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Abstract— Nonlinear dynamics of piezo actuators such as 

hysteresis, distort the Atomic Force Microscopy (AFM) images 

as they adversely affect the accuracy of the nano-positioning 

setup. To compensate for the effects of hysteresis on lateral 

scanner actuators of AFM, a data-driven feedforward controller 

design algorithm is proposed. The pair of forward and backward 

images of a sample are used to extract a mapping between the 

trace and retrace motion of the actuator. A model corresponding 

to the input-output mapping of the actuator is defined with a set 

of unknown parameters. The values of these parameters, which 

shape the hysteresis curves of the actuator, are optimized 

through defining and solving an optimization problem. A genetic 

algorithm is utilized as a tool to look for the optimal values. The 

hysteresis mapping model is then implemented in the form of an 

inversion-based feedforward controller to correct the scan 

waveforms and get matching forward and backward images of 

the sample. The proposed sensor-less data-driven method is easy 

to implement as it does not depend on the instrument, the sample 

under study, or the imaging properties. 

I. INTRODUCTION 

Scanning Probe Microscopes (SPM) are a family of tools 
that were developed in the field of nanotechnology with the 
aim of studying the material surfaces with nanometer 
resolutions [1]. Atomic Force Microscope (AFM) is a specific 
SPM instrument designed for scanning surface topographies at 
nanometer scales. In an AFM, a sharp tip supported on a micro-
mechanical cantilever scans the topography of a surface by 
moving a probe over the surface of the sample and monitoring 
the interaction between the surface and the probe. Nano-
positioning is a vital element of an AFM as it controls the 
interaction distance between the probe and the sample and 
creates the raster scan pattern in order to construct an image of 
the surface topography [2]–[7]. 

Fig. 1 shows the basic structure of an AFM with a focus on 
the vertical and lateral scanning actuators. The vertical scanner, 
the cantilever, the photodiode, and a PID controller constitute 
a closed-loop, while the lateral scanner is controlled in a 
separate open-loop or closed-loop scheme. In most of the AFM 
systems, a raster scan pattern is used to move the tip with 
respect to the sample and record an image of the sample 
topography. In this regard, a triangular waveform is sent to one 
of the lateral scan actuators and the other actuator is 
commanded with a ramp-shaped signal as shown in Fig. 1. The 
performance of the AFM highly depends on the characteristics 
of its individual components, one of which is the nano-
positioning stage that performs the scan movements.  
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Piezo materials are extensively used in AFM scanner 
systems because of their high resolution and high bandwidth. 
Despite these advantages, they have linear and nonlinear 
characteristics that adversely affect the nano-positioning 
accuracy. The linear dynamics that appear at high scan-rates 
can be compensated by identification and design of linear 
controllers correspondingly [6]. The nonlinear dynamics 
include hysteresis, creep, and changes due to temperature. 
Hysteresis is one of the nonlinear attributes of the piezo 
actuators which causes discrepancies between the desired and 
the achieved motion in the nano-positioning system [8]. 
Modeling hysteresis in piezoelectric materials has been widely 
studied [9]–[11] and the developed models have been utilized 
in nano-positioning systems to adjust the accuracy of the 
actuators [12], [13]. 

Either feedback or feedforward controllers can be added to 
the system to compensate for the effects of hysteresis. In a 
feedback loop, sensors are added to the system to measure the 
position of the piezo actuator [14], [15].  However, complex 
structures, limited bandwidths, added noise, and the high costs 
of implementation make them unsuitable for some 
applications. In this regard, a sensor-less feedforward 
controller can help resolve the problems associated with the 
actuators’ dynamics [16], [17]. The open-loop controllers rely 
on a model of the actuator which can be quite complex as it 
should cover a wide-range of dynamics. To overcome the 
model-dependency problem of the feedforward controller 
design, a few studies have tried to extract a model by 
processing AFM images [18], [19].  

 

Figure 1. Schematic of the nano-positioning system in a basic AFM setup 

and the scan pattern and waveforms 

Most of these studies depend on special samples to extract 
the model of the hysteresis. Moreover, many of the proposed 
models have complex structures to cover for the hysteresis 
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problem in a general form. We try to alleviate these problems 
by proposing a hysteresis identification method which can be 
performed on any sample in AFM imaging, as long as it has 
sufficient topographic features. By defining a mapping-model 
of the hysteresis, transforming it into an optimization problem, 
and solving it efficiently with a genetic algorithm, we reduce 
the complexity of the problem and prepare a fast framework to 
identify the effects of hysteresis and design a feedforward 
controller correspondingly. This easy-to-design feedforward 
controller can be applied on most of the nano-positioning 
systems with piezo actuators as it does not require any 
additional hardware changes.  

Using real-time imaging data to extract information about 
the nonlinear dynamics of the actuators is an appealing idea 
since it can be extended to a wide range of instruments that are 
not equipped with sensors. Moreover, a data-driven model of 
the nonlinear dynamics of the actuators will not depend on the 
specific instrument or scan properties of the imaging process, 
which makes it easy-to-implement. We propose an algorithm 
by which we can create a model of the hysteresis mapping of 
the actuator. Using the predicted mapping, we design a 
feedforward controller to compensate for the effects of 
hysteresis and increase the AFM imaging accuracy. In sections 
II and III we illustrate how distorted AFM images are used to 
extract a mapping of hysteresis which goes into the form of an 
optimization problem. It is followed by section IV where we 
use the genetic algorithm to solve the optimization problem and 
find a mapping model of the hysteresis effects which is then 
validated in section V. In section VI we propose a feedforward 
controller design using the developed mapping model, and 
validate it by implementation in an AFM which is discussed in 
section VII, followed by conclusions and further discussions in 
section VIII. 

II. PROBLEM DEFINITION 

The triangular wave applied to a piezo actuator creates a 
back-and-forth motion on the sample which does not exactly 
track the command signal. Fig. 2 displays the triangular 
waveform of the command signal and the corresponding 
motion of the piezo actuator as it scans one line of the sample 
topography. Since the actuator is covering (almost) the same 
area in the trace and retrace motion, in AFM imaging, we can 
construct two separate images of the same sample area; the 
forward and the backward images. The difference between the 
trace and retrace motion of the piezo actuator can be easily 
observed in the forward and backward images of a sample, as 
observed in Fig. 3. This difference stems from the hysteresis 
attribute of the piezo actuator.  

 

Figure 2. Effect of hysteresis on the lateral scan waveform 

 

 

Figure 3. Forward (top left) and backward (top right) height images of a 

sample consisting of linearly spaced, equal sized pits, and trace (blue) and 

retrace (red) data for one line of the two images 

By building a model of the hysteresis mappings of the 
actuators, we can design a feedforward controller that 
compensates for the nonlinearities and helps achieve a more 
precise image of the sample. Fig. 4 shows the way in which 
such a feedforward controller can be implemented on the open-
loop structure of the lateral scanner. Designing this inversion-
based controller relies on having a model of the input-output 
mappings that are caused by the effects of hysteresis (H) in the 
actuator. In the following section, we present a procedure by 
which we can attain this input-output mapping model of the 
hysteresis by just using the image data.    

 

Figure 4. The structure of the feedforward hysteresis compensating controller 

III. DATA-DRIVEN MODELING OF HYSTERESIS MAPPINGS 

As the hysteresis attribute of the piezo actuator reveals 
itself in the forward and backward images, we can use these 
data to model this nonlinearity. The forward image ( ) and the 
backward image ( ) are treated as matrices and  and  

denote the ith and jth columns of the images. Starting with the 
first column of the forward image, a specific column on the 
backward image can be correlated with it. Repeating the 
procedure for all of the columns of the forward image, a vector 
of trace-retrace mapping ( ) can be constructed for a specific 

pair of forward-backward images (Fig. 5).  

 

Figure 5. Constructing the mapping between the forward (left) and backward 

(right) image of a specific sample 
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Performing the same search for all the columns of the 
backward image, gives a retrace-trace mapping ( ) between 

the same pair of images. As formulated in (1), the mappings 
from one image direction (forward) to the other (backward) can 
be constructed by minimizing over the set of its separate 
columns. 

     (1) 

The results corresponding to the extraction of these 
mappings for a pair of images are displayed in Fig. 6. The 
selected pair of images have 512 pixels in each row, which 
means that the mapping finds the relation between these pixels. 
The two mappings display the differences in the trace and 
retrace motions of the actuators with respect to each other. In 
other words, they are not representing the deviations from the 
ideal curve, but deviation from one distorted curve to the other. 

 

Figure 6. Trace-retrace (mtr) and retrace-trace (mrt) mappings extracted 
from the pair of images in Fig. 5 

In order to extract the hysteresis curves from the mapping 
data, we first propose a structure for a hysteresis input-output 
mapping model. In (2), the defined hysteresis mapping is 
treated as a function, which takes in the requested motion 
(input command: ) and creates the distorted motion of the 

actuator. The motion is separated into the trace and retrace part, 
as we know from the observation of the image, that the 
extending motion of the piezo differs from its contracting 
motion. 

   (2) 

In this formulation,  denotes the normalized commanded 

motion, which means that it always lies in the [0,1] interval and 
the two functions,  and  represent the normalized 

achieved motion in the trace and retrace parts, respectively. 
Although the two functions are different in form, they share 
some properties. They both pass through the points 0 and 1, 
and they are both monotonically increasing functions. Having 
these properties in mind, we define a parametric form for the 
two functions as shown in (3). 

   () 

The two separate sets of parameters   and 

 are the unknowns that determine the shape of 

each function. In order to have the function in the shape which 
satisfies the mentioned properties of the hysteresis curve, the 

coefficient of  and  should be greater or equal to 1. This can 
be added to the problem as a simple constraint. We add another 
constraint based on the assumption that the actuator takes the 
same pattern of motion on the trace and retrace motion. The 
initial points in the trace motion have the same pattern as the 
initial points in the retrace. The actuator motion looks the same 
when looked at from the start point to the end point, either on 
the trace or the retrace. This is equivalent to having trace and 
retrace motions as mirrored with respect to X and Y 
coordinates. This constraint relates the functions  and  as 

defined in (4), and it helps eliminate one set of the parameters, 

either   or .  

     (4) 

Looking at a specific command point in the trace direction 

, we know that the actuator will end up at the point , 

this point corresponds to the actual point that the AFM is 
scanning in the forward image. We know that this same point 
is scanned in the backward direction, yet, we have to find the 
command point  which takes the scanner to the same 

position ( ) on the retrace curve. Combining this 

information with the forms that we assumed for the functions, 
as formulated in (2) and (3), we can relate the data-driven 
mappings that were extracted from the images with the 
functions as defined in (5).  

      (5) 

In (5),  and  represent the mappings that are found 

based on the hysteresis mapping model and  is a vector of 

points ranging from 0 to 1. This vector corresponds to all the 
input points that the function takes as input. A good model 
should result in calculated mappings  , , that are similar 

to the measured mappings  , . This is the basis of search 

for the optimal values of the function parameters   or , as 
formulated in (6). 

       (6) 

This is an optimization problem written based on the trace-
retrace mapping, the solution of which gives us the optimal 
parameters for   , . We can write the same optimization 
problem for the retrace-trace mapping as in (7) noting that it 
should have the same solution as (6).  

       (7) 

We use the constraint defined in (4) to remove one set of 
the parameters ( ) from the optimization problem. Hence, we 
end up with a single objective function with a single set of 
constraints. In the following section, we discuss how we 
approach solving the optimization problem. 



  

IV. OPTIMIZATION WITH THE GENETIC ALGORITHM 

Considering all the constraints, parameters, and the 
objective function of the optimization problem, and carrying 
out the simplifications detailed in section III, we end up with 
the optimization problem, as summarized in (8).  

  (8) 

Deriving an analytic solution for the problem is not 
possible as we have used the inverse of the function that models 
hysteresis input-output mappings. Instead, we utilize an 
evolutionary optimization algorithm which solves the problem 
in a relatively short period of time and does not add to the 
complexity of the problem. In this regard, the genetic algorithm 
with a single objective is proposed as a tool for solving the 
optimization problem [20]. In the following, we provide details 
about the optimization procedure using the genetic algorithm.  

Since we want to minimize the design time for the 
controller-design part, we start with options that do not add 
complexity to the problem. In this sense, a population size of 
200 is selected. The population is initialized randomly and 
progresses until the average relative change in the fitness 
function reaches values less than 1E-6. There is also a 
limitation on the number of generations with a maximum equal 
to 100*n, in which n is the number of parameters for . This 
value (n) is a measure of the complexity of the function and is 
selected based on the values that we can achieve for the fitness 
function defined in (8). This value highly depends on the actual 
form of the hysteresis curve and is selected equal to 10. The 
main reason behind this selection is the marginal improvement 
in the minimized cost function of the genetic algorithm. 

After running the optimization algorithm, we get solutions 
for  which are then used to compute the functions   and . 

Carrying out the optimization process for the data from Fig. 6 
we get the optimal values for . Substituting these values in (3) 
and calculating the function for the normalized input range of 
[0,1] gives the trace and retrace patterns that are plotted in Fig. 
7. These are the hysteresis curves of the piezo actuator. 

 
Figure 7. Trace and retrace curves achieved from solving the optimization 

problem for data from Fig. 6 

The optimization results can be verified by comparing the 
trace-retrace and retrace-trace mappings that were extracted 
from the image with the ones that are given by (5). In Fig. 8, 
the mappings that were plotted in Fig. 6 are compared with the 
results of the optimization. The plot shows that the genetic 
algorithm has optimized for the parameters based on the 
defined objective function, which is the resemblance of the 
extracted and predicted trace-retrace and retrace-trace 

mappings. The small deviations at the edges correspond to the 
low degree of the mapping functions. Increasing the order, 
reduces the discrepancy and increases the complexity without 
much improvement on the cost function. 

 

Figure 8. Comparison of the extracted mappings (  , ) with the 

predicted mappings (  , )  from solving the optimization problem 

The whole problem definition process is based on the 
objective of making both the forward and the backward images 
look similar to a unique image that corresponds to the actual 
pattern of the sample topography. In order to reconstruct that 
original image, we can use the modeled mapping of the 
hysteresis motion to correct the distorted images back into the 
original form. In the following section, we present the results 
on how any hysteresis-distorted pair of forward and backward 
images can be used to predict the original undistorted form of 
the image. It should be noted that this post-compensation 
procedure is not the final goal, but a step to verify the model. 

V. RECONSTRUCTING THE UNDISTORTED IMAGE 

The mappings that are extracted from the images based on 
(1), provide a framework based on which we can convert two 
images into each other. Rearranging the columns of the 
forward image ( ) based on the trace-retrace mapping ( ) 

gives the backward image ( ) and vice versa. With the same 
method of rearranging the columns, we can reconstruct the 
undistorted image from either the forward or the backward 
image. In this case, we can use the two hysteresis curve 
functions  and  .  

The original pair of images from Fig. 5 are rearranged 
based on the data from Fig. 7 and result in the two images 
shown in Fig. 9. As observed in this image pair, the trace and 
retrace topography on each row (horizontal direction), match 
each other in contrast to what was originally observed in Fig. 
5. Since there are no data available for correcting the vertical 
direction, we assume that both piezo actuators have the same 
characteristics and use the data from one actuator (in this image 
configuration, horizontal) on both directions of the image. 

 
Figure 9. Post-compensating for the effect of hysteresis on forward (left) 

and backward (right) images (correction on both directions based on the 
available data) 
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So far, we have introduced how to create a model that 
corresponds to the hysteresis input-output mapping and use 
that model to post-compensate the effects that appear on 
images. The most important part, though, is to utilize the 
developed model to design a feedforward controller that can 
minimize the nonlinear effects of the piezo actuators in the first 
place (while imaging with the instrument). In the next section, 
we provide details on designing a feedforward controller based 
on the data-driven representations that we develop for the 
hysteresis effects.  

VI. FEEDFORWARD CONTROLLER DESIGN  

Since we simplify the hysteresis model as a mapping from 
input to output, we can invert the simplified model to generate 
a feedforward controller. As shown in Fig. 4, the command 
signals are first passed through the controller and the new 
waveforms are supposed to cover for the hysteresis distortions. 
This is equivalent to a command-shaping that is carried out 
through the controller ( ). Fig. 10 shows the original and 
hysteresis-compensated waveforms for one of the lateral 
actuators in a full line-imaging cycle. 

The controller design process starts with imaging in the 
absence of any controller (the scan waveforms are applied to 
the piezo actuators without any compensation). The forward 
and backward images of the sample topography are saved and 
used to extract the trace-retrace mappings based on which, the 
optimization problem is defined. Solving the optimization 
problem gives the coefficients that define the shape of the 
hysteresis mappings. The curves are then inverted to create the 
function by which the feedforward controller compensates for 
the effects of hysteresis. It should be noted that the functions 
generated for different scan sizes differ from each other.  In 
Fig. 11 the hysteresis curves that are generated for different 
scan sizes are plotted. As observed, the curves do not look the 
same when we look at them as a mapping function. Despite the 
differences in the curves, our controller design algorithm will 
not be affected as it does not depend on the scan size. The data-
driven algorithm allows us to design a controller irrespective 
of the details of the instrument, the sample, or the imaging 
properties such as speed or size. In the next section, we display 
the effect of the feedforward controller on the forward and 
backward images. 

 
Figure 10. The scan waveforms before (blue) and after (red) 

compensating for the effects of hysteresis 

VII. IMAGING WITH THE FEEDFORWARD CONTROLLER 

The designed feedforward controller is implemented on an 
AFM setup to minimize the effects of hysteresis. In Fig. 12 two 
sets of images show the uncorrected and corrected scans of the 
sample. The images on the top row show the forward and 
backward record of the sample topography when there is no 
feedforward controller on the loop. The two images at the 
bottom, show the sample topography when the top images are 
used to design a controller which is then placed on the loop.  

 
Figure 11. Effect of scan size on the data-driven hysteresis curves 

(different scale factors represent different scan sizes) 

 

Figure 12. The uncorrected (top) and corrected (below) images in the forward 

(left) and backward (right) direction of the scan 

The controller design process does not depend on the 
instrument, the scan size, the scan speed, or the sample that is 
being scanned. Moreover, the design time is as short as a 
couple of seconds which makes it easy to implement in any 
kind of experiment. The feedforward controller design is 
implemented on the setup to scan scratched mica surface and 
the results are displayed in Fig. 13. In this experiment, the 
correction on the horizontal direction is performed based on the 
forward and backward images. To design a controller for the 
vertical scan direction, we imaged the sample in two different 
top-to-bottom, and bottom-to-top configurations. The data-
driven controller design algorithm is then applied on two 
different sets of images to compensate for the hysteresis effects 
of each actuator individually. 

 

Figure 13. The effect of feedforward controller on backward (left) and 

forward (right) AFM images of scratched mica sample. The uncorrected 

images used to model the hysteresis mapping (top) and the corrected images 

witht the hysteresis compensator (bottom) 
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Part of the data from Fig. 13, is selected to compare the 
trace and retrace lines on a specific part of the sample as 
represented in Fig. 14.. 

 

 

Figure 14. Trace (blue) and retrace (red) topography for one line of the 
images in the uncorrected (top) and corrected-with-controller (bottom) form 

corresponding to the images in Fig. 13 

VIII. CONCLUSIONS 

In this article, we propose a data-driven feedforward 
controller to compensate for the effects of hysteresis on AFM 
images. We propose an algorithm which takes the hysteresis-
distorted images of the AFM as input and creates a model of 
the hysteresis input-output mappings by generating an 
optimization problem. A genetic algorithm is utilized as a tool 
to tackle the problem of solving the optimization problem the 
parameters of which shape the predicted hysteresis curves. The 
modeled input-output mappings of actuators are then used to 
either correct the distorted images or to create an inversion-
based controller. The application of the controller on the open-
loop configuration of the AFM lateral scanner results in 
topographies that match on the trace and retrace directions of 
scan.  

One of the advantages of the proposed solution is that it 
does not require any hardware change which can be complex 
and expensive in a specific range of instruments. Instead, it 
relies on the image data that is already at hand. Unlike many 
other image-based models, the sample topography does not 
affect the design algorithm as the whole design process does 
not depend on samples with specific patterns and it does not 
require large topographies to detect the nonlinearities. The 
controller design process can be carried out in a few seconds 
which means that for any specific experiment, it can be 
repeated. This point makes scan waveform corrections 
adaptable to any instrument with any imaging configuration on 
different forms of samples. By carrying out the whole process 
and implementing it on a setup, we show that implementing the 
data-driven hysteresis correcting algorithm enhances the AFM 
images during the imaging process irrespective of the sample 
topography. 

Application of this feedforward controller compensates the 
effects of hysteresis. A similar approach can be carried out to 
identify creep and temperature dependent dynamics and 
compensate them with feedforward controllers.  
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