
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Advancing the Adaptability of Compliant Robot
Controllers for Exploration, Interaction, and
Manipulation

Farshad KHADIVAR

Thèse n° 9747

2022

Présentée le 2 décembre 2022

Prof. A. M. Alahi, président du jury
Prof. A. Billard, directrice de thèse
Prof. D. Prattichizzo, rapporteur
Dr L. Jamone, rapporteur
Prof. J. Hughes, rapporteuse

Faculté des sciences et techniques de l’ingénieur
Laboratoire d’algorithmes et systèmes d’apprentissage
Programme doctoral en robotique, contrôle et systèmes intelligents

We are what we repeatedly do.

Excellence, then, is not an act, but a habit.

— Aristotle

To those who gift a sense to my life, my family. . .

Acknowledgements
As I finish this dissertation, I am closing a remarkable chapter of my life. I feel very blessed for

the past four years and for meeting many great people without whom I would not have been

able to realize my Ph.D.

First and foremost, I would like to express my sincere gratitude to my supervisor, Prof. Aude

Billard, for allowing me to conduct research in her lab. I immensely appreciate her patience

during the early days of my Ph.D. and value her endless support, constructive feedback,

and high expectations for my work. Above all, I genuinely respect Aude for imparting her

knowledge and coaching me toward being a more potent researcher.

I also acknowledge the jury members, Prof. Domenico Prattichizzo, Dr. Lorenzo Jamone,

Prof. Josie Hughes, and Prof. Alexandre Alahi, for participating in my thesis defense and for

their insightful comments on the earlier version of the manuscript. I would like to thank

Joanna Erfani and Corinne Lebet for their administrative assistance in the lab and the doctoral

program. Also, many thanks to the European Research Council for funding this thesis through

the Skill Acquisition in Human and Robots (SAHR) project.

I feel fortunate to have had such brilliant colleagues at LASA. I thank former and current

LASA members for creating a positive atmosphere in the lab. I would like to express thanks to

Sina Mirrazavi, Nadia Figueroa, Mahdi Khoramshahi, Iason Batzianoulis, Salman Faraji, and

Konstantinos Chatzilygeroudis for their valuable guidance and help during my Ph.D. Many

thanks to Salman, whose clever ideas and deep insight into real robotic challenges were great

sources of inspiration for me. Special thanks to Iason, who was always available to help, listen

to my problems, and give advice. I had the chance to collaborate with him, and I enjoyed his

passion for and dedication to the research. I am highly grateful to Konstantinos, who has been

my role model as a perfect researcher, a decent scientist, and an incredible programmer. We

worked together on several projects, I have learned much from him, and he has, in many ways,

contributed to my progress and research.

During Ph.D., I had the opportunity to collaborate closely with wonderful individuals. Big

thanks to my collaborators and friends, Ilaria Lauzana, Sthithparagya Gupta, Kunpeng Yao,

Xiao Gao, and Vincent Mendez. I am deeply thankful to my artist friend, Kunpeng, for

his endless support and sharing experiences throughout our Ph.D. I must also thank Alice

Guntli, Raphael Uebersax, Bruno Agostinho Da Costa, Sascha Frey, and Alexis Philip George-

Georganopoulos, for their contributions to the study and for trusting me to supervise their

i

Acknowledgements

semester projects. I want to thank Michael Bombile for his wise pieces of advice during these

four years and Jacob Hernandez for sharing good moments. I should thank our brilliant young

researcher, Yang Liu, for being the best officemate one could ever have. I am also thankful

to my talented friend, Harshit Khurana, for his tremendous help in revising my publications.

Harshit is capable of conducting high-quality research, and I wish him a successful Ph.D.

I would like to thank four exceptional people: Mikhail Koptev, Carolina Correia, Walid Aman-

houd, and Bernardo Fichera, who were by me all the time during the ups and downs of the

Ph.D. I feel very fortunate to be their friend; and they are high value to me. Thank you, Mikhail,

for being such a generous and honest friend. Thank you, Carol, for your unconditional support,

kind heart, and all sweet memories. Thank you, Walid and Bernardo, for everything; you are

the brothers I never had and always inspire me to be a better person.

I am also grateful to all my Iranian friends. I appreciate their help, support, and friendship.

Special thanks to Mohammad Hossein Bahari and Melika Bahjat for their amazing personality

and all trips and hikes that we did together.

Lastly, my heart is overwhelmed with gratitude to my family in Iran and my lovely Tara here

in Switzerland. They are all that I have and those that make my life meaningful. After all the

hardships of life, knowing that I have them gives me the strength to keep going. Thank you

very much, Tara, for all the sacrifices you made and for being the remedy of all my stress.

Lausanne, October 24, 2022 Farshad Khadivar

ii

Abstract
As technology continues to evolve, robots are becoming an intrinsic part of our lives. While

robots surpass human capabilities in precision and speed, they are far from matching humans’

ability to adapt to unexpected changes. Humans can quickly and compliantly respond to

uncertainties and perform complex tasks such as dexterous manipulation. Robots in human-

centric environments need to be equipped with human-like capabilities, primarily when

such a machine interacts with us or the objects around us. Therefore, the thesis aimed at

(i) obtaining a precise controller with human-like compliant capabilities and, with such a

controller, (ii) designing a control pipeline to perform dexterous manipulation.

Learning, assessing, and constantly updating the underlying robot’s dynamics is the first step

to obtaining a precise and compliant controller. Accordingly, we present methods to learn

and update dynamics models in the first two parts of the thesis. The first part of the thesis

investigates supervised machine learning techniques for learning the inverse dynamic model

of a robot prior to task execution. We propose a method for incrementally exploring a robot’s

configuration space and maximizing the information of the collected data.

In the second part, we focus on assessing and updating dynamic models during and after task

execution. We offer a method that augments episodic model updates with online adaptation.

We propose combining traditional model-based controllers with a learned residual inverse

dynamics model. Then, we introduce an adaptive control law that adjusts the control reference

online to account for model uncertainties and unforeseen disturbances.

We dedicate the third part of the thesis to developing a compliant control pipeline to achieve

human-like dexterity tasks. We introduce a new robust and synchronized planning schematic

for grasping and manipulating tasks. Our approach is to control and synchronize fingers

based on dynamical systems. We combine our adaptive controller with joints’ impedance

regulation to guarantee high tracking accuracy and adapt to dynamic changes. We showcase

that in conjunction with learning from human demonstration, our controller provides a robust

solution for more complicated manipulations such as finger gaiting.

Lastly, we use the developed robotic hand controller in two applications in the human-centric

environment. The task in the first application is to increase the dexterity of robotic pros-

thetic hands (RPHs) for individuals with a hand amputation using a new teleoperated-control

scheme via electromyography. In the second application, we perform tactile surface explo-

ration of apriori unknown objects through a novel informative path planning exploration

iii

Abstract

strategy.

In summary, this thesis offers a robot controller, compliant in interaction and faithful in

tracking, for dexterous grasp and manipulation tasks. Results indicate substantial accuracy im-

provement over traditional approaches when using our incremental method for configuration

exploration. We confirmed by various experiments that our residual model learning procedure

could learn unmodeled dynamics in a hand full of trials and adapt online to perturbations in

unpredictable environments. Finally, with extensive experiments and two applications, we

showed that introducing a coordinated multi-finger system to our controller provides a robust

solution for grasping and manipulating problems in uncertain environments.

Keywords: Compliant Torque Control, Learning Residual Dynamics, Robust/Adaptive Con-

trol, Dexterous Manipulation, Coupled Dynamical Systems, Tactile Exploration.

iv

Résumé
À mesure que la technologie continue d’évoluer, les robots deviennent une partie intrinsèque

de nos vies. Si les robots surpassent les capacités humaines en termes de précision et de vi-

tesse, ils sont loin d’égaler la capacité des humains à s’adapter à des changements inattendus.

Les êtres humains peuvent réagir rapidement et de manière conforme aux incertitudes et

effectuer des tâches complexes telles que la manipulation agile. Les robots dans les environne-

ments centrés sur l’homme doivent être équipés de capacités semblables à celles de l’homme,

principalement lorsqu’une telle machine interagit avec nous ou les objets qui nous entourent.

Par conséquent, la thèse vise à (i) obtenir un contrôleur précis avec des capacités d’adaptation

similaires à celle de l’homme et, avec un tel contrôleur, (ii) concevoir un pipeline de contrôle

pour effectuer une manipulation agile.

Apprendre, évaluer et mettre à jour constamment la dynamique sous-jacente du robot est

la première étape pour obtenir un contrôleur précis et adaptatif. En conséquence, dans

les deux premières parties de la thèse, nous présentons des méthodes pour apprendre et

mettre à jour les modèles dynamiques. La première partie de la thèse étudie les techniques

d’apprentissage automatique supervisé pour apprendre le modèle dynamique inverse d’un

robot avant l’exécution de la tâche. Nous proposons une méthode pour explorer de manière

incrémentale l’espace de configuration d’un robot et maximiser l’information des données

collectées.

Dans la deuxième partie, nous nous concentrons sur l’évaluation et la mise à jour des mo-

dèles dynamiques pendant et après l’exécution de la tâche. Nous proposons une méthode

qui augmente les mises à jour épisodiques du modèle avec une adaptation en ligne. Nous

proposons de combiner les contrôleurs traditionnels basés sur des modèles avec un modèle

de dynamique inverse résiduel appris. Ensuite, nous introduisons une loi de contrôle adaptatif

qui ajuste la référence de contrôle en ligne pour tenir compte des incertitudes du modèle et

des perturbations imprévues.

Nous consacrons la troisième partie de la thèse au développement d’un pipeline de contrôle

adaptatif pour réaliser des tâches de dextérité de type humain. Nous introduisons un nouveau

schéma de planification robuste et synchronisé pour les tâches de préhension et de manipula-

tion. Notre approche consiste à contrôler et synchroniser les doigts sur la base de systèmes

dynamiques. Nous combinons notre contrôleur adaptatif avec la régulation de l’impédance

des articulations pour garantir une grande précision de suivi et s’adapter aux changements

v

Résumé

dynamiques. Nous montrons qu’en conjonction avec l’apprentissage à partir de la démons-

tration humaine, notre contrôleur fournit une solution robuste pour des manipulations plus

compliquées telles que la marche des doigts.

Enfin, nous utilisons le contrôleur de main robotique développé dans deux applications

prenant place dans un environnement centré sur l’homme. Dans la première application,

la tâche consiste à augmenter la dextérité des mains prothétiques robotiques (RPH) pour

les personnes amputées de la main en utilisant un nouveau schéma de contrôle téléopéré

via l’électromyographie. Dans la deuxième application, nous effectuons l’exploration tactile

de la surface d’objets a priori inconnus par le biais d’une nouvelle stratégie d’exploration

informative de planification de trajectoire.

En résumé, cette thèse propose un contrôleur de robot, adaptatif dans l’interaction et fidèle

dans le suivi, pour des tâches de préhension et de manipulation agiles. Les résultats indiquent

une amélioration substantielle de la précision par rapport aux approches traditionnelles lors de

l’utilisation de notre méthode incrémentale pour l’exploration de la configuration. Nous avons

confirmé par diverses expériences que notre procédure d’apprentissage de modèle résiduel

pouvait apprendre des dynamiques non modélisées en une poignée d’essais et s’adapter en

ligne aux perturbations dans des environnements imprévisibles. Enfin, grâce à des expériences

approfondies et à deux applications, nous avons montré que l’introduction d’un système

multi-doigts coordonné dans notre contrôleur fournit une solution robuste pour les problèmes

de saisie et de manipulation dans des environnements incertains.

vi

Zusammenfassung
Mit der fortschreitenden Entwicklung der Technologie werden Roboter zu einem festen Be-

standteil unseres Lebens. Zwar übertreffen Roboter die menschlichen Fähigkeiten in Bezug

auf Präzision und Geschwindigkeit, doch sind sie weit davon entfernt, sich an unerwarte-

te Veränderungen anzupassen. Der Mensch kann schnell und flexibel auf Unwägbarkeiten

reagieren und komplexe Aufgaben wie geschickte Manipulationen ausführen. Roboter in

menschenzentrierten Umgebungen müssen mit menschenähnlichen Fähigkeiten ausgestattet

sein, vor allem wenn eine solche Maschine mit uns oder den Objekten um uns herum intera-

giert. Ziel dieser Arbeit war es daher, (i) einen präzisen Controller mit menschenähnlichen

Fähigkeiten zu entwickeln und mit einem solchen Controller (ii) eine Steuerungspipeline zur

Durchführung geschickter Manipulationen zu entwerfen.

Das Erlernen, Bewerten und ständige Aktualisieren der zugrunde liegenden Roboterdynamik

ist der erste Schritt zu einer präzisen und nachgiebigen Steuerung. Dementsprechend stellen

wir in den ersten beiden Teilen der Arbeit Methoden zum Lernen und Aktualisieren von Dyna-

mikmodellen vor. Im ersten Teil der Arbeit werden überwachte maschinelle Lernverfahren

zum Erlernen des inversen dynamischen Modells eines Roboters vor der Ausführung einer

Aufgabe untersucht. Wir schlagen eine Methode zur inkrementellen Erkundung des Konfigu-

rationsraums eines Roboters und zur Maximierung der Informationen aus den gesammelten

Daten vor.

Im zweiten Teil konzentrieren wir uns auf die Bewertung und Aktualisierung von dynami-

schen Modellen während und nach der Aufgabenausführung. Wir bieten eine Methode an,

die episodische Modellaktualisierungen durch Online-Anpassung ergänzt. Wir schlagen vor,

traditionelle modellbasierte Steuerungen mit einem gelernten inversen Dynamikmodell zu

kombinieren. Dann führen wir ein adaptives Kontrollgesetz ein, das die Kontrollreferenz onli-

ne anpasst, um Modellunsicherheiten und unvorhergesehene Störungen zu berücksichtigen.

Der dritte Teil der Arbeit widmet sich der Entwicklung einer nachgiebigen Steuerungspipeline,

um menschenähnliche Geschicklichkeitsaufgaben zu erreichen. Wir stellen ein neues robustes

und synchronisiertes Planungsschema für Greif- und Manipulationsaufgaben vor. Unser

Ansatz besteht darin, die Finger auf der Grundlage dynamischer Systeme zu steuern und zu

synchronisieren. Wir kombinieren unseren adaptiven Controller mit der Impedanzregulierung

der Gelenke, um eine hohe Verfolgungsgenauigkeit zu gewährleisten und sich an dynamische

vii

Zusammenfassung

Veränderungen anzupassen. Wir zeigen, dass unsere Steuerung in Verbindung mit dem Lernen

aus menschlichen Demonstrationen eine robuste Lösung für kompliziertere Manipulationen

wie das Gehen der Finger bietet.

Schließlich setzen wir die entwickelte Roboterhandsteuerung in zwei Anwendungen in der

menschenzentrierten Umgebung ein. In der ersten Anwendung geht es darum, die Geschick-

lichkeit von Roboterhandprothesen (RPHs) für Menschen mit einer Handamputation zu

erhöhen, indem ein neues teleoperatives Steuerungsschema über Elektromyographie einge-

setzt wird. In der zweiten Anwendung führen wir eine taktile Oberflächenerkundung von im

Vorfeld unbekannten Objekten durch eine neuartige informative Pfadplanungsstrategie durch.

Zusammenfassend lässt sich sagen, dass diese Arbeit eine Robotersteuerung für geschickte

Greif- und Manipulationsaufgaben entwickelt hat, die in der Interaktion nachgiebig und in

der Verfolgung zuverlässig ist. Die Ergebnisse zeigen, dass unsere inkrementelle Methode zur

Konfigurationsexploration die Genauigkeit im Vergleich zu traditionellen Ansätzen erheblich

verbessert. Wir haben in verschiedenen Experimenten bestätigt, dass unser Residualmodell-

Lernverfahren unmodellierte Dynamik in einer Hand voller Versuche erlernen und sich online

an Störungen in unvorhersehbaren Umgebungen anpassen kann. Schließlich haben wir mit

umfangreichen Experimenten und zwei Anwendungen gezeigt, dass die Einführung eines

koordinierten Mehrfingersystems in unseren Controller eine robuste Lösung für Greif- und

Manipulationsprobleme in unsicheren Umgebungen bietet.

viii

Contents
Acknowledgements i

Abstract (English/Français/Deutsch) iii

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Objectives . 4

1.3 Challenges and Solutions . 5

1.3.1 System Dynamics, Modeling and Learning 5

1.3.2 Online Adaptation to Uncertainties . 7

1.3.3 Coordination and Human Level Dexterity 8

1.3.4 Compliant Robotic Hand Controller in Human-Centric Environments . 9

1.4 Summary of Contributions and Thesis Outline . 11

2 Background 17

2.1 Stable Dynamical Systems . 17

2.2 Dynamical Systems with Limit Cycles . 18

2.3 Inverse Dynamics Model . 21

2.4 Gaussian Process Implicit Surface Representation 22

3 Efficient Configuration Exploration for Inverse Dynamics Acquisition 25

3.1 Introduction . 25

3.2 Problem Statement . 26

3.3 Exploration Approach . 26

3.3.1 Phase Space Path Planning . 26

3.3.2 Maximizing Information . 28

3.3.3 Approach Summary and Evaluation . 29

3.4 Model Learning . 32

3.4.1 RBD-Based Model . 32

3.4.2 Full and Error Models . 33

3.5 Model Evaluation . 35

ix

Contents

3.5.1 Static Test - Prediction of Gravity Compensation Torques 35

3.5.2 Dynamics Test - Trajectory Tracking Task 35

3.6 Discussion and Summary . 36

4 Self-Correcting Quadratic Programming-Based Control 37

4.1 Introduction . 38

4.2 Quadratic Programming-Based Control . 40

4.3 Approach . 42

4.3.1 Taskspace Adaptive Control . 42

4.3.2 Inverse Dynamics Learning Procedure . 45

4.4 Simulated Experiments . 48

4.4.1 KUKA LBR iiwa Trajectory Tracking . 49

4.4.2 Talos Humanoid Task . 52

4.4.3 Preliminary Experiments on Bimanual Manipulation 54

4.5 Physical Robot Experiments . 54

4.5.1 Tracking Periodic Trajectory on Z-axis . 55

4.5.2 Pick-and-Place with a Robotic Hand . 56

4.6 Discussion and Summary . 57

5 Adaptive Fingers Coordination for Robust Grasp and In-Hand Manipulation 61

5.1 Introduction . 62

5.2 Approach . 64

5.3 Finger Synchronization Based on Dynamical Systems 65

5.3.1 Intermediate Dynamic . 65

5.3.2 taskspace Dynamical System . 66

5.3.3 DS Coupling and Coordination of Fingers 68

5.4 Joint-Space Adaptive Controller . 72

5.4.1 Low-Level Control . 72

5.4.2 Nominal Joint-Space Dynamics . 72

5.4.3 Control Rule and Adaptive Laws . 73

5.5 Grasp and Manipulation . 74

5.5.1 Contact Wrench Optimization . 75

5.5.2 Attractors Determination . 76

5.6 Experiments and Evaluations . 78

5.6.1 Evaluation of Coordinated Finger-Control 78

5.6.2 Grasp Adaptation in an Uncertain Environment 81

5.6.3 In-Hand Manipulation, Accuracy and Robustness 83

5.6.4 Learning to Roll in Hand . 85

5.7 Discussion and Summary . 90

6 Compliant Robotic Hand Controller in Human-Centric Environment 93

6.1 Shared-Control for In-Hand Manipulation with a Myoelectric Prosthesis 94

6.1.1 Task Introduction . 95

x

Contents

6.1.2 Approach . 96

6.1.3 Autonomous Robot Controller . 100

6.1.4 Results . 102

6.1.5 Discussion and Summary . 106

6.2 Online and Dynamic Tactile Surface Exploration of Unknown Objects 108

6.2.1 Approach . 109

6.2.2 Experimental Evaluation . 112

6.2.3 Discussion and Summary . 115

7 Conclusions 117

7.1 Contributions . 117

7.2 Limitations and Future Work . 119

A Appendix of Chapter 4 121

A.1 Adaptive Control Stability Proof . 121

A.2 Function Approximation for Adaptive Control . 122

B Appendix of Chapter 5 123

B.1 Joint-Space Control . 123

B.1.1 Computing the Regulation Signal . 123

B.1.2 Stability Proof of Adaptive Control . 124

B.2 Contact-Frame Estimation . 125

C Appendix of Chapter 6 127

C.1 EMG Motion Decoding . 127

C.1.1 EMG Setup and Model Calibration . 128

C.2 Optimization-Based Robotic Hand Controller . 129

C.2.1 Dynamic Hand Pose Adaptation . 129

C.2.2 Finger motion planning . 131

C.2.3 Validation of Dynamic Hand Pose Adaptation 135

C.2.4 Results . 137

Bibliography 139

Curriculum Vitae 153

xi

List of Figures
1.1 Examples of a robot in a structured environment 2

1.2 Examples of a robot in a human-centric environment1 3

1.3 Examples of practicing human like dexterity with a robotic hand 4

1.4 Examples of robot configuration . 6

1.5 Rotating a half-full champagne glass while grasped with the Allegro hand 9

1.6 Multimedia contents . 14

1.7 Thesis outline . 15

2.1 2D Limit Cycle Parameters . 19

2.2 Examples of learning nonlinear limit cycles from demonstrations 20

2.3 Object shape reconstruction from exploration data 23

3.1 Tracking in phase-space using limit cycles . 27

3.2 Example of MICE in a joint’s parameter space . 30

3.3 Entropy evaluation . 32

3.4 Static and dynamic tests . 36

4.1 The proposed framework for robot torque-control using a quadratic program-

ming scheme . 38

4.2 Results of the simulated experiment with KUKA iiwa, z-axis tracking. 50

4.3 KUKA iiwa z-axis tracking trajectories . 50

4.4 Results of the 8-shape trajectory tracking experiment on KUKA iiwa in a simu-

lated environment. 51

4.5 KUKA iiwa yz-axis tracking . 51

4.6 Successful trial of the Talos task . 53

4.7 A successful trial of a bimanual manipulation task 55

4.8 Physical robot setup with a mass mismatch at the end-effector 55

4.9 Results of real KUKA iiwa experiments with end-effector mass mismatch in the

z-axis tracking . 56

4.10 Examples of control responses and adaptive gains during the first three episodes 57

4.11 Examples of pick-and-place task with a robotic hand 59

5.1 Grasp synchronization schematic . 63

5.2 Intermediate DS vector field examples . 69

xiii

List of Figures

5.3 A coupled system of three end-effector controlled by an intermediate DS 70

5.4 Use case of a coupled DS for grasp and manipulation tasks 71

5.5 Response of the coupled multi-fingered system to a disturbance 72

5.6 Block diagram of grasp and manipulation framework 77

5.7 Evaluation of the coordinated adaptive torque control 79

5.8 Performance comparison between our adaptive controller and a passive-DS . . 80

5.9 Objects used in both grasp and manipulation experiments 81

5.10 Adaptation in grasp experiment when rotating a tumbler half-filled with rice . . 81

5.11 Results of the adaptive grasp robustness experiment and rotation experiment . 82

5.12 An example of contact force adaptation . 83

5.13 In-hand manipulation example . 84

5.14 Tracking performance for one of the 30o in-hand manipulation experiments . . 85

5.15 Human performing finger gaiting in-hand manipulation 86

5.16 Robotic hand performing finger gaiting in-hand manipulation 86

5.17 Setup for recording data to learn manipulation from human demonstration . . 87

5.18 Task segments extraction from HDP-HMM using relative angular velocities and

pressure data . 88

5.19 Robustness test of controller in rolling in-hand experiment 89

6.1 List of shared control conditions . 95

6.2 Overview of the experimental setup . 96

6.3 An example of one experiment run . 98

6.4 Summary of the experimental protocol . 99

6.5 lock diagram of robot hand control with state machines of the EMG-robot inter-

face. 100

6.6 All collected data from all 8 participants . 103

6.7 Performance progress of all subjects and all control conditions over 3 sessions . 104

6.8 Performance of all shared controller conditions across all subjects and sessions 105

6.9 Performance results for each pair of sub-tasks and shared control condition. . . 106

6.10 Block diagram of exploration strategy . 110

6.11 Examples of shape reconstruction via online exploration 113

6.12 put something here . 115

C.1 Hand model and the sampled reachability map 129

C.2 Visualization of the sampled isotropic reachability index 130

C.3 Exploration of the experimental object bottle by following four different experi-

mental protocols . 135

C.4 Simulated exploration of all experimental objects 138

xiv

List of Tables
3.1 Joint-wise errors of RBD models learned by MICE and sinusoids 33

3.2 Joint-wise model errors learned by ν-SVR on MICE and sinusoid datasets 34

3.3 Model errors learned by neural network on MICE and sinusoid datasets 34

3.4 Final acquired Full and Error models by neural network 34

4.1 Core notations for QP-based robot control . 43

5.1 Success rate of the adaptive grasp execution . 82

5.2 Summary of results on three in-hand manipulations tasks 84

5.3 Number of successful trials in 10 replicates of full object rolling experiment . . 89

B.1 Results on training and testing the model for contact normal estimation 126

C.1 Experiments for evaluation of the proposed dynamic hand pose adaptation

algorithm . 136

xv

1 Introduction

1.1 Motivation

Advances in modern robots have proved that repetitive tasks in industrial assembly lines or

tedious household activities are a better fit for automated devices than humans. Robots in the

industry tirelessly and reliably accomplish tasks with high precision and speed (Figure 1.1).

Collaborative scenarios are other settings where robots are hired to ease tasks and improve

the work quality. For robots to cooperate with humans, they not only have to be programmed

to perfect their task execution but also need to be configured for safe interactions. Although

many of the household activities or the tasks found in industrial workspace seem trivial for

humans, they are notably complex for robots to perform. Robotics and Artificial Intelligence

(AI) experts have dedicated considerable efforts to advancing robots that can accomplish

various services in human-centric environments. In addition to safety requirements, the

unpredictability of the human environment and the lack of dexterity in robots are among the

critical restricting factors of their presence in our homes. Consequently, most commercially

successful domestic and collaborative robots are limited to specific applications with minimal

physical interaction between humans and robots (Figure 1.2).

The physical interaction protocol is the critical component distinguishing robots operating in

an industrial setup from those working around humans. Robots close to humans must remain

compliant to interaction forces, even though this is usually achieved at the cost of sacrificing

precision (Buchli et al. (2009)). One way to alleviate the precision loss in compliant controllers

is to improve our knowledge of the system’s dynamics, i.e., the underlying dynamic model

of the robot (Nguyen-Tuong and Peters (2011)) as well as the robot-environment interaction

forces (Hogan and Buerger (2018)). The more exact our knowledge of the system’s dynamics is,

the more confident we are in predicting the robot’s motions and interactive forces. Enhancing

accuracy through updating the dynamics model should be an active and never-ending process,

as these models have high nonlinearities and vary over time due to mechanical imperfection

and changes in their environment. Therefore, one solution to improve accuracy while

remaining compliant in robot control is to learn, assess, and update our available models of

the system’s dynamics before, during, and after a task execution.

1

Introduction

(a) Collaborative manipulation1 (b) Scanning and fault detection2

(c) Repetitive pick and place3 (d) Precision welding4 (e) Warehouse automation5

Figure 1.1: Examples of robots in a structured environment: an environment that is known,
predictable, or invariant.

In many modern robotic applications, the robot’s surrounding environment is frequently

subject to changes (e.g., gravity effect, light condition for vision) or new situations (such as a

disturbance or facing an obstacle). For such applications, improving the model of dynamics

or adjusting the controller parameters during task execution is imperative. Compared to a

human-centric environment, the workspace of industrial robots is more structured – that is,

it is known, predictable, and invariant. Low uncertainty in such environments allows stiff

joints for robots, thereby delivering task precision (Dollar and Howe (2007)). On the other

hand, robots in an unstructured environment are required to react and adapt to a host of

uncertainties. Consider a human handing over objects to a robot and vice versa. In such a task,

the object’s shape and mass could vary, and each individual might pass the object differently.

The robot must interpret human intention accurately to decide when to grasp/release the

object. Once the object is grasped, the robot’s job is to hold it securely even though the

mass properties might differ from what was expected or modelled. The robot, hence, must

be capable of active model adaptation, coping with model uncertainties, and reacting to

unforeseen situations.

1https://blog.robotiq.com/whats-new-in-robotics-this-week-may-20
2https://new.abb.com/products/robotics/application-cells/3d-quality-inspection
3https://www.fanuc.eu/uk/en/robots
4https://www.robotics247.com/images/article/robot_welder.jpg
5https://www.logisticsmgmt.com/topic/category/warehouse

2

https://blog.robotiq.com/whats-new-in-robotics-this-week-may-20
https://new.abb.com/products/robotics/application-cells/3d-quality-inspection
https://www.fanuc.eu/uk/en/robots
https://www.robotics247.com/images/article/robot_welder.jpg
https://www.logisticsmgmt.com/topic/category/warehouse

1.1 Motivation

(a) Lawn mower6 (b) Vacuum cleaner7 (c) Segway robot8 (d) Telepresence-bot9

Figure 1.2: Examples of a robot in a human-centric environment

The necessity of compliant controllers is not restricted to unstructured environments. Even in

industrial setups, compliant joint controllers are required for specific tasks. When multiple

robots collaborate or interact with each other(e.g., grabbing and manipulating a box with two

robotic arms), it is essential to avoid stiff joints as even a tiny error (in control or perception)

puts the robots, the object, or the environment at high risk. Although a compliant controller

seems the natural choice for collaborative and manipulation tasks, it is not straightforward

to couple multiple agents in a compliant and reactive fashion using traditional methods.

In such a scenario, a robot must follow a distributed reference motion when coordinating

with other robots. Inaccuracies in task execution by one robot affect the reference motion;

therefore, the influence of possible imprecision due to the need for compliant behavior may

propagate throughout the system.

The human hand is a perfect example of practicing compliant coordination and interactions.

For example, when screwing a light bulb (see Figure 1.3, right), we coordinate fingers to rotate

the bulb while securing its position compliantly. Humans can coordinate different body

parts and safely interact with the environment to perform a task. We use our hands as our

predominant tools to interact with the outside world. The demand for developing dexterous

skills has evolved the human hand into the most sophisticated body part with the highest

degrees of freedom (DoFs) (Kontoudis et al. (2019)). We rely on our hands and their fine

dexterity to perform everyday tasks, from basic manipulations, such as picking up a glass of

water, to fine-manipulation skills, such as writing, knitting, and playing an instrument. In

recent years, researchers have flexed their abilities to develop robotic hands that can emulate

two main functionalities of the human hand (Melchiorri and Kaneko (2016)):

(i) prehension: the ability to grasp and hold objects of different sizes and shapes, and

(ii) apprehension: the ability to understand through active touch.

6https://myrobotmower.com
7https://www.irobot.ch
8https://www.theguardian.com/technology/2016
9https://assets.rbl.ms/25573765/origin.jpg

3

https://myrobotmower.com
https://www.irobot.ch
https://www.theguardian.com/technology/2016
https://assets.rbl.ms/25573765/origin.jpg

Introduction

Figure 1.3: Practicing human like dexterity with a robotic hand

From a robotic perspective, human hands are versatile end-effectors that can grasp an object

stably and manipulate it to the desired pose by applying forces at contact points. These

end-effectors can also explore an unknown object and provide information via the sense

of touch (Sommer and Billard (2016)). Here, we seek the same dexterous capabilities for a

robotic hand to expand its applicability in a human-centric environment. The motivation

of this thesis is achieving robot controllers suited for the unpredictability of the human

environment and capable of similar dexterous functionalities as the human hand.

1.2 Thesis Objectives

In this thesis, we investigate ways of advancing robots’ functionalities in human-centric

environments using compliant controllers. We set our mission to develop control paradigms

that equip robots with human-like capabilities, especially when such a machine interacts with

us or with objects around us. Hence, the thesis main objectives are:

(i) obtaining a compliant and accurate robot control, and

(ii) advancing such controllers for performing human-like dexterous tasks.

To realize these objectives, we take inspiration from humans’ remarkable ability to devise

ways of learning, adapting, and mastering new manipulation tasks. With this in mind, robots

around humans must fulfill the following requirements:

(i) Being able to learn the underlying dynamics before, during, and after task execution:

In Section 1.3.1, we discuss the challenges within this requirement and our solutions for

them. We achieve this goal in Chapters 3 and 4. First, we investigate supervised machine

learning techniques for learning the robot’s inverse dynamics (ID) model, which is

instrumental in precise robot control and a key component in compliant manipulation.

We propose a method to incrementally explore the configuration space of a robot and

4

1.3 Challenges and Solutions

maximize the information of the collected data for model learning. Next, we offer an

approach that allows episodic model updates for the learned ID model, thereby obtaining

higher precision and compensating for inevitable model mismatches.

(ii) Adapting to uncertainties and unforeseen situations while remaining compliant to

reactive forces: In Section 1.3.2, we explain the challenges of obtaining such a control

framework and our approach to address them. We realize this objective in Chapters 4

and 5. We introduce an adaptive control law that adjusts the model online to account for

model uncertainties and unforeseen disturbances. Our adaptation framework comprises

reactive planning (Chapter 4) and low-level adaptation (Chapter 5).

(iii) Using controllers that are programmable for performing dexterous tasks efficiently

without structural changes in the environment: This objective is discussed in Sec-

tion 1.3.3 and it is achieved in Chapters 5 and 6. In the second half of the thesis, we

extend the developed controller in the first half for robust object grasping and manipulat-

ing with a robotic hand. First, we introduce a new adaptive and synchronized planning

schematic that controls and synchronizes fingers based on dynamical systems. Then,

we showcase the effectiveness of our robotic hand controller in two applications in a

human-centric environment: one for prehension and the other one for apprehension.

1.3 Challenges and Solutions

This section details the challenges studied and approaches taken in this thesis.

1.3.1 System Dynamics, Modeling and Learning

Learning Dynamics

Learning the ID is an active research topic in the field of learning control. Indeed, an accurate

model of the robot dynamics can be exploited to predict proper feedforward joint torques

needed to achieve the desired trajectory. This avoids the use of high control gains in feedback

(e.g., PID with large gains), which are often subject to instabilities. The more accurate the

model is, the lower can be the feedback gains, allowing more room for compliance and

safety when interacting with humans or the environment (Ko and Fox (2008); Burdet and

Codourey (1998a); Nguyen-Tuong et al. (2008b)). Considerable efforts were dedicated to

learning the ID models (Nguyen-Tuong et al. (2009); Nguyen-Tuong and Peters (2010); Meier

et al. (2014, 2016)). However, acquiring such a model is challenging, not only due to unmodeled

nonlinearities such as joint friction but also from a machine learning perspective (e.g., input

space dimension, amount of data needed).

Similar to any learning framework, the efficacy of the learned ID model substantially depends

on the training data supplied to it (Hitzler et al. (2019)). The data collected for learning

should be rich enough to cover the robot’s state space diversely. In other words, the sampling

5

Introduction

Figure 1.4: Different examples of robot configuration during exploration of the KUKA LBR iiwa
14 joint space when using our configuration exploration approach.

trajectory that the robot should follow (while data is being recorded) needs span the robot’s

configuration space (see Figure 1.4) as comprehensively as possible. We approach this problem

by focusing on generating sampling trajectories that efficiently explore the robot’s joint space.

We propose a method that incrementally generates the richest data based on information

theory (Taneja (1989)) and probabilistic approaches (Murphy (2012)). Also, we offer a new

path planning method based on inducing stable limit cycles in the phase space of each robot

joint. This planning scheme controls the richness of the collected data in joint positions and

velocities.

Episodic Model Updates

In many real-world scenarios, the model at hand and the reality do not match even if an

accurate model is previously learned. Also, retraining the model from scratch for a new

scenario is inefficient and costly. For instance, consider retraining the object-robot model

every time a robot needs to grasp various objects. The efficiency of most of the model-based

controllers is based on a relatively strong assumption: model precision, that is, the model

adequately captures the underlying robot/environment model. Model-based controllers rely

on high-gain PID regulators (Nakanishi et al. (2008)) to compensate for unmodeled dynamics

or model imperfection. Even when the system is coupled with accurate state estimators and

high-gain PID feedback, real-world experiments are subject to frequent failures due to model

imperfections, friction, and actuator nonlinearities (Nguyen-Tuong and Peters (2011)).

6

1.3 Challenges and Solutions

On the other hand, humans and animals learn by trial and error. They learn how to perform

new tasks or adapt to unforeseen situations. We envision a robotic system that similarly learns

by trial-and-error: it tries to achieve the task, fails (e.g., the box slips from the hands of the

robot), and tries again until it manages to realize the goal. For us, this episodic model update

is only helpful if it is fast; imagine having to wait two days for a robot to learn how to perform

a task while in a search and rescue scenario. We take Quadratic Programming (QP)-based

controller as one example of model-based controllers that allow many robotic systems such

as humanoids to successfully undertake complex motions and interactions and carefully

coordinate a large number of degrees of freedom. We formulate an episodic residual ID model

learning procedure to improve the model of the QP and show that it applies to a variety of

robots with different dynamics. Then, we introduce a novel QP-based control scheme that

can overcome model inaccuracies and significant model mismatches. The proposed control

pipeline combines the slow ID model learning with a fast online adaptive control law in the

taskspace to regulate the cost function of the QP.

1.3.2 Online Adaptation to Uncertainties

Episodic learning procedure by trial and error can fully capture model mismatches. However,

we can update the ID model once the episode is over. In other words, the updated model

only benefits the next episodes. In many situations, it is desired that the robot is capable

of reacting to uncertainties online. In terms of learning nonlinearities, online adaptation is

not as powerful as episodic learning; nevertheless, it delivers adequate flexibility to adapt

to subtle changes among different tasks. Adaptive controllers (Ioannou and Sun (2012)) can

compensate for such model inaccuracies and unmodeled dynamics. The adaptive nature of

the controller mitigates the challenge of gain tuning for various desired behaviors (Ioannou

and Sun (2012); Sun et al. (2017)). Furthermore, these controllers do not discard the valuable

information from the previous trials. We seek to design a powerful control pipeline that

combines the advantages of episodic model learning with fast online adaptation.

When controlling a robot compliantly, adapting to uncertainties becomes nontrivial as most

adaptation techniques (Ortega and Spong (1989); Goodwin and Sin (2014)) are governed by

only reducing the error in task execution, leading to stiffer joints. A naive solution would be

to set bounds on the adaptation gains, frequently resulting in the well-known issue of gain

saturation (Tao (2003)). In this thesis, to perform online adaptation in a compliant fashion, we

follow two approaches: (i) outsourcing the adaptation by executing it only in the reference

input of the model-based torque controller and (ii) regulating joint impedances to a set of

desired values in conjunction with joint torques. We use the latter when an interaction is

inevitable (e.g., grasping an object with unknown physical properties), which we explain in

the next section. To achieve the former, we employ a model reference adaptive control (MRAC)

for online reference adaptation in QP-based controllers to react online to nonlinearities

and model uncertainties. MRAC methods have demonstrated substantial performance in

addressing model uncertainties within the adaptive class of controllers, thereby emerging in

7

Introduction

numerous studies (Azimi et al. (2019); Sharifi et al. (2021)). Also, this controller has been proven

efficient for collaborative tasks. For instance, Culbertson et al. (2021) use a decentralized MRAC

to control a group of collaborative robots in order to manipulate an object with unknown

dynamic and geometrical properties.

1.3.3 Coordination and Human Level Dexterity

Using robotic hands in unstructured environments requires practicing human-level dexterity

for both grasp and manipulation. Performing dexterous tasks, e.g., tilting a glass of water

or screwing a lightbulb (Figure 1.3, left), though trivial for humans, is notably convoluted

for robots to accomplish. In order to acquire a merely desirable performance for dexterous

tasks, we must consider a collection of factors, such as morphological features, sensory

equipment, large DoFs, control algorithms, and task planning strategies. Besides, in specific

applications, other elements could exacerbate the existing challenges, e.g., the effects of the

object’s dynamics on object-robot interaction forces when manipulating the object within

the hand. Accordingly, robotic hands can highly benefit from compliant controllers that are

accurate in tracking, robust to uncertainties, and adaptive to unexpected conditions.

Securely grasping the object is an essential ingredient required prior to in-hand manipula-

tion (Feix et al. (2016)); nevertheless, the main manipulation challenges arise after the object

is grasped. The hand must carefully re-position the object by synchronously modulating the

object-finger contacts/interactions (Prattichizzo and Trinkle (2016)). Robustly performing this

is never easy and becomes even more complex in the presence of uncertain and inaccurate

estimation of the system’s mechanical properties (Okamura et al. (2000)).

We address the problem of ensuring robust in-hand manipulation when faced with a poor

model of the object’s dynamics. We take advantage of a combination of model-based and

learning approaches that enables us (a) to estimate the dynamics of the object-finger forces,

which might not be easy to determine, and (b) to control explicitly for different perturbations,

e.g., changes in the position of the object. We propose a method based on coupled dynamical

systems to synchronize the fingers’ dynamics robustly. We also offer a novel control pipeline

using an adaptive torque controller to face model uncertainties. This controller provides a live

adaptation of the position and force generated by the fingers to stabilize the object.

For an application illustration, consider the example of tilting a glass half-filled with water in

Figure 1.5. Here, moving fingers in coordination is crucial. Suppose one finger moves faster

than the others, i.e., with asynchronous displacement. In that case, the water in the glass

moves faster, and the object gains extra momentum, thus rendering the grasp hard to control.

Furthermore, adaptation here is equally critical. As the liquid spreads in the glass, the hand

must re-balance the force in order to compensate for the changes in the mass distribution.

Assume further that the hand dynamics is only partially known. Consequently, the controller

must compensate for its dynamic uncertainties and prevent the object from veering away

from the desired trajectory.

8

1.3 Challenges and Solutions

Figure 1.5: Rotating a half-full champagne glass, an object with varying mass distribution.
The glass is first grasped in a vertical pose (top left) then rotated to reach a stable horizontal
pose (central). The glass is stabilized by optimizing the object-level grasp-impedance and by
extracting contact frames from tactile sensors at contact points. Contact forces of all fingers
are synchronously modulated based on a coupled dynamical system and an adaptive control
scheme.

1.3.4 Compliant Robotic Hand Controller in Human-Centric Environments

Application I: Prehension

The human hand owes its dexterity to its individuated control of finger motion and precise

sense of touch, and to dedicated brain processes for ensuring fluent control of objects once in

hand (Kontoudis et al. (2019); Castiello (2005)). Being deprived of this dexterity following an

amputation affects one’s life considerably. Even the simplest chores, such as placing the cap

on a bottle or inserting a spoon in a cup, become arduous if not impossible. The lack of touch

perception and the absence of fine finger motions are the predominant hindering factors that

render reorienting or repositioning an object impossible. If one could restore some, even if a

tenuous part, of this dexterity through the help of automation and robotics, this would have

immediate benefits for people with an amputation.

9

Introduction

While robotics has made vast progress in controlling human-like robotic hands (Melchiorri

and Kaneko (2016); Okamura et al. (2000)), these advancements have rarely been used to

control prostheses. The main reasons are that (i) robotic prosthetic hands (RPHs) remain

under-actuated with simple position or speed control, and (ii) we still lack robust decoding

strategies to infer and translate the user’s intentions into fine and individuated finger motions

of an RPH. The latter is a bottleneck that reduces the incentive to develop more complex

robotic hands for people with trans-radial amputation.

Shared-control approaches that give some authority to an autonomous controller on-board

the prosthesis is an alternative to direct Electromyography (EMG) control. This shared-control

scheme may improve the dexterity and versatility of RPHs for people with trans-radial am-

putation. We use the developed controller in this thesis to enable human-like control of

the fingers individually or coordinatedly. This controller enables online adaptation of the

positioning of fingers and stabilizing the object in hand through forces applied by the fingers.

Such enhancements permit the execution of robust grasps with multi-finger robotic hands.

The shared control approach allows subjects to perform a continuum of manipulation: from

grasping an object to manipulating it in air and during insertion when in contact with another

object.

Application II: Apprehension

Haptic feedback and tactile perception are among the means by which robots interact with

the environment or humans. In some cases, a robot can identify an object with precision only

with tactile perception (e.g. the object is inside a box among other objects). The problem of

autonomously exploring a priori unknown objects is still remarkably challenging in robotics.

It becomes even more complicated when the object shape is complex, like having a handle,

narrow edge, or a hole, or when the environment is uncertain (there are multiple non-fixed

objects). Tactile perception can only provide local information; thus, gathering and interpret-

ing sensory information is an active process of exploitation and exploration. Collecting tactile

data on an object’s shape actively and efficiently is the main focus of this part of the thesis.

We propose novel solutions for exploration and exploitation problems while employing an

adaptive compliant controller for the robotic hand.

We propose novel solutions for exploration and exploitation problems while employing our

developed adaptive compliant controller for the robotic hand. We separate Gaussian Process

(GP) model used for path query from GP that models the implicit surface. Since exploration

is myopic, we construct a GP model from the local data at each query point. We propose a

dynamic approach for the evolution of parameters in the path query GP. This method takes the

connectivity of points and local densities and changes parameters to dynamically increase the

entropy of the collected data and the efficiency of exploration. This way, we avoid the issues

with fixed hyperparameters and, simultaneously, acquire a more informative and balanced

sample data set from the object surface.

10

1.4 Summary of Contributions and Thesis Outline

1.4 Summary of Contributions and Thesis Outline

The principal outcome of this thesis is a robot controller for dexterous grasp and manipulation

that is both compliant in interaction and accurate in tracking. Here, we overview the structure

and the core contributions of the thesis in each chapter. This section is summarized in

Figure 1.7. The link to supplementary materials and multimedia of each chapter is listed in

Figure 1.6.

Chapter 2

This chapter provides a background summary and reviews the preliminary materials needed

to follow the developed approaches in the thesis.

Chapter 3

With the method developed in this chapter, we obtain an information-rich dataset for learning

the inverse dynamics of a serial robotic manipulator. Using supervised machine learning

techniques, we contribute by:

(i) proposing a novel method, called Max-Information Configuration Exploration (MICE),

that incrementally explores the robot’s configuration space and generates information-

rich data while computing parameters of a trajectory set online; and

(ii) introducing a new set of excitation trajectories that explores the robot’s configura-

tion through imposed stable limit cycles in robot joints’ phase space while satisfying

feasibility constraints and physical bounds.

We benchmark MICE against state of the art in terms of data quality and learning accuracy.

The proposed methodology for data collection, model learning, and evaluation is validated

with a KUKA LBR iiwa 14 robotic arm, where the results prove significant improvement over

traditional approaches. This study is published in (Khadivar et al. (2021a)).

Chapter 4

In this chapter, we propose to augment (a) traditional model-based controllers (QP-based

control, for instance) with a learned residual inverse dynamics model and (b) an adaptive

control law that adjusts the reference signal of the model-based controller online to account

for model uncertainties and unforeseen disturbances. In particular, we propose

(i) An episodic procedure of learning residual ID model for QP-based control where we

use an expressive and differentiable Gaussian Process with Rigid Body Dynamic (RBD)

model as prior. In our method, ID is differentiable with respect to the optimization

11

Introduction

variables; hence, it actively exploits the learned ID model within the optimization of

the QP-based control.

(ii) A novel scheme for continuous online reference adaptation in the cost function QP.

To this end, we employ an adaptive controller that avoids manual tuning, addresses

model uncertainties online, and achieves a faster convergence for ID model learning.

We extensively evaluate our method in simulation on several robotic scenarios ranging from a

7-DoFs manipulator tracking a trajectory to a humanoid robot performing a waving motion

for which the model used by the controller and the one used in the simulated world do not

match (unmodeled dynamics). Finally, we validate our approach on physical robotic scenarios

where a 7-DoFs robotic arm performs tasks where the model of the environment (exact mass,

friction coefficients, etc.) is not fully known. Our results showcase that our method (i) is able

to compensate for large model inaccuracies in little interaction time (i.e., in a few trials) and

(ii) consistently outperforms the baselines. At the time of writing, the work presented in this

chapter is under the second round of review in a robotic journal.

Chapter 5

In this chapter, we present a control strategy based on coupled dynamical systems, whereby the

fingers move in synchronization using an intermediate dynamics responsible for coordinating

fingers. To adapt to changes in forces due to model uncertainties and unexpected disturbances,

we employ an adaptive torque-controller combined with a joint impedance regulator that

guarantees high tracking accuracy while adapting to dynamic changes. We validate the

approach in multiple experiments on a 16-DoFs robotic hand grasping and manipulating

objects with different mass properties, e.g., uneven or varying mass distribution in a glass

half-filled with water. We show that the robot can compensate for disturbances generated by

internal dynamics and external perturbations. Additionally, we showcase how our controller,

combined with learning from human demonstration, provides a robust solution for more

complicated manipulations such as finger gaiting. In this chapter our main contributions in

this chapter are:

(i) introducing a novel intermediate dynamical system coupling method to achieve coor-

dinated finger motions; and

(ii) tracking fingers’ desired velocity using a joint-level adaptive torque controller. We

regulate joint impedances to implement real-world grasp and manipulation tasks.

Additionally, we show that this approach can be combined with learning from human demon-

stration to learn a desired trajectory for the object and identify the corresponding sequence

of desired motion for the fingers. We further show that learning can be used to identify roles

for each group of fingers and embed this in the intermediary coupling. At the time of writing,

12

1.4 Summary of Contributions and Thesis Outline

the work presented in this chapter is accepted in the journal of IEEE Transaction on Robotics

(T-RO) and it is under publication process.

Chapter 6

This chapter comprises two applications of our compliant robotic hand controller in human-

centric environments.

Application I: In this part of the thesis, we analyze teleoperated control schemes to increase

the dexterity of robotic prosthetic hands for people with trans-radial amputation. We propose

a novel shared control strategy for robust object manipulation that combines autonomous

control of forces exerted by the robotic hand with EMG motion decoding. By delegating control

of forces to the prosthesis’ on-board control, one speeds up reaction time and improves the

precision of force control. Such a shared-control mechanism may enable amputees to perform

fine insertion tasks solely using their prosthetic hands. To this end, we propose:

(i) a virtual-object-based control that regulates online the interaction forces at contact

points using tactile feedback and our autonomous and adaptive compliant controller;

and

(ii) an interface that employs feedback-based state machines to integrate high-level and

low-level robot control.

We conduct a 3-days long longitudinal study with eight healthy subjects tasked to control a

16-DoFs robotic hand to insert objects in boxes of various orientations. Results indicate that

when combined with incremental EMG decoding, robotic assistance leads to significantly less

failure and faster completion time in task execution. Training to use the assistive device is

fast, and, in less than one day of practice, all subjects managed to control the robotic hand

with high accuracy. At the time of writing, the work presented in this section is submitted to a

robotic journal.

Application II: This part concerns the tactile surface exploration of a priori unknown objects

with a robotic hand for online shape reconstruction. In essence:

(i) we propose an online exploration strategy that actively maximizes the entropy of

the acquired data while dynamically balancing the global knowledge and the local

complexity of the exploration; and

(ii) to allow for multi-contact exploration with a robotic hand, we offer an optimization-

based planning algorithm that adapts the hand pose to the local surface geometry

online and maximizes the kinematic properties of each finger during exploration.

13

Introduction

We show that our method can efficiently explore objects with arbitrary shapes, e.g., having

a handle, hole, or narrow edges. We benchmark our approach against state of the art in a

simulated environment and showcase the strength of this method in learning object shapes

with different complexities. At the time of writing, the work presented in this section is under

preparation for submission to a robotic journal.

Chapter 7

In this chapter, we present a summary of this thesis, outline the key contributions, and discuss

avenues for future work.

(a) Chapter 2 (b) Chapter 3 (c) Chapter 4

(d) Chapter 5 (e) Chapter 6.I (f) Chapter 6.II

Figure 1.6: Multimedia contents. Click on each caption or scan its QR code.

14

https://youtu.be/7RnPu_t-My8
https://youtu.be/eHhdY-wpFzI
https://youtu.be/1VHwpNNYpZA
https://youtube.com/playlist?list=PLZgeTASwz0syqwC3KVO10BjCmVodo36Hm
https://youtu.be/YJxoaV5axqw
https://www.youtube.com/playlist?list=PLZgeTASwz0sxp74iXesaL17_Srtf2lJ0O

1.4 Summary of Contributions and Thesis Outline

Figure 1.7: Thesis outline. Chapter 1 states the motivation, objectives, and a brief overview
of the approaches of the thesis. Chapter 2 reviews the background and preliminary needed
material for the developed methods in the following chapters. Chapter 3 and Chapter 4 focus
on the first objective, whereas Chapter 5 and Chapter 6 concentrate on the second objective.
In Chapter 7, the thesis is concluded by summarizing the key contributions and discussing
avenues for future research.

15

2 Background

2.1 Stable Dynamical Systems

Dynamical System (DS) is a globally stable velocity field that provides the system’s controller

with desired velocities. A DS function f (ξ) is continuous, autonomous, state-dependent, and

converges to an attractor ξ∗ . This attractor can represent either a fixed state or a specific limit

cycle; see Section 2.2. A DS function can also be expressed as a nonlinear combination of

linear DSs to be:

f (ξ) =
K∑

k=1
hk (ξ)

(
Akξ+bk)

(2.1)

with ξ ∈Rn being the states of the system. Ak ∈Rn×n , as state matrix, and bk ∈Rn construct

the k-th linear system. The state-dependent mixing function, hk (ξ), represents a relative

effect of the k-th system on shaping the overall nonlinear system. Given a desired robot

motion, DS parameters Ak , bk and hk (ξ) can be either designed or learned from a demon-

stration (Khansari-Zadeh and Billard (2011)). Regardless of the acquisition method, these

parameters must satisfy the following sufficient conditions for stability in the sense of Lya-

punov : 
(Ak)T P+PAk ≺−Qk

(Qk)T = Qk ≻ 0, (Pk)T = Pk ≻ 0

bk =−Akξ∗
(2.2)

where Qk ∈Rn×n determines the convergence rate of k-th linear system to ξ∗ and Pk ∈Rn×n

forms the potential function of the desired velocity field. DS-based controllers –i.e., controllers

driven by a DS– are robust to perturbations because DS nests all possible trajectories to reach

the target point, i.e., attractor.

17

Background

2.2 Dynamical Systems with Limit Cycles

The material presented in this section is adopted from (Khadivar et al. (2021b)).

DS for controlling rhythmic patterns are distinct from DS used to control point to point

motion. A cyclic motion can be embedded into a DS with a stable limit cycle (Ernesti et al.

(2012)). Efforts to enable a single representation for periodic and non-periodic DS were offered

in (Gams et al. (2015)), a framework to iteratively learn an initial discrete motion followed by a

periodic one using a time-dependent DS. In (Khadivar et al. (2021b)), we offered an approach

that encodes periodic and discrete dynamics in a single time-invariant DS by exploiting the

concept of bifurcation, allowing for smooth transitions between the two. We introduced a

form of such DS in both 2D and 3D spaces, and proposed a parameterization of the DS to offer

an explicit way to control for its behavior, namely speed, location of the target and shape of

the limit cycle. A DS with bifurcation can be represented by their normal forms as follows:

f(ρ,θ,µ) =
{

ρ̇ = ρ(ρ2 −µ)

θ̇ =ω (2.3)

with polar radius ρ =
√

x2
1 +x2

2 and polar angle θ = tan(x2
x1

), and µ the bifurcation parameter,

ω ∈R,ω ̸= 0 an open parameter determining the frequency. This approach provides explicit

control of the amplitude, the frequency and the goal of the movement which simplifies robot’s

motion modification and DS modulation in real-time for a user.

Limit Cycles in Two Dimensions

To formulate a DS with a limit cycle, we can simplify the system by converting the task

coordinates x ∈R2 to polar coordinates r ∈R2. As simplification, we rename the bifurcation

parameter as target radius ρ0. The streamlines of this system generate parabolic motions that

stabilize either an attractor point (here the origin of the system) or transform into ellipses at

limit cycles, around the origin. The energy E of the system in polar coordinates is given as:

E(ρ̇, θ̇,ρ) = N

2
(ρ̇2 +ρ2θ̇2)+U (ρ,ρ0) (2.4)

where ρ̇ and θ̇ are radial and angular velocities and N is constant inertia of the system. U is

the potential function of system which is parametrized by the radius of the orbit. The energy

E reaches its minimum on each stable limit cycle; therefore, we have:

Ė = N (ρ̇ρ̈+ρρ̇θ̇2 +ρ2θ̇θ̈)+dU (ρ,ρ0)ρ̇ = 0. (2.5)

18

2.2 Dynamical Systems with Limit Cycles

-3 -2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

4

5

 angle
rotation

x
0

origin
shift

a
scaling

Figure 2.1: Schematics for target radius, “mass” and rotation speed (left), shifting, scaling and
rotation (middle), and cyclic motion in Cartesian space (right).

By assuming that ρ̈ =−Kρρ̇ with Kρ being a positive gain, for Eq. 2.5 to hold, and considering

U (ρ,ρ0): U (ρ) = Kρ

2 (ρ−ρ0)2,we derive the DS in polar coordinates with respect to ρ0 as follows:

f(ρ,θ,ρ0) =
{

ρ̇ =−
p

M(ρ−ρ0)

θ̇ = Re−M 2(ρ−ρ0)2 (2.6)

M = 1
2N > 0 is a parameter that modulates the strength of the attraction and can be used to

modulate the speed at which the robot moves. We can see from Eq. 2.6 that the differential

equation of the polar radius vanishes at ρ = ρ0. The differential equation of the polar angle θ,

instead, is numerically different than 0 only in a neighborhood of ρ0 which is defined by M .

Therefore, the parameter M determines both the speed of convergence to the limit cycle and

the distance at which the dynamics starts to rotate towards the stable ellipse. Finally, R ∈R
is an additional parameter that permits to easily change the angular speed (e.g. by doubling

R, the speed will double), as well as to invert the rotation of dynamics around the limit cycle.

Thus through modulation of M and R one can control the convergence rate and maximum

velocity of the designed DS. Also when learning M and R from demonstration, the acquired

DS captures the velocity limits of the demonstrated trajectories. Figure 2.1 shows these three

parameters in an example of the introduced DS in 2D.

Extension to Three Dimensions

The formulated DS may be expanded to a 3-dimensional case by using spherical coordinates

in place of polar ones. We can define the elevation angle φ, as the angle between x3 and the

plane formed by x1 and x2, and θ represents the azimuth angle (i.e. between x1 and x2). The

additional angle’s differential equation is defined as linear and vanishing in 0, such as in the

3D system:

f(ρ,φ,θ,ρ0) =


ρ̇ =−

p
M(ρ−ρ0),

φ̇=−
p

M(φ),

θ̇ = Re−M 2(ρ−ρ0)2
.

(2.7)

19

Background

0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

0.1 0.2 0.3 0.4

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0.7 0.8 0.9 1 1.1 1.2

1

1.2

1.4

1.6

1.8

Figure 2.2: Examples of learning nonlinear limit cycles from demonstrations.

Extension to Nonlinear Limit Cycles

We can extend the proposed linear limit cycles (Eq. 2.6) to nonlinear form by using the concept

of diffeomorphism. Diffeomorphisms have been used with a lot of success for learning

and stabilizing nonlinear DS by learning a mapping to a simpler linear space (Perrin and

Schlehuber-Caissier (2016); Neumann and Steil (2015); Rana et al. (2020)). The same principle

cab be used to seek a mapping function s(·) to send a nonlinear DS into a space where the DS

is simpler to learn. DS (2.6) is our base oscillator, and we search a diffeomorphism from this

base oscillator to the desired nonlinear limit cycle, and back.

For limit cycles and phase oscillators, scaling the polar radius depending on phase angle is

sufficient to modify a limit cycle into a nonlinear one (Ajallooeian et al. (2013)). Therefore,

we can assume that there exists a phase-based radial mapping function s(θ) that scales the

acquired linear DS in (2.6) to our desired nonlinear limit cycle:

ρn = s(θ)ρb (2.8)

where ρb and ρn are the radius of base and nonlinear limit cycles, respectively. For better

readability, we drop subscript n in ρn , and refer to s(θ) as s. Given this, if ∀θ : s ̸= 0 and

s is at least once differentiable, then s will define the Jacobian determinant of the desired

diffeomorphism (Ajallooeian et al. (2013)). To form the nonlinear DS, we can take the derivative

of Eq. 2.8:

ρ̇(ρ,θ) = sρ̇b

(ρ
s

)
+ ρ

s

∂s

∂θ
θ̇
(ρ

s

)
. (2.9)

Using Eq. 2.6 in Eq. 2.9, we obtain the following expression for the nonlinear limit cycle: ρ̇ =−
p

M
(
ρ− sρ0

)+ Rρ

s

∂s

∂θ
e−M 2(ρs −ρ0)2

θ̇ = Re−M 2(ρs −ρ0)2
.

(2.10)

Extracting s and real-time computation of ∂s/∂θ are the added complexities of Eq. 2.10 com-

pared to Eq. 2.6. Figure 2.2 shows examples of nonlinear limit cycles learned from demonstra-

tion.

20

2.3 Inverse Dynamics Model

2.3 Inverse Dynamics Model

Learning the inverse dynamics is an active research topic in the field of learning control. The

generalized dynamics of a N -DoF robotic arm can be modelled as (Spong and Vidyasagar

(2008)):

M(q)q̈ + C (q , q̇) + G(q) = τ (2.11)

where q , q̇ , q̈ ∈RN are the joint state positions, velocities and accelerations respectively. τ ∈
RN is the joint torque vector, M(q) ∈ RN×N is the inertia matrix, C (q , q̇) ∈ RN contains the

Centripetal and Coriolis terms, and G(q) ∈RN is the gravity torques. From the general rule of

robotic chain (Hollerbach et al. (2016)), Eq. 2.11 can be transformed to:

τ = Φ(q , q̇ , q̈)β + ϵ(q , q̇ , q̈) (2.12)

whereΦ(q , q̇ , q̈)β represent the ideal Rigid Body Dynamics (RBD) of the robot. Φ(q , q̇ , q̈) ∈
RN×P is the Regressor matrix incorporating the kinematic terms and β ∈ RP contains the

physical parameters of the robot. The ideal RBD is linear in terms of β and non-linear with

respect to the joint state vectors. The structured error-term ϵ(q , q̇ , q̈) represents nonlinearities

due to joint friction and unmodeled dynamics. Approaches to acquiring the robot’s dynamics

include:

(i) RBD-based learning: identifying the physical parameters, β, of the model (Stürz et al.

(2017); Hollerbach et al. (2016); Burdet and Codourey (1998b));

(ii) RBD-free learning: finding the mapping τ= f (q , q̇ , q̈) with no prior knowledge on the

model (Nguyen-Tuong et al. (2008b,a)); and

(iii) RBD-residual learning: compensating the error of RBD-based models by learning a map-

ping ϵ= f (q , q̇ , q̈) as the Residual Model (Nguyen-Tuong and Peters (2010); Camoriano

et al. (2016); Gijsberts and Metta (2012)).

RBD-based learning techniques utilize prior knowledge on RBD to improve joint torques’

prediction by identifying the robot’s physical parameters (β) . Since these techniques learn the

inverse dynamics using a predetermined model and work with a finite quantity of parameters,

the data requirement complexity for training these models is the lowest as compared to the

other techniques (Nguyen-Tuong et al. (2008b); Gribovskaya et al. (2011)). On the other hand,

RBD-free learning techniques depend solely on data requirement, given the lack of prior and

model. RBD-residual learning techniques, owing to their similarities with both RBD-based

and RBD-free techniques for learning the inverse dynamics, have intermediate to high data

requirements (Nguyen-Tuong and Peters (2010); Schölkopf et al. (1998); Kocijan et al. (2004)).

While offline learning frameworks work with a fixed dataset, online learning frameworks

offer flexibility with regards to when (or where) the model training takes place. However,

online frameworks require continuous excitation, which may not necessarily be present in the

21

Background

incrementally supplied data (Nguyen-Tuong and Peters (2010)). Also, online learning can be

used in tandem with a model first learned offline to incrementally improve the accuracy of the

prediction (Meier et al. (2016)). For learning the inverse dynamics in this study, Chapter 3, we

focus on offline learning frameworks.

2.4 Gaussian Process Implicit Surface Representation

Implicit surfaces are a popular choice to represent arbitrary shapes with complex topology

as they are smooth and can incorporate object geometric information. An implicit surface is

defined as a manifold S ⊂ Rd that has a zero level of a scalar function f : Rd 7→ R (Williams

and Fitzgibbon (2006)):

S ≜ {x ∈Rd | f (x) = 0} (2.13)

the function f outputs f = +1, f = −1, and f = 0 for points outside, inside, and on the

object surface respectively. Williams and Fitzgibbon (2006) proposed to model the implicit

surface of f with Gaussian processes (GPs). Gaussian Process Implicit Surface (GPIS) shows

high flexibility in modeling complex surfaces. It allows embedding prediction uncertainty in

probabilistic ways, making GPIS a powerful tool for exploration purposes. The core of our

multi-contact exploration strategy, Section 6.2, is based on this uncertainty measure from

GPIS.

GPs are a collection of random variables, any finite number of which have a joint Gaussian

distribution (Rasmussen (2003)). With GP, f can be defined as a distribution over functions:

f (x) ∽ GP (m(x),k(x , x ′)), where m(x) is a prior mean function and k(x , x ′) : Rd ×Rd → R

a covariance function, also known as the kernel function. Given an observation set D =
{(x i , yi)}M

i=1, for a query point x∗ , the predictive distribution f (x∗) is extracted by conditioning

the joint Gaussian prior distribution on the observation:

p(f∗|x∗, X , y)∽N (f̄∗,V[f∗]) (2.14)

with

f̄∗ = m(x∗)+kT
∗ (K +σ2

n I)−1(y −m(X)) (2.15)

and

V[f∗] = k(x∗, x∗)−kT
∗ (K +σ2

n I)−1k∗ (2.16)

X and y are the observed inputs and outputs. The components of matrix K (·, ·) are computed

by a defined kernel function: ki , j = k(x i , x j). Vector k∗ = K (X , x∗) is the kernelized similarity

of the query point x∗ to the observed inputs.

22

2.4 Gaussian Process Implicit Surface Representation

Figure 2.3: Object shape reconstruction from exploration data. Same sampled data (800
points) from ground truth is exploited to reconstruct the shape of the object (left) using GPIS
with RBF kernel and prior m = 1 (middle), and m = 0 (right).

Prior Mean

Likewise (Dragiev et al. (2011); Driess et al. (2017)), we set m = 1 as the prior mean, meaning

that any query point does not belong to the object surface unless there is a similarity to the

observed points on the surface. Choosing m = 0, as in (Björkman et al. (2013); Yi et al. (2016)),

causes shape distortion due to GP function tendency to fall back on prior, see Figure 2.3.

Williams and Fitzgibbon (2006) proposed using the thin-plate spline kernel to avoid falling

back to the mean function. Conversely, considering m = 1 renders falling back to mean prior a

desirable behavior, allowing for more flexible and mathematically convenient kernels than

thin-plate splines. In (Driess et al. (2017)), authors indicate that with m = 1 there is no need

for recording off-surface points. On the contrary, we believe having off-surface points as

observation is still required. In online exploration, we only access the Euclidean distance

between points as the similarity measure; in other words, we do not know geodesic distance

a priori. Therefore, off-surface points are still needed to improve the marginal likelihood of

the shape’s curve more accurately, which is crucial for tangent plane estimation. Besides, off-

surface points affect the optimal range of kernel hyperparameters, and, unlike in simulation,

they are easy to collect in real-world practices.

Kernels and Model Selection

From experience, we have observed that exploration performance (the decreasing rate of

reconstruction error) becomes kernel indifferent by collecting more and more points. Thus,

the choice of kernel matters most in the early phases of exploration. We opt for the RBF kernel

as we observed that w.r.t. the number of data points, we obtain higher regularity in shape

23

Background

prediction. The RBF kernel is formulated as follows:

k(x , x ′) =σ2
l exp

(
− ∥x −x ′∥2

2ℓ2

)
(2.17)

hyperparameters, θ = {ℓ,σl ,σn}, of the GP model can be obtained by optimizing the marginal

log-likelihood. Assuming that tactile sensors can provide a normal vector to the contact point,

one can integrate the surface normal in the GP model and in the covariance function. This

approach exploits derivative observation both in training and inference. While it can better

inform our model of the surface curvature, especially in the case of missing data, we observed

no significant improvement, despite the computational sacrifice, compared to training with

off-surface points. Besides, measuring surface normal vectors as derivative observation is

more noisy and inaccurate than measuring off-surface points.

24

3 Efficient Configuration Exploration
for Inverse Dynamics Acquisition

The work presented in this chapter has been published in Khadivar, F., Gupta, S., Amanhoud,

W. and Billard, A. “Efficient Configuration Exploration in Inverse Dynamics Acquisition of

Robotic Manipulators.” IEEE International Conference on Robotics and Automation (ICRA),

2021, pp. 1934-1941

3.1 Introduction

The inverse dynamics (see Section 2.3) of a robotic manipulator is instrumental in precise

robot control and manipulation. However, acquiring such a model is challenging, not only

due to unmodeled non-linearities such as joint friction, but also from a machine learning

perspective (e.g., input space dimension, amount of data needed). The accuracy of such

models, regardless of the learning techniques, relies on proper excitation and exploration of

the robot’s configuration space, in order to collect a rich dataset.

In order to acquire an accurate ID model for a robot manipulator, in this chapter, we focus

on generating sampling trajectories that efficiently explore the robot’s joint space –that is,

collecting data with maximum entropy. We propose a novel framework, Max-Information

Configuration Exploration (MICE), that incrementally generates the richest data based on

information theory (Taneja (1989)) and probabilistic approaches (Murphy (2012)). This frame-

work can adopt various trajectory planners (e.g., sinusoids, quadratic, etc.) in that MICE

applies to the parameter space of the trajectory generator. However, we offer a new path

planning scheme by inducing stable limit cycles in the phase space of each robot joint. These

limit cycles allow us to generate feasible trajectories in phase space (Khalil and Grizzle (2002))

and control the richness of the collected data not only in joint positions but also in joint

velocities.

We benchmark our approach against conventional methods on a 7-DoFs robotic arm, KUKA

LBR iiwa 14, by comparing the quality of the recorded data and the accuracy of the acquired

models. To assess real-time robustness, we also study model performance in real robot

25

Chapter 3. Efficient Configuration Exploration for Inverse Dynamics Acquisition

applications like trajectory tracking. Experimental evaluations reveal significant enhancement

in configuration space exploration, model learning performance, and robotic evaluation.

In Section 3.3, we explain our exploration approach and compare the quality of collected data

with those recorded from Fourier series. Then in Section 3.4, we validate that our approach

can work with any model-learning method and architecture by using both Support Vector

Regression (SVR) and Artificial Neural Network (ANN). We evaluate the performance of the

models on a real robotic trajectory tracking task in Section 3.5.

3.2 Problem Statement

Some common sampling trajectories include the usage of Fourier series, as a family of sinu-

soids (Nguyen-Tuong et al. (2008c); Stürz et al. (2017); Swevers et al. (1997)):

q i (t) = ∑
k

Ai
(k) sin

(
ωi

(k)t + φi
(k)

)
. (3.1)

Despite being intuitive to implement, excitation trajectories parametrized with Fourier series

often need to be sufficiently randomized to excite all frequencies of the system while remaining

within the physical bounds (Vantilt et al. (2015)). Other approaches exploit online/offline

optimization to obtain the optimal set of points (Du et al. (2014); Gautier and Khalil (1991);

Presse and Gautier (1993)) from which are built the excitation trajectories. As the DoFs of the

robotic manipulator increase, so does the computational complexity associated with finding

the optimal points. This makes usage of such techniques to gather large quantity of data (e.g.,

more than 100,000 samples) for a high DoFs robotic manipulator practically infeasible.

We tackle the curse of dimensionality by optimally exploring in the parameters of our trajectory

planner where the computation cost, as well as the frequency of the required optimizations,

decrease drastically, simply because one point in parameter space represents a full trajectory

in the joints’ space.

More precisely at each increment, we select a vector of parameters that will result in trajectories

with maximum average information.

3.3 Exploration Approach

3.3.1 Phase Space Path Planning

Capturing sufficient data complexity relies on visiting diverse pairs of joints’ position and

velocity {q, q̇}. Thus instead of path planning solely in configuration space, we perform our

path planning in the joints’ phase space where {q, q̇} are the states of the desired trajectory.

This enables us to build up data richness both in position and velocity through modulating

path planning parameters. However, these trajectories have to satisfy feasibility constraints as

26

3.3 Exploration Approach

-1.5 -1 -0.5 0 0.5 1 1.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.1: Various trajectories converging to a single stable limit cycle from different initial
state (q i , q̇ i), black dots. Arrows depict feasible motion direction in phase space generated by
normalized states (q i /q i

max , q̇ i /q̇ i
max) as input to Eq. 3.2 and the DS in Eq. 3.4 with ρi

c = 0.7,
q i

c = 0, αi = 1.0 and βi = 0.25.

not every trajectory is physically feasible in the phase space (Khalil and Grizzle (2002)).

To this end, we generate trajectories using a dynamical system (DS). The DS generates elliptical

trajectories as limit cycles (see Section 2.2) in the phase space (q , q̇) of each joint, while

maintaining the feasibility constraints. For each joint, the phase space coordinates (q i ∈[
q i , q i

]
, q̇ i ∈

[
q̇ i , q̇

i
]

) are first converted into polar coordinates (ρi ∈R+,θi ∈ [0,2π]):


ρi =

√
(q i −q i

c)
2 + q̇ i 2

θi = t an−1
(

q̇ i

q i

) (3.2)

with i ∈ [1, N] the joint index and q i , q i , q̇ i , q̇
i ∈R the lower/upper bounds on the joint position

and velocity. ρi is the polar radius, θi the phase angle, and q i
c the center of the desired limit

cycle on the q axis. The reverse transform can be achieved by:{
q i = ρi cos (θi) + q i

c

q̇ i = ρi si n (θi).
(3.3)

The polar coordinates in phase space are provided as input to a DS specifying the desired

polar dynamics to follow in the joint space: ρ̇i = −αi (ρi − ρi
d)

θ̇i = −βi e−α
i 2

(ρi −ρi
d)2 (3.4)

where ρi
d ∈R+ is the radius of the desired limit cycle while αi ∈R+ and βi ∈R+ are tuneable

parameters modulating the convergence speed. Note that as βi is positive and q i
c lies on the

27

Chapter 3. Efficient Configuration Exploration for Inverse Dynamics Acquisition

q axis, meaning that limit cycles will have clockwise rotation and q-axis is perpendicular to

the path. Therefore, all acquired trajectories from such a DS are always feasible for each joint.

Figure 3.1 shows an examples of generated trajectories in a phase-space. From this figure, all

trajectories, with different initial states, eventually converge to the desired limit cycle. With

opting limit cycles of different radius and position, we can cover the entire phase space of the

joint. As a result, a sequence of limit cycles can help us to stably and comprehensively explore

a robot joints’ phase space. Next, we explain how the succession of such DS is designed and

employed in our exploration approach.

3.3.2 Maximizing Information

We refer to the data recorded during the robot’s motion following the joint trajectory de-

termined by the polar DS as the swept data. The continuous accumulation of the swept

data between successive limit cycles builds up the dataset to be used for learning the in-

verse dynamics. For the k-th limit cycle let us define ψi
(k) =

[
ρi

d (k)

q i
c (k)

]
as the parameters vector

for i -th joint, i.e., ψi
(k) gathers the desired center position (q i

c) and radius (ρi
d) of the k-th

limit cycle for joint i . Then for a N -joint robot, the parameters vector can be defined as:

ψ(k) =
[
ψ1T

(k) · · · ψN T

(k)

]T
. Eachψ(k) is a point in the parameter space, representing a unique

combination of trajectory sets across all the joints where simple sequence of different ψ

can generate a complex trajectory in the robot joints’ phase space. Hence, instead of direct

exploration in the joints’ phase space, we will incrementally explore the trajectories’ parameter

space based on visited parameters:

ψ(K+1) = f (Ψ) (3.5)

whereΨ= {ψ(k)}k=1,...,K is the collection of parameters visited during the exploration with K

being the total number increments. To determine the function f (.) we take a probabilistic

approach and select ψ(K+1) by maximizing the information entailed in the distribution of ψ

over the parameter space:

ψ(K+1) = argmax
ψ

I (ψ) (3.6)

with I (ψ) =−l og (p(ψ|Ψ)) and p(ψ|Ψ) the distribution of ψ over the parameter space given

Ψ. Therefore, the objective of the exploration is to selectψ(K+1) so as to maximize the acquired

information (Eq. 3.6). To this end, we first need to model p(ψ|Ψ). Here we use a kernel density

estimator (KDE) (Murphy (2012)) as a non-parametric density model, allocating one cluster

center per ψ(k):

p(ψ|Ψ) = 1

K

K∑
k=1

N(k)(ψ;ψ(k),Σ) (3.7)

28

3.3 Exploration Approach

where Σ = diag(Σi) for i = 1, . . . , N and each Σi = diag(σρi
d

,σq i
c
) is the smoothing parameter

called bandwidth. Note that Σ determines the local effect of each cluster which can be

modulated through σρi
d

and σq i
c

for radius and center respectively, which here are selected to

be 5% of their valid range (e.i. σρi
d
= .05(ρi

max −ρi
mi n) andσq i

c
= .05q i

max). Using the estimated

density (Eq. 3.7), we can now rewrite Eq. 3.6 and derive ψ(K+1):

ψ(K+1) = argmin
ψ

log
K∑

k=1
N(k)(ψ;ψ(k),Σ). (3.8)

Since the gradient of Eq. 3.7 has an analytical solution, Eq. 3.8 can be computed in real-time.

Besides, we only need to use Eq. 3.8 at the end of each increment where all limit cycles are

realized.

Technical note

Considering Eq. 3.8, as the main cost function, the gradient has the following form:

∂ f

∂ψ
= Γ

K∑
k=1

N(k)(ψ;ψ(k),Σ)(ψ−ψ(k)) (3.9)

where Γ= Σ−1∑K
k=1 N(k)(ψ;ψ(k),Σ)

. This gradient can be then used in fast optimization approaches

like the gradient descent (Tseng and Yun (2009); Bierlaire (2015)). To avoid being trapped in

local minimums, one can randomly select n initial guesses, and run the optimization over

limited m iterations with convergence bound ϵ. Then the optimized variable is chosen as

the optimum among the n acquired outputs. In this work and for the problem at hand, we

selected n = 100, m = 1000 and ϵ= 0.001.

3.3.3 Approach Summary and Evaluation

Our framework of data collection is summarized in Algorithm 1. Using MICE approach, Fig-

ure 3.2 depicts a simple example where through incrementally selectingψ(k) the distribution

p(ψ|Ψ) becomes progressively more uniform, as the configuration space is covered more

extensively.

To show the applicability of the approach, we have collected joint data and learned the inverse

dynamics of a N = 7 robotic arm, where building up cross dependency across all joints is

crucial. Figure 3.3a shows that distribution of all parameters ψ(k) gradually converges to a

uniform distribution due to constant decrease in KL-Divergence measure (Hershey and Olsen

(2007)), with reference distribution being uniform, (as a dissimilarity measure to uniform

distribution). With parameter distribution getting more uniform, maximizing the information

will result in maximal entropy distribution (Taneja (1989)), see Figure 3.3a. Continuous

increase of the entropy and KL-Divergence converging to zero confirms, as expected, that all

the selected ψ are uniformly distributed across all the joints at the end of the data recording.

29

Chapter 3. Efficient Configuration Exploration for Inverse Dynamics Acquisition

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-1.5 -1 -0.5 0 0.5 1 1.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1.5 -1 -0.5 0 0.5 1 1.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1.5 -1 -0.5 0 0.5 1 1.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 3.2: A One-joint example of MICE approach in parameter space ({ρ , qc }) resulting in
full configuration coverage. K = 1,5,20, and 75 is the increment number for rows from to
bottom. Left side plots are generated trajectories as a succession of limit cycles. Right plots
are the joint distribution for the selected parameters. Dash lines indicate the physical bounds
over parameters from joint position and velocity limits.

30

3.3 Exploration Approach

Algorithm 1 Max-Information Configuration Exploration

1: Initialization:
2: ψ0 ← random ▷ initial limit cycle parameters
3: Main loop:
4: for t = 0 → T do
5: for i = 1 → N do
6: if limit cycle Not completed then
7: [θ,ρ]i

t ← Eq. 3.2 ← [q, q̇]i
t

8: [θ̇, ρ̇]i
t ← Eq. 3.4 ← [ρi

t ,ψi
(k)]

9: θi
t+1 = θi

t + θ̇i
t∆t

10: ρi
t+1 = ρi

t + ρ̇i
t∆t

11: [q, q̇]i
t+1 ← Eq. 3.3 ← [ρ,θ]i

t+1
12: Data ← Data ∪ [q, q̇]i

t+1
13: Check cycle completion ← [θ,ρ]i

t
14: else
15: [q, q̇]i

t+1 ← [q i
t ,0] ▷ Wait for other joints

16: end if
17: end for
18: if all limit cycles completed then
19: Ψ←Ψ∪ψk
20: p(ψ|Ψ) ← Eq. 3.7 ▷ Update distribution
21: ψk+1 ← Eq. 3.8 ▷ Update parameters
22: k ← k +1 ▷ New increment
23: end if
24: end for

We compare MICE to Fourier series (Sinusoids) sampling method, in terms of swept data

quality and learned model accuracy. Same as MICE, parameters (frequencies, amplitudes,

and phase offsets) of the Fourier series are updated/randomized after a full period of the

respective Sinusoid (Eq 3.1). Figure 3.3 reveals that the joint data recorded by MICE are

distributed with substantially larger entropy than the data collected by sinusoids, proving

more efficient spread of data over joint space. From Figure 3.3 we can also see that after some

data entries, the entropy starts to grow faster when exploiting MICE, as it is better optimized to

find information-rich trajectories. Next, we study and assess how swept data by MICE enhance

the learning performance and model accuracy.

31

Chapter 3. Efficient Configuration Exploration for Inverse Dynamics Acquisition

50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

10 4

(a) MICE performance

0 5 10 15

10 4

0

200

400

600

800

1000

1200

1400

1600

(b) Data collection and entropy evolution

Figure 3.3: Algorithm 1 applied in parameters space of a 7-joint robotic arm, KUKA LBR
iiwa 14: (a) Performance evaluation of MICE through entropy estimation and KL-Divergence
measurement where reference distribution is uniform. The line indicates the mean, the
shaded area shows the variance of 10 replicates. (b) Estimated entropy of data collected via
sinusoids and MICE approach. Both (a) and (b) represent the same timespan, meaning that
for approximately collecting 2×105 samples, 200 limit cycles are sequentially computed for
each joint.

3.4 Model Learning

3.4.1 RBD-Based Model

For learning the inverse dynamics, one technique is to use the RBD model for predicting the

target variable, i.e., the joint torque values:

τ(q , q̇ , q̈) = Φ(q , q̇ , q̈)β (3.10)

with β being the physical parameters of the robot. A robot manipulator has 10 physical

parameters per link:

βi = [m mrx mry mrz Ixx Ix y Ixz Iy y Iy z Izz]T
i (3.11)

where m is the link mass, (rx ,ry ,rz) are the Cartesian coordinates of the link’s centre of

mass, while (Ixx) through (Izz) are the inertia tensor components. Cumulatively, the physical

parameters of the robot are β= [β1 β2 ...βN]T .

Identification of the physical parameters by Parametric Least Squared Regression was carried

out using the SciPy library (Virtanen et al. (2020)). On a 10-fold test set, the normalized error

on predicted torque vector, τ, is presented in Table 3.1 for datasets acquired from MICE and

Sinusoids. Throughout the chapter, errors are normalized w.r.t the magnitude of torque range

for each joint. Table 3.1 confirms that the RBD model accuracy is improved by using MICE

32

3.4 Model Learning

Table 3.1: The joint-wise normalized mean squared errors in torque prediction by RBD models
learned from two datasets.

Dataset
Joint-wise Prediction Error (%)

1 2 3 4 5 6 7
MICE 5.84 5.22 3.68 7.35 3.60 2.65 4.93

Sinusoids 5.84 5.34 3.85 7.51 3.65 2.72 4.93

dataset compared to the Sinusoids data. However, for both MICE and Sinusoids, the RBD

model is unable to capture sufficient model complexities. The optimized physical parameters

are later used to compute the non-linear error terms:

ϵi (q , q̇ , q̈) = τi − Φ(q , q̇ , q̈)β∗ (3.12)

where i is the joint index and β∗ are the optimized physical parameters representing the

parametrically learned model.

3.4.2 Full and Error Models

Starting from Eq. 2.12, we pursue learning models that do not require explicitly identifying

physical parameters, thereby offering more flexibility on capturing nonlinearities. We aspire

to evaluate the quality of our swept data in training two mappings f F (q , q̇ , q̈) and f E (q , q̇ , q̈).

First the Full model, τ f ul l = f F (q , q̇ , q̈), and second the Error model, τer r =Φ(q , q̇ , q̈)β+
f E (q , q̇ , q̈), which contains higher complexity. We use two learning techniques for training

inverse dynamics models:

ν-Support Vector Regression

The framework for ν-SVR (Schiilkop et al. (1995); Vapnik (2013)) has been employed using

the ThunderSVM library (Wen et al. (2018)). The key hyperparameters associated with model

learning through ν-SVR are: (a) ν: regulator of the model complexity, (b) γ: measure of the

influence radius of support vectors, and (c) C: regularization parameter.

where here ν = 0.1 to limit model complexity and computation cost. These hyperparameters

are then selected through cross validation and grid search. For the learned models the number

of support vectors vary from 15000 to 50000. The training and testing performances of the Full

models are presented in Table 3.2 where using MICE dataset guarantees higher precision than

using the dataset of Sinusoids.

Artificial Neural Networks

The framework for the ANN (Bishop (1995)) has been implemented using the PyTorch li-

brary (Paszke et al. (2017)). Contrary to SVR models where one model can only predict a

33

Chapter 3. Efficient Configuration Exploration for Inverse Dynamics Acquisition

Table 3.2: Normalized errors of torque prediction from Full models learned using ν-SVR with
tuned hyperparameters. Both MICE and Sinusoids data have 150,000 sample points.

Joint
Training Error (%) Testing Error (%)
MICE Sinusoid MICE Sinusoid

1 2.15 ± 0.19 9.86 ± 0.21 2.96 ± 0.65 12.80 ± 0.18
2 0.32 ± 0.00 1.48 ± 0.00 9.87 ± 0.01 12.27 ± 0.01
3 0.23 ± 0.05 1.22 ± 0.03 2.88 ± 0.02 15.38 ± 0.22
4 0.41 ± 0.04 1.45 ± 0.00 4.34 ± 0.01 23.34 ± 0.02
5 0.56 ± 0.19 4.24 ± 0.08 0.88 ± 0.07 4.21 ± 0.20
6 0.54 ± 0.01 0.83 ± 0.01 1.35 ± 0.03 2.91 ± 0.27
7 0.18 ± 0.01 1.36 ± 0.03 0.32 ± 0.02 1.41 ± 0.06

Table 3.3: The torque vector prediction errors (normalized) and tuned hyperparameters for
Full models learned by neural network. Both datasets have the same 150,000 sample points.

Dataset
Hyperparameters Normalized Error (%)
α L n Training Testing

MICE 0.01 2 500 1.39 ± 0.62 1.53 ± 0.64
Sinusoids 0.05 3 25 14.17 ± 1.10 20.53 ± 0.44

single joint torque or the error term, a single neural network is capable of producing a mul-

tidimensional output. To learn the multidimensional joint torque and error prediction, the

key hyperparameters associated with the shallow neural networks are: (a) Activation function,

(b) Number of hidden layers L, (c) Neurons per each hidden layer n, and (d) Learning rate

α. The activation function used in the networks is ReLU while the other hyperparameters

were determined using grid search. The model accuracies for Full models, on their respective

datasets, are provided in Table 3.3. Given Table 3.2 and Table 3.3, compared to Sinusoids, MICE

provides more information-rich data, resulting in better learning performance regardless of

the learning technique. Besides, models learned via ANN for both datasets promise higher

precision than those learned by SVR. Therefore, we take ANN as the learning method for

training Full and Error models on the comprehensive MICE data set, see Table 3.4.

Table 3.4: The normalized torque prediction error for Full and Error models. Bot models
are learned by neural network via following tuned hyperparameters on MICE dataset with
2,200,000 sample points.

Model
Hyperparameters Normalized Error (%)
α L n Training Testing

Full 0.01 2 500 0.62 ± 0.15 0.64 ± 0.16
Error 0.01 2 500 2.5 ± 0.086 2.62 ± 0.081

34

3.5 Model Evaluation

3.5 Model Evaluation

So far, we have learned and evaluated the acquired models on the training and testing sets

receptively. Yet the high accuracy in the test set does not guarantee the same robustness and

performance in real robotic tasks. Non-visited configurations and accumulation of prediction

error are among the key sources of instability. Accordingly, we assess the trained models for

both static and dynamic execution.

3.5.1 Static Test - Prediction of Gravity Compensation Torques

In plenty of robot controllers, the robot model is only used to compensate for static forces

on the robot, referred to as gravity compensation torques. To test the efficacy of the learned

models at predicting the gravity compensation torques, the manipulator was designated to

reach randomly allocated stationary configurations in position control mode (a total of 200

configurations). The joint torque readings from the manipulator’s sensors were used as the

base line for comparing predictions from other models. For gravity compensation, the joint-

wise error normalized over torque range are presented in Figure 3.4a. Given this, the models

learned using Neural Networks have the most accurate predictions. Note that 2-end to 4-th

joints are the most load bearing joints in KUKA LBR iiwa 14; therefore, the performance of

gravity prediction is of higher importance there.

3.5.2 Dynamics Test - Trajectory Tracking Task

Robot dynamics can also be exploited to predict proper feedforward joint torques needed

to achieve a desired trajectory. As an example of such a scenario, we designed a trajectory

tracking task in the robot’s joint space. In this task, the manipulator has to follow a sinusoidal

test trajectory for a specified duration (here 180s).

The learned models are used to predict the feedforward torque based on the desired joint states

(q d , q̇ d , q̈ d). In conjunction to this, a proportional-derivative feedback (PID) controller (Ogata

and Yang (2002)) is also implemented. For each model test, the PID gains are tuned such

that the errors in following the desired joint-angles and joint-velocities remain in a specific

bound (Craig (1989)). This is to ensure that the desired trajectory is perfectly track during each

test.

Since the feedback torques regulate the tracking errors, low magnitude of these torques

indicates the accuracy of feedforward torque predication, and less need for real-time com-

pensation, Figures 3.4b. From amongst different models, the Neural Network based Full

model required lower feedback compensation. This enhances robot stability, and allows more

compliance as well as wider range of control gains.

35

Chapter 3. Efficient Configuration Exploration for Inverse Dynamics Acquisition

(a) Static test

(b) Dynamic test

Figure 3.4: (a) Joint-wise normalized errors between the actual sensor torques and model
predictions in gravity compensation mode. (b) Mean absolute values of feedback torques of
a PID controller while exploiting learned models in a trajectory tracking task. The inverse
dynamics is used as feedforward, and feedback torques are to regulate tracking errors. In both,
the caps represent the variance in the normalized error.

3.6 Discussion and Summary

We introduced a novel framework, MICE, to explore robot joints’ phase space and record rich

data for model learning purposes. Our algorithm incrementally maximizes the information of

swept data by generating stable limit cycles in joints’ phase space. Studying the distribution of

two datasets recorded by MICE and Sinusoids reveals that the former has significantly higher

entropy and is distributed more uniformly. Subsequently, this has resulted in better model

learning performance than the latter, regardless of the learning method. Moreover, to ensure

the robustness of the acquired models, we have tested them on real robotic scenarios, such as

evaluating the quality of gravity compensation and performance in trajectory tracking. The

results show that the MICE dataset’s Full model obtained by ANN guarantees the best accuracy

and robustness among other learned models.

This work can further be studied and developed to improve the learned inverse dynamics. For

instance, MICE can be exploited in online learning frameworks to generate rich excitation

trajectories. Using incremental model learning approaches (Nguyen-Tuong and Peters (2010))

in conjunction with MICE is another potential topic of study which can improve the efficiency

of model learning by only focusing on a desired workspace.

36

4 Self-Correcting Quadratic
Programming-Based Control

Chapter 3 introduced methods to acquire an accurate model of a robot’s inverse dynamics.

However, due to model imperfections or structural changes, the model at hand and the reality

do not match in many real-world scenarios, even if a precise model is previously learned.

For instance, consider retraining the robot’s model in a new gripper is mounted on the end-

effector. In this case, retraining the model from scratch would be inefficient and costly. On the

other hand, most model-based controllers’ efficiency relies heavily on the model precision

assumption: the model adequately captures the underlying robot/environment model. In this

chapter, we take one model-based controller as an example and propose a control pipeline to

relax this relatively strong assumption.

Quadratic Programming (QP)-based controllers allow many robotic systems, such as hu-

manoids, to successfully undertake complex motions and interactions. However, these ap-

proaches rely heavily on adequately capturing the underlying model of the environment and

the robot’s dynamics. This assumption, nevertheless, is rarely satisfied, and we usually turn to

well-tuned end-effector PD controllers to compensate for model mismatches.

Our approach builds upon existing inverse dynamics (ID) model learning techniques to

improve the QP dynamics model over time (Nguyen-Tuong and Peters (2011); Chebotar et al.

(2019); Chatzilygeroudis and Mouret (2018); Deisenroth et al. (2013)) and existing adaptive

control methods (Ioannou and Sun (2012)) that can regulate the feedback term and change

the cost function of the QP on-the-fly. This is different from previous methods of learning for

QP-based controllers that primarily attempt to alter the QP cost function only (e.g., (Spitz et al.

(2017); Lober et al. (2016))). Our main contributions are:

(i) An episodic procedure of learning residual ID model for QP-based control where we use

an expressive and differentiable Gaussian Process with Rigid Body Dynamic (RBD) model

as prior. In our method, ID is differentiable with respect to the optimization variables;

hence, it actively exploits the learned ID model within the optimization of the QP-based

control.

37

Chapter 4. Self-Correcting Quadratic Programming-Based Control

Figure 4.1: Our proposed framework for robot torque-control using a quadratic programming
scheme. Green components, indicating our contributions, are developed in this study to
compute the joint torques τ for realizing a desired end-effector acceleration ẍd . Through
online reference adaptation , given the feedback from robot end-effectors, and error model
exploitation, using Taylor expansion, our approach enables the QP to correct itself such that
the expected joint accelerations, q̈ d , converge to the actual values, q̈ .

(ii) A novel scheme for continuous online reference adaptation in the cost function QP. To

this end, we employ an adaptive controller that avoids manual tuning, addresses model

uncertainties online, and results in a faster convergence for ID model learning.

We extensively validate our approach in simulations and perform experiments in a physical

robotic setup. Our results showcase that our method (i) is able to compensate for large model

inaccuracies in little interaction time (i.e., in a few trials), and (ii) consistently outperforms the

baselines.

At the time of writing, the work presented in this chapter is under the second round of review

as Khadivar, F., Chatzilygeroudis, K., and Billard, A. “Self-Correcting Quadratic Programming-

Based Robot Control.” IEEE Transactions on Systems, Man and Cybernetics: Systems, 2022.

Konstantinos Chatzilygeroudis has equally contributed to the mentioned paper. More specifi-

cally, he is the main contributor to the implementation of GP learning and the foundation of

simulated experiments. In this chapter, the theoretical work, simulated and physical robot

experiments conducted by the thesis author are exclusively reported.

4.1 Introduction

In multi-body robotic systems, we need to carefully coordinate a large number of degrees of

freedom and interaction forces. Such coordination becomes more challenging when operating

in taskspace, even for the simplest tasks, e.g., a bimanual robot interacting with an object (Chen

38

4.1 Introduction

et al. (2017)). Quadratic programming (QP)-based methods provide a principled control

framework to tackle these challenges (Escande et al. (2014); Berenson et al. (2011); Bouyarmane

and Kheddar (2017)). In QP, task requirements are formulated as an optimization process

for minimizing an objective function together with satisfying constraints such as joint limits,

system dynamics, and contact forces (Zhang et al. (2004); Baerlocher and Boulic (2004);

Collette et al. (2007)). Due to smart formulation and modern computation, this optimization

process can run up to 1KHz, allowing for high-frequency control even in humanoids (Escande

et al. (2014); Righetti and Schaal (2012); Bouyarmane and Kheddar (2011)).

Control structures based on optimization are used widely in general-purpose simulations

and automatic motion synthesis. Among early studies of interest, Abe et al. (2007) controlled

the balancing of animated humans by integrating constraints, namely the frictional and

non-planar contact model. Later, De Lasa et al. (2010) and Coros et al. (2010) extended

the approach and incorporated physical features into prioritized levels of optimization for

locomotion with periodic contact switching. QP is an example of an optimization-based

controller and has also been employed frequently in various applications in robotics such

as trajectory planning/tracking (Li et al. (2016b)), multi-body control (Zhang et al. (2004)),

multi-task planning (Salini et al. (2011)), and dynamic balancing (Li et al. (2016c)).

However, similar to most model-based controllers (Nakanishi et al. (2008)), the key assumption

of any QP-based control is the precision of the model and whether it adequately captures the

underlying robot/environment model. This is, of course, rarely the case since in many real-

world scenarios, the model at hand and the real model do not match. Even when the system is

coupled with accurate state estimators and high-gain PID feedback, real-world experiments

are subject to frequent failures due to model imperfections, friction, actuator nonlinearities,

etc. (Nguyen-Tuong and Peters (2011)). In practice, for these reasons, configuring a QP-based

controller for a convoluted robot (e.g., humanoid) or complex interactions (e.g., handling

objects) almost always involves a great deal of hand-tuning of the model parameters and the

cost function for each specific instance of the task (Modugno et al. (2016)). In this study, we

aim to address these limitations of QP-based controllers. We focus on the problem of model

imprecision and feedback inadequacy of the control law.

Humans and animals have a remarkable way of performing new tasks or adapting to unfore-

seen situations. They learn from their mistakes and, by trial-and-error, master new skills. We

envision a similar robotic system that learns through trial-and-error: it tries to achieve the

task with a QP-based controller, fails (e.g., the box slips from the hands of the robot), and

tries again until it manages to realize the goal. This adaptation is functional only if it is fast;

imagine, for example, having to wait 2 days for a robot to learn how to perform a search and

rescue scenario task. Thus we would like the procedure to happen in as short an interaction

time as possible1 (Chatzilygeroudis et al. (2019)).

1Minimizing the interaction time with the system is equivalent to minimizing the number of trials in episodic
settings

39

Chapter 4. Self-Correcting Quadratic Programming-Based Control

Therefore, the main question that arises here is: how can we improve a QP-based controller

as per previous trials? Assuming an accurate/perfect QP solver, three central elements can

be updated: (i) the task specification (i.e., end-effector desired accelerations), (ii) the cost

function of the QP, and (iii) the model of the QP. The first would require an external oracle to

give us feedback on whether or not we were performing the task well, and then one would

have to find which is the best oracle to do so. We therefore assume that the task specifications

are well-designed and we do not update them. Altering the cost function freely is likewise

dangerous. The QP solver might fail or produce weird motions, and this is why most related

approaches model the cost function as a series of waypoints or attractors/repulsors (Spitz et al.

(2017); Lober et al. (2016)). In contrast, improving the model of the QP with data gathered

from the physical trials will make the task of the QP solver easier and more accurate.

In this chapter, we focus on QP-based ID controllers and investigate means by which we can

update the cost function to ensure stability of the system, and improve the precision of the ID

model efficiently. More precisely, we formulate an ID model learning procedure to improve

the model of the QP and show that it applies to a variety of robots with different dynamics. We

then introduce a novel QP-based control scheme that is able to overcome model inaccuracies

and large model mismatches by combining the slow ID model learning with a fast online

adaptive control law in taskspace to regulate the cost function of the QP(see Figure 4.1). Using

adaptive control per se for robot control is not new, however, to the best of our knowledge, we

have for the first time employed online adaptation of nonlinearities and model uncertainties

to close the control loop for QP-based controllers.

4.2 Quadratic Programming-Based Control

For many applications in robotics, it is more convenient and intuitive to design the desired

behavior in the Cartesian coordinate system of the end-effector(s), also known as the taskspace.

In the ID formulation, we have as input desired end-effectors accelerations ẍd ∈Rl (l is the

dimension of the taskspace), and we would like to find the joint-level torques needed to

achieve these accelerations. The equations of motion and constraint equations for a robot can

be described as (Feng et al. (2014)):

M(q)q̈ + Cg (q , q̇) = Sτ + J T (q)W

J (q)q̈ + J̇ (q , q̇)q̇ = ẍr (4.1)

where q ∈ R j is the full state of the system (with j being the number of DoFs of the robot,

including the 6-DoFs of the floating base, if present)2, x ∈Rl is the concatenation of the poses

(containing position and orientation) in Cartesian space of all the contact points (if present),

M(q) ∈R j× j is the inertia matrix, Cg (q , q̇) ∈R j is the sum of the gravitational, centrifugal and

Coriolis forces, S ∈R j× j is a selection matrix where the first 6 rows are all zeros and the rest

is the identity matrix, W ∈ R6nc× j is the concatenation of all nc contact wrenches (in world

2We denote time derivatives with an upper dot: e.g., ẋ.

40

4.2 Quadratic Programming-Based Control

frame), J ∈R6nc× j is the concatenation of the Jacobians of all the contact points, and τ ∈R j

is the vector containing the control torques of all DoFs of the system. We can re-write the

equations of motion as (Feng et al. (2014)):

[
M(q) −S −J (q)T

] q̈

τ

W

 + Cg (q , q̇) = 0. (4.2)

This formulation is interesting as given a state (q , q̇), the equations of motion are linear with

respect to
[

q̈ τ W
]T

. By defining X =
[

q̈ τ W
]T

in this chapter, we can now express

the ID formulation as a QP-based whole-body control problem (Feng et al. (2014)):

min
X

− 1

2
X T GX + g T X

s.t. H E X = bE (4.3)

H I X ≥ b I

where we are optimizing tasks of the form 1
2∥HX −b∥2, and where G = H T H and g =−H T b.

In particular, we turn the equations of motion into equality constraints (H E and bE), and we

turn joint limits and other constraints, such as friction cone or center of pressure constraints,

into inequality constraints (H I and b I). We then define desired accelerations of some end-

effector by filling G and g appropriately3 (the QP task objectives). To make things more

concrete, imagine a manipulator which is rigidly attached to the world, and we treat the base

of its gripper as the end-effector. In this case, x represents the position and orientation of the

base of the gripper of the manipulator (see Section 4.4.1 for an example on how to fill G and

g). When we have multiple tasks with different weights wi , we can decompose H and b as

H =
[

w1H T
1 ,w2H T

2 , . . . ,wnH T
n

]T
, and b =

[
w1b1,w2b2, . . . ,wnbn

]T
.

In this study, we compute the reference end-effector accelerations ẍr by:

ẍr = ẍ f + ẍd (4.4)

where ẍd , the end-effector desired acceleration, is the feed forward control term specified by

a higher-level controller and can change over time based on the defined current task. ẍ f is

the feedback term which closes the control loop. Previous work has usually applied PID or

PD control structure to close the loop: ẍ f = −kp (x −xd) − kv (ẋ − ẋd). Finding proper gains

(kp ∈ R+ and kv ∈ R+) for each task requires heavy gain tuning with no stability guarantee,

and no control over the transient error behavior. In this chapter, we close the control loop via

an MRAC control scheme. In other words, ẍr is derived from a nonlinear adaptive controller

presented in Section 4.3.1. By doing so, we modulate ẍr in an online fashion to follow a desired

dynamical system, thereby controlling the transient behavior of the error signal. Moreover, we

guarantee the stability of the system in the feedback line with appropriate adaptive laws.

3We use the whc library: https://github.com/costashatz/whc.

41

https://github.com/costashatz/whc

Chapter 4. Self-Correcting Quadratic Programming-Based Control

4.3 Approach

We propose a novel QP-based control scheme, called the Self-Correcting QP-based Control

framework (SCQP, see Figure 4.1), where a nonlinear adaptive controller computes the refer-

ence accelerations for the QP-based ID (Section 4.3.1), and a learning procedure improves

the ID model of the QP (Section 4.3.2). Overall, in the SCQP we adopt an episodic learning

scheme and perform the following steps (see also Algorithm 2):

1. Design the task specifications: xd (t), ẋd (t), ẍd (t).

2. Configure the adaptive controller and model learning procedure.

3. Perform an episode. For each time-step:

(a) Compute the reference accelerations, ẍr using our nonlinear adaptive controller

(Section 4.3.1).

(b) Compute the cost function for the QP given ẍr ;

(c) Get the torques τ from the QP with the updated cost function, and the learned ID

model, h∗(q , q̇ , q̈) via linearization.

(d) Apply the torques to the robot and collect data.

(e) Update the adaptive controller at each time-step.

4. Learn the ID model with Gaussian Processes with all the collected data.

5. Go back to step 3 until convergence.

Throughout this chapter, we use n, l , and m ∈N to refer to the dimension of the state-space,

taskspace, and control input, respectively. For easier reference, in Table 4.1, we list all the

notations necessary to follow our approach and derivations, hereafter refer to Table 4.1 for

the variable-related dimensions. We use subscripts r and d for indexing reference and desired

variables and utilize the following conventions throughout the article: typeface for scalars

(e.g., a), lowercase bold font to represent vectors (e.g., a), and uppercase bold font to refer

to matrices (e.g., A). For brevity, we drop the variable-related indexing of each variable in

Table 4.1.

4.3.1 Taskspace Adaptive Control

Let us define ζ = [xT , ẋT]T to be the states of the end-effector in the taskspace. Then, the

objective of our adaptive controller is to ensure that the ζ converge to the desired states

ζd = [xT
d , ẋT

d]T .

42

4.3 Approach

Table 4.1: Core notations

Symbol Dimension Description

x Rl Robot end-effector Cartesian position
ζ Rn Robot taskspace states
ν Rm Adaptive output control signal
Φ(·) Rp Vector of basis functions
P Rn×n A symmetric positive definite matrix
Q Rn×n A positive definite matrix
A Rn×n State matrix of a dynamical system
B Rn×m Input matrix of a dynamical system
r (t) Rn Input signal of the reference model
Ψ̄v Rm×nv Estimated control gain for v = ζ,r ,φ
Λv Rm×nv Adaptation gain for v = ζ,r ,φ

Reference Model

The states selection depends on the task requirement; for instance, one might define ζ = ẋ

where ζ̇d can be directly given or derived from a stable dynamical system ζ̇d = f d (ζ). We

consider a general case where the full states of the robot end-effector, ζ, need to follow a

desired reference model given by:

ζ̇r = Arζr + Br r (t) (4.5)

where r (t) is a bounded regulation signal. Ar , Br , and r (t) are design parameters to shape the

reference model and have to be such that the dynamic model (4.5) is stable, from a Lyapunov

perspective, at ζd , meaning that ∥ζr −ζd∥→ 0 as t →∞. In addition to stable control, this

model allows modulating the transient behavior of the stable convergence. For instance,

matrix Ar controls how fast ζr converges to ζd while Br regulates ζr to track ζd . The regulation

signal, r (t), as the reference signal could be computed from r (t) =−B†
r Arζd with B†

r being the

pseudo inverse of Br .

End-Effector Model

Given ζ being the concatenation of end-effector position, x , and velocity, ẋ , we can formu-

late a nonlinear dynamic model that governs the derivative of these states, ζ̇ by having the

acceleration, ẍ f , from Eq. 4.4, to be the input:

ζ̇= Aζ + Bν + F(ζd ,ζ) (4.6)

and ν = ẍ f is the control effort. Matrices A, and B are unknown and to be determined

by adaptation laws. F(·) ∈ Rn , either fully or partially unknown, is a smooth function, and

we approximate it by employing universal function approximators F(·) =Ψ∗
φΦ(·) explained

43

Chapter 4. Self-Correcting Quadratic Programming-Based Control

in Appendix A.2. Such a model implies that to perfectly track the desired states ζd , the

controller effort has to take into account unmodeled nonlinearities and adapt for unexpected

uncertainties.

In a nutshell, the dynamic model (4.5) and the defined r (t) build the reference model for

MRAC that is utilized to find ẍ f for Eq. 4.4.

Control Rules and Adaptive Laws

To ensure that ζ track the reference dynamics model (4.5) in the presence of nonlinearities

and uncertainties, we propose the following control rule for the system (4.6):

ν = Ψζζ +Ψr r (t) +ΨφΦ(e) (4.7)

where Ψζ,Ψr , and Ψφ are approximated online. Our taskspace adaptive controller takes ζ

and ζd as input, and outputs ẍr to be fed to QP optimization:

ẍr = ẍd + Ψ̄ζζ + Ψ̄r r (t) + Ψ̄T
φΦ(e) (4.8)

in which Ψ̄ζ, Ψ̄r , and Ψ̄φ are the approximated matrices in Eq. 4.7, based on the following

adaptation laws for control parameters:

˙̄Ψζ = −ΛζBT
r P e ζT

˙̄Ψr = −Λr BT
r P e r T (t) (4.9)

˙̄Ψφ = −ΛφBT
r P eΦ(e)T

where Λζ, Λr , and Λφ are positive definite matrices that tune the convergence rate of the

adaptive gains. P with Ar satisfy PAr + AT
r P = −Q as the necessary and sufficient stability

condition for the reference model (4.5); see Appendix A.1 for the stability proof. Note that, in

the first trial, we need to initialize the adaptive gains Ψ̄ζ, Ψ̄r , and Ψ̄φ in Eq. 4.10 with imposed

upper and lower bounds. The adaptation rate has to be faster than the actual dynamics. Once

a task is completed, we can store the trained adaptive gains and use them as the initial guess

for new trials. Due to the adaptation laws (4.10) the proposed controller is now able to cope

online with errors in the QP dynamic model and unforeseen uncertainties.

As for the whole system stability when using QP-based controllers, Bouyarmane and Kheddar

(2017) show that such a controller, under certain assumptions, is stable in terms of solution

existence, uniqueness, robustness to perturbation, and continuity. Also from another per-

spective, a QP-based controller can be seen as a one-step horizon model predictive controller

(MPC). Regarding the stability of MPC, in (Anderson and Moore (2007)) and (Limón et al.

(2006)), authors prove (i) the recursive feasibility by showing the existence of a feasible control

sequence at all time instants when starting from a feasible initial point and (ii) the stability by

showing that the optimal cost function is a Lyapunov function.

44

4.3 Approach

4.3.2 Inverse Dynamics Learning Procedure

The task of ID is to provide a model h∗ that gives us the torques needed to apply to the system

to achieve some desired joint accelerations in a particular robot state:

τ= h∗(q , q̇ , q̈ d). (4.10)

This is a classic reformulation of Eq. (4.1) in order to “see” the equation as a data-driven

model/mapping to learn (see (Nguyen-Tuong and Peters (2011, 2010)) for a detailed overview

of ID model learning). This is a supervised learning task, and we can employ any suitable

learning algorithm. Learning ID model can give us accurate models that can operate inside

a control loop and improve tracking performance (Nguyen-Tuong and Peters (2010)). To

reduce the sample complexity, or in other words to reduce the number of samples needed for

achieving good accuracy, we can learn the difference from an available analytic model h̄:

h∗(q , q̇ , q̈ d) = h̄(q , q̇ , q̈ d)+eh(q , q̇ , q̈ d) (4.11)

where h̄ = M(q)q̈ d +Cg (q , q̇)− J T (q)W . In essence, we insert prior information coming from

our inaccurate yet useful analytical RBD modeling.

In order to be able to exploit the ID model inside the optimization process, it needs to be

linear with respect to the optimization variables X =
[

q̈ d τ W
]T

of the QP. This is required

to take full advantage of the ID model that otherwise operates as a static offset. Thus, the error

model eh(.) ∈R j must not violate this linearity constraint. At the same time, training a linear

model for eh(q , q̇ , q̈ d) would deteriorate the performance and reduce the flexibility of both

the model and the controller.

To overcome this limitation, we propose using more expressive and differentiable models and

linearizing them around the current state. In particular, if we assume that the system is in a

state (q t , q̇ t , q̈ t), we take the first two terms of the Taylor series expansion of eh(·, ·, ·):

h∗(q t , q̇ t , q̈ t+1) = h̄(q t , q̇ t , q̈ t)+eh(q t , q̇ t , q̈ t)+ (q̈ t+1 − q̈ t)
∂eh(q , q̇ , q̈)

∂q̈

∣∣∣q=q t
q̇=q̇ t
q̈=q̈ t

(4.12)

where q̈ t+1 contains the desired joint accelerations and is one of the variables optimized by

the QP-based controller (i.e., q̈ d ≡ q̈ t+1). Here, it is important to note that for QP optimization

the q t , q̇ t , q̈ t take fixed values that cannot change during an optimization at each time-step.

This linearization yields a loss in expressivity but allows us to insert the models inside the

QP-based controller. Nevertheless, because our QP-based controller runs at high frequency

(usually ≥ 200Hz), the linearized version of the model captures quite well the behavior of the

full model in the optimization range and, as we show in the experiments, does not affect the

system performance.

45

Chapter 4. Self-Correcting Quadratic Programming-Based Control

Gaussian Processes for Inverse Dynamics Learning

We use Gaussian Process Regression (GP) (Rasmussen and Williams (2006)) to learn the ID

model. We choose GPs because they are accurate, generalize well, and, hence, are suitable for

learning from few data points (Deisenroth et al. (2013); Chatzilygeroudis et al. (2017)). Another

key property of GPs, when combined with prior information, is that they are guaranteed to

fall back, in regions far from the data, to the prior model. This property ensures that the QP

optimization, which is sensitive to the model it accepts, never fails. In preliminary experiments

with neural networks, we observed frequent failures in QP optimization; see also Section 4.3.2.

As inputs, we use tuples made of the state vector q̃ = (q t , q̇ t , q̈ t). As training targets, we use

the difference between the prediction of the analytic model and the actual command sent:

e t = h̄(q t , q̇ t , q̈ t+1)−τt , where τt is the torque command sent at time t . We use independent

GPs to model each dimension of the difference vector e t . For each dimension d of e t , the GP

is computed as (ked is the kernel function):

êd (q̃) ∼GP (µêd (q̃ ,kêd (q̃ , q̃ ′))). (4.13)

Assuming Dd
1:N = {ed (q̃ 1), ...,ed (q̃ N)} is a set of observations, we can query the GP at a new

input point q̃∗:

p(êd (q̃∗)|Dd
1:N , q̃∗) =N (µêd (q̃∗),σ2

êd
(q̃∗)). (4.14)

The mean and variance predictions of this GP are computed using a kernel vector kkk êd =
k(Dd

1:N , q̃∗), and a kernel matrix K êd with entries K i j
êd

= kêd (q̃ i , q̃ j):

µêd (q̃∗) =kkkT
êd

K −1
êd

Dd
1:N

σ2
êd

(q̃∗) = kêd (q̃∗, q̃∗)−kkkT
êd

K −1
êd

kkk êd . (4.15)

We use the exponential kernel (Rasmussen and Williams (2006)) in this study:

kêd (q̃ p , q̃ q) =σ2
d exp(−1

2
(q̃ p − q̃ q)TΛ−1

d (q̃ p − q̃ q))+δpqσ
2
nd

(4.16)

where δpq equals 1 when p = q and 0 otherwise, and [Λd ,σ2
d ,σ2

nd
] is the vector of hyper-

parameters of the kernel (length scales for each dimension of the input, signal variance and

noise).

To linearize the learned model around a query point, we need to compute the derivative

of our GPs. The derivative is another GP, and its existence depends on the differentiability

of its kernel function (Rasmussen and Williams (2006)). In our particular case, the squared

exponential kernel that we use is infinitely differentiable, and the associated GP has infinitely

many derivatives. In this study we do not use the predicted GP variance, and we only detail

the derivatives of µêd with respect to the input point q̃∗. If we look at Eq. 4.15 closely, only kkk êd

depends on the input point q̃∗, meaning that we just need to differentiate the kernel function.

46

4.3 Approach

Assuming that we have only one sample for training q̃ i , we can compute the derivative of the

kernel as follows:

∂kêd (q̃ i , q̃∗)

∂q̃∗
=
∂
(
σ2

d exp(−1
2 (q̃∗− q̃ i)TΛ−1

d (q̃∗− q̃ i))
)

∂q̃∗

=
∂
(
− 1

2 (q̃∗− q̃ i)TΛ−1
d (q̃∗− q̃ i)

)
∂q̃∗

kêd (q̃ i , q̃∗) (4.17)

=−Λ−1
d (q̃∗− q̃ i)kêd (q̃ i , q̃∗).

It is trivial to generalize/compute the gradient when considering a set of training points.

Algorithm 2 Self-Correcting QP-based Control

1: Design the task specifications: xd (t)
2: Configure the adaptive controller and the model learning procedure
3: for n = 1 → Nepisodes do ▷ For each episode
4: for t = 0 → T do ▷ For each time-step
5: Get ẍr from Eq. 4.8
6: Compute the cost function for the QP given the ẍr

7: Get τ from the QP with the updated cost function and the learned model h∗(q , q̇ , q̈)
8: Apply τ to the robot and collect data
9: Update the adaptive controller with Eq. 4.10

10: end for
11: ID model learning (Section 4.3.2)
12: end for

Practical Considerations

Gaussian Process Regression has a training time complexity of O(n3) and is thus impractical

when having to deal with many samples. Since our controllers operate at high frequency

(around 200Hz in our experiments), we can easily gather big datasets. There are many ap-

proaches to approximately learning GPs that reduce the time complexity (Quinonero-Candela

and Rasmussen (2005)), but we chose to just subsample the data in order to reduce the number

of points. We performed initial experiments in the simulated environments, and we did not

observe any significant deterioration of the performance of the SCQP algorithm compared to

when using all the points. On the other hand, when using all the points we could not manage

to achieve real-time querying of the GPs for realistic QP controllers.

Another important point that we considered is the careful mixing of the prior model and the

error model learned by the GPs. The QP controllers are model sensitive and can easily fail

if there are inconsistencies. For this reason, we did not optimize the hyper-parameters of

the GPs so we could consistently fall back to the prior model away from data points. Initial

experiments with hyper-parameter optimization frequently led to QP optimization failures.

47

Chapter 4. Self-Correcting Quadratic Programming-Based Control

Conversely, the GPs without hyper-parameter optimization rarely triggered QP failures.

We use the limbo C++11 library for GP regression and the GP derivatives (Cully et al. (2018)).

4.4 Simulated Experiments

We aim to answer the following questions with our simulations:

(i) Can the SCQP method cope with big model mismatches?

(ii) Can the SCQP method generalize to several different scenarios and robot setups?

(iii) Can the SCQP method generalize to high-dimensional robots (e.g., humanoids) and

contact-rich tasks?

(iv) Is learning the ID alone, or using taskspace adaptive control alone enough?

To answer these questions, we devise the following scenarios:

(i) A 7-DoFs KUKA LBR iiwa manipulator (14kg version) that tracks end-effector trajectories

with an unknown mass attached to the end-effector.

(ii) A 32-DoFs PAL Robotics Talos humanoid robot4 that performs a waving task while having

unknown masses attached to both of the hands and/or unknown friction coefficients.

(iii) Two 7-DoFs KUKA LBR iiwa manipulators (14kg versions) that coordinate in order to

manipulate a box with unknown mass; we provide preliminary results for this scenario.

For the above scenarios (except the experimental bimanual task), we experiment with the

following approaches:

(i) Our SCQP approach (see Section 4.3.2)

(ii) Learning the ID model (as in Section 4.3.2) combined with a PID end-effector controller

(the case where the adaptive controller is absent)

(iii) Using just the adaptive controller without any model learning

If not stated otherwise, we control the robot(s) at 200Hz and each episode has a length of

10 s. We utilize the DART simulator (Lee et al. (2018)) with the robot_dart wrapper5. Note that

all robots used in the thesis can be controlled directly in torque mode, i.e., we can send the

computed joint torques as the direct command for the robot actuators.

4We disable the hands and use the 30-DoFs.
5https://github.com/resibots/robot_dart/

48

https://github.com/resibots/robot_dart/

4.4 Simulated Experiments

4.4.1 KUKA LBR iiwa Trajectory Tracking

We begin the evaluation of our methods using a 7-DoFs KUKA iiwa manipulator that needs to

track specified end-effector trajectories. We will perform two types of experiments: (a) a task

that involves moving the end-effector only along one axis (z-axis/gravity direction) and (b) a

task that involves moving the end-effector along two axes (the yz-plane). We perform these

two tasks to extensively evaluate our method against baselines. In both scenarios, to emulate

real-world model uncertainties, we consider the following model mismatches:

(i) the QP controller assumes perfect actuators (no Coulomb friction or damping), whereas

in the real world the actuators have both Coulomb friction and damping; and

(ii) a 1kg mass attached to the end-effector of the actual KUKA that is not presented to the

QP model.

The first mismatch represents the typical differences between the ideal and the actual model

of the actuators. The second mismatch has a significant effect on the dynamics of the robots

and simulates an exaggerated case of an unexpected situation. Imagine the case, for instance,

where the robot is lifting an object, and abruptly, the force-torque sensor fails and outputs

zero wrenches at the end-effector. Lastly, we add noises in the joint position and velocity

measurements, emulating noisy real-sensor feedback.

QP Configuration

Here, we configure the QP with the desired Cartesian acceleration of the end-effector given by:

ẍ = J (q)q̈ + J̇ (q , q̇)q̇ . (4.18)

Thus, the QP formulation can be written as follows:

H acc = [J (q) 0 0]

bacc = ẍr − J̇ (q , q̇)q̇ . (4.19)

Finally, we add regularization constraints such as joint position and velocity limits, preferred

null joint configurations, actuator torque limits, etc. Hence the optimization variables do not

violate the functional limits and the robot remains stable.

Z-axis Tracking

The objective here is that the robot’s end-effector has to follow a sinusoidal trajectory on the z-

axis. The results showcase that when using the SCQP, the learning converges faster (i.e., in fewer

trials/episodes) and to a more accurate model than when using the baselines; see Figure 4.2.

The PID controller, despite being tuned with high gains, yields to poor tracking with a high

49

Chapter 4. Self-Correcting Quadratic Programming-Based Control

2 4 6 8 10
Episode

40

50

60

70

C
um

ul
at

iv
e

Tr
ac

ki
ng

 M
SE

KUKA LBR iiwa Tracking Z-axis

Adaptive Control Only
PID + Model Learning
SCQP

Figure 4.2: Results of the simulated experiment with KUKA iiwa, z-axis tracking. The experi-
ment is repeated 20 times, each consisting of 10 episodes in succession. The tracking error for
an episode is the cumulative mean square tracking error over time-steps. Solid lines are the
median over 20 replicates and the shaded regions are the regions between the 5th and 95th
percentiles.

0 2 4 6 8 10
Time (s)

0.2

0.3

0.4

0.5

z-
ax

is
 (m

)

KUKA LBR iiwa Tracking Z-axis

PID episode #1
SCQP episode #10
Desired

Figure 4.3: KUKA iiwa z-axis tracking trajectories: the first episode with PID and wrong QP
model where the model mismatch affects the tracking, and the last episode with the SCQP
approach which is able to track the desired trajectory.

cost. This is because the model mismatch is, indeed, significant, and the PID controller cannot

compensate for it without the aid of the learned ID model. The adaptive controller achieves

a relatively better cost even in the initial trials, and the tracking performance, without the

learned model, improves over the remaining trials. However, it is inadequate to compensate

for all the unmodeled dynamics, for which it needs the learned ID model. In other words,

we observe that the model flexibility issue in fast online learning with adaptive controller is

tackled by learning the residual dynamics in SCQP.

Qualitatively, the SCQP approach can quickly compensate for model mismatches and requires

less than 5-6 episodes to achieve a desirable trajectory tracking. Figure 4.3 showcases typical

z-axis trajectories before and after learning.

50

4.4 Simulated Experiments

2 4 6 8 10
Episode

15

20

25

30

C
um

ul
at

iv
e

Tr
ac

ki
ng

 M
SE

KUKA LBR iiwa Tracking 8-shape

Adaptive Control Only
PID + Model Learning
SCQP

Figure 4.4: Results of the 8-shape trajectory tracking experiment on KUKA iiwa in a simulated
environment. The experiment is repeated 20 times, each consisting of 10 episodes in succes-
sion. The tracking error for an episode is the cumulative mean square tracking error over time
steps. Solid lines are the median over 20 replicates and the shaded regions are the regions
between the 5th and 95th percentiles.

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
y-axis (m)

0.2

0.3

0.4

0.5

0.6

z-
ax

is
 (m

)

KUKA LBR iiwa Tracking 8-shape

PID - Episode #1
SCQP - Episode #10
Desired

Figure 4.5: KUKA iiwa yz-axis tracking: typical trajectories across episodes with PID and the
SCQP approach. SCQP enables accurate tracking of the desired trajectory.

YZ-plane Tracking

In this task, the robot’s end-effector has to follow an 8-shaped trajectory in yz-plane. The

results closely follow the outcomes of the previous scenario (Figure 4.4). The SCQP approach

converges in fewer episodes than both baselines. Model learning with a PID end-effector

controller can achieve good results but requires more episodes to converge. The adaptive

controller alone cannot sufficiently compensate for all the model mismatches.

Qualitatively, the SCQP approach can quickly compensate for model mismatches and requires

less than 5-6 episodes to achieve desirable trajectory tracking. Figure 4.5 illustrates typical

yz-plane trajectories of the SCQP and the PID+model learning approaches.

51

Chapter 4. Self-Correcting Quadratic Programming-Based Control

4.4.2 Talos Humanoid Task

Here, we control a 32-DoFs Talos humanoid robot. While maintaining balance, the robot has to

follow a sinusoidal trajectory with the right arm and keep the left arm in place; see Figure 4.6,

left. We devised this scenario to evaluate our approach in high-dimensional state/action

spaces with a more complex QP task. In addition to considering, for each arm, the same

mismatch models as those in Section 4.4.1, we assume that the friction coefficients of the

contact surfaces are not known. The real world has a coefficient of friction set to 0.7 whereas

the QP model takes a coefficient of 1, i.e., contact surfaces are more slippery than what the QP

expects.

This assumption attempts to create a model mismatch in a crucial part of the environment,

strongly affecting the stabilization of the humanoid robot. Lastly, we add noise to the joint

position and velocity measurements, emulating real sensory feedback.

QP Configuration

We define six Cartesian acceleration tasks following Eq. 4.19: (i) one tracking task per arm

end-effector, (ii) two tracking tasks for the torso (COM position and upright preference), and

(iii) one zero acceleration task (without feedback) for each foot. We also define one 6D contact

constraint per foot to handle the balance of the humanoid (we assume the contact points

are in the middle of the feet). More precisely, for each foot, we define a contact as inequality

constraints of the following form:

H I contact = [0 0 C]

b I contact =
[
−∞ −∞ 0 0 Fmi n

0 0 ∞ ∞ Fmax

]
(4.20)

where C is defined as:

C =


(−µn + t 1)T

(−µn + t 2)T

(µn + t 1)T

(µn + t 2)T

nT

 (4.21)

and where µ ∈R+ is the coefficient of friction, n ∈R3 is the contact normal, and t i ∈R3 are the

tangential directions. We also add a few rows for constraining the center of pressure similar

to (Feng et al. (2014)). Instead of using a center of pressure constraint, one can use four contact

points in the corners of the foot.

52

4.4 Simulated Experiments

0 2 4 6 8 10
Time (s)

0.75

0.70

0.65

0.60

y-
ax

is
 (m

)

SCQP - Episode #6

PID Only
SCQP
Desired

1 2 3 4 5 6
Episode

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Pe

rf
or

m
an

ce

Talos Humanoid Task

Adaptive Control Only
PID + Model Learning
SCQP

Figure 4.6: Successful trial of the Talos task. Through ID learning and online adaptation, SCQP
learns to perform the waving task (left) without falling despite relatively big mismatches in the
mass of the arms and the friction coefficient. The phase tracking accuracy during the waving
task (top right) indicates the effectiveness of model learning in SCQP after only a few trials
compared to the other approaches (bottom right). Solid lines are the median over 10 replicates
and the shaded regions are the areas between the 25th and 75th percentiles.

Results

The results show that our SCQP method can scale to high-dimensional systems and handle

passive contacts; see Figure 4.6. The SCQP converges faster (i.e., in fewer trials/episodes)

to high performance controllers than the baselines. In this scenario, the adaptive controller

alone might diverge if not properly tuned (due to the smaller value of the coefficient of

friction). Thus, to showcase this drift issue and also the importance of the learned ID model,

we chose a parameter configuration in which the adaptive controller alone diverges. Then, we

used the same parameters for SCQP where model learning is present. The gains of the PID

controller, however, are tuned to get its best performance for maintaining the robot’s stability.

In Figure 4.6 (right), we observe that the learned model “stabilizes” the adaptive controller

that would diverge if left on its own.

Qualitatively, the SCQP approach is able to quickly compensate for model mismatches and

requires less than 3-4 episodes to achieve desirable trajectory tracking. Figure 4.6 (middle)

showcases a typical y-axis trajectory. The supplementary video shows an example of the

learning procedure6.

6The video is also available at https://youtu.be/cA-_SKoO_9c.

53

https://youtu.be/cA-_SKoO_9c

Chapter 4. Self-Correcting Quadratic Programming-Based Control

4.4.3 Preliminary Experiments on Bimanual Manipulation

In this scenario, we perform a bimanual manipulation task in which two KUKA LBR iiwa

arms have to lift a box of unknown mass; see Figure 4.7. This experiment is used to simulate

contact-rich tasks, and tasks that objects need to be manipulated. We consider the following

model mismatches that act in combination (similar to the previous):

(i) the QP controller assumes perfect actuators (that is, no Coulomb friction or damping),

whereas in the real world the actuators have both Coulomb friction and damping; and

(ii) the mass of the box is not well-calibrated and there is a mismatch of 0.5kg (the real box

has a mass of 1.5kg whereas the QP model assumes 1kg).

QP Configuration

To control the robots while performing the bimanual task, we extend the decision variables to

contain the acceleration and torques of all entities, i.e., the two robots and the box. We add

one constraint for the dynamics of each entity; see Eq. 4.2. To “connect” the two arms with the

box, we have two sets of contact forces for the contact between each arm and the box. We then

couple the dynamics of the individual entities by inserting the forces at the correct places, i.e.,

J T
ar mW for the arms and −J T

boxW for the box, since the forces acting on the box are identical

in magnitude and in the opposite direction to the actions of the ones on the arms.

Results

We provide preliminary results of this contact-rich task that involves active contacts for ma-

nipulation. The results illustrate that our SCQP approach can be used to learn this type of

task. The most challenging part is learning the ID model. We were able to consistently learn a

good model within three episodes, but after the 3rd episode our model learning pipeline did

not work consistently: we obtained big mean square errors in the training set meaning that

something did not go well with the model learning. Nevertheless, three episodes were enough

for the SCQP approach to improve the performance and produce trajectories that achieve

the desired box movement. An example trajectory can be seen in Figure 4.7 as well as in the

supplementary video.

4.5 Physical Robot Experiments

In order to validate our SCQP approach in the physical world, we devise two setups. The first

is similar to Section 4.4.1, where a KUKA manipulator needs to track a desired trajectory. The

second setup demonstrates the SCQP application in a pick-and-place task using a robotic

hand while both the hand’s and objects’ dynamics are unknown. In both setups, apart from

the imposed mass mismatch there is also the “reality-gap” in this scenario since many small

54

4.5 Physical Robot Experiments

Figure 4.7: From left to right, screenshots of a successful trial of a bimanual manipulation
task: grasping and manipulating a box with unknown mass. Through ID learning and online
adaptation, SCQP learns to insert higher contact force to avoid slippage. Also, thanks to
the torque control scheme, the robot configuration varies during task execution to maintain
compliant joint behavior.

Figure 4.8: Physical robot setup with a mass mismatch at the end-effector. The KUKA manipu-
lator needs to track a desired trajectory. This task is similar to Section 4.4.1 but is here applied
to a real robot where real-time control as well as overcoming joints’ friction and nonlinearities
add to the control problem.

yet important details are not modeled in our original QP model (e.g., idealistic actuators). The

robot is controlled at 200Hz and each episode lasts 10 s.

4.5.1 Tracking Periodic Trajectory on Z-axis

As in the simulated experiment in Section 4.4.1, the robot has to follow a periodic trajectory on

the z-axis with a mass mismatch at the end-effector (around 0.6kg mismatch, see Figure 4.8).

The results show that SCQP works in a physical system and provides similar performance to

the simulated variant; see Figure 4.9. In particular, the SCQP converges to low-error trajectory

tracking in less than 30− 40s of interaction time (3-4 episodes); see Figures 4.9 and 4.10.

Additionally, it performs better than the PID+model learning baseline, whereas it performs

comparably to the adaptive control alone. Given the lower variance in tracking error (over 10

replicates), the SCQP shows higher consistency and robustness in tracking compared to the

55

Chapter 4. Self-Correcting Quadratic Programming-Based Control

1 2 3 4 5 6 7 8
Episode

40

60

80

100

120

C
um

ul
at

iv
e

Tr
ac

ki
ng

 M
SE

Physical KUKA LBR iiwa Tracking Z-axis

Adaptive Control Only
PID + Model Learning
SCQP

Figure 4.9: Results of real KUKA iiwa experiments with end-effector mass mismatch in the
z-axis tracking. The experiment is repeated 10 times, each consisting of 10 episodes in succes-
sion. The tracking error for an episode is the cumulative mean square tracking error over time
steps. Solid lines are the median over 10 replicates and the shaded regions depict the region of
the 5th to 95th percentiles.

baselines. Qualitatively, the SCQP approach can quickly compensate for model mismatches

and requires less than 5-6 episodes to achieve desirable trajectory tracking robustly. The

supplementary video shows an example of the learning and control procedure.

Qualitatively the SCQP approach is able to quickly compensate for model mismatches and

requires less than 5-6 episodes to achieve desirable trajectory tracking robustly. The supple-

mentary video shows an example of the learning and control procedure.

4.5.2 Pick-and-Place with a Robotic Hand

In the experiment, we perform a pick-and-place scenario with a robotic hand. The task is to

grasp different objects from a certain place and drop them into a bucket fixed in a different

position. The robot has to follow a specific trajectory while holding the object vertical to

the xy-plane; see Figure 4.11. In this experiment, the dynamics and physical properties (e.g.,

mass and inertia) of the robotic hand and the objects are unknown (the robotic hand is

around 1.5kg and the objects are 250 ± 40g). We use objects of different weights for the task

to showcase that SCQP can account for online uncertainties in addition to residual model

learning. The experiment is an extreme use case of SCQP where it knows nothing about the

hand and the objects to be grasped (a rather unrealistic assumption since we usually have

some idea about the properties of the hand and the objects). Figure 4.11 shows that SCQP

is capable of executing the task successfully despite significant unmodeled dynamics at the

end-effector and model changes from one object to the other. Initially, the robot drastically

deviates from the desired trajectory; however, after residual model learning, the tracking error

reduces progressively. The supplementary video shows successful and failed examples of task

execution for this experiment.

56

4.6 Discussion and Summary

0 5 10

50

752

Episode#1

0 5 10

50

75

Episode#2

0 5 10

50

75

Episode#3

0 5 10

30

20

4

0 5 10

30

20

0 5 10

30

20

0 5 10
0

2

T z
z

0 5 10
0

2

0 5 10
0

2

0 5 10
Time (s)

0

25

T z
z

0 5 10
Time (s)

0

25

0 5 10
Time (s)

0

25

Figure 4.10: Examples of control responses and adaptive gains during the first three episodes
(see Figure 4.9) of the periodic trajectory tracking task. The first two rows are the second,
τ2, and the fourth, τ4, joint torques in N .m.s−1, respectively. These two joints are the most
load-bearing in task execution. The third and the fourth rows are the norm of linear, Ψ̄T

ζz
Ψ̄ζz ,

and nonlinear, Ψ̄T
φz
Ψ̄φz , adaptation gains active on the z-axis, respectively. After the first

episode, the learned residual dynamic model results in modifying the torque commands to
achieve a higher tracking accuracy in a consistent fashion; see Figure 4.9. Also, adaptive gains
converge to constant values, and since big model mismatches are handled by the residual
model learning, the online adaptation remains reactive to uncertainties faced online.

4.6 Discussion and Summary

In this work, we proposed a novel combination of an MRAC scheme with an ID model aug-

mented QP-controller. Our main intuition was to merge a fast online adaptive control law

in taskspace to regulate the cost function of the QP with a slower ID model learning proce-

dure inserted inside the QP model. This pipeline, called SCQP, was effective, and we could

successfully apply it to many different scenarios and robots.

In particular, the SCQP was able to compensate, in a handful of trials, for large model in-

accuracies in tasks ranging from simple end-effector tracking to humanoid balancing and

contact-rich tasks. Using SCQP, one can avoid the tedious tuning of PID controllers while also

capturing significant unmodeled dynamics with the learned ID model.

Despite the successful application of SCQP, there remain several limitations that we would like

to address in future: (a) SCQP requires either a different model for each contact configuration

of the system or a learning model that can generalize to different contact configurations, and

57

Chapter 4. Self-Correcting Quadratic Programming-Based Control

(b) learning the ID model is itself a difficult task (as we observed in Section 4.4.3). Although

there exist methods for learning ID models with contacts (Calandra et al. (2015)), learning

effectively ID models from unstructured data7 remains an open problem that deserves further

investigation.

Finally, in this work, we assumed that the high-level tasks remained fixed throughout the

process. It is straightforward to combine SCQP with methods that update online the high-level

planning part. Task modulating can be crucial if the original specifications are not achievable;

for example, the left arm is damaged and the task has to be performed with the right arm.

Moreover, our approach can be combined with reinforcement learning algorithms. The idea

here is to enable exploration around the commands the QP outputs, while ensuring safety and

not allowing large deviations that could potentially harm the robot.

7We do not have access to a full static dataset, but rather collect data as we apply the controller on the system.

58

4.6 Discussion and Summary

Figure 4.11: Examples of pick-and-place task with a robotic hand, Section 4.5.2. TThe robot
first grasps an object, follows a specific trajectory (dashed yellow line) while keeping the object
vertical, and places the object into a fixed bucket. The dynamics and physical properties of
the robotic hand and the objects are unknown (the robotic hand is around 1.5kg, and the
objects are 250±40g), and different objects are used for each episode. In the first episode,
the robot has a significant deviation (solid red line is the taken trajectory) from the desired
trajectory; however, after residual model learning, the tracking error reduces progressively in
the other episodes. In the third episode, the robot fails to drop the object in the target place;
nevertheless, the task is successfully completed in the fourth episode with the same object.

59

5 Adaptive Fingers Coordination for Ro-
bust Grasp and In-Hand Manipulation

We present a control framework for achieving a robust object grasp and manipulation in

hand. In-hand manipulation remains a demanding task as the object is never stable and

task success relies on carefully synchronizing the fingers’ dynamics. Indeed, fingers must

simultaneously generate motion while maintaining contact with the object and, by staying

within the hand’s frame, ensuring that the object remains manipulable. These challenges are

exacerbated once the hand gets disturbed or when the internal dynamics of the manipulated

object are unknown, such as when it is filled with liquid moving during manipulation.

In this part of the thesis, we address the problem of ensuring robust in-hand manipulation

when faced with a poor model of the object’s dynamics, model imperfections, and external

disturbances. We hypothesize that the key to robust manipulation is to carefully synchronizing

the fingers’ dynamics and offer a novel control strategy based on coupled dynamical systems

(DSs), combined with an adaptive torque-controller. This controller provides live adaptation of

the position and force generated by the fingers to stabilize the object. Additionally, we propose

a joint-level adaptive torque controller to track the fingers’ desired trajectory generated by the

DS and to regulate joint-impedance gains.

In summary, we contribute to the problem of robustness in grasp and in-hand manipulation

by:

(i) Achieving a robust coordinated multi-finger system for grasp and manipulation. We

propose a novel coupled dynamical system that retains the coupling of the fingers in the

face of perturbations.

(ii) Combining MRAC with joint impedance regulation to adaptively control joint torques in

real-world grasp and manipulation tasks.

In addition to these two contributions, we make one minor one: We learn task segments

of in-hand manipulation from human demonstration that, to the best of our knowledge, is

conducted for the first time in this study and will be discussed later in Section 5.6.4.

61

Chapter 5. Adaptive Fingers Coordination for Robust Grasp and In-Hand Manipulation

At the time of writing, the work presented in this chapter has been accepted and is under

the publication process as Khadivar, F., and Billard, A. “Adaptive Fingers Coordination for

Robust Grasp and In-Hand Manipulation under Disturbances and Unknown Dynamics.” IEEE

Transactions on Robotics (T-RO), 2022.

5.1 Introduction

In-hand manipulation is the ability to re-position an object within a hand. Grasping and

manipulating objects of more variety and complexity is best explored when using a robotic

hand with multiple degrees of freedom (Dafle et al. (2014)).

Our solution to coordinate fingers is based on dynamical systems. The coupled DSs we

reportedly used to synchronize multiple robots’ dynamics Chung and Slotine (2009); Caccavale

and Uchiyama (2016); Mirrazavi Salehian et al. (2018); Kastritsi et al. (2018)). We extend this

concept to in-hand manipulation. When using a coupled DS, the challenge is to enable the

hand to produce the desired motion on the object. We achieve such planning for fingers’

synchronization by introducing a novel approach that controls the coupling of DSs of multi-

limbs. More precisely, we design an intermediate dynamics that regulates the relative speed

of the fingers to accelerate or decelerate their motion. Through this intermediate DS, we

ensure that fingers apply, in coordination, the desired motion and force on the object. We

obtain a closed-form expression that enables automatic and synchronous re-planning and

repositioning of the fingers in response to changes in the object’s pose.

Compared to coupling DS with a virtual reference trajectory (Mirrazavi Salehian et al. (2018))

or using temporal scaling dynamic (Kastritsi et al. (2018)), our intermediate DS coupling

method ensures, in addition to being robust to disturbances to each finger, that all the fingers

follow a specific desired trajectory, leading the object to the desired pose. For instance, though

all fingers are synchronized to move together, if one finger is disturbed, the others wait for

the perturbed finger to re-synchronize, rather than retracting or deviating from the intended

trajectory; see Figure 5.1 for an illustration.

The difficulties with real-world execution, task planning complexity, and feedback control law

inefficiency are primarily due to imprecise knowledge of object properties, contact mechanics,

and the robot’s dynamics (Bicchi (2000)). In this respect, considerable efforts have been put

into designing control systems based on either hybrid force/position schemes or varying-

impedance modulation; see a thorough review by Ozawa and Tahara (2017). The complexity in

modeling hand-object dynamics has encouraged some researchers to investigate data-driven

algorithms that, as an alternative, use approximate models, such as model-based (Kumar

et al. (2016)) or model-free (Rajeswaran et al. (2017); Andrychowicz et al. (2020); Zhu et al.

(2019)) reinforcement learning. For such learning algorithms, where the need for a perfect

simulated environment is substantial, extracting appropriate features of physical interaction

is a significant burden that leads to all the issues related to sim-to-reality and vice versa.

Furthermore, data-driven approaches cannot cope easily with perturbations unless they have

62

5.1 Introduction

Figure 5.1: A synchronized grasp example. All fingers are coordinated to move together. If
one finger (here fingertip II) is perturbed anytime during motion, the others wait for it to re-
synchronize (T = 0 to T = 2), rather than retracting or deviating from the intended trajectory.
The perturbed finger, also, accelerates to synchronize while recovering the planned trajectory
and approaching the object with correct orientation.

seen these as examples during training.

The adaptation of the torques online is key to mitigating uncertainties arising from poorly

modeled robot dynamics, object-finger interactions, and the object’s physical properties

(change in mass distribution). The concept of adaptive controllers (Goodwin and Sin (2014))

per se is well known in robotics. From the rich pool of adaptive controllers, we borrow a model

reference adaptive control (MRAC) (Ortega and Spong (1989)) and tailor it for our coordinated

task-planning method. To the best of our knowledge, our work is the first to utilize MRAC as

low-level torque control for grasp and manipulation, in a real robotic setup. Furthermore,

to better suit the controller for the task at hand, we embed an impedance regulation to the

adaptive control to avoid the well-known issue of gains saturation.

Another common issue with in-hand manipulation is achieving the desired object pose within

the reach of each finger and given the limited workspace of the hand. Throwing and re-

grasping objects (Dafle et al. (2014); Chavan-Dafle and Rodriguez (2015, 2018)), utilizing palm

and the extrinsic environment (Bai and Liu (2014)) are among the the proposed solutions. Dy-

namic forces on the object, if known precisely, can be utilized to manipulate the object as, for

instance, in an impressive demo by Furukawa et al. (2006), in which the hand re-grasps a foam

cylinder object by tossing it in the air and catching it. This type of manipulation largely relies

on the dynamic properties and, in particular, on the object’s moment of inertia. Re-grasping

becomes nearly impossible, once the distribution of the object’s mass is non-uniform or vary-

ing. The majority of the previous studies considered one-step in-hand manipulation (Shi et al.

(2017); Sundaralingam and Hermans (2019); Pfanne et al. (2020)). Here, we learn manipulation

sequence from human demonstrations and extract the coupling and the sequence across

fingers motion. We show that embedding this into our controller offers immediate robustness

to the above disturbances.

63

Chapter 5. Adaptive Fingers Coordination for Robust Grasp and In-Hand Manipulation

Rotating an object in hand is referred to as in-hand rolling that requires continuous finger

gaiting (Han and Trinkle (1998)). For the most recent attempt at this task, researchers relied

on learning the sequences of finger motion through reinforcement learning closing the loop

in vision and haptic feedback (Xu et al. (2010); Rajeswaran et al. (2017); Andrychowicz et al.

(2020)). In this work, we use the concept of learning human demonstrations to extract the

coupling and the sequence across fingers motion. We show that embedding this into our

controller offers immediate robustness to the above disturbances. Note that we perform

various experiments, yet only the planning part of our framework differs among all the tests.

Due to the adaptation properties, the low-level control is fixed across all experiments, reducing

substantially the amount of engineering.

We analyze the closed-loop system and show that: (i) the coupled DS is asymptotically stable

to the desired object’s pose; (ii) convergence of the error of the adaptive torque-control; (iii)

under no disturbances, the system provides torques to ensure force-closure for the grasp.

We evaluate the developed controller in four real-world robotic experiments: (a) comparing

with control baseline and testing the hand controller in tracking tasks, (b) assessing the grasp

adaptation with multiple objects of different dynamic properties, (c) for the same object,

performing rotational and translational in-hand manipulation, and (d) rolling a cuboid in-

hand by finger-gaiting. We perform the latter to demonstrate the strength of our approach in a

challenging in-hand manipulation task.

5.2 Approach

We perform trajectory planning in taskspace and compute control commands in joint space.

For planning, we devise our controller on the basis of dynamical systems as DS-based con-

trollers are robust to perturbations (Khansari-Zadeh and Billard (2011)). More precisely, in

our high-level planning, we express the task as a desired velocity ẋd
i ∈Rdx , with dx being the

dimension of position in taskspace, for each i -th finger following a DS of the form

ẋd
i = fi (x i) (5.1)

fi (·) is a continuous and asymptotically stable at an attractor x∗
i ∈Rdx meaning that ∥x i−x∗

i ∥→
0 as t →∞. The function f can be linear, nonlinear, or cyclic, and it can hold and generate all

possible trajectories to reach the target state (Khadivar et al. (2021b)).

In low-level control of a robot with n j joints, we can set the joint positions, q ∈Rn j , or send

joint torques, τ ∈ Rn j , as the control command. In practice, although position control is

intuitive to implement, it relies on high gains that can, when contact arrives earlier than

planned, damage both the robot’s joints and the object. In grasp/manipulation applications,

a precise knowledge of object shape and robot model (i.e., an accurate inverse dynamics

models (Khadivar et al. (2021a)) is needed when using position control. Controlling joint

torques is more suited to establishing compliant object-finger interactions, which leaves room

64

5.3 Finger Synchronization Based on Dynamical Systems

for adaptation to underlying imperfections. As a result, we follow a torque-based control

approach for the low-level robot control:

τi = ui (ẋd
i , q i , q̇ i) (5.2)

where τi ∈Rn j is the joint torques computed to realize the desired fingertip velocity ẋd
i from

Eq. 5.1. Our objective in low-level control is to define the function ui (·) for each i -th finger.

With ui (·), we adapt explicitly the joint compliance to allow handling uncertainties about the

object’s shape, mass distribution, and contact mechanics. In summary, we solve the grasp and

manipulation problem in two steps:

(i) Coordinated planning in taskspace: We couple a group of DSs, { fi (·)}
n f

i=1, to obtain the

desired velocities, {ẋd
i }

n f

i=1, for all n f fingertips. In Section 5.3, we synchronize fingers to

achieve the coordinated motion required during grasp and in-hand manipulation.

(ii) Adaptive torque-control in joint space: We adapt joint torques and learn the mapping

ui (·) online, given the desired velocities ẋd
i from the previous step. Adaptation is based

on MRAC and regulating joints’ impedance, see Section 5.4.

5.3 Finger Synchronization Based on Dynamical Systems

We begin with a measure of relative distance variable and its intermediate DS. We derive the

taskspace planner for each fingertip and describe how a single robot can be controlled with

this intermediate DS. Next, we explain how multiple fingers are coupled through intermediate

DSs, and how this results in coordination of fingers suitable for grasp and manipulation.

5.3.1 Intermediate Dynamic

Let’s consider a single robot end-effector (fingertip in our case). The task is to control this

end-effector to reach a desired position xd ∈ Rdx . An additional requirement is that xd is

needed to be between two specific points in the taskspace: x (1) and x (2) ∈ Rdx . These two

points (see Section 5.3.3) are used for formulating the entire grasp and manipulation task. But,

for now, let’s assume that they are externally defined. Given this, the desired position of the

robot, xd , can be expressed as a form of a relative distance measure:

xd = x (2) − zd (x (2) −x (1)) (5.3)

where zd ∈ R[0,1] is a variable representing the relative distance of the desired position, xd ,

from the second point x (2). Instead of directly fixing zd for the robot to track, we set an

intermediate target, x∗ ∈Rdx , defined by z ∈R[0,1]:

x∗ = x (2) − z(x (2) −x (1)) (5.4)

65

Chapter 5. Adaptive Fingers Coordination for Robust Grasp and In-Hand Manipulation

then regulating z to converge to zd . This intermediate variable will later serve as the coupling

variable for us. Determining and controlling z is the core of our coordinated planning problem.

Regardless of the actual robot position, z is needed to evolve based on a dynamics that ensures

∥zd − z∥→ 0 as t →∞, hence we propose the following DS:

ż = g (z, zd) =−β1
1−e−β2(z−zd)

1+e−β2(z−zd)
(5.5)

both β1 ∈R+ and β2 ∈R+ are positive scalar values gearing the convergence behavior.

Theorem 1 The DS given by (5.5) asymptotically converges to zd i.e., lim
t→∞∥zd − z∥ = 0.

Proof If we consider the Lyapunov function V (z) = 1
2 (z−zd)2, taking the time derivative results

in V̇ = (z − zd)ż. By replacing ż with the proposed DS (5.5) we will have

V̇ =−β1
1−e−β2(z−zd)

1+e−β2(z−zd)
(z − zd)

for z−zd the derivative is V̇ (z) = 0, and for z ̸= zd , V̇ =−β1γ(z) where γ(z) = 1−e−β2(z−zd)

1+e−β2(z−zd)
(z−zd).

It is easy to check that for z ̸= zd , γ(z) > 0. If we take the derivative of γ:

γ
′ = 1−e−2β2(z−zd) +2β2(z − zd)e−β2(z−zd)

(1+e−β2(z−zd))2

then: {
γ

′ > 0 z > zd

γ
′ < 0 z < zd

hence for z ̸= zd , γ(z) > 0 and V̇ (z) < 0. As a result, the DS (5.5) is asymptotically stable and

∥zd − z∥→ 0 as t →∞.

Remark 1 For any input value z ′ ∈R[0,1] to DS (5.5), we can find z by one step integration, i.e.,

z = g (z ′, zd)δ+ z ′, which sets the next intermediate target point, x∗ (Eq. 5.4) for the robot to

follow.

5.3.2 taskspace Dynamical System

State-Dependent Target Point

Altering the variable z is equivalent to changing the target position, x∗, for the robot. Accord-

ingly, the attractor of the taskspace DS is state-dependent, which we need to consider in DS

derivation for the robot end-effector. Given the robot end-effector position x ∈Rdx , variable

66

5.3 Finger Synchronization Based on Dynamical Systems

z, and the intermediate DS (5.5), we propose the following taskspace DS to control a robot

end-effector:

ẋd = f (x , z) = −(zAx + żIdx) (x (2) −x (1))−Ax (x −x (2)) (5.6)

Ax ∈Rdx×dx ≻ 0 is the defined as the state matrix, and Idx is the identity matrix.

Theorem 2 The taskspace DS given by (5.6) is asymptotically stable at the target point x∗, i.e.,

lim
t→∞∥x∗−x∥ = 0.

Proof We establish, based on the tracking error x i −x∗
i , the Lyapunov function for the taskspace

DS. Let’s assume the Lyapunov function V (x) = 1
2 (x i −x∗

i)T P(x i −x∗
i) and take it’s time deriva-

tive:

V̇ = 1

2
(x i −x∗

i)T P(ẋ i − ẋ∗
i)+ 1

2
(ẋ i − ẋ∗

i)T P(x i −x∗
i)T .

By using DS (5.6) and the derivative of Eq. 5.4 into the time derivative of the Lyapunov function,

we will have

V̇ =−1

2
(x i −x∗

i)T (AT
x P+PAx)(x i −x∗

i)

which by satisfying similar conditions, such as Eq. 2.2, the stability of the DS (5.6) is guaranteed.

DS (5.5) is asymptotically stable at zd meaning that limt→∞ ∥xd −x∗∥ = 0, and DS (5.6) asymp-

totically converges to x∗. Therefore, given Theorem 1 and Theorem 2, DS given by (5.6) is

stable at the desired point xd , i.e., lim
t→∞∥xd −x∥ = 0. Note that the stability of DS (5.6) at xd is

not necessarily asymptotic, see Section 5.3.2.

Feedback for Intermediate Variable

We obtain z by providing the DS (5.5) with the state feedback from the robot (see Remark 1).

First, we compute the actual relative distance from the current position of the robot. To better

distinguish the actual relative distance from the DS variable z, let’s use α instead of z ′. Let α

be a measure of the current relative distance:

α= (x (2) −x)T (x (2) −x (1))

∥x (2) −x (1)∥2
(5.7)

then we can estimate z by one-step integration of the intermediate DS (5.5), z = g (α, zd)δ+α,

for one time step δ. In this way, we use the intermediate DS in closed-loop control.

67

Chapter 5. Adaptive Fingers Coordination for Robust Grasp and In-Hand Manipulation

Overall DS for One Fingertip

The overall control loop of one fingertip finds the desired velocity, ẋd , using the following DSs

combined: {
ż = g (α, zd)

ẋd = f (x , z).
(5.8)

Different combination of these two DSs leads to different linear and nonlinear convergence

behavior. Figure 5.2 illustrates 2D examples of the vector field for ẋd by using (5.8) where

the intermediate dynamic, g (α, zd), has a lower, an equal, and a higher convergence speed,

compared to the robot taskspace dynamic, f (x , z). If a fingertip is perturbed while traveling

from x (1) to xd , from Figure 5.2, the slower intermediate DS will bring the finger back to the

connecting trajectory of x (1) and x (2). We take advantage of this property, both in grasp and

manipulation planning: during grasping phase to ensure that the fingertips approach the

object in the correct direction and, during manipulation, to reduce the deviation from the

desired contact velocities.

5.3.3 DS Coupling and Coordination of Fingers

Coupling

To couple n f fingertips, each controlled by DS (5.8), we define the intermediate DS for the i -th

fingertip, i = 1, · · · ,n f : {
żi = g (αi , zc)

ẋ i = f (x i , zi)
(5.9)

zc acts as the coupling variable, and is:

zc (α1, ...,αn f , zd) = 1

n f +1
(zd +

n f∑
i=1

αi) (5.10)

zc couples the entire system and captures the status of all fingers conveyed through the

measurement of their actual relative distances {αi }
n f

i=1.

Theorem 3 The coupled system (5.9) for n f fingers converges to a stable state at xd
i for i =

1, · · · ,n f , i.e., for each i -th fingertip as t →∞, ∥zd − zi∥→ 0, and consequently, ∥xd
i −x i∥→ 0.

Proof For each i -th finger, proving that limt→∞ ∥zc − zi∥ = 0 is similar to stability proof .

Here, we want to show that if limt→∞ ∥zc − zi∥ = 0 then ∥zd − zi∥ → 0, as well. From zc =

68

5.3 Finger Synchronization Based on Dynamical Systems

Figure 5.2: Examples of the vector field of the desired velocity, ẋd ,(right column) generated
by DS (5.8), and examples of a perturbed tracking (left column). For each row of examples
respectively, the cases illustrate the intermediate dynamic, g (α, zd), that has a lower (top row),
an equal (middle row), and a higher (bottom row) convergence speed, compared to the robot
taskspace dynamic, f (x , z).

1
n f +1 (zd +∑n f

i=1αi) we can rewrite the error term zc − zi in the following form:

zc − zi = (zd − zi)−
∑n f

1 (zd − zi)

n f +1
(5.11)

which means :

n f∑
1

(zc − zi) = 1

n f +1

n f∑
1

(zd − zi) (5.12)

by having the square of Eq. 5.11 and then the sum over the entire systems we will have:

n f∑
1

(zc − zi)2 =
n f∑
1

(zd − zi)2 − n f +2

(n f +1)2

(n f∑
1

(zd − zi)
)2

(5.13)

next we use the square Eq. 5.12 in the right hand side of Eq. 5.12 such that we acquire the

69

Chapter 5. Adaptive Fingers Coordination for Robust Grasp and In-Hand Manipulation

Figure 5.3: A coupled system of three robot end-effectors controlled by DS (5.9). The left figure
demonstrates a tracking example, where all fingers start at the same initial position and are
needed to reach their respective desired position xd

i , and where the top right figure is the
progress of the corresponding coupling variables for this example. The bottom right figure
shows the sum of square errors (SSE) in tracking the coupling relative variable zc and the
desired relative variable zd in 1k cases of random initial positions and zd . The solid lines are
the median, and the shaded area displays 25-75 percentiles over 1k cases.

following equality:

n f∑
1

(zd − zi)2 =
n f∑
1

(zc − zi)2 + (n f +2)
(n f∑

1
(zc − zi)

)2
(5.14)

which can also be observed in Figure 5.3. From Eq. 5.14, we conclude that when limt→∞ ∥zc −
zi∥ = 0 for all i = 1 to n f then limt→∞

∑n f

1 (zd − zi)2 = 0, and therefore, ∥zd − zi∥→ 0 as t →∞.

Figure 5.3 illustrates an example of three coupled DSs (5.9), where the robot end-effectors are

initiated from the same position, x1(t = 0) = x2(t = 0) = x3(t = 0), and synchronously converge

to their respective desired positions. From Figure 5.3 we also observe that in 1k random cases

of initial positions and zd , eventually ∥αi −α j∥i ̸= j → 0, ∥αi − zc∥→ 0, and ∥zc − zd∥→ 0.

Defining x (1) and x (2)

The position of states x (1) and x (2) shapes the desired vector field and determines the behavior

of the system in face of perturbation (see Figure 5.2). Defining where to place these two

70

5.3 Finger Synchronization Based on Dynamical Systems

Figure 5.4: An example of planning for manipulation where an object is first grasped in
positions x (1)

1 , x (1)
2 , and x (1)

3 . Then the fingers are tasked to rotate the object within the hand

frame by simultaneously moving to x (2)
1 , x (2)

2 , and x (3)
3 . Figures on the left show the ideal case,

and figures on the right depict the same examples where the fingers react to perturbation at
different times.

points is the core to our planning approach for grasp (see Section 5.5.1) and manipulation (see

Section 5.5.2). x (1) and x (2) set the positions, respectively, where a task begins and terminates.

For instance, consider an object manipulated by three fingers. The task is to rotate the

object on a plane, see Figure 5.4. In such a case, fingers are required to move synchronously

throughout the entire trajectory. For all fingers, {x (1)
i }

n f

i=1 is the initial fingertip configuration,

and {x (2)
i }

n f

i=1 is the final one, after a full rotation.

Robustness of DS

A key concern in our approach, which we assess in several parts, is robustness to uncertainties

and perturbations. Our coupling variable (Eq. 5.10) is formulated in such a way that, if a

finger is perturbed, the other fingers will wait instead of retracting, see Figure 5.5. This feature

of coupling is critical for grasp and manipulation, as a perturbation on one finger should

not cause other fingers to break contact and leave the object’s surface. We also show that

reaction to perturbation is not arbitrary and that a fingertip will restore the intended trajectory

(Figure 5.3), which is critical in grasp and manipulation.

71

Chapter 5. Adaptive Fingers Coordination for Robust Grasp and In-Hand Manipulation

Figure 5.5: Response of the coupled multi-fingered system to a disturbance in grasp planning.
Whereas the first fingertip (thumb) is blocked for a couple of seconds, the other fingers wait
(the shaded area) for the thumb to rejoin them.

5.4 Joint-Space Adaptive Controller

5.4.1 Low-Level Control

We estimate online the function ui (·) in Eq. 5.2. The objective of control law ui (·) is to compute

a set of joint torques {τi }
n f

i=1 that realizes the desired fingertip velocities {ẋd
i }

n f

i=1 given by

DSs (5.9). As the control laws for all fingers are derived in a similar fashion, for better readability,

we drop the finger-dependent indices i for each i -th finger in this section.

We perform control and adaptation in the joint space, as each finger joint differs in its me-

chanical imperfections and physical properties hence requires different adaptation laws. We

propose a group of adaptive laws for learning and controlling the system’s dynamics under

uncertainties. We first introduce a nominal dynamics to be the reference model. Then, the

controller is tasked to ensure that the actual dynamics of joints perfectly follows this reference

model.

5.4.2 Nominal Joint-Space Dynamics

Let’s express the controllable states of the system, ζ= [q T , q̇ T]T ∈R2n j , consisting of the joint

position, q ∈Rn j , and joint velocity, q̇ ∈Rn j for each i -th finger with n j number of joints. ζ is

needed to follow a reference vector ζr that evolves based on a nominal dynamics of the form:

ζ̇r = Arζr + Br r (ẋd), (5.15)

72

5.4 Joint-Space Adaptive Controller

in which Ar ∈ R2n j×2n j ≻ 0, and Br ∈ R2n j×n j , r ank(Br) = n j , are designed to shape the ref-

erence model. They are set such that Eq. 5.15 is asymptotically stable at a desired state ζd .

Matrix Ar controls how fast ζr converges to ζd
i while Br regulates ζr to track ζd . Moreover,

r (ẋd) ∈Rn j is a bounded regulation signal.

Remark 2 r (ẋd) links the desired fingertip velocity ẋd (Eq. 5.1 and Eq. 5.9) to the joint-space

desired state ζd . Appendix B.1.1 provides further details on how to compute r (ẋd) from ẋd .

For brevity, henceforth we drop the dependency of r . The nominal dynamics takes the desired

velocity from DS (Eq. 5.9) as input; however, note that the concept of nominal dynamics and

actual dynamics differ from DSs explained in task planning, Section 5.3. Here, we shape the

dynamic behavior of each joint, regardless of the desired task (target) at hand. As a result, the

controller that we develop in this section can be used with other planning approaches as well.

5.4.3 Control Rule and Adaptive Laws

The governing dynamics of each finger can be represented by a DS (Culbertson and Schwager

(2018)) of the form:

ζ̇= Aζ + Bν. (5.16)

The control effort ν corresponds to the joint torques of the i -th finger (τi in Eq. 5.2). Let’s

assume that A ∈R2n j×2n j , and B ∈R2n j×n j are unknown and can vary with time as the evolution

of the fingers’ states is subjected to uncertainties.

The controller’s objective is to ensure that ζ tracks the reference dynamics model (Eq. 5.15)

in presence of nonlinearities and uncertainties. To achieve this, we propose an adaptive

mechanism to modulate ν:

ν = Ψζζ +Ψrr . (5.17)

The adaptive control gains Ψζ ∈ Rn j×2n j , and Ψr ∈ Rn j×n j are estimated/trained online to

compensate for changes in the dynamics of the fingers and the tracking error e = ζ−ζd
i , using

the following update rules: { ˙̄Ψζ = −ΛζBT
r P e ζT −SΥζ Ψ̄ζ

˙̄Ψr = −Λr BT
r P e r T (t)−SΥr Ψ̄r

(5.18)

73

Chapter 5. Adaptive Fingers Coordination for Robust Grasp and In-Hand Manipulation

wherein:

S j j = max
(
0,ϵ j −e−

e2
j

2σ2
)

Υζ j j =κ∗
j

(
1− 1

(Ψ̄ζΨ̄
T
ζ

)
j j
+ ι

)
Υr j j =κ∗

j

(
1− 1

(Ψ̄rΨ̄
T
r) j j + ι

)
where Λζ ∈Rn j×n j , andΛr ∈Rn j×n j are positive definite matrices that tune convergence rate

of the adaptive gains, whereas P ∈ R2n j×2n j ≻ 0 forms a quadratic Lyapunov function, see

Appendix 2.1. κ∗
j and ϵ j are the desired stiffness and the allowed error-tolerance for j -th joint

of each finger. κ∗
j and ϵ j are fixed values defined by the user (we set κ∗ = [0.15, 0.12, 0.1, 0.05]

for each finger, and ϵ j = 0.02 for all joints in our experiments), and they avoid saturation in

control signal ν, as well as in the adaptive gains Ψζ, and Ψr.

Theorem 4 Using the control law given by Eq. 5.17 and the adaptive laws (Eq. 5.18), the system

(5.16) asymptotically converges to the nominal dynamics (5.15), and limt→∞ ∥ζd −ζ∥→ 0 if

there exist P ≻ 0 and Q ≻ 0 such that PAr + AT
r P =−Q

Proof See Appendix B.1.2

The diagonal matrix S acts as an activation function for stiffness regulation inside the error

bound ϵ; for instance, setting ϵ j = 0 deactivates this feature of the controller for the j -th joint

of the finger. Appendix 2.1 provides insight into how to design P, Ar , and Br .

Note that in the first time-step, we initialize adaptive gains, Ψζ and Ψr, with a guessed value.

Then, at the end of each iteration, we update their values via adaptive law in Eq. 5.18. The

adaptation rate has to be faster than the actual dynamics. Once a task is completed, we can

store the trained Ψζ, and Ψr, and use them as the initial guess for new trials. Algorithm 3

summarizes our control framework that will be later used in grasp and manipulation tasks.

5.5 Grasp and Manipulation

Thus far, we have formulated a robust, stable, and finger-synchronized controller for a robotic

hand. Here, we discuss in detail how this control framework is used for grasping and ma-

nipulating objects; see Figure 5.6 for an illustration. First, we optimize contact wrenches to

stabilize the object in the current configuration. Then using the the object-level impedance,

we find a set of attractors x (1)
i and x (2)

i for each i -th finger, see Figure 5.4. These attractors are

coordinated in the grasping process in order to insert force to the object in a synchronized

fashion.

74

5.5 Grasp and Manipulation

Algorithm 3 Coordinated adaptive torque control for each i -th finger.

1: Input:
2: x i , q̇ i , q i , ηi , x (2)

i
3: Output:
4: τi

5: Parameters:
6: β1, β2 (Eq. 5.5), andΛζ, Λr (Eq. 5.18)
7: Defining DS Models:
8: Ax ≻ 0 for DS (Eq. 5.9)
9: Ar ≻ 0, Br (r ank(Br) = n j)

10: P ≻ 0 that PAr + AT
r P =−Q for DS (Eq. 5.15)

11: Initialize:
12: Ψ̄ζ, Ψ̄r

13: for t ← 0 → T do
14: x i , q̇ i , q i ← robot’s feedback
15: αi ← Eq. 5.7 ← x i

16: zc ← Eq. 5.10 ← {αi }
n f

i=1, zd

17: żi ← Eq. 5.5 ← zc ,αi

18: zi ← max
(
0, min(1, żiδ+αi)

)
19: ẋd

i ← Eq. 5.6

20: r , ζd
i ← Eq. B.1

21: ζ← [q̇ T
i , q T

i]T

22: compute τi from Eq. 5.17
23: update Ψ̄ζ, Ψ̄r by Eq. 5.18
24: end for

5.5.1 Contact Wrench Optimization

Grasp Configuration

When grasping an object, we can heuristically estimate a stable grasp configuration, i.e., the

combination of finger placements on the object surface. This estimation might be sub-optimal

compared to solutions in interesting studies such as (Li et al. (2016a); Dragiev et al. (2011);

Hang et al. (2020)). However, an optimal grasp configuration is never stable if contact forces

are erroneously applied (Roa and Suárez (2015)). In our experiments, grasp configuration is

heuristically set (the thumb opposes the index and middle finger). Then, we focus on force

adaptation at contact points, whether or not a grasp configuration is optimal.

Optimization

Once the finger-object contacts are established, each finger is needed to apply a contact force,

λi ∈R3, to stabilize the object. To do so, we adopt the force closure linear programming-based

optimization in (Prattichizzo and Trinkle (2016)), determining the desired contact wrenches

λ= [λT
1 , ...,λT

n f
]T :

75

Chapter 5. Adaptive Fingers Coordination for Robust Grasp and In-Hand Manipulation

maximize η

s.t. Gλ = 0

Fλ−1nη≥ 0 (5.19)

η≥ 0

eλ≤ n f

η ∈ R+ is the optimization variable. e = [e1, ...,en f], and e i = [1,0,0]. F = di ag (F1, ...,Fn f) is

the friction cone matrix, and G represents the grasp matrix where Fi ∈R3×3 and Gi ∈R3×3 are,

respectively, the block of F and G corresponding to the i -th contact point. The grasp matrix

maps contact wrenches to the object twist, and it is computed given contact frames, contact

properties, and object’s center of mass, follow (Prattichizzo and Trinkle (2016)).

For each contact point, the friction law puts constraints on the contact wrench λi , defined by

the type of contact (soft/hard finger) and by the friction coefficient µ. Here we consider the

hard finger (HF) contact type (no twist at contact point) and the friction to be µ=µn −tan(enn)

whereµn is the nominal friction and enn is the absolute error in contact normal (n̂i) estimation

discussed in Section 5.5.1 and provided in Table B.1.

Contact-Frame Estimation

In optimization (5.19), each contact wrench is expressed in a frame {Ci } = {n̂i , t̂ i , ôi }, which

encapsulates the object-shape information at i -th contact point. The unit vector n̂i ∈R3 is the

contact normal, directed toward the object. The other two vectors are orthogonal and lie in the

tangent plane of the contact. Moreover, the computation of grasp matrix G and friction cone

matrix F are based on the contact frames and their positions. We use tactile observation to

estimate vector n̂i of each contact. In essence, we use a mapping from electrodes impedance

ρi ∈R19 of tactile sensor to vector n̂i at the contact point: n̂i = f AN N (ρi), see Appendix B.2 for

details on how the mapping is learned.

5.5.2 Attractors Determination

Grasp

With contact wrenches from optimization (5.19), we set the attractors of the DS (5.9) as

x (2)
i = K −1

x Giλi +x (1)
i (5.20)

x (1)
i is the contact position on the object surface. K x is the stiffness coefficient chosen accord-

ing to the desired finger-object compliance. Therefore, given the analysis in Section 5.3.3,

applying the wrench force will be in a synchronized fashion, which will guarantee a robust

grasp within the fingers.

76

5.5 Grasp and Manipulation

Figure 5.6: Block diagram of our method for grasp and manipulation using a coordinated
adaptive torque-control. Contact frames are estimated with 60Hz frequency by using tactile
sensors and the learned neural-network model. These frames are then sent to the grasp
optimization algorithm to construct an appropriate object-level impedance (orange elements).
Finally, the extracted attractors are fed to the devised controller that runs with 200Hz frequency.
Components with a green color signify the focus of this study and our contribution to the state
of the art.

In-Hand Manipulation

Once the object is securely grasped, in-hand manipulation is generated by re-positioning the

set of attractors {x (2)
i }

i=n f

i=1 . Attractor re-positioning for DS (5.9) is done using the grasp matrix

for computing the desired object velocity:

x (2)
i = GT

i ζ̇
d
oδ+K −1

x Giλi +x (1)
i (5.21)

here x (1)
i is the contact point, similar to Eq. 5.20. ζo ∈Rdx represents the states of the object;

for instance in a planar motion, ζo = [xo , yo ,θz]. Note that the process of defining attractors in

manipulation is compatible with grasp, hence the system will remain coupled throughout the

entire procedure of first grasping and then manipulating the object. In our control approach,

the fingers are dynamically coupled and the manipulation will be executed by all fingers

synchronously contributing to the task (unless a finger has been exempted or has a different

role, see Section 5.6.4). Therefore, similar to grasping, the coupling DS (Eq. 5.5) has to be

computed and updated online.

77

Chapter 5. Adaptive Fingers Coordination for Robust Grasp and In-Hand Manipulation

5.6 Experiments and Evaluations

We evaluate our approach qualitatively and quantitatively in four experiments with a real

robotic hand, Allegro V4, mounted on a robotic arm, KUKA LBR iiwa 14. We perform the

following assessments:

(i) We evaluate the quality of control, adaptation, and coordination of fingers, in Sec-

tion 5.6.1.

(ii) In Section 5.6.2, we evaluate the robustness of the grasped object with different shapes

and mass properties Figure 5.9. This experiment is based on the approach summarized

in Figure 5.6 and we study grasp adapting in an uncertain environment.

(iii) We perform in-hand manipulation (translation and rotation) of four objects of different

shapes, and mass properties, in Section 5.6.3.

(iv) In Section 5.6.4, we augment our control approach with learning from demonstration to

execute a complex manipulation task: in-hand object rolling. We devise this experiment

to give an instance of a dynamic disturbance during in-hand manipulation.

5.6.1 Evaluation of Coordinated Finger-Control

We test the strength of our coordinated fingers control approach in two scenarios:

(i) We fix the base of Allegro hand in a specific pose. The fingertips need to first move from

rest positions to ready positions and, then, to track a specific sequence of attractors, see

Figure 5.7.

(ii) We compare our control algorithm against an impedance-based controller with a state-

varying impedance called “Passive-DS" (Kronander and Billard (2015)). The task here

is similar to the first scenario, except that it is repeated with the base of the hand being

fixed in three different poses.

Tracking Performance and Dynamic Learning

In this experiment, all adaptive gains Ψζ and Ψr for all fingers are initiated with zero value

matrices and κ∗ = [0.15, 0.12, 0.1, 0.05] for each finger and ϵ j = 0.02 for all joints. Figure 5.7

shows the performance of our controller in the first experiment where the tracking error

decreases simultaneously for all fingers. We observe, in displacement from rest positions to

ready positions, higher oscillations in error compared to the transitions in other task segments

(for instance from {x (1)
i }

i=n f

i=1 to {x (2)
i }

i=n f

i=1). In the first part, adaptive gains are initialized as

zero matrices and the oscillation is due to controller exploration to find the proper range

of gains. Whereas, in the other parts, gains are only fine-tuned in that specific range, see

78

5.6 Experiments and Evaluations

10

30

50

70

10

30

50

70

0 5 10 15 20 25 30

10

30

50

70

0

0.05

0.1

0.15

0

0.05

0.1

0.15

0 5 10 15 20 25 30
0

0.05

0.1

0.15

Figure 5.7: Evaluation of the coordinated adaptive torque control on a robotic hand in three
different wrist poses (different gravity and dynamics effect). In the first phase of the task, the
fingers move from "rest" positions to "ready" positions, wherein first the unknown DS (Eq. 5.16)
is learned with adaptive gains converging. Then, the task is to track a specific sequence of
different target positions. From left to right: (left): Mean tracking error (mm) over 10 replicates,
(middle): robotic hand in three different poses, and (right): index finger joints’ stiffness (κ in
Eq. 5.18) which are required to converge to the desired values, κ∗ = [0.15, 0.12, 0.1, 0.05].

the right figure in Figure 5.7. Furthermore, using coupled dynamical system when moving

from {x (m)
i }

i=n f

i=1 to {x (m+1)
i }

i=n f

i=1 results in synchronous convergence with lower oscillation in

tracking. While converging to their attractors, all fingers will simultaneously regulate the joints’

stiffness to desired values {κ j }
j=n j

j=1 . The regulation of joint impedance not only enables us

to better control finger-object interactions later but also avoids joint saturation due to large

initial errors, thus resulting in higher adaptation efficiency.

Comparison with Impedance-Based Controllers

The purpose of this experiment is to compare the performance of our low-level adaptive

torque controller with impedance-based controllers as the baseline. Considering related

79

Chapter 5. Adaptive Fingers Coordination for Robust Grasp and In-Hand Manipulation

Figure 5.8: Tracking RMSE of each Cartesian coordinate for our adaptive controller and a
passive-DS with large gains. This experiment is similar to the one in Figure 5.7 and it is
replicated 20 times for each specific pose.

studies with real robot evaluation, we find that impedance-based controllers are primarily

employed to control the fingertip positions of the robotic hand (Sundaralingam and Hermans

(2019); Li et al. (2014, 2016a)). We compare our method with the passive-DS control used

in (Li et al. (2016a)) for grasping. Passive-DS control (Kronander and Billard (2015)) is one

variation of impedance-based controllers, and it has an improved structure compared to the

PD control employed in (Sundaralingam and Hermans (2019)). Passive-DS is compatible with

the dynamical systems. Thus by using this controller, we constrain the experiment such that

the only feature to be tested is the performance of the low-level controller.

We fix the base of the hand in three different poses. Then, we perform separately a tracking

task by using two controllers: (a) our adaptive control algorithm, and (b) a PD controller with

a state varying impedance. In the first, second, and third pose the gravity force is parallel to X ,

Y , and Z coordinates of the hand frame, respectively. The consistency of control performance,

given different hand poses, is the key requirement to obtaining a robust and secure grasp.

Here, we showcase the strength of our controller for situations where the pose of the hand is

not fixed.

After implementing the task using the same control parameters for all poses, we recorded aver-

age steady-state errors over 20 replicates for each pose. To make a fair comparison, we pushed

the passive-DS control gains to maximum achievable performance, without destabilizing the

robot’s joints. Figure 5.8 illustrates the results of the second scenario. In all three hand base

poses, our controller consistently exhibits a higher accuracy compared to passive-DS (even

with large PD gains). This is because we establish our adaptation at joint level to adapt for

individual joint uncertainties and specifications, which is a key factor in object manipulation

by a robotic hand. When an object is grasped, the uncertainty level and the gravity effect are

considerably higher; as expected, our low-level adaptive controller significantly outperforms

the impedance-based controllers in such cases.

80

5.6 Experiments and Evaluations

Figure 5.9: Objects used in both grasp and manipulation experiments. From left to right: (1)
Baseball (heavy object), (2) Tumbler half full of rice (varying mass distribution), (3) Annulus
ring with a mass attached to inner part (uneven mass distribution), and (4) cuboid (normal
object, easy to grasp).

Figure 5.10: Adaptation in grasp experiment when rotating a tumbler half-filled with rice. In
this particular case, the mass distribution changes, thus imposing disturbances on fingers
stability. Object relative displacement to the hand is recorded via OptiTrack motion capture
system.

5.6.2 Grasp Adaptation in an Uncertain Environment

In this part, our focus is on evaluating the grasp robustness for different objects of different

properties, see Figure 5.9. In other words, we assess the performance of our controller in

adapting the grasp where the robotic hand is needed to displace the object, e.g., hand-over

task, and pick and place task. To do so, we devise the following scenarios: Using the same

control framework, Figure 5.6, the Allegro hand first grasps the object in a predefined grasp

configuration. While the object is held within the hand, the wrist (KUKA’s last joint) rotates

90o clockwise, thereby manipulating the position and the orientation of the object. This task is

executed for ten replicates per object. Figure 5.10 depicts an example of it where the tumbler is

half-filled with rice (object with varying mass distribution); see also supplementary materials

for the videos of the experiment.

81

Chapter 5. Adaptive Fingers Coordination for Robust Grasp and In-Hand Manipulation

Figure 5.11: Results of the adaptive grasp robustness experiment and rotation experiment
replicated ten times (see Figure 5.10 as one example). Box-plots indicate objects relative
displacement with respect to the hand’s frame during wrist rotation.

Table 5.1: The number of trials to have 10 successful execution for the adaptive grasp robust-
ness experiment.

Object Cuboid Tumbler Baseball Annulus Ring
Trials 10 14 12 12

Results on Grasp Adaptation during Wrist Rotation

In this experiment, the controller has to adapt joint torques to face not only the changes in

the gravity direction but also the variation of object inertia. During this task, using OptiTrack

motion capture system, we recorded the motion of object’s center of mass relative to the hand

frame. Figure 5.11 shows the boxplot of ten replicates of the experiment for each object. Given

this figure, and Table 5.1, our grasp algorithm is able to hold the object stable with very low

relative displacement, and it provides proper robustness despite changes in the inertia of the

objects. Slippage, partial occultation of the object from the OptiTrack system in the hand

frame (jerk in position feedback), and rapid changes in inertia (faster than the adaptation rate

in tumbler case) were the main causes of failed grasps in Table 5.1. In the previous section, we

show that our adaptive controller is capable of facing uncertainties at the joint level. Here, as

long as the finger joints sense the perturbation from object uncertainties (i.e., fingertips are in

contact with objects), our controller is capable of adapting to these uncertainties and remains

robust enough to hold the object stable.

Force and Contact Normal-Vector Adaptation

Figure 5.12 depicts an example of contact-force adaptation. For each finger in contact, the

vector normal to object surface n̂i is re-estimated through the trained NN model (Eq. B.6).

These estimations are used to improve our prior knowledge of the object’s shape, especially at

contact points under the fingertips and tactile sensors. n̂i of fingers in contact is then fed to

the grasp optimization process, Figure 5.6, where via shaping the object-level impedance, the

82

5.6 Experiments and Evaluations

Figure 5.12: An example of contact force adaptation. From the prior knowledge the object
is assumed to be of a cylinder shape. Hence fingers arrive at contact each with a different
orientation. Given the tactile sensor and the trained NN model (Eq. B.6), the normal vector n̂i

at contact point is estimated for each i -th finger. Approximated contact frames are then fed to
grasp optimization process (5.19) in order to extract contact wrenches.

force direction for each fingertip is extracted. In Figure 5.12, we observe that the robotic finger

updates the force direction (pushing more toward the center of the ring and increasing the

contact area), thereby securing grasp stability.

5.6.3 In-Hand Manipulation, Accuracy and Robustness

The experiments in this section are devised to manipulate the objects listed in Figure 5.9. As-

suming that the objects are grasped perfectly, in order to realized a desired pose, the controller

is needed to apply force to the object through the fingers by using Eq. 5.21 and Eq. 5.9; see Fig-

ure 5.13 as an example and see supplementary videos for the rest of objects. For comparison

purposes, the desired pose manipulations are selected such that within the workspace of the

hand, they are feasible for all objects. We also use in-hand manipulation in a gearbox assembly

task (presented in supplementary videos) as an application of in-hand manipulation.

Results

Table 5.2 summarizes the results of ten replicates of a specific manipulation, which reveals

a high tracking accuracy of our control approach. Failed attempts in Table 5.2 similar to

Table 5.1 were mainly due to slippage, or partial occultation of the object from OptiTrack

system. Figure 5.14 presents the tracking error profiles of 30o rotation for all objects of the

experiment. Apart from accurate tracking, one observation from Figure 5.14 is that, unlike

grasping, objects with more regular shape or mass are not necessarily easier to manipulate. For

instance, the mean tracking error for the cuboid is higher than the other objects in Figure 5.14,

but it has the highest stable grasp (Table 5.1 and Figure 5.11). This is otherwise unexpected if

we do not consider the importance of robotic hand’s dynamics.

83

Chapter 5. Adaptive Fingers Coordination for Robust Grasp and In-Hand Manipulation

Table 5.2: Summary of results on three in-hand manipulations tasks (20mm of translation, 30o ,
and 45o of rotation) on four objects in Figure 5.9. "Attempts" numbers indicate the number
of trials to have 10 successful execution, and "Error" values shows the steady-state tracking
error of successful trials.

20mm
Objects Cuboid Tumbler Baseball Ring
Error (%) −1±10 .2±10 .4±13 .1±11
Attempts 10 11 11 10

30o

Objects Cuboid Tumbler Baseball Ring
Error (%) 8.7±3.8 −.5±5.5 −.3±11 −1.3±4.7
Attempts 11 12 11 10

45o

Objects Cuboid Tumbler Baseball Ring
Error (%) 5.6±4.0 −.5±5.4 −1.0±5.0 .7±4.9
Attempts 12 13 14 11

Figure 5.13: A baseball, as an example of a heavy object, is rotated 30o . The task is performed
using DS (Eq. 5.9) and the control approach in Figure 5.6. The mean rotation error for 10
replicates of this experiment is −2×10−3r ad , see Table 5.2.

Comparing with the State of the Art

Using Allegro hand in a similar experiment, Sundaralingam and Hermans (2019) performed

multiple in-hand manipulations on 10 objects from the YCB dataset. To move an object, they

regulated the impedance of the grasp in the direction of the objective pose via kinematic

trajectory optimization. Comparing Table 5.2 with the reported manipulation results in (Sun-

daralingam and Hermans (2019)), we observe that the highest margin of position error (13% for

the baseball) in Table 5.2 is smaller than the lowest reported median error for an object (≈ 20%

for the Lego object) in (Sundaralingam and Hermans (2019)). Similarly for the orientation,

the reported median error (9.86%) in (Sundaralingam and Hermans (2019)) is higher than

the error margin in Table 5.2. This difference can be explained by the fact that our low-level

control adapts to dynamic uncertainties that results in tracking errors, contrary to the PD

controller used in (Sundaralingam and Hermans (2019)), see Section 5.6.1.

84

5.6 Experiments and Evaluations

5 10 15 20
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 5.14: Mean tracking error for one of the manipulation experiments. In this task, we
rotate different objects listed in Figure 5.9 for 30o in hand.

5.6.4 Learning to Roll in Hand

In this experiment, we use our control approach to accomplish a complex manipulation task:

in-hand object rolling, otherwise known as finger-gaiting. In this task, the hand rotates the

object through a combination of contact/non-contact movements, see Figure 5.15 and 5.16.

Human demonstrations (see Section 5.6.4) are used to extract the role of each finger and

to identify the segments of the task through hidden Markov models (HMM) (Niekum et al.

(2012)). We show that task planning in this fashion in conjunction with our control framework

enables us to encode a robust solution for in-hand rolling.

Task Segmentation

We employed the sticky hierarchical Dirichlet process (HDP)-HMM in (Fox et al. (2008)) to

find the optimum number of states and their sequence. HDP-HMM is applied on the recorded

Do = {oψ(i)
t }i=1,ne

t=0..Ti
of the object’s rotations (finger gaiting), where we stored the fingers’ relative

angular velocities ω and pressures p as observations with oψ(i)
t = [ωT

1 , p1, · · · ,ωT
4 , p4]T . The

HMM model extracted 3 hidden states each corresponding to a task segment; see Section 5.6.4

for further detail.

Data Collection

We record the object’s pose, the finger positions, and contact forces from human demonstra-

tions. The position information from expert demonstrations is recorded at 250 Hz by using the

OptiTrack Motion Capture system, see Figure 5.17. The contact wrenches are recorded with a

set of TPS tactile sensors, thus providing a measure of exerted pressure at 50 Hz, at the finger-

tips. Next, each demonstration is expressed in sets of data represented in the object frame at

85

Chapter 5. Adaptive Fingers Coordination for Robust Grasp and In-Hand Manipulation

Figure 5.15: From left to right, a human performing finger gaiting in-hand manipulation: the
object is rotated clockwise and motion direction are depicted by arrows. The fingers have
different roles and contributions to the task. The kinesthetic demonstrations, including object
and finger motions, are later used in high-level planning and learning task segmentation
through HMM.

Figure 5.16: From left to right, the robotic hand performs in-hand rolling (finger gaiting)
manipulation: task planning and finger roles distributions are learned from human demon-
strations. Object-finger interactions in contact and non-contact displacement are torque
controlled using our adaptive controller to stably manipulate the object within the hand
workspace.

center of mass : Do = {oψ(i)
t }i=1,ne

t=0..Ti
where oψ(i)

t = [o x1(t)T , p1(t), · · · , o xn f (t)T , pn f (t)]T , and

ne is the number of recorded demonstrations. Recorded data Do explains how the fingertips

move relative to the object. This data is then used to identify the task segments, grasp positions,

and the finger roles.

Model Selection

Two probabilistic approaches are prevalent for decomposing the human motions into mean-

ingful actions or states: (i) Gaussian Mixture Models (GMM) (Lee et al. (2015)), where segments

are extracted by fitting a GMM to the set of demonstrations, considering each GMM compo-

nent as one segment, and (ii) Hidden Markov models (HMM) (Niekum et al. (2012)) that use a

Markov process to explain the probabilities of sequences of hidden events (states) from possi-

ble observations (emissions). The latter is more suitable for the problem at hand, because the

segmentation is not only based on a spatial sense but also on the transition dynamics across

segments, and because HMM addresses transition dynamics handled through Markovian

states. Given the dataset Do , we independently segment each trajectory while discovering the

sequence of observations over Ti discrete time steps. In our case, the number of underlying

hidden states ,S = {st }t=0..Ti , is unknown and the objective is to find the number of hidden

states and then the sequence of them. Hence, we employed the sticky hierarchical Dirichlet

process (HDP)-HMM in (Fox et al. (2008)). HDP-HMM uses Bayesian non-parametric methods

in HMM to find the optimum number of states and their state transition matrix.

86

5.6 Experiments and Evaluations

Figure 5.17: Setup for recording data to learn from human demonstration. Markers are at-
tached to the object and fingertips to track positions in the motion-capture system (OptiTrack),
and TPS sensors for recording exerted pressure on fingertips.

Model Training

We applied HDP-HMM on the recorded Do of object’s rotations (finger gaiting), where we

stored fingers’ relative angular velocities ω and pressures p as observations with oψ(i)
t =

[ωT
1 , p1, · · · ,ωT

4 , p4]T . Subsequently, an HMM model is derived over 100 computation trials

of 2000 iteration step. The HMM model extracted 3 hidden states (see Figure 5.18), each

corresponding to a task segment. From Figure 5.18, we observe that some fingers (index and

thumb) contribute to task of object rotation, mostly in one segment, "contributing" state, and

that, in the other segments, these fingers update their position, "updating" state.

Planning

According to task segmentation with HMM, this finger-gaiting manipulation consists of several

fingers attaching to and detaching from the object’s surface. In the phases of manipulation,

where a finger does not interact with the object, it has to be controlled to preserve or increase

its manipulability. Fingers that reach workspace limits will update their position in order to

increase manipulability; and the other fingers will provide support to stabilize the object. In

each task segment and for each finger, we detect the finger role, based on relative displacement:

ℓi (st) =
{

1, if ¯̇x i (st) < ϵ
0, if ¯̇x i (st) ≥ ϵ

where ¯̇x i (st) =∑nst

k=1 ∥ẋk
i ∥2/nst is relative mean velocity of i -th finger in task segment st , and

ϵ > 0 is a small positive value. Thus, ℓi (st) = 1 indicates that i -th finger is contributing to

rotation by inserting force on the object and ℓi (st) = 0 denotes that for the given st finger i is

detached. In case there is no interaction with the object, meaning that ℓi (st) = 0, we compute

87

Chapter 5. Adaptive Fingers Coordination for Robust Grasp and In-Hand Manipulation

Figure 5.18: Task segments extracted from HDP-HMM using relative angular velocities and
pressure data. The green segment corresponds to a state where some fingers, here index and
thumb, “contribute" to object rotation. They remain in contact with the object, with increased
contact forces and no relative angular velocity. The next segment is an “updating" state for
a finger, here the thumb. The finger moves to get to the next position as its relative angular
velocity increases, whereas the other fingers remain in contact to support the object. Similarly,
the other segment is an “updating" state for other “contributor finger," index.

the finger’s desired attractor x (2)
i from Ψo :

x (2)
i |st=0 = 1

nst

nst∑
k=1

(
u(∥ẋk

i ∥2 +δ)−u(∥ẋk
i ∥2 −δ)

)
xk

i

here, u(.) is the unit step function and 0 < δ≪ 1 is a small positive value. The extracted

attractors for each task segment, and the desired object velocity are used for control and

planning identical to Section 5.5.2.

Evaluation

We realize a human like in-hand object rolling (see Figure 5.15). Figure 5.16 shows an imple-

mentation of this approach on a real robotic hand. The object is grasped in a configuration

suitable for both stability and for generating the desired motion (see Section 5.5.1). The

hand then begins rotating the object through a combination of several contact/non-contact

movements; see also videos in the supplementary materials that explain a full cycle of rolling

manipulation in different phases of finger motions. For this experiment, we could not use

88

5.6 Experiments and Evaluations

Figure 5.19: Testing the robustness of our control approach by applying various perturbations
to the fingers and the object during the finger-gaiting task: (left) perturbing thumb, (middle)
attached pendulum that weighs as 20% of the cuboid, generates dynamic perturbations during
manipulation, and (right) perturbing object and pinky finger.

tactile sensors due to hardware limits and tactile sensor shape restrictions. Hence, to extract

contact frames, we relied on prior knowledge of the object’s shape and the robot’s forward

kinematics.

Table 5.3 summarizes the results of 10 replicates of this experiment for a full cycle of rolling

object. Each cycle consists of 4 sequential repetition of the task shown in Figure 5.16. Our

results in Table 5.3 show 85% success rate in task execution and 60% success rate in the full-

cycle rotation (accomplishing 4 tasks in succession). Failures were in the last rolling executions

and were mainly due object blocking a finger (not allowing for finger workspace update) and

object slipping during rotation.

Table 5.3: Number of successful trials in 10 replicates of full object rolling experiment. Each
cycle consists of 4 repetition of the rolling task in succession; see Figure 5.16 as an example of
one rolling task.

Order I II III IV
Trials 10 10 8 6

Robustness

This complex manipulation shows that with appropriate high-level planning, our control

framework enables the encoding of a robust solution for task execution, even in face of

different types of disturbances; see Figure 5.19. Disturbances were tested in three scenarios:

(a) we add an additional unknown mass dangling from a wire, hence modifying significantly the

mass and mass distribution, (b) we move the object horizontally, to showcase the adaptation

of the fingers, and coordination and the immediate re-positioning of the fingers relative to the

object’s location, and (c) we pull one finger away and subject the object to an external force to

validate the adaptation of the forces at the fingertips that re-balance the object in the absence

89

Chapter 5. Adaptive Fingers Coordination for Robust Grasp and In-Hand Manipulation

of one finger. See also a supplementary video of the experiment that shows examples of rolling

in-hand manipulation and efficient adaptation of our controller to various perturbations.

5.7 Discussion and Summary

In-hand manipulation and dexterous grasp are among the challenging tasks for real-world

robot applications. It is not straightforward, if not impossible, to acquire a universal framework

for grasping different objects and for performing various manipulations. Due to the diverse

complexities, most real-world implementations of in-hand manipulation are engineered for

a specific task. The choices of tasks, objects, and the manipulation scheme are constrained

due to hardware limits. Nevertheless, we achieved several dexterous grasp and manipulation

focusing on post-grasp stability and manipulation accuracy. In this chapter, we centered our

attention on the robustness and adaptation, accordingly. Hence, all of our evaluations are on

a real-world robotic setup, where the uncertainties and modeling challenges are significantly

higher than the simulated environment.

In this chapter, we have introduced a new control framework for grasping and manipulating

objects. The approach of this study is based on synchronizing finger (task planning) and

adapting joint torque (low-level control). We first begin with robotic-hand control. During

any dexterous manipulation, we will not be able to hold an object securely if the robot hand

system itself is not entirely stable. Therefore, learning and compensating for the dynamics

of the robotic hand is of primary importance. However, precise knowledge of the physical

properties of the object and the robot is never available. Therefore, we developed a compliant

torque controller rather than using stiff joint positions. Our proposed coordinated adaptive

torque-controller was designed to learn the robot dynamics for precision and compliance. We

have compared our torque controller against a widely utilized low-level controller (PD) and

have shown that our approach is consistently more accurate while maintaining finger joints

compliant and coupled.

Regarding grasp and manipulation, our main intuition is to acquire a coordinated multi-

finger system and to develop a method for increasing robustness under uncertainties, such as

varying or uneven mass distribution. We assume that, for each object, the grasp configuration

is given and is not necessarily optimal or well-calibrated. We consequently improve this prior

knowledge through tactile sensing and an online re-estimation of the contact frames. This

enhanced knowledge, in addition to the robot’s kinematic feedback, facilitates modulating

object-level impedance for a more secure grasp. The effective frequency of the tactile sensor,

however, restricts the update rate of the object-level impedance. As a result, the controller can

tackle only the disturbances with a lower rate than this frequency.

More precisely, the proposed controller for grasp and manipulation uses contact-frame es-

timation (grasp matrix computation) and grasp optimization to construct an object-level

impedance. We then use the devised coordinated adaptive torque controller to realize the

desired impedance and perform grasp/manipulation tasks. Our main focus in this chapter

90

5.7 Discussion and Summary

was the robustness of grasp and manipulation. Hence, the pipeline has been extensively tested

in various real-world robotic experiments and performed with high accuracy and robustness,

under different uncertain conditions. Finally, we have shown that our framework, along with

learning from demonstration, can successfully perform complicated manipulations, such as

finger gaiting.

To further improve the application of our approach, there are several limitations that remains

a research problem to address. In most of the experiments, slippage, especially for heavier

objects, caused some trials to fail. Slippage detection and appropriate adaptation, accordingly,

could improve the success rate. Although the object pose estimation within the hand by

the OptiTrack system was accurate, it was never easy to obtain. Marker occlusion during

finger motions occurs frequently, thus rendering pose tracking rough/unsteady. Seeking more

reliable feedback, we would like to estimate the object’s pose by using tactile observations

within the hand frame.

91

6 Compliant Robotic Hand Controller
in Human-Centric Environment

This chapter comprises two applications of our compliant robotic hand controller in human-

centric environment. We work on dexterous capabilities for a robotic hand to expand its

prehension and apprehension applicabilities in a human-centric environment.

At the time of writing, the work presented in Section 6.1 is submitted as Khadivar, F., Mendez,

V., Correia, C., Batzianoulis, I., Billard, A., and Micera, S. “EMG-Driven Shared Human-Robot

Compliant Control for In-Hand Object Manipulation in Hand Prostheses,” Journal of Neural

Engineering, 2022. Vincent Mendez is the co-first author of this paper. Vincent is the main

contributor to Electromyography (EMG) decoding of forearm muscles to enable subjects to

move, proportionally and simultaneously, the fingers of a robotic hand. He also contributed to

inferring the desired object rotation using EMG electrodes that record shoulder elevation and

depression. The methodology of these contributions is presented in Appendix C.1. Section 6.1

presents the EMG-Robot interface, the robotic compliant controller (for both the robotic hand

and the robotic arm), and the statistical analysis developed by the author of the thesis.

The work presented in Section 6.2 is prepared to be submitted as Khadivar, F., Yao, K., Gao,

X., and Billard, A. “Online Active and Dynamic Object Shape Exploration with Multi-fingered

Robotic Hand,” IEEE Robotics and Automation Letters (RA-L), 2023. Kunpeng Yao is the co-first

author of this paper. Kunpeng is the main contributor to optimization-based planning algo-

rithm that online adapts the hand pose to the local surface geometry. The methodology and

results of his contributions are presented in Appendix C.2. Section 6.2 details the theoretical

advancement and simulated evaluation of the active exploration strategy accomplished by the

author of the thesis.

93

Chapter 6. Compliant Robotic Hand Controller in Human-Centric Environment

6.1 Shared-Control for In-Hand Manipulation with a Myoelectric

Prosthesis

Commercial prostheses can perform a reasonable number of grasps; however, they are often

inadequate for manipulating the object once in hand. The lack of dexterity drastically restricts

the utility of robotic prosthetic hands(RPHs). Shared-control approaches that give some

authority to an autonomous controller on-board the prosthesis is an alternative that may

improve the dexterity and versatility of RPHs for people with trans-radial amputation. Here, we

aim to investigate a novel shared control strategy for robust object manipulation that combines

autonomous control of forces exerted by the robotic hand with EMG motion decoding.

With a look towards the availability of better and more performing hand prostheses – and

while recognizing that individuated finger motion decoding from EMG will remain limited in

its accuracy – we design shared control mechanisms where a robotic controller is in charge of

low-level closed-loop control. This controller enables online adaptation of the positioning of

fingers and stabilizing the object in hand through forces applied by the fingers. To this end,

we build on advances made in this thesis for controlling a robotic hand to enable human-like

control of the fingers in either individual or coordinated manner. Such enhancements permit

the execution of robust grasps with multi-finger robotic hands.

We test novel shared control strategies to perform EMG-driven insertion tasks. We show that

this shared control approach allows subjects to perform a continuum of manipulation: from

grasping an object to manipulating it in air and during insertion when in contact with another

object. The subject remains in control of deciding when to grasp and release the object and

how to preshape the hand. Importantly, our shared control mechanism enables subjects to

perform in-hand object rotation when controlling a dexterous 16-DoFs robotic hand. This is

achieved thanks to the following:

(i) Single-finger proportional decoding to infer high-level motor intentions; in-hand object

rotation is decoded via elevation or depression of the shoulder recorded from EMG

signals. Vincent Mendez is the main contributor to this part which is presented in

Appendix C.1.

(ii) A virtual object-based compliant controller for low-level robot control. Given the task

objective and tactile feedback, the low-level control of the robotic hand employs an

autonomous and adaptive compliant controller that regulates online the interaction

forces at contact points.

(iii) An interface that uses feedback-based state machines to integrate high-level and low-

level robot control. The interface selects which task has to be executed, provided the

subject’s command and robotic feedback.

We evaluate our shared control approach in an experimental setup by conducting a 3-days

long longitudinal study with healthy individuals. Motor intentions are decoded from the

94

6.1 Shared-Control for In-Hand Manipulation with a Myoelectric Prosthesis

Figure 6.1: List of shared control conditions. We conduct a 2x2 experimental study with two
levels of autonomy in the EMG-Robot interface, (U) unassisted and (A) assisted, and with two
types of EMG shoulder decoding, (C) continuous and (I) incremental. Es ∈R is the EMG signal
from the shoulder. Θ is a vector of high-level commands determined via EMG decoding (see
Figure.6.2). Si ∈R denotes the state machine defining the hand’s control mode (see Figure.6.5),
and τh ∈R16 is the joint torques computed to control the robotic hand. q i ∈R4 and p i ∈R are,
respectively, the joint positions and tactile sensor feedback for the i -th finger.

forearm and the shoulder’s EMG signals. We hypothesize that a shared control scheme with

more robot autonomy would result in more robust object manipulation. In contrast, we expect

that more user control would allow the subjects to rotate the object faster.

6.1.1 Task Introduction

We consider the task of inserting an object into another object. Such a "peg in hole" task can be

considered a robotic benchmark. While it has received attention already in the 70’s (Takeyasu

et al. (1976)), it remains a topic of research (Tang et al. (2015)). As simple as it may appear,

inserting an object into another one still relies on complex algorithms to determine when

the object is jammed and when to correctly adapt the object’s orientation so that neither

object nor the robot is damaged. Such rapid and compliant control of finger-object interaction

requires estimating the force at contact and adapting fingers’ motion accordingly. Contact

detection is usually done through reading of tactile sensors, sometimes in combination with

vision (Karayiannidis et al. (2016)).

When controlling a prosthesis tasked to insert an object into another one, we must assume

95

Chapter 6. Compliant Robotic Hand Controller in Human-Centric Environment

Figure 6.2: Overview of the experimental setup. The subject is asked to grasp a cuboid and
place it in one of the target boxes, differing in position and orientation. The order of all pick
and place tasks, as specified from 1 to 5, is fixed throughout the entire recording. A KUKA
iiwa 14 robotic arm is set to follow the displacement of the subject’s wrist acquired via the
OptiTrack capture system (Yw : markers tracking signals, x w ∈ R3: wrist position, αw ∈ R3:
wrist orientation, q a ∈ R7: joint position feedback of the robotic arm, and τa ∈ R7: joints
torque command send to the robotic arm). A left Allegro robotic hand mounted with BioTac
tactile sensors executes grasp and manipulation received from the EMG decoder. The hand is
commanded to open or close via processing forearm EMG signals, and to rotate the object
within the hand frame through shoulder EMG activation (Eh ∈R200×6: forearm EMG signals,
Eh ∈R200×2: shoulder EMG signals, θ f ∈R5: scaled fingers flexion, and θs ∈R: scaled shoulder
flexion).

that the autonomous controller of the prosthesis has access solely to tactile information.

Corrections driven by visual feedback are conveyed implicitly through EMG-based intention

detection, the latter driven by the amputee’s visual appraisal of the situation. The designed

framework here uses an autonomous compliant control of fingers to adapt fingers’ orientation

and exerted forces based on tactile information only.

6.1.2 Approach

We compare four different shared control schemes; see Figure 6.1. We perform a 2x2 exper-

imental study with two levels of autonomy in the state-machine interface versus two types

of EMG shoulder decoding, resulting in a total of four types of shared control schemes. One

shoulder-decoding approach is incremental, and the other one is continuous.

The incremental one is threshold-based decoding. When the subject is elevating or lowering

the shoulder, the decoder modulates the rotation value and remains constant when the

shoulder is resting. The continuous decoder is based on a support vector regression (SVR)

algorithm that directly maps the shoulder position to the rotation value. We envision that

96

6.1 Shared-Control for In-Hand Manipulation with a Myoelectric Prosthesis

the continuous decoder would allow the subject to rotate the object faster (Cler et al. (2014)),

whereas the incremental one is more robust to noise.

The two autonomy modes of the state-machine interface are (i) unassisted and (ii) assisted. In

the former, the controller relies only on the command and state sequence, whereas the latter

also uses feedback from the robotic system. The assisted mode utilizes tactile sensing and

finger kinematics for identifying the task and its status. We expect the assistance to reduce

trial failures because it would avoid the unexpected drop of objects coming from noise in the

EMG decoder.

In an experimental setup, we evaluate the functional gain of our approach and compare the

performance of the proposed shared controllers in a dexterity test. We adopt the “Grooved

Peg Test" (Wilcox and Nordstokke (2022)), a standard dexterity assessment. The test requires

fine motor skills to place grooved pegs in holes with different orientations. This test is per-

formed routinely to quantify the development of dexterity in 6-year-old children (Wilcox and

Nordstokke (2022)), and the loss of dexterity in stroke patients (Thompson-Butel et al. (2014)).

We adopt the Grooved Peg test to the size of the robotic hand at our disposal and design a

peg-in-hole task where subjects had to grasp a rectangular object and place it in boxes with

different angles (Figure 6.2). An inclined surface was used to avoid the subjects relying on

gravity to put the object in the box when the angle of the object did not perfectly fit the angle

of the box.

Experimental Protocol

The experimental protocol is summarized in Figure 6.4. Subjects participate in 3 sessions

consisting of 4 experiment runs. In each run, a specific control condition is selected. Given

the control condition, subjects perform 5 tasks of picking and placing a cuboid in different

target boxes. In our experimental protocol:

(i) A task consists of grasping a cuboid and inserting it in a target box, see Figure 6.3. Each

experiment run consists of 5 tasks that differ only in position and orientation of target

boxes; see Figure 6.2. Throughout the entire experiment, the order of tasks is fixed as

given in Figure 6.2.

(ii) There are 4 control conditions specified as the combination of 2 shoulder control con-

ditions (incremental and continuous EMG decoder) and 2 state-machine interfaces

(assisted and unassisted). Control conditions are listed in Figure 6.1, and explained in

detail in Appendix C.1.1 and Section 6.1.2. To eliminate the effect of factors like fatigue

in our analysis, the order of control conditions is chosen randomly for each subject and

session.

(iii) Before each session, subjects have to calibrate the finger decoding model and the contin-

uous shoulder controller. The calibration process takes between 12 to 15 minutes; see

Appendix C.1.

97

Chapter 6. Compliant Robotic Hand Controller in Human-Centric Environment

Figure 6.3: An example of one experiment run. The subject first grasps the object (red num-
bers), then rotates it within the robotic hand (green numbers), and finally inserts it in the
target box (blue numbers). (1) the subject needs to bring the robotic hand to the picking
position. The robotic hand is in open hand mode given the fingers’ EMG decoding. (2) the user
commands the robotic hand to grasp the object by closing his fingers. Then, he lifts the object
and moves the robotic arm near the target box. The robotic hand is autonomously holding
the object. (3) Through shoulder movement, the subject tries to align the orientation of the
object and the target box. (4) the subject aligns the orientations by rotating the object within
the robotic hand frame. (5) the object is placed in the target box and then released (6).

(iv) After model calibration, subjects are verbally instructed to perform the experiment.

Subjects are not informed which control condition is utilized. After each experiment run

with a control condition, subjects are given a 2-minute break before starting with the

next control condition.

(v) Since familiarizing with the setup can affect the performance progress, all subjects

participated in the experiment in 3 sessions over 3 consecutive days in order to account

for the expected learning effects.

(vi) An experimental session takes between 60 to 100 minutes for all subjects.

Subjects and EMG Recording

Eight subjects are recruited for the second study, all of whom are males aged between 26 and

30 (average weight: 74kg, average height: 177cm, and two left-handed). A Noraxon DTS system

wirelessly records EMG signals at 1 kHz. Six bipolar surface EMG channels are placed on the

right forearm to target the extensor digitorum, flexor carpi radialis, palmaris longus, flexor

digitorum superficialis, and flexor carpi ulnaris muscles, located with palpation. Two other

98

6.1 Shared-Control for In-Hand Manipulation with a Myoelectric Prosthesis

Figure 6.4: Summary of the experimental protocol. In 3 consecutive days, a subject participates
in 3 sessions of 4 experiment runs. In each run, a specific control condition among 4 others is
selected. The order of control conditions is randomized in every session and for all subjects.
After setting the control condition, subjects complete 5 pick-and-place tasks, differing in
the target positions. The task order is fixed from the top left box to the bottom right one in
Figure 6.2. During task execution, we record completion time, the number of failed attempts,
the grasping time duration, and EMG signals.

bipolar surface EMG channels are placed on the right shoulder and the back of the subjects

to target the upper and lower fibers of the trapezius that allow, respectively, elevation and

depression of the shoulder joint.

EMG-Robot Interface

The robotic hand operates in three modes:

(i) Preshape: robot opens and closes each finger individually.

(ii) Grasp: robot grasps the object by closing the fingers and secures contacts using tactile

sensors.

(iii) Manipulate: robotic fingers manipulate the object while holding it in the hand frame.

Fingers move in a coordinated object-centered fashion to rotate the object.

We model each of these modes via a set of state machines, S = {S1,S2,S3}, see Figure 6.5 where

S1,S2,and S3 represent preshape, grasp, and manipulate, respectively. Transitions from S2 to

S3, and from S3 to S1 are unidirectional. However, the switch from S1 to S2 is bi-directional,

meaning that if the grasp is not sound, the subject can re-open the hand and attempt a new

grasp. The bi-directional transition between these two states allows the subject to open/close

fingers several times to find the seemingly fine grasp.

We define and evaluate two state-transition functions for our interface. One takes only the

EMG command as input (unassisted interface), and the second one uses robotic feedback

in addition to the EMG command (assisted interface), see Figure 6.5. More precisely, in the

assisted interface, we benefit from tactile feedback to verify contact with the object and grasp

99

Chapter 6. Compliant Robotic Hand Controller in Human-Centric Environment

Figure 6.5: Block diagram of robot hand control with state machines of the (shoulder) EMG-
robot interface. S1,S2,and S3 represent preshape, grasp, and manipulate modes respectively.
We assess 4 control conditions for controlling the robotic hand. Control conditions are the
combination of 2 EMG decoders (incremental/ continuous) and 2 interface modes (assisted/
unassisted)see Figures 6.1 and 6.2.

realization, used in the transition from S2 state to S3 state. Moreover, from finger kinematics

and the joint angles, we estimate object angular displacement. This estimation is then used to

confirm the attainment of the desired motion. Once the desired manipulation is achieved, the

robotic hand releases the object only if the command from the subject is received consistently

over a time window of 4 s, e.i. the subject insists on opening the hand.

6.1.3 Autonomous Robot Controller

We control the robotic arm and hand in the torque mode, maintaining joint compliance.

Compliant controllers enable the robot to adapt to perception uncertainties and provide safer

human-robot interaction compared to position controllers. We introduced an additional

safety layer on top of the controller, a user-robot collision avoidance that enhances the safety

of human-robot interaction. Our autonomous compliant controller has two sub-modules:

(a) a controller to imitate the subject’s wrist displacement in position and orientation with

the robotic arm end-effector (EE), and (b) a controller developed in the previous chapter that

computes the joint torques of the robotic hand to perform tasks like grasp and manipulation.

Robotic arm control

The desired position and orientation of the robotic arm EE are computed based on the mea-

sured subject’s wrist motion. From the OptiTrack system, we obtain the 3D position (x, y ,

and z axes) and orientation (roll, pitch, and yaw) of the subject’s wrist with respect to the

world frame. In our tracking strategy, the EE must mimic the subject’s wrist displacement in 4

coordinates, 3D position, and the angle in the roll axis. Since the subject and the robot are

facing each other in our setup, the robot EE is commanded to mirror the displacement in the

100

6.1 Shared-Control for In-Hand Manipulation with a Myoelectric Prosthesis

pitch axis of the subject’s wrist. To restrict the object rotation only to in-hand manipulation

in our control scenario, the robot EE is indifferent to the displacement in the yaw axis of the

subject’s wrist achieved with Rodrigues’ rotation formula (Belongie et al. (1999)). We found

that mirroring the pitch orientation and not tracking the yaw rotation is more intuitive for

subjects and results in more accurate tracking simultaneously.

The desired pose of the robot EE is passed to a predefined linear dynamical system to find

the desired translational and angular velocities. These velocities serve as the inputs for our

underlying compliant and passive controller (Kronander and Billard (2015); Khadivar et al.

(2021a)) that outputs a set of joint torques for the robotic arm. Thanks to the dynamical system

approach, our controller is robust to perturbations and disturbances and safe for human-robot

interactions due to compliant passivity. The redundant DoFs of the robotic arm are constantly

optimized to decrease robot acceleration while traversing from one point to another.

Robotic hand control

Similar to the robotic arm control, this controller also requires a set of desired fingertip

positions/ velocities as inputs. The computation of these inputs depends on the task state

and whether or not a finger is in contact with the object. In the pre-grasp state, the desired

position is computed based on the angle from the EMG decoder. In this state, each finger of

the Allegro hand is separately commanded by the EMG decoder. The object’s relative position

with respect to the robotic hand is computed by tracking the subject’s wrist motion. Once

the object is within the hand frame, subjects changing hand posture from open hand to fist

is equivalent to a robotic hand attempting to grasp. From tactile feedback, the control state

changes from pre-grasp to grasp if three fingers make contact with the object. In this state, the

fingers establish a force-closure (Prattichizzo and Trinkle (2016)) around the object. In other

words, in case the subject feels a higher grip force is needed to obtain a firm grasp and lift the

object, it can be achieved by clenching the fist tighter.

In the manipulation state, where the fingertips are in contact with the object, the control

inputs are determined based on the object’s desired position. In the grasp state, the object’s

desired position is fixed. When the subject intends to rotate the object within the robotic hand,

in the manipulation state, the object’s desired position changes, given the input from the EMG

shoulder decoder. This desired pose is relative to the palm frame (a frame attached to the base

of the robotic hand) and is used to find the desired object velocity through a linear dynamical

system. Translating an object-centric desired velocity to individual in-contact fingers’ desired

velocities is realized through grasp matrix transformation (Prattichizzo and Trinkle (2016)),

grasp stability metric, and the estimated contact mechanical properties. More precisely, we

obtain the desired velocity of all fingers from the desired object velocity commanded by the

shoulder EMG decoder. These velocities, similar to the robotic arm control, are sent to our

underlying compliant and passive controller to compute the corresponding joint torques.

101

Chapter 6. Compliant Robotic Hand Controller in Human-Centric Environment

6.1.4 Results

Shared-Control Functional Assessment

For each of the 5 different tasks within an experiment run, we measured the completion

time and the number of failed attempts. To better follow the results, the key terms and main

outcome variables (completion time and number of failures) are listed below, following control

conditions in Figure 6.1.

(i) Control condition: There are 4 control conditions differing in the type of employed

state-machine interface and EMG decoder.

(ii) Session (Trial): A series of 4 experiment runs where the subject completes all tasks with

all control conditions. Each subject participates in three sessions over three days.

(iii) Target: A box (hole) in a specific pose where the object (cuboid) is placed. In each

experiment, there are five fixed targets placed in different positions and orientations.

(iv) Task Completion Time (success time): The time duration in a successful trial that it takes

to lift the object from grasp position and place it in the target box. In other words, the

time to finish a manipulation/insertion of a peg in a hole. This time duration starts from

the moment that the subject lifts the object.

(v) Number of Failed Attempts: The number of failed manipulation attempts. An attempt is

counted as a failure if the object is not fully placed in the specific target.

On average, one session for a subject took 75 minutes. Approximately, 30 minutes were used

at the beginning to place the EMG electrodes and calibrate the finger, as well as the shoulder

decoders. Then, performing the 5 pick and place tasks took on average 6 minutes and 11 s for

each condition. Figure 6.6 provides an overview of the collected data, for all participants and

conditions.

Statistical analysis was performed to test for significant changes in performance (in terms of

the number of failures and completion time) across the different sessions, control conditions,

and targets. To check if the variables are normally distributed, we use the Shapiro-Wilk

test, verifying that both the completion time and the number of failures are not normally

distributed. Hence, we test for significant changes in performance by using non-parametric

statistical tests.

Task Performance across Sessions

Figure 6.7 shows the mean number of failed attempts and mean completion time for the 8

subjects, across the 3 sessions. Using the Friedman’s ANOVA test, we observe a statistically

significant difference in task completion time across the 3 sessions, χ2(2) = 31.962, p < 0.001.

102

6.1 Shared-Control for In-Hand Manipulation with a Myoelectric Prosthesis

0.0 0.2 0.4 0.6 0.8 1.0
Mean Completion Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ile

d
At

te
m

pt
s

10 20 30 40

0

2

4

6

8

10

12

U-I

10 20 30 40

0

2

4

6

8

10

12

U-C

10 20 30 40

0

2

4

6

8

10

12

A-I

10 20 30 40

0

2

4

6

8

10

12

A-C

Figure 6.6: All collected data from all 8 participants. Each subject tried 4 different shared
control conditions (see Figure 6.1) in 3 sessions over three days. Thus, for each control
condition, there are 32 data points (8 subjects ×3 sessions). In each experiment run, subjects
were asked to complete five sub-task in a specific order (Figure 6.2), placing a cuboid in five
different target boxes. We recorded the number of failed attempts and the completion of each
sub-task. The x-axis for each plot is the mean completion time of these five sub-tasks, the
y-axis is the corresponding sum of the failed attempts, and the size of the marker indicates
the relative variance in completion time over.

Post hoc analysis with Wilcoxon signed-rank tests was conducted by using a Bonferroni correc-

tion, setting the significance level at p < 0.05/3 = 0.017. We observe no significant differences

between Session 1 and Session 2 (Z =−1.943, p = 0.052), whereas there are significant changes

in completion time between Session 1 and Session 3 (Z = −4.996, p < 0.001) and Session 2

and Session 3 (Z = −4.281, p < 0.001). In fact, from Session 2 (median= 18.0s, IQR = 11.3)

to Session 3 (median = 15.2s, IQR = 10.2) there is a significant decrease of 2.8s in median

completion time, and from Session 1 (medi an = 19.6s, IQR = 13.4) to Session 3 the decrease

is of 4.4s.

For the number of failures, we also verify a statistically significant difference between the 3

sessions using the Friedman’s ANOVA, χ2(2) = 11.494, p = 0.003. Using the Wilcoxon signed-

rank test we see, (also in Figure 6.7), that only from Session 1 (mean = 0.96, standard deviation

(SD) = 1.5) to Session 3 (mean = 0.41, SD = 0.68) the mean number of failures decreases

significantly (Z =−3.639, p < 0.001) by an average of 12.1 failures. From Session 1 to Session 2

103

Chapter 6. Compliant Robotic Hand Controller in Human-Centric Environment

Session 1 Session 2 Session 3
0

10

20

30

40

50

Ta
sk

 C
om

pl
et

io
n

Ti
m

e
(s

)

**

**

Progress of Subjects' Task Completion Time

Session 1 Session 2 Session 3
0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
ea

n
N

um
be

r
of

 F
ai

lu
re

s **

Progress of Subjects' Precision

Figure 6.7: Performance progress of all subjects and all control conditions over 3 sessions (3
days). Left: boxplot of task completion time per session; midlines indicate the median. Right:
barplot of mean number of failed attempts for each session. Statistically significant differences
regarding mean completion time can be seen between sessions 1 and 2, and sessions 2 and
3. For the mean number of failures, only the first and third sessions differ significantly. Error
bars: +SD , ∗∗ : p < 0.01.

(Z =−2.321, p = 0.020) and from Session 2 to Session 3 (Z =−1.509, p = 0.131) there are no

statistically significant changes.

Comparison between Shared Control Conditions

We investigated the performance of four shared control schemes, which combined two state-

transition modes (assisted vs. unassisted) with two EMG decoding approaches (continuous vs.

incremental). The mean task completion time and mean number of failures were obtained

and analyzed for each of the control conditions, for all subjects and experimental sessions

(see Figure 6.8).

Using again the Friedman’s ANOVA test with α= 0.05, we observe a statistically significant

difference in task completion time between the 4 experimental conditions, χ2(3) = 11.325, p =
0.010. The same is verified for the number of failures, χ2(3) = 10.305, p = 0.016. By running

the Wilcoxon signed-rank test with p = 0.05/4 = 0.0125, we find that the task completion time

in condition U-I (median = 19.0s, IQR = 11.9) was significantly longer than the completion

time in U-C (median = 17.4s, IQR = 10.4), Z =−2.803, p = 0.005. That is, without assistance,

subjects were significantly faster by an average of 3.36s using the continuous controller, when

compared to incremental control. Between U-I and A-I (median = 16.9s, IQR = 12.2) – i.e, the

two assistance modes using the incremental EMG decoding –, we observe that the assisted

robotic interface led to a significantly faster performance (Z =−2.71, p = 0.005), by an average

of 2.48s.

Regarding the number of failures, we see statistically significant changes between U-I (mean

104

6.1 Shared-Control for In-Hand Manipulation with a Myoelectric Prosthesis

U-I U-C A-I A-C
0

10

20

30

40

50
Ta

sk
 C

om
pl

et
io

n
Ti

m
e

(s
) **

**

Shared Controllers' Completion Time

U-I U-C A-I A-C
0

2

4

6

8

M
ea

n
Fa

ile
d

At
te

m
pt

s

6.125 6.0

2.625

4.5

**
*

Shared Controllers Precision

Figure 6.8: Performance of all shared controller conditions across all subjects and sessions.
Left: boxplot of task completion time across control conditions. Right: barplot of subject’s
mean number of failed attempts per control condition. Error bars: ±SD , ∗ : p < 0.05, ∗∗ : p <
0.01.

6.125) and A-I (mean 2.625), Z =−3.046, p = 0.002, and between conditions U-C (mean 6.0)

and A-I (Z =−2.549, p = 0.011). In fact, the number of failed attempts for both control schemes

that used an unassisted interface significantly improved with the assisted interface, when

combined with the incremental control modality (by 3.5 and 1.5 difference, respectively).

Overall, comparing the two state transition modes (unassisted vs. assisted), the assisted

interface was significantly better than the unassisted counterpart, in terms of resulting in lower

number of failed attempts (41% more precise) (Wilcoxon test, Z = 3431.5, p < 0.05). Regarding

completion time, no significant difference were observed between the two methods. On the

other hand, the two EMG decoding approaches (incremental vs. continuous) performed

similarly in terms of both completion time, regardless of the assistance mode.

Taking a closer look at the performance for each of the 5 targets, Figure 6.9 shows that the

assisted mode resulted in significantly lower failures, especially for those that require a large

change in wrist orientation and large in-hand rotation (tasks 1,2, and 4 where the necessary an-

gle is higher). The first two tasks are considered the most difficult ones since the subject needs

to adjust the orientation of the robot’s EE (palm being parallel to the target box inclination)

and rotate the object in hand simultaneously.

Results Summary

In summary, the assisted control mode significantly improved performance by lowering

the number of failed attempts. The assisted state transition mode, when in combination

with EMG incremental control condition, A-I, outperformed the others as it has the lowest

completion time and significantly lower number of failures (higher precision). On the contrary,

the incremental EMG decoding without assistance (U-I) proved to be the least efficient among

control conditions. Comparing the control condition U-C with the lowest robot autonomy

105

Chapter 6. Compliant Robotic Hand Controller in Human-Centric Environment

1

2

34

5
5
10
15
20
25

Completion Time (s)
1

2

34

5
2
4
6
8
10

Failed AttemptsU-I
U-C
A-I
A-C

Target Specific Performance of Each Shared Control Scenario

Figure 6.9: Median completion time (left) and Mean Failed attempts (right) for each pair of
sub-tasks and shared control condition. In each experiment run with a set shared control
condition, subjects had to place a cuboid in five different boxes. Here is shown the overall
performance of each control condition in accomplishing a specific sub-task.

with the condition A-I with the highest robot autonomy shows that increasing the autonomy

of the robot controller improved the precision (reduced number of failures) more significantly

than the efficiency (task completion time).

6.1.5 Discussion and Summary

In this application, we used a robotic hand to pick, manipulate and place an object in various

target boxes. We examined four shared control conditions based on a compliant controller in

conjunction with EMG decoding to teleoperate a robotic arm while maintaining full autonomy

over high-level commands. Given the experimental results, we propose the shared control

strategy with assisted state-machine interface and incremental EMG decoder for the shoulder.

We observed that the number of failed attempts and the completion time decreased over test

sessions across all tasks and subjects (Figure 6.7). This confirmed that subjects learned how to

improve their performance on this modified grooved peg test and did not rely on an increase

in EMG decoding accuracy.

The target boxes were on an inclined surface, requiring the subjects to rotate their wrist.

Although forearm orientation is a major source of noise for real-time applications (KyungYou

et al. (2010)), the control technique developed in this study was robust enough for the subjects

to complete the task. Calibrating the model in the various arm and wrist orientations could

improve the robustness of wrist rotation and arm orientation (Park et al. (2016)), but this

would imply a substantially longer calibration time.

To accomplish in-hand object rotation with a robotic hand, precise finger motions associated

106

6.1 Shared-Control for In-Hand Manipulation with a Myoelectric Prosthesis

with sensory input are necessary (Li et al. (2016a)). In this study, information such as object

position, displacement, and grasp position is obtained directly from the subjects. Computing

such variables and states is challenging when approaching complex manipulation tasks. The

controller had to remain reactive to the user’s commands with a minimal execution time

delay to increase intuitiveness and sense of agency (Rognini et al. (2013)). At the same time,

the controller had to be robust to inconsistencies coming from the EMG decoder due to the

variability of the signals. We estimated the object’s pose relative to the robotic hand from the

forward kinematic and the fingers’ joint position. This estimation proved helpful in these tasks

with a cuboid object; on the contrary, for more complex object shapes and to obtain higher

accuracy, more sophisticated object pose estimation methods like vision-based (Doosti et al.

(2020)) or tactile images (Sodhi et al. (2021)) are required.

From Figure 6.9, target tasks that required larger in-hand rotation foreseeably took more time

to be completed. Reducing delay in user command execution and increasing the decoding

precision (Xia et al. (2018)) are instrumental for future enhancement to reach human-level

performance. Furthermore, we can use the information from the robotic hand to provide

sensory feedback to the users. For instance, contact, force, and finger angle information

gathered from the robotic hand can be given to users with trans-radial amputation through

invasive (D’Anna et al. (2019)) or non-invasive channels (Stephens-Fripp et al. (2018)). Sensory

feedback can help users to send more accurate high-level commands to the robotic hands,

improve embodiment (Bensmaia et al. (2020)), and reduce cognitive load (Valle et al. (2020)).

Assistance from the robotic state became greatly beneficial for targets 1 and 2, where decoding

the subject’s intention and encoding the desired command was more convoluted. Indeed,

the two inclined targets had a high angle and elevation. For these targets, the assisted state

transition mode significantly decreased the number of failures compared to the unassisted

interface (Figure 6.9).

Finally, We showed that combining a shared control condition with EMG decoding for finger

motions and object rotation could be a realistic alternative for users with trans-radial am-

putation to improve the dexterity and versatility of RPHs. The shared control created in this

study could allow users with an amputation to manipulate objects in their prosthetic hand,

which is practical in numerous daily tasks. In our teleoperated system, subjects maintained

complete control over the robotic hand. The condition that obtained the best results was the

incremental shoulder EMG decoder with the assisted state transition mode. Surely, integration

of an RPH and validation on people with trans-radial amputation with an amputation would

be necessary to quantify functional improvements. Nonetheless, this study took one step

toward more advanced control systems, implying that future RPH development in the direc-

tion of sensorized hands with compliant controllers would benefit people with trans-radial

amputation.

107

Chapter 6. Compliant Robotic Hand Controller in Human-Centric Environment

6.2 Online and Dynamic Tactile Surface Exploration of Unknown

Objects

In this part, we propose a novel approach for online tactile surface exploration of unknown

objects while employing an adaptive compliant controller for the robotic hand. Our online

exploration strategy actively and dynamically optimizes the acquired data’s entropy and bal-

ances the exploration’s global knowledge and local complexity. We show that this method can

efficiently explore objects with arbitrary shapes, e.g., having a handle, hole, or narrow edges.

To allow for multi-contact exploration with a robotic hand, we propose an optimization-based

planning algorithm that adapts the hand pose to the local surface geometry and maximizes

the kinematic properties of each finger online and during exploration. We benchmark our

approach against the state-of-the-art in a simulated environment and showcase the strength

of our method in learning object shapes with different complexities.

Probabilistic models have been widely used for representing an object’s shape. Such models

are employed in many applications like sensory fusion (Gerardo-Castro et al. (2015); Lee et al.

(2019)) and grasp (Ottenhaus et al. (2019); Li et al. (2016a)). Probabilistic models provide

information about the object surface’s uncertain areas that need to be explored first. For the

problem at hand, Gaussian Process Implicit Surface (GPIS) (Williams and Fitzgibbon (2006))

is used in a wealth of studies (Dragiev et al. (2011); Yi et al. (2016); Driess et al. (2017); Gandler

et al. (2020)). GPIS gives the probability of points being either on, inside, or outside the object’s

surface; see Section 2.4.

To explore an object surface, researchers have used GPIS to either select discrete locations

iteratively (Yi et al. (2016)) or query continuous paths (Driess et al. (2017)). Both approaches,

however, use fixed GPIS hyperparameters. Optimizing the model parameters adds more cost

to an already computationally complex model O(N 3), rendering it infeasible in real-time

exploration. Moreover, the optimized values of hyperparameters oscillate severely, especially

in the early stages of explorations. Plenty of data points must be sampled to obtain a balanced

dataset, and the likelihood of GPIS is initially far from a good metric of loss prediction w.r.t the

ground truth.

Although GPIS with fixed parameters functions well for exploring simple objects, it falls short

for objects with complex shapes. Loss of efficiency by visiting less informative regions and

getting stuck in local minima traps are among the frequently consequent hassles. On the one

hand, parameter tuning grows more tricky with the objects’ variety and complexity; on the

other hand, online model optimization is infeasible. Here, we separate the GP model used

for path query from GP that models the implicit surface. Since exploration is only based on

local information, we construct a GP model from the local data at each query point. Then we

propose a dynamic approach for the evolution of parameters in the local GP used for path

query. This method takes the connectivity of points and local densities and changes parame-

ters to dynamically increase the entropy of the collected data and the exploration efficiency.

This way, we avoid the issues with fixed hyperparameters and, simultaneously, acquire a more

108

6.2 Online and Dynamic Tactile Surface Exploration of Unknown Objects

informative and balanced sample data set from the object surface. In addition to dynamic

exploration, we follow a ϵ-greedy policy we follow ϵ-greedy policy familiar to reinforcement

learning (Chatzilygeroudis et al. (2020)). Occasionally allowing random exploration directions,

as we will see later, helps to avoid getting stuck with absolute reliance on local information.

6.2.1 Approach

Active Path Query

Active path query in continuous exploration relies on the gradient of variance in local GP

model, see Figure 6.10. The exploration needs to be as aligned as possible with the direction

of gradient evolution to ensure maximum information gain. Once the inversion of (K +σ2
n I)

is obtained, using Cholesky factorization (Higham (1990)), we can compute the gradient at the

query point:

∂V[f∗]

∂x
= ∂k(x , x)

∂x
−2

(
∂k∗
∂x

)T

(K +σ2
n I)−1k∗. (6.1)

On the other hand, maintaining contact with the object is essential in continuous exploration.

The direction of the motion closely depends on the correct estimation of the tangent plane.

We need to move along the estimated tangent plane as the object shape is unknown a priori.

One approach is to extract the surface normal vector from GPIS, f̄∗ :

∂ f̄∗
∂x

=
(
∂k∗
∂x

)T

(K +σ2
n I)−1(y −1n) (6.2)

this gradient serves as an estimator of the tangent plane. Extracting conditional variance on

a tangent plane and then taking the gradient is geometrically equivalent to projecting the

gradient of the variance onto the tangent plane:

s = ∂V[f∗]

∂x
−

〈
∂V[f∗]
∂x , ∂ f̄∗

∂x

〉
∥∂ f̄∗
∂x ∥2

∂ f̄∗
∂x

(6.3)

from which, we are only interested in the direction e s = s/∥s∥2. Instead of moving in the

direction of e s , we follow ϵ-greedy policy familiar:

e s =
s/∥s∥2 if p ≥ ϵ

eϵ otherwise
(6.4)

where ϵ ∈R is small value (ϵ= 0.1 in this work). In each iteration, vector eϵ is a random vector

in the tangent plane at the query point, and p ∈ [01] is a randomly generated value.

109

Chapter 6. Compliant Robotic Hand Controller in Human-Centric Environment

Figure 6.10: Block diagram of exploration strategy.

Dynamic Exploration

The notion of information using variance in Eq. 6.3 is local (computed from local GP), and it

closely relies on the kernel hyperparameters. If the length scale ℓ, for instance, is small, then

we will be exploring more the local complexities of the object, resulting in getting trapped in a

local region and overloading the GP. On the contrary, we will achieve higher space coverage

by considering relatively big length scales without precisely capturing the shape. Here, we

endeavor to balance a trade-off between space coverage (global exploration with big length

scale ℓb) and capturing shape complexity (local exploration with small length scale ℓs):

ℓ=ωℓs + (1−ω)ℓb (6.5)

with ω ∈ [01] being the balancing weight. In order to determine the value of ω we define two

metrics here, one for local density and the other for information gain. Let’s define ρ ∈ [01] as a

measure of local density which we compute for a query point x∗ via :

ρ(x∗) = E[z2]−E[z]2

ρ2
max

(6.6)

where z = {z |z ∈ k-NN(X , x∗)P } represents recorded points on the object surface and within

the subset of P nearest neighbors to the query points. The set bound value ρmax is the defined

maximum effective density. Big values of ρ correspond to the fact that P-nearest points are

widely spread, while small values represent a dense neighborhood. We also consider the

connectivity of the query point in GP to measure the information gain. The connectivity γ for

a query point is computed thorough:

γ(x∗) = 1T
M k∗/M (6.7)

and M is the dimension of k∗ or the number of all points presented to GP. The growth in value

of γ means that newly acquired data are similar to those already collected, representing a

110

6.2 Online and Dynamic Tactile Surface Exploration of Unknown Objects

Algorithm 4 Exploration strategy for a single query point

1: Parameters: ℓs , ℓb , and ℓ0

2: Initialization:
3: x ← random ▷ initialize query point randomly on object
4: X ← {x} ▷ initial dataset
5: Y ← {0} ▷ initial dataset
6: ω← 0, γ← 1 ▷ initialize balancing weight and connectivity measure
7: Main loop:
8: for i = 1 → T do
9: x∗ ←X (end)

10: y∗ ←Y (end)
11: update (K +σ2

n I) ▷ with new ℓ

12: re-compute (K +σ2
n I)−1

13: nx ← ∂ f̄∗
∂x ▷ normal of the surface

14: tx ← ∂V[f∗]
∂x ▷ variance gradient

15: {xnew , ynew } ← path query ← nx and tx

16: X ← xnew and Y ← ynew

17: mP ← mi n(P, si ze(X))
18: z ← K N NmP (x∗,X)

19: ρ(x∗) ← E[z 2]−E[z]2

ρ2
max

20: γ(x∗) ← 1T
M k∗/M

21: ω̇←−βRelu(γ̇)(ω−ρ)
22: ω←ω+ ω̇δ
23: ℓ←ωℓs + (1−ω)ℓb

24: end for

decrease in information gain. Given these, propose the following dynamic for ω:

ω̇=−βRelu(γ̇)(ω−ρ) (6.8)

in which, β ∈R+ gauges the convergence rate. Based on Eq. 6.8 and 6.5, the value of ℓ alters

to avoid dense locals (small ρ) by more globally exploring (bigger ℓ) and to capture shape

complexities (smaller ℓ) when the global coverage is fine (big ρ). Moreover, the value of ℓ

changes only when information gain decreases or γ increases. This ensures that any model

modification is executed to improve the entropy of the collected data. Algorithm 4 summarizes

the exploration strategy for a given query point.

Robotic Hand Control

The state-of-the-art robot exploration strategies of unknown objects are rather restricted. In

most cases, the entire robotic system is considered one single agent. For example, a robotic

arm uses its end-effector mounted with tactile sensors to explore an unknown workspace and

objects (Kaboli et al. (2017)); or a bimanual robotic system with both robotic hands to hold

111

Chapter 6. Compliant Robotic Hand Controller in Human-Centric Environment

and explore the geometric shape of an unknown object (Sommer et al. (2014)). In this scenario,

the multiple fingers of the robotic hand are only used to wrap the object surface, despite the

abundant degrees of freedom in each finger.

In comparison, when exploring the geometric shape of an unknown object relying on the

sense of touch, humans usually first use fingers to establish multiple contacts with the object

and then move hand and fingers to travel through different object surface regions. During this

process, the hand and fingers move in compliance to adapt to the object’s surface’s geometry.

Moreover, although all fingers move together with the hand, they differ slightly in individual

movements, such that the surface features of the local regions can also be acquired. This

combination of hand (i.e., global exploration) and individual finger movements (i.e., local

exploration) affords an efficient exploration of unknown objects.

To allow for multi-contact exploration with a robotic hand, we use an optimization-based

planning algorithm that adapts the hand pose to the local surface geometry online, and maxi-

mizes the kinematic properties of each finger during exploration. This method is developed

by Kunpeng Yao and presented in Appendix C.2. In particular, this approach allows online

regulation of hand pose, such that the hand pose adapts to the regional curvature of the

explored surface, and each finger also moves with higher flexibility, in the sense that each

finger’s configuration is far from its kinematic singularity, while can potentially explore the

larger local region. Moreover, we consider constraints of the robotic system by formulating

them as problem constraints, such that physically feasible and collision-free hand poses can

be obtained.

6.2.2 Experimental Evaluation

We have evaluated our proposed approaches in simulation. In our experiments, the task is

performing tactile exploration of unknown objects. We use various objects with different levels

of shape complexities, and ground truths (objects point cloud) are used only to evaluate the

method’s performance in reconstructing the object shape. We devise the following scenarios

for experimental evaluation of our method:

(i) we assess, in Section 6.2.2, the effectiveness of our contributions by comparing each of

them with the state-of-the-art method; and

(ii) in Section C.2.3, we validate our approach in simulation for tactile exploration of various

objects.

Comparison with State of the Art

We benchmark the contributions of our proposed dynamic exploration strategy against the

state-of-the-art methods in following tests.

112

6.2 Online and Dynamic Tactile Surface Exploration of Unknown Objects

200 400 600 800 1000

4

6

8

10

12

14

10 -3

200 400 600 800 1000

2

4

6

8

10

12

14
10 -3

200 400 600 800 1000

2

4

6

8

10

12

14

10 -3

200 400 600 800 1000

2

4

6

8

10

12

14

10 -3

200 400 600 800 1000

2

4

6

8

10

12

14
10 -3

Figure 6.11: Examples of shape reconstruction via online exploration. Objects are unknown a
priori. The top row shows the reconstruction error and the acquired data along the traversed
trajectory on the object surface, using our exploration method. The middle row demonstrates
the the object shape predicted by the learned GPIS model. The bottom row represents the
exploration performance in terms of the mean surface error using our approach (DYN) and
the state-of-the-art (AQP) (Driess et al. (2019)). For 10 replicates and in each run, the initial
point is set randomly, and remains the same for both methods. The solid line indicates the
median and shaded area is 25 to 75 percentile of these 10 replicates.

113

Chapter 6. Compliant Robotic Hand Controller in Human-Centric Environment

In a single contact exploration where only one tactile probe is in contact with the object, we

compare the exploration performance of our dynamic exploration (Section 6.2.1) and the

state-of-the-art active query (Driess et al. (2019)). This experiment aims to assess the method’s

effectiveness in planning more informative trajectories and collecting more efficient data. For

this reason, we relax all robotic constraints by assuming a single and free tactile prob that can

move continuously on the object’s surface.

Figure 6.11 illustrates the reconstruction error, traversed trajectory, shape prediction, and

method comparison for this experiment. From Figure 6.11 we find that both methods are

identically perfect for a convex and simple shape object (the last object from left in Figure 6.11).

However, for other objects, our approach collects points with significantly higher information

values, hence lower reconstruction error. We constantly minimize the connectivity of points

in our method to obtain less similar points. Balancing local and global exploration helps

us to avoid local traps. For instance, imagine one of the objects like a bowl, cup, or glass

(second, third, and fourth objects in Figure 6.11). We are hardly, if not never, able to enter/exit

the interior part of the object using the classical method. However, balancing local density

forces exploration to improve the overall knowledge of the object shape before getting trapped

by showing interest in complex local regions. We occasionally allow random directions of

exploration. This helps us to avoid absolute reliance on the acquired data from a completely

unknown object; in this way, it is more likely to find the ears of the bunny rabbit (the first

object from left in Figure 6.11).

Hand and Fingers Pose Adaptation

In a multi-contact exploration scenario with a 16 DoFs robotic hand, we compare our hand

pose adaptation algorithm with the baseline (Sommer and Billard (2016)). Here, the tactile

probes are no longer free/independent agents (on contrary to (Driess et al. (2019))) and they

need to physically feasible trajectories w.r.t robotic kinematic constraints.

In (Sommer and Billard (2016)) the robotic hand tries to maximize the number of contact

points with the object, and while the hand (the wrist, the base of the robotic hand) is moving

in predefined trajectories, only the contact point with information value are appended to the

data. In our approach, however, we plan trajectories automatically and in an informative way;

i.e., we adapt both the hand pose and finger joints to query most informative path for the

entire robotic hand to move.

Since the efficacy of the baseline (Sommer and Billard (2016)) depends on the predefined

trajectory for the hand wrist, to have a fair comparison, we use the same technique as the

one in our approach to extract the wrist position trajectory. Thus, the only difference among

methods is that (Sommer and Billard (2016)) maximizes the number of contacts as the hand

moves whereas we adapt joint position and the wrist orientation to query informative contact

points. Figure 6.12 summarizes the performance of both approaches when exploring different

objects. From Figure 6.12 we observe that both methods work similarly perfect when exploring

114

6.2 Online and Dynamic Tactile Surface Exploration of Unknown Objects

Bunny Bowl
Bottle

Simple Mug

Cup with Handle
0

1

2

3

4

5
10 -3

Figure 6.12: Performance comparison of our exploration method (solid line) with Multi-
Contact method of Sommer and Billard (2016)(dash line). Markers, lower caps and upper
caps indicate, respectively, the medians, 25% and 75% percentiles over 20 replicates of the
simulation.

simple/convex objects. However, our method is significantly more accurate and consistent

once the unknown objects are with shape complexities (e.g., the handle of the mug).

6.2.3 Discussion and Summary

Object shape estimation through autonomous tactile exploration is a fundamentally multi-

faceted problem and yet essential in robotics. The challenges amplify if the object’s geometry

is a priori unknown, as complex shapes may hinder the exploration of such objects.

In this study, we investigated the problem of exploring the geometry of an unknown target

object using a multi-fingered robotic hand with tactile sensors. We proposed algorithms

to tackle two main challenges in the related field: namely (i) a GPR-based path generation

algorithm to balance the global and local information for multiple agents and (ii) an adaptation

algorithm to improve the movement of the robotic hand by leveraging both the inherent model

property and obtained local information.

We start with reasoning about the GPIS model selection suitable for robotic exploration. We

then proposed a method that dynamically alters hyperparameters of GPIS to increase the

information gain (entropy) of collected data online. We planned for active balancing of local

and global queries. Our online exploration algorithm tries to train a GPIS model by obtaining a

global understanding of the object’s shape before focusing on local complexities. Using various

objects, we benchmark against the state-of-the-art. We showed that our online exploration

algorithm provides higher data efficiency in exploring surfaces of complex objects.

We focused on acquiring a planning algorithm that functions in a complex object exploration

115

Chapter 6. Compliant Robotic Hand Controller in Human-Centric Environment

and can be applied to multi-finger robotic hands. Optimizing the GPIS model online is not

only infeasible but also inconsistent with the problem at hand. Computational cost, early

value oscillation, and an unbalanced dataset are among the reasons. Instead, we propose

to dynamically modulate GPIS based on the connectivity of points and local densities. We

verified that in the isolated exploration problem (e.i. no robotic constraints included), our

method is robust to data efficiency loss. We actively react to visiting less informative regions,

and by balancing local and global exploration, we avoid getting stuck in local minima traps. We

showcased the strength of this method by benchmarking against state-of-the-art in exploring

objects with various shapes.

Moreover, in most state-of-the-art studies, a strategy for dynamically adapting the hand pose

during exploration is absent. This may lead to a collision between the robotic hand and the

target object and undermine the finger’s motion ability in exploration, such as getting stuck

in a kinematic singular configuration or closing to its joint limit. Our proposed algorithm

tackles these two issues by integrating a dynamic hand pose regulation strategy to adapt the

hand orientation to the local surface geometry, together with a finger kinematics optimization

strategy to prevent fingers from singular configurations and increase the potential reachable

regions of a fingertip. Our simulation results demonstrated the effectiveness of our proposed

strategy in both aspects. The robotic hand was able to explore the unknown surface with as

much collision as possible.

Despite the successful application, there are still a couple of limitations and room for improve-

ment. We assumed that the object was fixed and that the robotic hand could safely interact

with the object. This, however, is rarely the case in practice. Object displacement is inevitable

in object-hand interactions. Tracking and estimating object pose and stabilizing it in hand is

necessary in such cases. We, humans, amazingly explore objects while manipulating them in

hand and, at the same time, improve our estimation of the shape. Reaching a human-level

exploration performance is our ultimate objective, toward which we took only a single step in

this study.

In addition, although our algorithm can largely improve the kinematic properties of a robotic

hand during exploration by leveraging the information of explored regions, it does not guaran-

tee a fully collision-free trajectory. This is mainly due to the limited prior knowledge of the

target object. Collision is inevitable for objects with complex shapes, such as non-continuous

surfaces or non-convex geometry. It is theoretically infeasible to avoid potential collision

in an unknown space actively. This limitation can be alleviated by introducing extra prior

knowledge into the problem formulation, such as having a more specific description of the

object’s geometry.

116

7 Conclusions

This chapter reviews the research conducted throughout the thesis and summarizes the

contributions. Then, we describe the limitations and highlight the potential directions for

future work.

7.1 Contributions

This thesis took inspiration from humans’ mastery to (i) remain highly compliant and quickly

respond to uncertainties in an unstructured environment and (ii) learn, adapt, and master

new dexterous tasks. The central contribution of the thesis is developing a robot controller

for dexterous grasp and manipulation compliant in interaction and faithful in tracking. We

first focused on devising methods that can constantly update and improve the available

models of dynamics and can adapt and react to uncertainties online. Next, we introduced a

coordinated multi-finger system to our controller. We showed that this solution provides suffi-

cient robustness for grasping and manipulating problems during task execution in uncertain

environments.

We first reviewed the necessary technical background of the thesis. Then, we dedicated

the third chapter to the challenges of learning the Inverse Dynamics (ID) model of a robot

manipulator. The ID model is instrumental in precise robot control and a key component

in compliant manipulation. We investigated supervised machine learning techniques to

incrementally explore a robot’s configuration space and maximize the information of the

collected data. We also introduced new excitation trajectories that impose stable limit cycles

in robot joints’ phase space while satisfying feasibility constraints and physical bounds. We

showed that the data collected by our approach is significantly richer than the collected data

with traditional techniques. Since, in any learning framework, the efficacy of the learned

model substantially depends on the training data supplied to it, our method has resulted in

better learning performance than the state-of-the-art methods, regardless of the learning

method.

117

Chapter 7. Conclusions

Chapter 4 proposed a novel combination of a model reference adaptive controller with a resid-

ual ID model augmented Quadratic Programming (QP) based controller. The adaptive control

law adjusts the QP online to account for model uncertainties and unforeseen disturbances,

whereas the residual model learning episodically captures the unmodeled dynamics. We

extensively validated our approach, called Self-Correcting Quadratic Programming (SCQP),

in simulations and performed experiments in a physical robotic setup. We show that SCQP

compensates, in a handful of trials, for significant unmodeled dynamics in various tasks

ranging from simple end-effector tracking to humanoid balancing and robotic hand object

grasping. Also, SCQP helps us to avoid the tedious tuning of PID controllers despite the task

variability.

Chapter 5 addressed the problem of ensuring robust dexterous manipulation when facing

a poor model of the object’s dynamics, model imperfections and external disturbances. In

this chapter, we proposed a novel method to coordinate robotic fingers based on dynamical

systems. Our coupled DS uses an intermediate dynamic to synchronize all fingers. This

method offers a robust and coordinated multi-finger system for various grasp and manipu-

lation experiments with different objects. We combined our adaptive controller with joints’

impedance regulation to guarantee high tracking accuracy and adapt to dynamic changes. Our

experiments on a 16-DoFs robotic hand showed that the controller could compensate for its

dynamics and stably manipulates objects with different mass properties. We also showcased

that our controller, combined with learning from human demonstration, provides a robust

solution for more complex dexterous tasks such as finger gaiting.

In Chapter 6, we use our robotic hand controller in two problems and demonstrate its ap-

plicability in human-centric environments. In the first application, we aimed to increase

the dexterity of robotic prosthetic hands (RPHs) for patients with a hand amputation. We

studied four shared-control conditions based on a compliant controller combined with EMG

decoding in order to teleoperate a robotic arm, maintaining complete autonomy over high-

level commands. We evaluated our shared-control approach in an experimental setup by

conducting a 3-days long longitudinal study with healthy individuals. Results indicated that

when combined with incremental EMG decoding, robotic assistance leads to significantly less

failure and faster completion time in task execution. Thus, it could be a realistic alternative for

users with trans-radial amputation to improve the dexterity and versatility of RPHs.

Finally, in the second application of Chapter 6, we investigated the problem of exploring the

geometry of an unknown target object using a multi-fingered robotic hand with tactile sensors.

We proposed algorithms to tackle two main challenges in the related field: (i) a Gaussian

Process-based path generation algorithm to balance the global and local information for

multiple agents and (ii) an adaptation algorithm to improve the movement of the robotic hand

by leveraging on both the inherent model property and obtained local information. Using

various objects, we benchmarked our method against the state-of-the-art. We showed that

our online exploration algorithm provides higher efficiency in exploring surfaces of complex

objects.

118

7.2 Limitations and Future Work

7.2 Limitations and Future Work

The work presented in the thesis has limitations that open doors to future research and

investigation.

In many applications, the robot should work in a predefined workspace. Acquiring an accurate

ID model outside this workspace is not necessary. Therefore, performing the exploration with

our approach in Chapter 3, Max-Information Configuration Exploration (MICE), only within

the desired workspace in the configuration could be used to improve the efficiency of the data

further. Moreover, using incremental model learning approaches (Nguyen-Tuong and Peters

(2010)) in conjunction with MICE is another potential topic of study which can improve the

efficiency of model learning.

In Chapter 4, we assumed that the learned ID model could generalize to the underlying

dynamics. In some cases, however, this assumption is not realistic enough. For instance,

in the bimanual grasping task, Section 4.4.3, each contact model might require a different

contact configuration, and using one model for different contacts might not be comprehensive.

Representing an ID model that can explain different contact (Calandra et al. (2015)) can help

the residual model learning to generalize better to the dynamics of the systems. Also, the

high-level tasks remained fixed throughout the experiments of this chapter. Task modulating

can be crucial if the original specifications are not achievable; for example, with a humanoid,

the left arm is damaged, and the task has to be performed with the right arm. Integrating SCQP

with methods that update the high-level planning can be helpful in such scenarios. Moreover,

our approach can be combined with reinforcement learning algorithms. One idea is to enable

exploration around the commands the QP outputs while ensuring safety and not allowing

deviations that could potentially harm the robot.

In Chapter 5, we employed tactile sensors at the fingertips to obtain forces at contact points

and used a motion capture system to estimate object position. However, humans benefit from

rich and advanced sensory feedback when holding an object in hand. Tactile sensing in the

entire hand surface (e.g., in finger bodies) enables humans to detect not only the pose of the

object but also how securely it is grasped. Increasing the efficiency and comprehensiveness

of perception in robotic hands would be a huge step toward achieving a more human-like

dexterity. For instance, when estimating the object’s pose within the hand by the OptiTrack

system, markers occlusion during fingers motion occurs frequently. Loss of tracking of the

object can endanger grasp stability. In this case, being able to perceive and track object

position or the net applied force through tactile feedback will enhance the reliability of the

perception. Thus, rich sensory feedback can significantly increase the control’s accuracy

and robustness. As another example, slippage, especially for heavier objects, caused some

experiment trials to fail. Slippage detection and appropriate adaptation could improve the

success rate.

For the first application in Chapter 6, integrating a robotic prosthetic hand (RPH) and val-

idation on people with trans-radial amputation would be necessary to quantify functional

119

Chapter 7. Conclusions

improvements. Another step to increase intuitiveness and sense of agency for users is to

robustify the EMG decoder commands and address the signals’ variability issue. Moreover,

sensory feedback can help users to send more accurate commands to the robotic hands,

improve embodiment (Bensmaia et al. (2020)) and reduce cognitive load (Valle et al. (2020)).

The estimation of the object’s pose relative to the robotic hand was only based on the forward

kinematic and the fingers’ joint position. This estimation proved to be helpful with a sim-

ple cuboid object; however, for more complex object shapes, other estimation methods like

vision (Doosti et al. (2020)) or tactile images Sodhi et al. (2021)) are required.

In the second application of Chapter 6, we assumed that the object was fixed and that the

robotic hand could safely interact with the object. Humans usually explore objects while ma-

nipulating them in hand. In this case, the object is not fixed. Exploring objects by manipulating

them could make the exploration strategy more efficient. However, tracking and estimating

object pose and stabilizing it within the robotic hand during exploration is a difficult task,

which remains an open problem that deserves further investigation.

120

A Appendix of Chapter 4

A.1 Adaptive Control Stability Proof

Let e = ζ−ζr be the tracking error. Using Eq. 4.5, 4.6 and 4.7, the error’s dynamics (time

derivative) is given by:

ė = (A+BΨζ)ζ − Arζr + (BΨr − Br)r (t) + BΨφΦ(e) + F(ζd ,ζ). (A.1)

For the error dynamic (A.1) to follow the reference dynamic (4.5), we set that the desired gain

matrices Ψ∗
ζ

,Ψ∗
r , andΨ∗

φ satisfy:

A+BΨ∗
ζ = Ar

BΨ∗
r = Br (A.2)

BΨ∗
φΦ(e) = −F(ζd ,ζ).

Given that system (4.5) is by construction stable (Matrices P, Ar satisfy PAr + AT
r P =−Q; see

Section 4.3.1), then e → 0. We define the gain prediction errors as Ψ̃ζ =Ψζ−Ψ∗
ζ

, Ψ̃r =Ψr −Ψ∗
r ,

and Ψ̃φ =Ψφ−Ψ∗
φ. Replacing (A.2) in (A.1), we obtain:

ė = Ar e + BΨ̃ζζ + BΨ̃r r (t) + BΨ̃φΦ(e) (A.3)

Theorem 1. The error dynamics (A.3) is Lyapunov stable, and the tracking error, e, vanishes

asymptotically under the proposed control law (4.7) and adaptation law (4.10).

Proof. Consider the following Lyapunov function:

V(e,Ψ̃ζ,Ψ̃r ,Ψ̃φ) = 1

2
eT Pe + 1

2
tr

(
Ψ̃T
ζ ΘζΨ̃ζ+ Ψ̃T

r Θr Ψ̃r + Ψ̃T
φΘφΨ̃φ

)
(A.4)

where P,Θζ, Θr , and Θφ ≻ 0. V is positive. It is zero when both the tracking error vanishes and

121

Appendix A. Appendix of Chapter 4

the gains no longer vary. Taking the time derivative of Eq.A.4 yields:

V̇ = 1

2
eT (PAr + AT

r P)e + eT PB
(
Ψ̃ζζ + Ψ̃r r (t) + Ψ̃φΦ(e)

)
+ tr

(
Ψ̃T
ζ Θζ

˙̃Ψζ + Ψ̃T
r Θr

˙̃Ψr + Ψ̃T
φΘφ

˙̃Ψφ

)
. (A.5)

From BΨ∗
r = Br , we replace B = BrΨ

∗−1
r (if Br ≻ 0, then Ψr ≻ 0 and inevitable by con-

struction (Culbertson and Schwager (2018))). Setting Θζ = Ψ∗−T
r Λ−1

ζ
, Θr = Ψ∗−T

r Λ−1
r , and

Θφ =Ψ∗−T
r Λ−1

φ , we can rewrite Eq.A.5 as:

V̇ = −1

2
eT Qe + eT PBrΨ

∗−1
r

(
Ψ̃ζζ+ Ψ̃r r (t)+ Ψ̃φΦ(e)

)
+ tr

(
Ψ̃T
ζΨ

∗−T
r Λ−1

ζ
˙̃Ψζ + Ψ̃T

r Ψ
∗−T
r Λ−1

r
˙̃Ψr Ψ̃

T
φΨ

∗−T
r Λ−1

φ
˙̃Ψφ

)
(A.6)

where matrices Λζ, Λr , and Λφ are positive definite, and tune the convergence rate of the

adaptive gains. Replacing the adaptation law Eq. (4.10) in Eq. (A.6), and taking advantage of

the trace property for square matrices tr(AB) = tr(BA), all the right hand side terms of Eq.A.6,

except the first one, vanish and the Lyapunov time derivative simplifies into: V̇ =−1
2 eT Qe.

Since V > 0 and V̇ ≤ 0 the system in Eq. (A.3) is Lyapunov stable, thus e,Ψ̃ζ,Ψ̃r , and Ψ̃φ are

bounded. As r (t) is bounded (see Section 4.3.1), the system given by Eq. (A.3) and all variables

in closed-loop remain bounded. By extension, V̈ =−eT Qė remain bounded at all time. Thus,

from Barbalat’s lemma (Khalil and Grizzle (2002)) V̇ → 0 with t →∞ and e → 0.

A.2 Function Approximation for Adaptive Control

In this section, the adaptive control algorithm assumes that system’s nonlinearities are en-

capsulated in a nonlinear function F(·) which is need to be approximated online. One way to

approximate F(·) is using universal function approximators. Neural Networks (NN), mostly in

the form of RBF neural networks, are widely adopted (Seshagiri and Khalil (2000)). One reason

of their popularity is that RBFNs mathematically represent a class of linear-in-the-weight

approximators (Chowdhary et al. (2014)). F(·) can be approximated by F(·) = Ψ∗
φΦ(·)+ ϵ∗

where ϵ∗ denotes the network reconstruction error. With ψi ∈ Rn being the NN weight

for the i th node, we can construct the weight matrix Ψ∗
φ = [ψ1 ψ2 ... ψp]. Also Φ(·) =

[φ1(·) φ2(·) ... φp (·)]T is a vector of radial basis functions in which φi (·) the i th node func-

tion is given byφi (x) = 1p
2πσi

exp

(
− ∥x−ξi ∥2

2σ2
i

)
, with ξi ∈Rn the center, andσi the corresponding

kernel width for RBF kernel of the i th node. It is noteworthy that basis function φi (·) is

not restricted to RBF kernels and one could select other types of kernels such as Cosine, or

Polynomial kernels. We adopt this methodology to estimated unmodeled nonlinearities in

multi-body systems, described in Section 4.3.1.

122

B Appendix of Chapter 5

B.1 Joint-Space Control

B.1.1 Computing the Regulation Signal

We can use any inverse kinematic (IK) solver (Feng et al. (2014)) or more advanced probabilistic

IK models (Li et al. (2016a)) for mapping the desired velocity (Eq. 5.9) to the desired state ζd
i ,

then we can use r =−B†
r Arζ

d
i to compute the regulation signal (B†

r is the pseudo inverse of

Br). Although this computation coordinates well with the rest of our control derivation, we

offer the following quadratic optimization:

min
r ,q ′

i ,q̇ ′
i

− w1

2
∥δ∥2 − w2

2
∥q ′

i∥2

s.t.



Br r + Ar [q ′
i

T , q̇ ′
i

T]T = 0

Jq̇ ′
i = ẋd

i + δ
q ′

i − q̇ ′
i d t = q i

q ′
i ∈ [q mi n , q max]

q̇ ′
i ∈ [q̇ mi n , q̇ max]

(B.1)

with ζd
i = [q ′

i
T , q̇ ′

i
T]T , and weights w1 ∈R , and w2 ∈R that tune the importance of reaching

the desired velocity and penalizing non-uniform joint angles. This optimization scheme will

be solved at every time step and works similar to other IK solvers; however, it favors a more

uniform joint configuration and smoother velocity transition, suitable for the problem at hand.

It should be noted that we assumed the solution of IK for a given ẋd
i exists, which relies on

appropriate task planning and hardware limits. The stability of DS (5.9) and IK optimization

in (B.1) guarantee that r remains bounded.

123

Appendix B. Appendix of Chapter 5

B.1.2 Stability Proof of Adaptive Control

We define e = ζ−ζd
i to be the tracking error. From Eq. 5.15 and Eq. 5.16 with the controller in

Eq. 5.17, we can construct the error dynamics as

ė = (A+BΨζ)ζ−Arζr + (BΨr −Br)r)

and if we assume that there exist Ψ∗
ζ

,and Ψ∗
r such that

A+BΨ∗
ζ = Ar

BΨ∗
r = Br (B.2)

then the error dynamics will be summarized as

ė = Ar e +BΨ̃ζζ+BΨ̃r r (B.3)

where Ψ̃ζ =Ψζ−Ψ∗
ζ

and Ψ̃r =Ψr−Ψ∗
r are gain prediction errors. The goal is to have adaptation

laws that stabilize this system and regulate prediction errors. For this, we consider the following

Lyapunov function:

V(e,Ψ̃ζ,Ψ̃r) = 1

2
eT Pe + 1

2
tr

(
Ψ̃T
ζ ΘζΨ̃ζ+ Ψ̃T

r Θr Ψ̃r
)

where Θζ and Θr ≻ 0. Differentiating in time, we have:

V̇ = 1

2
eT (PAr +AT

r P)e +eT PB
(
Ψ̃ζζ+ Ψ̃r r

)
+ tr

(
Ψ̃T
ζ Θζ

˙̃Ψζ+ Ψ̃T
r Θr

˙̃Ψr
)

(B.4)

To make the Lyapunov derivative independent of the unknown matrix B, from Eq. B.2, we

assume B = BrΨ
∗−1
r , for which the existence of Ψ∗−1

r relies on B being full rank or the system

(Eq. 5.16) being controllable. As we place the adaptive control on joint torques, the system

(Eq. 5.16) is fully controllable. Thus, this assumption is not restrictive for our controller. Given

this, we can replace Θζ and Θr with:

Θζ =Ψ∗−T
r Λ−1

ζ

Θr =Ψ∗−T
r Λ−1

r

that converts Eq. B.4 to:

V̇ =−1

2
eT Qe +eT PBrΨ

∗−1
r

(
Ψ̃ζζ+ Ψ̃r r t

)
+ tr

(
Ψ̃T
ζΨ

∗−T
r Λ−1

ζ
˙̃Ψζ+ Ψ̃T

r Ψ
∗−T
r Λ−1

r
˙̃Ψr

)
(B.5)

124

B.2 Contact-Frame Estimation

with this and, taking advantage of trace properties for square matrices tr(AB) = tr(BA), we can

introduce the following adaptation laws:

Ψ̇ζ = ˙̃Ψζ = −ΛζBT
r P e ζT −SΥζ Ψ̄ζ

Ψ̇r = ˙̃Ψr = −Λr BT
r P e r T −SΥr Ψ̄r

where Λζ and Λr are positive definite matrices designed to tune convergence rate of the

adaptive gains. Diagonal matrices S, Ψξ, Ψr are activation and regulation matrices for Eq. 5.18

as explained in Section 5.4. P with Ar satisfy PAr + AT
r P =−Q as the necessary and sufficient

stability condition for the reference model (Eq. 5.15). Putting these laws in Eq. B.5, the

Lyapunov derivative simplifies to:

V̇ =−1

2
eT Qe

since V > 0 and V̇ ≤ 0 the system in Eq. B.3 is stable from Lyapunov perspective, thus e,Ψ̃ζ,

and Ψ̃r are bounded. As r is bounded by definition, the system (Eq. B.3) is bounded as well.

Therefore, V̈ =−eT Qė will be bounded always, and from Barbalat’s lemma (Khalil and Grizzle

(2002)), this system is asymptotically stable.

B.2 Contact-Frame Estimation

We train a model to estimate, online from tactile feedback, the frame of the contact, {Ci } =
{n̂i , t̂ i , ôi }. The tactile sensor consists of a rigid core surrounded by an elastic liquid-filled

skin that provides compliance similar to the human fingertip. When forces are applied to the

contact, the skin and fluid deforms, which is detected by an array of electrodes on the surface

of the sensor core.

Model Training

We first need to collect the ground truth, consisting of (a) BioTac electrodes impedance,

ρi ∈ R19, (b) the orientation of fingertip base (sensor base), and (c) the orientation of the

contact plane. We use the OptiTrack motion-capture system to get both fingers, qO
f ,i , and

contact plane, qO
c,i , quaternions: n̂B

c,i =


−2(q ′

i ,x q ′
i ,z +q ′

i ,w q ′
i ,y)

−2(q ′
i ,y q ′

i ,z −q ′
i ,w q ′

i ,x)

1−2(q ′2
i ,w +q ′2

i ,z)

 in which q ′
i = qO

f ,i q̄O
c,i =

[q ′
i ,w , q ′

i ,x , q ′
i ,y , q ′

i ,z]. The collected dataset is represented by D = {n̂B
c,i

(m)
, ρ(m)

i }m=M
m=0 where

M is the total number of samples(here 40,000); see an example of data collection and the

recording setup in supplementary videos. The desired mapping, n̂B
c,i = fN N (ρi) is modeled

and learned by an artificial neural network (ANN) (Bishop (1995)), and by using PyTorch

library (Paszke et al. (2017)). The data is split into training (75%) and testing (25%) sets for 20

folds. The key hyper-parameters associated with the shallow neural networks are (a) activation

125

Appendix B. Appendix of Chapter 5

Table B.1: Results on training and testing the model for contact normal estimation. This model
is selected after a 20-fold cross validation with training (75%) and testing (25%) sets.

Hidden
layers

Neurons
per layer

Training set
absolute error

Test set
absolute error

2 200 1.81◦±1.40◦ 5.70◦±1.90◦

function, (b) number of hidden layers, and (c) neurons per each hidden layer. The activation

function used in the networks is ReLU, and the other hyperparameters were determined using

grid search. The model accuracy on their respective datasets are provided in Table B.1.

Using the ANN Model

The learned mapping n̂B
c,i = fN N (ρi) outputs the vector n̂B

c,i presented in the fingertip’s base

frame, which is needed to be transformed n̂B
c,i to the inertia frame {N }, fixed to the root

frame of the robotic hand. We can use the forward kinematic of fingertips given the joint

configuration q i of the i -th fingertip :

n̂i = RT
i (q i) fN N (ρi) (B.6)

matrix R i (q i) is the rotation matrix from frame {B}i to {N }. Finally, by using Eq. B.6, contact

frame {Ci } = {n̂i , t̂ i , ôi } at i -th contact point are updated with the provided frequency of tactile

sensors (60Hz for BioTac).

126

C Appendix of Chapter 6

C.1 EMG Motion Decoding

Commercially available RPHs rely on identifying motion intention using EMG. The control of

prostheses is usually achieved by placing two electrodes on two remaining antagonist muscles

of the forearm. A threshold is set on the EMG amplitude acquired at a fixed frequency to

control one degree of freedom (DoF) at the time, closing or opening the fingers by a small

increment (Mendez et al. (2021a)). This is insufficient to capture individuated finger motions

and does not allow to provide continuous control of fingers. Finer EMG-based control can

be obtained using single-finger angle regression (Liu et al. (2021)). With this method, the

RPH follows the user’s intended motion in an intuitive manner (Farina et al. (2014)). However,

continuous control of finger motion with EMG is very sensitive to noise. The smallest error

in detection of EMG intent could lead a finger to inadvertently re-open, letting the object

slip. Controlling for a stable and robust grasp when manipulating objects is crucial to restore

basic dexterity needed for everyday use. This requires ensuring fast and accurate control of

finger-object interactions.

When integrating users’ motor intentions for individuated finger control, a possible solution is

to distribute the control by automating some parts of the motor commands and relieving the

user from precise modulation (C.M. et al. (2002)). It can ease grasping through preshaping

(Došen et al. (2010)), grip force adjustment (C.M. et al. (2002), slip detection (Tura A., Lamberti

C, Davalli A (1998)), and even hand closing (Fani et al. (2016)). The Ottobock Sensorhand

Speed is a commercial example of shared control in RPHs, which automatically increases

thumb flexion during grasping in response to slippage (Ciancio et al. (2016)). A more recent

study (Zhuang et al. (2019)) showed that an EMG-based shared control strategy could ensure

safe handling of a bottle filled with content. This work leveraged an autonomous robot control

that maximized the number of contacts between the robotic hand and an object.

127

Appendix C. Appendix of Chapter 6

C.1.1 EMG Setup and Model Calibration

In each session, the subjects have to calibrate the finger decoding model and the continuous

shoulder controller. For the finger model, the subjects follow a series of single and multi-finger

movements (alternated with a rest position) on a screen performed by a hand in a virtual

environment developed in Unity. The sequence of movements is repeated 6 times, each

movement is held for 5 s with a rest position between each movement of 3 s. The rationale is to

dissociate three main states of the fingers: rest in a middle position without muscle activation,

flexed and opened positions. The total calibration time for the finger movements is 9 minutes

and 30 s. Hand kinematics is obtained from the finger angles of the virtual hand at 60 Hz and

is synchronized with the EMG acquisition system. Six DoFs are recorded from the virtual

hand that correspond to the flexion of each finger and the opposition of the thumb. Hand

kinematics is scaled between 0 (open) and 10 (close), and the rest position is set to 3 for each

DoF to mimic a resting hand pose.

To calibrate the continuous shoulder controller, the same setup is used, with the virtual hand

alternating between closed (target = 10), opened (target = 0) and a middle position (target =

5) to record 1 DoF. The subjects are asked to elevate their shoulder when the hand is flexed,

lower their shoulder when the hand is in the open position, and rest when the virtual hand is

in the middle position. Each movement is held for 5 s, alternating with a rest position for 3 s.

The sequence is repeated 6 times for a total calibration time of 1 minute and 35 s.

A sliding window of 200ms is used with a moving step of 30 ms (170 ms overlap). To eval-

uate the offline performance of the decoders, the last repetition of the sequence of move-

ments is used as a validation set. In total, 5 features are extracted to serve as input for the

decoders (Boostani and Moradi (2003)): (i) mean absolute value, (ii) waveform length (cumula-

tive length of the EMG waveform over time), (iii) maximum absolute value, (iv) zero crossings

(number of times the signal crosses zero), and (v) slope sign change (number of times the

slope of the signal changes sign).

For the finger decoder, a Multi-layer Perceptron (MLP) regressor is used to decode simultane-

ously the 6 DoFs. The features of the 6 forearm channels are used. This model already shows

the possibility to decode single finger movements (Zhuang et al. (2019); Mendez et al. (2021b);

Ngeo et al. (2014)). The model is designed by using Keras1 with Tensorflow2 backend, it has

an architecture with 1 hidden layer with 32 nodes (ReLU activation function). It is trained

with a drop rate of 0.2 using gradient descent with a batch size of 16 during 50 epochs. The

learning rate is set to 0.01 and divided by 2 every 10 epochs. Early stopping is applied if the

validation loss is not decreasing for more than 13 epochs. To take into account the delay

between the movement of the virtual hand and the actual movement of the subject, the labels

are shifted from 0 to 10 windows (delay of maximum 300 ms) through visual inspection in

order to maximize validation performance. The shoulder continuous control is obtained by

1https://github.com/fchollet/keras
2https://www.tensorflow.org/

128

https://github.com/fchollet/keras
https://www.tensorflow.org/

C.2 Optimization-Based Robotic Hand Controller

using an SVR algorithm with an RBF kernel from sklearn1. The features of the 2 shoulder EMG

channels are used. This model is chosen instead of an MLP to avoid overfitting due to the

lower amount of calibration data, since the decoding task was simpler. To maximize real-time

performance, decoded values from the MLP are smoothed by using a 3-point median filter.

Moreover, to reduce noise when the subjects are performing the tasks, predicted values are

set to 0 if the decoded value is below 2 and set to 10 if the decoded value is higher than 7.

Similar post-processing is applied on the SVR shoulder decoder with a median filter and value

clipping, if the decoded values are out of bound.

C.2 Optimization-Based Robotic Hand Controller

C.2.1 Dynamic Hand Pose Adaptation

Here, we present our algorithms for dynamically online adapting the hand pose during the

exploration process.

Modelling of the Hand

Figure C.1: Hand model and the sampled reachability map: (left) Allegro hand model, (middle)
Sampled reachability map of thumb tip, and (right) Sampled reachability map of all fingertips.

We use an Allegro hand (left) model to illustrate our algorithms. Allegro Hand (see Figure C.2) is

a 16-DoF robotic hand that has four fingers, with each one having 4 DoFs: one ab- /adduction

DOF and three extension/flexion DOFs. As a naming convention, we individually name the

thumb, the index finger, the middle finger, and the ring finger as F 1, F 2, F 3, and F 4. Moreover,

we use the superscription “tip” to indicate the phalanx of the fingertip. The geometric shape

of finger phalanges is approximated using cylinders.

We represent all contacts on fingertips in the hand reference frame, denoted as H, which is

located at the geometric center of the palm.

1https://scikit-learn.org/stable/

129

https://scikit-learn.org/stable/

Appendix C. Appendix of Chapter 6

(a) Sampled isotropic reachability index map of the
thumb

(b) Sampled isotropic reachability index map of the fin-
ger

(c) Sampled manipulability index map of the thumb (d) Sampled manipulability index map of the finger

Figure C.2: Visualization of the sampled isotropic reachability index dataset and manipulability
index dataset of thumb and finger, respectively. Each map consists of 10,000 sampled data
points.

130

C.2 Optimization-Based Robotic Hand Controller

Modelling of contact

We enable a contact point pi at an arbitrary position on the surface of the fingertip phalanx

F t i p
i , i = 1, . . . , NF , with NF being the number of fingers. For this purpose, we parameterize

the contact using cylindrical coordinates:

• αi ∈ [0,1], where αi L is the distance from the contact point to the base of the fingertip

phalanx of length L;

• ρi ∈R+, the radical distance from the contact point to the central axis of the fingertip

link;

• ψi ∈ (−π,π], the angular coordinate.

Modelling of the object

We selected five everyday objects in different shapes and sizes for experimental validation: In

the simulation, each object is represented by its 3D point cloud set.

Reachability map

The reachability map Ri is a set of all reachable Cartesian positions of the contact point

pi on the i th finger digit. We sample uniformly in each joint’s motion range and register

each joint’s corresponding Cartesian position to the joint’s reachable surface. The three-

dimensional spatial volume enclosed by the reachable surfaces of two adjacent joints is then

the reachability map of the finger link. For example, Figure C.1 illustrates the reachable

space of the thumb distal phalanx. Similarly, we can construct the reachability map set of the

entire hand, {Ri }, by iterating over all finger phalanges in hand (see Figure C.1). This map

represents the maximum reachable space of the corresponding finger phalanx and can be

used to generate the exploration target during exploration.

C.2.2 Finger motion planning

Given an estimation of the object model, the next exploration position can be determined

based on the intersection region of the reachability map of the hand and the geometric shape

of the object.

We use the vector ni ∈ R3 to indicate the surface normal direction at the contact point pi ,

and ti ∈R3 the tangential direction of the surface at pi ; both ni and ti are estimated by the

Gaussian process model (see Sec. 6.2.1).

Then the next desired contact point of the current contact point pi is calculated as:

p∗
i = pi +ds · ti , i = 1, . . . , NF , (C.1)

131

Appendix C. Appendix of Chapter 6

where ds is the exploration step length, depending on the motion range of the robotic finger.

Problem formulation

We formulate the dynamic hand pose adaptation algorithm as a constrained optimization

problem. This optimization problem aims at determining the desired exploration positions on

the surface of the target object for each fingertip. The parameters of the hand are optimized in

the framework such that the pose of the wrist is adjusted for each exploration step to improve

the manipulability and the reachable space of fingers.

Objective function: The hand pose adaptation mainly serves two objectives: (i) increase

the potential exploration region for each fingertip in the next step, and (ii) avoid moving any

fingers to a singular position during exploration. We introduce two kinematic metrics in the

corresponding aspects.

The isotropic reachability index: This index indicates whether a point inside the 3D spatial

space of the reachability map has isotropic distances to the boundary of the reachability map

in arbitrary directions:

ηi = dmin(pi ,Si)

dmax(pi ,Si)
, i = 1,2, . . . , N , (C.2)

where pi is the point of interest on the i th finger digit, dmin(pi ,Si) and dmax(pi ,Si) are the

minimum and maximum distance from pi to the surface curve of the reachability map Si ,

respectively.

We train a Gaussian process regression model for each fingertip to enable fast online compu-

tation. We use the fingertip point pi t i p as the reference point pi , to sample a set of ηi values

given joint angle configurations. Then, we train the isotropic index model for each finger and

thumb as

ηi =Gη(qi), i = 1,2, . . . , N . (C.3)

where qi ∈R4 denotes the joint configuration of the i th finger.

The manipulability index: We use the manipulability index (Yoshikawa (1985)) of each

fingertip to indicate the quality of kinematic configuration of the contact point. It is defined

as:

ωi =
√

det(J J⊺), (C.4)

where J is the Jacobian of the fingertip. A larger manipulability index value corresponds to a

kinematic configuration further away from the singularity, enabling a more flexible movement.

Similar to the isotropic index model, we use GPR to train a manipulability index model for fast

132

C.2 Optimization-Based Robotic Hand Controller

online inference given a joint angle configuration qi :

ωi =Gω(qi), i = 1,2, . . . , N . (C.5)

Formulation of objective function: Finally, we formulate our objective function for dynamic

hand pose adaptation, consisting of kinematic metrics from four aspects:

(i) ∆qT Mq∆q: damping of joint angles, to penalize excessive joint angle movements, where

∆q indicates the change in joint angles with respect to the previous configuration;

(ii) δT Mδδ: damping of slack variables, to facilitate the satisfaction of soft constraints;

(iii) ωi , i = 1, . . . , N , the manipulability indices of all fingertips;

(iv) ηi , i = 1, . . . , N , the isotropic reachability indices of all fingertips.

Therefore, the objective function is formulated as:

Q =∆qT Mq∆q+δT Mδδ+
N∑
i

1

ωi
+

N∑
i

1

ηi
(C.6)

The objective function’s value is minimized to guarantee a desired motion, and Mq and Mδ

are weighting matrices.

Equality constraints: We use quaternion qH = (q H
x , q H

y , q H
z , q H

w) to parameterize the orienta-

tion of the hand reference frameH, and qH subjects to:

∥qH∥ = 1 (C.7)

We introduce slack variables δi ∈R3 in the formulation of the equality constraints, to facilitate

the contact point pi ∈R3 to be as close as possible to the desired contact point p∗
i ∈R3 for each

finger i . We formulate this as a soft constraint, providing freedom for the planning algorithm

to compensate for model uncertainty.

pi −p∗
i +δi = 0, i = 1,2, . . . , N . (C.8)

Inequality constraints: The problem subjects to multiple nonlinear inequality constraints,

listed as follows.

We use Qi to indicate the parameter set that contains all variables parameterizing the contact

point pi :

Qi = (qH ,qi ,αi ,ψi ,φi) (C.9)

133

Appendix C. Appendix of Chapter 6

qi ∈ [q , q], ∀q ∈ Qi , i = 1, . . . , N , (C.10)

with q being a generalized parameter in Qi , q and q being the corresponding lower and upper

bound of q .

The hand palm surface must face the opposite direction as the surface normal of the local

region during exploration. Therefore: 〈
nH , nO

〉
∥nH∥∥nO∥ < 0 (C.11)

where nH is the normal direction of hand palm, and nO is the local object surface normal,

estimated based on current contact points.

We formulate nonlinear inequality constraints for all fingertips to force the hand into a

collision-free configuration. Since all fingertips are in contact and move on the object surface

during exploration, the distance between any two fingertips F t i p
i and F t i p

j must satisfy:

d(F t i p
i ,F t i p

j) > ri + r j , i = 1,2, . . . , N , j = 1,2, . . . , N , i ̸= j , (C.12)

where r is the radius of the finger phalanx (approximated as cylinder). We use a cylinder to

approximate the geometry of a fingertip digit. Hence, we calculate the distance between two

finger digits as a sequence of N pairwise distances between two uniformly-sampled points

on the central axis of each cylinder. Therefore, d(F t i p
i ,F t i p

j) ∈RN , and dn = d(ci ,c j) > ri + r j ,

n = 1, . . . , N , where ci and c j represent sampled points on the central axis of F t i p
i and F t i p

j ,

respectively.

Optimization variables: The optimization variables Θ consist of joint angles of both the wrist

and the fingers.

• Joint angles qi and cylindrical coordinates (αi ,ρi ,ψi) that parameterize all contact

points pi , i = 1,2, . . . , N ;

• Hand pose position pH ∈R3 and orientation qH ∈R4 (quaternion);

• Slack variables used in soft constraints, δi ∈R3 is the slack variable associated with pi .

Problem formulation: To summarize, we formulate the hand pose adaptation problem as

follows:

Θ∗ = argmin
Θ

Q

subject to (C .7), (C .8), (C .10), (C .11), (C .12)
(C.13)

134

C.2 Optimization-Based Robotic Hand Controller

Figure C.3: Exploration of the experimental object bottle by following four different experi-
mental protocols. Each row represents the exploration following one protocol. From top to
bottom: Exp.I, II, III, and IV. Figures ranged in each column are taken at the same time step: 0

(initial), 100, 200, 300, and 400. The trajectories of F t i p
1 , F t i p

2 , F t i p
3 , and F t i p

4 are illustrated in
red, green, blue, and yellow colors, respectively.

C.2.3 Validation of Dynamic Hand Pose Adaptation

In this section, we explain the experimental steps.

Initialization

At the beginning of the exploration process, the target object is being placed on a table surface,

in front of the robotic system. We consider the region on the table surface as the region of

interest (ROI) for the exploration task. The robotic hand then opens up fingers, and moves

toward the center of the workspace.

135

Appendix C. Appendix of Chapter 6

Table C.1: Experiments for evaluation of the proposed dynamic hand pose adaptation algo-
rithm.

Experiment
Type

Hand Pose
Regulation

Finger Kinematics
Optimization

I ✗ ✗

II ✗ ✓

III ✓ ✗

IV ✓ ✓

Establishing contact

The robotic hand opens fingers, moves toward the ROI, until all fingers detected contacts.

These contact points are used for updating the GPR model.

In the simulation experiment, we simply selected points from the object point cloud, which

are closest to the initial spatial position of each fingertip, respectively. Then, our online hand

pose adaptation algorithm solves for a feasible configuration for the hand pose to achieve the

initial contacts. This guarantees the same initial condition for all simulation scenarios, hence

easier for us to compare the performance in subsequent experimental steps.

Online exploration

At every step, the current detected contact points are used to update the GPR model; the GPR

model then generates the surface normal vector ni and ti at the contact point of each fingertip,

which are then used to generate the desired contact points for the next exploration step (see

Eq. C.1). In simulation, we take advantage of the object point cloud to assist the evaluation

of our algorithm. If the calculated next contact points belong to the object point cloud, we

simply use these points as targets. Otherwise, we select the nearest neighbor of the desired

contact points from the object point cloud. If the desired target point can be successfully

achieved by solving the optimization problem, we label the point as explored. Otherwise, the

actual position of the fingertip after the exploration step is registered in the object point cloud.

The robotic hand iterates this exploration step, until the object has been extensively explored,

or the uncertainty of the constructed GP model has dropped below a threshold.

Procedure

Our proposed dynamic hand pose adaptation algorithm consists of two main aspects: (1) the

regulation of hand pose, and (2) the improvement of finger kinematics. Therefore, we design

four types of experiments to validate the effectiveness of our proposed algorithm, summarized

in Table C.1.

136

C.2 Optimization-Based Robotic Hand Controller

In the case where the regulation of hand pose is absent, we consider the hand pose can move

to different spatial positions, but its orientation remains constant as the initial state. For

this purpose, we simply exclude the quaternion used for describing hand poses from the

optimization variable set.

When the optimization of finger kinematics is disabled, we remove the terms of manipulability

(
∑N

i ωi), and isotropic reachability index (
∑N

i ηi) from the objective function (Eq. C.6).

C.2.4 Results

We conducted experiments by exploring a bottle, following each of these four experimental

types. Figure C.3 shows the experimental results.

In the first row (see Figure C.3(I-1) to (I-5)), the hand explored the object surface with neither

hand pose regulation nor finger kinematics optimization. The hand collided with the object

model early within 100 steps (see Figure C.3(I-2)); and this collision exist in almost all steps in

the remaining exploration. Moreover, in some steps, the fingers failed to establish contacts

on the object surface, indicated by the scattered points outside the object surface model (see

Figure C.3(I-5)).

The figures in the second row (see Figure C.3(II-1) to (II-5)) correspond to the results from

experiment type II. In this experiment, the hand pose is not regulated, but the kinematics of

fingers are optimized in each experimental step. In comparison to experiment type I, it is rare

that the fingers will collide with the explored object model. Nevertheless, the hand palm still

collides with the experimental object model (see Figure C.3(II-3) and (II-4)).

In experiment type III (see Figure C.3(III-1) to (III-5)), the hand pose was constantly regulated

in each experimental step. Therefore, the hand does not collide with the object point cloud

anymore. Instead, the orientation of the palm keeps changing to adapt to the local surface

curvature of the explored object. As the optimization of finger kinematics is still absent, in

some exploration steps (see Figure C.3(III-2) and (III-4)), the fingers either collide with the

object model, or close to singular configuration (see the thumb in Figure C.3(III-2)).

Hand in experiment type IV was controlled by our proposed dynamic hand pose adaptation

algorithm. The robotic hand was able to establish stable, collision-free contacts on the surface

of the object in most steps. Moreover, all fingers contacted the object in natural configurations

that are far from any joint singularities.

Finally, we applied our proposed algorithm to explore different experimental objects. Fig-

ure C.4 illustrate the exploration process.

In most cases, the hand was able to adapt its orientation to the object local curvature, with all

fingertips in contact with the object surface. Collision between hand and object still exists in

certain cases, mainly due to the abrupt change of the object’s local curvature. For example, at

137

Appendix C. Appendix of Chapter 6

Figure C.4: Simulated exploration of all experimental objects. From top to bottom: bunny,
bowl, cup, mug. Figures in each row show the hand configuration of exploring one object,
taken at different time steps. From left to right: initial state, steps of 100, 200, 300, and 400. The

trajectories of F t i p
1 , F t i p

2 , F t i p
3 , and F t i p

4 are illustrated in red, green, blue, and yellow colors,
respectively.

the edge of the cup, or close to the handle of the mug.

138

Bibliography

Abe, Y., Da Silva, M., and Popović, J. (2007). Multiobjective control with frictional contacts. In

Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation,

pages 249–258.

Ajallooeian, M., van den Kieboom, J., Mukovskiy, A., Giese, M. A., and Ijspeert, A. J. (2013).

A general family of morphed nonlinear phase oscillators with arbitrary limit cycle shape.

Physica D: Nonlinear Phenomena, 263:41–56.

Anderson, B. D. and Moore, J. B. (2007). Optimal control: linear quadratic methods. Courier

Corporation.

Andrychowicz, O. M., Baker, B., Chociej, M., Jozefowicz, R., McGrew, B., Pachocki, J., Petron, A.,

Plappert, M., Powell, G., Ray, A., et al. (2020). Learning dexterous in-hand manipulation.

The International Journal of Robotics Research, 39(1):3–20.

Azimi, V. et al. (2019). Model-based adaptive control of transfemoral prostheses: Theory,

simulation, and experiments. IEEE Trans. on Systems, Man, and Cybernetics: Systems,

51(2):1174–1191.

Baerlocher, P. and Boulic, R. (2004). An inverse kinematics architecture enforcing an arbitrary

number of strict priority levels. The visual computer, 20(6):402–417.

Bai, Y. and Liu, C. K. (2014). Dexterous manipulation using both palm and fingers. In 2014

IEEE International Conference on Robotics and Automation (ICRA), pages 1560–1565. IEEE.

Belongie, S. et al. (1999). Rodrigues’ rotation formula. From MathWorld–A Wolfram Web

Resource, created by Eric W. Weisstein. http://mathworld. wolfram. com/RodriguesRotation-

Formula. html.

Bensmaia, S. J., Tyler, D. J., and Micera, S. (2020). Restoration of sensory information via bionic

hands.

Berenson, D., Srinivasa, S., and Kuffner, J. (2011). Task space regions: A framework for

pose-constrained manipulation planning. The International Journal of Robotics Research,

30(12):1435–1460.

139

Bibliography

Bicchi, A. (2000). Hands for dexterous manipulation and robust grasping: A difficult road

toward simplicity. IEEE Transactions on robotics and automation, 16(6):652–662.

Bierlaire, M. (2015). Optimization: Principles and Algorithms. EPFL Press, Lausanne.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University Press, Inc.,

USA.

Björkman, M., Bekiroglu, Y., Högman, V., and Kragic, D. (2013). Enhancing visual perception

of shape through tactile glances. In 2013 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 3180–3186. IEEE.

Boostani, R. and Moradi, M. H. (2003). Evaluation of the forearm EMG signal features for the

control of a prosthetic hand. Physiological Measurement, 24(2):309–319.

Bouyarmane, K. and Kheddar, A. (2011). Multi-contact stances planning for multiple agents.

In 2011 IEEE International Conference on Robotics and Automation, pages 5246–5253. IEEE.

Bouyarmane, K. and Kheddar, A. (2017). On weight-prioritized multitask control of humanoid

robots. IEEE Trans. on Automatic Control, 63(6):1632–1647.

Buchli, J., Kalakrishnan, M., Mistry, M., Pastor, P., and Schaal, S. (2009). Compliant quadruped

locomotion over rough terrain. In 2009 IEEE/RSJ international conference on Intelligent

robots and systems, pages 814–820. IEEE.

Burdet, E. and Codourey, A. (1998a). Evaluation of parametric and nonparametric nonlinear

adaptive controllers. Robotica, 16(1):59–73.

Burdet, E. and Codourey, A. (1998b). Evaluation of parametric and nonparametric nonlinear

adaptive controllers. Robotica, 16(1):59–73.

Caccavale, F. and Uchiyama, M. (2016). Cooperative manipulation. In Springer Handbook of

Robotics, pages 989–1006. Springer.

Calandra, R., Ivaldi, S., Deisenroth, M. P., Rueckert, E., and Peters, J. (2015). Learning inverse

dynamics models with contacts. In 2015 IEEE International Conference on Robotics and

Automation (ICRA), pages 3186–3191. IEEE.

Camoriano, R., Traversaro, S., Rosasco, L., Metta, G., and Nori, F. (2016). Incremental semi-

parametric inverse dynamics learning. 2016 IEEE International Conference on Robotics and

Automation (ICRA), pages 544–550.

Castiello, U. (2005). The neuroscience of grasping. Nature Reviews Neuroscience 2005 6:9,

6(9):726–736.

Chatzilygeroudis, K. and Mouret, J.-B. (2018). Using parameterized black-box priors to scale up

model-based policy search for robotics. In 2018 IEEE International Conference on Robotics

and Automation (ICRA), pages 1–9. IEEE.

140

Bibliography

Chatzilygeroudis, K., Rama, R., Kaushik, R., Goepp, D., Vassiliades, V., and Mouret, J.-B. (2017).

Black-box data-efficient policy search for robotics. In 2017 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), pages 51–58. IEEE.

Chatzilygeroudis, K., Vassiliades, V., Stulp, F., Calinon, S., and Mouret, J.-B. (2019). A survey

on policy search algorithms for learning robot controllers in a handful of trials. IEEE

Transactions on Robotics.

Chatzilygeroudis, K., Vassiliades, V., Stulp, F., Calinon, S., and Mouret, J.-B. (2020). A survey

on policy search algorithms for learning robot controllers in a handful of trials. IEEE

Transactions on Robotics, 36(2):328–347.

Chavan-Dafle, N. and Rodriguez, A. (2015). Prehensile pushing: In-hand manipulation with

push-primitives. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 6215–6222. IEEE.

Chavan-Dafle, N. and Rodriguez, A. (2018). Stable prehensile pushing: In-hand manipulation

with alternating sticking contacts. In 2018 IEEE International Conference on Robotics and

Automation (ICRA), pages 254–261. IEEE.

Chebotar, Y., Handa, A., Makoviychuk, V., Macklin, M., Issac, J., Ratliff, N., and Fox, D. (2019).

Closing the sim-to-real loop: Adapting simulation randomization with real world experience.

In 2019 International Conference on Robotics and Automation (ICRA), pages 8973–8979.

IEEE.

Chen, C., Liu, Z., Zhang, Y., and Xie, S. (2017). Coordinated motion/force control of multi-

arm robot with unknown sensor nonlinearity and manipulated object’s uncertainty. IEEE

Transactions on Systems, Man, and Cybernetics: Systems, 47(7):1123–1134.

Chowdhary, G., Kingravi, H. A., How, J. P., and Vela, P. A. (2014). Bayesian nonparametric

adaptive control using gaussian processes. IEEE transactions on neural networks and

learning systems, 26(3):537–550.

Chung, S.-J. and Slotine, J.-J. E. (2009). Cooperative robot control and concurrent synchro-

nization of lagrangian systems. IEEE transactions on Robotics, 25(3):686–700.

Ciancio, A. L., Cordella, F., Barone, R., Romeo, R. A., Bellingegni, A. D., Sacchetti, R., Davalli,

A., Di Pino, G., Ranieri, F., Di Lazzaro, V., et al. (2016). Control of prosthetic hands via the

peripheral nervous system. Frontiers in neuroscience, 10:116.

Cler, M. J., Michener, C. M., and Stepp, C. E. (2014). Discrete vs. continuous surface elec-

tromyographic interface control. 2014 36th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, EMBC 2014, pages 4374–4377.

C.M., L., P.H., C., B., H., and K., E. (2002). Intelligent multifunction myoelectric control of hand

prostheses. Journal of Medical Engineering and Technology, 26(4):139–146.

141

Bibliography

Collette, C., Micaelli, A., Andriot, C., and Lemerle, P. (2007). Dynamic balance control of

humanoids for multiple grasps and non coplanar frictional contacts. In 2007 7th IEEE-RAS

International Conference on Humanoid Robots, pages 81–88. IEEE.

Coros, S., Beaudoin, P., and Van de Panne, M. (2010). Generalized biped walking control. ACM

Transactions on Graphics (TOG), 29(4):1–9.

Craig, J. J. (1989). Introduction to Robotics: Mechanics and Control. Addison-Wesley Longman

Publishing Co., Inc., USA, 2nd edition.

Culbertson, P. and Schwager, M. (2018). Decentralized adaptive control for collaborative

manipulation. In 2018 IEEE International Conference on Robotics and Automation (ICRA),

pages 278–285. IEEE.

Culbertson, P., Slotine, J.-J., and Schwager, M. (2021). Decentralized adaptive control for

collaborative manipulation of rigid bodies. IEEE Trans. on Robotics, 37(6):1906–1920.

Cully, A., Chatzilygeroudis, K., Allocati, F., and Mouret, J.-B. (2018). Limbo: A flexible high-

performance library for gaussian processes modeling and data-efficient optimization. Jour-

nal of Open Source Software, 3(26).

Dafle, N. C., Rodriguez, A., Paolini, R., Tang, B., Srinivasa, S. S., Erdmann, M., Mason, M. T.,

Lundberg, I., Staab, H., and Fuhlbrigge, T. (2014). Extrinsic dexterity: In-hand manipulation

with external forces. In 2014 IEEE International Conference on Robotics and Automation

(ICRA), pages 1578–1585. IEEE.

D’Anna, E., Valle, G., Mazzoni, A., Strauss, I., Iberite, F., Patton, J., Petrini, F. M., Raspopovic, S.,

Granata, G., Iorio, R. D., Controzzi, M., Cipriani, C., Stieglitz, T., Rossini, P. M., and Micera, S.

(2019). A closed-loop hand prosthesis with simultaneous intraneural tactile and position

feedback. Science Robotics, 4(27).

De Lasa, M., Mordatch, I., and Hertzmann, A. (2010). Feature-based locomotion controllers.

ACM Transactions on Graphics (TOG), 29(4):1–10.

Deisenroth, M. P., Fox, D., and Rasmussen, C. E. (2013). Gaussian processes for data-efficient

learning in robotics and control. IEEE transactions on pattern analysis and machine intelli-

gence, 37(2):408–423.

Dollar, A. M. and Howe, R. D. (2007). Simple, robust autonomous grasping in unstructured en-

vironments. In Proceedings 2007 IEEE International Conference on Robotics and Automation,

pages 4693–4700. IEEE.

Doosti, B., Naha, S., Mirbagheri, M., and Crandall, D. J. (2020). Hope-net: A graph-based model

for hand-object pose estimation. In Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pages 6608–6617.

142

Bibliography

Došen, S., Cipriani, C., Kostić, M., Controzzi, M., Carrozza, M. C., and Popovič, D. B. (2010).

Cognitive vision system for control of dexterous prosthetic hands: Experimental evaluation.

Journal of NeuroEngineering and Rehabilitation, 7(1):1–14.

Dragiev, S., Toussaint, M., and Gienger, M. (2011). Gaussian process implicit surfaces for

shape estimation and grasping. In 2011 IEEE International Conference on Robotics and

Automation, pages 2845–2850. IEEE.

Driess, D., Englert, P., and Toussaint, M. (2017). Active learning with query paths for tactile

object shape exploration. In 2017 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 65–72. IEEE.

Driess, D., Hennes, D., and Toussaint, M. (2019). Active multi-contact continuous tactile

exploration with gaussian process differential entropy. In 2019 International Conference on

Robotics and Automation (ICRA), pages 7844–7850. IEEE.

Du, Z., Iravani, P., and Sahinkaya, M. N. (2014). A new approach to design optimal excitation

trajectories for parameter estimation of robot dynamics. In 2014 UKACC International

Conference on Control (CONTROL), pages 389–394.

Ernesti, J., Righetti, L., Do, M., Asfour, T., and Schaal, S. (2012). Encoding of periodic and

their transient motions by a single dynamic movement primitive. In 2012 12th IEEE-RAS

International Conference on Humanoid Robots (Humanoids 2012), pages 57–64. IEEE.

Escande, A., Mansard, N., and Wieber, P.-B. (2014). Hierarchical quadratic programming: Fast

online humanoid-robot motion generation. The International Journal of Robotics Research,

33(7):1006–1028.

Fani, S., Bianchi, M., Jain, S., Neto, J. S. P., Boege, S., Grioli, G., Bicchi, A., and Santello, M.

(2016). Assessment of myoelectric controller performance and kinematic behavior of a novel

soft synergy-inspired robotic hand for prosthetic applications. Frontiers in Neurorobotics,

10(October):1–15.

Farina, D., Jiang, N., Rehbaum, H., Holobar, A., Graimann, B., Dietl, H., and Aszmann, O. C.

(2014). The extraction of neural information from the surface emg for the control of upper-

limb prostheses: emerging avenues and challenges. IEEE Transactions on Neural Systems

and Rehabilitation Engineering, 22(4):797–809.

Feix, T., Romero, J., Schmiedmayer, H.-B., Dollar, A. M., and Kragic, D. (2016). The grasp

taxonomy of human grasp types. IEEE Transactions on Human-Machine Systems, 46(1):66–

77.

Feng, S., Whitman, E., Xinjilefu, X., and Atkeson, C. G. (2014). Optimization based full body

control for the atlas robot. In 2014 IEEE-RAS International Conference on Humanoid Robots,

pages 120–127. IEEE.

143

Bibliography

Fox, E. B., Sudderth, E. B., Jordan, M. I., and Willsky, A. S. (2008). An hdp-hmm for systems with

state persistence. In Proceedings of the 25th international conference on Machine learning,

pages 312–319. ACM.

Furukawa, N., Namiki, A., Taku, S., and Ishikawa, M. (2006). Dynamic regrasping using a

high-speed multifingered hand and a high-speed vision system. In Proceedings 2006 IEEE

International Conference on Robotics and Automation, 2006. ICRA 2006., pages 181–187.

IEEE.

Gams, A., Ude, A., and Morimoto, J. (2015). Accelerating synchronization of movement

primitives: Dual-arm discrete-periodic motion of a humanoid robot. In 2015 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 2754–2760. IEEE.

Gandler, G. Z., Ek, C. H., Björkman, M., Stolkin, R., and Bekiroglu, Y. (2020). Object shape

estimation and modeling, based on sparse gaussian process implicit surfaces, combining

visual data and tactile exploration. Robotics and Autonomous Systems, 126:103433.

Gautier, M. and Khalil, W. (1991). Exciting trajectories for the identification of base inertial

parameters of robots. In [1991] Proceedings of the 30th IEEE Conference on Decision and

Control, pages 494–499 vol.1.

Gerardo-Castro, M. P., Peynot, T., and Ramos, F. (2015). Laser-radar data fusion with gaussian

process implicit surfaces. In Field and Service Robotics, pages 289–302. Springer.

Gijsberts, A. and Metta, G. (2012). Real-time model learning using incremental sparse spectrum

gaussian process regression. Neural Networks.

Goodwin, G. C. and Sin, K. S. (2014). Adaptive filtering prediction and control. Courier

Corporation.

Gribovskaya, E., Khansari Zadeh, S. M., and Billard, A. (2011). Learning non-linear multivariate

dynamics of motion in robotic manipulators. International Journal of Robotics Research,

30:80–117.

Han, L. and Trinkle, J. C. (1998). Dextrous manipulation by rolling and finger gaiting. In

Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.

98CH36146), volume 1, pages 730–735. IEEE.

Hang, K., Bircher, W. G., Morgan, A. S., and Dollar, A. M. (2020). Hand–object configuration

estimation using particle filters for dexterous in-hand manipulation. The International

Journal of Robotics Research, 39(14):1760–1774.

Hershey, J. R. and Olsen, P. A. (2007). Approximating the kullback leibler divergence between

gaussian mixture models. In 2007 IEEE International Conference on Acoustics, Speech and

Signal Processing-ICASSP’07, volume 4, pages IV–317. IEEE.

Higham, N. J. (1990). Analysis of the cholesky decomposition of a semi-definite matrix.

144

Bibliography

Hitzler, K., Meier, F., Schaal, S., and Asfour, T. (2019). Learning and adaptation of inverse

dynamics models: A comparison. In 2019 IEEE-RAS 19th International Conference on

Humanoid Robots (Humanoids), pages 491–498. IEEE.

Hogan, N. and Buerger, S. P. (2018). Impedance and interaction control. In Robotics and

automation handbook, pages 375–398. CRC press.

Hollerbach, J., Khalil, W., and Gautier, M. (2016). Model identification. In Springer handbook

of robotics, pages 113–138. Springer.

Ioannou, P. A. and Sun, J. (2012). Robust adaptive control. Courier Corporation.

Kaboli, M., Feng, D., Yao, K., Lanillos, P., and Cheng, G. (2017). A tactile-based framework for

active object learning and discrimination using multimodal robotic skin. IEEE Robotics and

Automation Letters, 2(4):2143–2150.

Karayiannidis, Y., Smith, C., Kragic, D., et al. (2016). Adaptive control for pivoting with visual

and tactile feedback. In 2016 IEEE International Conference on Robotics and Automation

(ICRA), pages 399–406. IEEE.

Kastritsi, T., Dimeas, F., and Doulgeri, Z. (2018). Progressive automation with dmp synchroniza-

tion and variable stiffness control. IEEE Robotics and Automation Letters, 3(4):3789–3796.

Khadivar, F., Gupta, S., Amanhoud, W., and Billard, A. (2021a). Efficient configuration explo-

ration in inverse dynamics acquisition of robotic manipulators. In 2021 IEEE International

Conference on Robotics and Automation (ICRA), pages 1934–1941. IEEE.

Khadivar, F., Lauzana, I., and Billard, A. (2021b). Learning dynamical systems with bifurcations.

Robotics and Autonomous Systems, 136:103700.

Khalil, H. K. and Grizzle, J. W. (2002). Nonlinear systems, volume 3. Prentice hall Upper Saddle

River, NJ.

Khansari-Zadeh, S. M. and Billard, A. (2011). Learning stable nonlinear dynamical systems

with gaussian mixture models. IEEE Transactions on Robotics, 27(5):943–957.

Ko, J. and Fox, D. (2008). Gp-bayesfilters: Bayesian filtering using gaussian process prediction

and observation models. In IROS.

Kocijan, J., Murray-Smith, R., Rasmussen, C. E., and Girard, A. (2004). Gaussian process model

based predictive control. In Proceedings of the 2004 American Control Conference, volume 3,

pages 2214–2219 vol.3.

Kontoudis, G. P., Liarokapis, M., and Vamvoudakis, K. G. (2019). An Adaptive, Humanlike Robot

Hand with Selective Interdigitation: Towards Robust Grasping and Dexterous, In-Hand

Manipulation. IEEE-RAS International Conference on Humanoid Robots, 2019-Octob:251–

258.

145

Bibliography

Kronander, K. and Billard, A. (2015). Passive interaction control with dynamical systems. IEEE

Robotics and Automation Letters, 1(1):106–113.

Kumar, V., Gupta, A., Todorov, E., and Levine, S. (2016). Learning dexterous manipulation

policies from experience and imitation. arXiv preprint arXiv:1611.05095.

KyungYou, K.-J., Rhee, K.-W., and Shin, H.-C. (2010). Finger Motion Decoding Using EMG

Signals Corresponding Various Arm Postures. Experimental Neurobiology, 19(1):54.

Lee, B., Zhang, C., Huang, Z., and Lee, D. D. (2019). Online continuous mapping using gaussian

process implicit surfaces. In 2019 International Conference on Robotics and Automation

(ICRA), pages 6884–6890. IEEE.

Lee, J., Grey, M. X., Ha, S., Kunz, T., Jain, S., Ye, Y., Srinivasa, S. S., Stilman, M., and Liu, C. K.

(2018). DART: Dynamic animation and robotics toolkit. The Journal of Open Source Software,

3(22):500.

Lee, S. H., Suh, I. H., Calinon, S., and Johansson, R. (2015). Autonomous framework for

segmenting robot trajectories of manipulation task. Autonomous robots, 38(2):107–141.

Li, M., Bekiroglu, Y., Kragic, D., and Billard, A. (2014). Learning of grasp adaptation through

experience and tactile sensing. In 2014 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 3339–3346. Ieee.

Li, M., Hang, K., Kragic, D., and Billard, A. (2016a). Dexterous grasping under shape uncertainty.

Robotics and Autonomous Systems, 75:352–364.

Li, Z., Deng, J., Lu, R., Xu, Y., Bai, J., and Su, C.-Y. (2016b). Trajectory-tracking control of mobile

robot systems incorporating neural-dynamic optimized model predictive approach. IEEE

Transactions on Systems, Man, and Cybernetics: Systems, 46(6):740–749.

Li, Z., Ge, Q., Ye, W., and Yuan, P. (2016c). Dynamic balance optimization and control of

quadruped robot systems with flexible joints. IEEE Transactions on Systems, Man, and

Cybernetics: Systems, 46(10):1338–1351.

Limón, D. et al. (2006). On the stability of constrained mpc without terminal constraint. IEEE

Trans. on automatic control, 51(5):832–836.

Liu, Y., Zhang, S., and Gowda, M. (2021). NeuroPose: 3D hand pose tracking using EMG

wearables. The Web Conference 2021 - Proceedings of the World Wide Web Conference, WWW

2021, pages 1471–1482.

Lober, R., Padois, V., and Sigaud, O. (2016). Efficient reinforcement learning for humanoid

whole-body control. In 2016 IEEE-RAS 16th International Conference on Humanoid Robots

(Humanoids), pages 684–689. IEEE.

Meier, F., Hennig, P., and Schaal, S. (2014). Incremental local gaussian regression. In Advances

in Neural Information Processing Systems, pages 972–980.

146

Bibliography

Meier, F., Kappler, D., Ratliff, N., and Schaal, S. (2016). Towards robust online inverse dynamics

learning. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 4034–4039. IEEE.

Meier, F., Kappler, D., Ratliff, N., and Schaal, S. (2016). Towards robust online inverse dynamics

learning. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 4034–4039.

Melchiorri, C. and Kaneko, M. (2016). Robot hands. In Springer Handbook of Robotics, pages

463–480. Springer.

Mendez, V., Iberite, F., Shokur, S., and Micera, S. (2021a). Current solutions and future trends

for robotic prosthetic hands. Annual Review of Control, Robotics, and Autonomous Systems,

4:595–627.

Mendez, V., Pollina, L., Artoni, F., and Micera, S. (2021b). Deep learning with convolutional

neural network for proportional control of finger movements from surface EMG recordings.

International IEEE/EMBS Conference on Neural Engineering, NER, 2021-May:1074–1078.

Mirrazavi Salehian, S. S., Figueroa, N., and Billard, A. (2018). A unified framework for co-

ordinated multi-arm motion planning. The International Journal of Robotics Research,

37(10):1205–1232.

Modugno, V., Neumann, G., Rueckert, E., Oriolo, G., Peters, J., and Ivaldi, S. (2016). Learning

soft task priorities for control of redundant robots. In 2016 IEEE International Conference

on Robotics and Automation (ICRA), pages 221–226. IEEE.

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.

Nakanishi, J., Cory, R., Mistry, M., Peters, J., and Schaal, S. (2008). Operational space control:

A theoretical and empirical comparison. The International Journal of Robotics Research,

27(6):737–757.

Neumann, K. and Steil, J. J. (2015). Learning robot motions with stable dynamical systems

under diffeomorphic transformations. Robotics and Autonomous Systems, 70:1–15.

Ngeo, J. G., Tamei, T., and Shibata, T. (2014). Continuous and simultaneous estimation

of finger kinematics using inputs from an EMG-to-muscle activation model. Journal of

NeuroEngineering and Rehabilitation, 11(1):1–14.

Nguyen-Tuong, D. and Peters, J. (2010). Using model knowledge for learning inverse dynamics.

In 2010 IEEE international conference on robotics and automation, pages 2677–2682. IEEE.

Nguyen-Tuong, D. and Peters, J. (2010). Using model knowledge for learning inverse dynamics.

In 2010 IEEE International Conference on Robotics and Automation, pages 2677–2682.

Nguyen-Tuong, D. and Peters, J. (2011). Model learning for robot control: a survey. Cognitive

processing, 12(4):319–340.

147

Bibliography

Nguyen-Tuong, D., Peters, J., Seeger, M., and Schölkopf, B. (2008a). Learning inverse dynamics:

A comparison. In Advances in Computational Intelligence and Learning: Proceedings of

the European Symposium on Artificial Neural Networks, pages 13–18, Evere, Belgium. Max-

Planck-Gesellschaft, d-side.

Nguyen-Tuong, D., Peters, J. R., and Seeger, M. (2009). Local gaussian process regression for

real time online model learning. In Advances in neural information processing systems,

pages 1193–1200.

Nguyen-Tuong, D., Seeger, M., and Peters, J. (2008b). Computed torque control with nonpara-

metric regression models. 2008 American Control Conference, pages 212–217.

Nguyen-Tuong, D., Seeger, M., and Peters, J. (2008c). Computed torque control with nonpara-

metric regression models. In 2008 American Control Conference, pages 212–217. IEEE.

Niekum, S., Osentoski, S., Konidaris, G., and Barto, A. G. (2012). Learning and generaliza-

tion of complex tasks from unstructured demonstrations. In 2012 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 5239–5246. IEEE.

Ogata, K. and Yang, Y. (2002). Modern control engineering, volume 4. Prentice hall India.

Okamura, A. M., Smaby, N., and Cutkosky, M. R. (2000). An overview of dexterous manipulation.

In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics

and Automation. Symposia Proceedings (Cat. No. 00CH37065), volume 1, pages 255–262.

IEEE.

Ortega, R. and Spong, M. W. (1989). Adaptive motion control of rigid robots: A tutorial.

Automatica, 25(6):877–888.

Ottenhaus, S., Renninghoff, D., Grimm, R., Ferreira, F., and Asfour, T. (2019). Visuo-haptic

grasping of unknown objects based on gaussian process implicit surfaces and deep learning.

In 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids), pages

402–409. IEEE.

Ozawa, R. and Tahara, K. (2017). Grasp and dexterous manipulation of multi-fingered robotic

hands: a review from a control view point. Advanced Robotics, 31(19-20):1030–1050.

Park, K. H., Suk, H. I., and Lee, S. W. (2016). Position-independent decoding of movement

intention for proportional myoelectric interfaces. IEEE Transactions on Neural Systems and

Rehabilitation Engineering, 24(9):928–939.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A.,

Antiga, L., and Lerer, A. (2017). Automatic differentiation in pytorch. In NIPS-W.

Perrin, N. and Schlehuber-Caissier, P. (2016). Fast diffeomorphic matching to learn globally

asymptotically stable nonlinear dynamical systems. Systems & Control Letters, 96:51–59.

148

Bibliography

Pfanne, M., Chalon, M., Stulp, F., Ritter, H., and Albu-Schäffer, A. (2020). Object-level

impedance control for dexterous in-hand manipulation. IEEE Robotics and Automation

Letters, 5(2):2987–2994.

Prattichizzo, D. and Trinkle, J. C. (2016). Grasping. In Springer handbook of robotics, pages

955–988. Springer.

Presse, C. and Gautier, M. (1993). New criteria of exciting trajectories for robot identification.

In [1993] Proceedings IEEE International Conference on Robotics and Automation, pages

907–912 vol.3.

Quinonero-Candela, J. and Rasmussen, C. E. (2005). A unifying view of sparse approximate

gaussian process regression. The Journal of Machine Learning Research, 6:1939–1959.

Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schulman, J., Todorov, E., and Levine, S.

(2017). Learning complex dexterous manipulation with deep reinforcement learning and

demonstrations. arXiv preprint arXiv:1709.10087.

Rana, M. A., Li, A., Fox, D., Boots, B., Ramos, F., and Ratliff, N. (2020). Euclideanizing

flows: Diffeomorphic reduction for learning stable dynamical systems. arXiv preprint

arXiv:2005.13143.

Rasmussen, C. E. (2003). Gaussian processes in machine learning. In Summer school on

machine learning, pages 63–71. Springer.

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian processes for machine learning, volume 1.

MIT press Cambridge.

Righetti, L. and Schaal, S. (2012). Quadratic programming for inverse dynamics with optimal

distribution of contact forces. In 2012 12th IEEE-RAS International Conference on Humanoid

Robots (Humanoids 2012), pages 538–543. IEEE.

Roa, M. A. and Suárez, R. (2015). Grasp quality measures: review and performance. Au-

tonomous robots, 38(1):65–88.

Rognini, G., Sengül, A., Aspell, J., Salomon, R., Bleuler, H., and Blanke, O. (2013). Visuo-

tactile integration and body ownership during self-generated action. European Journal of

Neuroscience, 37(7):1120–1129.

Salini, J., Padois, V., and Bidaud, P. (2011). Synthesis of complex humanoid whole-body

behavior: A focus on sequencing and tasks transitions. In 2011 IEEE International Conference

on Robotics and Automation, pages 1283–1290. IEEE.

Schiilkop, P., Burgest, C., and Vapnik, V. (1995). Extracting support data for a given task. In

Proceedings, First International Conference on Knowledge Discovery & Data Mining. AAAI

Press, Menlo Park, CA, pages 252–257.

149

Bibliography

Schölkopf, B., Simard, P., Smola, A. J., and Vapnik, V. (1998). Prior knowledge in support vector

kernels. In Advances in neural information processing systems, pages 640–646.

Seshagiri, S. and Khalil, H. K. (2000). Output feedback control of nonlinear systems using rbf

neural networks. IEEE Transactions on Neural Networks, 11(1):69–79.

Sharifi, M. et al. (2021). Adaptive cpg-based gait planning with learning-based torque estima-

tion and control for exoskeletons. IEEE Robotics and Automation Letters, 6(4):8261–8268.

Shi, J., Woodruff, J. Z., Umbanhowar, P. B., and Lynch, K. M. (2017). Dynamic in-hand sliding

manipulation. IEEE Transactions on Robotics, 33(4):778–795.

Sodhi, P., Kaess, M., Mukadam, M., and Anderson, S. (2021). Learning tactile models for factor

graph-based estimation. In 2021 IEEE International Conference on Robotics and Automation

(ICRA), pages 13686–13692. IEEE.

Sommer, N. and Billard, A. (2016). Multi-contact haptic exploration and grasping with tactile

sensors. Robotics and autonomous systems, 85:48–61.

Sommer, N., Li, M., and Billard, A. (2014). Bimanual compliant tactile exploration for grasping

unknown objects. In 2014 IEEE International Conference on Robotics and Automation (ICRA),

pages 6400–6407. IEEE.

Spitz, J., Bouyarmane, K., Ivaldi, S., and Mouret, J.-B. (2017). Trial-and-error learning of

repulsors for humanoid qp-based whole-body control. In 2017 IEEE-RAS 17th International

Conference on Humanoid Robotics (Humanoids), pages 468–475. IEEE.

Spong, M. W. and Vidyasagar, M. (2008). Robot dynamics and control. John Wiley & Sons.

Stephens-Fripp, B., Alici, G., and Mutlu, R. (2018). A review of non-invasive sensory feedback

methods for transradial prosthetic hands. IEEE Access, 6:6878–6899.

Stürz, Y. R., Affolter, L. M., and Smith, R. S. (2017). Parameter identification of the kuka lbr iiwa

robot including constraints on physical feasibility. IFAC-PapersOnLine, 50:6863–6868.

Sun, C., He, W., Ge, W., and Chang, C. (2017). Adaptive neural network control of biped robots.

IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(2):315–326.

Sundaralingam, B. and Hermans, T. (2019). Relaxed-rigidity constraints: kinematic trajectory

optimization and collision avoidance for in-grasp manipulation. Autonomous Robots,

43(2):469–483.

Swevers, J., Ganseman, C., Tukel, D. B., de Schutter, J., and Van Brussel, H. (1997). Opti-

mal robot excitation and identification. IEEE Transactions on Robotics and Automation,

13(5):730–740.

Takeyasu, K., Goto, T., and Inoyama, T. (1976). Precision insertion control robot and its

application.

150

Bibliography

Taneja, I. J. (1989). On generalized information measures and their applications. In Advances

in Electronics and Electron Physics, volume 76, pages 327–413. Elsevier.

Tang, T., Lin, H.-C., and Tomizuka, M. (2015). A learning-based framework for robot peg-hole-

insertion. In Dynamic Systems and Control Conference, volume 57250, page V002T27A002.

American Society of Mechanical Engineers.

Tao, G. (2003). Adaptive control design and analysis, volume 37. John Wiley & Sons.

Thompson-Butel, A. G., Lin, G. G., Shiner, C. T., and McNulty, P. A. (2014). Two common tests

of dexterity can stratify upper limb motor function after stroke. Neurorehabilitation and

Neural Repair, 28(8):788–796.

Tseng, P. and Yun, S. (2009). A coordinate gradient descent method for nonsmooth separable

minimization. Mathematical Programming, 117(1-2):387–423.

Tura A., Lamberti C, Davalli A, S. R. (1998). Upper Limb Myoelectric Prosthesis With Cosmetic

Covering. Journal of rehabilitation research and development, 35(1).

Valle, G., D’Anna, E., Strauss, I., Clemente, F., Granata, G., Di Iorio, R., Controzzi, M., Stieglitz,

T., Rossini, P. M., Petrini, F. M., and Micera, S. (2020). Hand Control With Invasive Feedback

Is Not Impaired by Increased Cognitive Load. Frontiers in Bioengineering and Biotechnology,

8.

Vantilt, J., Aertbeliën, E., De Groote, F., and De Schutter, J. (2015). Optimal excitation and

identification of the dynamic model of robotic systems with compliant actuators. In 2015

IEEE International Conference on Robotics and Automation (ICRA), pages 2117–2124. IEEE.

Vapnik, V. (2013). The nature of statistical learning theory. Springer science & business media.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski,

E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Jarrod

Millman, K., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C., Polat, İ.,

Feng, Y., Moore, E. W., Vand erPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I.,

Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P.,

and Contributors, S. . . (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing

in Python. Nature Methods, 17:261–272.

Wen, Z., Shi, J., Li, Q., He, B., and Chen, J. (2018). ThunderSVM: A fast SVM library on GPUs

and CPUs. Journal of Machine Learning Research, 19:797–801.

Wilcox, G. and Nordstokke, D. (2022). Pediatric Co-Norms for Finger Tapping, Grip Strength,

and Grooved Pegboard in a Community Sample. Journal of the International Neuropsycho-

logical Society, 28(1):85–93.

Williams, O. and Fitzgibbon, A. (2006). Gaussian process implicit surfaces. In Gaussian

Processes in Practice.

151

Bibliography

Xia, P., Hu, J., and Peng, Y. (2018). EMG-Based Estimation of Limb Movement Using Deep

Learning With Recurrent Convolutional Neural Networks. Artificial Organs, 42(5):E67–E77.

Xu, J., Koo, T.-K. J., and Li, Z. (2010). Sampling-based finger gaits planning for multifingered

robotic hand. Autonomous Robots, 28(4):385–402.

Yi, Z., Calandra, R., Veiga, F., van Hoof, H., Hermans, T., Zhang, Y., and Peters, J. (2016). Active

tactile object exploration with gaussian processes. In 2016 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 4925–4930. IEEE.

Yoshikawa, T. (1985). Manipulability of robotic mechanisms. The international journal of

Robotics Research, 4(2):3–9.

Zhang, Y., Ge, S. S., and Lee, T. H. (2004). A unified quadratic-programming-based dynam-

ical system approach to joint torque optimization of physically constrained redundant

manipulators. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

34(5):2126–2132.

Zhu, H., Gupta, A., Rajeswaran, A., Levine, S., and Kumar, V. (2019). Dexterous manipulation

with deep reinforcement learning: Efficient, general, and low-cost. In 2019 International

Conference on Robotics and Automation (ICRA), pages 3651–3657. IEEE.

Zhuang, K. Z., Sommer, N., Mendez, V., Aryan, S., Formento, E., D’Anna, E., Artoni, F., Petrini,

F., Granata, G., Cannaviello, G., et al. (2019). Shared human–robot proportional control of a

dexterous myoelectric prosthesis. Nature Machine Intelligence, 1(9):400–411.

152

Farshad Khadivar
Doctoral Assistant, Machine Learning & Robotics
 Linkedin |  Github

fredkvr@gmail.com
Chemin de Ruchoz 17,
1024 Ecublens, Switzerland
+41-78-3180055

Education
Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland
Ph.D. Student, Robotics, Control, and Intelligent Systems - Advisor Prof. Aude Billard 2018 - Nov,
22 (Expected)
◦ Thesis: “Advancing the Adaptability of Compliant Robot Controllers for Exploration, Interaction, and Manip-
ulation”
◦ Research focus: Supervised machine learning methods for complex manipulation tasks in human-centric en-
vironment

Sharif University of Technology Tehran, Iran
M.Sc. in Control and Mechatronics, GPA: 3.91/4, Ranked 1st 2014 - 2017
◦ Thesis: “Robust Model Predictive Controller To increase Transparency in Sinus Surgery Simulators”
◦ Honors: “Iran’s National Elite Foundation Award”, Sep. 2017

Languages
English (Proficient) French (Intermediate, B1 ongoing)
◦English Teacher, with TEFL Certificate, Iran-Canada Institute of Languages, Tehran, Iran 2017 - 2018

Publications (first author)

Journal (∗electronic version available upon request):
1. Khadivar, F., Mendez, V., Batzianoulis, I., Correia, C., Micera, S. and Billard, A., 2022, under review∗.

“Shared HumanRobot Compliant Control for In-Hand Manipulation with a Dexterous Myoelectric Pros-
thesis.” Journal of Neural Engineering.

2. Khadivar, F., Chatzilygeroudis, K. and Billard, A., 2021 revised and resubmitted∗. “Self-Correcting
Quadratic Programming-Based Robot Control.” IEEE Transactions on Systems, Man and Cybernetics:
Systems.

3. Khadivar, F. and Billard, A., 2021, revised and resubmitted∗. “Adaptive Fingers Coordination for Ro-
bust Grasp and In-Hand Manipulation under Disturbances and Unknown Dynamics.” IEEE Transactions
on Robotics (T-RO)

4. Khadivar, F., Lauzana, I. and Billard, A., 2021. “Learning dynamical systems with bifurcations.”
Robotics and Autonomous Systems, 136, p.103700., DOI.

Conference:
6. Khadivar, F., Gupta, S., Amanhoud, W. and Billard, A., 2021. “Efficient Configuration Exploration in

Inverse Dynamics Acquisition of Robotic Manipulators.” IEEE International Conference on Robotics and
Automation (ICRA), pp. 1934-1941, DOI.

7. Khadivar, F., Sadeghnejad, S., Moradi, H., Vossoughi, G. and Farahmand, F., 2017.“Dynamic character-
ization of a parallel haptic device for application as an actuator in a surgery simulator.” RSI international
conference on robotics and mechatronics (ICRoM) (pp. 186-191). IEEE.,DOI.

153

Skills
ML Domain: ◦ Supervised, and unsupervised learning

◦ Bayesian Learning, Gaussian Processes, Kernel Methods
◦ Mixture Models, Latent Variable Models
◦ Artificial Neural Networks, Reinforcement Learning
◦ Hidden Markov Models, Dirichlet Processes
◦ ML libraries and platforms: Pytorch, GPy, Limbo, Scikit-Learn

Robotics Domain: ◦ Control Theory (linear, nonlinear, robust, adaptive, optimal control)
◦ Robot Task Planning, Dynamical Systems
◦ Dexterous Manipulation, Adaptive Systems, Compliant Controllers
◦ Quadratic Programming, Learning from Demonstrations, Learning Dynamic Models

Programming: C++ | Python | Matlab | working knowledge of Bash

Software: ROS | Gazebo | DART | Motion Capture | Git | LATEX| Office

Work Experience
Robotic Setups
◦ Practical experience: KUKA LBR IIWA, KUKA LWR, Allegro Hand.
◦ Worked with wearable sensors, motion capture system, and haptic devices.

Project Supervision at EPFL 2019 - Ongoing
◦ Master Thesis: Sthithpragya Gupta (Spring-20) | Master Projects: Constantin Decaux (Spring-22), Raphael
Uebersax (Fall-22), Bruno Agostinho Da Costa (Fall-22), Sascha Frey (Fall-19), Alexis Philip George-Georganopoulos
(Fall-19)

Teaching Assistant, EPFL 2019 - 2021
◦ “Applied Machine Learning,” Prof. Aude Billard, (Fall-21 & Fall-19)

Academic Service 2020 - Ongoing
◦ Reviewing Journal: RAL-2022 | Reviewing Conference: IROS-2020 to 2022 | ICRA-2021 | AAMAS-2021
◦ Administrator of Robotic Research Team, Amirkabir University of Technology, Tehran, Iran (2017 - 2018)

154

	Acknowledgements
	Abstract (English/Français/Deutsch)
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis Objectives
	Challenges and Solutions
	System Dynamics, Modeling and Learning
	Online Adaptation to Uncertainties
	Coordination and Human Level Dexterity
	Compliant Robotic Hand Controller in Human-Centric Environments

	Summary of Contributions and Thesis Outline

	Background
	Stable Dynamical Systems
	Dynamical Systems with Limit Cycles
	Inverse Dynamics Model
	Gaussian Process Implicit Surface Representation

	Efficient Configuration Exploration for Inverse Dynamics Acquisition
	Introduction
	Problem Statement
	Exploration Approach
	Phase Space Path Planning
	Maximizing Information
	Approach Summary and Evaluation

	Model Learning
	RBD-Based Model
	Full and Error Models

	Model Evaluation
	Static Test - Prediction of Gravity Compensation Torques
	Dynamics Test - Trajectory Tracking Task

	Discussion and Summary

	Self-Correcting Quadratic Programming-Based Control
	Introduction
	Quadratic Programming-Based Control
	Approach
	Taskspace Adaptive Control
	Inverse Dynamics Learning Procedure

	Simulated Experiments
	KUKA LBR iiwa Trajectory Tracking
	Talos Humanoid Task
	Preliminary Experiments on Bimanual Manipulation

	Physical Robot Experiments
	Tracking Periodic Trajectory on Z-axis
	Pick-and-Place with a Robotic Hand

	Discussion and Summary

	Adaptive Fingers Coordination for Robust Grasp and In-Hand Manipulation
	Introduction
	Approach
	Finger Synchronization Based on Dynamical Systems
	Intermediate Dynamic
	taskspace Dynamical System
	DS Coupling and Coordination of Fingers

	Joint-Space Adaptive Controller
	Low-Level Control
	Nominal Joint-Space Dynamics
	Control Rule and Adaptive Laws

	Grasp and Manipulation
	Contact Wrench Optimization
	Attractors Determination

	Experiments and Evaluations
	Evaluation of Coordinated Finger-Control
	Grasp Adaptation in an Uncertain Environment
	In-Hand Manipulation, Accuracy and Robustness
	Learning to Roll in Hand

	Discussion and Summary

	Compliant Robotic Hand Controller in Human-Centric Environment
	Shared-Control for In-Hand Manipulation with a Myoelectric Prosthesis
	Task Introduction
	Approach
	Autonomous Robot Controller
	Results
	Discussion and Summary

	Online and Dynamic Tactile Surface Exploration of Unknown Objects
	Approach
	Experimental Evaluation
	Discussion and Summary

	Conclusions
	Contributions
	Limitations and Future Work

	Appendix of Chapter 4
	Adaptive Control Stability Proof
	Function Approximation for Adaptive Control

	Appendix of Chapter 5
	Joint-Space Control
	Computing the Regulation Signal
	Stability Proof of Adaptive Control

	Contact-Frame Estimation

	Appendix of Chapter 6
	EMG Motion Decoding
	EMG Setup and Model Calibration

	Optimization-Based Robotic Hand Controller
	Dynamic Hand Pose Adaptation
	Finger motion planning
	Validation of Dynamic Hand Pose Adaptation
	Results

	Bibliography
	Curriculum Vitae

