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Abstract
We investigate the persistence of micro-contacts between two elastic random rough surfaces by means of a simple model for 
quasi-static sliding. Contact clusters are calculated with the Boundary Element Method, then surfaces are repeatedly displaced 
to study the evolution of the original contact area. While the real contact area remains constant due to the rejuvenation of 
micro-contacts, the original contact clusters are progressively erased and replaced by new ones. We find an approximate 
exponential decrease of the original real contact area with a characteristic length that is influenced both by statistics of the 
contact cluster distribution and physical parameters. This study aims to shine light on the microscopic origins of phenom-
enological rate-and-state friction laws and the memory effects observed in frictional sliding.

Keywords  Contact mechanics · Friction · Contact clusters · Boundary element method · Surface roughness · Real contact 
area

1  Introduction

The macroscopic friction force between sliding surfaces 
originates from the interaction of micro-contacts at the scale 
of surface asperities [1]. This evidence has been encoded 
in the Bowden-Tabor law, stating that the friction force is 
proportional to the real contact area, which is only a small 
fraction of the apparent one and is, as a first approximation, 
proportional to the applied load [2]. From this, two strate-
gies can be developed to calculate the friction force between 
contact surfaces: either by calculating the real contact area 
as a function of physical and surface topological parameters, 
or by finding an effective coarse-grained friction law repro-
ducing the emergent macroscopic behavior.

The former approach has been developed since the first 
work of Greenwood and Williamson [3] and several tech-
niques have been used to calculate the real contact area 
[4], ranging from analytical calculations [5–9] to finite 
element [10–12] and boundary element methods [13–16], 

also extended to plasticity [17]. These studies have allowed 
to conclude that, for elastic surfaces with a given topog-
raphy h(x, y), the real contact area is dominated by the 
root mean square of the slopes Rdq ≡

√⟨�∇h�2⟩ , so that 
Areal = �N∕(E�Rdq) , where N is the load, E′ the effective 
Young’s modulus and � a proportionality constant.

Although we neglect the dependence on other parameters 
included in � and the practical difficulty to estimate Rdq [18], 
the story is further complicated for dynamic frictional slid-
ing, since experimental observations have shown that the 
real contact area is not fixed: for example, it is decreasing 
during the transition from static to dynamic friction [19], it 
grows with time due to aging effects [20], and during rough 
on rough sliding micro-contacts continuously change. More-
over, given the analogies between the transition to sliding 
with a fracture mechanics process [21], memory effects due 
to the history-dependent interface stress concentrations [22, 
23] play a crucial role.

In order to take into account these phenomena, effective 
friction laws can be a viable alternative approach. In par-
ticular, since the early works of Dieterich [24] and Ruina 
[25], rate-and-state friction laws have been successfully used 
to extend the classical Amontons–Coulomb friction force 
by introducing, as suggested by the name, a dependence on 
the velocity and a state variable, which takes into account 
the memory effects at the interface. These models have 
found particular relevance in geophysics for the modeling 
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of friction along faults, and the state variable has been recog-
nized as an essential factor to model the macroscopic sliding 
[26–31]. These laws have been used to address problems 
not only about the frictional sliding between elastic solids 
[32–35], but also to glaciers [36], gouges with granular 
material [37, 38] and boundary lubrication problems [39]. 
In other studies, the role of the viscoelasticity on the collec-
tive behavior of multiple contacts has been investigated dur-
ing the frictional sliding, establishing a connection between 
the evolution of the state variable and microscopic features 
[40, 41].

One of the most common and simplest form of rate-and-
state law was proposed by Ruina and relates the instantane-
ous friction coefficient f(x, t), as a function of the time t 
and surface point x, to the velocity field v(x, t) and the state 
variable field �(x, t) in a set of two coupled equations [25]:

where f0 , a, b are constants that must be fixed for each sys-
tem and v∗ and �∗ are normalizing factors. The second equa-
tion takes into account the memory part and, for constant 
velocity, it implies an exponential decrease of the state vari-
able over time ruled by a characteristic slip distance Dc . This 
is connected to the sliding distance required for the interface 
to erase the information of previous slips and nucleation 
events [24]. In other words, the original real contact area 
is continuously replaced by new contacts, and the amount 
of original contacts decreases exponentially with the slid-
ing distance, characterized by a decay length Dc roughly 
corresponding to the average length of the micro-contacts 
[28]. This observation can provide the connection between 
the macroscopic coarse-grained framework of the rate-and-
state friction laws with the microscopic approach involving 
the calculation of the real contact area. For this reason, it 
is important to investigate the relation between parameters 
characterizing the surface roughness and those used in the 
effective laws.

In this paper, we investigate the persistence of the original 
contact clusters between two elastic random rough surfaces. 
The contact problem is solved with Tamaas, a boundary ele-
ment method solver [42, 43] to calculate the real contact 
area, then surfaces are gradually displaced one grid point at 
a time, to assess the distance required to erase the original 
clusters as a function of the model parameters. In particular, 
we investigate the influence of the Hurst exponent, which 
characterizes surface roughness, and elastic properties, on 
the rejuvenation of micro-contacts. We also discuss how 
the results differ between the fully mechanistic treatment 

(1)f (x, t) = f0 + a ln
v(x, t)

v∗
+ b ln

�(x, t)

�∗

(2)𝜙̇(x, t) = 1 −
v(x, t)𝜙(x, t)

Dc

,

of contact offered by Tamaas, and a purely geometrical 
approach known as the overlap model.

2 � Methods

2.1 � Surface Generation

Many natural surfaces can be described as self-affine fractal 
surfaces [44, 45], that is the same surface features can be 
observed on several length scales. In this case, it is possible 
to encode all the topographic information into the language 
of power spectrum density (PSD) [18]. Thus, the spectral 
analysis provides a method to generate a self-affine topog-
raphy starting from the PSD, performing the inverse Fou-
rier transformation. These methods are also implemented in 
Tamaas [43], so that in our simulations surface generation 
and BEM solutions are both provided by this software. The 
idealized PSD of a self-affine randomly rough surface fol-
lows the distribution:

where qr < qL < qs are roll-off, large and small wavenum-
ber cutoffs, respectively. H is the Hurst exponent, which 
is related to the fractal dimension H = 3 − D . An exam-
ple of PSD is shown in Fig. 1a. In the following, we will 
adopt square surfaces with N = 1024 points for each side, 
with periodic boundary conditions and an elementary 
discretization length l conventionally fixed to l = 1 � m. 
We use the conventions introduced in [46] to define the 
spectrum parameters, i.e., the adimensional wavenumber 
q ≡ kN ⋅ l∕2� , being k is the wavenumber, so that q is the 
number of waves per length. By default, in the frequency 
domain we will use qr = 8 , qL = 8 , qs = 128 , corresponding 
to wavelengths ( � = Nl∕q ) spanning from 8l to 128l, and 
Hurst exponent H = 0.7 , which have been chosen to have 
a statistically significant number of contact clusters in the 
domain and are within the value ranges used in [46]. In [43] 
we do not explicitly set C0 , but with these settings the theo-
retical values of the root mean square of heights and slopes 
are, respectively, Rq = 16.8 l and Rdq = 2.7 ⋅ 103.

2.2 � BEM Solver

After the generation of the random rough surfaces, we solve 
the elastic normal contact problem with Tamaas, implement-
ing the Polonsky–Keer algorithm [47, 48] accelerated with 
the Fast Fourier Transform [49]. An example of the solution 
for the contact clusters is shown in Fig. 1b with the default 

(3)Ciso(q) = C0

⎧
⎪⎨⎪⎩

0 if q < qr
q−2−2H
L

if qr ≤ q < qL
q−2−2H if qL ≤ q < qs

0 if q ≥ qs

,
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settings and a ratio between applied normal pressure and 
effective Young’s modulus corresponding to P∕E� = 0.01 . 
This ratio is the relevant parameter of the model that will be 
used in the following sections.

2.3 � Sliding Algorithm and Contact Clusters

In order to simulate a quasi-static sliding of the model, we 
shift one of the two surfaces along the horizontal direction 
by l, wrapping-around the foremost edge due to the periodic 
boundary conditions. The sliding direction is fixed along 
the x-axis. Then, the calculation of the contact solution 
is repeated. After a fixed number n of these sliding steps, 
whilst the real contact area is constant on average, some 
of the initial contact clusters have disappeared, others have 
been modified and new contact clusters have been created. 
The simulation of the evolution of the real contact area 
has been provided in the videos attached as supplemental 
material.

In order to study the persistence of the initial contact 
points, we must identify and classify the clusters evolving 
during the quasi-static sliding. The main difficulty is that the 
contact clusters may merge or split during the evolution. To 
address this problem, we insert all the n contact maps of size 
N × N into a 3-D matrix n × N × N and label all its pixels 
according to a 26-connected pixel connectivity. Then, we use 
the Hoshen–Kopelman algorithm to solve this connected-
component labeling problem [50].

The Hoshen-Kopelman algorithm consists of two rounds 
of scans over all pixels which needs to be labeled. In the first 
round, we scan each objective pixel and its surrounding pix-
els (only half of the neighbors, i.e., 13 pixels, to avoid scan-
ning two times the same pairs). If there is any surrounding 
pixel that has already a label, then the chosen pixel will be 
labeled by the smallest index we can have. Also, if there are 
more than one label that is surrounding the chosen pixel, all 

these labels will be marked as ”equivalent”. If no label can 
be found from the surrounding pixels, a new label will be 
assigned to the chosen pixel. For the second round, all the 
pixels that have the ”equivalent” labels will be unified under 
the same label which has the smallest index.

In this way, we can identify all the contact clusters evolv-
ing with the sliding and consider only those already present 
at the beginning as original contact clusters. An example of 
the evolution of a single contact cluster identified by means 
of this algorithm is shown in Fig. 2. This allows to calculate 
the persistence of the initial contact area, as highlighted in 
Fig. 3. By repeating this procedure for different surfaces 
obtained with new seeds of the random generator, it is pos-
sible to increase the statistics on the clusters and calculate 
the averages over all results. Movies with an example of 
the evolution of the real contact area and the persistence 
of the original clusters for the default spectrum parameter 
and H = 0.9 are provided as supplemental material. This 
formulation does not consider wear or aging effects of the 
junctions, so that statistically its behavior is invariant under 
time and space translation, i.e., initial conditions are not 
influential.

In this model, what matters from the physical point of 
view is the junction between asperities, which are repre-
sented by the contact clusters. We do not interpret results 
in term of the single pixels, because they can be affected by 
discretization issues in simulations but also in experiments 
due to scan resolution. But independently of the resolution, 
when two rough surfaces are in contact, junctions are formed 
and evolve during sliding. For example, in [19], the authors 
study the evolution and deformation of the original contact 
area as a collection of the contact junctions, both globally 
and at single cluster level. A reduction of the real contact 
area, calculated as a collection of clusters, is observed in the 
static phase before sliding. Our aim is to provide an approxi-
mate model of similar processes involving contact clusters 

Fig. 1   An example of idealized 
PSD (left). Example of contact 
clusters between two self-affine 
randomly generated surfaces, 
whose axis length are expressed 
in units of the elementary length 
l (right)
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and establish connections with the macroscopic effective 
laws.

Macroscopic rate-and-state friction laws assume an 
exponential decay of the original contact area with slid-
ing distance. The state variable in rate-and-state friction is 
interpreted as the age of micro-contacts. Our model explores 
the decay of micro-contacts through the combination of 
geometry, described by rough surfaces in relative sliding, 
and mechanics, since each configuration is obtained with a 
BEM solver. Although it does not account for aging in terms 
of creep, it is nonetheless relevant to investigate the decay 
of the original contact area with respect to the assumption 
of the rate-and-state friction.

3 � Results

3.1 � Remaining Contact Area

We define the remaining contact area (RCA) as the frac-
tion Arc of the initial contact clusters that persists after n 

translation steps. Although the area of the contact clusters 
can also increase during the evolution, the remaining con-
tact area under consideration includes only the fraction of 
the initial one, so that it is decreasing function of the slid-
ing steps, as shown in Fig. 3. It can also be described as 
the overlapping part between the original contact area and 
that one after n steps. As observed in previous studies [24], 
for rough surfaces the RCA decreases approximately as an 
exponential function of the sliding distance. Our results con-
firm this behavior, as shown in Fig. 4, where the RCA value 
on y-axis is normalized to be between 0 and 1. The interpo-
lating function follows Arc = exp (−x∕d) , being x ≡ l ⋅ n the 
sliding distance and d the characteristic decay length. This 
length corresponds to the parameter Dc of the rate-and-state 
friction law 1.

It is interesting to observe that also single clusters fol-
low this exponential law with good approximation, i.e., the 
exponential decrease is found both for the total RCA and the 
RCA calculated by taking into account only clusters whose 
initial area is included in a small limited range. It is possible 
to scale the sliding distance with the root square of the mean 

Fig. 2   Evolution of a single 
contact cluster for the slid-
ing steps n = 0 , n = 4 , n = 8 , 
respectively, with the default 
spectrum parameters
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value of the area of the clusters, namely L =
√⟨A⟩ , being 

A the area of single contact clusters. This rescaling aims to 
remove the influence of the absolute value of the real contact 
area using only an a-dimensional quantity characterizing the 
RCA. Thus, all RCA curves collapse approximately on the 
same exponential function Arc = exp (−x∕(dL)) , where d is 
the a-dimensional decay length expressed in units of the 
average cluster length L. We have estimated d from the RCA 
curves with a numerical spline cubic interpolation, finding 
the distance such that Arc = e−1 . For the case of Fig. 4, we 
have found d = 1.08 ± 0.01 in units of L, obtained with the 
default spectrum parameters and by averaging over 1300 
repetitions.

In Fig. 4, the curves of different cluster bins converge 
approximately to the decay curve of the total average RCA. 
This illustrates that the behavior and the decay length d is 
largely independent of size, shape and distribution of contact 
clusters.

The collapse of the curves is not perfect due to the statisti-
cal dispersion of the probability density function (PDF) of 
the area of contact clusters. This can be understood with the 
following consideration: supposing that all surface asperities 
have the same diameter, i.e., their PDF is a delta function, 

Fig. 3   Evolution of another con-
tact cluster, obtained with the 
default spectrum parameters. In 
the snapshots following the first 
one, we have maintained the 
shadow of the original cluster, 
highlighting in red the overlap 
representing the remaining 
contact area, i.e., the fraction of 
area persisting after the transla-
tion steps

Fig. 4   Remaining contact area versus the sliding ratio x/L for the total 
area and various ranges of cluster area, indicated in the legend with 
the limits expressed in terms of the average cluster area. For each 
color, the thick solid lines represent the best fitting exponential func-
tion
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the sliding length required to separate them would be on 
average their diameter, with a small dispersion due to their 
random initial relative position. However, if there are asperi-
ties of various diameters, according to a PDF with large 
variance, there could be clusters generated by a small asper-
ity indenting over a large one, so that the sliding length to 
erase their contact would correspond to the length of the 
larger one. For this reason, the normalized RCA obtained by 
averaging over all the PDF is larger than the RCA obtained 
over a narrow band of the PDF, independently of the average 
value of the cluster area. This is confirmed by Fig. 4, where 
the curve corresponding to the total RCA, having the largest 
variance, is the top limit for the other ones.

3.2 � Geometrical Overlap

From the results of Sect. 3.1, the behavior of RCA is a 
combined effect of both contact mechanics and statistics of 
contact clusters. In order to decouple the problems, in this 
section we calculate the RCA obtained with a simple model 
for the geometrical overlap of rough surfaces, without any 
indentation. Similar models have been used to estimate the 
real contact area [10, 51, 52]. Supposing that there are two 
random rough surfaces not in contact, as shown in Fig. 5, 
we can consider their gap g(x, y) as a function of the coordi-
nates. Given the minimum and the maximum gap, gmin and 
gmax , respectively, we define the contact area as the points 
(x, y) such that:

where f is an arbitrary number between 0 and 1. In this way, 
for any pair of rough surfaces, we can obtain a contact map 
similar to that of Fig. 2 but without any indentation. The 
number f can be fixed such that, on average, the total real 
contact area matches that obtained with the BEM solver for 
the same surfaces. In Fig. 6, we compare the contact clusters 
obtained for the same surfaces with the contact solution and 
geometrical overlap model. The two cases share many large 

(4)
g(x, y) − gmin

gmax − gmin

≤ f ,

contact clusters in the same regions, but it is evident that, in 
the presence of elastic contact, they are smaller, since the 
elastic resistance prevents a further indentation. Moreover, 
there are a larger number of small contact spots, which are 
points with a gap larger than the threshold for the geometri-
cal overlap model, but coming in contact due the surface 
deformation in the BEM solution.

This difference is summarized by the PDF of the area of 
contact clusters for both cases, as shown in Fig. 7. Although 
the average total real contact area is the same, in the geomet-
rical overlap model there is a larger number of big clusters, 
so that the average cluster length L =

√⟨A⟩ is also larger 
(in the example in Fig. 7, ⟨A⟩ for the geometrical overlap 
model is twice larger). According to the literature [53], the 
PDF of the cluster area A of random self-affine surfaces is 
constant for small clusters, whereas for larger clusters it is 
the power-law p(A) ∼ A−2+H∕2 ruled by the Hurst exponent, 
with an exponential cut-off for the largest clusters. The area 
ranges defining these regions are determined by the spec-
trum parameters. Our results recover this behavior for small 
clusters, although the range for the power-law is barely vis-
ible due to our parameter choice.

Although the PDF for the two cases are different in both 
the power-law and the cut-off, the RCA curves follow a simi-
lar exponential decrease in both cases, as shown in the inset 
of Fig. 7. For the geometrical overlap model we observe 
again a non-perfect collapse of the curves by considering 
smaller ranges, confirming that this effect is due statistics 
and not a specific feature of the contact solution or the clus-
ter PDF. The estimated value of d, i.e., the length in units 
of L required to erase the original contacts, is 1.24 ± 0.01 

Fig. 5   Schematic of the geometrical overlap model

Fig. 6   Comparison of the contact maps obtained with the same sur-
faces for the geometrical overlap model and the BEM elastic solution
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and 1.08 ± 0.01 for the geometrical overlap model and the 
elastic solution, respectively, both expressed in units of their 
average cluster length L. Thus, for both models it is slightly 
larger than L, which is a consequence of the statistical dis-
persion of the PDF as explained in Sect. 3.1.

From these results, we conclude that the exponential 
decrease is a feature of the shape of the contact clusters 
obtained with a random rough self-affine surface whose 
spectrum is characterized by Eq. 3. The persistence of the 
original feature is completely erased at most in two average 
cluster length L, whereas the value of the decay length d 

corresponds approximately to this value. The non-perfect 
collapse for limited ranges of cluster area is a statistical 
effect independent of the cluster distribution and the phys-
ics of the contact.

3.3 � Influence of the ratio E�∕P and Hurst exponent

As shown in Sect. 2.3, The total remaining contact area fol-
lows an exponential decay Ar = e−x∕dL , where L =

√⟨A⟩ is 
the average cluster length, e.g., square root of the average 
area. In general, the parameter d, i.e., the distance required 
to erase the original contacts in units of L, is a function 
of the system parameters, in particular the ratio between 
Young’s modulus and applied pressure E�∕P and the Hurst 
exponent H. By repeating the simulations illustrated in 
Sect. 2 for various parameter values, we have found the 
behavior reported in Fig. 8.

From these results, modifications span in a range of 20% 
with respect to the average cluster length L, however some 
trends are observed. In particular, d is an increasing function 
of up to E�∕P = 100 . This seems a counter-intuitive result: 
if we consider a junction between two asperities, we could 
expect that in an elastic material prone to deformation, it 
would be more difficult to displace them and erase their con-
tact, i.e., d should be larger. This result can be understood by 
considering that it is obtained by averaging all the contact 
clusters, spanning from small and point-like clusters to large 
and fractal-like shapes. Thus, similarly to the mechanism 
explained in Sect. 3.1, in the presence of a larger variance 
in the cluster area distribution, we expect an increase of the 
decay length.

This is confirmed by considering the distribution of the 
contact cluster as a function of their area and shape, reported 
in Fig. 9 for two representative cases. The area is expressed 
as a fraction of the total real contact area A∕Areal , so that, 
for example, a distribution limited to a value A∕Areal < 0.1 

Fig. 7   Comparison of the PDF of the area of the contact clusters 
between the geometrical overlap model and the BEM elastic solution. 
Surfaces have been generated with H = 0.7 , q

L
= q

r
= 8 , q

s
= 128 

and results have been averaged over 2000 repetitions. In the inset plot, 
the comparison of the total RCA curve is reported

Fig. 8   Influence of the Hurst 
exponent (left) and the ratio 
between Young’s Modules and 
applied pressure (right) on the 
exponential decay length. Cor-
responding values of the total 
real contact area are reported in 
Fig. 10 in the Appendix
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implies that the contact map is only comprised clusters large 
at most 10% of the real contact area. Note that the root mean 
square of the slopes is not constant for different H. The shape 
is classified with a compactness parameter c, that is the ratio 
between the area of the contact cluster and the area of the 
square encircling it, so that c = 1 implies a perfect spot-like 
cluster and c towards zero a fractal-like shape. Although 

more rigorous mathematical definitions of compactness 
exist, this definition is simple for calculations and is suf-
ficient for our aims. The cluster shown in the first snapshot 
of Fig. 2 is an example of smaller c, whereas the cluster in 
the first snapshot of Fig. 3 has c close to 1.

For E�∕P = 10 , the PDF is limited to clusters smaller than 
5% of the real contact area, but it has a significant tail for 
small c, implying the presence of small fractal-like clusters. 
For a E�∕P = 900 , the distribution is broader and single 
clusters large 40% of the total real contact area may appear, 
although most of the clusters are small and spot-like. This 
large variance explains why the curve of the decay length 
stabilizes for larger E�∕P.

The trend with H is approximately constant, except for 
the smaller value of E�∕P , where in any case variations are 
limited within 10% . In other words, the length in units of L 
required to erase the original contact configuration is inde-
pendent of the power-law exponent of the surface spectrum. 
This is relevant for realistic surfaces, which are not perfectly 
self-affine and can display spectra with several slopes or 
power-law exponents depending on the length scale under 
consideration. This implies that a similar universal behavior 
is expected to be valid for many real surfaces, as in the Diet-
erich experiments [24], with a characteristic decay length 
corresponding approximately to the average contact cluster.

4 � Conclusions

In this paper, we have investigated the persistence of 
the original contact clusters between elastic random 
self-affine surfaces. After their random generation 
from the given power-law spectrum, the contact prob-
lem has been solved with the boundary element method 

Fig. 9   Histograms of the PDF 
of the area of contact clusters as 
a function of the compactness 
parameter c and their area as a 
fraction of the real contact area. 
Results have been obtained with 
default spectrum parameters, 
E�∕P = 10 and H = 0.4 (left) 
and E�∕P = 900 and H = 0.7 
(right)

Fig. 10   Real contact areas of the datasets of Fig. 8. In this plot, we 
are reporting the absolute value of the real contact area, thus we have 
calculated the values with the correction introduced in [46]. For the 
remaining contact area used in this study, such correction does not 
influence the results due to the adopted normalization. For informa-
tion about the behavior of the real contact area as a function of the 
spectrum parameters, we refer the reader to the cited paper
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implemented in the software Tamaas. We have shown 
that the original contact area decreases approximately 
as an exponential function of the sliding distance. This 
behavior is also found for limited ranges of area. The 
characteristic decay length scale corresponds closely 
to the average cluster length, so that all curves can be 
approximately scaled by this factor. This is also observed 
using a simple geometrical overlap model instead of the 
contact solver, demonstrating that the general behavior is 
a feature of the statistical properties of the random self-
affine surface rather than the contact mechanics, which 
in turn determines the contact cluster distribution and 
the value of the average cluster length. By exploring the 
parameter space determined by the Hurst exponent and 
the ratio between Young’s modulus and pressure, varia-
tions limited within a 20% of the decay length have been 
observed. In particular, the decay length increases for 
larger E�∕P , which can be explained by a larger distri-
bution of the area of single contact clusters. The Hurst 

exponent does not have a significant impact, implying 
that a similar behavior is expected for realistic surfaces 
whose spectra can display several slopes. These results 
provide a microscopic confirmation of the state equa-
tion for the widely used macroscopic rate-and-state fric-
tion laws, linking the characteristic distance to erase an 
initial surface state to the characteristic length of the 
micro-contacts.

Appendix

Supplemental material: The videos of the evolution of the 
total real contact area, with the default spectrum parameters 
are provided, video_E=1_H=4.mp4 ( H = 0.4 , E�∕P = 100 ) 
and video_E=9_H=7.mp4 ( H = 0.7 , E�∕P = 900 ), respec-
tively. For the former case, we have also provided the video 
of the remaining contact area video_E=1_H=4_Remaining-
ContactArea.mp4.

Algorithm 1: Hoshen-Kopelman algorithm for the contact clusters evolving
with the sliding
input : The n×N ×N binary data matrix M0
output: The n×N ×N label matrix M

1 Initialize M,nextlabel, dict
2 for step ← 0 to n− 1 do
3 for row ← 0 to N − 1 do
4 for col ← 0 to N − 1 do
5 if M0[step, row, col] = 1 then
6 if any surrounding pixels of M0[step, row, col] = 1 then
7 M [step, row, col] ← label of the surrounding pixel
8 check equivalence of the surrounding labels
9 and store equivalent labels in dict

10 else
11 M [step, row, col] ← nextlabel
12 nextlabel ← nextlabel+ 1

13 reassign the labels based on the equivalence
14 dict[l] is the new label of l in M
15 for step ← 0 to n− 1 do
16 for row ← 0 to N − 1 do
17 for col ← 0 to N − 1 do
18 if M0[step, row, col] = 1 then
19 M [step, row, col] ← dict[M [step, row, col]]
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