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Abstract 
The capacity for motor learning is impaired in healthy aging. Possible mechanisms explaining this 

decrement have been proposed, such as weakened acquisition of the motor skill. While the processes at play 
during the initial acquisition phase have been well-characterized in young adults, they were only scarcely 
investigated in older adults. The goal of this thesis was to assess the neural processes occurring during the 
acquisition phase of motor learning in older adults. Successful functioning of the brain is complex and relies 
on complementary types of organization, i.e. the principles of segregation and integration. In other words, the 
brain is composed of segregated and specialized brain regions that interact with each other by exchanging 
information. Motor learning, considered as a key function of the brain, does not deviate from this organization 
scheme. As such, the investigation of motor learning beneficiates from the study of both functional segregation 
and integration.  
The results of this thesis are based on the acquired data of a multiple-day experiment aiming at characterizing 
motor learning acquisition and improving sleep-dependent motor memory consolidation in older adults and 
stroke patients. 43 older adults and 15 stroke patients were included in this project and completed multiple 
measurements involving, among other methods, a novel motor learning task performed concurrently with func-
tional magnetic resonance imaging.  
In the first study of this thesis, we examined the functional specialization of the brain during acquisition of the 
motor skill by investigating the within-session dynamics and their relationship with behavioral change. The 
results demonstrated that motor learning ability relied on the parallel involvement of motor-related cortical 
areas responsible for action selection and associative parietal areas involved in visuomotor processing. In the 
second study of this thesis, we assessed the integration of information transfer within functional subnetworks 
by looking at the changes in functional topology and structure-function correspondence in relation to motor 
learning ability. We were able to show that motor learning ability was associated with higher flexibility in 
visual and cognitive/associative networks suggested by increased modularity of the functional subnetworks 
and a detachment of the functional connectome from the structural connectome.  
In conclusion, this thesis demonstrates that the acquisition of a motor skill in healthy aging relies on the in-
volvement and flexibility of distributed brain regions organized in networks. The achieved results expand on 
the existing knowledge of motor learning and offer an indication that multimodal studies are important to 
comprehend the functional processes of the brain. 
 

 

Keywords 
Motor learning, Acquisition phase, Healthy aging, Magnetic Resonance Imaging, Functional networks, Con-
nectomics
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Résumé 
L'apprentissage moteur est altéré chez les personnes âgées. Plusieurs mécanismes expliquant ce déclin 

ont été proposés, tels qu'une acquisition affaiblie de l'habileté motrice. Alors que les processus en jeu lors de 
la phase initiale d'acquisition ont été bien caractérisés chez les jeunes adultes, ils n'ont été que très peu étudiés 
chez les adultes plus âgés. L'objectif de cette thèse était d'évaluer les processus neuronaux qui se produisent 
pendant la phase d'acquisition de l'apprentissage moteur chez les personnes âgées. Le bon fonctionnement du 
cerveau est complexe et repose sur des types d'organisation complémentaires, à savoir les principes de ségré-
gation et d'intégration. En d'autres termes, le cerveau est composé de régions cérébrales distinctes et spéciali-
sées qui interagissent entre elles en échangeant de l’information. L'apprentissage moteur, considéré comme 
une fonction clé du cerveau, ne déroge pas à ce principe d'organisation. Ainsi, l'étude de l'apprentissage moteur 
et de ses mécanismes a du sens à être conduite en étudiant la ségrégation et l'intégration fonctionnelle du 
cerveau.  
Les résultats de cette thèse sont basés sur les données acquises lors d'une étude visant à caractériser l'acquisition 
de l'apprentissage moteur et à améliorer la consolidation de la mémoire motrice dépendante du sommeil chez 
les personnes âgées et les patients victimes d'un accident vasculaire cérébral (AVC). Quarante-trois personnes 
âgées et quinze patients AVC ont été inclus dans ce projet et ont effectué de multiples mesures impliquant, 
entre autres, une nouvelle tâche d'apprentissage moteur effectuée simultanément à de l'imagerie par résonance 
magnétique fonctionnelle.  
Dans la première étude de cette thèse, nous avons examiné la spécialisation fonctionnelle du cerveau pendant 
la phase d'acquisition de l'apprentissage moteur en étudiant la dynamique d’activation cérébrale au fil de la 
session ainsi que la relation entre l’activation et le changement de performance. Les résultats ont montré que 
la capacité d'apprentissage moteur repose sur l'implication parallèle des aires corticales liées à la motricité et 
responsables de la sélection de l'action et des aires pariétales associatives impliquées dans le traitement visuo-
moteur. Dans la deuxième étude de cette thèse, nous avons évalué l'intégration du transfert d'information au 
sein de sous-réseaux fonctionnels en examinant les changements dans la topologie fonctionnelle et la corres-
pondance entre la structure et la fonction en relation avec la capacité d'apprentissage moteur. Nous avons pu 
montrer que l’apprentissage moteur était associé à une plus grande flexibilité des réseaux visuels et cogni-
tifs/associatifs, suggéré par une plus grande modularité des sous-réseaux fonctionnels et un détachement du 
connectome fonctionnel par rapport au connectome structurel.  
En conclusion, cette thèse démontre que l'acquisition d'une compétence motrice dans le vieillissement en bonne 
santé repose sur l'implication et la flexibilité de régions cérébrales distribuées et organisées en réseaux. Les 
résultats obtenus élargissent les connaissances existantes sur l'apprentissage moteur et indiquent que les études 
multimodales sont importantes pour comprendre les processus fonctionnels du cerveau. 
 

Mots-clés 

Apprentissage moteur, Phase d'acquisition, Vieillissement en bonne santé, Imagerie par résonance magnétique, 
Réseaux fonctionnels, Connectomique
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 Introduction 
Motor learning is fundamental to every aspect and point in life. From the moment we are born to 

older age, we need to continuously acquire new skills to be able to interact with our environment efficiently. 
With the advancement of medicine and generally healthier life styles and economic conditions, the human 
population is significantly aging (Brown, 2015). Already in 2000, 11% of the world’s population was over 60 
years old and it is expected that this percentage will increase to 22% by 2050 (Kanasi et al., 2016). In addition 
to this overall aging of the human population, the society we are living in can be characterized as fast-paced 
with a fast and continuous appearance of new tools for everyday life. Consequently, older adults are today 
required to learn the usage of new tools very fast and accurately to keep up with our changing environment 
and stay integrated into society. Efficient manipulation of objects is learned through motor learning processes, 
which however are reduced in older adults. In particular, older adults learn at a slower rate, with reduced 
quality, and with higher difficulty to retain successfully the acquired motor memory (Voelcker-Rehage, 2008). 
The underlying processes of the age-related changes in motor learning ability have gained interest in the last 
years; the field gathered significant insights with the advancement of neuroimaging techniques (King et al., 
2013; Nackaerts et al., 2019). However, due to the diversity of paradigms and tasks used in the field, the studies 
have reported mixed results (Onushko et al., 2014; Bindra et al., 2021; Bootsma et al., 2021). Especially, very 
little amount of information is available in regard to neural correlates of the acquisition phase in older adults, 
i.e. the brain correlates while the new motor skill is acquired. In the next sections, I will introduce motor 
learning processes and stages as well as associated neural correlates in young adults, describe the age-related 
differences in motor learning, and finish by providing background information on the technique of magnetic 
resonance imaging (MRI), the main modality used in this thesis. 

1.1 Motor learning 
Motor learning can be generally defined as a complex process during which a motor skill is acquired by prac-
tice with increasing spatial and temporal accuracy (Willingham, 1998). It is a broad term that covers a wide 
range of phenomena, occurs over multiple timescales, and involves multiple brain processes (Krakauer et al., 
2019). Due to the complexity of the processes, a large number of theories of motor learning have been formu-
lated using information processing principles (Adams, 1971; Schmidt, 1975) or using dynamical systems the-
ory (Newell, n.d.). All theories are attempting to explain the processes at play between the selection of external 
stimuli that will require action (called subsequently the “environment goal”) and the resulting execution of the 
action (Figure 1 right). Krakauer and colleagues recently proposed an operational definition of motor learning 
in two parts. Motor learning refers to 1: skill acquisition during which the three steps, shown in Figure 1, are 
performed rapidly and accurately, and 2: skill maintenance which is the capacity “to maintain performance 
levels of existing skills under changing conditions” (Krakauer et al., 2019). In the research field, many different 
kinds of relatively simple motor tasks are used to study motor learning principles (left of Figure 1). In the next 
subsections, I will provide a short description of these motor learning tasks studied in the field, followed by a 
description of the different stages of the process, and finish with a review of the neural correlates of motor 
learning.  
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1.1.1 Types of motor learning 

The research domain of motor learning has been dominated by two types of motor learning: motor sequence 
and motor adaptation learning (for a review see Doyon & Benali, 2005). Before detailing those, two other 
types that are gaining interest in the field are briefly described (Figure 1). De novo learning is the process by 
which individuals learn from scratch arbitrary relationships between actions and consequences (Costa, 2011). 
It usually involves the usage of a new object, such as learning to steer the wheel of a car for instance (Haith et 
al., 2021). Though probably more relevant for daily life tasks, the literature on this type of learning is still 
sparse (Krakauer et al., 2019). Similarly, motor acuity has been very sparsely studied in humans (Shmuelof et 
al., 2014) but more in animals (Krakauer et al., 2019). It is a process solely focusing on the improvement of 
action execution rather than on goal or action selection (Figure 1) (Shmuelof et al., 2012). Instead, the motor 
learning field has rather focused on the two first phases of motor planning, namely goal and action selection.  

Motor adaptation learning is a process by which individuals learn to adapt to a new perturbation in the envi-
ronment in order to perform as well as when the perturbation was absent (Izawa et al., 2008). In this type of 
task, the action selection step needs to be revised to be able to perform accurately (knowing that the skill was 
previously learned). It is an error-based learning in which individuals realize the perturbation exists while 
doing the movement and thus correct for it online (Seidler et al., 2013). The first task using this kind of para-
digm involved prism goggles that shifted the visual field (Cohen, 1973) while nowadays, the main task imple-
menting this kind of learning is force-field adaptation task (Shadmehr & Mussa-Ivaldi, 1994). I will not further 
elaborate on this type of motor learning as the main focus of this thesis is sequence learning. 

 

Motor sequence learning refers to the execution of a coordinated sequence of actions built from the integration 
of single movements (Doyon et al., 2018). This type of task is relevant as many of our daily tasks, such as 
brushing our teeth, tying shoelaces, or typing on a keyboard for example, can actually be decomposed into a 
series of unitary actions. In experimental settings, different paradigms have been used with the most prevalent 
being the sequential finger-tapping task (SFTT) (Karni et al., 1995, 1998; Walker et al., 2002; Korman et al., 
2003; Zimerman et al., 2013; Maceira-Elvira et al., 2022) and the serial reaction time task (SRTT) (Nissen & 
Bullemer, 1987; Doyon et al., 2002; Robertson, 2007; Beukema et al., 2019). These are discrete sequence 
learning tasks that usually involve key presses with four fingers. In SFTT the subjects are asked to perform the 
sequence of elements as fast and accurately as possible while in SRTT, they are required to react as fast as 

Figure 1. Existing motor learning paradigms in the field. Types of motor learning tasks (left) and their relationship to motor planning 
and execution pathway (right) according to Krakauer et al. 2019 and Willingham et al. 1998. The lines linking the type of motor learn-
ing tasks to the motor planning and execution pathway display different thickness according to the importance of the planning/execu-

tion stage in the type of task. Image adapted from the two papers. 
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possible to cues. The performance measure of these tasks is directly related to the instructions. On one hand, 
the performance in the SFTT can be quantified in terms of number of correct sequences within a fixed period 
(Karni et al., 1995, 1998), number of errors (Korman et al., 2003), time to complete correct sequences when 
the number of sequences is fixed (Orban et al., 2010; Barakat et al., 2013), or a compound of speed and accu-
racy (King et al., 2016). On the other hand, the performance in the SRTT is usually measured in terms of 
response time (Nissen & Bullemer, 1987; Robertson, 2007). The performance improvement on these tasks is 
due to several mechanisms such as better selection of environment goals and execution of individual elements 
(Diedrichsen & Kornysheva, 2015), better motor planning before and concurrently to execution (Ariani & 
Diedrichsen, 2019), and a process of grouping individual movements in “chunks” known as chunking or bind-
ing (Verwey, 1996; Sakai et al., 2004). This binding operation means that individual movements are grouped 
and become represented as a single memory unit (Sakai et al., 2003; Yokoi & Diedrichsen, 2019).  

Although pertaining to the same type of motor learning, the SRTT and SFTT show several differences. One of 
these is the aspect of pacing: internally-paced or externally-paced respectively. When the task is externally-
paced, it entails that the response time to a stimulus comprises two components: the reaction time and the 
movement time. A drawback of this task is the impossibility to disentangle the two components of the response 
time (Krakauer et al., 2019). A self-paced task such as the SFTT does not include the reaction time to a stimulus 
and is thus more appropriate when considering the speed of learning. Another important difference to note is 
the question of whether the task involves explicit or implicit knowledge following the general scheme of 
memory formation (Tulving, 1985). In the context of sequence learning, it means whether the presence of a 
sequence is known consciously or not. In the SFTT, the knowledge of sequence is explicit while it is usually 
implicit in the SRTT.  

In the literature on motor sequence learning, most of the tasks used are discrete tasks (Jenkins et al., 1994; 
Karni et al., 1998; Boyd & Winstein, 2003; Doyon et al., 2018), such as the SFTT and SRTT. As argued in the 
comprehensive review of Krakauer, discrete sequence learning tasks might have limited relevance for everyday 
life tasks (Krakauer et al., 2019). Furthermore, they seem to involve different processes as shown in one study 
where rest following practice was only beneficial for a continuous task (Catalano, 1978), or another study 
showing differential cerebellar activation (Spencer, Verstynen, et al., 2007). A few examples of continuous 
sequence learning tasks are the pursuit-tracking task (Lang et al., 2013), and grip force tracking task (Sterr et 
al., 2009). These tasks are usually implicit, but it is feasible to make the sequence explicit (Reis et al., 2009; 
Wessel et al., 2020).  

Regarding the course of learning, motor adaptation processes occur relatively quickly, sometimes even within 
one single-session (Kitago & Krakauer, 2013). On the contrary, motor sequence learning can take days or 
weeks depending on the complexity of the task (Wulf & Shea, 2002). However, performance changes are 
already observable within-session (Karni et al., 1998). In the next section, I will describe in greater detail the 
time course of motor sequence learning.  

1.1.2 Stages of motor learning 

As described earlier, many theories of motor learning attempted to explain the mechanisms involved in the 
accurate and fast performance of an action or set of actions. Another set of theories focused instead on motor 
learning from a temporal perspective. The theories posited the existence of different stages for the acquisition 
and retention of skill. Fitts & Posner (1967) were the first to propose such a model composed of three stages: 
cognitive, associative, and autonomous stages (upper part of Figure 2). One precision to make is that these 
stages are not clearly distinct from each other; they gradually evolve from one to the other. The cognitive stage 
is the early acquisition phase during which individuals “understand” the constraints of the task. It thus involves 
the instructions and demonstrations of the instructor as well as continuous attention to cues and events. During 
this phase, cognitive resources are extensively recruited; the amount of error is initially high but drops fast, it 
is differently called the fast learning stage of the Doyon & Ungerleider (2002) model. According to the model 
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of Hikosaka and colleagues, a spatial representation of the actions is formed (Hikosaka et al., 2002) (yellow 
arrow of Figure 2), in other words, relevant spatial coordinates are selected and learned (Albouy et al., 2015).  

As learning progresses, subjects enter the associative stage, a phase during which individual units learned 
during the cognitive phase are associated to form new patterns. During this stage, gains in performance are 
small, but movements are getting more efficient and less variable (Weaver, 2015). While the initial cognitive 
phase usually occurs within the first session of training (“online learning”), this second stage shows varying 
length according to the complexity of the task, but usually occurs at least over multiple days in the context of 
motor sequence learning as described by Doyon and colleagues (Doyon & Benali, 2005). They refer to this 
stage as slow learning. In the view of Hikosaka’s, this state includes the stabilization of the spatial-allocentric 
coordinates while the motor-egocentric coordinates are starting to be formed (Hikosaka et al., 1999; Eversheim 
& Bock, 2001; Hikosaka et al., 2002). This stage was initially thought of as the one during which consolidation 
processes appear (Walker et al., 2003; Robertson, Pascual-Leone, & Miall, 2004).  Motor memory consolida-
tion takes place when a “motor memory is transformed with the passage of time, and, in the absence of further 
practice, from an initial fragile state to a more solid state” (Brashers-Krug et al., 1996). It refers to two pro-
cesses: the motor memory becomes resistant to interference (Krakauer & Shadmehr, 2006) and further perfor-
mance improvements without practice are observable (“offline learning”) (Robertson, 2005) (graph in Figure 
2). This offline learning was considered as a process that occurs exclusively after the initial acquisition of a 
motor skill, however, a recent body of research has shown that consolidation processes also occur within sec-
onds during the fast learning stage (Bönstrup et al., 2019; Robertson, 2019; Jacobacci et al., 2020; Buch et al., 
2021). Later, the presence of sleep contributes to the consolidation of motor memory (Fischer et al., 2002; 
Walker et al., 2002; Laventure et al., 2016) although it depends on the studied task (Doyon et al., 2009). 

Figure 2. Schematic representation of the different stages of motor learning and the associated areas. Comprehensive view integrat-
ing the theories of Fitts and Posner (1967), Doyon and Ungerleider (2002), Eversheim and Bock (2001), Hikosaka et al. (2002). The 

neural correlates of motor sequence learning are presented at the bottom – the representations were adapted from Dahms et al. 
(2019). Abbreviations: CB, cerebellum; DLPFC, dorsolateral prefrontal cortex; M1, primary motor cortex; PMA, premotor area; 

PPC, posterior parietal cortex; pre-SMA, presupplementary motor area; SMA, supplementary motor area. 
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The final stage called autonomous stage in Hikosaka’s model and retention stage in Doyon’s model is reached 
when no further improvement is made on the task, such that the performance has reached a stable plateau that 
is resistant to the passage of time without practice (Doyon & Benali, 2005). In this stage, the task is performed 
consistently and efficiently, the cognitive control is minimal and the performance is not impacted by environ-
mental distractions (Hikosaka et al., 2002). The motor maps reorganize at this stage (Kleim, 2004) in specific 
brain regions. The stages of motor learning having been outlined, the neural correlates over the different stages 
of motor learning will now be described.  

1.1.3 Neural correlates of motor learning 

The first reports of imaging of motor learning in humans date back to the early 1990s with Positron Emission 
Tomography (PET) (Grafton et al., 1992; Kawashima et al., 1995) and with functional MRI (fMRI) (Karni et 
al., 1995). Since then, motor learning-related brain activation has been extensively studied in healthy popula-
tions (see Halsband & Lange, 2006 for a qualitative review and Hardwick et al., 2013; Lohse et al., 2014 for 
meta-analyses). Halsband & Lange, 2006 report successive activation of several brain areas as learning pro-
gresses (Figure 3). During the early phase of learning, there is significant activation of prefrontal areas, espe-
cially in the contralateral dorsolateral prefrontal cortex (DLPFC), bilateral premotor cortices (PMC), pre-sup-
plementary motor areas (preSMA), posterior parietal areas and distributed cerebellar areas. Consistently with 
the cognitive stage of Fitts and Posner (Fitts & Posner, 1967), DLPFC is thought to be involved in coding the 
goal of a movement (Luria & Haigh, 1980; Willingham, 1998) and implementation of cognitive control (Mac-
Donald et al., 2000). 

As practice advances, the supplementary motor area (SMA) proper, primary motor cortex (M1), and posterior 
parietal cortex show increased activation. The posterior parietal cortex seems involved in the development of 
the representation of the target, particularly in the transformation of sensory information into action plans 
(Eskandar & Assad, 1999; Grefkes et al., 2004). Animal studies in monkeys showed that it is especially in-
volved in visually guided movements, acting as a sensory-motor hub for the interaction with the external en-
vironment (Taira et al., 1990; Passarelli et al., 2021). The basal ganglia and especially the caudate and striatum 
play a critical role throughout the course of learning (Albouy et al., 2013). A recent study showed that the 
caudate nucleus was dissociated in an anterior cognitive part and posterior sensorimotor part (Choi et al., 2020), 
respectively active during early versus late learning. Furthermore, in the late phase, motor learning has been 
related to significant activation in the primary motor cortex as well as the parietal cortex while activation in 
cerebellar areas decreases (Halsband & Lange, 2006; Doyon et al., 2018).  

These reports and meta-analyses are consistent with the view of interacting cortico-cerebellar and cortico-
striatal networks involved during different phases of motor learning (Doyon & Benali, 2005). While both net-
works seem involved in the early phase of motor learning, it appears that in later phases of learning, the con-
tribution of these networks differs depending on the type of task studied with the cortico-cerebellar network 

Figure 3. Time course of activation changes through the different phases of motor learning. Figure adapted from Fitzroy et al. (2021). 



Introduction 

14 

more involved in adaptation learning and the cortico-striatal more involved in sequence learning (Lohse et al., 
2014; Doyon et al., 2015).  

Apart from looking at patterns of activation changes related to motor learning, it is also possible to investigate 
the functional relationships (also referred to as functional connectivity) between these regions (Coynel et al., 
2010). Indeed, looking at brain connectivity can get us valuable insight into how learning processes induce 
changes in the way regions interact with each other (Telesford et al., 2011; Stanley et al., 2015). Heitger and 
colleagues (Heitger et al., 2012) for instance showed that multiple days of motor learning induced increased 
functional connectivity in task-related networks, but more importantly reorganization of the network towards 
a de-centralization of network function. A more recent study showed that motor learning induced a decreased 
connectivity between the visual and the motor system (Bassett et al., 2015), revealing the autonomy in these 
systems in late learning compared with early learning. In the same vein, Mattar and colleagues reported that 
resting-state sensorimotor autonomy measured at baseline was able to predict faster motor learning during 6 
weeks of training (Mattar et al., 2018). These results highlight the importance to investigate motor learning 
both in terms of patterns of activation and patterns of connectivity.  

1.2 Age-related changes in motor learning 
Healthy aging is accompanied by an overall decline in cognitive abilities (Bishop et al., 2010) and a reduction 
of motor learning capabilities (Voelcker-Rehage, 2008; Seidler et al., 2010). This effect goes along with sig-
nificant functional and structural brain changes, at the level of local patterns as well as network patterns. I will 
further describe the differences between young and older adults and their possible underlying mechanisms in 
the next sections. 

1.2.1 Behavioral changes 

Older adults display several deficits in motor performance and motor learning compared with younger popu-
lations. First, they show motor slowing (Shea et al., 2006; Lamb et al., 2016) that has been related in part to a 
shift in the speed-accuracy trade-off (T. A. Salthouse, 1979); in the sense that older adults usually favor accu-
racy over speed (Forstmann et al., 2011). Moreover, they display more motor intra-individual variability in 
motor execution (Sosnoff & Newell, 2006) and force control (Vieluf et al., 2013; Vanden Noven et al., 2014; 
Critchley et al., 2014). Interestingly, the latter-mentioned study shows that force control variability is increased 
by the presence of visual feedback suggesting that feedback processing is less efficient in older adults (Critch-
ley et al., 2014). This result was reproduced later for a similar force control task (Kenway et al., 2016) and a 
tracking task (Baweja et al., 2015). Thus, this points to the fact that decreased processing speed in aging (T. 
A. Salthouse, 2000) has a detrimental impact on motor performance.  

Apart from reduced motor performance, older adults are also impaired in aspects of motor learning, although 
the results are not completely clear. Studies showed that older adults exhibit similar motor sequence learning 
(Seidler, 2006; R. M. Brown et al., 2009) compared with young adults while other research groups reported 
significant differences between the two groups (Daselaar et al., 2003; Shea et al., 2006; Zimerman et al., 2013; 
Maceira-Elvira et al., 2022). One hypothesis for the contradictory results is the variety of motor tasks used. 
Indeed, it appears that motor learning capacities in older adults depend on the complexity of the task (Onushko 
et al., 2014; Bootsma et al., 2020) as well as with which effector the task is done (fine finger skills or whole-
hand skills for instance) (Voelcker-Rehage, 2008).  

In the context of complex tasks, several studies showed that the acquisition of the sequence was carried out 
faster for the younger group (Shea et al., 2006; Zimerman et al., 2013; Maceira-Elvira et al., 2022). These 
results could be understood in relation to the previously mentioned impaired sensory feedback processing (T. 
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A. Salthouse, 2000; Critchley et al., 2014). The difference can also be related to the more general age-related 
cognitive decline (Bishop et al., 2010) and in particular the deficits in working memory processes (Bo et al., 
2009; Anguera et al., 2011). Indeed, in both motor sequence learning (Bo et al., 2009) and motor adaptation 
learning (Anguera et al., 2011), visuospatial working memory deficits were related to the reduction in motor 
learning capabilities. Furthermore, a recently published study (Wang et al., 2020) showed that performance on 
a visuospatial working memory test predicted motor skill learning. Although deficits in working memory pro-
cesses can explain part of the reduction of motor learning capacities in older adults, they cannot account for 
all differences observed between older and young adults. An alternative explanation was proposed by a recent 
study (Maceira-Elvira et al., 2022). In this report, they showed that young adults showed a sharp improvement 
in accuracy on an SFTT task followed by a gradual increase in speed, older adults instead displayed a gradual 
increase in both measures. This was interpreted as the fact that, following Hikosaka’s model (Hikosaka et al., 
2002), the development of spatial coordinates preceded the formation of motor coordinates in young adults, 
while these processes happened in parallel in older adults. This in turn impacted the temporal appearance of 
chunking patterns, in the sense that the chunking processes were slower to develop and consolidate in older 
adults consistent with other reports (Verwey, 2010; Bottary et al., 2016; Barnhoorn et al., 2019).  

Another aspect of the reduction in motor learning abilities relates to poorer memory consolidation (Nemeth & 
Janacsek, 2011; Roig et al., 2014); this consolidation also depends on the complexity of the task (Onushko et 
al., 2014; Gudberg et al., 2015). Especially, the consolidation by sleep seems to be less efficient in older adults 
(Harand et al., 2012; Rasch & Born, 2013) with observable decrements or no changes in motor performance 
following a period of sleep in older adults whereas offline improvements were seen in younger adults (Spencer, 
Gouw, et al., 2007; R. M. Brown et al., 2009; Vien et al., 2016). Aging is accompanied by substantial sleep 
changes with macro sleep changes in terms of duration, latency to fall asleep, increased sleep fragmentation, 
and change patterns of sleep stages (Mander, Winer, et al., 2017). Furthermore, micro sleep changes are also 
seen in the sleep of older adults. The main sleep oscillations, namely slow waves and spindles, are substantially 
impacted by aging (Crowley, 2002; Mander et al., 2013). Slow waves are low-frequency oscillations (<1 Hz) 
that occur during the deep sleep stage (Steriade et al., 1993) and have been related to sleep-dependent memory 
consolidation (Wei et al., 2018). Spindles are characteristic events occurring during specific stages of sleep 
(De Gennaro & Ferrara, 2003). This sleep oscillation is a transient burst of approximately 2 seconds that occurs 
every 5 seconds on average (Achermann & Borbély, 1997) and has a frequency between 12-16 Hz (Werth et 
al., 1997). Spindles are sleep oscillations that have been related to motor learning in many reports (Tamaki et 
al., 2009; Vahdat et al., 2017; Boutin et al., 2018; Lutz et al., 2021, p. 202; see Boutin & Doyon, 2020 for a 
mechanistic review). Spindles in particular have previously been associated with sleep-dependent motor 
memory consolidation (Fogel et al., 2017; Boutin & Doyon, 2020). 

The motor learning differences between older and young adults could stem from multiple factors ranging from 
working memory deficits to sleep physiology changes. Differences are observable at both the level of acquisi-
tion and offline consolidation, however, it was pointed out that most of the differences were stemming from 
distinct improvement dynamics during the first training day (Maceira-Elvira et al., 2022). In addition, multiple 
functional and structural changes in the brain occur with age and could be related to motor learning deficits. I 
will outline these age-related changes in brain organization in the next section. 

1.2.2 Structural and functional changes 

Multiple structural changes occurring in the brain were related to the change in behavior (Hirsiger et al., 2016). 
Several cortical areas comprising frontal, motor, and posterior parietal areas exhibit shrinkage (Raz et al., 2005; 
Berghuis et al., 2019) and thinning (Fjell et al., 2009) with older age (see Figure 4 for comparison with a 
younger brain). As for the relationship between region volume and motor learning, Kennedy & Raz, 2005 
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found a strong association between the volume in the lateral prefrontal cortex and the acquisition of a percep-
tual-motor skill. Furthermore, they also report a positive correlation between the volume of the caudate nucleus 
and better performance, in late learning especially. The structure of the cerebellum was also associated with 
motor performance in older adults (Bernard & Seidler, 2013; Koppelmans et al., 2015). A recent study found 
a correlation between the grey matter volume of the cerebellum and offline changes in performance (Fogel et 
al., 2017).  

White matter also undergoes substantial modifications with aging (Jeon et al., 2012), such as reductions in 
white matter integrity (Salat et al., 2005). This loss of integrity was related to motor learning in several studies. 
For instance, degradation of the tract linking the caudate to DLPFC explained the differences in late sequence 
learning in an older population (Bennett et al., 2011). Schulz et al., 2014 found a positive correlation between 
the integrity of interhemispheric tracts connecting the primary motor and secondary motor areas with skill 
acquisition. Later, evidence showed that the integrity of the corpus callosum and the corticospinal tract was 
related to the learning rate of a motor sequence learning task in older adults (Vien et al., 2016). When investi-
gating sleep-dependent consolidation, Mander and colleagues showed a moderation effect of white matter for 
the efficacy of sleep spindles to promote motor memory consolidation (Mander et al., 2017). Similarly, a recent 
study showed that the integrity of thalamocortical tracts was indirectly related to offline gains in motor perfor-
mance. This relationship was mediated by spindle density (Vien et al., 2019).  

The investigation of functional changes related to age-related motor learning changes is more common. Gen-
erally, the reduction in motor learning capabilities has been related to hyperactivation in extensive brain re-
gions (Heuninckx et al., 2008; Goble et al., 2010). Although similar circuits are recruited when comparing 
with young adults (Turesky et al., 2016), more widespread activation in the same areas and additional bilateral 
frontal, motor, and temporal areas seem involved in the process of motor learning in older adults (King et al., 
2013; Fogel et al., 2014; Berghuis et al., 2019). The more extensive pattern of activation has been interpreted 
as a compensation process in the sense that wider activation is needed to reach comparable performance when 
compared with younger adults (Sala-Llonch et al., 2015). In particular, the bilaterality of brain activation has 
been interpreted by Cabeza and colleagues who formulated the Hemispheric Asymmetry Reduction in Old 
Adults (HAROLD) model (Cabeza, 2002). This model states that older adults show more bilateral activation 
during task execution, especially in frontal areas (Cabeza et al., 2002; Berghuis et al., 2019). It is in accordance 

Figure 4. Differences in the structure of a young compared with an older brain. 
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with the Posterior-Anterior Shift in Aging (PASA) in which Davis and colleagues argue that the deficits of 
posterior activation are compensated by increased activation in frontal areas (Davis et al., 2008). These models 
have been generated to explain the general changes in diverse cognitive tasks. When investigating motor learn-
ing specifically, a differential pattern in the activation of cortico-striatal networks has been reported and con-
tinued involvement of the hippocampal complex is observed (Rieckmann et al., 2010; King et al., 2013). The 
changes in the striatum have been related to the depletion of dopaminergic systems observable in older age 
(Kaasinen & Rinne, 2002). Interestingly, dopaminergic activation upregulation by intake of levodopa was 
beneficial for motor memory encoding in young and older adults suggesting the importance of this neurotrans-
mitter in motor learning (Flöel et al., 2005). Moreover, the sustained involvement of the hippocampus has been 
interpreted as a compensatory mechanism to counteract the reduced efficacy of the striatum (Rieckmann et al., 
2010). Hippocampus has been shown to play a crucial role in learning and memory and particularly in declar-
ative memory (Eichenbaum, 2001). This suggests that, in addition to the reports of hyperactivation in frontal 
and parietal areas (Lin et al., 2012), older adults recruit more cognitively-related neural systems to compensate 
for the motor-related regions deficits. This interpretation is in accordance with the Compensation-Related Uti-
lization of Neural Circuits (CRUNCH) model that posits that neural cognitive systems are more recruited in 
older compared with young (Reuter-Lorenz & Cappell, 2008; Reuter-Lorenz & Park, 2014). The model relates 
to the dedifferentiation hypothesis that states that brain functional activation is less specialized and segregated 
in the older brain (Sala-Llonch et al., 2015).  
 
The CRUNCH model introduces the importance of different interacting circuits or networks to produce motor 
outputs. As mentioned in the last section, aging is accompanied by decreased processing speed that could in 
part explain motor learning differences (T. A. Salthouse, 2000) and we know that processing speed relies on 
coordinated activation of multiple neural networks (Ruiz-Rizzo et al., 2019). Similarly, for motor learning, 
several studies have reported relationships between connectivity and motor learning in older adults. First, stud-
ies have investigated the relationship between baseline resting-state connectivity and subsequent motor learn-
ing. Mary and colleagues found that lower connectivity between sensorimotor and dorsal-attentional and de-
fault mode network (DMN) was predictive of better motor learning during one session of a motor sequence 
task (Mary et al., 2016). Furthermore the next year, the same research team reported increases in young but 
decreases in connectivity between the somatomotor area and the superior temporal gyrus, inferior frontal gyrus, 
cerebellum, visual areas, and parietal areas that were associated with better motor learning in older adults 
(Mary et al., 2017). This suggests that learning is associated with a decreased necessity for compensatory 
circuits. Likewise, Solesio-Jofre and colleagues observed decreases in a task-specific motor network following 
the acquisition of a motor task in older adults while the same network showed increased connectivity in young 
adults (Solesio-Jofre et al., 2018). These changes were not related to motor performance changes. A recent 
study showed that middle-aged adults displayed increased connectivity in visuospatial processing areas during 
the task compared with rest (Aznárez-Sanado et al., 2022). Furthermore, a correlation analysis showed a de-
crease in coupling between the posterior putamen and parietal areas that are consistent with previous literature 
regarding the loss of efficiency in the cortico-striatal network (Rieckmann et al., 2010). Apart from functional 
connectivity studies based on temporal correlations of time series, recent literature focused on looking at the 
relationship between brain functional topology and motor learning with the use of graph theory principles. Lin 
et al., 2016 found that older adults differed in the way network centrality was related to motor learning retention 
performance compared with young adults. While younger adults beneficiated from a redirection of information 
towards hub nodes, older adults did not. They argue that older adults lack the flexibility to reorganise functional 
networks during the processes of memory consolidation (Lin et al., 2016).  

Reviewing the literature on the neural correlates of motor learning in older adults, we can notice a gap of 
knowledge regarding the dynamics of activation during the initial training session. Indeed, although the dy-
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namics of acquisition are important for overall motor learning as pointed out by Maceira and colleagues (Ma-
ceira-Elvira et al., 2022), the previously mentioned studies use a design where the initial practice session is 
performed before imaging (Heuninckx et al., 2008; Goble et al., 2010), outside of the scanner with pre and 
post sessions (Berghuis et al., 2019) or analyze the data looking at average activation over the entire training 
session (Fogel et al., 2014; King et al., 2016). This thesis is in consequence aiming to fill this gap by looking 
at the dynamics of brain activation during the initial learning process. Furthermore, apart from the dynamics 
of brain activation, changes in the connectivity of functional networks have only been sparsely studied when 
looking at the relationship with performance changes. Therefore, the second aim of this thesis is to investigate 
how a single training session would impact brain connectivity and whether we could observe network changes 
correlates of performance changes. Before outlining in greater detail the motivation of this thesis, an overview 
of the main technique used in this thesis to acquire brain imaging data, MRI, is provided.  

1.3 Magnetic resonance-based neuroimaging 
MRI is a medical imaging technique that allows analyzing non-invasively and in vivo the anatomy and func-
tional processes of the body. The technique is widely used in the medical and research field and has the ad-
vantage that it can be employed without any radioactive tracers (such as Position Emission Tomography) or 
without releasing ionizing radiation (such as Computed Tomography scans). Instead, the technique uses a 
strong magnetic field and radiofrequency pulses to generate high spatial resolution images of tissues. The 
possible side effects of MRI are mild and include dizziness, headaches, magnetophosphenes, and nausea due 
to the extended time in the scanner as well as the risk of claustrophobic sensations due to the confined space 
(Weintraub et al., 2007). One drawback of this technique is a large number of contraindications, most of them 
due to the usage of a strong magnetic field. Subjects with metal implants, prosthetics devices, electronically-
activated devices, and other implants cannot be tested with MRI, except if the metal is paramagnetic (the latest 
prosthetics in titanium for example are safe for MRI (Kim et al., 2019)). Pregnant women are also not allowed 
to perform an MRI (Ghadimi & Sapra, 2022). Following this brief introduction to the technique, I will give a 
more precise overview of the principles of MRI, the different types of images that we can acquire and that I 
use in this thesis and I will finally introduce a recent analysis technique that gained particular interest in the 
brain imaging field: the brain connectome. 

1.3.1 History and basic principles 

MRI technique stems from the physical phenomenon of nuclear magnetic resonance (NMR) discovered in 
1938 by Isidor Rabi and colleagues (Rabi et al., 1938). The nuclei of atoms have magnetic properties (called 
magnetic moment) that make them react to a strong magnetic field. If a second oscillating magnetic field (a 
radio frequency pulse in particular) is applied, the nuclei will be perturbed, i.e. driven out of equilibrium. After 
the oscillating perturbating field stops, the nuclei will return to equilibrium through a process called relaxation. 
The time of relaxation is the most important measure in MRI as it can differ according to the properties of the 
nuclei.  
Following these principles, Lauterbur was the first one in 1973 to produce 2D and 3D images thanks to the 
NMR technique and the use of magnetic field gradients to encode spatial information (Lauterbur, 1973). He 
called this technique ‘zeugmatography’, derived from the Greek term ζενγμα, ‘that which joins together’ (Lau-
terbur, 1974). He first tested the technique on tubes filled with water, as water molecules contain hydrogen 
protons that satisfy the magnetic properties needed for nuclear magnetic resonance. The human body contains 
a large proportion of water molecules as well as fat molecules, both containing hydrogen protons (Popkin et 
al., 2010). This property allowed Mansfield and Maudsley to perform the first in vivo image of a human finger 
in 1977 (Mansfield & Maudsley, 1977) while Damadian and colleagues acquired a chest scan in the same year 
(Damadian et al., 1977). A whole-body scan was acquired one year later by the team of Mansfield (Mansfield 
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et al., 1978), which also developed the echo-planar imaging (EPI) technique considerably reducing the time of 
scanning and improving the quality of images (Mansfield, 1977; Poustchi-Amin et al., 2001).  
After this, the NMRI technique flourished for clinical use in the 1980s and the “nuclear” term was removed 
from the denomination as the word “nuclear” scared patients (Joyce, 2006). The technique improved constantly 
from this point and is now widely used in clinics as well as research settings. In these settings, MRI produces 
a strong constant magnetic field called B0 of usually 1,5 or 3 Tesla for clinics and up to 7 Tesla or higher in 
research settings (see an MRI scanner on the left and its modelization on the right of Figure 5). Different coils 
are used to send multiple different radio-frequency pulses and to receive the output signal from the element 
being scanned. We can use MRI to characterize the structure of the body parts and in particular the brain. 
Moreover, thanks to EPI imaging, we can assess the real-time function of the brain. I will briefly describe the 
different techniques used in this thesis work.  

1.3.2 Structural measures 

Two common types of structural measures acquired in clinical MRI are called T1-weighted and T2-weighted 
images (Hashemi et al., 2012). The names refer to the type of relaxation time measured when observing the 
net magnetization of the hydrogen protons in the tissue. As explained before, after applying a radiofrequency 
pulse, the protons will change their orientation so that the net magnetization is flipped 90° and thus find itself 
in the transverse plane (the x-y plane in Figure 5 right). The T1 relaxation time is the longitudinal relaxation 
time that refers to the amount of time it takes for the net magnetization of the tissue to come back to its initial 
state, meaning in alignment with B0 (Figure 5 right). The T2 is the transverse relaxation time: it is the length 
of time for the net magnetization to decay. The variability in relaxation times will produce different contrasts 
in the brightness of the resulting image. Different tissues will have different relaxation times resulting from 
variations in the density of water molecules and in the way water interacts with other molecules. These char-
acteristics permit the differentiation between the tissues (see Table 1). 
 

Tissue type T1-weighted T2-weighted 
Water dark bright 

Fat bright bright 
Cerebrospinal fluid (CSF) dark bright 

White matter light dark grey 
Grey matter dark gray light gray 

Table 1. The brightness of tissue types according to the type of image acquired. 

Figure 5. MRI environment. Picture of an MRI scanner (left) with its modelisation with orientation axes and orientation of B0, the 
main magnetic field (right). 



Introduction 

20 

T1-weighted images are high-resolution 3D images that allow observing in great detail the different structures 
of the brain such as grey matter, white matter, and cerebrospinal fluid (CSF) (Figure 6 left). The typical reso-
lution of a T1-weighted image is about 1mm3. This property makes it the common structural image used as 
template for other images displaying lower resolution such as functional images (see next section for a de-
scription). In addition to having a high-resolution 3D image of the brain, the T1 anatomical scan enables to 
perform volumetric segmentation of grey and white matter (Kennedy, 1998). T2-weighted images display the 
water and fluid as very bright as we can see in the middle image of Figure 6, this type of image is thus valuable 
in clinics to observe unhealthy tissue and diagnose diseases (Bitar et al., 2006).  

Another type of image that gained interest in the last years is diffusion-weighted images. Diffusion-weighted 
imaging is a technique that allows studying white matter structure (Le Bihan & Breton, 1985). More specifi-
cally, it allows measuring the direction of diffusion of the water molecules that are moving along white matter 
tracts. Fibers and neuronal membranes restrict the molecules’ diffusion in axons such that the molecules can 
only move in restricted directions (Chenevert et al., 1990). This process allows the mapping of white matter 
structures of the brain, i.e. the myelinated fiber bundles linking the different brain areas. Interestingly, the 
integrity of white matter has been characterized as a predictor of age and disease-related decline (Chanraud et 
al., 2010) and has also been associated with recovery and learning (Johansen-Berg et al., 2010). The most 
commonly used measure for white matter integrity is the fractional anisotropy (FA) value (Basser & Pierpaoli, 
1996). It can be derived from the diffusion-tensor model that considers in each voxel the direction of maximum 
diffusivity (Basser et al., 1994). Other models that reconstruct multiple fiber orientations within a voxel are 
available such as the ball and stick model or the nonparametric q-ball technique (Hagmann et al., 2006). These 
models allow to perform tractography analyses, a way to represent white matter tracts of the brain and thus 
visualize and quantify how brain areas are structurally interconnected (Basser et al., 2000) (Figure 6 right). 
This analysis is named structural connectivity, and it permits the evaluation of the anatomical organization of 
the brain and how they are structurally connected (Babaeeghazvini et al., 2021). 

1.3.3 Functional measures 

In addition to being able to study the structure of the brain, the MRI technique offers the exciting possibility 
to investigate the real-time functioning of the brain (among other organs). The technique of fMRI was intro-
duced in the early nineties. The first report on imaging the human brain was published in 1991 by a team of 
researchers, who observed the change in cerebral blood volume in the active visual cortex compared with rest 
(Belliveau et al., 1991) thanks to the application of an external contrast agent. In the same year but reported 
later, another group succeeded in eliciting visual activation with intrinsic blood contrast (Kwong et al., 1992; 
see the history in Kwong, 2012): the MRI contrast of oxy/deoxyhemoglobin, more commonly known as the 

Figure 6. Images showing different types of structural images possible with MRI. Left: T1-weighted image. Middle: T2-weighted 
image. P corresponds to posterior and A to anterior.  Right: Reconstructed fibres from the tractography measure of diffusion-weighted 

image. 
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blood-oxygen-level-dependence (BOLD) contrast (Ogawa, Lee, Kay, et al., 1990; Kwong, 2012). This tech-
nique was developed by Ogawa and colleagues in 1990 and first tested on rodents (Ogawa, Lee, Kay, et al., 
1990; Ogawa, Lee, Nayak, et al., 1990). It is of more interest as it does not need an external agent application 
and is an endogenous measure of oxygen consumption in the brain (Ogawa, Lee, Kay, et al., 1990). More 
precisely, the contrast of these images originates from the fact that deoxygenated hemoglobin has different 
magnetic properties compared with oxygenated hemoglobin, i.e. deoxygenated hemoglobin has higher mag-
netic susceptibility and thus disrupts the local magnetic field, which induces the MRI signal (T2* signal) to 
drop faster (Gore, 2003). The T2* signal refers to the observed transverse magnetization decay that results 
from inhomogeneities of the magnetic field (Chavhan et al., 2009).  

When neurons activate in response to a stimulus (or sequence of stimuli) (Figure 7), the need for oxygen is 
increased causing more oxygen to be brought by increased blood flow in arterioles where the neurons are 
located. The amount of oxygenated blood in this area increases and actually exceeds the needed quantity thus 
inducing an increase in the ratio of oxygenated hemoglobin to deoxygenated hemoglobin. As this ratio in-
creases, the magnetic field becomes more uniform and the BOLD signal increases (Gore, 2003). This metabolic 
response has been named the hemodynamic response and is modeled by the canonical hemodynamic response 
function (HRF) (see the legend of the red curve in Figure 7) (Buxton et al., 1998).  
To be able to observe the dynamics of the BOLD signal, the MRI sequences for functional brain imaging are 
acquiring the images very fast thanks to the technique of EPI mentioned before (Mansfield, 1977). Conse-
quently, the resolution of the images is less clear compared with structural images (one 3D volume of the brain 
for a 1mm3-resolution T1-image takes about 5min to be acquired). Furthermore, due to the speed of acquisition, 
the signal is very sensitive to small disruptions of the magnetic field resulting in magnetic susceptibility arti-
facts. Especially regions in the vicinity of air pathways will show disrupted signal, i.e. geometric distortions 
or even sometimes signal loss (Weiskopf et al., 2006). We can compensate partially for these inhomogeneities 
in post-processing with the use of an acquired field map that helps in correcting the geometric distortions 
(Hutton et al., 2002).  

The first experiments implementing fMRI used simple visual, sensory, or motor tasks to observe elicited acti-
vation in the brain (Kwong et al., 1992; Bandettini et al., 1992; Karni et al., 1995). The experimental tasks 
were usually implemented with multiple 20 to 30 seconds blocks in which the stimuli were repeated on multi-
ple occurrences like in PET experiments, another type of functional imaging (Frackowiak & Friston, 1994; 
Bandettini, 2012). This design is called block design (see the depiction of one block at the bottom of Figure 

Figure 7. The hemodynamic response function. Graph depicting the hemodynamic response function after a short event (red curve) 
or after a block-type of stimuli. 
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7).  This paradigm demonstrates a high signal-to-noise ratio as the analysis collapses across many trials and is 
suitable for discrete as well as continuous tasks (Petersen & Dubis, 2012). Another common design used in 
the field is the event-related design that consists in presenting several single stimuli with jittering delay be-
tween them (Boynton et al., 1996). This paradigm enables researchers to separate cognitive processes in events 
and accordingly disentangle the associated brain activation (Huettel, 2012).  One drawback of this design in-
volves a lower signal-to-noise ratio compared with block design (Miezin et al., 2000).   

The fMRI technique is extremely relevant to the investigation of task-related processes as it enables investi-
gators to localize precisely the brain areas involved in this process (example of a pattern of activation seeable 
for a motor task on the left of Figure 8). The analysis techniques are diverse. They comprise regions of interest 
(ROI)-based analyses which are the measure of specific local activation within a pre-defined region and are 
based on a priori hypotheses (Poldrack, 2007) while whole-brain analyses are the observation of brain activa-
tion within each volumetric unit of the images, the voxel (pixel in 3D) without a priori hypotheses. The acti-
vation analyses we just described are based on the principle of functional specialization of the brain, a concept 
dating from the nineteenth century, that states that brain functions can be attributed to specific brain areas 
(Friston, 2002; Friston, 2004). This principle originates from the study of brain-damaged individuals such as 
Phineas Cage (Bigelow, 1850) who had a frontal lobe lesion and lost his personality traits, and the case reported 
by Paul Broca on the region responsible for language (Broca, 1861).  

The second fundamental principle of brain organization is functional integration which posits that several brain 
areas interact with each other to process information and generate a function (Friston, 2004). Initially, these 
two organization principles of brain function were distinct competing views, however, it became clear that 
they are actually complementary, i.e. they are only meaningful when both are considered (Friston, 2002). fMRI 
permitted to gain great insights into the field of functional integration with the techniques of effective and 
functional connectivity (Friston, 1994). Effective connectivity has been described as “the influence one neu-
ronal system exerts over another” (Friston et al., 1993). It is informative of the causal influences of one brain 
region on another. Conversely, functional connectivity does not give information about the direction; it is 
quantifying how functionally related distributed brain regions are by looking at the statistical dependence be-
tween BOLD time-series averaged over ROI or between voxels (Babaeeghazvini et al., 2021). One can meas-
ure functional connectivity during a task (task-based connectivity) and can thus infer how brain regions interact 
with each other during task execution, but it is also possible to measure functional connectivity during rest in 
order to evaluate resting-state networks (Biswal et al., 1995). Indeed, as early as 1995, Biswal and colleagues 
discovered fortuitously that distributed regions related to motor function displayed highly correlated time 
courses of low frequency (<0.1 Hz) fluctuations in the resting brain (Biswal et al., 1995; Lowe, 2010). In other 
words, specific patterns of related activation were observed in the absence of any stimuli or goal-directed 

Figure 8. Examples of results computed from MRI data. BOLD activation analysis (left) and connectivity analysis in the form of con-
nectivity matrix (right). Own data. 
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actions (Damoiseaux et al., 2006). Furthermore, these patterns of activation revealed a set of networks (not 
just the motor-related network) that were differentially active during specific tasks and one network that was 
deactivated during any type of task; the DMN (seeable within the blue-green pattern on the left of Figure 8) 
(Damoiseaux et al., 2006). One of the main outputs of connectivity analysis is a representation of the results 
in the form of a matrix of connectivity (Figure 8 right), the basis for the brain connectome introduced in the 
next section.  

1.3.4 The brain connectome 

The human brain connectome is a concept that arose in 2005 (Hagmann, 2005; Sporns et al., 2005); it refers 
to a comprehensive representation of the brain in the form of a network composed of nodes and connections. 
It initially denoted the structural organization of the brain but is now referring to both the functional and struc-
tural aspects of connections (Seung, 2011). The main representation is in a matrix form (such as Figure 8 right). 
This view of the brain can capture the complex nature of the brain (Telesford et al, 2011); that is to say, the 
system is characterized by more than the sum of its parts, in this case, the nodes and the connections (Bassett 
& Gazzaniga, 2011). Indeed, to evaluate the characteristics of the system as a whole, complex network theory 
can be applied (Sporns, 2011) and this analysis technique has provided many insights into cognitive processes 
(Cohen & D’Esposito, 2016), and interestingly in our context, on aging (J. Sun et al., 2012; Stanley et al., 
2015; Michely et al., 2018) and learning (Bassett et al., 2011; Heitger et al., 2012). 

Several global properties of graphs are especially relevant for the description of the brain and relate to the 
previously mentioned principles of segregation and integration (J. R. Cohen & D’Esposito, 2016). These prop-
erties are named modularity and global efficiency, respectively corresponding to segregation and integration 
(Figure 9) (Sporns et al., 2004). Modularity is a measure of how well the network is organized into local 
communities (called modules) of highly interconnected nodes (Newman & Girvan, 2004). Global efficiency is 
a proxy measure of global integration and represents the ability of information to flow efficiently between 
brain regions through short paths (Latora & Marchiori, 2001). This measure is inversely related to mean path 
length, i.e. the average minimum number of steps that must be taken from one node to another (Bullmore & 
Sporns, 2009). High modularity and high global efficiency of the brain guarantee that integration and segre-
gation co-exist (Tononi et al., 1994). It should be noted however that for efficient behavior and learning in 
particular, the brain has to show plastic capacities (Green & Bavelier, 2008). This holds true when looking at 
the network properties of the brain (Shi et al., 2016).   

We discussed the fact that the brain connectome is referring to either structural or functional connections. One 
recent subfield of research has tried to understand how these two types of networks are related (Suárez et al., 
2020). Structural connectivity is known to shape functional connectivity (Honey et al., 2009, 2010) however 
the relationship between both is not fixed and can change due to age (Esfahlani et al., 2022; Pur et al., 2022) 
for instance. Furthermore, it is known that even when direct anatomical interconnections are lacking, we can 

Figure 9. Representation of a globally efficient and modular brain network. Adapted from Leite et al. 2022. 
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observe functional connections between brain regions (Honey et al., 2009). Computational models and corre-
lational techniques have been used to relate functional and structural measures (Hagmann et al., 2008; Honey 
et al., 2009). Moreover, several studies looked at the strength of coupling or uncoupling between structure and 
function and how it relates to behavior (Preti & Van De Ville, 2019; Vázquez-Rodríguez et al., 2019). 

Now that we have described the current knowledge of the literature as well as the basic methodological con-
cepts used in this thesis, we will present the motivation for this thesis as well as the research questions it is 
answering. 

1.4 Motivation  
When reviewing the literature regarding the age-related neural correlates of motor learning, we observe that 
most papers are focusing on changes following motor learning acquisition or retention (Luft & Buitrago, 2005) 
rather than within-session changes. Indeed, the acquisition phase is usually performed outside the scanner 
before the MRI sessions or in between two MRI sessions (Heuninckx et al., 2008; Goble et al., 2010; Berghuis 
et al., 2019). However, the research field has shown the importance of the early motor acquisition phase for 
later consolidation of the motor skill (Albouy et al., 2008; Gabitov et al., 2014; King et al., 2016; Santos 
Monteiro et al., 2017; Maceira-Elvira et al., 2022). When the acquisition phase is performed in the MRI scan-
ner, functional activation is usually averaged over multiple blocks (Fogel et al., 2014; King et al., 2016), thus 
not capturing the dynamics of online motor learning that occur specifically fast (Toni et al., 1998; Gabitov et 
al., 2014, 2015; Maceira-Elvira et al., 2022). Toni and colleagues for example reported that over 40 minutes 
of training, differential activation changes occurred in many cortical regions, the time course of changes having 
been modeled by a set of polynomial basis functions (Toni et al., 1998). Furthermore, the study of the relation-
ship between single-session whole-brain activation and continuous behavioral changes is already sparse in the 
young adults literature (Orban et al., 2010; Gobel et al., 2011; Choi et al., 2020) and to our knowledge, not 
existent in the aging literature. The first study of this thesis (Chapter 3) addresses this gap of knowledge by 
investigating the neural correlates during the acquisition phase of a novel motor learning task in older adults. 
We looked at the changes across the entire session of training and assessed the neural correlates of performance 
changes. As behavioral dynamics during an initial training session of motor sequence learning are substantial 
in older adults (Zimerman et al., 2013; Maceira-Elvira et al., 2022), we wondered what would be the associated 
dynamics of whole-brain activation during the training. Our goal in this first study was to understand which 
brain regions are responsible for the improvement of performance during the fast “online” learning stage. 
Furthermore, the literature stresses the different speed-accuracy relationships in motor learning in older adults 
(T. A. Salthouse, 1979; Forstmann et al., 2011; Maceira-Elvira et al., 2022), and we consequently asked our-
selves if different brain regions were responsible for the improvement in speed and/or accuracy.  
 
In addition to investigating the functional dynamics of activation during the training session in older adults, 
the second goal of the thesis was to explore relationships between behavior and changes in functional topology 
of the brain after a single training session as well as the interplay between structure and function. A view of 
the brain as a complex graph with several topological functional characteristics is beneficial to understand 
further how the brain is functionally organized (Bassett & Sporns, 2017). As outlined before, older adults rely 
on more widespread activation for good performance and sometimes in differently relevant functional net-
works (Mary et al., 2016; Aznárez-Sanado et al., 2022), interpreted as compensatory mechanisms to achieve 
similar performance (Sala-Llonch et al., 2015). Therefore, studying how the brain seen as a network with 
different functional subnetworks changes as a function of motor learning can give us additional insights into 
the processes at play in the initial phase of motor learning in older adults. Furthermore, I outlined in the pre-
vious sections the importance of structural measures as predictors of motor learning. As reported previously, 
functional connectivity can be inferred from structural connectivity (Honey et al., 2009, 2010) however the 
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relationship between both is not fixed and can change due to age (Esfahlani et al., 2022; Pur et al., 2022). The 
research on the structure-function relationship and its association with motor learning in older adults is missing 
from the literature as it is a relatively new way to look at the organization of the brain. Yet, studies have shown 
the importance of structure-function correspondence as a biomarker for cognitive impairment (Wang et al., 
2018; Webb et al., 2020) and as a relevant characteristic of brain integrity in aging (Romero-Garcia et al., 
2014; Pur et al., 2022). Thus, investigating the structure-function correspondence in the motor learning process 
in older adults is of great interest and importance and could inform us on the reorganization of the functional 
connectome in relation to the structural connectome in an older population. Therefore, the second study of this 
thesis (Chapter 4) addressed the following questions: how does better performance during the initial acquisi-
tion phase relate to changes in the functional networks’ topology, and whether these changes impacted the 
structure-function correspondence. 
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 General Methods 
In this chapter, I will describe the experimental study performed during the course of my PhD project. 

The content of this thesis is part of a bigger project, named “EconS: Enhancing sleep-dependent consolidation 
by non-invasive brain stimulation to boost motor skill acquisition in individuals after stroke”. In the next sec-
tion, I will describe the rationale of the project, present the experimental design and detail the main analyses 
performed in the context of this thesis.   

2.1 Rationale 
As introduced in the first part of the thesis, older adults show difficulties in motor learning. The mechanisms 
of this decrement are thought to depend on multiple factors, such as decreased capacity during the acquisition 
process or the consolidation. This thesis aimed at characterizing the dynamic brain processes occurring during 
the initial acquisition phase of motor learning in older adults. To do so, we investigated the BOLD activation 
correlates of motor learning during the initial phase (Chapter 3), as well as the structural, and functional con-
nectomes and their correspondence changes associated with higher motor learning ability (Chapter 4).  

The second aim of this project was to target the sleep-dependent consolidation of the motor learning process 
by non-invasive brain stimulation and assess whether this intervention would facilitate the consolidation of 
motor memory in older adults. This aspect of the project is addressed in the thesis of my colleague Maëva 
Moyne. Stimulation during sleep has previously been applied over frontal areas to improve declarative memory 
consolidation by Marshall and colleagues (Marshall et al., 2006) or to improve motor learning consolidation 
(on a finger tapping task) by Lustenberger and colleagues (Lustenberger et al., 2016). Following the method 
of the latter study, we applied a placebo-controlled transcranial alternating current stimulation (tACS) protocol 
that resembles the natural spindle pattern of young adults. The rationale behind this stimulation is to induce 
spindles in the sleeping older brain, as it has been shown that tACS can entrain endogenous oscillations of the 
brain (Helfrich et al., 2014). The stimulation was applied during a short daytime nap since evidence exists 
regarding the fact that a nap is as efficient as a night to induce sleep-dependent learning (Mednick et al., 2003). 
In parallel, electroencephalography was measured to monitor the sleep states and to be able to analyze sleep 
physiological data. The results of the effects of stimulation on motor learning ability and sleep physiology are 
presented in the work of my colleague. As a secondary analysis of this thesis, we investigate the effects of 
stimulation compared with placebo in the online learning process by comparing the BOLD activation from the 
training period with the ones of the follow-up session. The results are presented in Appendix 1. 

The third aim of this project consisted of a proof of concept for conducting the same motor and stimulation 
paradigm in a population of stroke patients. It is well-known that motor learning processes are crucial to motor 
recovery in patients who suffered from a stroke (Krakauer, 2006). Stroke is one of the leading causes of long-
term disability worldwide. Moreover, it appears that most stroke survivors are above 60 years old (Kissela et 
al., 2012). Thus, there is a strong need to understand the mechanisms of motor learning in older adults to be 
able to more precisely tune motor therapies for stroke survivors. The behavioral results of the training phase 
of motor learning in the tested stroke patients are presented in Appendix 2. 
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2.2 Study design 
The present study is a randomized, double-blinded, parallel trial implementing longitudinal assessments with 
training and post-nap period, and follow-ups at 24 hours and 7 to 10 days after the initial learning session 
(Figure 10). On Day 0, subjects were screened, and explained about the experiment in detail. After signing the 
informed consent, they filled out questionnaires to confirm the absence of MRI, transcranial electric stimula-
tion (tES), and transcranial magnetic stimulation (TMS) contraindications as well as to assess cognitive abili-
ties (the Montréal Cognitive Assessment (Nasreddine et al., 2005)), handedness (Edinburgh Handedness In-
ventory (Oldfield, 1971)) and quality of sleep (Pittsburgh Sleep Quality Index (Buysse et al., 1989)). On Day 
1, subjects were asked to refrain from drinking caffeinated drinks to increase the probability that they would 
fall asleep during the afternoon nap. After arriving at the lab, the subjects were familiarized with the motor 
task with standardized explanations and by observing the experimenter performing it. They were then allowed 
to practice in a mock scanner for one block in supine position. After making sure they understood the task, 
subjects were brought to the MRI environment and prepared for the scanning session. The first MRI session 
comprised one resting-state scan of 8min (represented by the white-cross on black background in Figure 10) 
followed by two sessions of task and ended with one last resting-state scan (Figure 19). Before the lunch break, 
subjects underwent a short TMS session to determine the hotspot on the scalp above M1 to then place the 
stimulation electrode as precisely as possible. After the lunch break, subjects were brought to the sleep lab and 
were prepared for the rest period. The experimenters installed concentric stimulation electrodes and an elec-
troencephalography-polysomnography setup to be able to monitor and record the sleep state during the rest 
period.  

The stimulation was applied during non-rapid eye movement (NREM) 2 and 3 sleep. As soon as the subjects 
reached a stable NREM2 sleep stage (at least 4 minutes) the stimulation was applied. At that point a sleep 
experimenter was unblinded and launched the stimulation, checking simultaneously that the subject was still 
asleep. Following this rest period, a follow-up MRI session was performed with resting-state, task session, and 
brain structural image acquisition. Subjects came back on the following day and 7 to 10 days later to go through 
similar follow-up measurements.    

2.2.1 Subjects 

Forty-three older subjects were included in the study (N=27 female, mean age ± std = 69.5 ± 4.6, mean later-
ality quotient Edinburgh Handedness Inventory = 83.6 ± 20.5 (Oldfield, 1971)). The following inclusion cri-
teria were respected: subjects were right-handed, healthy, and at least sixty years old, they did not have any 

Figure 10. Experimental design. Day 0: screening day with signature of the informed consent, written questionnaires and motor abilities 
tests. Day 1: Main experimental day with the initial training session in the MRI, rest period comprising sleep or wake and real stimula-

tion or placebo stimulation. 
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contraindication for tES, TMS, or MRI. These contraindications consisted in absence of neuropsychiatric dis-
eases, history of seizures, intake of psychoactive medication that potentially interacts with tES or TMS, preg-
nancy, and intake of narcotic drugs. Furthermore, we excluded individuals who were unable to provide in-
formed consent, were unable to follow the procedures of the study, and who requested to not be informed in 
case of incidental findings.  

Fifteen chronic stroke patients were further included (N=7 female, mean age ± std = 66.6 ± 12.7). Left-hand-
edness was not an exclusion criterion as our interest was in the investigation of motor learning of the affected 
hand. Within our cohort of stroke patients, 8 had the left hand affected, equivalent to right hemispheric stroke. 
The same inclusion criteria were applied regarding the contraindications for the procedures of the study. In 
addition, individuals suffering from stroke were at least 18 years old, and presented a mono-hemispheric 
stroke. The study could be performed at least six months after stroke onset. Furthermore, multiple stroke and 
cerebellar stroke were exclusion criteria.  

2.2.2 Motor task design and implementation in the MRI environment 

In our study, we chose to investigate motor learning with an explicit sequential grip force modulation task 
adapted for the MRI environment. We chose the task to be explicit to lower to the minimum the cognitive load 
and because previous evidence shows that implicit motor sequence learning was not impacted by sleep (Rob-
ertson, Pascual-Leone, & Press, 2004; Nemeth et al., 2010). Moreover, we implemented a whole-hand task to 
accommodate stroke patients who might not be dexterous enough to perform fine-grained finger movements 
such as key presses. A similar task was performed with stroke patients outside the scanner (Mooney et al., 
2020). The task was modified based on a previous study of our lab (Wessel et al., 2020), it is a modified version 
of a pinch grip force task (Reis et al., 2009) on which subjects showed improvement over a prolonged period. 

The setup consisted of an MRI-compatible gripper and a computer screen (Figure 11) placed behind the MRI 
scanner (see the photography in Figure 5). The gripper allowed to measure the gripping force applied. Depend-
ing on the force with which the gripper was pressed, a cursor moved along a vertical axis on a screen. Pressing 
the gripper strongly moved the cursor to the top of the screen whereas releasing the gripper moved the cursor 
to the bottom of the screen. The screen also displayed five horizontal bars, which are defined as targets. The 
targets were placed in relationship to each subject’s grip maximum voluntary contraction (MVC) in ascending 
order: 20%, 30%, 45% 55%, and 70% of the MVC. 70% of the MVC corresponded to the upper bar placed at 
85% of the height of the computer screen. The MVC was measured three times before the beginning of the 

Figure 11. Depiction of the motor learning task used in the experiment. Upper left: Image visible on the screen by the subjects. 
Lower left: MRI-compatible gripper. Right: Depiction of an incorrect trial and a correct trial for the same target (n°3). The red curve 

corresponds to the trajectory of the gripper from departure to verdict. The time to travel this trajectory is the time of trial. 
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task and then averaged. The task required the subject to reach the targets in a predetermined order (following 
the sequence from 1 to 5) by pressing and releasing the gripper between each reach (Home-1-Home-2-Home-
3-Home-4-Home-5-Home). They were asked to perform the task as fast and accurately as possible. If the 
subject kept the cursor more than 200ms outside of the target without moving, the target was labeled as incor-
rect (Figure 11). If the subject managed to maintain the gripper inside the target for at least 200ms the target 
was labeled as correct. The knowledge of result was made aware by the appearance of a grey frame for wrong 
targets and a white frame for correct targets (Figure 11). 

The training session consisted of 18 blocks of practice divided into two sessions (Figure 12). The retest sessions 
consisted each of one session of 9 blocks. One session of task consisted of nine successive blocks, each com-
prising three sequences of 5 targets (named trials hereafter). A fixed number of trials was chosen according to 
the literature on finger-tapping paradigms assessed in the MRI environment (Barakat et al., 2013; King et al., 
2016; S. Fogel et al., 2017) that also fixes the number of key presses per block to assure that all subjects trained 
on the same number of trials. All the sequences were the same across the blocks except for one block called a 
random block. The random block had the same amount of trials but the goal zones were in a different order.  

2.2.3 MRI procedures  

Imaging data were acquired with a 3T Magnetom Prisma scanner (Siemens Healthcare AG, Erlangen, Ger-
many) with a 64-channel head coil. Multislice whole-brain T2*-weighted functional MRI images were ob-
tained with an interleaved gradient-echo planar imaging (EPI) of 70 slices (TR= 900 ms TE=32 ms, FA = 50°, 
FOV read = 224 mm, receiver bandwidth= 2480 Hz/Px, acceleration factor=7 and voxel size of 2mm3). T1-
weighted sagittal anatomical brain image was acquired at the end of the first day, using a magnetization-pre-
pared rapid gradient echo (MP-RAGE) sequence consisting of 192 slices (TR=2300 ms, TE=2.96 ms, 
TI=900ms, FA=9°, FOV read=256 mm, GRAPPA factor = 2, receiver bandwidth= 240 Hz/Px and voxel size 
of 1 mm3). For estimating magnetic field inhomogeneities, we additionally acquired a gradient echo field map. 
For diffusion-weighted MRI, the sequence we used is called the pulsed-gradient spin-echo sequence. Diffu-
sion-weighted MRI (dMRI) data composed of 108 volume images, including 101 with diffusion weighting at 
multiple b values of 300, 700, 1000, 2000, and 3000 s/mm2 and seven without diffusion weighting (b=0), The 
following parameters were used: number of slices = 84, slice thickness = 1.6 mm, matrix size = 146 × 146, 
and in-plane resolution = 1.6 mm × 1.6 mm. This value allows having a good contrast (better contrast with 
larger b) without losing too much signal. 

Figure 12. Experimental procedure of the motor task over the days of experiment. Design of the motor task adapted for the MRI en-
vironment. 
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2.3 Main analyses 
2.3.1 Motor behavior analysis 

Forty-one datasets were finally included in the analysis as two subjects did not understand well the motor task 
or had vision difficulties in the MRI scanner. The primary outcome of the study is the behavioral motor score. 
The motor performance was first computed in terms of accuracy and average time to reach targets across trials. 
When analyzing the behavioral data, we noticed that some trials were invalid because of a limitation of the 
gripper (see one example in Figure 13). These invalid trials comprised on average over all subjects 1.69% of 
all trials of the entire experiment, they were discarded from the analysis.  

Following this quality check, accuracy was computed for each block as the percentage of correct trials per 
block. The average time per block was calculated as the mean time to reach each valid trial (the time spent 
from the moment the cursor left the home zone to the moment the cursor stopped depicted as red curves in 
Figure 13). To obtain a single compound score reflecting both speed and accuracy, we used a modified calcu-
lation as proposed by Townsend and Ashby (Townsend & Ashby, 1978) in which we computed the ratio of 
the accuracy to the average time per block (Figure 16). 

2.3.2 fMRI analysis 

Task-based functional data were preprocessed and analyzed using SPM12 
(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/; Welcome Department of Imaging Neuroscience, London, 
UK) implemented in Matlab (version R2018a). The preprocessing was performed on all sessions together and 
comprised the following steps: a two-pass realignment procedure was performed using rigid body transfor-
mations with realignment to the first image of the first session followed by a second realignment step to the 
mean functional image. After calculating a voxel displacement map from the field map, all functional volumes 
were corrected for magnetic field distortions. The mean functional image was then coregistered to the structural 
T1-image using a rigid body transformation optimized to maximize the normalized mutual information be-
tween the two images. This coregistration step was then checked for each individual and manually corrected 
if misalignment was observed. The coregistered T1-images were segmented into three types of brain tissues 
(cerebrospinal fluid, white matter, and grey matter) and normalized to standard MNI space. The normalization 

Figure 13. Depiction of the trajectory of the cursor during one entire block. The tenth trial is an invalid trial. 
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parameters were subsequently applied to the individually coregistered BOLD times series, which were finally 
spatially smoothed using an isotropic 8-mm full-width at half-maximum (FWHM) Gaussian kernel. The fol-
lowing analyses consisted of the creation of first-level general linear models for each subject. Please refer to 
Chapter 3 for a more precise description.  

For the resting-state functional data presented in Chapter 4, a similar processing pipeline was used. In addition, 
nuisance covariates regression was applied to model effects of low-frequency fluctuations, head movement 
using six movements regressors, and non-neuronal fluctuations on resting state fMRI signals. For 246 brain 
regions as defined by the Brainnetome atlas (Fan et al., 2016), a brain functional connectome was constructed 
by computing the correlation of signals between each pair of the 246 brain regions (Figure 14). To investigate 
the involvement of specific functional systems, seven cerebral networks were chosen to be assessed following 
the classification of Yeo and colleagues (Yeo et al., 2011). The assignment of brain regions to the networks 
followed suggestions from the Brainnetome website (https://atlas.brainnetome.org/download.html). To create 
a sparse connectivity matrix, we thresholded the binary network by considering that an edge is absent between 
a pair of regions when the correlation between functional signals did not survive after false discovery rate 
correction for multiple comparisons at the significant level of p ≤ 0.05. Lastly, we then computed global effi-
ciency and modularity for the whole-brain network and for the seven subnetworks using the Brain Connectivity 
Toolbox (https://sites.google.com/site/bctnet/) (Rubinov & Sporns, 2010) implemented in Matlab. 

2.3.3 Structural MRI analysis 

Using tools in MRtrix3 (https://www.mrtrix.org/) and FSL (https://fsl.fmrib.ox.ac.uk/fsl/), images of diffusion-
weighted MRI were corrected for Gibbs ringing artifacts, field inhomogeneity, susceptibility-induced off-res-
onance field, and head motion and eddy currents. By estimating the fiber orientation distribution function 
within each voxel via multi-shell multi-tissue constrained spherical deconvolution (Jeurissen et al., 2014), 
whole-brain tractography was conducted based on the probabilistic algorithm of the second-order integration 
over fiber orientation distribution (Tournier et al., 2019). A total of 10 million streamlines were generated by 
initiating them at each voxel of white matter. For the same 246 brain regions of the Brainnetome atlas (Fan, Li 
et al. 2016) in the standard space, a brain structural connectome was constructed by selecting fiber bundles 
that connected each pair of the 246 brain regions among those over the whole brain. 

2.3.4 Structure-Function correspondence 

The relationship between structure and function can be assessed in different ways depending on the model 
used to explain the structure-function coupling (Suárez et al., 2020). We chose to follow the technique de-
scribed by Vázquez-Rodríguez and colleagues (Vázquez-Rodríguez et al., 2019). A multilinear regression 

Figure 14. Parcellation scheme of the human brain of the Brainnetome Atlas in MNI space. Adapted from Fan et al. 2016. 

https://atlas.brainnetome.org/download.html
https://sites.google.com/site/bctnet/
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model was implemented to predict functional connectivity between two regions (otherwise called nodes) ac-
cording to the geometry and topology of the pair within the structural network. For each pair of nodes, we 
computed three structural measures:  the Euclidean distance between the node’s centers, the path length defined 
as the shortest path of edges between two nodes within the structural network, and the communicability as 
defined in the weighted sum of all paths and walks between the nodes. Here is the equation for calculating the 
communicability Cij between nodes i and j:  

𝐶𝐶𝑖𝑖𝑖𝑖  = [𝑒𝑒𝐴𝐴]𝑖𝑖𝑖𝑖  

with A the adjacency matrix, i and j two different nodes 
 

The measures were computed in Matlab and using Brain Connectivity Toolbox for the path length. Following 
these computations, the multiple linear regression model was constructed for each node as: 

𝐹𝐹𝐹𝐹𝑖𝑖 = 𝑏𝑏0 + 𝑏𝑏1𝐸𝐸𝐸𝐸𝑖𝑖 + 𝑏𝑏2𝑃𝑃𝑃𝑃𝑖𝑖 + 𝑏𝑏3𝐶𝐶𝑖𝑖 
with FC the vector of functional connectivity from node i to all other nodes, b0 the intercept and b1, b2, b3 the 

regression coefficients, EU the euclidean distance, PL the path length, and C the communicability. 
 

The regression coefficients and intercept were determined by ordinary least squares. Finally, the correlations 
with behavior were assessed with a multiple regression model using the goodness-of-fit measure R2 as a meas-
ure of structure-function correspondence. 
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2.4 Research questions and hypotheses 
To summarize, this thesis aimed at filling the gap in knowledge regarding the characterization of the dynamic 
brain processes during the initial acquisition phase of motor learning in older adults. To do so, we investigated 
fMRI correlates of motor learning during the initial phase (Chapter 3), as well as the structural, and functional 
connectomes and their correspondence changes associated with higher motor learning ability (Chapter 4). 

 

Study 1: Early motor skill acquisition in healthy older adults: brain correlates of the 
learning process 

Research questions: Which brain regions show activation changes involved in the early acquisition of a novel 
motor skill in older adults? Which brain regions are associated with the change of behavior in terms of com-
pound measure or speed and accuracy? Are there commonalities and/or differences between the time-modu-
lated activation and the performance-modulated activation? 

Hypotheses: We expected to observe a wide range of brain cortical regions changing within the training session 
comprising frontal, parietal and motor-related regions in addition to subcortical areas and cerebellar regions. 
We specifically hypothesized that we would observe dynamics in visual, motor, and cognitive-related cortical 
networks. Investigating brain regions associated with the change of behavior during the training session was 
never done before in older adults during the training session, this analysis was thus explorative. Nevertheless, 
as the initial training session involves the formation of spatial coordinates, we expected the frontoparietal areas 
to play a role. 

Personal contribution: Study design, data acquisition, data analysis, results interpretation, writing, and editing 
of the manuscript. 

 

Study 2: Brain Connectome Correlates of Short-Term Motor Learning in Healthy 
Older 

Research questions: How do functional brain networks change in terms of integration and segregation in rela-
tion to the change of motor performance during the acquisition of a motor skill in older adults? Does this 
change impact the structure-function correspondence? Additionally, does the structure-function correspond-
ence changes also relate to performance change? 

Hypotheses: We hypothesized that motor learning-induced brain connectome changes would be mainly driven 
by an associative frontoparietal circuit. As it is known that the aging brain is less segregated, we expected that 
the better the motor acquisition (closer to a young-like pattern), the more segregated the brain networks would 
become. Regarding the brain structure-function correspondence, the analysis was rather explorative as the 
relationship between motor skill acquisition and the structure-function correspondence is a new question of 
research.  

Personal contribution: Study design, data acquisition, results interpretation, writing, and editing of the manu-
script. 
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3.1 Abstract 
Motor skill learning is a crucial process at all ages. However, healthy aging is often accompanied by a reduction 
in motor learning capabilities. This study characterized the brain dynamics of healthy older adults during motor 
skill acquisition and identified brain regions associated with changes in different components of performance. 
Forty-three subjects participated in an fMRI study during which they learned a sequential grip force modula-
tion task. We evaluated the continuous changes of brain activation during practice as well as the continuous 
performance-related changes of brain activation.  

Practice of the motor skill was accompanied by increased activation in secondary motor and associative areas. 
In contrast, visual and frontal areas were less recruited as task execution progressed. Subjects showed signifi-
cant improvements on the motor skill. While faster execution relied on parietal areas and was inversely asso-
ciated with frontal activation, accuracy was related to activation in primary and secondary motor areas. Better 
performance was achieved by the contribution of parietal regions responsible for efficient visuomotor pro-
cessing and cortical motor regions involved in the correct action selection. The results add to the understanding 
of online motor learning in healthy older adults, showing complementary roles of specific networks for imple-
menting changes in precision and speed. 

3.2 Introduction 
Motor learning is a process by which a motor skill is acquired with repeated practice. It is characterized by a 
succession of stages in which performance increases while functional and structural brain changes occur (Da-
yan & Cohen, 2011). These stages are described as an initial fast learning stage (sometimes referred to as 
“early online learning”) that occurs within the first minutes of practice of the motor task, followed by a slow 
learning stage unfolding over multiple days and involving several sessions of practice interleaved with periods 
of rest (Doyon & Benali, 2005). With age, the ability to learn new motor skills is reduced (Brown et al., 2009; 
King et al., 2013), and these age-related differences have been associated with different mechanisms such as 
the degree of task complexity (Voelcker-Rehage, 2008; Onushko et al., 2014), a decrease in processing speed 
(Salthouse, 2000; Critchley et al., 2014) or a more general cognitive decline that would impact motor learning 
(Bo et al., 2009; Bishop et al., 2010; Anguera et al., 2011). Regarding the initial fast learning stage, while 
several studies reported similar improvements in older compared to younger adults (Seidler, 2006; Brown et 
al., 2009), other reports significant differences (Daselaar et al., 2003; Shea et al., 2006; Zimerman et al., 2013; 
Maceira-Elvira et al., 2022). 

The neural correlates of the initial motor learning acquisition phase have been extensively studied in young 
adults thanks to functional magnetic resonance imaging (MRI) (see Dayan & Cohen, 2011 for review; Hard-
wick et al., 2013; Lohse et al., 2014 for meta-analyses). It is now well-accepted that the first acquisition of a 
motor skill relies on two different, but interacting networks, namely a cortico-cerebellar and a cortico-striatal 
network (Hikosaka et al., 2002; Doyon & Benali, 2005). Within the cortical correlates, fronto-parietal associ-
ative areas are thought to be recruited when the spatial coordinates of the motor skill are acquired, a process 
occurring fast, while sensorimotor areas are involved in the acquisition of motor coordinates, a process occur-
ring on a slower timescale (Hikosaka et al., 2002). In addition to the cortical correlates, subcortical regions, 
i.e., the cerebellum and the basal ganglia, have been shown to be involved in a cortico-cerebellar and cortico-
striatal circuit (Doyon et al., 2003), both recruited in the early motor learning phase. In the aging population, 
the circuits recruited during motor skill acquisition are similar (Lin et al., 2012; Fogel et al., 2014; Berghuis et 
al., 2019), but with more widespread patterns of activation and additional bilateral frontal, motor and temporal 
areas (Voelcker-Rehage, 2008; Turesky et al., 2016; Berghuis et al., 2019). Several cognitive models were 
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proposed in the recent years to explain the compensatory brain mechanisms in the aging population: the Hem-
ispheric Asymmetry Reduction in Old Adults (HAROLD) model (Cabeza, 2002) states that more bilateral 
activation in motor and frontal areas allow to reach comparable performance to young adults, the Compensa-
tion-Related Utilization of Neural Circuits Hypothesis (CRUNCH) (Reuter-Lorenz & Cappell, 2008) argue 
that higher neural recruitment of cognitive circuits occurs in older adults, finally the Posterior-Anterior Shift 
(PASA) model (Davis et al., 2008) explains age-related reduction in activation of posterior brain regions as a 
manifestation of the impairment in sensory processing that would be compensated by increases in activation 
of frontal regions. 

Most of studies investigating single-session motor learning usually employ a pre-post design with a practice 
period performed outside of the MRI scanner (Boe et al., 2012), or compare an already-learned task to a new 
task (Jenkins et al. 1994). However, averaging activation over blocks may not capture faithfully the dynamics 
of online motor learning (Gabitov et al., 2015).  

Within-session dynamic changes were only sparsely studied in young adults (Toni et al., 1998; Floyer-Lea & 
Matthews, 2005; Boe et al., 2012) and, to the best of our knowledge, not investigated in older adults. Further-
more, the relationship between single-session whole-brain activation and continuous behavioral changes is 
quite scarce (Orban et al., 2010; Gobel et al., 2011; Choi et al., 2020), and usually include one component of 
performance, i.e., either speed or accuracy. Improvement on the finger tapping task for example, one of the 
most used tasks in the motor learning field, is generally described in terms of speed (Orban et al., 2010). A 
few studies however, looked at different components of motor performance, but either in young adults 
(Lefebvre et al., 2012) or on multiple-day learning (Wadden et al., 2013).  

Considering the limited amount of reports on the within-session brain changes and their relationship with per-
formance during the acquisition of a motor skill in older adults, we designed a task-based whole-brain fMRI 
study involving a novel motor learning task and assessed practice-related and performance-related brain acti-
vation during the practice session. We expected to see behavioral improvements on the task and to detect 
concurrent distinct brain dynamics in visual, motor and cognitive areas. Among these dynamics in brain acti-
vation, we investigated the regions specifically involved in the change of performance. Furthermore, following 
the work of Wadden and colleagues (Wadden et al., 2013), we assessed if we could also observe different 
neural patterns associated with the different components of performance improvement, i.e. speed and accuracy. 

3.3 Methods 
3.3.1 Subjects 

Forty-three healthy right-handed older adults participated in the study (N=27 female, mean age ± std = 69.5 ± 
4.6, age range = 61 – 80 years old, mean laterality quotient Edinburgh Handedness Inventory = 83.6 ± 20.5 
(Oldfield, 1971)). We included subjects with the following inclusion criteria: older than or equal to 60 years 
old, absence of contraindication for transcranial electric stimulation (tES), transcranial magnetic stimulation 
(TMS), or magnetic resonance imaging (MRI). These contraindications comprised neuropsychiatric diseases, 
history of seizures, intake of psychoactive medication that potentially interacts with tES or TMS, pregnancy, 
intake of narcotic drugs. Furthermore, we excluded subjects requesting not to be informed in case of incidental 
findings. The data of N = 41 subjects were finally included in the analysis as two subjects did not understand 
well the motor task or had vision difficulties in the MRI scanner. The study was carried out in accordance to 
the Declaration of Helsinki. Written informed consent was obtained from all subjects. Approval was obtained 
from the cantonal ethics committee Geneva, Switzerland (project number: 2017-00224). 
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3.3.2 Experimental design 

The experiment was designed as a multiple-days study. On Day 0, subjects were screened and were explained 
the experiment in detail. They filled questionnaires to confirm the absence of MRI, tES and TMS contraindi-
cations as well as to assess the cognitive abilities (the Montréal Cognitive Assessment (Nasreddine et al., 
2005)), handedness (Edinburgh Handedness Inventory (Oldfield, 1971)) and quality of sleep (Pittsburh Sleep 
Quality Index (Buysse et al., 1989)).   

On Day 1, subjects were asked to refrain from drinking caffeinated drinks. After arriving at the lab, the subjects 
were familiarized to the motor task with standardized explanations and by observing the experimenter per-
forming it (Figure 15A). They were then asked to practice in a mock scanner for one block in supine position. 
The first MRI session comprised one resting-state scan of 8 minutes followed by two sessions of task and 
ended with one last resting-state scan (Figure 15A). During the afternoon, subjects underwent a non-invasive 
brain stimulation, sham-controlled intervention associated with a period of sleep. Following the sleep period, 
follow-up behavioral sessions were performed over multiple days to assess the effect of the stimulation on 
behavioral improvement. As the main focus of the present study is understanding the neural dynamics during 
the initial fast learning session, results of the resting-state scans and of the effects of stimulation will be pre-
sented elsewhere.  

 

3.3.3 Motor learning task 

The motor skill learning task consisted of a sequential grip force modulation task (SGFMT) adapted from Reis 
and colleagues (Reis et al., 2009) and from a previous study in the lab (Wessel et al., 2020). It was implemented 
in Matlab (version R2018a) and displayed in the MRI scanner with a screen behind the head of the subjects 

Figure 15. MRI training session. A: Subjects were familiarized to the task in the mock scanner and were then brought to the MRI envi-
ronment for resting-state sessions and task-based fMRI. B: Screen of the sequential grip force modulation task (SGFMT). Subjects nav-
igated a cursor as fast and accurately as possible by modulating their grip force between a homezone and each of five numbered target 
zones following a sequential order. C: MRI-compatible fibre optic grip force sensor used in the present study. D: Block design of one 
session of the fMRI motor task. The session consisted in 9 blocks of three sequences. The rest periods consisted in a fixation cross. 
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who could see it thanks to a tilted mirror above their eyes. The grip forces were sampled with a fibre optic grip 
force sensor (Current designs, Inc., Philadelphia, PA, USA) compatible with the MRI environment (Figure 
15C). Subjects controlled an onscreen cursor with the grip force sensor using their non-dominant left hand. 
The cursor moved vertically upwards with increasing force while it went back to the initial position at the 
bottom of the screen when the subject released the gripper. The subjects were asked to navigate the cursor 
between a homezone and 5 target zones (Figure 15B) scaled to individual maximal force measured before the 
start of the task. The topmost bar corresponded to 70% of the maximal force and placed at 85% of the height 
of the computer screen. The instruction was to place the cursor in each target by following the sequence from 
1 to 5 as fast and accurately as possible and by releasing the gripper after reaching each target. When the cursor 
reached the correct target and was maintained in the target for 200 ms, the success was made aware by the 
appearance of a white frame on the target. If the cursor stopped for more than 200 ms outside of the correct 
target, the trial was labeled as being wrong and the failure was notified by the appearance of a dark grey frame 
(Figure 15B). Each session of task consisted of eight blocks of practice (Figure 15D) of the learning sequence 
and one block of random sequence placed at the 5th block. Each block was preceded by a countdown from 5 
to 1 displayed on the screen. No other starting cues were given and the movements of the cursor were self-
paced. Each block terminated when three sequences were performed (regardless of accuracy of the movements) 
and were followed by 15s of rest indicated by a white cross on black background. 

3.3.4 Behavioral data analysis 

The motor performance was first computed in terms of accuracy and average time to reach targets across trials 
(Figure 16). When analyzing the behavioral data, we noticed that some trials were invalid because of a limita-
tion of the gripper. These invalid trials were removed from the analysis. Following this quality check, accuracy 
was computed for each block as the percentage of correct trials per block. The average time per block was 
calculated as the mean time to reach each valid trial (the time spent from the moment the cursor left the home 
zone to the moment the cursor stopped). In order to obtain a single compound score reflecting both speed and 
accuracy, we used a modified calculation as proposed by Townsend and Ashby (Townsend & Ashby, 1978) 
in which we computed the ratio of the accuracy to the average time per block. For the assessment of online 
learning, we performed a paired samples t-test analysis taking the average of the first and last two blocks of 
the training. Normality was tested with Shapiro-Wilk statistical test (Shapiro & Wilk, 1965). 

3.3.5 fMRI Data Acquisition and Analysis 

Imaging data were acquired with a 3T Magnetom Prisma scanner (Siemens Healthcare AG, Erlangen, Ger-
many) with a 64-channel coil. Multislice whole-brain T2*-weighted functional MRI images were obtained 
with an interleaved gradient-echo planar imaging (EPI) of 70 slices (TR = 900 ms TE = 32 ms, FA = 50°, FOV 
read = 224 mm, receiver bandwidth = 2480 Hz/Px, acceleration factor = 7 and voxel size = 2mm3). A T1-
weighted sagittal anatomical brain image was acquired at the end of the first day, using a magnetization-pre-
pared rapid gradient echo (MP-RAGE) sequence consisting of 192 slices (TR = 2300 ms, TE = 2.96 ms, TI = 
900ms, FA = 9°, FOV read = 256 mm, GRAPPA factor = 2, receiver bandwidth = 240 Hz/Px and voxel size 
= 1mm3). For estimating magnetic field inhomogeneities, we additionally acquired a gradient echo field map. 

Functional data was preprocessed and analyzed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/soft-
ware/spm12/; Wellcome Centre for Human Neuroimaging, University College London, London, UK) imple-
mented in Matlab (version R2018a). The preprocessing comprised the following steps: realignment and cor-
rection for magnetic field distortions, coregistration of the mean functional image to the structural T1-image, 
segmentation of the T1 image into three types of brain tissues (cerebrospinal fluid, white matter and grey 
matter) and normalization to standard MNI space. The normalization parameters were subsequently applied to 
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the BOLD times series, which were finally spatially smoothed using an isotropic 8-mm full-width at half-
maximum (FWHM) Gaussian kernel. 

Statistical analysis consisted of general linear models (GLM) that account for fixed and random effects. The 
subject-level model included all sessions, each of them modelled with block regressors coding for the practiced 
sequence, for the preparation phase (countdown) and for the random sequence (fifth block). These regressors 
consisted of box cars convolved with the canonical hemodynamic response function. Global signals of cere-
brospinal fluid and white matter and six movement parameters were included as covariates of non-interest. 
Spike regressors derived from thresholding the framewise displacement (FD) signal (Power et al., 2012) at 2 
mm were also included. We adopted a liberal threshold for the FD considering the relatively large head move-
ments in older adults (Savalia et al., 2017). High-pass filtering was implemented in the design matrix using a 
cutoff period of 128 s to remove low-frequency drifts from the time series. Serial correlations were estimated 
using an autoregressive (order 1) model and a restricted maximum likelihood (ReML) algorithm. Separate 
models were created to assess the time modulation effect (model 2) and the performance modulation effect 
(model 3), including each of them as orthogonalized parametric regressors. Only first order modulation was 
considered for the models. The main performance measure used was the compound measure. Separate second-
ary analyses were performed post-hoc to understand whether the brain regions found to be associated with the 
compound measure contributed differently to accuracy and speed. The other covariates of non-interest were 
the same as the first model described above. 

To obtain significant activation induced by the task during the training session, a linear contrast tested the main 
effect of practice on the two training sessions in model 1. The same contrasts were computed for the time-
modulated regressor in model 2 and the performance-modulated regressor in model 3. These contrasts allowed 
to generate statistical parametric maps [SPM(T)] at the individual level. The resulting contrast images were 
entered in a second-level analysis, accounting for intersubject variance and allowing inferences to be made at 
the population level.  

In the second-level analyses of the training session, one-sample t-tests were run on the entire sample as sub-
jects. This test was performed for execution-related activation, time-modulated activation and performance-
modulated activation. Additional conjunction analyses were carried out to assess the distributional relationship 
between time-modulated activation and performance-modulated activation. To do so, we computed the one 
sample t-tests of the performance-modulated activation with inclusive or exclusive masks of the time-modu-
lated activation, thresholded at p<0.05 uncorrected, and inversely. For all fMRI results presented in the next 
section, we adopted a voxel-wise threshold of p<0.001 uncorrected and a cluster-extent based threshold of 
p<0.05 corrected for multiple comparisons using family-wise error (FWE) rate. The anatomical automatic 
labeling (AAL2) atlas (Rolls et al., 2015) was used to label significant regions of activation. 

3.4 Results 
3.4.1 Motor learning task 

Do older adults improve during the motor learning task? 

To test whether the initial scores and end-of-training scores of the compound measure were different, we per-
formed a paired sample t-test on the average of the first (mean ± std = 39.3 ± 15.1) and last (mean ± std = 59.5 
± 18.7) two blocks of the compound measure. This analysis showed a significant difference with t (40) = -
8.05, p < .001. Cohen’s d was estimated at -1.26 which is a large effect based on Cohen’s guidelines (Cohen, 
1992) (Figure 16). Secondary analyses also showed significant improvement between initial and end-of-train-
ing scores of accuracy t (40) = -3.6, p < .001, Cohen’s d = -0.56 and average time to complete trials t (40) = 
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8.1, p < .001, Cohen’s d = -1.27. We tested whether the learning was sequence specific (Supplementary infor-
mation and Supplementary Figure 1, Supplementary Figure 2 and Supplementary Table 1). We could not ob-
serve a significant behavioral difference between the training and random blocks. However, when looking at 
the BOLD activation contrasts in Session 2 in particular, we observed significant difference in activation with 
more activation in cingulate middle areas, supplementary motor area, frontal opercular areas, cerebellar areas 
and right primary motor area. These two pieces of evidence are contradictory, they suggest that there are both 
a sequence-specific and sequence-independent learning occurring during the first acquisition phase. 

 

3.4.2 fMRI results 

Which brain regions are involved in the execution of the task? 

To assess which brain regions are activated during the initial encoding of the motor learning task, we computed 
a one sample t-test on the average contrast of the two learning sessions. This analysis revealed activation in a 
wide network comprising primary and secondary motor regions, subcortical nuclei, visual, associative and 
frontal areas (Supplementary Figure 3 and Supplementary Table 2).  

Which brain regions show activation changes during the training session? 

To investigate the dynamics of brain activation related to the task, we included a regressor modulated by time 
in the model. One sample t-tests were performed individually for each learning session. We observe specific 
patterns as training advances (Figure 17). Some regions increase linearly in both sessions, such as the bilateral 

Figure 16. Evolution of performance measures throughout training. (A) a compound measure of (B) accuracy and (C) time. The train-
ing consisted of two learning sessions of 8 blocks of practice of the training sequence and two random blocks (depicted in orange in 

the figure). Shaded areas are the standard error of the mean (SEM). *** refers to statistical significance with p-value inferior to 0.001. 
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Table 2. fMRI results of the time-modulated regions during the training sessions. Areas showing increasing activation (A) and areas 
showing decreasing activation (B). Results are reported at uncorrected p<0.001 at the voxel level, cluster level p-FWE<0.05. 

premotor cortices, contralateral (right) primary motor cortex, ipsilateral (left) superior parietal lobule (see Ta-
ble 2A). Other regions decrease linearly in both sessions, contralateral ventromedial prefrontal cortex, bilateral 
anterior and middle cingulate areas and bilateral thalami (Table 2B). 

In contrast, activation in some brain areas linearly changes only in the early or the later part of the learning 
(first vs. second session). In the first training session, we observe increases in bilateral inferior parietal areas, 
left visual middle occipital area, right hippocampus, right cerebellum and vermis and decreases in left soma-
tosensory area and right rolandic operculum. In the second session, the results show increases in right supple-
mentary motor area, left somatosensory area and left caudate. We further see decreases in this second session 
in multiple visual areas and cerebellar areas (Table 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. fMRI results of the time-modulated regions during the training sessions. First session depicted on top (A) and second ses-
sion depicted below (B). Blue-green regions have their activation decreasing linearly during the session while red-yellow regions 

have their activation increasing during the session. Activation maps are depicted at p-unc<0.001. 
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Brain regions with BOLD activation associated with behavioral change  

To investigate the association between brain activation and behavior, a parametric modulation analysis was 
performed by including the compound measure per block as a parametric regressor. The results at the group 
level indicate that areas associated with the improvement of performance (online learning aspect) are bilateral 
premotor areas, supplementary motor areas, part of the primary motor and superior parietal areas. In the sig-
nificant cluster, voxels in the ipsilateral primary motor cortex are significant, the large part of the cluster is 
however located in the contralateral motor areas to the trained hand, as outlined in Figure 18A. In contrast, 
areas associated with worse performance comprise frontal and anterior cingulate areas (Figure 18A and Table 
3B). 

Figure 18. fMRI results of the performance-modulated regions during the training sessions. Regions associated with the compound 
measure depicted on top (A), the regions associated with accuracy in (B) and the regions associated with average time of trials in (C). In 

figure C, the color bars were reversed to be consistent with the other subfigures. Blue-green regions have their activation negatively 
associated with better performance and red-yellow regions are positively associated. Activation maps are depicted at p-unc<0.001. 

Table 3. fMRI results of the performance-modulated regions during both trainings. Areas positively associated with performance (A) 
and areas negatively associated with performance (B). Results are reported at uncorrected p<0.001 at the voxel level, cluster level p- 

FWE<0.05. 
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Brain regions with BOLD activation associated with speed and accuracy 

Speed and accuracy as performance scores have been associated with different neural systems (Wadden et al., 
2013; Perri et al., 2014). We aimed to investigate whether this was also the case in the SGFMT. Separate 
models with each performance measure revealed that the premotor and somatomotor areas were positively 
associated with accuracy while activation in frontal cingulate areas and parietal areas were related to time 
(Figure 18B-C). More specifically, longer average time of trials was associated with higher activation in frontal 
areas and lower activation in bilateral superior parietal areas.   

Do we observe commonalities and/or differences between time-modulated activation and performance-mod-
ulated activation? 

As a supplementary analysis, we looked at the conjunction between the practice and compound-related activa-
tion. We could observe that most brain regions associated with performance show a linear change in their 
activation over the course of practice (Supplementary Figure 4A). The exception was found for the activation 
of the contralateral postcentral area (S1), which showed a positive association with performance, but did not 
increase over time (Supplementary Figure 4B). Inversely, we could observe brain regions, such as visual areas 
and cerebellar areas changing over time, but were not related to the change of behavior (Supplementary Figure 
5B). 

3.5 Discussion 
In this study, we examined the neural correlates of short-term online learning of a new motor skill performed 
in the MRI by healthy older adults. The implementation of the SGFMT was feasible in the MRI environment 
and older adults improved significantly on this task during the training sessions, showing that acquisition of 
the motor skill is possible in our aging cohort. In addition to practice-related dynamics of brain activation in a 
wide range of areas of the motor network, we determined here specific brain regions associated with the fast 
change in performance during the learning process. Worthy of note, we observed regions differentially asso-
ciated with the change of accuracy or time. Increases in accuracy were associated with increased activation in 
parts of the cortical sensorimotor network: bilateral primary somatomotor areas and premotor areas. Con-
versely, decreases in time of execution were related to activation in a fronto-parietal network with increased 
activation in bilateral superior parietal areas and decreased activation in prefrontal and anterior cingulate areas 
associated with behavioral improvement.  

Motor skill acquisition has been extensively studied with two types of paradigms, motor adaptation and motor 
sequence learning (Hardwick et al., 2013; Doyon et al., 2015; Seidler & Meehan, 2015; Maceira-Elvira et al., 
2022). In the motor sequence learning literature, most studies investigate discrete sequence tasks (Karni et al., 
1998; Hikosaka et al., 2002), but this paradigm has recently been critically reviewed (Krakauer et al., 2019) 
regarding its relevance to daily life activities. In contrast, it was posited that continuous tasks, such as the one 
used in the present study, are probably more comparable to real life skills (Reis et al., 2009; Wadden et al., 
2013; Choi et al., 2020). In the present study, we show that a cohort of older adults, a population showing 
impairment in motor performance (Seidler, 2006; Voelcker-Rehage, 2008; Seidler et al., 2010), can improve 
significantly on this task. More specifically, although evidence exists regarding the impairment in the precision 
of force modulation in older adults (Voelcker-Rehage & Alberts, 2005), we show that a grip force modulation 
task could be even learned in a short session by older adults. Worthy of note, the sequential component of this 
task is not clear. Indeed, we could not observe a significant behavioral difference between the random blocks 
and the learned sequence blocks suggesting that our cohort might be learning an aspect of the task that is 
sequence-independent. Since our cohort were only explained the task and tried it briefly before the initial 
training it might be that our subjects are learning the visuomotor mapping between the amount of force to 
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apply to control the cursor. In that sense, the grip force modulation task might be closer to a de novo learning 
task as described by Krakauer and colleagues (Krakauer et al. 2019). Nonetheless, an additional analysis of 
the BOLD activation during the different blocks revealed that there is differential activation during the random 
blocks compared to the learned sequence blocks with more activity in visual areas suggesting that subjects rely 
more on visual feedback during random blocks. As such, the grip force modulation task could be seen as a 
mixture of different types of tasks, both sequence and de novo visuomotor learning task. 

Activation elicited by the task 

This is the first online evaluation of the SGMT by means of fMRI, therefore we firstly want to discuss the 
findings in the light of brain activation determined during other motor learning tasks. Consistently with the 
literature (Sterr et al., 2009; Hardwick et al., 2013; Doyon et al., 2015), a wide network comprising bilateral 
cerebellum, subcortical areas and especially basal ganglia and thalamic nuclei, cortical motor, visual and as-
sociative cognitive areas is involved in the first acquisition of the task. Furthermore, the observed bilaterality 
of activation is consistent with the HAROLD model (Cabeza, 2002).  

Practice-related changes in brain activation 

Changes in brain activation within a single-training session have been studied in young adults (Floyer-Lea & 
Matthews, 2005; Tang et al., 2009; Orban et al., 2010), but to the best of our knowledge, not investigated in 
older adults. Our results show similar results to the corpus of literature of young adults. Activation of the 
cerebellum, a region known to be involved in the early phase of learning when error is high and the movement 
needs to be corrected quickly (Doyon et al., 2003; Krakauer et al., 2019), first increases followed by decreases 
in the second session when the accuracy becomes more stable (Figure 16). This is consistent with the model 
posited by Doyon and colleagues (Doyon et al., 2003; Doyon & Benali, 2005; Doyon et al., 2018), which states 
that a cortico-cerebellar network is crucial to the early encoding of motor programs. In this model, the re-
searchers present the dynamics of the cortical regions, which consist of constant involvement of motor cortical 
regions and parietal cortices while they report decreased involvement of hippocampus and frontal associative 
areas. Our results are partially consistent with this model, as we observe a decrease in the time course of 
activation of frontal areas and an increase in activation of parietal areas, suggesting that cognitive processes 
are less needed while procedural processes are increasing as training advances (Sakai et al., 1998). Activation 
of premotor areas is consistently increasing throughout the training while the supplementary motor area acti-
vation is especially increasing in the second session. These areas are thought to play a role in the integration 
of working memory and sensory information for the selection of action (Chen et al., 1995; Hernández et al., 
2002; Floyer-Lea & Matthews, 2005; Tang et al., 2009). Differently to the model of Doyon, we find substantial 
decreases in the visual system, especially in the second session. This observation suggests more efficient 
visuospatial processing in the end of the training as in a report of Berghuis and colleagues (Berghuis et al., 
2019) and stresses the difference between discrete sequence learning tasks and a continuous task with visual 
feedback, comparable to tracking tasks (Sterr et al., 2009). Finally, one unexpected result was a consistent 
decrease of activation in the thalamus observable in both sessions of the training which is rarely described. 
This result is probably associated to the presence of motor fatigue as suggested recently (Hou et al., 2016). 
One interesting aspect to point out in this analysis is that in contrast to other studies that assessed pre-post 
changes (Floyer-Lea & Matthews, 2005; Boe et al., 2012), we assessed the within session changes occurring 
in the brain while subjects performed the task. In summary, we demonstrated dynamical changes towards 
decreases in cognitive areas and visual areas and increases in associative and motor areas during the initial 
acquisition of a motor learning task. 
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Performance-related brain activation 

In addition to looking at the overall changes in a single training, we investigated the relationship between 
activation and performance changes throughout the training. We observed that contralateral primary motor, 
bilateral secondary motor and somatosensory areas and bilateral superior parietal areas were positively asso-
ciated with better performance, while medial frontal and anterior cingulate areas were negatively associated. 
As for the positive association, previous research reports similar results in finger tapping tasks (Orban et al., 
2010, 2011; Albouy et al., 2012; Gabitov et al., 2015) and in tracking tasks (Kranczioch et al., 2008; Sterr et 
al., 2009). The association between performance and cerebellar activation suggested in several studies (Orban 
et al., 2010; Albouy et al., 2012; Wadden et al., 2013) is not clear in the present study. This differential result 
might be explained by the fact that in the second session of training, despite the fact that performance continues 
to increase, a decrease in cerebellar activation was observed. It might be that the cerebellum was strongly 
implicated in error correction leading to improvement of performance in the first session, but not in the second, 
when errors were already reduced and the performance improvement was relying on other mechanisms such 
as e.g., speed improvement. The cerebellum is thought to be involved in the generation of internal models 
(Shadmehr & Krakauer, 2008), which would be corrected at the early stages of training in order to reduce 
error. It could be that during the second session, the internal model is rather accurate thus leading to decreased 
involvement of the cerebellum. We also found negative modulation with performance in medial prefrontal and 
cingulate areas. These areas are known to be engaged in cognitive processes and effort (Devinsky et al., 1995; 
Pessiglione et al., 2018) indicating that poorer performance led to increased effort. Most of the above-men-
tioned areas were present in practice-related and performance-related activation (Supplementary Figure 4). 
The somatosensory area, however, was modulated by better performance, but not by time. A recent study has 
shown that the contralateral somatosensory cortex is involved in motor planning in order to achieve better 
movement control (Ariani et al., 2022). In our context, we hypothesize that, although activation in the soma-
tosensory cortex did not change due to the sensory stimulus staying constant, higher activation in the area 
resulted in better motor planning and thus in better performance. Inversely, we could observe that activation 
in insula, visual, temporal and lateral frontal areas were decreased over time, but were not related to motor 
performance. This suggests that these areas are decreasing due to the effect of repetition, but their change is 
not strongly associated with the motor behavioral improvement. 

Usually, improvement on motor sequence learning tasks is assessed in terms of changes in speed rather than 
accuracy, as accuracy ceils relatively quickly (Boutin et al., 2013; Fitzroy et al., 2021). However, this did not 
occur in the present task (see Figure 16), and it allowed to investigate whether different brain areas were 
involved in these specific aspects of motor performance. Similarly to Wadden and colleagues, who employ a 
joystick-tracking task (Wadden et al., 2013), we could disentangle different networks of brain activation re-
lated to the time to complete the task and the accuracy while performing the task. Improvement in accuracy 
was related to premotor and supplementary motor areas, whereas improvement in time was associated with 
higher activation in parietal areas and inversely related to medial frontal and anterior cingulate areas. Good 
accuracy in the present task involves selecting the good timepoint to stop increasing grip force, this is con-
sistent with the view that premotor cortex and supplementary motor area are involved in the temporal control 
of movement (Halsband et al., 1993). Additionally, the involvement of somatosensory areas in the accurate 
maintenance of force has been reported before (Mayhew et al., 2017). Lower time to complete trials (better 
performance) has been suggested to be associated with effective visuo-motor processing implemented in pari-
etal areas (Coull et al., 1996; Grefkes et al., 2004). Indeed, the superior parietal lobule is thought to act as a 
sensory-motor hub for the interaction with external environment (Passarelli et al., 2021) and has been shown 
to play a role in the rapid processing of visual information in particular (Coull et al., 1996). Inversely when 
the time to reach a target increases, it implies that a sustained effort is made by the subject and thus the anterior 
cingulate areas get more involved. This area has been proposed as a region responsible for the on-line detection 
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of processing conflicts that will lead to deteriorating performance (Carter et al., 1999). In other words, its 
activation reflects the level of conflict present in the response system. If the time to complete the task is high, 
it means that the initial representation of directing the cursor is wrong and thus the attention needs to be allo-
cated to correct for this wrong representation, the anterior cingulate areas might be the region responsible for 
evaluating this conflict. To summarize, better performance was achieved by the interplay of distributed brain 
regions responsible for efficient visuomotor processing and correct selection of action. It is worthy to note that 
common regions, such as the cerebellum and the basal ganglia, usually involved in good performance on motor 
sequence learning tasks (Halsband & Lange, 2006; Lefebvre et al., 2012; Wadden et al., 2013) were not clearly 
associated with performance in this study. This discrepancy might be due to the difference in the motor learning 
task used; indeed it was posited that the basal ganglia are involved in the organization of individual elements 
into a sequence and to the automaticity of the execution of this set of actions (Krakauer 2019). As the present 
task is continuous, the relevance of the basal ganglia might not be so prominent. An additional explanation 
might be that this initial training period failed to induce a shift from allocentric-spatial strategy to an egocen-
tric-motor one (Hikosaka et al., 2002; Albouy et al., 2013), thus not (yet) involving relevantly the basal ganglia 
in the production of good performance.  

Conclusion  

This work evaluated online learning and brain-behavior correlates during the acquisition of a novel motor 
learning task in older adults. Spatial precision was associated with higher activation in motor-related cortical 
areas responsible for action selection whereas speed of execution was related to associative areas involved in 
visuomotor processing. These results show the relevance of continuously monitoring brain activation changes 
during the acquisition phase of motor learning to understand which brain areas are recruited and associated 
with better behavior. Furthermore, this work adds to the understanding of underlying processes during motor 
learning in older adults and paves the way for characterizing potential targets for interventional approaches for 
older subjects or patients with motor deficits. 
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4.1 Abstract 
The motor learning process entails plastic changes in the brain, especially in brain network reconfigurations. 
In the current study, we sought to characterize motor learning by determining changes in the coupling behavior 
between the brain functional and structural connectomes on a short timescale. 39 older subjects (age: mean 
(SD) = 69.7 (4.7) years, men:women = 15:24) were trained on a visually guided sequential hand grip learning 
task. The brain structural and functional connectomes were constructed from diffusion-weighted MRI and 
resting-state functional MRI, respectively. The association of motor learning ability with changes in network 
topology of the brain functional connectome and changes in the correspondence between the brain structural 
and functional connectomes were assessed. Motor learning ability was related to decreased efficiency and 
increased modularity in the visual, somatomotor, and frontoparietal networks of the brain functional connec-
tome. Between the brain structural and functional connectomes, reduced correspondence in the visual, ventral 
attention, and frontoparietal networks as well as the whole-brain network was related to motor learning ability. 
In addition, structure-function correspondence in the dorsal attention, ventral attention, and frontoparietal net-
works before motor learning was predictive of motor learning ability. These findings suggest that in the view 
of brain connectome changes, short-term motor learning is represented by a detachment of the brain functional 
from the brain structural connectome. The structure-function uncoupling accompanied by the enhanced segre-
gation into modular structures over the core functional networks involved in the learning process suggests that 
facilitation of functional flexibility is associated with successful motor learning. 

4.2 Introduction 
Motor learning refers broadly to a change in the capacity to execute a motor task as a result of practice. It can 
occur across different timescales, leading from temporary gains in motor performance, often termed motor 
adaptation, to permanent acquisition of motor skills (Weaver, 2015). Since motor learning relies on the inte-
grative contribution of brain cortical and subcortical systems to different aspects of the process (Graydon et 
al., 2005), it entails changes across multiple brain regions (Dayan & Cohen, 2011), which may be limited to 
functional changes or extended to structural changes depending on the timescale of motor learning (Scholz et 
al., 2009; Landi et al., 2011). 

While brain functional changes were often observed for local activation during a motor task (Orban et al., 
2010, 2011), it has been increasingly understood that motor learning-induced functional changes could be 
manifested in terms of task-related or resting state functional connectivity (T. Wu et al., 2008; Coynel et al., 
2010) and collectively the brain functional connectome (Bassett & Mattar, 2017). In particular, the support of 
the brain functional connectome for motor learning has been assessed in terms of network topology, specifi-
cally efficiency (Heitger et al., 2012; Sami & Miall, 2013; Zang et al., 2018) and modularity (Bassett et al., 
2011), but behaviorally-relevant changes in network topology that underlie motor learning ability have yet to 
be further clarified according to different timescales of motor learning. 

The patterned brain functional connectome tends to be promoted or constrained by the architecture of the brain 
structural connectome, as can be simulated by generative models (Messé et al., 2015), so that there are rela-
tionships between the brain structural and functional connectomes. Given dynamic changes in the brain func-
tional connectome in motor learning (Bassett et al., 2011, 2015), it is likely that the correspondence between 
the brain structural and functional connectomes would evolve as well. Especially, in short-term motor learning 
during which the brain structural connectome could be supposed to remain static, adaptive changes in the brain 
functional connectome would directly shape alterations in brain structure-function correspondence. In that 
regard, motor learning could be characterized by whether brain functional changes would lead to a coupling 
or uncoupling of the brain functional connectome from the brain structural connectome. 
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In the current study, for short-term motor learning with a visually guided sequential hand grip learning task, 
we sought to examine brain functional changes in terms of network topology of the brain functional connec-
tome and, moreover, parallel changes in the correspondence between the brain structural and functional con-
nectomes. Considering regional differences in brain structure-function correspondence (Zimmermann et al., 
2016; Vázquez-Rodríguez et al., 2019), we assessed the motor learning-induced changes across distinguished 
cerebral networks, as well as the whole brain network. Short-term learning tends to rely on an associative/pre-
motor network that is involved in the formation of the spatial representation of motor skill (Hardwick et al., 
2013; Lohse et al., 2014). Consequently, we hypothesized that motor learning-induced brain connectome 
changes would be mainly driven by an associative circuit, rather than by a motor circuit that tends to be en-
gaged later in the motor learning process (Kleim, 2004). In particular, for older adults, who may have been 
accompanied by progressively impaired motor learning ability (Voelcker-Rehage, 2008; King et al., 2013; 
Maes et al., 2020), we expected to explain diverse individual differences in motor learning ability by brain 
connectome changes. 

4.3 Methods 
4.3.1 Subjects 

Forty-three healthy older subjects initially participated in the study, with exclusion criteria of psychoactive 
medication use, drug or alcohol abuse, pregnancy, inability to follow study procedures, or contraindications to 
MRI. Among those, 39 subjects (age: mean (SD) = 69.7 (4.7) years, men:women = 15:24) were finally included 
in the analysis, whereas the other four subjects were excluded due to missing or abnormal MRI data. Handed-
ness of the subjects was confirmed to be right-handed according to the Edinburgh handedness inventory ques-
tionnaire (mean laterality quotient (SD) = 83.6 (20.5)) (Oldfield, 1971). The study was approved by the can-
tonal ethics committee Geneva (project number: 2017-00224), and the written informed consent was obtained 
from all the subjects. The study conformed to the standards according to the Declaration of Helsinki. 

4.3.2 Motor learning ability 

Inside an MRI scanner, the subjects performed two subsequent sessions of a visually guided sequential hand 
grip learning task adapted from the previously developed one (Wessel et al., 2020), with each session com-
posed of nine training blocks containing 15 hand grip trials (three repetitions of a sequence of five hand grip 
trials) each (Figure 19A and C). With each session lasting around 12 minutes dependent on individual subjects' 
reaction times, the total time spent for the task was within half an hour by including a short break between the 
two sessions. The task involved applying force on a gripper (Figure 19B) that controlled the height of a cursor 
on a computer screen to match the height of a target bar. The absolute height of a target bar was adapted 
according to each subject’s maximum hand grip force, such that 70% of the maximum force corresponded to 
85% of the height of the computer screen. During the task, the subjects were instructed to move a cursor to 
target bars in sequence as swiftly and accurately as possible by pressing and releasing the gripper, and they 
were expected to learn to track a sequence of hand grip trials demanding variable isometric force contraction 
with the non-dominant (left) hand. 

Accuracy was evaluated by the proportion of hand grip trials that successfully reached target bars within a 
block. The elapsed time per trial was measured from the onset of cursor movement at the baseline to the stop 
of cursor movement at a target bar in successful trials or to the continued pause of cursor movement at least 
for 200 ms outside a target bar in unsuccessful trials. Motor task performance for each block was computed by 
the ratio of accuracy to the average elapsed time per trial. While it appears not to be consistent in the literature 
what motor learning ability refers to (Krakauer et al., 2019), we defined motor learning ability as a summary 
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measure representing a change in motor task performance based on the capability to respond appropriately in 
the process of motor learning. Across the two sessions, individual subjects’ motor learning ability was calcu-
lated by the ratio of the difference between later motor task performance (measured for the last two training 
blocks of the second session) and earlier motor task performance (measured for the first two training blocks of 
the first session) to earlier motor task performance: motor learning ability = (later motor task performance – 
earlier motor task performance)/(earlier motor task performance). 

4.3.3 MRI data acquisition 

MRI data were collected using a 3T MAGNETOM Prisma scanner (Siemens Healthineers, Erlangen, Ger-
many). Diffusion-weighted MRI (dMRI) data composed of 108 volume images, including 101 with diffusion 
weighting at multiple b values of 300, 700, 1000, 2000, and 3000 s/mm2 and seven without diffusion 
weighting, in axial planes were acquired with a pulsed gradient spin echo sequence: number of slices = 84, 
slice thickness = 1.6 mm, matrix size = 146 × 146, and in-plane resolution = 1.6 mm × 1.6 mm. Resting state 
functional MRI (fMRI) data consisting of 540 volume images in axial planes were acquired with a multi-slice 
interleaved gradient echo planar imaging (EPI) sequence that was sensitive to blood oxygen level dependent 
(BOLD) contrast at every 0.9 s: number of slices = 70, slice thickness = 2.0 mm, matrix size = 112 × 112, and 
in-plane resolution = 2.0 mm × 2.0 mm. T1-weighted structural MRI (sMRI) data composed of one volume 
image in sagittal planes were acquired with a 3D magnetization prepared rapid gradient echo (MPRAGE) 
sequence: number of slices = 192, slice thickness = 1.0 mm, matrix size = 240 × 256, and in-plane resolution 
= 1.0 mm × 1.0 mm. For each subject, dMRI and T1-weighted sMRI data were obtained once after the hand 
grip learning task, whereas resting state fMRI data were acquired twice, before and after the hand grip learning 
task each (Figure 19A). 

4.3.4 MRI data processing 

Using tools in MRtrix3 (https://www.mrtrix.org/) and FSL (https://fsl.fmrib.ox.ac.uk/fsl/), images of dMRI 
data were corrected for Gibbs ringing artefacts, field inhomogeneity, susceptibility-induced off-resonance 
field, and head motion and eddy currents. By estimating the fibre orientation distribution function within each 
voxel via multi-shell multi-tissue constrained spherical deconvolution (Jeurissen et al., 2014), whole-brain 
tractography was conducted based on the probabilistic algorithm of the second-order integration over fibre 

Figure 19. Experimental protocol and motor task design. (A) Description of the fMRI session. A first 8-minutes resting state scan was 
followed by two sessions of task. The fMRI session was completed after a last resting-state scan. (B) MRI-compatible fiber-optic grip 

force sensor used in the present study. (C) Block design of the motor task. 
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orientation distribution (Tournier et al., 2019). A total of 10 million streamlines were generated by initiating 
them at each voxel of the white matter. 

Using tools in SPM12 (https://www.fil.ion.ucl.ac.kr/spm/), images of resting state fMRI data were corrected 
for different acquisition time across slices, field inhomogeneity, and head motion, and they were spatially 
smoothed with a 6 mm full-width at half-maximum (FWHM) Gaussian kernel. In addition, nuisance covariates 
regression was applied to model effects of low-frequency fluctuations, head movement, and non-neuronal 
fluctuations on resting state fMRI signals. 

4.3.5 Brain connectome analysis 

For the registration between the dMRI or resting state fMRI data native space and the standard space, T1-
weighted sMRI data were used to estimate transformation parameters. For 246 brain regions as defined by the 
Brainnetome atlas (Fan et al., 2016) in the standard space, a brain structural connectome was constructed by 
selecting fiber bundles that connected each pair of the 246 brain regions among those over the whole brain. 
For the same 246 brain regions, a brain functional connectome was constructed by computing the correlation 
of signals between each pair of the 246 brain regions. That is, nodes were commonly defined by the 246 brain 
regions, while edges between the nodes were estimated by fiber bundles for the brain structural connectome 
and by signal correlation for the brain functional connectome. 

Given the brain structural connectome at one time point (after the hand grip learning task) and the brain func-
tional connectome at two time points (before and after the hand grip learning task), we assumed that the brain 
structural connectome remained static on the short timescale of motor learning, such that the brain structural 
connectome could be regarded not only as a baseline, but also as being unchanged thereafter. Thus, in addition 
to functional network topology measured for the brain functional connectome, the correspondence between 
the brain structural and functional connectomes was measured at each time point, so that changes in structure-
function correspondence as well as functional network topology over the two time points could be assessed. 

For a brain structural connectome, a sparse binary network was defined by considering that an edge is not 
existent between a pair of nodes when there was no fiber bundle tracked between the two nodes. For a brain 
functional connectome, a sparse binary network was defined by supposing that an edge is not existent between 
a pair of nodes when the correlation of signals between the two nodes failed to pass the false discovery rate 
correction for multiple comparisons at the significant level of p ≤ 0.05. Given a sparse binary network derived 
from a brain structural connectome or a brain functional connectome, network topology was evaluated in terms 
of efficiency and modularity. Efficiency, as a measure of how efficiently a network exchanges information 
(Latora & Marchiori, 2001), was computed by averaging inverse shortest path lengths between nodes. Modu-
larity, as a measure qualifying community structure in a network (Newman & Girvan, 2004; Newman, 2006), 
was computed by comparing the number of edges included in nonoverlapping groups in a given network 
against an equivalent network with edges connected at random. 

The correspondence between the brain structural and functional connectomes was assessed by the multilinear 
regression fit of an observed brain functional connectome to a predicted brain functional connectome, as pro-
posed before (Vázquez-Rodríguez et al., 2019). The predicted brain functional connectome was generated by 
the linear combination of the Euclidean distance, path length, and communicability in the brain structural con-
nectome. The goodness of fit in terms of the coefficient of determination (R2 value) between the observed and 
predicted brain functional connectomes provided structure-function correspondence at each node. 

For the brain structural and functional connectomes, in order to address variable involvement of different 
functional systems in motor learning, seven cerebral networks that have been divided according to the similar-
ity of signals between brain regions (Yeo et al., 2011) were considered, so that network topology and structure-
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function correspondence were measured for the seven cerebral networks as well as the whole brain network. 
The seven cerebral networks included the visual, somatomotor, dorsal attention, ventral attention, limbic, fron-
toparietal, and default mode networks. 

4.3.6 Brain connectome changes and association with motor learning ability 

To assess whether functional network topology and structure-function correspondence at the group level sig-
nificantly changed following the motor learning task compared to before, linear regression models were com-
puted, using the change in the studied measure as response variable and adding age and sex as adjusting vari-
ables. The outcome measure (referred as coefficient in the figures) was the t-statistic for the intercept of the 
linear model. Statistical significance was determined at p ≤ 0.05, specifically corrected for multiple compari-
sons by a false discovery rate approach in the case of considering the seven cerebral networks.  

The changes in functional network topology and structure-function correspondence between before and after 
the hand grip learning task were then correlated to each other to test whether changes in functional network 
topology could be directly transferred to changes in structure-function correspondence.  

In addition, brain connectome correlates of motor learning ability were evaluated from two perspectives. 
Firstly, the association of changes in functional network topology and structure-function correspondence dur-
ing the hand grip learning task with motor learning ability was assessed to check what changes in the brain 
connectome could support motor learning ability. Secondly, the association of network topology and structure-
function correspondence before the hand grip learning task (at baseline) with motor learning ability was as-
sessed to check what substrates of the brain connectome could be predictive of motor learning ability. The 
strength of associations was again assessed with linear regression models, including the motor learning ability 
measure as response variable and the change in either functional network topology or structure-function cor-
respondence as predictor variable. All statistical inferences were conducted by adopting permutation tests, in 
which the null distribution of a test statistic was obtained by repeatedly computing the test statistic through 
1000 times of rearrangements of the subjects’ labels, after adjusting for the effects of the subjects’ age and sex. 
Statistical significance was determined at p ≤ 0.05, specifically corrected for multiple comparisons by a false 
discovery rate approach in the case of considering the seven cerebral networks. 
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4.4 Results 
4.4.1 Motor learning ability 

Among the 39 subjects, later motor task performance (mean (SD) = 59.0 (20.1)) was improved compared with 
earlier motor task performance (mean (SD) = 39.6 (15.1)) in 35 subjects (Figure 20). Therefore, the subjects’ 
motor learning ability (mean (SD) = 0.64 (0.68)) was generally shown as positive values, while interindividual 
variations in them were large. 

4.4.2 Brain connectome change 

While changes in functional network topology between before and after the hand grip learning task were not 
significant in the whole brain network and neither in the seven cerebral networks (Supplementary Figure 6A), 
efficiency and modularity showed trends for opposite directions in their changes, as seen before for a different 
form of short-term motor learning (Sami & Miall, 2013). Brain structure-function correspondence exhibited 
different relationships between the brain structural and functional connectomes across the seven cerebral net-
works, as observed previously (Vázquez-Rodríguez et al., 2019), at both time points (Supplementary Figure 
7). Although there were changes in structure-function correspondence in some brain regions, significant 
changes were observed in neither the whole brain network nor the seven cerebral networks (Supplementary 
Figure 6B). Between functional network topology and structure-function correspondence, efficiency positively 
correlated with structure-function correspondence (r = 0.72, p < 0.01), whereas modularity negatively corre-
lated with structure-function correspondence (r = -0.66, p < 0.01) for their changes in the visual network (Sup-
plementary Figure 8). 

 

Figure 20. Motor learning of the hand grip learning task. (A) Motor task performance. Earlier and later motor task performance was 
assessed by averaging the two first blocks of the first training session and the two last blocks of the second training session. (B) Mo-
tor learning ability was evaluated based on the ratio of the difference between earlier and later motor task performance. The major-

ity of the subjects shows an increase of motor task performance from the first to the second training session (orange). Subjects 
showing a decrease of motor task performance from the first to the second training session are represented in blue. 
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4.4.3 Brain connectome association with motor learning ability 

The association of changes in functional network topology with motor learning ability was in different direc-
tions depending on the topology measures. Motor learning ability was related to decreased efficiency and 
increased modularity in the visual (efficiency: t = -3.14, p < 0.01; modularity: t = 2.52, p = 0.01), somatomotor 
(efficiency: t = -2.61, p < 0.01; modularity: t = 3.73, p < 0.01), and frontoparietal networks (efficiency: t = -
1.80, p = 0.04; modularity: t = 1.89, p = 0.04) (Figure 22A). With respect to brain structure-function corre-
spondence, motor learning ability was related to reduced correspondence in the visual (t = -2.58, p < 0.01), 
ventral attention (t = -2.81, p < 0.01), and frontoparietal networks (t = -2.17, p = 0.02) as well as the whole 
brain network (t = -1.85, p = 0.02) (Figure 22B), representing a possible connection of behaviorally-relevant 
brain connectome changes between functional network topology and structure-function correspondence, spe-
cifically over the visual and cognitive networks (Figure 21). 

Figure 21. Schematics of behaviorally-relevant brain connectome changes during short-term motor learning. Motor learning re-
lated-changes in the brain functional connectome, featured by a decrease of efficiency and an increase of modularity (blue circles), 
are accompanied by a decrease in the brain structure-function correspondence over specific networks. The brain structure-function 

relationship correspondence decreases with motor learning (as shown by the thinner red arrow). 
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Motor learning ability was not related to network topology of the brain structural and functional connectomes 
before the hand grip learning task (Supplementary Figure 9). In contrast, greater structure-function correspond-
ence in the dorsal attention (t = 1.90, p = 0.04), ventral attention (t = 2.33, p < 0.01), and frontoparietal networks 
(t = 2.24, p = 0.01) as well as the whole brain network (t = 1.96, p = 0.03) before the hand grip learning task 
was related to motor learning ability (Figure 23). 

4.5 Discussion 
In short-term motor learning, correspondence between the brain structural and functional connectomes changes 
most likely due to learning-related changes of the functional connectome, while the brain structural connec-
tome remains unchanged. In this study, we sought to track changes in the brain functional connectome and its 
effects on changes in brain structure-function correspondence after a short period of motor learning. Motor 
learning ability was attributable to decreased efficiency and increased modularity of the brain functional con-
nectome and correspondingly decreased correspondence between the brain structural and functional connec-
tomes over the visual and cognitive networks (Figure 21). In addition, motor learning ability could be predicted 
by the connectome determined before starting the motor learning task. Interestingly, only the structure-function 

Figure 22. Brain connectome changes in association with motor learning ability. (A) Changes in network topology of the brain 
functional connectome featured by the efficiency (black) and the modularity (white). (B) Changes in brain structure-function corre-
spondence between before and after motor learning. Both changes were measured for the whole brain network and seven cerebral 

networks. *, statistical significance. 

 

Figure 23. Brain connectome bases of motor learning ability. Brain structure-function correspondence before motor learning was 
measured for the whole brain network and seven cerebral networks. *, statistical significance. 
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correspondence over cognitive networks, but not structural or functional network topology alone, allowed to 
predict motor learning ability. Indeed, higher baseline structure-function correspondence was related to supe-
rior motor learning ability. 

The connection matrix of the brain, referred to as the brain connectome, has been suggested as either a struc-
tural (Sporns et al., 2005) or a functional (Achard, 2006) description of the brain. The rationale behind increas-
ing attention to the notion of the brain connectome is that the brain can be seen as a network machine (Sporns, 
2013) and there is a strong need of knowledge about the different processes occurring within this network. In 
this context, the network interconnections are key elements in understanding brain functioning (Bargmann & 
Marder, 2013), specifically with respect to connectivity patterns, for instance, the interplay between segrega-
tion and integration (Tononi et al., 1994). New insights have been offered by brain connectomics for plastic 
changes in the brain, such as during normal development (Tymofiyeva et al., 2014), after brain diseases (Griffa 
et al., 2013), especially in recovery after stroke (Guggisberg et al., 2019; P. J. Koch et al., 2021; Egger et al., 
2021) and during training and learning (Taya et al., 2015). Here, we focused on plastic changes in the brain 
during a short period of motor learning from the perspective of brain connectome changes. While average 
changes in the brain connectome across the subjects were not clearly seen on the short timescale, changes in 
the brain connectome in association with individual differences in motor learning ability were revealed. 

While higher efficiency at baseline has been suggested as a predictor of motor learning ability (Zang et al., 
2018), intelligence (Langer et al., 2012), and robustness to cognitive impairment (Tuladhar et al., 2016), we 
show here that changes in motor learning performance are related to changes towards a decrease in efficiency, 
representing the reduction of integration of information transfer within the visual, somatomotor, and frontopa-
rietal networks. The modulation of integrity within the functional systems may reflect less demand for infor-
mation exchange in consequence of more practice, while a need for integration between different functional 
systems may be arisen as motor learning progresses (Coynel et al., 2010). 

In contrast, motor learning ability-related changes in modularity were in the opposite direction, indicating 
enhancement of the quality of modular structure over the same networks. The contribution of increased mod-
ularity to motor learning ability appears to represent selective adaptability or flexibility required for motor 
learning that could be furnished by modular structure (Bassett et al., 2011). Besides, a shift of functional net-
work topology towards a modular organization may not be limited to motor learning, but might be a more 
general mechanism, e.g., also described for working memory functions (Stevens et al., 2012). 

Although the brain functional connectome is at least partially shaped by the brain structural connectome 
(Honey et al., 2009), brain structure-function correspondence is not fixed due to dynamic changes in the func-
tional part of the connectome that can occur even on a short timescale. Indeed, here we revealed that changes 
in the brain functional connectome led to changes in brain structure-function correspondence in short-term 
motor learning, such that decreased correspondence in the visual, ventral attention, and frontoparietal networks 
contributed to motor learning ability. According to the notion that relatively low structure-function correspond-
ence could promote functional flexibility (Baum et al., 2020), decreased correspondence may reflect enhanced 
flexibility in the functional systems that supported motor learning based on successful brain dynamics. Con-
sidering that flexibility could be a main attribute to drive desired motor learning (Bassett et al., 2011; Reddy 
et al., 2018), a demand for flexibility in motor learning appears to be represented in this study by detachment 
of the brain functional connectome from the brain structural connectome, along with a shift of functional net-
work topology towards a modular organization. A demand for flexibility specifically in the visual and cognitive 
systems may be related to the establishment of new associations between environmental targets and motor 
actions for the development of automaticity in motor learning (Hardwick et al., 2013). 
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Assuming the static brain structural connectome during short-term motor learning, we suppose that increased 
segregation and decreased integration in the brain functional connectome generally led to its uncoupling from 
the brain structural connectome. However, in the somatomotor system, unlike the visual and cognitive systems, 
motor learning ability-related changes in functional network topology did not lead to decreases in structure-
function correspondence, reflecting a possibly reduced demand for flexibility. This may be related to the con-
tinued involvement of the somatomotor system in the process of motor learning, while the visual and cognitive 
systems tend to be more dynamically involved probably only in an early stage of motor learning (Hardwick et 
al., 2013; Berghuis et al., 2019). Besides, it would be notable that functional network topology is only a facet 
of the brain functional connectome, so that its changes may not comprehensively explain changes in structure-
function correspondence.  

In the context of this study, the evaluation of brain connectomics did not only allow to reveal connectome 
changes that underlie inter-individual variability in motor learning ability, but also to identify basic connec-
tome information for predicting the magnitude of motor learning. It is of interest that only structure-function 
correspondence, but not structural and functional network topology of the connectome, allowed to predict 
motor learning ability. This suggests the value of relationships between structure and function in explaining 
individual differences in the potential ability of motor learning, not only in specific brain regions (Tomassini 
et al., 2011), but also over more wide-spread brain networks.  

Brain structure-function correspondence appears to contain information distinguished from the sourced brain 
structural and functional connectomes, providing signatures for the network organization of individual brains 
(Griffa et al., 2022). In particular, the frontoparietal network has been suggested to include information for 
individual fingerprinting and, moreover, individual differences in cognitive traits in terms of brain structure-
function correspondence (Petrovic et al., 2020). In a similar vein, it may be proposed that brain structure-
function correspondence specifically over the cognitive networks including the frontoparietal network could 
serve as substrate of individual subjects’ motor learning ability.  

The current study was performed with healthy older subjects; thus, we cannot exclude that the changes in 
structure-function correspondence and its relation to motor learning might be confounded by aging effects. For 
instance, age-related alterations in functional network topology and brain structure-function correspondence, 
specifically decreases in efficiency (Achard & Bullmore, 2007; L. Wang et al., 2010; J. Sun et al., 2012) and 
brain structure-function correspondence (Esfahlani et al., 2022), may be noted. Furthermore, the possibility of 
overexpressed involvement of the cognitive networks due to a need for greater brain resources in older subjects 
(T. Wu & Hallett, 2005) may be taken into account. In future investigations, it needs to be checked whether 
the current findings regarding enhanced flexibility in motor learning in the view of brain connectome changes 
apply across the lifespan or they may be rather specific to older age.  

In summary, here we showed that ability in short-term motor learning was attributable to higher brain structure-
function correspondence in the cognitive networks at baseline and reduced brain structure-function corre-
spondence in the visual and cognitive networks, which have been induced by topological reorganization of the 
functional connectome, during motor learning. These findings underscore brain connectome correlates of mo-
tor learning, in terms of a demand for flexibility in the visual and cognitive system, as supported by increased 
segregation and decreased integration over the systems. While we are motivated to examine brain connectome 
correlates of motor leaning on a longer timescale in future studies, the value of brain structure-function corre-
spondence on top of the sourced brain structural and functional connectomes stresses the importance of mul-
timodal views on brain functioning. 
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 General Discussion 
The world population is aging and this tendency is expected to be increased in the future. Aging is 

accompanied by a general decline in functioning, ranging from reduced cognitive (T. Salthouse, 2012) to motor 
capacities (Seidler et al., 2010). However, adapting to novel tools and ways to behave in the external world is 
important for the aging population in order to stay integrated into society. In this context, motor learning is a 
crucial component. Yet, the capacity for motor learning is impaired in older adults (Voelcker-Rehage, 2008; 
Maceira-Elvira et al., 2022). Possible mechanisms explaining this decrement have been proposed, especially 
considering the different stages of motor learning (Dahms et al., 2019; Maceira-Elvira et al., 2022). The liter-
ature underscores the critical importance of the acquisition phase of motor learning for later consolidation of 
motor memory in young adults (Korman et al., 2003; Diekelmann et al., 2009; Fitzroy et al., 2021) and older 
adults (King et al., 2016; Fitzroy et al., 2021; Maceira-Elvira et al., 2022). However, while the processes oc-
curring during the initial acquisition phase have been well-characterized in young adults (Hikosaka et al., 2002; 
Doyon & Benali, 2005; Dayan & Cohen, 2011), they were only sparsely studied in older adults (King et al., 
2013; Maceira-Elvira et al., 2022). Hence the main aim of this thesis was to characterize better the neural 
processes at play during the early acquisition phase of motor learning in older adults. To perform such with an 
integrative view of the brain, we explored changes in the brain in a multimodal way, considering the organi-
zation of the brain in terms of functional specialization and integration (K. J. Friston, 2004) and by looking at 
the relationship between function and structure (Koch et al., 2002; Honey et al., 2009). More specifically, we 
explored in the first study (Chapter 3) entitled “Study 1: Early motor skill acquisition in healthy older adults: 
brain correlates of the learning process” the functional specialization by investigating the dynamics of brain 
activation during the initial acquisition phase and their relationship with behavioral change. I would like to 
underscore that in this study, we assessed the within-session brain activation changes related to time and be-
havior. The results revealed that motor learning ability relied on the parallel involvement of motor-related 
cortical areas responsible for action selection and associative parietal areas involved in visuomotor processing. 
As for the functional integration of the brain, the second study (Chapter 4) entitled “Study 2: Brain Connectome 
Correlates of Short-Term Motor Learning in Healthy Older” aimed at assessing changes in segregation and 
integration of information transfer within functional subnetworks with graph theory measures in addition to 
changes in structure-function correspondence. We reported that increased segregation, decreased integration, 
and decreased structure-function correspondence in relevant networks were related to motor learning ability. 
Specifically, we showed that better motor learning ability was associated with higher flexibility in visual and 
cognitive/associative networks in the direction of a detachment from the structural network and increased 
modularity. In the following sections, I will detail further the results, provide general interpretations in view 
of the existing literature and present possible future developments of the work presented in the thesis.   
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5.1 Summary and discussion 
5.1.1 Behavioral improvement  

Motor learning ability was defined in this thesis as a change in motor performance based on the capability to 
execute successfully the motor skill. To probe motor learning in a population of older adults and assess neural 
correlates, we implemented the following motor learning task in the MRI. The task consisted of a grip force 
modulation task adapted from two previous studies on young adults (Reis et al., 2009; Wessel et al., 2020). 
The initial study implementing this type of task utilized the pinch grip (Reis et al., 2009); we instead imple-
mented the task with whole-hand gross movements as in the study of Wessel and colleagues. It was designed 
as such for two reasons: so that the task resembles everyday life movements like holding a glass and to be 
feasible in a population with motor disabilities for fine movements such as stroke populations. The motor task 
was successfully adapted for the MRI environment and a proof-of-concept study revealed that stroke patients 
improved significantly during the acquisition of the motor skill in the MRI (Appendix 2).  

Older adults showed significant improvement after training for a short time on the motor skill learning task. 
This result confirms previous reports showing learning ability in older adults (Berghuis et al., 2019; Fitzroy et 
al., 2021; Maceira-Elvira et al., 2022), although the capacity to learn in a single session is different compared 
with young; the motor learning dynamics of older adults are more gradual (Berghuis et al., 2019) and thus 
demands additional training to reach comparable performance to young adults (Fitzroy et al., 2021). The ab-
sence of a young control group in our design prevents us from investigating age-related differences in this 
motor learning task. Nevertheless, we could show that twenty minutes of acquisition were enough to elicit 
behavioral changes. The main performance outcome for assessing motor learning ability was a compound 
score including both accuracy and completion time. Previous studies have used different outcomes combining 
speed and accuracy in a single measure (Townsend & Ashby, 1978; Reis et al., 2009; Bruyer & Brysbaert, 
2011; King et al., 2016) to get an overall measure of performance and to account for inter- and intra-individual 
variability in the speed-accuracy trade-off (Heitz, 2014; Liesefeld & Janczyk, 2019). When observing the av-
erage behavior of our older cohort, we could see that they improved both in accuracy and speed. Conversely, 
stroke patients showed improvement on the compound measure difference of first to last blocks of acquisition 
(Appendix 2), but not when looking at accuracy and time, probably due to low sample size and high interindi-
vidual variability. The compound measure allows us to give an integrative view of behavior by integrating two 
components of performance and might permit smoothing out differences among patients in the strategy of 
prioritization between accuracy and time. 

Finally, the motor learning task has been defined as a sequential force modulation task, however, the investi-
gation of sequence specificity revealed that sequence-independent learning was also present in our task (Sup-
plementary Figure 1 in Supplementary Material for Chapter 3). Thus, in contrary to SRTT and SFTT which 
show sequence-specific learning (Krakauer et al., 2019), the grip force modulation task used in this study 
seems to entail a sequence-independent learning component. Our interpretation is that during the initial learn-
ing process, the subjects are learning a novel visuomotor mapping, that is understanding the relationship be-
tween the force and the control of the cursor. In that sense, the task used in these studies might relate to a de 
novo learning task where the goal is to learn the association between the use of the gripper and its consequences 
in terms of cursor movement. Nevertheless, we cannot conclude with certainty that the task is not a sequential 
motor learning task. Indeed, first at the behavioral level, we observe a trend in the difference between sequence 
and random blocks (Figure 16 and Supplementary Figure 1). Secondly at the brain activation level (Supple-
mentary Figure 2 and Supplementary Table 1), we observed a significant difference in activation in several 
brain areas. As such the grip force modulation task is probably a mixture of a sequence learning task and a de 
novo learning task. In the context of the motor planning and execution pathway presented in Figure 1, de novo 
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motor learning is related to the three parts of the pathway. Our grip force modulation task requires goal selec-
tion (which target to reach), action selection (which force to apply), and action execution (adapting the amount 
of force in real-time according to the visual feedback). The grip force modulation task thus is relevant to study 
the full pathway of motor learning and its relevant neural correlates. Our MRI design was not performed to 
disentangle between the different steps, but we observed relevant neural correlates related to the execution and 
performance improvement of the task. The neuroimaging results presented in this thesis can be divided into 
two different types, namely time-related changes and behavior-related changes. I will discuss them in the next 
sections.  

5.1.2 Time-related functional brain changes  

One of the aims of this thesis was to investigate the time-dependent changes occurring in the brain during 
acquisition of a motor learning task in older adults. Time-dependent changes were defined as the observed 
changes in brain activation occurring while practicing the task and in resting-state networks' functional topol-
ogy comparing post to pre-measurements. We assessed the within-session changes in activation throughout 
the acquisition phase instead of performing a pre-post training comparison as usually performed (Poldrack, 
2000). To summarize the first study (Chapter 3), here we observed an increase of activation in bilateral sec-
ondary motor and associative parietal areas, while cognitive frontal and visual areas decreased as acquisition 
progressed (Figure 24). Furthermore, the cerebellum, a region known to be important for motor learning 

Figure 24. Schematic summary of the results of this thesis. The time-related changes are displayed on top and the behavior-related 
changes at the bottom. In the center top and bottom, activation changes are depicted on glass brains. Red regions are positively asso-
ciated with time or performance while blue regions are negatively associated. The functional topology changes and structure-func-
tion correspondence prediction results and changes are listed at the bottom. The upward orange arrow signifies positive correlation 
with motor learning ability and the blue downward arrow negative correlation. Abbreviations: SF, structure-function correspond-

ence; Eff, global efficiency; Mod, modularity; W-brain, whole-brain network; DAN, dorsal attention network; VAN, ventral atten-
tion network; FPN, frontoparietal network; VN, visual network; SMN, somatomotor network. 
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(Doyon & Ungerleider, 2002), displayed increased activation during the first part of learning and decreased 
afterward. It is important to point out that we observed an overlap of brain activation changes in regard to time-
related and performance-related changes (see Supplementary Figure 4B and Supplementary Figure 5B). One 
interesting aspect of the first study (Chapter 3) was to attempt to disentangle between the regions changing 
over time, but not involved in better performance and those that showed both relationships. In the following 
paragraph, I will focus on the areas that solely changed over time, but were not related to behavioral changes, 
such as anterior prefrontal and inferior frontal areas, cerebellar and fusiform and lingual areas (see Supple-
mentary Figure 5B). These areas show a decrease in activation due to the repetition of the task but are not 
directly associated with behavior. These decreases might be related to reduced neural processing as training 
advances or to the sharpening of neural responses which induces a reduction in brain activation since the extent 
of activation gets smaller  (Poldrack, 2000). This does not mean that they do not have a role in the motor 
learning process, but they are not directly involved in the production of good performance.  

In accordance with the available literature, we report a decreased involvement of cognitive frontal areas 
(Floyer-Lea & Matthews, 2005; Dayan & Cohen, 2011) suggesting that cognitive control is less needed as 
practice advances (Miller & Cohen, 2001). The cerebellum is believed to be a key region for early motor 
learning (Doyon et al., 2002) and is usually associated with good performance (Lefebvre et al., 2012; Wadden 
et al., 2013). This region is thought to be involved in error correction and especially in the generation of internal 
models of the motor skill that needs to be updated in the early acquisition (Doyon et al., 2002; Shadmehr & 
Krakauer, 2008). We would thus expect that activation of this region is clearly related to performance. Alt-
hough we observed a small cluster in the right cerebellum (but with peak voxel in the right fusiform) negatively 
correlated with accuracy in Table 3, the main part of the cerebellum showed activation changing over time, 
but not in relation to behavior (Supplementary Figure 5). One interpretation of this unexpected result could be 
related to the dynamics of performance. According to Figure 16, the performance gets already more stable at 
the end of the acquisition phase inducing a relatively low number of errors. It could be that the internal model 
formed in the cerebellum during the first learning session was accurate enough to induce a decreased involve-
ment of the cerebellum in the second session while the performance was maintained or continued to improve. 

Regions usually not mentioned in the models of motor learning (Hikosaka et al., 2002; Doyon & Benali, 2005) 
are visual regions. As models are usually considering motor sequence learning, the importance of continuous 
visual feedback is low. Conversely, in visually-guided grip force tasks and tracking tasks (Halder et al., 2007; 
Sterr et al., 2009; Berghuis et al., 2019), an involvement of visual regions is consistently reported. In our study, 
we observed a decrease in activation in the visual system (secondary visual areas) with the progress of the 
training, specifically in late acquisition. An extensive review of animal and human studies similarly reports 
that when visual cues are repeated throughout time, the literature also reports consistent decreases in activity 
(Grill-Spector et al., 2006). Our results are also consistent with a recent study that showed decreases in visual 
regions after a period of training on a visuomotor tracking task (Berghuis et al., 2019). A similar decrease in 
visual areas was found in a serial interception sequence learning task when comparing a practiced sequence to 
a new sequence (Gobel et al., 2011). This convergence of results can be interpreted as a more efficient 
visuospatial and visual motion processing with the progress of the training and especially at the end of the 
training (Berghuis et al., 2019). As the internal models and spatial coordinates got more precisely defined by 
the cerebellum (Shadmehr & Krakauer, 2008) and parietal regions (Hikosaka et al., 2002) respectively as 
learning progressed, the reliance on visual feedback was less needed. Therefore, the visual processing system 
is relevant for the execution of the task in the very early acquisition phase, when the visual coordinates of the 
targets are encoded by the visual system (Kawato et al., 1987; Hikosaka et al., 2002). As training continues, 
these visual coordinates are getting transformed into spatial coordinates by the associative parietal areas 
(Hikosaka et al., 2002; Grefkes et al., 2004) thus inducing reduced involvement of the visual system. 
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Finally, as for time-related changes, one of the goals of the second study (Chapter 4) was to assess the changes 
in resting-state functional network topology and changes in structure-function correspondence from before to 
after the motor skill acquisition phase. It is now well accepted that short-term motor learning induces imme-
diate changes in resting-state functional connectivity with the first report dating from 2009 (Albert et al., 2009) 
and many other results reported later (Vahdat et al., 2011; Sami & Miall, 2013; Tung et al., 2013; Gregory et 
al., 2014; Elton & Gao, 2015). Interestingly, Sami & Miall investigated the graph properties of resting-state 
activity comparing a baseline resting-state with post-motor learning resting-state activity (Sami & Miall. 
2013). They reported significant changes at the level of the whole-brain network going in the direction of 
increases in global strength and degrees and local efficiency suggesting increased local connectivity in the 
network. Decreases were also seen in path length and betweenness centrality indicating more direct infor-
mation transfer following learning. These results were not reproduced in our study. In fact, no time-related 
changes were seen in the efficiency or modularity of resting-state functional networks. We interpret this dis-
crepancy in light of the different populations tested. It could be that the inherent variability of the brain of older 
adults (Caspers et al., 2014) and the variability seen in the motor learning ability (see Section 4.4.1) prevented 
from observing significant time-related changes in the resting state networks topology. Indeed, aging is char-
acterized by great variability in how the brain reorganizes and this stems from multiple factors such as nutrition 
(Jannusch et al., 2017) and many other lifestyle characteristics (Bittner et al., 2019). Concerning brain network 
topology, recent research studied functional network reorganization in older adults with graph network 
measures (Stumme et al., 2020), and a subsequent review focused on resting-state networks changes in the 
course of aging and the characterization of the increasing inter-individual variability of the networks associated 
with increasing age (Jockwitz & Caspers, 2021). The study of Stumme and colleagues, for example, used a 
dataset of 951 older adults and reported very small effect sizes, results interpreted in terms of inter-individual 
variability (Stumme et al., 2020). In our study, we observed quite a large variability in motor learning ability 
during the training session in our sample of older adults, with subjects getting way better on the task compared 
to others (Figure 20). In light of this individual variability and considering our relatively limited sample size, 
the analysis of time-related changes in the averaged network topology over all subjects might not capture 
common dynamics. Conversely, when we consider the behavior-related changes, we take into account the 
variability in motor learning ability to explain functional changes. It is thus of great relevance to look at 
changes in brain function and structure in association with individual motor learning ability in older popula-
tions. The results of these associations are presented in the following section.  

5.1.3 Behavior-related functional brain changes  

The two studies presented in this thesis allow us to gain significant insight into the dynamics of brain activation 
and brain network connectivity associated with motor learning ability. Specifically, we characterized which 
brain regions showed concurrent changes in activation with the changes in motor performance during the motor 
acquisition phase in the first study. In the second study, we were interested in the changes in resting-state 
networks’ topology in terms of segregation and integration in relation to motor learning ability. While brain 
activation changes were assessed on the whole brain, the brain connectome changes were evaluated both at the 
level of the whole brain network and at the level of subnetworks, namely somatomotor, frontoparietal, visual, 
dorsal and ventral attention, limbic, and default mode networks (Figure 24). I will discuss the results regarding 
the behavior-related brain changes focusing on the relevant functional regions and will subsequently provide 
a more general interpretation of the results.  

Somatomotor network 

Regions of the somatomotor network comprising contralateral S1, M1, part of the PMC, and bilateral SMA 
showed activation associated with better performance indicating the involvement of these regions in the correct 
execution of the task. In particular, we showed that better accuracy was associated with more activation in 



General Discussion 

64 

these regions. In the grip force modulation task, good accuracy relates to the correct selection of actions, that 
is applying the right amount of force and selecting the correct moment to stop increasing force and instead 
maintain a stable force on the target. This is consistent with the view that secondary motor areas are involved 
in the temporal control of movement (Halsband et al., 1993; Chen et al., 1995) as well as in the integration of 
visual and sensory information for the selection of action (Hoshi & Tanji, 2000; Hardwick et al., 2013), and 
that S1 is important for accurate maintenance of force (Mayhew et al., 2017). According to the models of 
motor learning (Hikosaka et al., 2002; Doyon & Benali, 2005), somatomotor areas are usually involved later 
in the motor learning process, when the motor coordinates are being formed. We show here that accurate 
performance during the acquisition phase of a novel motor skill already relies on the somatomotor system. 
This is consistent with the view of Maceira and colleagues, who posit that already in the acquisition phase of 
a motor skill performed by older adults, the motor coordinates are developed in parallel to the spatial coordi-
nates (Maceira-Elvira et al., 2022). The behavior-related pattern of activation we observed during the practice 
of the motor skill was also inducing changes in the functional network topology as measured by resting-state 
connectivity. Indeed, we report in the second study a reduction in the global efficiency and increased modu-
larity in the somatomotor network in relation to the change in motor performance. As a parallel of efficiency, 
Sun and colleagues report greater coupling in the motor network in early learning compared with late learning 
on a single, 20 minutes learning session (Sun et al., 2006), it thus seems that the somatomotor network under-
goes functional reorganization in relation to correct acquisition of a motor skill.  

Frontoparietal network 

In the same way as the somatomotor network, activation of regions comprised in the frontoparietal network 
was positively associated with the improvement in performance during the acquisition. The dorsal PMC has 
been included in this network before (Wise et al., 1997; Hikosaka et al., 2002) and has been shown to play a 
role in the integration of working memory and sensory information for the selection of motor action (Chen et 
al., 1995; Hernández et al., 2002). Additionally, the parietal region is key in the network as it is a sensory-
motor hub for the interaction with the external environment (Passarelli et al., 2021) and has been shown to 
play a role in the rapid processing of visual information in particular (Coull et al., 1996; Grefkes et al., 2004). 
In our task, activation in parietal areas is negatively associated with completion time, consistent with the view 
that their recruitment leads to fast sensorimotor processing and thus faster task execution. In the context of the 
motor learning models, the frontoparietal network is also called an “associative” circuit (Penhune & Steele, 
2012) that contributes to the formation of the spatial representation of the motor skill (Hikosaka et al., 2002; 
Hardwick et al., 2013; Lohse et al., 2014). Apart from its continuous involvement throughout the motor learn-
ing process (Doyon & Benali, 2005; Dayan & Cohen, 2011), frontoparietal areas have been associated with 
spatial and goal-directed attention (Corbetta & Shulman, 2002; Husain & Nachev, 2007), with working 
memory processes (Coull et al., 1996) and recently with a newly described aspect of motor learning: the offline 
micro-consolidation of the motor representation occurring within seconds (Bönstrup et al., 2019). A final char-
acteristic of this network is that it contains regions operating as flexible hubs in the sense that they can rapidly 
change their pattern of functional connectivity with other hubs according to task demands and in order to 
implement task switching (Cole et al., 2013). Considering the behavior-related topological changes in this 
network, we also found decreased global efficiency and increased modularity associated with motor learning 
ability. Considering all these results, the frontoparietal network seems to play a crucial role in the acquisition 
of motor skill in the grip force modulation task. Its functional role in our task is probably to develop the spatial 
coordinates, transitioning from the visual coordinates formed at the beginning of training (see interpretation in 
section 5.1.2) to the motor coordinates that are formed later (Grefkes et al., 2004).  
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Visual network 

As discussed before, brain activation of visual areas changed over time but was not related to the changes in 
performance within the acquisition phase. However, as for the somatomotor and frontoparietal networks, the 
visual network topology changes were also related to the motor learning ability in terms of decreased efficiency 
and increased modularity. These results point towards the conclusion that the successful acquisition of the 
motor skill induced reorganization of the visual network resting-state network topology without inducing a 
behavior-related change in activation during the task. The reorganization of the visual network into a modular 
structure may represent how well visual coordinates are encoded in the visual areas. Indeed, the visual system 
is thought to be involved in the formation of the visual coordinates, especially in early acquisition (Kawato et 
al., 1987; Hikosaka et al., 2002). The disengagement of the visual system with practice seen in the functional 
activation patterns might be related to the establishment of stable visual coordinates in the visual network in 
the form of a modular organization of the visual network. Furthermore, this interpretation is supported by the 
results presented in Appendix 1. The analyses presented in this appendix demonstrate that the subjects who 
displayed worse performance after the intervention showed higher activation in a visual processing area in-
volved in object recognition and visually-guided movement compared with pre-intervention activation. In 
other words, higher forgetting overnap was related to higher activation postnap. We interpreted this result as 
the fact that the involvement of this visual processing area after the nap is a compensatory mechanism for the 
poor consolidation of the visual coordinates.  

Other areas and networks 

Regarding other areas showing brain activation correlates of better performance, we reported a negative asso-
ciation with performance in medial frontal and anterior cingulate areas. These regions are involved in cognitive 
processes and effort (Devinsky et al., 1995; Pessiglione et al., 2018) indicating that poorer performance led to 
increased effort. More specifically, these areas were positively associated with time, meaning that faster exe-
cution (shorter time) is accompanied by decreases in activation in these regions. When the time to reach a 
target increases, it implies that a sustained effort is made by the subject and thus the anterior cingulate areas 
get more involved.  

We did not find any association between the change in behavior and other functional networks’ topology 
changes, such as the dorsal and ventral attention, limbic, default mode, or whole-brain networks. This result is 
different from the literature on young adults for the whole-brain network (Zang et al., 2018). They found in 
young adults a positive association between motor learning ability and global efficiency, small-worldness, and 
a negative association with characteristic path length and transitivity as measured by post-training resting-state 
networks (Zang et al., 2018). Their results go in the direction of a more efficient network in terms of infor-
mation transfer associated with short-term learning ability. Several differences such as a different age group 
and the fact that they did not look at the prepost network changes, but at the association between behavior and 
post-training network topology could explain the discrepancy in results. It might also be that our measures of 
topological changes might not capture all changes occurring in the networks. Another explanation might be 
that in our older subjects, the task-related networks involved in the acquisition of the motor skill undergo 
topological reorganization associated with the behavior while the other networks, i.e. dorsal, ventral attention, 
limbic and default mode might stay stable throughout the task and not be related to the change of behavior.  

One astonishing result of the second study was that we showed no significant association between baseline 
resting-state network topology and subsequent motor learning ability. In contrast, several reports (Wu et al., 
2014; Mary et al., 2016; Mattar et al., 2018; King et al., 2018) found a significant predictive value of resting-
state functional organization. For example, Mattar and colleagues found that visual-motor connectivity was 
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inversely related to learning rate meaning that sensorimotor autonomy at baseline corresponded to faster learn-
ing in the future (Mattar et al., 2018). Similarly, King and colleagues found that stronger internetwork connec-
tivity, or in other words decreased segregation between networks was related to worse motor performance in 
older adults (King et al., 2018). We interpret this discrepancy as the fact that in the mentioned studies, they 
investigated internetwork connectivity. Instead, our design aimed at investigating the regional differences 
within the relevant functional networks. Consistent with our results, the reduction of integrity within a motor-
related network was reported before for a motor learning paradigm over a longer period (Coynel et al., 2010). 
This result may reflect less demand for information exchange within the network as a consequence of more 
practice, while a need for integration between different functional networks may arise as motor learning pro-
gresses. The relationship between the networks in our study should thus be assessed in future studies.   

General functional topology changes 

Segregation and integration of information transfer in functional networks are key aspects of their characteri-
zation (Sporns et al., 2004). Decreased integration as measured by global efficiency has been usually associated 
with abnormal behavior or diseases (Wang et al., 2018; Novaes et al., 2021) while higher integration has been 
related to intelligence (van den Heuvel et al., 2009; Langer et al., 2012), working memory performance 
(Alavash et al., 2015; Stanley et al., 2015), and motor learning ability (Zang et al., 2018). In our study, we 
show that changes in motor learning performance are related to decreases in efficiency within the visual, so-
matomotor, and frontoparietal networks, revealing that the reduction of integration of information transfer 
within these subnetworks was beneficial for better learning.  

One aspect that could explain our result of decreased behavior-related global efficiency stems from a study 
investigating cognitive efforts in a working memory task (Kitzbichler et al., 2011). We have seen before that 
frontal areas as well as anterior cingulate areas, regions associated with cognitive effort, showed decreased 
activation as practice advanced and improvement increased. Therefore, we can argue that our older subjects 
displayed a reduction of cognitive effort during our task. In the study of Kitzbichler and colleagues, they found 
that as the cognitive demand and thus effort to provide on the task increased, the network integration also 
increased as probed by increased global efficiency. Following their results, a reduction in the information 
transfer in the relevant functional networks observable in our task could be interpreted as reduced cognitive 
demand  (Kitzbichler et al., 2011). Breckel and colleagues reported similar results on an attentional task with 
a sharp increase in global efficiency at the beginning of the task execution from rest to task, followed by a 
slow decrease with ongoing time-on-task and a final drop lower than the initial pre-task level (Breckel et al., 
2013). A different study that tested working memory performance is in accordance with our results (Stanley 
et al., 2015). They reported that lower local efficiency from rest to task was predictive of higher working 
memory performance in young and older adults. They interpreted this result of low local efficiency as an 
indication that a high degree of specialization in local areas is beneficial for better performance. These studies 
are supporting evidence and help for the interpretation of our results, although they are investigating different 
tasks that aimed to test working memory. The relevance of working memory for motor learning has been 
suggested before for young (Maxwell et al., 2003; Anguera et al., 2010) and older adults (Bo et al., 2009; 
Anguera et al., 2011). In our task framework, working memory processes might be involved in the successful 
acquisition of the motor skill in the sense that the position and order of the targets might be kept in memory 
for faster execution of the task. This type of short-term memory is referring to visuospatial working memory 
that is defined as the temporary maintenance of visuospatial information to guide actions (Jiang & Leung, 
2021). Thus, instead of relying constantly on the visual stimuli throughout the learning process, the subjects 
are recruiting visuospatial working memory processes to be faster on the task. 
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Concurrently with the decrease in global efficiency, we demonstrate a significant association between an in-
crease in modularity and motor learning ability. The previously mentioned studies also report similar results 
suggesting that, as task demands decrease, the network gets more clustered and modular (Kitzbichler et al., 
2011; Breckel et al., 2013). Modules correspond to functionally defined brain regions with dense intra-modules 
connections for efficient local information processing (Taya et al., 2015). In accordance with our data, Bassett 
and colleagues posited that learning involves a change in the modular structure of brain networks (Bassett et 
al., 2011). Although probing motor learning on a longer timescale (3 days), they found dynamical changes in 
the configuration of functional modules during the course of motor learning (Bassett et al., 2011, 2015). In 
particular, they showed that motor learning was relying on changes in the modular structure of visual and 
motor modules as well as disengagement of cognitive control regions (Bassett et al., 2015). Conceptually, the 
change in modular structure appears to represent the selective adaptability of neurophysiological processes to 
drive desired behavior required for motor learning (Bassett et al., 2011). Our results are comparable to their 
conclusions in terms of the involvement of the different networks in the learning process. We add on their 
knowledge by specifically investigating the acquisition phase of motor learning and by looking at the modular 
structure within visual and motor modules. Our results thus help to understand the short-term changes in func-
tional topology following a single session of motor learning in older adults, highlighting the rapidity of func-
tional reorganization and the importance of the frontoparietal network in the acquisition process of motor 
learning in older adults. One aspect introduced in their seminal paper that we did not investigate was the aspect 
of network flexibility defined as “the number of times that each node changes module allegiance, normalized 
by the total possible number of changes” (Bassett et al., 2011). They found that there were two types of nodes 
consisting of low-flexibility and high-flexibility nodes. The individual flexibility of the entire network was 
predictive of motor learning ability.  

Aging-related functional topology changes 

The previously mentioned studies, although relevant for the interpretation of our results, were done in young 
adults. Interestingly, a growing amount of research demonstrates differences in the functional network topol-
ogy of the older brain compared with the younger brain. Decreased efficiency of functional networks has been 
extensively reported in healthy aging (Achard & Bullmore, 2007; L. Wang et al., 2010; J. Sun et al., 2012). In 
relation to behavior, Stanley and colleagues (Stanley et al., 2015) showed that older adults beneficiated from 
lower global efficiency for working memory. In the second study of this thesis, although changes in whole-
brain efficiency were not related to behavioral change, subnetworks changes and specifically the frontoparietal 
network engaged in working memory processes (Coull et al., 1996) were associated with the behavior. The 
convergence of our results with previous ones indicates that better motor performance is achieved by a reduc-
tion in information transfer in older adults. In terms of modularity, aging is also accompanied by decreases in 
modularity (Onoda & Yamaguchi, 2013), but more importantly by changes in the composition and topological 
roles of modules (Meunier et al., 2009). For example, the fronto-cingulo-parietal module present in the young 
brain network is segregated into a fronto-striato-thalamic and a medial posterior module in the older brain 
network. Furthermore, the fronto-striato-thalamic module receives fewer intermodular connections from the 
posterior module while the intermodular connections between posterior modules are increased (Meunier et al., 
2009). Decreased modularity is one clue proving a decrease in the segregation in the older brain as reported 
by other studies (Antonenko & Flöel, 2014; King et al., 2018; Kong et al., 2020). Our results of increased 
modularity associated with motor learning ability could thus mean that the brain of older adults tends towards 
a young-like pattern of functional network organization, but this interpretation is to be taken with great caution 
as we do not have a young control group to verify the statement.  
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5.1.4 Behavior-related structure-function correspondence  

In the second study, we assessed the change in segregation and integration of functional networks in relation 
to motor learning ability, and we also investigated the correspondence between structure and function at base-
line and by comparing baseline and post-learning in association with behavior. Structure-function correspond-
ence is the relationship between the structural and functional organization of the brain. It is now well-accepted 
that although the brain structure shapes the functional structure (Honey et al., 2009), part of the functional 
connectivity cannot be explained solely by the structure (Batista-García-Ramó & Fernández-Verdecia, 2018). 
Especially in healthy older adults, the study of the relationship between structure and function is relevant as it 
appears that the structure-function correspondence changes across the lifespan (Esfahlani et al., 2022). In this 
thesis, we report that stronger baseline structure-function correspondence was related to superior motor learn-
ing ability in older adults. Greater structure-function correspondence in the dorsal attention, ventral attention, 
and frontoparietal networks as well as the whole-brain network before motor learning was predictive of motor 
learning ability. By considering the absence of changes in functional topology in the whole-brain and atten-
tional networks in relation to motor learning ability, this result could mean that the integrity of these networks 
predicts motor learning ability. Furthermore, reduced structure-function correspondence post learning in the 
visual, ventral attention, and frontoparietal networks as well as the whole-brain network was related to motor 
learning ability (Figure 24).  

Few studies have investigated the structure-function correspondence relevance for cognitive abilities and to 
our knowledge, there are no studies that have addressed it in the view of motor abilities and motor learning. 
Among the available reports, Wang and colleagues demonstrated that higher structure-function correspond-
ence was associated with poorer visual memory performance, and executive and visuoconstruction perfor-
mance (Wang et al., 2018). In a similar direction, a recent study found that high structure-function correspond-
ence in preschool children was associated with poor executive functioning performance in later childhood 
(Chan et al., 2022). Our prediction result is in the opposite direction, that is higher structure-function corre-
spondence at baseline predicted higher motor learning ability. Several interpretations could be given for this 
discrepancy. First, the results of the cited studies were the association with a score acquired at one time point 
while we are looking at the association with a change in motor learning performance. Actually, an explanation 
could be that the subjects who have higher structure-function correspondence at baseline are the ones perform-
ing the worse at the beginning of the learning session. If they are showing low performance at baseline, they 
would have more room to improve on the motor learning ability. Another interpretation might be related to the 
fact that the structure-function coupling is decreasing with age (Esfahlani et al., 2022). Considering this, it 
might be that the structure-function correspondence at baseline is a measure of the integrity of the networks in 
older age. If the structure-function correspondence is high, the brain of the subjects in some ways resembles 
younger brains and is behaving like a younger brain when looking at the process of motor skill acquisition. 
This interpretation is to be taken with caution as we do not have a young group to compare with. Especially, 
the frontoparietal network was proposed as a network including information for individual fingerprinting in 
terms of brain structure-function correspondence (Petrovic, Liegeois et al. 2020). Last but not least, a concern 
mentioned by Esfahlani and colleagues is that the decreasing correspondence with age might present a floor 
effect (Esfahlani et al., 2022). In other words, the subjects who have low structure-function correspondence do 
not have the room to further decrease the correspondence and do not increase substantially on the motor learn-
ing ability, this interpretation is speculative and to be taken with caution. 

As mentioned earlier, reduced correspondence from pre to post-learning was associated with higher motor 
learning ability in the whole brain as well as in visual and cognitive systems comprising ventral attention and 
frontoparietal network. It was posited that low structure-function correspondence could promote flexibility in 
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the brain (Baum et al., 2020) while a high degree of correspondence is interpreted as a high degree of special-
ization (Chan et al., 2022). This interpretation is relevant when we consider that high baseline structure-func-
tion correspondence is related to high motor learning ability, and parallelly, that visual-sensorimotor autonomy 
at baseline predicts higher motor learning (Mattar et al., 2018), although this last point was not tested in our 
studies. Following this view, the network topology measure of modularity has been employed to shed light on 
associations between functional and structural subnetworks (Hagmann et al., 2008; Sami & Miall, 2013). In 
our study, decreased correspondence after the acquisition of motor learning could reflect enhanced flexibility 
in the functional systems that supported motor learning. This highlights the importance of brain flexibility as 
the potential main characteristic to achieve motor learning (Bassett et al., 2011; Reddy et al., 2018). Especially, 
the importance of a low structure-function correspondence in the frontoparietal network may support func-
tional flexibility and dynamic recruitment for diverse task demands (Baum et al., 2020) such as the develop-
ment of spatial coordinates and correct dynamic selection of actions throughout the learning process (Hikosaka 
et al., 2002; Hardwick et al., 2013). 

We expected to observe that changes in structure-function correspondence would occur in the same networks 
that showed changes in network topology. However, the common networks in both types of changes were only 
seeable for the visual and frontoparietal networks. Several explanations can be posited for this discrepancy. 
First, global efficiency and modularity are good representatives of integration and segregation of information 
transfer in the brain connectome, however, there do not exhaustively represent the characteristics of the func-
tional connectome. Indeed many other measures have been used with some representing more local character-
istics such as node degree, clustering coefficient, node centrality, and other more global measures such as 
connection density, small worldness, and others (Bullmore & Sporns, 2009). Other measures of topology might 
have changed in the whole brain and ventral attention networks and inducing a change in structure-function 
correspondence. An alternative hypothesis could be that our assumption of a static brain structural connectome 
is wrong. It is well known that learning induces changes in the structure of the brain by the means of experi-
ence-dependent plasticity (Poldrack, 2000; Sagi et al., 2012; Tavor et al., 2013; Sampaio-Baptista et al., 2013, 
2018). While it was initially seen as a slow process occurring at least over days, evidence for more rapid 
structural changes was reported (for review, see Stee & Peigneux, 2021). The work of Tavor and colleagues 
for example revealed changes in mean diffusivity, a structural measure derived from DWI, following the prac-
tice of visuomotor learning in 1-2 hours. More recently, a study detected learning-specific neocortical plasticity 
after only one hour (Brodt et al., 2018). To our knowledge, minutes-dependent structural plasticity has not 
been reported. 

5.1.5 The relevance of multimodal studies 

The brain is a complex system that follows Gestalt phenomena meaning that its properties cannot be derived 
from the sum of its parts (Tononi et al., 1994; Telesford et al., 2011; Bassett & Gazzaniga, 2011). Therefore, 
multimodal studies in the sense of using different types of brain imaging and analyses can help to understand 
holistically different aspects of brain network organization. Especially in the motor learning process, we have 
seen throughout this thesis that many interacting processes are at play, and already as early as during the 
acquisition phase of motor learning. Indeed, we were able to demonstrate that during this phase, multiple brain 
regions were involved differentially over time and in function of several aspects of performance (Chapter 3) 
while the interaction between these brain regions, as well as their relationship to the brain structure, were 
differently related to the behavioral change (Chapter 4). Multivariate methodologies and multimodal neuroim-
aging methods are thus necessary to explore activation patterns displaying integrative processes and dynamic, 
complex interactions across distributed brain regions.  

As one compelling example, in the second study, we could highlight the additive value of the brain structure-
function correspondence on top of the sourced brain structural and functional connectomes to predict motor 
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learning ability. Indeed, structure-function correspondence only, but not structural and functional topology, 
predicted motor learning ability. This suggests the usefulness of relationships between structure and function 
in explaining individual differences (Griffa et al., 2022) in motor learning ability. 

5.2 Future developments 
This thesis work adds to the knowledge of the motor learning process in aging by focusing on the acquisition 
phase of motor learning. To probe motor learning, we employed a relatively novel motor learning task that 
was not yet performed in the MRI before. The analysis and interpretation of this task showed that the task 
seems to relate differently to the pathway from goals to action (Figure 1) compared to a motor sequence learn-
ing task. In particular, being skilled in this task seems to entail effective goal and action selection and accurate 
and fast action execution. Therefore, it seems to relate to all aspects of the pathway from goals to action. 
Accordingly, the grip force modulation task, feasible in the MRI environment, could be utilized and manipu-
lated to investigate the different steps of the motor planning and execution pathway. 
 
One of the main novelties of this thesis is the application in Study 2 of graph network and structure-function 
analyses for studying motor skill acquisition in older adults. In this report, we investigated resting-state net-
works’ topology changes in association with motor learning ability. The validity of this analysis stems from 
the observation that motor learning-related functional changes during the task are impacting the following 
resting-state networks (Albert et al., 2009; Sami & Miall, 2013). However, task-based functional connectivity 
can give us additional insight into the connectivity of the brain while executing the task (Braun et al., 2015; 
Elton & Gao, 2015). Especially, this aspect is particularly relevant for healthy older adults who show differ-
ential patterns of task-based connectivity according to the task tested (Varangis et al., 2021). Furthermore, we 
interpreted the positive associations of different network measures changes with motor learning ability as a 
need for flexibility of the brain for motor learning. This notion of brain flexibility could be assessed in terms 
of the temporal changes using dynamic functional connectivity as in the studies of Bassett and colleagues 
(Bassett et al., 2011, 2015; Betzel et al., 2022). Besides, concerning flexibility, the literature stresses the im-
portance of the modular architecture of the brain (Mattar et al., 2016). The modular architecture is relying on 
the presence of highly connected nodes called connector hubs (Bullmore & Sporns, 2009). It was shown pre-
viously that in older adults, the number of connector nodes over different modules of the brain changed com-
pared with young adults (Meunier et al., 2009). An interesting point of further development would be to assess 
how the modules and the connector nodes are reorganized following learning in our cohort. Finally, while we 
assessed the contribution of changes in functional subnetworks to motor learning ability, the relationship be-
tween the specific networks was not assessed in this thesis. Previous research suggests that a need for integra-
tion between different functional systems may arise as motor learning progresses (Coynel et al., 2010). The 
investigation of internetwork connectivity changes would thus increase our understanding of the interaction 
between functional systems during motor learning. Related to this, the integrity of the highly interconnected 
hubs that are forming the “rich club” (van den Heuvel & Sporns, 2011) might have a relevant role in motor 
learning ability as it is for cognitive processes (Baggio et al., 2015). Last but not least, we could further assess 
internetwork connectivity at baseline as it seems to be a good predictor of learning in young (Wu et al., 2014; 
Mattar et al., 2018) and older adults (Mary et al., 2016; King et al., 2018).  
 
As for structure-function correspondence, we assessed the short-term changes in the correspondence related to 
learning in older adults. It should be mentioned that the relationship between structure and function can be 
measured with several methods (Preti & Van De Ville, 2019; Vázquez-Rodríguez et al., 2019), so it would be 
worth investigating whether the different methods provide similar findings. Also, as we only tested older 
adults, future investigations are warranted to check whether similar dynamics are observable in young adults. 
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Furthermore, we could also examine the contribution of changes in brain structure-function correspondence 
for motor learning on a longer timescale, keeping in mind that the structural connectome would probably 
change. One interpretation mentioned in the discussion was that a high degree of structure-function corre-
spondence is related to a high degree of specialization (Chan et al., 2022). Our design would allow us to test 
this interpretation by checking whether visual-sensorimotor autonomy at baseline predicts higher motor learn-
ing following the analysis of Mattar and colleagues (Mattar et al., 2018) and correlates the visual-sensorimotor 
autonomy with the structure-function correspondence of these regions. 

Last but not least, while the main goal of this thesis was to characterize the brain dynamics in the acquisition 
of motor learning in older adults, a similar analysis would give us great insight into the processes at play in the 
motor learning process during recovery in stroke patients. Multimodal studies are beneficial for understanding 
and characterizing diseases such as stroke and its recovery (Di Pino et al., 2014; Fleury et al., 2022). Especially, 
it was shown before that we can substantially benefit from connectome analysis to understand recovery after 
stroke (P. J. Koch et al., 2021; Egger et al., 2021; Evangelista et al., 2022). As motor learning is crucial for 
stroke recovery and rehabilitation (Krakauer, 2006), applying the analyses of this thesis in stroke patients will 
further add knowledge to the understanding of stroke recovery and help the development of new rehabilitation 
strategies for better recovery.  

5.3 Conclusion 
This thesis project aimed at characterizing in detail the dynamic changes occurring in the brain of older adults 
during the acquisition phase of a motor learning task. To do such, we employed multimodal techniques that 
allowed us to associate motor performance changes with brain activation during the acquisition of a novel 
motor skill and with resting-state functional topology and structure-function correspondence changes. In the 
first study, we wondered which brain regions showed activation changes throughout the training and if these 
same brain regions were associated with the improvement in motor skill (Chapter 3). We could demonstrate 
that better performance was achieved by the contribution of frontoparietal regions responsible for efficient 
visuomotor processing and cortical motor regions involved in the correct selection of action. In the second 
study, by implementing a design with baseline and immediate post resting-state sessions, we were able to 
quantify the changes in functional topology and structure-function correspondence following the acquisition 
of the motor skill (Chapter 4). The structure-function uncoupling was accompanied by the enhanced segrega-
tion into modular structures over the core functional networks involved in the learning process. These results 
highlight in a multimodal way that successful acquisition of the motor skill depends on brain flexibility.  
 
The acquired knowledge presented in this thesis adds to the existing corpus of literature on motor learning in 
aging, and could hopefully be used as a point of comparison for studies in older adults with motor deficits and 
as a basis of knowledge to adapt motor training strategies for healthy aging and rehabilitation in clinical set-
tings. Finally, one of the focus was to characterize the brain regions responsible for the acquisition of motor 
learning, it might help to define novel targets for interventional approaches such as brain stimulation. 
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A. Supplementary Material for Chapter 3 

Supplementary Information 

Investigation of the difference between trained sequence versus random sequence 

Behavior: The random blocks (B5 and B14) did not significantly differ from the neighboring blocks, B4 vs. B5 t(40) 
= 1.75, p = 0.088, Cohen’s d = 0.27, B6 vs. B5 t(40) = 1.75, p = 0.088, d = 0.27,  B13 vs. B14 t(40) = 0.49, p = 0.627, 
Cohen’s d = 0.076, B15 vs. B14 t(40) = 1.42, p = 0.163, d = 0.22, although a trend is present for the first random 
block. This implies that sequence-independent learning was present. 

BOLD activation: Although the behavioral results did not show any significant difference between random blocks 
and neighboring blocks, we checked as a control analysis whether BOLD activity would be different between these 
blocks to make clear whether there was brain activation specific to the learned sequence. To do so, we implemented 
a new GLM design at the subject level, creating new regressors for the neighboring blocks. We then computed the 
contrasts preblock-randomblock, postblock-randomblock for session 1 and 2, with the preblock being B4 or B13 and 
postblock being B6 or B15. Additionally, we computed the contrast postblock-preblock as a control analysis to see 
if there was a difference between the neighboring blocks of the random. We can see the results in the Supplementary 
Table 1 and the Supplementary Figure 1. As the random block occurs only once within each session, the statistical 
power is low and we should thus interpret these results with caution. We would expect to see the most differences in 
the contrast preblock-randomblock in session 2 as the sequence has been learned already for 11 previous blocks. The 
postblock-randomblock contrast is less of interest as the activity of the random block might have aftereffects. As 
expected we observed significant differences in the contrast preblock-randomblock in session 2 with more activity 
during the learned sequence in middle cingulate area, supplementary motor area, frontal opercular areas, cerebellar 
areas and right primary motor area. Inversely, we observe more activity during the random block in left visual and 
superior parietal areas. This analysis points toward the fact that although we do not observe a significant difference 
behaviorally, there is a sequence-specific learning component occurring in the first acquisition phase. 

Supplementary Figures and Tables 

Supplementary Figure 1. Differences between the compound behavioral measure of the random blocks (B5 and B14) compared to 
the neighboring blocks (B4, B6, B13, B15). The error bars are standard deviation from the mean. No differences were significant. 
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  Session 1  Session 2 
A preblock-randblock   preblock-randblock 

Sign Region Label 

cluster 
level 

p(FWE-
corr) 

cluster 
size (num-

ber of 
voxels) 

peak-
level 

p(FWE-
corr) 

peak 
(T-

value) 

MNI Coordinates   cluster 
level 

p(FWE-
corr) 

cluster 
size (num-

ber of 
voxels) 

peak-
level 

p(FWE-
corr) 

peak 
(T-

valu
e) 

MNI Coordinates 

x y z   x y z 

Positive Cingulate Mid L - - - - - - -   <0.001 888 0.004 6.54 0 -12 42 
  Cingulate Mid R - - - - - - -   <0.001 888 0.044 5.66 2 -26 48 
  Frontal Inf Oper R - - - - - - -   0.015 206 0.042 5.68 48 20 -2 
  Frontal Inf Orb 2 R - - - - - - -   0.015 206 0.154 5.18 46 22 -

   Cerebelum 4 5 L - - - - - - -   0.002 308 0.052 5.60 -6 -42 -
   Vermis 3 - - - - - - -   0.005 261 0.242 4.98 6 -42 -
   Precentral R - - - - - - -   0.044 158 0.186 5.10 54 -4 46 

  Temporal Sup R 0.001 322 0.117 5.30 54 -30 20   0.005 261 0.704 4.40 64 -14 8 
  SupraMarginal R 0.001 322 0.987 3.88 60 -18 24   0.005 261 0.973 3.94 68 -24 22 
Negative Occipital Inf L <0.001 334 0.111 5.32 -36 -74 -

 
  - - - - - - - 

  Occipital Mid L 0.001 326 0.418 4.74 -28 -78 28   <0.001 481 0.385 4.77 -30 -76 38 
  Occipital Sup L 0.001 326 0.999 3.68 -18 -86 40   - - - - - - - 
  Parietal Sup L - - - - - - -   <0.001 481 0.979 3.91 -26 -68 52 

B postblock-randblock   postblock-randblock 

Sign Region Label 

cluster 
level 

p(FWE-
corr) 

cluster 
size (num-

ber of 
voxels) 

peak-
level 

p(FWE-
corr) 

peak 
(T-

value) 

MNI Coordinates   cluster 
level 

p(FWE-
corr) 

cluster 
size (num-

ber of 
voxels) 

peak-
level 

p(FWE-
corr) 

peak 
(T-

valu
e) 

MNI Coordinates 

x y z   x y z 

Positive - - - - - - - -   - - - - - - - 
Negative Frontal_Mid_2_R - - - - - - -   <0.001 363 0.129 5.27 46 20 42 
  Frontal_Sup_2_R - - - - - - -   <0.001 363 0.556 4.58 26 16 54 

C postblock-preblock   postblock-preblock 

Sign Region Label 

cluster 
level 

p(FWE-
corr) 

cluster 
size (num-

ber of 
voxels) 

peak-
level 

p(FWE-
corr) 

peak 
(T-

value) 

MNI Coordinates   cluster 
level 

p(FWE-
corr) 

cluster 
size (num-

ber of 
voxels) 

peak-
level 

p(FWE-
corr) 

peak 
(T-

valu
e) 

MNI Coordinates 

x y z   x y z 

Positive Parietal_Inf_R 0.026 174 0.204 5.08 32 -54 52   - - - - - - - 
Negative Frontal_Mid_2_R 0.001 306 0.557 4.58 34 34 38   - - - - - - - 
  Frontal_Sup_2_R 0.001 306 0.998 3.70 20 44 28   - - - - - - - 
  Frontal_Mid_2_R <0.001 328 0.642 4.49 26 48 2   - - - - - - - 
  Frontal_Med_Orb_R <0.001 328 0.701 4.42 10 58 -6   - - - - - - - 
                 

Supplementary Table 1. BOLD activation results for the contrasts between the learned sequence blocks versus the random sequence 
blocks. Results are reported at uncorrected p<0.001 at the voxel level, cluster level p-FWE<0.05. 
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Supplementary Figure 2. BOLD activation results for the contrasts between the learned sequence blocks versus the random sequence 
blocks. The organization of the figure is similar to supplementary Table 1. (A) Contrast preblock-randblock of Session 1. (B) Con-

trast postblock-randblock of Session 1. (C) Contrast postblock-preblock of Session 1. (D) Contrast preblock-randblock of Session 2. 
(E) Contrast postblock-randblock of Session 2. (F) Contrast postblock-preblock of Session 2.  Results are reported at uncorrected 

p<0.001 at the voxel level, cluster level p-FWE<0.05. 
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Supplementary Table 2. BOLD activation result for the contrast Average of both training sessions. The main areas are listed. The 
threshold was at the cluster-level p<0.05 FWE-corrected. 

Supplementary Figure 3. Rendered figure of the average BOLD activation during the training blocks. 
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A 

B 

Supplementary Figure 5. Time-modulated brain activation masked by the performance-modulated activation. (A) Time-modulated acti-
vation that also showed performance-modulation. The results were computed within an inclusive mask of performance-modulated acti-

vation. (B) Regions showing time-related activation which do not show an association with behavior. 

A 

B 

Supplementary Figure 4. Performance-modulated brain activation masked by the time-modulated activation. (A) Performance-modu-
lated activation that also showed time-modulation. The results were computed within an inclusive mask of time-modulated activa-
tion. (B) Regions showing performance-related activation which do not show a linear increase (exclusive mask of time-modulated 

activation). 
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Supplementary Figure 6. Brain connectome changes. Changes in network topology of the brain functional connectome (A) and 
changes in brain structure-function correspondence (B) between before and after motor learning were measured for the whole brain 

and seven cerebral networks. 

Supplementary Figure 7. Changes in brain structure-function correspondence. Node-wise structure-function correspondence was 
measured before (A) and after motor learning (B) in terms of the coefficient of determination (R2 value). Circles with different sizes 

indicate R2 values at corresponding nodes. 
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Supplementary Figure 8. Correlation of brain connectome changes between measures. Changes in network topology of the brain 
functional connectome and changes in brain structure-function correspondence between before and after motor learning were meas-

ured for the whole brain and seven cerebral networks. *, statistical significance. 
 

Supplementary Figure 9. Brain connectome bases of motor learning ability. Network topology of the brain (A) structural and (B) 
functional connectomes before motor learning was measured for the whole brain and seven cerebral networks. 



Appendix 1: Effects of spindle-like tACS on task-related activation 

79 

C. Appendix 1: Effects of spindle-like tACS on task-related activation 

As introduced in Chapter 2 Section 2.1, the EconS project aimed at answering different research questions. 
One of them was to assess whether a non-invasive brain stimulation protocol mimicking the natural sleep 
spindles of young adults applied during a daytime nap would be beneficial for motor memory sleep-dependent 
consolidation in older adults. This research question was investigated extensively in another thesis (Maëva 
Moyne’s work) and thus is succinctly presented here. To answer this question, a placebo-controlled spindle-
like tACS stimulation protocol was applied during the afternoon after the initial acquisition phase of the motor 
skill while subjects were asleep. Within our pool of subjects, 15 received a real stimulation (also called the 
“verum group”) and 11 received a placebo stimulation (called the “sham group”). We assessed whether we 
could see a difference between groups in the overnap memory consolidation by comparing the difference of 
the average of the two first blocks of the compound measure postnap versus the two last blocks of training 
(prenap) (Supplementary Figure 10A). We computed the difference as mean(compound_post(2blocks)) - 
mean(compound_pre(2blocks)) in the 26 subjects that received either sham or verum stimulation and then 
tested the differences with a two-sample t-test (Supplementary Figure 10B).  

No significant differences in the offline change overnap were found between the sham and verum groups 
t(24)=1.78, p=0.088. A trend was visible towards more decrease in performance in the verum group compared 
with the sham group. Therefore, the stimulation might rather have a detrimental than beneficial effect on per-
formance, although the difference was not significant.  

Although we did not see a significant difference in behavior, we were wondering if we could observe relevant 
differences in brain activation. Our research question was formulated as “Do we observe a difference from pre 
to post intervention in the execution-related brain activation in sham and verum groups?” A follow-up question 
was “Is the difference we observe related to the offline change of behavior?”. Our hypothesis here is that 
although we could not observe significant differences in behavior, the neural processes during task execution 
might have been impacted by the stimulation and might be seeable with fMRI after intervention.  

To answer this question, we used the fMRI data of session 1, session 2 and post nap session preprocessed as 
in Chapter 3 and performed linear contrasts testing the main effect of practice for each session (model 1 Chap-
ter 3). These contrasts were then entered in a second level model consisting of a mixed ANOVA with factors 
group and prepost. To clarify, session 1 and session 2 (acquisition phase) were labeled as pre and the postnap 
session was labeled as post. Our interest was to test whether an area would show a group × prepost interaction 

Supplementary Figure 10. Depiction of the compound measure for sham and verum groups. (A) Evolution of the compound measure 
per block over the entire experiment for the sham and verum groups. (B) Violinplots of the two-block averaged difference of com-

pound measure for sham and verum groups. n.s. represents non-significance on the two-sample t-test.  
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effect. The results showed one significant cluster of 219 voxels comprising part of the right (contralateral) 
lingual gyrus and part of the right middle temporal area (Supplementary Figure 11).  

We then created a ROI from this cluster to extract the β estimates of this region for each session using MarsBaR 
toolbox in SPM12 (Brett et al., 2002). The investigation of the evolution of the β estimates permitted us to 
observe that this region showed decreasing activation in the sham group from pre to post nap whereas this 
region increased in the verum group (Supplementary Figure 12). A two-sample t-test revealed as expected a 
significant difference between the two groups t(24) = 4.57, p<0.001. 

 

T-stat 

Supplementary Figure 11. Brain activation showing an interaction group x prepost. The cluster of 219 voxels comprises part of the 
right lingual area and the right middle temporal area.  

Supplementary Figure 12. Evolution of Beta estimates in the cluster showing an interaction between group and prepost. The sham 
group show a decrease of activation while the verum group show an increase. *** refers to statistical significance with p-value inferior 

to 0.001. 



Appendix 1: Effects of spindle-like tACS on task-related activation 

81 

Activation change of this area was not differentially related to behavior however when pooling all subjects 
together (and including the wake subjects), we found a negative association between the change of activation 
and the offline improvement during the nap r(34) = -0.36, p = 0.029 (Supplementary Figure 13).  

Therefore, regardless of the group, the change of activation in this area was negatively associated with better 
behavior, i.e. less activation in this area after the nap was associated with better performance. The right lingual 
gyrus (BA19) is a region involved in object and color recognition (Brewer et al., 2005) and the right middle 
temporal area (BA37) is thought to be involved in the ventral visual pathway (the what) and especially in 
complex visual perception (Gross, 1994). Moreover, the right middle temporal area has been shown to be more 
activated in visually-guided movement of joystick compared with proprioceptively guided movement (Grefkes 
et al., 2004).  

To summarize, the subjects who got better post-nap compared with pre-nap showed a decrease in activation in 
this area. It might be interpreted as a compensatory mechanism for those who lost substantially on the perfor-
mance of the task from pre to post nap and thus need to rely more on visual processing to perform the task 
after the nap.  

Supplementary Figure 13. Correlation between beta estimates change from postnap to prenap and behavioral change from postnap to 
prenap. 
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D. Appendix 2: Behavioral change during acquisition in stroke patients 

One goal of the EconS project was to conduct the same experimental paradigm in a population of stroke pa-
tients as a proof of concept to investigate underlying mechanisms of motor learning in stroke and whether 
spindle-like tACS during a nap can enhance consolidation of an acquired motor skill. Stroke can lead to sig-
nificant impairment in several domains ranging from cognitive (Tatemichi et al., 1994) to motor execution and 
learning (Raghavan, 2007). Of particular interest in our context, a recent review of the literature reports that 
stroke patients with motor impairments show impairment in the early learning phase of motor sequence learn-
ing, indicated by deficits in integration of information (Dahms et al., 2019). Furthermore, it is well-accepted 
that motor recovery beneficiates from motor learning principles as stated by several research groups (Carr & 
Shepherd, 1989; Krakauer, 2006; Muratori et al., 2013; Dahms et al., 2019). Considering those facts, investi-
gating the early learning phase and its neural correlates in stroke patients is of paramount importance. The 
analyses of the stroke data are still ongoing and will be presented later in further publications. In this appendix, 
the behavioral results of the training phase of motor learning in fifteen stroke patients are presented.  

For methods, please refer to Chapter 2 as well as Chapter 3. The analysis pipeline is the same as for healthy 
older subjects. To test whether the initial scores and end-of-training scores of the compound measure were 
different, we performed a paired sample t-test on the average of the first (mean ± std = 37.3 ± 15.3) and last 
(mean ± std = 54.5 ± 25.7) two blocks of the compound measure (Supplementary Figure 14). This analysis 
showed a significant difference with t(14) = -2.92, p < .01. Cohen’s d was estimated at -0.75, which is a 
medium effect based on Cohen’s guidelines (J. Cohen, 1992). When conducting secondary analyses testing 

Supplementary Figure 14. Evolution of performance measures in stroke patients depicted in the form of (A and D) a compound meas-
ure of (B and E) accuracy and (C and F) time. The left panel is the average over 15 patients with shaded areas being the standard error 

of the mean (SEM). The right panel depicts the average and the individual data. ** refers to statistical significance with p< 0.01.  
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the difference in speed and accuracy, we did not find significant improvements between initial and end-of-
training scores of accuracy t(14) = -1.47 p < .165 and average time to complete trials t (14) = 1.29, p < .217. 

In conclusion, when considering a compound measure containing information on both speed and accuracy, we 
could observe a significant improvement in performance during the acquisition phase of motor learning in our 
dataset of fifteen stroke patients. However, probably due to the low sample size and a large but expected 
variability in performance across our patients, the changes in performance were not significant for accuracy or 
time to complete trials.  
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