
Cognition 227 (2022) 105211

Available online 1 July 2022
0010-0277/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Short Communication 

Feature distribution learning by passive exposure 

David Pascucci a,*, Gizay Ceylan a, Árni Kristjánsson b 
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A B S T R A C T   

Humans can rapidly estimate the statistical properties of groups of stimuli, including their average and vari
ability. But recent studies of so-called Feature Distribution Learning (FDL) have shown that observers can quickly 
learn even more complex aspects of feature distributions. In FDL, observers learn the full shape of a distribution 
of features in a set of distractor stimuli and use this information to improve visual search: response times (RT) are 
slowed if the target feature lies inside the previous distractor distribution, and the RT patterns closely reflect the 
distribution shape. FDL requires only a few trials and is markedly sensitive to different distribution types. It is 
unknown, however, whether our perceptual system encodes feature distributions automatically and by passive 
exposure, or whether this learning requires active engagement with the stimuli. In two experiments, we sought to 
answer this question. During an initial exposure stage, participants passively viewed a display of 36 lines that 
included one orientation singleton or no singletons. In the following search display, they had to find an oddly 
oriented target. The orientations of the lines were determined either by a Gaussian or a uniform distribution. We 
found evidence for FDL only when the passive trials contained an orientation singleton. Under these conditions, 
RT’s decreased as a function of the orientation distance between the target and the mean of the exposed dis
tractor distribution. These results suggest that passive exposure to a distribution of visual features can affect 
subsequent search performance, but only if a singleton appears during exposure to the distribution.   

1. Introduction 

Humans can extract meaningful information from complex visual 
scenes in a fraction of a second. Most of the information that is available 
in the immediate ‘gist’, takes advantage of statistical regularities and 
redundancies typically found in the visual world. Similar objects are 
often arranged into groups defined by distributions of low-level features, 
like color, orientation, size, and location. This provides the visual system 
with the opportunity to form coarse, global representations, without 
recognizing individual details: “there is a big basket of small red apples 
on the left side of the grocery shop”. But how coarse are these global 
representations that are automatically and effortlessly available? 

A large body of evidence indicates that humans can rapidly extract 
basic statistical summaries, like the average and variability of an 
ensemble of similar stimuli (Ariely, 2001; Whitney & Leib, 2018). 
Recent studies, however, demonstrate that the perceptual system can 
quickly learn even more complex and detailed aspects of stimulus dis
tributions, such as the whole shape of a distribution of visual features. In 
studies of feature-distribution learning (FDL; Chetverikov, Campana, & 

Kristjánsson, 2016, 2017b, 2017a), for instance, observers are presented 
with a sequence of visual search trials containing a singleton target 
embedded in a set of distractors (see Fig. 1). After only a few exemplars 
of distractors drawn from a particular distribution of features, the visual 
system learns the shape of the distribution and uses this information to 
guide future search: searching for a new target becomes easier if the 
target lies outside the distribution of previous distractors and harder if 
the target lies inside the previous distractor distribution (a role-reversal 
effect; Kristjánsson & Driver, 2008). In this way, the response time 
functions reflect the shape and characteristics of the distractor distri
bution. This suggests that even when ensembles are not directly relevant 
for behavior (e.g., a set of distractors in a search task), the brain encodes 
detailed representations of their properties, beyond summary statistics, 
which can ultimately aid the detection of task-relevant outliers. This 
form of learning has been observed for both colors (Chetverikov et al., 
2017b) and orientation (Chetverikov et al., 2016), for various distribu
tions types (even bimodal ones, Chetverikov et al., 2017a) and occurs 
implicitly, since observers cannot explicitly judge distribution shapes, 
even though the learning strongly affects their search performance 
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(Hansmann-Roth, Kristjánsson, Whitney, & Chetverikov, 2021). 
An important question concerning this learning is whether such 

detailed statistical representations are encoded automatically and 
independently of a task —i.e., by simple exposure. In FDL, observers are 
engaged in a search task that requires them to segment out a potential 
target from a set of task-irrelevant features. In most of our everyday 
routines, however, we are not constantly engaged in visual search. Yet, 
learning the distribution of visual features can help to maintain an ac
curate representation of our visual environment while maximizing our 
ability to identify outliers and relevant changes in the environment. In 
line with this, research has shown that our attentional and perceptual 
systems constantly learn the characteristics of the visual input, even 
while idling, giving rise to phenomena of latent learning and plasticity 
(Turatto, Bonetti, Pascucci, & Chelazzi, 2018; Won & Geng, 2020). In 
studies of the habituation of the attentional capture response, for 
example, simple exposure to a repetitive onset stimulus can prepare the 
attentional system for resisting capture by the same onset in the context 
of a task (Turatto et al., 2018; Turatto, Bonetti, & Pascucci, 2017; Tur
atto & Pascucci, 2016). 

While feature distribution learning from active search has been 
found to aid visual performance, this mechanism would be more useful if 
it can also operate more generally, outside this task-specific context. In 
the present work, we, therefore, asked whether passive exposure to sets 
of oriented lines coming from distributions of orientations can induce 
feature distribution learning effects that modulate visual search during a 

subsequent active search task. We used a modified FDL paradigm, pre
senting a sequence of five displays containing 36 oriented lines. All the 
lines were oriented according to either a Gaussian or a uniform distri
bution (see Methods and Fig. 1), except for one oddly oriented line 
resembling the target of a typical FDL display. In a departure from 
typical FDL methods, within short blocks with sequences of trials with 
oriented lines, observers were asked to passively view each display 
without performing any explicit task. After the sequence, a single test 
display was presented, requiring observers to perform a search task, 
reporting the location of the singleton target (upper vs. lower half of the 
screen). For the test display, that probed the signatures of FDL, search 
times were analyzed as a function of the angular distance between the 
mean of the prior distractor distribution and the orientation of the test 
target (the Current-Target/Previous-Distractor distance, CT-PD) (Chet
verikov, Hansmann-Roth, Tanrıkulu, & Kristjánsson, 2019). 

2. Methods 

2.1. Participants 

A total of 40 healthy participants (24 in Experiment 1 and 16 in 
Experiment 2, age range of 19–35 years, 18 females), from the EPFL and 
the University of Lausanne, participated in the study for a monetary 
reward (20 CHF/h). All participants had normal or corrected-to-normal 
vision and were naïve as to the purpose of the experiments. Before the 

Fig. 1. Trial structure and main variables. A) Example of a sequence of displays in one trial. Participants were instructed by a written cue to passively view the 
display (exposure sequence) or to perform a visual search (test display). In the visual search task, they had to report the location of the oddly oriented target (upper 
vs. lower quadrant). B) In the exposure sequence, the orientations in the ensemble of lines were drawn according to two different distributions, a truncated Gaussian, 
and a uniform distribution. One oddly oriented line with orientation distance of ±60–90◦ from the ensemble mean, was included in the exposed displays of 
Experiment 1, but not in Experiment 2. C) In the test display, distractors followed a Gaussian distribution with 10◦ of standard deviation and a mean located between 
±60◦ and ± 90◦ away from the target orientation (gray curves). The target orientation was presented at different distances from the mean of the exposed distractors 
distribution (current-target previous-distractor distances, CT-PD; orange Gaussian distribution in the example). 
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experiments, visual acuity was tested with the Freiburg Acuity test 
(Bach, 1996). A value of 1 or above reached with both eyes open was 
used as the selection criterion. The sample sizes were selected based on 
previous FDL studies. All participants gave written informed consent, 
and the study was approved by the local ethics committee under the 
Declaration of Helsinki (apart from preregistration). 

2.2. Apparatus 

Stimuli were presented on a gamma-corrected VG248QE monitor 
(resolution: 1920 × 1080 pixels, refresh rate: 120 Hz) and were gener
ated with custom-made scripts written in Matlab (R2013a) and the 
Psychophysics Toolbox (Brainard, 1997), running on a Windows-based 
machine. Experiments were performed in a darkened room and partic
ipants sat at 57 cm from the computer screen, with their head positioned 
on a chin rest. 

2.3. Stimuli and procedure 

In both experiments, trials were arranged into short mini-blocks 
comprising an exposure sequence of five displays (1000 ms each, sepa
rated by a 200 ms blank screen), followed by a single test display (see 
Fig. 1). All stimuli were presented on a gray background. A colored 
written cue (1500 ms) indicated the upcoming sequence of exposed 
displays (the word ‘PASSIVE’, written in red) or the test display (‘TASK’ 
written in green). Each display contained 36 white lines of 1◦ length, 
arranged in a 6-by-6 array within a 14◦ square centred at the fovea. A 
small jitter was added to the location of each line within each cell of the 
6-by-6 array (jitter range: ±0.5◦) to prevent uniform appearance. 

During the exposure stage, the orientation of each line was drawn 
from a truncated Gaussian distribution (standard deviation (σ): 15◦, cut- 
off at ±30◦ [2σ] from the mean) or a uniform distribution (range: ± 30◦

from the mean), in separate and intermixed mini-blocks consisting of 5 
learning trials and a test trial. A ‘seed’ mean orientation of both distri
butions was randomly selected for each mini-block and remained the 
same for the 5 learning trials of each mini-block. In Experiment 1, the 
exposure displays always contained a singleton line, oriented between 
±60◦ and ± 90◦ away from the mean of the distribution. In Experiment 
2, no singleton line was present in the passively viewed displays during 
the exposure sequence. 

On test trials, the orientation of the target line was drawn from 
among a set of 12 angular distances (from − 75◦ to +75◦ in steps of 15◦) 
from the seed mean of the previous sequence of exposed distributions. 
The distance between the target line orientation and the previous dis
tribution mean defined the Current-Target/Previous-Distractor distance 
(CT-PD). The distractor distribution of orientations in the test display 
was always Gaussian with σ of 10◦ and the mean located between ±60◦

and ± 90◦ away from the target orientation. Note that the true circular 
mean of the orientations shown in each display of the learning trials 
could slightly differ from their seed mean. This is because orientations 
were randomly redrawn in each display, sampled from truncated 
Gaussian or uniform distributions with the chosen seed mean. However, 
these variations were negligible (standard deviation of the difference 
between the true circular mean and the seed mean across trials, subjects, 
and experiments: <1.60◦) and well below the 15◦ steps of the CT-PD 
variable used to model changes in search times (see Analysis). 

The target line in the test display could be presented in one of the 36 
possible locations. Participants were asked to report the location (upper 
vs. lower half of the screen) of the target line by pressing the ‘i’ (upper) 
or ‘j’ (lower) keys of a computer keyboard as quickly as possible. The test 
display remained on the screen until a response was made. Two types of 
feedback were used to ensure that participants engaged in the task and 
maintained a high accuracy rate. First, error feedback (the word ‘error’, 
written in black) was presented following incorrect responses. Second, a 
score was calculated on each mini-block (as in previous work, Chet
verikov et al., 2019), and the average score was shown after every 33 

mini-blocks. 
At the beginning of each experiment, participants were provided 

with written and verbal instructions and performed a sequence of 
practice trials under the supervision of the experimenter. Practice trials 
were not analyzed further but served to ensure that participants un
derstood the task. The experiments consisted of 264 mini-blocks with 8 
breaks, lasting approximately 1 h. 

2.4. Analysis 

Trials with errors and response times slower than 1 s or faster than 
200 ms were excluded from the analysis, following guidelines from 
previous work (Chetverikov et al., 2019) (34.6% in total for Experiment 
1, 23.8% for Experiment 2). Participants performed with an average 
accuracy of 94 ± 4% in Experiment 1 and 93 ± 4% in Experiment 2. In 
Experiment 2, one participant was excluded due to average response 
times larger than 2 s, well beyond the threshold recommended in pre
vious FDL studies (Chetverikov et al., 2019). 

To evaluate the effect of the exposed distributions on search times, 
the relationship between single-trial log-transformed response times and 
the CT-PD variable was modeled with a set of five different models. 
These included a model assuming no effect of CT-PD on the log- 
transformed search times, defined as a model with only a ‘constant’ 
parameter (e.g., an intercept) and no parameter associated with the CT- 
PD variable (see Table 1). The other models assumed effects of various 
forms. In particular, the Linear model predicted a linear relationship 
between CT-PD and search times, the Uniform model predicted a step- 
like shift of search times in the CT-PD range, whereas the remaining 
models predicted effects that followed Gaussian and truncated-Gaussian 
distributions. Note that the truncated-Gaussian and uniform distribu
tions corresponded to the one used to generate the exposure distribu
tions. The explicit mathematical form of each model is reported in 
Table 1. All models were fitted by minimizing the negative log- 
likelihood of the data given the parameter values, using a quasi- 
Newton optimization algorithm (MATLAB’s fminunc function). For 
each model, the Bayesian information criterion (BIC; Schwarz, 1978) 
was computed as BIC = − 2 * logL + k *  log (n), where logL is the 
maximum log likelihood value under each model, k is the number of 
parameters in each model (see Table 1) and n is the total number of data 
points. Model comparison was performed for the two types of exposed 
distributions separately, by subtracting all BIC values from the largest 
one. Differences in BIC (ΔBIC) larger than 2 are considered positive 
evidence against the model with the higher BIC (Raftery, 1995). 

Model comparison was paralleled with a two-way repeated-measures 
ANOVA with factors: Distribution Type (2 levels) and CT-PD (6 levels, 
from 0◦ to 75◦ in steps of 15◦, considering the absolute value of the 
original CT-PD levels). For the ANOVA analysis, the response times of 
each participant were averaged across CT-PD levels. In the location 
priming analysis of Experiment 1, we compared response times as a 
function of whether the location of the singleton in the last exposure 
display was the same or different from the location of the test singleton, 
using paired t-test analysis. 

3. Results 

3.1. Experiment 1 

In Experiment 1, where observers passively viewed arrays of orien
tated lines where one item was an orientation singleton, there was 
strong learning of the orientation distributions beyond the average or 
range. But there was little evidence that observers learned differences 
between the Gaussian and uniform distributions. 

To evaluate whether the orientation distribution in the exposure 
displays affected performance on the test trial, we compared how well a 
set of models fit the shape of response times (RT) as a function of CT-PD 
(see Table 1). The set of models included a model with only a constant (i. 
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Table 1 
The set of models used in both experiments and the BIC of each model for trials with uniform and Gaussian distributions presented during exposure. The ΔBIC against 
the model with the higher BIC in each model comparison is reported below the BIC value. The model with the higher BIC is indicated by Δ = 0. In all equations, y stands 
for the log-transformed, single-trial search times, x is the CT-PD variable in degrees (see Methods), a models the intercept, b is either the slope of the Linear model, the 
offset of the Uniform model or the amplitude of the Gaussian models (Gaussian and Truncated-Gaussian) and σ is the standard deviation of the Gaussian function.  

Experiment 1 2  

Distribution Distribution 

Model Function Gaussian BIC Uniform BIC Gaussian BIC Uniform BIC 

Constant y = a − 619.24 − 528.72 − 67.73 − 2.31 
Δ = 0 Δ = 0 Δ = 6.65 Δ = 6.26 

Linear y = a + b|x| − 620.57 − 531.81 − 62.25 3.32 
Δ = 1.32 Δ = 3.09 Δ = 1.17 Δ = 0.61 

Uniform 
y =

{
a, |x| ≤ 2σ
b, |x| > 2σ 

− 623.9 − 533.44 − 62.03 3.94 
Δ = 4.65 Δ = 4.71 Δ = 0.95 Δ = 0 

Gaussian 

y = a+ 2be

(

−
|x|2

2σ2

)
− 620.87 − 530.59 − 61.10 3.82 
Δ = 1.62 Δ = 1.87 Δ = 0.02 Δ = 0.12 

Truncated-Gaussian 

y =

⎧
⎨

⎩

a, |x| ≤ 2σ

a + 2be

(

−
|x|2

2σ2

)

, |x| > 2σ 

− 620.93 − 530.65 − 61.08 3.82 
Δ = 1.68 Δ = 1.92 Δ = 0 Δ = 0.12  

Fig. 2. Results of Experiment 1 and 2. A) In 
Experiment 1, the exposed set of distractors 
contained a singleton orientation (as in the 
example display). Despite the absence of an 
explicit task, participants learned the dis
tractors distribution during exposure, as 
evident from the decrease of response times 
(RT) as the angular distance between the 
previous distractors mean and the current 
target orientation increased (current target – 
previous distractor, CT-PD), a typical hall
mark of FDL. According to Bayesian Infor
mation Criterion analysis (BIC), all models 
assuming an effect of the exposed distractors 
distribution performed better than a model 
assuming no effect (right panel, see also 
Table 1). This pattern was comparable across 
exposure sequences in which a uniform (blue 
bars) and a Gaussian distribution (red bars) 
were presented. The singleton line in 
Experiment 1 captured attention, causing 
significant negative location priming effects 
(response times were slower when the test 
target appeared at the same location of the 
last exposed singleton, line plot in the 
bottom-central panel). This involuntarily 
attentional capture likely caused the implicit 
learning of the distractors’ distribution. B) In 
Experiment 2, in which the singleton line 
was removed during exposure (as in the 
example display), FDL did not occur and a 
model assuming no effect of the previous 
distractor distribution performed better than 
all the other models (BIC plot, right panel). 
(For interpretation of the references to color 
in this figure legend, the reader is referred to 
the web version of this article.)   
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e., no effect of the prior distractor distribution), a linear and a Gaussian 
model, and a uniform and a truncated-Gaussian model that resembled 
those used in generating the original distributions of the exposed ori
entations (see Fig. 2A and Table 1). 

All models assuming an effect of the prior distractor distribution 
performed better than the model assuming no effect (see Table 1; min
imum ΔBIC across model comparisons against the constant = 1.32). In 
particular, model comparison through the Bayesian Information Crite
rion (BIC; Schwarz, 1978), revealed positive evidence favoring the 
uniform over the constant and over the other models (all ΔBIC >2, 
except for the comparison ‘uniform vs. linear’ in the condition with 
uniform distractor distributions: ΔBIC = 1.62). 

This pattern was similar for the two types of distributions observers 
were exposed to during the learning trials. This means that observers’ 
search times were clearly affected by the distribution of orientations 
during the exposure stage, and while this result was further supported by 
a significant main effect of CT-PD, in a two-way repeated-measures 
ANOVA with the factors Distribution Type X CT-PD (main effect of CT- 
PD: F(5,115) = 6.86, p < 0.001, ηp

2 = 0.23), the main effect of Distri
bution Type and interaction were not significant. While we would nor
mally expect a main effect of Distribution Type, the results from the 
model comparison show that observers can passively learn the charac
teristics of a distribution of features, beyond the simple average. How
ever, the learned characteristics did not allow sufficient resolution to 
distinguish between the shape of the uniform and the Gaussian 
distributions. 

One potential explanation for this form of learning is that the pres
ence of a singleton, although not task-relevant, per se, might have 
triggered automatic attentional capture mechanisms that lead to the 
implicit learning of the distractor features. That is, the singleton may 
have captured attention because it was an outlier in the orientation 
distribution and was implicitly represented and learned. To evaluate this 
possibility, we inspected potential priming effects due to the location of 
the irrelevant singleton in the last exposure display before the test trial. 
A small but significant negative priming effect revealed that search 
times were slower when the singleton during the last learning trials was 
in the same quadrant as the target singleton (t(23) = − 2.24, p = 0.035). 
This confirmed that observers were not completely immune to the 
presence of a singleton at the exposure stage, and therefore, FDL might 
have been due to the automatic segmentation of a singleton from the 
distribution of features. In other words, the feature contrast causes 
singleton detection which is, in turn also connected with the learning of 
distributions. To address this point more directly, we performed 
Experiment 2 in which no singleton appeared during the exposure stage. 

3.2. Experiment 2 

As in the first experiment, observers passively viewed the display 
during the exposure trials and were tested on a single test trial. No ev
idence of an effect of the exposed distributions from the learning trials 
was found in this experiment (see Fig. 2B and Table 1), with all the 
models performing worse than the constant only model (constant model 
against each of the other models with higher BIC, all ΔBIC >4), and no 
significant main effect or interaction in the two-way repeated-measures 
ANOVA with factors Distribution Type X CT-PD (all p’s > 0.05). This 
means that the presence of a singleton during the learning trials in 
Experiment 1, was crucial for triggering FDL by passive viewing. 

4. Discussion 

Recent work has shown that human observers can rapidly learn rich 
and detailed representations of distributions of visual features (Chet
verikov et al., 2016, 2017a), above what is proposed in summary sta
tistics accounts (Cohen, Dennett, & Kanwisher, 2016). Here we asked 
whether this form of learning, in which the attentional system represents 
the full shape of a distribution of visual features, occurs during passive 

viewing or whether it requires active visual search. 
We found that passive exposure to distributions of visual features in 

the absence of an explicit search task can affect future search perfor
mance, provided that the passively viewed displays contain a singleton 
element. In previous work, observers also performed a singleton search 
on the learning trials, and the RT patterns following learning tracked the 
precise shape of the learned distributions. It was possible to distinguish, 
for instance, learned representations that resembled the shape of 
Gaussian, uniform, and even more complex distributions (Chetverikov 
et al., 2016, 2017b, 2019). In Experiment 1, observers’ performance was 
affected by the distribution of features during the exposure stage, 
beyond the simple average, but the resulting RT patterns did not allow 
us to distinguish between the Gaussian and the uniform distributions. 

One explanation for the inability to distinguish different distribution 
types is that this form of learning is eventually shaped and refined by the 
repeated attentional selection of a target singleton during active search. 
The detection of a deviant ‘outlier’ during singleton search may indeed 
be mediated by an implicit representation of the statistical properties of 
the whole display (Haberman & Whitney, 2012). Once the active process 
of segmenting out a deviant from the same distribution of features is 
reiterated a few times, the shape of the distribution is learned and 
temporarily stored in detail. Several findings reinforce this idea, sug
gesting that statistical representations are the building blocks of seg
mentation and categorization processes (Im, Tiurina, & Utochkin, 2021; 
Khayat & Hochstein, 2018; Utochkin, 2015). In line with this, the most 
likely explanation for our results is that the irrelevant singleton on 
passive trials triggered an unsolicited and involuntary attentional cap
ture, which in turn, led to the automatic segmentation of a deviant from 
the distribution, and a coarse representation of the distribution’s shape. 
This is supported by the absence of learning after removing the singleton 
from the passive trials of Experiment 2, and even more, by the negative 
location priming effect found in Experiment 1. The negative location 
priming suggests that participants did encode the irrelevant singleton 
(and its location) during passive viewing. This, in turn, impaired per
formance when the target appeared in the same location as the previous 
singleton, a form of negative priming typically observed at the location 
of previously irrelevant and distracting stimuli (Fox, 1995). We there
fore speculate that the involuntary detection of a deviant singleton left a 
coarse trace of the statistical distribution of visual features from which 
the singleton was an outlier. In more active conditions, where the 
singleton is the target of a visual search, the characteristics of the dis
tribution may be learned and retained more in detail (Chetverikov et al., 
2016). 

An alternative explanation is that search times were affected by the 
difference between the singleton orientation and the search target: 
search times could have been faster when the search target was similar 
to the singleton and slower as their difference increased. Since the odd 
item range was always far from the exposed distribution mean, this 
could have led to the gradual decrease in search times as the CT-PD 
distance increased (and the similarity between the singleton and the 
target increased). Because the CT-PD and the singleton-target difference 
in orientation were highly negatively correlated, due to the experi
mental design, it is not possible to fully disentangle between the role of 
one or the other, which could be an interesting question for future 
research. Nevertheless, both explanations are consistent with the idea 
that the presence of a singleton triggers an automatic capture and seg
mentation of the display, which could be mediated by activity in sa
liency maps that operate as early as in primary visual cortex (Li, 1999, 
2002). 

Our results add to the emerging field of research showing latent 
forms of short-term plasticity in the attentional system. These studies 
have provided evidence of basic and non-associative forms of learning, 
like habituation of the attentional capture response, after passive and 
task-free exposure to single stimuli (Turatto et al., 2018; Turatto & 
Pascucci, 2016; Won & Geng, 2020). Here we show that involuntary 
attentional capture and singleton segmentation can foster more complex 
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forms of learning in which the properties of a distribution of visual 
features are latently and automatically learned. The dependence of 
passive FDL on the presence of an outlier might be functionally mean
ingful: constantly learning the entire statistics of irrelevant features in 
the visual world might be redundant and resource-consuming; learning 
the distribution of features that signal a ‘surprise’, can aid the atten
tional system in directing resources more efficiently when such surprise 
becomes relevant for behavior. 
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