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Abstract
Object-centric learning has gained significant attention over the last years as it can serve as a

powerful tool to analyze complex scenes as a composition of simpler entities. Well-established

tasks in computer vision, such as object detection or instance segmentation, are generally

posed in supervised settings. The recent surge of fully-unsupervised approaches for entity ab-

straction, which often tackle the problem with generative modeling or self-supervised learning,

indicates the rising interest in structured representations in the form of objects or object parts.

Indeed, these can provide benefits to many challenging tasks in visual analysis, reasoning,

forecasting, and planning, and provide a path for combinatorial generalization. In this thesis,

we exploit different consistency constraints for disambiguating entities in fully-unsupervised

settings. We first consider videos and infer entities that can be modeled by consistent motion

between frames at different time steps. We unconventionally opt for representing objects

with amodal masks and investigate methods to accumulate information about each entity

throughout time for an occlusion-aware decomposition. Approximating motion with paramet-

ric spatial transformations enables us to impose cyclic long-term consistency that contributes

to reasoning about unseen parts of entities. We then develop a video prediction model based

on this decomposition scheme. As the proposed decomposition decouples motion from

entity appearance, we attribute the inherent stochasticity of the video prediction problem to

our parametric motion model and propose a three-stage training scheme for more plausible

prediction outcomes. After deterministic decomposition at the first stage, we train our new

model for short-term prediction in stochastic settings. Long-term prediction as the last step

helps us learn the distribution of motion present in the dataset for each entity. Finally, we

focus on multi-view image settings, and assume two different arrangements where the scene

is observed from different viewpoints in both cases. We attempt to find correspondences

of the volumetric representations of those observations that are guided by differentiable

rendering algorithms. By grouping the volume units based on consistent matching of fea-

tures, we partition the volumetric representation that leads to the individual rendering of

each inferred entity. We present promising outcomes for all of the proposed unsupervised

object-representation schemes on synthetic datasets and present different ideas for scaling

them up for the adaptation to real-world data as future work.
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Résumé
L’apprentissage centré sur l’objet a suscité beaucoup d’intérêt ces dernières années, car il peut

servir d’outil puissant pour analyser des scènes complexes comme une composition d’entités

plus simples. Des tâches bien établies en vision par ordinateur, telles que la détection d’objets

ou la segmentation d’instances, sont généralement posées dans un cadre supervisé. L’essor

récent des approches entièrement non supervisées pour l’abstraction d’entités, qui s’attaquent

principalement au problème par la modélisation générative ou l’apprentissage auto-supervisé,

indique l’intérêt croissant pour les représentations structurées sous forme d’objets ou de

parties d’objets. En effet, celles-ci peuvent apporter des avantages à de nombreuses tâches

difficiles en matière d’analyse visuelle, de raisonnement, de prévision et de planification,

et fournir une voie pour la généralisation combinatoire. Dans cette thèse, nous exploitons

différentes contraintes de cohérence pour désambiguïser des entités dans des contextes

entièrement non supervisés. Nous considérons d’abord les vidéos et déduisons les entités

qui peuvent être modélisées par un mouvement cohérent entre les images à différents pas de

temps. Nous choisissons de manière non conventionnelle de représenter les objets avec des

masques amodaux et nous étudions des méthodes permettant d’accumuler des informations

sur chaque entité au fil du temps pour une décomposition tenant compte des occlusions.

L’approximation du mouvement par des transformations spatiales paramétriques nous permet

d’imposer une cohérence cyclique à long terme qui contribue au raisonnement sur les parties

non vues des entités. Nous développons ensuite un modèle de prédiction vidéo basé sur ce

schéma de décomposition. Comme la décomposition proposée dissocie le mouvement de

l’apparence de l’entité, nous attribuons la stochasticité inhérente au problème de prédiction

vidéo à notre modèle de mouvement paramétrique et proposons un schéma d’apprentissage

en trois étapes pour des résultats de prédiction plus plausibles. Après une première étape

de décomposition déterministe, nous formons notre nouveau modèle pour la prédiction

à court terme dans un contexte stochastique. La prédiction à long terme, qui constitue la

dernière étape, nous aide à apprendre la distribution du mouvement présent dans l’ensemble

de données pour chaque entité. Enfin, nous nous concentrons sur les paramètres d’images

multi-vues, et nous supposons deux arrangements différents où la scène est observée depuis

différents points de vue dans les deux cas. Nous tentons de trouver des correspondances entre

les représentations volumétriques de ces observations qui sont guidées par des algorithmes de

rendu différentiables. En regroupant les unités de volume sur la base d’une correspondance

cohérente des caractéristiques, nous partitionnons la représentation volumétrique qui conduit

au rendu individuel de chaque entité inférée. Nous présentons des résultats prometteurs pour
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Résumé

tous les schémas de représentation d’objets non supervisés proposés sur des ensembles de

données synthétiques et nous présentons différentes idées pour les mettre à l’échelle afin de

les adapter aux données du monde réel dans le cadre de travaux futurs.
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1 Introduction

1.1 Visual Entity Abstraction

Deep learning has become the de facto framework for the vast majority of tasks in computer

vision and pattern recognition (LeCun et al., 2015; Krizhevsky et al., 2012; Ronneberger et al.,

2015; Long et al., 2015; Redmon et al., 2016; Bertinetto et al., 2016; He et al., 2017; Qi et al., 2017;

Mildenhall et al., 2020), with proven success in supervised tasks. However, there are known

issues with these mostly well-performing artificial neural networks, including but not limited

to, adversarial examples (Goodfellow et al., 2014b), the limited ability of out-of-distribution

generalization (Nguyen et al., 2015) or the lack of modularity (Sabour et al., 2017) at its most

common forms. An alternative approach to remedy some of these bottlenecks is building

compositional models of the world that are grounded in physics and psychology (Lake et al.,

2017). Scene understanding is one such task in computer vision that can be tackled in a

compositional way with self-supervised methods towards this objective rather than fully

data-driven models trained with manual annotations.

The structure of natural visual scenes is often profoundly rich. Scene understanding thus

consists in discovering its building elements, like objects or planes, capturing the interactions

and relationships between those, and modeling dynamics if observations are available for

different time instants or different viewpoints. With the non-modular state-of-the-art models

proposed to date, these tasks remain a challenging research area. One possible solution for

improving the limitations of modern neural networks and developing scene understanding

and visual reasoning is to introduce abstraction or structured representations centered around

visual perception aiming towards combinatorial generalization. We claim that it can be

possibly achieved by combining complementary strengths of "hand-crafted" and "end-to-

end" approaches rather than forcing a discrete choice between the two. In other words, rather

than feeding ample amounts of data to today’s modern deep architectures with enormous

capacity, one can design deep neural network models with the inductive biases developed over

the years for processing pipelines with hand-crafted features. Such inductive bias can be used

to represent objects or object parts in images to facilitate the analysis of a given scene. Prior
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Chapter 1. Introduction

work (Diuk et al., 2008; Battaglia et al., 2018; Bapst et al., 2019) has indeed showcased how

relational reasoning and control problems can benefit from object-oriented representations.

However, the definition of objects and methods for structured representations remains a

greatly open question (Alexe et al., 2010).

Although it might seem oblivious at first sight, we, humans, are proficient at disambiguating

objects (or more generally meaningful parts), when we observe a scene, even if this one consists

of objects we have not seen before. There is a vast literature in psychology and neuroscience to

understand this phenomenon. One recognized hypothesis in psychology is known as Gestalt

laws of perception (Koffka, 2013), which aims to explain how principles of grouping in human

perception can be enclosed over a set of low-level cues. These rules are usually organized

into five categories, namely, similarity, proximity, continuity, enclosure and common fate.

In essence, they indicate that things that are similar and close to each other, or things that

move together, are more likely to "belong together". This means that they can be grouped

together, and our brain will make them appear as simple as possible in a way that they form

some entity (Wagemans et al., 2012). Another approach to studying human cognition defines

four core knowledge systems for building mental representations of objects, persons, spatial

relationships and numerosity, based on studies on infants (Spelke and Kinzler, 2007). Among

these core systems, the one for object representation that focuses on the cohesion, continuity

and contact of objects seems to have been studied most extensively (Aguiar and Baillargeon,

1999; Leslie and Keeble, 1987; Spelke, 1990). One interesting finding is that the ability to

perceive object boundaries and complete shapes of objects that move out of sight is present

even without any visual experience in human infants or chicks (Valenza et al., 2006; Lea et al.,

1996). On the other hand, a similar phenomenon cannot be observed for inanimate objects

even after months of visual experience (Huntley-Fenner et al., 2002). This emphasizes the

importance of motion for the abstraction of entities in human perception. Overall, there is

no single accepted hypothesis for the perceptual grouping in our visual system, but one can

argue that it is mostly holistic, meaning that a scene is perceived as a sum of its components,

and it is likely to require a recurrence to attain the ability to process low-level features with

attention. Moreover, it is not class-specific, we do not need previous exposure to a particular

type of object to be able to disambiguate it; and it is easier to do so, almost granted, if that

object is subject to some motion.

In contrast, most of the established tasks in computer vision that are related to objects are

initially posed as supervised problems and hardly benefit from this body of work in human

perception. For example, we can list object detection, which calls for a bounding box and

a class label describing the object inside the predicted bounding box for all the objects in

an image; semantic segmentation, which requires per-pixel class assignments for a set of

predetermined labels; or instance segmentation, which differentiates between individual

instances of a class by per-pixel label assignment while possibly discarding a subset of pixels.

And all of these tasks are tackled in supervised, and very often, class-dependent settings. Their

video counterpart, namely video object segmentation, aims to partition video frames into

multiple segments that might correspond to objects or object parts. This problem is addressed
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1.1 Visual Entity Abstraction

both in supervised and unsupervised settings. Unsupervised video object segmentation mostly

refers to the testing scenario where there is no human input to the system, yet the training

is done with labeled datasets. Labeling is, however, extremely expensive, particularly for

video datasets. And supervision in many forms contradicts the ultimate purpose of structured

generalization as it means that segmentation methods might become confined to representing

objects of classes seen during training. Hence, the lack of adaptivity might limit the success of

such methods in the long term.

There is, however, a recent trend in the machine learning community to take inspiration from

the human visual system for fully-unsupervised methods toward object-oriented models. This

is mostly achieved by generative models or self-supervised learning. These methods can

operate on still images, where the main objective consists of grouping pixels based mostly

on proximity and similarity. In videos, they can additionally incorporate the inductive bias

of common fate to abstract objects or object parts. Independently of the type of dataset, the

recent object-oriented methods are often categorized into two groups, those that are based

on local attention and mostly represent objects with bounding boxes (Eslami et al., 2016;

Crawford and Pineau, 2019), and the others that represent the data as scene mixture models

where the decomposed modules define the appearance of entities together with a per pixel

assignment mask (Greff et al., 2017; Van Steenkiste et al., 2018; Greff et al., 2019; Locatello

et al., 2020). One common aspect of these two categories, though, is the fact that both of them

operate as inverse graphics based on representation learning with the purpose of "analysis

by synthesis". Indeed, the input frame is first encoded into a set of latent variables, which

are then decoded into individual entities for re-composing the input frame, or possibly for

predicting a frame in the future in the video case. An important design pattern then emerges

regarding the dynamics of decomposition of the latent variables representing slots, which

often refer to meaningful parts composing the observed scene. This design can follow different

models:

• Universal slots, where the input frame is encoded globally into permutation invariant

entity representations (Greff et al., 2019; Locatello et al., 2020),

• Sequential slots, which indicates the sequential decomposition of the input frame into

slot representations that only use the residual of the input frame after the inference

of a previous slot; in other words, these are methods that attend to a single slot at a

time (Veerapaneni et al., 2020; Zablotskaia et al., 2021),

• Spatial slots that first partition the input into spatial tiles and focus on those tiles

independently (Jiang et al., 2019), and,

• Category slots, such as capsules, where each slot is attributed to a category from a set of

predefined objects or object parts (Sabour et al., 2017).

Figure 1.1 illustrates the different design patterns for entity abstraction.

3



Chapter 1. Introduction

Figure 1.1: Design patterns for entity abstraction representing: (a) universal (b) sequential (c)
spatial (d) categorical slots. Image taken from Greff (2020).

In this thesis, we follow a global processing model similar to universal slots. We opt for a fully

unsupervised approach to decompose input frames into individual entities, which exhibit

some notion of consistency between different perspectives of the same scene. These different

perspectives are tightly coupled to motion. For example, they can be different snapshots in

time if the entities are moving; or they can be different viewpoints if the entities are mostly

static.

For the first part of the thesis, presented in Chapters 3-4, our objective is to learn masks to

describe moving entities, and use the input frame to infer object appearances with masks while

taking occlusions into account. As we do not follow the common encoding-decoding approach,

the learning objective is modified from reconstruction to prediction in Chapter 3. We later

extend this model for object-centric video prediction in Chapter 4, where the prediction is

formulated as sampling parametric motion for each inferred entity from a time-dependent

conditional distribution. In the second part of the thesis, presented in Chapter 5, we consider

two configurations of a scene consisting of the same entities seen from multiple different

viewpoints and opt for a feature volume representation. We aim to find correspondences

between two feature volumes for voxel grouping to account for the changes in these two

different configurations. We detail the structure of the thesis in the next section.

1.2 Thesis Outline

One way to describe the notion of representation is to state it as a formal system that "makes

certain entities and types of information explicit" towards achieving a task that manipulates

the information (Marr, 2010). Various types of representation hence differ fundamentally in

what information they choose to make explicit. Traditional methods in computer vision mostly

engage in representations that correspond to interpretable entities, whereas modern deep

learning techniques tend to operate in high-dimensional spaces that are harder to understand

and explain. Object-oriented methods, in general, appear to be somewhere in between. They

represent entities with latent variables that are frequently accompanied by a pixel mask, which

is somewhat similar to an indicator function. They decode these latent representations back

to pixel values to account for the appearance of the corresponding visual entity. These repre-

sentations are more and more commonly referred to as slot representations (Locatello et al.,

2020). However, this kind of autoencoding initially resulted in blurry outcomes, particularly
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in the case of textured entities (Finn et al., 2016) and they can be harder to scale up to more

sophisticated scenes at higher spatial resolutions. We suggest that one way to mitigate the

drawbacks of autoencoding the visual appearance for abstracting entities is to represent them

via masks that segment the input image or video frame. The masks can operate as indicator

functions to infer the appearance of each visual entity, but, such formulation would require

the definition of a task different from the reconstruction. Similarly, video representation

poses the same challenge with the addition of time dimension, which also constrains the

autoencoding approach with slowly-varying representations for each entity. However, the

per-frame reconstruction error averaged over time might as the training objective leads to

averaged representations resulting in blurry reconstructions (Mathieu et al., 2015). In contrast,

the masking strategy is less likely to produce blurry results, yet, inferring masks that indicate

entities in a time-consistent manner is not trivial given that the reconstruction objective is no

more plausible.

The initial motivation for an entity abstraction approach in this thesis emerged from the idea

that disambiguating entities that move in a given sequence would lead to more physically

plausible video prediction outcomes as we can individually warp entities to future time steps

and compose them in an occlusion aware manner, rather than averaging all possible outcomes

in pixel space for a given dataset. Although simplistic in motivation, such a pipeline would

come with its own challenges. First and foremost, without supervision, decoupling "objects" is

an ill-posed problem. We first try to tackle that by narrowing our search space to moving objects

in videos, which we believe is a better-posed problem. However, by construction, per-frame

processing becomes unattainable as we seek cues for motion. By multi-frame processing, we

aim for entity masks that would dissect an input frame into different entities. As any such

segmentation can easily lead to perfect reconstruction, the per-frame reconstruction objective

is replaced with object-centric prediction in videos. For the prediction task, on the other hand,

one needs to take occlusions into account, inpaint previously unseen parts of an object when

warping it to any time step in the future, and predict motion based on the content and ongoing

motion.

In the first part of the thesis, we investigate different ideas for achieving this segregation

task with amodal masks, as amodal masks help with occlusion-aware composition and they

behave as an indicator map for inpainting. In essence, we show that one can infer such masks

based on low-level cues induced by convolutional neural networks (Krizhevsky et al., 2012),

or their explicit similarity, and continue tracking them with some notion of memory in the

event of occlusions. We consider different ways of composition in those events based on

the inferred amodal masks and experiment with different auxiliary objectives to constrain

the problem, such as enforcing the masks for entities to be spatially connected or sparse or

introducing a cyclic long-term prediction objective to reinforce the amodal mask approach.

As the field is relatively young, there are few different datasets used for reporting performance

in unsupervised object-oriented learning, and the uniformity is very limited. Thus, we first

present our results on our own dataset that is composed of simple sprites, similar to available

datasets, but with more events of occlusion to build challenging conditions. We then compare
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our results to a recent benchmark that investigates the performance of the state-of-the-art

methods (Weis et al., 2020). We show that our novel method is capable of inferring entity

masks for moving objects as a virtue of the proposed prediction objective in contrast to existing

methods trained with reconstruction tasks.

In the following part, we develop an object-centric video prediction model based on our

decomposition framework. Video prediction can be tackled by identifying variables of change

and only predicting the future of those variables. With an object-oriented approach, we

can claim that object appearances are less likely to change during the short windows of

time, and change emerges from how they move and interact. Hence, we simplify the video

prediction problem by attributing the scene dynamics only to the motion of inferred entities.

The parameters of motion for each entity, hence, are treated as random variables; and the

video prediction problem boils down to the estimation of their distribution and sampling

from the estimated distribution when we need to predict a few next frames given a short video

sequence. We suggest that the motion parameters for each entity should vary in a way to

ensure continuity. Hence, we opt for a time-variant distribution and condition the motion

parameters on their values in the past time steps. In addition, we claim that only a subspace

of motion would be suitable for each entity. For example, elongation is usually not suitable for

human or animal body parts, or any rigid man-made objects. Hence, we also condition the

motion parameters on the appearance of the corresponding entity at the given time step. In

stochastic settings, where the parametric motion is defined by random variables, this leads

to certain dependencies for learning the distributions of plausible motion. We model our

assumptions with a graphical model and experiment with the two most common generative

approaches for approximating the posterior distribution of these variables. For the first one,

we principle a method based on the dependencies of the latent variables for maximizing the

likelihood of the observed data points. Secondly, we try an adversarial training scheme for

video prediction by treating it as a conditional generation problem. To observe the advantages

and bottlenecks of these two different approaches, we generate sequences where objects may

adhere to different motion patterns. We keep the deterministic decomposition steps for entity

abstraction and present a comparative study for the prediction outcomes generated by these

two approaches. Results indicate that content-bases motion is a plausible assumption, and

our pipeline can produce multi-step prediction outcomes while learning the distribution

of the motion patterns to some extent. However, stochastic object-centric video prediction

remains a challenging problem related to the well-known problem of mode-collapse faced by

popular generative models.

In the final part, we change the scenario to a more static setting with the intuition that en-

tities can often be observed relocated in a given, static scene at two different times rather

than moving continuously without any external manipulations. In other words, it is likely to

observe static scenes, which refers to static objects, at discrete times, and the objects might be

relocated between those observations. As discrete snapshots in time would result in very lim-

ited information for interactions between objects, such as occlusions, we assume multi-view

observations for each time step and target the decoupling of entities that can be represented
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by the same motion in 3D. For this purpose, we first adopt the recently proposed differentiable

rendering method, Neural Radiance Fields(NeRF) (Mildenhall et al., 2020) to infer the 3D

structure of a given scene from multiple 2D observations. NeRF is proposed to represent a

single scene by over-fitting a function to map 3D coordinates to color and density. We first

re-formulate it to operate on a discretized, bounded 3D world for multiple arrangements of

the same scene, which requires generalization to represent "different" scenes with the same

model. We then solve a correspondence problem for the discretized units for which the density

value for rendering is high and group them according to inferred correspondences to account

for entities. Despite the great interest in 3D representations, particularly NeRF and its variants,

fully unsupervised methods for entity abstraction in 3D is very limited, hence, we generate

a small dataset to showcase the performance of our proposal. Our results demonstrate that

neural rendering approaches can be used for learning features for a hybrid 3D-representation

schemes, which enables unsupervised reasoning directly in three dimensions.

1.3 Summary of Contributions

In this thesis, we take a novel approach to represent objects in 2D and 3D without any labels.

The main contributions of this thesis are summarized as follows:

• We propose a novel object-centric representation of videos by segregating frames with

masks that are derived from amodal representations. Contrary to the methods in the

literature, our model explicitly represents both visible and occluded parts of each entity

and does not require any iterative processing steps. Training of the proposed model

is guided by short- and long-term prediction objectives, and supported by auxiliary

losses which impose geometrically plausible entity masks. Results on simulated datasets

validate that our approach is not only capable of abstracting entities based on consistent

motion, but it also produces promising single-frame predictions.

• We principle on object-centric stochastic video prediction framework by attributing the

stochasticity of the problem to the motion of decoupled moving entities. To the best

of our knowledge, it is the first approach to bridge the gap between object-centric and

stochastic video prediction algorithms. We experiment with two popular generative

models for the video prediction problem under conditional-generation settings and

propose a structured algorithm to estimate the distribution of motion observed in

a given dataset. With a comparative study, we demonstrate the bottlenecks of each

generative approach for this challenging problem.

• We formulate a problem of unsupervised entity abstraction in 3D that outputs object

representations that can be rendered from any viewpoint. We adopt recent neural

rendering techniques for a hybrid 3D representation, i.e., we represent each scene as

a combination of a feature volume and a scene-agnostic rendering function, where

the latter guides learning the first one. Such volumetric representations enable an
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unsupervised decomposition algorithm based on 3D correspondences of the feature

volumes when the objects are relocated. To the best of our knowledge, our method

is the first attempt to abstract entities based on a formulation that is directly in three

dimensions.
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2 Related Work

In this chapter, we present a brief summary of the literature on visual entity abstraction and

video prediction followed by a short coverage of object representations in 3D.

2.1 Visual Entity Abstraction and Layered Representations

The idea of representing videos as moving layers dates back to the 1990s (Wang and Adelson,

1993) and it has been of consistent interest to date for computer vision researchers (Jojic and

Frey, 2001; Jepson et al., 2002; Ye et al., 2022). The objective consists in decomposing each

video frame into persistent layers that smoothly transform over time. This line of approaches

achieves the decomposition for each video independently, i.e., their optimized models do

not generalize to other videos. The problem is heavily ill-posed, yet the recent work (Ye et al.,

2022) demonstrates how one can successfully obtain a decomposition by inferring a sprite, i.e.,

a canonical texture image, for describing each group individually. Each group is eventually

transformed into each frame with non-rigid geometric transformations for composition, after

being masked by their jointly inferred masks. However, the model needs to be trained for each

sequence separately, which heavily limits its practical use in its current form.

Recently, we witness a more discretized form of layered representations commonly referred to

as (co-)part segmentation, which mostly involves either a group of images of a specific category

or two frames of a video. These methods investigate the part structure in order to obtain

meaningful intermediate representations of articulated objects. It has been initially formulated

in supervised settings (Bourdev and Malik, 2009; Branson et al., 2011; Azizpour and Laptev,

2012) and has been recently addressed in unsupervised settings (Hung et al., 2019; Siarohin

et al., 2021; Gao et al., 2021a; Liu et al., 2021). Supervision, when applied, is mostly guided

by class-dependent annotations, hence, supervised methods struggle to generalize across

different classes. On the other hand, formulating the problem in an unsupervised fashion is

extremely challenging by a plain reconstruction objective emerging from the composition of

inferred parts. Some additional constraints to decrease the complexity of the problem can

be exemplified by semantic consistency (Hung et al., 2019; Siarohin et al., 2021), geometric
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concentration or compactness (Hung et al., 2019; Gao et al., 2021a; Liu et al., 2021) or motion

consistency (Siarohin et al., 2021; Gao et al., 2021a). The variety of constraints, in particular

for unsupervised settings, has been surely influential in other applications; however, the

class-dependent implementations remain a bottleneck to be addressed.

The fully-unsupervised, class-agnostic approaches for structured representations that can

be used for multiple instances of the input data, are relatively recent. These methods take

inspiration from human perception and try to mimic the pathways used for understanding

complex scenes with previously unseen objects as a sum of simpler and meaningful parts.

Among the nominal works, AIR (Eslami et al., 2016) attempts to understand a scene with no

supervision by computing object poses, i.e., 2D or 3D bounding boxes, and treating infer-

ence as an iterative process, one object at a time, which is a typical example for sequential

slots presented in Figure 1.1. The spatially-invariant extension, SPAIR (Crawford and Pineau,

2019), tries to scale AIR-like approaches with fully convolutional representations for the same

bounding box target. SQAIR (Kosiorek et al., 2018) extends AIR for sequential data where the

non-convolutional latent variables are inferred one at a time for a single frame and used for

conditioning the corresponding latent in the next time step. Another method that attends

objects sequentially, TBA (He et al., 2019) is a deterministic approach, which positions itself as

a reprioritized attentive tracking method that uses spatial transformers (Jaderberg et al., 2015)

for motion modeling. More recently, MONet (Burgess et al., 2019) proposes to use the same

iterative approach of processing one object at a time towards obtaining attention masks to

compose a given image as the masked sum of decoded representations. GENESIS (Engelcke

et al., 2019) represents the scene as a Gaussian mixture model where the mixing probabilities

are considered as spatial attention masks, and they are implemented with an autoregressive

prior, corresponding to the same iterative processing of a given frame. MONet and GENESIS

might look very similar at a first glance, but they differ fundamentally in their principles:

while GENESIS is a pure generative model that attempts to infer the data distribution with

structured representations, MONet is a deterministic inference scheme given an input frame.

A concurrent work, IODINE (Greff et al., 2019), also models the scene as a mixture model

with similar spatial attention masks; however, it opts for global processing of the given frame,

exemplifying global slots illustrated in Figure1.1. On the other hand, the inference scheme

consists in iterative refinement, which can be computationally expensive. NEM (Greff et al.,

2017) and its sequential and relational extensions (Van Steenkiste et al., 2018) can be consid-

ered as more elementary versions of IODINE, where the inference is achieved by expectation

maximization via recurrent neural networks. PROVIDE (Zablotskaia et al., 2021) improves

upon IODINE by extending the iterative amortized inference onto 2D spatio-temporal space.

Slot Attention (Locatello et al., 2020) also proposes an iterative procedure for decomposing

an input image into visually similar parts using self-attention (Vaswani et al., 2017), which is

similar to the well-known clustering algorithm k-means, in essence. Slot Attention is also very

recently extended to videos where prediction of motion is used as the main training objective,

hence optical flow is used as an additional input for training (Kipf et al., 2022). On the other

hand, PARTS (Zoran et al., 2021) integrates the slot attention mechanism into iterative amor-
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tized inference to improve the refinement step. Another example that opts for spatial attentive

masks and operates with global slots is OP3 (Veerapaneni et al., 2020), which abstracts entities

in an unsupervised manner and additionally uses them for prediction and planning. The main

difference between OP3 and IODINE is that OP3 models sequential data with dynamic latent

variables whereas IODINE is originally formulated for images. In a nutshell, all these methods

attack a challenging and ill-posed problem, yet succeed to demonstrate encouraging results.

On the other hand, they mostly rely on the reconstruction objective, which may result in blurry

outcomes as discussed earlier. One can say that the iterative process is another bottleneck

for this group of work, whether it is used for processing one object at a time or adopted for

refinement of the objects that are inferred in parallel.

Another group of recent approaches like SILOT (Crawford and Pineau, 2020), STOVE (Kossen

et al., 2019), SCALOR (Jiang et al., 2020), and G-SWM (Lin et al., 2020a) addresses the same

problem by explicitly modeling entity representations by interpretable attributes. They mostly

differ in the way they factorize the entity latent variables, hence the way they model the

dependencies as well as in the method used for inferring the corresponding distributions.

SILOT is similar to SQAIR with spatially invariant computations and factorizes the object

latent variable into attributes like "where", "what", "depth" and "presence" to account for

all the objects that are visible, or invisible, at a given time step. SCALOR, from another

perspective, uses a proposal rejection mechanism for the same problem. STOVE also factorizes

the latent variable into similar object attributes, and additionally uses a graph neural network

for explicitly modeling the relations between multiple objects. G-SWM claims to develop a

unified model using the key strengths of all aforementioned approaches in this group. All

SILOT, SCALOR, and STOVE opt for bounding box representations as descendants of AIR,

which unfortunately limits the representation power for more complex objects.

To unify the evaluation protocol for such (sequential) models, Weis et al. (2020) recently

proposed a benchmarking scheme to investigate how different methods compare regarding

their ability to detect, segment, and track individual objects. They sample the methods across

different approaches and evaluate MONet (which they also extend as ViMON for sequences),

TBA, and OP3 as representatives of spatial attention methods, spatial attention methods with

factored latent, and spatial mixture models, respectively.

Our representation model presented in Chapter 3, in principle, is similar to spatial mixture

models as we prefer masks over bounding boxes, which results in more descriptive repre-

sentations. However, it is not a generative model and compositional reconstruction is not

the ultimate training objective; what we propose is more of a deterministic decomposition

based on moving objects and supported by cyclic-long-term prediction. There is no iterative

process at any point in our method in contrast to the majority of approaches in the literature,

which makes training and inference more efficient. Our method can be also considered as a

class-agnostic co-part segmentation in sequences with continuity assumption.

11



Chapter 2. Related Work

2.2 Video Generation and Prediction

2.2.1 Video Generation

Generative models have been considered as a tool for learning representations in an unsu-

pervised manner and disentangling the underlying reasons for variation in a given dataset.

The nominal works of Generative Adversarial Networks (GANs) (Goodfellow et al., 2014a) and

Variational Autoencoders (VAEs) (Kingma and Welling, 2013) have led to an ample amount of

methods for generating images, and we have observed very rapid progress from low-resolution

outcomes with visually perceptible artifacts to very high resolution, semantically meaningful

computer-generated images in the last years. Video generation is usually considered to be

more challenging due to higher dimensionality and difficulty in generating physically plausi-

ble continuation of events. Hence, progress is rather limited compared to image generation.

One fundamental approach to facilitate video generation is to disentangle content and mo-

tion (Hsu et al., 2017; Tulyakov et al., 2018; Yingzhen and Mandt, 2018; Wang et al., 2020; Zhu

et al., 2020; Han et al., 2021) by assuming a static content latent vector and a time-varying

motion counterpart.

Even under more constrained environments, such as video-to-video synthesis, where the

output video is mapped from an input source video rather than a noise vector as in generative

modeling, the outcomes are prone to artifacts like flickering due to extreme high dimen-

sionality of the problem (Wang et al., 2018; Mallya et al., 2020). On the other hand, these

methods have led video prediction approaches to include an extra input, such as a semantic

segmentation map of input frames, so that the per-pixel video prediction task is constrained

by the auxiliary task of predicting the future of the extra input (Luc et al., 2017) resulting in

more consistent and plausible outcomes.

2.2.2 Video Prediction

Video generation approaches aim to generate a sequence of smoothly and plausibly changing

frames from noise vectors, whereas video prediction uses a given sequence of frames as

context and tries to infer the subsequent frames. Prediction is often considered as conditional

generation. Although no labels are required for training models for video prediction, this setup

is not considered an unsupervised task either, because the target signal is also present in a

given dataset. There is a substantial amount of work in video prediction with the advent of

deep neural networks (Oprea et al., 2020; Rasouli, 2020) and we will provide a limited overview

to give a general idea about the main approaches and challenges in the field by mostly focusing

on methods that aim at compositional prediction. In this section, we review methods that

tackle the video prediction problem in deterministic and stochastic frameworks. After visiting

a few works that aim for compositionality for better prediction ability, we conclude with a

summary of stochastic recurrent models, which are mostly formulated for prediction problems

in diverse settings for different data modalities.
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Deterministic Video Prediction

Early work for video prediction (Graves, 2013; Ranzato et al., 2014; Srivastava et al., 2015;

Mathieu et al., 2015; Finn et al., 2016; Reda et al., 2018; Wichers et al., 2018) mainly relied on

recurrent architectures such as vanilla RNNs or LSTMs (Hochreiter and Schmidhuber, 1997),

convolutional LSTMs (Xingjian et al., 2015) or their extensions to spatio-temporal domain,

such as predRNN (Wang et al., 2022) or CubicLSTM (Fan et al., 2019), for deterministic video

prediction. The prevailing approach is to feed the input frame or features to the recurrent

architectures to update the states at a given time and use the output of recurrent units for

regressing the frame at the next time step. This line of work is considered deterministic

in the sense that the same input results in the same prediction outcome and the latent

representations are treated as deterministic variables. This single-step prediction framework

can be extended for long-term prediction by feeding the regressed output as the input of

the time step, in an autoregressive fashion. A sub-class of these works (Finn et al., 2016; Jia

et al., 2016) use recurrent units to learn pixel-wise transformations, mostly in the form of

convolutional kernels, in order to warp the input frame to the next time step. Although the

latter group performs slightly better, these deterministic video prediction algorithms based on

latent representations mostly suffer from blurry outputs as a result of pixel-wise reconstruction

error (Mathieu et al., 2015).

Incorporating an adversarial loss into the training scheme has been one of the common

methods to improve the fidelity of predicted frames (Lotter et al., 2015; Villegas et al., 2017;

Vondrick and Torralba, 2017; Luc et al., 2020). The method by Villegas et al. (2017), in particular,

constitutes one of the early attempts to implicitly disentangle motion and content for the

prediction problem, in an analogous fashion to disentangled video generation. It has been

soon followed by similar approaches (Hsieh et al., 2018; Guen and Thome, 2020). Vondrick and

Torralba (2017) use Spatial Transformers (Jaderberg et al., 2015) for pixel-wise transformers

in adversarial settings. Many other works have opted for optical flow estimation, either

with (Liang et al., 2017; Lu et al., 2017) or without (Walker et al., 2015) adversarial loss. Different

approaches, such as VoxelFlow (Liu et al., 2017) and frequency-based features (Xu et al., 2018)

were also implemented for high-fidelity outcomes. All these models successfully improve

the visual quality of predicted frames, yet, they are still deterministic approaches that tackle

an inherently stochastic problem. We consider the video prediction problem as inherently

stochastic because there are multiple plausible sequences that can resume the given input

frames.

Stochastic Video Prediction

There are however further challenges related to the stochastic video prediction problem. Mod-

eling future distributions of frames given one or few initial samples is very challenging due

to the high-dimensional nature of the task, in addition to the highly entangled content and

motion features. Early works converted deterministic frameworks into stochastic counterparts

by VAE or GAN-based formulation of latent variables. For example, the method by Walker et al.
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(2016) builds upon the model by Walker et al. (2015), and Babaeizadeh et al. (2017) modifies

the work of Finn et al. (2016) using VAEs, whereas Lee et al. (2018) introduce adversarial loss to

further improve the version by Babaeizadeh et al. (2017). However, most of these approaches

learn the distribution of the proposed latent variables from the whole sequence and sample un-

conditionally at each time step at inference time. One can easily claim that conditioning latent

variables sequentially would help with the continuity of predicted frames, at the expense of a

more sophisticated learning strategy. Indeed, Denton and Fergus (2018) demonstrate how a

time-varying distribution for the stochastic latent variables can improve the modeling capabil-

ities, which is further extended by Castrejon et al. (2019) with hierarchical latent variables and

higher capacity networks to produce visually appealing and coherent samples. Large networks

are certainly shown to improve the visual quality of the output frames (Villegas et al., 2019);

however, Franceschi et al. (2020) demonstrate that increasing the number of layers or neurons

in the network is not the only solution: their method proposes to use residual connections for

stochastic variables and for decoupling frame synthesis and dynamics. There are also other

adaptations from different domains: VAE counterparts of dynamic convolutions (Xue et al.,

2016), quantized autoencoders (Walker et al., 2021), transformers with three-dimensional

self-attention and spatiotemporal subscaling (Weissenborn et al., 2019), as well as conditional

pixel-wise generation (Kalchbrenner et al., 2017). All of them model the data distribution for

video prediction with a range of different modalities.

Compositional Video Prediction

On the other hand, some entity abstraction methods, such as OP3 (Veerapaneni et al., 2020)

and STOVE (Kossen et al., 2019), are principled and inherently serve for the video prediction

problem as a virtue of the time-varying entity latent distribution in their formulation. Fur-

thermore, Gao et al. (2019) divide the prediction problem into two parts: first, they predict

a part of the future frame by extrapolating the input optical flow to account for regions that

move fluidly. They train an additional inpainting module for the parts of the future frame

which are previously occluded according to the model. Wu et al. (2020) further demonstrates

how decoupling the scene and considering moving objects can improve video prediction

outcomes in real-world sequences. There is a lot in common between this approach and our

proposal regarding the prediction philosophy; however, they perform supervised training for

learning to detect moving objects, and working on real-world sequences enables them to use a

pre-trained inpainting module. For detecting moving objects, they use instance maps, optical

flow, and semantic maps as extra inputs, the availability of which is heavily limited to certain

scenarios such as autonomous driving. In contrast, we propose to first learn how to decouple

objects and use this decomposition model for object-centric video prediction without any

need for annotations.

14



2.2 Video Generation and Prediction

Stochastic Recurrent Networks

A state-space model (Durbin and Koopman, 2012) characterizes a stochastic, discrete-time

process by describing how the latent variables and model outputs (observable variables of

the model) change over time. Sequence modeling via state-space models is suitable for many

tasks, which include but are not limited to trading, weather forecasting, language, and audio

modeling, as well as video prediction.

Recently, the description of the evolution of latent variables in these models are formulated

with recurrent neural networks (Bayer and Osendorfer, 2014; Chung et al., 2015; Fraccaro et al.,

2016; Krishnan et al., 2016; Goyal et al., 2017; Hafner et al., 2019; Franceschi et al., 2020). Recur-

rent neural networks (RNNs) already involve a hidden state that is updated at each time step,

and the evolution of the hidden state is deterministic. These recent efforts augment RNNs with

stochastic latent variables and train the resultant stochastic RNNs with amortized variational

inference, or with an auto-encoding framework as in Variational Autoencoders (Kingma and

Welling, 2013). These networks mainly differ in modeling the dependencies between deter-

ministic states and stochastic latent variables, which is usually a design choice that depends

on the target application.

Figure 2.1 illustrates some well-known stochatic RNNs, namely, STORN (Bayer and Osendorfer,

2014), VRNN (Chung et al., 2015), SRNN (Fraccaro et al., 2016) and Z-Forcing (Goyal et al.,

2017). We can clearly see different dependency assumptions between the deterministic states,

ht , and the stochastic units, zt indicated by arrows. For example, in STORN (Bayer and

Osendorfer, 2014), the stochastic units, zt , are sampled independently at each time step.

However, for the computation of the prior distribution p(zt |ht ), VRNN (Chung et al., 2015)

prefers including the past information via the deterministic state of the previous time step.

On a different note, SRNN (Fraccaro et al., 2016) separates the deterministic and stochastic

parts, and more importantly, it conditions the stochastic variable zt on zt−1 in an analogy to

state-space models. It proposes a backward RNN for computing the approximate posterior,

which involves an auxiliary deterministic state indicated by dashed lines in Figure 2.1(2.1.3).

In contrast, Z-forcing (Goyal et al., 2017) removes the sequential dependence of stochastic

variables and proposes auxiliary tasks of encoding information about the future, illustrated by

double arrows in Figure 2.1(2.1.4).

Stochastic recurrent networks aim to bring the best of state space models and recurrent neural

networks in order to better model sequential data. However, they do not scale up well to

higher dimensional spaces, which limits their use for video prediction with auto-encoding

approaches. On the other hand, we disentangle factors of variation for the video prediction

problem, which allows us to work on sub-tasks in lower dimensional spaces.

We aim to develop a method that can extend our deterministic framework for stochastic pre-

diction. We claim that the majority of the deterministic framework should stay deterministic,

and the stochasticity should emerge from the predicted motion for each entity. Given that we

predict motion parameters in an autoregressive way (Equation 3.44), SRNN (Fraccaro et al.,
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Figure 2.1: Computation graph for generative models of sequences that use latent variables:
STORN (Bayer and Osendorfer, 2014), VRNN (Chung et al., 2015), SRNN (Fraccaro et al., 2016)
and Z-Forcing (Goyal et al., 2017). Graphs illustrate the generative models which predict
the next observation in the sequence xt , given previous ones {xt }t−1

t=1. Diamonds represent
deterministic states and zt stands for the stochastic latent variable. Dashed lines represent the
computation that is part of the inference model. Double lines indicate auxiliary predictions
implied by the auxiliary cost in Z-Forcing. Image taken from Goyal et al. (2017).

2016) model stands out as a suitable framework for modeling the time-varying distribution

of motion parameters. Moreover, as these models are mainly designed for low-dimensional

spaces (the inference schemes become very expensive otherwise), the adaptation of these

approaches for the estimation of low-dimensional motion dynamics remains fairly accessible.

2.3 Object Representations in 3D

Similar to other object-related tasks in computer vision, 3D object detection is mostly posed

as a supervised learning problem (Arnold et al., 2019; Liang et al., 2021). However, there is a

small number of promising works that tackle the problem of unsupervised entity abstraction

in 3D to alleviate the ambiguities that emerge from projection to 2D while forming images,

such as occlusion.

Henderson and Lampert (2020) propose a 3D-aware generative model that employs a dif-

ferentiable renderer to decompose moving objects from monocular videos recorded by a

moving camera. For the same set-up of moving objects observed from multiple viewpoints, Li

et al. (2021) suggest factorizing the latent variables in a spatio-temporal manner to decouple

objects with their generative modeling. Li et al. (2020) challenge the idea of 3D inference

from a single 2D observation and propose a multi-view framework for static objects, in which

the typical entity-specific latent variables are updated over different views. To develop a 3D

understanding of the given static scene, the network is required to predict the appearance

from novel viewpoints during training. Stelzner et al. (2021) replace the decoder of SlotAt-

tention (Locatello et al., 2020) model with a differentiable rendering algorithm in order to

compose a static scene from unlabeled RGB-D data. Very recently, Kabra et al. (2021) leverage
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2.3 Object Representations in 3D

the shared structure across different scenes and decouple the latent representations into time-

invariant object representations and time-varying viewpoints. They model the observations

from RGB video input and train the proposed network by view synthesis based on inferred

latent variables. All these recent methods contribute to the challenging problem of unsuper-

vised 3D object decomposition by enforcing the 3D consistency of learned representations via

explicit or implicit rendering. However, the mechanisms proposed for decoupling objects are

mostly based on 2D cues. Moreover, posing the problem with generative modeling limit the

application of these methods to relatively low-resolution datasets.

Du et al. (2020) also work on a monocular RGB video, but contrary to 2D object representa-

tions of a given video, they model object motion by the rigid-body transformation in three

dimensions and render object masks based on 3D attributes. Gao et al. (2021b) also target

3D object representations, and they propose to obtain them by auto-encoding 3D transfor-

mations. However, the method by Gao et al. (2021b) requires explicit 3D models of objects

for training, and the resultant 3D representations are only studied for object classification

or image retrieval. In the last chapter of this thesis, we also aim for 3D representations for

unsupervised object decomposition with the help of differentiable rendering. Differently from

existing work, we propose to obtain volumetric (3D) features by lifting and fusing 2D cues,

then address decomposition directly in three dimensions.
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3 Continuous Motion and Consistency
Objective

3.1 Introduction

As discussed in previous chapters, entity or object abstraction is of crucial importance for many

tasks in computer vision and robotics. In order to alleviate the need for labor-intensive manual

labeling, recent unsupervised approaches for entity abstraction mainly focus on autoencoding

input frames into a set of latent variables, whose inference becomes a critical design choice, as

detailed in Chapter 2. The input frame is reconstructed from the set of inferred latent variables,

and the parameters of the model are learned by minimizing the reconstruction error. We argue

that the decoding element in these methods, which maps latent variables back to input space,

plays a crucial role and can be considered as an overhead that limits the application of these

models to more sophisticated datasets. Hence, we take a different approach and formulate

the unsupervised entity abstraction problem in a way to disambiguate moving objects with a

masking strategy. We try to group pixels of an input frame into objects that can be represented

by consistent motion between multiple time steps. In other words, we design the training

objective of our new method to perform prediction-by-parts.

Whether formulated for a single-step or multiple time-steps, object-centric video prediction

requires accurate representations of all moving entities in the sense that both visible and

occluded parts of an entity should be modeled as completely as possible. In other words, to be

able to predict a video frame at a time step, the model needs to "imagine" the full appearance of

each entity, and warp "full" entities onto the target time step to successfully compose a frame

from its moving and static parts. Consequently, in this chapter, we explore different strategies

for generating an amodal mask for each moving entity and deduce the entity appearance for

pixel positions indicated by the amodal masks. As amodal masks model both the visible and

occluded parts of entities, we also work on the inverse problem of obtaining a visibility mask

from amodal masks, which can be also referred to as a segmentation or composition mask.

The purpose of such a visibility mask is to compose a frame from the inferred amodal masks

and corresponding entity appearances based on their relative depth.

We set the learning objective of the proposed pipeline to be a combination of single-step and
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Chapter 3. Continuous Motion and Consistency Objective

multi-step prediction. Single-step prediction ensures slowly-varying motion and multi-step

prediction reinforces the inference of amodal masks and assists the inpainting module to

"imagine" occluded parts of entities. To constrain the problem a bit further, we pose the

multi-step prediction in a cyclic manner, i.e., given two time instances t1 and t2, we predict

the video frame at time t2 using the entities and amodal masks inferred at time t1, and vice

versa.

Our proposed pipeline differs fundamentally from the latent-based models (Kosiorek et al.,

2018; Greff et al., 2019; Veerapaneni et al., 2020; Locatello et al., 2020) by the principle that it is

driven by masking with the objective of multi-step prediction. Although spatial attention is

often used for such models (Kosiorek et al., 2018; Veerapaneni et al., 2020; Weis et al., 2020;

Kipf et al., 2022), the outcome is often fed to a decoder to generate the entity appearance,

rather than inferring the appearance from the input frame via dissecting it into its parts with

masks. In addition, many methods (Veerapaneni et al., 2020; Zablotskaia et al., 2021; Kipf

et al., 2022) refine the masks iteratively for a given time step, which clearly improves the mask

outcomes, but such improvement is achieved at the expense of additional computation. Our

method does not involve any iterative computation steps, neither for processing entities of

a given frame nor for refining the inferred masks or the entity appearances. Experimental

results on different datasets indeed demonstrate the efficiency and representation ability of

the proposed model for moving objects.

3.2 Abstraction of Moving Objects

In this section, we first introduce the problem formulation and our modeling assumptions. We

then describe our frame representation based on decomposing the scene into moving entities

and background and explain our sequential modeling with a geometric approximation of

motion for each entity in the frame. We outline the details for each sub-block for inferring

amodal masks and the visibility mask, inpainting, and modeling motion. We then continue

with the characterization of two different implementations that fit our problem formulation.

After describing our main training objective of single-step and cyclic multi-step prediction

losses, we introduce some auxiliary loss terms that aid our decomposition method.

3.2.1 Problem Formulation

Given a sequence of frames {xt }T
t=1 = {x1,x2, . . . ,xT }, our main objective is to decompose each

frame xt at time step t into K entities ek
t , k = 1, . . . ,K which are spatially compact, share similar

local features and at the same time, can be described by coherent motion between different

time steps. We represent the support of each entity on the image plane by an amodal mask,

mk
t that encompasses both visible and occluded parts of an entity. The background then can

be inferred from the set of masks
{

mk
t

}K
k=1 and it represents all the pixels that do not belong

to any of the K entities, denoted by mK+1
t and referred to as background mask. To handle

occlusions, we use a binary composition mask Mt with K +1 channels so that each pixel is
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Figure 3.1: Illustration of proposed frame decomposition: the amodal masks
{

mk
t

}2
k=1 indicate

the support of each object on the image plane, while the composition mask
{

Mk
t

}2
k=1 represent

only the visible parts.

occupied by one and only one visual entity or the background.

Figure 3.1 illustrates the notions in our decomposition model for a scene with two objects. For

the illustrated case, the sphere occludes the rectangular prism when the scene is projected

to the 2D plane of the given image. Note that the proposed object masks aim to cover the

full support of each object when they are projected to the image plane individually. However,

it is not trivial to infer them when the only source of information is a static image. On the

other hand, a sequence of images where the sphere and the prism in Figure 3.1 move in

different directions, as in Figure 3.2, or with different speeds, provides richer information for

the inference of forenamed amodal masks.

If we continue with the example case in Figure 3.2, we can observe that the new structure of

the scene reveals previously unseen parts of the entity e2
t as well as the background e3

t , which

are depicted with regions colored in red for the given scenario. Hence, to use a single-frame or

multi-step prediction objective with inferred masks, we need to implement an inpainting step

before warping any entity to compose the predicted frame at a different time step. Although

there are multiple ways to realize inpainting, we opt for a relatively simple approach of

accumulating information about an entity’s appearance throughout time.

Figure 3.2: (Left)A possible continuation of the scene in Figure 3.1 at a consecutive time
step: (right-top) composition mask at time t + 1, overlaid with the composition mask at
time t illustrates the 2D effect of 3D motion. (right-bottom) Entities and the background at
the predicted time step reveal previously unseen parts, indicated by regions in red, which
represents the pixels to be inpainted
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Chapter 3. Continuous Motion and Consistency Objective

In order to predict a frame at future time steps, we need to forecast the displacement of each

entity. In this work, we assume that the motion of entities between consecutive frames can be

approximated by planar motion. For example, the motion for each entity in Figure 3.2 can be

perfectly expressed by a simple geometric transformation of each entity and/or mask. Hence,

upon decomposition, we aim to predict the 3×3 affine or projective transformation matrix

denoted as zk for ∀k, which will morph each entity for the prediction of the next video frame.

We denote the warping operation with predicted parameters by Tzk
t
(·).

For learning such a compositional structure, we use both the next frame and cyclic long-term

prediction as pretext tasks. In other words, we assume access to the whole sequence of frames

during training time and formulate our problem as grouping pixels that can be consistently

warped between different time steps by an approximate motion model. As discussed earlier,

we derive the entities from the current frame using a masking strategy. This makes the widely

used reconstruction objective impractical in our method as any partitioning strategy can easily

lead to perfect reconstruction at a given time step. Prediction rather requires a system to make

reasonable guesses based on available information, which, in our model, mainly refers to the

motion of each entity and its appearance.

More concretely, at each time step:

• We decompose the input frame xt into K entities and background,
{

ek
t

}K+1
k=1 , with the

help of amodal entity masks and resultant background mask
{

mk
t

}K+1
k=1 ,

• To account for any parts of the entities or the background, which can be newly exposed

in the predicted frame, we utilize two inpainting modules ge (·) and gb(·), such that each

inpainted entity and the background can be obtained by ẽk
t = ge

(
ek

t , êk
t−1

)
for k = 1, . . . ,K

and ẽK+1
t = gb

(
eK+1

t , ẽK+1
t−1

)
, respectively,

• We predict parameters of an approximate motion model, denoted by zk
t , and warp each

entity to the next time step, resulting in their predicted appearance at time step t +1,

represented by
{

êk
t+1

}K
k=1,

• We also warp the mask of each entity to the next time step to infer the background and

composition masks at time t +1, represented by
{

m̂k
t+1

}K+1
k=1 , and M̂t+1, respectively,

• We finally synthesize the predicted frame x̂t+1 using the warped entities and the compo-

sition mask.

The approximation for motion might seem to restrict the modeling capability of the pro-

posed method at first glance; however, using a parametric model enables the simple and

computationally efficient combination of motion for multiple time steps, which leads to easy

implementation of the aforementioned cyclic time-consistency constraint. Furthermore,

modeling with more powerful motion models, such as optical flow, would require an extra

step of clustering based on the predicted motion field. Such an extra step would complicate
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the main objective of entity abstraction by prediction, which already involves many tasks to

be solved jointly. Finally, approximated motion stays consistent with our problem formulation

by strictly constraining the grouping of pixels.

To summarize, we list our notation in Equations (3.1)-(3.17), where operator ·̃ indicates

variables after inpainting, and the operator ·̂ stands for predicted variables.

xt : input frame at time t (3.1)

mk
t : amodal mask at time t for entity k, k ∈ {1, . . . ,K } (3.2)

mK+1
t : background mask inferred from

{
mk

t

}K

k=1
(3.3)

Mk
t : binary composition mask at time t , k ∈ {1, . . . ,K +1} (3.4)

fm(·) : function mapping amodal masks to composition mask, i.e.{
Mk

t

}K+1

k=1
= fm

({
mk

t

}K+1

k=1

)
(3.5)

ek
t : entity k inferred at time t from input frame xt via Mk

t , k ∈ {1, . . . ,K } (3.6)

eK+1
t : background inferred at time t from input frame xt via MK+1

t (3.7)

ge (·) : entity inpainting function (3.8)

gb(·) : background inpainting function (3.9)

ẽk
t : entity k after inpainting, such that ẽk

t = ge

(
ek

t , êk
t

)
, k ∈ {1, . . . ,K } (3.10)

ẽK+1
t : background after inpainting, such that ẽK+1

t = gb
(
eK+1

t , ẽK+1
t−1

)
(3.11)

zk
t : parameters of approximate motion model for entity k, k ∈ {1, . . . ,K } (3.12)

Tzk
t
(·) : warping operator with parameters zk

t (3.13)

êk
t+1 : inpainted entities warped onto time step t +1 such that

êk
t+1 = Tzk

t

(
ẽk

t

)
, k ∈ {1, . . . ,K } (3.14)

m̂k
t+1 : amodal masks warped onto time step t +1 such that

m̂k
t+1 = Tzk

t

(
mk

t

)
, k ∈ {1, . . . ,K } (3.15)

m̂K+1
t+1 : predicted background mask for time t +1 inferred from

{
m̂k

t

}K

k=1
(3.16)

M̂k
t+1 : predicted composition mask for time step t +1 such that{

M̂k
t

}K+1

k=1
= fm

({
m̂k

t

}K+1

k=1

)
(3.17)

3.2.2 Amodal Entity Masks

There are different ways to represent entities in a frame, which include but are not limited

to, 2D or 3D bounding boxes, occupancy maps, or segmentation masks. In this work, we

represent each entity with a mask that embodies both visible and occluded parts. This amodal
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Chapter 3. Continuous Motion and Consistency Objective

segmentation approach requires a good understanding of the 3D structure of a scene while

manipulating 2D images. However, inference of invisible parts necessitates the accumulation

of information throughout time as well as content-based imagination ability, in general.

We hence follow an autoregressive approach to obtain amodal entity masks, which can be

described by the function f1(·) in Equation (3.18):

mk
t = f1

(
xt ,mk

t−1

)
. (3.18)

As unsupervised amodal segmentation is not a trivial problem, we experimented with different

approaches and we present two of those which we found more promising than the others.

These two approaches for the function f1(·) are denoted by f (1)
1 (·) and f (2)

1 (·). The first approach

keeps the spatial information of the input frame xt ∈ [0,1]H×W ×3, where H ,W denote the

image height and weight and maps the input frame to feature vectors f(1)
t of the same spatial

size, as described in Equation(3.19). It then converts the feature maps to a set of K entity

masks. For this approach, we impose the autoregressive inference on image features, as

expressed in Equation(3.20), in order to promote slowly varying representations for continuity.

The masks are inferred together as indicated by in Equation(3.21), where the function f (1)
1,2 (·)

takes all K masks from the previous time step as input. We denote the composition these two

operations, i.e., functions f (1)
1,1 (·) and f (1)

1,2 (·) by f (1)
1 (·).

f (1)
1 : xt ∈ [0,1]H×W ×3 → f(1)

t ∈RH×W ×C (1)
f →

{
mk

t

}K

k=1
∈ [0,1]H×W ×K (3.19)

f(1)
t = f (1)

1,1

(
xt , f(1)

t−1

)
(3.20){

mk
t

}K

k=1
= f (1)

1,2

(
f(1)

t ,
{

mk
t−1

}K

k=1

)
(3.21)

The second approach rather models the similarity of local windows of the input frame explicitly.

For this purpose, the function f (2)
1 (·) first maps the input frame to feature vectors f(2)

t of a lower

spatial resolution, such that, f(2)
t ∈RHc×Wc×C (2)

f , where Hc < H , Wc <W . Then, it computes the

entries of the vector at by cosine feature similarity of each unique pair of features f(2)
t [i , j ]

and f(2)
t [u, v] as expressed in Equation (3.24), where (i , j ) and (u, v) are spatial indexes for the

features f(2)
t and ∥ ·∥ denotes the L2 norm. Then, we obtain a state vector sk

m,t for each entity

individually, denoted by sk
m,t in Equation (3.25), which is updated in an autoregressive manner.

The state vector serves as a memory unit, and it is updated for each entity individually. In the

last step, entity masks are inferred from the corresponding state vectors and mapped to the

range [0,1] with the help of a sigmoid function, as given in Equation (3.26). The functions f (2)
1,i

for i ∈ {1,2,3,4} collectively compose the function f (2)
1 .

f (2)
1 : xt ∈ [−1,1]H×W ×3 → f(2)

t ∈RHc×Wc×C (2)
f →

{
mk

t

}K

k=1
∈ [0,1]H×W ×K (3.22)

f(2)
t = f (2)

1,1 (xt ) (3.23)
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at =
f(2)

t [i , j ]
T

f(2)
t [u, v]∥∥∥f(2)

t [i , j ]
∥∥∥∥∥∥f(2)

t [u, v]
∥∥∥ ∀[i , j ], [u, v] ∈ Hc ×Wc

such that i < u, j < v (3.24)

sk
m,t = f (2)

1,3

(
sk

m,t−1, f (2)
1,2 (at )

)
, ∀k ∈ {1, . . . ,K } (3.25)

mk
t = si g moi d

(
f (2)

1,4 (sk
m,t )

)
, ∀k ∈ {1, . . . ,K } (3.26)

After obtaining the amodal entity masks, either by using f (1)
1 or f (2)

1 , we infer the background

mask mK+1
t from the set of entity masks to indicate all pixels that do not belong to any of the

entities. Its computation is presented in Equation(3.27), where 0 and 1 represent images with

values that are all zeros, and all ones, respectively.

mK+1
t = max

(
0,1−

K∑
k=1

mk
t

)
(3.27)

3.2.3 Occlusion Handling and Inpainting

Given amodal masks, our next task is to compute the composition mask which takes occlusions

into account. To start with, we want the generation of the composition mask to be invariant to

the depth ordering of amodal masks, that is, any ordering of entity indexing with k must lead

to the same composition of the image. And at the composition step, the entity closer to the

camera needs to be prioritized. This is the main motivation behind our composition mask,

which selects one entity for each visible pixel in the image based on the content of the frame.

Hence, our aim is to define a function fm(·) which achieves
{

Mk
t

}K+1
k=1 = fm

({
mk

t

}K+1
k=1

)
, where

the composition mask Mk
t is activated only once across K +1 channels for each pixel location.

Inferring the visibility mask can be considered a combinatorial problem, which tackles the

ordering of amodal masks according to the relative depth of objects they are associated

with. There are multiple ways to approach this problem, and here, we provide two different

solutions. Our first idea is to explicitly order entity masks
{

mk
t

}K
k=1 such that the mask with

index k = 1 indicates the entity that is closest to the camera. Hence, at composition time, we

can discard all other entities with indices k > 1 for the pixels where m1
t is nonzero. Under

such a formulation, we want the masks to be almost binary valued so that they act as strong

indicators of entity presence. Hence, for the first implementation of f (1)
m (·), we use a soft

thresholding mechanism, to binarize the entity masks as
{

mk
t

}K

k=1
as given in Equation (3.28),

and order them using a permutation matrix Pt ∈ {0,1}K×K as described in Equation (3.29).

The scalars α,β in Equation (3.28) are hyperparameters, and the operator ⊗ stands for the

permutation of binarized entity masks
{

mk
t

}K

k=1
∈ {0,1}H×W ×K with matrix Pt in the third

dimension. The computation of the composition mask is then finalized by Equation (3.30),
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which achieves the aforementioned prioritization. We denote the group of operations realized

in Equations (3.28)-(3.30) with f (1)
m (·).

mk
t = si g moi d

(
α∗ (mk

t −β)
)

(3.28){
m

k
t

}K

k=1
= Pt ⊗

{
mk

t

}K

k=1
(3.29)

Mk
t =

m
k
t if k = 1

max
(
0, m

k
t −

∑k−1
l=1 m

l
t

)
∀k ∈ {2, . . . ,K +1}

(3.30)

However, learning a permutation in a differentiable pipeline can be challenging. Another

option is to learn two scalarsαk ,βk for each entity mask, which can implicitly achieve ordering

by changing the scale of masks according to the relative depth of objects. Hence, we use these

two scalars to modulate the amodal as given in Equation (3.32) before applying a so f tmax

function across the last dimension. Note that the temperature τ in Equation (3.33) enables

control over the similarity between Mt and a binary-valued mask. We find the choice of its

value critical for the convergence of the training, as it balances between the propagation of

errors for training and having binary-like masks to represent objects. We recommend choosing

an initial value between 0.5−1.0 and decreasing its value throughout training iterations to a

smaller value, such as 0.1. We will denote the group of operations realized in Equations (3.31)-

(3.33) with f (2)
m (·), which is the second alternative for the computation of the visibility mask.

{αk
t ,βk

t }K+1
k=1 = f (2)

m,1(xt , {mk
t }K+1

k=1 ) (3.31)

mk
t =αk

t mk
t +βk

t (3.32)

Mk
t =

exp
(
mk

t /τ
)

∑K+1
k=1 exp

(
mk

t /τ
) (3.33)

Once we compute the composition mask, either by f (1)
m (·) or f (2)

m (·), the resultant Mt describes

the visible part of each entity at the given time step t . Hence, a simple Hadamard product

between the input frame and the corresponding channel of the composition mask will in-

duce the entity appearance ek
t as described in Equation (3.34). To complement the amodal

approach for masks, we inpaint the entities {ek
t }K

k=1 and the background eK+1
t based on all the

information available up to time t as in Equations (3.35)-(3.36). Note that entity inpainting

operation uses the predicted entity from time t −1, êk
t−1, which is obtained by warping the

inpainted entity at time t −1, ẽk
t−1, to the time step t such that êk

t = Tzt−1 (ẽk
t−1). This operation

is explained in the next section and it can be considered as registration of entity appearance

in time with predicted motion parameters.
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3.2 Abstraction of Moving Objects

ek
t = Mk

t ⊙xt (3.34)

ẽk
t = ge (ek

t , êk
t−1) fork = 1, . . . ,K (3.35)

ẽK+1
t = gb(eK+1

i , ẽK+1
t−1 ) (3.36)

Note that we use two different functions to update the appearance of each entity and the

background, ge (·) and gb(·) respectively. They both can be considered as time-causal inpaint-

ing functions based on previously exposed information. The reason for different inpainting

functions for the entities and the background is the fact that visual characteristics as well as

the area to be inpainted for the background are likely to be different than for the individual

entities.

In more detail, for entity inpainting, we first compose a candidate appearance based on the

amodal and the composition mask. It uses the visible information inferred at time t for each

entity and complements it for the invisible part from the prediction at time t−1. More formally,

the candidate appearance ek
t is computed according to Equation (3.37), which is later refined

with a residual function ge,r (·) as in Equation (3.38).

ek
t =

(
Mk

t ⊙xt

)
+

(
[mk

t −Mk
t ]⊙ êk

t−1

)
(3.37)

ẽk
t = ek

t + ge,r (ek
t ) (3.38)

Similarly, we compute a residual image for painting the background inferred at time t , eK+1
t by

using the function gb,r (·) For the gating mechanism, we use an image of ones, 1 as the whole

canvas can be considered as background once the moving entities are removed. Hence, the

inpainting function gb(·) follows Equations (3.39)-(3.40).

eK+1
t = ẽK+1

t−1 + gb,r (eK+1
t , ẽK+1

t−1 ) (3.39)

ẽK+1
t = (

MK+1
t ⊙xt

)+ (
[1−MK+1

t ]⊙eK+1
t

)
(3.40)

3.2.4 Motion Modelling

Once we decompose the input video frame, we need to predict how each entity will appear in

the next time step. We approximate the motion of each entity between consecutive frames

by a parametric transformation described by a 3×3 matrix Zk
t . We, in fact, assume explicit

parameters of the transformation In other words, the parametrization zk
t is composed of a set

of scalars zk
t = {θk , t k

x , t k
y , log(sk

x ), log(sk
y ),r k } denoting the rotation angle, translation in x- and

y-directions, scaling in x- and y-directions and shear, respectively. The affine transformation

matrix Zk
k is then obtained by Equation (3.41).
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Chapter 3. Continuous Motion and Consistency Objective

Zk
t =

1 0 tx

0 1 ty

0 0 1


cosθ −sinθ 0

sinθ cosθ 0

0 0 1


1 r 0

0 1 0

0 0 1


sx 0 0

0 sy 0

0 0 1

 (3.41)

The affine transformation indicated by the 3×3 matrix Zk
t can be used for warping any mask

or image. Indeed, as used in Spatial Transformers (Jaderberg et al., 2015), warping a pixel grid

at frame resolution and computing the values at the warped grid with bilinear sampling can

be applied to any visual input as described by Equations (3.42)-(3.43), where (uk
t , vk

t ) stand

for pixel coordinates, i.e., the pixel grid indexes. We denote the overall warping operation by

Tzt (·) or TZt (·), which means that the predicted appearance of the inpainted entity k at time

step t +1 can be expressed by êk
t+1 = Tzt (ẽk

t ). Such an approximation works because we apply

these transformations locally by layering the input image with entity masks and transforming

each mask-entity pair with a dedicated set of parameters.

uk
t+1

vk
t+1

1

= Z(k)
t

uk
t

vk
t

1

 (3.42)

m̂k
t+1[uk

t+1, vk
t+1] =

W∑
x=1

H∑
y=1

mk
t [u, v] max(0,1−|uk

t −u|) max(0,1−|vk
t − v |) (3.43)

The set of affine parameters zk
t for each entity is computed with another autoregressive

function fz (·) based on the current frame and corresponding entity mask in the last two time

steps, as we believe that the motion is content-dependent. Moreover, in order to better model

the continuity of the motion, we make use of a recursive state sk
z,t for the prediction of affine

parameters. Overall, we represent the function to compute affine parameters by fz (·), which

is composed of functions fz,1(·) and fz,2(·), described in Equations (3.44)-(3.45), respectively.

The function zk
t , hence, denotes the set of operations performed by fz,1(·) and fz,2(·).

sk
z,t = fz,1(xt ,mk

t ,mk
t−1,zk

t−1,sk
z,t−1) (3.44)

zk
t = fz,2(sk

z,t−1) (3.45)

3.2.5 Prediction

Once the current frame, xt is decomposed into entities via masks, and inpainted with the

mechanisms described above, our final task is to project each entity to the next time step with

the predicted transformation parameters in order to compose the predicted frame, x̂t+1. The

warping of each inpainted object to time t +1 with corresponding parameters is achieved via

Equation (3.46).

êk
t+1 = Tzk

t

(
ẽ(k)

t

)
∀k ∈ {1, . . . ,K } (3.46)
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3.3 Learning

In order to infer the composition mask at the next time step, we also warp the amodal entity

masks to the next time step using the same parameters and predict the background mask

at time t + 1 as in Equation (3.48). The function fm(·) can be either f (1)
m (·) described by

Equations (3.28)-(3.30) or f (2)
m (·) described by Equations (3.31)-(3.33).

m̂K+1
t+1 = max

(
0,1−

K∑
k=1

Tzk
t

(
mk

t

))
(3.47)

M̂t+1 = fm

({
Tzk

t

(
mk

t

)}K

k=1
,m̂K+1

t+1

)
(3.48)

We finally compose the predicted frame using the inpainted entities warped to time t +1,

{êk
t+1}K

k=1, inpainted background ẽK+1
t+1 and predicted composition mask M̂t+1 as given in

Equation (3.49).

x̂t+1 =
K⋃

k=1

(
M̂(k)

t+1 ⊙ ê(k)
t+1

)
∪

(
M̂(K+1)

t+1 ⊙ ẽ(K+1)
t

)
(3.49)

As the occlusion mask and the resultant background masks do not overlap by construction,

the union operations in Equation (3.49) can be easily implemented as pixel-wise summation.

3.3 Learning

The proposed framework is composed of many different sub-blocks, which can be described

by functions f1(·), which infers the amodal mask, fm(·), which computes the composition

mask from amodal masks, inpainting functions gb(·) and ge (·), as well the function fz (·) which

predicts the geometric transformation parameters. Some of them are (partially) described by

the explicit operations, which are described in the previous section; however, the majority

of them cannot be formulated explicitly. Hence, we parameterize these functions by neural

networks and we aim to implement the model proposed in Section 3.2.5 for entity abstraction

in videos as an end-to-end trainable pipeline. In this section, we describe the loss terms which

can be used for training the parameters of such a network.

Prediction Loss

To start with, our main objective is to minimize the average L1 reconstruction error between

the predicted frame and ground truth next frame for the whole sequence of length T , which

can be denoted by Lprediction as in Equation (3.50).

Lprediction = 1

T −1

T−1∑
t=1

∥xt+1 − x̂t+1∥1 (3.50)
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Chapter 3. Continuous Motion and Consistency Objective

Consistency Loss

The difference between consecutive frames is often very small and the network can end

up learning identity transformation parameters for motion with almost random grouping

pixels as amodal masks. Hence, instead of using a loss function that would only consist of a

reconstruction term for single-step prediction as in Equation (3.50), we reinforce the learning

with additional loss terms, and our main contribution is the loss term for cyclic long-term

prediction. We argue that the motion of an object between multiple time steps is expected to

be more articulated, hence, long-term prediction can have stronger cues for our abstraction

task. Long-term prediction objective also can help to learn to infer invisible parts of the object

as the occlusions can be more articulated in frames that are further apart in time.

For this purpose, at each training step when we have access to the whole video sequence, we

sample two time instants t1 ∼U [1,T −1) and t2 ∼U (1,T −1], where t1 < t2 and U [ ] resem-

bles a discrete uniform distribution, and T denotes the length of the given video sequence.

As a new pair of (t1, t2) is sampled thousands of times, we visit each possible pair of video

frames for associated multi-step prediction. We then use the set of masks {mk
t1

}K
k=1, inpainted

entities {ẽk
t1

}K
k=1 and the background ẽK+1

t1
, and the set of transformation parameters {Zk

t }t2−1
t=t1

to predict the frame at time t2 by following our prediction steps. We combine the parame-

ters from t1 to t2 −1, which are all predicted by the model, by simple matrix multiplication

as in Equation (3.51). We then use the resultant 3×3 matrix to warp all the masks of time

t1 as in Equation (3.52) for the prediction of the frame at time t2. After deriving the back-

ground mask m̂K+1
t2

with Equation (3.53), we can obtain the composition mask for t2 using the

Equation (3.54).

Zk
◦ = Zk

t2−1 Zk
t2−2 . . .Zk

t1
, ∀k (3.51)

m̂k
t2
= Tzk◦

(
mk

t1

)
, fork ∈ {1, . . . ,K } (3.52)

m̂K+1
t2

= max

(
0,1−

K∑
k=1

TZk◦

(
mk

t1

))
(3.53)

M̂t2 = fm

({
TZk◦

(
mk

t2

)}K

k=1
,m̂K+1

t2

)
(3.54)

We can then form the predicted frame at time t2, xt2 , as x̂t2 by warping all the inpainted entities

with combined parameters Z◦ and use the derived composition mask M̂t2 to compose the

predicted frame as described in Equation (3.55).

x̂t2 =
K⋃

k=1

(
M̂(k)

t2
⊙TZk◦

(
ẽ(k)

t1

))
∪

(
M̂(K+1)

t2
⊙ ẽ(K+1)

t1

)
(3.55)

Similarly, we use the masks {mk
t2

}K
k=1 and inpainted entities and the background {ẽk

t2
}K+1
k=1

from time step t2 to predict the frame at time t1, xt1 as x̂t1 using the inverse of the combined
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3.3 Learning

transformation parameters, i.e., Z−1◦ following the same long-term prediction steps. We then

use the average of these two long-term prediction errors and define our cyclic consistency loss

term Lconsistency as in Equation (3.56).

Lconsistency =
∥∥xt2 − x̂t2

∥∥
1 +

∥∥xt1 − x̂t1

∥∥
1

2
(3.56)

Background Loss

As we assume a static background, we can enforce all dynamic elements of the scene to be

represented by entities and penalize the discrepancy between the background information

sampled at time t1 and t2, as described in Equation (3.57).

Lbackground = ∥∥ẽK+1
t2

− ẽK+1
t1

∥∥
1

(3.57)

Mask Sparsity and Concentration

Additionally, we want the entity masks to be spatially sparse and localized. We accordingly

define two loss terms promoting the sparsity of masks, given by Equation (3.58), and their

geometric concentration, given by Equation (3.59). The term Lmask concentration penalizes the

spread of each amodal mask around its center of mass, which is denoted by (ck
u ,ck

v ) in Equa-

tion (3.59). And the tuple (u, v) stands for pixel coordinates. The idea of mask concentration is

borrowed from co-part segmentation models (Hung et al., 2019).

Lmask sparsity =
1

HW K (T −1)

T−1∑
t=1

K∑
k=1

∑
u,v

∥mk
t [u, v]∥1 (3.58)

Lmask concentration = 1

HW K (T −1)

T−1∑
t=1

K∑
k=1

∑
u,v

(
∥(u, v)− (ck

u ,ck
v )∥2

2

mk
t [u, v]

∥m(k)
t [u, v])∥1

)
(3.59)

Without the additional constraint on entity masks, it is possible to end up with representations

that poorly abstract entities by including artifacts, particularly from textureless parts of the

frame. We find constraining the entity masks to be compact crucial for inferring more precise

entity masks.

Our training objective is the minimization of a total loss term L , which is a weighted sum of

(a subset of) aforementioned loss terms. We will provide the exact loss terms for the different

implementations in the next section.
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Chapter 3. Continuous Motion and Consistency Objective

3.4 Implementation

In Section 3.2.5, we proposed different approaches for the moving entity abstraction problem

in videos. After exhausting experimentation, we empirically found two implementations

combining different options presented in Section 3.2.5 achieve better performance than

other combinations. Hence, in this section, we provide the details of these two different

implementations. Both models share the prediction objective, i.e., they are both trained with

a loss function that includes both Lprediction and Lconsistency terms. However, they differ in

the way the masks are computed and the occlusion handled.

Model 1.

For the first model, we opt for mask computation dictated by a group of operations f (1)
1

described in Equations (3.19)-(3.19). Briefly, the input frame is processed by an autoregressive

feature extractor which keeps the spatial resolution the same. In particular, we use three layers

of convolutional LSTM units (Xingjian et al., 2015) after three layers of residual blocks (He

et al., 2016) for the inference of object masks mt . The last convolutional LSTM layer has K

hidden units, the output of which is later normalized with instance normalization (Ulyanov

et al., 2016) and mapped to the range [0,1] with a sigmoid function.

Occlusion handling for this model is achieved by ordering the masks based on their inferred

relative depth, which is expressed as the permutation matrix Pt . The permutation matrix is

approximated as a doubly stochastic matrix (DSM), whose rows and columns sum up to 1. We

first process input per-entity, {xt ,mk
t } with convolutional layers. The output is then fed to fully

connected layers (MLP), where the uppermost layer has K hidden units. The overall output of

K set of variables is then reshaped to construct a K ×K matrix, which is validated to be a DSM

via the Gumbel-Sinkhorn algorithm (Mena et al., 2018).

For the prediction of transformation parameters, we use another CNN to process visual input

of {xt ,mk
t ,mk

t−1}, and feed its output, as well as the parameters from the previous time step,

zk
t−1 as inputs to another MLP to obtain zk

t , which is then converted to an affine matrix by

Equation (3.41).

The function parameters for learning the permutation matrix and geometric transformations

are shared across all entities. In addition, the per-entity processing is achieved in parallel with

no sequential processing or iterative refinements involved, which makes our model scalable

when increasing K , both in terms of computation and memory, in contrast to existing iterative

algorithms (Zablotskaia et al., 2021; Veerapaneni et al., 2020).

Finally, for inpainting objects, the residual function fe,r (·) in Equation(3.38) is implemented

as a shallow CNN with a small perceptive field. On the other hand, a larger perceptive field is

preferred for the residual function used for background inpainting, i.e., the function fb,r (·) in

Equation(3.39).
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3.4 Implementation

We use the loss function L (1)
total in Equation (3.60) for training the parameters of Model 1 with

Adam optimizer (Kingma and Ba, 2014). We set λ1 = 1, and use a varying λ2, which starts from

0.25 and increases to 1 through early training in order to prevent the divergence of predicted

transformation parameters. The auxiliary loss terms for constraining entity masks contribute

less to the overall loss term with λ3 =λ4 = 0.1. The whole end-to-end differentiable pipeline

for Model 1 is illustrated in Figure 3.3.

L (1)
total =λ1Lprediction+λ2Lconsistency+λ3Lmask sparsity+λ4Lmask concentration+λ5∥φ∥2

2 (3.60)
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Figure 3.3: Implementation of Model 1 for our unsupervised video object entity abstraction
method: the input frame xt is first processed by residual blocks, and later fed into convolu-
tional LSTM blocks for autoregressive processing of image features. The resultant object masks
mt are then ordered by a permutation mask Pt , which is inferred from the masks and input
frame. Similarly, the parameters for the predicted motion zt are computed autoregressively
based on the input frame, masks, and predicted parameters for the previous time step. Finally,
the predicted frame is composed from inpainted entities ẽt which are warped with zt , and the
background ẽK+1

t , with the help of composition mask Mt .

Model 2.

For the second model, we choose to represent each input frame based on the similarity

of local, overlapping windows. More precisely, we use sliding windows for processing the

input image to extract features f(2)
t in Equation 3.23. This serves our ultimate task of mask

representation well. Hence, we apply the operations of f (2)
1 described in Equations (3.22)-

(3.25). The initial feature extraction function f (2)
1,1 (·) in Equation (3.23) is implemented as three

residual-CNN blocks (He et al., 2016), where each block is composed of two convolutional

layers, each followed by layer normalization (Ba et al., 2016). We use the kernel size of 5 for

all convolutional layers and stride size of 2 for the first two blocks, hence downsampling the

image resolution 4-times to H/4×W /4 for the pairwise similarity computation. Upon the

computation of the affinity vector using the cosine similarity given in Equation (3.24), we
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Chapter 3. Continuous Motion and Consistency Objective

apply a single-layer MLP as f (2)
1,2 (·) in Equation (3.25) to generate the content vector, also using

layer normalization before the activation function. The recursive function Equation (3.24),

f (2)
1,3 (·), which is used for all entity state updates individually, is implemented as an LSTM

Unit, where the initial states {sk
m,0}K

k=1 are learnable parameters initialized orthogonally across

the entities (Saxe et al., 2013). We use a dropout rate of 20% for both recurrent and input

connections of the LSTM, as well as the content vector generating MLP during training. The

entity states are then reshaped to H/2×W /2 and the amodal masks are generated by the

function f (2)
1,4 (·) which is implemented as bilinear up-sampling followed by a 3-layer CNN.

recurrent
 units

mt
(k)

sm.t
(k)

ct

xt
(k)

residual
layers

af init

dense
layer

reshape

upsample
and 

convolution

zt
(k)

recurrent
units   

autoregressive 
model

xt

mt-1
(k)

fr me

predicted
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sz,t
(k)
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(K+1)

Figure 3.4: Implementation of Model 2 for our unsupervised video object entity abstraction
method: the input frame xt is first processed by residual blocks with pooling operation,
which results in a low-resolution image feature grid. We then compute an "affinity vector"
which measures the similarities between all unique pairs of image feature vectors. The frame
xt is then represented by a single content vector ct explicitly describing similarities, and
entity-specific mask states sk

m,t are individually updated based on their previous values and

the content vector. Mask states are then mapped to entity masks mk
t via upsampling and

deconvolution operations. Affine parameters mk
t for each entity are computed based on

previous values, and entity masks, in order to warp inpainted entities m̃k
t to compose the

predicted frame m̂k
t+1

For handling occlusions, we opt for the modulation approach implemented by f (2)
m (·) as

detailed in Equations (3.31)-(3.33). For learning the modulation parameters {αk
t ,βk

t }K+1
k=1 , we

follow spatially adaptive normalization (Park et al., 2019b) and use a 3-layer CNN to infer

{αk
t ,βk

t }K+1
k=1 ∈RH×W ×1 based on the input frame and entity masks, xt , {mk

t }K+1
k=1 .

Finally, the inpainting approach and the computation of geometric transformation parameters

are the same as their counterparts in Model 1.

We use the loss function L (2)
total in Equation (3.61) for training the parameters of Model 2 with

rmsprop optimizer (Tieleman and Hinton, 2012). Similar to model 1, we set λ1 = 1, λ3 = 0.5

and use a varying λ2, which starts from 0.5 and increases to 1 through early training, as we

found this model to be more stable against the divergence of predicted motion parameters.

The coefficient for the mask sparsity is set to λ4 = 0.1. The overall pipeline is briefly illustrated

in Figure 3.4.

L (2)
total =λ1Lprediction +λ2Lconsistency +λ3Lbackground +λ4Lmask sparsity +λ5∥φ∥2

2 (3.61)
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3.5 Experimental Results

In this section, we first describe the datasets that are used for studying the performance of

our novel representation model. Afterward, we present the experimental results for the two

implemented models, separately.

3.5.1 Datasets

In order to understand the strengths and weaknesses of the proposed method, as well as our

different implementations, we generate a set of simulated datasets. In addition, we use the

modified version of CLEVRER (Yi et al., 2019), which is a dataset used for visual reasoning

tasks, to demonstrate the performance of the proposed method in more realistic conditions.

In this section, we explain how we generate the datasets and emphasize the key differences

between them.

Dataset 1.

To start with, we generate video sequences with T = 11 frames of size 64×64 pixels, where Kd

objects are initially located in random positions in random quadrants of the image. During

the sequence, each object moves from the initial quadrant of the frame towards the diagonally

opposite quadrant with a random speed, which induces occlusion later in sequences. The

order of objects when they occlude with each other is also chosen randomly. Objects are

randomly selected from a shape set of circle, square, triangle with 53−1 different color choices.

The background color is set to gray for all sequences.

We generate three variants with Kd ∈ {2,3,4} objects present in a frame. Each variant contains

10,000 training sequences, 1000 validation sequences, and 1000 test sequences. A sample

sequence from each variant can be seen in Figure 3.5.

Dataset 2.

Dataset 2 is a modified version of Dataset 1, where the background color is also chosen

randomly. Each variant in Dataset 2 contains 20,000 training sequences, 2000 validation

sequences, and 2000 test sequences. We use Dataset 2 for ablation studies to analyze the

model performance when the number of entities it assumes, which is represented by K in the

problem formulation, matches exactly the number of objects present in a given sequence, or

vice versa.

Dataset 3.

Dataset 3 is similar to Dataset 2, however, the number of objects in a frame is randomly chosen

from the set {2,3,4} with equal chance. More precisely, Dataset 3 is composed of a total number
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Figure 3.5: Sample sequences from different datasets which are used for training and evalua-
tion of the proposed method.

of 20,000 sequences, where each sequence has an equal chance of containing 2,3 or 4 objects,

and each batch is arranged to accommodate sequences with a different number of objects. In

addition, motion dynamics for simulating objects are slightly different. The initial position is

again chosen randomly in a random quadrant, but in Dataset 3, objects can move towards any

other quadrant, which is not restricted to the diagonal opposite as in Dataset 1 and Dataset

2. Three sample sequences from Dataset 3 can be seen in Figure 3.5. Note that we do not

visualize samples from Dataset 2 as they are very similar to samples from Dataset 3.

modified-CLEVRER

We use a modified version of the CLEVRER dataset (Yi et al., 2019), which is frequently used for

evaluating computational methods for visual reasoning tasks. The original dataset involves

videos with 100 frames that contain events of enter, exit, and collision of objects. Objects are

simulated with different shapes (cube, sphere, and cylinder) and colors (gray, red, blue, green,

brown, cyan, purple, and yellow). We use the videos simulating collision, where two objects

are involved in the event and others mostly stay static. In order to discard parts of the videos

where the objects are all static, and articulate the motion when objects are moving, we create

new sequences by taking the middle part of each video, more precisely, between frames 7 and

67. We use every other frame in the given range of the original sequence. We end up having

8760 training sequences of length 11. Three sample sequences from Dataset 3 can be seen in

Figure 3.5.
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Figure 3.6: The prediction ability of Model I presented as SSIM and PSNR metrics for different
numbers of objects in the model (Km) and in the test dataset (Kd ). The variation in each
boxplot, i.e., a specific trained model tested on a specific dataset, depicts the variation in
prediction quality for each time step, t ∈ 1, . . . ,10 at a given sequence.

3.5.2 Results

In this Section, we present a qualitative and quantitative evaluation of the proposed method,

more precisely, Model 1 and Model 2, which are trained and evaluated on the datasets in-

troduced in the previous Section. In fact, we train and evaluate Model 1 only on Dataset 1

because our attempts to train it on other datasets failed despite the considerable amount of

effort. We then present the corresponding study of Model 2 on Dataset 2 to analyze the effect

of the most important hyperparameter K , which indicates the number of objects. We then

conclude with the evaluation of Model 2 on Dataset 3 and modified ClEVRER datasets.

For evaluation, we report the reconstruction quality of the predicted frame in terms of peak-

to-noise signal ratio (PSNR) and structural similarity (SSIM) metrics, whose implementations

are detailed in Appendix A.

Model 1.

We train three instances of Model 1, whose implementation is detailed in Section 3.4. Each

trained model delivers a different number of Km = K ∈ {2,3,4} object representations, and

these models are trained with variants of Dataset 1 with Kd = Km objects. We then evaluate the

performance of each instance on all variants of Dataset 1. Consequently, in some cases, the

number of objects the model can represent is equal to or greater than the number of objects

present in the given video sequences. In this case, we expect our model to decouple each

moving entity and provide a representation that can model the support of the corresponding

object in the 2D image plane. However, for the other cases when Km < Kd , the model cannot

decouple the entities perfectly due to its construction.

We are interested in such a study because increasing the model capacity for representing more

objects leads to a more challenging problem due to arising cases with heavy occlusions. On

the other hand, a model with very few object representations can perform to a limited extent.
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t= 0 t= 1 t= 3 t= 5 t= 7 t= 9

Figure 3.7: Illustrative output for a test sequence with object masks after binarization, mk
t ,

and ordering, m
k
t ; occlusion mask, Mk

t , objects and background before and after inpainting,
{ek

t }K+1
k=1 and {ẽk

t }K+1
k=1 respectively, as well as the ground-truth and predicted frames xt+1 and

x̂t+1, for a sequence and trained model with Kd = Km = 3.

Figure 3.6 illustrates our related findings. We present the reconstruction quality of the pre-

dicted sequences on a test set of 1000 simulated videos. More precisely, presented PSNR and

SSIM values are computed between {xt }T
t=2 and {x̂t }T

t=2, and the variance for each entry in the

boxplot demonstrates the variance of the prediction quality across time. As expected, the

model is capable of representing the objects well as long as Kd ≤ Km , where the deterioration

in performance when Kd > Km is due to limited representation capacity. Moreover, the perfor-

mance slightly degrades with a larger number of objects when Kd = Km , due to the increasing

complexity arising from heavy occlusions.

In Figure 3.7, we visually probe the model outcomes in detail. We illustrate binarized amodal

masks xk
t , and the output when they are ordered by the predicted permutation matrix, x

k
t ,

which can model the accurate ordering at time t = 5 and t = 7. Even when occlusions happen,

our model can represent the full support of each object, as it can be particularly seen for time

instances t = 5 and t = 7. Furthermore, the inpainted entities, denoted by x̃k
t can retain the

appearance information reasonably well. The comparison between the predicted frame and

the ground truth, which can be seen at the bottom of the Figure, indicates the successful

prediction of approximate motion parameters.

We present more visual samples demonstrating the model outcomes, namely the inpainted

entities, x̃k
t , in Figure 3.8.
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Figure 3.8: Test sequences {ft }10
t=1 with inferred objects {ẽ(k)

t }10
t=1 for different Km and Kd . Each

row of images correspond to a different Km , a single model, whereas columns represent the
test set with different number of objects, Kd .
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Figure 3.9: The prediction ability of Model 2 presented as SSIM and PSNR metrics for different
numbers of objects represented by the model (Km) and present int the dataset (Kd ). The
variation of each boxplot, i.e., performance of a specific trained model on a specific dataset,
depicts the variation in prediction quality for each time step, t ∈ {1, . . . ,10} at a given sequence.

Model 2.

We continue with the evaluation of Model 2. We start with the results of the same experiment

for Model 2 by using Dataset 2, which is slightly more challenging than Dataset 1 due to

the varied background color. In fact, modeling gray background with Model 2 is trivial as

this implementation operates on normalized images such that xk
t ∈ [−1,1]H×W ×3, and gray

background corresponds to an image of all zero values. Hence, we find it fairer to evaluate

the inpainting capability of the proposed model and implementation on sequences with a

colored background.

Figure 3.9 depicts our related findings, which agree with the results previously presented in

Figure 3.6 for Model 1. Implementation Model 2, hence, provides more stable, and also faster,

training while not compromising performance.

We further illustrate some visual outcomes of Model 2 in Figure 3.10. This time, we present

inferred amodal masks, mk
t , accompanied with associated entities, x̃k

t . The entities are vi-

sualized on a gray background due to the normalization operation, as mentioned earlier.

The results prove that our method is capable of decoupling entities and retaining relevant

information despite the low contrast between entities and the background, as in cases with

Kd = 2;Km = 2 and Kd = 3;Km = 4; similar-looking entities, such as the case Kd = 3;Km = 3;

or under heavy occlusion as in the case with Kd = Km = 4. Even when the model capacity is

limited to represent entities, like the case with Kd = 4;Km = 2, the model performs reasonably

well by decoupling some of the moving entities and attributing the others to the background,

and blurring the entities represented in the background to satisfy the background constraints

dictated by Lbackground.

Lastly, Figure 3.11 presents the visual results from the test set of the modified CLEVRER dataset.

We can observe that our model represents the object entering the scene and moving to perform

the collision event successfully in all cases. The second object which is involved in the collision
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Figure 3.10: Test sequences {xt }10
t=1 with inferred (inpainted) objects, {ẽk

t }10
t=1, amodal masks, {mk

t }10
t=1,

and the background mask, {MKm+1
t }10

t=1, for Km ∈ {2,3,4} and Kd ∈ {2,3}. Each row of clustered images
correspond to a different Km , i.e., a single trained model, whereas columns represent the test set with
different number of objects, Kd . 41
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ẽ2 t

x t
m

0 t
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Figure 3.10: (continued) {xt }10
t=1 with inferred (inpainted) objects, {ẽk

t }10
t=1 amodal masks, {mk

t }10
t=1,

and the background mask, {MKm+1
t }10

t=1, for Km ∈ {2,3,4} and Kd = 4. Each row of clustered images
correspond to a different Km , i.e., a single trained model.
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Figure 3.11: Test sequences {xt }10
t=1 with inferred (inpainted) objects, {ẽk

t }10
t=1, amodal masks, {mk

t }10
t=1,

and the background mask, {MKm+1
t }10

t=1, for the modified CLEVRER dataset.
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event is usually detected around the collision time, and otherwise, represented to be the part

of a static object. Other slots seem to model shadows that change over time due to the motion

of objects. In addition, the background gets inpainted reasonably well. Although the second

object, which starts moving after the collision, is still depicted as a part of the background in

order to maintain background similarity across different time steps, the background mask

discards those parts as a result of zero values at corresponding pixel locations.
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3.6 Conclusion

In this Chapter, we proposed a novel method for representing videos in an object-centric man-

ner. Contrary to existing methods, we formulate the problem with a prediction objective. We

decompose each video frame into a pre-defined number of entities. Each entity is described

for its visible and occluded parts with the help of amodal masks and inpainting operations. In

the proposed framework, we approximate the motion of each entity by geometric transfor-

mations and predict entity-specific transformation parameters in order to characterize their

motion. After warping each amodal mask to a different time instance using the associated

motion parameters, we compute a visibility mask for the predicted time step. We also warp

each inpainted entity using the same approximate motion parameters. The predicted frame is

finally synthesized by masking the warped entities with the predicted visibility mask.

This end-to-end differentiable model is trained with a combination of single-step and cyclic

multi-step prediction objectives. Our novel consistency loss term forces the model to predict

a frame that is multiple time steps ahead of the input frame. The inverse of the approximation

for this multiple-step motion is used to perform the prediction backward in time between the

two time instances at hand. Training is further supported by auxiliary loss terms that promote

spatial compactness and/or sparsity of amodal masks. Experimental results proved that our

formulation can decouple moving entities of a given video sequence without any manual

annotations. We empirically found the most critical constraint for meaningful entity abstrac-

tion is the cyclic consistency term; however, each loss term as well as their weight in the final

training objective is still very important for the final outcome. The model successfully infers

the amodal masks that represent the moving entities despite challenging conditions, such

as low contrast between background and entities, heavy occlusion, or high visual similarity

between entities. We believe that our model can be translated to more realistic datasets by

using pre-trained networks for feature extraction and increasing the representation capacity

of other functions to handle more sophisticated object shapes and motion patterns.
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4 Object-centric Video Prediction

4.1 Introduction

Video prediction can be formulated under both deterministic and stochastic frameworks.

Deterministic frameworks refer to models which can output only one prediction outcome

when they are given a sequence of images. If the problem is defined to be the next(single)-

frame prediction, that outcome is a single frame. Otherwise, these models output a sequence

of video frames that are a plausible continuation of the input sequence. On the other hand,

stochastic frameworks estimate a distribution for the outcome, which can be again designed

for a single frame or a sequence of frames. One can then sample different prediction results

from the distribution estimated by the stochastic model.

The framework presented in Chapter 3 for entity abstraction already has the ability for video

prediction by its construction. Indeed, given a sequence of frames {xt }T1
t=1, one of the model’s

outcomes is the predicted frame x̂T1+1. Following an autoregressive approach, i.e., feeding{
{xt }T1

t=1, x̂T1+1

}
, we can obtain x̂T1+2, hence, any sequence of length T2 by repeating this

autoregressive prediction step T2 times. However, the predicted sequence {x̂t }T1+T2
t=T1+1 is always

the same for the same input sequence of {xt }T1
t=1, which does not fully address the probabilistic

nature of the prediction problem. Figure 4.1 depicts such deterministic prediction results with

Model 2, which is explained in Section 3.5.2. The predicted frames before the red line, i.e.,

t = 5, exemplifies next-frame prediction outcomes, whereas the predictions after the red line

are obtained in an autoregressive manner.

In this Chapter, we extend our entity abstraction pipeline from Chapter 3 towards short-term

stochastic object-centric video prediction as an attempt to bridge the gap between object-

centric deterministic prediction approaches and stochastic frameworks. We believe that the

object appearances are less likely to change in short windows of time, hence, we attribute

the stochasticity of the problem only to the motion of entities, and treat motion parameters

as random variables. Consequently, instead of directly predicting the approximated motion

of each entity in the next frames, we estimate a conditional distribution for the geometric
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Figure 4.1: Deterministic prediction based on Model 2 trained with Dataset 3. First row in
each sample depicts the input sequence, {xt }11

t=1, whereas the second row demonstrates the
predicted frames {x̂t }11

t=2. The red column after t = 4 indicates the start of autoregressive
processing, i.e., the predicted frame at time t −1, x̂t−1, is fed into the model as the input frame
after t = 5.

transformation parameters that model the motion individually for each entity. Then, at each

time step, we sample the transformation parameters from the proposed entity-specific distri-

bution. In other words, by estimating the distribution of entity-specific motion parameters

for predicted frames, we can sample different predicted sequences, and model the prediction

problem under uncertainty.

We then propose two different methods for the estimation of the such conditional distribution,

where the parameters depend on their values in the past. We try to cover two main approaches

in generative modeling for a comparative study of our approach as both approaches are known

to suffer from different issues for modeling distributions. The first one stems from state-space

models, and it is formulated within a graphical model based on the dependencies between

model variables. We propose a principled approach for approximating the motion distribution

present in a given dataset based on the constructed graphical model. The second method fol-

lows an adversarial approach based on Wasserstein Generative Adversarial Networks (Arjovsky

et al., 2017). In this case, we propose a three-stage training scheme for better representing the

motion distribution.

This chapter is organized as follows. We review generative models with an emphasis on

Variational Autoencoders (VAEs) (Kingma and Welling, 2013) and Wasserstein Generative

Adversarial Networks (WGANs) (Arjovsky et al., 2017), which constitute the bases of our

proposed methods. We then present our problem formulation and introduce the methods

for the estimation of the time-varying conditional distribution of motion parameters. After

demonstrating the results of both methods on illustrative examples, we conclude this chapter

with our remarks on the object-centric stochastic video prediction problem.
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4.2 Background

In this section, we visit two well-known families of generative models, namely, Variational

Encoders (VAEs) and Wasserstein Generative Adversarial Networks (WGANs), which are among

the most favored approaches for image generation.

Generative models aim to capture a data distribution, which can be only observed via a limited

number of data samples. More formally, generative models assume that the observations

x1, x2, . . . , xn are independent and identically distributed (i.i.d.) samples from an underlying

true distribution for data, which can be represented by p(X ). Note that we use capital let-

ters, e.g., X , for random variables, and lowercase letters, e.g., x, for their values. The goal

of generative models is to produce a distribution q(X ) based on the data samples which

minimizes a divergence1 between the true and modelled distributions, Dγ(p|q), formulated

in Equation (4.1), where the function γ depends on the algorithm.

Dγ(p∥q) = Ex∼p(X )

[
γ

(
q(x)

p(x)

)]
(4.1)

Some algorithms(MacKay, 1992) parametrize the approximate distribution by θ, i.e., q(x;θ),

such that it belongs to a probability family which has nice properties and makes solving the

problem more tractable. However, finding the right distribution family for the problem at

hand is not trivial either. There is a trade-off between its expressive power and specificity; it

needs to be expressive enough to represent the data samples well while being specific enough

so that it does not require too many data samples, or compute power, for model construction.

To facilitate the choice of distributions, generative models, such as Variational Autoencoders

(VAEs) (Kingma and Welling, 2013) or Generative Adversarial Networks (GANs) (Goodfellow

et al., 2014a), formulate the problem using latent variables that can model the underlying

factors of variation in data. The latent variable z is defined by the distribution p(Z ), and it is

mapped to the input space by a deterministic generator function, g (·). Hence, the represen-

tation capacity of the generative model is jointly defined by p(Z ) and g (·). Then, generative

modeling can be formulated as in Equation (4.2), where the generator function g (z;θ) is

represented by the distribution p(x|z;θ) which makes the dependence of x on z explicit.

p(x) =
∫

p(x|z;θ)p(z)d z. (4.2)

This formulation translates to sampling z according to the distribution p(Z ) and passing the

sampled values through the generator function g (z;θ) to model the data distribution p(X ).

1D is a divergence between two variables p, q if it satisfies the following two properties:

• D(p∥q) >= 0
• p = q ⇔ D(p, q) = 0.
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These samples can be considered as generated samples and are denoted by x̂. The mini-

mization of the divergence in Equation (4.1) is then achieved by using the pairs {(xi , x̂i )}n
i=1,

where n represents the number of data samples used for computing the expectation value in

Equation (4.1).

In this section, we briefly review Variational Autoencoders and Wasserstein Generative Adver-

sarial Networks (Wasserstein GANs or WGANs), which are the two methods that we use for

representing time-varying geometric transformation parameter distributions in our object-

centric video prediction formulation. Briefly, VAEs and WGANs mostly differ in the formulation

of the divergence to be minimized, as well as in the methods used for the constraining of the

assumed latent distribution p(Z ).

4.2.1 Variational Autoencoders

Two main problems arise from the generative formulation in Equation (4.2), which are the char-

acterization of the latent variable z and the integral over z. Variational Autoencoders (Kingma

and Welling, 2013) propose to characterize the distribution p(Z ) by a simple distribution, such

as unit-variance Gaussian N (0, I ) where I denotes the identity matrix. However, sampling

any z from a simple distribution does not guarantee that the corresponding generated sample

x̂ establishes high similarity to real data samples x. Hence, modeling the data distribution

would require sampling too many latent variables, and very few of them can contribute to the

estimation of p(X ). VAEs attempt to make sampling of the latent variables more efficient via

an additional distribution q(X |z;φ), which models the z values that generate samples that are

more likely to belong to the true data distribution p(X ) (Doersch, 2016). They try to achieve

this goal by minimizing the Kullback-Leibler divergence2 between the distributions p(Z ) and

q(Z |X ). If the parametrization of the generative process p(X |Z ;θ) is denoted by pθ(X |Z ) and

the encoding process q(X |Z ;φ) by qφ(X |Z ;φ), the learning process of VAEs boils down to

the minimization of the Evidence Lower Bound (ELBO) expressed in Equation (4.3) for the

observed data samples {xi }n
i=1.

LVAE(θ,φ; X ) =
n∑

i=1
−DKL(qφ(z|x)∥pθ(z))+Ez∼qφ(z|x)[log pθ(x|z)] (4.3)

The first term in Equation (4.3) can be described by a closed form for a set of distributions.

The second term, on the other hand, is usually interpreted as the reconstruction quality of

the generated samples obtained by decoding the sampled latent variables. The expectation

value is computed over the data samples in the training set, where each data point in the

training set is considered to be the desired outcome for a generated sample. VAEs implement

the parametrizations θ and φ as neural networks, which can be learned with gradient-based

methods. We need to sample latent variables z ∼ qφ(Z |X ) for the computation of the second

2DKL(p∥q)) =−∑
x∼X p(x) log

(
p(x)
q(x)

)
for a discrete random variable X with support X .
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term in Equation (4.3). However, backpropagation is not possible through the sampling

operation. As a solution, VAEs propose an operation called "reparametrization trick" to

alleviate the sampling problem (Kingma and Welling, 2013). As they formerly define p(Z ) to

follow a simple distribution, they separate the sampling and use neural networks to estimate

the parameters of the chosen simple distribution. For example, if the distribution is chosen

to be a multivariate Gaussian, the approximate distribution qφ(Z |X ) can be described by

the mean vector µ(x) and the covariance matrix Σ(x), which are inferred from the input

data x. Then, sampling z ∼N
(
µ(x),Σ(x)

)
translates to sampling ϵ∼N (0, I ) and computing

z =µ(x)+Σ 1
2 (x)∗ϵ. In this way, the model can use a gradient descent algorithm to learn neural

network parameters θ,φ so that the network parametrized by φ maps the input to the latent

variables, and the network parametrized by θ maps the sampled latent variables to the input

space.

4.2.2 Wasserstein GANs

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014a) represent another pop-

ular choice for the unconditional generation of new data samples. Briefly, they use the

Jensen-Shannon divergence, DJS(·∥·)3, for the problem defined in Equation (4.2). To alle-

viate the need for integration for the computation of chosen divergence, they work with

its dual form (Nowozin et al., 2016), which converts the integral into a sampling operation.

Hence, the generator function for GANs can be learned via playing a min-max game given

in Equation (4.4). The function σ(·) in Equation (4.4) indicates the si g moi d operator, and

the function d(·) is often referred to as discriminator. The last term is sometimes modified in

different implementations to solve numerical problems.

g ,d = argming argmaxdEx∼p(x)[logσ(d(x))]+Ex∼q(x|z))[log(1−σ(d(x))] (4.4)

However, GANs inherit a well-known problem of training instability (Gulrajani et al., 2017;

Tolstikhin et al., 2017). The cause of this instability is commonly attributed to the discontinu-

ity of Jensen-Shannon (JS) divergence with respect to generator parameters θ. Wasserstein

GANs (Arjovsky et al., 2017), thus, propose to minimize the Wasserstein distance W (p, q)4,

which can circumvent the issues related to the discontinuities of the JS divergence. In particu-

lar, WGANs minimize the divergence emerging from Kantorovich-Rubinstein duality (Villani,

2009), which is given in Equation (4.5). The function c(·) is usually referred to as the critic

function, and the constraint ∥c∥L ≤ 1 means that the function c(·) belongs to the family of

L-Lipschitz functions.

DW (p, q) = max
c,∥c∥L≤1

Ex∼p(x)[c(x)]−Ex∼q(x|z)[c(x)] (4.5)

3DJS(p∥q) = 1
2 DKL(p∥q)+ 1

2 DKL(q∥p)
4p-Wasserstein distance between two probability measures µ,ν: Wp (µ,ν) = (

i n fγ∈Γ(µ,ν)
∫

c(x, y)p cγ(x, y)
) 1

p ,
where c(x, y) is a distance metric, γ denotes a coupling
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Mitigating the problems related to the JS divergence by opting for Wasserstein distance, which

is continuous and almost differentiable everywhere, WGAN targets more stable training and

better modeling for the data distribution. The constraint ∥c∥L ≤ 1 has been tackled by different

approaches, such as weight clipping (Arjovsky et al., 2017), gradient penalty (Gulrajani et al.,

2017) and spectral normalization (Miyato et al., 2018). Among these, the gradient penalty

method is found to be the most promising implementation as it achieves better stability

than weight clipping while providing more representation flexibility compared to spectral

normalization (Su, 2018). The gradient penalty replaces the constraint ∥c∥L ≤ 1 with the

norm of gradients ∥∆x c(·)∥ and the min-max game for learning the critic function c(·) and the

generator function g (·) results in Equations (4.6)-(4.7). The expression pq(x) in Equation (4.6)

represents a random linear interpolation of p(x) and q(x|z), and λ is a hyperparameter. This

algorithm is also denoted by WGAN-GP.

c = argmaxcEx∼p(x)[c(x)]−Ex∼q(x|z)[c(x)]−λEx∼pq(x)[(∥∆x c(x)∥−1)2] (4.6)

g = argmaxgEx∼q(x|z)[−c(x)] (4.7)

Such formulation indicates a two-step update of overall model parameters. In the first step,

parameters of the critic function c(·) are updated according to Equation (4.6). It is then

followed by the update of the generator function, g (·), parameters based on Equation (4.7). In

practice, the first operation is repeated multiple times before updating the generator function.

In summary, WGANs use Wasserstein distance instead of JS divergence by learning a continuous-

valued critic function to mitigate the instability problem of training generative adversarial net-

works. The gradient penalty further improves the training stability by avoiding the vanishing-

or exploding-gradient issues that may arise from other forms of constraints to ensure that the

critic function, c(·), is a L-Lipschitz function. On the other hand, similar to other variants of

generative adversarial networks, once trained, WGANs generate data from sampled noise. In

the conditional version, the noise input is supplemented by a latent variable, which enables

more control over the generated output. Hence, by using the history of geometric transforma-

tion parameters as conditional input, we aim to learn a WGAN model that lets us sample new

parameters for the prediction of video frames.

4.3 Proposed Approach

In this Section, we first remind the dynamics of our deterministic entity abstraction method

developed in Chapter 3. We then pose the prediction problem in a stochastic framework, where

we treat the motion parameters as random variables. For training the stochastic framework,

we propose two different methods; the first one involves the VAE formulation and suggests a

graphical model. This model is similar to that of SRNN (Fraccaro et al., 2016) for approximating

the posterior distribution of motion parameters, which is needed for stochastic prediction

problem. For the second method, we adopt the WGAN framework and propose a three-stage
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learning scheme to better capture the motion distribution in a given dataset.

4.3.1 Object-centric Video Prediction

As detailed in Chapter 3, our entity abstraction method consists in:

• Decomposition of the input frame xt into K entities and background,
{

ek
t

}K+1
k=1 , by the

help of amodal entity masks
{

mk
t

}K
k=1, where mk

t = f1(xt ,mk
t−1)

• Inpainting of each entity such that ẽk
t = ge

(
ek

t , êk
t

)
for k = 1, . . . ,K , where êk

t denotes the

entity predicted at time t −1

• Inpainting of the background ẽK+1
t = gb

(
eK+1

t , ẽK+1
t−1

)
,

• Prediction of parameters of an approximate motion model, denoted by zk
t , such that

zk
t = fz (xt ,mk

t ,mk
t−1,zk

t−1),

• Warping each inpainted entity and amodal mask to the time step t +1, represented by

êk
t+1 = Tzt (ẽk

t ), m̂k
t+1 = Tzt (mk

t )

• Prediction of composition mask for time step t +1 and synthesizing the predicted frame

based on the composition mask, warped (inpainted) entities as well as the inpainted

background.

In our new stochastic prediction problem, we assume now that zk
t ’s are random variables, and

our objective is to approximate the posterior distribution p(zt |xt ,mt ,mt−1,zt−1). In this way,

once we infer the amodal masks and inpainted entities from an input frame (in a deterministic

manner), we can sample from the approximated distribution to predict the frame at the next

time step. Repeating the sampling operation based on input frames or previously generated

frames, we can perform single or multi-step prediction.

In the next section, we explain how we factorize the posterior distribution, which leads us to a

first solution for approximating the posterior distribution based on VAE formulation.

4.3.2 VAE Formulation

As a matter of design, we choose to model motion as a time-varying distribution, which is

shown to improve performance on video prediction tasks (Denton and Fergus, 2018). As

discussed in the earlier sections, stochastic formulation requires a sampling operation in the

pipeline. In our VAE formulation, we use the reparametrization trick (Kingma and Welling,

2013) and learn statistics of a predefined parametric distribution, to make our pipeline end-

to-end differentiable. In order to explain how the proposed distribution of transformation

parameters can be learned, let us first form the graphical model corresponding to our frame-

work.
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((4.2.1)) Prediction network ((4.2.2)) Inference network

Figure 4.2: Graphical model of the proposed VAE formulation for the stochastic prediction
problem. Video frame xt and inferred object masks mt are used for modeling the posterior
distribution for time-varying distribution of motion parameters, zt , i.e., p(zt |xt ,mt ,mt−1,zt ).
The posterior is then approximated by the distribution qφ1 (zt−1|xt+1:T ,mt :T ,zt−1), which uses
the backward recurrent auxiliary state at .

If we consider object masks as deterministic internal representations of raw input, xt , our

framework corresponds to the directed graphical model illustrated in Figure 4.2(4.2.1). Thus,

given a sequence of frames x1:t , the initial object masks mk
0 and initial transformation parame-

ters zk
0 for training, mutual learning of object masks and the distribution of transformation pa-

rameters to predict the subsequent frame at any time step t can be formalized as a maximum-

likelihood problem, where we maximize the joint probability pθ(xt+1,m1:t ,z1:t |x1:t ,m0,z0),

where θ denotes all trainable parameters. If we follow a Markovian assumption for next frame

prediction, mask inference, and estimation of motion dynamics, the likelihood factorizes over

time as given in Equation (4.8).

pθ(xt+1,m1:t ,z1:t |x1:t ,m0,z0) =∏
t

pθ1 (xt+1|xt ,mt ,zt )︸ ︷︷ ︸
I

pθ2 (mt |xt ,mt−1)︸ ︷︷ ︸
I I

pθ3 (zt |xt ,mt ,mt−1,zt−1)︸ ︷︷ ︸
I I I

(4.8)

=∏
t
δ(xt+1 − x̂t+1)δ(mt − f1(xt ,mt−1)) pθ3 (zt |xt ,mt ,mt−1,zt−1)

(4.9)

The three processes in Equation(4.8) with Markovian assumption can be regarded as predicted

frame synthesis (I), autoregressive object mask inference (II), and motion estimation (III). As

both the frame synthesis and mask inference steps are designed to be deterministic, the corre-

sponding distributions denoted as (I) and (II) in Equation (4.8) can be replaced by delta-dirac

functions around the estimated values, as in Equation (4.9). The only remaining process of

motion modeling, pθ3 (zt |xt ,mt ,mt−1,zt−1) can be modeled as a Gaussian distribution, whose

parameters, namely, mean vector µt and covariance matrix Σt as given in Equation (4.10) are

to be learned via a nonlinear function fz (·) as described in Equation (4.11).
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zk
t ∼N (µk

t ,Σk
t ) (4.10)

(µk
t ,Σk

t ) = fz (xt ,mk
t ,mk

t−1,zk
t−1) (4.11)

For training the proposed framework, we assume N independently observed sequences of

length T , denoted as x(i )
1:T for i = 1, . . . , N . The task is to maximize the log-likelihood of the joint

distribution in Equation (4.8) for all training sequences, which is described in Equation (4.12).

The log-likelihood of the joint distribution can be factorized over individual sequences, i.e.,

L (θ) =∑N
i=1 L (i )(θ) as in Equation (4.13), and further in time, as in Equation (4.14).

L (θ) = log
(
{pθ(x(i )

t+1,m(i )
1:t ,z(i )

1:t |x(i )
1:t ,m(i )

0 ,z(i )
0 )}T−1

t=0

)
for i = 1, . . . , N (4.12)

=
N∑

i=1
log

(
{pθ(x(i )

t+1,m(i )
1:t ,z(i )

1:t |x(i )
1:t ,m(i )

0 ,z(i )
0 )}T

t=1

)
(4.13)

=
N∑

i=1

T−1∑
t=1

pθ1 (x(i )
t+1|x(i )

t ,m(i )
t ,z(i )

t ) pθ2 (m(i )
t |x(i )

t ,m(i )
t−1) pθ3 (z(i )

t |x(i )
t ,m(i )

t ,m(i )
t−1,z(i )

t−1) (4.14)

However, direct maximization of the loss function L (i )(θ) is not possible due to the intractable

nature of the term pθ3 (z(i )
t |x(i )

t ,m(i )
t ,m(i )

t−1,z(i )
t−1) in Equation (4.13). Instead, we suggest an

inference network parametrized by φ to approximate the posterior pθ by qφ. Instead of

L (θ), we maximize an Evidence Lower Bound (ELBO), F (θ,φ), jointly parametrized by θ

and φ, which can be similarly factorized over individual training sequences as F (θ,φ) =∑N
i=1 F (i )(θ,φ) <L (i )(θ). Each lower bound term F (i )(θ,φ) can be expressed as:

F (i )(θ,φ) =
Ï

qφ(m(i )
1:T ,z(i )

1:T |x(i )
1:T ,m(i )

0 ,z(i )
0 )

{pθ(x(i )
t+1,m(i )

1:t ,z(i )
1:t |x(i )

1:t ,m(i )
0 ,z(i )

0 )}T−1
t=0

qφ(m(i )
1:T ,z(i )

1:T |x(i )
1:T ,m(i )

0 ,z(i )
0 )

dz1:T dm1:T

(4.15)

To further proceed with the inference network, we assume access to the whole sequence x1:T

at any time step t for the prediction of transformation parameters. This allows us to obtain the

object masks a priori during training; hence, motion prediction at any time step t corresponds

to the estimation of pθ3 (zt |x1:T ,m1:T ,zt−1) rather than to pθ3 (zt |xt ,mt ,mt−1,zt−1). As a virtue

of the conditional independence properties of the graphical model in Figure 4.2(4.2.1) this

term can be further factorized as pθ3 ({zt }T
t=1|x1:T ,m1:T ,z0) = ∏

t pθ3 (zt |xt+1:T ,mt :T ,zt−1). It

means that, at training time, the distribution of transformation parameters at time t depends

neither on the object masks prior to t −1, nor on the frames in the past, but only on the ones at

the current and future time steps. The dependence on future transformation parameters arises

from the fact that we assume access to the whole sequence at training time to capture the

motion dynamics in training sequences better by exposing the model to the whole sequence

of frames. Similar conclusions and approaches can also be found in methods by Krishnan

et al. (2015) and Fraccaro et al. (2016). However, at inference time, the model has access to

only the parameters up to time t .
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We design the approximate posterior qφ in a similar fashion as the true posterior pθ factorizes

in terms of autoregressive object mask inference, motion estimation, and predicted frame

synthesis. We use the same deterministic step for obtaining object masks, i.e., q(mt |xt ,mt−1) =
pθ2 (mt |xt ,mt−1) as in Equation (4.16). We also keep a similar structure for the inference

network for motion prediction and utilize an auxiliary state at to indicate the dependency of zt

on the future frames and masks, as given in Equation (4.17). The update for the auxiliary state

requires backward processing in time (Fraccaro et al., 2016), we achieve that via a backward

recurrent function gφa (·). The resultant graphical model corresponding to the inference

network is depicted in Figure 4.2(4.2.2).

Hence, during training, we first realize a full forward pass in time for the inference of object

masks {mt }T
t=1, and proceed with a full backward pass to update the auxiliary states, {at }T−1

t=1 .

The final forward pass completes the cycle by estimating the parameters of the approximate

posterior qφ1 (·) as described by Equations (4.16)-(4.17), which is also assumed to be a Gaussian

with parameters (µk
t ,q ,Σk

t ,q ). We compose the predicted frames using the object masks from the

first forward pass and transformation parameters sampled from N (µk
t ,q ,Σk

t ,q ). Our approach

can thus be considered as a structured way of approximating the posterior for transformation

parameters in the proposed pipeline by traversing the whole sequence.

qφ(m1:T ,z1:T |x1:T ,m0,z0) = qφ1 (z1:T |x1:T ,m1:T ,z0) {q(mt |xt ,mt−1)︸ ︷︷ ︸
δ(mt− f1(xt ,mt−1))

}T−1
t=1 (4.16)

T−1∏
t=0

qφ1 (zt |zt−1,xt :T ,mt :T ) =
T−1∏
t=0

qφ1 (zt |zt−1,at ) (4.17)

where at = fφa (at+1, [xt+1,mt ,mt+1])

Since both the generative model and the inference network factorizes over time, the problem

of maximizing the term given in Equation (4.15) evolves to the maximization of Equation (4.18)

for each sequence, where mt represents the output of the deterministic mask generation step,

i.e., mt = f1(xt ,mt−1) which arises from the integral of the δ-dirac function in Equation (4.15).

F (i )(θ,φ) =
T−1∑
t=1

Eqφ

[
Eqφ1

[
log

(
pθ1 (xt+1|xt ,mt ,zt )

)]
−DKL

(
qφ1 (zt |zt−1,xt :T ,mt :T ) ||pθ3 (zt |xt ,mt ,mt−1,zt−1)

)]
(4.18)

The first term in Equation(4.18) can be regarded as the prediction quality of the framework

where the transformation parameters are sampled from the approximate posterior qφ, whereas

the second term tries to bring the approximate posterior closer to posterior distribution pθ.

Note that the derivation of our loss term results in a formulation that highly resembles the VAE

formulation for image generation. The main difference is that the first term for quantifying

the image generation quality is replaced by the term for prediction quality.
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4.3.3 WGAN Formulation

The second method follows all the assumptions stated by the previous VAE formulation.

Namely, we keep the deterministic mask and entity inference functions from our decom-

position model. Stochasticity is attributed to motion modeling, and the parameters of the

geometric transformation, zt , are inferred with an additional noise input as in conditional

GAN frameworks (Mirza and Osindero, 2014). More precisely, we compute the transformation

parameters by zk
t = fz (xt ,mk

t ,mk
t−1, [zk

t−1;ϵ]) with the noise vector of ϵ being sampled from

standard normal distribution, i.e., ϵ∼N (0, I ). The operator [·; ·] here indicates the concatena-

tion. Hence, the posterior distribution p(zt |xt ,mt ,mt−1,zt−1), this time, does not obey to any

particular family of parametric distributions. After sampling the parameters of the geometric

transformation from this time-varying distribution, the synthesis of the predicted frame is

performed in the same deterministic manner as in Chapter 3.

The key difference between the two formulations under VAE and WGAN frameworks is related

to the approximation of the posterior distribution. VAE-based first approach approximates the

posterior with another distribution q(zt |zt−1,at ) = fφa (at+1, [xt+1,mt ,mt+1]) and penalizes

the divergence between these two distributions during training. In the second approach,

we learn the parameters of the nonlinear function, fz (·) which maps the noisy vector to any

distribution, via adversarial training. The resultant posterior distribution can be also repre-

sented by q(zt |zt−1,at ) with at = [xt ,mk
t ,mk

t−1,ϵ]. For this purpose, we generate a sequence

of predicted frames, {x̂t }T
t=2 with sampled motion parameters at each step, and consider this

operation as sampling the sequence {xt }T
t=2 from the distribution q(xT ). The sequences in the

dataset, on the other hand, are considered to be sampled from the true distribution p(xT ). We

then define a critic function that maps a given sequence {xt }T
t=2 to a scalar value, such that

c(·) :RH×W ×3×(T−1) →R. In order to learn the parameters of the prediction framework, we use

the iterative updates proposed by WGANs-GP (Gulrajani et al., 2017), which are expressed

in Equations (4.19)-(4.20). The sampling operation {xt }T
t=2 ∼ pq(xT ) in Equation (4.19) corre-

sponds to a random linear interpolation of p(xT ) and q(xT ). It is achieved by sampling a value

ρ from a uniform distribution, i.e., ρ ∼U [0,1] and computing
(
ρ {xt }T

t=2 + (1−ρ) {x̂t }T
t=2

)
. The

function g (·) denotes the collective operator of functions f1(·), fm(·), ge (·), gb(·), fz (·) and Tzt

that are briefly described in Section 4.3.1 and detailed in Chapter 3. The expectation operators

in Equations (4.19)-(4.20) are computed greedily over each batch during training.

c = argmaxcE{xt }T
t=2∼p(xT )

[
c({xt }T

t=2)
]−E{xt }T

t=2∼q(xT )

[
c({xt }T

t=2)
]

−λE{xt }T
t=2∼pq(xT )

[
(∥∆{xt }T

t=2)c({xt }T
t=2)∥−1)2

]
(4.19)

g = argmaxgE{xt }T
t=2∼q(xT )

[−c
(
{xt }T

t=2

)]
(4.20)
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4.4 Implementation

In this section, we briefly describe the implementation details describing our model for object-

centric stochastic video prediction.

4.4.1 Model Implementation

To begin with, we use the implementation of Model 2, which is developed in Chapter 4.3.1, as

the backbone of our stochastic prediction pipeline. For both methods detailed in this chapter,

all function implementations of Model 2 remain the same, with the important exception of

fz (·). In the deterministic framework, the function fz (·) is designed to predict the geometric

transformation parameters based on the input frame, xt , amodal masks of the last two time

steps, mk
t ,mk

t−1, as well as the predicted transformation parameters from the previous time

step, zk
t−1. The sequential information is, in fact, handled by the help of a recurrent state sk

z,t−1.

More precisely, the function fz (·) performs the operations described in Equations (4.21)-(4.22).

sk
z,t = fz,1(xt ,mk

t ,mk
t−1,zk

t−1,sk
z,t−1) (4.21)

zk
t = fz,2(sk

z,t−1) (4.22)

VAE-based Implementation

For the stochastic prediction network with our VAE formulation, we keep the structure of

the function fz (·) implementation the same. However, rather than predicting the parameters

zk
t−1, it now predicts the mean vector µk

t and the covariance matrix Σk
t describing the true

posterior distribution pθ3 (zt |xt ,mt ,mt−1,zt−1). The modified function f VAE
z (·), thus performs

the operations described in Equations (4.23)-(4.25). Consequently, the number of hidden

units in the penultimate layer of the MLP that parameterizes the function fz,2 is doubled in

order to accommodate the diagonal entries of Σk
t and is now denoted by f s

z,2(·).

sk
z,t = f VAE

z,1 (xt ,mk
t ,mk

t−1,zk
t−1,sk

z,t−1) (4.23)

(µk
t ,Σk

t ) = f VAE
z,2 (sk

z,t−1) (4.24)

zk
t =µk

t +Σk
t

1
2 ∗ϵ, where ϵ∼N (0, I ) (4.25)

With the modification of the function f VAE
z (·), the implementation of the prediction network

that is described in Figure 4.2(4.2.1) is complete. For the implementation of the inference

network, which is depicted in Figure 4.2(4.2.2), we use another Gated Recurrent Unit (GRU),

denoted by fφa ,2 which performs the calculation at = fφa (at+1, [xt+1,mt ,mt+1]) presented in

Equation (4.17). The function fφa can be further described as a composition of three functions,

fφa ,1(·), fφa ,2(·) and fφa ,3(·). In fact, first, the function fφa ,1(·) processes the visual input of

{xt+1,mk
t ,mk

t+1}. Its parametrization follows the same structure of the CNN that processes the
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visual input of {xt+1,mk
t ,mk

t−1} for the prediction network, which is denoted by fz,1(·). The

output of fφa ,1(·) is then fed to an MLP before processing the auxiliary state with the new GRU

unit which operates backward in time, which corresponds to the function , fφa ,2(·). A final MLP

maps the GRU state at and the transformation parameters predicted at time step t −1, i.e.,

zk
t−1, to the mean vector µk

q,t and the covariance matrix Σk
q,t which describe the approximate

posterior distribution, such that (µk
q,t ,Σk

q,t ) = fφa ,3(ak
t ,zt−1).

WGAN-GP-based Implementation

The implementation of the second approach is relatively more trivial compared to the first

one. This time, we keep the same structure for the recurrent state sk
z,t−1 as in the deterministic

case, which is also described in Equation (4.26). The stochasticity is, however, introduced

by injecting Gaussian noise for the computation of the transformation parameters from the

recurrent state as given in Equation (4.27).

sk
z,t = f WGAN

z,1 (xt ,mk
t ,mk

t−1,zk
t−1,sk

z,t−1) (4.26)

zk
t = f WGAN

z,2

(
[sk

z,t−1;ϵ]
)

where ϵ∼N (0, I ) (4.27)

On the other hand, the critic function, c(·) has no resemblance to any implemented function,

either in the deterministic framework or in the VAE-based stochastic framework. For the

implementation of the function c(·) :RH×W ×3×(T−1) →R, we opt for a 3D convolutional neural

network with three layers. Such an architecture enables us to retain information regarding

both the spatial and the temporal changes in a given sequence. We use a kernel size of 5 for

both spatial and temporal processing of the input video frames. A spatial stride size of 2 at

each convolutional layer downsamples the input video sequence spatially by a factor of 8. The

resultant features are then reshaped and fed into a 3-layer MLP, which has a single hidden unit

in the last layer.

4.4.2 Multi-stage Training

Direct optimization of the loss function F (i )(θ,φ) in Equation (4.15) or the min-max game

defined by Equations (4.19)-(4.20) is unnecessarily challenging. It is due to the fact that

the decoupling method implemented by the deterministic model heavily relies on accurate

descriptions of entities, even under occlusions. The representation ability of the deterministic

model thus comes from the cyclic consistency loss defined in Chapter 3; however, it constrains

the stochastic problem. To alleviate this conflict, we propose a multi-stage training scheme

that encapsulates both VAE- and WGAN-GP-based approaches.

We first train the deterministic Model 2 in a deterministic fashion with the loss term defined

in Equation (3.61). Under VAE settings, it corresponds to using zk
t = µk

t for the prediction

network. It also means that the second term in Equation (4.18) is discarded during the
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first phase of the multi-stage training. Similarly, under WGAN settings, the min-max game

defined by Equations (4.19)-(4.20) is discarded, hence the parameters of the critic function

are not updated. For the computation of the transformation parameters, the recurrent state

is padded with zeros instead of Gaussian noise. This stage shapes the functions for amodal

mask inference and inpainting; however, it does not update the parameters of the inference

network in the VAE-based pipeline, nor does it change the parameters of the critic function in

the WGAN-GP-based pipeline.

After the first stage, we freeze the parameters of all the functions in the pipeline of Model 2, with

the only exception of fz (·). We activate stochastic prediction; the transformation parameters

are computed according to Equations (4.23)-(4.25) or Equations (4.26)-(4.27)/ Hence, optimize

the VAE-loss function in Equation (4.18) or play the min-max game in Equations (4.19)-(4.20).

This second stage aims to bring stochasticity to the framework and update the parameters of

designated functions.

An optional third stage aims to capture the distribution of the random variable zk
t better. The

second stage models the time-varying posterior distribution based on a single-step prediction,

which provides limited information about the true distribution. Hence, for the optional third

stage, we predict a sequence in an autoregressive manner to model the uncertainties in the

dataset better. We do it by feeding the predicted frame at time t as the input frame at time

t +1, i.e., xt+1 ← x̂t+1.

4.5 Experimental Results

The evaluation of image prediction methods is not trivial. Frequently used reconstruction

quality metrics do not apply to the stochastic prediction methods as their objective is to

generate sequences depicting as many different plausible outcomes as the method can model.

Hence, in this section, we present some illustrative visual outcomes.

4.5.1 Dataset

Inspired by the evaluation of G-SWM (Lin et al., 2020b), which is an object abstraction method

that explicitly models the location of the abstracted entities, we create a simple dataset for eval-

uating the representation capacity of proposed stochastic frameworks. The dataset contains

video sequences of a single simulated object, i.e., a colored sprite selected from a shape set of

circle, square, triangle with 53−1 different color choices. The object is initially placed

at the middle top of the input frame. For every sequence in the dataset, the object moves to

bottom of the frame with constant speed. After time t = 5, the object follows different patterns

based on its shape. If the object is an instance of the circle shape, it continues its motion

towards the bottom-middle of the frame. Otherwise, with an equal chance, it continues its

motion one of the bottom corners. We generated 20,000 training sequences, 2000 validation

sequences, and 2000 test sequences. Some example sequences from the test set can be seen in
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Figure 4.3: Sample sequences from the test set: in each sequence, an object starts moving
from the middle-top of the input frame toward to bottom of the frame with constant speed.
After time t = 5, the object follows different patterns based on its shape: circles head toward
the bottom-middle whereas squares or triangles move towards one of the bottom corners.

Figure 4.3.

4.5.2 Results

In this section, we present the performance of the two proposed models under different

conditions.

We start with the model based on our sequential VAE formulation. We train the model for an

initial 50K training steps in deterministic settings for single-frame prediction. Later, we switch

to the stochastic settings and train the model for another 50K training steps only to update

the parameters of the motion prediction function as explained in Section 4.4.2. Finally, we

perform long-term prediction instead of single-step prediction for training and update the

parameters of the full model for the last 40K training steps.

We illustrate some representative test cases for each object class quasi-randomly chosen from

the test set. In particular, we randomly choose one sequence for each object class, and sample

100 sequences for different numbers of context frames, namely, ncontext = 1 and ncontext = 4.

The context frames refer to the time-steps where the input is the ground-truth frame. After

ncontext we switch to prediction in an autoregressive manner by using the previously predicted

frame as the input to the system, i.e., xt+1 ← x̂t+1. In Figure 4.4, we visualize the average frame

over the whole sequence and a total number of 100 sampled sequences. The ground-truth

average sequence illustrates the motion pattern for the given test sample. The average of the

sampled sequences would ideally indicate two main patterns of the sampled motion, towards

either the bottom corner of the frame for square and triangle and single pattern towards

the bottom-middle of the frame for circle. We can first observe that the model can capture

shape-based motion patterns reasonably well. However, the capability of the proposed model

for covering the shape-based motion distribution seems to be limited, fixating mostly on one

direction for square and triangle object types.

In order to investigate whether the average images are a good way of representing the sampling
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(a) Ground Truth (b) ncontext = 1 (c) ncontext = 4

Figure 4.4: The average frame and entity mask image for the VAE-based model. (a) The
first two columns illustrate the test sequence and ground-truth object masks averaged over
time. (b) The middle two columns represent the average images for 100 different samples
for ncontext = 1, while (c) the last two column represent the average images for 100 different
samples for ncontext = 4. We can observe that the model can capture the shape-based motion
patterns while failing to represent different modes of motion for a given shape, i.e., motion
towards either bottom-corner for square and triangle object types.

power of the proposed method, we illustrate two sampled sequences for each test case in

Figure 4.5. The sequences are chosen in such a way that the PSNR with the averaged ground

truth sequence is either the highest or the lowest. The visualization of sample sequences

enforces our previous observation that the VAE-based model is capable of understanding

shape-specific motion patterns when we inspect the object masks. However, we can also

observe that there is a discrepancy between the sampled sequences and corresponding object

masks: the model seems to have a weaker ability to retain the information regarding the

object’s appearance. We can say that introduction of stochasticity is degraded the quality of

our abstracted representations, to some extent. Moreover, we can observe that the model

can sometimes sample different plausible transformation parameters for the same input:

when ncontent = 1, the sampled sequences for the triangle object is a promising example,

particularly when we focus on the object masks.

To understand the effect of different training stages on modeling the motion parameter dis-

tributions, we also visualize two sequences sampled for the same test cases in Figure 4.6,

where we use the model before the last stage of training. In other words, the sequences in

Figure 4.6 are sampled when the model is trained for single-frame prediction using stochastic

transformation parameters; yet, the sampling is performed in an autoregressive manner as

for the previous results for a fairer comparison. One main observation we can make is the

poor object abstraction performance, because the background seems to contain parts of

object appearance, particularly after time ncontent. The last training stage seems to improve

the problem with object-background decoupling, yet, it does in a way that the model loses

the ability to retain the object appearance information. Moreover, the model seems to rec-
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Figure 4.5: Two sampled sequences for each the test cases in Figure 4.5 that corresponds to
the best and the worst PSNR of the average frames with the ground-truth. The first column
represents the sampled sequences for ncontext = 1 while the second column represents the
sampled sequences for ncontext = 4.

ognize shape-specific motion patterns better after the last stage of training, which can be

better observed on the object masks of the triangle sequence in both cases. Overall, this

experiment articulates the difficulty of stochastic modeling of video prediction problem while

successfully abstracting entities in each frame. Despite all our efforts to isolate the learning of

these two phenomena, the results show that simultaneously improving the performance for

both remains a challenging problem.

We perform the same experiments for our second, WGAN-based approach. The average frame

and the object mask image for 100 sampled sequences are depicted in Figure 4.7. After an

initial inspection, we can say that the second approach also seems to learn shape-based

motion patterns. Moreover, the average frame seems to be more consistent with the average

mask image in contrast to the previous approach. When we inspect the sampled sequences

in Figure 4.8, we can observe the same effect where the frames and the object masks are

more aligned. The quality of the output frames is also higher compared to their counterparts

sampled from the VAE-based model. This can be attributed to the adversarial training, which

is known for more visually plausible outputs. Yet, we cannot observe different motion patterns

for a given scene/frame/entity, which can be related to the well-known mode collapse problem

in Generative Adversarial Networks (Salimans et al., 2016). Similar observations can be made

for the sequences sampled with the model before the last training stage, which can be observed
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Figure 4.6: Partial replication of the results in Figure 4.5 for the model state before the last
stage of training.

in Figure 4.9.

4.6 Conclusion

In this chapter, we extended our unsupervised entity abstraction method, which already

grants deterministic single-step prediction as a result of its construction, to stochastic object-

centric video prediction. For this purpose, we treat the geometric transformation parameters

as random variables and principle two different methods to approximate its time-varying

posterior distribution.

The first method sketches a graphical model based on the dependencies between model

variables. The training objective is then derived from the maximum likelihood estimation,

which leads to a differentiable method where the posterior distribution is approximated with

the help of a backward-recurrent auxiliary state. The algorithm traverses the sequence of

frames three times during the training time. This approach resembles a sequential VAE, which

is often claimed to suffer less from mode collapse compared to adversarial methods, which we

use for our second method. Being consistent with such a claim, the experiments showed that

the first approach indeed models the stochasticity better compared to our second approach,

yet, it suffers from poor prediction quality and worsened entity abstraction.

On the other hand, the second approach for approximating the posterior distribution is less

computationally heavy. This method follows adversarial training based on the sequences

generated by predicting the next frame at each time instance, and the "real" video sequences

sampled from the training set. By using a spatio-temporal critic function, the parameters of the

function that characterizes the posterior distribution are learned via min-max optimization.

The results indicate a better prediction quality for the second approach, where the inferred

entity masks stay consistent with the predicted frames. In addition, both approaches managed
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(a) Ground Truth (b) ncontext = 1 (c) ncontext = 4

Figure 4.7: The average frame and entity mask image for the WGAN-based model. (a) The
first two columns illustrate the test sequence and ground-truth object masks averaged over
time. (b) The middle two columns represent the average images for 100 different samples
for ncontext = 1, while (c) the last two column represent the average images for 100 different
samples for ncontext = 4. We can observe that the model can capture the shape-based motion
patterns while failing to represent different modes of motion for a given shape, i.e., motion
towards either bottom-corner for square and triangle object types.

to learn shape-specific motion patterns, and generate plausible sequences given a single

context frame. Hence, our results demonstrate that the object-centric approaches are a

promising step tackling the highly challenging problem of stochastic video prediction.
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Figure 4.8: Two sampled sequences for each the test cases in Figure 4.8 that corresponds to
the best and the worst PSNR of the average frames with the ground-truth. The first column
represents the sampled sequences for ncontext = 1 while the second column represents the
sampled sequences for ncontext = 4.
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Figure 4.9: Partial replication of the results in Figure 4.8 for the model state before the last
stage of training.
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5 Discrete Motion in Multi-View Set-
tings

5.1 Introduction

Object abstraction in 2D with motion clues inherits many challenges that emerge from the

ambiguity of the inferred scene structure, such as occlusions or in-plane rotations. This is

largely due to the information loss caused by projecting the 3D world in two dimensions.

On the other hand, research in three dimensions involves different complexities. First and

foremost, the data representation in 3D varies broadly depending on the application. A scene

can be represented by points in 3D space (point clouds), surfaces (meshes), or solid cubical

units (voxels). Regardless of the chosen data representation type, the capacity needed for

describing the 3D scene increases with an additional dimension compared to its 2D settings,

and it comes at the cost of increased computational and memory requirements. Likewise,

annotating data in 3D becomes more cumbersome and labor-intensive. Hence, even with

the great efforts of the research community in contributing different types of 3D labeled

datasets, which consist of 3D bounding boxes (Ahmadyan et al., 2021), 3D Computer Aided

Design (CAD) models (Xiang et al., 2014), category-specific 3D point cloud collections (Wu

et al., 2015) or per-point semantic labels for point clouds (Armeni et al., 2017; Behley et al.,

2019), the availability of annotated 3D datasets stay much smaller than that of labeled 2D

image collections. This limited data availability emphasizes the importance of self-supervised,

or more generally, unsupervised methods for data in three dimensions, which comes with

numerous associated challenges.

The constraints that one could impose for learning 3D representations without manual an-

notations depend heavily on the type of data representation, which itself is tightly coupled

to 3D data acquisition or generation. One way to obtain a dataset that is described in three

dimensions is to model it using computer-aided software, such as CAD models, which requires

skilled experts for the generation of complex objects or scenes. Another option is to capture

data in specific environments, for example, using camera arrays with controlled illumination

or with active depth sensors. In contrast, one can reconstruct the 3D structure solely based on

2D images of the scene at the cost of inferior accuracy, but with the benefit of alleviating the
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need for specialized equipment or manual labor of creating models with targeted software. In

more detail, image-based 3D reconstruction algorithms permit the inference of the most likely

3D shape or scene structure that results in a given collection of images under the assumption

of known viewpoints, material, or lighting (Furukawa and Hernández, 2015). The problem is

generally ill-posed if there is no assumption of these physical factors of variation as different

settings and combinations may result in the same set of images. The most common approach

to circumvent this ambiguity is to find stereo-correspondences between images to extract

geometry, which is commonly referred to as Multi-View Stereo (MVS) when the camera param-

eters are available, or jointly inferred while matching visual cues from images (Furukawa and

Hernández, 2015). Camera parameters here refer to the orientation and world coordinates of

the camera, which are also known as camera extrinsic parameters, along with the focal length

and pixel sensor size describing intrinsic parameters.

In these image-based 3D reconstruction algorithms, the global structure has traditionally

been inferred by matching visual keypoints (Lowe, 1999; Schonberger and Frahm, 2016)

using principles from multi-view geometry (Hartley and Zisserman, 2003). Lately, neural

networks have become a popular choice for learning 3D structure in many different forms,

such as occupancy maps (Mescheder et al., 2019), signed distance functions (Park et al., 2019a),

scene representations (Sitzmann et al., 2019) or radiance fields (Mildenhall et al., 2020). This

rapidly growing field has demonstrated how the geometry and appearance of a scene can be

successfully inferred from a single image, or more frequently, from a set of registered images. In

particular, Neural Radiance Fields (NeRFs) (Mildenhall et al., 2020) has become the dominant

scene representation model as a virtue of its promising high-fidelity outcomes. Although the

initial NeRF model suffered from a computational bottleneck, large data requirements, and

the inability to generalize to new scenes, subsequent work has rapidly addressed many of

these concerns with regularization or consistency constraints for rendering with few available

views (Jain et al., 2021; Kim et al., 2021), special data structures or input encodings for shorter

training and inference times (Liu et al., 2020; Yu et al., 2021a; Müller et al., 2022) as well as

multi-view principled approaches for generalization to novel scenes (Trevithick and Yang,

2021; Wang et al., 2021b; Yu et al., 2021b; Chen et al., 2021; Johari et al., 2022).

However, the compositionality of these models in terms of entity abstractions has only been

explored in a very limited way despite the several benefits that compositional 3D models can

offer, such as robot perception and planning, or scene editing. In this chapter, we propose

a principled method that can both achieve free-view rendering and disambiguate entities

in a fully unsupervised manner. As discussed in earlier chapters, we consider the object

abstraction problem in a static scene very ill-posed, hence, in this chapter, we assume obser-

vations of a scene from different viewpoints that are acquired at two different time instances,

between which some of the objects are relocated. Such an approach for disambiguation

bears a resemblance to the concept of moving objects in previous chapters, with the strong

difference of motion continuity assumption. On the other hand, this approach mandates

some generalization ability for the rendering module, which prevents using NeRF models in

their simplest form.
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We hence propose using a discretized volumetric representation for bounded scenes for neural

rendering so that the volume can later be grouped into smaller groups to represent entities.

For rendering, such a volumetric representation must consist of occupancy and color infor-

mation at the minimum; however, relying only on occupancy and color would require a high

volumetric spatial resolution for high-fidelity rendering outcomes, resulting in high memory

requirements. Therefore, we design the volumetric representation to embed more information

by accommodating a feature vector in each volume unit. The observations from two time

instances are represented by individual feature volumes so that we can use the volumetric

features for both rendering and finding correspondences between the two volumes. In order to

use a single rendering module for both feature volumes, we ensure that the volumetric features

depend on observed images. Thus, we construct the volumetric representation by lifting 2D

features from a subset of input images for each time instance. Overall, this foundational

feature volume construction is jointly learned with the rendering module in a scene-agnostic

manner so that a scene captured at different times from multiple viewpoints can be possibly

represented by the proposed method without any further optimization. Our method shares

the main motivation of a principled multi-view geometry approach for aggregating image

features; however, we propose to model a bounded scene with a low-resolution feature vol-

ume where the feature for each voxel unit is aggregated from image features at all available

viewpoints, which is constructed once and for all. Provided that the learned feature volume

can represent the underlying geometry sufficiently well, we propose to represent objects as

clusters of volume units based on consistent feature similarity across two time instances. In

order to cluster voxel units, we first find correspondences between two feature volumes using

algorithms from optimal transport (Peyré and Cuturi, 2018). We work with spatially localized

groups of voxels to test feature consistency between two volumes based on correspondences

and estimate a rigid body transformation for each group. We then finalize the grouping by

including all voxel units that can be represented by the same rigid body transformation and

establish feature similarity across volumes after being registered by the transformation. By

recursive application of grouping, feature consistency check, 3D registration across volumes

by an estimated rigid body transformation, and re-grouping, we divide each feature volume

into clusters that resemble re-located entities. Once the clustering is finalized, it is possible to

render each arrangement of the scene as well as its composing entities individually. To the

best of our knowledge, it is the first unsupervised algorithm to abstract entities directly in 3D

without the assumption of continuous motion.

5.2 Related Work

As the name indicates, 3D computer vision works on problems related to understanding

the world in three dimensions. It has abundant applications in robotics, 3D scene under-

standing, autonomous driving and virtual/augmented/mixed reality. With recent advances in

deep learning, increase in compute power and large-scale 3D geometry datasets, we witness

impressive progress in 3D computer vision. In this section, we briefly visit how data-driven ap-
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proaches and representations have improved the state-of-the-art in different problems in 3D

when combined with principles adopted from 3D geometry. We then overview rapidly devel-

oping field of neural rendering, and introduce few recent methods that target compositionality

in neural rendering algorithms.

5.2.1 3D Representations

Stereo vision works with principles similar to the binocular vision system of humans. We

perceive the world in three dimensions thanks to the slight difference between what each of

our eye sees while focusing on the same point in space and maintaining a significant overlap

between their field of views. In a similar fashion to our brain, which interprets each view

to create the perception of depth, stereo vision algorithms processes 2D images of a scene

captured from different view points in order to find the 2D points corresponding to the same

3D point in space and use the disparity to compute a depthmap.

In particular, multi-view stereo (MVS) tackles the long-standing problem of 3D representations

of a scene given calibrated overlapping images (Hartley and Zisserman, 2003; Furukawa

and Hernández, 2015). Early MVS approaches aimed for volumetric optimization based on

photo-consistency constraints (Faugeras and Keriven, 2002; Vogiatzis et al., 2007) or sweeping

planes (Gallup et al., 2007), with optional depth map construction (Liu et al., 2009; Furukawa

et al., 2009). Voxel (De Bonet and Viola, 1999) or mesh (Kazhdan and Hoppe, 2013) based

representations have also been frequently used for novel-view rendering. In principle, these

methods aim to reverse the process of image acquisition and create a three dimensional model

with images that are captured from different viewpoints. In short, a typical pipeline consists of

camera calibration, depth determination and registration. Camera calibration is a step needed

to determine the extrinsic and intrinsic properties of the camera. Depth determination is

often achieved by finding matches between two overlapping images and triangulating those

points in 3D. Registration in this context refers to merging inferred depth maps from available

viewpoints into a single 3D model.

In the last decade, learning based methods have gradually improved the performance on

MVS problems and related sub-tasks. For example, depth inference (Huang et al., 2018; Im

et al., 2019) , surface reconstruction from principled 3D volume with sweeping planes (Yao

et al., 2018), multiple cost volumes (Gu et al., 2020), and point-based approaches (Chen et al.,

2019) have led to benefits with respect to older MVS methods. Neural networks have also been

employed for 3D reconstruction in the last few years as a purely data-driven approach (Tewari

et al., 2022). For example, the line of work known as implicit neural representations learns

a continuous function that maps 3D world coordinates to a preferred attribute, such as an

indicator of occupancy, color and/or density. Using a continuous function to express an

arbitrary topology permits a representation with higher capacity and alleviates bottlenecks

of discrete canonical representations, such as point clouds, voxels or meshes. However,

learning such high-dimensional functions require long training times and many data samples.
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In order to aid the learning process, multi-view consistency principles have recently been

integrated into neural rendering methods (Wang et al., 2021b; Yu et al., 2021b; Chen et al.,

2021; Trevithick and Yang, 2021; Sun et al., 2021b; Ji et al., 2017; Saito et al., 2019; Murez et al.,

2020). These methods here greatly improved the state of the art and enabled more efficient

training schemes.

5.2.2 Neural Rendering

Despite the recent advances in different 3D representations, rendering a scene from a novel

viewpoint given observations from a set of other viewpoints stays as a challenging task that

requires an adequate understanding the geometry of the scene. This long-standing problem at

the intersection of computer vision and computer graphics is approached as an interpolation

problem by early works (Shum and He, 1999; Heigl et al., 1999). The quality of rendered images

has substantially improved over the years with the methods from classical computer graphics,

which mostly stem from the perspective of physics and heavily rely on the correctness of the

geometry, light, camera and surface modelling. On the other hand, data-driven approaches

have more statistical foundation, which can greatly help building explicit representation of

scenes based on sufficient number of observations. Neural rendering (Tewari et al., 2020) aims

to combine the advantages of both approaches and provide image-based rendering based on

representations learned with neural networks.

Recently, coordinate based methods, very often referred as implicit functions, have be-

come a popular representation for 3D reconstruction (Park et al., 2019a; Mescheder et al.,

2019; Sitzmann et al., 2019; Mildenhall et al., 2020). Among those, Neural Radiance Fields

(NeRFs) (Mildenhall et al., 2020) notably attracted a lot of attention due to their representation

capacity. In short, a NeRF representation learns a continuous function parameterized by

Multi-Layer Perceptrons(MLPs) to map 3D world coordinates to density and R,G,B colors for

rendering. By construction, a NeRF model is capable of representing a single, static scene

observed from multiple viewpoints. A differentiable ray marching algorithm enables end-to-

end training for this high dimensional function using calibrated image collections of a given

scene. However, it requires sampling many points along a ray from the camera for recovering

the color value of a single image pixel for the main training objective of photo consistency

loss. Such a computational complexity leads to long training and inference times, yet, NeRFs

achieve remarkable performance for free view rendering.

Some follow-up work improved the original formulation for faster inference by using different

data structures, such as octrees (Yu et al., 2021a), or voxels (Liu et al., 2020; Sun et al., 2021a),

by using thousands of tiny MLPs to represent smaller parts of the given scene (Reiser et al.,

2021) as well as by factorizing the rendering formula (Hedman et al., 2021; Garbin et al., 2021).

Another option for faster training is to adopt meta-learning techniques to start the learning

process from a better initialization point (Tancik et al., 2021). One of the main contributions

of the the original NeRF model is the fact that it uses harmonic embeddings (Mildenhall
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et al., 2020; Tancik et al., 2020) that encode scalar position and view direction values with a

multi-resolution sequence of sine and cosine functions. As shown by Tancik et al. (2020), using

harmonic mappings profoundly help learning high frequency functions of 3D scenes from low-

dimensional coordinate values. Müller et al. (2022) have recently showcased how replacing

harmonic embeddings with a multi-resolution hash table of trainable feature vectors permits

the use of a smaller MLPs without sacrificing quality, hence leading to faster computation

(which can be further improved by highly-optimized implementation). On the other hand, in

order to improve the training efficiency of a NeRF model, Xu et al. (2022) first construct a point

cloud based on registered images and then propose to aggregate information from k-nearest

points to the sampled ray point while rendering with the ray-marching formulation used for

the original NeRF model. This does not only result in a compact representation of the scene

but also in faster training times.

Apart from training and inference times, NeRFs suffer from the need for large collections (tens

to hundred(s)) of registered images due to greedy scheme of learning. The geometry of a

given scene is learned by exhaustive sampling of millions of points in 3D space repeatedly.

In order to improve the data efficiency of the NeRF model, different strategies that employ

geometrical principles or semantic constraints have been developed. One idea is to enforce

semantic consistency across viewpoints via a pre-trained image classification network (Jain

et al., 2021) with the aim of training a NeRF model with fewer images. Kim et al. (2021) have

achieved similar rendering quality as the original model with dramatically fewer number of

images by ensuring compactness of scenes along individual rays and enforcing consistency

across rays in a neighborhood. Similarly, regularizing the geometry and appearance of patches

rendered from unobserved viewpoints leads to better data efficiency and improves the few-

shot rendering problem (Niemeyer et al., 2021), where the number of observed images is very

limited. Depth supervision is also demonstrated to lead to faster training of NeRF with fewer

input images (Deng et al., 2022).

On the other hand, the bottleneck of generalization is generally targeted by borrowing ideas

from multi-view geometry. Concurrent works (Trevithick and Yang, 2021; Chen et al., 2021;

Wang et al., 2021b) mitigate the need for per-scene optimization by conditioning per-pixel

rendering function on back-projected image features from neighbouring viewpoints. These

features can be aggregated across those viewpoints before the rendering volume function as

in GRF (Trevithick and Yang, 2021) or they can be aggregated within the NeRF framework and

used as a residual feature as in PixelNeRF (Yu et al., 2021b). On the contrary, these features

can be used to learn how to aggregate the color values inferred from neighbouring viewpoints

as in IBRNet (Wang et al., 2021b). From a different perspective, MVSNeRF (Chen et al., 2021)

proposes a low-resolution plane-swept cost volume (Nozick et al., 2008) to generalize to new

scenes when very few viewpoints are available, hence, targeting a few-shot generalizable neural

rendering model. GeoNeRF (Johari et al., 2022) further improves MVSNeRF with cascaded

cost volumes and using an attention based approach for aggregating images features from

different viewpoints. Overall, this active line of research shows how neural rendering models

can be implemented to generalize over previously unseen scenes when the right 3D inductive
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biases are incorporated.

However, all the above conditional NeRF models require backprojection of each sampled 3D

point along an associated ray onto available viewpoints in a greedy manner. If we want to

render images for multiple novel viewpoints, this greedy approach requires redundantly many

computations, which can be exchanged with memory by storing the conditioned features in a

volumetric representation. Despite the successful scene-specific optimization of volumetric

representations (Liu et al., 2020; Sun et al., 2021a; Lazova et al., 2022; Fang et al., 2022), to the

best of our knowledge, our method is the first one to bridge the gap between conditional NeRF

models and voxel based representations for neural rendering.

5.2.3 Compositionality in Neural Rendering

Despite the great efforts devoted to improve the NeRF model for data or computational

efficiency, compositionality stayed largely undiscovered till very recently. When achieved,

compositional models in 3D can serve many applications in robotics and autonomous nav-

igation as the intelligent agents, which is a term used for anything that can take decisions

based on sensory input, take actions in three dimensions, mostly guided by 2D sensory input.

Compositional models can also advance efficient and physically plausible scene editing.

The first attempt to retain any compositionality within NeRF models is proposed by Zhang

et al. (2020) with a decomposition of the integral operator in ray marching formulation in

Equation (5.1). They successfully model foreground and background information; however, it

lacks any notion of further compositional granularity, such as objects or object parts. For a

finer compositional structure, Yu et al. (2021c) propose to use two NeRF instances for rendering

foreground and background information, and condition the foreground instance on object

specific latent variables and the background NeRF instance on a single background latent

variable, respectively. The latent vectors for objects or for the background are all inferred from

2D images. Similarly, Stelzner et al. (2021) replace the decoder of the SlotAttention (Locatello

et al., 2020) model with a single NeRF instance for rendering and composing the scene from

RGB-D data. Yang et al. (2021) propose using object and background path-ways for rendering.

However, they use two trainable feature volumes as in (Liu et al., 2020) for the scene and the

objects, while each object is further characterized by an instance-specific code, and supervised

by an instance-segmentation map for 2D images. Xie et al. (2021) also adopt a conditional

approach based on object-specific latent vectors. However, they work with scenes with single

objects from a single category and infer a segmentation of the category-specific instance at

inference time.

Targeting a more object-centric or semantic decomposition for scene editing Kobayashi et al.

(2022) propose distilling features with off-the-shelf image feature extractors towards editable

neural rendering fields. They map each 3D coordinate to a semantic feature descriptor and

disambiguate semantically similar parts of a given scene based on a query. However, the

feature descriptors are optimized to be scene-specific, which heavily limits the generalization
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ability of the method.

Another small group of work pursues compositionality in 3D by the help of motion information.

Yuan et al. (2021) assume multi-view data at multiple subsequent time steps and use a two-

pathway approach for modelling static and dynamic parts of a scene, where the latter is aligned

with the static counterpart via continuous rigid body motion. The continuity assumption

of the learned rigid body motion helps the method to decompose a scene into static and

dynamic parts, where the dynamic part is presented to be always a single element in their

experiments. Moreover, synchronized multi-view videos are not as easily accessible as multi-

view images or monocular videos. On the other hand, D2NeRF (Wu et al., 2022) requires

only a monocular video to successfully segment and decouple dynamic objects and the static

background. Nevertheless, both of the models learn to represent a single dynamic scene at a

time and lack the ability decompose the dynamic content further into object level instance.

To the contrary of above methods that can achieve decompositionality only at the foreground-

background level for static scenes or at the static-dynamic level for dynamic scenes, there are

few works that attempt to construct object-level compositional neural rendering models. Yet

they cannot decompose a given scene. For example, Guo et al. (2020) propose representing

each object with a dedicated implicit function for light transport, which is learned individually.

They later use this object corpus to render a scene given object bounding boxes and illumi-

nation conditions. Similarly, Yang et al. (2022) rely on pre-captured objects to understand

a complex scene with an unknown arrangement guided by neural rendering. Zhang et al.

(2021) further extends editable and composable neural rendering models to free view video

rendering.

Overall, there is a clear interest in compositional neural rendering, with few works that can also

decompose a given scene. However, these decompositional methods motivate decoupling

using 2D clues and do not fully exploit the 3D structure imposed by the registered image

inputs. We propose below to use high representation capacity of explicit volumetric grids to

abstract entities directly using the aggregated information in three-dimensions. We also target

decoupling multiple objects given two sets of images acquired at different times without any

need for continuous data acquisition, or synchronization in time. Our method is generic and

can be applied to different scenes provided that the volumetric feature representation can be

constructed.

5.3 Proposed Method

In this section, we first present the fundamentals of Neural Radiance Fields (NeRFs) and

formally introduce our problem formulation. Then, we describe the proposed method for

constructing a feature volume from given observations of a scene and rendering based on

these volumetric representations. We later explain the proposed unsupervised method for

entity abstraction in 3D based on clustering volumetric units through feature correspondences.

We finish this section by outlining our implementation.
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5.3.1 Background - Neural Radiance Fields

Neural Radiance Fields are a novel representation of 3D scenes by a continuous volumetric

scene function that enables synthesizing novel views of the given scene. In the original

formulation (Mildenhall et al., 2020), a NeRF model outputs the view-dependent emitted color

c = (r, g ,b) and volume densityσ for each point x = (x, y, z) in the 3D space seen from direction

(θ,φ), which can be expressed by a 3D Cartesian unit vector d. Following the classical volume

rendering technique of ray marching (Kajiya and Von Herzen, 1984), the expected color C

of a camera ray r parametrized by t , i.e., r(t) = o+ td, can be expressed as in Equation (5.1)

where tn and t f denote near and far bounds, and the function T (t ) stands for the accumulated

transmittance.

C (r) =
∫ t f

tn

T (t )σ (r(t )) c (r(t ),d) d t (5.1)

T (t ) = exp

(
−

∫ t

tn

σ(r(s))d s

)
(5.2)

This continuous integral is approximated by quadrature using a discrete set of points that are

sampled from evenly spaced bins, as expressed in Equation (5.3). The approximated color

for each ray, Ĉ (r), hence corresponding pixel color is computed according to Equation (5.4)

using the discretized transmittance in Equation (5.5), where δ stands for the distance between

sampled points.

ti ∼U

[
tn + i −1

N

(
t f − tn

)
, tn + i

N

(
t f − tn

)]
(5.3)

Ĉ (r) =
N∑

i=1
Ti

(
1−exp(−σi δi )

)
ci (5.4)

Ti = exp

(
−

i−1∑
j=1

σ j δ j

)
(5.5)

Mildenhall et al. (2020) use a multilayer perceptron (MLP) to map harmonic embeddings of

the sampled locations and camera direction to the color and volume density values. Har-

monic embeddings map a scalar value to a sequence of L sine and cosine functions such that

γ(x) = [
sin(20x),sin(21x), . . . , sin(2L−1x);cos(20x),cos(21x), . . . ,cos(2L−1x)

]
. The independent

encodings of the 3-dimensional location input, γ(x = (x, y, z)) are first mapped to a middle rep-

resentation e, such that, e = F 1(γ(x)). This representation is later mapped to view-dependent

emitted color, c = F color(e,γ(d)), and density, σ= F density(e). Each F function is parametrized

by an MLP and the overall function can be summarized as FΘ : γ(x,d) → (c,σ).

Mildenhall et al. (2020) further follow a hierarchical volume sampling via two instances of

the same network, referred to as coarse and fine networks, where a second set of points are

sampled using the output of the first network, which are expected to be more biased towards

the relevant parts of the volume. The training objective is set to the squared error for pixel
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Figure 5.1: Illustration of the NeRF model: using the 5D coordinates (location and viewing
direction)(a), color and volume density of sampled points(b) are computed for synthesizing
the image for a query viewpoint via differentiable ray marching operation(c). The parameters
of the mapping function FΘ are learned by minimizing the discrepancy between the rendered
image and the ground truth(d). Image taken from Mildenhall et al. (2020).

color for each ray in the batch, where the error is computed for outcomes of both coarse and

fine networks. Figure 5.1 illustrates the main principles of the differentiable rendering pipeline

of the NeRF model.

As a virtue of their compact representation, Neural Radiance Fields have transformed many

tasks in both computer graphics and computer vision research: they represent a 3D scene

through parameters of a continuous-valued function that maps each point in the 3D world to

a density and color value when seen from a particular direction. Unlike point clouds, it is a

dense representation and in contrast to voxel representations, it does not suffer from memory

bottleneck for high-resolution expression of scenes. Furthermore, it can be conveniently

learned from a set of registered images of a scene, without any need for manual modeling. Its

differentiable and intuitive formulation makes NeRFs a suitable tool for 3D computer vision

tasks provided that the compute need associated with its training can be afforded.

5.3.2 Problem Formulation and Notations

In order to abstract entities in three dimensions, we assume registered images for two different

states of a scene, which we will refer to as arrangements, where the composing entities are

relocated. In other words, we observe a scene at two different time instances from multiple

viewpoints and we assume that the volumetric changes between those two time instances can

be attributed to its composing entities. Our aim is to represent the static part of the scene, as

well as its relocated composing entities, in 3D in a way that we can synthesize any views for

each of them individually. The problem setup is illustrated in Figure 5.2.

Hence, we represent the scene in three dimensions by a combination of an arrangement-

specific feature volume and an arrangement-agnostic function that maps any 3D point to

color and volume density values using the features. We construct the feature volumes based

on observations, i.e., images, of the corresponding state. The mapping function, which is an
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Arrangement 1 Arrangement 2
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Figure 5.2: Problem set-up: we assume registered images of a scene in two states when the
composing entities are relocated: we refer to the different states of the scene as arrangements.
Our target is to decompose M radiance fields to represent the relocated entities in 3D.

example of conditional NeRFs, then uses the interpolated features of any sampled point to

output color and volume density values, which can be used to render an image from a query

viewpoint using the ray marching in NeRF formulation.

More formally, given a set of N images, Ii , i ∈ {1, . . . , N }, with corresponding camera intrinsic

parameters Ki and extrinsic parameters Ei = [Ri |ti ]; our aim is to infer M radiance fields as

partitions of an underlying bounded scene. For this purpose, we first construct a feature

volume V ∈RHV×WV×DV×CV , where HV,WV,DV denote the spatial dimensions of a the feature

volume and CV is the volume feature dimension. We then use the implicit function FΘ for

rendering images based on the volumetric representation V.

In fact, we use two sets of images, {I (1)
i }N1

i=1 and {I (2)
i }N2

i=1 to construct the corresponding fea-

ture volumes V(1) and V(2) guided by the same implicit function FΘ. The feature volumes are

constructed by lifting image features of the corresponding arrangement to world coordinates

based on camera parameters, and rendering is achieved by a conditional NeRF representation.

We then find directed feature correspondences P(1)→(2), or P(2)→(1), between feature volumes

V(1) and V(2). We cluster M subset of voxels u(1)
(i ) ,u(2)

(i ) where i ∈ 1, . . . , M based on correspon-

dences, which stand for re-located entities. Each subset of voxels is described by their 3D

coordinates and corresponding features, which enables NeRF-based novel view synthesis for

each composing entity.

5.3.3 Lifting and Fusing 2D Features.

For the feature volume construction, we use a subset of N f images such that N f < N1 and

N f < N2, and they will be occasionally referred to as keyframes from now on. We use an

image encoder to enrich the color information at each pixel, and map R,G,B colors to a

higher dimensional feature vector which is more likely to contain any semantic or geometric

information. The image encoder will be denoted by ξ : RHI×WI×3 → RHI×WI×CI , where CI
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indicates the dimension of image features and (HI,WI) indicate image dimensions. Then, all

points on the 3D grid of shape HV ×WV ×DV, i.e., x = (x, y, z) ∈
{

{xi }HV
i=1 × {y j }WV

j=1 × {zk }DV
k=1

}
are

projected onto N f keyframe viewpoints using the corresponding camera parameters. More

specifically, the point x is projected to the j th keyframe as x j , where j ∈ 1, . . . , N f , using camera

intrinsic parameters K j and extrinsic parameters {R j ,t j } according to Equation (5.6). The

sub-pixel coordinates (u j , v j ) in the corresponding image I j is then computed by assuming a

pinhole camera model as expressed in Equation (5.7).

[x j , y j , z j ]T = RT
j (K−1

j [x, y, z]T − t j ) (5.6)

u j = x j /z j , v j = y j /z j (5.7)

We first check if projected points lie within the camera frustum1 of the corresponding view-

point, and place zeros as features if the point is outside the associated observable space.

Otherwise, for a 3D point within the camera frustum with projected sub-pixel coordinates

(u j , v j ), we use bilinear interpolation to compute ξ
(
I j (u j , v j )

)
from the feature vectors of

4-neighboring pixels. The resultant feature vector will also be denoted by ξ j (x) for clarity

(Note that ξ(·) denotes the generic image encoding function whereas ξ j (x) depicts the value

of resultant features at pixel coordinates associated with 3D point x when it is projected to j th

keyframe).

After we project the point x onto all keyframes and sample corresponding image features,

we have a set of N f feature vectors, some of which might be padded with zeros as a result

of not being observed from the corresponding viewpoint. The goal is to represent x with a

single feature vector that aggregates the information from N f feature vectors. While aggre-

gating features from different viewpoints, we need to take the possibility of occlusion into

account: the point x can be occluded by other entities in the scene when observed from a

subset of given viewpoints. Hence, before aggregating, we propose to enhance the set of

feature vectors
{
ξ j (x)

}N f

j=1 by augmenting information across viewpoints. In order to help

with uncovering occlusions, we first concatenate each feature vector with color values at

corresponding sub-pixel locations, I j (u j , v j ), again bilinearly interpolated from neighboring

pixels. Then, the function ψ : RN f ×CI+3 → RN f ×CV outputs the enhanced features as ξ̄ j (x) by{
ξ̄ j (x)

}N f

j=1 =ψ
({

[ξ j (x),I j (u j , v j )]
}N f

j=1

)
, where [·, ·] denotes concatenation.

In order to obtain a single feature vector at the corresponding 3D point, we need a permutation

invariant aggregation function to summarize the information acquired from all available view-

points. Some common choices for permutation invariant aggregation functions are "mean" or

"maximum" operators. It means, for the mean operator, the aggregator function averages the

N f for each of CV dimensions. We denote the aggregation function as ζ :RN f ×CV →RCV , and it

obtains the feature at each location x = (x, y, z), such that V(x) = ζ
({
ξ̄ j (x))

}N f

j=1

)
. The feature

volume construction is briefly illustrated in Figure 5.3, end summarized in Equations (5.8)-

(5.13).

1The truncation with parallel planes describing the visible space in 3D world that may appear on the screen
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(2)


query viewpoint 

feature volume

(1)


(2)

(Nf)
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ζ( ⋅ )ψ( ⋅ )

Figure 5.3: Proposed feature volume construction: we first project all volume unit centers to
available viewpoints and sample 2D features at the projected pixel locations (depicted as gray
vectors), as well as the corresponding color values in the images (depicted as yellow vectors).
After updating the set of sampled features by enabling interactions across different viewpoints,
denoted by function ψ(·), we aggregate the features with function ζ(·).

image encoder : ξ :RHI×WI×3 →RHI×WI×CI (5.8)

sampled image feature : ξ j (x) = ξ
(
I j (u j , v j )

)
( j th keyframe) (5.9)

cross-view feature enhancer : ψ :RN f ×(CI+3) →RN f ×CV (5.10)

enhanced features :
{
ξ̄ j (x)

}N f

j=1
=ψ

({
[ξ j (x),I j (u j , v j )]

}N f

j=1

)
(5.11)

aggregation function : ζ :RN f ×CV →RCV (5.12)

aggregated features : V(x) = ζ

({
ξ̄ j (x))

}N f

j=1

)
(5.13)

5.3.4 Radiance Fields with Voxel Features

Once the feature volume is constructed, we adopt conditional NeRF models for synthesizing

images. Instead of harmonic positional embeddings, each point in 3D is represented by

a CV-dimensional feature vector that is obtained from the feature volume V via trilinear

interpolation2. More specifically, instead of γ(x), we use V(x) for the middle representation

in NeRF formulation, i.e., e = F 1(V (x)), which is later mapped to density, σ= F density(e), and

2Trilinear interpolation is an adaptation of liner interpolation to three dimensions: it approximates the value of
a function at any intermediate point (x, y, z) within the local axial rectangular prism linearly, using function data
on the lattice point
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color, c = F color(e,γ(d)) by using the direction d of the query viewpoint for obtaining the

viewpoint-dependent color information. Note that the scene geometry solely depends on the

inferred feature, which forces the image encoder, the feature enhancer, and the aggregation

function to result in a feature volume that represents well the scene geometry.

We also adopt the same hierarchical sampling strategy of the original NeRF algorithm for

sampling points along each ray. We use a coarse and a fine network, described as F coarse
Θ :(

V(x),γ(d)
) → (ccoarse,σcoarse) and F fine

Θ :
(
V(x),γ(d)

) → (cfine,σfine), and use the output of

the coarse network to sample more informed points along the ray towards denser regions.

More specifically, the resultant color of a ray r in Equation (5.4) can be rewritten as Ĉc (r) =∑Nc

i=1 wi ccoarse
i where Nc stands for the number of points sampled along the ray r for the evalu-

ation of the coarse network. Upon normalization of weights wi ’s by ŵi = wi∑Nc
j=1 w j

, we obtain a

piecewise-constant PDF along the ray. The second set of N f points are then sampled using

inverse transform sampling3, and the fine network is evaluated with all Nc + N f sampled

points to obtain Ĉ f (r).

5.3.5 Feature Correspondance

After we construct the feature volumes V(1),V(2) such that V(1),V(2) ∈RHV×WV×DV×CV , we con-

tinue with the task of associating volume units across V(1) and V(2). As the volume is expected

to be sparse due to the void in the 3D world, a unit-to-unit association of two feature vol-

umes is not only computationally expensive but also redundant. Hence, we first discard voxel

units in both volumes, the density of which falls below a threshold. Note that the density

of each volume unit can be computed with the density branch of the fine NeRF module

using the features accommodated at the voxel unit. More specifically, we work with sub-

sets of voxel units V
(1)

and V
(2)

such that V
(1) = {

V(1)(x) | F density,fine
(
F 1

(
V(1)(x)

))< τ(1)
}
, and,

V
(2) = {

V(2)(x) | F density,fine
(
F 1

(
V(2)(x)

))< τ(2)
}

for all x = (x, y, z) ∈
{

{xi }HV
i=1 × {y j }WV

j=1 × {zk }DV
k=1

}
.

τ(1),τ(2) are determined according to the maximum density computed for voxel units at

each feature volume. We similarly represent the center coordinates of voxel units of the

pruned feature volumes with x(1) and x(2), such that x(1) = {
x | F density,fine

(
F 1

(
V(1)(x)

))< τ(1)
}

and x(2) = {
x | F density,fine

(
F 1

(
V(2)(x)

))< τ(1)
}

for all x = (x, y, z) ∈
{

{xi }HV
i=1 × {y j }WV

j=1 × {zk }DV
k=1

}
.

One bottleneck that arises from discarding volume units with associated low-density values

is the fact that pruned feature volumes might contain a different number of voxel units, i.e.,

|V(1)| ̸= |V(2)| (|·| denotes cardinality). This prevents unit-to-unit, hence one-to-one association

based on voxel features, and resultant many-to-one association can substantially harm the

estimation of rigid body transformation for clusters. Hence, we opt for a stochastic mapping

between two pruned feature volumes, denoted by a doubly stochastic matrix P such that

P(1)→(2) ∈ [0,1]|V
(1)|×|V(2)|, where each row and column of the matrix P sums up to 1. Stochastic

mapping permits many-to-many associations with an associated level of strength, which lets

3Inverse transform sampling is a method for generating random samples from a probability distribution using
its cumulative distribution function.
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us adapt their contribution to the estimation of rigid body transformations.

The problem of finding feature correspondences between two pruned feature volumes can be

considered as mapping two probability distributions that can be observed through sampled

features V
(1)

and V
(2)

at locations x(1) and x(2). If we characterize the distributions by p(x)

and q(x), respectively, the matrix P(1)→(2) describes how much probability mass from one

point in the support of p(x) is assigned to point in the support of q(x). Furthermore, the cost

associated with moving a voxel unit from x(1) to x(2), in other words, establishing correspon-

dence between two volume units, can be defined by a cost value Ci j , where i ∈ {1, . . . , |x(1)|},
and j ∈ {1, . . . , |x(2)|}. Hence, the total cost of establishing correspondences between V

(1)

and V
(2)

can be calculated by the Frobenius inner product between P(1)→(2) and C such that

< C,P(1)→(2) >= ∑
i j Ci j P(1)→(2)

i j . Note that if the entries of the cost matrix C are defined by

a distance, hence Ci j = C j i , it means that the coupling matrix is not directional, and can

be described by P such that P = P(1)→(2) = P(2)→(1)T
where the operator T denotes matrix

transpose.

Minimization of the total cost associated with finding correspondences is the problem of

Optimal Transport (Villani, 2009), which aims to find the lowest cost LC over all possible cou-

pling matrices. Particularly, Kantorovich formulation (Kantorovich, 1942) solves the problem

in Equation (5.14) with constrains expressed in Equations (5.15)-(5.16), where 1 stands for a

column vector of 1s, and vectors a,b represent probability weight vectors for p(x) and q(x),

respectively.

LC = min
P

< C,P > (5.14)

subject to P1 = a, (5.15)

PT 1 = b (5.16)

Although obtaining the solution to the problem presented above is not computationally trivial,

entropic regularization allows the use of a simple alternate minimization scheme as a result

of the introduced convexity. Sinkhorn’s algorithm (Cuturi, 2013) indeed proposes that the

solution to the relaxed problem in Equations (5.17)-(5.20), which has |x(1)| · |x(2)| variables

and |x(1)|+ |x(2)| constraints in our formulation, can be obtained with iterative updating of

two vectors of sizes |x(1)|, |x(2)|. Although these iterative updates can suffer from numerical

instabilities, log-domain computations are shown to improve the stability of the method (Peyré

and Cuturi, 2018).

LC = min
P

< C,P >−ϵH(P) (5.17)

subject to P1 = a, (5.18)

PT 1 = b (5.19)

where H(P) =−∑
i j

Pi j logPi j (5.20)
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Figure 5.4: Hypothetical feature matching for entity abstraction

We approach the feature correspondence problem as finding a coupling that minimizes the

distance between features of associated voxel units. More formally, we construct our cost

matrix with the squared Euclidean distance between voxel feature pairs, as in Equation (5.21).

We then use Sinkhorn’s algorithm in the log domain to solve the minimization problem. We

refer the readers to the comprehensive work by Peyré and Cuturi (2018) for further details on

Sinkhorn’s algorithm.

Ci j = ∥V(1)(xi )−V(2)(x j )∥2
2 (5.21)

where xi ∈ x(1),x j ∈ x(2) (5.22)

It is important to emphasize that the coupling is obtained based on voxel features so that

P(1)→(2) V(1)/a ≈ V(2), yet, it can be also used to obtain the canonical coordinates of mapped

features in the second feature volume. We will denote the coordinates of mapped features by

x(1)→(2) such that x(1)→(2) = P(1)→(2) x(1)/a. Note that |x(1)| = |x(1)→(2)|, which is not necessarily

the same as |x(2)|. The correspondence between the world coordinates of the matched features

will allow the estimation of a set of rigid body transformations, which leads to our 3D entity

abstraction algorithm, which is described in the next section.

5.3.6 Entity Abstraction

For abstracting relocated entities directly in three dimensions, we propose to cluster voxel

units based on the feature correspondence obtained by the method explained in the previous

section. The hypothetical matching with voxel features is illustrated in Figure 5.4.

For this purpose, we follow a greedy approach. We begin with a randomly chosen voxel unit

x(1)
o from the pruned features V

(1)
and find other voxels in x(1) that are in a spatial proximity of

the chosen voxel x(1)
o . We represent the initial cluster of chosen voxels with a subscript {i }, i.e.,

x(1)
{i } , where {i } stands for a set of indices, not a single voxel unit. We then determine the mapped

coordinates x(1)→(2)
{i } . In order to choose the voxel units from the subset {i } that have consistent

feature similarity, we compute the features at mapped coordinates via trilinear interpolation,

i.e., V(2)(x(1)→(2)
{i } ) and eliminate the voxels from the subset {i } with ∥V

(1)
{i } −V(2)(x(1)→(2)

{i } )∥2
2 > τF ,

where τF is a hyperparameter. The updated indices are then represented by { j }, and |{ j }| ≤ |{i }|.
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Once we determine a set of world coordinates x(1)
{ j } and x(1)→(2)

{ j } based on cross-arrangement

feature similarity, we compute the rigid body transformation described by a 3×3 rotation

matrix R j and 3-dimensional translation vector t j with the least-squares estimation proposed

by Umeyama (1991). In other words, we look for the optimal transformation [R j |t j ] that

minimizes ∥R j (x(1)
{ j } − t j )−x(1)→(2)

{ j } ∥2
2. This minimization problem can be solved by computing

the 3×3 covariance matrix between sets of 3D points in x(1)
{ j } and x(1)→(2)

{ j } , S j , and computing the

singular value decomposition of S j such that S j =U j Σ j V T
j . When we discard the reflections,

the rotation matrix we are looking for is given by R j =V j U T
j . The translation vector t j can be

then computed by t j = RT
j x(1)→(2)

{ j } −x(1)
{ j }.

As the final step, we transform all voxel coordinates of the pruned voxels V
(1)

, x(1) to the coordi-

nate system of second feature volume, V(2), with the cluster rigid body transform as R j (x(1)−t j )

and compute corresponding features via trilinear interpolation: V(2)
(
R j (x(1) − t j )

)
. We then

expand the indices { j } to {k} by including all voxel units which establish feature similarity

once transformed by [R j |t j ], and still exhibit high volume density values in the second feature

volume, such that x(1)
{k} ←

{
x

∣∣∣ x ∈ x(1),
∥∥∥V

(1) −V(2)
(
R j (x− t j )

)∥∥∥2

2
< τF andσ(2)

(
R j (x− t j

)> τ(2)
}

,

where σ(2)(·) estimates the density values in the second volume at a given location via triliniear

interpolation from F density,fine
(
F 1

(
V(2)(x)

))
.

We repeat this procedure for a given number of clusters, or until we cluster all voxel units with

consistent feature correspondences. More specifically, we remove the voxels in subset {k} from

V
(1)

and x(1), delete corresponding entries in P(1)→(2) and a, and iterate over the steps for (i)

finding a spatially localized initial cluster, and corresponding voxels in the second arrange-

ment, (2) discarding the voxels which do not establish feature consistency, (3) computing

the rigid body transform between the cluster coordinates in two arrangements, and finally

(4) using the transform to map all the voxel coordinates in the pruned feature volume and

selecting voxels that present high feature similarity and volume density values.

The procedure for entity abstraction is summarized in Algorithm 1.

5.4 Implementation

This section provides details regarding the implementation of the proposed model. Given two

sets of registered images as observations of a scene, which correspond to two different arrange-

ments as illustrated in Figure 5.2, our aim is to represent the scene with arrangement-specific

feature volumes and an arrangement-agnostic rendering function. The feature volumes are

constructed from a subset of scene images, which are also referred to as keyframes. The image

features of keyframes are lifted to canonical coordinates and aggregated across keyframes to

obtain a single representation for each unit in the feature volume. The rendering function then

samples features from the volume for mapping canonical coordinates to color and density

values. Using differentiable ray marching algorithms, our model can render an image from
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Algorithm 1: Entity Abstraction in 3D

Input : pruned feature volumes: V
(1)

,V
(2)

, e.g.,

V
(1) = {

V(1)(x) | F density,fine
(
F 1,fine

(
V(1)(x)

))< τ(1)
}

V
(2) = {

V(2)(x) | F density,fine
(
F 1,fine

(
V(2)(x)

))< τ(2)
}

for all x = (x, y, z) ∈
{

{xi }HV
i=1 × {y j }WV

j=1 × {zk }DV
k=1

}
coordinates associated with pruned feature volume: x(1),x(2), e.g.,

x(1) = {
x | F density,fine

(
F 1,fine

(
V(1)(x)

))< τ(1)
}

x(2) = {
x | F density,fine

(
F 1,fine

(
V(2)(x)

))< τ(2)
}

for all x = (x, y, z) ∈
{

{xi }HV
i=1 × {y j }WV

j=1 × {zk }DV
k=1

}
coupling from first feature volume to the second: P(1)→(2)

weight vector for pruned feature volume V
(1)

: a
number of clusters: K
threshold values for feature similarity, spatial vicinity and density: τF ,τd ,τ(2)

Operators : V (2)(x) : feature interpolation function from V(2)(x)
σ(2)(x) : density interpolation function from F density,fine

(
F 1,fine

(
V(2)(x)

))
:

del (·, {k}) : delete operator for entries correspond to voxels in cluster {k}
rand(·): random selection from a given set

Output : Clusters of features and corresponding 3D coordinates
{(

V
(1)
{k},x(1)

{k}

)}K

k=1
Initialize : x(1) ← x(1)

V(1) ← V
(1)

P(1)→(2) ← P(1)→(2)

a ← a

for k ∈ 1, . . . ,K do
x(1)

o ← rand(x(1))

x(1)
{i } =

{
x

∣∣ x ∈ x(1),∥x−x(1)
o ∥2

2 < τd

}
x(1)→(2)

{i } = P(1)→(2)x(1)
{i } /a(

x(1)
{ j },x(1)→(2)

{ j }

)
←

{
(x1,x2)

∣∣ x1 ∈ x(1)
{i } , x2 ∈ x(1)→(2)

{i } , ∥V(1)
{i } −V (2)(x2)∥2

2 < τF

}
[R j |t j ] ← argmint∈R3,R∈SO(3)∥R j (x(1)

{ j } − t j )−x(1)→(2)
{ j } ∥2

2(
V

(1)
{k},x(1)

{k}

)
←

{(
V(1)(x),x

) ∣∣x ∈ x(1),∥V
(1)−V (2)

(
R j (x− t j )

)∥2
2 < τF , σ(2)

(
R j (x− t j )

)< τ(2)
}

x(1) ← del(x(1), {k})

V(1) ← del(V(1), {k})

P(1)→(2) ← del(P(1)→(2), {k})

a ← del(a, {k})

end

84



5.4 Implementation

any viewpoint. Hence the combination of the feature volumes and the rendering function

represents the scene in truly in three dimensions.

Afterwards, using the two feature volumes, we disambiguate the entities in the scene that are

relocated between the two states of the given scene. For this purpose, we learn a coupling

matrix that indicates the learned feature correspondences between two volumes. We then

decouple entities by clustering the volume units whose feature correspondences can be

expressed consistently by a rigid body transformation between coordinate frames of the two

feature volumes. In what follows, we detail the implementation of each step for this proposed

pipeline.

Feature Volume Construction

To start with, the image encoder is implemented as an hourglass convolutional neural network,

which has a strong resemblance to UNET (Ronneberger et al., 2015). It has three blocks in

the downstream branch, where each block is composed of two convolutional layers. We

employ Sigmoid Linear Unit (SiLU) (Elfwing et al., 2018) as the activation function after each

convolutional layer, followed by layer normalization (Ba et al., 2016) adapted to convolutional

outcomes. Maximum pooling operation downsamples the convolutional features at the end of

each block, which is also connected to the upstream via skip connections. We found training a

UNET-like image encoder from scratch performs better than using a pre-trained convolutional

neural network as a feature extractor for our particular dataset.

The feature refinement operator ψ(·) is implemented as a Multi-Head Self-Attention(MHSA)

(Vaswani et al., 2017) module, which, in a nutshell, applies scaled dot-product attention several

times in parallel. We implement the attention module such that each channel in the sampled

image features can be attended across all keyframes. We apply two consecutive MHSA layers

with five heads, each followed by conventional residual connection and layer normalization.

The aggregation function ζ(·) is implemented with attention-pooling (Yang et al., 2020).

In other words, we compute a weighted sum of N f feature vectors where weights are ob-

tained from the features themselves with two MLPs with SiLU activation. In the last layer,

a so f tmax function normalizes the weights, to sum up to one. More formally, the fea-

ture at point x = (x, y, z) is computed by V(x, y, z) = ζ
({
ξ̄ j (x))

}N f

j=1

)
= ∑N f

j=1 wattn
j ξ̄ j (x) where

wattn = so f tmax
(
F attn

(
ξ̄ j (x))

))
. We empirically found this strategy to perform better than

widely used mean and var i ance operators as the aggregation function, whether used alone

or when their results are concatenated.

We then process the constructed feature volume with a three-dimensional hourglass convolu-

tional neural network, which again has a strong resemblance to 3D-UNET (Çiçek et al., 2016).

The network consists of only one downsampling step, and each of the resultant three blocks is

composed of only one three-dimensional convolutional layer. The activation function is again

chosen as SiLU and is followed by layer normalization.
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image encoder

keyframes

feature enhancement, 
lifting and fusing

UNET MHSA AttnPool 3D-UNET

volume encoder

scene frames
rendering

NeRF

Figure 5.5: Implemented pipeline: we use a UNET-like image encoder for extracting features
that are lifted to world coordinates, and refined by Multi-Head Self Attention (MHSA) layers.
Feature fusing is achieved by Attention Pooling (AttnPool) resulting in the initial version of the
feature volume. A 3D-UNET-like network post processes the feature volume, which is later
used by rendering the frames using a small NeRF model.

Novel View Synthesis

For the NeRF networks, F coarse
Θ and F fine

Θ are implemented as MLPs with lower capacities

compared to the original implementation. F 1,F color
Θ and F density

Θ that compose each FΘ are

implemented as 6-layer, 2-layer, and a single layer MLPs with 128, [64,3] and 1 output units,

respectively. Similar to the original implementation, there is a skip layer in the network of

F 1(·) after the third layer. The nonlinearity function is again chosen to be SiLU except in the

last layers for color and density. The color output is produced following a sigmoid activation

whereas the volume-density is obtained by softplus function, which is a smooth approximation

to well-known rectified linear units. In contrast to 64 ray point samples for the coarse network

and 128 additional samples for the fine network in the original implementation (Mildenhall

et al., 2020), we sample 32 points for the coarse, and additional 32 points for the evaluation of

the fine network, when not stated otherwise in the experiments section.

The overall pipeline for feature volume construction and conditional neural rendering can

be seen in Figure 5.5. The model is trained with mean-squared reconstruction error for both

coarse and fine networks, as expressed in Equation (5.23), where R denotes the set of rays

sampled for an image. If not stated otherwise, we sample 4096 rays per image at each training

step. Similarly, if not stated otherwise, the keyframes are not fixed for each scene. Indeed,

we randomly sample keyframes from the training set at each training step after excluding

the frames to be rendered. We then construct the feature volume for a single scene and

single arrangement and render NB images using the same feature volume before updating

the parameters of the model. We use AdamW (Loshchilov and Hutter, 2017) optimizer with

a weight decay of 1×10−5 and an initial learning rate of 5×10−4, which is later halved twice

after gradient steps 2000 and 5000.

86



5.4 Implementation

Lr = 1

|R|
∑
r∈R

[∥C (r)− Ĉc (r)∥2
2 +∥C (r)− Ĉ f (r)∥2

2

]
(5.23)

Optional Depth Supervision

In addition to the rendering loss presented in Equation (5.23), we consider optional depth-

supervision because NeRF-based rendering is shown to struggle for inferring the accurate

scene geometry (Wei et al., 2021; Oechsle et al., 2021; Yariv et al., 2021; Wang et al., 2021a) even

when the synthesized images present high fidelity. In fact, in the original formulation, the

inferred density is perturbed with Gaussian noise of unit variance before the last activation

function in order to prevent floaters. Later, many follow-up work (Hedman et al., 2021; Yu

et al., 2021a; Oechsle et al., 2021; Deng et al., 2022; Niemeyer et al., 2021; Kim et al., 2021) have

proposed different auxiliary loss terms for density regularization, such as Cauchy (Hedman

et al., 2021) or exponential (Yu et al., 2021a) penalty terms for promoting the sparsity of points

with positive density values; or patch-based Total Variation (TV) regularization of inferred

depth from unobserved viewwpoints (Niemeyer et al., 2021). Few other works proposed

additional depth supervision either for a sparse set of points used for estimation of camera

parameters (Deng et al., 2022), or dense depth maps (Johari et al., 2022). Hence, here, we

present two other auxiliary loss terms which will complement the reconstruction loss in

Equation (5.23) for some of our experiments. The first auxiliary loss is the exponential density

regularization loss Ldensity in Equation (5.24) And the second one penalizes the mean-squared

error of the inverse depth, as given in Equation (5.25), where D(r) stands for the ground truth

depth value corresponding to ray r and D̂c (r) and D̂ f (r) stand for the rendered depth values via

the coarse and fine NeRF networks, respectively. Equation (5.26) presents the depth rendering

using the NeRF formulation.

Ldensity =
1

|R|
∑

r∈R,i∈r
|1−exp(−0.5σi )| (5.24)

Ldepth = 1

|R|
∑
r∈R

[∥∥∥∥ 1

D(r)
− 1

D̂c (r)

∥∥∥∥2

2
+

∥∥∥∥∥ 1

D(r)
− 1

D̂ f (r)

∥∥∥∥∥
2

2

]
(5.25)

D̂(r) =
∫ t f

tn

T (t )σ (r(t )) d t (5.26)

Feature Matching

For pruning the feature volumes, we use density thresholds τ(1), τ(2) which indicate the 10%

of the maximum density value computed for corresponding feature volume. For matching

features, we implement Sinkhorn iterations in the log domain to solve the minimization

problem in Equation (5.17), where we use ϵ= 0.01 for entropy regularization. We realize 5000
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Figure 5.6: Eight scenes composed of simple shapes in two different arrangements. Each
column represents a different scene, and each row within a specified arrangement group
correspond to images from different viewpoints.

iterations, which often ensures convergence of the algorithm. We decide on the threshold

for feature similarity, τF , based on the median feature norm of initial cluster x(1)
{i } . Finally,

we demonstrate our results for M = 5 clusters for our dataset, which is composed of three

relocated objects.

5.5 Experimental Results

5.5.1 Dataset

Since object abstraction via relocalization is not a conventional task yet, it is challenging to

find a dataset tailored for such a problem formulation. Hence, we created a small-scale dataset

to evaluate the performance of the proposed method. For this purpose, we used Kubric (Greff

et al., 2022), a wrapper based on Blender, and we created a total number of twelve simple

scenes each composed of three basic objects. The objects are chosen randomly from "cube" or

"sphere" classes and located at randomly chosen locations on a plain gray floor. The scale and

the color of each object instance are also chosen randomly. We use textured objects for half of

the scenes and kept the others with a uniform color. We rendered 64 training, 32 validation,

and 64 test images of size 256 x 256 pixels from random viewpoints in the upper hemisphere

which are always directed at the scene center. We then repositioned the objects for the second

arrangement and rendered a second set of images with randomly sampled viewpoints. Eight

of the scenes can be seen in Figure 5.6, where they are grouped concerning object placements,

which correspond to arrangements.
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For evaluation of the rendering quality, we use widely accepted metrics Peak Signal-to-Noise

Ratio (PSNR) and Structured Similarity Index (SSIM). Details of the implementation can be

found in Appendix A. We evaluate the entity abstraction qualitatively, by visualizations of

colored voxel centers. Note that the clustered voxels can also be used to render each entity

individually.

5.5.2 Results

Ablation Studies

We first conduct an ablation study to determine the performance improvements due to the

architectural components in the proposed implementation. The baseline model consists of

the feature volume construction based on features sampled from image encoder outcomes,

which are aggregated by attention pooling and NeRF-based rendering explained in Section

5.4. We then add the MHSA module that refines the sampled image features before pooling,

and the final model additionally includes feature volume refinement by the 3D-UNET module.

The training objective is set to be the mean squared reconstruction error. We train these three

models for a single scene with two arrangements, and we train each model with a batch size

of two. In practice, this setup implies that every two images use the same feature volume for

rendering before the gradient update of the parameters. And every model needs to successfully

represent two different scene arrangements. The keyframes are randomly chosen for each

batch, excluding the images to be rendered. We use 16 keyframes for this ablation study

and train all the models for 2500 epochs, which corresponds to nearly 80K update steps. We

additionally train a NeRF (Mildenhall et al., 2020) model for each arrangement individually

where the network is set to be equivalent to the rendering module of the pipeline, where

the input is
(
γ(x),γ(d)

)
with L = 10 for γ(x) and with L = 4 for γ(d) (L denotes the number

of sine and cosine functions for harmonic embeddings). We train both NeRF models, one

for each arrangement, with the same training settings for the same number of iterations.

Table 5.1 summarize our main findings, where the reconstruction quality is reported for

each arrangement in parenthesis, and the overall performance for the scene is indicated

under arrangement-wise outcomes. First of all, it can be clearly observed that both feature

refinement modules contribute to the overall rendering performance. In particular, the

volumetric refinement, which is possible due to our volumetric problem formulation, seems

to boost the performance by a substantial amount. It can be also stated that our full pipeline

performs better than the "tiny" NeRF models trained individually for each arrangement, under

the same training configuration.

Next, we investigate the effect of density regularization or depth supervision with respect to

the rendering quality of our proposed method. We opt for a training strategy similar to the

previous ablation study, where we fix the number of keyframes for volume construction to

16 and use the full pipeline. By only changing the loss function across experiments for this

ablation study, we observe variations in the rendering quality. We perturb the density with
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Chapter 5. Discrete Motion in Multi-View Settings

Table 5.1: Ablation Study for Architectural Improvements. The numbers in parenthesis in the
first of line of each row denote arrangement-specific reconstruction performance, while other
numbers indicate average performance.

PSNR SSIM

baseline
(21.68) (22.27) (0.72) (0.75)

21.98 0.74

baseline + MHA
(22.30) (23.49) (0.75) (0.80)

22.90 0.78

baseline + MHA + 3D UNet
(28.34) (31.41) (0.88) (0.90)

29.87 0.90
NeRF(Mildenhall et al., 2020) (22.01) (21.79) (0.84) (0.79)

Gaussian noise of variance 0.5, except when we use depth supervision with the auxiliary loss

defined in Equation 5.25. We again train each model for a single scene for 2500 epochs, which

correspond to nearly 80K update steps. Table 5.2 presents the outcomes, which imply that

both density regularization and depth supervision indeed improve the rendering quality indi-

vidually. Depth regularization, in particular, decreases the discrepancy between the rendering

performance between arrangements, whereas depth supervision improves the performance

of the second arrangement more significantly, which we attribute to the sequential processing

of arrangements in batches for gradient updates. However, when applied together, depth

supervision and density regularization fall short of their individual contributions, possibly

due to the fact that uniform floor of the scenes in the dataset allows geometrically inaccurate

voxel feature representations, which contradicts the depth loss.

Table 5.2: Ablation study for density regularization and depth supervision with corresponding
loss functions. The numbers in parenthesis in the first of line of each row denote arrangement-
specific reconstruction performance, while other numbers indicate average performance.

PSNR SSIM

Lr
(25.53) (30.65) (0.84) (0.92)

28.09 0.88

Lr +0.0001Ldensity
(27.18) (30.47) (0.86) (0.92)

28.83 0.89

Lr +0.001Ldensity
(28.34) (31.41) (0.88) (0.90)

29.87 0.90

Lr +0.1Ldepth
(27.62) (31.52) (0.86) (0.94)

29.57 0.90

Lr +0.0001Ldensity +0.1Ldepth
(26.99) (28.97) (0.85) (0.90)

27.98 0.87

We further visualize the inferred scene structure by computing the R,G,B, and density values at

discrete unit centers, i.e., at voxel coordinates. The resolution of the volumetric grid, however,

is not bounded by the dimension of feature volume used for training thanks to trilinear
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5.5 Experimental Results

sampling used for computing the features along a ray shoot for rendering. We can upsample

the feature volume in the same way, and compute R,G,B, and density values for the upsampled

feature grid. Hence, we construct the feature volume using a subset of test images, 16 frames

in this particular case and visualize grid colors if the density for the corresponding 3D point is

higher than a threshold τσ. In Figure 5.7, we provide such visualizations for the models trained

for this ablations study, hence, each row in Figure 5.7 corresponds to the same row in Table 5.2,

and columns present two different arrangements of the same scene. We use τσ = 0.1 for all

models trained without depth supervision, and we use τσ = 0.01 for the others. We observe

that higher reconstruction quality does not always imply accurately recovered geometry by the

method. For example, increasing the coefficient of the density regularization term, denoted

by Ldensity increases the reconstruction quality as indicated by the corresponding (second

and third) rows in Table 5.2. However, it lowers the volume density values of many voxels

defining the scene floor such that we observe floating objects when we discard the voxel units

associated with low volume density value, as illustrated in Figure 5.7.

Next, we investigate the effect of the number of keyframes for feature volume construction.

We use 4, 8, and 16 keyframes for each experiment in this ablation study, where we use the

full pipeline, and apply density regularization with a coefficient of 1×10−3, without depth

supervision. As the keyframes are chosen randomly at each training step from the training

set after discarding the images that will be rendered, the total number of gradient updates

remains the same for training these three separate models. Table 5.3 suggests that our model is

capable of recovering the scene structure reasonably well even with a few keyframes. Choosing

keyframes randomly at each training step ensures better generalization to novel viewpoints at

test time, for both feature volume construction and rendering.

Table 5.3: Ablation Study for Number of Keyframes used in Feature Volume Construction.
The numbers in parenthesis in the first of line of each row denote arrangement-specific
reconstruction performance, while other numbers indicate average performance.

PSNR SSIM

4-views
(27.44) (30.00) (0.85) (0.91)

28.72 0.88

8-views
(29.78) (31.35) (0.90) (0.93)

30.57 0.91

16-views
(28.34) (31.41) (0.88) (0.90)

29.87 0.90

Multi-scene, Multi-Arrangement Training

After investigating the contribution of different implemented blocks in the proposed method,

auxiliary losses, and the number of keyframes used for feature volume construction, we

continue with multi-scene, multi-arrangement training. In other words, we would like to use

the same volumetric feature construction and feature-based rendering functions to model

multiple scenes of similar characteristics. This can be considered as the extension of the
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Figure 5.7: Qualitative results for the ablation study that investigates the effect of density
regularization and depth supervision. We visualize the colored voxel center points in 3D after
upsampling by a factor of two andthresholding the density. Next to each 3D visualization,
we compare the rendering outputs (right) to ground truth(left) for two different test views,
presented as two rows. Qualitative results can be found in Table 5.2.
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Table 5.4: Rendering performance of the proposed model on the test set of scenes used for
training. Values in parentheses indicate arrangement specific performance.

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 Scene 7 Scene 8 Mean

G
re

ed
y

Tr
ai

n
in

g

PSNR
(26.82) (27.66) (25.06) (25.61) (28.29) (26.64) (25.57) (28.74) (27.66) (27.21) (27.82) (26.67) (26.91) (29.40) (21.22) (28.34)

26.8527.24 25.34 27.47 27.16 27.43 27.24 28.16 24.78

SSIM
(0.87) (0.89) (0.84) (0.88) (0.92) (0.85) (0.87) (0.91) (0.90) (0.88) (0.91) (0.93) (0.88) (0.93) (0.84) (0.94)

0.880.88 0.86 0.88 0.89 0.89 0.88 0.90 0.89

B
at

ch
ed

Tr
ai

n
in

g

PSNR
(28.12) (30.09) (28.86) (29.20) (29.66) (28.63) (29.23) (31.53) (29.16) (29.90) (29.92) (27.35) (27.95) (30.62) (25.88) (28.84)

29.0629.10 29.03 29.14 30.38 29.53 28.63 29.28 27.36

SSIM
(0.86) (0.92) (0.94) (0.94) (0.93) (0.91) (0.93) (0.95) (0.93) (0.94) (0.96) (0.89) (0.90) (0.94) (0.91) (0.95)

0.920.89 0.94 0.92 0.94 0.93 0.93 0.92 0.93

previous model, which is trained in an arrangement-agnostic way, such that a single model

can represent both arrangements of a given scene. For this purpose, we use the dataset

introduced in Section 5.5.1.

In our first experiment, we use the full pipeline presented in Section 5.4 with 16 keyframes for

feature volume construction. For training, in addition to the mean-squared reconstruction

error Lr , we employ the auxiliary depth supervision introduced in Equation (5.25). Although

the model trained with depth supervision does not achieve the best quantitative performance

in the related ablation study, it infers the scene geometry better, as depicted in Figure 5.7,

which is a key element for our entity abstraction algorithm. We again follow the greedy training

approach used for previous experiments: at each training step, we randomly select two frames

from the training set of a specific scene, and a specific arrangement. We then randomly sample

16 keyframes from the same dataset after excluding the two frames to be rendered. In this

setting, we consider these two images as the "batch", and average the training objective over

this batch for performing the gradient update on model parameters. We continue with the

same scene and same arrangement until all 64 training images are rendered. We then switch

to the other arrangement of the same scene and later continue with another scene until we

finish processing all eight scenes in the training set. We train the model for 2500 epochs, which

corresponds to 640K gradient updates with a batch size of two, with distributed training on

two GPUs. At inference time, we also randomly sample the keyframes from the test set for

every batch of two test frames to be rendered. Results under "Greedy Training" in Table 5.4

summarize the reconstruction quality of the rendered images from the 64 new viewpoints

in the test set. We can observe that the method performs well across different scenes and

different arrangements.

We later test the model on 4 novel scenes, which are not used during training. Despite the

scene-agnostic formulation, we found out that the model cannot generalize well to novel

scenes as presented in Table 5.5 The same phenomenon can be also observed in concurrent

volumetric feature representations based on neural rendering (Lazova et al., 2022).

To investigate whether a different training strategy can help with generalization to novel scenes,

we train another model in slightly different settings instead of the sequential processing of

each scene and each arrangement. For this second attempt, we construct two feature volumes
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Figure 5.8: Rendering outputs for eight scenes composed of simple shapes in two different
arrangements, which are introduced in Figure 5.6. Each column represents a different scene,
and each row within a specified arrangement group corresponds to an image from a different
viewpoint.
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Table 5.5: Rendering performance of the proposed model on the test set of novel scenes, which
are used for training. Values in parentheses indicate arrangement specific performance.

Scene 9 Scene 10 Scene 11 Scene 12 Mean

G
re

ed
y

Tr
ai

n
in

g

PSNR
(19.63) (19.81) (16.46) (16.35) (18.26) (17.83) (15.99) (17.65)

17.75
19.72 16.40 18.04 16.82

SSIM
(0.50) (0.52) (0.45) (0.44) (0.60) (0.47) (0.34) (0.54)

0.49
0.52 0.44 0.54 0.45

B
at

ch
ed

Tr
ai

n
in

g

PSNR
(20.21) (20.12) (16.59) (16.21) (18.12) (17.52) (16.72) (16.77)

17.80
20.17 16.40 17.85 16.75

SSIM
(0.52) (0.56) (0.50) (0.44) (0.58) (0.45) (0.46) (0.48)

0.50
0.54 0.46 0.51 0.47

concurrently, which do not necessarily represent the same scene. For each feature volume,

we render 4 different training images from the corresponding training set. We average the

training loss over these 8 images. For this setting, we use 8 keyframes for feature volume

construction, and similar to the first training, we employ depth supervision. Results under

"Batched Training" in Table 5.4 present the improved performance with the second training

strategy. Furthermore, the same number of 2500 epochs corresponds to 160K training steps in

this setting with the same distributed training on two GPUs. Hence, the batched approach

leads to better performance after substantially shorter training time, at the expense of a slightly

increased memory footprint. We believe that averaging gradients over different scenes or

arrangements prevent overfitting for feature extraction and refinement modules. However,

the performance improvement does not reflect the generalization scenario as can be seen in

Table 5.5.

To complete, in Figure 5.8, we present two rendered images for randomly selected test view-

points, and associated rendered depth maps, for both arrangements of the eight training

scenes. We can observe that the scene geometry is captured reasonably well for almost all

scenes and arrangements.

Entity Abstraction

In this section, we provide a qualitative evaluation of the proposed clustering-based entity

abstraction.

We here present the clustering of voxels based on feature consistency. For illustrative purposes,

we plot both arrangements in the same canonical coordinates by adding an offset value to the

coordinates of one of the arrangements. Consequently, we adjust any relations depicted on the

center coordinates of voxels. In the first step of Figure 5.9, we can observe correspondences

between two feature volumes for voxels whose associated density value is higher than a

threshold. The following steps depict the last stage of the proposed abstraction algorithm for

each cluster, where the center coordinates of the (remaining) voxels in the first arrangement

are mapped to the second one by the estimated rigid body transformation [R j |t j ].

Our results illustrate the ability of the proposed method for decoupling entities in an unsuper-
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Chapter 5. Discrete Motion in Multi-View Settings

Figure 5.9: Clustered correspondences between two feature volumes using the proposed
greedy algorithm. Figures on the left depict the correspondences that can be modeled by the
same rigid body transformation. The resultant first five clusters of voxel units are illustrated
on the right.
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vised way.

5.6 Conclusion

In this chapter, we proposed a novel method for unsupervised entity abstraction in 3D scenes

based on two different arrangements observed from multiple viewpoints. For this purpose, we

represent the scene with a dense feature volume, which is constructed from 2D image features

based on the principles of 3D geometry. The image features are learned jointly with a rendering

function that allows projecting the 3D information of the scene to any query viewpoint with the

help of recently proposed neural rendering algorithms. We provide a baseline implementation

for the fundamental problem of lifting and fusing 2D information and improve upon this

baseline by incorporating modern deep learning architectures for enhancing both the 2D

and the 3D features. We provide an extensive ablation study to examine the contributions

of different factors in the proposed method to the rendering quality. Experimental results

show that our model is capable of describing multiple 3D scenes in different states with a

hybrid representation of lifted feature volumes and a rendering function, as long as the model

is exposed to the scene during training. We achieve superior rendering quality compared to

representing 3D scenes only by a rendering function.

The proposed representation allows us to decouple entities in the scene without any super-

vision provided that they are relocated between the two observed states of the scene (the

static scene can be represented by a single rigid body transformation that aligns the canon-

ical coordinates of two feature volumes, hence, disambiguating entities with the proposed

approach would become an ill-posed problem). In order to disambiguate entities, we work

with feature volumes of the two different states of the scene after pruning them individually

based on associated volume density. We then establish correspondences between two feature

volumes with a stochastic coupling matrix. By searching for volume clusters that can be

represented by the same rigid body transformation between two states of the scene, we obtain

entity representations that can be rendered from any query viewpoint. Experimental results

show that our novel 3D scene representation and entity abstraction method is a promising

step towards understanding scene structure directly in three dimensions and without any

supervision.
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6 Conclusion

6.1 Summary

In this thesis, we explored different methods for disambiguating objects, or visual entities in

video sequences or 3D scenes, in an unsupervised manner. Objects play an important role

for holistic understanding of scenes, hence, for prediction and planning. Most of the existing

object-related problems are defined within a supervised framework, where the algorithms

are guided by different forms of manual annotations. These supervised methods perform

impressively well within their training distribution, while mostly failing to parse novel scenes

into their composing entities. Compositional methods, on the other hand, offer better gen-

eralization properties. Thus, as a part of the recent trend for unsupervised decomposition

algorithms, we take a step back and investigate possible ways of representing scenes in both

two- and three-dimensions in an object-centric manner.

For this purpose, we use motion clues to disambiguate entities, inspired by the findings in

neuroscience which tell us that the infants perceive the world based on things "that move". It

indeed is a reasonable assumption for unsupervised decomposition as the problem becomes

heavily ill-defined in static settings. Hence, we start with decomposing video frames based

on moving objects that are modelled by consistent approximated motion between different

time steps. Related methods in the literature mostly opt for latent based representations

in an auto-encoding manner. In other words, they decompose an input frame into a set of

latent variables, which are tracked throughout the video sequence, and the latent variables are

decoded back to image space to compose the given video frame at a given time. We claim that

the performance of these methods are bounded heavily by their decoding quality. In addition,

the extension of these methods to other tasks like prediction or planning suffer from averaging

effects that emerge from the reconstruction objective applied over the sequence. Hence, we

rather sketch the problem in a prediction framework, and represent moving objects by amodal

masks that model both visible and occluded parts of objects.

Object-centric prediction is a challenging problem, which requires understanding of the com-

positional structure and proper prediction of each constituent entity in the following time
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steps. In Chapter 3, we propose a novel method for decoupling moving objects by a combina-

tion of single- and multi- step prediction objectives. We obtain amodal object masks for all

moving entities, infer visible parts of objects at a given time step, and perform inpainting for

the occluded regions for a holistic representation. We then predict parameters for geometric

transformations that can describe the motion of each entity between different time instants.

By warping each entity to a different time instant based on its predicted motion approximation,

and predicting a composition mask for the corresponding images, we synthesize predicted

frames. In order to support our holistic representation, we define a cyclic multi-step prediction

objective in addition to the frequently used next-frame counterpart. Experimental results on

illustrative datasets show that our novel representation is capable of not only decomposing the

scene into moving entities and a static background, but it can also predict the frame without

any manual annotations or computationally expensive iterative approaches.

Next, we extend the proposed framework for stochastic video prediction. Prediction is in-

herently a stochastic problem as there are often multiple possible continuations of a given

sequence. In Chapter 4, we attribute the stochasticity of the problem to the motion of com-

posing entities in a video frame. For this purpose, we convert the parameters of the geometric

transformations used in Chapter 3 into random variables and propose two methods for ap-

proximating the related posterior distribution. This distribution defines how the motion

parameters should be sampled for the prediction of the following frames. We sketch our

first method under the framework of Variational Autoencoders (Kingma and Welling, 2013),

which leads to a graphical model similar to state space models. It guides us to a method for

approximating the posterior distribution by the help of an auxiliary state ,which is computed

backwards in time based on inferred object masks and the input sequence. For the second

approach, we follow an adversarial training scheme formulated under a Wasserstein GAN (Gul-

rajani et al., 2017) framework. In contrary to the first proposal, this method does not require

traversal of the input video sequence multiple times, yet, it involves the design of a critic

function, which plays a key role for the stability of training, as well as the quality of the ap-

proximated distribution. Our illustrative experimental results demonstrate that the proposed

object-centric stochastic prediction model can circumvent the well-known issue of blurry

outcomes for short term video prediction while representing data distribution reasonably

well.

Finally, we propose to use motion clues between two time steps to represent entities in 3D by

the help of multiple observations of the scene at each time step, called states or arrangements

of the scene. We opt for feature volumes to represent each state of the scene, and decom-

pose entities by clustering voxels based on their feature similarity across volumes. In other

words, we represent entities by clusters of feature volumes that can be modeled by a rigid

body transformation while retaining feature consistency. In order to construct our volumetric

representation, we extract features from observed images and lift them to world coordinates

based on the camera parameters associated with observations. We learn the feature construc-

tion jointly with a rendering function, which maps any point in world coordinates to color

an volume density values based on the associated feature vector. Hence, the scene can be
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rendered from any viewpoint by using ray-marching algorithms. Our results show that the

proposed method can represent multiple scenes successfully and achieve better rendering

performance compared to instances of Neural Radiance Fields (Mildenhall et al., 2020) with

the same capacity. The resultant feature volume, hence, provides a viable scene representation

solution for unsupervised entity abstraction.

6.2 Future Directions

While novel representations proposed in this thesis proved to be promising alternatives to the

other approaches in a recently blooming research problem of unsupervised object-centric rep-

resentations, they can be definitely improved regarding their representation capacity. Namely,

video object representations can be improved upon pre-training some of its sub-blocks. The

modular implementation indeed provides room for improvements. For example, learning

inpainting functions a-priori would be possible, again in a self-supervised manner, by a denois-

ing approach. Moreover, approximating the motion by simple geometric transformations limit

the application of the method to a subset of motion observed in real world sequences because

it cannot model in-plane rotations or deformable motion. This limitation can be overcome by

decomposing the motion into geometrical approximation and sub-pixel deformable motion,

where the first aligns the objects in time in the best possible way and the latter corrects the

inaccuracies arising from the initial approximation. Finally, the static background assumption

is another limitation that prevents applying the proposed method to a variety of datasets.

We consider the extension of our method to more realistic motion patterns as an interesting

future direction.

Any improvement upon our video decomposition model would inherently benefit to the asso-

ciated stochastic video prediction framework. The latter can be further improved by modelling

the motion distribution in a way that is more representative than isotropic Gaussian. Although

it helps with computations, the independence that is assumed between transformation pa-

rameters might not be always satisfied. For example, the translation in x- and y-directions

are often correlated in real world data. One such improvement can be obtained by incorpo-

rating flow-based models (Rezende and Mohamed, 2015), which map simple distributions

to arbitrarily complex ones in an invertible manner, for modelling the distribution of motion

parameters. In addition, approximation of the posterior distribution can be further improved

by better designed implementations.

Finally, our novel method for representation of scenes presented in Chapter 5 is also an

interesting avenue for future work. To start with, our probabilistic approach to correspondence

problem can be incorporated into feature volume construction, as the Sinkhorn operations

that we use for the computation of the coupling matrix is fully differentiable. During training,

when two feature volumes of the same scene are constructed, we can transfer features between

two volumes to ensure feature consistency for the volume units that represent the same objects

in two different arrangements. Moreover, the method suffers from memory bottleneck as
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the number of feature units grow cubically with increasing spatial resolution. It is possible

to circumvent the memory bottlenecks by gradual pruning of the feature volume based on

the inferred volume density. It also enables increasing the spatial resolution accordingly, as

implemented for scene-specific voxel representations (Liu et al., 2020). Another interesting

extension would be applying the Kalman-based morphing of unbounded 3D scene to a

constrained volume (Barron et al., 2022), which would extend applicability of our method

to any given scene. Lastly, the greedy entity abstraction method based on correspondences

can be improved by pre-processing, such as initial plane extraction, to constrain the problem

more towards the entities by decoupling them from "background". It can be further refined by

iterative estimation of the rigid body transformation parameters to alleviate the harm caused

by outliers, in a similar manner to RANSAC algorithm (Fischler and Bolles, 1981) which has

been successfully used for many years.

The progress is more rapid than ever in computer vision as a result of the advancements

in machine learning, in particular, deep learning algorithms. Resultant scalable solutions

recently attracted an unprecedented amount of attention from different communities thanks

to the large computational resources allocated for related lines of research. However, it is not

very likely, nor is it sustainable, to maintain the current rate of progress by just increasing the

scale of these methods. The content is constantly changing, we need better generalization

to make reliable predictions under changing distributions. This generalization can partly

come from compositional methods. And it can be further improved by multi-modal learning

based on different data modalities, such as audio, visual and language. Novel representation

methods proposed in this thesis are currently not capable of modelling real world data, yet,

they aim to provide a different perspective for compositional approaches towards the ultimate

objective of better data representation and generalization.
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A Evaluation Metrics

A.1 Image Reconstruction

Given an input image x of shape H ×W ×3 and rendered image x̂, Peak Signal-to-Noise Ratio

(PSNR) as computed according to Equation (A.1), where x[i , j ] denotes the pixel value at pixel

coordinates (i , j ).

PSN R = 20log10
max(x)

1
HW

∑H
i=1

∑W
j=1

(
x[i , j ]− x̂[i , j ]

)2 (A.1)

On the other hand, Structured Similarity Index (SSIM) is computed as given in Equation (A.2)

for two image windows of the same size with average pixel values µx ,µy , variances σ2
x ,σ2

y and

covariance σx y . The coefficients c1 and c2 in Equation (A.2) are computed according to the

dynamic pixel value range L with c1 = (0.01L)2 and c2 = (0.03L)2 .

SSI M(x, y) = (2µxµy + c1)(2σx y + c2)

(µ2
x +µ2

y + c1)(σ2
x +σ2

y + c2)
(A.2)

A.2 Object Abstraction

Adjusted Rand Index(ARI) (Rand, 1971) is a measure for clustering similarity and is commonly

used by unsupervised abstraction methods (Greff et al., 2019) such that the segmentation

masks are treated as cluster assignments. By discarding the background, some methods adopt

it for only for segmented objects, and refer to it as Foreground Adjusted Rand Index (FG-ARI).

Another metric often used for segmentation tasks is Intersection over Union (IoU) for resul-

tants and groundtruth masks. Weis et al. (2020) suggest treating the segmentation as a match

if the computed IoU for a pair of masks is greater than 0.5.
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B Derivation of Lower Bound for
Stochastic Video Prediction Model

The joint problem of object mask inference, parameter estimation for presumed planar motion

and next frame synthesis, given initial object masks m0 and initial transformation parameters

z0, can be formulated as a maximum likelihood problem. We assume N independently

observed sequences of length T , x(i )
1:Ti

for i = 1, . . . , N for training to maximize the likelihood

given in Equation (B.3).

L (θ) = log pθ({x̂i
2:T ,mi

1:T−1,zi
1:T−1}|{xi

1:T ,m(i )
0 ,z(i )

0 }N
i=1) (B.1)

=
N∑

i=1
log pθ(x̂i

2:T ,mi
1:T−1,zi

1:T−1|xi
1:T ,m(i )

0 ,z(i )
0 ) (B.2)

=
N∑

i=1
L (i )(θ) (B.3)

We factorize the individual terms L (i )(θ) over time as follows:

pθ(x̂2:T ,m1:T−1,z1:T−1|xi
1:T ,m0,z0) =

T−1∏
t=1

pθ1 (x̂t+1|mt ,zt ,xt ) pθ2 (mt |mt−1,xt ) pθ3 (zt |xt ,mt ,mt−1,zt−1)

(B.4)

Furthermore, for the inference of transformation parameters at time t , we assume full access

to the object masks, m1:T−1 as well as the training sequence itself, x1:T , which corresponds to

both the input and the ground truth for the output. Hence, once d-separation is applied to

the corresponding graphical model presented in Figure 4.2, the parameter estimation term in

Equation (B.4) can be factorized as in Equation (B.5).

pθ3 (z1:T−1|m1:T−1,x1:T ) =
T−1∏
t=1

pθ3 (zt |xt :T ,mt :T−1,zt−1) (B.5)

As explained in Section 4, the maximization of the posterior distribution is not possible due to

its intractable nature, so, we approximate the posterior distribution via an inference network.
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Appendix B. Derivation of Lower Bound for Stochastic Video Prediction Model

The approximate posterior, which uses the same mask inference step and follows a similar

factorization over training sequences and over time is given in Equation B.6.

qφ(m1:T−1,z1:T−1|x1:T ) =
T−1∏
t=1

pθ2 (mt |mt−1,xt ) qφ(zt |zt−1,at = gφa (at+1, [xt ,mt ,mt+1])) (B.6)

Hence, the lower bound for the i th training sequence x(i )
1:T , can be obtained as in Equation (B.7).

Note that, mt that is used as an input to the backward recursive function gφ(·) in Equation (B.8)

represents the inferred masks as the outcome of the deterministic step corresponding to

pθ2 (mt |mt−1,xt ) = δ(mt −mt ) and it is a result of integration over the masks at later steps.

F (i )(θ,φ) =
Ï

qφ(m1:T−1,z1:T−1|x1:T ) log
pθ(x2:T ,m1:T−1,z1:T−1)

qφ(m1:T−1,z1:T−1|x1:T )
dz1:T−1 dm1:T−1 (B.7)

=
Ï T−1∑

t=1
qφ(m1:T−1,z1:T−1|x1:T ) (B.8)

∗ log
pθ1 (x̂t+1|mt ,zt ,xt ) pθ2 (mt |mt−1,xt ) pθ3 (zt |zt−1,mt ,xt )

qφ1 (zt |zt−1,at = gφa (at+1, [xt ,mt ],mt+1]))pθ2 (mt |mt−1,xt )
dz1:T−1 dm1:T−1

=
Ï T−1∑

t=1
qφ(m1:T−1,z1:T−1|x1:T ) log pθ1 (x̂t+1|mt ,zt ,xt ) dz1:T−1 dm1:T−1 (B.9)

+
Ï T−1∑

t=1
qφ(m1:T−1,z1:T−1|x1:T )

pθ3 (zt |zt−1,mt ,xt )

qφ1 (zt |zt−1,at )
dz1:T−1 dm1:T−1

=
T−1∑
t=1

[Ï
qφ(m1:T−1,z1:T−1|x1:T ) log pθ1 (x̂t+1|mt ,zt ,xt ) dz1:T−1 dm1:T−1 (B.10)

+
Ï

qφ1 (zt |zt−1,at = gφa (at+1, [xt ,mt ,mt+1]) log
pθ3 (zt |zt−1,mt ,xt )

qφ1 (zt |zt−1,at )
dz1:T−1 dm1:T−1

]

=
T−1∑
t=1

Eqφ2

[
Eqφ1

[
log

(
pθ1 (x̂t+1|xt ,mt ,zt )

)]−K L
(
qφ1 (zt |zt−1,xt :T ,mt :T )||pθ3 (zt |zt−1,xt ,mt )

)]
(B.11)

In Equation (B.11), the expectation over distribution qφ1 corresponds to expectation over

qφ1 (zt |zt−1,xt :T ,mt :T ), while qφ2 stands for the marginal distribution of zt−1 in the variational

approximation to the posterior qφ(z1:t |xt :T−1,mt :T ,z0). Following [14], we approximate the

expectation via Monte Carlo estimate, using the sequential formulation in Equation (B.6).

Thus, as the training objective, we maximize F (i )(θ,φ) over all available training sequences

with respect to trainable parameters θ and φ. The first term in Equation (B.11) is implemented

as the reconstruction error when the masks inferred as a result of the deterministic state and

that they are processed with the parameters sampled from approximate posterior qφ1 (·) in a

sequential manner satisfying Equation (B.6).
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