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Abstract

A proper assessment of technologies’ impact on energy consumption and GHG emissions is essen-

tial for designing an effective energy transition. In this regard, the modeling of an energy system is a

great resource to identify valuable technologies. This paper falls within a larger project that aims to

optimize a national scale energy system based on two encapsulated subsystems (building and dis-

trict scale).

The following paper presents a framework to identify typical configurations of a district energy sys-

tem. The framework is composed of a two-step GSA. The first step identifies the most influential

parameters on the model output using Morris method. The second allows to obtain a representative

sampling of the global solution space using the variance-based Sobol method.

The GSA suggests that the sensitivity of the model comes primarily from energy carrier tariffs, while

the investment cost and other technology properties weigh little in the model output. Furthermore,

the space of optimal district was clustered using multiple techniques. The most coherent results were

obtained with a DBSCAN which allowed to identify 10 different typical configurations.

The configurations heat supply is either based on electricity, using HP and electrical heater, or on NG

boilers. Regarding the electricity needs, the supply strategy is identical for all configurations. They

rely on a combination of PV panels and imported electricity. Finally, the HP and the water tank are

coupled in all electric configurations to furnish heat where NG boilers do not require storage unit.
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Chapter 1

Introduction

As declared in the sixth IPCC’s report on the Mitigation of Climate Change “Meeting the long-term

temperature objective in the Paris Agreement implies a rapid turn to an accelerating decline of GHG

emissions towards ‘net zero’, which is implausible without urgent and ambitious action at all scales”

[1]. This statement highlights the urgent need to drastically reduce green-house gases (GHG) emis-

sions. Meanwhile, emissions from the energy sector, which accounts for 73% of global emissions, are

expected to increase over the coming decades [2]. Therefore, as mentioned, efforts must be taken at

all scales.

The built environment is a major player in the energy sector, contributing to 36% of the final energy

consumption in 2018 [3], but it is also seen as a promising pathway towards a sustainable energy

mix. Indeed, the sector has the potential to significantly reduce its emissions. It can be achieved by

considering a multi-energy system, increasing its inter-connectivity within and outside its borders

and naturally by developing its renewable energy (RE) shares.

However, such transition requires careful energy planning from policy makers such as government

signatories of the Paris Agreement. Energy system models are excellent tools for understanding such

complex systems. For that reason, they support decision-makers outline their strategy for the energy

transition. These models can assess the potential impact of deploying new technologies or policies

on the current system.

A promising solution to achieve such sustainable system is the development of distributed energy

system (DES). Distributed energy systems are composed of energy hubs, interconnected via a multi-

energy grid. These energy hubs are composed of energy conversion and storage units, all optimally

sized and combined with optimal system operation. Such systems have a great potential when de-

ployed at the district scale as they increase self-consumption and help mitigate grid congestion [4].

This project aims to develop a framework for establishing a panel of optimal district configurations.

They are then intended to be fed into a second energy model for optimizing a national energy system,
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which will consider typical districts and their different specific configurations.
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Chapter 2

Literature review

This chapter assesses the current state-of-the-art regarding energy system modelling (section 2.1)

and the application of sensitivity analysis of energy system models (section 2.2). Additionally, di-

verse clustering techniques are presented in section 2.3. Finally, the goal and scope of the project is

presented (section 2.4).

2.1 Energy system modelling

Energy models are mathematical formulations of energy systems. They are one of the main sup-

ports to guide decision makers in the ongoing energy transition towards a fossil-free system. The

decarbonization of the current system requires a profound restructuring and involves a deeper elec-

trification [5]. Low-carbon technologies, such as solar and wind power, are spreading rapidly. They

are expected to become the main source of electricity, as their potential is high [1, 6]. However, those

renewable energies are intermittent and decentralized, bringing new challenges such as redistribu-

tion of electricity, stabilization of the power grid, intra and inter-day storage [7]. The multiplication

of energy vectors, i.e. electricity, heat, oil, waste, biomass or even hydrogen, increases the complexity

of the task to provide an optimal configuration and operation of the system.

There exist many energy system models and all differ in some way. It can either be a simulation or an

optimization of the system. A simulation has no degrees of freedom and only provides an evaluation

of the model, whereas an optimization finds the optimal solution among the space of possible solu-

tions (several degrees of freedom). The optimality criterion of a problem is defined by its objective

function, e.g. minimizing the GHG emissions.

Another large variation between models is the considered energy vectors to fulfill a specific demand.

In most cases, only one resource is used to meet the needs. For example, the optimization of a district

heating network can be feed by waste recovery without considering the possible local implementa-

tion of solar thermal, heat pump or boiler. Likewise, the majority of models focus on one specific

energy sector (electricity, heat, mobility, etc.) and do not account for cross-sectoral synergy [8]. Fi-
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nally, on a more general aspect, the scale of the system can vary from a single building to an entire

country. Whether or not energy subsystems are considered in the overall system, e.g., interconnected

buildings to represent a district system

2.1.1 Large-scale energy system modelling

The spatial resolution at which the system is evaluated is a major characteristic of the system. It al-

lows to define the different technologies considered, the energy vectors taken into account or the

possible optimization of the system operation [6, 8, 9]. Jalil-vega and al. [10] analyzed the effect of

spatial resolution on a large scale energy system. They conclude that the effect of spatial resolution

was related to the homogeneity of the region, i.e. a heterogeneous region would be better captured

by a thin resolution. Furthermore, their results highlight that finer resolution improves the network

design when using optimization models.

The following subsections present three different scopes of energy system. The first is based on the

spatial distribution of resources, the second on identical buildings, and the third on the configuration

of the district energy system.

2.1.2 Geographic energy hub

The European Commission defines the term Geo-clusters as “virtual trans-national areas where strong

similarities are found in terms of climate, culture and behaviour, construction typologies, economy, en-

ergy price and policies, gross domestic product...”. A geo-cluster can be interpreted as a region in which

the selected indicators are homogeneous. The GE2O project, supported by the European Commis-

sion, has defined a panel of energy efficient solutions for each identified geo-cluster in Europe. For

their implementation, technological and non-technological aspects of the region, such as the wind

generation potential and the age distribution within the region, were taken into account [11]. Kuster

and al. [12] defined 118 different geo-clusters within Europe, accounting for 16 parameters such as

building types, climate and socio-economic indicators. They developed two tools to help users select

appropriate technologies for their location by providing case studies with a similar environment.

Germano used political delimitations to discretize Switzerland and provided a regional optimization

of the country [13]. An adaptation of its regionalization has been performed by Slaymaker and al.

[14]. The paper proposed a discretization of the space using clustering method based on geospatial

data. Geographical characteristics were used, such as wind, solar and photovoltaic potential, as they

are location dependent. As well as, demographic characteristics such as population density, urban,

agricultural and ecological areas, as well as distance to the power grid.
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2.1.3 Building archetypes

In 2019, close to a third of the final energy demand (31%) came from the building sector and its CO2

emissions have increased by 50% in the past 30 years to reach 12GtCO2-eq in 2019 (21% of global

GHG emissions) [1]. This motivates the will to define large-scale energy system with a building-scale

resolution [15]. Kotzur and al. [16] developed a bottom-up model based on residential building

stock. They deployed an aggregation algorithm to define archetype buildings. Their configuration

and operation, which includes the buildings interaction, are then optimized to acquire cost effective

solution. The model was validated with a case study in Germany, and emphasized the importance of

PV and HP deployment to reduce GHG emissions. However, those new technologies tend to increase

the gap between electricity overproduction in summer and demand in winter.

Stadler and al. [17] assessed the impact of MPC on the Swiss building stock. Three typical build-

ings were defined, each having 9 variations based on their construction date. The deployment of

MPC allowed the reduction of the OPEX as well as the increase of the self-consumption. This result

emphasizes the importance of the interconnection and operation improvement of building energy

system.

2.1.4 District energy hub

As predicted by the IPCC’s report [1], the share of the world population living in urban areas con-

tinues to increase. This trend requires the improvement of urban energy systems to mitigate GHG

emissions and energy consumption. Distributed energy systems are part of the solution to help im-

prove sustainable development goals (SDGs)[18, 19, 20, 21]. The distributed aspect of such system

comes from the interconnection of multiple energy sources. Those sources can be energy hubs linked

by local multi-energy grids. As discussed in the review of district-scale energy system by Allgerini and

al. [22], there has been a significant improvement of the models and tools used to analyze such sys-

tem.

In their paper, Morvaj and al. [23] performed an optimization of an urban scale energy system com-

posed of twelve buildings. For each building, an optimal design and operation have been identified

and the district heating network associated was optimized to reduce GHG emissions and TOTEX.

Maroufmashat and al. [24] highlighted the importance of considering multiple energy hubs in or-

der to observe significant cost and GHG emissions reduction. Their case study showed that the im-

plementation of distributed combined heat and power (CHP) units was limited while operating an

electricity grid with low CO2 emissions. And that the operation of interconnected energy hubs can

significantly increases the robustness of the power grid, e.g. mitigation of congestion and ensuring

reliability.

On the other hand, increasing the size of the considered district has a direct impact on the compu-

tational time of the model resolution [25, 26]. Hence, new solving methods are needed to improve
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optimization efficiency without reducing spatial and temporal data, which oversimplifies the prob-

lem [26, 27].

2.2 Global sensitivity analysis

Sensitivity analysis (SA) is a powerful tool to assess how a set of input parameters can affect the out-

put of a model. There exist two main types of SA: local and global. The most common method is the

local sensitivity analysis (LSA), which evaluates the sensitivity by varying one parameter at the time

around a specific value. Even though, its ease of implementation makes it popular, the sampling

scheme does not scan the entire space of input parameters. This gap is filled by the global sensitivity

analysis (GSA), which covers the sample space by varying several parameters at once. In doing so, it

is able to capture parameter interaction.

Most current models assume a perfect knowledge of the input parameters, which induces the ab-

sence of uncertainty in the model and makes them deterministic [19]. However, there is some un-

certainty in assessing various aspects such as current policy, renewable energy production and eco-

nomic trends. Therefore, specific models are developed to consider the randomness of input para-

meters: stochastic models. An alternative to stochastic model is the application of SA to deterministic

model as proposed in [28, 29].

The review of the SA method for building energy systems performed by Tian and al. [30] emphasized

the importance of choosing the right method. They concluded that the choice should be based on

the following criteria: research purpose, computational cost of energy models, number of input vari-

ables and the familiarity with the methods.

Another review was performed by Westermann and Evins [31], 57 studies on building design were

analyzed, focusing on: objective, sampling strategy and surrogate model type. Among all studies

only 16 included a SA of the model, their sampling strategies were primarily based on Latin hyper-

cube sampling (LHS), and only 3 used an optimization model.

Liu and al. [29] developed a framework to assess the uncertainty and sensitivity of district energy sys-

tems. The framework includes a two-stage GSA. First, a screening method filters out non-influential

parameters and to reduce computational cost. Secondly, the sensitivity of the influential parameters

were evaluated with a SA. The methodology was further validated with a case study of a DES in China.

Mavromatidis and al. [28] applied the same methodology to a DES. The screening method used to

reduce the number of parameters was the Morris method. It was coupled with a Sobol sequence to

obtain a proper sampling of the space for the final sensitivity analysis. The results showed that the

variation from the system optimal cost comes from energy carriers prices and energy demand pat-
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terns. Concerning the installed units, a combination of heat pumps, cogeneration units and boiler

achieved the lowest cost and a phase-out of CHP was required in order to reduce GHG emissions.

Finally, Østergård and al. [32] used a SA to explore multidimensional design space to help decision

making regarding sustainable building design. The identical framework presented earlier was used

and provided a portfolio of possible building conception. The author developed a tool to select op-

timal designs based on specific parameter ranges.

2.3 Clustering

Clustering is used to explore data sets and attempt to find their structure. It reassembles data points

with similar attributes into a cluster. There exist two main types of aggregation technique: super-

vised and unsupervised (machine) learning. The supervised methods are provided with an object

which is already labeled, its role is to develop an algorithm to link a new object to a label. Inversely,

the unsupervised learning, also known as clustering, is not provided with any label. The algorithm

has to identify the groups (clusters) based on the features of each data point. The number of clusters

is not necessarily specified by the user. As labels are not identified with unsupervised learning, it

is considered more difficult than supervised learning. Unsupervised learning methods can be fur-

ther divided in two different groups: hierarchical and partitional. The partitional algorithms simply

divide the input data space in k clusters. Whereas, the hierarchical clustering method develops a

tree-shaped structure of the data, also called dendrogram, to form nested sets of data.

A clustering algorithm can be formulated as a minimization problem where the objective function

represents the sum of the distance between each data point within the same cluster [33]. Lloyd and

al. [34] proposed the K-means clustering technique. It identifies k clusters among the data points us-

ing the algebraic mean as the cluster center. There exist many different methods to define the cluster

center such as K-medoids using the most centered points as the cluster center [35] or K-medians us-

ing the median as the cluster center [36].

However, these methods require that the data space is convex, which cannot always be verified. Un-

der these conditions, more robust algorithms based on density clustering are essential to aggregate

arbitrary shaped data. The data distribution can come from several density functions and with differ-

ent parameters [37]. Thus, Cheeseman and Sutz [38] developed AUTOCLASS, an algorithm to detect

clusters based on the distribution of the data. Ester and al. [39] developed a density-based method

named DBSCAN for Density-based spatial clustering of applications with noise, which is able to detect

non-convex shapes among large data sets. Campello and al. [40] proposed an hierarchical version of

DBSCAN. The algorithm is named HDBSCAN and is more robust to outliers.
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The application of the aforementioned algorithms in the context of district energy systems is quite

rare. One can mention the study published by Felsmann and al. [41], which examined multiple clus-

tering techniques such as Single-Linkage, DBSCAN and OPTICS on a district heating network. The

results showed that the DBSCAN robustness outperformed the other algorithms. In order to identify

typical buildings Stadler [27] used the K-medoid technique to determine archetypes building among

the entire Swiss building stock. The K-medoid was preferred to K-mean as it produced more robust

results [42].

Since the choice of the clustering method is a problem in itself, it is a good practice to introduce

a cluster validation index to compare several algorithms. Arbelaitz et al. produced an exhaustive

comparison of cluster validation indices [43]. 30 indices were compared over several sets of con-

figurations. The researchers created a tool to find the best suited index for a specific application,

although the Silhouette index often performed the best. Moulavi and al. [44] introduced a novel in-

dex to evaluate the quality of density-based clustering as most of the validation index are developed

for globular clusters.
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2.4 Goal and scope

As emphasized throughout this chapter, the literature lacks an application of distributed energy sys-

tem as energy hub in a large-scale energy system optimization. This project attends to provide a

framework to identify a set of optimal district configurations. This framework consists of a GSA of

a district-wide energy system model to obtain various district configurations. They will then be ag-

gregated to identify robust typical configurations. Those configurations are then intended to feed a

larger scale energy system (national scale), now considering various typical districts and their con-

figurations panel as energy hubs. To summarize, the overall project attempts to define an optimal

national energy system based on two optimal sub-systems. The finer resolution is the building scale

which then forms a district, each building included in the district is optimal. Finally, the national

system has access to multiple optimal district configurations defined thanks to this framework.

Figure 2.1: Scheme of the overall project. This project provides the tool to define the different config-

uration for each typical district.

9



Chapter 3

Methodology

This chapter presents the global sensitivity analysis used to best sample the solution space. First,

a screening method is presented to reduce the computational work by considering only the most

influential model parameters. Then, the sampling method is introduced to efficiently cover the space

of the selected input parameters. Finally, the different clustering techniques are presented to identify

the typical configurations.

3.1 Global sensitivity analysis

In order to develop a panel of solutions for the district, it is necessary to explore the whole solution

space of the model. The following methodology is inspired by the publication of Saltelli and al. [45]

which assesses the state-of-the-art of GSA. A sensitivity analysis can be decomposed in four main

steps:

1. Identification: k input parameters of the model are selected

2. Sampling: the input parameters space is discretized by N samples

3. Evaluation: the model outputs are computed for each sample

4. Comparison: some metrics are derived from the N outputs of the model for the k parameters

The methodology used consists of two separate SAs:

1. LSA: a screening method is performed to identify the most influential factor of the model, i.e.

the parameters inducing the greatest variation of the objective function.

2. GSA: a variance-based method is used to quantify the sensitivity of the model
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Full set of input 
parameters

Morris screening 
method Subset of input 
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Variance-based 
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Figure 3.1: Scheme of the two-step GSA composed of first the Morris method as a screening and then

the Sobol method is applied on the most influential parameters

3.1.1 Morris screening method

The screening method used is the Morris method, it allows to qualitatively compare the influence on

the model output of a large number of parameters with a few evaluations [46]. The method discret-

izes the input parameters space, which is a k-dimensional hypercube, into a p-level grid, where k is

the number of independent input parameters. Then, it performs a one-step-at-the-time method, i.e.

it randomly modifies an input parameter by ±∆ to generate r trajectories.

Then, it evaluates the elementary effect of the ith input factors (EEi ) as a function of the model out-

put Y = f (X1, ..., Xn), see Equation 3.1. The EE can be interpreted as a local partial derivative, thereby

it represents the sensitivity of the model at a specific point w.r.t the input parameter.

EEi = [Y (X1, X2, . . . , Xi−1, Xi ±∆, . . . Xk )−Y (X1, X2, . . . , Xk )]

∆
(3.1)

Where ∆ is defined as a function of p : ∆= p
2(p−1) and can be considered as the size of the discretiza-

tion mesh . The total number of model evaluations amounts to r(k+1), where r is suggested between

4-10 [45]. The choice of p and r has to be made jointly to ensure that the k dimensions and their

interactions are correctly sampled, Saltelli proposed p = 4 and r = 10 [47] whereas Morris used r = 4

in [46], which seems to be the minimum usable value.

In its original work, Morris proposed the computation of the mean µi (Equation 3.2) and standard

deviations σi (Equation 3.4) of the elementary effect distribution for each parameter i. However, by

doing so, the positive and negative effects cancel each other out, which would falsely influence the

results of the mean value. Thus, the method has been improved by Campolongo and al. [48], by

considering the absolute mean elementary effect µ∗
i (Equation 3.3).

µi = 1

r

r∑
j=1

EE j
i (3.2)

µ∗
i = 1

r

r∑
j=1

|EE j
i | (3.3)
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Figure 3.2: Illustration of a k-dimensional hypercube, with k = 2 and a four-level grid (p = 4) [45].

The arrows represent the 8 points required to estimate the EE of X1.

σ2
i =

1

r −1

r∑
j=1

(
EE j

i −µi

)2
(3.4)

Those indicators allow to compare the input parameters between each other. A small absolute mean

value means a non-influential parameter. The standard deviation reflects the interaction between

parameters: a high value means that the output is strongly dependent to the sampling point, i.e. to

the other values of the input parameters. Conversely, a low value of σ indicates that the elementary

effect is not subject to vary with other factors.

The representation of the mean absolute value of the EEs and their standard deviation makes it easy

to identify to which group the parameter belongs. As represented on Figure 3.3, one can see the

different zones and the line (x = y) separating quadrant 1 that defines whether parameters interact

together or not. The different zones can be defined as follows:

1. Non-influential parameters

2. Influential, non-interacting parameters

3. Influential, interacting parameters

4. Influential parameters

The comparison of µ and µ∗ gives an extra insight in the monotony of the model. If the model output

increases with an augmentation of the parameter. The EE will stay positive thus µ∗ and µ will have a

similar value, whereas if the EE changes sign regularly its cumulative will be lower, i.e. µ will be lower

than µ∗.

3.1.2 Sobol sampling sequence

The Sobol method is a variance-based sensitivity analysis named after the mathematician Ilya M.

Sobol. The method is developed in [45, 49] and uses Sobol’s recommendation on the sequencing of
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Figure 3.3: Identification of the typical zone on the µ∗−σ plane

quasi-random numbers. However, Saltelli extended her work in [50] to reduce the error rate when

computing the sensitivity index. Once the Monte Carlo optimizations of the model are completed

the Sobol index can be defined.

Sensitivity indices

The method evaluates two different sensitivity indices, the first one is the first-order sensitivity coef-

ficient (Equation 3.5). It results from the ratio of the variance of the output mean, considering all

parameters except the ith, and the variance of the output. The secondary sensitivity coefficient is the

total effect index, i.e. first and higher-order sensitivity coefficient (Equation 3.6).

Assuming: Y = f (X1, ..., Xn) is the model output, X∼i symbolizes all parameters but Xi , EX∼i (Y | Xi ))

is the mean of Y for every possible X∼i and finally the variance VXi is calculated for all values of Xi .

Si =
VXi

(
EX∼i (Y | Xi )

)
V (Y )

(3.5)

ST i =
EX∼i

(
VXi (Y | X∼i )

)
V (Y )

= 1− VX∼i

(
EXi (Y | X∼i )

)
V (Y )

(3.6)

The first-order coefficient only takes into account the effect of itself on the output value, but not

the possible effect when considering higher-order interactions with other parameters. The total-

order effect index evaluates the effect of a parameter considering all possible interactions with other

parameters. Meaning that a parameter with a value of ST = 0 can be considered as non-influential on
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the output Y . The total number of model evaluations is N (k +2) with N being typically between 500

and 1000 [45], it is suggested to choose a power of two.

3.2 Clustering

This section provides the different steps to define the typical district configurations. First, it is es-

sential to standardize the data. Then, the different clustering techniques are presented: K-mean,

DBSCAN and HDBSCAN. As the K-mean method requires the number of clusters, two methods are

used to identify a range of optimal clusters: the Silhouette score and the Elbow method. Additionally,

a cluster validity index is introduced to compare the various clustering technique results.

3.2.1 Standardization and feature selection

It is necessary to standardize the data when various features are used for clustering. Otherwise, the

aggregation algorithm mainly takes into account the large numerical values. The chosen standard-

ization technique is the z-score, see Equation 3.7. Each features Xi of the data set is standardized as

follow:

Zi = Xi −µi

σi
(3.7)

where µi is the mean and σi is the standard deviation of the feature Xi . The features selected for

the clustering, i.e. the district characteristic, are a mix of economic and technical attributes of the

optimization result. The key performance indicators (KPI) chosen are the capital and operational ex-

penditure (CAPEX and OPEX). Installed capacity of energy conversion and storage units are included

in the clustering as they are key properties of the district configuration. Regarding the exchange with

the network, the total and peak energy supply and demand are considered for the natural gas (NG)

and electricity grid.

3.2.2 K-means

The K-means method minimizes the clusters variance, which is an NP-hard problem. However, the

implementation of heuristic algorithms allows to efficiently reach a local optimum. The K-means

problem is formulated as follows:

argmin
S

k∑
i=1

∑
x∈Si

∥∥x−µi

∥∥2 (3.8)

where, S represents the k sets of points.

Two different techniques are used to evaluate the required number of clusters: the silhouette score

and the Elbow method.
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Silhouette score

The Silhouette score evaluates the cohesion and separation of the different clusters, i.e. the points

density within a cluster and the distance between clusters. Here, the metric used to evaluate the

distance between two points i and j is the Euclidean distance, d(i , j ). Two subscores are used to

evaluate the Silhouette score. Firstly, ai measures the quality of the assignment of a data point i to

its cluster C I .

a(i ) = 1

|C I |−1

∑
j∈C I ,i ̸= j

d(i , j ) (3.9)

The second subscore represents the mean dissimilitude between a data point i ∈ C I and another

cluster C J .

b(i ) = min
J ̸=I

1∣∣C J
∣∣ ∑

j∈C J

d(i , j ) (3.10)

The silhouette score for a data point i can be computed as follow:

s(i ) = b(i )−a(i )

max{a(i ),b(i )}
(3.11)

Its value is between -1 and 1, where 1 means that the point is well grouped and conversely -1 indic-

ates that the point would be better represented in a different cluster. A null value means that the

point is on the border of two clusters. Finally, the average of the Silhouette scores of all data points

can be used to evaluate the effectiveness of the clustering.

Elbow method

The Elbow method, as its name indicates, consists to observe an inflexion on a k-SSE plot, where

SSE stands for sum of squared error. The squared error is the sum of the squared distance, here

Euclidean, between the points and their cluster center. The optimal number of clusters is found

where the reduction of SSE sharply stops decreasing as the number of clusters increases.

3.2.3 DBSCAN

DBSCAN is based on the concept of core points. Points are defined as core points of one specific

cluster when they can reach a minimum of minPts neighbours within a distance of ϵ. Additionally,

points within reach, but not satisfying the minimum neighbours criterion still belong to the cluster.

However, points non-reachable from a core point are considered as outliers. The choice of minPts

and ϵ should be based on the data properties [39].

3.2.4 HDBSCAN

The HDBSCAN algorithm is an extension of the DBSCAN method with a hierarchical approach. The

algorithm can be decomposed in a few steps to get a broad overview. First, the space is transformed

based on its density. This allows to construct a minimum spanning tree used to build the cluster

hierarchy. Then, the cluster tree is condensed to finally extract the clusters [40, 51].
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3.2.5 Density-based clustering validation

To support the clustering task, a score is introduced to quantify the quality of the clusters. The chosen

score is the Density-Based Clustering Validation (DBCV) index presented by Moulavi and al. [44]. It

is based on a parameterless core distance defined on the density of objects and mutual reachability.

The index ranges between -1 and 1, which represents a good and a bad score respectively.

3.3 Application

The framework detailed above is applied to a district energy system. The buildings chosen to form

the district are located in Rolle, Switzerland, see Figure 3.4. 15 buildings, constituted of 5 single fam-

ily houses and 10 apartment buildings, have been selected among 30 available as the district synergy

seems to appear on tens or more buildings district [26]. The data are either open source or provided

by the Swiss government or the canton of Vaud. Dwellings’ characteristics such as type and year of

construction, reference energy area, height, etc., come from the cantonal and federal Official Building

Registry [52, 53] whereas the ground surface area is provided by the cantonal administration [53, 54].

The climate data, solar irradiation and temperature, are extracted from Meteonorm [55]. The charac-

teristics of the building envelope are calculated following SIA norms 380/1 [56]. The PV orientation

is optimized based on roofs and façades information extracted from Swisstopo [57, 58]. The grid spe-

cifications and electricity demand are furnished by Romande Énergie [59].

The time series are clustered into 10 typical periods formed of 24 hours and 2 extreme periods of 1

hour each, thus 242 different timesteps are considered. Several parameters are fixed during the prob-

lem definition, such as units parameters, district parameters, energy carrier price, see chapter 6 for

additional information.

The used model for the district level optimization is REHO, which stands for Renewable Energy Hub

Optimizer, developed in [27, 61, 62]. Regarding the large-scale energy model, EnergyScope will be

used to optimize the collection of typical districts [8].
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Figure 3.4: Map of the district with the electrical network, typical European residential configuration

[60]. The electrical network is connected to a single transformer and the total energy reference area

is of 7’755 m2.
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Chapter 4

Results and discussion

The results are separated in two distinct sections. The section 4.1 presents the results of the two-

steps GSA. First the most influential parameters are identified using the screening method of Mor-

ris. Secondly, the Sobol method is used to properly sample the solution space and to determine the

sensitivity of the model with respect to the most influential parameters. The section 4.2 identifies

and analyzes the district configurations.

4.1 Global sensitivity analysis

The subsection 4.1.1 presents the results of the screening step of the SA and subsection 4.1.2 presents

the final results of the SA obtained with the Sobol method.

4.1.1 Parameters screening

This subsection discusses the results obtained during the screening phase of the SA. As discussed in

subsection 3.1.1, the Morris method is performed in order to reduce the number of considered input

parameters for the GSA. The considered parameters for this step are energy conversion and storage

units parameters as well as the energy carriers prices. The parameters are described more explicitly

in section 6.3. A total of 60 parameters were considered. Following the sampling indications of Mor-

ris, 610 optimizations were required to compute the sensitivity metrics. As the result of each run is

a complete system configuration and operation, a specific output value had to be identified to com-

pare each optimization. The chosen indicator is the total expenditure (TOTEX).

The extended results of the Morris method can be found in Table 6.4. However, as discussed in sub-

section 3.1.1 a good practice is to plot the absolute mean value (µ∗) and standard deviation (σ) of the

EE distribution of each input parameter.

Figure 4.1 shows such a plane for the six non-zero results of the Morris method. Two parameters

stand out from the rest: the supply cost of electricity and natural gas. The supply cost of electricity

has a high influence on the TOTEX, high µ∗, however, its standard deviation is low, indicating that

its EE is not correlated to the other input parameters. Its low dependence comes from its key role
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in the district model. It serves to directly supply the electric demand when no installed units can

fulfill it (PV, CHP) and it can also serve to supply the heat demand via HPs and electrical heaters. The

retail price of NG is less influential as only two units consider natural gas as a resource (NG boiler

and CHP). However, it can be considered as an influential parameter as a small price of NG can help

provide heat at a very low cost with a boiler. Finally, one can notice that the technology properties

have no influence in model output.
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Figure 4.1: Morris analysis results on µ∗−σ plane

Table 4.1 presents the Morris results of the aforementioned parameters. Comparing the absolute (µ∗)

and non-absolute (µ) mean value of EE shows the monotonic correlation between TOTEX and input

parameters values, e.g., an increase in boiler efficiency will always reduce TOTEX and, conversely, an

increase in electricity cost will always increase TOTEX.

In order to reduce the computational time of the SA a selection of the input parameters was required.

The decision to focus on the energy carrier prices was based on obtained results and similar conclu-

sions presented in chapter 2.

4.1.2 Variance based sensitivity analysis

This subsection focuses on the final sampling of the chosen input parameters using Sobol sequence.

The input parameter space is explored with 2560 samples following recommendations presented in

subsection 3.1.2. The parameters variation range can be found in Table 6.5. The sensitivity indices

of the Sobol can be observed in Figure 4.2 alongside Morris µ∗ values for comparison. Detailed val-
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Parameter µ µ∗ σ

Elec_retail 92793 92793 39500

Elec_feedin -861 861 776

NG_feedin 32771 32771 47561

PV_efficiency -1926 1926 2917

PV_RoofShare -726 726 905

Boiler_efficiency -5516 5516 5978

Table 4.1: Results of the Morris method for the influential parameters

ues are located in Table 6.6. The Sobol results have a similar trend than the qualitative sensitivity

indices from the Morris method. The electricity feed-in price is less influential regarding Sobol’s

results. Since the first-order Sobol effect and the total effects have a similar value, the interaction

between energy carrier prices is mainly of additive in nature. The retail price of electricity is much

more influential than NG. One possible explanation is that, as mentioned, there is a greater amount

of technology using electricity compared to NG. Thus, a low electricity price can help to significantly

reduce TOTEX, as both electricity and heat demand can be met using only electricity. Whereas the

maximum installable size of the CHP prevents this behaviour.
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Figure 4.2: Comparison of Morris and Sobol sensitivity indices

4.2 Typical configurations identification

This subsection presents the results of the applied clustering techniques as well as the analysis of the

various district configurations.

First, the Silhouette score is calculated for various number of cluster to identify an optimal value,

see Figure 6.2. The reduction of the score seems to stabilize around k = 10. Whereas, for the Elbow
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method the inflection occurs in the range of k = 5− 7, see Figure 6.3. Finally, the DBCV index is

computed for the K-means clustering with k varying from 5 to 11. The optimal number of clusters

appears to be around k = 10 (Figure 4.3) with a score of -0.54.
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Figure 4.3: Density-based clustering validation indexes evolution with k for K-mean

The DBSCAN algorithm recognizes a total of 28 clusters and obtains a DBCV index of -0.12, which is

significantly better than the K-means DBCV indexes. Regarding the HDBSCAN result, it obtains the

best DBCV index with a value of 0.04. However, it identifies 73 clusters, which is far from the initial

estimation of k = 10 obtained previously.

Looking more precisely at the size distribution of the DBSCAN clusters, one can remark that beyond

the tenth cluster the size dropped abruptly, see Figure 6.4. Indeed, the first ten clusters represent

more than 90% of the data points, corresponding to the approximated required number of clusters.

Regarding the HDBSCAN distribution, there was no sharp decrease of the clusters size. As a con-

sequence, only the data in the then first cluster of the DBSCAN have been considered for further

calculation.

4.3 Presentation of the typical district configurations

This section presents the identified configurations. First, the breakdown of the clusters within the

sampling space is discussed. Then, the composition of the configurations is investigated, to finally

show the correlation among the district indicators.

4.3.1 Distribution of the configuration in the sampling space

Figure 4.4 represents with different colors the distribution of the clusters over the retail tariffs vari-

ation range. As explained in subsection 4.1.2, the output of the model, i.e. the district configuration,

is strongly correlated to those tariffs. This relation can be observed in the figure below as the different

configurations can clearly be identified. The space naturally separates itself in half, the separation
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is highlighted by a dashed line just above configuration number 1 in Figure 4.4. The configuration

below the line, configurations 1, 5, 6, and 7 are based on natural gas and the configurations above,

configuration 2, 3, 4, 8, 9 and 10, on electricity. The NG configurations are located on the bottom

right corner where the electricity tariff is high. Inversely, the electricity based ones are in the top left

region where the NG price is high. One can note that the space has less samples below the separation

line, this is due to the data selection done in section 4.2.
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Figure 4.4: Typical configurations distribution in the retail tariffs space

Since the considered parameters for the SA were the prices of energy carriers. It is irrelevant to com-

pare the configurations TOTEX as some of them based mainly their operation on low retail tariff, i.e.

configuration 2.

4.3.2 Installed units capacity

Figure 4.5 shows installed units capacity for each configuration alongside grid exchanges. The main

variation between configurations is the total installed capacity, almost ranging from single to double.

This discrepancy is due to the extreme period (high demands and rash environment) included in

the model. The model installs a minimum heating capacity to supply heat in any condition. This

minimum heating capacity appears in all configurations and is either composed of NG boiler or a

combination of electrical heater and heat pump.

Concerning the units’ installed capacity, there is no positive correlation between heat pump and PV

installation, as one would have expected from previous results discussed in section 2.1. If no PV pan-

els are installed, electricity imports increase considerably to supply the heat pump with electricity.

The heat pumps installation triggers the deployment of water tanks to serve as a buffer. The install-
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ation of boilers is accompanied by significant imports of natural gas. Since, boilers are used as the

main heat source when they are installed.

The presence of heat pumps and PV in most configurations underlines their high potential in district

energy systems. Although, the electric grid is more strained with PV implementation as imports are

reduced, but exports increased, requiring a sufficient absorption capacity of the grid. It should be

noted that the electrical configurations are more numerous and diversified than the natural gas con-

figurations thanks to a larger panel of electrical units.
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Figure 4.5: Distribution of installed units capacity and network exchange within the identified district

configurations

4.3.3 Dimensionality reduction

Principal component analysis (PCA) is a dimensionality reduction technique used to facilitate the

exploration of data sets. The algorithm identifies the eigenvectors of the covariance matrix. The

dimensions are sorted from most to least explaining component. Usually, only the first two compon-

ents are used to project the data points, as it can be observed in Figure 4.6.

The first dimension explains 64.8% of the variance and the second 33.2%, thereby the plot allows to

explain 98% of the data set variance. The indicators can be regrouped in three main groups which

align with the principal components. This is the result of having 98% of the variance explained in

only 2 dimensions. The first component can be interpreted as the GWP and the second as the TO-

TEX. The first deviates slightly from the x-axis, however the second is perfectly aligned.
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A group is positively correlated to the first dimension and contains the natural gas import, boiler in-

stalled capacity and GWP. Their correlation is natural as the boiler is fueled by natural gas, which has

a high CO2 emission factor. Oppositely, another group is inversely correlated to the first dimension.

It contains the installed capacity of the heat pump and electrical heater, which are low emissions

technologies. The electricity import is closely related to the group but with a negative correlation to

the second dimension. This second dimension is highly correlated with installed PV panel capacity,

electricity exports and TOTEX. The relationship between PV capacity and electricity export stems

from the high production potential of the technology in summer, which exceeds the demand. This

results in a redistribution of the electricity excess into the grid. This electricity export is sold at a low

price, so the gain from the electricity buyback may not offset the operational cost of the microgrid.
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Figure 4.6: Variable correlation plot of the first two principal components. Indicators pointing in the

same direction are correlated, those pointing in the opposite direction are inversely correlated, and

those that are perpendicular are uncorrelated. The length of the arrow indicates the influence of the

indicator.

The capacity of the water tank is inversely correlated with the GWP, highlighting the importance of

thermal storage at the building scale to help mitigate climate change. The non-connection between

the installed capacity of the heat pump and PV is surprising as the two technologies are comple-

mentary from each other to meet electric and heat demand. Similarly, one might have expected a

negative correlation between GWP and TOTEX, as in most scenarios, low GWP leads to high TOTEX

and vice versa. This is most likely due to optimizations having a low retail electricity price. The grid

electricity consumption having a relatively low CO2 emission factor; this reduces the positive correl-
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ation between TOTEX and GWP. Finally, regarding the arrows’ length their low variance among the

indicators, only the TOTEX, PV and electrical export are slightly more influential.

The 2D distribution of the standardized data for every combination of the district indicator is avail-

able in the appendix, see Figure 6.5. It allows to validate the PCA and see in more detailed possible

correlations.

4.4 Outlook

This following lines present some possible outlook on the applied GSA and clustering techniques.

First, a more extensive selection of input parameters for the Morris method could bring to the fore

additional parameters. Additionally, the 95% confidence interval of the absolute mean of EE distri-

bution is abnormally high compared to the mean value, see Table 6.4. Regarding the Sobol method,

more accurate variation ranges could help reduce outliers as each configuration would have a real

economical and physical meaning. The reduction of computational time of the model optimization

would allow to increase the number of evaluations and therefore increase the number of data points

for the clustering.

The application of K-means on the data set is not necessarily correct as the space is probably not

convex. However, the utilization of the algorithm to obtain an evaluation of the required number of

clusters is acceptable. The curse of dimensionality should be investigated when using a Euclidean

distance with DBSCAN. Finally, the use of the peak and total exchange with the grid can be improved

by introducing wavelet. This would allow to consider the evolution of the exchange over time in the

clustering at minimum computational cost.
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Chapter 5

Conclusion

In this research, a framework is proposed to identify typical configurations of a district energy sys-

tem. It is part of a larger project which attend to define a national scale energy system based on

typical district. The framework plays a key role in providing a panel of optimal configurations for

each typical district. In the course of this research, two main steps are performed.

First, a global sensitivity analysis of the district energy system model is performed to efficiently

sample the space of solutions. The Morris method is used to screen input parameters and the sampling

scheme is acquired using Sobol method. The conclusion of the SA emphasized the importance of the

retail tariff of energy carriers in such systems.

Finally, the space of solutions obtained from the Sobol sequence was clustered using multiple al-

gorithms. The range of optimal number of clusters was identified using two cluster validation in-

dices and the Elbow method. They showed that 8 to 10 configurations were necessary to represent at

best the solution space. The results from each technique were compared using the DBCV index. The

tenth first clusters from the DBSCAN were selected as they represent 90% of the data and obtain one

of the best score.

Furthermore, the identified configurations can be separated into two types of system, those based

on NG and the others on electricity. Each type has a pretty basic configuration, i.e. the configura-

tions based on NG install a boiler and the electric ones combine HP and electrical heater. In terms

of electricity consumption, the import and export of electricity have a positive, respectively negative,

correlation with the installed PV capacity.
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Chapter 6

Appendix

6.1 Reduction of the computational time

The model used is a distributed energy model of a district scale name REHO for Renewable Energy

Hub Optimizer. The application of a GSA to this model would require, following [45] recommend-

ations, few hundreds to a thousand of optimizations per parameters. This would end up in an un-

reasonable computational time of several tens of days. Prior to this project the computation time of

a 15 buildings district was of around 10 to 15 minutes per optimization after the following improve-

ment the computational time has been reduced to 120 seconds per optimization. AMPL refers to the

optimization language used in REHO and stands for a mathematical programming language).

1. Improvement of the pools management (multiprocessing)

2. Selection of “important” results to extract from AMPL

3. Launch of the program from the command prompt

4. Regular reset of the AMPL license to avoid unjustified crashes (good practice every 50 to 100

optimizations)
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6.2 District characteristic

Multi family Multi family Single family

Building category existing standard existing

Number of buildings 11 2 18

Total net surface 9200 1100 5600 m2

Total energy ref. area 11500 1400 7000 m2

Total roof area 4200 560 4400 m2

Annual electricity demand 37±17 50±21 60±60 kWh/m2
net

Annual hot water demand 25±0 25±0 19±0 kWh/m2
net

Annual internal gains 30±2 32±0 29±2 kWh/m2
net

Solar heat gains 22±6 20±3 31±10 kWh/m2
era

Heat transfer factor 1.74±0.24 0.83±0 1.84±0.21 W/m2
era /K

Heat capacity factor 118±5 120±0 120±0 W/m2
era /K

Table 6.1: Characteristics of the district building
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6.3 Morris

Default Increasing Decreasing Constant

Parameters 50-200% 100-200% 50-100% 85-115%

Cost_inv_1 x

Cost_inv_2 x

CO2Emi_unit1 x

CO2Emi_unit2 x

lifetime x

Units_Fmin x

Units_Fmax x

baremodule x

buy_elec x

sell_elec x

buy_NG x

sell_NG x

HouseRoofUse x

BOI_efficiency_max x

PV_eff x

Table 6.2: Parameters variation range of the Morris method
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Parameters mu mu_star sigma mu_star_conf

0 NG_Boiler___Units_Fmin 0.000000 0.000000 0.000000 0.000000

1 NG_Boiler___Units_Fmax 0.000000 0.000000 0.000000 0.000000

2 NG_Boiler___Cost_inv1 0.000000 0.000000 0.000000 0.000000

3 NG_Boiler___Cost_inv2 0.000000 0.000000 0.000000 0.000000

4 NG_Boiler___baremodule 0.000000 0.000000 0.000000 0.000000

5 NG_Boiler___lifetime 0.000000 0.000000 0.000000 0.000000

6 NG_Boiler___CO2Emi_unit1 0.000000 0.000000 0.000000 0.000000

7 NG_Boiler___CO2Emi_unit2 0.000000 0.000000 0.000000 0.000000

8 HeatPumpAW___Units_Fmin 0.000000 0.000000 0.000000 0.000000

9 HeatPumpAW___Units_Fmax 0.000000 0.000000 0.000000 0.000000

10 HeatPumpAW___Cost_inv1 0.000000 0.000000 0.000000 0.000000

11 HeatPumpAW___Cost_inv2 0.000000 0.000000 0.000000 0.000000

12 HeatPumpAW___baremodule 0.000000 0.000000 0.000000 0.000000

13 HeatPumpAW___lifetime 0.000000 0.000000 0.000000 0.000000

14 HeatPumpAW___CO2Emi_unit2 0.000000 0.000000 0.000000 0.000000

15 PV___Units_Fmax 0.000000 0.000000 0.000000 0.000000

16 PV___Cost_inv1 0.000000 0.000000 0.000000 0.000000

17 PV___Cost_inv2 0.000000 0.000000 0.000000 0.000000

18 PV___baremodule 0.000000 0.000000 0.000000 0.000000

19 PV___lifetime 0.000000 0.000000 0.000000 0.000000

20 PV___CO2Emi_unit2 0.000000 0.000000 0.000000 0.000000

21 Battery___Cost_inv1 0.000000 0.000000 0.000000 0.000000

22 Battery___Cost_inv2 0.000000 0.000000 0.000000 0.000000

23 Battery___baremodule 0.000000 0.000000 0.000000 0.000000

24 Battery___lifetime 0.000000 0.000000 0.000000 0.000000

25 Battery___CO2Emi_unit2 0.000000 0.000000 0.000000 0.000000

26 WaterTankSH___Units_Fmin 0.000000 0.000000 0.000000 0.000000

27 WaterTankSH___Units_Fmax 0.000000 0.000000 0.000000 0.000000

28 WaterTankSH___Cost_inv1 0.000000 0.000000 0.000000 0.000000

29 WaterTankSH___Cost_inv2 0.000000 0.000000 0.000000 0.000000

30 WaterTankSH___baremodule 0.000000 0.000000 0.000000 0.000000

31 WaterTankSH___lifetime 0.000000 0.000000 0.000000 0.000000

32 WaterTankSH___CO2Emi_unit2 0.000000 0.000000 0.000000 0.000000

33 WaterTankDHW___Units_Fmax 0.000000 0.000000 0.000000 0.000000

34 WaterTankDHW___Cost_inv1 0.000000 0.000000 0.000000 0.000000
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35 WaterTankDHW___Cost_inv2 0.000000 0.000000 0.000000 0.000000

36 WaterTankDHW___baremodule 0.000000 0.000000 0.000000 0.000000

37 WaterTankDHW___lifetime 0.000000 0.000000 0.000000 0.000000

38 WaterTankDHW___CO2Emi_unit2 0.000000 0.000000 0.000000 0.000000

39 ElectricalHeater_SH___Units_Fmax 0.000000 0.000000 0.000000 0.000000

40 ElectricalHeater_SH___Cost_inv1 0.000000 0.000000 0.000000 0.000000

41 ElectricalHeater_SH___Cost_inv2 0.000000 0.000000 0.000000 0.000000

42 ElectricalHeater_SH___baremodule 0.000000 0.000000 0.000000 0.000000

43 ElectricalHeater_SH___lifetime 0.000000 0.000000 0.000000 0.000000

44 ElectricalHeater_SH___CO2Emi_unit1 0.000000 0.000000 0.000000 0.000000

45 ElectricalHeater_SH___CO2Emi_unit2 0.000000 0.000000 0.000000 0.000000

46 ElectricalHeater_DWH___Units_Fmax 0.000000 0.000000 0.000000 0.000000

47 ElectricalHeater_DWH___Cost_inv1 0.000000 0.000000 0.000000 0.000000

48 ElectricalHeater_DWH___Cost_inv2 0.000000 0.000000 0.000000 0.000000

49 ElectricalHeater_DWH___baremodule 0.000000 0.000000 0.000000 0.000000

50 ElectricalHeater_DWH___lifetime 0.000000 0.000000 0.000000 0.000000

51 ElectricalHeater_DWH___CO2Emi_unit1 0.000000 0.000000 0.000000 0.000000

52 ElectricalHeater_DWH___CO2Emi_unit2 0.000000 0.000000 0.000000 0.000000

53 buy_elec 92793.081813 92793.081813 39500.428732 23738.209307

54 sell_elec -861.115229 861.115229 775.525332 513.272340

55 buy_NG 32771.053204 32771.053204 47560.528471 28895.379315

56 sell_NG 0.000000 0.000000 0.000000 0.000000

57 PV_eff -1926.373441 1926.373441 2916.932469 1939.368660

58 HouseRoofUse -726.115292 726.115292 905.373103 524.583684

59 BOI_efficiency_max -5516.327114 5516.327114 5978.467172 2980.485230

Table 6.4: Morris results of input parameters
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6.4 Sobol

Definition Parameter Default value Range of variation Units

Retail tariff of electricity Elec_retail 0.20 50-150% CHF/kWh

Retail tariff of natural gas NG_retail 0.10 50-150% CHF/kWh

Feed-in tariff of electricity Elec_feedin 0.08 85-115% CHF/kWh

Table 6.5: Parameters used for Sobol sampling

Parameter S ST

Elec_retail 0.859773 0.914416

Elec_feedin 0.000111 0.000602

NG_retail 0.090910 0.137944

Table 6.6: First-order and total effect of the chosen energy carrier prices
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6.5 Clustering

Figure 6.2: Evolution of the Silhouette score with the number of cluster k

Figure 6.3: Evolution of the SSE score with the number of cluster k
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Figure 6.4: Distribution of the clusters size
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Figure 6.5: Pair plot of the standardized district main indicators. It provided a raw visualisation of the

possible correlation between parameters. The color represents the different configuration.
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