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General three-dimensional toroidal ideal magnetohydrodynamic equilibria with a continuum of nested flux
surfaces are susceptible to forming singular current sheets when resonant perturbations are applied. The
presence of singular current sheets indicates that, in the presence of non-zero resistivity, magnetic recon-
nection will ensue, leading to the formation of magnetic islands and potentially regions of stochastic field
lines when islands overlap. Numerically resolving singular current sheets in the ideal MHD limit has been a
significant challenge. This work presents numerical solutions of the Hahm-Kulsrud-Taylor (HKT) problem,
which is a prototype for resonant singular current sheet formation. The HKT problem is solved by two
codes: a Grad-Shafranov (GS) solver and the SPEC code. The GS solver has built-in nested flux surfaces
with prescribed magnetic fluxes. The SPEC code implements multi-region relaxed magnetohydrodynamics
(MRxMHD), whereby the solution relaxes to a Taylor state in each region while maintaining force balance
across the interfaces between regions. As the number of regions increases, the MRxMHD solution appears to
approach the ideal MHD solution assuming a continuum of nested flux surfaces. We demonstrate agreement
between the numerical solutions obtained from the two codes through a convergence study.

I. INTRODUCTION

Ideal magnetohydrodynamics (MHD) permits solu-
tions with singular current sheets.1 General three-
dimensional (3D) ideal MHD equilibria with a continuum
of nested flux surfaces, as often assumed by stellarator
equilibrium solvers such as VMEC2 and NSTAB,3 are
susceptible to the formation of singular current sheets
at rational surfaces.4–6 Nominally two-dimensional (2D)
systems such as tokamaks can also develop singular cur-
rent sheets when subjected to resonant magnetic pertur-
bations (RMPs). The formation of ideal MHD singu-
lar current sheets has significant practical implications.
With a finite resistivity or other non-ideal effects that
enable magnetic reconnection, magnetic field lines sur-
rounding the ideal singular current sheets will break
and reconnect, thereby releasing magnetic energy; con-
sequently, the magnetic field will evolve into a field with
magnetic islands and possibly regions of stochastic field
lines if islands overlap.7,8 The sites of ideal MHD sin-
gular current sheets, therefore, serve as an indicator of
where magnetic reconnection will occur. The intensities
of the current sheets also measure the amount of energy
available for reconnection.

A prototype for singular current sheet formation
driven by RMPs is the Hahm-Kulsrud-Taylor (HKT)
problem,9–11 shown in Figure 1. This 2D problem has
a magnetized plasma enclosed by two conducting walls
in slab geometry. Before the conducting walls are per-
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Figure 1. A sketch of the Hahm-Kulsrud-Taylor problem.
The in-plane components of the magnetic field reverse direc-
tions at the mid-plane (the dashed line). The upper and lower
boundaries are shaped by mirror-symmetric sinusoidal pertur-
bations. In response to the perturbation, a singular current
sheet develops at the mid-plane.

turbed, the initial magnetic field is a smooth function of
space. The in-plane component points along the y di-
rection and By reverses direction at the mid-plane (the
dashed line in Figure 1). A non-uniform Bz component
renders the magnetic field force-free. We then impose
a sinusoidal perturbation with an up-down symmetry to
the conducting walls and look for a new ideal equilibrium
that is consistent with the boundary perturbation while
conserving magnetic fluxes between flux surfaces. In this
new equilibrium, a singular current sheet will develop at
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the mid-plane, which is a flux surface that resonates with
the boundary perturbation.

The primary objectives of this work are (1) investigat-
ing the nature of ideal singular current sheets by con-
structing numerical solutions of the HKT problem as an
example and (2) assessing the accuracy of the numeri-
cal solutions via convergence tests. We limit ourselves
to the case of vanishing plasma pressure in this paper,
which results in a Dirac δ-function current singularity.
For more general cases with a non-vanishing pressure gra-
dient, a Pfirsch–Schlüter current density that diverges al-
gebraically towards the resonant surfaces could arise in
addition to the δ-function current singularities.6 We leave
the Pfirsch–Schlüter current singularity to a future study.

This study employs two numerical codes: (1) a flux
conserving Grad-Shafranov (GS) solver12 and (2) the
Stepped Pressure Equilibrium Code (SPEC).13

The GS solver assumes a continuum of nested flux sur-
faces, which precludes magnetic island formation. By
prescribing the toroidal (i.e., out-of-plane) and poloidal
(i.e., in-plane) fluxes, the geometry of flux surfaces deter-
mines the magnetic field. The geometry of the flux sur-
faces is described by a mapping from coordinate space
to physical space. The numerical implementation dis-
cretizes the mapping with a Chebyshev-Fourier pseu-
dospectral method,14,15 where the residual MHD force
J ×B −∇p is calculated on a set of collocation points.
Here, we use standard notations for the magnetic field
(B), the electric current density (J), and the plasma
pressure (p). The collocation points are uniformly spaced
along the Fourier (y) direction and correspond to the in-
terior Chebyshev–Lobato points along the x direction.
The mapping is iteratively updated by an energy descent
algorithm, similar to that of VMEC, until the residual
MHD force is below a threshold.

Previously, numerical solutions of the ideal HKT prob-
lem from the GS solver have been tested, showing agree-
ment with the solutions of a fully Lagrangian solver16

and analytic solutions obtained with an asymptotic
boundary-layer analysis.17 However, the accuracy of the
GS solution has not been fully assessed and quantified.
The Lagrangian solver does not yield a converged mag-
netic field at the resonant surface and therefore cannot
facilitate quantification of errors. The boundary-layer
analytic solution also cannot be used to assess the accu-
racy of the GS solution, because it is approximate and
not exact.

To further assess the accuracy of the GS solution, it
is not sufficient to rely on self-convergence. Even if the
GS solution converges as the resolution increases, there
is no guarantee that the converged solution is correct. To
address this issue, we employ SPEC as an independent
solver to benchmark the GS solver. Another motivation
for employing SPEC in this study is that SPEC can han-
dle a much broader class of 3D configurations. If SPEC
can obtain approximate solutions to the ideal HKT prob-
lem, it can potentially be applied to more complicated 3D
problems involving multiple resonant surfaces.

The SPEC code solves for multi-region relaxed mag-
netohydrodynamic (MRxMHD) equilibria.13 MRxMHD
does not assume a continuum of nested flux surfaces.
Instead, the physical domain is divided into nested re-
gions. In each region, the magnetic field relaxes to a
Taylor state,18 i.e., a Beltrami field satisfying the con-
dition ∇ × B = µB, where µ is a constant, while con-
serving magnetic helicity as well as the poloidal and the
toroidal magnetic fluxes. Force-balance conditions are
enforced across the interfaces between adjacent regions.
Within each MRxMHD region, formation of magnetic is-
lands and stochastic field line regions is allowed;19 and
the interfaces between MRxMHD regions serve as ideal
flux surfaces that prevent the magnetic field from relax-
ing to a global Taylor state. MRxMHD can be viewed
as a bridge between Taylor’s relaxation theory and ideal
MHD. When there is only one region in the entire do-
main, MRxMHD is equivalent to Taylor’s relaxation. On
the other hand, in the limit of an infinite number of re-
gions such that the ideal interfaces become a continuum,
it has been shown that MRxMHD approaches ideal MHD
under some conditions.20,21

If these conditions hold, we expect SPEC solutions to
approach the ideal MHD solution as the number of re-
gions increases. Hence, we should be able to use SPEC
solutions with a large number of regions to benchmark
the GS solutions. However, Loizu et al.22 previously
studied a similar problem of imposing an m = 2, n = 1
perturbation on a cylindrical screw pinch with SPEC and
concluded that a minimal finite jump, approximately pro-
portional to the perturbation amplitude, in the rotational
transform across the resonant surface is a sine qua non
condition for the existence of a solution. Because the
HKT problem has a continuous rotational transform, the
sine qua non condition raises the question of whether the
solutions previously obtained with the fully Lagrangian
solver and the GS solver can also be obtained by SPEC.
As it turns out, in this study we find that SPEC can ac-
tually obtain solutions to the HKT problem without re-
quiring a discontinuous rotational transform; therefore,
the previous interpretation of the sine qua non condition
as a necessary condition for the existence of a solution is
not valid.

This paper is organized as follows. In Sec. II, we briefly
describe the flux preserving formulation of the GS equa-
tion and review the linear and nonlinear solutions of the
HKT problem. In Sec. III, we present numerical solutions
and convergence tests from the GS solver. In Sec. IV, the
numerical solutions and convergence tests from SPEC are
presented. In Sec. V, we further examine the nature of
the singular solution and discuss possible reasons for why
SPEC failed to find solutions in Ref. [22] when the sine
qua non condition was not satisfied, as well as the correct
interpretation of the sine qua non condition. We present
a case when the sine qua non condition is marginally sat-
isfied to demonstrate how that affects the nature of the
solution. Finally, we conclude and discuss future per-
spectives in Sec. VI.
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II. GRAD–SHAFRANOV FORMULATION OF THE
HAHM-KULSRUD-TAYLOR PROBLEM

Two-dimensional MHD equilibria in Cartesian geome-
try satisfy the Grad-Shafranov equation

∇2ψ = −dP
dψ

, (1)

where

P = p+
B2

z

2
(2)

is a function of ψ. Here, the Cartesian coordinate z is
the direction of translational symmetry. The flux func-
tion ψ determines the perpendicular components of the
magnetic field through the relation

B⊥ = ẑ ×∇ψ. (3)

Both the out-of-plane component Bz and the plasma
pressure p are functions of ψ. The component Bz is de-
termined by the conservation of magnetic flux. In this
study, we set p equal to zero.

With the magnetic fluxes prescribed, the magnetic field
is determined by the geometry of the flux surfaces. We
can label the flux surfaces with an arbitrary variable, and
a convenient choice is to use the initial positions x0 of flux
surfaces before the boundary perturbation is imposed.
The flux surfaces are described by a mapping from (x0, y)
to (x, y) via a function x (x0, y). Using the chain rule, we
can express the partial derivatives with respect to the
Cartesian coordinates in terms of the partial derivatives
with respect to the coordinates (x0, y):

(
∂

∂x

)

y

=
1

∂x/∂x0

∂

∂x0
, (4)

(
∂

∂y

)

x

=
∂

∂y
− ∂x/∂y

∂x/∂x0

∂

∂x0
. (5)

Here, the subscripts of the partial derivatives on the left-
hand side indicate the coordinates that are held fixed; the
partial derivatives on the right-hand side are with respect
to the (x0, y) coordinates. Hereafter, partial derivatives
are taken to be with respect to the (x0, y) coordinates by
default, unless otherwise indicated by the subscripts.

Using these relations, the Cartesian components of the
in-plane magnetic field are given by

Bx = −
(
∂ψ

∂y

)

x

=
∂x/∂y

∂x/∂x0

dψ

dx0
(6)

and

By =

(
∂ψ

∂x

)

y

=
1

∂x/∂x0

dψ

dx0
. (7)

The out-of-plane component Bz is determined by conser-
vation of magnetic flux as

Bz (x0) =
Bz0 (x0)〈
∂x

∂x0

〉 . (8)

Here, Bz0 is the initial z-component of the magnetic field;
the flux surface average ⟨f⟩ is defined as

⟨f⟩ ≡ 1

L

∫ L

0

f (x0, y) dy (9)

for an arbitrary function f (x0, y), with y ∈[0, L] being
the domain of the system along the y direction. The out-
of-plane component of the current density is given by

Jz = ∇2ψ =

(
dψ

dx0

)−1
∂

∂x0

(
B2

x +B2
y

2

)
− ∂Bx

∂y
, (10)

and the GS equation can be written as

H = −
(
dψ

dx0

)−1
∂

∂x0

(
B2

x +B2
y

2
+ P

)
+
∂Bx

∂y
= 0.

(11)
The residual MHD force is given by

F ≡ H∇ψ. (12)

To obtain the solution, we can use Fx = HBy to push the
flux surfaces along the x direction, subjected to a friction
force to damp the energy until the system settles down
to an equilibrium.
For the HKT problem, we consider an initial force-free

equilibrium

B0 = x0ŷ +
√
B2

0 − x20ẑ (13)

in the domain x0 ∈ [−a, a] and y ∈ [0, L], where the y di-
rection is assumed to be periodic. The corresponding in-
plane flux function is ψ = x20/2. We impose a sinusoidal
perturbation on the boundary that deforms x = ±a to
x = ± (a+ δ cos (ky)) and let the system evolve under
the constraints of ideal MHD to a new equilibrium.
For a small boundary perturbation, we may linearize

the GS equation in terms of the displacements of the flux
surfaces ξ (x0, y) ≡ x (x0, y) − x0. To the leading order
in ξ, the magnetic field components are

Bx ≃ ∂ξ

∂y

dψ

dx0
, (14)

By ≃ (1− ∂ξ/∂x0)
dψ

dx0
, (15)

and

Bz ≃ Bz0

(
1−

〈
∂ξ

∂x0

〉)
. (16)
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The linearized GS equation now reads

∂

∂x0

((
dψ

dx0

)2
∂ξ

∂x0
+B2

z0

〈
∂ξ

∂x0

〉)
+
∂2ξ

∂y2

(
dψ

dx0

)2

= 0.

(17)
For the HKT problem with ψ = x20/2 and the boundary

condition ξ (±a, y) = ±δ cos (ky), if we adopt the ansatz
ξ = ξ̄(x0) cos(ky), then ⟨∂ξ/∂x0⟩ = 0 and the linearized
GS equation reduces to

d2

dx20

(
x0ξ̄
)
− k2x0ξ̄ = 0. (18)

The general solution of Eq. (18) is a linear superposition
of two independent solutions

ξ̄ = c1
sinh (k |x0|)

x0
+ c2

cosh (kx0)

x0
, (19)

and the boundary condition ξ̄(±a) = ±δ requires

δ =
c1 sinh (ka) + c2 cosh (ka)

a
. (20)

We can immediately see that the linear solution
is problematic near the resonant surface at x0 =
0. The divergence of cosh (kx0) /x0 at x0 = 0 sug-
gests that the coefficient c2 must be set to zero,
and the boundary condition (20) then determines the
coefficient c1 = aδ/ sinh (ka). However, the limit
that limx0→0 sinh (k |x0|) /x0 = k yields x ≃ x0 +
(kaδ/ sinh (ka)) cos (ky) in the vicinity of x0 = 0, leading
to overlap of flux surfaces when |x0| ≤ kaδ/ sinh (ka),
which amounts to a physical inconsistency and is un-
permitted. Therefore, within an inner region |x0| ≲
O (kaδ/ sinh (ka)), the linear solution is not valid and
we must consider the nonlinear solution.

The nonlinear solution of the inner region was first
derived by Rosenbluth, Dagazian, and Rutherford (here-
after RDR) for the ideal internal kink instability23 and
was later adapted to the HKT problem.17,24 Because
dψ/dx0 → 0 in the inner region, the dominant balance of
the GS equation (11) is approximately given by

∂

∂x0

(
B2

y

2
+ P (x0)

)
= 0; (21)

here, we have neglected B2
x compared to B2

y in Eq. (11)
by assuming |∂x/∂y| ≪ 1. Integrating Eq. (21) yields

By =
1

∂x/∂x0

dψ

dx0
= sgn

(
dψ

dx0

)√
f(x0) + g(y), (22)

where

f (x0) = −2P (x0) + const (23)

and g(y) is an arbitrary function that will be deter-
mined later by asymptotic matching to the outer solu-
tion; the sgn (dψ/dx0) factor comes from the requirement

that ∂x/∂x0 > 0 must be satisfied to avoid overlapping
flux surfaces. Without loss of generality, we are free to
set f(0) = 0, and the tangential discontinuity of By at
x0 = 0 is

By|0± = ±
√
g(y). (24)

Using the flux function ψ = x20/2 for the HKT problem
and integrating Eq. (22) one more time yields the inner
solution of RDR

xRDR (x0, y) =

∫ x0

0

|x′|√
f(x′) + g(y)

dx′. (25)

Note that the functions f (x0) and g (y) are not indepen-
dent, but are related through Eq. (23). Here, P = B2

z/2
and Bz is determined by Eq. (8) with x (x0, y) replaced
by xRDR (x0, y). The resulting relation is cumbersome.
To simplify the problem, we further assume that |Bz| ≫
|B⊥| (i.e., in the so-called reduced MHD regime) and re-
place the constraint (23) by the incompressible constraint
⟨∂x/∂x0⟩ = 1, yielding

〈
1√

f(x0) + g(y)

〉
=

1

|x0|
. (26)

Once g(y) is obtained, the constraint (26) then deter-
mines f (x0).
The function g(y) can be obtained via asymptotic

matching to the linear solution in the outer region. The
readers are referred to Ref. [17] for further detail of adapt-
ing the matching method of RDR for the internal kink
mode to the HKT problem. Here, we simply quote the
relevant results. The function g(y) can be obtained by
numerically solving an integral equation,25 but a good
analytic approximation for g(y) is

g(y) ≃ 4c21k
2

3
sin8(ky/2), (27)

where c1 is the coefficient of the outer solution given by

c1 =
12 sinh(ka)−

√
144 sinh2(ka)− 168aδk2 cosh(ka)

7k2 cosh(ka)
.

(28)

III. NUMERICAL SOLUTIONS OF THE
GRAD-SHAFRANOV EQUATION

Now we present numerical solutions to the HKT prob-
lem obtained by the GS solver. We set the free param-
eters of this problem to B0 = 10, a = 1/2, δ = 0.1, and
k = 2π/L = 1. We assume a mirror symmetry of the so-
lution and solve in only half of the domain x0 ∈ [0, 1/2].
We perform two sets of numerical calculations. The

first set employs a direct Chebyshev-Fourier pseudospec-
tral discretization of the GS equation. For the second
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Figure 2. A selection of flux surfaces obtained from the high-
est resolution calculation that we use as the reference for con-
vergence tests in this study.

set, we take advantage of the knowledge of RDR’s ana-
lytic solution and express the geometry of flux surfaces as
x(x0, y) = xRDR(x0, y) + x̃(x0, y). Here, to calculate the
analytic solution xRDR, we adopt the analytic approx-
imation (27) for g(y) and numerically solve the incom-
pressible constraint (26) to obtain f (x0). We then nu-
merically integrate Eq. (25) to obtain xRDR. We rewrite
the GS equation in terms of the deviation x̃ from the
RDR solution and implement a special version of the GS
solver for this formulation. Because the analytic solution
accounts for most of the singular behavior near the reso-
nant surface, the accuracy of the second set of solutions
is substantially improved.

We use Ny = 512 collocation points along the y direc-
tion to ensure that most of the numerical errors are due
to the discretization along the x0 direction. We then test
the convergence of the numerical solution by increasing
the number of Chebyshev collocation points Nx. We per-
form calculations with Nx = 8, 16, 32, 64, and 128. The
Chebyshev collocation points cluster near the edges of
the domain, with the shortest distance between the col-
location points scales as 1/N2

x . For Nx = 128, the closest
collocation point is at x0 = 7.5 × 10−5. Due to the lack
of a perfectly precise solution for the convergence test,
we take the most accurate numerical solution available
as a substitute. For that purpose, the Nx = 128 solution
from the second set (with the subtraction of the RDR
solution) serves as the reference.

Our primary diagnostics for the convergence test are:
(a) the discontinuity of magnetic field at the resonant
surface By|0+ (By|0− = − By|0+ from symmetry); and
(b) the geometry of a selection of flux surfaces. For the
latter, we use the flux surfaces labeled by x0 = 1/4, 1/8,
1/16,. . ., 1/1024. This set of flux surfaces is shown in
Fig. 2. We quantify the errors of a solution by the L2

norms of the differences of relevant quantities relative to

0 1 2 3 4 5 6
y

0.00

0.02

0.04

0.06

0.08

0.10

0.12

B y
| 0+

Nx = 8

Nx = 16

Nx = 32

Nx = 64

Nx = 128

RDR

Figure 3. The magnetic field By|0+ at the lower boundary of
the computational domain obtained from the GS solver with-
out RDR subtraction. For reference, the dotted line shows
the RDR solution.

the reference solution. Specifically, we use

∥∥∆By|0+
∥∥
2
≡
〈(

By|0+ − Bref
y

∣∣
0+

)
2
〉1/2

(29)

and

∥∆x∥2 ≡
〈(
x− xref

)
2
〉1/2

, (30)

where the flux surface average is defined in Eq. (9).
The calculation of By using Eq. (7) fails at the reso-

nant surface, because both the denominator and the nu-
merator approach zero. To obtain By|0+ , we perform a
polynomial extrapolation using the barycentric formula26

with values of By on all the collocation points other than
x0 = 0. Additionally, because the flux surfaces of choice
for the convergence test do not coincide with the Cheby-
shev collocation points, we have to perform a polynomial
interpolation to determine their geometry.
Figure 3 shows By|0+ from the GS solver with increas-

ing grid resolutions. For Nx = 8, we can see that By|0+
becomes negative near y = 0 and y = 2π. This is a
numerical error due to discretization and extrapolation,
as the true solution should remain positive and only be-
comes zero at y = 0 and y = 2π. As Nx increases, the
solution quickly converges and the curves are virtually on
top of one another when Nx ≥ 16. The values near y = 0
and y = 2π remain slightly negative, but the magnitude
rapidly decreases as Nx increases. For the second set
of solutions with RDR subtraction, the curves virtually
overlap with each other for all the cases we have done
(not shown). The dotted line in Fig. 3 shows the RDR
solution. We can see that although the RDR solution is a
good approximation, there is a visible difference between
the RDR solution and the converged GS solution.
Figure 4 shows the convergence of By|0+ errors for

both sets of solutions. We can see that applying RDR
subtraction reduces the errors by approximately one or-
der of magnitude, but the overall convergence rates are
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Without RDR Subtraction

Figure 4. Convergence of By|0+ errors from the GS solvers
with and without subtracting the RDR solution.

similar for both sets of solutions. Likewise, the conver-
gence of flux surface errors is shown in Figure 5 for both
sets of solutions. Evidently, flux surfaces closer to the
resonant surface are more difficult to solve accurately.
Again, the RDR subtraction reduces the errors by ap-
proximately an order of magnitude, but the overall con-
vergence rate remains similar.

Note that the data points for Nx = 128 with RDR
subtraction are missing in Figures 4 and 5, because that
solution serves as the reference. The convergence tests
provide a base for estimating the errors of the reference
solution. Because the same reference solution will also
be used for the convergence test of SPEC solutions, it is
important to ensure that the reference solution is suffi-
ciently accurate. By extrapolating the trends in Fig. 4
and Fig. 5(a), we estimate the reference solution’s error
of By|0+ to be smaller than 10−6, error of the flux surface
labeled by x0 = 1/4 smaller than 10−9, and error of the
flux surface labeled by x0 = 1/1024 smaller than 10−6.

IV. SPEC SOLUTIONS

Now we continue with the SPEC solutions to the HKT
problem. Here we also present the results from two sets of
numerical calculations. For the first set, the initial posi-
tions of interfaces between volumes are uniformly spaced
before the boundary perturbation is imposed. We start
from the number of volumes Nvol = 2, then increase to
Nvol = 4, 8, up to Nvol = 128. For the second set of
calculations, we explore the possible advantages of pack-
ing more volumes near the resonant surface. Because the
best strategy for packing volumes is not a priori clear,
we adopt a procedure of refining only the nearest volume
to the resonant surface to see how SPEC performs under
this extreme scenario of local refinement. The procedure
goes as follows: We start from Nvol = 2. At each level of
refinement, the volume adjacent to the resonant surface
is divided into two equal volumes. In this way, we go up

101 10210−9

10−7

10−5

10−3

‖∆
x ‖

2

∼ N−3
x

(a) With RDR Subtraction x0 = 1/4
x0 = 1/8
x0 = 1/16
x0 = 1/32
x0 = 1/64
x0 = 1/128
x0 = 1/256
x0 = 1/512
x0 = 1/1024

101 102

Nx

10−9

10−7

10−5

10−3

‖∆
x ‖

2

∼ N−3
x

(b) Without RDR Subtraction

Figure 5. Convergence of flux surface errors from the GS
solvers with and without subtracting the RDR solution.

to an “effective” Nvol = 512, meaning that the smallest
volume is 1/512 of the domain, while the actual num-
ber of volumes is Nvol = 10. The interfaces between the
volumes for the highest resolution case of the second set
exactly correspond to the flux surfaces we use for conver-
gence tests shown in Fig. 2.
We test the convergence of the two sets of SPEC solu-

tions as the number of volumes increases, using the high-
est resolution GS solution as the reference. The number
of Fourier harmonics along the y direction is 48 for all
the SPEC calculations presented here.
When SPEC finds a solution, it is not guaranteed that

the ideal interfaces between volumes will not overlap with
each other. Overlapping ideal interfaces are not permit-
ted on physical grounds, but they do occasionally occur
in SPEC solutions, especially for those interfaces close to
the resonant surface, and this will cause the SPEC algo-
rithm to crash. Because SPEC uses Newton’s method to
find the solution, having a good initial guess is crucial.
A useful approach to overcome the problem of overlap-
ping ideal interfaces is to start from a small boundary
perturbation, find the solution, then use the solution as
the initial guess for a slightly increased boundary pertur-
bation. This process is repeated until the full amplitude
of boundary perturbation is reached.
Figure 6 shows By|0+ from SPEC using uniformly-

spaced volumes. Similar to the GS solutions shown in
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Figure 6. Convergence of By|0+ of SPEC solutions as the
number of uniformly spaced volumes increases.

Figure 7. Ideal interfaces between MRxMHD volumes (red)
and samples of Poincaré plot in each volume (black). The
left-hand side shows the case with eight volumes, and the
right-hand side shows the case with sixteen volumes.

Figure 3, the values of By|0+ in SPEC solutions also be-
come negative near y = 0 and y = 2π, but the magnitude
rapidly decreases as the number of volumes increases.
The reason for negative By|0+ is the presence of residual
magnetic islands near the resonant surface,11 as we can
see in Figure 7. Here, the red lines are the ideal interfaces
and the black dots represent samples of the Poincaré plot
from field line tracing. The left-hand-side of the figure
shows the Nvol = 8 case, while the right-hand-side shows
the Nvol = 16 case. The Poincaré plot reveals the resid-
ual islands in the lower left and the lower right corners.
The size of the island decreases as Nvol increases from
8 to 16. This trend continues as Nvol further increases,
resulting in the decrease of the magnitude of negative
By|0+ .
Figure 8 shows the convergence of the errors of By|0+

as Nvol increases, for both sets of SPEC solutions. Here,
for the cases of packed volumes, Nvol corresponds to the
“effective”number of volumes as discussed above. We can

101 102
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10−4

10−3

10−2

∥ ∥ ∆
B y
| 0+
∥ ∥ 2

∼ N−1.5
vol

Packed
Uniform

Figure 8. Convergence of the By|0+ errors of SPEC solutions
for cases of packed volume and uniformly-spaced volumes.
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(a) Uniform
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(b) Packed
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x0 = 1/4
x0 = 1/8
x0 = 1/16

x0 = 1/32
x0 = 1/64
x0 = 1/128

x0 = 1/256
x0 = 1/512
x0 = 1/1024

Figure 9. Convergence of the flux surface errors of SPEC
solutions. Panel (a) shows the cases of uniformly-spaced vol-
umes, and panel (b) shows the cases of packed volumes near
the resonant surface. Note that Nvol for the packed cases
corresponds to the “effective” number of volumes as discussed
in the text, not the actual number of volumes. Because the
outer region never gets refined for the packed cases, we do not
expect the solutions to approach the ideal MHD solution even
in the limit of Nvol → ∞.
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see that the errors from both sets are nearly identical
for the same Nvol, even though the volumes far away
from the resonant surface are much coarser for the packed
cases. The errors approximately scale as N−1.5

vol for both
uniform and packed cases. This finding suggests that
By|0+ may not strongly depend on the accuracy in the
outer region.

On the other hand, the effects of inadequate resolu-
tion in the outer region are evident in the convergence of
flux surface errors, shown in Figure 9. Here, the errors
consistently scale as N−3

vol for cases of uniform volumes.
For cases of packed volumes, although the errors initially
decrease as N−3

vol , the trend eventually flattens as Nvol

further increases. It is possible that the stalling of con-
vergence in the outer region may eventually affect the
convergence of By|0+ for the packed cases. We can see
that the last point of packed cases in Figure 8 exhibits
some deviation from the N−1.5

vol scaling. Another possi-
ble reason for the deviation is that SPEC solutions only
use 48 Fourier modes, which may not be sufficient to
accurately represent the flux surfaces near the resonant
surface.

The results of packed-volume solutions show the ef-
fectiveness of local refinement, even when using the ex-
treme refinement scenario adopted here. A better strat-
egy in practical applications would be to refine over the
entire domain while placing more volumes near the res-
onant surface. Nonetheless, our results indicate that a
good approximation of the resonant singular current den-
sity may be obtained even with relatively coarse volumes
away from the resonant surface.

V. DISCUSSION

A. Nature of the singular solution

The agreement between the solutions of the GS solver
and SPEC suggests that both codes are approaching the
true solution of the HKT problem as the resolution (or
number of volumes) increases. Now we further examine
the nature of the singular solution.

The finite tangential discontinuity By|0± arises from a
continuous initial magnetic field through the compression
of the space between flux surfaces, which is evident from
the flux surfaces shown in Figure 2. As we can infer from
the RDR solution (25), for flux surfaces sufficiently close
to the resonant surface such that the condition

f (x0) ≪ g(y) (31)

is satisfied, we have

x (x0, y) ≃
x20√
g(y)

. (32)

Because f(0) = 0 and g(y) ≃
(
4c21k

2/3
)
sin8(πy/L), the

condition (31) will eventually be satisfied for sufficiently

small x0 for all y except at y = 0 and y = L, but the tran-
sition to the quadratic mapping x ∼ x20 occurs at different
x0 for different y. To compensate for the strong compres-
sion of the quadratic mapping, the “downstream” regions
of flux surfaces near y = 0 and y = L have to bulge
outward to maintain approximate incompressibility.
Now we show that the flux surfaces sufficiently close to

the resonant surface satisfy a similarity relation near the
downstream region after a proper rescaling. To reveal the
rescaling rules, we first need to establish the behavior of
f (x0) near x0 = 0. When the function g(y) is known,
the function f(x0) can be obtained by solving Eq. (26).
Because f(x0) → 0 in the limit |x0| → 0, the function

1/
√
f(x0) + g(y) is localized near y = 0, L. Hence, in

this limit we can approximate g (y) by its leading order
Taylor expansion, yielding

〈
1√

f(x0) + g(y)

〉

≃ 2

L

∫ ∞

0

dy√
f(x0) + (4c21k

2/3) (ky/2)8

=
2

π3/2

Γ(3/8)Γ(9/8)

f(x0)3/8 (4c21k
2/3)

1/8
, (33)

where Γ is the gamma function.27 Plugging Eq. (33) into
Eq. (26) yields the leading order behavior of f(x0) in the
limit |x0| → 0:

f(x0) ≃ [cf |x0|]8/3 , (34)

where

cf ≡ 2(3/4)1/8

π3/2
Γ(3/8)Γ(9/8) (c1k)

−1/4

≃ 0.7735 (c1k)
−1/4

. (35)

Without loss of generality, here we consider x0 ≥ 0.
Applying the leading order approximations of f (x0) and
g (y) near x0 = 0 and y = 0 to the RDR solution (25)
yields

x (x0, y) ≃
∫ x0

0

x′√
d1x′8/3 + d2y8

dx′, (36)

where d1 and d2 are some constants. With a change of
variables ζ = x′/x0, equation (36) can be rewritten as

x (x0, y)

x
2/3
0

≃
∫ 1

0

ζ√
d1ζ8/3 + d2

(
y/x

1/3
0

)8 dζ. (37)

Equation (37) suggests that if we rescale x and y to

x/x
2/3
0 and y/x

1/3
0 , the flux surfaces near (x, y) = (0, 0)

will approximately coincide. This similarity relation is
borne out by our numerical solutions, shown in Figure
10 for a selection of flux surfaces before and after rescal-
ing.
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Figure 10. The nested flux surfaces near the resonant sur-
face exhibit a similarity relation. Panel (a) shows a selection
of flux surfaces near the lower-left corner of Figure 2. After

rescaling by x → x/x
2/3
0 and y → y/x

1/3
0 , the flux surfaces

become nearly identical, as shown in panel (b). This figure
uses the reference solution obtained by the GS solver with
RDR subtraction. Using the SPEC solution with packed vol-
umes or the GS solver without RDR subtraction yields nearly
identical curves.

The similarity relation implies that the heights of the
bulged flux surfaces in the downstream region scale as

x
2/3
0 and the widths scale as x

1/3
0 ; the enclosed volumes

scale as x0, to be consistent with the incompressible con-
straint. Therefore, in the limit of x0 → 0, the width of
the bulged region becomes narrower and narrower. Be-
cause the enclosed volumes scale as ∼ x0, the geometry
of flux surfaces x(x0, y) may be viewed as approaching a
Dirac δ-function ∼ x0δ(y).

Examining the solution from a Lagrangian perspective
provides further insight to its singular nature. The La-
grangian formulation of ideal MHD describes a state in
terms of the mapping from the initial positions x0 of fluid
elements to their final positions x. The magnetic field at
x is determined by the initial magnetic field B0 at x0

0 1 2 3 4 5 6
y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

x

Figure 11. The distorted mesh shows the Lagrangian mapping
to the final equilibrium from a rectangular uniform mesh be-
fore imposing the boundary perturbation.

and the mapping x (x0) via the relation28,29

B =
B0 ·

∂x

∂x0

J , (38)

where J = det (∂x/∂x0) is the Jacobian of the mapping.
Although our GS solver is not fully Lagrangian because

the mesh can move along the x direction but not along
the y direction, we can reconstruct the full Lagrangian
mapping of fluid elements from the initial to the final
state once the solution is obtained. For each fluid ele-
ment labeled by (x0, y) in the final solution, we need to
find its initial position (x0, y0). This“inverse”Lagrangian
mapping can be expressed as a function y0 (x0, y). From
the conservation of magnetic flux through an infinitesi-
mal fluid element

Bz0 (x0) dx0

[
∂y0
∂y

dy

]
= Bz (x0)

[
∂x

∂x0
dx0

]
dy (39)

and using Eq. (8) to relate Bz0 and Bz, we can calculate

∂y0
∂y

=
∂x/∂x0
⟨∂x/∂x0⟩

(40)

and integrate it along each constant-x0 contour to obtain
y0(x0, y).
Figure 11 visualizes how a rectangular uniform mesh

in the initial state is deformed by the Lagrangian map-
ping in the final state. We can see that the mapping is
highly distorted near the resonant surface. All the verti-
cal mesh lines in the initial state now converge towards
the lower corners in the final state, and the single point
(x0, y0) = (0, L/2) is stretched to an entire line of the
lower boundary. This result strongly suggests that the
solution we find here for the HKT problem can only be
approached, but cannot be reached by ideal MHD evo-
lution described via smooth, diffeomorphic Lagrangian
mapping.30
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Now we discuss some limitations of our present meth-
ods in tackling the δ-function singularities. At first sight,
the pseudospectral method employed by the GS solver
may seem ill-suited for problems with discontinuities.
However, note that the primary variable to describe the
solution is the geometry of flux surfaces represented by
the mapping x (x0, y), which is not discontinuous. Al-
though the magnetic field does become discontinuous,
we only take derivatives on the total pressure B2/2 + p,
which is continuous, when evaluating the residual force.
For that reason, the pseudospectral method does not per-
form poorly because of the discontinuous magnetic field.
In this study, because we assume a mirror symmetry and
solve for half of the domain, the magnetic field discon-
tinuity is not present within the computational domain
and therefore does not pose a problem. However, the GS
solver works fine even when we do not assume the sym-
metry, provided that the collocation points do not fall on
(or very close to) the resonant surface.

Although the mapping x (x0, y) is continuous, it ap-
pears to become non-differentiable when the rotational
transform is continuous. Even though the exact form
of x (x0, y) is not known, we may use the RDR solu-
tion, Eq. (25), as a proxy. The function xRDR (x0, y)
is infinitely differentiable along the y direction over the
entire domain, and is infinitely differentiable along x ev-
erywhere except at the point (x0, y) = (0, 0) (and also

(0, L) because of the periodicity). Because x ∼ x
2/3
0 when

y = 0, the partial derivative of xRDR along x0 diverges

at (x0, y) = (0, 0) as ∂xRDR/∂x0|y=0 ∼ x
−1/3
0 . This sin-

gular behavior leads to the non-smoothness of the flux
surfaces near the resonant surface. Consequently, the
convergence rate of the GS solver is algebraic with re-
spect to the number of collocation points (see Figures
4 and 5), as opposed to an exponential convergence we
usually expect from a pseudospectral method. In con-
trast, when applying to a problem that satisfies the sine
qua non condition in Sec. VB, the GS solver can achieve
much more rapid convergence (see Figures 13 and 15).

We can appreciate the non-smoothness of HKT flux
surfaces near the resonant surface through the similar-
ity relation we discussed earlier. Because the width of

the bulged region scales as x
1/3
0 , when we increase the

resolution along the x direction, we need to increase the
resolution along y direction as well to resolve the localized
structure. For the GS solver, since the closest Chebyshev
collocation point to the resonant surface has x0 ∝ 1/N2

x ,
roughly speaking, the resolution in y needs to scale as

Ny ∼ N
2/3
x to resolve the localized structures. A simi-

lar requirement also applies to SPEC when the number
of volumes increases. Therefore, the Fourier represen-
tation employed by both solvers is inefficient for ideal
flux surfaces near the resonant surface. A possible rem-
edy is to employ alternative basis functions for the flux
surfaces. The version of GS solver with RDR subtrac-
tion effectively uses the RDR solution as one of the basis
functions. However, although subtracting the RDR solu-

tion significantly improves the accuracy of the GS solver,
it does not completely remove the effect of the singular-
ity and the convergence rate remains similarly algebraic.
The convergence rate could potentially be further im-
proved by adopting a more accurate g (y) in the RDR
solution (25), either by numerically solving the RDR in-
tegral equation25 or by dynamically solving g (y) as a
part of the solver.
Note that this singular behavior of flux surfaces near

the resonant surface only arises when we try to ob-
tain the ideal MHD solution. SPEC, which implements
MRxMHD, is not an ideal MHD equilibrium solver with
nested flux surfaces by design. By changing the number
of volumes, SPEC allows a transition from Taylor relax-
ation to ideal MHD. When modeling non-ideal plasmas
that allow magnetic islands and regions of stochastic field
lines with MRxMHD, an active area of research is to un-
derstand where the ideal interfaces should be placed and
when an ideal interface should be removed.21 The pres-
ence of a strong current sheet on an ideal interface is an
indication that the interface should be removed. If we
remove the ideal interface at x0 = 0 and allow reconnec-
tion, the singular behavior of flux surfaces may no longer
be a problem.

B. Reinterpreting the sine qua non condition in Loizu et
al. (2015)22

We mention in the Introduction that Loizu et al.22

previously studied an m = 2, n = 1 perturbation on
a cylindrical screw pinch with SPEC and concluded that
a minimal finite jump in the rotational transform is nec-
essary for the existence of a solution. This finding moti-
vated Loizu et al. to call the minimal finite jump a sine
qua non condition. However, in the present study, we
show that SPEC actually can find solutions for the HKT
problem, which has a continuous rotational transform,
provided that Newton’s method is initialized with care.
Therefore, the previous interpretation of the sine qua non
condition by Loizu et al. is incorrect. To further clarify
the issue, it is instructive to discuss the sine qua non
condition in the context of the HKT problem. A similar
discussion can also be found in Sec. 3.3 of Ref. [31].
Instead of a continuous initial magnetic field, let us now

suppose that the initial field has a finite discontinuity at
x0 = 0:

By0 = x0 ± b. (41)

Here, we take the plus sign for x0 > 0 and the minus
sign for x0 < 0. The discontinuity parameter b provides
a finite jump in the rotational transform. In the limit
b→ 0, the original HKT problem is recovered.
For this modified HKT problem, the linearized GS

equation (17) becomes

d2

dx20

(
(x0 ± b) ξ̄

)
− k2 (x0 ± b) ξ̄ = 0. (42)
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With boundary conditions ξ̄(0) = 0 and ξ̄(±a) = ±δ, the
solution is

ξ̄ =
(a+ b)δ

sinh(ka)

sinh (kx0)

x0 ± b
. (43)

The geometry of perturbed flux surfaces up to the lin-
ear order is given by x = x0 + ξ̄ cos(ky). To prevent
overlapping of flux surfaces requires ∂x/∂x0 > 0, which
amounts to
∣∣∣∣
dξ̄

dx0

∣∣∣∣ =
(a+ b)δ

sinh(ka)

∣∣∣∣k
cosh (kx0)

x0 ± b
− sinh (kx0)

(x0 ± b)2

∣∣∣∣ < 1 (44)

for the linear perturbation. Since
∣∣∣∣
dξ̄

dx0

∣∣∣∣ =
(a+ b)kδ

b sinh(ka)

∣∣∣∣1∓
2x0
b

+O
(
x20
)∣∣∣∣ (45)

in the vicinity of x0 = 0, it is sufficient to ensure that∣∣dξ̄/dx0
∣∣ < 1 at x0 = 0. That leads to the sine qua non

condition for the HKT problem:

b > bmin =
kaδ

sinh (ka)− kδ
. (46)

The sine qua non condition ensures that the flux sur-
faces of the linear solution do not overlap. However, not
satisfying the sine qua non condition does not imply the
nonexistence of a solution; it simply means that a non-
linear solution must be sought non-perturbatively. The
RDR solution demonstrates how an approximate nonlin-
ear solution can be obtained through a boundary layer
analysis and asymptotic matching. The previous misin-
terpretation of the sine qua non condition as the nec-
essary condition for the existence of a solution further
led to an erroneous claim that the RDR solution has a
discontinuous rotational transform.25 This latter mistake
has been corrected by Zhou et al.17

Let us now examine how the sine qua non condition
affects the solution. For the same boundary perturbation
with k = 1, a = 0.5, and δ = 0.1 as before, the sine qua
non condition (46) gives bmin ≃ 0.119. In what follows,
we consider the case b = 0.12 such that the sine qua
non condition is marginally satisfied. We numerically
calculate the solution with the GS solver and perform
exactly the same convergence tests as before.

Figure 12 shows the magnetic field discontinuity By|0+
for different number of collocation points Nx. We can
see that all the curves are visually indistinguishable, even
with a resolution as low as Nx = 8. Note that By|0+ > 0
everywhere because of the discontinuous rotational trans-
form.

Figure 13 shows a self convergence test for the By|0+
error. Here, we use the Nx = 128 solution as the ref-
erence. We can see that the error reaches a level below
10−10 at Nx = 32. Further increasing the resolution does
not lower the error, suggesting that the error is domi-
nated by round-off errors when Nx ≥ 32.

Figure 14 shows a zoom-in view of a selection of flux
surfaces. These flux surfaces correspond to the same flux
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Figure 12. The magnetic field discontinuity By|0+ obtained
by the GS solver with different number of collocation points
Nx, for the case b = 0.12.
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Figure 13. Self convergence test of the By|0+ error for the
case b = 0.12. The Nx = 128 solution serves as the reference.
The error is dominated by round-off errors when Nx ≥ 32.
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Figure 14. A zoom-in view of a selection of flux surfaces for
the case b = 0.12. This figure can be compared with Fig. 10(a)
for the case b = 0.
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Figure 15. Self convergence test of the flux surface errors
for the case b = 0.12. The Nx = 128 solution serves as the
reference. The errors are dominated by round-off errors when
Nx ≥ 32.

surfaces shown in Fig. 10(a) for the case with a con-
tinuous rotational transform. Comparing these two fig-
ures, we can see that with the discontinuous rotational
transform, the space between flux surfaces is no longer
strongly squeezed; consequently, the flux surfaces also do
not strongly bulge out in the “downstream” region near
the lower-left corner. Figure 15 shows a self convergence
test of flux surface errors, using the Nx = 128 case as
the reference. Again, the errors appear to be limited by
round-off errors when Nx ≥ 32.

The numerical calculations shown here all use Ny =
512. However, because the flux surfaces no longer have
strongly localized geometric structures, the same accu-
racy can be achieved with a lot fewer grid points along
y. We find that a similar accuracy can be achieved with
Nx = 32 and Ny = 64.
This example demonstrates that the sine qua non

condition significantly alters the nature of the solution,
which may have contributed to why SPEC had no prob-
lem finding solutions when the condition was satisfied in
Ref. [22]. Because the space between flux surfaces is no
longer strongly squeezed, the Newton’s solver of SPEC
is less likely to have overlapped ideal interfaces. More-
over, because the SPEC calculations in Ref. [22] only use
a small number of Fourier harmonics (the toroidal mode
number n ≤ 6 and the poloidal mode number m ≤ 3),
the fact that the flux surfaces do not develop localized
structures also helps.

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

In conclusion, we have demonstrated that with the in-
crease of resolution or the number of volumes, the GS
solver and SPEC both appear to approach the solution
of the ideal HKT problem with a δ-function singularity.
Our result is also the first to show that SPEC can obtain

approximate solutions of the ideal HKT problem without
requiring a discontinuous rotational transform across the
resonant surface in the initial condition.
In the previous calculation by Loizu et al.,22 the sine

qua non condition originated from a breakdown of the
linear solution near the resonant surface, which was mis-
interpreted as a lack of a solution. This misunderstand-
ing, compounded with the fact that SPEC uses a Newton
method that may fail to find the solution without a care-
fully chosen initial guess, led to the erroneous conclusion
that a finite threshold of discontinuous rotational trans-
form is necessary for the existence of a solution. However,
as we have discussed in Sec. II, the breakdown of the lin-
ear solution does not imply a lack of a solution, but rather
that a nonlinear solution must be sought. Furthermore,
by carefully initiating Newton’s method, we have demon-
strated that SPEC can obtain the solution. The present
study also calls for reconsideration of the previous study
by Loizu et al.,22 as well as the benchmark study between
SPEC and VMEC on the same problem.32

In future work, it would be prudent to implement in
SPEC a steepest descent algorithm for the energy func-
tional, which should be beneficial for tackling this and
similar problems. For instance, one could first use the
more robust steepest descent algorithm to obtain an ap-
proximate solution, then switch to Newton’s method for
more rapid convergence to the final solution.
Following up this work, several further investigations

will be pursued in the future. Some of the present ap-
proaches could be adapted to singular current sheets aris-
ing from the ideal internal kink instability23,33 and more
general 3D magnetic resonant perturbations. In addi-
tion to the δ-function singularities, the algebraically di-
vergent Pfirsch–Schlüter current in the presence of a pres-
sure gradient should also be investigated. Recent stud-
ies have shown that ideal current singularities on reso-
nant surfaces may be eliminated by modifying the plasma
boundary.34,35 This new approach could also be investi-
gated with SPEC. Finally, the tendency to form current
sheets is thwarted in real plasmas by non-ideal effects,
which will tend to drive magnetic reconnection, forming
magnetic islands or regions of stochastic field lines when
island overlap occurs. An important question of practi-
cal significance is whether the sizes of saturated islands or
regions of stochastic field lines can be predicted from the
intensity of current singularities.5,36–39 If such a relation-
ship can be established, we may use singularity intensities
as a proxy for the sizes of magnetic islands (or regions of
stochastic field lines) in stellarator optimization.
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