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ABSTRACT

Long global gyrokinetic turbulence simulations are particularly challenging in situations where the system deviates strongly from its initial state and
when fluctuation levels are high, for example, in strong gradient regions. For particle-in-cell simulations, statistical sampling noise accumulation
from large marker weights due to large deviations from the control variate of a delta-f scheme makes such simulations often impractical. An adap-
tive control variate in the form of a flux-surface-averaged Maxwellian with a time-dependent temperature profile is introduced in an attempt to
alleviate the former problem. Under simplified collisionless physics, this adaptive delta-f scheme is shown to reduce noise accumulation in the zonal
flows and the simulated heat flux in a quasi-steady turbulent state. The method also avoids the collapse of the signal-to-noise ratio, which occurs in
the standard non-adaptive scheme, and, therefore, allows one to reach numerically converged results even with lower marker numbers.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0106661

I. INTRODUCTION

The success of magnetic fusion research relies heavily on its accu-
rate modeling by computer simulations. In the most promising reactor
configuration, the tokamak, plasma is confined by magnetic fields in a
toroidal vacuum chamber. A complete description of the plasma
involves simulating regions of the core, edge, the scrape-off layer, and
plasma–wall interaction.

To simulate fusion plasmas, many methods exist, which can be
categorized by the physical assumptions made. The latter are usually
dictated by the physical process of the plasma volume. This work
focuses on simulating turbulence in the core and edge transitioning
region. Specifically, the gyrokinetic particle-in-cell (PIC) method1–5 is
used. The gyrokinetic formalism6–8 reduces the number of phase space
variables from six to five, approximating the dynamics of plasma parti-
cle trajectories by gyrorings bound to evolving gyrocenters. The reduc-
tion in dynamics implies a timescale separation between the fast
cyclotron motion and the fluctuation time scales typically involved in

turbulent processes. Using Monte Carlo sampling, the PIC method
begins by representing an initial distribution function f as a collection
of numerical particles (in fact the gyrocenters) called “markers,” each
having its respective weight. Each marker is then integrated along its
characteristic through time.

For plasma core simulations, it is often the case that f does not
deviate significantly (not more than a few percent) from its initial
state f0 over characteristic time scales of micro-stabilities and turbu-
lent processes. This allows one to split the distribution function
into a stationary analytic control variate5,9,10 f0 and a time-
dependent deviation part df, which is represented by numerical
markers. This approach is referred to as the delta-f PIC method and
is to be contrasted with the full-f PIC scheme, which represents the
whole f in terms of markers. The gain in noise reduction of the
delta-f scheme relies on the reduced variance of the marker weights,
providing that the assumption jdf j=jf0j � 1 for some definition of
the norm is met.
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However, the plasma edge involves steep profile gradients and
low-density levels, which often leads to conditions with fluctuation lev-
els as large as the background such that the assumption of the delta-f
scheme will not be met. One could fall back to the full-f scheme, which
entails using high marker numbers to achieve similar low noise levels
as the delta-f scheme in the core. As marker numbers typically need to
be at least at the order of 10 per grid cell for an adequate simulation of
the core of a medium-sized tokamak plasma, like that of the Tokamak
a Configuration Variable (TCV) at EPFL,11 larger marker numbers
per grid cell may exceed the computational limits of most computers,
even more so for particularly large plasma volumes like that of ITER.
In order to still possibly retain some advantage of the delta-f scheme,
one could also evolve f0, albeit at a longer timescale than that of the
fluctuating df. This approach has for example been suggested in refer-
ences.12–14 This work explores the implications of a specific implemen-
tation of this approach. Namely, to have a time-evolving background
by constraining f0 to be a flux-surface-dependent Maxwellian which is
furthermore time-dependent via its evolving temperature profile. It
will be shown that this adaptive control variate scheme is always effec-
tive in reducing the statistical sampling noise, especially in situations
where turbulence saturation is controlled by the zonal flow shearing
rate. At the time of writing, a similar work15 is being done as a follow-
up to Ref. 14.

Another source of statistical sampling noise is due to “weight-
spreading”12,16 as a result of the implementation of collision operators
using a Langevin approach. However, this problem will not be
addressed in this work as collisions are not considered. Though the
collision-less limit is valid when simulating core plasmas, which are
weakly collisional, collisions are important when simulating plasma
edge, the same region in which the adaptive delta-f scheme just men-
tioned could be useful.

This paper is organized as follows. A brief presentation of the
slab-like model considered in the GKengine code used in this study is
made in Sec. II. The numerical methods are then discussed in Sec. III,
in particular, the adaptive delta-f PIC scheme, which is the main focus
of this paper. This is followed in Sec. IV by a discussion of the pro-
files17 and parameters used to demonstrate the feasibility and utility of
the scheme. Various aspects of noise reduction involving the adaptive
scheme are discussed, in turn, with key diagnostics explained as they
appear. This paper concludes with a discussion on the effectiveness of
the adaptive scheme in high-flux and high-fluctuation level scenarios
achieved by tuning the flux-surface-averaged (f.s.a.) potential term h/i
of the quasi-neutrality equation. As this work is a contribution toward
the development of the tokamak edge/scrape-off-layer (SOL) code
PICLS,18 this tuning emulates edge conditions when simulating slab
ITG-driven turbulence subject to strong zonal shear flow stabilization.

II. PHYSICAL MODEL

All simulations carried out in the frame of this work are run with
the GKengine code,19,20 which solves for the distribution function f of
the single kinetic singly charged Z¼ 1 ion species via the gyrokinetic
equation

df
dt
¼ S; (1)

where S is a general source term. The electrons on the other hand are
assumed to be adiabatic. A review of such a scenario is given for exam-
ple in Ref. 21. The left-hand side of Eq. (1) reads8

df
dt
¼ @

@t
þ d~R

dt
� r~R þ

dvk
dt

@

@vk
þ dl

dt
@

@l

( )
f ; (2)

with f function of the 5D gyrocenter phase space coordinates
ð~R; vk; lÞ. Specifically,~R ¼ ½X;Y ;Z� is the gyrocenter real space posi-
tion, vk its parallel velocity, and l its magnetic moment, given by
l ¼ miv2?=2B, with mi is the ion mass, v? its gyrating velocity, and B

the strength of the local magnetic field ~B ¼ Bb̂, with b̂ its direction.
Two further assumptions are made. First, the geometry we considered
is that of sheared-slab in a spatial 3D domain that spans ðx; y; zÞ
2 ½0; Lx� � ½0; Ly� � ½0; Lz�, where the Cartesian coordinates (x, y, and
z) can be related to the radial, poloidal, and toroidal directions, respec-
tively, in a tokamak system. Periodic boundary conditions are thus
imposed in the y and z directions, which span Ly ¼ pa and
Lz ¼ 2pR0, respectively, with a the minor radius and R0 the major
radius. Figure 1 illustrates the sheared magnetic field, given by

~BðxÞ ¼ ByðxÞey þ Bzez;

¼ Bz
Ly

LzqðxÞ
ey þ ez

� �
; (3)

where q(x) is the safety factor profile. The second assumption is that all
fluctuations considered are electrostatic. Under these simplifications, the
evolution of gyrocenter phase space coordinates is governed by20

d~R
dt
¼ vkb̂ þ

l
eB?k

b̂ �rBþ 1
B?k

b̂ �r~/;

dvk
dt
¼ � e

mi
b̂ � r~/;

dl
dt
¼ 0:

(4)

Here, e is the ion charge, B?k ¼ B½1þmiB0yBzvk=ðeB3Þ�; / the electric
potential, and �~ the gyro-averaging operator, given by

~/ð~R; lÞ ¼ 1
2p

ð2p
0
da /ð~R þ ~qLðl; aÞÞ;

FIG. 1. The sheared-slab magnetic geometry [see Eq. (3)] used in this work.
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with ~qL the Larmor vector with radius qL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mil=B

p
, and a the

gyrophase. The set of Eq. (4) is nonlinear as these equations depend
on the self-consistent electrostatic potential /ðx; y; zÞ satisfying the
quasi-neutrality equation with Z¼ 1,

ene0
Te
ð/�h/iÞ�r? �

mini0
eB2
r?/

� �

¼
ð
dad3Rdvkdl

B?k
mi

f ð~R;vk;l;tÞd ~Rþ~qLðl;aÞ�~r
� �( )

�ne0; (5)

where ni0 is the background ion gyrocenter density, and ne0 and Te are
the background electron density and temperature profiles, respectively,
satisfying a local Maxwellian distribution due to the adiabatic assump-
tion. Here, the B?k=mi term represents the Jacobian for the coordinate

transformation from particle variables ð~r ;~vÞ to gyrocenter variables
ð~R; vk;lÞ, and h�i is the flux-surface-averaging operator defined by

h/iðxÞ ¼ 1
LyLz

ðLy
0
dy
ðLz
0
dz /ðx; y; zÞ:

Looking at Eq. (5), the first term on the left-hand side represents the
linearized adiabatic electron response and the second term represents
the ion polarization density in the long wavelength approximation
k?qth � 1, with qth the thermal ion Larmor radius, which together
with the right-hand side representing the ion density fluctuation.

In order to simulate physics under strong profile gradients in
quasi-steady state, heat sources are implemented to clamp ion temper-
ature Ti at profile edges to prevent relaxation below critical gradients.
This Krook-like source Sh with associated relaxation rate chðxÞ is sta-
tionary and radially dependent, maintaining over time the high and
low ends of the Ti profile of the initial background distribution func-
tion f0ðt ¼ 0Þ. Particle sources are not needed as there is no density
profile relaxation. The assumed adiabatic electron response indeed
enables no particle transport. Therefore, an additional correction term
Sh;corr to Sh is included to conserve density, along with parallel
momentum vk.

Furthermore, it is shown22 that the inclusion of a Krook-like noise
control operator Sn, with uniform relaxation rate cn (usually taken to be
a few percent of the maximum linear growth rate), which relaxes to a
(possibly time-dependent) reference distribution fn, is important in PIC
simulations to achieve a converged quasi-steady state at long simulation
times. A corresponding correction term Sn;corr is also included to con-
serve density, parallel momentum vk, and energy v

2.
Taken together, considering Eqs. (2) and (4), Eq. (1) is expanded to

@

@t
þ d~R

dt
� r~R þ

dvk
dt

@

@vk

( )
f

¼ �chðxÞðf � f0ðt ¼ 0ÞÞ þ Sh;corr � cnðf � fnÞ þ Sn;corr: (6)

III. NUMERICAL METHODS
A. Delta-f scheme with adaptive control variate

The solution method of the GKengine employs the delta-f PIC
scheme, which splits the ion distribution f into an unperturbed back-
ground part f0, and a perturbed part df.

5,10 Namely,

f ¼ f0 þ df : (7)

df therefore represents the deviation component of f, including in par-
ticular fluctuations. The rationale for the splitting of f is that f0 acts as
a control variate.9 As long as jdf j=j f j � 1, that is, as long as the sys-
tem does not deviate too much from a known f0, the scheme reduces
sampling noise. However, processes involving large profile gradients
and high fluctuation amplitudes will result in f deviating far from its
initial background f0. Therefore, in order to reduce sampling noise in a
delta-f scheme, we now allow the control variate f0 to be a time-
dependent local Maxwellian. Specifically,

f0 ¼ fMð~R; vk; l; tÞ;

¼ ni0ðXÞ
2pTi0ðX; tÞ=mi½ �3=2

exp �
miv2k=2þ lBðXÞ

Ti0ðX; tÞ

( )
; (8)

with Ti0 the background ion temperature profile. Note that the profiles
of ni0 and Ti0 are spatially only functions of the “radial” variable. The
time dependence of f0 appears only through Ti0, which is governed by
an ad hoc relaxation equation12 of the form

@

@t
3
2
ni0ðxÞTi0ðx; tÞ

� �
¼ aE

ð
dvkdl

2pB?k
mi

df
miv2k
2
þ lB

� �* +
; (9)

where aE is the relaxation rate, which is a constant numerical parame-
ter. The left-hand side of Eq. (9) represents the variation in time of the
background kinetic energy density Ekin0ðx; tÞ related to f0,

Ekin0ðx; tÞ ¼
3
2
ni0ðxÞTi0ðx; tÞ; (10)

with

Ti0ðx; tÞ ¼ Ti0ðx; 0Þ þ dTi0ðx; tÞ

and

dEkin0ðx; tÞ ¼
3
2
ni0ðxÞdTi0ðx; tÞ:

Here, dEkin0ðx; tÞ and dTi0ðx; tÞ are the deviations of the background
ion kinetic energy density and temperature profiles from their initial
states Ekin0ðx; 0Þ and Ti0ðx; 0Þ, respectively.

Finally, let us explicate the contributions from f0 and df to the
gyrodensity on the right-hand side of the quasi-neutrality equation,
Eq. (5). Assuming the gyrodensity associated with f0ðt ¼ 0Þ verifies
quasi-neutralityð

d3Rdadvkdl
B?k
mi

f0ð~R; vk; l; 0Þd ~R þ~qLðl; aÞ �~r
� �

¼ ne0;

Equation (5) becomes

en0
Te

/� h/ið Þ � r? �
min0
eB2
r?/

� �

¼
ð
d3Rdadvkdl

B?k
mi

d ~R þ~qLðl; aÞ �~r
� �

� f0ð~R; vk;l; tÞ � f0ð~R; vk;l; 0Þ þ df ð~R; vk;l; tÞ
h i

: (11)

Here, the electron density ne0 has been approximated to the ion back-
ground density ni0, both denoted by n0. The perpendicular gradient
r? � rpol ¼ ex@x þ ey@y has been approximated to the gradient in
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the (x, y) plane (corresponding to the poloidal plane in a tokamak)
due to the fact that micro-instabilities align along field lines and
assuming By=Bz ¼ Ly=ðLzqðxÞÞ � 1. Since f0 has an analytic form,
the integral involving f0 terms are calculated using Gauss–Laguerre
and Gauss–Chebyshev quadratures for the l and a integrations,
respectively. Convergence of this scheme is detailed in Appendix. For
this work, we use 30 quadrature points for each of these dimensions.
The vk integration on the other hand can be integrated analytically.

B. Numerical discretization

Under the PIC scheme, df is represented bymarkers and is given by

df ¼ 1
2p

XNp

p

wpðtÞ
B?k=mi

d ~R �~RpðtÞ
h i

d vk � vkpðtÞ
� �

d l� lpðtÞ
� �

; (12)

where the denominator represents the same Jacobian as in Eq. (5), Np

is the total number of markers, and wpðtÞ and ð~RpðtÞ; vkpðtÞ;lpðtÞÞ
are the weight and the phase space position in gyrocenter variables at
time t of the marker with index p, respectively. All markers are initial-
ized in phase space using Hammersley sequences23 and are time-
integrated using a fourth-order Runge–Kutta scheme.20

Under the delta-f scheme, with reference to the discussion lead-
ing to Eq. (6), the f conservation term, the heat source Sh, and noise
control Sn operators with their corresponding corrections are imple-
mented consecutively. The control variate is the chosen reference
function for Sn, fn ¼ f0. Designating f00 ¼ f0ðt ¼ 0Þ, Eq. (6) is split
into three equations

ddf ð0Þ

dt
¼ � df0

dt
; (13)

ddf ð1Þ

dt
¼ �chðxÞðf0ðtÞ � f00 þ df ð0ÞÞ þ Sh;corr; (14)

ddf ð2Þ

dt
¼ �cndf

ð1Þ þ Sn;corr; (15)

with df ð0ÞðtÞ ¼ df ðtÞ, and df ð2Þ is assigned to df once these equations
are solved. Equations (13)–(15) are discretized by multiplying by the
phase space volumeXp associated with the marker with index p, which
remains constant along characteristics due to the collisionless physics
under study, and are each integrated over the full time step Dt consid-
ered for integrating the marker trajectories. Equation (13) is first
solved using the “direct-df approach.”13

Focusing on Eqs. (14) and (15), let us denote ð1; vk; v2Þ to repre-
sent the density, parallel velocity, and energy moments, respectively.
Then, the terms Sh;corr and Sn;corr are the corrections that are necessary
to ensure that df conserves ð1; vkÞ and ð1; vk; v2Þ with respect to Sh
and Sn, respectively. Indeed, these different conservations motivate the
consecutive implementation of Eq. (6). The correction term Scorr of
either Sh;corr or Sn;corr is expressed as

22

Scorr ¼
X
c

gcðxÞf0ðx; vk; l; tÞGc; (16)

where c 2 f0; 1; 2g, and Gc 2 f1; vk; v2g, terms of which are included
when their conservation is required. Here, f0 is the control variate,
which is the adaptive background local Maxwellian, Eq. (8).

Here, we demonstrate the implementation of the heat source.
Since Eq. (16) is time-independent within a time step, Eq. (14) is first
analytically integrated over Dt to give the p-indexed marker weight
change

Dwp ¼ ðe�chjDt � 1Þ � wp þ Xpðf0 � f00Þp �
Xpf0p
chj
ðg0j þ g1jvkpÞ

" #
;

where f0p is a shorthand for f0 evaluated at the phase point ð~R; vk;lÞ
of the marker with index p, the subscript j represents the profile evalu-
ation at the center of the jth radial bin of width Dx, and having made
use of the relation Xpdfp ¼ wp. Then, simultaneous conservation of
ð1; vkÞ in each jth radial bin leads to the 2-by-2 linear system with
which the coefficients g0j and g1j are to be solved

X
xp2 xj ;xjþDx½ �

Xpf0p
1 vkp
vkp v2kp

" #
g0j
g1j

" #

¼
X

xq2 xj ;xjþDx½ �
chj

Xqðf0 � f00Þq þ wq

Xqðf0 � f00Þqvkq þ wqvkq

" #
:

The implementation of the noise control operator, Eq. (15), is done
analogously, which involves a 3-by-3 linear system due to the simulta-
neous conservation of ð1; vk; v2Þ.

Finally, under the adaptive scheme, the term on the right-hand
side of Eq. (13) now includes the change in f0 associated with the back-
ground ion temperature Ti0ðx; tÞ adaptation, which is derived via the
background ion internal energy density deviation dEkin0ðx; tÞ of Eq.
(10). This field is represented with finite element cubic B-spline basis
functionsKiðxÞ,

dEkin0ðx; tÞ ¼
3
2
ni0ðxÞdTi0ðx; tÞ ¼

X
k

nkðtÞKkðxÞ: (17)

The time-dependent coefficients nkðtÞ are obtained by first projec-
ting Eq. (9) on the same B-spline basis functions. Combining Eqs.
(9), (10), (12), and (17), the time derivatives _nkðtÞ are retrieved by
back-solving

X
k

_nkðtÞMkj ¼ aE
XNp

p

wpKjðXpÞ
miv2kp
2
þ lpBðXpÞ

� �
; (18)

where Mkj ¼
Ð Lx
0 dxKkðxÞKjðxÞ are the mass matrix elements, with

nkð0Þ ¼ 0;8k as initial condition.
The terms in the parenthesis of Eq. (18) motivate the adaption of

Ekin0 as it is the v2-moment of the distribution function, contrary to
Ti0, which is a derived measure, that is, 2Ekin0=3ni0. Having solved Eq.
(18) for _nðtÞ, these coefficients are then integrated in time by applying
a first-order accurate forward Euler scheme with fixed time step NaDt,
where Na is a user-defined fixed integer. We have

aENaDt � 2; (19)

for all simulations performed in this paper. Violation of Eq. (19) has
shown to lead to numerical instability.

Obviously, marker weights wp need to be adapted if the back-
ground distribution f0 is adapted as a result of applying Eqs. (17) and
(18). In the following lines of this section, let D represent the change
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before and after the adaptation of f0. Then, invoking the invariance of
the total distribution f, from Eq. (7) one obtains

0 ¼ Df0 þ Ddf () Ddf ¼ �Df0;

and after evaluating this relation at a marker position and multiplying
by Xp,

Dwp ¼ �XpDf0p; (20)

having made use of DXp ¼ 0.

IV. PROFILES AND SIMULATION PARAMETERS

Let the normalized radial coordinate be s ¼ x=Lx 2 ½0; 1�. Then,
the profiles representing the initial unperturbed ion and electron back-
ground densities, n0, as well as their temperatures Ti0 and Te0, respec-
tively, are parameterized by three parameters given by the amplitude A,
the normalized absolute maximum logarithmic gradient �j, and the slope
half-width �D. For s 2 ½0; 0:5�, such a profile g(s) is given explicitly by

gðs; j;DÞ ¼

A exp
2�j�D
3

� �
0 � s < s0 � �D;

A exp ��jðs� s0Þ þ
�jðs� s0Þ3

3�D
2

" #
js� s0j � �D;

A exp � 2�j�D
3

� �
s0 þ �D < s � 0:5:

8>>>>>>>>><
>>>>>>>>>:

(21)

Note that this definition ensures that g(s) and dg
ds are both continuous.

At the reference radial position s ¼ s0, it has a value of A, and its para-
bolic normalized logarithmic gradient peaks at this same point with
value �j.

The heat source radial profile ch is parameterized by the ampli-
tude Ah, and the half-widths �dc and �ds of the clamp maximum
and edge-slope regions, respectively, with �dc 	 �ds. This profile for
s 2 ½0; 0:5� is given explicitly by

chðs; �dc; �dsÞ ¼

Ah 0 � s < �dc � �ds;

Ah

2
1� 3

2
s� �dc

�ds

 !
þ 1
2

s� �dc

�ds

 !3
2
4

3
5 js� �dcj � �ds;

0 �dc þ �ds < s � 1
2
� ð�dc þ �dsÞ;

Ah

2
1þ 3

2
s� ð1=2� �dcÞ

�ds

 !
� 1
2

s� ð1=2� �dcÞ
�ds

 !3
2
4

3
5 				s� 1

2
� �dc

� �				 � �ds;

Ah
1
2
� ð�dc � �dsÞ < s � 0:5:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(22)

The noise control profile is uniform and is parameterized by as single
parameter cn ¼ An.

To avoid spurious marker build-up at the radial domain bound-
aries for long-time simulations with large j under Dirichlet boundary
conditions /ðs ¼ 0Þ ¼ /ðs ¼ 1Þ ¼ 0, all radial profiles are mirrored
about s¼ 0.5, and periodic boundary conditions are imposed.
Examples of such profiles, along with heat source and noise control
operator profiles, are shown in Fig. 2. Henceforth, only profiles from
the left half will be shown, that is, for s 2 ½0; 0:5�.

The GK-engine code works in units such that time and speeds
are normalized to X�1c ¼ mi=eBðs0Þ and cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Teðs0Þ=mi

p
(Z¼ 1),

representing the inverse ion cyclotron frequency and ion sound speed
at s0 ¼ 0:25, respectively, which together give the ion sound Larmor
radius qs ¼ cs=Xc for units of length. The magnetic and potential
fields are normalized to Bz, and Te0ðs0Þ=e, respectively. To simulate
slab-ITG instabilities, we use the major and minor radii values of
R0 ¼ 243:5qs and a ¼ 66:4qs. The spatial domain is Lx ¼ 2a for an
x-periodic profile, Ly ¼ pa and Lz ¼ 2pR0. The grid-cell number for
/ is ðNx;Ny;NzÞ ¼ ð256; 512; 128Þ. The time step used here is
Dt ¼ 20X�1c ¼ 0:15Lx=cs. The safety factor is given by qðsÞ ¼ 1:25
þ12s2 for the half-domain s 2 ½0:0; 0:5� and mirrored in the other
half-domain. All normalized parameters describing profiles are

converted to physical units via a multiplication/division by Lx. The ini-
tial profile gradients used in this paper are �jn ¼ 0:8 and �jTi ¼ �jTe

¼ 8:0, with �jn ¼ jd log nðs0Þ=dsj, so that giðs0Þ ¼ �jTi=�jn ¼ 10. This
value corresponds to a peak value of Ti logarithmic gradient of
jd logTiðs0Þ=dxj ¼ 4:0=a, that is, R0=LT ¼ 14:6. The radial profile

FIG. 2. Symmetrized profiles used for this work. Blue: initial (solid) and typical final
(dashed) Ti. Red: heat ch (solid) and noise control cn (dashed).
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widths for n0 and Ti0 are �Dn ¼ 0:3 and �DTi ¼ 0:15, respectively, and
Te0ðxÞ ¼ Ti0ðx; t ¼ 0Þ. The maximum values Ah and An of the pro-
files for heat source ch, and noise control cn, are at 100% and 3% of the
maximum linear growth rate, respectively, which is found to be cmax
¼ 1:169� 10�3Xc ¼ 0:155cs=Lx for these values of gradient, as shown
in Fig. 3. The radial parameters of ch are ð�dc; �dsÞ ¼ ð0:025; 0:025Þ. The
control variate at initial time is taken to be the initial background
f0 ¼ fMðt ¼ 0Þ.

For the toroidal, we chose to resolve modes in the range of
½nmin; nmax� ¼ ½0; 32�, and poloidal modes m determined by the field-
aligned Fourier-filter jnqðsÞ þmj � Dm, with Dm ¼ 5.24 All simula-
tions are initialized with f00 þ df ðt ¼ 0Þ. The initial background is
taken to be f00 ¼ fM0, where fM0 ¼ fMð~R; vk;l; 0Þ. df ðt ¼ 0Þ repre-
sents a density perturbation of amplitude 10�4 and toroidal mode
number n¼ 7 corresponding to the strongest growing linear mode.
The poloidal modes intialized are those within the field-aligned filter
at s¼ s0, that is, j12qðs0Þ þmj � 5.

Unless otherwise stated, all cases are run with Np ¼ 256M and
adaptive background cases consider the relaxation rate aE ¼ 1:92cmax.
The number of time steps after which the background temperature
profile is adapted via Eq. (9) is set to Na ¼ 10 for all cases.

V. RESULTS
A. Marker convergence

Characteristic of all simulations is a turbulent burst in the initial
phase of the simulation (0 < cst=Lx < 300) represented by a spike in
the radially averaged heat flux qH and diffusitivity vH, expressed by

vHðtÞ ¼
qHðx; tÞ

ni0ðxÞ @Tiðx;tÞ
@x

					
					

* +
x

:

vH is represented in gyro-Bohm units, and vGB ¼ q2
s cs=Lx with refer-

ence to the radial position of steepest initial profile gradient, that is,
s ¼ s0. All radial averaging in this paper is done outside the heat
source profile of Eq. (22), namely, s 2 ½0:025; 0:475� [ ½0:525; 0:975�.

Figure 4 shows how turbulence is quenched for the non-adaptive cases
by increasing zonal flow shearing rate xE�B. The latter is estimated by

xE�B ¼
1
B
d2/00

dx2
; (23)

where /mnðxÞ is, in general, the Fourier component of the electrostatic
field corresponding to poloidal (y) mode m and toroidal (z) mode n,
/00ðxÞ thus being the zonal component. As can be seen in Fig. 4(b),
the very significant rise in jxE�Bj for non-adaptive simulations is
dependent on the number of markers,Np, and is thus of numerical ori-
gin. We note that even though the rise is reduced by increasing Np, the
simulation is far from having converged even for the largest Np

¼ 512M considered. We interpret the rise in jxE�Bj as resulting from
the statistical sampling noise accumulation in the zonal components,

FIG. 3. Linear studies: maximum growth rate of linear modes as a function of each
toroidal mode number n, for normalized ion temperature logarithmic gradient
ajd log Ti=dxj ¼ 4:0 and ðd log Ti=dxÞ=ðd log n=dxÞ ¼ 10. The poloidal mode
number m is radially dependent and is determined by the Fourier filter.

FIG. 4. Time traces of the radially averaged absolute value of (a) heat diffusivity vH
and (b) zonal flow shearing rate xE�B, for various marker numbers, considering
the non-adaptive and adaptive cases. The adaptive rate is set to aE ¼ 1:92cmax
where applicable. A moving time-averaging window of half-width cst=Lx ¼ 10,
which is equivalent to cmaxt ¼ 1:6, has been implemented.
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which are not physically damped.25 As expected, the accumulated noise
is highest for the case with lowestNp. Corresponding un-physically large
xE�B levels lead to large-eddy shearing and reduced transport. The time
of vH collapse is correlated with jxE�Bj, reaching a value comparable to
3cmaxLx=cs; thus, the sequence of rises of xE�B in Fig. 4(b) corresponds
to the sequence of falls of vH in Fig. 4(a) for the three non-adaptive
cases. On the other hand, for the adaptive case, the converged results
show that xE�B increases at a much slower rate with time, resulting in a
somewhat longer sustained flux. One notes that these converged fluxes
nonetheless ultimately drop to zero as seen in Fig. 4(a).

To further confirm that low marker numbers lead to an increase
in zonal xE�B levels due to noise accumulation, Fig. 5(a) shows the
radially averaged absolute value ofxE�B at the initial time t¼ 0 against
marker number Np. All simulations are initialized with a density per-
turbation defined as including only n 6¼ 0 Fourier modes. Despite
that, due to the finite and random marker number representation of
df, there is a resulting spurious finite zonal, ðm; nÞ ¼ ð0; 0Þ; xE�B
profile, whose amplitude increases with decreasing number of markers
as 
1=

ffiffiffiffiffiffi
Np

p
, as expected due to statistical sampling error. The magni-

tude of the corresponding zonal flow shearing rate xE�B is then fur-
ther increased at every time step. Thus, lower marker numbers lead to
larger noise accumulation in xE�B with time, which leads to Fig. 5(b)
for end-time values of xE�B. Assuming linear increment, Fig. 5 indi-
cates that the rate of increase in xE�B is dxE�B=dt � 2:12
�10�3c2s =L2x for Np¼ 256M. For non-adaptive cases, the general trend
of lower zonal E�B shearing with increasingNp is apparent. The end-
time xE�B value is expected to plateau at higher Np values, but this
limit is not reached for the maximum marker number considered, Np

¼ 512M. This converged value would represent the zonal xE�B
derived from the physics of the problem, and not the result of the
accumulation of noise. On the other hand, the adaptive cases show
much lower and similar end-time xE�B values throughout all Np val-
ues considered in the different simulations.

The potential field / of Eq. (11) is solved by first projecting it
onto the B-spline basis Kijkð~rÞ ¼ KiðxÞKjðyÞKkðzÞ followed by taking
the Discrete Fourier transform of spline indices in the y and z direc-
tions, thus representing the discretized equation in terms of poloidal
m and toroidal n mode numbers together with the spline index i
related to the remaining radial dimension x.26 By gyrokinetic ordering
arguments,24 one can apply on the projected right-hand side of

Eq. (11) a centered band filter f1 in (m, n)-space keeping only keep-
ing modes satisfying jmþ nqðxÞj < Dm ¼ constant, as the physically
relevant, that is, kkqth � 1, modes, which are nearly field aligned and
constitute the signal. Here, kk ¼ 2pðmþ nqÞ=ðLzqÞ is the wavevector
component along ~B. The region f2 consists of two bands, each on
either side of f1, is defined to represent physically strongly damped
modes. Any finite levels of modes inf2 are thus assumed to provide a
measure of the noise level. Estimates of the signal and noise levels are
thus, respectively, provided by

signal ¼

X
i

X
ðm;nÞ2f1

jbðm;nÞi j2

X
i

X
ðm;nÞ2f1

1
; noise ¼

X
i

X
ðm;nÞ2f2

jbðm;nÞi j2

X
i

X
ðm;nÞ2f2

1
:

(24)

Here, Ri sums over all radial indices of spline amplitude bðm;nÞi of the
right-hand side. The latter is expressed by

bðm;nÞi ¼
XNy�1

j¼0

XNz�1

k¼0
exp �2pi mj

Ny
þ nk
Nz

 !" #

�
ð
d3Rdadvkdl

B?k
mi

Kijk ~R þ~qLðl; aÞ
� �(

� f0ð~R; vk; l; tÞ � f0ð~R; vk; l; 0Þ
h i

þ
X
p

wp

ð
daKijk ~Rp þ~qLðlp; aÞ

h i)
:

It should be noted that what we call “signal” here also includes the
discretization noise present within the filter.27 Nonetheless, these
measures provide a practical estimate of the signal-to-noise ratio
(SNR).

From Fig. 6(a), non-adaptive cases start from high SNR values
and gradually drop to their respective lowest point after the initial
burst cst=Lx 
 300. Np is reflected in the maximum of SNR values for
each case, which latter seem to scale as 1=Np. The adaptive cases follow
a similar trend, but do not fall as low. From past works,22,27 the rule-
of-thumb SNR threshold of 10 is a value above which results can be
deemed reliable. Therefore, we can see that only the adaptive cases

FIG. 5. Radial averaged absolute value of
the zonal flow shearing rate xE�B at (a)
initial time cst=Lx ¼ 0 and (b) end-time
cst=Lx ¼ 753, as a function of the inverse
square root of marker number Np. The
adaptive case (orange) adapts at a rate
aE ¼ 1:92cmax. All simulations are initial-
ized with perturbations with toroidal mode
n 6¼ 0.
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withNp ¼ 256M; 512Mmeet this criterion throughout the whole sim-
ulation. All SNR values eventually rise with time, with the non-
adaptive case at Np ¼ 128M rising the quickest. This reflects the noise
accumulation in the physically undamped zonal component. Indeed,
by subtracting the zonal component from the signal, Fig. 6(b) shows
that the non-adaptive case withNp¼ 128M gives the lowest SNR value
throughout the simulation. Thus, for this set of parameters, only the
results from the adaptive case with Np ¼ 256M or Np ¼ 512M may be
deemed reliable.

Figures 7 and 8 show the f.s.a. profiles at the end of the simula-
tions for the zonal flow shearing rate xE�B, the ion temperature hTii
relative deviation ðhTii � Ti0Þ=Ti0, and its logarithmic gradient for
different total number Np of markers, under the non-adaptive and
adaptive cases, respectively. It should be noted that the maximum rela-
tive deviation value for Ti of around 60% in Fig. 7(a) for the non-
adaptive cases challenges the df assumption of jdf j=jf0j � 1. For the
adaptive case in Fig. 8(a) however, the relative deviation of hTii from
the adapted background temperature Ti0ðtÞ, which remains low at all
times, qualifies. One notes that the adaptive cases in fact resulted in
f.s.a. Ti profiles with a larger deviation of 100%, from its initial state, as
shown in Fig. 8(b). This shows that the adaptive scheme appears to
allow for simulations with more accurate profile evolution in the case
of large deviations, not afforded by the standard scheme. One notes
also the development of strong Ti gradients at s¼ 0.05, just outside the
heat source for the non-adaptive case (see Fig. 7). This is suspected to
be related to spurious marker accumulation by error in drift calcula-
tion, whose magnitude reduces with increasingNp. Under the adaptive
scheme, this problem does not occur.

B. Adaptive control variate and noise control

Tentatively, two mechanisms contribute to the improvement of
SNR with the adaptive scheme: (a) the adapted f0ðtÞ as a good control
variate; (b) the noise control operator Sn of the non-adapted scheme,
which tends to bring back f toward the initial distribution f00, whereas
in the adapted scheme it tends to relax f toward the time-evolved f0,
which is closer to the time-averaged f, especially at late times. To study
the relative importance of the adaptive scheme and the noise control,
we varied in this section the control variate f0, both in the framework
of the adaptive delta-f scheme, Eq. (7), and in the reference function fn
of the noise control operator, that is,

FIG. 6. Signal-to-noise ratio (SNR) time traces for signal (a) including and (b)
excluding, the ðm; nÞ ¼ ð0; 0Þ mode, for increasing marker number Np, and con-
sidering both the non-adaptive (solid line) and adaptive (dashed line) cases.

FIG. 7. F.s.a. profiles at quasi-steady state averaged over a time interval of cst=Lx 2 ½1030; 1130� for various marker numbers Np under the non-adaptive scheme for the ion
temperature (a) relative deviation with respect to background and its (b) logarithmic gradient, and the (c) zonal flow shearing rate.
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Sn ¼ �cnð f � fnÞ:

All simulations begin with f ¼ fM0 þ df ðt ¼ 0Þ, where
df ðt ¼ 0Þ represents a small perturbation and the control variate f0 is
taken to be fM [see Eq. (8)]. By choosing different f0 and fn, four differ-
ent adaptive scenarios can be constructed, depending on whether the
adaptive scheme is used [f0 ¼ fM0 or f0 ¼ fMðtÞ] and whether adaptive
noise control scheme is used [fn ¼ fM0 or fn ¼ fMðtÞ]. Below, except
for scenario 3, fMðtÞ adapts via Ti0 from Eq. (8) according to Eq. (9).

1. non-adaptive df scheme, non-adaptive fn, labeled (no, no)
• ð f0; fnÞ ¼ ðfM0; fM0Þ.

2. adaptive df scheme, non-adaptive fn, labeled (yes, no)
• ðf0; fnÞ ¼ ðfMðtÞ; fM0Þ.

3. non-adaptive df scheme, adaptive fn, labeled (no, yes)
• ðf0; fnÞ ¼ ðfM0; fMðtÞÞ,
• fn ¼ f0ðtÞ is adaptive according to

@

@t
3
2
ni0Ti0

� �
¼ aE

ð
dvkdl

2pB?k
mi

df � ðfMðtÞ � fM0Þ½ �

 �

; (25)

• the adaptive scheme is run in the background to update
fn ¼ fMðtÞ, but the control variate f0 ¼ fM0 remains time-
independent.

4. adaptive df scheme, adaptive fn labeled (yes, yes)

• ðf0; fnÞ ¼ ðfMðtÞ; fMðtÞÞ.

Viewing the adaptive scheme as essentially a means to reduce noise,
considering the different scenarios described allows one to determine
which strategy is the most effective in this respect. Figure 9 shows
the effect of different adaptive scenarios on the simulation results. The
adaptation of f0 and/or fn for the different scenarios is done at the
same rate aE. It can be seen that the full adaptive scheme with adaptive
f0 and fn [scenario (yes, yes)], implying weight transfer from df to f0 of
Eq. (20) and noise control only on the fluctuating part df, respectively,
is necessary for effective noise control, as indicated by a reasonably
high SNR value and a zonal flow shearing rate xE�B value that does
not increase indefinitely. For scenario (yes, no) with only the adaptive
f0, noise control is effective only at an early stage when f is close to fM0.
As the former deviates away from the latter, Sn acts as a weak source,
thus enlarging the df component. The larger the portion of f that is
represented by markers, the more noise accumulates. The weak
improvement of scenario (no, yes), which is the standard delta-f

scheme with a time-dependent reference function fn ¼ fMðtÞ, indi-
cates that the improvement from weight transfer from df to f0 far out-
weights an adaptive Sn.

Noise can also be approached from the standard deviation of the
f.s.a. weights rw, as shown in Fig. 10. Based on this measure, the full
adaptive scheme (yes, yes) once again gives the best results, with low
values of rw right after the burst at around cst=Lx ¼ 150. One can see
that rw as already plateaued for the non-adaptive case (no, no),
whereas for the case (yes, no), the Sn acting as weak source contin-
ues to relax the distribution toward that at initial time. This is
proved to be the case when see that a lower aE value gives a smaller
yet increasing rw value. Finally, the scenario (no, yes) with an
adaptive noise control is able to continuously decrease rw values,
but these values remain high after the burst, which may affect the
results at late times.

A note on the inclusion of the f0ðtÞ � f0ðt ¼ 0Þ term in Eq. (11)
is in order. While cases studied in this paper do not involve a time-
dependent background density, with reference to the full adaptive
scheme [scenario (yes, yes)] described above, the exclusion of this extra
term leads to a lower heat diffusivity and a 17% increase in the zonal
flow shearing rate at quasi-steady state, which in turn resulted in a
lower final ion temperature deviation. Nonetheless, similar improve-
ment in SNR and local f.s.a. weight standard deviation has been
observed.

C. Noise control strength and adaptive rate variations

The purpose of the conservative noise control is to reduce the
weight standard deviation at the expense of introducing numerical dif-
fusion, thus affecting the validity of the simulation by adding artificial
damping on the main instability drive and zonal flows. From Figs.
11(a) and 11(b), it can be seen that at a larger cn value, both vH and
xE�B values are lower. Therefore, its amplitude cn should be adjusted
just high enough to maintain a good SNR value throughout the simu-
lation, taken in this work to be 10. Figure 11(c) shows that cn
¼ 0:03cmax for the adaptive case is just enough, and it is this value of
cn that is used in all other sections of the paper. For the non-adaptive
case, it is seen that a high cn value only postpones the eventual
decrease in SNR, implying that noise control alone is insufficient to
prevent simulations being drowned in noise. Finally, the reduced
weight standard deviation is shown in Fig. 11(d). It is shown that Sn
alone is insufficient to control noise to acceptable levels, while the

FIG. 8. F.s.a. profiles at quasi-steady state averaged over a time interval of cst=Lx 2 ½1030; 1130� for various marker numbers Np under the adaptive scheme with adaptive
rate aE ¼ 1:92cmax for the ion temperature (a) relative deviation with respect to adapted background, (b) relative deviation with respect to background at initial time t¼ 0, its
(c) logarithmic gradient, and the (d) zonal flow shearing rate.
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FIG. 9. Diagnostics under four different adaptive scenarios (see description in text) for the radially averaged absolute (a) heat diffusivity vH and (b) zonal flow shearing
rate xE�B, and the signal-to-noise (SNR) ratio with signal (c) including and (d) excluding the ðm; nÞ ¼ ð0; 0Þ mode. Marker number set to Np ¼ 256M, and adaptive rate to
aE ¼ 1:92cmax where applicable. A moving time-averaging window of half-width cst=Lx ¼ 10 has been implemented.

FIG. 10. Local f.s.a. weight standard deviation rw through time under four different adaptive scenarios (see description in text), illustrated with the cases of (a) (no, no), (b)
(no, yes) with aE ¼ 1:92cmax, (c) (yes, no) with aE ¼ 1:92cmax, (d) (yes, no) with aE ¼ 0:12cmax, and (e) (yes, yes) with aE ¼ 1:92cmax. rw is defined byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rp2iw2
p=Ni � ðRp2iwp=NiÞ2

q
, with Ni ¼ Np=Nx the average number of markers of the ith radial bin, taken to be uniform for all bins. Marker number set to Np ¼ 256M. All

figures share the same color scale.
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adaptive scheme is able to do so even in the presence of minimal noise
control relaxation rate cn.

Turning now to the choice of the adaptive rate aE, from Eqs. (9)
and (20), the greater the aE value, the greater the rate of transfer of the

second velocity moment of the f.s.a. df to the control variate, in this
case, f0 ¼ fMðtÞ. Figure 12 shows that the maximum relative deviation
of Ti from its time evolved adapted profile Ti0ðx; tÞ is lower with
higher values of aE. Also, the decrease in the relative deviation after the

FIG. 11. Diagnostics for various noise control strength cn considering both the non-adaptive and adaptive cases, for the radially averaged absolute (a) heat diffusivity vH and
(b) zonal flow shearing rate xE�B, and the (c) signal-to-noise (SNR) ratio with signal excluding the ðm; nÞ ¼ ð0; 0Þ mode, and the (d) sum of f.s.a. weight standard deviation.
Marker number set to Np ¼ 256M. The sum of f.s.a. weight standard deviation is calculated by summing the standard deviations of f.s.a. weights from each radial bin, and mul-
tiplying by the sum by Lx=Nx.

FIG. 12. Time evolution of f.s.a. ion temperature relative deviation from its time-evolved adapted Ti0ðtÞ; ðhTiiðx; tÞ � Ti0ðx; tÞÞ=Ti0ðtÞ under various adaptive rates aE.
Marker number set to Np ¼ 256M. (a) aE ¼ 0:00cmax (b) aE ¼ 0:03cmax (c) aE ¼ 0:12cmax (d) aE ¼ 0:48cmax (e) aE ¼ 1:92cmax.
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initial burst is faster with increasing aE. More specifically, Figs. 13(a)
and 13(b) show that for aE ¼ 0:12cmax or higher, the simulation under
given parameters is sufficient in terms of low zonal flow shearing rate
xE�B and high enough SNR values, respectively. Therefore, under the
parameters studied in this paper, any aE value satisfying aE > 0:12cmax

and Eq. (19) gives results with the lowest noise accumulation.

D. Adjusting the f.s.a. potential term

In sheared-slab geometry with adiabatic electrons on the mag-
netic surfaces, ITG turbulence is strongly suppressed by zonal flows,
resulting in a quasi-steady state with relatively low heat fluxes. In a real
tokamak, much stronger heat fluxes and large relative fluctuation
amplitudes are present in the plasma edge. In order to emulate such a

situation but staying in slab geometry, the f.s.a. potential term h/i of
the adiabatic electron response of Eq. (11) is tuned by defining a multi-
plicative parameter k,

en0
Te

/� kh/ið Þ � r? �
min0
eB2
r?/

� �

¼
ð
d3Rdadvkdl

B?k
mi

d ~r � ð~R þ~qLðl; aÞÞ
� �

� f0ð~R; vk;l; tÞ � f0ð~R; vk;l; 0Þ þ df
h i

: (26)

With k ¼ 0:00,28,29 the electrons respond adiabatically in all
directions, that is, not only in the magnetic surface, but also radially.
This results in much lower E�B flows and thus higher turbulent heat
fluxes.

Figure 14 shows the effect of tuning k on the heat diffusitivity vH
and zonal shearing rate xE�B. One can see that fluxes are sustained
longer and higher due to a lower zonal flow shearing rate xE�B from a
greater attenuation of h/i. This trend also exists for the adaptive cases,
though xE�B levels there are generally low as compared to the non-
adaptive cases, see Fig. 14(d). From Fig. 14(b) for the adaptive cases,
the value of k ¼ 0:95 seems to be just sufficient to sustain the flux.
Therefore, looking at the case of k ¼ 0:95 specifically, Fig. 15 shows
that the result trend is similar to that of Fig. 4, albeit with lower levels
of xE�B. Under this tuning, the non-adaptive cases (continuous lines)
seem to evolve toward low vH values at long times, whereas the adap-
tive cases (dashed lines) are maintained at a higher vH value as com-
pared to Fig. 4(a). The adaptive cases seem to have converged already
with Np ¼ 128M markers, whereas the non-adaptive case is still sub-
ject to collapse even with Np¼ 512Mmarkers.

Figure 16 shows that k only affects the SNR values of the non-
adaptive cases. Taking the standard non-adaptive case of k ¼ 1:00 as
reference, the effect of higher attenuation of h/i only delays the even-
tual collapse of SNR values for each case, except for the case of com-
plete h/i suppression, in which high SNR value and sustained flux
[see Fig. 14(a)] are achieved. For a fixed value of k ¼ 0:95, in addition
to the delayed fall of SNR values for the non-adaptive cases, Fig. 15(b)
reflects the SNR value proportional to Np relation, as was already
shown in Fig. 6(b). This convergence, instead of

ffiffiffiffiffiffi
Np

p
, is a result of

taking the noise as a quadratic measure, see Eq. (24).
We now consider simulations with k ¼ 0:95, which demon-

strated high sustained flux for the adaptive cases for the following
analysis. Figure 17 shows that the fixed-time non-zonal Ti relative
deviation across each magnetic surface increases toward the low-end
of the hTii profile at quasi-steady state. The case with k ¼ 0:95 has rel-
ative deviation at least twice that of k ¼ 1:00, indicating the expected
higher levels of turbulence. Since the adaptive scheme implemented in
this work adapts its control variate Ti0 by its f.s.a. values as shown in
Eq. (9), it is not expected to further improve noise reduction for edge
plasma simulations involving relative non-zonal deviation much
higher than 25%. However, a similar adaptive scheme could still be
used for noise control, providing that f0 is now a function of all spatial
dimensions. This would allow for a transfer of non-zonal components
of df to f0, though with increased noise levels due to lower Np per spa-
tial bin when implementing Eq. (9).

Under the same simulation parameters, Fig. 18 further shows
that the relative fluctuation of Ti evaluated in an end-time window is

FIG. 13. Time traces of the (a) radially averaged absolute zonal shearing rate xE�B
and the (b) signal-to-noise ratio (SNR) with signal excluding the ðm; nÞ ¼ ð0; 0Þ mode,
with varying adaptation rates aE. Marker number set to Np¼ 256M.
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derived mostly from its non-zonal variations. There, the curves are calcu-
lated as follows. Let the jth flux tube on flux surface x occupy the space

ðy; zÞj 2
ByðxÞz
Bz

� y � jDy <
ByðxÞz
Bz

þ Dy

0 � z < Lz

2
64

3
75:

Visually, these Ny flux tubes are the straight blue lines of Fig. 1 of
y�width Dy, spanning each x ¼ constant plane. The j-th flux tube
gives the value Tiðx; t; jÞ. It is assumed that the plasma reaches thermal
equilibrium instantly along the flux tube. Finally, let h�it be the averag-
ing in time for t 2 ½t1; t2�, and h�if :t: be the flux-tube average on the
flux surface x, that is,

hTiðx; t; jÞif :t: ¼
1
Ny

XNy

j¼1
Tiðx; t; jÞ:

Then, referring to Fig. 18,

black :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhTii2ðx; tÞit � hhTiiðx; tÞi2t

q
hhTiiðx; tÞit

orange :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhT2

i ðx; t; jÞif :t:it � hhTiðx; t; jÞif :t:i
2
t

q
hhTiðx; t; jÞif :t:it

:

(27)

For each fixed k, the relative fluctuation when non-zonal varia-
tions are included gives a value at least twice as high as that of the case
when only the f.s.a. values are considered. Consistent with Fig. 17,
lower k value gives higher fluctuation levels. These results summarily
show that non-zonal fluctuations are dominant at quasi-steady state
under current simulation parameters.

In conclusion, simulations using the adaptive scheme are shown
to be better than the non-adaptive ones under all scenarios considered.

FIG. 14. Time traces of radial averaged absolute value of heat diffusivity vH, (a) and (b), and zonal flow shearing rate xE�B, (c) and (d), for the non-adaptive and adaptive
cases, respectively, under various tuning parameter k [see Eq. (26)]. The adaptive rate is set to aE ¼ 1:92cmax. A moving time-averaging window of half-width cst=Lx ¼ 10
has been implemented. Total number of markers is set to Np ¼ 256M.
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To further test the advantage gained from the adaptive scheme under
high fluctuation level, scenarios would require simulating ITG instabil-
ities in toroidal geometry, which could be done, for example, in the
code ORB5.30 There, toroidal effects naturally results in higher fluxes
and fluctuation levels, while zonal flows are an important factor deter-
mining the turbulent flux levels.

VI. CONCLUSION

In this work, the advantage gained using a simple adaptive con-
trol variate for the df scheme has been demonstrated in cases with
high Ti gradients and simple physics in sheared-slab geometry. The
necessary implementation of the boundary conditions and a stationary
heat source has been done to further ensure simulations reach quasi-
steady state in reasonable integration time. The mechanism of the
adaptive scheme has been described in detail. Namely, the adaptation
of Ti of the f.s.a. Maxwellian control variate f0 ¼ fM via a relaxation
equation, through which a fraction the ion kinetic energy density
derived from the marker represented df, is periodically transfered to f0.

For the cases considered, the adaptive scheme has shown to
reduce the ion temperature relative deviation with increasing adaptive
rate. Maximum relative deviation of 1% has been achieved from 100%

FIG. 15. Time traces of the (a) radially averaged absolute zonal flow shearing rate
xE�B, and the (b) signal-to-noise ratio (SNR) with signal excluding the ðm; nÞ
¼ ð0; 0Þ mode. The tuning parameter is set to k ¼ 0:95, and the adaptive rate is
set to aE ¼ 1:92cmax where applicable. A moving time-averaging window of half-
width cst=Lx ¼ 10 has been implemented.

FIG. 16. Signal-to-noise ratio (SNR) time traces with signal excluding the ðm; nÞ
¼ ð0; 0Þ mode, under various tuning parameter k [see Eq. (26)] considering the
non-adaptive and the adaptive cases. Marker number set to Np ¼ 256M, and adap-
tive rate to aE ¼ 1:92cmax where applicable.

FIG. 17. Time snapshot at cst=Lx ¼ 2259
with tuning parameter k at (a) 1.00 and
(b) 0.95, of the ion temperature Ti relative
non-zonal deviation on each magnetic sur-
face, expressed by ðdTi � hdTiiÞ=hTii,
where Ti ¼ Ti0 þ dTi , integrated over the
toroidal z direction. sy is the normalized
poloidal y axis. Both quasi-steady-state
cases have adaptive rate and marker
number set to aE ¼ 1:92cmax and Np
¼ 256M, respectively.
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of the non-adaptive case. Due to spurious increase in the zonal flow
shear with time, all non-adaptive cases show an eventual collapse of
the heat flux. Under the adaptive scheme, not only is quasi-steady state
achieved with non-collapsing heat fluxes, these fluxes have also been
achieved using marker numbers as low as 1/4 of that required with the
non-adaptive one, allowing for longer unquenched turbulence result-
ing in higher ion temperature deviation from its initial state. The
scheme is further shown to be effective in reducing noise accumulation
in the physically undamped zonal flow via the measure of xE�B. Such
noise accumulation is shown to be the result of marker sampling. SNR
values of adaptive simulations remain high for long integration times.
In contrast, the eventual drop of SNR for the non-adaptive scheme is
only postponed by increasingNp.

We have then investigated further to determine whether conser-
vative noise control alone would suffice to produce a similar noise
reduction advantage. Via a systematic separation of adaptation and
noise control, it is shown that the scheme with an adaptive control var-
iate f0 ¼ fMðtÞ, coupled with a noise control operator Sn, which relaxes
f to the same f0, gives the best results. Therefore, the former is proved
to be more important than the latter in noise control. Moreover, it is
shown that further increase in the strength of Sn not only un-
physically damps zonal flows at early times but also is only able to
delay the latter’s eventual indefinite rise due to noise accumulation.
The adaptation of f0 is therefore shown to be necessary, even with an
adaptation rate as low as aE ¼ 0:12cmax.

To mimic prolonged fluxes and high fluctuation levels not
afforded by slab-ITG, the h/i term of the adiabatic electron response
in the quasi-neutrality equation is attenuated. Such a measure is done
to better simulate edge-plasma conditions, despite testing the adaptive
scheme in sheared-slab geometry. This work has shown that for
slightly attenuated h/i, the adaptive scheme exhibited improved noise
control as before, for relative fluctuation in Ti as high as 20%. Such
fluctuations are shown to be non-zonal. Therefore, it hints to a more
sophisticated f0, which extends beyond a f.s.a. function that could

prove to be useful for better noise control. Despite that, the adaptive
scheme still gives SNR values orders of magnitude higher than that of
the non-adaptive scheme, further increasing the credibility of simu-
lated results. To further test the merits of the adaptive scheme, its
implementation in a code, which better simulates the plasma edge in
toroidal geometry, is required.

The obvious generalization of this adaptive scheme to include a
time-dependent background density profile is left for future work.
This will involve a similar relaxation equation to that of Eq. (9), with
its own relaxation rate parameter an. However, recalculation of the
left-hand side of the quasi-neutrality equation, Eq. (5), should also be
performed at periodic time intervals to account for the time depen-
dence of the background density. Such an adaptive scheme involving a
control variate with both time-dependent background density and
temperature profiles could be useful even in the core, for example, in
simulating kinetic ballooning, tearing, and internal kink modes. In the
presence of fast ions, a time-dependent background density could be
useful when simulating Alfv�en or energetic particle modes.
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FIG. 18. Relative fluctuation averaged over cst=Lx 2 ½1807; 2259� of ion tempera-
ture Ti and its f.s.a. profile hTii, as measured by its standard deviation over mean,
see Eq. (27), for the cases of k ¼ 1:00; 0:95 with adaptive rate aE ¼ 1:92cmax
and marker number Np ¼ 256M.
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APPENDIX: QUADRATURE POINT CONVERGENCE
FOR R.H.S. OF QUASI-NEUTRALITY EQUATION

The aim of this section is to determine the number of quadra-
ture points sufficient to integrate the r.h.s. of Eq. (11), formally writ-
ten as

dngd ¼
1
2p

ð
d3Rd3vdad ~R þ~qL �~r

� �
df ð~R; vk; lÞ: (A1)

To proceed, we introduce a simple but non-trivial form of df, so
that Eq. (A1) can be solved analytically, namely,

df ¼ cos ðnxÞ
ð2pTi=mÞ3=2

exp �
mv2k=2þ lB

Ti

" #
;

¼ cos ðnxÞ
ð2pÞ3=2v3th

exp �
v2k þ v2?
2v2th

" #
; (A2)

with vth ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Ti=mi

p
the local thermal velocity, l ¼ mv2?=2B

the magnetic moment, and n a constant. To simplify further, we
shall assume constant Ti and B. Furthermore, given that B?k
¼ B½1þmiB0yðxÞBzvk=ðeB3Þ� and all velocity variables vk and v? are
contained in df and that df is an even function of vk, the velocity
integration effectively becomes

df d3v ¼ df
2pB?k
mi

dvkdl;

¼ df
2pB
mi

dvkdl;

¼ df 2pv?dv?dvk: (A3)

Inserting Eq. (A2) into Eq. (A1) gives

dngdð~rÞ ¼ RefIðxÞg;

with

IðxÞ ¼
ð
da
ð1
�1

dvke
�

v2k
2v2
thffiffiffiffiffiffiffiffiffiffiffi

2pv2th
p �

ð1
0

dv?v?e
�

v2?
2v2
th

2pv2th
exp inðx þ qL sin aÞ½ �;

¼ einx
ð
da

1
2p

ð1
0

dv?
vth

v?
vth

e
�

v2?
2v2
th exp inqth

v?
vth

sin a
� �

;

¼ einx
ð1
0

dv?
vth

J0 nqth
v?
vth

� �
v?
vth

e�
v2?
2vth ;

¼ exp inx � ðnqthÞ2

2

� �
;

where qth ¼ vth=X is the thermal Larmor radius and J0 is the
zeroth-order Bessel function of the first kind.

The evaluation of the field /, which is represented by a B-
spline expansion, involves the contraction of the r.h.s. of Eq. (11)
with a B-spline element of order p, Kpð~r �~r ijkÞ ¼ Kpðx � xiÞ
Kpðy � yjÞKpðz � zkÞ. Here, the zeroth-order B-spline is defined as

K0ðxÞ ¼
1 jxj < Dx=2;

0 else;

(

so that
Ð
dxK0ðxÞ ¼ Dx, and the higher order elements by the

recurrence relation

KpðxÞ ¼ 1
Dx

Kp�1ðxÞ � K0ðxÞ p 	 1;

where Dx is the grid size of equidistant points along dimension x,
and � stands for convolution. Therefore, we conduct a convergence
analysis on the real part of the expressionð

d3rKpð~r �~r ijkÞdngdðxÞ

¼ DyDz exp inxi �
ðnqthÞ2

2

� �
�
ð
dxKpðx � xiÞeinðx�xiÞ;

¼ DxDyDz exp inxi �
ðnqthÞ2

2

� �
2

nDx
sin

nDx
2

� �" #p
: (A4)

FIG. 19. Convergence analysis for the (a) x integration with Gauss–Legrendre, (b) a integration with Gauss–Chebyshev, and (c) l integration with Gauss–Laguerre, quadrature
points, respectively, of the f0ðt;~R ; vk;lÞ � f0ð0;~R; vk; lÞ term of the r.h.s. of Eq. (11). ðNq;Nc;NlÞ quadrature points are used for the integration of the dimensions x, a, and
l, respectively. For each of the above cases, the quadrature point number for a dimension is set to vary, while the other two are fixed at either 32 or 64.
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In practice, the f0ð~R; vk;l; tÞ � f0ð~R; vk;l; 0Þ term of the r.h.s.
of Eq. (11) is calculated using Gaussian quadratures. Specifically,
due to the limits of integration for each of the variables, Nq

Legendre points for the x integral, Nc Chebyshev points for the a
integral, and Nl Laguerre points for the l integral have been used.
The convergence study for nLx ¼ 32p, which exceeds the typical
wavelength of the integrand for this work, is show in Fig. 19.
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