attn MLP [18, 100]

D-MLP-ConC-LSTM Velocity MLP Concat LSTM DirectConcat [Ours]

Table 2.1: Model Acronyms: Acronyms for the various designs of interaction modules. We
observe that most of the existing interaction encoder designs fall under our defined categorization.

with the exception of Ivanovic et al. [87] that pass the sum-pooled vector through an LSTM,
to obtain the interaction vector pi

t . We argue that encoding the aggregated vector using LSTMs
offers the advantage of modelling higher-order interactions in the temporal domain. In other
words, the interaction module learns how the interaction representations evolve over time.

For brevity, the interaction modules are denoted using acronyms determined by their designs.
The acronyms are of the form P-Q-R-S where P denotes the input to the module, Q denotes
the state embedding module, R denotes the information aggregation mechanism and S denotes
aggregated vector embedding module. Table 2.1 illustrates how our categorization encompasses
various designs of interaction modules in literature.

DirectConcat
Equivalent to our proposed D-Grid, we describe its non-grid counterpart DirectConcat. Grid-
based models, based on their design, implicitly consider only those neighbours that are within
the grid constructed around the primary pedestrian. We argue that modelling interactions of all
pedestrians (even those far away) may lead to the model learning spurious correlations. Thus, we
propose to consider only the top-k neighbours closest to the primary pedestrian.

Similar to aggregating the obtained directional grid by flattening the obtained grid, in Direct-
Concat we propose to concatenate the relative-velocity and relative-position embeddings of
top-k neighbours. This preserves the unique identity of the neighbours as compared to mixing
the different embeddings like in max-pooling [17] or sum-pooling [87]. Finally, we pass the
aggregated vector through an LSTM as compared to an MLP. This design choice helps to model
higher-order spatio-temporal interactions better and is more robust to noise in the real-world
measurements. We demonstrate in the experimental section that indeed the LSTM embedding
helps to improve the collision metric. DirectConcat is equivalent to D-MLP-ConC-LSTM given
our taxonomy. We use the terms DirectConcat and D-MLP-ConC-LSTM interchangeably.
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2.3.3 Forecasting model

We now describe the rest of the components of the forecasting model. To claim that a particular
interaction module is superior, it is essential to keep the rest of the forecasting model components
constant. Only then we can be sure that it was the interaction module that boosted performance,
and not one of the extra added components. We choose the time-sequence encoder to be an
LSTM due to its capability to handle varying input length and capture long-term dependencies.
Moreover, most works utilize LSTMs as their base motion-encoding architecture.

The state of person i at time-step t, st
i , is embedded using a single layer MLP to get the state

embedding et
i . We represent each person’s state using his/her velocity, as switching the input

representation from absolute coordinates to velocities increases the generalization power of
sequence encoder [17]. We obtain the interaction vector pt

i of person i from the interaction
encoder. We concatenate the interaction vector with the velocity embedding and provide the
resultant vector as input to the sequence-encoding module. Mathematically, we obtain the
following recurrence:

et
i = φ(vt

i;Wemb), (2.1)

ht
i = LST M(ht−1

i , [et
i; pt

i];Wencoder), (2.2)

where φ is the embedding function, Wemb,Wencoder are the weights to be learned. The weights are
shared between all persons in the scene.

The hidden-state of the LSTM at time-step t of pedestrian i is then used to predict the distribution
of the velocity at time-step t + 1. Similar to Graves [67], we output a bivariate Gaussian
distribution parametrized by the mean µ

t+1
i = (µx,µy)

t+1
i , standard deviation σ

t+1
i = (σx,σy)

t+1
i

and correlation coefficient ρ
t+1
i :

[µ t
i ,σ

t
i ,ρ

t
i ] = φdec(ht−1

i ,Wdec), (2.3)

where φdec is modelled using an MLP and Wdec is learned.

2.3.4 Training paradigm

In addition to interaction module design, it is important to focus on the training procedure to
ensure that forecasting models learn the underlying social interactions. As seen in recent works
[17, 87], models without social pooling tend to perform better than their counterparts. It is
not easy to train socially-aware forecasting models. We now highlight key ingredients to help
forecasting models learn the underlying interactions.

Training Objective: We propose to learn the parameters of the forecasting model by minimiz-
ing the negative log-likelihood (NLL) loss:
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(a) The prevalent training paradigm. (b) Our proposed training paradigm.

Figure 2.5: The prevalent training paradigm of predicting all pedestrians (blue) struggles to learn
the social interactions, as a significant portion of trajectories in the dataset are either static or
linear. We propose a novel training strategy that forecasts and penalizes only one interacting
pedestrian per scene (blue), while providing the ground-truth for the rest (red). At test time, all
the pedestrians are forecasted simultaneously.

L (w) =−
Tpred

∑
t=Tobs+1

log(P(vt |µ t ,σ t ,ρ t)). (2.4)

While utilizing the NLL loss is not new [16, 18], we posit that incorporating the predicted
variance σ t within the training objective helps to stabilize model training, as the model is not
penalized heavily for samples for which it is highly uncertain (high σ t). Such a loss formulation
has also been shown to make the network robust to noisy data [114]. We demonstrate in the
experimental section, that the gaussian-based loss formulation performs superior in comparison
to its counterpart L2 loss [17, 25, 76, 101, 115] that does not incorporate the model variance. In
the experiments, we interchangeably use the term gaussian loss to refer to NLL loss.

Penalizing only the primary pedestrian: Many trajectories within a real-world dataset com-
prise static pedestrians standing in a group or pedestrians moving linearly without interacting.
Such trajectories can make the model training inefficient as they are easy to forecast [116] and
contribute no useful learning signal. Furthermore, when present in significant amounts, such
static or linear data can bias the model training and lead to degenerate models.

Therefore, contrary to the standard practice of minimizing the loss objective for all the trajectories
within a sample, we propose to minimize the loss for only those pedestrians that undergo
interactions within each scene of the training dataset. As shown in Fig. 2.5, during training, the
neighbours follow the ground-truth trajectory and only the trajectory of the primary pedestrian
is forecasted in a closed-loop. In the next section, we describe how to identify these primary
pedestrian within a dataset.
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Figure 2.6: Illustration of Graph neural networks (purple) as a special case of our data-driven
pipeline (brown). Each vertex Vi is modelled using a sequence encoder, the neighbour edges Ei j

correspond to our input embeddings which are aggregated via attention mechanism. The resulting
interaction vector is provided as input to the sequence encoder (vertex Vi).

During test time, we follow standard protocol and predict the trajectories of all the pedestrians
simultaneously. Specifically, till time-step Tobs, we provide the ground truth position of all the
pedestrians as input to the forecasting model. From time Tobs+1 to Tpred , we use the predicted
position (derived from the predicted velocity) of each pedestrian as input to the forecasting model
and predict the future trajectories of all the pedestrians.

2.3.5 Equivalence to Graph Neural Networks

Recently, graph neural networks (GNNs) have become popular for forecasting human motion. In
the GNN setup, each pedestrian is represented as a node/vertex Vi and two interacting pedestrians
are connected via an edge Ei j. Vi models the sequence representation of the associated pedestrian
and edge Ei j updates according to the interactions between the associated pedestrians. We
show an equivalence between dynamic-interaction-based GNNs and our proposed LSTM-based
pipeline with S-X-Attn-MLP (where X ∈ {MLP, LSTM}) interaction encoding scheme, visually
illustrated in Figure 2.6.

Without loss of generality, let pedestrian i be the primary pedestrian. Vertex Vi is modelled using
an LSTM sequence encoder. Edge Ei j takes as input the state of the neighbours and updates over
time using an MLP or an LSTM (input state embedding). At each time-step, the information of
all connected edges is aggregated using attention mechanism (aggregation strategy), popularly
referred to as graph attention (GAT) pooling [117] in GNN literature. Finally the aggregated
vector is optionally passed through an MLP to obtain the interaction vector pi which is the
input to the LSTM sequence encoder for Vi. Social-BiGAT [25] utilizes the S-MLP-Attn-MLP
design, Social Attention [18] utilizes the O-LSTM-Attn-MLP design while recently, STAR
[105] utilizes the S-MLP-Attn-MLP design with the sequence encoder for vertex Vi being a
Transformer [108].
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2.3.6 Explaining trajectory forecasting models

Trajectory forecasting models are deployed in many safety-critical applications like autonomous
systems. In such scenarios, it becomes really important to gain insight into the decision-making
of the blackbox neural networks. Several works in literature attempt to explain the rationale
behind the NN decisions [54, 118, 119, 120, 121]. Out of these techniques, Layer-wise Relevance
Propagation (LRP) is one of the most prominent methods in explainable machine learning.

As a quick background, LRP re-distributes the model output decision back to each of the input
variables indicating the extent to which each input contributes to the output. This is done by
reverse-propagating the model prediction through the network by means of heuristic rules that
apply to each layer of a neural network [54]. These propagation rules are based on a local
conservation principle: the net quantity or relevance, received by any higher layer neuron is
redistributed in the same amount to neurons of the layer below. Mathematically, if j and k
are indices for neurons in two consecutive layers, and denoting by R j�k the relevance flowing
between two neurons, we have the equations:

Σ jR j�k = Rk (2.5)

R j =ΣkR j�k (2.6)

On applying the local conservation principle across all the layers, we obtain global conservation
of the output score when reverse propagated back to the inputs. Recently, Arras et al. [122] have
demonstrated that the principle of LRP can also be applied to LSTMs.

LRP has largely been explored in the domain of model classification i.e. the outputs are clas-
sification scores. In this chapter, we utilize LRP to determine which neighbours (via the input
interaction vector) and past velocities (via the input velocity embedding) of the primary pedes-
trian our model focuses on, when regressing to the next predicted velocity. We achieve this by
reverse-propagating both the x-component vx as well as y-component vy of predicted velocity
(vpred = (vx,vy)) and adding the obtained input relevance scores. To the best of our knowledge,
we are the first work to empirically demonstrate that LRP provides reasonable explanations when
extended to the regression task of trajectory forecasting. Moreover, the LRP technique is generic
and can be applied on top of any trajectory forecasting network to analyze its predictions.

2.4 TrajNet++: A Trajectory Forecasting Benchmark

In this section, we present TrajNet++, our interaction-centric human trajectory forecasting
benchmark. To demonstrate the efficacy of a trajectory forecasting model, the standard practice is
to evaluate these models against baselines on a standard benchmark. However, current methods
have been evaluated on different subsets of available data without proper sampling of scenes
in which social interactions occur. In other words, a data-driven method cannot learn to model
agent-agent interactions if the benchmark comprises primarily of scenes where the agents are
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Figure 2.7: Our proposed hierarchy for trajectory categorization. Using our defined trajectory
categorization, we construct the TrajNet++ benchmark by sampling trajectories corresponding
largely to ‘Type III: Interacting’ category.

(a) Static (b) Linear (c) Interacting (d) Non-Interacting

Figure 2.8: Visualization of our high-level defined trajectory categories.

static or move linearly. Therefore, our benchmark comprises largely of scenes where social
interactions occur. To this extent, we propose the following trajectory categorization hierarchy.

2.4.1 Trajectory categorization

We provide a detailed trajectory categorization (Fig 2.7). This detailed categorization helps us
not only to better sample trajectories for TrajNet++ dataset but also glean insights into the model
performance in diverse scenarios, i.e., to verify whether the model captures all the different kinds
of interactions.

Every TrajNet++ scene sample is identified with respect to the pedestrian of interest, called
the primary pedestrian. In particular, if there are two pedestrians of interest present within one
real-world scene, it results in two TrajNet++ scene samples, one corresponding to each primary
pedestrian. Subsequently, each scene is categorized with respect to its primary pedestrian. We
now explain in detail our proposed hierarchy for trajectory categorization. We also provide
example scenarios for the same in Fig 2.8:

1. Static (Type I): If the euclidean displacement of the primary pedestrian in the scene is less
than a specific threshold.
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(a) Leader Follower (b) Collision avoidance (c) Group (d) Others

Figure 2.9: Visualization of our Type III interactions commonly occurring in real world crowds.

(a) Leader Follower (b) Collision Avoidance (c) Group (d) Others

Figure 2.10: Sample scenes from our benchmark. In each of the samples, we illustrate a different
social interaction between the primary pedestrian (yellow) and the corresponding interacting
neighbours (red) in real world datasets.

2. Linear (Type II): If the trajectory of the primary pedestrian can be correctly forecasted
with the help of an Extended Kalman Filter (EKF). A trajectory is said to be correctly
forecasted by EKF if the final displacement error between the ground truth trajectory and
forecasted trajectory is less than a specific threshold.

The rest of the scenes are classified as ‘Non-Linear’. We further divide non-linear scenes into
Interacting (Type III) and Non-Interacting (Type IV).

3. Interacting (Type III): These correspond to scenes where the primary pedestrian under-
goes social interactions. For a detailed categorization coherent with commonly observed
social interactions, we divide interacting trajectories into the following sub-categories (see
Fig 2.9).

(a) Leader Follower [LF] (Type IIIa): Leader follower phenomenon refers to the tendency
to follow pedestrians going in relatively the same direction. The follower tends to regulate
his/her speed and direction according to the leader. If the primary pedestrian is a follower,
we categorize the scene as Leader Follower.

(b) Collision Avoidance [CA] (Type IIIb): Collision avoidance phenomenon refers to the
tendency to avoid pedestrians coming from the opposite direction. We categorize the scene
as Collision avoidance if the primary pedestrian is involved in collision avoidance.

(c) Group (Type IIIc): The primary pedestrian is said to be a part of a group if he/she
maintains a close and roughly constant distance with at least one neighbour on his/her side
during the entire scene.
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Figure 2.11: Distance-based unimodal evaluation metrics commonly used in literature: Average
Displacement Error (ADE) and Final Displacement Error (FDE).

(d) Other Interactions (Type IIId): These are scenes where the primary pedestrian undergoes
social interactions other than LF, CA and Group. We define social interaction as follows:
We look at the angular region in front of the primary pedestrian. If any neighbouring
pedestrian is present in the defined region at any time-instant during prediction, the scene
is classified as having the presence of social interactions.

4. Non-Interacting (Type IV): If a trajectory of the primary pedestrian is non-linear and un-
dergoes no social interactions during prediction, the scene is categorized as non-interacting.

Using our defined trajectory categorization, we construct the TrajNet++ benchmark by sampling
trajectories corresponding mainly to the Type III category. Moreover, having many Type-I scenes
in a dataset (scenes where the primary pedestrian is static) can hamper the training of the model
as well as result in misleading evaluation. Therefore, we remove such samples in the construction
of our benchmark. The details of the categorization thresholds as well as the datasets which
comprise our TrajNet++ benchmark are provided in the supplementary material. A few examples
of our categorization in the real world are displayed in Fig 2.10. In addition to a well-sampled
dataset, TrajNet++ provides an extensive evaluation system to understand model performance
better.

2.4.2 Evaluation metrics

Unimodal Evaluation: Unimodal evaluation refers to the evaluation of models that propose a
single future mode for a given past observation. The most commonly used metrics of human
trajectory forecasting in the unimodal setting are Average Displacement Error (ADE) and Final
Displacement Error (FDE) defined as follows:

1. Average Displacement Error (ADE): Average L2 distance between ground truth and
model prediction over all predicted time steps.

2. Final Displacement Error (FDE): The L2 distance between the predicted final destination
and the ground truth final destination at the end of the prediction period Tpred .
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Figure 2.12: Visual illustration of our proposed collision metrics. In the example, the model
prediction exhibits ground-truth collision (Col-II = 1) but no prediction collision (Col-I = 0).

ADE (Ŷi,Yi) =
1

(Tpred−Tobs)

Tpred

∑
t=Tobs+1

||x̂t
i−xt

i ||22, (2.7)

FDE (Ŷi,Yi) = ||x̂i
Tpred−xTpred

i ||22. (2.8)

These metrics essentially define different distance measures between the forecasted trajectory and
the ground truth trajectory. With respect to our task, one of the most important aspects of human
behavior in crowded spaces is collision avoidance. To ensure that models forecast collision-free
trajectories, we propose two new collision-based metrics in our framework (see Fig 2.12):

3. Collision I - Prediction collision (Col-I): This metric calculates the percentage of collision
between the primary pedestrian and the neighbors in the predicted future scene. This metric
indicates whether the predicted model trajectories collide, i.e., whether the model learns
the notion of collision avoidance.

4. Collision II - Groundtruth collision (Col-II): This metric calculates the percentage of
collision between the primary pedestrian’s prediction and the neighbors in the groundtruth
future scene.

Col-I (Ŷ) = min

(
1,

Tpred

∑
t=1

N

∑
j=2

1[||x̂t
1− x̂t

j||22 ≤ δ ]

)
, (2.9)

Col-II(Ŷ,Y) = min

(
1,

Tpred

∑
t=1

N

∑
j=2

1[||x̂t
1−xt

j||22 ≤ δ ]

)
. (2.10)

We want to stress further the importance of the collision metrics in the unimodal setup. As
mentioned earlier, human motion is multimodal. A model may forecast a physically-feasible
future, which is different from the actual ground truth. Such a physically-feasible prediction can
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result in a large ADE/FDE, which can be misleading. Our Col-I metric can help overcome this
limitation of ADE/FDE metrics and provides a solution to measure the physical feasibility of a
prediction (aversion to a collision in this case). Col-II metric indicates whether the model under-
stood the intention of the neighbours and predicted the desired trajectory mode indicated by fewer
collisions with neighbours in ground truth. We believe our proposed collision metrics are an im-
portant step towards capturing the understanding of the model of human social etiquette in crowds.

Multimodal Evaluation: For models performing multimodal forecasting, i.e., outputting a future
trajectory distribution, we provide the following metrics to measure their performance:

5. Top-k ADE: Given k output predictions for an observed scene, this metric calculate the
ADE of the primary prediction closest to the groundtruth trajectory, similar in spirit to
Variety Loss proposed in [17].

6. Top-k FDE: Given k output predictions for an observed scene, this metric calculate the
FDE of the primary prediction closest to the groundtruth trajectory, similar in spirit to
Variety Loss proposed in [17].

For the Top-k metrics, we propose k be small (3 as opposed to 20) as a model outputting
uniformly-spaced predictions, irrespective of the input observation, can result in a much lower
Top-20 ADE/FDE (explained in detail in the next chapter).

7. Average NLL [87]: At each time-step, we obtain a Kernel Density Estimate (KDE) [123]
of the predicted distribution. From these estimates, the log-likelihood of ground truth
trajectory is computed at each time step and is subsequently averaged over the prediction
horizon. This metric provides a good indication of the probability of the ground truth
trajectory in the model prediction distribution.

2.4.3 Forecasting benchmark: a missing piece

We would like to further stress on the relevance of TrajNet++ from a benchmarking perspective.
The train-test split for trajectory forecasting is not explicitly fixed in literature, and the raw
datasets need to be processed to generate the samples for training and testing. During this
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preprocessing, one has to be careful about information leakage: the information of the future
(ground-truth) should not creep into the past observation. This can lead to significant differences
in results [87, 124].

Furthermore, the test set across all baselines needs to be identical. Some methods do not model
incomplete trajectories while others do not model scenes with single pedestrians. Therefore, such
trajectories and scenes are often filtered out leading to different test sets and theoretically, an
unobjective evaluation. Similarly, the definition of metrics also needs to be consistent across
baselines. For instance, for a given test scene, some works [106] utilize the same prediction (out
of K) to calculate the Top-K ADE and Top-K FDE, while others [17, 102, 124] utilize different
predictions (out of K) to calculate the two metrics, optimizing both independently.

Thus, it is important to measure model performances on a forecasting benchmark. We encourage
researchers to submit their models to TrajNet++, so that the quality of trajectory forecasting
models can keep increasing in tackling more challenging scenarios.

2.4.4 TrajNet++ datasets

We now describe the datasets used in the TrajNet++ benchmark. Since the focus of this chapter is
to tackle agent-agent interactions in crowded settings, we explicitly select datasets where scene
constraints do not play a significant role in determining the future trajectory. For each real world
dataset, we utilize only the information regarding the pedestrian locations from the respective
annotations files, i.e., spatial coordinates of each pedestrian in each time frame. Furthermore, we
provide no information regarding the destination of each pedestrian or structure of the scene. Our
goal is to forecast only the 2D spatial coordinates for each pedestrian.

TrajNet++ Real Dataset

• ETH: ETH dataset provides for two locations: Univ and Hotel, where pedestrian trajecto-
ries are observed. This dataset contains a total of approximately 750 pedestrians exhibiting
complex interactions (Pellegrini et. al. [125]). The dataset is one of the widely used
benchmarks for pedestrian trajectory forecasting. It captures diverse real-world social
interactions like leader follower, collision avoidance, and group forming and dispersing.

• UCY: UCY dataset consists of three scenes: Zara01, Zara02 and Uni, with a total of
approximately 780 pedestrians (Lerner et. al. [41]). This dataset, in addition to the ETH
dataset, is widely used as benchmarks for pedestrian trajectory forecasting, offering a wide
range of non-linear trajectories arising out of social interactions.

• WildTrack: This is a recently proposed benchmark [126] for pedestrian detection and
tracking captured in front of ETH Zurich. Since the dataset comprises of diverse crowd
interactions in the wild, we utilize it for our task of trajectory forecasting.

• L-CAS: This is a recently proposed benchmark for pedestrian trajectory forecasting (Sun
et. al. [127]). The dataset, comprising over 900 pedestrian tracks, comprises diverse
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(a) Sensitive Scenes (b) Insensitive Scenes

Figure 2.14: Illustration of our filtering procedure to generate Trajnet++ synthetic dataset. Given
ground-truth observations (primary pedestrian in blue, neighbours in red), we perturb the positions
of all agents at the end of the observation period with small noise and forecast the future with
ORCA multiple times, to obtain a distribution (in green). This procedure helps us identify the
sensitive scenes and consequently remove them.

social interactions that are captured within indoor environments. Some of the challenges
scenarios in this dataset include people pushing trolleys and running children.

• CFF: This is a large-scale dataset of 42 million trajectories extracted from real-world
train stations [65]. It is one of the biggest datasets that capture agent-agent interactions in
crowded settings during peak travel times. Due to the high density of people, we observe
higher instances of social interactions like leader-follower in this dataset.

TrajNet++ Synthetic Dataset Interaction-centric synthetic datasets can provide the necessary
controlled environment to compare the performances of different model components. We provide
synthetic data in TrajNet++ to evaluate the performance of a model under controlled interaction
scenarios. It is important to understand what works and what does not in clean simpler scenarios.

Simulator Selection: It is a necessary condition that the interactions in the synthetic dataset are
similar to those in the real world. Empirically, we find that in comparison to Social Force [28],
ORCA [60] provides a better similarity to real world human motion with respect to avoiding
collisions. We select the ORCA parameters which minimize the average displacement error
(ADE) on the Type-III trajectories of TrajNet++ real-world training set.

Dataset Generation: Given the ORCA parameters, we generated the synthetic dataset using
the following procedure: n pedestrians were initialized at random on a circle of radius r keeping
a certain minimum distance d_min between their initial positions. The goal of each pedestrian
was defined to be the point diametrically opposite to the initial position on the circle. For the
TrajNet++ synthetic dataset: We ran different simulations with n chosen randomly from the range
[4, 7) on a circle of radius r = 10 meters and d_min = 2 meters.

Given the generated trajectories, we selected only those scenes which belonged to the Type
III: ‘Interacting’ category. The ORCA simulator demonstrates sensitive dependence on initial
conditions. This can be attributed to the fact that all the agents are expected to collide near the
same point (at the origin), so slight perturbations can greatly affect the future trajectory of all
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Figure 2.15: Examples of samples in the TrajNet++ synthetic dataset generated using ORCA.

agents. Sensitivity to initial conditions, also known as the Butterfly Effect, is a well-studied
phenomenon of Chaos theory[128]. To identify such sensitive initial conditions, the practice
which is often followed is to perturb the initial conditions with arbitrary small noise and observe
the effect. Along similar lines, we propose an additional step to filter out such sensitive scenes:
in each scene, we perturb all trajectories at the point of observation with a small uniform noise
(noise ∈ U[−noise_thresh,noise_thresh]), and forecast the future trajectories using ORCA. We
perform this procedure N times. If any of the N ORCA predictions has a significant ADE
compared to the ground truth, we filter out such scenes. Fig 2.14 visualizes the sample outputs of
our filtering process (with noise_thresh = 0.01, N = 20). We pass the selected scenes through a
final additional filter that identifies sharp unrealistic turns in trajectories. Fig 2.15 illustrates a
few sample scenes of our TrajNet++ synthetic dataset.

TrajNet++ categorization rules. We provide the mathematical conditions to be satisfied to
classify a scene into a particular category in TrajNet++.

• Static (Type I): The total distance traveled by the primary pedestrian is less than 1 meter.
• Linear (Type II): A trajectory is categorized to be Linear if the final displacement error

(FDE) of the extended kalman filter prediction is less than 0.5m.
• Leader Follower (Type IIIa): The primary pedestrian follows a neighbour, moving in

the same direction within an angular range of ±15deg and having relative velocity in the
range of ±15deg, for more than 2 seconds.

• Collision Avoidance (Type IIIb): The primary pedestrian is faced head-on by a neighbour,
coming from the opposite direction within an angular range of±15deg and relative velocity
of movement in the range [180±15deg] at any given point of time.

• Group (Type IIIc): There exists a neighbour on the side of the primary pedestrian (angular
range [90± 15deg] or [−90± 15deg]) for the entire duration of the sample with mean
distance ≤ 1m and standard deviation ≤ 0.2m.

• Other Interactions (Type IIId): If at any point of time, a neighbour exists in the front
(angular range of±15deg) of the primary pedestrian within a distance of 5 m, we categorize
this trajectory of undergoing social interactions.

• Non-Interacting (Type IV): All the other trajectories that fail to satisfy any of the above
conditions.
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2.5 Experiments

In this section, we perform extensive experimentation on both TrajNet++ synthetic and real-world
datasets to understand the efficacy of various interaction module designs for human trajectory
forecasting. Moreover, we demonstrate how our proposed metrics help to provide a more
meaningful picture of model performance.

2.5.1 Implementation details

The velocity of each pedestrian is embedded into a 64-dimensional vector. The dimension of
the interaction vector is 256. The dimension of the goal direction vector is 64. For grid-based
interaction encoding, we construct a grid of size 16×16 with a resolution of 0.6 meters. The
dimension of the hidden state of both the encoder LSTM and decoder LSTM is 128. As mentioned
earlier, each pedestrian has its own encoder and decoder. The batch size is fixed to 8. We train
using ADAM optimizer [129] with a learning rate of 1e-3. We perform interaction encoding at
every time-step. For the concatenation based models, we consider top-4 nearest neighbours based
on euclidean distance unless stated otherwise. For the attention aggregation strategy, we utilize
the self-attention mechanism proposed in [108].

Data augmentation is another technique that can help increase accuracy, which can get wrongly
attributed to the interaction encoder. We use rotation augmentation as the data augmentation
technique to regularize all the models.

2.5.2 Interaction modules: synthetic experiments

We utilize synthetic datasets to validate the efficacy of various interaction modules in a controlled
setup. Since ORCA [60], our underlying simulator for synthetic data generation, has access to
the goals of each pedestrian, we embed the direction to the goal using an MLP, and concatenate it
to the velocity embedding (in Eq 2.1).

Table 2.2 quantifies the performance of the different designs of interaction modules published in
the literature on TrajNet++ synthetic dataset. Observing only the distance-based metrics, one
might wrongly conclude that all interaction modules perform similarly. However, ADE/FDE
metrics do not indicate the ability of the model to learn social etiquette of collision avoidance. In
safety-critical scenarios, it is more important for a model to prevent collisions in comparison to
minimizing ADE/FDE.

Grid-Based Modules

Our proposed D-Grid outperforms O-Grid, especially in terms of Col-I, i.e., D-Grid learns
better to avoid collisions. Even though the motion encoder (LSTM) has the potential to infer
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Model (Acronym) ADE/FDE Col-I Col-II
Grid based methods

Vanilla 0.32/0.62 19.0 7.1
O-Grid [16] 0.27/0.52 11.7 4.9
S-Grid [16] 0.24/0.50 2.2 4.6

D-Grid [Ours] 0.24/0.49 2.2 4.8
Non-Grid based methods

S-MLP-MaxP-MLP [17] 0.27/0.52 6.4 5.2
S-MLP-Attn-MLP [25] 0.26/0.52 3.7 5.4

D-MLP-SumP-LSTM [87] 0.29/0.57 13.8 6.6
O-LSTM-Attn-MLP [18] 0.24/0.48 0.8 5.2

D-MLP-MaxP-MLP 0.28/0.55 14.3 6.1
D-MLP-Attn-MLP 0.27/0.52 8.1 5.0

D-MLP-ConC-MLP 0.25/0.50 1.3 5.6
D-MLP-ConC-LSTM [Ours] 0.24/0.48 0.6 5.3

Table 2.2: Unimodal Comparison of interaction encoder designs when forecasting 12 future
time-steps, given the previous 9 time-steps, on TrajNet++ synthetic dataset. Errors reported are
ADE / FDE in meters, Col-I / Col-II reported in %.

the relative velocity of neighbours over time, there is a significant difference in performance
when we explicitly provide relative velocity of the neighbours as input. Further, since ORCA
is a first-order trajectory simulator dependent only on relative configuration of neighbours, the
performance of D-Grid is at par with S-Grid in the controlled setup.

Non-Grid-Based Modules

First, we focus on the information aggregation strategies for non-grid based encoders. It is evident
that max-pooling strategy performs the worst as it fails to preserve the identity of the surrounding
neighbours. Indeed, it has been shown that max-pooling operation is leaky in information [130].
Furthermore, the simple concatenation baseline performs at par with attention-based aggregation,
implying that further research needs to be conducted to design more effective attention-based
strategies.

Among the non-grid LSTM-based designs, encoding the interaction information using LSTM
[O-LSTM-Att-MLP, D-MLP-Conc-LSTM], improves performance over its MLP-based coun-
terparts. The drop in performance of D-MLP-SumPool-LSTM module [87] can be attributed
largely to (1) sum pooling which provides equal weights to all neighbours and (2) the state
encoding scheme that considers absolute neighbour coordinates instead of relative coordinates:
relational coordinates of agents to the target agent are easier to train than exact coordinates of
agents [17]. MLP encoders, due to their non-recurrent nature, have no information regarding the
interaction representation at the previous step. We argue that LSTMs can capture the evolution of
interaction and therefore provide a better social representation as the scene evolves.
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Model (Acronym) ADE/FDE Col-I Col-II
Hand-crafted methods

Kalman Filter 0.87/1.69 16.20 22.1
Constant Velocity 0.68/1.42 14.30 15.2

Social Force 0.89/1.53 0.0 13.1
ORCA 0.68/1.40 0.0 15.0

Top submitted methods*I

AMENet [131] 0.62/1.30 14.1 16.90
AIN [132] 0.62/1.24 10.7 17.10

PecNet [106] 0.57/1.18 15.0 14.3
Grid based methods

Vanilla 0.6/1.3 13.6 (0.2) 14.8 (0.1)
O-Grid [16] 0.58/1.24 9.1 (0.4) 15.1 (0.3)
S-Grid [16] 0.53/1.14 6.7 (0.2) 13.5 (0.5)

D-Grid [Ours] 0.56/1.22 5.4 (0.3) 13.0 (0.5)
Non-Grid based methods

S-MLP-MaxP-MLP [17] 0.57/1.24 12.6 (0.9) 14.6 (0.7)
S-MLP-Att-MLP [25] 0.56/1.22 7.2 (0.8) 14.8 (0.4)

D-MLP-SumP-LSTM [87] 0.60/1.28 13.9 (0.7) 15.4 (0.5)
O-MLP-Att-LSTM [18] 0.56/1.21 9.0 (0.3) 15.2 (0.4)

D-MLP-ConC-MLP 0.58/1.23 7.6 (0.6) 14.3 (0.2)
D-MLP-MaxP-MLP 0.60/1.25 12.9 (0.6) 14.8 (0.5)
D-MLP-Attn-MLP 0.56/1.22 6.9 (0.3) 14.3 (0.6)

D-MLP-ConC-LSTM (k=8) 0.56/1.22 8.5 (0.5) 14.0 (0.1)
D-MLP-ConC-LSTM [Ours] 0.55/1.19 6.8 (0.4) 14.5 (0.5)

Table 2.3: Unimodal Comparison of interaction encoder designs when forecasting 12 future
time-steps, given the previous 9 time-steps, on Type III interacting trajectories of TrajNet++ real
world dataset. Errors reported are ADE / FDE in meters, Col-I / Col-II in mean % (std. dev. %)
across 5 independent runs.

2.5.3 Interaction modules: real world experiments

Now, we discuss the performances of forecasting models on TrajNet++ real-world data. With the
help of our defined trajectory categorization, we construct the TrajNet++ real-world benchmark
by sampling trajectories corresponding mainly to Type III interacting category. Having gained
insights on the performance of different modules on controlled synthetic data, we explore the
question, ‘Do these findings generalize to the noisy real world datasets comprising much more
diverse and subtle interactions?’

Table 2.3 provides an extensive evaluation of existing baselines on the Type III interacting
trajectories of the TrajNet++ real dataset. Similar to the synthetic setup, we observe that Col-I
metric is a critical differentiating factor for various module designs when compared on identical
grounds. We hope that in future, researchers will incorporate the collision metrics while reporting
their model performances on trajectory forecasting datasets. Another surprising observation is
that the performance of ADE/FDE is similar (including submitted methods) indicating that there
exists a lot of scope to improve the performance of current trajectory forecasting models on a
well-sampled interaction-centric scenarios.
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Vanilla O-Grid S-Grid D-Grid
Time 0.01 0.022 0.081 0.022

Speed-Up 8.1x 3.7x 1x 3.7x

Table 2.4: Speed (in seconds) comparison of grid-based modules at test time. D-Grid provides
3.7x speedup as compared to S-Grid rendering it more suitable for real-world deployment tasks.

Classical Methods

We first compare with the classical trajectory forecasting models, namely, Extended Kalman
Filter (EKF), Constant Velocity (CV) [133], Social Force [28], and ORCA [60]. The high error
of EKF and CV can be attributed to the fact that these methods do not model social interactions.
Both Social Force and ORCA models forecast the future trajectory based on the assumption that
each pedestrian has an intended direction of motion (driven by the goal) and a preferred velocity.
We interpolate the observed trajectory to identify the virtual goals for each agent. Social
Force and ORCA are calibrated to fit the TrajNet++ training data by minimizing ADE/FDE
metrics. The interaction-based data-driven models outperform the handcrafted models in terms
of the distance-based metrics, as neural networks have the ability to learn the subtle and diverse
social interactions.

Grid-based modules

Our proposed D-Grid performs superior to O-Grid in the real world as well. It is interesting
to compare the performances of D-Grid and S-Grid. The current design of S-Grid fails to
learn the notion of avoiding collisions. This corroborates the fact that while training to minimize
ADE/FDE, the abstract hidden-state of LSTM is unable to learn a representation necessary to
avoid collisions. In the D-Grid design, the model explicitly focuses on relative velocities. The
simplicity of our design slightly hampers the distance-based accuracy as we limit the expressibility
of the model. However, it results in safer predictions as the task of the model to learn social
concepts is made easier thanks to our domain-knowledge based design. Further, as shown in
Table 2.4, the D-Grid provides significant computational speed-up in comparison to S-Grid
rendering it useful for real-time deployment.

Aggregation strategy for non-grid modules

We evaluate the performance of various aggregation strategies [D-MLP-Attn-MLP, D-MLP-\
MaxP-MLP, D-MLP-ConC-MLP] on real-world data keeping all the other factors constant.
We observe that the max-pooling strategy continues to perform bad due to its leaky design to
hard-merge the embeddings of various neighbours [130]. The concatenation strategy performs
slightly worse in comparison to its sophisticated attention-based counterpart. We believe that the
concatenation baseline is a simple yet powerful baseline to compare with, when designing future
information aggregating modules.
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Interaction Modelling Objective Penalize ADE FDE Col-I
None Gaussian Primary 0.61 1.31 13.6
Once Gaussian Primary 0.59 1.27 13.4

Every Step L2 Primary 0.64 1.39 6.4
Every Step Gaussian All 0.59 1.29 8.2
Every Step Gaussian Primary 0.56 1.22 5.4

Table 2.5: Our recipe to train socially-aware forecasting models that reduces the collision as
well as distance-based metrics. We propose to (1) perform interaction modelling at all times,
(2) incorporate model uncertainty in loss objective and (3) penalize only the primary pedestrian
during training. Errors reported are ADE / FDE in meters, Col-I in %.

LSTM-based non-grid models

Among the LSTM-based non-grid designs, D-MLP-SumPool-LSTM module [87] demon-
strates high Col-I metric due to (1) sum pooling strategy and (2) encoding of absolute neigh-
bour coordinates. The Col-I metric for O-LSTM-Att-MLP [18] is relatively higher com-
pared to D-MLP-Concat-LSTM in the real-world due to the absence of relative velocity as
input to the interaction model. One can notice the importance of having an LSTM-based
embedding in our proposed DirectConcat model by comparing the performance between
D-MLP-Concat-LSTM and D-MLP-Concat-MLP. The LSTM-based interaction encoder
helps to model higher-order spatio-temporal interactions better and is more robust to noise in the
real-world measurements as LSTM controls the evolution of the interaction vector. The top-k
neighbours are chosen based on euclidean distance. We believe that including domain knowledge
by considering nearest neighbours is one of the reasons for improvement in Col-I metric as
compared to its attention-based and max-pooling-based counterparts. We corroborate this by
observing that considering a large number of neighbours (k = 8), in comparison to (k = 4),
results in an increase in the Col-I metric.

2.5.4 Socially-aware training recipe

We empirically demonstrate the different aspects of our proposed training strategies on the real
world data, namely (1) penalizing only the primary pedestrian during training, (2) utilizing
learned loss attenuation in the form of gaussian loss, (3) performing spatio-temporal interaction
modelling. Table 2.5 illustrates the performance of D-Grid module under various training
schemes.

Penalty. In TrajNet++, the primary trajectories are largely interacting thanks to our defined
categorization; however, there exist significant portion of trajectories among the neighbours
which are static and linear. Penalizing such neighbouring trajectories during training might bias
the network into learning linear behavior. Therefore, we employ a modified training objective
where we penalize only the primary pedestrian and utilize ground-truth of neighbours. During
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test time, we do not provide the ground truth neighbour trajectories. Our scheme reduces the
collisions by 30% (relative) while also improving the distance-based metrics.

Loss Objective. In forecasting, the loss objective also plays a significant role in helping the
model learn better. Predicting the variance in addition to the next step velocity, allows the model
to reduce the penalty it incurs on samples where it is highly uncertain. This results in a more stable
training. As seen in Table 2.5, the gaussian loss objective improves the distance-based metrics by
∼ 15% in comparison to the L2 loss counterpart (which does not consider the variance).

Interaction Modelling. In recent times, works in trajectory forecasting propose to perform
interaction modelling only once at the end of the observation period [17, 25]. It greatly impacts
the ability of the model to learn collision avoidance (2.5x more collision) and distance-based
metrics as well [17]. Therefore, it is important to monitor the performance on the collision metric
while designing interaction modelling strategies.

2.5.5 Explaining forecasting model decisions

Using the popular technique of Layer-wise Relevance Propagation (LRP), we investigate how
various input factors affect the decision-making of the forecasting model at each time-step. This
helps to verify whether the neural network decision-making process follows human intuition.
Fig 2.16 illustrates the score of each neighbour obtained on applying the LRP procedure on our
proposed D-Grid module and baseline S-Grid in real-world scenarios.

In Scene 1, we demonstrate the application of LRP on a simple real-world example. In case
of D-Grid, the primary pedestrian starts focusing on the potential collider N2 despite it being
distant compared to N1 thereby preventing collision by staying closer to N1. On the other hand,
S-Grid keeps focusing on the N1 which is not desirable. It is interesting to note that once
N2 passes the primary pedestrian, both D-Grid and S-Grid shift the attention of the primary
pedestrian back to N1.

In Scene 2, we demonstrate the effectiveness of our proposed D-Grid module in a complex
real-world scenario. For D-Grid, initially the primary pedestrian focuses on N3 to prevent
collision. On successfully avoiding collision with N3, D-Grid immediately shifts the focus to
the pair N1 and N2 as they would potentially lead to a collision. On coming in close proximity
to N1 and N2, the focus significantly shifts towards N1 as it is closer to the primary pedestrian.
Finally, on passing N1 and N2, the primary pedestrian attends to the pedestrian N4 in front. On
the other hand, S-Grid passes in between N1 and N2, such behavior is not expected in human
crowds.

Thus, we can see that LRP is an effective investigative tool to understand the rationale behind
the NN decisions. We can observe that, along with having a lower Col-I metric as compared to

36



Learning Social Interactions for Human Trajectory Forecasting Chapter 2

SC
EN

E 
1

D
-G

rid
S-

G
rid

SC
EN

E 
2 D
-G

rid
S-

G
rid

Figure 2.16: Visualizing the decision-making of grid-based interaction modules using layer-wise
relevance propagation. The darker the yellow circles, the more is the weight (also shown in the
legend) provided by the primary pedestrian (blue) to the corresponding neighbour (yellow). Our
proposed D-Grid, driven by domain knowledge, outputs socially acceptable trajectories with
more intuitive focus on surrounding neighbours as compared to S-Grid.

S-Grid in Table 2.3, the decision making of our domain-knowledge based D-Grid satisfies
human intuition while navigating crowds. The LRP technique is generic and can be applied on
top of any existing trained interaction module architecture.

Summary. Despite claims in literature that specific interaction modules better model interac-
tions, we observe that under identical conditions, all modules perform similar in terms of the
distance-based ADE and FDE metrics. The incorporation of Col-I metrics paints a more mean-
ingful picture of model performance. Secondly, relative velocity plays a crucial role in learning
collision avoidance in the real-world. Thirdly, a simple concatenation strategy performs at par
with the sophisticated attention-based counterparts. We believe that the concatenation baseline
should be a standard baseline to compare to when designing future information aggregating
modules.

Finally, the LRP technique is a useful investigative tool to gain insights regarding the decision-
making process of neural networks. We hope that such practices will help to accelerate the
development of interaction modules in future research. There certainly exists room for improve-
ment, and we hope that our benchmark provides the necessary resources to advance the field of
trajectory forecasting. We open-source our code for reproducibility.
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2.6 Conclusion

In this chapter, we tackled the challenge of modelling social interactions between pedestrians in
crowds. While modelling social interactions is a central issue in human trajectory forecasting,
the literature lacks a definitive comparison between the many existing interaction model designs
on identical grounds. We presented an in-depth analysis of the design of interaction modules
proposed in the literature and proposed an optimal domain-knowledge inspired interaction
module.

A significant yet missing component in this field is an objective and informative evaluation of
these interaction-based methods. To solve this issue, we propose TrajNet++: (1) TrajNet++ is
interaction-centric as it largely comprises scenes where interactions take place thanks to our
defined trajectory categorization, both in the real-world and synthetic settings, (2) TrajNet++
provides an extensive evaluation system that includes novel collision-based metrics that can
help measure the physical feasibility of model predictions. The superior quality of TrajNet++ is
highlighted by the improved performance of interaction-based models on real world datasets on
all metrics (4 of the top 5 methods on TrajNet [134], an earlier benchmark, do not model social
interactions). Further, we demonstrated how our collision-based metrics provide a more concrete
picture regarding the model performance.

Our proposed models outperform competitive baselines on TrajNet++ synthetic dataset by
benchmarking against several popular interaction module designs in the field. On the real
dataset, there is no clear winner amongst all the designs in terms of distance-based metrics,
when compared on equal grounds. Our proposed design shows significant gains in reducing
model prediction collisions. There is room for improvement, and we hope that our benchmark
facilitates researchers to objectively and easily compare their methods against existing works so
that the quality of trajectory forecasting models can keep increasing, allowing us to tackle more
challenging scenarios.

In this chapter, we proposed interaction module designs and training strategies that improve
distance-based metrics and significantly reduce collisions. However, the current model architec-
ture outputs a unimodal prediction. Given the high uncertainty of the future, a good forecasting
model should be able to provide multiple possible futures or modes. In the next chapter, we tackle
the challenge of designing generative models that can output multiple socially-acceptable futures.
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3 Generative Adversarial Networks for
Multimodal Trajectory Forecasting

This chapter is based on the following two articles:

Parth Kothari, and Alexandre Alahi, Safety-compliant Generative Adversarial Networks for
Human Trajectory Forecasting, Accepted, IEEE Transactions on Intelligent Transportation
Systems

Yuejiang Liu*, Parth Kothari*I and Alexandre Alahi, Collaborative Sampling in Generative
Adversarial Networks, AAAI (2020)

3.1 Introduction

In the previous chapter, we studied interaction encoder designs and training strategies to learn
socially-aware unimodal forecasting models. In this chapter, we focus on extending these models
to the multimodal setting (see Fig. 3.1). Given the history, the forecasting model needs to be
able to output all futures without missing any mode. To achieve our objective, we propose a
novel generative adversarial network design for safety-compliant multimodal forecasting and a
collaborative sampling technique to refine the bad predictions. Similar to the previous chapter,
we discuss current evaluation methodologies albeit in the multimodal scenario.

The objective of multi-modal trajectory forecasting is to learn a generative model over future
trajectories. Generative adversarial networks (GANs) [24] are a popular choice of generative
models for trajectory forecasting as they can effectively capture all possible future modes by
mapping samples from a given noise distribution to samples in real data distribution. Gupta
et al. [17] proposed Social GAN (SGAN), GANs with social mechanisms, to learn human
interactions and output multimodal trajectories. Following the success of SGAN, recent works
[25, 26, 79, 98] have proposed improved GAN architectures to better model human interactions
in crowds. Indeed, these designs have been successful in reducing the distance-based metrics on
real-world datasets [25]. However, we discover that they fail to model social interactions i.e., the

Idenotes equal contribution
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Figure 3.1: Given the history (solid), a forecasting model needs to account for social rules of
human motion when predicting collision-free multimodal futures (dash). SGANv2 learns social
interactions via spatio-temporal interaction modelling and a transformer-based discriminator.
Additionally, it refines unsafe outputs using a collaborative sampling strategy.

models output colliding trajectories.

The failure to output collision-free trajectories can be attributed to the fact that the current
discriminator designs do not fully model human-human interactions; hence they are incapable
of differentiating real trajectory data from fake data. Only when the discriminator is capable of
differentiating real data from fake data, can the supervised signal from it be meaningful to teach
the generator. To tackle this issue, we propose two architectural changes to the SGAN design:
(1) Spatio-temporal interaction modelling to better discriminate between real and generated
trajectories. (2) A transformer-based discriminator design to strengthen the sequence modelling
capability and better guide the generator training. Equipped with these structural changes, our
proposed architecture SGANv2, learns to better model the underlying etiquette of human motion
as evidenced by reduced collisions.

To further reduce the prediction collisions, SGANv2 leverages the trained discriminator even
at test time. In particular, we perform collaborative sampling [135] between the generator and
discriminator at test-time to guide the unsafe trajectories sampled from the generator. Additionally,
we empirically demonstrate that collaborative sampling not only helps to refine trajectories but
also has the potential to prevent mode collapse, a phenomenon where the generator fails to capture
all modes in the output distribution.

We empirically validate the efficacy of SGANv2 in outputting socially compliant predictions
on both synthetic and real-world trajectory datasets. First, we shed light on the shortcomings
of the current metric commonly used to measure the multimodal performance, namely Top-20
ADE/FDE [17]. Specifically, we demonstrate that a simple predictor that outputs uniformly
spaced predictions performs at par with the state-of-the-art methods when evaluated using only
Top-20 ADE/FDE. To counter this limitation, we propose an alternate evaluation scheme to
better measure the socially-compliant multimodal performance of a model. We demonstrate
that SGANv2 outperforms competitive baselines on both synthetic and real-world trajectory
datasets under the new evaluation scheme. Finally, we demonstrate the ability of collaborative
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Method Generative Model
Spatio-temporal

Interaction Modelling
in Generator

Multimodal
Spatio-temporal

Interaction Modelling
in Discriminator

Discriminator
Design

Test-time
Refinement

S-LSTM [16] – ✓ ✗ – – ✗

DESIRE [76] VAE ✓ ✓ – – ✓
Trajectron [87] VAE ✓ ✓ – – ✗

SGAN [17] GAN ✗ ✓ ✗ RNN ✗

S-BiGAT [25] GAN ✓ ✓ ✗ RNN ✗

SGANv2 [Ours] GAN ✓ ✓ ✓ Transformer ✓

Table 3.1: High-level comparison of our proposed architecture against selected common genera-
tive models for trajectory forecasting.

sampling to prevent mode collapse on the recently released Forking Paths [136] dataset. Our
main contributions are:

1. We propose SGANv2, an improved SGAN architecture that incorporates spatio-temporal in-
teraction modelling in both the generator and the discriminator. Moreover, our transformer-
based discriminator better guides the learning process of the generator.

2. We demonstrate the efficacy of collaborative sampling between the generator and discrimi-
nator at test-time to reduce prediction collisions and prevent mode collapse in trajectory
forecasting.

3.2 Related Work

In this section, we review forecasting model designs that predict multimodal outputs. Table 3.1
provides a high-level overview of how SGANv2 architecture differs from selected generative
model-based designs.

Multimodal forecasting. Neural networks trained using L2 loss are condemned to output the
average of all possible outcomes. To tackle this, one line of work proposes L2 loss variants
[19, 101, 137, 138] capable of handling multiple hypotheses. However, these variants fail to
penalize low quality predictions, for e.g. samples that are far away from the ground truth and
undergo collisions. Thus, training using these variants can result in high diversity but low quality
predictions.

Another line of work utilizes generative models [17, 25, 26, 76, 87, 139], with Variational
Autoencoders (VAEs) and Generative Adversarial networks (GANs) being the most popular, to
model future trajectory distribution. VAE models in trajectory forecasting [76, 87] employ a
loss objective based on different variants of the euclidean distance. Such a formulation leads
to low quality samples especially when the predictions are uncertain [140]. On the other hand,
the discriminator of the GAN framework acts as a learned loss function that naturally penalizes
the low quality samples under the adversarial training objective i.e. penalty is incurred on the
generator if a sample does not look real [24]. Thus, we choose GANs as our generative model
as they can effectively produce diverse and high-quality modes by transforming samples from a
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noise distribution to samples in the real data.

GANs in trajectory forecasting. SGAN [17] used an LSTM encoder-decoder with social
mechanisms within the GAN framework [68] to perform multimodal forecasting. Following
the success of SGAN, various GAN-based architectures have been proposed to better model
multimodality in crowds [25, 26, 141] as well as on roads [142, 143]. Yuke Li [141] proposed to
infer the latent decisions of the agents to model multimodality. Kosaraju et. al. [25] proposed to
introduce two discriminators: a local discriminator for the local pedestrian trajectories, similar
to [17, 26], and a global discriminator that accounted for the spatial interactions. Recent works
advocated performing spatial interaction modelling only at the end of observation, as this strategy
did not impact the distance-based metrics and saved computational time [17, 25]. In this chapter,
we argue that it is crucial to equip the discriminator with the ability to model spatio-temporal
interactions.

Current works do not leverage recent advances in sequence modelling and utilize an LSTM-based
discriminator. Recently, Transformers [108] have been shown to outperform RNNs in almost all
sequence modelling tasks, including trajectory forecasting [144, 145]. Therefore, we design our
discriminator using the transformer and demonstrate that it better guides the generator training.
Similar to our work, Giuliari et al. [144] utilizes transformers but does not take into account social
interactions leading to high collisions in the outputs. The spatio-temporal transformer design of
STAR [105] is most closely related to the design of our discriminator. However, as discussed
above, their L2 loss training objective can fail to effectively model multimodality. Further, in
contrast to previous transformer and GAN-based works, SGANv2 performs test-time refinement
that leads to further collision reduction, discussed next.

Test-time Refinement. Test-time Refinement refers to the task of refining model predictions at
test-time. Lee et al. [76] propose an inverse optimal control based module to refine the predicted
trajectories. Sun et al. [146] refine trajectories using a reciprocal network that reconstructs
input trajectories given the predictions. However, they rely on the strong assumption that both
forward and backward trajectories follow identical rules of human motion. We propose to refine
trajectories by performing collaborative sampling between the trained generator and discriminator.
This technique provides theoretical guarantees with respect to moving the generator distribution
closer to real distribution.

Mode Collapse. Mode collapse is the phenomenon where the generator distribution fails to
capture all modes of target distribution. SGAN [17] collapses to a single mode of behavior. Social
Ways [147] utilizes InfoGAN that overcomes this issue albeit on a toy dataset. We empirically
show that the SGANv2 overcomes mode collapse on the more-diverse Forking Path dataset [136].
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3.3 Method

Modelling human trajectories using generative adversarial networks (GANs) has the potential
to learn the underlying etiquette of human motion and output realistic multimodal predictions.
Indeed, recent GAN-based trajectory forecasting models have been successful in reducing
distance-based metrics, however they suffer from high prediction collisions. In this section,
we present SGANv2, an improvement over the SGAN architecture to output safety-compliant
predictions. On a high level, we propose three structural changes: (1) Spatio-temporal interaction
modelling within the discriminator and generator to better understand social interactions, (2)
Transformer-based discriminator to better guide the generator, (3) Collaborative sampling
mechanism between the generator and discriminator to refine the colliding trajectories at test-time.
Our proposed changes are generic and can be employed on top of any existing GAN-based
architecture.

3.3.1 Problem statement

Given a scene, we receive as input the trajectories of all people within the scene denoted by
X = {X1,X2, ...Xn}, where n is the number of people in the scene. The trajectory of a person i, is
defined as Xi = (xt

i,y
t
i), for time t = 1,2...Tobs and the future ground-truth trajectory is defined

as Yi = (xt
i,y

t
i) for time t = Tobs +1, ...Tpred . The objective is to accurately and simultaneously

forecast the future trajectories of all people Ŷ= Ŷ1,Ŷ2...Ŷn, where Ŷi is used to denote the predicted
trajectory of person i and the corresponding ground-truth future trajectory is Yi. The velocity of a
pedestrian i at time-step t is denoted by vt

i .

3.3.2 Generative Adversarial Networks

GANs consist of two neural networks, namely the generator G and the discriminator D, which are
trained together in tandem. The objective of D is to correctly identify whether a sample belongs
to the real data distribution or is generated by the generator. The objective of G is to produce
realistic samples which can fool the discriminator. G takes as input a noise vector z sampled
from a given noise distribution pz and transforms it into a real looking sample G(z). D outputs a
probability score indicating whether a sample comes from the generator distribution pg or the
real data distribution pr. Training GANs is essentially a minimax game between the generator
and the discriminator:

min
G

max
D

Ex∼pr [log(D(x))]+Ez∼pz [1− log(D(G(z)))]. (3.1)

3.3.3 Interaction modelling designs

Modelling social interactions is the key to outputting safe and accurate future trajectories. In this
chapter, we argue that current works do not model interactions between agents sufficiently within
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Figure 3.2: Our proposed SGANv2 model: Our model consists of three main parts: the spatial
interaction embedding module (SIM), the generator (G) and the discriminator (D). At each
time-step, for each pedestrian, the SIM outputs the motion embedding and the spatial interaction
embedding. G encodes the input embedding sequence using the encoder LSTM to obtain the
latent representation. The latent representation along with the sampled noise vector z is used
to generate multimodal predictions using the decoder LSTM. D inputs the stacked embedding
sequence of real (or fake) trajectories, encodes it using the transformer architecture to obtain the
real (or fake) score.

both the generator and discriminator leading to large number of prediction collisions. Here, we
differentiate between the notion of performing spatial interaction modelling and performing
spatio-temporal interactions modelling. An architectural design is said to perform spatial
interaction modelling if it models the interaction between pedestrians at a single time-step only.
For instance, SGAN performs spatial interaction modelling within the generator as it encodes
the neighbourhood information only once, at the end of the observation. On the other hand,
an architectural design is said to perform spatio-temporal interaction modelling if it performs
the spatial interaction modelling at every time-step (from t = 1 to t = Tpred) and the temporal
evolution of the interactions are captured using any sequence encoding mechanism, e.g. an LSTM
or a Transformer. We empirically demonstrate that spatio-temporal interactions modelling within
both the generator and the discriminator are essential to output safer trajectories.

3.3.4 SGANv2 architecture

We now describe our proposed model design in detail (see Fig. 3.2). Our architecture consists
of three key components: the Spatial Interaction embedding Module (SIM), the Generator (G),
and the Discriminator (D). SIM is responsible for spatial interaction modelling while the G
and D perform temporal modelling. Thus, G and D in congregation with SIM perform spatio-
temporal interaction modelling (STIM). In particular, SIM performs motion embedding and
spatial interaction embedding for each pedestrian at each time-step. G encodes the embedded
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sequence through time and outputs multimodal predictions using an LSTM encoder-decoder
framework. D, modelled using a transformer [108], inputs the entire sequence comprising the
observed trajectory X and the future prediction Ŷ (or ground-truth Y), and classifies it as real/fake.

Spatial Interaction Embedding Module. One important characteristic that differentiates human
motion forecasting from other sequence prediction tasks is the presence of social interactions:
the trajectory of a person is affected by other people in their vicinity. SIM performs the task
of encoding human motion and human-human interactions in the spatial domain at a particular
time-step. We embed the velocity vt of pedestrian i at time t using a single layer MLP to get the
motion embedding vector et

i given as:

et
i = φ(vt

i;Wemb), (3.2)

where φ is the embedding function with weights Wemb.

The design of SIM is flexible and it can utilize any spatial interaction module proposed in literature
(e.g. [25, 148]). It embeds the spatial configuration of the scene and outputs the interaction
embedding pt

i for pedestrian i at time-step t. We then concatenate the motion embedding with
the spatial interaction embedding, i.e. st

i = [et
i; pt

i], and provide the concatenated embedding st
i to

the G (or the D). The input embedding is constructed using the ground-truth observations from
[1,Tobs], and generator predictions from [Tobs +1,Tpred ].

Generator. Within the generator, the encoder LSTM encodes the input embedding sequence
provided by the SIM. The encoder LSTM helps to model the temporal evolution of spatial
interactions in the form of the following recurrence:

ht
i = LST Menc(ht−1

i ,st
i;Wencoder), (3.3)

where ht
i denotes the hidden state of pedestrian i at time t, Wencoder are the weights of encoder

LSTM that are learned.

The output of the LSTM encoder for each pedestrian at the end of the observation period
represents his/her observed scene representation. Similar to SGAN, we utilize this representation
to condition our GAN for prediction. In other words, SGANv2 take as input noise z and the
observed scene representation to produce future trajectories that are conditioned on the past
observations. The decoder hidden-state of each pedestrian is initialized with the final hidden-state
of the encoder LSTM. The input noise z is concatenated with the inputs of the decoder LSTM,
resulting in the following recurrence for the decoder LSTM:

ht
i = LST Mdec(ht−1

i , [st
i;zi];Wdecoder), (3.4)

where Wdecoder are the weights of decoder LSTM.

The decoder hidden-state at time-step t of pedestrian i is then used to predict the next velocity at
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time-step t +1. Similar to Alahi et al.[16], we model the next velocity as a bivariate Gaussian
distribution parametrized by the mean µ t+1 = (µx,µy)

t+1, standard deviation σ t+1 = (σx,σy)
t+1

and correlation coefficient ρ t+1:

[µ t ,σ t ,ρ t ] = φdec(ht−1
i ,Wnorm), (3.5)

where φdec is an MLP and Wnorm is learned.

Discriminator. The social interactions between humans evolve with time. Therefore, we
design our discriminator to perform spatio-temporal interaction modelling. Also, in recent times,
transformers [108] have become the de-facto model for modelling temporal sequences, replacing
recurrent architectures [105, 144]. Therefore, we design the discriminator as a transformer to
perform the temporal sequence modelling of the output provided by SIM.

The discriminator takes as input Trajreal = [X,Y] or Trajfake = [X, Ŷ] and classifies them as
real/fake. The discriminator has its own SIM, which provides the spatial interaction embedding
st

i for each pedestrian i at each time-step t in the input sequence. Instead of passing st
i through an

LSTM (similar to the generator), we stack these embedded vectors together to form an embedded
sequence Si for each pedestrian i (similar to an embedded sequence obtained after embedding
word tokens in the field of natural language [108]):

Si = [s1
i ;s2

i ; . . .sTpred
i ]. (3.6)

This sequence Si is given as input to the encoder of the transformer proposed in [108]. The ability
of transformers to capture the temporal correlations within the spatial interaction embedding lies
mainly in its self-attention module. Within the attention module, each element of the sequence Si

is decomposed into query (Q), key (K) and value (V). The matrix of outputs is computed using
the following equation [108]:

Attention(Q,K,V ) = softmax
(

QKT
√

dk

)
V, (3.7)

where dk is the dimension of the SIM embedding st
i . The output of the attention layer is normalized

and passed through a feedforward layer to obtain the latent representation of the input sequence,
denoted by Ri:

Ri = max(0,Ai ∗W1+b1)∗W2+b2, (3.8)

where the weights W1,W2,b1,b2 are learned, ∗ denotes matrix multiplication and Ai denotes the
normalized representation of the output of the attention module. We utilize the last element of
Ri, as the representation of the input sequence. This embedding gets scored using an MLP φd to
determine if the sequence is real or fake.
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3.3.5 Training

As mentioned earlier, SGANv2 is a conditional GAN model. It takes as input noise vector z,
sampled from N (0,1), and outputs future trajectories Ŷ conditioned on the past observations X.
We found the least-square training objective [149] to be effective in training SGANv2:

min
G

L (G) =
1
2

Ez∼pz [(D(X ,G(X ,z))−1)2], (3.9)

min
D

L (D) =
1
2

Ex∼pr [(D(X ,Y )−1)2]+
1
2

Ez∼pz [(D(X ,G(X ,z)))2]. (3.10)

Additionally, we utilize the variety loss [17] to further encourage the network to produce diverse
samples. For each scene, we generate k output predictions by randomly sampling z and penalize
the prediction closest to the ground-truth based on L2 distance.

Lvariety = min
k
∥Y −G(X ,z)(k)∥2

2. (3.11)

Following the strategy in [148], the generator predicts only the trajectory of the pedestrian of
interest in each scene and uses the ground-truth future of neighbours during training. During
test time, we predict the trajectories of all the pedestrians simultaneously in the scene. All the
learnable weights are shared between all pedestrians in the scene.

3.4 Collaborative sampling in GANs

Despite successful applications in a wide variety of tasks, training GANs is notoriously unstable,
often impacting the model distribution. An imperfect generator can potentially output bad
predictions that can result in undesirable consequences. In this section, we propose to go beyond
GAN training and explore methods for effective sampling. Our goal is to improve the model
distribution by fully exploiting the value contained in both the generator and discriminator during
sampling.

The standard practice in GANs discards the discriminator during sampling. However, this
sampling method loses valuable information learned by the discriminator regarding the data
distribution. Here, we propose a collaborative sampling scheme between the generator and the
discriminator for improved data generation. Guided by the discriminator, our approach refines
the generated samples through gradient-based updates at a particular layer of the generator,
shifting the generator distribution closer to the real data distribution. Specifically, once training
completes, we freeze the parameters of the generator and refine the generated samples using the
gradients provided by the discriminator. This gradient-based sample refinement can be performed
repeatedly at any layer of the generator, ranging from low-level feature maps to the final output
space.
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Algorithm 1 Collaborative Sampling

1: Input: a frozen generator G, a frozen discriminator D, the layer index for sample refinement
l, the maximum number of steps M, the stopping criterion η

2: Output: a synthetic sample x
3: Randomly draw a latent code z
4: x0← ProposeSample(G,z)
5: for m = 0,1, . . . ,M−1 do
6: if D(xm)< η then
7: gm

l ← GetGradient(D,xm
l ),

8: xm+1
l ← UpdateActivation(gm

l ,x
m
l ), (Eq. 3.13)

9: xm+1← UpdateSample(G,xm+1
l ), (Eq. 3.14)

10: else
11: break
12: end if
13: end for

3.4.1 General formulation

Consider a generator network that inputs a latent code z and produces an output x. It typically
consists of multiple layers:

G(z) = GL ◦GL−1 ◦ · · · ◦G1(z),

Gl(xl) = σ(θl · xl)+bl, l = 1,2, . . . ,L,
(3.12)

where Gl is the lth layer of the generator, xl is the corresponding activation input, σ is a
nonlinear activation function, θl and bl are the model parameters. The input to the first layer is
x1 = z and the output of the last layer is GL(xL) = x. For a randomly drawn sample from the
generator distribution, i.e., x ∼ pg, the discriminator outputs a real-valued scalar D(x) which
indicates the probability of x to be real. When the generator and the discriminator reach an
equilibrium, the generated samples are no longer distinguishable from the real samples, i.e.,
D∗(x) = pr(x)

pr(x)+pg(x)
= 1/2. However, such a saddle point of the minimax problem is hardly

obtained in practice [150], indicating room for improvement over the model distribution pg.

Our goal is to shift pg towards pr through sampling without changing the parameters of the
generator. Inspired by the gradient-based MC methods using Langevin [151] or Hamiltonian [152]
dynamics, we leverage the gradient information provided by the discriminator to continuously
refine the generated samples through the following iterative updates:

xm+1
l = xm

l −λ∇lLG(xm
l ), (3.13)

xm+1 = GL ◦GL−1 ◦ . . .Gl(xm+1
l ), (3.14)

where m is the iteration number, λ is the stepsize, l is the index of the generator layer for sample
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Figure 3.3: Illustration of trajectory refinement using collaborative sampling. The trained
discriminator provides feedback to improve the generated samples during test time.

refinement, LG is the loss of the generator, e.g., the non-saturating loss advocated in [68]:

LG =−Ez∼pz [logD(G(z))] (3.15)

The iterative sample update consists of two parts: in the backward pass, the discriminator provides
the generator with gradient feedback to adjust the activation map of the selected layer l (Eq. 3.13);
in the forward pass, the generator reuses part of its parameters to propose an improved sample
(Eq. 3.14). A pseudo code is summarized in Algorithm 1.

Recall that an optimal discriminator outputs the density ratio between pr(x) and pg(x). The
iterative updates shift samples to the regions in which pr(x)/pg(x) is higher. In other words,
samples are encouraged to move to regions where less samples are produced by the generator but
more samples are expected in the real data distribution. Our method forms a closed-loop sampling
process, allowing both the generator and the discriminator to contribute to sample generation.

Our proposed collaborative sampling method is generic and we have shown its successful
application on various vision tasks in our AAAI paper [36]. In the following subsection, we
re-formulate it for motion forecasting.

3.4.2 Collaborative sampling in SGANv2

In the context of motion forecasting, our trained discriminator has knowledge regarding the
social etiquette of human motion. Therefore, we propose to utilize this knowledge to refine the
bad predictions proposed by the generator. We define a prediction as bad if the pedestrian of
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interest undergoes collision in the model prediction. We refine such trajectories by performing
collaborative sampling between the generator and discriminator at test-time, as demonstrated in
Fig. 3.3.

Our goal is to refine the generator prediction using gradients from the discriminator without
updating the parameters of the generator. We leverage the gradient information provided by the
discriminator to continuously refine the generator predictions of the pedestrian of interest i at
test-time through the following iterative update:

Ŷ m+1
i = Ŷ m

i −λ∇LG(Ŷ m
i ), (3.16)

where m is the iteration number, λ is the stepsize, LG is the loss of the generator in Eq. 3.9. The
trajectories are updated till either the discriminator score goes above a defined threshold or the
maximum number of iterations is reached.

3.5 Experiments

In this section, we highlight the ability of SGANv2 to output socially-compliant multimodal
futures. We evaluate the performance of our architecture against several state-of-the-art methods
on the ETH/UCY datasets [41, 62] and on the interaction-centric TrajNet++ benchmark [148].
Additionally, we highlight the potential of collaborative sampling to prevent mode collapse
on the Forking Paths [136] dataset. Additional ablation studies in synthetic environments,
implementation details of experiments and the source code is provided in the appendix. We
evaluate two variants of our model against various baselines:

• SGANv2 w/o CS: Our GAN architecture comprising of a transformer-based discriminator
that performs spatio-temporal interaction modelling.

• SGANv2: Our complete GAN architecture in combination with collaborative sampling at
test-time.

Evaluation metrics

1. Top-k Average Displacement Error (ADE): Average l2 distance between ground truth
and closest prediction (out of k samples) over all predicted time steps.

2. Top-k Final Displacement Error (FDE): The distance between the final destination of
closest prediction (out of k samples) and the ground truth final destination at the end of the
prediction period Tpred .

3. Prediction collision (Col) [148]: The percentage of collision between the primary pedes-
trian and the neighbors in the forecasted future scene.
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Figure 3.4: Outputs (solid) of a uniform predictor (UP) conditioned on the last observed velocity.

Model ETH HOTEL UNIV ZARA1 ZARA2
Top-20 Col Top-20 Col Top-20 Col Top-20 Col Top-20 Col

Transformer† [144] 0.6/0.9 5.8 0.3/0.5 8.2 0.8/1.3 10.9 0.3/0.4 7.1 0.2/0.3 11.3
STGAT† [101] 0.7/1.2 1.7 0.5/1.0 4.2 0.3/0.7 13.9 0.2/0.4 3.9 0.2/0.4 6.9
Social-STGCNN† [102] 0.7/1.2 6.7 0.3/0.6 10.4 0.5/0.8 25.0 0.3/0.5 12.1 0.3/0.5 19.4
Uniform Predictor (UP) 0.6/0.9 3.3 0.2/0.4 5.1 0.3/0.6 15.7 0.3/0.6 4.7 0.2/0.4 7.5

SGANv2 [Ours] 0.7/1.2 1.0 0.3/0.5 1.2 0.5/0.8 8.3 0.3/0.6 1.3 0.3/0.5 2.2

Table 3.2: Quantitative evaluation of various methods on ETH-UCY. Only observing the Top-20
metric (as done by previous work) can lead to incorrect conclusions. We show that a high-entropy
uniform predictor is highly competitive with respect to state-of-the-art methods in multimodal
forecasting using Top-20 metric. See Table 3.4 for a more informative evaluation.

3.5.1 Limitations of current multimodal evaluation scheme

Current multimodal forecasting works utilize metrics that measure model performance at the
individual level such as the top-k ADE/FDE [17, 101]. This metric evaluates the quality of the
predicted distribution per pedestrian; and does not measure the interaction between different
pedestrians. Further, the value of k is very high (k=20 being most common). Almost all the recent
works [17, 25, 101, 144, 153] in human trajectory forecasting utilize the Top-20 ADE/FDE metric
[17] to quantify multimodal performance. We argue that measuring multimodal performance
based solely on this metric can be misleading.

The Top-20 ADE/FDE metric can be easily cheated by predicting a high entropy distribution that
covers all the space but is not precise [154]. We empirically validate this claim by comparing
state-of-the-art baselines against a simple hand-crafted uniform predictor (UP). UP takes as input
the last observed velocity of each pedestrian and outputs 20 uniformly spread trajectories (see
Fig 3.4). UP outputs 20 predictions using the combination of 5 different relative direction profiles
[0,25,50,−25,−50] (in degrees relative to current direction of motion) and 4 different relative
speed profiles [1,0.75,1.25,0.25] (factors of the current speed).

Table 3.2 compares the performance of recent state-of-the-art methods [101, 102, 144] and UP on
ETH-UCY datasets. It is apparent that by observing the Top-20 metric only, UP seems to perform
better (or at par) against the state-of-the-art baselines. If we note the prediction collisions, it is
apparent that UP is not a good multimodal predictor. This corroborates our conjecture that a high
entropy distribution can easily cheat the Top-20 metric leading to incorrect conclusions.
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Method Top-3 Col

CV* [133] 0.4/1.0 21.1
LSTM* [73] 0.3/0.6 19.0
S-LSTM* [148] 0.2/0.5 2.2
D-LSTM* [148] 0.2/0.5 2.2
CVAE [76] 0.2/0.5 4.6
WTA [138] 0.2/0.4 2.4
SGAN [17] 0.2/0.4 2.8

SGANv2 w/o CS [Ours] 0.2/0.4 1.9
SGANv2 [Ours] 0.2/0.4 0.6

Table 3.3: Quantitative evaluation on TrajNet++ synthetic dataset. SGANv2 with collaborative
sampling greatly reduces the model prediction collisions (Col) without compromising on the
distance-based metrics. *Unimodal methods
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Figure 3.5: Illustration of collaborative sampling reducing model collisions on both TrajNet++
synthetic and real-world datasets. Given a generator prediction of the pedestrian of interest
(blue) that undergoes collision with the neighbours (red), our discriminator, equipped with
spatio-temporal interaction modelling, provides feedback based on its learned understanding of
human-human interactions. The resulting refined prediction (green) does not undergo collision
and in some cases, is closer to the ground-truth (black)

Multimodal evaluation scheme To counter the above issues with current multimodal evaluation
strategy, we propose to set k to a lower value (k = 3) in our experiments; as a lower k is a better
proxy for likelihood estimation for implicit generative models [154]. Further, to measure the
interaction-modelling capability, we focus on the percentage of collisions between the primary
pedestrian and the neighbors in the forecasted future scene.
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Model ETH HOTEL UNIV ZARA1 ZARA2
Top-3 Col Top-3 Col Top-3 Col Top-3 Col Top-3 Col

CV* [133] 1.1/2.3 5.3 0.4/0.8 7.2 0.6/1.4 20.3 0.4/1.0 6.0 0.3/0.7 9.6
LSTM* [73] 1.0/2.1 5.8 0.5/0.9 6.7 0.6/1.3 20.2 0.5/1.0 5.2 0.4/0.8 9.5
Uniform Predictor (UP) 1.1/2.2 3.3 0.5/0.9 5.1 0.6/1.3 15.7 0.5/1.0 4.7 0.4/0.8 7.5
Transformer† [144] 1.0/1.9 5.8 0.5/0.9 8.2 2.3/4.2 10.9 0.5/1.0 7.1 0.4/0.8 11.3
S-LSTM* [16] 1.1/2.1 2.2 0.5/0.9 2.5 0.7/1.5 11.8 0.4/0.9 2.7 0.4/0.8 3.7
CVAE [76] 1.1/2.2 2.8 0.4/0.8 1.5 0.7/1.5 12.6 0.4/0.9 2.6 0.4/0.8 3.5
WTA [138] 1.0/1.9 2.5 0.4/0.7 2.3 0.6/1.3 12.7 0.4/0.8 2.2 0.3/0.7 4.1
SGAN [17] 1.0/2.0 2.2 0.4/0.7 1.7 0.6/1.3 11.8 0.4/0.8 2.3 0.3/0.7 3.2
STGAT† [101] 0.9/1.8 1.7 0.7/1.4 4.2 0.6/1.2 13.9 0.4/0.9 3.9 0.4/0.7 6.9
Social-STGCNN† [102] 1.0/1.8 6.7 0.4/0.8 10.4 0.7/1.3 25.0 0.5/0.9 12.1 0.4/0.8 19.4
S-BiGAT [25] 1.0/1.9 3.3 0.4/0.7 1.7 0.6/1.3 11.5 0.4/0.8 2.2 0.3/0.7 3.3

SGANv2 w/o CS [Ours] 1.0/1.9 1.7 0.4/0.7 1.4 0.6/1.3 11.5 0.4/0.8 2.1 0.3/0.7 3.6
SGANv2 [Ours] 1.0/1.9 1.0 0.4/0.7 1.2 0.6/1.3 8.3 0.4/0.8 1.3 0.3/0.7 2.2

Table 3.4: Quantitative evaluation of our proposed method on ETH/UCY datasets. We observe the
trajectories for 8 times steps (3.2 seconds) and show prediction results for the next 12 time steps
(4.8 seconds). Errors reported are Top-3 ADE / FDE in meters, Col in %. SGANv2 improves in
collision metric without compromising on the distance-based metrics. *Unimodal

3.5.2 Synthetic experiments

We first demonstrate the efficacy of our proposed architectural changes in SGANv2 compared
to other generative model designs in the TrajNet++ synthetic setup. We observe that SGANv2
greatly improves upon the Top-3 ADE/FDE metric with a lower collision metric compared to
training a model using only variety loss (see Table 3.3).

Next, we utilize collaborative sampling technique to refine trajectories that undergo collision
at test-time. The trained discriminator provides feedback to the colliding samples which helps
to reduce the collisions. For each colliding prediction, we perform 5 refinement iterations with
stepsize 0.01. We observe that this scheme greatly reduces the collision rate by ∼ 70%. The
first row of Fig 3.5 illustrates the ability of collaborative sampling to refine predictions in the
synthetic scenario.

The appendix presents an ablation which demonstrates that when training with only adversarial
loss, SGAN and S-BiGAT result in high amount of collisions in its predictions. On the other
hand, SGANv2 equipped with spatio-temporal interaction modelling and transformer-based
discriminator leads to almost zero collisions.

3.5.3 Real-world experiments

Next, we evaluate the performance of our SGANv2 architecture in real-world datasets of
ETH/UCY and the TrajNet++ benchmark. For ETH/UCY, we observe the trajectories for 8
times steps (3.2 seconds) and show prediction results for 12 (4.8 seconds) time steps. For Tra-
jNet++, we observe the trajectories for 9 times steps (3.6 seconds) and show prediction results
for 12 (4.8 seconds) time steps.
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Method Top-3 Col

CV* [133] 0.6/1.3 10.9
LSTM* [73] 0.5/1.2 9.3
S-LSTM* [16] 0.5/1.0 4.9
D-LSTM* [148] 0.5/1.1 3.9
CVAE [76] 0.5/1.1 3.9
WTA [138] 0.5/1.0 3.5
SGAN [17] 0.5/1.0 3.5
S-NCE [155] 0.5/1.1 4.0
PECNet [153] 0.4/0.9 10.7
Uniform Predictor (UP) 0.6/1.2 8.4
Transformer† [144]. 0.7/1.3 9.4
STGCNN† [102] 0.6/1.1 12.6
STGAT† [101] 0.5/1.1 5.6
S-BiGAT [25] 0.5/1.0 3.3

SGANv2 w/o CS [Ours] 0.5/1.0 3.1
SGANv2 [Ours] 0.5/1.0 2.3

Table 3.5: Quantitative evaluation of our proposed method on TrajNet++ real-world dataset.
SGANv2 in combination with collaborative sampling (CS) improves in collision metric without
compromising on the distance-based metrics. *Unimodal

Table 3.4 provides the quantitative evaluation of various baselines and state-of-the-art forecasting
methods on the ETH/UCY dataset. We observe that SGANv2 outputs safer predictions in
comparison to competitive baselines without compromising on the prediction accuracy. Our Top-
3 ADE/FDE are on par with (if not better than) state-of-the-art methods while our collision rate is
significantly reduced thanks to spatio-temporal interaction modelling. It is further interesting to
note that Trajectory Transformer [144] and the simple uniform predictor (UP) that performed the
best on Top-20 ADE/FDE in Table 3.2 are not among the top performing methods when evaluated
on the more-strict Top-3 ADE/FDE. Next, we benchmark on the TrajNet++ with interaction-
centric scenes with a standardized evaluator that provides a more objective comparison [148].

Table 3.5 compares SGANv2 against other competitive baselines on TrajNet++ real-world
benchmark. The first part of Table 3.5 reports simple baselines and the top-3 official submissions
on AICrowd made by different works literature [148, 153, 155]. SGANv2 performs at par
with the top-ranked PECNet [153] on the Top-3 evaluation while having 3x lower collisions
demonstrating that spatio-temporal interaction modelling is key to outputting safer trajectories
II. Additionally, we utilize the open-source implementation of three additional state-of-the-art
methods (denoted by †) and evaluate them on the TrajNet++ benchmark. Compared to these
competing baselines, SGANv2 improves upon the Top-3 ADE/FDE metric by ∼ 10% and the
collision metric by ∼ 40%.

We perform collaborative sampling to refine trajectories that undergo collision in real world
datasets. For each colliding prediction, we perform 5 refinement iterations with stepsize 0.01.
We observe that this procedure reduces the collision rate by ∼ 30% on both ETH/UCY and
TrajNet++. The trained discriminator understands human social interactions, and provides

IIPECNet performs spatial interaction modelling once at end of observation
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GPool DPool TrajNet++ Synth TrajNet++ Real
Top-3 Col Top-3 Col

✗ ✗ 0.3 / 0.5 18.3 0.5 / 1.1 9.6
✓ ✗ 0.2 / 0.4 4.1 0.5 / 1.0 3.9
✓ ✓ 0.2 / 0.4 1.9 0.5 / 1.0 3.1

Table 3.6: Quantitative analysis of importance of interaction modelling in GANs. Modelling
interactions in both generator and discriminator is crucial to reduce collisions in outputs.

feedback to the bad samples, and consequently helps to reduce collisions. The second row
of Fig 3.5 illustrates a few real-world scenarios where collaborative sampling demonstrates
the ability to refine generator predictions that undergo collisions. In conclusion, we observe
that SGANv2 beats competitive baselines in generating socially-compliant trajectories without
compromising on the distance-based metrics.

Interaction modelling. In Table 3.6, we empirically demonstrate that modelling interactions
is the key to reducing prediction collisions. We consider the performance of different variants
of our proposed SGANv2 architecture based on the interaction modelling schemes within the
generator and discriminator. It is apparent that modelling interaction within both the generator
and discriminator is necessary to output safe multimodal trajectories.

3.5.4 Multimodal analysis

In this experiment, we demonstrate the potential of SGANv2 to prevent mode collapse in trajectory
generation. We utilize the sample scene ‘Zara01’ from the Forking Paths dataset. We choose this
scene as the multimodal futures of the ‘Zara01’ scene is only affected by social interactions, and
not physical obstacles. It forms the ideal test ground to check the multimodal performance of
forecasting models. In this experiment, we observe the trajectories for 8 times steps (3.2 seconds)
and show prediction results for 13 (5.2 seconds) time steps.

Fig. 3.6 qualitatively illustrates the performance of a GAN model trained using variety loss [17,
138] and other GAN objectives on the chosen scene. As there are 4 dominant modes in the scene,
we chose k = 4 for the variety loss. The model trained using variety loss (Fig. 3.6b) ends up
learning a uniform distribution, i.e., high diversity and low quality, as there is no penalty on the
bad samples during training. Variety loss only penalizes the sample closest to the ground-truth.
SGAN training [17] (Fig. 3.6c) results in mode collapse, i.e., low diversity and high quality as
standard GAN training is highly unstable. Social Ways [26] proposed infoGAN objective [156]
to mitigate the mode collapse issue. The InfoGAN improves upon SGAN, however, it still fails
to cover all the modes (Fig. 3.6d).

Empirically, we found that training SGANv2 provides a better mode coverage compared to
InfoGAN, but the resulting distribution is still not accurate. As shown in Fig. 3.6f, our proposed
collaborative sampling at test time helps to improve the accuracy of the SGANv2 predictions,
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(a) Ground Truth (b) Variety Loss (c) SGAN

(d) Social Ways (e) SGANv2 w/o CS (f) SGANv2

Figure 3.6: Illustration of effectiveness of SGANv2 to prevent mode collapse on Forking Paths
[136]. (b) Training models using variety loss [138] leads to uniform output distribution. (c)
Training using SGAN objective [17] leads to mode collapse while (d) InfoGAN [26] helps to
alleviate the issue to some extent. (e) SGANv2 helps to cover all the modes, and in combination
with (f) collaborative sampling, we can successfully recover all modes with high accuracy.

recovering modes with low coverage. The trained discriminator guides the generated samples to
these modes. Thus, we see that collaborative sampling is not only effective in refining trajectories
at test time, but also can help to prevent mode collapse.

3.5.5 Key attributes

We now analyze the performance of the key SGANv2 design choices in the TrajNet++ synthetic
setup. In the synthetic setup, we have access to the goals of each agent, allowing us to calculate
Distance-to-Goal (Dist2Goal) [157], defined as the L2 distance between the predicted final
destination and the goal of the agent.

Rationale behind Distance to Goal: It is possible that the generator predicts a socially-acceptable
mode that does not correspond to the ground-truth mode (see Fig. 3.7). If we calculate the
ADE/FDE with respect to the ground-truth for such a predicted mode (that differs from ground-
truth), the numbers will be high, misleading us to incorrectly conclude that the generator did not
learn the underlying task of trajectory forecasting. However, if the predicted destination is close
to the goal of the agent, then one can assert that a different but socially acceptable mode has been
predicted. The Col metric will help to validate that no collisions take place. Thus, Dist2Goal in
combination with the Col metric helps to validate that a predicted mode is socially plausible.

Table 3.7 quantifies the performance of various GAN architectures trained without variety loss
[138]. SGAN [17] performs the worst on the Col metric as the discriminator does not perform
any interaction modelling, thereby not possessing the ability to learn the concept of collision
avoidance. Only if the discriminator learns the collision avoidance property, can we expect
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Figure 3.7: Illustration of difference between Dist2Goal and Final Displacement Error (FDE).
FDE is the distance between ground-truth position and predicted position at end of prediction
period. Dist2Goal is the distance between predicted position and the final position of agent in the
entire dataset.

Model
Spatio-temporal

Interaction Modelling
in Discriminator

Discriminator
Design

Col Dist2Goal

Ground-truth – – 0.0 8.6
SGAN [17] ✗ LSTM 24.9 8.9
S-BiGAT [25] ✗ LSTM 8.4 8.9
SGANv2-L ✓ LSTM 0.8 8.8
SGANv2 ✓ Transformer 0.2 8.6

Table 3.7: Quantitative evaluation of various GAN architectural designs on TrajNet++ synthetic
dataset. Col in % and Dist2Goal in meters. SGANv2 learns to successfully predict socially
acceptable outputs evidenced by lower collisions and Dist2Goal.

it to teach the generator to output collision-free trajectories. The global discriminator of S-
BiGAT [25] performs spatial interaction modelling only once, at the end of prediction. Thus, the
global discriminator is able to reason about interactions spatially but cannot model the temporal
evolution of the same. SGANv2 equipped with spatio-temporal interaction modelling results in
near-zero prediction collision. It is apparent that spatio-temporal interaction modelling within the
discriminator plays a significant role in teaching the generator the concept of collision avoidance.

We now justify the design choices of sequence modelling within the discriminator using the
Dist2Goal metric. We compare an additional design of our proposed SGANv2 architecture:
SGANv2-L, an SGANv2 with an LSTM discriminator. SGANv2-L trained using LSTM discrim-
inator shows stopping behavior, indicated by the high Dist2Goal value in the test set. In other
words, SGANv2-L outputs collision-free trajectories but the predictions fail to move towards
the goal of the primary agent. On the other hand, SGANv2 is able to output collision-free
trajectories with a lower Dist2Goal (almost matching the ground-truth Dist2Goal value of 8.6m).
In conclusion, SGANv2 is able to output socially acceptable trajectories when compared to other
GAN-based designs.
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3.5.6 Implementation details

The generator and the discriminator have their own spatial interaction embedding modules (SIM).
Each pedestrian has his/her encoder and decoder.

Synthetic experiments. The velocity of each pedestrian is embedded into a 16-dimensional
vector. The hidden-state dimension of the encoder LSTM and decoder LSTM of the generator is
64. The dimension of the interaction vector of both the generator and discriminator is fixed to 64.
We utilize Directional-Grid [148] interaction module with a grid of size 12×12 and a resolution
of 0.6 meters. For the LSTM discriminator, the hidden-state dimension is set to 64. For the
transformer-based discriminator, we stack N=4 encoder layers together. The dimension of query
vector, key vector and value vector is fixed to 64. The dimension of the feedforward hidden layer
within each encoder layer is set to 64. We train using ADAM optimizer [129] with a learning rate
of 0.0003 for the generator and 0.001 for the discriminator for 50 epochs. The ratio of generator
steps to discriminator steps for LSTM discriminator and transformer-based discriminator is 2:1.
For synthetic data experiment, we have access to the goals of each pedestrian. The direction to
the goal is embedded into a 16-dimensional vector. The batch size is fixed to 32.

Real-world experiments. The velocity of each pedestrian is embedded into a 32-dimensional
vector. The hidden-state dimension of the encoder LSTM and decoder LSTM of the generator
is 128. The dimension of the interaction vector of both the generator and discriminator is fixed
to 256. We utilize Directional-Grid [148] interaction module with a grid of size 12×12 and a
resolution of 0.6 meters. For the LSTM discriminator, the hidden-state dimension is set to 128.
The ratio of generator steps to discriminator steps is 2:1. For the transformer-based discriminator,
we stack N=2 encoder layers together (see Fig. 2 of main text). The dimension of query vector,
key vector and value vector is fixed to 128. The dimension of the feedforward hidden layer within
each encoder layer is set to 1024. We train using ADAM optimizer [129] with a learning rate of
0.001 for both the generator and the discriminator for 25 epochs with a learning rate scheduler of
step-size 10. The batch size is fixed to 32. The weight of variety loss is set to 0.2.

Multimodal Analysis. The velocity of each pedestrian is embedded into a 16-dimensional
vector. The hidden-state dimension of the encoder LSTM and decoder LSTM of the generator is
32. We train using ADAM optimizer [129] with a learning rate of 0.0003 for the generator and
0.001 for the discriminator.

3.6 Conclusion

We presented SGANv2, an improved SGAN architecture equipped with two crucial architec-
tural changes in order to output safety-compliant trajectories. First, SGANv2 incorporates
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spatio-temporal interaction modelling that can help to understand the subtle nuances of human
interactions. Secondly, the transformer-based discriminator better guides the generator learning
process. Furthermore, the collaborative sampling strategy helps leverage the trained discriminator
during test-time to identify and refine the socially-unacceptable trajectories output by the genera-
tor. We empirically demonstrated the strength of SGANv2 to reduce the model collisions without
comprising the distance-based metrics. We additionally highlighted the potential of collaborative
sampling to overcome mode collapse in a challenging multimodal scenario.

The core idea behind collaborative sampling is to re-use the learned discriminator at test time
to refine the bad generator predictions. As mentioned in Sec. 3.4, our sampling technique can
be applied to any GAN design and is not specific to the motion forecasting setup. In our AAAI
publication[36], we analyzed this technique in detail and demonstrated its applicability to a
variety of vision tasks. We further showed that this technique, under mild assumptions, helps to
shift the generator distribution closer to the real world distribution.

Our work in Chapter 2 and Chapter 3 aims at expanding the current horizon of trajectory
forecasting models for real-world applications where human lives are at risk, such as social
robots or autonomous vehicles. Accuracy, safety, and robustness are all mandatory keywords.
Over the past years, researchers have focused their evaluation on distance-based metrics. Yet,
if we compare the methods on the safety-critical “collision" metric, we observe a difference
in performance above 50%. Hence, we believe that one should focus more on this metric and
develop methods that aim for zero collisions.

In the following chapters, Chapter 4 and Chapter 5, we focus on two challenges specific to the
real-world deployment of forecasting models: interpretability and adaptability.
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4 Interpretable Social Anchors for Hu-
man Trajectory Forecasting

This chapter is based on the article:

Parth Kothari, Brian Sifringer and Alexandre Alahi, Interpretable Social Anchors for Human
Trajectory Forecasting in Crowds, CVPR (2021)

4.1 Introduction

Human trajectory forecasting in crowds, at its core, is a sequence prediction problem with specific
challenges of capturing inter-sequence dependencies (social interactions) and consequently
predicting socially-compliant multimodal distributions. In the previous chapters, we proposed
neural network designs that tackled these fundamental challenges. However, these data-driven
methods still suffer from one crucial limitation: lack of interpretability. In this chapter, we focus
on designing a data-driven framework that provides a high-level rationale behind its predictions
without compromising the accuracy.

Early works designed hand-crafted methods based upon domain knowledge to forecast human
trajectories, either with physics-based models such as Social Forces [28], or with pattern-based
models such as discrete choice modelling (DCM) [158, 159, 160]. These models, based on
domain knowledge, were successful in showcasing crowd phenomena like collision avoidance
and leader-follower type behavior. Moreover, the hand-designed nature of these models rendered
their predictions to be interpretable. However, human motion in crowds is much more complex
and due to its long-term nature, these first-order methods suffer from predicting inaccurate
trajectories.

Building on the success of recurrent neural network-based models in learning complex functions
and long-term dependencies, Alahi et al. [16] proposed the first neural network (NN) based
trajectory forecasting model, Social LSTM, which outperformed the hand-crafted methods on
distance-based metrics. Due to the success of Social LSTM, neural networks have become
the de-facto choice for designing human trajectory models [17, 85, 86, 87, 144]. However,
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Predicted anchors
Neural network refinement
Final predicted future sequence
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Figure 4.1: While navigating in crowds, humans display various social phenomena like collision
avoidance (from red trajectory) and leader follower (towards blue trajectory). We present a model
that not only outputs accurate future trajectories but also provides a high-level rationale behind
its predictions, owing to the interpretability of discrete choice models. (Un)favourable anchors
shown in green (red).

current NN-based trajectory forecasting models suffer from a significant limitation: lack of
interpretability regarding the model’s decision-making process.

In this chapter, we are interested in combining the forces of the two paradigms of human trajectory
forecasting (see Fig. 4.1): the interpretability of the trajectories predicted by hand-crafted models,
in particular discrete choice models [158, 161], and the high accuracy of the neural network-based
predictions. With this objective, we propose a model that outputs a probability distribution over
a discrete set of possible future intents. This set is designed as a function of the pedestrian’s
speed and direction of movement. Our model learns the probability distribution over these intents
with the help of a choice model architecture, owing to its ability to output interpretable decisions.
To this end, we resort to a novel hybrid and interpretable framework in DCM [162], where
knowledge-based hand-crafted functions can be augmented with neural network representations,
without compromising the interpretability.

Our architecture augments each predicted high-level intent with a scene-specific residual term
generated by a neural network. The advantage of this is two-fold: first, the residual allows to
expand the output space of the model from a discrete distribution to a continuous one. Secondly,
it helps to incorporate the complex social interactions as well as the long-term dependencies that
the first-order hand-crafted models fail to capture, leading to an increase in prediction accuracy.
Overall, we can view our architecture as disentangling high-level coarse intents and lower-level
scene-specific nuances of human motion.

We demonstrate the efficacy of our proposed architecture on TrajNet++ [148], an interaction-
centric human trajectory forecasting benchmark comprising of well-sampled real-world trajecto-
ries that undergo various social phenomena. Through extensive experimentation, we demonstrate
that our method performs at par with competitive baselines on both real-world and synthetic
datasets, while at the same time providing a rationale behind high-level decisions, an essential
component required for safety-critical applications like autonomous systems.
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4.2 Related Work

Explaining model decisions. There has been a rising interest in developing methods that can
explain the underlying reasons behind model outputs. One approach towards explainable AI is
developing post-hoc approaches that explain the decisions of black-box neural networks [120,
163, 164]. Specific to trajectory forecasting, one black-box method is the layerwise relevance
propagation (LRP) technique [54] introduced in Chapter 2. Recently, Shapley values [165],
a concept based on game theory, were proposed to determine the impact of a feature (like
surrounding neighbours) on the model decision [166]. The authors quantified the difference in
the model behavior between including and excluding a feature.

In this chapter, we focus on the alternative approach of designing a white-box framework that
can explain the model decisions based on the underlying social concepts, similar in spirit to the
classical models [27, 28]. The circular distribution approach proposed by Coscia et al. [167]
is most-closely related to ours. The authors fuse the various factors that contribute to a human
motion in different physical scene contexts. On the other hand, our framework incorporates
the social concepts based on human-human interactions, that influence a pedestrian’s motion in
crowds.

4.3 Method

Humans have mastered the ability to negotiate complicated social interactions by anticipating the
movements of surrounding pedestrians, leading to social concepts such as collision avoidance and
leader-follower. Current NN-based architectures, despite displaying high accuracy, are unable to
provide a rationale behind their accurate predictions. Our objective is to equip these models with
the ability to provide a social concept-based reason behind their decisions. In this section, we
describe our proposed architecture, that outputs a high-level intent and a scene-specific residual
corresponding to each intent, followed by our DCM-based component that makes the intent
interpretable.

4.3.1 Problem statement

For a particular scene, we receive as input the trajectories of all people in a scene as X =

[X1,X2, ...Xn], where n is the number of people in the scene. The trajectory of a person i, is
defined as Xi = (xt

i,y
t
i), from time t = 1,2...tobs and the future ground-truth trajectory is defined as

Yi = (xt
i,y

t
i) from time t = tobs +1, ...tpred . The goal is to accurately and simultaneously forecast

the future trajectories of all people Ŷ = [Ŷ1,Ŷ2...Ŷn], where Ŷi is used to denote the predicted
trajectory of person i. In other words, we are provided the motion states of all pedestrians at
time-steps t = 1, . . . ,Tobs (input trajectory) and we need to forecast the future motion states from
time-steps t = Tobs+1 to Tpred (output trajectory). The velocity of a pedestrian i at time-step t is
denoted by vt

i .
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4.3.2 Discrete Choice Models

The theory of discrete choice models (DCMs) is built on a strong mathematical framework,
allowing high interpretability regarding the decision making process [168]. DCMs have often been
applied in fields of economy [169], health [170] and transportation [171], where interpretation
of parameters that capture human behavior is of utmost importance. These models are used to
predict, for each person i, their choice among an available set of K options. In the most common
DCM-based approach, called Random Utility Maximization (RUM), [172], each option has an
associated hand designed function uk, called utility, and each person is assumed to select the
option for which their utility is maximized.

The inputs x̃ to these utility functions are designed via expert knowledge of the given problem,
and are then assigned a vector of learnable weights β . These weights are regressed on all available
options with respect to the observations, and reflect the impact of each component in the utility
function. It is the study of these weights and corresponding input values that lead to the high
interpretability of discrete choice methods at the individual and population level. Formally, the
utility for option k is calculated as:

Uk(β , x̃) = uk(β , x̃)+ εk (4.1)

where εk is the random term. Varying assumptions on the distribution of this random term leads
to different types of DCM models [173, 174].

While many works incorporate data-driven methods into the DCM framework [175, 176, 177],
only recently have models been proposed that keep the knowledge-based functions and the
parameters interpretable after adding the neural network [162, 178]. In this chapter, we utilize
the Learning Multinomial Logit (L-MNL) [162], as our base model. From a discrete modelling
perspective, we aim at correcting the underfit due to misspecification thanks to neural networks.
On the other hand, from a representation learning standpoint, we incorporate inductive biases in
the form of expert-designed functions within the neural network framework.

4.3.3 Social Anchor framework

As shown in Figure 4.2, at each time-step, our model outputs a distribution over a discretized
set of K future intents, which we term social anchors, denoted by A = {ak}K

k=1, as well as
scene-specific refinements for each intent. The size of the set is defined by the number of speed
levels Ns, and direction changes Nd such that K = Nd×Ns. As we will see in Section 4.3.4, we
choose to utilize a DCM to output the distribution over these anchors because of its ability to
explain its decisions. Next, we utilize the high expressibility of neural networks to provide a
refinement in the output space with respect to each anchor in A . We call these refinements scene
residuals. These scene-specific residuals allow us to project the coarse and discretized problem
back into the continuous domain. Note that the set A is chosen to be rich enough to provide
a desired level of coverage in the output space, so that the magnitudes of the scene-specific
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Figure 4.2: Illustration of the Social Anchors framework. At each time-step, the output space of
each pedestrian is discretized into a set of possible future intents, normalized with respect to the
pedestrian’s speed and direction, forming a radial grid. Discrete choice modelling (DCM) is used
to predict the next step probability distribution (green high, red low) in an interpretable manner
by accumulating the keep direction, leader-follower, collision avoidance and occupancy rules.
A neural network lifts the discrete outputs to a continuous space by providing scene-specific
residuals for each intent. The neural network also provides the past motion embedding and
interactions embedding which can be added to the hand-crafted DCM functions to better handle
complex social interactions and long term dependencies while choosing the future intents.

residuals are minimal.

Scene Residuals: We now describe our neural network architecture that is used to output scene-
specific residuals corresponding to each anchor. These residuals are used to model the long-term
motion dependencies as well as the complex and often subtle social interactions that cannot be
described using first-order hand-crafted rules. We first embed the velocity vt

i of pedestrian i at
time t using a single layer MLP to get a fixed length embedding vector et

i given as:

et
i = φemb(vt

i;Wemb), (4.2)

where φemb is the embedding function, Wemb are the weights to be learned.

Next, we utilize the directional pooling module proposed in [148] to model the social interactions
and obtain the interaction vector pt

i . We then concatenate the input embedding with the interaction
embedding and provide the concatenated vector as input to the LSTM module, obtaining the
following recurrence:

ht
i = LST M(ht−1

i , [et
i; pt

i];Wencoder), (4.3)

where ht
i denotes the hidden state of pedestrian i at time t, Wencoder are the weights to be learned.

The weights are shared between all pedestrians in the scene.

The hidden-state at time-step t of pedestrian i is then used to predict the residuals corresponding
to each anchor at time-step t +1. Similar to [16], we characterize the residual corresponding to
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the kth anchor as a bivariate Gaussian distribution parameterized by the mean µ
t+1
k = (µx,µy)

t+1
k ,

standard deviation σ
t+1
k = (σx,σy)

t+1
k and correlation coefficient ρ

t+1
k :

[µ t
k,σ

t
k,ρ

t
k] = φdec(ht−1

i ,Wdecoder), (4.4)

where φdec is modelled using an MLP and Wdecoder is learned.

4.3.4 Anchor selection

The pedestrian’s intent for the next time-step is discretized as a set of K future intentions
A = {ak}K

k=1. The selection of an anchor from the choice set A is posed as a discrete choice
modelling task. This is made possible by normalizing the anchor set with respect to both a
person’s speed and direction. We describe the role of normalization to integrate the DCM
structure in Sec. 4.4.4.

While many different rules and behaviors for human motion have been described in DCM
literature, we follow the formulation described in [158, 161], which is well adapted to our
problem setting. Functions modelling human motion phenomenon which we consider for anchor
selection in this chapter are:

1. avoid occupancy: directions containing neighbours in the vicinity are less desirable, scaled
by the inverse-distance to the considered anchor.

2. keep direction: pedestrians tend to maintain the same direction of motion.
3. leader-follower: pedestrians have a tendency to follow the tracks of people heading in the

same direction, identified as ‘leaders’. The relative speed of the leader with respect to the
follower entices the follower to slow down or accelerate.

4. collision avoidance: when a neighbour pedestrian’s trajectory is head-on towards an anchor,
this anchor becomes less desirable due to the chance of a collision.

An illustration of the effects of the above chosen functions on the final anchor selection is shown
in Figure 4.2. Given the chosen functions, the associated utility uk for anchor k is written as:

uk(X) = βdirdirk︸ ︷︷ ︸
keep direction

+ βoccocck︸ ︷︷ ︸
avoid occupancy

+ βCcolk︸ ︷︷ ︸
collision avoidance

+βaccLk,acc +βdecLk,dec︸ ︷︷ ︸
leader-follower

, (4.5)

where β j are the learnable weights of the corresponding functions. The exact mathematical
formulations of the above functions are detailed in [158, 161]. Each person is assumed to select
the anchor ak for which the corresponding utility uk is maximum.

We would like to point that the performance of the underlying DCM is determined by the hand-
crafted functions of human motion that it models. The DCM framework provides the flexibility
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to integrate any other knowledge-driven function extensively tested in past literature.

Although the knowledge-based functions offer stable and interpretable results, they are unable to
capture the heterogeneity of trajectory decisions in more nuanced situations. The future intent of
a pedestrian is also dependent on long-term dependencies and subtle social interactions that these
first-order hand-designed functions are unable to capture. The inclusion of neural-network-based
terms helps to alleviate this issue.

Recently proposed L-MNL [162] architecture allows having both data-driven and knowledge-
based terms in the utility while maintaining interpretability. We therefore utilize this framework
and add an encoded map of past observations h(X) to adjust for the lack of long term dependencies
of knowledge-based equations. Similarly, we also add an encoded map of social interactions
p(X) with information from all the neighbours to help model residual interactions, otherwise not
captured by hand-designed functions.

In summary, we formulate the anchor selection probabilities as follows:

π(ak|X) =
esk(X)

∑
j∈K

es j(X)
, (4.6)

where
sk(X) = uk(X)+hk(X)+ pk(X). (4.7)

sk(X) represents the anchor function containing the NN encoded terms, hk(X) and pk(X), as well
as the hand-designed term uk(X) (Eq. 4.5), following the L-MNL framework. Note that we use
DCM assumptions from L-MNL for measuring the anchor probabilities, rather than those of the
cross-nested logit model in [161].

4.3.5 Training

Following the training recipe of Chapter 2, all the parameters of our model are learned with the
objective of minimizing the negative log-likelihood (NLL) loss:

log p(y|X) = ∑
t

log

(
∑
k

π(ak|X) N (yt |ν t
k, Σ

t
k)

)
, (4.8)

with
ν

t
k = yt−1 +ak +µ

t
k, (4.9)

and where µ t
k and Σt

k are the scene-specific residuals (described in Sec. 4.3.3), ak are the
coordinates of anchor k and yt−1 is the last position preceding the prediction.

As mentioned earlier, given an anchor set A such that it sufficiently covers the output space, the
magnitude of neural network refinements are minimal. During training, we choose to penalize
the anchor that is closest to the ground-truth velocity at each time-step.
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Therefore, we optimize the following function during training:

l(θ) = ∑
t

∑
k

[
1(kt = k̂t

m)
(

logπ(ak|X)+ logN (yt |ν t
k,Σ

t
k)
)]

, (4.10)

where 1(·) is the indicator function, and k̂t
m is the index of the anchor most closely matching the

ground-truth trajectory Y at time t, measured as l2-norm distance in state-sequence space.

Testing: During test time, till time-step tobs, we provide the ground truth position of all the
pedestrians as input to the forecasting model. From time tobs+1 to tpred , we use the predicted
position (derived from the most-probable intent combined with the corresponding residual) of
each pedestrian as input to the forecasting model and predict the future trajectories of all the
pedestrians.

4.4 Experiments

In this section, we highlight the ability of our proposed method to output socially-compliant
interpretable predictions. We evaluate our method on the interaction-centric TrajNet++ dataset.
TrajNet++ dataset consists of real-world pedestrian trajectories that are carefully sampled such
that the pedestrians of interest undergo social interactions and no collisions occur in both the
training and testing set.

4.4.1 Implementation details

The velocity of each pedestrian is embedded into a 64-dimensional vector. The dimension of the
interaction vector is fixed to 256. We utilize directional pooling [148] as the interaction module in
all the methods for a fair comparison, with a grid of size 16×16 with a resolution of 0.6 meters.
We perform interaction encoding at every time-step. The dimension of the hidden state of both
the encoder LSTM and decoder LSTM is 256. Each pedestrian has their encoder and decoder.
The batch size is fixed to 8. We train using ADAM optimizer [129] with a learning rate of 1e-3
for 25 epochs. For the DCM-based anchor selection, all exponential parameters of the chosen
hand-designed functions are set to the estimated values in [158, 161]. For synthetic data, we
embed the goals in a 64-dimensional vector.

Evaluation: we consider the following metrics:

1. Average Displacement Error (ADE): the average L2 distance between ground-truth and
model prediction overall predicted time steps.

2. Final Displacement Error (FDE): the distance between the final predicted destination
and the ground-truth destination at the end of the prediction period.

3. Prediction collision (Col) [148]: this metric calculates the percentage of collision between
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the pedestrian of interest and the neighbours in the predicted scene. This metric indicates
whether the predicted model trajectories collide, i.e., whether the model learns the notion
of collision avoidance.

4. Top-3 ADE/FDE: given 3 output predictions for an observed scene, this metric calculates
the ADE/FDE of the prediction closest to the ground-truth trajectory in terms of ADE.

Baselines: we compare against the following baselines:

1. DCM: the discrete choice model [27] baseline that predicts the discrete choice with
maximum utility.

2. S-LSTM: the Social LSTM [16] baseline that outputs a unimodal trajectory distribution.
3. Winner-Takes-All (WTA): this architecture was proposed in [138] to encourage the

network to output diverse trajectories.
4. SGAN: Social GAN [17], a popular generative model to tackle multimodal trajectory

forecasting.
5. CVAE: the Conditional Variational Auto-Encoder architectures has been shown recently

[76, 87] to successfully predict multi-modal trajectories by learning a sampling model
given past observations.

6. MinK: to demonstrate the need for a fixed set of prior anchors, we construct this baseline
that directly outputs the ranked neural network residuals without any prior anchors.

7. SAnchor [Ours]: our proposed method that utilizes 15 anchors (5 angle profiles and 3
speed profiles) and their residuals for continuous prediction.

4.4.2 Quantitative analysis

Table 4.1 and Table 4.2 illustrate the quantitative performance of our proposed anchor-based
method on TrajNet++ synthetic and real-world dataset respectively. It is clear that our method
improves the predictable power of discrete choice models on real-world dataset. Furthermore, we
can observe the importance of incorporating a fixed anchor set in our framework.

On the real dataset, there are two factors responsible for the slightly-worse performance of social
anchors in comparison to competitive baselines. First, due to incorporation of expert-based
functions, the predictive power of the network reduces at the cost of interpretability. Improved
inductive biases in the form of more-expressive choice models [161] can help to alleviate this
issue. Secondly, the direction normalization step is affected by the noisy real-world measurements.
This is corroborated by the fact that on the clean synthetic dataset, social anchors outperform
previous methods in terms of collision metric and distance-based metrics. We discuss direction
normalization in detail in Section. 4.4.4.

The fundamental advantage of our method against competitive baselines is to provide interpretable
predictions which we discuss next.
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Model ADE / FDE Col Top-3 ADE / FDE
S-LSTM [16] 0.25/0.50 2.2 0.25/0.50*
WTA [138] 0.28/0.54 2.4 0.22/0.42
SGAN [17] 0.27/0.54 2.8 0.22/0.43
CVAE [76] 0.26/0.52 4.6 0.23/0.47

MinK 0.34/0.72 5.2 0.22/0.42
SAnchor [Ours] 0.22/0.45 0.4 0.19/0.38

Table 4.1: Performance on TrajNet++ synthetic data. Errors reported are ADE / FDE in meters,
Col in %. We observe the trajectories for 9 times-steps (3.6 secs) and perform prediction for the
next 12 (4.8 secs) time-steps. *Unimodal

Model ADE / FDE Col Top-3 ADE / FDE
DCM [161] 0.67/1.42 8.7 0.67/1.42*

S-LSTM [16] 0.57/1.24 5.5 0.57/1.24*
WTA [138] 0.65/1.46 5.6 0.49/1.05
SGAN [17] 0.66/1.45 5.9 0.51/1.08
CVAE [76] 0.60/1.28 5.7 0.55/1.20

MinK 0.68/1.48 8.4 0.59/1.25
SAnchor 0.62/1.32 4.2 0.58/1.24

Table 4.2: Performance on TrajNet++ real data. Errors reported are ADE / FDE in meters, Col in
%. We observe the trajectories for 9 times-steps (3.6 secs) and perform prediction for the next 12
(4.8 secs) time-steps. *Unimodal

4.4.3 Interpretability of the intents

The advantage of incorporating a discrete choice framework for predicting a pedestrian’s next
intended position is its interpretability. Our proposed architecture allows us to compare the
hand-designed features extensively studied in literature along with the data-driven features to
identify the most relevant factors, at a given time-step, for the anchor selection.

We demonstrate the ability of our network to output interpretable intents in Fig. 4.3. The direction
of the pedestrian of interest is normalized and is facing towards the right. For each row in Fig. 4.3,
in addition to the ground-truth map (leftmost), we illustrate the activation maps of: all combined
factors, the neural network (NN) map, the overall DCM map and finally the dominant behavioral
rules that comprise the DCM function, according to the presented scene. In the first row, we
observe that the model correctly chooses to turn left while maintaining constant speed. The
different activation maps help to explain the rationale behind the model’s decision. Indeed, due
to the increased number of potentially colliding neighbours, one can observe that the collision
avoidance map along with the occupancy map exerts a strong influence on the decision-making,
resulting in the network outputting desired choice of intent.

In the second and third row, we demonstrate two similar cases of leader-follower (LF) that
results in different network outputs. In the former case, one of the neighbours being close to the
pedestrian of interest results in the LF map exhibiting a strong affinity for slowing down. The
strength of the LF map is strong enough to overturn the NN map’s decision to maintain constant
speed. In contrast, in the third row, the influence of the LF map is weaker. Therefore, due to the
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Figure 4.3: Qualitative illustration of the ability of our architecture to output high-level inter-
pretable intents. The direction of motion of the pedestrian of interest is normalized and is facing
towards the right. Current neighbour positions are shown in blue and current velocities are shown
in green. The ground-truth choice is highlighted in light green. (a) In the first row, the decision of
the network is strongly influenced by the collision-avoidance and occupancy map of the DCM.
Consequently, the pedestrian changes the direction of motion and turns left maintaining constant
speed. (b) In the second row, the leader-follower map exerts a strong influence on the final
decision-making causing the model to choose the anchor corresponding to slowing-down. (c)
In the third row, the leader-follower map is not strong in intensity and the neural network map
guides the decision making resulting in the model maintaining constant speed.

preference of NN map, the overall network chooses to maintain constant speed and direction.
Thus, we observe that the DCM maps work well in conjunction with the NN map to provide
interpretable outputs.

4.4.4 Direction normalization

Direction normalization at every time-step is an necessary step to enable the integration of the
DCM framework. According to the DCM framework for pedestrian forecasting [161], the anchor
set A at each time-step is defined dynamically with respect to the current speed and direction
of motion. The input scene needs to be rotated so that the pedestrian of interest faces the same
direction at every time-step and consequently the appropriate anchor can be chosen by the model.
Therefore, thanks to this normalization, we can successfully incorporate the interpretability of
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Model ADE / FDE Col Top-3 ADE / FDE
Unimodal methods

NN-LSTM [148] 0.25/0.50 1.24 0.25/0.50
NN-LSTM (N) 0.20/0.43 0.1 0.20/0.43

Multimodal methods
WTA [138] 0.28/0.54 4.8 0.22/0.42
WTA (N) 0.22/0.45 0.6 0.17/0.35

SGAN [17] 0.27/0.54 5.1 0.22/0.43
SGAN (N) 0.24/0.50 1.4 0.19/0.37
CVAE [76] 0.26/0.52 1.9 0.23/0.47
CVAE (N) 0.23/0.47 0.5 0.22/0.45

Table 4.3: Effect of normalization on synthetic data. Errors reported are ADE / FDE in meters,
Col in %. (N) represents direction-normalized version of the baseline. Direction normalization
improves both distance-based and collision metrics.

Model ADE / FDE Col Top-3 ADE / FDE
Unimodal methods

NN-LSTM [148] 0.58/1.24 7.5 (0.25) 0.58/1.24*
NN-LSTM (N) 0.63/1.36 5.9 0.63/1.36*
D-LSTM [148] 0.57/1.24 5.5 (0.19) 0.57/1.24
D-LSTM (N) 0.62/1.32 4.5 0.62/1.32

Multimodal methods
WTA [138] 0.65/1.46 5.1 0.49/1.05
WTA (N) 0.63/1.38 4.4 0.54/1.15

SGAN [17] 0.66/1.45 5.9 0.51/1.08
SGAN (N) 0.64/1.38 4.0 0.51/1.07
CVAE [76] 0.60/1.28 5.7 0.55/1.20
CVAE (N) 0.62/1.34 4.2 0.58/1.23

Table 4.4: Effect of normalization on real data. Errors reported are ADE / FDE in meters, Col in
%. (N) represents direction-normalized version of the baseline. Direction normalization degrades
the distance-based metrics potentially due to noisy real-world measurements.

DCM without compromising prediction accuracy.

We argue that direction normalization is a general normalization scheme that provides a perfor-
mance boost, in terms of avoiding collisions, when applied to many existing trajectory forecasting
models. The reason behind the improvement is that direction normalization makes the forecasting
model rotation-invariant at each time-step, thus allowing the model to focus explicitly on learning
the social interactions. We would like to note that the direction normalization differs from the one
proposed in [179], as we rotate the direction of motion of a pedestrian’s model at each time-step
and not just at the end of observation.

To verify the efficacy of direction normalization, we perform a comparison between various
baselines and their direction-normalized versions. Table 4.3 and Table 4.4 illustrate the per-
formance boost obtained on applying direction normalization to different trajectory prediction
models on both TrajNet++ synthetic and real dataset. On the synthetic dataset, we observe that
our proposed normalization scheme provides performance improvement on all the metrics across
all the models. On the real dataset, we observe that direction normalization improves the model
prediction collision performance.

In addition to providing a performance improvement, the latent representations obtained by
a network trained using direction normalization are semantically meaningful in the aspect of
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(a) Nearest Neighbours of two samples of an un-normalized baseline.

(b) Nearest Neighbours of two samples of a direction normalized baseline.

Figure 4.4: Qualitative illustration of the effect of direction normalization on model training. We
demonstrate the nearest neighbours in the latent space at the output of the encoder for models
trained with and without direction normalization. We observe that representations of socially-
similar scenes are closer to each other when the model is trained using direction normalization.
The synthetic dataset comprises two pedestrians interacting at various angles.

modelling social interactions. To demonstrate this, we consider a toy dataset of two pedestrians
interacting with each other. The two pedestrians are initialized at different positions on the
circumference of a circle with the objective of reaching the diametrically opposite position.
The two pedestrians interact at different angles and positions. We train a S-LSTM [16] and
direction-normalized S-LSTM model on this dataset. During testing, we obtain the representation
outputted by the LSTM encoder for the particular testing scene and find the closest latent-space
representations in the training set. Fig. 4.4 represents the top-4 nearest neighbours in each row, in
the latent-space, from the training set. We observe that the direction-normalized representations
are more semantically similar in terms of not only the trajectory of the pedestrian of interest but
also the neighbourhood configuration around the pedestrian.
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4.5 Conclusion

We approach the task of human trajectory forecasting by disentangling human motion into high-
level discrete intents and low-level scene-specific refinements. By leveraging recent works in
hybrid choice models, the discretized intents are selected using both interpretable knowledge-
based functions and neural network predictions from the scene. While the former allows us
to understand which human motion rules are present in predicting the next intent, the latter
handles the effects of both long term dependencies and complex human interactions. Through
experiments on both synthetic and real data, we highlight not only the interpretability of our
method, but also the accurate predictions outputted by our model. This is made possible because
of the scene-specific refinements which efficiently cast the discrete problem into the continuous
domain.

In the next chapter, we tackle the adaptation aspect of real-world deployment of forecasting
models. Specifically, we develop a strategy to adapt a pre-trained forecasting model to unseen,
out-of-distribution scenarios as efficiently as possible.
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5 Modular Low-Rank Adaptation for
Trajectory Forecasting

This chapter is based on the article:

Parth Kothari, Danya Li, Yuejiang Liu and Alexandre Alahi, Motion Style Transfer: Modular
Low-Rank Adaptation for Deep Motion Forecasting, CoRL (2022)

5.1 Introduction

Deep motion forecasting models have achieved great success when trained on a massive amount
of data. Yet, they often perform poorly when they encounter novel scenarios where the training
data is limited. To address this challenge, in this chapter, we propose a transfer learning approach
for efficiently adapting pre-trained forecasting models to new domains, such as unseen agent
types and scene contexts.

Existing deep motion forecasting models suffer from inferior performance when they encounter
novel scenarios [29, 30]. For instance, a network trained with large-scale data for pedestrian
forecasting struggles to directly generalize to cyclists. Some recent methods propose to incorpo-
rate strong priors robust to the underlying distribution shifts [180, 181, 182]. Yet, these priors
often make strong assumptions on the distribution shifts, which may not hold in practice. This
shortcoming motivates the following transfer learning paradigm: Adapting a forecasting model
pretrained on one domain with sufficient data to new domains such as unseen agent types and
scene contexts as efficiently as possible.

One common transfer learning approach is fine-tuning a pretrained model on the data collected
from target domain. However, directly updating the model is often sample inefficient, as it fails to
exploit the inherent structure of the distributional shifts in the motion context. In the forecasting
setup, the physical laws behind motion dynamics are generally invariant across geographical
locations and agent types: all agents move towards their goal and avoid collisions. As a result,
the distribution shift can be largely attributed to the changes in the motion style, defined as the
way an agent interacts with its surroundings. Given this decoupling of motion dynamics, it can
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be efficient for an adaptation algorithm to only account for the updates in the target motion style.

In this chapter, we efficiently adapt a deep forecasting model from one motion style to another.
We refer to this task as motion style transfer. We retain the domain-invariant dynamics by freezing
the pre-trained network weights. To learn the underlying shifts in style during adaptation, we
introduce motion style adapters (MoSA), which are new modules inserted in parallel to the
encoder layers. The style shift learned by MoSA is injected into the frozen pre-trained model.
We hypothesize that the style shifts across forecasting domains often reside in a low-dimensional
space. To formulate this intuition, we design MoSA as a low-dimensional bottleneck, inspired by
recent works in language [183, 184]. Specifically, MoSA comprises two trainable matrices with a
low rank. The first matrix is responsible for extracting the style factors to be updated, while the
second enforces the updates. MoSA learns the style updates by adding and updating less than 2%
of the parameters in each layer.

In low-resource settings, it can be difficult for MoSA to distinguish the relevant encoder layers
updates from the irrelevant ones, resulting in sub-optimal performance. To facilitate an informed
choice of adaptation layers, we propose a modularized adaptation strategy. Specifically, we
consider forecasting architectures that disentangle the fine-grained scene context and past agent
motion using two independent low-level encoders. This design allows the flexible injection of
MoSA to one encoder while leaving the other unchanged. Given the style transfer setup, our
modular adaptation strategy yields substantial performance gains in the low-data regime.

We empirically demonstrate the efficiency of MoSA on the state-of-the-art model Y-Net [20]
on the heterogenous SDD [185] and inD [186] datasets in various style transfer setups. Next,
we highlight the potential of our modularized adaptation strategy on two setups: Agent Motion
Style Transfer and Scene Style Transfer. Finally, to showcase the generalizability of MoSA
in self-driving applications, we adapt a large-scale model trained on one part of the city to an
unseen part, on the Level 5 Dataset [187]. Through extensive experimentation, we quantitatively
and qualitatively show that given just 10-30 samples in the new domain, MoSA improves the
generalization error by 25% on SDD and inD. Moreover, our design outperforms standard
fine-tuning techniques by 20% on the Level 5 dataset.

5.2 Related Work

Distribution shifts. The primary challenge in adapting to new domains lies in tackling the
underlying distributional shifts. One ambitious approach is developing domain generalization
techniques that aim to learn models that directly function well in unseen test domains [188,
189]. Negative data augmentation techniques have been applied in a limited scope to reduce
collisions [181] and off-road predictions [190] on new domains. Recently, the application of
distributionally robust optimization to forecasting has been explored albeit in a two pedestrian
setup [191]. Domain adaptation is another line of work that allows a learning algorithm to observe
a set of unlabelled test samples. While this approach has been shown effective in a variety of
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supervised tasks in vision [192, 193, 194, 195], it is not the ideal setup for motion forecasting
setup where the crucial challenge is sample efficiency as labels in the form of future trajectories
are fairly easy to acquire. Therefore, in this chapter, we take an alternate approach of transfer
learning using limited data.

Transfer learning. We are interested in the inductive transfer learning setting for deep motion
forecasting [196]. The standard approach of fine-tuning the entire or part of the network [197,
198] has been shown to outperform feature-based transfer strategy [199, 200]. Recently, there
has been a growing interest in developing parameter-efficient fine-tuning (PET) methods in both
language and vision, as they not only yield a compact model (very few extra parameters) [183,
184, 201]. but also show promising results in outperforming fine-tuning in low-resource settings
[184, 202]. Similar in spirit to PET methods, we introduce additional parameters in our network
but with an objective of style-conditioned motion generation. In our work, motion style adapters
account for the updates in target style that are used to condition the forecasting model outputs.
In the motion context, transfer learning given limited data often requires special architecture
designs like external memory [203] and meta-learning objectives [204, 205], for human pose
prediction in isolation. Meanwhile, our work adopts a style transfer perspective that facilitates
fast adaptation for a wider variety of real-world transfer learning setups.

Style transfer. In vision, style transfer refers to the task of transforming an input image into
a particular artistic style while preserving the notion of content [206, 207]. In motion context,
the popular work of [185] defined navigation style as the way different agents interact with their
surroundings. It introduced social sensitivity as two handcrafted descriptions of agent style and
provided them as input to the social force model [53]. In this chapter, we model style as a latent
variable that is learned in a data-driven manner. Closely related to ours, [191] decoupled domain-
invariant laws and domain-specific style inside their causal forecasting framework. However, their
method imposes the strong constraint of requiring access to multiple environments of varying
style during training. Furthermore, we decouple motion style into scene-style components and
agent-style components to favour efficient adaptation.

5.3 Method

Deep neural networks have shown remarkable performance in motion forecasting thanks to the
availability of large-scale datasets. However, these models often struggle to generalize when
unseen scenarios are encountered in the real world due to underlying differences in motion
style. In this section, we first formally introduce the problem setting of motion style transfer.
Subsequently, we introduce the design of our style adapter modules that help to effectively tackle
motion style transfer. Finally, we describe the application of style adapters to a modularized
architecture in order to perform style transfer in a more efficient manner.
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Figure 5.1: We present an efficient transfer learning technique that adapts a forecasting model
trained with sufficient labeled data (e.g., pedestrians), to novel domains exhibiting different
motion styles (e.g., cyclists). We freeze the pretrained model and only tune a few additional
parameters that aim to learn the underlying style shifts (left). We hypothesize that the style
updates across domains lie in a low-dimensional space. Therefore, we propose motion style
adapters with a low-rank decomposition (r≪ d), designed to infer and update the few style
factors that vary in the target domain (right).

5.3.1 Motion style transfer

Motion style. Modelling agent motion behavior involves learning the social norms (e.g., min-
imum separation distance to others, preferred speed, valid areas of traversal) that dictate the
motion of the agent in its surroundings. These norms differ across agents as well as locations. For
instance, the preferred speed of pedestrians differs from that of cyclists; the separation distance
between pedestrians in parks differs from that in train stations. To describe these agent-specific
(or scene-specific) elements that govern underlying motion behavior, we define the notion of
“motion style". Motion style is the collective umbrella that models the social norms of an agent
given its surroundings.

Problem statement. Consider the inductive transfer learning setting for deep motion forecasting
across different motion styles. Specifically, we are provided a forecasting model trained on large
quantities of data comprising a particular set of style(s) and our goal is to adapt the model to the
idiosyncrasies of a target style as efficiently as possible. We denote the model input and ground-
truth future trajectory of an agent i using xi and yi respectively. The input xi comprises the past
trajectory of the agent, surrounding neighbors, and the surrounding context map. The context can
take various forms like RGB images or rasterized maps. We assume that the data corresponding
to an agent type is generated by an underlying distribution PX ,Y (·;s) parameterized by s, the
style of the agent. As mentioned earlier, the style is dictated by both the agent type and its
surroundings.

Training. The forecasting model has an encoder-decoder architecture (see Fig. 5.1) with
weights Wenc and Wdec respectively. The training dataset, DS of size N is given by ∪s∈SDs =
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(xi,yi)i∈{1,...,N}, where S is a collection of motion styles observed within the dataset. The model
is trained to minimize:

Ltrain(DS;Wenc,Wdec) =
1
N

N

∑
i=1

L (xi,yi;Wenc,Wdec). (5.1)

Adaptation. When a novel scenario with style s′ (s′ /∈ S) is encountered, it leads to a distribution
shift and the learned model often struggles to directly generalize to the corresponding dataset
Ds′ = (x′i,y

′
i)i∈{1,...,Ntarget} of size Ntarget . The common approach to tackling such shifts is to

fine-tune the entire or part of the pretrained model. Fine-tuning optimizes an objective similar to
training, but on the new dataset:

Ladapt(Ds′ ;Wenc,Wdec) =
1

Ntarget

Ntarget

∑
i=1

L (x′i,y
′
i;Wenc,Wdec). (5.2)

In this chapter, we aim to develop an adaptation strategy for efficient motion style transfer, i.e.,
cases where Ntarget is small (Ntarget ≪ N). Often, motion behaviors do not change drastically
across domains. Instead, most of the behavioral dynamics are governed by universal physical laws
(e.g., influence of inertia, collision-avoidance). We therefore propose to freeze the weights of the
pretrained forecasting model and introduce motion style adapters, termed MoSA, to capture the
target motion style. As shown Fig. 5.1, we adapt a pre-trained forecasting model by fine-tuning
WMoSA with the following objective:

Ladapt(Ds′ ;WMoSA) =
1

Ntarget

Ntarget

∑
i=1

L (x′i,y
′
i;WMoSA). (5.3)

5.3.2 MoSA: motion style adapters

Our main intuition is that the style shifts across forecasting domains are usually localized – they
are often due to the changes in only a few variables of the underlying motion generation process.
Therefore, during style transfer, we only need to adapt the distribution of this small portion of
latent factors, while keeping the rest of the factors constant. These updates would correspond
to the changes in motion style (s→ s′) in the target domain, as the general principles of motion
dynamics (e.g., avoid collisions, move towards goal) remain the same across domains for all
agents. We design motion style adapters, referred to as MoSA, to carry out these updates.

Our proposed MoSA design comprises a small number of extra parameters added to the model
during adaptation (see Fig. 5.1). Each module comprises two trainable weight matrices of low
rank, denoted by A and B. The first matrix A is responsible for inferring the style factors that are
required to be updated to match the target style, while the second matrix B performs the desired
update. The low rank r realizes our intuition that style updates reside in a low-dimensional space,
by restricting the number of style factors that get updated (r << d where d is the dimension
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size of an encoder layer). Therefore, during adaptation, the weight updates of the encoder are
constrained with our low-rank decomposition WMoSA = BA. The pretrained model is frozen and
only A and B are trained.

For brevity, let us consider the adaptation of encoder layer l with input hl and output hl+1. As
shown in Fig. 5.1, W l

enc and W l
MoSA are multiplied with the same input hl , and their respective

output vectors are summed coordinate-wise as shown below:

(Train) hl+1 =W l
enchl, (5.4)

(Adapt) hl+1 =W l
enchl +W l

MoSAhl =W l
enchl +BlAlhl. (5.5)

It has been shown that initialization plays a crucial role in parameter-efficient transfer learning
[183, 201]. Therefore, following common practices, matrices A and B are initialized with a
near-identity function [183], so that the original network is unaffected when training starts.
Furthermore, the near-identity initialization provides flexibility to these modules to ignore certain
layers during motion style updates. Despite this flexibility, the total number of extra parameters
is significant and can be inconducive to efficient style transfer. Therefore, to further boost sample
efficiency, we present a modular adaptation strategy which we describe next.

5.3.3 Modularized adaptation strategy

Motion style can be decoupled into scene-specific style and agent-specific style. Scene-specific
style dictates the changes in motion due to physical scene structures. For instance, cyclists prefer
to stay on the lanes while pedestrians move along sidewalks. The agent-specific style captures
the underlying navigation preferences of different agents like distance to others and preferred
speed. Modularizing the encoder into two parts that account for the physical scene and agent’s
past motion independently can help to decouple the functionality of our motion style adapters
and further improve performance.

Consider the modularized motion encoder designs shown in Fig. 5.2. The modularized encoder
models the input scene and agent’s past history independently. The fusion encoder then fuses
the two representations together. This design has the advantage to decouple the task of the
style adapters into scene-specific updates and agent-specific updates. Given the modularized
setup, the nature of the underlying distribution shifts can help guide which modules within the
model are required to be updated to the target style. As demonstrated in Section. 5.4.4, given
different categories of style transfer setups, decoupling style adapters can improve the adaptation
performance while significantly reducing the number of updated parameters.
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Figure 5.2: Our modular style transfer strategy updates only a subset of the encoder to account
for the underlying style shifts. For instance, we adapt the scene encoder only to model scene style
shifts (top right). On the other hand, for the underlying agent motion shift, we only update the
agent motion encoder (bottom right). This strategy boosts performance in low-resource settings.

5.4 Experiments

Datasets. We use a total of three datasets to study the performance of motion style adapters:
Stanford Drone Dataset (SDD) [185], the Intersection Drone Dataset (InD) [186], and Level 5
Dataset (L5) [187]. We consider both short-term and long-term motion forecasting setups. SDD
and inD with different heterogeneous agents exhibiting different motion styles provide the ideal
setup to validate motion style transfer techniques. L5 dataset provides 25-second long sequences
of ego vehicle to study the effects of style transfer on long-term self-driving settings.

Baselines. We compare the following methods during adaptation for the experiments reported
in the paper. For a fair comparison, we use the state-of-the-art Y-Net architecture [208] for all
baselines on SDD and inD. On L5, we use the Vision Transformer (ViT) architecture [209] across
all methods.

• Full Model Finetuning (FT) [197]: we update the weights of the entire model. The learning
rate (LR) is 5e-5, unless mentioned otherwise.

• Partial Model Finetuning (ET) [191]: we update the weights of the Y-Net encoder for SDD and
inD , and the last two layers of ViT for Level 5. The LR is 5e-4, unless mentioned otherwise.

• Parallel Adapters (PA) [210]: we insert a convolutional layer with filter size of 3 in parallel to
each encoder layer and update the weights of these layers. This baseline does not incorporate
the low-rank constraint. The LR is 5e-5, unless mentioned otherwise.

• Adaptive Layer Normalization [211, 212]: we update the weights and biases of the layer
normalization, wherever present. The LR is 1e-4, unless mentioned otherwise.

• Motion Style Adapters (MoSA) [Ours]: we insert our motion style adapters in parallel to each
encoder layer in SDD and inD, and in parallel to query and value matrices of multi-headed
attention in Level 5. During modularized adaptation, we add our modules across the specified
encoders only, and not the entire encoder. The LR is 3e-3 and the rank r is 1, unless mentioned
otherwise.
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Table 5.1: Evaluation of adaptation methods for motion style transfer (pedestrians to bikers) on
SDD and scene style transfer on InD using few samples Ntarget = {10,20,30}. Error reported is
Top-20 FDE in pixels. The generalization error on SDD is 58 pixels and on inD is 33 pixels. Our
proposed motion style adapters (MoSA) outperform competitive baselines and improve upon the
generalization error by > 25% in both setups. Mean and standard deviation were calculated over
5 runs.

Stanford Drone Dataset Intersection Drone Dataset

Ntarget 10 20 30 10 20 30

FT 57.28 ± 1.21 52.61 ± 0.87 46.31 ± 1.79 27.92 ± 1.99 25.15 ± 1.08 23.18 ± 0.64
ET [191] 51.88 ± 1.32 46.78 ± 1.78 43.13 ± 1.03 28.06 ± 0.68 23.19 ± 1.39 21.13 ± 1.00
PA [210] 52.77 ± 0.85 47.75 ± 1.83 44.70 ± 1.28 28.71 ± 1.50 26.10 ± 0.74 25.00 ± 1.08
MoSA (ours) 49.98 ± 1.05 45.55 ± 0.77 41.69 ± 0.88 25.18 ± 0.72 21.70 ± 0.84 20.35 ± 1.18

Metrics. We use the established Average Displacement Error (ADE) and Final Displacement
Error (FDE) metrics for measuring the performance of model predictions. ADE is calculated as
the l2 error between the predicted future and the ground truth averaged over the entire trajectory
while FDE is the l2 error between the predicted future and ground truth for the final predicted
point [16]. For multiple predictions, the final error is reported as the min error over all predictions
[17]. Additionally, we define the generalization error as the error of the pretrained model on the
target domain. The more the dissimilarity between the source domain and target domain, the
higher the generalization error.

5.4.1 Motion style transfer across agents on Stanford Drone Dataset

We perform short-term prediction, in which the future trajectory is predicted for the next 4.8
seconds, given 2.5 seconds of observation. The main objective of efficient motion style transfer is
to adapt the model with a limited number of samples. We choose to adapt our model on cyclists
in deathCircle_0 as there exists a clear distinction between the motion style of pedestrians and
cyclists (see Fig. 5.3). We use the publicly available Y-Net model trained on pedestrian data
across all scenes and adapt it to the cyclists’ data in deathCircle_0. We adapt the model using
Ntarget = {10,20,30} samples.

Tab. 5.1 quantifies the performance of various style transfer techniques. The model trained on
pedestrians does not generalize to cyclists as evidenced by the high generalization error of 58
pixels. Our MoSA design reduces this error by ∼ 30% using only 30 samples. Moreover, MoSA
outperforms the baselines while keeping the pretrained model frozen and updating only 0.5%
additional parameters.

We qualitatively analyze the Y-Net goal decoder outputs after model adaptation using MoSA.
Fig. 5.4 illustrates the updates in the goal decoder output (red means increase in focus and blue
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Figure 5.3: Distribu-
tion of trajectories of
pedestrians (blue) and
bikers (red) on death-
Circle.

observation
groundtruth prediction

observation
groundtruth prediction

observation
groundtruth prediction

Figure 5.4: Illustration of the difference in goal decoder output of Y-
Net on the adaptation of pedestrian-trained model using our proposed
style-injection modules (rank=1) (Red is positive, blue is negative).
During adaptation, Y-Net learns to focus on the road lanes for biker
forecasting.

means decrease in focus). Adapted Y-Net successfully learns the style differences between the
behavior of pedestrians and bikers: 1) it correctly infers valid areas of traversal, 2) effectively
captures the multimodality of bikers, and 3) updates the motion style parameters as the new
biker goal positions (red) are farther from the end of the observation position, compared to the
un-adapted goal positions (blue).

5.4.2 Motion style transfer across scenes on Intersection Drone Dataset

In this setup, we perform long-term prediction, in which future trajectory in the next 30 sec-
onds is predicted, given 5 seconds of observation. We use the publicly available Y-Net model
and follow the experimental protocol of [20] in which the model is trained on pedestrians
in {scene2,scene3,scene4} and tested on unseen scene scene1. We adapt the model using
Ntarget = {10,20,30} samples.

Despite the long-term prediction setup, the generalization error, in this case, is 33 pixels that are
lower compared to the previous SDD setup, as the target domain is more similar to the source
domain. Tab. 5.1 quantifies the performance of scene style transfer across all methods. Once
again, using just 30 samples, MoSA improves the generalization error by∼ 40% and outperforms
its counterparts.

5.4.3 Motion style transfer across scenes on Lyft Level 5 dataset

To demonstrate the generalizability of our approach, we apply MoSA to L5 dataset. We divide
the dataset into two splits based on the location and thereby, construct a scene style shift scenario.
We train a Vision Transformer Tiny (ViT-Tiny) model on the majority route and adapt it to the
smaller route that was not seen during training (see Fig. 5.6). To simulate low-resource settings,
we provide the frames, sampled at different rates, that cover the unseen route only once.
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Figure 5.5: Evaluation of adaptation tech-
niques for long-term motion prediction (25
secs) on Level 5. Error in meters for 5 seeds.

Figure 5.6: Training-Adaptation split for Level
5 prediction dataset. Model trained on the
green route and adapted on the blue route. The
distribution shift arises from differing styles in
different scene locations. The inherent motion
style parameters of the agent remain same (ego
vehicle in both). Background from [187].

Fig. 5.5 quantitatively evaluates the performance of various adaptation strategies. MoSA performs
superior in comparison to different baselines while adding and updating only ∼ 5% of the full
model parameters. It is apparent that our low-rank design is a smarter way of adapting models
in the motion context as compared to fine-tuning the whole or the last few layers of the model.
Fig. 5.7 qualitatively illustrates the final layer attention maps of ViT-Tiny before and after
adaptation. We observe that post adaptation, the attention maps are more refined. The ego vehicle
better focuses on the possible future routes and the neighbours of interest.

5.4.4 Modularized adaptation strategy

Now, we empirically demonstrate the effectiveness of applying our motion style adapters on top of
a modularized architecture on two setups: Scene generalization and Agent Motion generalization.

Setup: We construct Y-Net-Mod on top of the original Y-Net architecture. The modification treats
the scene context and agent motion independently before fusing their representations together.
As shown in Fig. 5.8, the first three layers of the original encoder are decoupled into scene
context and past agent motion modules in order to learn their representations independently.
Subsequently, the representations are fused together using the fusion encoder, that is similar in
design to the last two layers of Y-Net. The original number of channels in each encoder layer
of Y-Net are evenly divided between each module in Y-Net-Mod encoder so that the latter is
compatible with the Y-Net decoders.

Given Y-Net-Mod, we consider five cases given the module list on which MoSA is applied: (1)
scene only [S], (2) agent motion encoder only [A], (3) scene and fusion encoder [S+F], (4) agent
motion and fusion encoder [A+F], and (5) scene, agent motion and fusion encoders together
[S+A+F].

Agent motion generalization: In scene1 of inD, cars and trucks share the same scene context
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Figure 5.7: Qualitative illustration of the attention heatmaps from the last layer of the ViT before
and after adapting the model using MoSA in the unseen domain on Level 5. We can observe that
post adaptation, the attention maps are more refined, as the ego vehicle (in green) better focuses
on the different possible future routes and the vehicles in front.
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Scene module

Agent motion module

Fusion module

Figure 5.8: Y-Net-Mod encoder architecture

Figure 5.9: Car and truck trajectory distribu-
tion in inD dataset scene1. Both share the same
scene and differ largely in velocity distribution.
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Figure 5.10: Velocity distribution of car and
truck in inD scene1. Static trajectories have
been filtered.

differing only in their velocity distribution (see Fig. 5.9 and Fig. 5.10). Fig. 5.11 represents the
performance of style transfer from cars to trucks on 20 samples under five different adaptation
cases. It is interesting to note that adapting the agent motion encoder alone [A] performs the best
while including the scene encoder for adaptation deteriorates performance ([S] worse than [A],
[S+A+F] worse than [A+F]).

Scene generalization: We train the Y-Net-Mod model on pedestrian data on scene ids = {2,3,4}
and adapt it on scene1 of inD. Fig. 5.12 represents the performance of scene style transfer on
20 samples in the five cases. Contrary to the previous setup, adapting the scene encoder [S] is
clearly more important than the agent motion encoder [A]. Further, adapting the agent encoder
deteriorates performance ([S+A+F] worse than [S+F]). It is clear that modularization helps to
boost the performance of MoSA.
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Figure 5.11: Agent Motion Transfer. Style
Transfer from cars to trucks on InD scene1
with Ntarget = 20 samples using different
MoSA configurations. [A] performs best while
[S] worsens performance. Error reported is
Top-20 FDE in pixels across 5 seeds.
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Figure 5.12: Scene Transfer. Style Trans-
fer across scenes on InD pedestrians with
Ntarget = 20 samples using different MoSA
configurations.[S+F] performs best while [A]
worsens performance. Error reported is Top-20
FDE in pixels across 5 seeds.

5.4.5 Implementation Details

Motion Style Transfer across Agents in SDD. We follow the pre-processing procedure of [20].
We pretrained Y-Net network for 100 epochs with Adam optimizer with a batch size of 10 and
learning rate of 5e-5. Rest of the hyper-parameters are kept the same as [20]. We adapted the
pretrained model using Ntarget = {10,20,30} trajectories and utilize 80 trajectories for validation.
We adapt the pretrained model for 100 epochs. For MoSA, rank value is set to 3.

Motion Style Transfer across Scenes in inD. We follow the data preprocessing protocol and
the pretrained model provided by Y-Net paper [20]. We adapted this model using Ntarget = {20}
trajectories and used 40 trajectories for validation. We adapted the pretrained model for 100
epochs.

Scene Style Transfer on L5. We follow the training strategy provided in [187]. To simulate low-
resource settings during adaptation, the network is shown the unseen route only once, sampled at
different rates. We adapt all baseelines for 250 epochs using a one-cycle learning rate schedular.
We apply MoSA with rank value of 8 and learning rate of 3e-3. We apply MoSA across the
query and value matrices of each attention layer. We observed that applying MoSA across the
feedforward layers deteriorated performance.

Modular Agent Motion Generalization. We perform style transfer from cars to trucks in scene1
of inD. Trajectories with an average speed less than 0.2 pixels per second are filtered out. We
trained a Y-Net-Mod model on cars. We adapted the model to trucks in which Ntarget = {20}
trajectories are used for adaptation and 40 trajectories for validation.

Modular Scene Generalization. We pretrained Y-Net-Mod model using pedestrian data from

87



Chapter 5 Modular Low-Rank Adaptation for Trajectory Forecasting

scene ids = {2,3,4} and transferred to pedestrian data from scene1 following the setup in [20].
The adaptation used Ntarget = {20} for fine-tuning and 20 trajectories for validation.

5.5 Conclusion

In this chapter, we tackle the task of efficient motion style transfer wherein we adapt a trained
forecasting model on a target domain comprising limited samples of unseen target styles. We
argued that we only need to model the underlying style shift across domains, which often reside
in a low-dimensional space. We formulated this intuition into our motion style adapter (MoSA)
design, which is trained to infer and update the style factors of variation in the target domain
while keeping the pretrained parameters frozen. Additionally, we present a modularized style
transfer strategy that updates only a subset of the model given the nature of the style transfer
problem. Extensive experimentation on three real-world datasets demonstrates the effectiveness
of our approach.

In the chapters until now, we have tacked the important challenges in improving human trajectory
forecasting in crowds. In the last chapter, we present an open-source environment that enables
training driving policies on real-world data with the ability to simulate surrounding agents using
any data-driven forecasting model.

88



6 Democratising Reinforcement Learn-
ing for Autonomous Driving

This chapter results from an applied research project in collaboration with the autonomous driving
company Lyft Level 5 (now, Woven Planet).

This chapter is based on the article:

Parth Kothari, Christian Perone, Luca Bergamini, Alexandre Alahi and Peter Ondruska, Driver-
gym: Democratising reinforcement learning for autonomous driving, Machine Learning for
Autonomous Driving, NeurIPS 2021 Workshop

6.1 Introduction

In the previous chapters, we focused on designing deep learning architectures for improving
human trajectory forecasting. The eventual goal of developing such accurate socially-aware
trajectory forecasting methods is to utilize them in improving downstream tasks like planning in
autonomous robots. In this chapter, we present an open-source gym environment DriverGym that
enables to train driving policies on real-world data with the additional benefit that the surrounding
agents can be simulated using trajectory forecasting methods.

Recently, Reinforcement Learning (RL) has achieved great success in a variety of applica-
tions like playing Atari games [213], board games [214], manipulating sensorimotor in three-
dimensions [215]. However, developing RL algorithms for real-world applications such as
autonomous driving (AD) remains an open challenge [216]: with AD being an extremely safety-
critical task, one cannot directly deploy a policy in the real world for data collection or policy
validation.

One solution is to deploy the policy in the real world with a safety driver inside the car at all
times. However, this process is time-consuming, and more importantly, not accessible to all of the
research community. Therefore, to tackle this challenge, there is a dire need for an RL simulation
environment that can (1) be used to easily train RL policies using real-world logs, (2) simulate
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Figure 6.1: DriverGym: an open-source gym environment that enables training RL driving
policies on real-world data. The RL policy can access rich semantic maps to control the ego (red).
Other agents (blue) can either be simulated from the data logs or controlled using a dedicated
policy pre-trained on real-world data. We provide an extensible evaluation system (purple) with
easily configurable metrics to evaluate the idiosyncrasies of the trained policies.

surrounding agent behavior that is both realistic and reactive to the ego policy, (3) effectively
evaluate the trained models, (4) be flexible in its design, and (5) inclusive to the entire research
community.

We propose DriverGym, an open-source gym-compatible environment specifically tailored for
developing and experimenting with RL algorithms for self-driving (see Fig. 6.1). DriverGym
utilizes one of the largest public self-driving datasets, Level 5 Prediction Dataset [217] containing
over 1,000 hours of data, and provides support for reactive agent behavior simulation [218]
using data-driven models. Furthermore, DriverGym provides an extensive and extensible closed-
loop evaluation system: it not only comprises a variety of AD-specific metrics but also can be
easily extended to incorporate new metrics to evaluate idiosyncrasies of trained policies. We
open-source the code and pre-trained models to stimulate development.

In this work, we provide the following contributions:

• An open-source and OpenAI gym-compatible environment for autonomous driving task;
• Support for more than 1000 hours of real-world expert data;
• Support for logged agents replay or data-driven realistic agent trajectory simulations;
• Configurable and extensible evaluation protocol;

6.2 Related Work

Autonomous Driving Simulation Environments. To replicate the success of the OpenAI
Gym framework [219], many simulation environments have been developed in the context of
autonomous driving [33, 34, 220, 221, 222]. Table 6.1 provides a comparison amongst commonly
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Table 6.1: Comparison of various open-source RL simulation environments for autonomous
driving.

Name
Gym

Compatible
Evaluation
Protocol

Simulator
Expert Data

Real-world
Expert Data

Agents
Model

TORCS ✗ ✗ ✗ ✗ Rule-based
Highway-Env ✓ ✗ ✗ ✗ Rule-based
CARLA (Official) ✗ ✓ 14 hrs ✗ Rule-based
SMARTS ✓ ✓ ✗ ✗ Rule-based or Data-driven
CRTS ✓ ✓ ✗ 64 hrs Real-world Logs
DriverGym ✓ ✓ ✗ 1000 hrs Data-driven or Real-world Logs

used RL simulation environments including DriverGym. Racing simulators like TORCS [220]
offer limited scenarios of driving. Highway-Env [221] provides a collection of gym-compatible
environments for autonomous driving. However, it lacks important semantic elements like traffic
lights, an extensive evaluation protocol and expert data.

Traffic simulators like CARLA [33], SUMO [34] supports flexible specification of traffic condi-
tions for training and testing. However, they are synthetic simulators that utilize hand-coded rules
for surrounding agents’ motion that tends to be unrealistic and display a limited variety of behav-
iors. Crucially, they lack access to real-world data logs. SMARTS [223] overcomes the former
issue by providing Social Agent Zoo that supports data-driven agent models while CRTS [224]
tackles the latter providing access to 64 hours of real-world logs within the CARLA simulator.
DriverGym solves both these challenges: it provides access to 1000 hours of real-world logs to
initialize episodes and more importantly, enables simulating reactive agents using data-driven
models learned from real-world data. This allows us to utilize deep trajectory forecasting methods
to facilitate downstream planning.

6.3 Method

DriverGym aims to foster the development of RL policies for self-driving by providing a flexible
interface to train and evaluate RL policies. Our environment is compatible with both SB3 [225]
and RLlib [226], two popular frameworks for training RL policies. The code is open-source with
Apache 2 license. We describe the components of our environment below.

6.3.1 State Representation

The state representation captures the context around the ego agent, in particular, the surrounding
agents’ positions, their velocities, the lanes and traffic lights. We encode this information in
the form of a 3D tensor that is the birds-eye-view (BEV) raster image of the current frame.
DriverGym supports all the rasterization modes provided by L5Kit [217]. Compared to Atari
environments, DriverGym requires more time to generate observations as the latter has to load
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Figure 6.2: Visualization of an episode rollout (ego in red, agents in blue) in DriverGym. The
policy prediction (green line) is scaled by factor of 10 and shown at 2 second intervals for better
viewing.

real-world data and subsequently render high-resolution raster images (See Fig. 6.3).

6.3.2 Action Spaces

The action produced by the RL policy is used to control the motion of the ego agent. The action
is propagated as (x,y,yaw) to update the state of the ego. Still, DriverGym does not make any
strict assumptions on the policy itself which can, for instance, output (acceleration,steer) and
use a kinematic model to decode the next-step observation.

6.3.3 Reactive Agents

An important component of the DriverGym environment is to model the motion of the surrounding
agents. DriverGym allows flexibility in this aspect and currently support two ways of controlling
the behavior of surrounding agents: log replay and reactive simulation.

In log replay, during an episode rollout, the movement of surrounding agents around the ego is
replayed in the exact same manner as it happened when the log was collected in the real world.
In reactive simulation, the agent behavior is both reactive and realistic. Motivated by [218],
DriverGym allows simulating agent reactivity using data-driven models that learn agent behavior
from real-world data, i.e., users can provide neural-network-based agent models trained on
real-world data, to simulate agent behavior.

6.3.4 Rewards

The rewards in the environment quantify the performance of a driving policy during a rollout and
subsequently guide the training of the policy using reinforcement learning. DriverGym, through
the Closed-Loop Evaluation (CLE), supports a variety of AD-specific metrics that are computed
per-frame, and can be combined to construct the reward function. This system is described in the
section below.
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Figure 6.3: Example Rasterization
Modes Figure 6.4: Evaluation Plan

6.3.5 Closed-Loop Evaluation Protocol

Having an extensive closed-loop evaluation (CLE) protocol is a necessity to correctly assess the
performance of RL policies before deployment in safety-critical real-world scenarios. Our CLE
framework comprises insightful AD-specific metrics: the first set of metrics, specific to imitation
learning, are distance-based metrics. The second set of metrics, specific to safety, capture the
various types of collisions that occur between ego and surrounding agents. These include front
collision, side collision and rear collisions. Table. 6.2 describes the various metrics.

CLE is flexible and new metrics can be easily incorporated to target specific cases of model
failures. Within CLE, the user has access to all the simulation artifacts (trajectories, maps, log
replay data of ego and agents) while designing a new metric. We hope the DriverGym evaluation
protocol facilitates researchers to diagnose targeted behaviors of their policies.

Implementation. Our CLE works on top of the simulation outputs provided by episode rollouts
in DriverGym. An evaluation plan (Fig. 6.4) is defined that comprises (1) metrics that are
computed per frame (e.g. L2 displacement error) (2) validators that enforce constraints on the
metrics per scene (L2 displacement error ≤ 4 meters), and (3) composite metrics per scene, that

93



Chapter 6 Democratising Reinforcement Learning for Autonomous Driving

Table 6.2: Description of the various metrics provided in DriverGym closed-loop evaluation
protocol.

Name Type Description

Average Displacement Distance-Based
Computes the L2 distance between predicted ego centroid and

ground-truth ego centroid averaged over the entire episode

Final Displacement Distance-Based
Computes the L2 distance between predicted ego centroid and

ground-truth ego centroid at the last timestep of the episode

Distance to Reference Distance-Based
Computes the L2 distance between the predicted centroid and the

closest waypoint in the reference trajectory (ground-truth ego)

Front Collision Safety-Based
Computes whether a collision occurred between the front of ego and

any another agent

Side Collision Safety-Based
Computes whether a collision occurred between a side of ego and

any another agent

Rear Collision Safety-Based
Computes whether a collision occurred between the rear of ego and

any another agent

can depend both on the output of metrics and validators (e.g. passed driven miles). Note that our
CLE supports both reactive and non-reactive agents.

6.4 Experiments

We evaluate three different algorithms using DriverGym to compare the effectiveness of these
training strategies. The first one is an open-loop training baseline using L2 imitation loss (SL).
Naive behavioral cloning is known to suffer from distribution shift between training and test
data [227]. We compare it with a stronger baseline, inspired by ChaufferNet [228], that alleviates
distribution shift by introducing synthetic perturbations to the training trajectories (SL + P).

We also evaluate an RL policy, namely Proximal Policy Optimization (PPO) [229] implemented
in the SB3 framework [225]. We choose PPO as it not only demonstrates remarkable performance
but it is also empirically easy to tune [229]. All the experiments have been performed on 2 Tesla
T4 GPUs.

6.4.1 Model Architecture

In our experiments, the backbone feature extractor is shared between the policy and the value
networks. The feature extractor is composed of two convolutional networks followed by a fully
connected layer, with ReLU activation. The feature extractor output is passed to both the policy
and value networks composed of two fully connected layers with tanh activation. The open-loop
baseline models have the same backbone architecture as above.

We perform group normalization after every convolutional layer. Empirically, we found that
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Table 6.3: Evaluation of different training strategies using the CLE protocol in DriverGym. Lower
is better. SL: Supervised learning using L2 imitation loss, SL + P: SL plus trajectory pertubations,
PPO: RL using PPO, with imitation-loss based reward. Metrics and validators are in the format:
average (std. deviation).

Method
Metrics Validators

Average
Displacement

Final
Displacement

Final
Displacement
(>= 30.0m)

Distance To
Reference
(>= 4.0m)

Front
Collision

Side
Collision

Rear
Collision

SL 32.4 ± 2.7 74.5 ± 5.5 9.5 ± 4.9 26 ± 0.0 12.5 ± 3.5 19 ± 5.6 16 ± 1.4
SL + P 13.4 ± 1.4 25.5 ± 3.5 5.3 ± 0.6 9.7 ± 1.5 9 ± 2.6 12.3 ± 6.8 7 ± 0.0
PPO 18.7 ± 2.3 46.4 ± 7.7 4.0 ± 2.0 12.7 ± 3.2 4.3 ± 2.5 6 ± 3.5 27 ± 5.0

group normalization performs far superior to batch normalization. This can be attributed to the
fact that activation statistics change quickly in on-policy algorithms (PPO is on-policy) while
batch-norm learnable parameters can be slow to update causing training issues.

6.4.2 Training

The training data comprises 100 scenes (average frame length ∼ 248) where the initial frame is
randomly sampled. The open-loop baseline models are trained in a supervised manner where the
L2 loss is calculated on the predictions of 12 future time-steps (1.2 secs).

We train the PPO policy in closed-loop (the surrounding agents are log replayed) for episodes of
length 32 time-steps. PPO policy network predicts the mean and standard deviation values of a
gaussian to represent its actions. Further, the policy is initialized such that the initial actions are
independent of the observations. Therefore, we normalize the action space (zero mean) for faster
training convergence. For further training stability, we incorporate a unicycle kinematic model at
the policy output, i.e. the policy predicts the acceleration and steer.

For the PPO policy, we use an imitation loss-based reward. We define the reward as the negative
of the L2 distance between the policy prediction and ego replay at every time-step. Reward
clipping is performed for stability. Note that, DriverGym can also incorporate non-differentiable
hand-crafted rules like collisions in the reward function to train different RL policies.

6.4.3 Hyperparameters

We train the PPO policy for 12M steps in which the learning rate is fixed to 3e−4 for the first 8M
steps and then decreased by a factor of 10 for the rest of the training. The discount factor is 0.80
and GAE is 0.90. 4 environments are rolled out in parallel for a total of 1024 time-steps before
the model is updated for 10 epochs on the collected rollout buffer. The mini-batch size of the
model update is 64 and the clipping parameter ε follows a linear decay schedule during training
starting from 0.1. The reward clipping threshold is fixed to 15.
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We train on 112×112 pixel BEV rasters centered around the ego. The raster image is generated
by combining the semantic map (3 channels) and the bounding boxes of the various agents in
the scene (top image in Fig 6.3). The past history and current bounding boxes of the agents
(including ego) are incorporated via the channel dimension. We consider a history of 3 frames
which along with the current frame leads to an additional 8 channels resulting in a raster image
of size 112×112×11. The raster image is transformed such that it is centered around the ego
vehicle.

6.4.4 Results

The performance of three runs (different seeds) of the three models on 100 real-world test scenes
is reported in Table 6.3. Based on distance-based metrics, PPO is similar to SL + P in terms of
ADE, however it suffers from high FDE. PPO showed fewer front and side collisions, however,
it showed a much higher number of rear collisions, which can be explained by the passiveness
of the ego vehicle. Finally, SL is the worst and corroborates the expectations. We would like to
point out that our goal is to provide a user-friendly environment for training RL policies and not
to develop a state-of-the-art RL policy.

6.4.5 Visualizations

The DriverGym environment provides the user with the ability to visualize the output of episode
rollouts (see example in Fig 6.2). The visualization is carried out using the Bokeh interaction
visualization library [230].

6.5 Conclusion

We believe DriverGym is an important step towards solving the task of planning for autonomous
driving. Thanks to its gym-compatible interface, it allows to easily train and evaluate RL policies
for self-driving. Furthermore, surrounding agents can be controlled via a model trained on
real-world data to improve their reactivity towards the ego. We hope that DriverGym will provide
a common ground for training RL policies on autonomous applications, and consequently drive
the improvement of the next generation of planning algorithms.
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This thesis examines and presents solutions for improving the task of human trajectory forecasting
in crowds. In particular, we tackle four key challenges inherent to the real-world application of
motion forecasting: (1) learning social interactions, (2) modelling multiple futures, (3) incorpo-
rating interpretability, and (4) sample-efficient adaptation of pre-trained models. We summarize
our findings, and propose possible future directions of research.

7.1 Findings

Chapter 2 presented an in-depth analysis of existing interaction encoders and introduced our
proposed interaction module and a training strategy to train socially-aware forecasting models.
Despite claims in literature that specific interaction encoders better learn interactions, we observed
that under identical conditions, all modules perform similar in terms of the distance-based metrics.
The incorporation of collision metric paints a more meaningful picture of model performance.
Our proposed encoder D-Grid outperformed competitive interaction encoders on real-world
datasets, lowering the collision rate by 20%.

Chapter 3 presented a GAN-based architecture SGANv2 equipped with spatio-temporal inter-
action modelling and a transformer-based discriminator. Additionally, we utilized the learned
discriminator even at test-time via a collaborative sampling strategy. Our discussion on multi-
modal evaluation demonstrated that high-entropy predictors can easily cheat the commonly-used
Top-20 metric. SGANv2 reduced the collision rates by 30% on real-world datasets. Addition-
ally, we demonstrated that SGANv2 can prevent mode collapse on the challenging Forking
Paths dataset. Ablations on synthetic datasets demonstrated the importance of spatio-temporal
interaction modelling with significantly reduced the collision rates.

Chapter 4 described our interpretable social anchors framework for human trajectory forecasting.
We leveraged the power of discrete choice models (DCMs) to learn interpretable rule-based
intents, and subsequently utilise the expressibility of neural networks to model scene-specific
residual. Quantitatively, we demonstrated that the neural network component improved the
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prediction accuracy of DCMs by ∼ 15%. Qualitatively, the predictions of the social anchors
were explained by analyzing the underlying components. We further highlighted the potential of
directional normalization to reduce the collision rates of forecasting models.

Chapter 5 presented our methodology to efficiently adapt a pre-trained forecasting model to
unseen agent types and locations. We introduced two components that exploit our prior knowledge
of motion style shifts: (i) a low-rank motion style adapter that projects and adjusts the style
features at a low-dimensional bottleneck; (ii) a modular adapter strategy that facilitated a fine-
grained choice of adaptation layers. Experimental results show that our method improves the
performance of modern forecasting models by 25% using only 30 samples from the target domain
on Stanford Drone and Intersection Drone dataset. Moreover, while updating less than 5% extra
parameters, our method achieves 20% relative improvement compared to fully fine-tuned models
on Lyft Level 5 dataset.

Chapter 6 presented our gym-compatible environment DriverGym, tailored for developing
planning algorithms for autonomous driving. It provides the ability to simulate reactive agents
using deep forecasting models.

7.2 Future Directions of Research

There still exist many open problems which can serve as interesting and important future research
directions.

Towards collision-free trajectory forecasting. Neural networks have outperformed classical
models on distance-based metrics. In Chapter 2, through our training strategy and interaction
encoder design, we reduced the collision rate of the predictions. We believe that other works
should also focus on this metric and develop data-driven methods that aim for zero collisions.
Indeed, there have been works trying to realize this objective. Social NCE [231] built upon our
training strategy and introduced contrastive learning to make the model more socially-aware.
Concurrently, unlikelihood training [232] has been proposed to reduce the likelihood of unsafe
predictions from the model. Developing improved training strategies and interaction encoder
designs for collision-free predictions is an interesting direction of future work.

Multimodal Evaluation. In Chapter 3, we highlighted the issue with measuring the perfor-
mance of multimodal forecasting models using only the Top-20 metric [17]. Concurrently,
Social-Implicit [233] raised this issue and further highlighted sensitivity of the NLL metric [87]
to the choice of the kernel. They proposed the Average Mahalanobis Distance (AMD) metric to
measure the likelihood and Average Maximum Eigenvalue (AMV) metric to capture the variance.
In addition to likelihood, we showed that it is important to measure the scene-consistency of
predictions via the average collision metric. When labels for multiple plausible ground truths
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are available [136], the Earth Mover distance [19] and Percentage of Trajectory Usage [234] are
promising metrics to capture the accuracy of the outputs. Yet, objective evaluation of multimodal
frameworks on real datasets based on a single available ground-truth remains an open question.

Social Anchors based on concept neural networks. In Chapter 4, the social anchors frame-
work incorporated the expert-based DCM utility specifications (without any changes to their
parametric form) with the deep learning framework. We obtained interpretability by analyzing
the contribution of each component in the choice outcome. The model would still preserve
interpretability if the hand-crafted expert functions were replaced by arbitrary, continuous and
differentiable functions. Therefore, an interesting extension can be to relax the assumptions
on the specific parametric form of various concepts (like leader follower) suggested by DCM
practitioners with neural networks. In particular, the neural networks can be used as universal
function approximators for various social concepts such as leader follower, collision avoidance
and grouping.

Developing automatic layer selection and training strategies for efficient modular adaptation.
Chapter 5 demonstrated the effectiveness of a modular adaptation strategy, given the type of
the underlying style shifts (agent motion transfer or scene transfer). Such high-level domain
knowledge about the difference from one agent/environment to another is often widely available
in practice. However, an interesting problem statement would be to automatically determine
which modules and the layers within each module that need to be adapted, without the knowledge
of underlying style shift. One strategy could be to measure the distribution shifts in the feature
space per layer and selecting the ones that vary the most.

To improve the efficiency of modular adaptation, it is also interesting to develop training strategies
that focus on constraining the representations learned by each encoder module. For instance, in
our scene style transfer experiment, currently adapting both scene and fusion modules performs
better than adapting only the scene module. A training algorithm that enforces the weights
of fusion encoder to be constant across different training scenes, can potentially improve the
adaptation performance of scene module.

Bringing realism of motion forecasting into planning. In Chapter 6, we present an open-
source gym environment DriverGym that provides the additional benefit that the surrounding
agents can be simulated using deep trajectory forecasting methods. Currently, we do not investi-
gate the impact of data-driven forecasting models on the ego policy. As a future work, it can be
interesting to study the impact of this reactivity and realism of neighbours in ego planning on
DriverGym.
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Improved test-time training for motion forecasting and planning. Our recent work [235]
has shown the promise of robustly adapting deep classification models to new domains based
on unlabelled test examples on the fly. However, applying this paradigm to motion forecasting
or planning is non-trivial due to the regression nature of motion problems, the non-stationary
environment changes induced by autonomous agents, label distribution shifts under the optimal
policy, and many others. It can be interesting to explore solutions towards more adaptive motion
forecasting and planning models in the future.

In conclusion, there exist several interesting avenues to expand the capabilities of human trajectory
forecasting models and make them suitable for real-world deployment. More generally, we hope
future research will continue to emphasize on tackling interaction-centric situations so that
the quality of trajectory forecasting models can keep increasing, allowing us to tackle more
challenging scenarios.
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