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Mesh manipulation is central to Computational Fluid Dynamics (CFD). However, creating

appropriate computational meshes often involves substantial manual intervention that has

to be repeated each time the target shape changes. To address this problem, we propose an

auto-decoder-based latent representation approach. Human prior knowledge is embedded into

learned geometric patterns, which eliminates the need for further handcrafting. Furthermore,

the resulting computational meshes are differentiable with respect to the model parameters,

which makes it suitable for inclusion in end-to-end trainable pipelines. We apply the model on

2D airfoils to demonstrate its ability to handle various tasks.

Nomenclature

𝐶𝑑 = the drag coefficient

𝑔Θ () = the auto-decoder model parameterized by Θ

ℎ() = the surrogate model

L = the loss function

�̂� = {�̂� , �̂�} = the template CFD mesh and its vertices, edges

𝑀 , 𝑀𝑆 , 𝑀 𝐼𝑂 = the decoded CFD mesh, its object surface submesh and inlet/outlet submesh

𝑋𝑖𝑏, r𝑖𝑏, t𝑖𝑏 = the skewed coordinate system and its bases defined at the i-th vertex and the b-th pair of mesh edges

𝑆 = the target airfoil geometry to be encoded

z = the latent vector
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I. Introduction

Mesh manipulation is at the heart of Computational Fluid Dynamics (CFD) applications. However, generating

appropriate computational meshes often involves much manual intervention that has to be repeated for each

new shape under consideration. This is time-consuming for several reasons. First, the parameterization and its

hyper-parameters depend heavily on the target object, for which strong geometric prior knowledge and a case-by-case

analysis are always required. Second, the resulting model is specialized and rarely generalizes to different geometries or

boundary conditions. Hence, re-meshing is required when the shape changes and much time is wasted in industrial

practice. Finally, none of the existing approaches to automated mesh representation [1–9] are designed to be differentiable

so they can be integrated seamlessly into gradient-based frameworks, such as those that involve deep learning.

In this work, we propose a fully automated approach to redesigning a computational mesh as the target shape

changes. It relies on a latent representation, i.e. a vector in a low-dimensional space, of both the object surface and the

corresponding computational mesh. Through deep learning, the model learns geometric priors for the target objects

while guaranteeing that the resulting meshes can be used to produce accurate simulations. To this end, it encodes an

unstructured point cloud sampled from the object surface into a low-dimensional latent vector and then decodes it into

an appropriately deformed CFD mesh. To preserve its quality, we introduce a regularization loss and a differentiable

Active Model layer. The proposed model eliminates most manual steps, and avoids re-meshing without relying on any

specific mesh parameterization. The method can also output various mesh types, such as structured, unstructrued or

hybrid meshes. Additionally, the resulting computational meshes are fully differentiable with respect to the latent vector,

which allows integration into deep learning pipelines or any gradient-based optimization frameworks.

We develop and validate our approach on 2D airfoils. The paper is organized as follows. In Sec. II, we provide a

literature review of related mesh representation methods. In Sec. III, we formulate and discuss the technical details of

the proposed model. In Sec. IV, we conduct comprehensive experiments to prove the effectiveness of the proposed

representation. The model is then integrated into an end-to-end shape optimization pipeline to demonstrate the benefits

of full differentiation. In Appendix, we explore the properties of learned latent space. Unelaborated mathematical and

experimental details are also provided.

II. Related Work
In the CFD literature, the mesh representation has been widely applied in various tasks, to name a few recent works,

including mesh deformation [10, 11], aerodynamic shape optimization [12, 13], multidisciplinary design [14, 15], etc.

Typical examples arise in simulations with fluid-structure interactions, since the geometry and thus the associated mesh

are changing over time as a result of the balance between the aerodynamic load and the mechanical structure. For

such problems, difficulties to guarantee the mesh quality appear when large deformations occur [16]. Similarly, in

the contexts of aerodynamic optimization [17], uncertainty quantification (UQ, [18]) or sensitivity studies, numerous

2



evaluations of various shapes and/or meshes are required, which again is difficult to automatize while guaranteeing

a proper mesh quality for CFD. Specifically, both geometrical quality (aspect ratio, skewness, etc.) and physical

requirements (boundary layers, shocks, etc.) have to be maintained when deforming the mesh, a property named here as

Mesh Quality Preservation (MQP).

For these tasks, mesh representations are usually derived from explicit handcrafted parameterizations instead

of directly from the mesh. Common options include fixed sampling schemes [2], nonuniform rational B-splines

(NURBS) [19], control points for Free-Form Deformations (FFD) [20–22] or for Radial Basis Functions (RBF) [23].

Manual hyperparameter tuning is needed to adapt to different geometries, such as the number and the positions of

control points, the values of supporting radius, etc. In all cases, the mesh ends up being described by a vector.

As for the linear dimension reduction methods, a popular way to produce a compact representation is to use the

Proper Orthogonal Decomposition (POD) that mathematically derives a set of orthogonal modes. This can involve

finding basis functions via Gram-Schmitt orthogonalization on a few geometries [1] or applying an SVD to create

optimal orthogonal shape modes given a training dataset [2, 3, 5, 24]. However, reconstructing the geometry from a

latent vector remains difficult and requires dedicated handcraft engineering for a specific task. The Active Subspace

Model (ASM) [4, 7, 25–27] and Active Subspace Identification (ASI)[28, 29] reduce the dimension by analyzing the

gradient of surrogate models. It is intended to limit the curse of dimensionality [30] for surrogate-based optimization or

uncertainty quantification. It uses random sampling methods to estimate the real active subspace. Even though it requires

handcrafted rules to generate valid samples, ASM’s approximation error is upper bounded by the Poincaré constant that

increases with dimensionality given a limited number of samples [31, 32]. The Class/Shape function Transformation

(CST) [33] describes 2D airfoil shapes by the summation of Bernstein polynomial basis. Higher dimensional CST

representation works for more complicated geometries but has a slower convergence rate when applied in the shape

optimization task [34]. Non-linear approaches have also been proposed. For example, Generative Topographic Mapping

(GTM) [6] is used to project a 30-dimensional design variable to a two dimensional latent vector. However, because

GTM involves a Bayesian generative model, its latent representation cannot easily be integrated into a gradient-based

pipeline. Furthermore the complexity of tuning hyperparameter for the radius basis grows exponentially with the

latent space’s dimensionality. Finally, all the models mentioned above are either linear projections or single nonlinear

projections with Gaussian kernels. By relying on a nonlinear deep neural network, our proposed model can learn more

complex representations.

More recently, Generative Adversarial Network (GAN) has been used for novel geometry generation [35–37]. They

can be difficult to train and efforts have been made to stabilize their training and to filter out invalid results [8, 9].

They are typically used for data sampling to generate novel shapes and augment training data for the subsequent

parameterization. Hence, they serve as preconditioning modules in step-by-step frameworks and cannot contribute to

gradient propagation in end-to-end pipelines.
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We took our inspiration from computer vision work that has convincingly demonstrated the ability of auto-

encoders [38, 39], variational auto-encoders [40] and auto-decoders [41, 42] to learn latent geometric representations

and eliminate the explicit shape parameterization. The deep learning based models are able to learn accurate object

surface representation automatically with the signed distance field. Recent progress makes the auto-decoder models fully

differentiable [43]. However, unlike in these approaches, our model is mesh-based and represents both the object surface

and corresponding computational mesh. The Mesh Quality Preservation for CFD purposes is a major consideration,

which was not part of computer vision research. The deep learning algorithms for computer vision therefore have

to be thoroughly adapted to the specificity of fluid simulations so that they become useful for the CFD community.

Consequently, the main objective of our work is to propose a novel mesh representation and deformation framework,

which (i) is handcrafted-parameter-free, (ii) encapsulates MQP, (iii) is fully differentiable for a direct implementation in

gradient-based frameworks needed in optimization or uncertainty quantification studies, and additionally (iv) is flexible

to the mesh type employed so that structured, unstructured or hybrid meshes can be used. This framework is developed

here for 2D meshes and is validated on various CFD tasks, including the aerodynamic optimization of a 2D airfoil with

several geometrical constraints.

III. Method
The proposed model is based on deep geometric learning to provide a flexible tool for mesh representation. It

is designed to encode a reference airfoil shape and then deform a fixed CFD mesh to reconstruct the geometry. In

particular, only points sampled on the airfoil’s surface are fed into the pipeline and an entire CFD mesh is generated

after encoding and decoding the latent vector. The pipeline is shown in Fig.1. In Section IV, demonstration is in a

CFD context where the deformed mesh is employed to perform further CFD computations, including the optimization

of the aerodynamic performances of a 2D airfoil. In the remainder of this section, we first formalize this process in

Section III.A, and then we describe the neural network and training details used to implement it.
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Fig. 1 Pipeline of the proposed model, including (a) the encoding step and (b) the decoding step.
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𝑀𝑀𝑆𝑆

Fig. 2 The default template mesh (TM-A) and its (a) overall mesh, (b) boundary, (c) deformation area and (d) surface.

A. Formalization

Consider a two dimensional airfoil shape represented by a CFD mesh �̂� = {�̂� , �̂�}. The mesh contains 𝑁 2D

vertices �̂� = {v̂1, v̂2, ..., v̂𝑁 }, where v̂𝑖 ∈ R2, and edges �̂� connecting its vertices. 𝑁 can be arbitrary. Let �̂�𝑆 and �̂�𝑆 be

the subsets of vertices and edges in the surface mesh �̂�𝑆 that define the airfoil’s profile, and �̂� 𝐼𝑂 be the inflow and

outflow boundaries, also known as the inlet and outlet mesh. They define the computational boundary, as shown in

Fig. 2. A deformed mesh of the same topology can be represented as 𝑀 = {�̂� + Δ𝑉, �̂�}, where Δ𝑉 is a set of translation

vectors, one for each vertex. Note that the proposed framework is intended to encode and decode a geometry by mesh

deformation so that the connectivity remains the same.

Let 𝐷 = 2𝑁 , v be the 𝐷-vector obtained by stacking all the 2D coordinates of the 𝑁 vertices of 𝑀 , and 𝛿v the vector

of vertex translations represented by Δ𝑉 . This enables us to write that v = v̂ + 𝛿v, where v̂ describes the vertices of �̂� .

Finally, let 𝑀 (v) be the mesh with edges �̂� . Given these definitions, learning a low-dimensional representation of the
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mesh means finding a mapping parametrized by Θ

𝑔Θ : R𝑑 → R𝐷 , (1)

𝛿v = 𝑔Θ (z; �̂�) ,

where 𝑑 ≪ 𝐷, and z ∈ R𝑑 is the so-called low-dimensional latent vector. Θ represents the weights that control the

behavior of the deep neural network that implements 𝑔. We denote the decoded mesh deformation as 𝑔Θ (z) when �̂� is

fixed in the following discussions for simplicity.

The pipeline encodes and then decodes to fit a target airfoil represented by a geometry 𝑆, which is a set of surface

sampling points. No topology information is required in 𝑆, which removes the need for complicated data pre-processing

and facilitate the use of various data formats. Despite 𝑆 being only an unstructured point cloud, the decoded output

consists in a full computational mesh 𝑀 which is a smooth deformation of �̂� .

To learn the weights Θ, we use an auto-decoding approach [41, 42]. Given a set of 𝑇 training geometries that are

only composed of sampled surface points, denoted 𝑆1, . . . , 𝑆𝑇 , we seek

Θ∗,Z∗ = argmin
Θ,z1 ,...,z𝑇

𝑇∑︁
𝑡=1

L(𝑀 (v̂ + 𝑔Θ (z𝑡 )), 𝑆𝑡 ) , (2)

where L is a loss function that is small when 𝑔Θ (z𝑡 ) yields a deformed mesh that is regular and whose profile defined

by �̂�𝑆 and �̂�𝑆 is close to 𝑆𝑡 after deformation. Here, the optimal z𝑡 corresponds to a low-dimensional representation of

the complete airfoil shape 𝑆𝑡 .

At inference time, given a target airfoil profile 𝑆 and frozen weights Θ∗, we solve

z∗ = argmin
z

L(𝑀 (v̂ + 𝑔Θ∗ (z)), 𝑆) . (3)

In other words, the latent vector z parameterizes the possible profiles, and their corresponding computational mesh. We

adjust this code to be as close as possible to the target z∗ so that the overall mesh 𝑀 corresponds to the target profile 𝑆.

B. Loss Function

The mesh deformation pipeline relies on the latent code z that provides a low-dimensional representation of the

airfoil, and on the function 𝑔Θ∗ that returns the vector of vertex deformation 𝛿v of the mesh. They are learned by

minimizing the loss function L of Eq. 2. Given a decoded CFD mesh 𝑀 = 𝑀 (v̂ + 𝑔𝜃 (z)) and a target airfoil profile 𝑆𝑡 ,

L(𝑀, 𝑆𝑡 ) of Eq. 2 should be small if, and only if,

1) the airfoil profile defined by 𝑀 , namely 𝑀𝑆 , is very similar to the target profile 𝑆𝑡 ,

2) the computational mesh quality of 𝑀 is adequate for CFD simulations.
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Furthermore, unnecessary deformations should be penalized and latent space representations whose dimensionality is

too high should be discouraged to guarantee 𝑑 ≪ 𝐷. Hence we write

L = 𝑤𝑑𝑖𝑠𝑡L𝑑𝑖𝑠𝑡 + 𝑤𝑟𝑒𝑔L𝑟𝑒𝑔 + 𝑤𝑑𝑒𝑐L𝑑𝑒𝑐 + 𝑤𝑧L𝑧 , (4)

where L𝑑𝑖𝑠𝑡 is small when the airfoil profile defined by 𝑀𝑆 is close to the target, L𝑟𝑒𝑔 is small when the surface mesh

is of high quality, L𝑑𝑒𝑐 is a standard decay term on 𝛿v, and L𝑧 is a decay term on the latent vector norm. 𝑤𝑑𝑖𝑠𝑡 , 𝑤𝑟𝑒𝑔,

𝑤𝑑𝑒𝑐, and 𝑤𝑧 are loss balancing weights. These loss components are detailed below.

Distance Loss L𝑑𝑖𝑠𝑡 . L𝑑𝑖𝑠𝑡 is intended to penalize geometric differences between the decoded profile and the target

one. As illustrated by Fig.3, we take it to be the sum of two terms

𝒗𝒗𝑖𝑖
𝒗𝒗𝑖𝑖+1

points in 𝑆𝑆𝑡𝑡 1st loss term

vertices of 𝑀𝑀𝑆𝑆 2nd loss term

Fig. 3 The visualization of the distance loss L𝑑𝑖𝑠𝑡 .

𝐿𝑑𝑖𝑠𝑡 =
1

|𝑉𝑆 |
∑︁

v𝑆
𝑖
∈𝑉𝑆

min
𝑠∈𝑆𝑡

| |𝑠 − v𝑆𝑖 | |2 +
1

|𝐸𝑆 |
∑︁
𝑒𝑆
𝑗
∈𝐸𝑆

min
𝑠∈𝑆𝑡

𝑑𝑖𝑠𝑡 (𝑠, 𝑒𝑆𝑗 ) , (5)

where 𝑠 is a sampling point in 𝑆𝑡 , and 𝑑𝑖𝑠𝑡 () stands for the distance of a point to a line segment. We denote 𝑉𝑆 the

subset of vertices on the deformed airfoil profile, and 𝐸𝑆 the corresponding edges. The first term is the sum of the

distances of each point in 𝑉𝑆 to the closest point in 𝑆𝑡 . The second term is the sum of the minimum distance of each

edge along the airfoil profile to the closest point in 𝑆𝑡 .

Regularization Loss L𝑟𝑒𝑔. Minimizing 𝐿𝑑𝑖𝑠𝑡 only guarantees that the decoded profile matches the target profile.

However, this only involves moving the vertices in �̂�𝑆 . Doing so without moving the others accordingly would produce

extremely irregular and possibly overlapping computational meshes that will make CFD computations inaccurate or

numerically unstable. We must therefore ensure that all vertices move accordingly to the surface vertices in order to

preserve the deformed mesh quality—cells’ skewness, orthogonality, aspect ratio—as well as its ability to represent the

underlying physics [44].
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Fig. 4 The skewed coordinate systems. (a) v̂𝑖 and its neighbors. (b) The two axes. (c) The finite difference discretization.

In practice, we can assume that the template mesh �̂� has been designed to satisfy these requirements, and we want

the deformed mesh 𝑀 to keep on satisfying them. To this end, we introduce an energy function that quantifies the

degree of distortion of 𝑀 with respect to �̂� . Defining �̂� as a stationary point and then solving an extreme point finding

problem yield a mesh 𝑀 whose local mesh structure is close to that of �̂� so that the mesh quality priors embedded

in �̂� are preserved. To formulate this energy function, we first parameterize �̂� using the skewed coordinate systems

relying on the template mesh, as depicted by Fig. 4(a-b). For each vertex v̂𝑖 , we pair its neighboring vertices which

results in 𝐵𝑖 different two-tuples, such as (v̂𝑟𝑖1, v̂𝑖1)
𝑡 , (v̂𝑟

𝑖2, v̂
𝑡
𝑖2), ..., (v̂

𝑟
𝑖𝐵𝑖
, v̂𝑡
𝑖𝐵𝑖

). We pick one tuple (v̂𝑟
𝑖𝑏
, v̂𝑡

𝑖𝑏
) and the

base vectors of the coordinate system 𝑋𝑖𝑏 are defined as the normalized vectors

r𝑖𝑏 :=
v̂𝑟
𝑖𝑏
− v̂𝑖

| |v̂𝑟
𝑖𝑏
− v̂𝑖 | |2

and t𝑖𝑏 :=
v̂𝑡
𝑖𝑏
− v̂𝑖

| |v̂𝑡
𝑖𝑏
− v̂𝑖 | |2

. (6)

In this base, the vertex is a function of coordinates as v(𝑟𝑖𝑏, 𝑡𝑖𝑏), and vertices from the template and deformed mesh can

be written as 
v̂𝑖 (𝑟𝑖𝑏, 𝑡𝑖𝑏) = 𝑟𝑖𝑏r𝑖𝑏 + 𝑡𝑖𝑏t𝑖𝑏 , for v̂𝑖 ∈ �̂�

v𝑖 (𝑟𝑖𝑏, 𝑡𝑖𝑏) = v̂𝑖 (𝑟𝑖𝑏, 𝑡𝑖𝑏) + 𝛿v̂𝑖

= 𝑟𝑖𝑏r𝑖𝑏 + 𝑡𝑖𝑏t𝑖𝑏 + 𝛿v̂𝑖
, for v𝑖 ∈ 𝑉.

(7)

with respect to the Cartesian origin. We attach the origin to v̂𝑖 in Fig.4 for visualization clarity. Since we assume

the template mesh is of good quality and has no zero-area cells so the collinear (r𝑖𝑏, t𝑖𝑏) is not considered. Then by

considering 𝑀 as a discretization of an elastic material that is framed by fixed 𝑀𝑆 and 𝑀 𝐼𝑂, we define the energy

function at the vertex v𝑖 to measure the mesh distortion by summing up the squared Frobenius norm of the strain and its

spatial derivative, which writes

E𝑖𝑏 =
����∇𝑋𝑖𝑏

Δ𝑉
����2
𝐹
+

����∇𝑋𝑖𝑏
(∇𝑋𝑖𝑏

Δ𝑉)
����2
𝐹
=

��������𝜕𝛿v𝑖𝜕𝑟𝑖𝑏

��������2 + ��������𝜕𝛿v𝑖𝜕𝑡𝑖𝑏

��������2 + 2�������� 𝜕2𝛿v𝑖𝜕𝑟𝑖𝑏𝜕𝑡𝑖𝑏

��������2 + �����
�����𝜕2𝛿v𝑖𝜕𝑟2

𝑖𝑏

�����
�����2 +

�����
�����𝜕2𝛿v𝑖𝜕𝑡2

𝑖𝑏

�����
�����2 . (8)

This formulation is in the same spirit as the one used Active Surface Models (ASMs) that has been extensively studied

in computer vision and computer graphics [45–48].
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𝑿𝑿𝑘𝑘𝑘𝑿𝑿𝑖𝑖𝐵𝐵𝑖𝑖𝑿𝑿𝑖𝑖𝑖𝑿𝑿𝑖𝑖𝑘𝑿𝑿𝑗𝑗𝑘

… … … … …
�𝒗𝒗𝑗𝑗 �𝒗𝒗𝑖𝑖 �𝒗𝒗𝑖𝑖 �𝒗𝒗𝑖𝑖

�𝒗𝒗𝑘𝑘

template mesh

Fig. 5 The multiple skewed coordinate systems build on different vertex and pairs of neighbors.

To prove �̂� is a stationary point of E𝑖𝑏, we look at the following formulation

− 𝜕

𝜕𝑟𝑖𝑏

(
𝜕𝛿v𝑖
𝜕𝑟𝑖𝑏

)
− 𝜕

𝜕𝑡𝑖𝑏

(
𝜕𝛿v𝑖
𝜕𝑡𝑖𝑏

)
+ 2 𝜕2

𝜕𝑟𝑖𝑏𝜕𝑡𝑖𝑏

(
𝜕2𝛿v𝑖
𝜕𝑟𝑖𝑏𝜕𝑡𝑖𝑏

)
+ 𝜕

𝜕𝑟2
𝑖𝑏

(
𝜕2𝛿v𝑖
𝜕𝑟2
𝑖𝑏

)
+ 𝜕

𝜕𝑡2
𝑖𝑏

(
𝜕2𝛿v𝑖
𝜕𝑡2
𝑖𝑏

)
. (9)

Since 𝛿v𝑖 = v𝑖 − v̂𝑖 and 𝜕2v̂𝑖/𝜕𝑟2𝑖𝑏 = 𝜕2v̂𝑖/𝜕𝑡2𝑖𝑏 = 0 with the definition in Eq. 7, it can be rewritten as

𝐹𝑖𝑏 := − 𝜕

𝜕𝑟𝑖𝑏

(
𝜕v𝑖
𝜕𝑟𝑖𝑏

)
− 𝜕

𝜕𝑡𝑖𝑏

(
𝜕v𝑖
𝜕𝑡𝑖𝑏

)
+ 2 𝜕2

𝜕𝑟𝑖𝑏𝜕𝑡𝑖𝑏

(
𝜕2v𝑖

𝜕𝑟𝑖𝑏𝜕𝑡𝑖𝑏

)
+ 𝜕

𝜕𝑟2
𝑖𝑏

(
𝜕2v𝑖
𝜕𝑟2
𝑖𝑏

)
+ 𝜕

𝜕𝑡2
𝑖𝑏

(
𝜕2v𝑖
𝜕𝑡2
𝑖𝑏

)
. (10)

𝐹𝑖𝑏 = 0 for ∀ 𝑖, 𝑏 when v𝑖 = v̂𝑖 according to the definition of r𝑖𝑏 and t𝑖𝑏 in Eq.7, which is the Euler-Lagrange equation

of E𝑖𝑏 and is the sufficient and necessary condition of our claim. To regularize the computational mesh, the magnitude

of 𝐹𝑖𝑏 should be as small as possible to reach the stationary point of E𝑖𝑏. Since a single E𝑖𝑏 only describes the energy

locally and at a specific orientation, we define multiple coordinates systems similarly on all vertices and with all

combinations of outgoing edges , as shown in Fig.5, as well as their corresponding energy functions and Euler-Lagrange

equations. This applies to all vertices in the computational mesh 𝑉𝐶𝑜𝑚 that are not on the airfoil profile (𝑉𝑆) nor on the

in/outflow boundaries (𝑉 𝐼𝑂), namely 𝑉𝐶𝑜𝑚 = 𝑉 \ (𝑉𝑆 ∪𝑉 𝐼𝑂). We take the regularization term L𝑟𝑒𝑔 to be the averaged

squared 𝐹𝑖𝑏 as

L𝑟𝑒𝑔 :=
1

|𝑉𝐶𝑜𝑚 |

|𝑉𝐶𝑜𝑚 |∑︁
𝑖=1

1
𝐵𝑖

𝐵𝑖∑︁
𝑏=1

| |𝐹𝑖𝑏 | |22 , where 𝑉
𝐶𝑜𝑚 = 𝑉 \ (𝑉𝑆 ∪𝑉 𝐼𝑂) . (11)

Minimizing L𝑟𝑒𝑔 yields a deformed computational mesh whose local cell structure is similar to that of �̂�. This

eliminates serious issues such as overlapped facets, and desirable mesh properties embedded in �̂� , such as the cell’s

aspect ratio, skewness and orthogonality, are preserved as much as possible. Using a dedicated coordinate system for

every vertex and every combination of its neighbors makes L𝑟𝑒𝑔 to work with arbitrary cell types.

The derivatives of Eq. 10 are estimated by finite differences. This implies computing the perturbation of vertices.

As shown in Fig.4(c), positive perturbations are sampled directly along the edges as

Δr+𝑖𝑏 = 𝜖
v𝑟
𝑖𝑏
− v𝑖

| |v̂𝑟
𝑖𝑏
− v̂𝑖 | |2

and Δt+𝑖𝑏 = 𝜖
v𝑡
𝑖𝑏
− v𝑖

| |v̂𝑡
𝑖𝑏
− v̂𝑖 | |2

, (12)
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𝒗𝒗𝑖𝑖

𝚫𝚫𝒕𝒕𝒊𝒊𝒊𝒊+

𝚫𝚫𝒓𝒓𝒊𝒊𝒊𝒊+

𝚫𝚫𝒓𝒓𝒊𝒊𝒊𝒊−

𝚫𝚫𝒕𝒕𝒊𝒊𝒊𝒊−

𝚫𝚫𝒓𝒓𝒊𝒊𝒊𝒊−

𝚫𝚫𝒕𝒕𝒊𝒊𝒊𝒊+

𝚫𝚫𝒓𝒓𝒊𝒊𝒊𝒊+

𝚫𝚫𝒕𝒕𝒊𝒊𝒊𝒊−
template mesh

deformed mesh perturbation sampling

Fig. 6 Mesh distortion changes cell structures and results in nonzero L𝑟𝑒𝑔.

where v𝑟
𝑖𝑏
and v𝑡

𝑖𝑏
are v̂𝑡

𝑖𝑏
and v̂𝑡

𝑖𝑏
after the deformation. Negative perturbations Δr−

𝑖𝑏
and Δt−

𝑖𝑏
are rotated from

Δt+
𝑖𝑏
by 𝜋 − 𝛼 and Δs+

𝑖𝑏
by 𝜋 + 𝛼, respectively, where 𝛼 is the angle between the base vectors (r𝑖𝑏, t𝑖𝑏), i.e.

𝛼 = 𝑎𝑡𝑎𝑛2( |r𝑖𝑏 × t𝑖𝑏 |, (r𝑖𝑏 · t𝑖𝑏)). We keep the positive scalar 𝜖 small to correctly approximate the derivatives.

The edge normalizers (denominators in Eq. 6 and 12) and the rotating angle 𝛼 are calculated on the template mesh, and

remain constant even when the mesh is distorted. Using the proposed coordinate system and the sampling strategy avoids

complicated interpolation inside cells. We provide additional details about the finite difference derivative computation

in Appendix.B and show that they yield a valid approximation of the derivatives in Appendix.C. As shown in Fig.6, any

type of deformations from the template mesh will leave the stationary point �̂� since changes of edge length ratios and

angles make Eq.10 nonzero.

With this approach of approximating derivatives, each 𝐹𝑖𝑏 can be written as a linear function of the position of v𝑖

and its neighboring vertices. Eq.11 can thus be rewritten as a numerical approximation with a matrix form as

L𝑟𝑒𝑔 := | |𝐾v| |22 , (13)

where v is the vectorized form of𝑉𝐶𝑜𝑚, where𝑉𝐶𝑜𝑚 = 𝑉 \ (𝑉𝑆 ∪𝑉 𝐼𝑂), and 𝐾 is the discretization matrix to implement

the finite difference approximation. 𝐾 is only dependent on the template mesh and is only generated once for the given

template mesh �̂� . Thanks to the linearity in Eq.11, building multiple coordinate systems results in a single sparse 𝐾

matrix and does not increase the computational cost significantly.

Deformation Decay Loss L𝑑𝑒𝑐. We decay the vertices’ motion and constrain the model to generate the minimal

necessary deformation

L𝑑𝑒𝑐 =
1
|𝑉 |

∑︁
𝑖

∥𝛿v𝑖 ∥22 . (14)
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Regularization Loss on Latent Space L𝑧 . Additionally minimizing

L𝑧 =
1
𝑇

∑︁
𝑡

∥z𝑡 ∥22 (15)

amounts to assuming that the prior distribution of latent vectors is a gaussian centered around zero and helps regularize

the problem. In other words, L𝑧 promotes smoothness of the latent space.

C. Network

The Structure of Auto-Decoder. We take the latent code z of Eq. 1 to be a 256-dimensional vector. The auto-decoder

comprises 4 graph convolution layers [49] and a fully connected output layer. Each graph convolution is applied

with weight normalization [50] and relies on the ReLU nonlinear activation [51]. By using the term 𝑔Θ (z; �̂�), the

auto-decoder concatenates the latent code at the first layer and the vertex feature in other layers with coordinates of

template vertices as input at every graph convolution, and uses edge information for message passing. Using the

template vertex coordinates as inputs provide inductive bias of spatial continuity that helps the model generates smooth

deformations. The fully connected layer is applied on each vertex feature vector and predicts a 2D vertex displacement.

The Active Model Layer. At inference time, an Active Model Layer (AM layer) is used to further refine the mesh

quality at a finer granularity. The AM layer minimizes the same Eq.13 and in an implicit post-processing approach.

Given that 𝐾 is not invertible, the equation can be solved iteratively as

𝜆(v𝑡 − v𝑡−1) + 𝐾v𝑡 = 0⇒ (𝐾 + 𝜆𝐼)v𝑡 = 𝜆v𝑡−1 , (16)

where 𝐼 is the identity, the superscript 𝑡 is the iteration step and 𝜆 is the iteration step size. The initial state comes

from the auto-decoder’s direct output as 𝑉0 = �̂� + Δ𝑉 . Due to the large size and the sparsity of 𝐾 , inverting (𝐾 + 𝜆𝐼)

precisely is impractical. Instead, we use the Neumann series with

(𝐾 + 𝜆𝐼)−1 ≈
∑︁𝐾

𝑛=0
(−1)𝑛

(
1
𝜆

)𝑛+1
𝐾𝑛 . (17)

The AM layer is necessary to eliminate minor mesh quality issue occured in auto-decoder’s direct output. We demonstrate

in Sec.IV.C that combining the minimization of L𝑟𝑒𝑔 and the AM layer works most effectively and efficiently.

D. Training Details

Training Set. For training purposes, we collected a set of 1100 airfoil profiles, 𝑇 = 1000 for training and 100 for

testing. We use NACA’s 4-digit and 5-digit airfoils and sample random digits. We rely on the MATLAB formulations∗†

∗http://www.mathworks.com/matlabcentral/fileexchange/19915-naca-4-digit-airfoil-generator
†http://www.mathworks.com/matlabcentral/fileexchange/23241-naca-5-digit-airfoil-generator
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to generate the profiles. Chord lengths are normalized to 1, and the leading and trailing edges are fixed at (0, 0) and

(1, 0), respectively. Each training profile 𝑆𝑡 is a collection of 600 2D points sampled on the surface of the airfoil. Note

that no topology information is in 𝑆𝑡 , which enables the model to work on various type of data format, and reduces the

demand for complicated data pre-processing.

Template Mesh. To obtain the template mesh �̂� of Section. III.A, we start from the NACA-0012 profile because it is

the most commonly studied airfoil. We use a manually generated quadrilateral mesh ‡ as the default template mesh.

It contains 116, 240 vertices and 230, 920 faces. The computational boundaries are at least 14 chords away from the

airfoil. The mesh is extruded and there is only one cell along the 𝑧 axis. As shown in Fig. 2, we reduce the required

amount of computation by fixing some of the exterior vertices and only allowing those closer to the profile to move.

Unless otherwise specified, the quadrilateral mesh in mention is used in experiments by default, denoted as TM-A.

The proposed model also works well on other types of meshes, even without any adaptation on the network after training,

which will be further discussed in Sec.IV.B.

Implementation Details. We use the Pytorch [52] library for implementation. During training, we used the

Adam optimizer [53] to solve Eq. 2 with a learning rate of 5 × 10−4 for the decoder weights and 10−3 for the

latent codes. The training batch size was 5 and we ran 20 training epochs. We took the weights of Eq. 4 to be

𝑤𝑑𝑖𝑠𝑡 = 3 × 103, 𝑤𝑟𝑒𝑔 = 103, 𝑤𝑑𝑒𝑐 = 10−3, 𝑤𝑧 = 10−4. At inference time, the decoder remains fixed while the latent

code for a reference geometry is initialized with Gaussian noise. It is then optimized with 800 gradient descent steps

and a learning rate of 5 × 10−4.

IV. Experiments
We validate our proposed model on 2D airfoil geometries. We show it outperforms traditional mesh representations

in (i) reducing the amount of handcraft designs, (ii) discovering geometric patterns automatically, (iii) representing both

surfaces and entire CFD meshes and (iv) providing full differentiability to downstream applications.

A. Mesh Representation and Reconstruction

In this experiment, we evaluate the quality of our mesh representations. We encode multiple airfoils into latent

codes using Eq.3. No manual adjustments are required when working with different airfoils. The embedding quality is

measured by the accuracy of surface reconstruction decoded from the latent codes.

To do this, we randomly chose 50 NACA airfoils outside the training set. We also use another 50 non-NACA airfoils,

to investigate the model’s generalization ability. These non-NACA airfoils belongs to the AG and RG series, plus

the low-Reynolds-number Eppler airfoils, which are collected from the UIUC airfoil dataset [54]. Since most airfoil
‡http://www.wolfdynamics.com/tutorials.html?id=148
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with 100 sampling points
with 50 sampling points

Fig. 7 The Chamfer Distance (CD) between the reconstructed airfoils and the 600-point reference geometries.

geometric data publicly available samples a surface with 50 to 100 points, we sample 100 and 50 surface points on each

airfoil as the target geometries to test under different sampling qualities. We use 600 sampling points 𝑆600𝑝𝑡 on an

airfoil as a lossless geometry. The reconstruction error is calculated by the Chamfer Distance [55] (𝐶𝐷) between the

deformed airfoil surface and 𝑆600𝑝𝑡 , which is defined as

𝐶𝐷 (𝑉𝑆 , 𝑆600𝑝𝑡 ) =
1

|𝑉𝑆 |
∑︁
𝑣𝑖 ∈𝑉𝑆

min
𝑠𝑖 ∈𝑆600𝑝𝑡

| |𝑣𝑖 − 𝑠𝑖 | |2 +
1

|𝑆600𝑝𝑡 |
∑︁

𝑠𝑖 ∈𝑆600𝑝𝑡
min
𝑣𝑖 ∈𝑉𝑆

| |𝑣𝑖 − 𝑠𝑖 | |2 . (18)

Since 𝑉𝑆 and 𝑆600𝑝𝑡 are discrete sampling of a continuous airfoil profile, 𝐶𝐷 remains positive even when two shapes

are exactly registered.

Fig.7 shows the reconstruction accuracy over the 50 test airfoils. The mean 𝐶𝐷s are 8.9 × 10−6 and 9.3 × 10−6 for

100-point and 50-point 𝑆 over NACA airfoils, and those are 8.3 × 10−6 and 8.7 × 10−6 for non-NACA airfoils. The

errors are very small. We visualize some reconstruction results in Fig.8. The figure shows that the reported mean

𝐶𝐷s indicate high-fidelity reconstructions of both airfoil types and under both sampling qualities. At the same time,

the statistics and the qualitative results show little performances difference between NACA and non-NACA airfoils.

The proposed model can work well with other shapes that are similar to the training geometries without additional

adaptations. For all test settings, the average time cost to encode and reconstruct a given airfoil is 30.1𝑠 on a standard

PC with an NVIDIA V100 GPU card.
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NACA-7711, 𝐶𝐶𝐶𝐶 = 1.2 × 10−5 NACA-8424, 𝐶𝐶𝐶𝐶 = 9.2 × 10−6 NACA-24112, 𝐶𝐶𝐶𝐶 = 6.2 × 10−6

NACA-21010, 𝐶𝐶𝐶𝐶 = 9.6 × 10−6 NACA-6217, 𝐶𝐶𝐶𝐶 = 9.6 × 10−6 NACA-24109, 𝐶𝐶𝐶𝐶 = 6.5 × 10−6

AG-04, 𝐶𝐶𝐶𝐶 = 8.3 × 10−6 E553, 𝐶𝐶𝐶𝐶 = 9.7 × 10−6 E1214, 𝐶𝐶𝐶𝐶 = 6.9 × 10−6

RG-15A111, 𝐶𝐶𝐶𝐶 = 8.5 × 10−6 E479, 𝐶𝐶𝐶𝐶 = 7.3 × 10−6 E220, 𝐶𝐶𝐶𝐶 = 9.3 × 10−6
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Fig. 8 The reconstructions of various airfoil series with different numbers of sampled points, i.e. the red dots. 𝐶𝐷s are
shown.

B. Using Different Template Meshes

We found that the auto-decoder trained with TM-A works well on other types of template mesh, even without

additional adaptations after training. It means that, given a different template mesh �̃� = {�̃� , �̃�} and the auto-decoder

𝑔Θ∗ trained with template mesh �̂� , we can still well solve

z∗ = argmin
z

L(�̃� (ṽ + 𝑔Θ∗ (z, �̃�)), 𝑆) . (19)

To test he model’s generalization ability, we use four different template meshes.

• The hybrid parametric mesh (denoted as TM-B) is generated by VLab [56, 57], as shown in Fig.9. It comprises

a triangulated part that divides the far field and well refined wall layers that fully resolves the boundary region. It
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(a) (b)

Fig. 9 The hybrid parametric template mesh (TM-B) with (a) an overall and (b) a zoomed-in views.

(a) (b) (c)

(d)

Fig. 10 The template blockmesh TM-C with views of its (a) overall mesh, (b) boundary, (c) deformation area and (d)
surface.

contains 64, 917 vertices and 216, 793 edges belonging to triangles and rectangles.

• The block mesh (denoted as TM-C) is generated by the OpenFoam’s blockMesh command on the NACA-0012
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(a) (b) (c)

(d)

Fig. 11 The (a-b) coarse and (c-d) fine triangulated template meshes generated by Gmsh.

airfoil, as shown in Fig.10. The snappyHexMesh options are used during meshing so that there are four mesh

granularities and viscous layers, which leads to a mixture of cell types and various numbers of neighbors for

vertices. Similar to TM-A, we also select a subarea surrounding the airfoil to deform. The deformation area

contains 30,536 vertices and 29,848 polygon cells with 3, 4 or 5 edges.

• The triangulation meshes are generated by the Gmsh library [58]. The cells are all triangulated. We use this

meshing to studies the effect of different mesh densities. To do this, we create a coarse mesh (denoted as TM-D1)

with 347 vertices and 564 faces (see Fig.11(a)), and a fine mesh (denoted as TM-D2) with 1,642 vertices and

2,842 faces (see Fig.11(b)). The overall mesh is relatively small so no subarea extraction is needed. The template

airfoil is also NACA-0012.

Given these template meshes, TM-B is used for simulations in the following section, while TM-C, TM-D1 and TM-D2

are only used to investigating our model’s generalization ability to different geometries.

Four random NACA airfoils and four random non-NACA airfoils are reconstructed using these different template

meshes and Eq.3. No severe mesh quality issues are found in any of these results. A qualitative comparison near the

airfoil is presented in Fig.12 where the special structures created by the meshing algorithms in the template mesh are

well preserved in all cases. The simulation results of Sec.IV.C.2 also indicate that meshes based on TM-B are of good

quality.

C. Computational Mesh Quality

We now investigate the effectiveness of representing the entire computational mesh in the context of CFD. To do

this, we first use the OpenFOAM’s mesh checking tool to evaluate the mesh quality after deformation. Then simulations

are performed on the generated meshes to analyze the effect of mesh reconstruction on aerodynamic performance.
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NACA-1005 NACA-24109 NACA-33021

C-5A CLARK-YS RAE-2822
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(b
)
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)

(c
)

(d
)

Fig. 12 Mesh reconstructions inferred with (a) TM-B, (b) TM-C, (c) TM-D1 and (c) TM-D2. Best viewed with zoom-in.
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1. Quantitative Evaluations on Mesh Quality

We use the 50 random NACA airfoils and 50 random non-NACA airfoils of any series from the UIUC airfoil dataset.

To study the role of L𝑟𝑒𝑔 and AM Layer in preserving the mesh quality, all meshes are reconstructed from TM-A with

the proposed model (Model #4) and the three other variants (Model #1-3):

• Model #1 is trained without L𝑟𝑒𝑔 and the AM Layer is not used. It serves as a baseline model.

• Model #2 is trained without L𝑟𝑒𝑔, but the AM layer is used as post-processing. In this case, it takes more than

8, 000 iterations for Eq.17 to converge on a 2D airfoil mesh.

• Model #3 uses L𝑟𝑒𝑔 for training but the AM layer is not used.

• Model #4 uses both L𝑟𝑒𝑔 for training and the AM layer for inference. The number of iteration can be largely

reduced to 240. Model #4 is the default setting of the proposed model.

Table 1 Metrics used in the volumetric mesh quality check.

issues errors qualities

mesh E1 number of negative volume cells
overlapping E2 number of incorrectly oriented faces

skewness E3 number of highly skewed faces Q1 max skewness

orthogonality

E4 number of non-orthogonality errors Q2 max non-orthogonality
Q3 mean non-orthogonality
Q4 number of severely non-orthogonal

faces (> 70 degrees)

Table 2 Average mesh quality evaluation results over 100 random airfoils.

airfoils models E1 E2 E3 E4 Q1 Q2 Q3 Q4

NACA

#1 364.74 2245.54 535.40 476.82 12348.725 178.861 12.607 277.66
#2 0.00 0.08 0.02 0.06 0.771 49.424 9.017 2.40
#3 0.00 534.12 3.86 109.96 480.298 137.272 9.852 44.42
#4 0.00 0.00 0.00 0.00 0.543 42.668 9.020 6.30

non-NACA

#1 435.98 2657.66 513.80 572.02 2031.345 179.113 13.675 353.48
#2 0.00 0.30 0.06 0.08 0.803 51.442 9.100 10.26
#3 0.00 65.32 0.40 10.92 11.222 101.035 8.646 16.52
#4 0.00 0.00 0.00 0.00 0.486 36.073 8.292 0.00

overall

#1 400.36 2451.60 524.60 524.42 7190.035 178.987 13.141 315.57
#2 0.00 0.19 0.04 0.07 0.787 50.433 9.059 6.33
#3 0.00 299.72 2.13 60.44 245.760 119.154 9.249 30.47
#4 0.00 0.00 0.00 0.00 0.514 39.371 8.656 3.15

NACA-
TM-A 0.00 0.00 0.00 0.00 0.486 30.144 7.520 0.000012
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OpenFOAM’s checkMesh command is used for evaluation. This tool generates a short report that contains several

quantitative results. We divide these statistics into two categories, i.e. errors and qualities. Any occurrence of errors in

the report indicate existed fatal issues that impair the simulation’s correctness. The quality results are geometric criteria

of the mesh that affect the stability, convergence speed and residual control of simulations. We use 8 measurements in

total for a comprehensive evaluation. Tab.1 explains the meanings of all metrics and lower values indicate better mesh

qualities. The evaluation results are compared with the template mesh quality in Tab.2. Several qualitative comparisons

are shown in Fig.13.
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Fig. 13 Illustrations of NACA-24109’s meshes generated by Model #1-4. Blue and red arrows highlight the overlapping and
non-orthogonal issues.
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Model #1 has no guarantee on the mesh quality without any explicit constrains or post-processing. The results of

Model #2 show that the AM layer solves almost all the overlapping issues and other severe errors, but some global

non-orthogonality remains. Using L𝑟𝑒𝑔 for training while removing the AM layer as in Model #3 removes the large mesh

distortion near the boundary of the deformation area, as shown in Fig.13, but the overlapping issue near the object surface

is not totally solved. However, the combination of L𝑟𝑒𝑔 and AM layer as in Model #4 is most effective. Meanwhile,

Model #4 works consistently well on NACA and non-NACA airfoils, which demonstrates its robust generalization

ability. Compared with the NACA-0012 template mesh TM-A, Model #4 produces meshes without errors and with the

same order of magnitude for quality metrics Q1-Q4. It explains the proposed model with L𝑟𝑒𝑔 and the AM layer is

suitable for CFD, as it produces meshes of similar quality as a handcrafted one, in an automated manner.

2. Case Studies on Simulations

In this section, we validate the quality of our generated meshes when used to simulate 2D airfoil dynamics. To

this end, we compare simulation results obtained using our meshes with experimental data from the UIUC Low Speed

Airfoil Data [59–62] and the CFD data generated automatically by the VLab computational framework [56, 57].

The UIUC Low Speed Airfoil Data features airfoil tests at low-Reynold numbers in the UIUC wind tunnel. This

dataset contains testing results on various airfoils. We select the data of lift coefficients at 𝑅𝑒 = 105 of three NACA

airfoils (i.e. NACA-0009 / 2414 / 6409) and three non-NACA airfoils (i.e. AG-24, ClarkY and SD-6060) as references.

The VLab data is composed of high-fidelity numerical simulations created by the computational framework VLab

[56, 57]. It uses parametric hybrid meshes and ANSYS® Fluent® to provide CFD of various shapes in an automatic

way.We refer to NACA-2412 and NACA-8412.

For the UIUC Low Speed dataset comparisons, the simulations were performed by running OpenFOAM on

computational meshes generated from TM-A for the reference airfoils. We use the RANS solver coupled with the

k-omega-SST turbulence model [63] at 𝑅𝑒 = 105. For the VLab data comparison, meshes for both airfoils are generated

based on TM-B. The CFD meshes are then used in VLab’s solver for RANS simulations at 𝑅𝑒 = 106. Both the

Spalart–Allmaras [64] and the k-omega-SST turbulence models are used for the respective simulations, allowing for the

study of mesh effects by comparing discrepancies caused by different meshes and turbulence models.

Fig.14 shows our simulation data at AoAs of −5◦, −2.5◦, 0◦, 2.5◦, 5◦ and 7.5◦. The simulated lift coefficients fit

well with the wind tunnel experimental data. The averaged y+ values of these cases range from 1.94 to 2.49, and the

mean y+ when simulating on TM-A is 2.19. In Fig.15, the simulated results resolve the trend of lift-drag ratio with the

changes of lift coefficients. The averaged y+, for example the one of NACA-2412, is 1.47 while the y+ of simulating on

TM-B is 1.42. These results confirm that the deformed meshes decoded by the proposed model have adequate quality

for CFD simulations. The proposed mesh model well preserve the boundary layer qualities given both template meshes,

and the errors have minimal effects on simulation results.
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Fig. 14 Comparisons between the simulation results on deformed meshes and the UIUC’s experimental data.

D. Full Differentiability for Downstream Applications

The proposed method provides full differentiability of the generated mesh with respect to its latent representation. It

integrates end-to-end pipelines for downstream applications. Users can not only directly decode the latent code and

obtain the mesh instantly, but also back-propagate gradients via the mesh to the latent vector so as to manipulate the

geometry and computational mesh. Compared to step-by-step pipelines, the proposed model requires no hyper-parameter

tuning in order to adapt to different applications or targeted geometries. This enables fast prototyping for downstream
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Fig. 15 Comparisons between the simulation results on deformed meshes and VLab reference data.

applications on novel and less studied objects.

Here, we demonstrate this idea and implement a fully differentiable pipeline for the 2D airfoil shape optimization

task: given an initial 2D airfoil geometry 𝑆𝑖𝑛𝑖𝑡 , obtain an optimized geometry 𝑉𝑆𝑜𝑝𝑡 so as to minimize the airfoil’s drag.

The role of our model is twofold. First is serves as a fully differentiable mesh representation, with a prior. Gradients

from the surrogate model are passed directly to the latent code for shape manipulation. Second, it yields readily available

CFD meshes of novel shapes for the surrogate model during optimization.

1. Shape Optimization for Various Geometries

Problem Statement. The objective of the optimization task in this study is to minimize the total drag of given initial

airfoils. The optimization is conducted with an inviscid free stream at 0.85 Mach and all airfoils are at zero angles of

attack. The governing equation is the 2D compressible Euler with a constant ratio of specific heats of 1.4.
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Fig. 16 The pipeline of shape optimization to minimize drag.
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Predict 𝐶𝐶𝑑𝑑 via 
surrogate model ℎ

Objective |𝐶𝐶𝑑𝑑|2
and constraints 
𝐿𝐿𝑐𝑐𝑜𝑜𝑖𝑖𝑐𝑐 satisfied?

Update 𝑧𝑧𝑜𝑜𝑜𝑜𝑖𝑖

Output
𝑧𝑧∗ = 𝑧𝑧𝑜𝑜𝑜𝑜𝑖𝑖

No

Yes

(b)

Fig. 17 The workflow of shape optimization shown in (a) the XDSM and (b) the flow chart.

Pipeline Design. To implement a shape optimization pipeline, a surrogate model is required to evaluation the CFD

properties of an airfoil. There are multiple options for the surrogate model. For example, the user can utilize an adjoint

CFD solver (e.g. ADflow[65], SU2[66], etc.) to generate gradients by directly simulating on the reconstructed CFD

mesh. The user can also choose a deep learning model as the surrogate model. Here we follow [67] and use a graph

convolutional neural network (GCNN) to predict the air pressure on the airfoil’s surface. The pipeline is depicted by

Fig.16. More details of the surrogate model can be found in Appendix.D. We follow the surrogate-based optimization

(SBO) scheme and the GCNN surrogate model needs to be re-trained by adding newly optimized results into the training

set. Our model reconstructs CFD meshes of new samples for CFD simulations.

Optimization. The workflow of optimization is shown in Fig.17. Given an initial airfoil, we first encode 𝑆𝑖𝑛𝑖𝑡 into a

latent vector z𝑖𝑛𝑖𝑡 by Eq.3. The latent code to be optimized z𝑜𝑝𝑡 is initialized by v𝑖𝑛𝑖𝑡 . Then we fix the auto-decoder 𝑔Θ

as well as the trained GCNN surrogate model ℎ, and optimize z𝑜𝑝𝑡 by minimizing the predicted drag coefficient 𝐶𝑑 as

z∗𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛
z𝑖𝑛𝑖𝑡

| |𝐶𝑑 | |2 , where 𝐶𝑑 = ℎ(�̂� + 𝑔Θ (z𝑖𝑛𝑖𝑡 ), �̂�). (20)

The optimized geometry can be extracted from the decoded mesh as

𝑉𝑆𝑜𝑝𝑡 ∈ 𝑉𝑜𝑝𝑡 = �̂� + 𝑔𝜃 (z𝑜𝑝𝑡 ). (21)

The Adam optimizer is used. The maximum number of iteration is 300 to ensure the convergence.
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Estimated 𝑪𝑪𝒅𝒅 by Surrogate Model

Fig. 18 The initial and optimized 𝐶𝑑 of 25 NACA and 25 non-NACA test airfoils.

Results. We randomly collect 25 NACA and 25 non-NACA airfoils as initial shapes. Optimizations are run on all

airfoils and we simulate with OpenFOAM on the deformed shapes before the first iteration and after the last iteration to

get their initial and optimized 𝐶𝑑 values. Fig.18 shows that the 𝐶𝑑s have been significantly reduced in all cases. The

model has consistent performances on NACA and non-NACA airfoils even when the mesh representation model is

trained with NACA airfoils only. On both airfoil series, the optimization on a single case takes 3.7s – 4.2s.

Fig.19 depicts the evolution of the airfoils during unconstrained shape optimization in two different cases, one

initialized with NACA-4219 and the other with E-169. The shapes evolve from the initial black airfoils and progress as

the shapes change from pink to red in color.

2. Case Studies on Shape Optimization with Geometric Constraints

In practice, the shape optimization problem is often coupled with certain geometric constraints. These constraints

are easy to integrate in our pipeline. As shown in Fig.16, the constraints can be written as differentiable formula and

regarded as an extra loss function L𝑐𝑜𝑛𝑠 . L𝑐𝑜𝑛𝑠 is applied directly on the deformed geometry. Eq.20 can be rewritten as

z∗𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛
z𝑜𝑝𝑡

( | |𝐶𝑑 | |2 + 𝑤𝑐𝑜𝑛𝑠L𝑐𝑜𝑛𝑠) . (22)

In this section, we demonstrate optimization results with three different constraints, namely the bounding constraint,
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Fig. 19 The evolution of airfoils during unconstrained shape optimization. Shapes are plotted at every five iterations.

the maximum thickness constraint and the area constraint. The bounding constraint limits the airfoil’s thickness to be no

less than the initial one, which is defined as

L𝑐𝑜𝑛𝑠 =
1

|𝑉𝑆 |

|𝑉𝑆 |∑︁
𝑖=1

����max( |𝑦𝑜𝑝𝑡
𝑖

| − |𝑦𝑖𝑛𝑖𝑡𝑖 |, 0)
����2 , where 

𝑣
𝑜𝑝𝑡

𝑖
= (𝑥𝑜𝑝𝑡

𝑖
, 𝑦
𝑜𝑝𝑡

𝑖
) ∈ 𝑉𝑆𝑜𝑝𝑡

𝑣𝑖𝑛𝑖𝑡
𝑖

= (𝑥𝑖𝑛𝑖𝑡
𝑖
, 𝑦𝑖𝑛𝑖𝑡
𝑖

) ∈ 𝑉𝑆
𝑖𝑛𝑖𝑡

. (23)

with the bounding constraint with the max thickness constraint with the area constraint

(a)

(b)

Initial Airfoil                    Optimized Airfoil

Fig. 20 Optimized NACA-0012 with different geometric constraints. (a) Changes of 𝐶𝑑 . (b) Changes of the airfoils.

The maximum thickness constraint is a relaxed bounding constraint, which only limits the airfoil’s maximal thickness.
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To implement it, we use cubic splines, 𝑠𝑝𝑙𝑖𝑛𝑒+ (·) and 𝑠𝑝𝑙𝑖𝑛𝑒− (·), to interpolate the surface positions on the upper airfoil

and lower airfoil given a horizontal coordinate 𝑥, and then calculate the thickness by subtracting the vertical coordinates.

Considering that airfoils’ chord lengths are 1 and the leading edges are placed at the origin, then the constraint can be

written as

L𝑐𝑜𝑛𝑠 = max
𝑥∈(0,1)

(����max((𝑠𝑝𝑙𝑖𝑛𝑒+𝑖𝑛𝑖𝑡 (𝑥) − 𝑠𝑝𝑙𝑖𝑛𝑒−𝑖𝑛𝑖𝑡 (𝑥)) − (𝑠𝑝𝑙𝑖𝑛𝑒+𝑜𝑝𝑡 (𝑥) − 𝑠𝑝𝑙𝑖𝑛𝑒−𝑜𝑝𝑡 (𝑥)), 0)
����2) . (24)

The area constraint is to limit the optimized airfoil’s area to be no less than the initial one. We use the Shoelace

formula to compute the airfoil’s area 𝐴. By sorting 𝑉𝑆 in clockwise order, the constraint is

L𝑐𝑜𝑛𝑠 =
����max(𝐴𝑖𝑛𝑖𝑡 (𝑉𝑆𝑖𝑛𝑖𝑡 ) − 𝐴𝑜𝑝𝑡 (𝑉𝑆𝑜𝑝𝑡 ), 0)����2 , where 𝐴(𝑉𝑆) = 12 |𝑉𝑆 |∑︁

𝑖=1
𝑦𝑖 (𝑥𝑖 − 𝑥𝑖+1) . (25)

We use NACA-0012 as the initial airfoil and perform three optimizations with the geometric constraints in mention.

The optimized results are demonstrated in Fig.20. In all cases the drag coefficients are reduced by a noticeable proportion

and the geometric changes are explainable under the inviscid flow condition. The optimized airfoils move the shock

waves towards its trailing edge under all constraints. They change the directions of surface normal near the trailing edge

so as to counteract the drag forces generated at the leading edge. Meanwhile, the area constraint relaxes the limitation

on airfoil’s thickness so that the airfoil’s leading edge is narrowed to reduce drag.

(a) (b)

Initial Airfoil
Optimized Airfoil

Fig. 21 Optimized NACA-0012 with the area and symmetry constraints. (a) Changes of 𝐶𝑑 . (b) Changes of the airfoil.

The full differentiation of our mesh model, along with our end-to-end trainable pipeline, makes it possible to easily

handle multiple constraints. For example, we combine the area constraint defined by Eq.25 and a symmetry constraint

that ensures the consistency between airfoil’s upper and lower curves. Then 𝐿𝑐𝑜𝑛𝑠 is the simple addition of both

constraints, which writes
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L𝑐𝑜𝑛𝑠 =
����max(𝐴𝑖𝑛𝑖𝑡 (𝑉𝑆𝑖𝑛𝑖𝑡 ) − 𝐴𝑜𝑝𝑡 (𝑉𝑆𝑜𝑝𝑡 ), 0)����2 + ���� ��𝑠𝑝𝑙𝑖𝑛𝑒+𝑜𝑝𝑡 (𝑥)�� − ��𝑠𝑝𝑙𝑖𝑛𝑒−𝑜𝑝𝑡 (𝑥)�� ����2 ,

where 𝐴(𝑉𝑆) = 1
2

|𝑉𝑆 |∑︁
𝑖=1

𝑦𝑖 (𝑥𝑖 − 𝑥𝑖+1) and 𝑥 ∈ (0, 1) .
(26)

The result of Fig.21 shows that the optimized shape satisfies both constraints without compromising the performance

on reduced drag.

In summary, the results show that our model is effective for the fast prototyping of object shape designs and is able

to work in a fully automatic fashion.

V. Conclusions
In summary, a latent representation model of CFD mesh is proposed in this study. The main advantages of the

proposed model are three folds. First, the model learns geometric prior during training and eliminates most handcrafts in

object shape parameterization. Second, the model represents both the surface mesh and the corresponding computational

mesh of the object. Third, the model is fully differentiable and works well with gradient-based downstream applications.

We develop an auto-decoder model to encode a given geometry that only contains unstructured points sampled

on the surface into a low-dimensional latent vector. The latent vector is then decoded as the deformation of a fixed

template mesh to reconstruct the target geometric surface. We propose a regularization loss applied during training and

a differentiable Active Model layer applied during inference to regularize the quality of deformed computational meshes.

Extensive experiments have been conducted to validate the effectiveness of the proposed model. The accurate

reconstruction results demonstrate that the latent vectors contain rich geometric information. The ablation studies on the

quality of computational mesh show that the decoded CFD meshes can replace re-meshing when conducting numerical

simulations. By integrating the proposed model into an end-to-end shape optimization pipeline, one can perform fast

prototyping by minimizing manual interventions for parameterization and can produce reasonable optimized shapes.

We’ve also discovered that the trained model is insensitive to different types of template meshes. Other latent space

properties, such as smoothness and principal components, are investigated and visualized in the Appendix.
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Appendix

A. The Properties of the Learned Latent Space

1. The Smoothness of Latent Space

We analyze the latent space’s smoothness by interpolating the latent codes of two different airfoils z1 and z2. The

interpolated 𝑀𝑆 is extracted from the reconstructed CFD mesh decoded from a weighted sum of 𝑧1 and 𝑧2, namely

𝑀 (v̂ + 𝑔Θ (𝑤1z1 + 𝑤2z2)), where 𝑤1 ∈ (0, 1) and 𝑤2 = 1 − 𝑤1 are interpolation weights. We select some visually

distinguishable airfoils and show the interpolated results in Fig.22, which included interpolations within NACA airfoils,

non-NACA airfoils and between different airfoil series. Each row in Fig.22 shows a gradual transformation on shape,

indicating the change of 𝑤1z1 + 𝑤2z2 in the latent space is also smooth.

2. The Learned Geometric Patterns

Here we visualize the learned geometric patterns by analysing the latent space’s principle components (PC). Instead

of collecting many latent codes, performing SVD and then computing the PCs, we follow a sampling-free approach [68]

to decompose the latent space. We modify it to apply it on the auto-decoder model. The first layer of auto-decoder is a

graph convolution where the node features are the coordinate of v̂𝑖 and latent code z. The feature it extracts 𝑓1 is

𝑓1 = 𝜎(
𝑁∑︁
𝑖

Θ1 [v̂𝑖 , z]) , (27)

where 𝜎(.) is the activation function, Θ1 is the first layer parameter in 𝑔Θ, 𝑁 means 𝑁 neighboring vertices connected

to v̂𝑖 and [., .] means vector concatenation. This process can be equally written as

𝑓1 = 𝜎(
𝑁∑︁
𝑖

(Θ1;𝑣 v̂𝑖 + Θ1;𝑧z)); , (28)

where Θ1,𝑣 and Θ1,𝑧 are split from Θ1. Then the principle components are calculated from the matrix decomposition of

(Θ𝑇1,𝑧Θ1,𝑧).

In Fig.23, we demonstrate the explored novel shapes by perturbing the latent codes of existing airfoils along the

directions of top 3 PCs. All novel shapes have noticeable changes. We can observe common patterns for each PC. For

example, when perturbing along the first PC, the shapes extend upward at the leading edges while the shapes bulge

downward with the negative perturbations. Fig.24 shows the learned patterns of the top three PCs. These observations

indicate that the latent space has discovered and acquired geometric prior knowledge via learning.
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Fig. 22 Decoded airfoils by interpolating between latent codes of (a) NACA, (b) non-NACA and (c) mixed airfoils.

B. Calculating Finite Difference Approximation

Since the following explanation is the same for all vertices and combinations of neighbors, we omit the subscripts 𝑖

and 𝑏 for simplicity.

The definition of r, t and the sampling strategy of Δr+, Δr−, 𝛿t+ and Δt− are described in Sec.III.B and illustrated in
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Fig. 23 Decoded airfoils by perturbing the top 3 PCs from (a) NACA-4710’s and (b) LA203A’s latent codes.

1st PC 2nd PC 3rd PC

Changes by perturbing along
positive direction
negative direction

Fig. 24 Visualized top 3 PCs. Arrows represent changes by perturbing PCs along different directions.

Fig.4. The subscript 𝑖 is omitted for simplicity. Let’s denote the finite difference sampling, e.g. on axis r, as

v(𝑟 + Δ𝑟+, 𝑡) = 𝑟r + Δr+ + 𝑡t ,

v(𝑟 − Δ𝑟−, 𝑡) = 𝑟r + Δr− + 𝑡t .
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Then the finite difference approximations for the derivatives in Eq.10 can be written as

𝜕v
𝜕𝑟

≈ 1
Δ𝑟

[v(𝑟 + Δ𝑟+, 𝑡) − v(𝑟, 𝑡)] ,

𝜕2v
𝜕𝑟2

≈ 1
Δ𝑟2

[v(𝑟 + Δ𝑟+, 𝑡) − 2v(𝑟, 𝑡) + v(𝑟 − Δ𝑟−, 𝑡)] ,

𝜕4v
𝜕𝑟4

≈ 1
Δ𝑟4

[v(𝑟 + 2Δ𝑟+, 𝑡) − 4v(𝑟 + Δ𝑟+, 𝑡) + 6v(𝑟, 𝑡) − 4v(𝑟 − Δ𝑟−, 𝑡) + v(𝑟 − 2Δ𝑟−, 𝑡)] .

Similarly, we can write the finite difference approximation w.r.t. 𝑡 as well.

C. Proof of Validity of Sampling Strategy

Similar as in Appendix.B, we omit the subscript 𝑏 for simplicity.

In Sec.III.B and Eq.12, we propose how to sample perturbations to approximate the derivatives in Eq.10. This is

different from the standard definition to compute a derivative and we give a proof to show why such a sampling method

can be an approximation. First, we use a term 𝑙 (𝑟𝑖 , 𝑡𝑖), a function of vertex v𝑖 (𝑟𝑖 , 𝑡𝑖), as a concise substitute of 𝑔Θ (z, 𝑀)

when the latent code, edges and vertices except for v𝑖 in 𝑀 are fixed. In this case, we can write dv𝑖 = 𝑙 (𝑟𝑖 , 𝑡𝑖) and

v𝑖 = v̂𝑖 + 𝑙 (𝑟𝑖 , 𝑡𝑖).

In theory, the finite difference of v𝑖 should be written as

v𝑖 (𝑟𝑖 + Δ𝑟, 𝑡𝑖) = (𝑟𝑖 + Δ𝑟)r𝑖 + 𝑡𝑖t𝑖 + 𝑙 (𝑟𝑖 + Δ𝑟, 𝑡𝑖)

= 𝑟𝑖r𝑖 + 𝑡𝑖t𝑖 + Δ𝑟r𝑖 + 𝑙 (𝑟𝑖 + Δ𝑟, 𝑡𝑖)

= v̂𝑖 + 𝜖r𝑖 + 𝑙 (𝑟𝑖 + Δ𝑟, 𝑡𝑖) ,

where the magnitude of perturbation |Δ𝑟 | = 𝜖 . By expanding 𝑙 (𝑟𝑖 + Δ𝑟, 𝑡𝑖) with the first order Taylor expansion at v̂𝑖 , we

have

v𝑖 (𝑟𝑖 + Δ𝑟, 𝑡𝑖) = v̂𝑖 + 𝜖r𝑖 + 𝑙 (𝑟𝑖 + Δ𝑟, 𝑡𝑖)

= v̂𝑖 + 𝜖r𝑖 + 𝑙 (𝑟𝑖 , 𝑡𝑖) +
𝜕𝑙 (𝑟𝑖 , 𝑡𝑖)
𝜕𝑟

(v̂𝑖 + Δ𝑟r𝑖 − v̂𝑖) +𝑂 ( 𝜕
2𝑙

𝜕𝑟2
)

= v̂𝑖 + 𝜖r𝑖 + 𝑙 (𝑟𝑖 , 𝑡𝑖) +
𝜕𝑙 (𝑟𝑖 , 𝑡𝑖)
𝜕𝑟

(𝜖r𝑖) +𝑂 ( 𝜕
2𝑙

𝜕𝑟2
)

≈ v̂𝑖 + 𝜖r𝑖 + 𝑙 (𝑟𝑖 , 𝑡𝑖) +
𝜕𝑙 (𝑟𝑖 , 𝑡𝑖)
𝜕𝑟

(𝜖r𝑖) .
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In practice, we use a different finite difference instead

v𝑖 (𝑟𝑖 , 𝑡𝑖) + Δr𝑖+ = v̂𝑖 + 𝑙 (𝑟𝑖 , 𝑡𝑖) + 𝜖
(v𝑖𝑟 − v𝑖)
| |v̂𝑖𝑟 − v̂𝑖 | |2

= v̂𝑖 + 𝑙 (𝑟𝑖 , 𝑡𝑖) + 𝜖 (
v̂𝑖𝑟 − v̂𝑖

| |v̂𝑖𝑟 − v̂𝑖 | |2
+ 𝑙 (𝑟𝑖𝑟 , 𝑡𝑖𝑟 ) − 𝑙 (𝑟𝑖 , 𝑡𝑖)

| |v̂𝑖𝑟 − v̂𝑖 | |2
)

= v̂𝑖 + 𝑙 (𝑟𝑖 , 𝑡𝑖) + 𝜖r𝑖 + 𝜖
𝑙 (𝑟𝑖𝑟 , 𝑡𝑖𝑟 ) − 𝑙 (𝑟𝑖 , 𝑡𝑖)

| |v̂𝑖𝑟 − v̂𝑖 | |2
.

Again, we use the first order Taylor expansion of 𝑙 (𝑟𝑖𝑟 , 𝑡𝑖𝑟 ) at v̂𝑖 . Considering 𝜖 is a very small value, we have

v𝑖 (𝑟𝑖 , 𝑡𝑖) + Δr𝑖+ = v̂𝑖 + 𝑙 (𝑟𝑖 , 𝑡𝑖) + 𝜖r𝑖 + 𝜖
𝑙 (𝑟𝑖𝑟 , 𝑡𝑖𝑟 ) − 𝑙 (𝑟𝑖 , 𝑡𝑖)

| |v̂𝑖𝑟 − v̂𝑖 | |2

= v̂𝑖 + 𝑙 (𝑟𝑖 , 𝑡𝑖) + 𝜖r𝑖 +
𝜕𝑙 (𝑟𝑖 , 𝑡𝑖)
𝜕𝑟

(𝜖r𝑖) +𝑂 (𝜖2 𝜕
2𝑙

𝜕𝑟2
)

≈ v̂𝑖 + 𝑙 (𝑟𝑖 , 𝑡𝑖) + 𝜖r𝑖 +
𝜕𝑙 (𝑟𝑖 , 𝑡𝑖)
𝜕𝑟

(𝜖r𝑖)

≈ v𝑖 (𝑟𝑖 + Δ𝑟, 𝑡𝑖) . □

Similarly, we can write down the negative perturbation in theory as

v𝑖 (𝑟𝑖 − Δ𝑟, 𝑡𝑖) ≈ v̂𝑖 − 𝜖r𝑖 + 𝑙 (𝑟𝑖 , 𝑡𝑖) −
𝜕𝑙 (𝑟𝑖 , 𝑡𝑖)
𝜕𝑟

(𝜖r𝑖) .

Let’s define the affine transformation matrix 𝑅(𝛼) that rotates 𝚫t+ into 𝚫r− as 𝚫r− = 𝑅(𝛼)𝚫t+. Then we can write down

the finite difference used in practice as

v𝑖 (𝑟𝑖 , 𝑡𝑖) + Δr𝑖− = v𝑖 (𝑟𝑖 , 𝑡𝑖) + 𝑅(𝛼)Δt𝑖+

= v̂𝑖 + 𝑙 (𝑟𝑖 , 𝑡𝑖) + 𝜖𝑅(𝛼)
v𝑖𝑡 − v𝑖

| |v̂𝑖𝑡 − v̂𝑖 | |2

= v̂𝑖 + 𝑙 (𝑟𝑖 , 𝑡𝑖) + 𝜖𝑅(𝛼)t𝑖 + 𝜖𝑅(𝛼)
𝑙 (𝑟𝑖𝑡 , 𝑡𝑖𝑡 ) − 𝑙 (𝑟𝑖 , 𝑡𝑖)

| |v̂𝑖𝑡 − v̂𝑖 | |2
.

By use the first order Taylor expansion of 𝑙 (𝑟𝑖𝑡 , 𝑡𝑖𝑡 ) at v̂𝑖 , we have

v𝑖 (𝑟𝑖 , 𝑡𝑖) + Δr𝑖− = v̂𝑖 + 𝑙 (𝑟𝑖 , 𝑡𝑖) + 𝜖𝑅(𝛼)t𝑖 + 𝜖𝑅(𝛼)
𝑙 (𝑟𝑖𝑡 , 𝑡𝑖𝑡 ) − 𝑙 (𝑟𝑖 , 𝑡𝑖)

| |v̂𝑖𝑡 − v̂𝑖 | |2

≈ v̂𝑖 + 𝑙 (𝑟𝑖 , 𝑡𝑖) + 𝜖𝑅(𝛼)t𝑖 + 𝜖𝑅(𝛼)
𝜕𝑙 (𝑟𝑖 , 𝑡𝑖)
𝜕𝑡

t𝑖

= v̂𝑖 − 𝜖r𝑖 + 𝑙 (𝑟𝑖 , 𝑡𝑖) −
𝜕𝑙 (𝑟𝑖 , 𝑡𝑖)
𝜕𝑟

(𝜖r𝑖)

≈ v𝑖 (𝑟𝑖 − Δ𝑟, 𝑡𝑖) . □
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In conclusion, the vicinity of v𝑖 in the tangent space of 𝑀 at vertex v𝑖 is an approximation of the real manifold

with first order accuracy. v𝑖 + Δr+
𝑖
and v𝑖 + Δr−

𝑖
can substitute v𝑖 (𝑟𝑖 + Δ𝑟, 𝑡𝑖) and v𝑖 (𝑟𝑖 − Δ𝑟, 𝑡𝑖), respectively. Similar

conclusions also apply for perturbations towards other directions.

D. Details of Surrogate Based Optimization and Surrogate Model

Our shape optimization followed the major procedures of the surrogate-based optimization (SBO) [69]. The main

steps are listed below.

Algorithm 1 The workflow of our shape optimization.
Given: Airfoils from the UIUC database and their RANS simulation results.
1. Construct a GCNN surrogate model based on the RANS pressure data.
2. Minimize the optimization objectives as defined in Eq.22.
3. Sample optimized shapes generated from different initial airfoils, perform RANS simulations and update the surrogate
model using new data.
4. Minimize the optimization objectives again with the updated GCNN.

More specifically, 1, 000 airfoils are collected at Step 1 and 300 shapes are sampled at Step 3.

As for the surrogate model, the same network architecture of the surrogate model proposed in [67] is used. The model

is composed of 5 graph convolution blocks. Each block contains 3 graph convolutional layers. A batch normalization

layer is used after each graph convolutional layers and the Exponential Linear Unit is used as the activation function.

The surrogate model takes 𝑀𝑆 as input. It predicts the pressure value for each vertex and the drag coefficient can be

computed via an integral on the airfoil’s surface. To train and update the surrogate model, the Adam optimizer is

adopted with the learning rate as 5 × 10−4. The training uses 900 epochs.
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