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Abstract
An adaptive network consists of multiple communicating agents, equipped with sensing and
learning abilities that allow them to extract meaningful information from measurements. The
objective of the network is to solve a global inference problem in a decentralized manner, i.e.,
by exchanging only local information with neighboring agents.

Such adaptive networks find inspiration in real-world networks, e.g., power networks, biological
networks, and social networks. Decentralized solutions allow the network to outperform stand-
alone strategies by yielding improved performance and robustness. They also enable agents to
overcome their individual limitations by leveraging collaboration during the learning process.

Several of these solutions draw on social learning paradigms, through which individuals form
opinions (or beliefs) by observing the world and communicating within their social group. The
world is explained by a discrete-valued state, and agents discover the unknown state of the world
while updating their beliefs regarding a set of plausible hypotheses. Many such solutions result
in consistent truth learning at fast convergence rates. Existing works however fail to account
for more realistic assumptions such as the exchange of incomplete information, adaptation
under nonstationary conditions, and the use of imperfect private statistical models.

This thesis aims to address the aforementioned problems and answer questions regarding the
behavior and performance of social learning strategies under more realistic conditions. This
is carried out by exploiting four key elements to learning over adaptive networks, namely, i)
network topology, ii) exchanged information, iii) surrounding world, and iv) private models,
which we divide in two parts.

In the first part, we focus on the stationary setting, i.e., where world conditions are static. i) The
social network is represented by a weakly connected graph, which results in a power asymmetry
among network clusters. To estimate the level of influence from influential clusters toward
specific agents, we formulate the reverse learning problem. We characterize the feasibility of this
problem and show that a certain statistical diversity among components is sufficient for it to be
feasible. ii) We consider a strongly connected social network, with constrained communication,
i.e., where only partial beliefs are shared with neighbors. We show how different learning
regimes arise and under which conditions the agents can learn the truth or, on the other hand,
be misled.

In the second part, we address the nonstationary setting. iii) Existing social learning strategies
are limited in their ability to adapt under changing world conditions. We propose an adaptive
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social learning formulation and characterize its performance both in the steady-state and the
transient phases. We show that the approach enables a trade-off between learning accuracy
and adaptation capability. iv) Social learning agents use statistical models that are assumed
to be perfectly known a priori. We propose a social machine learning framework, where the
models are first trained from a finite set of labeled samples and then deployed in a collaborative
implementation to classify streaming unlabeled (possibly nonstationary) observations. We show
that the proposed fully data-based strategy results in consistent learning, despite the imprecise
models, and in improved accuracy as the number of unlabeled observations grows.

Keywords: Social learning, Bayesian update, diffusion strategies, influence recovery, partial
information sharing, adaptive network, distributed classification.
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Résumé
Un réseau adaptatif se compose de plusieurs agents communicants, dotés de capacités de
détection et d’apprentissage qui leur permettent d’extraire des informations utiles à partir
des mesures. L’objectif du réseau est de résoudre un problème d’inférence global de manière
décentralisée, i.e., en n’échangeant que des informations locales avec des agents voisins.

Ces réseaux adaptatifs s’inspirent de réseaux réels tels que les réseaux électriques, les réseaux
biologiques et les réseaux sociaux. Les solutions décentralisées permettent au réseau de surpasser
les stratégies non coopératives en performance et en robustesse. Elles permettent également
aux agents de surmonter leurs limites individuelles en tirant parti de la collaboration au cours
du processus d’apprentissage.

Plusieurs de ces solutions s’appuient sur des paradigmes d’apprentissage social (ou social
learning) à travers lesquels les individus forment des opinions (ou beliefs) en observant le
monde et en communiquant au sein de leur groupe social. Le monde est expliqué par un état
à valeurs discrètes, et les agents découvrent l’état du monde en mettant à jour leurs opinions
concernant un ensemble d’hypothèses plausibles. Plusieurs de ces solutions aboutissent à un
apprentissage cohérent de la vérité à des taux de convergence rapides. Les travaux existants ne
tiennent cependant pas compte d’hypothèses plus réalistes tels que l’échange d’informations
incomplètes, l’adaptation dans des conditions non stationnaires et l’utilisation de modèles
statistiques privés imparfaits.

Cette thèse vise à aborder les problèmes susmentionnés et à répondre à des questions concernant
le comportement et la performance des stratégies d’apprentissage social dans des conditions plus
réalistes. Ceci est réalisé en exploitant quatre éléments clés de l’apprentissage sur les réseaux
adaptatifs, à savoir, i) topologie du réseau, ii) informations échangées, iii) monde environnant, et
iv) modèles privés, que nous divisons en deux parties.

Dans la première partie, nous nous concentrons sur le cas stationnaire, i.e., où les conditions
du monde sont statiques. i) Le réseau social est représenté par un graphe faiblement connexe,
ce qui entraîne une asymétrie de pouvoir entre les clusters du réseau. Pour estimer le niveau
d’influence des clusters influents envers des agents spécifiques, nous formulons le problème
d’apprentissage inverse. Nous caractérisons la faisabilité de ce problème et montrons qu’une
certaine diversité statistique entre les composants du graphe est suffisante pour qu’il soit
réalisable. ii) Nous considérons un réseau social fortement connexe, avec une communication
limitée, i.e., où seules des opinions partielles sont partagées avec les voisins. Nous montrons
comment différents régimes d’apprentissage apparaissent et sous quelles conditions les agents
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peuvent apprendre la vérité ou, au contraire, être induits en erreur.

Dans la deuxième partie, nous abordons le cas non stationnaire. iii) Les stratégies d’apprentis-
sage social existantes sont limitées dans leur capacité à s’adapter aux conditions variables du
monde. Nous proposons une formulation d’apprentissage social adaptatif et caractérisons sa
performance à la fois dans la phase permanente et dans la phase transiente. Nous montrons que
l’approche donne lieu à un compromis entre précision d’apprentissage et capacité d’adaptation.
iv) Les agents d’apprentissage social utilisent des modèles statistiques supposés parfaitement
connus a priori. Nous proposons un système d’apprentissage automatique social, dans lequel les
modèles sont d’abord entraînés à partir d’un ensemble fini d’exemples étiquetés, puis déployés
dans une implémentation collaborative pour classer les observations en continu non étiquetées—
possiblement non stationnaires. Nous montrons que la stratégie proposée entièrement basée
sur les données se traduit par un apprentissage cohérent, malgré les modèles imprécis, et par
une précision améliorée à mesure que le nombre d’observations non étiquetées augmente.

Mots-clés : Apprentissage social, mise à jour bayésienne, stratégies de diffusion, apprentissage
d’influences, échange d’informations partielles, réseau adaptatif, classification distribuée.
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Notation
a Normal font denotes a deterministic variable

a Boldface font denotes a random variable

E Expected value operator

E f Expected value operator under distribution f

P Probability measure operator

D(f ||g) Kullback-Leibler divergence of distribution f from distribution g

a.s.−→ Almost sure convergence as i → ∞
p−→ Convergence in probability as i → ∞
d−→ Convergence in distribution as i → ∞

d= Equality in distribution
.= Equality to the leading exponential order

≻,≽, ≺,≼ Element-wise inequalities

|a| Absolute value of scalar a

AT Transpose of matrix A

∥A∥2 Spectral norm of matrix A

A−1 Inverse of matrix A

A† Moore-Penrose inverse of matrix A

[A]ℓk (ℓ, k)−th element of matrix A

col{a, b} Column vector with elements a and b

blkdiag{A, B} Block diagonal matrix with blocks A and B

1, 1D Vector of ones, vector of ones with dimensions D × 1

I, ID Identity matrix, identity matrix with dimensions D × D

I [A] Indicator function, i.e., it equals 1 if event A holds, 0 otherwise
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Notation

A ∩ B Intersection of sets (or events) A and B

A ∪ B Union of sets (or events) A and B

|A| Cardinality of set A

A Complement of set A

rect(x) Rectangle function, i.e., it is equal to 1 if x ∈ (−1
2 , 1

2), 0 otherwise

sign(x) Sign function, i.e., it is equal to 1 if x ≥ 0, −1 otherwise
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1 Introduction

An essential part of human learning relies on exchanging opinions with a social group. A single
individual cannot have access to all existing evidence about any particular phenomenon. They
can however incorporate the opinions and beliefs of others in their social clique as a way to
make up for—or complement—their limited observation ability.

For example, say a traveler is planning a vacation to Rio. They have been there once before
during summer and learned that, due to the rainy season, the period is not ideal for traveling in
the region. To choose a more suitable season, they consult three friends who went to Rio on
different occasions, namely, in winter, spring and autumn. Collecting all three accounts allows
the traveler to make a more educated choice, than relying on their unique prior experience.

Human learning is tied to the concept of social learning, or learning in a group. The manner in
which a group of individuals is able to aggregate dispersed information is a historical subject
of study. As early as [1], the work studied how a large group of individuals can combine their
information in an honest manner to learn some underlying truth. Similarly, in [2], a social
experiment illustrated the wisdom-of-the-crowd argument, where the estimate of a parameter
of interest by a group turned out to be more reliable than the estimate by a single individual.

In recent years, several works on social learning have investigated how to model opinion
dynamics in groups [3]–[8]. From a behavioral perspective, these works examined how beliefs
evolve in response to various learning strategies. The methods are not only expected to bring
individuals closer to the underlying truth, but they should also help reveal other interesting
social phenomena that may arise such as manipulation among individuals, stubbornness, and
herding behavior. From a design perspective, the works examined the quality of the decision
process and whether one can infer the truth from the evolving beliefs with sufficient accuracy
and speed of convergence.

An example of an engineering system whose design is inspired by social learning is a collec-
tion of sensors recording data from a common observed scene. These could be, for example,
meteorological sensors measuring different attributes such as air pressure, humidity, and so
on. The goal of the network of sensors is to discover or predict the state of the weather in the
geographic region under observation. It is usually the case that information at each individual
sensor is insufficient to allow it to make a correct inference. However, through interactions with
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Chapter 1. Introduction

their neighboring sensors, all sensors would be able to arrive at more informed predictions.

This thesis is dedicated to studying social learning strategies and their performance, while
proposing solutions that enable their application in more realistic settings.

Across the different social learning strategies, a key ingredient used to incorporate new informa-
tion into beliefs (or opinions) is Bayesian processing. The Bayes rule has multiple interpretations
and uses. For example, it can be formulated as an optimal information processing rule [9]. It
can also be exploited as a model for how the brain learns from sensory input [10]. It is also
considered to be the rational approach to solving inference problems from data [11], since it
takes into account the uncertainty of the observed information to update the probability of a
certain event of interest. In the next two sections we review basic concepts about Bayesian and
social learning in order to explain the state of the art and to highlight the problems that exist.
We start by motivating the Bayesian way of thinking.

1.1 Bayesian Thinking

A Bayesian decision system starts with an agent and the world surrounding it. From the point
of view of the agent, the world exists through observations. Specifically, the agent perceives its
environment by means of an observation denoted by ξ, belonging to a set X. The observation is
a random variable—hence the bold font—and embodies a piece of evidence on the current state
of the world.

The agent considers a set of possible hypotheses that could explain the underlying state of
the world. For example, the probability distribution of ξ could be dependent on some discrete
parameter θ ∈ Θ, say, L(ξ|θ). The set of hypotheses is denoted by the discrete set Θ with
cardinality H , say:

Θ = {1, 2, . . . , H}. (1.1)

For illustration, consider a weather forecast system equipped with an air pressure sensor. In
this case, ξ is the air pressure measurement, and the set of hypotheses could be binary, i.e.,
H = 2, corresponding to the weather states “clear” and “cloudy”.

Real-world measurements include uncertainty. For example, if the air pressure is low, then it
is likely that the sky is covered by clouds. In this uncertain world, the agent must reason in a
Bayesian way, where the perception of “likely” can be represented probabilistically. The agent
would be endowed with a belief µ(θ), which is a probability mass function (pmf) over the set of
hypotheses θ ∈ Θ. The belief is written in bold font, since it is considered to inherit the random
nature of the observation.

To form its belief, the Bayesian agent assumes (or possesses) a model for the observation ξ
given the different hypotheses, denoted by

L(ξ|θ), θ ∈ Θ, ξ ∈ X, (1.2)

and referred to as the likelihood model. If ξ is a continuous (or discrete) random variable, the
likelihood model will be a probability density (or mass) function. It is a probability distribution
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1.1 Bayesian Thinking

when seen as a function of ξ, and a likelihood function when seen as a function of θ.

The agent also has a prior belief, which we denote by µ0(θ) for θ ∈ Θ, reflecting its opinion prior
to the observation of ξ. The prior belief summarizes the agent’s biases and past experiences.
We write it in normal font and consider it to be a deterministic variable1. Based on the Bayes
rule, the belief is updated according to

µ(θ) ∝ L(ξ|θ)µ0(θ), θ ∈ Θ (1.3)

where the entries of µ(θ) should be normalized to add up to 1.

Assume an air pressure measurement ξ corresponds to the following likelihood values:

L(ξ|clear) = 0.5, L(ξ|cloudy) = 0.4. (1.4)

Disregarding the agent’s biases, i.e., considering an uninformative prior belief µ0(θ) = 1/2 for
θ ∈ Θ, the Bayesian update would result in the following beliefs:

µ(clear) = 0.56, µ(cloudy) = 0.44, (1.5)

showing a slight preference for the hypothesis “clear”. Some external knowledge, however, may
suggest that it is a rainy season, in which case, the agent’s prior belief would reflect some bias
towards a cloudy weather, say, as

µ0(clear) = 0.2, µ0(cloudy) = 0.8. (1.6)

leading to the posterior beliefs:

µ(clear) = 0.24, µ(cloudy) = 0.76. (1.7)

Now that we have motivated Bayesian processing, we will turn our attention to the problem of
processing streaming observations over time.

1.1.1 Bayesian Inference with Streaming Data

In Bayesian inference, agents rely on a growing amount of evidence over time. This corresponds
to the situation in which the agent receives streaming observations such as

ξ1, ξ2, . . . , ξi, (1.8)

where i represents the time index and ξi ∈ X. Recall that X is the set of all possible observations.
We can use the Bayesian update in (1.3) to update the prior belief to the posterior belief as
follows:

µi(θ) ∝ L(ξ1, ξ2, . . . , ξi|θ)µ0(θ), (1.9)

where L(·|θ) denotes the joint likelihood model for θ ∈ Θ. If we assume that, conditioned on
knowledge of θ, the samples ξi are independent and identically distributed (iid), then the joint

1We could also consider µ0 to be a random variable that is independent of ξ.
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model can be decomposed into a product form, i.e.,

L(ξ1, ξ2, . . . , ξi|θ) =
i∏

m=1
L(ξm|θ), (1.10)

with the same conditional pdf L(ξ|θ). Substituting into (1.9) we arrive at the recursive form:

µi(θ) ∝ L(ξi|θ)µi−1(θ). (1.11)

This expression allows us to update the belief vector recursively over time. A natural follow-up
question concerns the asymptotic behavior of (1.11), when i grows. To answer this question,
we assume that the samples ξi are iid and generated from some unknown true model f(ξ):

ξi ∼ f(ξ), (1.12)

where f(ξ) is either a pmf or a pdf, depending on whether the observations are discrete or
continuous random variables, respectively.

The asymptotic convergence of the Bayesian recursion in (1.11) for a stream of observations is a
classical problem of interest. In [12], the problem is more generally formulated for a continuous
set of hypotheses. It can also be formulated for the case when the true model f(ξ) belongs to
the set of likelihood models {L(ξ|θ)} [13]–[15].

We are interested in the scenario where the set of hypotheses is discrete and the true model
does not necessarily belong to the set of likelihoods. In the next paragraphs, we introduce the
classical convergence result for this specific case, which we consider relevant for two reasons:
i) It helps to clarify the operation of the learning process; ii) It serves as a counterpoint to
the belief evolution in the multi-agent social learning problem, which will be introduced in
Chapter 2.

First, we define the Kullback-Leibler (KL) divergence [16] between f(ξ) and L(ξ|θ):

D(f ||L(θ)) = E f

(
log f(ξ)

L(ξ|θ)

)
, (1.13)

where E f denotes the expectation computed with respect to distribution f(ξ). We omit the
argument ξ on the LHS of (1.13) from both f(·) and L(·|θ) for ease of notation. Then, we
introduce the following technical assumptions.

Assumption 1.1 (Finite KL divergences). Assume that, for all θ ∈ Θ, D(f ||L(θ)) < ∞.

Assumption 1.2 (Positive initial beliefs). Assume that, for all θ ∈ Θ, µ0(θ) > 0.

Assumption 1.3 (Unique minimizer). Assume that the KL divergence between f(ξ) and
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1.1 Bayesian Thinking

L(ξ|θ) is minimized at a unique target hypothesis θ⋆, i.e.,

θ⋆ ≜ arg min
θ∈Θ

D(f ||L(θ)). (1.14)

The target hypothesis corresponds to the likelihood model L(ξ|θ⋆) that best approximates the
true model, f(ξ), in the sense of minimizing the KL divergence between the true model and the
likelihood models.

We can now state the convergence result for the recursive Bayesian update described in (1.11),
whose proof is patterned after the one in [17].

Theorem 1.1 (Belief convergence of a single Bayesian agent). Under Assumptions 1.1, 1.2,
and 1.3, the recursive Bayesian update (1.11) enables learning the target hypothesis in the
limit:

µi(θ⋆) a.s.−→ 1 (1.15)

Proof. We first rewrite the recursive Bayesian update (1.11) in a more explicit form:

µi(θ) =
L(ξi|θ)µi−1(θ)∑

θ′∈Θ L(ξi|θ′)µi−1(θ′) , (1.16)

where the belief components µi(θ) are normalized so that they sum up to 1. Using (1.16), we
write the ratio of µi(θ⋆) to µi(θ) for any θ ̸= θ⋆ as

µi(θ⋆)
µi(θ) =

µi−1(θ⋆)L(ξi|θ⋆)
µi−1(θ)L(ξi|θ) . (1.17)

Taking the log of the above expression leads to a linear expression of log-ratio terms, i.e.,

log µi(θ⋆)
µi(θ) = log

µi−1(θ⋆)
µi−1(θ) + log L(ξi|θ⋆)

L(ξi|θ) . (1.18)

Developing the recursion over time yields:

log µi(θ⋆)
µi(θ) = log µ0(θ⋆)

µ0(θ) +
i∑

m=1
log L(ξm|θ⋆)

L(ξm|θ) . (1.19)

The following arguments are adapted from [17]. Dividing the above expression by i and studying
its limit as i goes to infinity leads to:

lim
i→∞

1
i

log µi(θ⋆)
µi(θ) = lim

i→∞

1
i

log µ0(θ⋆)
µ0(θ) + lim

i→∞

1
i

i∑
m=1

log L(ξm|θ⋆)
L(ξm|θ) . (1.20)

The first term on the RHS of (1.20) vanishes. Moreover, the iid property of ξ1, ξ2, . . . and
the finiteness condition in Assumption 1.1 allow us to use the strong law of large numbers
(SLLN) [18] to establish the convergence of the second term on the RHS of (1.20) in the following
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manner:

1
i

i∑
m=1

log L(ξm|θ⋆)
L(ξm|θ)

a.s.−→ E f

(
log f(ξm)

L(ξm|θ)

)
− E f

(
log f(ξm)

L(ξm|θ⋆)

)
= D(f ||L(θ)) − D(f ||L(θ⋆)). (1.21)

Since θ⋆ satisfies (1.14), it follows that

D(f ||L(θ)) − D(f ||L(θ⋆)) > 0 (1.22)

for all θ ̸= θ⋆, and therefore we have that

1
i

log µi(θ⋆)
µi(θ)

a.s.−→ D(f ||L(θ)) − D(f ||L(θ⋆)) > 0

⇒ log µi(θ⋆)
µi(θ)

a.s.−→ +∞ ⇒ µi(θ⋆)
µi(θ)

a.s.−→ +∞, (1.23)

for all θ ̸= θ⋆. Since the belief vector is a pmf over the set of hypotheses, each individual
component is upper bounded by 1. Thus, (1.23) implies that

µi(θ) a.s.−→ 0, (1.24)

for all θ ̸= θ⋆. We arrive at the desired result in (1.15) by noting that the entries of the belief
vector must add up to 1.

From Theorem 1.1, the recursive Bayesian update results in a belief distribution whose mass
is concentrated at the single target hypothesis θ⋆. From Assumption 1.3, this hypothesis is
associated with the likelihood model L(ξ|θ⋆) that best approximates the true model, f(ξ), using
the KL divergence metric. In a nutshell, the asymptotic belief indicates which hypothesis best
explains the received observations.

An important element of this convergence result is Assumption 1.3, which requires that the
minimizer of the KL divergence between f(ξ) and L(ξ|θ) be unique, namely, hypothesis θ⋆.
This assumption avoids the following singular behavior. Suppose multiple hypotheses minimize
the KL divergence, i.e., there exists a target subset Θ⋆ ⊂ Θ such that

Θ⋆ = arg min
θ∈Θ

D(f ||L(θ)). (1.25)

In this case, similar arguments to the ones used in the proof of Theorem 1.1 could be repeated
to conclude that

µi(θ) a.s.−→ 0, θ /∈ Θ⋆. (1.26)

In other words, the hypotheses that do not belong to Θ⋆ will be asymptotically discarded. Since
the entries of the belief should add up to 1, this implies that,∑

θ∈Θ⋆

µi(θ) a.s.−→ 1. (1.27)
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1.1 Bayesian Thinking

In other words, the beliefs corresponding to the hypotheses in Θ⋆ do not necessarily converge
individually. They instead evolve randomly over time and the agent finds itself in a state of
everlasting confusion among the hypotheses in Θ⋆.

1.1.2 MAP and ML Inference

We can gain further insight into the Bayesian construction by examining the maximum a-
posteriori (MAP) and maximum likelihood (ML) formulations. To begin with, the MAP estimator
for the discrete hypothesis θ given the sequence of i iid observations ξ1, ξ2, . . . , ξi is constructed
as follows:

θ̂MAP,i ≜ arg max
θ∈Θ

P(θ|ξ1, ξ2, . . . , ξi), (1.28)

where P(θ|ξ1, ξ2, . . . , ξi) models the posterior probability of θ given the observations.

If we again let µ0(θ) denote the prior probability over θ and L(ξ1, ξ2, . . . , ξi|θ) the joint likeli-
hood of the observations given θ, then, from the Bayes rule, we have that

P(θ|ξ1, ξ2, . . . , ξi) ∝ L(ξ1, ξ2, . . . , ξi|θ)µ0(θ). (1.29)

This allows us to rewrite the MAP estimator as

θ̂MAP,i = arg max
θ∈Θ

L(ξ1, ξ2, . . . , ξi|θ)µ0(θ). (1.30)

From (1.9) and (1.30), we conclude that

θ̂MAP,i = arg max
θ∈Θ

µi(θ). (1.31)

That is, the hypothesis that maximizes the belief µi(θ) at each instant i can be seen as the MAP
estimator of θ given the sequence of i iid observations ξ1, ξ2, . . . , ξi. As such, the θ⋆ in (1.14)
and (1.15) is the asymptotic MAP estimator of θ given infinitely many iid observations.

Now, consider the ML estimator defined by:

θ̂ML,i ≜ arg max
θ∈Θ

L(ξ1, ξ2, . . . , ξi|θ). (1.32)

We show next that the asymptotic ML estimator converges according to:

lim
i→∞

θ̂ML,i = arg min
θ∈Θ

D(f ||L(θ)) (1.33)

almost surely, which, in view of (1.15), corresponds again to θ⋆. Eq. (1.33) is in accordance
with [19]–[21], where a similar result is established for a more general continuous set of
hypotheses. In the case of a finite set of hypotheses and under Assumptions 1.1 and 1.3, we can
provide a simpler proof for (1.33) motivated by the proof of Theorem 1.1.
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First, note that, in view of (1.32), we can rewrite the ML estimator as:

θ̂ML,i = arg min
θ∈Θ

1
i

log L(ξ1, ξ2, . . . , ξi|θ⋆)
L(ξ1, ξ2, . . . , ξi|θ) , (1.34)

for i > 0, where θ⋆ is the target hypothesis.

Now, using the decomposition of L in (1.10), we can write the following ratio of likelihoods:

log L(ξ1, ξ2, . . . , ξi|θ⋆)
L(ξ1, ξ2, . . . , ξi|θ) =

i∑
m=1

log L(ξm|θ⋆)
L(ξm|θ) . (1.35)

Dividing both sides of (1.35) by i, under Assumption 1.1 and using similar arguments as in
(1.21), the ratio converges according to:

1
i

log L(ξ1, ξ2, . . . , ξi|θ⋆)
L(ξ1, ξ2, . . . , ξi|θ)

a.s.−→ D(f ||L(θ)) − D(f ||L(θ⋆)), (1.36)

which, from (1.34), implies that

θ̂ML,i
a.s.−→ arg min

θ∈Θ

{
D(f ||L(θ)) − D(f ||L(θ⋆))

}
. (1.37)

From Assumption 1.3, we know that the RHS of (1.37) is uniquely minimized at θ⋆. Therefore,
we conclude that asymptotically

θ̂ML,i
a.s.−→ θ⋆ (1.14)= arg min

θ∈Θ
D(f ||L(θ)). (1.38)

We can thus conclude two properties of the recursive Bayesian update in (1.9): i) It tracks the
instantaneous MAP estimator; ii) It corresponds asymptotically to the ML estimator.

1.2 Social Learning

In our treatment of Bayesian processing in Section 1.1, we assumed the existence of a single
Bayesian agent in the world. A more meaningful and realistic scenario is when multiple agents
coexist. Besides interacting with the surrounding environment, these agents are allowed, and
also encouraged, to interact with each other, forming a social network. The network connectivity
dictates the communication links, which are assumed to connect neighboring agents in a sparse
network.

The interaction with the environment occurs in the following manner. At each instant i, the
group of K agents senses the world through the observation profile:

ξ1,i, ξ2,i, . . . , ξK,i. (1.39)

Each observation ξk,i belongs to a set Xk and is private to agent k. This setup allows for a
significant heterogeneity in the observation profiles across agents. For example, one agent can
observe RGB images captured from a scene of interest, while another might record audio waves
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from the scene. This data constitutes evidence about the state of the world θ, belonging to a
common set of hypotheses Θ, and it can be dependent across different agents.

Since the observations are private, they cannot be exchanged during interactions among agents.
Yet these interactions must contain essential information to solve the following inference
problem:

Social Learning Problem: Find the hypothesis θ ∈ Θ that best explains the observations
received by the network.

A multitude of strategies have been proposed in the literature under the umbrella of social
learning. These strategies can be split in two main categories: Bayesian and non-Bayesian social
learning.

1.2.1 Bayesian Social Learning

Following the discussion in Section 1.1 concerning Bayesian learning, we can extend the single-
agent approach and consider a fully Bayesian strategy to solving the inference problem. Such
approach would take the form of a centralized Bayesian update:

µi(θ) ∝ L(ξ1,i, ξ2,i, . . . , ξK,i|θ)µi−1(θ), (1.40)

where L(ξ1, ξ2, . . . , ξK |θ) is the joint likelihood model of the observation profile in (1.39) from
across all agents in the network given hypothesis θ. A fully Bayesian strategy would thus
require knowledge about this joint likelihood model, in addition to centralized processing of
the joint information. Both requirements cannot be fulfilled in our scenario. First, agents do
not possess knowledge of the dependencies between different sources of data. They only have
access to models for the marginal distribution of their local observations, i.e., each agent k
possesses its own marginal likelihood model Lk(ξ|θ). Second, their observations are private,
and agents would not want to share their raw observations with neighbors. Inspired by real-life
social dynamics, we will instead limit the agents to sharing instantaneous opinions or beliefs
with neighbors. We denote the belief of agent k at instant i by µk,i. The belief of an agent acts
as a summary of its observations until that point in time. It embodies not only the likelihood of
that observation given different hypotheses, but also the agent’s prior belief.

Example 1.1 (Multi-agent Bayesian processing). To illustrate the complexity of a fully
Bayesian solution, we consider the following simple example. Consider a set of 4 agents, namely
N ≜ {k, ℓ, m, n}, connected in a directed graph according to Figure 1.1. For simplicity, we
assume that only three steps of Bayesian processing take place, which we describe next.

Step 1: Agent k observes ξk. It updates its belief µk and exchanges it with agents ℓ and m.

Step 2: Agents ℓ and m observe respectively ξℓ and ξm. They update independently their
beliefs µℓ and µm and exchange them with agent n.

Step 3: Agent n observes ξn. It updates its belief µn.

Note that not all agents interact at every step and that the updates take place in a sequential
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<latexit sha1_base64="atnx9q5NqXZ219fgmVNNTYy7ZhQ=">AAAB/3icbVDLSgNBEOyNrxhfUY9eBoPgKexGQY8BL54kAfOAZAmzk95kyOzsMjMrhCUHz171G7yJVz/FT/AvnDwOJrGgoajqprsrSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/VbT6g0j+WjGSfoR3QgecgZNVaqj3rFklt2ZyDrxFuQEixQ6xV/uv2YpRFKwwTVuuO5ifEzqgxnAieFbqoxoWxEB9ixVNIItZ/NDp2QC6v0SRgrW9KQmfp3IqOR1uMosJ0RNUO96k3F/7xOasJbP+MySQ1KNl8UpoKYmEy/Jn2ukBkxtoQyxe2thA2poszYbJa2CB6g/UWmemKz8VaTWCfNStm7Klfq16XqwyKlPJzBOVyCBzdQhXuoQQMYILzAK7w5z8678+F8zltzzmLmFJbgfP0CXwqXNw==</latexit>

`
<latexit sha1_base64="47jJqTiKtGDasadJg2yoDDhTy8s=">AAACAnicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHgxZNEMA9IljA76SRDZmeXmVkhLLl59qrf4E28+iN+gn/hbLIHk1jQUFR1090VxIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ihRDBssEpFqB1Sj4BIbhhuB7VghDQOBrWB8m/mtJ1SaR/LRTGL0QzqUfMAZNZnURSF6pbJbcWcgq8TLSRly1Huln24/YkmI0jBBte54bmz8lCrDmcBpsZtojCkb0yF2LJU0RO2ns1un5NwqfTKIlC1pyEz9O5HSUOtJGNjOkJqRXvYy8T+vk5jBjZ9yGScGJZsvGiSCmIhkj5M+V8iMmFhCmeL2VsJGVFFmbDwLWwQP0P4iEz212XjLSaySZrXiXVaqD1fl2n2eUgFO4QwuwINrqMEd1KEBDEbwAq/w5jw7786H8zlvXXPymRNYgPP1C7VDmIM=</latexit>

m
<latexit sha1_base64="peQaAmXgw/tK0cdyLrLdRcWl7/A=">AAAB/3icbVDLSgNBEOyNrxhfUY9eBoPgKexGQY8BL54kAfOAZAmzk95kyOzsMjMrhCUHz171G7yJVz/FT/AvnDwOJrGgoajqprsrSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/VbT6g0j+WjGSfoR3QgecgZNVaqR71iyS27M5B14i1ICRao9Yo/3X7M0gilYYJq3fHcxPgZVYYzgZNCN9WYUDaiA+xYKmmE2s9mh07IhVX6JIyVLWnITP07kdFI63EU2M6ImqFe9abif14nNeGtn3GZpAYlmy8KU0FMTKZfkz5XyIwYW0KZ4vZWwoZUUWZsNktbBA/Q/iJTPbHZeKtJrJNmpexdlSv161L1YZFSHs7gHC7Bgxuowj3UoAEMEF7gFd6cZ+fd+XA+5605ZzFzCktwvn4BYkCXOQ==</latexit>

n
<latexit sha1_base64="n53MmAbe4QBX62JqT4ATpdl5F9s=">AAAB/3icbVDLSgNBEOyNrxhfUY9eBoPgKexGQY8BL54kAfOAZAmzk95kyOzsMjMrhCUHz171G7yJVz/FT/AvnDwOJrGgoajqprsrSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/VbT6g0j+WjGSfoR3QgecgZNVaqy16x5JbdGcg68RakBAvUesWfbj9maYTSMEG17nhuYvyMKsOZwEmhm2pMKBvRAXYslTRC7WezQyfkwip9EsbKljRkpv6dyGik9TgKbGdEzVCvelPxP6+TmvDWz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6Utggdof5GpnthsvNUk1kmzUvauypX6dan6sEgpD2dwDpfgwQ1U4R5q0AAGCC/wCm/Os/PufDif89acs5g5hSU4X79j25c6</latexit>

⇠k
<latexit sha1_base64="iIHhIPNLJb1Di8bBb3vtSBHA6Eo=">AAACEnicbVDLSsNAFJ3UV62vWJduBovgqiRV0GXBjSupYB/QhDCZTNqhk0mYmUhLyF+4dqvf4E7c+gN+gn/hpM3Ctl4Y5nDOvdxzj58wKpVlfRuVjc2t7Z3qbm1v/+DwyDyu92ScCky6OGaxGPhIEkY56SqqGBkkgqDIZ6TvT24Lvf9EhKQxf1SzhLgRGnEaUoyUpjyz7vgxC+Qs0l/mTGnuTTyzYTWtecF1YJegAcrqeOaPE8Q4jQhXmCEph7aVKDdDQlHMSF5zUkkShCdoRIYachQR6WZz7zk810wAw1joxxWcs38nMhTJwp7ujJAay1WtIP/ThqkKb9yM8iRVhOPFojBlUMWwCAIGVBCs2EwDhAXVXiEeI4Gw0nEtbWHUJ/oWnspcZ2OvJrEOeq2mfdlsPVw12vdlSlVwCs7ABbDBNWiDO9ABXYDBFLyAV/BmPBvvxofxuWitGOXMCVgq4+sXC7CfOQ==</latexit>

⇠`
<latexit sha1_base64="4GS3yJlFtMH/KHfqj+FnYmBnP1k=">AAACFXicbVDLSsNAFJ34rPVVFVdugkVwVZIq6LLgxpVUsA9oQphMbtqhk0mYmYgl5Dtcu9VvcCduXfsJ/oWTNgvbemGYwzn3cs89fsKoVJb1baysrq1vbFa2qts7u3v7tYPDroxTQaBDYhaLvo8lMMqho6hi0E8E4Mhn0PPHN4XeewQhacwf1CQBN8JDTkNKsNKUVzt2/JgFchLpL3OeaO45wJhXq1sNa1rmMrBLUEdltb3ajxPEJI2AK8KwlAPbSpSbYaEoYZBXnVRCgskYD2GgIccRSDeb2s/NM80EZhgL/bgyp+zfiQxHsnCoOyOsRnJRK8j/tEGqwms3ozxJFXAyWxSmzFSxWWRhBlQAUWyiASaCaq8mGWGBidKJzW1h1Ad9C09lrrOxF5NYBt1mw75oNO8v6627MqUKOkGn6BzZ6Aq10C1qow4iKEMv6BW9Gc/Gu/FhfM5aV4xy5gjNlfH1C3ghoIU=</latexit>

⇠m
<latexit sha1_base64="YFFdspvnLTAYZo9EAFGHULNhp1o=">AAACEnicbVDLSsNAFJ3UV62vWJdugkVwVZIq6LLgxpVUsA9oQphMJu3QmUmYmUhLyF+4dqvf4E7c+gN+gn/hpM3Ctl4Y5nDOvdxzT5BQIpVtfxuVjc2t7Z3qbm1v/+DwyDyu92ScCoS7KKaxGARQYko47iqiKB4kAkMWUNwPJreF3n/CQpKYP6pZgj0GR5xEBEGlKd+su0FMQzlj+svcKcl95psNu2nPy1oHTgkaoKyOb/64YYxShrlCFEo5dOxEeRkUiiCK85qbSpxANIEjPNSQQ4all82959a5ZkIrioV+XFlz9u9EBpks7OlOBtVYrmoF+Z82TFV042WEJ6nCHC0WRSm1VGwVQVghERgpOtMAIkG0VwuNoYBI6biWtlASYH0LT2Wus3FWk1gHvVbTuWy2Hq4a7fsypSo4BWfgAjjgGrTBHeiALkBgCl7AK3gzno1348P4XLRWjHLmBCyV8fULDuafOw==</latexit>

⇠n
<latexit sha1_base64="zFy1yrnC62iJ3ZtyX8fL78xqEGQ=">AAACEnicbVDLSgMxFM3UV62vWpdugkVwVWaqoMuCG1dSwT6gM5RMJtOGZpIhyUjLMH/h2q1+gztx6w/4Cf6FmXYWtvVCyOGce7nnHj9mVGnb/rZKG5tb2zvl3cre/sHhUfW41lUikZh0sGBC9n2kCKOcdDTVjPRjSVDkM9LzJ7e53nsiUlHBH/UsJl6ERpyGFCNtqGG15vqCBWoWmS91pzQbGrJuN+x5wXXgFKAOimoPqz9uIHASEa4xQ0oNHDvWXoqkppiRrOImisQIT9CIDAzkKCLKS+feM3humACGQprHNZyzfydSFKncnumMkB6rVS0n/9MGiQ5vvJTyONGE48WiMGFQC5gHAQMqCdZsZgDCkhqvEI+RRFibuJa2MOoTcwtPVGaycVaTWAfdZsO5bDQfruqt+yKlMjgFZ+ACOOAatMAdaIMOwGAKXsAreLOerXfrw/pctJasYuYELJX19QsQgZ88</latexit>µk

<latexit sha1_base64="OcYhK4XMI1SlIRafxO1ci+nZkMk=">AAACEnicbVC7TsMwFHV4lvIKZWSxqJCYqqQgwViJBbYi0YfURJHjOK1Vx45sB1FF/QtmVvgGNsTKD/AJ/AVOm4G2XMny0Tn36p57wpRRpR3n21pb39jc2q7sVHf39g8O7aNaV4lMYtLBggnZD5EijHLS0VQz0k8lQUnISC8c3xR675FIRQV/0JOU+AkachpTjLShArvmhYJFapKYL/eSbBqMA7vuNJxZwVXglqAOymoH9o8XCZwlhGvMkFID10m1nyOpKWZkWvUyRVKEx2hIBgZylBDl5zPvU3hmmAjGQprHNZyxfydylKjCnulMkB6pZa0g/9MGmY6v/ZzyNNOE4/miOGNQC1gEASMqCdZsYgDCkhqvEI+QRFibuBa2MBoScwvP1NRk4y4nsQq6zYZ70WjeX9Zbd2VKFXACTsE5cMEVaIFb0AYdgMETeAGv4M16tt6tD+tz3rpmlTPHYKGsr18Lwp81</latexit>

µk
<latexit sha1_base64="OcYhK4XMI1SlIRafxO1ci+nZkMk=">AAACEnicbVC7TsMwFHV4lvIKZWSxqJCYqqQgwViJBbYi0YfURJHjOK1Vx45sB1FF/QtmVvgGNsTKD/AJ/AVOm4G2XMny0Tn36p57wpRRpR3n21pb39jc2q7sVHf39g8O7aNaV4lMYtLBggnZD5EijHLS0VQz0k8lQUnISC8c3xR675FIRQV/0JOU+AkachpTjLShArvmhYJFapKYL/eSbBqMA7vuNJxZwVXglqAOymoH9o8XCZwlhGvMkFID10m1nyOpKWZkWvUyRVKEx2hIBgZylBDl5zPvU3hmmAjGQprHNZyxfydylKjCnulMkB6pZa0g/9MGmY6v/ZzyNNOE4/miOGNQC1gEASMqCdZsYgDCkhqvEI+QRFibuBa2MBoScwvP1NRk4y4nsQq6zYZ70WjeX9Zbd2VKFXACTsE5cMEVaIFb0AYdgMETeAGv4M16tt6tD+tz3rpmlTPHYKGsr18Lwp81</latexit>

µ`
<latexit sha1_base64="9Sx61cGaNPYaXfLOESJ3np38Kqg=">AAACFXicbVDLSsNAFJ3UV62vqLhyEyyCq5JUQZcFN7qrYB/QhDCZ3LZDJ5MwMxFKyHe4dqvf4E7cuvYT/AsnbRa29cIwh3Pu5Z57goRRqWz726isrW9sblW3azu7e/sH5uFRV8apINAhMYtFP8ASGOXQUVQx6CcCcBQw6AWT20LvPYGQNOaPapqAF+ERp0NKsNKUb564QcxCOY30l7lRmvsuMOabdbthz8paBU4J6qistm/+uGFM0gi4IgxLOXDsRHkZFooSBnnNTSUkmEzwCAYachyB9LKZ/dw610xoDWOhH1fWjP07keFIFg51Z4TVWC5rBfmfNkjV8MbLKE9SBZzMFw1TZqnYKrKwQiqAKDbVABNBtVeLjLHAROnEFrYwGoC+hacy19k4y0msgm6z4Vw2mg9X9dZ9mVIVnaIzdIEcdI1a6A61UQcRlKEX9IrejGfj3fgwPuetFaOcOUYLZXz9Ang2oIE=</latexit>

µm
<latexit sha1_base64="pEXKQ3JorWT7173R651fw1Di1+Y=">AAACEnicbVDLSsNAFJ34rPUV69JNsAiuSlIFXRbc6K6CfUATwmQyaYfOTMI8xBL6F67d6je4E7f+gJ/gXzhps7CtF4Y5nHMv99wTZZRI5brf1tr6xubWdmWnuru3f3BoH9W6MtUC4Q5KaSr6EZSYEo47iiiK+5nAkEUU96LxTaH3HrGQJOUPapLhgMEhJwlBUBkqtGt+lNJYTpj5cp/pachCu+423Fk5q8ArQR2U1Q7tHz9OkWaYK0ShlAPPzVSQQ6EIonha9bXEGURjOMQDAzlkWAb5zPvUOTNM7CSpMI8rZ8b+ncghk4U908mgGsllrSD/0wZaJddBTnimFeZovijR1FGpUwThxERgpOjEAIgEMV4dNIICImXiWthCSYTNLVzLqcnGW05iFXSbDe+i0by/rLfuypQq4AScgnPggSvQAregDToAgSfwAl7Bm/VsvVsf1ue8dc0qZ47BQllfvw74nzc=</latexit>

µn
<latexit sha1_base64="miqqtzmNa8WjtliSmbQSkwC4STw=">AAACEnicbVDLSgMxFM34rPVV69JNsAiuykwVdFlwo7sK9gGdoWQymTY0yQx5iGXoX7h2q9/gTtz6A36Cf2GmnYVtvRByOOde7rknTBlV2nW/nbX1jc2t7dJOeXdv/+CwclTtqMRITNo4YYnshUgRRgVpa6oZ6aWSIB4y0g3HN7nefSRS0UQ86ElKAo6GgsYUI22pQaXqhwmL1ITbL/O5mQ4sWXPr7qzgKvAKUANFtQaVHz9KsOFEaMyQUn3PTXWQIakpZmRa9o0iKcJjNCR9CwXiRAXZzPsUnlkmgnEi7RMazti/ExniKrdnOznSI7Ws5eR/Wt/o+DrIqEiNJgLPF8WGQZ3APAgYUUmwZhMLEJbUeoV4hCTC2sa1sIXRkNhbhFFTm423nMQq6DTq3kW9cX9Za94VKZXACTgF58ADV6AJbkELtAEGT+AFvII359l5dz6cz3nrmlPMHIOFcr5+ARCTnzg=</latexit>

step 3
<latexit sha1_base64="AOjqZB417TIl6wDVw5I+IMgeVWs=">AAACD3icbVDLTgJBEJzFF+ID1KOXicTEE9mFgx5JvOgNE3kkQMjs0AsTZmc3M71GsuEjPHvVb/BmvPoJfoJ/4QB7ULCSTipV3enu8mMpDLrul5Pb2Nza3snvFvb2Dw6LpaPjlokSzaHJIxnpjs8MSKGgiQIldGINLPQltP3J9dxvP4A2IlL3OI2hH7KREoHgDK00KBV7CI/oB6lBiGltNiiV3Yq7AF0nXkbKJENjUPruDSOehKCQS2ZM13Nj7KdMo+ASZoVeYiBmfMJG0LVUsRBMP10cPqPnVhnSINK2FNKF+nsiZaEx09C3nSHDsVn15uJ/XjfB4KqfChUnCIovFwWJpBjReQp0KDRwlFNLGNfC3kr5mGnG0Wb1Z4sUPthfVGLm2XirSayTVrXi1SrVu2q5fpullCen5IxcEI9ckjq5IQ3SJJwk5Jm8kFfnyXlz3p2PZWvOyWZOyB84nz/mp51y</latexit>

Figure 1.1: Diagram showing the communication graph between agents k, ℓ, m and n.

manner. This is done to keep the example as simple as possible for illustration purposes. Since
observations are not present at every step i for all agents, we choose to omit the subindex i
from the following description for ease of notation.

Assume a binary hypothesis space Θ = {0, 1} and that each agent j ∈ N receives binary
observations as well, i.e., ξj ∈ {a, b}. Agents have furthermore likelihoods of the form:

Lj(ξ|θ) = p
(j)
θ I [ξ = a] + ( 1 − p

(j)
θ )I [ξ = b], (1.41)

with p
(j)
1 ̸= p

(j)
0 , which are further assumed to be common knowledge to all agents. We assume

that observations are independent across agents, such that

L(ξk, ξℓ, ξm, ξn|θ) =
∏
j∈N

Lj(ξj |θ), (1.42)

which implies that from knowledge of the marginal likelihoods, each agent can compute the
joint likelihood as well. Moreover, we assume that all agents start from the same initial belief
µ0.

We describe next the computations performed at each of the three steps, which allow agents to
update their beliefs in a fully Bayesian manner.

Step 1: Agent k updates its belief

When agent k receives a new observation ξk, it updates its prior belief using the Bayesian
update (1.3), i.e.,

µk(θ) ∝ Lk(ξk|θ)µ0(θ). (1.43)

Agent k then sends its updated belief µk to its two neighbors ℓ and m.

Step 2: Agents ℓ and m update their beliefs

We first focus on agent ℓ, which received the belief µk. If agent ℓ wishes to update its belief
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1.2 Social Learning

using its own observation ξℓ and the information received from k in a fully Bayesian way, then,
in view of the independence property in (1.42), it would need to compute:

µℓ(θ) ∝ Lℓ(ξℓ|θ)µk(θ)
(1.43)∝ Lℓ(ξℓ|θ)Lk(ξk|θ)µ0(θ), (1.44)

which corresponds to the Bayesian way of updating the prior belief µ0 using the independent
observations ξk and ξℓ.

Agent m could perform a similar procedure as agent ℓ to update its belief according to:

µm(θ) ∝ Lm(ξm|θ)µk(θ)
(1.43)∝ Lm(ξm|θ)Lk(ξk|θ)µ0(θ). (1.45)

In the next step, agents ℓ and m send their beliefs µℓ and µm to their common neighbor n.

Step 3: Agent n updates its belief

Agent n receives beliefs µℓ and µm, both containing redundant information about the observa-
tion ξk. In order to incorporate the information in µℓ, µm, and its private observation ξn in a
Bayesian way, agent n needs to disentangle the observations ξk, ξℓ, and ξm from the received
beliefs. This can be performed by agent n in the following manner.

First, consider the task of extracting information on ξℓ and ξk from the belief µℓ, which are
related through Eq. (1.44). From (1.44), we can write

µℓ(1)
µℓ(0) = Lℓ(ξℓ|1)Lk(ξk|1)

Lℓ(ξℓ|0)Lk(ξk|0)
µ0(1)
µ0(0) ⇔ Lℓ(ξℓ|1)Lk(ξk|1)

Lℓ(ξℓ|0)Lk(ξk|0) = µℓ(1)
µℓ(0)

µ0(0)
µ0(1) ≜ α. (1.46)

Agent n can compute α, since the belief terms in (1.46) are known. Since (1.41) is also known,
then agent n can recover ξk and ξℓ by comparing α against the following 4 possibilities:

{ξℓ, ξk} =



{a, a}, if α = p
(ℓ)
1

( 1 − p
(ℓ)
0 )

p
(k)
1

( 1 − p
(k)
0 )

,

{a, b}, if α = p
(ℓ)
1

( 1 − p
(ℓ)
0 )

(1 − p
(k)
1 )

p
(k)
0

,

{b, a}, if α = (1 − p
(ℓ)
1 )

p
(ℓ)
0

p
(k)
1

( 1 − p
(k)
0 )

,

{b, b}, if α = (1 − p
(ℓ)
1 )

p
(ℓ)
0

(1 − p
(k)
1 )

p
(k)
0

.

(1.47)

A similar procedure, with 4 different comparisons, can be applied to belief µm to recover
information about ξk and ξm.
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Chapter 1. Introduction

Upon recovery of ξk, ξℓ, and ξm, agent n can update its belief in a Bayesian way according to:

µn(θ) ∝ Ln(ξn|θ)Lm(ξm|θ)Lℓ(ξℓ|θ)Lk(ξk|θ)µ0(θ). (1.48)

Even in this simple example, with only two hypotheses and two possible observations, we see
that the dynamics between four Bayesian agents is complex and requires that each agent have
significant knowledge about the operation of the other. The example also does not consider
synchronous interactions among agents, i.e., a scenario where all agents update their beliefs and
interact at every instant.

In a distributed and synchronous setup, in which multiple agents exchange their beliefs with
neighbors at each instant, the complexity of a fully Bayesian solution makes its implementation
computationally prohibitive. Agent ℓ has to disentangle the different sources of information
present in the belief propagated by agent k. The information can come from the neighbors
of k and the observation of k. To do that, further knowledge of the social dynamics within
the network is necessary at agent k, and even under a complete knowledge assumption, the
computations have been shown to be NP-hard [22].

The implementation of a fully Bayesian solution can be manageable in some simplified scenarios.
For example, in [23]–[25] the authors propose a model in which agents learn sequentially, as
opposed to synchronously. At each instant, a different agent updates its belief using actions2 by
all previous agents and the current observation. Observations are assumed to be independent
across agents. Through this sequential dynamics, the authors in [23]–[25] avoid the entangling
of different sources of information.

Under the sequential structure, these works are able to reproduce a herding behavior, i.e., from
a certain period onward the agents disregard local observations in favor of just repeating
previous agents’ actions. A similar sequential framework is investigated in [26], where agents
observe instead the actions of a subset of previous agents, denoted as neighbors. The concept of
neighborhood introduces the possibility that some neighbors, if visited often enough, can affect
and influence the asymptotic convergence behavior.

Other tractable scenarios for Bayesian strategies are found in [27], [28] for communication
structures such as trees and fully connected networks. Although tractable solutions exist,
all multi-agent Bayesian strategies require extensive knowledge of the statistical models and
connectivity paths in the network.

In face of such communication and knowledge limitations, researchers have pursued non-
Bayesian social learning strategies to model opinion formation over networked systems. A
precursor for these models is the concept of bounded rationality in Economics. Bounded
rationality acknowledges that human cognition is limited, and that therefore deliberating and
making decisions are costly activities [29], [30]. A classical example is chess. Given that the
search space is finite, there exists a well defined optimal strategy at every move. It is however

2In some of these models, instead of beliefs agents share actions. These actions are the result of maximizing the
agents’ expected utility. A particular choice of utility function can result optimally in the sharing of beliefs [22].
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1.2 Social Learning

impossible for a player to compute it in full extent, thus players content themselves to calculate
up to a few moves ahead before choosing the next move. Motivated by these arguments, we
motivate the concept of non-Bayesian social learning in the next sections.

1.2.2 Non-Bayesian Social Learning

The study of non-Bayesian social learning is motivated by the understanding that social inter-
actions are an important aspect of decision-making, but they do not necessarily happen in a
fully rational manner. Some of the earlier attempts to model social interactions were based
on a non-Bayesian paradigm, i.e., they employed heuristic combination protocols to solve the
opinion pooling problem. One such example can be found in the social experiment described
in [2], where people at a fair were asked to guess the weight of an ox. The surprising result was
that, while individual estimates varied, the median value from 787 guesses approached the true
weight of the animal. The success of aggregating estimates in this experiment reinforced the
idea of the wisdom of the crowd, where a collective of agents could combine opinions to reach a
more robust conclusion.

One of the pioneering opinion pooling strategies was proposed in [31], in which agents start
from initial opinions µk,0(θ) regarding an unknown parameter θ and proceed to update their
opinions over time (indexed by i) using a linear pooling operation:

µk,i(θ) =
K∑

ℓ=1
aℓkµℓ,i−1(θ), (1.49)

where the weights aℓk are nonnegative and add up to 1:

aℓk ≥ 0,
K∑

ℓ=1
aℓk = 1, aℓk = 0 if ℓ /∈ Nk. (1.50)

Here, the notation Nk denotes the set of neighbors of k. The weights can be assembled into a
matrix A = [aℓk]. Assume the following conditions hold for matrix A:

AT1 = 1 (1.51)

ρ

(
AT − 1πT

)
< 1, (1.52)

where π is the right eigenvector of A associated with eigenvalue 1, whose elements are positive
and add up to 1, and where ρ(X) denotes the spectral radius of matrix X . Note that the first
condition means that the entries on each column of A add up to one. It is obvious that every
such matrix has an eigenvalue at 1. Under the above conditions, it is known that as time grows
agents reach consensus around the weighted average of the initial opinion vector [31]–[33]:

lim
i→∞

µk,i(θ) =
K∑

ℓ=1
πℓµℓ,0(θ) (1.53)

for all k = 1, 2, . . . , K , whose weights πk—elements of vector π—determine the amount of
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Chapter 1. Introduction

weight given to the initial opinion at each agent k.

Many non-Bayesian social learning strategies have been subsequently inspired by this consensus
result. We will illustrate in the following some non-Bayesian strategies that allow the network
to learn from streaming data in a synchronous manner. In a synchronous distributed operation,
all agents process information and exchange beliefs with neighboring agents simultaneously.

Arithmetic-Average Combination

Inspired by the single-agent non-Bayesian update proposed in [34] and by consensus-type
aggregation procedures [35], [36], the authors of [4] proposed an iterative multi-agent strategy,
wherein at every instant i, two steps are performed by each agent k: i) In view of the new
private observation ξk,i, the agent updates its belief using a local Bayesian update and a local
set of likelihood models, Lk(ξ|θ) for θ ∈ Θ, resulting in an intermediate belief ψk,i(θ); ii) The
agent combines the result of the first step, namely, its own intermediate belief, with the past
beliefs of neighboring agents using a weighted arithmetic average operation. The resulting
algorithm is given by:

ψk,i(θ) ∝ Lk(ξk,i|θ)µk,i−1(θ) (Bayesian update) (1.54)

µk,i(θ) = akkψk,i(θ) +
K∑

ℓ=1
ℓ̸=k

aℓkµℓ,i−1(θ) (combination rule) (1.55)

The symbol ∝ in the first line means that the entries of ψk,i(θ) are normalized to add up to
one, as is characteristic of belief distributions. The scalar aℓk is a nonnegative weight used by
agent k to scale the belief received from ℓ, such that

∑K
ℓ=1 aℓk = 1, with K being the number

of agents in the network. If ℓ is not a neighbor of k, the weight aℓk is set to zero. These weights
represent a trust score given to the information received from neighboring agents and reveal the
underlying network topology. In this case, the network is assumed to be strongly connected, i.e.,
there exists a communication path between every two agents and at least one agents possesses
a self-loop—more details are discussed in Chapter 2.

In [4], the observations ξk,i arise from stationary world conditions and are distributed according
to one of the likelihoods Lk(ξ|θ0) for some hypothesis θ0 ∈ Θ, which denotes the true state of
the world. The fact that the true distribution of observations is fixed over time qualifies the
world as stationary. The main result of [4] states that, using the protocol (1.54)–(1.55), agents
in a strongly connected network are able to recover the truth almost surely as i grows. More
precisely, they show that

µk,i(θ0) a.s.−→ 1, (1.56)

for all agents. This result shows that agents are able to recover the truth with strong convergence
guarantees under limited knowledge about data dependencies among agents, i.e., agents do
not know the underlying joint true model of observations. They also do not know the global
network structure, i.e., they only interact with their local neighborhood, or the statistical models
used by other agents in the network.

Algorithm (1.54)–(1.55) treats beliefs asymmetrically as is evident from (1.55). Observe that the
right-hand side of (1.55) involves a combination of past beliefs, represented by µℓ,i−1(θ), and
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1.2 Social Learning

one updated belief represented by ψk,i(θ). The asymmetry in consensus-type implementation
of this form has been shown to lead to degraded performance in the context of learning over
networks [36], [37]. Motivated by the superior performance and stability of diffusion strategies
for learning over networks [36], [38], the authors in [5] proposed the following alternative
diffusion social learning strategy:

ψk,i(θ) ∝ Lk(ξk,i|θ)µℓ,i−1(θ) (1.57)

µk,i(θ) =
K∑

ℓ=1
aℓkψℓ,i(θ) (1.58)

Observe from (1.58) that the diffusion implementation relies solely on the updated beliefs. The
results in [5] establish asymptotic truth learning similar to (1.56), however with an improved
rate of convergence with respect to the consensus-type implementation in [4].

The implementation (1.57)–(1.58) corresponds to what is known as the Adapt-Then-Combine
(ATC) form of diffusion [36], [37]. One can also consider a Combine-Then-Adapt (CTA) form
where the Bayesian and combination steps are reversed:

ψk,i−1(θ) =
K∑

ℓ=1
aℓkµℓ,i−1(θ) (1.59)

µk,i(θ) ∝ Lk(ξk,i|θ)ψk,i−1(θ) (1.60)

Geometric-Average Combination

The consensus and diffusion social learning strategies (1.54)–(1.55) and (1.57)–(1.58) combine
the belief vectors in their second equations in order to propagate the µk,i. An alternative
approach is to combine the logarithmic values of the belief entries, rather than the belief entries
themselves. Since the belief entries are nonnegative and constrained to add up to one, it follows
that the logarithms of beliefs are unconstrained real values. Motivated by these considerations,
subsequent works have focused on arithmetic averaging in the logarithmic domain, which
corresponds to geometric averaging in the original domain [39]–[42]. For instance, the social
learning protocol proposed by [40] takes the following geometric CTA form:

ψk,i−1(θ) ∝
K∏

ℓ=1

(
µℓ,i−1(θ)

)aℓk

(1.61)

µk,i(θ) ∝ Lk(ξk,i|θ)ψℓ,i−1(θ) (1.62)

where aℓk is again a nonnegative weight given by each agent k to neighbor ℓ, such that∑K
ℓ=1 aℓk = 1. The network topology is again assumed to be strongly connected.

The corresponding ATC form appears in [41], namely,

ψk,i(θ) ∝ Lk(ξk,i|θ)µℓ,i−1(θ) (1.63)

µk,i(θ) ∝
K∏

ℓ=1

(
ψℓ,i(θ)

)aℓk

(1.64)

15



Chapter 1. Introduction

In the logarithm domain, these updates can be rewritten as linear operations. To see that, define
the following auxiliary variables for any distinct pair θ, θ′ ∈ Θ:

λk,i ≜ log
µk,i(θ)
µk,i(θ′) , ηk,i ≜ log

ψk,i(θ)
ψk,i(θ′) , xk,i ≜ log

Lk(ξk,i|θ)
Lk(ξk,i|θ′) , (1.65)

whose dependence on {θ, θ′} is omitted. Next, let us focus on (1.61)–(1.62). Computing the
ratio of beliefs between any two hypotheses θ and θ′, applying the log operation, and using
the definitions in (1.65), we can rewrite (1.61)–(1.62) as a diffusion strategy with respect to the
iterate λk,i [37], [38]:

ηk,i−1 =
K∑

ℓ=1
aℓkλℓ,i−1 (1.66)

λk,i = ηk,i−1 + xk,i (1.67)

where agents first combine their log-ratio of beliefs λk,i with neighbors and then adapt them
using the new information in the form of the log-ratio of likelihoods xk,i. Similarly, the strategy
in (1.63)–(1.64) can be rewritten according to:

ηk,i = λk,i−1 + xk,i (1.68)

λk,i =
K∑

ℓ=1
aℓkηℓ,i (1.69)

where agents first adapt their log-ratio of beliefs using new information and then combine them
with neighbors.

Both strategies employ similar steps, but in different orders. The algorithm in (1.66) and (1.67)
takes the form of a CTA rule, while the one in (1.68) and (1.69) takes the form of an ATC rule.
In the context of learning over networks, such as in the least-mean-squares problem described
in [38], ATC strategies are known to yield superior steady-state performance.

As in the study of the earlier social learning strategies based on arithmetic averaging, the world
conditions are generally assumed to be stationary [40], [41]. Moreover, in [41] observations are
distributed according to one of the likelihoods Lk(ξ|θ0) for some true hypothesis θ0 ∈ Θ. The
convergence result from [41] shows asymptotic truth learning at an exponential rate. In [40],
the true model generating the observations does not necessarily belong to the set of likelihood
models, therefore resulting in more diversified convergence behavior.

The choice of using geometric- or arithmetic-average pooling is motivated in [43] by following
an axiomatic approach. Based on some behavioral assumptions, one form or the other may
follow as the preferred implementation for non-Bayesian social learning. The geometric-average
implementation can also be motivated as a distributed stochastic mirror descent solution using
a variational interpretation [44]. In terms of rates of convergence, the works [40], [41] show
that empirically the geometric-average rule converges faster than the arithmetic-average rule.
This result is confirmed theoretically by the recent work [45].

All results described in Section 1.2.2 concern strongly connected networks. A variation of this
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Figure 1.2: Block diagram of social learning under streaming observations. Bayesian update takes as
input the previous belief, observations of the world, likelihood models, and outputs the intermediate
beliefs. The combination rule takes as input the intermediate beliefs shared by neighbors and network
weights, and outputs the updated belief.

communication strategy is considered in [46], where agents choose at random one neighbor
to exchange beliefs with at each time. Similar performance guarantees can be achieved in
steady-state with this sparser communication scheme. Other interesting extensions for weakly
connected networks [47] can be found in [48] and [49]. In these works, we observe that parts of
the network can exert full control over the belief convergence of the remaining agents—this
phenomenon will be detailed in Chapter 2 when we discuss weakly connected networks. In [44],
[50], the authors extend the space of hypotheses to a continuum space Θ.

Throughout this thesis we focus on the social learning formulation in the ATC form described
by (1.63) and (1.64) and variations thereof.

1.3 From Models to the World

We represent the ATC form of social learning in block diagram in Figure 1.2. It is clear from the
figure that the two main building blocks of social learning are the “Bayesian update” and the
“combination rule”. The first block is motivated by the desire to characterize agents as locally
rational, meaning that every observation is incorporated into the belief in a Bayesian way. The
second block allows flexibility in choosing the type of opinion pooling operation. With these
two blocks fixed, the social learning framework consists of four building elements—highlighted
in different colors in Figure 1.2. These elements are described below from the lowest to the
highest level of abstraction:

1. Models: At the lowest level of the social learning framework, the models of an agent
quantify how it perceives the observations of the world. These models exist in the form
of likelihood models for the observations given different hypothetical states of the world
and are used by agents to perform their local Bayesian update. The exactness of these
models in representing the observations given different states has an important impact
on the belief evolution of agents.

2. Exchanged information: The exchange of information between neighbors enables agents
to solve the inference problem collaboratively and thus to overcome the limitations of
their individual models. This is achieved through the exchange of intermediate beliefs
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Figure 1.3: Alternative view of the social learning framework, with the four building elements highlighted
in color: Models, exchanged information, network and world.

between neighboring agents, but could also be designed to account for other types of
information, as long as the observations remain private.

3. Network: The network structure determines the communication paths and the flow
of the exchanged information across agents. It consists of the underlying inter-agent
connectivity, e.g., whether the network is strongly connected, connected, or weakly
connected, and the weights given by each agent to the information received from its
neighbors. Different connectivity and weight patterns give rise to influence dynamics
and richer belief formation scenarios.

4. World: At the highest level of social learning, we have the effect of the world on the
network. This effect is represented by the observations or measurements of the world,
which are received by agents in a private manner. The quality of these measurements,
the way they are distributed across agents and over time are of utmost importance for
the learning outcome.

A complementary view of the social learning framework can be seen in Figure 1.3, where
the aforementioned four elements are highlighted in different colors. The individual models,
the exchanged information among agents, the network topology, and the surrounding world
constitute the key elements of learning over adaptive networks. The remainder of this research
work is dedicated to investigating and exploiting different aspects of these elements.

1.4 Outline and Main Contributions

The objective of this thesis is to exploit each of the four social learning elements—highlighted
in Figure 1.3—to better understand the features and limits of social learning strategies and to
address existing issues in their formulation and bring them closer to real-world settings. At
the end of this research work, we will be able to answer questions regarding the influence
between different components of the network and questions concerning the performance of
social learning in view of the exchange of partial information, nonstationary world conditions,
and imperfectly trained models.
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1.4 Outline and Main Contributions

As detailed in Section 1.2.2, an important aspect of social learning is the existence of a source of
streaming observations [4], [5]. This feature allows for real-time measurement and processing of
information, and thus has attracted the interest of engineers and economists toward a strategy
that can continually learn over time. The drawback is that social learning is designed to operate
in a stationary environment, that is, where the conditions of the world do not change over
time—a phenomenon that will be thoroughly explained in Chapter 5. This situation is neither
realistic from a social network point of view nor desirable in real-time processing systems. For
example, the conditions of the financial market are always shifting around decision-making
agents. Another example is a network of meteorological sensors trying to infer the current
weather state, which must adapt and provide reliable results over time. We consider the study of
social learning in a nonstationary world essential to bridge the gap between theoretical models
and applications, and we believe that such strategies should not only learn but also continually
adapt over time.

For that reason, we choose to organize this thesis in two parts. Part I, entitled “Stationary
World”, which addresses two contributions under the assumption of stationary conditions. Part II,
entitled “Non-Stationary World”, which addresses two contributions suitable for nonstationary
conditions. Before delving into the research contributions of this work, we formally introduce
the social learning problem and its mathematical notation in Chapter 2 and review some of the
available results in the literature for both strongly and weakly connected networks and provide
essential results on their asymptotic belief convergence. In Chapter 2, the reader will also find
simulation examples to illustrate the behavior of these strategies as well as a detailed proof of
the belief convergence for strongly connected networks.

1.4.1 Part I: Stationary World

Part I contains the following contributions under a stationary environment.

Chapter 3: Recovering Influences in Weak Graphs
We consider the role of the network influence in social learning. More specifically, we model the
social network as a weakly connected network consisting of a receiving subnetwork and multiple
sending subnetworks, which are described in Chapter 3. In view of existing results, which show
that sending agents control the beliefs of the receiving agents [49], we address the reverse
learning problem, i.e., to estimate the amount of influence that each sending network exerts
on the beliefs of receiving agents [42], [51]. We establish sufficient and necessary conditions
for the reverse learning problem to be feasible. Our analysis reveals that the reverse learning
problem can be solved if there exists a sufficient degree of diversity in the statistical models of
the sending sub-networks. The discussion and results in this chapter are useful in describing
influence patterns over weakly connected social networks.

Chapter 4: Exchange of Partial Information
In this chapter, we consider the role of the exchange of partial information in social learning.
In other words, instead of exchanging the entirety of their beliefs, this chapter assumes that
communication among agents is constrained. Agents only exchange their confidence regarding
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Chapter 1. Introduction

one hypothesis of interest, reflecting a desire to retain part of its private knowledge for reasons
such as social dynamics, limited bandwidth, or regulation. The goal of the network is to ascertain
the validity of said hypothesis. We propose two approaches for sharing partial information,
depending on whether agents behave in a self-aware manner or not. The results show how
different learning regimes arise, depending on the approach employed and on the inherent
characteristics of the inference problem.

1.4.2 Part II: Non-Stationary World

Part II contains the following contributions under a nonstationary environment.

Chapter 5: Adaptive Social Networks
In this chapter, we consider the role of a nonstationary world in social learning. Although tailored
for working with streaming observations, social learning strategies do not perform well under
nonstationary conditions. To address this issue, we propose in this chapter an Adaptive Social
Learning strategy, which relies on a small step-size parameter to tune the adaptation degree.
We provide a detailed characterization of the learning performance, namely, the probability
of making a wrong inference, during both steady-state and transient phases. We show that
the step-size parameter plays a key role in determining the trade-off between adaptation and
learning accuracy, and study its influence on the adaptation time during the transient phase.
Our conclusions are key to enable social learning to be used in actual online learning settings.

Chapter 6: Learning with Imperfect Models
In this chapter, we consider the role of imperfect models in social learning. Traditional social
learning strategies rely on the assumption that each agent has significant knowledge of the
underlying models of the observations. In this chapter we overcome this issue by introducing a
machine learning framework, referred to as Social Machine Learning (SML), which involves a
training phase, where the models are trained from finite data, and a prediction phase, where
these imperfectly trained models are deployed in a collaborative manner, inspired by social
learning strategies, to classify unlabeled observations. We show that the SML strategy enables
the agents to learn consistently under a highly-heterogeneous setting and allows the network
to continue improve performance during the prediction phase. These results allow the social
learning mechanism to be used as a fully data-based solution in realistic learning tasks.

Finally, Chapter 7 summarizes the main contributions of this work and suggests future research
directions.
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2 The Social Learning Model

In this chapter, in order to place our contributions in context, we first review some of the available
results on the convergence behavior of the diffusion social learning algorithm described in
Section 1.2.2. The network is assumed to exist in a stationary world, that is, observations ξk,i

are distributed according to a fixed agent-dependent distribution fk(ξ):

ξk,i ∼ fk (2.1)

We refer to fk(ξ) as the true model of agent k with support Xk. Observations ξk,i are iid over
time, i.e., over i, but can be dependent across agents, i.e., across k. They can be either continuous
or discrete random variables, in which cases fk(ξ) is either a pdf or a pmf.

The goal of the network of agents is to discover the state of the world from a finite set of H
discrete hypotheses denoted by Θ ≜ {1, 2, . . . , H}. With each hypothesis, agents associate
likelihood models, which act as candidate models for the unknown true model. More precisely,
for each θ, agent k possess a likelihood model Lk(ξ|θ), which is a pdf (or pmf if the observations
are of discrete nature) when seen as a function of ξ. We stress that fk does not need to belong
to the set of likelihood models available at agent k, namely, the set of functions Lk(ξ|θ) for
θ ∈ Θ.

The social learning algorithm based on geometric ATC diffusion is reproduced here for ease of
reference:

ψk,i(θ) =
Lk(ξk,i|θ)µk,i−1(θ)∑

θ′∈Θ Lk(ξk,i|θ′)µk,i−1(θ′) (2.2)

µk,i(θ) =
∏

ℓ∈Nk
[ψℓ,i(θ)]aℓk∑

θ′∈Θ
∏

ℓ∈Nk
[ψℓ,i(θ)]aℓk

(2.3)

where weights aℓk are the elements of a left-stochastic combination matrix A, associated with
the underlying communication graph. In this chapter, we report the convergence behavior of
the algorithm in the context of strongly and weakly connected networks. We will see that while
the former promotes consensus across agents, the latter stimulates disagreement and influence
dynamics within the network.
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Chapter 2. The Social Learning Model

2.1 Reaching Consensus

From classical arguments such as the law of large numbers and the wisdom of the crowds, we
have confidence that the average of many samples can serve as a good estimator for some
parameter or variable of interest. For example, pre-election polls provide average results over
limited samples that indicate the ongoing state of elections, and statistical sampling theory tells
us how close this average is from the yet-unknown true result.

The concept of averaging is ubiquitous in distributed processing. It allows systems to achieve
agreement around a more reliable estimate by combining local opinions and estimates. The use
of consensus-based strategies can be traced back to the works [31], [32], where authors dealt
with the problem of averaging estimates over graphs. Since then, several works [37], [52]–[57]
in the areas of distributed optimization and estimation consider more general formulations and
broader contexts. In social learning, averaging is present in the combination step, i.e., Eq. (2.3),
where it takes the form of a weighted geometric average. In the next sections, we describe how
consensus is relevant in the context of social learning.

2.1.1 Strongly Connected Networks

We consider a strongly connected network with K agents. A network is said to be strongly
connected if there exists a path linking any pair of agents in both directions and if at least one
agent possesses a self-loop [37]. A diagram of a strongly connected network can be seen in
Figure 2.1.

The network can be mathematically represented by a graph, where its nodes are agents and
edges represent communication links, which can be directed or not. A directed edge from
agent ℓ to agent k indicates that agent ℓ can send information to agent k (equivalently, agent k
receives information from agent ℓ). In this case, agent ℓ is said to be a neighbor of agent k. Each
agent k attributes a nonnegative weight (confidence score) to the information received from its
neighbor ℓ, namely, aℓk ∈ (0, 1], such that

K∑
ℓ=1

aℓk =
∑

ℓ∈Nk

aℓk = 1, (2.4)

where we denote the set of neighbors of k by Nk. We can therefore define A ≜ [aℓk] as the
combination matrix associated with our graph. From (2.4), the entries on each column of A
should add up to one, such that A is left stochastic, i.e.,

AT1 = 1, aℓk > 0 ⇒ ℓ ∈ Nk. (2.5)

Since the network is strongly connected, the combination matrix is a left-stochastic primitive
matrix, i.e., there exists some finite integer no, such that the no−power of A has strictly positive
entries, i.e., Ano ≻ 0, where ≻ denotes element-wise inequality. From the Perron-Frobenius
theorem [37], [58], these properties ensure that the spectral radius of A is equal to 1, i.e.,
ρ(A) = 1 and that the eigenvalue 1 is simple. Moreover, we can associate with the eigenvalue
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2.1 Reaching Consensus
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a`k
<latexit sha1_base64="YvPFM27b8ZVaped9klo4iffTb8I=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lEUG9FLx4rGFtIQ9lsJ+3SzSbsToQS+jO8eFDx6r/x5r9x2+ag1QcDj/dmmJkXZVIYdN0vp7Kyura+Ud2sbW3v7O7V9w8eTJprDj5PZaq7ETMghQIfBUroZhpYEknoROObmd95BG1Equ5xkkGYsKESseAMrRSwfkF7ICUdT/v1htt056B/iVeSBinR7tc/e4OU5wko5JIZE3huhmHBNAouYVrr5QYyxsdsCIGliiVgwmJ+8pSeWGVA41TbUkjn6s+JgiXGTJLIdiYMR2bZm4n/eUGO8WVYCJXlCIovFsW5pJjS2f90IDRwlBNLGNfC3kr5iGnG0aZUsyF4yy//Jf5Z86rp3Z03WtdlGlVyRI7JKfHIBWmRW9ImPuEkJU/khbw66Dw7b877orXilDOH5Becj28qZZC4</latexit><latexit sha1_base64="YvPFM27b8ZVaped9klo4iffTb8I=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lEUG9FLx4rGFtIQ9lsJ+3SzSbsToQS+jO8eFDx6r/x5r9x2+ag1QcDj/dmmJkXZVIYdN0vp7Kyura+Ud2sbW3v7O7V9w8eTJprDj5PZaq7ETMghQIfBUroZhpYEknoROObmd95BG1Equ5xkkGYsKESseAMrRSwfkF7ICUdT/v1htt056B/iVeSBinR7tc/e4OU5wko5JIZE3huhmHBNAouYVrr5QYyxsdsCIGliiVgwmJ+8pSeWGVA41TbUkjn6s+JgiXGTJLIdiYMR2bZm4n/eUGO8WVYCJXlCIovFsW5pJjS2f90IDRwlBNLGNfC3kr5iGnG0aZUsyF4yy//Jf5Z86rp3Z03WtdlGlVyRI7JKfHIBWmRW9ImPuEkJU/khbw66Dw7b877orXilDOH5Becj28qZZC4</latexit><latexit sha1_base64="YvPFM27b8ZVaped9klo4iffTb8I=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lEUG9FLx4rGFtIQ9lsJ+3SzSbsToQS+jO8eFDx6r/x5r9x2+ag1QcDj/dmmJkXZVIYdN0vp7Kyura+Ud2sbW3v7O7V9w8eTJprDj5PZaq7ETMghQIfBUroZhpYEknoROObmd95BG1Equ5xkkGYsKESseAMrRSwfkF7ICUdT/v1htt056B/iVeSBinR7tc/e4OU5wko5JIZE3huhmHBNAouYVrr5QYyxsdsCIGliiVgwmJ+8pSeWGVA41TbUkjn6s+JgiXGTJLIdiYMR2bZm4n/eUGO8WVYCJXlCIovFsW5pJjS2f90IDRwlBNLGNfC3kr5iGnG0aZUsyF4yy//Jf5Z86rp3Z03WtdlGlVyRI7JKfHIBWmRW9ImPuEkJU/khbw66Dw7b877orXilDOH5Becj28qZZC4</latexit><latexit sha1_base64="YvPFM27b8ZVaped9klo4iffTb8I=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lEUG9FLx4rGFtIQ9lsJ+3SzSbsToQS+jO8eFDx6r/x5r9x2+ag1QcDj/dmmJkXZVIYdN0vp7Kyura+Ud2sbW3v7O7V9w8eTJprDj5PZaq7ETMghQIfBUroZhpYEknoROObmd95BG1Equ5xkkGYsKESseAMrRSwfkF7ICUdT/v1htt056B/iVeSBinR7tc/e4OU5wko5JIZE3huhmHBNAouYVrr5QYyxsdsCIGliiVgwmJ+8pSeWGVA41TbUkjn6s+JgiXGTJLIdiYMR2bZm4n/eUGO8WVYCJXlCIovFsW5pJjS2f90IDRwlBNLGNfC3kr5iGnG0aZUsyF4yy//Jf5Z86rp3Z03WtdlGlVyRI7JKfHIBWmRW9ImPuEkJU/khbw66Dw7b877orXilDOH5Becj28qZZC4</latexit>

1<latexit sha1_base64="r4j53QRufGSBu66EFFOs0fGzpjA=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWaXq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZd85oX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDpO4yJ</latexit><latexit sha1_base64="r4j53QRufGSBu66EFFOs0fGzpjA=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWaXq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZd85oX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDpO4yJ</latexit><latexit sha1_base64="r4j53QRufGSBu66EFFOs0fGzpjA=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWaXq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZd85oX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDpO4yJ</latexit><latexit sha1_base64="r4j53QRufGSBu66EFFOs0fGzpjA=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMLxhbaUDbbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szzMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWaXq9SdWvuDGSZeAWpQoFGr/LV7Scsi1EaJqjWHc9NTZBTZTgTOCl3M40pZSM6wI6lksaog3x26IScWqVPokTZkobM1N8TOY21Hseh7YypGepFbyr+53UyE10FOZdpZlCy+aIoE8QkZPo16XOFzIixJZQpbm8lbEgVZcZmU7YheIsvLxP/vHZd85oX1fpNkUYJjuEEzsCDS6jDHTTABwYIz/AKb86j8+K8Ox/z1hWnmDmCP3A+fwDpO4yJ</latexit>

2<latexit sha1_base64="T+EERirJh67ollwP0uc+cjp/T5k=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68Sv1a9rnrNi0r9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/qvoyK</latexit><latexit sha1_base64="T+EERirJh67ollwP0uc+cjp/T5k=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68Sv1a9rnrNi0r9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/qvoyK</latexit><latexit sha1_base64="T+EERirJh67ollwP0uc+cjp/T5k=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68Sv1a9rnrNi0r9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/qvoyK</latexit><latexit sha1_base64="T+EERirJh67ollwP0uc+cjp/T5k=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68Sv1a9rnrNi0r9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/qvoyK</latexit>

3
<latexit sha1_base64="PDcf3tlZipfwGTSkILZYXMZoK2E=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lUUG9FLx5bMLbQhrLZTtu1m03Y3Qgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/woONUMfRZLGLVCqlGwSX6hhuBrUQhjUKBzXB0O/WbT6g0j+W9GScYRHQgeZ8zaqzUOO+WK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNDp2QE6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PSvgozLJDUo2XxRPxXExGT6NelxhcyIsSWUKW5vJWxIFWXGZlOyIXiLLy8T/6x6XfUaF5XaTZ5GEY7gGE7Bg0uowR3UwQcGCM/wCm/Oo/PivDsf89aCk88cwh84nz/sQYyL</latexit><latexit sha1_base64="PDcf3tlZipfwGTSkILZYXMZoK2E=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lUUG9FLx5bMLbQhrLZTtu1m03Y3Qgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/woONUMfRZLGLVCqlGwSX6hhuBrUQhjUKBzXB0O/WbT6g0j+W9GScYRHQgeZ8zaqzUOO+WK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNDp2QE6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PSvgozLJDUo2XxRPxXExGT6NelxhcyIsSWUKW5vJWxIFWXGZlOyIXiLLy8T/6x6XfUaF5XaTZ5GEY7gGE7Bg0uowR3UwQcGCM/wCm/Oo/PivDsf89aCk88cwh84nz/sQYyL</latexit><latexit sha1_base64="PDcf3tlZipfwGTSkILZYXMZoK2E=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lUUG9FLx5bMLbQhrLZTtu1m03Y3Qgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/woONUMfRZLGLVCqlGwSX6hhuBrUQhjUKBzXB0O/WbT6g0j+W9GScYRHQgeZ8zaqzUOO+WK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNDp2QE6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PSvgozLJDUo2XxRPxXExGT6NelxhcyIsSWUKW5vJWxIFWXGZlOyIXiLLy8T/6x6XfUaF5XaTZ5GEY7gGE7Bg0uowR3UwQcGCM/wCm/Oo/PivDsf89aCk88cwh84nz/sQYyL</latexit><latexit sha1_base64="PDcf3tlZipfwGTSkILZYXMZoK2E=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lUUG9FLx5bMLbQhrLZTtu1m03Y3Qgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/woONUMfRZLGLVCqlGwSX6hhuBrUQhjUKBzXB0O/WbT6g0j+W9GScYRHQgeZ8zaqzUOO+WK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNDp2QE6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PSvgozLJDUo2XxRPxXExGT6NelxhcyIsSWUKW5vJWxIFWXGZlOyIXiLLy8T/6x6XfUaF5XaTZ5GEY7gGE7Bg0uowR3UwQcGCM/wCm/Oo/PivDsf89aCk88cwh84nz/sQYyL</latexit>

4<latexit sha1_base64="WBHF4kMSevXodtV6Szf35fn3/Ls=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6XfWatUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/txIyM</latexit><latexit sha1_base64="WBHF4kMSevXodtV6Szf35fn3/Ls=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6XfWatUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/txIyM</latexit><latexit sha1_base64="WBHF4kMSevXodtV6Szf35fn3/Ls=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6XfWatUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/txIyM</latexit><latexit sha1_base64="WBHF4kMSevXodtV6Szf35fn3/Ls=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6XfWatUr9Jk+jCCdwCufgwSXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/txIyM</latexit>

5
<latexit sha1_base64="lR5CeQtHUH/ndumVZziO+fLyPXQ=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUW9FLx5bMLbQhrLZTtu1m03Y3Qgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/woONUMfRZLGLVCqlGwSX6hhuBrUQhjUKBzXB0O/WbT6g0j+W9GScYRHQgeZ8zaqzUuOiWK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNDp2QE6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PSvgozLJDUo2XxRPxXExGT6NelxhcyIsSWUKW5vJWxIFWXGZlOyIXiLLy8T/6x6XfUa55XaTZ5GEY7gGE7Bg0uowR3UwQcGCM/wCm/Oo/PivDsf89aCk88cwh84nz/vR4yN</latexit><latexit sha1_base64="lR5CeQtHUH/ndumVZziO+fLyPXQ=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUW9FLx5bMLbQhrLZTtu1m03Y3Qgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/woONUMfRZLGLVCqlGwSX6hhuBrUQhjUKBzXB0O/WbT6g0j+W9GScYRHQgeZ8zaqzUuOiWK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNDp2QE6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PSvgozLJDUo2XxRPxXExGT6NelxhcyIsSWUKW5vJWxIFWXGZlOyIXiLLy8T/6x6XfUa55XaTZ5GEY7gGE7Bg0uowR3UwQcGCM/wCm/Oo/PivDsf89aCk88cwh84nz/vR4yN</latexit><latexit sha1_base64="lR5CeQtHUH/ndumVZziO+fLyPXQ=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUW9FLx5bMLbQhrLZTtu1m03Y3Qgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/woONUMfRZLGLVCqlGwSX6hhuBrUQhjUKBzXB0O/WbT6g0j+W9GScYRHQgeZ8zaqzUuOiWK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNDp2QE6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PSvgozLJDUo2XxRPxXExGT6NelxhcyIsSWUKW5vJWxIFWXGZlOyIXiLLy8T/6x6XfUa55XaTZ5GEY7gGE7Bg0uowR3UwQcGCM/wCm/Oo/PivDsf89aCk88cwh84nz/vR4yN</latexit><latexit sha1_base64="lR5CeQtHUH/ndumVZziO+fLyPXQ=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUW9FLx5bMLbQhrLZTtu1m03Y3Qgl9Bd48aDi1b/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/woONUMfRZLGLVCqlGwSX6hhuBrUQhjUKBzXB0O/WbT6g0j+W9GScYRHQgeZ8zaqzUuOiWK27VnYEsEy8nFchR75a/Or2YpRFKwwTVuu25iQkyqgxnAielTqoxoWxEB9i2VNIIdZDNDp2QE6v0SD9WtqQhM/X3REYjrcdRaDsjaoZ60ZuK/3nt1PSvgozLJDUo2XxRPxXExGT6NelxhcyIsSWUKW5vJWxIFWXGZlOyIXiLLy8T/6x6XfUa55XaTZ5GEY7gGE7Bg0uowR3UwQcGCM/wCm/Oo/PivDsf89aCk88cwh84nz/vR4yN</latexit>

6
<latexit sha1_base64="+0NiW+lgv6QdEXkzfKy4+T0AmBU=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE/LgVvXhswdhCG8pmO23XbjZhdyOU0F/gxYOKV/+SN/+N2zYHbX0w8Hhvhpl5YSK4Nq777RRWVtfWN4qbpa3tnd298v7Bg45TxdBnsYhVK6QaBZfoG24EthKFNAoFNsPR7dRvPqHSPJb3ZpxgENGB5H3OqLFS46JbrrhVdwayTLycVCBHvVv+6vRilkYoDRNU67bnJibIqDKcCZyUOqnGhLIRHWDbUkkj1EE2O3RCTqzSI/1Y2ZKGzNTfExmNtB5Hoe2MqBnqRW8q/ue1U9O/CjIuk9SgZPNF/VQQE5Pp16THFTIjxpZQpri9lbAhVZQZm03JhuAtvrxM/LPqddVrnFdqN3kaRTiCYzgFDy6hBndQBx8YIDzDK7w5j86L8+58zFsLTj5zCH/gfP4A8MqMjg==</latexit><latexit sha1_base64="+0NiW+lgv6QdEXkzfKy4+T0AmBU=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE/LgVvXhswdhCG8pmO23XbjZhdyOU0F/gxYOKV/+SN/+N2zYHbX0w8Hhvhpl5YSK4Nq777RRWVtfWN4qbpa3tnd298v7Bg45TxdBnsYhVK6QaBZfoG24EthKFNAoFNsPR7dRvPqHSPJb3ZpxgENGB5H3OqLFS46JbrrhVdwayTLycVCBHvVv+6vRilkYoDRNU67bnJibIqDKcCZyUOqnGhLIRHWDbUkkj1EE2O3RCTqzSI/1Y2ZKGzNTfExmNtB5Hoe2MqBnqRW8q/ue1U9O/CjIuk9SgZPNF/VQQE5Pp16THFTIjxpZQpri9lbAhVZQZm03JhuAtvrxM/LPqddVrnFdqN3kaRTiCYzgFDy6hBndQBx8YIDzDK7w5j86L8+58zFsLTj5zCH/gfP4A8MqMjg==</latexit><latexit sha1_base64="+0NiW+lgv6QdEXkzfKy4+T0AmBU=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE/LgVvXhswdhCG8pmO23XbjZhdyOU0F/gxYOKV/+SN/+N2zYHbX0w8Hhvhpl5YSK4Nq777RRWVtfWN4qbpa3tnd298v7Bg45TxdBnsYhVK6QaBZfoG24EthKFNAoFNsPR7dRvPqHSPJb3ZpxgENGB5H3OqLFS46JbrrhVdwayTLycVCBHvVv+6vRilkYoDRNU67bnJibIqDKcCZyUOqnGhLIRHWDbUkkj1EE2O3RCTqzSI/1Y2ZKGzNTfExmNtB5Hoe2MqBnqRW8q/ue1U9O/CjIuk9SgZPNF/VQQE5Pp16THFTIjxpZQpri9lbAhVZQZm03JhuAtvrxM/LPqddVrnFdqN3kaRTiCYzgFDy6hBndQBx8YIDzDK7w5j86L8+58zFsLTj5zCH/gfP4A8MqMjg==</latexit><latexit sha1_base64="+0NiW+lgv6QdEXkzfKy4+T0AmBU=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE/LgVvXhswdhCG8pmO23XbjZhdyOU0F/gxYOKV/+SN/+N2zYHbX0w8Hhvhpl5YSK4Nq777RRWVtfWN4qbpa3tnd298v7Bg45TxdBnsYhVK6QaBZfoG24EthKFNAoFNsPR7dRvPqHSPJb3ZpxgENGB5H3OqLFS46JbrrhVdwayTLycVCBHvVv+6vRilkYoDRNU67bnJibIqDKcCZyUOqnGhLIRHWDbUkkj1EE2O3RCTqzSI/1Y2ZKGzNTfExmNtB5Hoe2MqBnqRW8q/ue1U9O/CjIuk9SgZPNF/VQQE5Pp16THFTIjxpZQpri9lbAhVZQZm03JhuAtvrxM/LPqddVrnFdqN3kaRTiCYzgFDy6hBndQBx8YIDzDK7w5j86L8+58zFsLTj5zCH/gfP4A8MqMjg==</latexit>

7
<latexit sha1_base64="6D76TCE2Ea/SN28umgmnxW6vjRI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6XfWal5X6TZ5GEU7gFM7BgxrU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/yTYyP</latexit><latexit sha1_base64="6D76TCE2Ea/SN28umgmnxW6vjRI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6XfWal5X6TZ5GEU7gFM7BgxrU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/yTYyP</latexit><latexit sha1_base64="6D76TCE2Ea/SN28umgmnxW6vjRI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6XfWal5X6TZ5GEU7gFM7BgxrU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/yTYyP</latexit><latexit sha1_base64="6D76TCE2Ea/SN28umgmnxW6vjRI=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYmuggmXaWZQssWiKBPEJGT2NelzhcyIsSWUKW5vJWxIFWXGZlOyIXjLL68S/6J6XfWal5X6TZ5GEU7gFM7BgxrU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/yTYyP</latexit>

8
<latexit sha1_base64="iCbDsWM2/1S99bF/4yvjnF1i8Cc=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYlqwYTLNDMo2WJRlAliEjL7mvS5QmbE2BLKFLe3EjakijJjsynZELzll1eJf1G9rnrNy0r9Jk+jCCdwCufgwRXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/z0IyQ</latexit><latexit sha1_base64="iCbDsWM2/1S99bF/4yvjnF1i8Cc=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYlqwYTLNDMo2WJRlAliEjL7mvS5QmbE2BLKFLe3EjakijJjsynZELzll1eJf1G9rnrNy0r9Jk+jCCdwCufgwRXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/z0IyQ</latexit><latexit sha1_base64="iCbDsWM2/1S99bF/4yvjnF1i8Cc=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYlqwYTLNDMo2WJRlAliEjL7mvS5QmbE2BLKFLe3EjakijJjsynZELzll1eJf1G9rnrNy0r9Jk+jCCdwCufgwRXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/z0IyQ</latexit><latexit sha1_base64="iCbDsWM2/1S99bF/4yvjnF1i8Cc=">AAAB53icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN6KXjy2YGyhDWWznbRrN5uwuxFK6S/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoQSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hodua3nlBpnsh7M04xiOlA8ogzaqzUrPXKFbfqzkFWiZeTCuRo9Mpf3X7CshilYYJq3fHc1AQTqgxnAqelbqYxpWxEB9ixVNIYdTCZHzolZ1bpkyhRtqQhc/X3xITGWo/j0HbG1Az1sjcT//M6mYlqwYTLNDMo2WJRlAliEjL7mvS5QmbE2BLKFLe3EjakijJjsynZELzll1eJf1G9rnrNy0r9Jk+jCCdwCufgwRXU4Q4a4AMDhGd4hTfn0Xlx3p2PRWvByWeO4Q+czx/z0IyQ</latexit>

k
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Figure 2.1: Network with K agents with the set of neighbors Nk highlighted in blue.

at 1 an eigenvector denoted by π whose entries are positive and add up to 1, namely,

Aπ = π, π ≻ 0, πT1 = 1. (2.6)

We refer to π as the Perron vector. If the combination matrix is furthermore right-stochastic,
that is, the entries on each row of A add up to one as well, then we say that A is doubly stochastic.
As a result, the associated Perron eigenvector will be a uniform vector, that is,

AT1 = 1 and A1 = 1 ⇒ π = 1
K
1. (2.7)

The aforementioned properties imply that the columns of the matrix powers Am converge,
as m → ∞, to the Perron eigenvector at an exponential rate governed by the second largest-
magnitude eigenvalue of A, as stated in the following property [59].

Property 2.1 (Convergence of matrix powers). Let A be a left-stochastic matrix, where
its second largest-magnitude eigenvalue is denoted by β2. Then, for any positive β such
that |β2| < β < 1, there exists a positive constant κ (depending only on A and β), such
that, for all ℓ, k = 1, 2, . . . , K , and for all m = 1, 2, . . ., we have that:∣∣∣∣[Am]ℓk − πℓ

∣∣∣∣ ≤ κβm. (2.8)

2.1.2 Convergence Behavior

Social learning is first and foremost a collaborative effort to discover which hypothesis, belonging
to the set Θ, provides the best explanation for the observations ξk,i. This is carried out by seeking
which likelihood Lk(ξ|θ) provides the best approximation for the unknown true distribution
fk(ξ) on average across the network.

For this purpose, we will use the concept of KL divergence [16] as a measure of dissimilarity
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Chapter 2. The Social Learning Model

between the true model fk(ξ) and the likelihood Lk(ξ|θ):

Dk(fk||Lk(θ)) = E fk

(
log fk(ξ)

Lk(ξ|θ)

)
, (2.9)

where E fk
denotes the expectation computed with respect to distribution fk(ξ). Note that

we are dropping the argument ξ from the left-hand side for simplicity of notation. The KL
divergence will be a recurring instrument throughout our analysis and results. To ensure that
these quantities are well posed, we introduce the following condition.

Assumption 2.1 (Finite KL divergences). We assume that, for all k = 1, 2, . . . , K , and
all θ ∈ Θ:

D(fk||Lk(θ)) < ∞. (2.10)

Assumption 2.1 implies that the support of the true model fk(ξ), i.e., the range of values over
which fk(ξ) is strictly positive, is contained in the support of each likelihood Lk(ξ|θ).

We further assume that at the initial time i = 0 agents have no reason to discard any hypothesis,
and therefore they should have positive initial beliefs across all hypotheses.

Assumption 2.2 (Positive initial beliefs). We assume that, for all k = 1, 2, . . . , K , and
all θ ∈ Θ, µk,0(θ) > 01.

Note that, in view of (2.2), if µk,i−1(θ) > 0, then ψk,i(θ) > 0 since Lk(ξk,i|θ) > 0 (since the
support of each likelihood contains the support of the true model). Thus, µk,i(θ) is strictly
positive, in view of (2.3), since the combination weights are nonnegative. And, more generally,
from Assumption 2.2, µk,i(θ) > 0 for all i = 1, 2, . . . .

We also introduce the following classical identifiability condition meant to avoid the confusion
state described in Section 1.1.1, where the beliefs of an agent do not converge but can wander
around randomly over time. Let the network KL divergence be defined as the weighted quantity:

D(θ) ≜
K∑

ℓ=1
πℓD(fℓ||Lℓ(θ)). (2.11)

Assumption 2.3 (Unique minimizer in strongly connected graphs). The function
D(θ) has a unique minimizer:

θ⋆ ≜ argmin
θ∈Θ

D(θ). (2.12)

We state next a theorem characterizing the convergence of beliefs within strongly connected
networks. Similar results are found in [40] and [43] for the Combine-Then-Adapt version of

1The initial beliefs can also be taken as random quantities assumed to be independent of the observations at
subsequent instants, in which case it is denoted by µk,0(θ). This setting will appear further ahead in Chapter 5.

24



2.1 Reaching Consensus

the social learning algorithm. We choose to report here an alternative result and its proof,
for the Adapt-Then-Combine version (2.2)–(2.3), as we find the arguments to be material to
understanding the inner workings of social learning.

Theorem 2.1 (Belief convergence in strongly connected networks). Consider a
strongly connected network with a left-stochastic combination matrix and Perron eigenvector
π. Under Assumptions 2.1, 2.2, and 2.3, the beliefs of strategy (2.2)–(2.3) converge almost
surely to the unique minimizer θ⋆ of the network divergence (2.11), namely,

µk,i(θ⋆) a.s.−→ 1. (2.13)

Proof. In view of (2.2), we can write, for any distinct pair θ, θ′ ∈ Θ,

log
ψk,i(θ)
ψk,i(θ′) = log

µk,i−1(θ)
µk,i−1(θ′) + log

Lk(ξk,i|θ)
Lk(ξk,i|θ′) , (2.14)

and similarly, from (2.3), we can write

log
µk,i(θ)
µk,i(θ′) =

K∑
ℓ=1

aℓk log
ψℓ,i(θ)
ψℓ,i(θ′) . (2.15)

Replacing (2.14) into (2.15) yields a recursion in terms of log-ratio quantities:

log
µk,i(θ)
µk,i(θ′) =

K∑
ℓ=1

aℓk

(
log

µℓ,i−1(θ)
µℓ,i−1(θ′) + log

Lℓ(ξℓ,i|θ)
Lℓ(ξℓ,i|θ′)

)
. (2.16)

Iterating the recursion over i, and dividing the resulting expression by i, allows us to write:

1
i

log
µk,i(θ)
µk,i(θ′) = 1

i

K∑
ℓ=1

[Ai]ℓk log µℓ,0(θ)
µℓ,0(θ′) + 1

i

i∑
m=1

K∑
ℓ=1

[Am]ℓk log
Lℓ(ξℓ,i−m+1|θ)
Lℓ(ξℓ,i−m+1|θ′)︸ ︷︷ ︸
≜xℓ,i−m+1

. (2.17)

From Assumption 2.2, the first term on the RHS of (2.17) converges to 0, as i goes to infinity.
The second term can be split in two terms:

1
i

i∑
m=1

K∑
ℓ=1

[Am]ℓkxℓ,i−m+1 = 1
i

i∑
m=1

K∑
ℓ=1

(
[Am]ℓk − πℓ

)
xℓ,i−m+1

+ 1
i

i∑
m=1

K∑
ℓ=1

πℓxℓ,i−m+1. (2.18)

We establish in the remainder of the proof the following claims: The first term on the RHS of
(2.18) vanishes while the second term converges to a finite value.

1. First term on the RHS of (2.18) vanishes

We verify that the first term on the RHS of (2.18) goes almost surely to 0, using the property of
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convergence of powers of A. Since A is a left-stochastic strongly connected matrix, from the
Perron-Frobenius theorem, we have the following limit:

lim
m→∞

Am = π1T, (2.19)

which implies that for some ε > 0, there exists an index i0 such that for m > i0,

|[Am]ℓk − πℓ| < ϵ. (2.20)

We split the first term on the RHS of (2.18) into two summations:

i∑
m=1

K∑
ℓ=1

(
[Am]ℓk − πℓ

)
xℓ,i−m+1 =

i0−1∑
m=1

K∑
ℓ=1

(
[Am]ℓk − πℓ

)
xℓ,i−m+1

+
i∑

m=i0

K∑
ℓ=1

(
[Am]ℓk − πℓ

)
xℓ,i−m+1. (2.21)

We take the absolute value of (2.21), divide it by i, and use the triangle inequality to write:

1
i

∣∣∣∣∣
i∑

m=1

K∑
ℓ=1

(
[Am]ℓk − πℓ

)
xℓ,i−m+1

∣∣∣∣∣ ≤ 1
i

∣∣∣∣∣
i0−1∑
m=1

K∑
ℓ=1

(
[Am]ℓk − πℓ

)
xℓ,i−m+1

∣∣∣∣∣
+ 1

i

∣∣∣∣∣∣
i∑

m=i0

K∑
ℓ=1

(
[Am]ℓk − πℓ

)
xℓ,i−m+1

∣∣∣∣∣∣ . (2.22)

The first term on the RHS of (2.22) can be upper bounded in the following manner:

1
i

∣∣∣∣∣
i0−1∑
m=1

K∑
ℓ=1

(
[Am]ℓk − πℓ

)
xℓ,i−m+1

∣∣∣∣∣ (a)
≤ 1

i

i0−1∑
m=1

K∑
ℓ=1

|[Am]ℓk − πℓ| |xℓ,i−m+1| (2.23)

where (a) follows from the triangle inequality. Since A is left stochastic, we have that

|[Am]ℓk − πℓ| ≤ 1 (2.24)

which implies that:

1
i

∣∣∣∣∣
i0−1∑
m=1

K∑
ℓ=1

(
[Am]ℓk − πℓ

)
xℓ,i−m+1

∣∣∣∣∣ ≤ 1
i

i0−1∑
m=1

K∑
ℓ=1

|xℓ,i−m+1|

(a)=
K∑

ℓ=1

i∑
j=i−i0

|xℓ,j |
i

(2.25)

26



2.1 Reaching Consensus

where in (a) the terms in the summation are reordered. From2

xℓ,j

i
a.s.−→ 0, (2.27)

we have that the inner summands on the RHS of (2.25) vanish a.s., which implies that

1
i

∣∣∣∣∣
i0−1∑
m=1

K∑
ℓ=1

(
[Am]ℓk − πℓ

)
xℓ,i−m+1

∣∣∣∣∣ a.s.−→ 0. (2.28)

The second term on the RHS of (2.22) can be upper bounded by:

1
i

∣∣∣∣∣∣
i∑

m=i0

K∑
ℓ=1

(
[Am]ℓk − πℓ

)
xℓ,i−m+1

∣∣∣∣∣∣ ≤ 1
i

i∑
m=i0

K∑
ℓ=1

ε |xℓ,i−m+1| , (2.29)

where (a) follows from the triangle inequality and the property in (2.20). Therefore, we can
bound (2.29) as:

1
i

∣∣∣∣∣
i∑

m=1

K∑
ℓ=1

(
[Am]ℓk − πℓ

)
xℓ,i−m+1

∣∣∣∣∣ (a)
≤ 1

i

i∑
m=i0

K∑
ℓ=1

ε |xℓ,i−m+1|

a.s.−→ 0, (2.30)

where the convergence to 0 follows from the arbitrariness of ε and the fact that3

1
i

i∑
m=i0

|xℓ,i−m+1| a.s.−→ E fℓ
|xℓ,i| < ∞. (2.32)

2. Second term on the RHS of (2.18) converges

In view of Assumption 2.1 and the iid property of observations ξk,i over time, we can use
the strong law of large numbers [18] to establish that the second term on the RHS of (2.18)
converges almost surely to its mean, i.e.,

1
i

i∑
m=1

K∑
ℓ=1

πℓxℓ,i−m+1
a.s.−→

K∑
ℓ=1

πℓE fℓ
(xℓ,i)

2This convergence can be seen by writing the following sum of i samples:

1
i

i∑
m=1

xℓ,m = xℓ,1

i
+ 1

i

i∑
m=2

xℓ,m (2.26)

and noticing that the term on the LHS and the second term on the RHS both converge a.s. to Exℓ,m from the strong
law of large numbers (SLLN), implying that the remaining term vanishes.

3From the definition of xℓ,i in (2.17), we have that:

E fxℓ,i = D(fℓ||Lℓ(θ′)) − D(fℓ||Lℓ(θ)). (2.31)

In view of Assumption 1.1, it follows that E fxℓ,i exists and takes a finite value. Therefore xℓ,i is an integrable
random variable and the convergence follows from the SLLN.
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=
K∑

ℓ=1
πℓ

(
D(fℓ||Lℓ(θ′)) − D(fℓ||Lℓ(θ))

)
. (2.33)

Using definition (2.11) and expressions (2.17)–(2.18) we conclude that

1
i

log
µk,i(θ)
µk,i(θ′)

a.s.−→ D(θ′) − D(θ). (2.34)

Recall that, by definition, θ⋆ is the unique minimizer of the network KL divergence D(θ). Let
us replace θ by θ⋆ in (2.34). Then we have, for all θ′ ̸= θ⋆, that:

1
i

log
µk,i(θ⋆)
µk,i(θ′)

a.s.−→ D(θ′) − D(θ⋆) > 0, (2.35)

which implies that, for all θ′ ̸= θ⋆,

log
µk,i(θ⋆)
µk,i(θ′)

a.s.−→ +∞ ⇒ µk,i(θ′) a.s.−→ 0. (2.36)

The proof is complete since the belief components should add up to 1.

We therefore find that all agents reach consensus asymptotically around θ⋆. We can compare
this outcome with the single-agent case. Thus, consider a single-agent scenario where agent
k evolves in isolation. Agent k would decide for the hypothesis θ that yields the best match
between Lk(ξ|θ) and fk(ξ). This can be achieved by picking the hypothesis that minimizes
D(fk||Lk(θ)) over θ ∈ Θ. In the social learning setup, agents pick the hypothesis that minimizes
the network KL divergence D(θ), which is a weighted average of the individual KL divergences.

The minimization of the network KL divergence introduces some robustness into the final choice
of the agents. To see this, consider a malfunctioning agent m in the network, whose divergence
D(fm||Lm(θ)) is minimized by multiple hypotheses in the subset Θm ⊂ Θ. At any other
functioning agent k ̸= m, D(fk||Lk(θ)) is minimized at a unique hypothesis θf ∈ Θ. If agent m
evolved in isolation, according to the discussion in Section 1.1.1, it would not be able to decide
for a single hypothesis and would remain confused among the hypotheses in Θm. In social
learning, this can be avoided. Since agents choose the hypothesis minimizing the network KL
divergence, the majority of functioning agents will steer the whole network, including agent m,
toward the unique minimizer hypothesis θf .

2.1.3 Convergence Behavior under Objective Evidence

Consider now the case in which the unknown true distribution fk coincides with one of the
likelihoods pertaining to agent k, namely, Lk(ξ|θ0) for all agents k = 1, 2, . . . , K , where θ0
belongs to Θ. In this case, we refer to θ0 as the true state of the world, as it explains perfectly
the nature of all observations collected across the network. In the scenario under objective
evidence, we say that:

ξk,i ∼ Lk(ξ|θ0), (2.37)
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For ease of notation, under objective evidence we denote the KL divergence between the true
likelihood Lk(ξ|θ0) and any other likelihood Lk(ξ|θ) by

dk(θ) ≜ D(Lk(θ0)||Lk(θ)). (2.38)

In this scenario, we propose the following modification to Assumption 2.1 regarding the finite-
ness of KL divergences.

Assumption 2.4 (Finite KL divergences). We assume that, for all k = 1, 2, . . . , K , and
each pair of distinct hypotheses θ, θ′ ∈ Θ:

D(Lk(θ)||Lk(θ′)) < ∞. (2.39)

This condition ensures that for any choice of θ0 ∈ Θ, the KL divergences between the true
likelihood Lk(ξ|θ0) and any other likelihood L(ξ|θ′), θ′ ̸= θ0, are well posed. Assumption 2.4
can be relaxed to require that for any θ ̸= θ0:

D(Lk(θ0)||Lk(θ)) < ∞ (2.40)

in a similar way as in Assumption 2.1. While in the general formulation described in Section 2.1.2,
agents sought to identify the hypothesis and its corresponding likelihood that best explained
the observations, under objective evidence, social learning is used as a means of learning the
truth. The concept of truth learning corresponds to the capacity of each agent to concentrate
their beliefs around the true hypothesis, as described in the following definition.

Definition 2.1.1 (Truth learning). We say that agent k running strategy (2.2)–(2.3) learns
the truth when the following convergence behavior is observed:

µk,i(θ0) a.s.−→ 1. (2.41)

In practical applications, it is possible that a certain agent cannot distinguish a hypothesis from
the truth. In this case, when an agent k cannot distinguish θ from θ0, it will hold that

Lk(ξ|θ) = Lk(ξ|θ0), for all ξ ∈ Xk ⇔ dk(θ) = 0. (2.42)

Consider the following example. Agent k is observing RGB images of animals and trying to
detect whether these images correspond to a dog, a wolf, or a cat, i.e., Θ = {dog, wolf, cat}. If
the agent only sees a part of the full image, i.e., ξk,i corresponds to a small RGB patch, it is
possible that this limited information is only helpful in distinguishing dogs from cats, but not
dogs from wolves. In this case, the agent’s likelihood models corresponding to a dog and a wolf
can be identical Lk(ξ|dog) = Lk(ξ|wolf) for all ξ.

In isolation, if the agent k is not able to distinguish whether its observations are arising from
hypothesis θ0 or θ, it cannot learn the truth. To see that, consider the single-agent case—
subscript k is dropped—with flat prior belief, i.e., µ0(θ) = 1/H , where the recursive Bayesian
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update in (1.11) yields:

µi(θ) ∝ L(ξi|θ)µi−1(θ) =
i∏

m=1
L(ξm|θ) 1

H
. (2.43)

If d(θ) = 0 for two hypotheses θ0 ̸= θ, then

µi(θ0)
µi(θ) =

i∏
m=1

L(ξm|θ0)
L(ξm|θ)

1
H
1
H

= 1. (2.44)

Therefore, the observations provide no information that allows the agent to distinguish hy-
potheses θ and θ0, and thus µi(θ0) = µi(θ) for i = 1, 2, . . . .

Motivated by this discussion, we associate with each agent k, a set of locally indistinguishable
hypotheses, namely,

Θk ≜ {θ : dk(θ) = 0}, (2.45)

which is the set of hypotheses whose KL divergences with respect to the true hypothesis is zero.
The complementary set made of locally distinguishable hypotheses by agent k is given by:

Θ̄k ≜ Θ \ Θk. (2.46)

In many practical situations, the limited knowledge available locally at the individual agents
precludes them from identifying the true state. When this happens, we say that the problem is
not locally identifiable, which formally means that all local indistinguishable sets would have
cardinality larger than one, i.e.,

|Θk| > 1, ∀k = 1, 2, . . . , K. (2.47)

In a collaborative setup, these local difficulties can be overcome by exchanging information with
neighbors. Since the network is strongly connected, eventually after sufficient iterations, any
piece of knowledge available at one agent will diffuse to all others. In social learning, instead of
requiring agents to have locally identifiable likelihoods, it suffices for the models to be globally
identifiable, as described in the next assumption.

Assumption 2.5 (Global identifiability). For each hypothesis θ ̸= θ0 there exists at least
one agent k in the network for which

dk(θ) > 0. (2.48)

Under global identifiability, it is clear that the network KL divergence D(θ) defined in (2.11)
is zero for θ = θ0 and strictly positive due to Assumption 2.5, since the entries of the Perron
eigenvector are positive. Therefore, the true hypothesis becomes the unique minimizer of D(θ).
We state the belief convergence result in Corollary 2.1

Corollary 2.1 (Belief convergence under objective truth). Consider a strongly connected
network with a left-stochastic combination matrix, and assume all observations are generated
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2.2 Influence and Disagreement

by the same model θ0, i.e., ξk,i ∼ Lk(ξ|θ0) for all k = 1, 2, . . . , K . Under Assumptions 2.2, 2.4,
and 2.5, the beliefs of strategy (2.2)–(2.3) converge almost surely to the truth, namely,

µk,i(θ0) a.s.−→ 1. (2.49)

Proof. Corollary 2.1 is proven by noticing that Assumption 2.5 implies that θ⋆, from Theorem 2.2,
coincides with θ0. When fℓ(ξ) = Lℓ(ξ|θ0), the network divergence is written as

D(θ) =
K∑

ℓ=1
πℓdℓ(θ). (2.50)

Clearly, D(θ0) is equal to 0. From Assumption 2.5, for each θ ̸= θ0, there exists at least one
agent for which dℓ(θ) > 0. From this assumption and the fact that π ≻ 0, we have that

D(θ) > 0, θ ̸= θ0. (2.51)

Hence, θ⋆ is unique and equal to θ0.

In the next example, we illustrate the phenomenon of truth learning in strongly connected
networks corresponding to the result in Corollary 2.1.

Example 2.1 (Truth learning in strongly connected networks). Consider a strongly
connected network with 10 agents, whose topology is illustrated in the left panel of Figure 2.2.
The combination matrix A follows the Metropolis rule [37], which yields a doubly-stochastic
matrix.

Agents consider a set of 3 hypotheses, i.e., Θ = {1, 2, 3}, which explains the nature of the
world they observe. For simplicity, agents share the same set of likelihood models, i.e., for each
k, Lk(ξ|θ) = L(ξ|θ) for all θ ∈ Θ, which are Gaussian models with variance 1 and different
means given by the hypotheses θ:

L(ξ|θ) = 1√
2π

exp
{

−(ξ − θ)2

2

}
, θ ∈ Θ. (2.52)

We assume the observations ξk,i are sampled independently from the likelihood L(ξ|1) for all
agents, i.e., θ0 = 1. The likelihood models can be seen in the middle panel of Figure 2.2.

We illustrate the result of Corollary 2.1 by simulating the social learning algorithm (??)–(??) for
30 iterations. The belief convergence is shown in the right panel of Figure 2.2 for agent 1. All
other agents present similar convergence, in the sense that they all concentrate their beliefs
around the true hypothesis θ0 = 1.

2.2 Influence and Disagreement

In real-life social networks, instead of a strongly connected graph where information flows in
both directions between every two agents, we often encounter situations where communication
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Figure 2.2: (Left) Strongly connected network topology. (Middle) Likelihood models. (Right) Belief
convergence for agent 1, showing asymptotic truth learning.

happens in a unidirectional manner over some parts of the network. For example, some
influential users produce content that reaches simultaneously millions of followers, without
receiving any feedback from all these followers. This asymmetric communication dynamics
can be represented mathematically in terms of weakly connected graphs. The concept has
been first explored in [47], in the context of distributed learning, where authors consider that
information can flow from some graph components to the others in only one direction. The same
concept is explored in social learning under arithmetic [48] and geometric [49] averaging. In all
applications, the weakly connected graph introduces the effect of influence between different
network components and the possibility of disagreement between agents. We report here the
results from [49].

2.2.1 Weakly Connected Networks

A weakly connected network is generally defined as a network in which there exists a path
linking every two agents in at least one direction. A particular case is the definition of a connected
network, that is, a network where there exists a path linking every two agents in both directions.
Note that the strongly connected network presented in Section 2.1.1 is a particular case of this
definition. In this section, when treating weakly connected networks we are however interested
in a particular structure that we describe as follows.

A K−agent weakly connected network can be divided into S + R disjoint subnetworks: S
sending (sub)networks, denoted by the sets Ss with s = 1, 2, . . . , S, and R receiving (sub)networks,
denoted by the sets Rr for r = 1, 2, . . . , R. Each set Ss or Rr consists of the nodes in the
respective subnetwork. We therefore have:

S ≜
S⋃

s=1
Ss, R ≜

R⋃
r=1

Rr, S ∪ R = {1, 2, . . . , K}, (2.53)

where S and R are the union of sending and receiving networks, respectively. The connectivity
within and between different (sub)networks is characterized according to the following rules:

1. Each sending network is strongly connected.
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Figure 2.3: Weakly connected network with two sending networks, namely S1 and S2, and one receiving
network R.

2. Sending networks do not communicate with each other.

3. Each receiving network is assumed to be connected.

4. Communication occurs from a sending network to a receiving network, but not the other
way around.

With each sending network Ss we associate a combination matrix ASs , which, in view of rule 1.,
implies that we can associate with it a Perron eigenvector π(s) of dimension |Ss| × 1. Similarly,
we associate a combination matrix ARr with each receiving network Rr . An illustration of a
weakly connected network can be found in Figure 2.3 with S = 2 and R = 1.

Without loss of generality, we assume agents are numbered starting from agents belonging to
sending networks S1, S2, . . . , SS , i.e., sending agents, followed by agents from the receiving
networks R1,R2, . . . ,RR, i.e., receiving agents. In this manner, the overall combination matrix
will have the upper block triangular form:

A =
[

AS ASR

0 AR

]
, (2.54)

where the upper left block contains the combination matrices pertaining to the sending networks,
i.e.,

AS = blkdiag
{

AS1 , AS2 , . . . , ASS

}
. (2.55)

The upper right block ASR contains the combination weights associated to the links from
sending agents to receiving agents. The lower left block contains only zeros, since there are no
directed edges from receiving to sending agents. Finally, the lower right block AR collects the
weights among receiving agents. The overall network is assumed to be left stochastic and an
existing edge between two agents exists if its associated weight is positive, that is,

AT1 = 1, aℓk > 0 ⇒ ℓ ∈ Nk. (2.56)
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Relation (2.56) immediately implies that ASs is left-stochastic for every s = 1, 2, . . . , S. Another
interesting property of weakly connected networks concerns the convergence of the matrix
powers An for growing n. In [47], it was shown that the power of A converges according to
the following limit:

A∞ ≜ lim
n→∞

An =
[

E EW

0 0

]
=
[

E Ω
0 0

]
, (2.57)

where E has dimension |S| × |S| and is given by

E = blkdiag
{

π(1)1T
|S1|, π(2)1T

|S2|, . . . , π(S)1T
|SS |

}
, (2.58)

while Ω has dimension |S| × |R| and is equal to

Ω = EW, W = ASR(I|R| − AR)−1. (2.59)

Here, the notation 1|X| denotes a vector of ones with dimension |X| × 1 and I|X| is the identity
matrix with dimension |X|×|X|, where |X| is the cardinality of set X. Matrix Ω can alternatively
be expressed as

Ω = EASR(I|R| + AR + A2
R + . . . ). (2.60)

We denote the elements of Ω by ωℓk with ℓ ∈ S and k ∈ R. Since A is left-stochastic, we have
for any receiving agent k that ∑

ℓ∈S

ωℓk = 1. (2.61)

If we consider a sending agent ℓ ∈ Ss and a receiving agent k ∈ Rr , then the weight ωℓk can be
zero only if there is no edge linking sending subnetwork Ss and receiving subnetwork Rr .

2.2.2 Convergence Behavior

The convergence behavior depends on the nature of the agents. First, we note that sending
agents, i.e., k ∈ S, follow the convergence behavior of strongly connected networks established
in Section 2.1.2 [42], [49]. For each sending network Ss, the belief evolution for any agent
k ∈ Ss is governed by Theorem 2.1, with its particular Perron eigenvector π(s).

More explicitly, from Theorem 2.1, under Assumptions 2.1, 2.2, and 2.3, for k ∈ Ss:

µk,i(θ⋆
s) a.s.−→ 1, (2.62)

where θ⋆
s is the unique minimizer of the network KL divergence for sending network s:∑

k∈Ss

π
(s)
k D(fk||Lk(θ)), (2.63)

for s = 1, 2, . . . , S.

Second, the convergence behavior at receiving agents, i.e., k ∈ R, needs to be established. To
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do that, we define the average KL divergence at any receiving agent k as follows:

Dk(θ) ≜
∑
ℓ∈S

ωℓkD(fℓ||Lℓ(θ)). (2.64)

Observe that the sum is over all sending agents linked to k. Using this KL divergence, we replace
Assumption 2.3 by the following identifiability condition for weakly connected graphs.

Assumption 2.6 (Unique minimizer in weakly connected graphs). For each k ∈ R,
the function Dk(θ) has a unique minimizer:

θ⋆
k ≜ argmin

θ∈Θ
Dk(θ). (2.65)

We state next a theorem characterizing the convergence of beliefs within weakly connected
networks for the Adapt-Then-Combine social learning strategy in (2.2)–(2.3). The result was
stated in [49], and its proof appears in [42].

Theorem 2.2 (Belief convergence of receiving agents in weakly connected net-
works [42], [49]). Consider a weakly connected network for which (2.57) holds. Under
Assumptions 2.1, 2.2 and 2.6, the receiving agents under the social learning strategy (2.2)–(2.3)
will have their beliefs converge to the minimizers of (2.65) almost surely, i.e., for k ∈ R:

µk,i(θ⋆
k) a.s.−→ 1. (2.66)

Moreover, for all θ ̸= θ⋆
k, the convergence of the belief to zero takes place at an exponential

rate as:

lim
i→∞

logµk,i(θ)
i

a.s.= Dk(θ⋆
k) − Dk(θ). (2.67)

Two important phenomena can be observed from the result in Theorem 2.2. First, weakly
connected networks introduce a hierarchy of influence between different subnetworks, where
the sending agents influence the beliefs of receiving agents. From (2.64), we see that the accepted
hypothesis θ⋆

k is solely determined by the statistical models pertaining to the sending agents.
Second, receiving agents can end up in a state of disagreement. As seen in Theorem 2.2, the
hypothesis θ⋆

k around which receiving agents concetrate their beliefs varies with k and depends
on the graph topology through the weights ωℓk. From (2.60), we see that the elements of the
matrix Ω take into account the cumulative influence over all paths from sending agents to
receiving agents. Differences in this cumulative influence across different agents can result in
them converging to distinct hypotheses.

Example 2.2 (Disagreement in weakly connected networks). Consider a weakly connected
network with 12 agents divided into two sending networks and one receiving network as follows:

S1 ≜ {1, 2, 3, 4}, (2.68)

S2 ≜ {5, 6, 7, 8}, (2.69)

R ≜ {9, 10, 11, 12}. (2.70)

A diagram showing the topology of the network can be seen in the left panel of Figure 2.4.
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Figure 2.4: (Top left) Weakly connected network topology. (Top right) Likelihood models and true models
for sending networks S1 and S2, respectively f1(ξ) and f2(ξ). (Bottom) Belief convergence for receiving
agents over time.

We assume that all agents share the same set of Gaussian likelihoods, introduced in Example 2.1,
more precisely in (2.52). The true models fℓ(ξ) do not belong to this set of likelihoods, instead
they are given by the following Gaussian models, which differ across different subnetworks:

fℓ(ξ) = 1√
2π

exp
{

−(ξ − 0.8)2

2

}
≜ f1(ξ), ℓ ∈ S1, (2.71)

fℓ(ξ) = 1√
2π

exp
{

−(ξ − 3.2)2

2

}
≜ f2(ξ), ℓ ∈ S2 ∪ R. (2.72)

The likelihood models and true models f1(ξ) and f2(ξ) can be seen in the top right panel of
Figure 2.4. We compute the KL divergences between the true model fs(ξ) for s = 1, 2 and the
likelihoods L(ξ|θ) for θ ∈ Θ in the following way:

D(fs||L(θ)) = E fs

(
log fs(ξ)

L(ξ|θ)

)
= 1

2(θ − E fs(ξ))2, (2.73)

from which we can write the average KL divergence for each receiving agent k as:

Dk(θ) = 1
2(θ − 0.8)2 ∑

ℓ∈S1

ωℓk + 1
2(θ − 3.2)2 ∑

ℓ∈S2

ωℓk. (2.74)

In this example, the hypothesis that minimizes (2.74), namely, θ⋆
k, depends on the cumulative

weights for each subnetwork, that is, on

ω
(1)
k ≜

∑
ℓ∈S1

ωℓk, ω
(2)
k ≜

∑
ℓ∈S2

ωℓk. (2.75)
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2.2 Influence and Disagreement

Table 2.1: Cumulative weights given to the information received from the two sending networks S1 and
S2 for each receiving agent k.

Agent k ω
(1)
k ω

(2)
k

9 0.8 0.2
10 0.5 0.5
11 0.2 0.8
12 0.5 0.5

The larger the ratio ω
(1)
k /ω

(2)
k is, the more influence S1 bears on the minimizer of (2.74), driving

it closer to hypothesis 1. Whereas for smaller values of the same ratio, S2 has more influence
and thus steers the minimizer toward hypothesis 3. We can see in Table 2.1 the list of cumulative
weights for each receiving agent with respect to the two sending networks. The cumulative
weights quantify the influence of each sending network onto each receiving agent. For example,
we see that agent 9 is mostly influenced by sending network S1, while agent 11 is mostly
influenced by sending network S2. Agents 10 and 12 are influenced equally by both sending
components. The belief convergence shown in Figure 2.4 confirms our intuition and shows
disagreement between receiving agents.
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3 Recovering Influences in Weak
Graphs

3.1 Introduction1

In the social learning setting described in Chapter 1, several agents linked through a network
topology form their individual opinions about a phenomenon of interest by exchanging beliefs
with their neighbors. One relevant network topology for social learning takes the form of
weakly connected networks, which we described in Chapter 2. Under this model, there are two
categories of subnetworks: sending and receving subnetworks. Sending agents feed information
to receiving agents without getting any information back from them [47], [48], [60]. This
scenario is common over social networks. For example, a celebrity may have a large number of
followers, whose individual opinions are not necessarily followed by the celebrity. Another
example is that of media channels, which promote the emergence of opinions by feeding data
to users without taking into account users’ feedback.

One fundamental challenge arising in the study of social learning problems is to understand
the mechanism of opinion formation. This was explained in Section 2.2, where we showed
how the receiving agents are completely influenced by the sending subnetworks. Naturally, the
network topology plays an important role in determining the asymptotic opinion formation.
This observation motivates the question that is addressed in the current chapter, and which can
be seen as a dual learning problem. Given the observation of the receiving agents’ behavior,
we want to establish whether it is possible to learn topological influences from the sending
components to the receiving agents.

This question is interesting because it allows us to identify the main sources of information in a
network and how they influence opinion formation. This problem is challenging because we
assume that we can only observe the beliefs evolving at the receiving agents. In particular, we
will only be able to recover topological influences in terms of the limiting weights that each
receiving agent experiences from each sending component. We refer to this as macroscopic
information since these weights incorporate: i) The global effect coming from all agents
belonging to a sending component, and ii) the effect of intermediate receiving agents linked
to the receiving agent under consideration. The relevance in estimating these global weights
relies on the fact that the limiting beliefs of the receiving agents depend solely on this aggregate

1This chapter is adapted from [42], [51].
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information.

We will establish conditions under which the recovery of influence weights becomes feasible.
More specifically, given H hypotheses and S sending components, under the assumption
of homogeneous statistical models within each sending component, we will ascertain that a
necessary condition to achieve consistent influence recovery is (Lemma 3.1):

H ≥ S. (3.1)

Once the necessary condition is established, we will examine some useful models to see whether
influence recovery can be in fact achieved. We consider first a structured Gaussian model where:
i) the true underlying (Gaussian) distributions are distinct across the sending subnetworks; and
ii) the (Gaussian) likelihoods are equal across the sending subnetworks, and contain the true
distributions. For this setting, we will show in Theorem 3.1 that influence recovery is feasible
only when S = 2. We then recognize that one fundamental element for influence recovery is
the diversity between the sending subnetworks. Adding this further element, we will establish
in Theorem 3.2 that the problem is feasible for any S provided that (3.1) holds, and even under
more general (e.g., non-Gaussian) models.

In summary, we remark that there are two learning problems coexisting in our work: A social
learning problem and an influence recovery problem. The former is the direct inferential
problem studied in Chapter 2, and for which the agents are deployed. The latter is the reverse
problem, which is in fact based on observation of the output (the beliefs) of the direct learning
problem. One useful conclusion of our analysis is to reveal an interplay between these two
coexisting learning problems—see Section 3.6 further ahead.

3.2 Problem Setting

In this chapter, we consider the weakly connected network setting described in Section 2.2, where
the network consists of S sending subnetworks and R receiving subnetworks. In particular, we
assume here that each receiving subnetwork is connected to at least one agent in each sending
subnetwork.

The learning procedure used is the social learning strategy found in (2.2) and (2.3). We describe
it here in some detail: For each admissible hypothesis θ ∈ Θ at time i, each agent k uses its own
fresh private observation, ξk,i, to compute the local likelihood Lk(ξk,i|θ). Using this likelihood,
agent k updates its local belief, µk,i−1(θ), obtaining an intermediate belief ψk,i(θ) through a
Bayesian update:

ψk,i(θ) =
µk,i−1(θ)Lk(ξk,i|θ)∑

θ′∈Θ
µk,i−1(θ′)Lk(ξk,i|θ′)

. (3.2)

Then, agent k aggregates the intermediate beliefs received from its neighbors through the
following combination rule, which is equivalent to the geometric-average combination seen in
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(2.3):

µk,i(θ) =
exp

{
K∑

ℓ=1
aℓk logψℓ,i(θ)

}
∑

θ′∈Θ
exp

{
K∑

ℓ=1
aℓk logψℓ,i(θ′)

} , (3.3)

where aℓk is the nonnegative combination weight that agent k uses to scale the intermediate
log-belief received from agent ℓ. The {aℓk} are the elements of the combination matrix A—see
(2.54) and the discussion surrounding it for an overview of the properties of A.

3.2.1 Limiting Beliefs of Receiving Agents

Let us consider a single-agent scenario where agent ℓ operates alone. A natural way for agent ℓ
to choose a hypothesis would be to choose the θ that gives the best match between a model
Lℓ(ξ|θ) and the distribution of the observed data, fℓ(ξ). One measure of the match between
fℓ(ξ) and Lℓ(ξ|θ) is the KL divergence D(fℓ||Lℓ(θ)). The smaller the value of this divergence
is, the greater the match between the data and the model will be. As seen in Chapter 1, the
single-agent recursive Bayesian update yields a belief concentrated on the hypothesis θ that
minimizes the divergence D(fℓ||Lℓ(θ)).

In the social learning context, this optimization problem turns into a distributed optimization
problem. In particular, under our social learning setting over weak graphs, we have seen in
Theorem 2.2 that the social learning strategy in (3.2)–(3.3) ends up minimizing (without knowing
the true distributions) the following average divergence at receiving agent k ∈ R:

Dk(θ) ≜
∑
ℓ∈S

ωℓkD(fℓ||Lℓ(θ)), (3.4)

which is a weighted combination, through the limiting combination weights {ωℓk}, of the KL
divergences of the sending agents reaching k. We recall that the weights {ωℓk} correspond to
the elements of the matrix Ω defined in (2.59). The role of average divergence measures like
the one in (3.4) already appeared in the case of strongly connected networks. For example, it
was shown in Theorem 2.1 that with the geometric-average strategy in (3.2) and (3.3), each
agent ends up minimizing the same weighted combination of divergences in (2.11). Under
objective evidence—see Section 2.1.3, we saw in Corollary 2.1 that such minimization leads each
individual agent to discover the true underlying hypothesis.

In our weak-graph setting, however, the effect of minimizing Dk(θ) (which depends on the
particular receiving agent k) will be less obvious. We already see from (3.4) that the average
divergence combines topological attributes, encoded in the limiting combination weights, with
inferential attributes, encoded in the local KL divergences. The interplay arising between the
network topology and social learning will be critical in determining the belief convergence of
the receiving agents. We report here the result of Theorem 2.2 for ease of reference. Under
Assumptions 2.1, 2.2 and 2.6, for k ∈ R, we have that:

µk,i(θ⋆
k) a.s.−→ 1. (3.5)
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Moreover, for all θ ̸= θ⋆
k, the convergence of the belief to zero takes place at an exponential

rate:
logµk,i(θ)

i
a.s.−→ Dk(θ⋆

k) − Dk(θ). (3.6)

The proof combines the techniques used to establish the convergence of the social learning
algorithm, e.g., in [40], [41] for strongly connected graphs, with the convergence results of the
combination matrix over weak graphs used in [5], [48].

Several insightful conclusions arise from the result above. First, the limiting belief of each
receiving agent is degenerate, meaning that it collapses to a single hypothesis, when sufficient
time for learning is allowed. Second, different agents can in principle disagree, since they can
converge to different hypotheses. The hypothesis around which the belief concentrates will
depend on a weighted combination of KL divergences. Third, we see from (3.4) that only the
local divergences corresponding to the sending agents, ℓ ∈ S, determine the value of Dk(θ)
and, hence, of θ⋆

k. Therefore, the limiting hypothesis θ⋆
k at agent k is determined by the KL

divergences of statistical models pertaining to sending subnetworks, and, hence, it does not
depend on the data sensed at receiving agent k.

In a nutshell, we see the emergence of two effects: i) Influence effect, i.e., the final states of
the receiving agents are dependent only upon the properties of the detection problems at the
sending agents; ii) Disagreement effect, i.e., different network topologies allow the sending
agents to drive the receiving agents to potentially different decisions.

3.2.2 Canonical Examples

In order to examine in more detail the role the network topology plays in determining the
limiting beliefs of receiving agents, we consider a simple yet insightful example. The sending
and receiving components are:

S = S1 ∪ S2 and R, (3.7)

namely, we have two sending subnetworks, S1 and S2, and one receiving subnetwork R.

For what concerns the inferential problem, we assume there are three possible hypotheses,
θ ∈ {1, 2, 3}. The likelihood functions are the same across all agents. In particular, we assume
that, for all ξ ∈ R, and for θ ∈ {1, 2, 3}:

L(ξ|θ) = 1√
2π

exp
{

−(ξ − mθ)2

2

}
, (3.8)

where the means corresponding to the different hypotheses are chosen as, for some ∆ > 0:

m1 = −∆, m2 = 0, m3 = +∆. (3.9)

We further assume that the true distributions of the sending subnetworks are Gaussian distri-
butions, with expectations chosen among the expectations in (3.9). In particular, we assume
that agents belonging to subnetwork S1 generate data according to model θ = 1, i.e., with
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expectation equal to −∆, whereas agents belonging to subnetwork S2 generate data according
to model θ = 3, i.e., with expectation equal to +∆. Formally we write:

fℓ(ξ) = 1√
2π

exp
{

−(ξ + ∆)2

2

}
, ∀ℓ ∈ S1, (3.10)

fℓ(ξ) = 1√
2π

exp
{

−(ξ − ∆)2

2

}
, ∀ℓ ∈ S2. (3.11)

Recalling that the KL divergence between two unit-variance Gaussian distributions of expecta-
tions a and b is given by 0.5(a − b)2, under the setting described above we can write, for all
k ∈ R:

Dk(θ) =
∑
ℓ∈S

ωℓkD(fℓ||Lℓ(θ))

=
∑
ℓ∈S1

ωℓkD(fℓ||L(θ)) +
∑
ℓ∈S2

ωℓkD(fℓ||L(θ))

= (−∆ − mθ)2

2
∑
ℓ∈S1

ωℓk + (∆ − mθ)2

2
∑
ℓ∈S2

ωℓk, (3.12)

which further implies:

Dk(1) = 2∆2 ∑
ℓ∈S2

ωℓk, Dk(2) = ∆2

2 , Dk(3) = 2∆2 ∑
ℓ∈S1

ωℓk, (3.13)

where, in the intermediate equality, we used (2.61). As a result, we can compute the limiting
hypothesis, for each k ∈ R, as:

θ⋆
k = argmin

4
∑
ℓ∈S2

ωℓk, 1, 4
∑
ℓ∈S1

ωℓk

 (3.14)

From (2.60), one can argue that
∑

ℓ∈Ss
ωℓk reflects the sum of influences over all paths connecting

all sending agents in subnetwork s to receiving agent k.

In order to find the minimizer in (3.14), we start by using (2.61) in (3.14), which yields:

θ⋆
k = argmin

1 −
∑
ℓ∈S1

ωℓk, 0.25,
∑
ℓ∈S1

ωℓk

 . (3.15)

In view of Theorem 2.2, the belief of the k-th receiving agent will converge to θ⋆
k = 1 if the

following two conditions are simultaneously verified:

1 −
∑
ℓ∈S1

ωℓk < 0.25 ⇔
∑
ℓ∈S1

ωℓk > 0.75,

1 −
∑
ℓ∈S1

ωℓk <
∑
ℓ∈S1

ωℓk ⇔
∑
ℓ∈S1

ωℓk > 0.5.
(3.16)
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Taking the most stringent condition in (3.16) reveals that:

θ⋆
k = 1 ⇔

∑
ℓ∈S1

ωℓk > 0.75. (3.17)

In summary, we conclude that agent k follows the opinion promoted by sending subnetwork S1
if the influence of subnetwork S1 on agent k is “sufficiently large”.

The situation is reversed if the influence of subnetwork S2 is sufficiently large, namely,

θ⋆
k = 3 ⇔

∑
ℓ∈S2

ωℓk > 0.75, (3.18)

where we recall that hypothesis θ = 3 is promoted by subnetwork S2. However, there is another
possibility. It occurs when: ∑

ℓ∈S1

ωℓk < 0.75 and
∑
ℓ∈S2

ωℓk < 0.75. (3.19)

In this case, no clear dominance from one subnetwork can be ascertained, and each receiving
agent will choose θ⋆

k = 2, i.e., an opinion that does not coincide with any of the opinions promoted
by the sending subnetworks.

From (3.17) and (3.18), we see that the dominance of one of the sending subnetworks is deter-
mined by the aggregate influence

∑
ℓ∈S1 ωℓk , with the complementary aggregate influence being∑

ℓ∈S2 ωℓk = 1 −
∑

ℓ∈S1 ωℓk . The main way to manipulate these factors consists in varying the
sizes of the sending subnetworks or their connections with the receiving agents.

In order to illustrate more carefully the possible scenarios, we consider the following simulation
framework:

• The strongly connected sending components S1 and S2 are generated as Erdős-Rényi
random graphs with connection probability q, and the entries of the corresponding
combination matrix are determined by the averaging rule, namely,2

aℓk =
{

1/nk, if k ̸= ℓ are neighbors or k = ℓ,

0, otherwise,
(3.20)

where nk is the number of neighbors of node k (including node k itself). In our experi-
ments we set q = 0.7.

• An agent k is connected to a sending agent through a Bernoulli distribution with parameter
πs, which depends on the sending subnetwork s. Given the total number dk, of directed
edges from sending agents to agent k, we initially set aℓk = 1/dk. The combination
matrix A of the overall network S1 ∪ S2 ∪ S3 is normalized so that it is left-stochastic.

It is now possible to examine different scenarios by manipulating the size of the sending
subnetworks as well as the send-receive connection probabilities πs.

2When drawing the random graph, we have verified that there exists at least one self-loop.
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Figure 3.1: How majorities build a majority. (Left) Weakly connected network, where the size of sending
subnetwork S1 is dominant. (Right) Convergence of beliefs at receiving gents.
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Figure 3.2: How filter bubbles build a majority. (Left) Weakly connected network, where the connectivity
from sending subnetwork S1 is dominant. (Right) Convergence of beliefs at receiving agents.

— Setup 1 or How majorities build a majority. In Figure 3.1, we set π1 = π2 = 0.5, i.e. it
is equally probable that a receiving agent connects to any sending agent, irrespective of the
sending subnetwork. In view of this uniformity, we can expect that the limiting weights ωℓk are
sufficiently uniform across the two sending subnetworks and, hence, that the value of

∑
ℓ∈S1 ωℓk

is primarily determined by the subnetwork size |S1|. In the example we are going to illustrate,
we assume that the number of agents in subnetwork S1 is three times larger than the size of
subnetwork S2. For clarity of visualization, we display only the belief of four receiving agents.
From the lowermost panel in Figure 3.1, we observe that receiving agents 17, 18, 20 converge to
θ = 1, i.e., to the opinion promoted by S1. We see also that agent 19 takes a minority position
and opts for θ = 2, i.e., it does follow neither the opinion promoted by S1 nor by S2. This
shows the following interesting effect. Even if subnetwork S1 is bigger, for the specific topology
shown in the example (see uppermost panel of Figure 3.1), the aggregate weight of agent 19 is∑

ℓ∈S1 ωℓ 19 = 0.6885. This means that condition (3.19) is actually verified, which explains why
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Figure 3.3: Truth is somewhere in between. (Left) Weakly connected network with balanced influences.
(Right) Convergence of beliefs at receiving agents.

agent 19 opts for θ = 2. Including in the analysis also the agents that are not displayed, in this
example we have that 2/3 of the receiving agents in the network opt for θ = 1. In summary,
we observed that building a majority of agents in S1 relative to S2 yields a majority of receiving
agents opting for the hypothesis promoted by S1.

— Setup 2 or How filter bubbles build a majority. Under this setup, we assume that both
sending components have the same size, however πs is different for each of the two components.
We set π1 = 0.9 and π2 = 0.1 in order to motivate agent k to have more connections with
subnetwork S1 than with S2. This scenario is considered in Figure 3.2, where we see that the
displayed receiving agents end up agreeing with opinion θ = 1, i.e., with the opinion promoted
by the sending component S1. Including in the analysis also the receiving agents that are not
displayed, in this example we have that all the receiving agents in the network opt for θ = 1.
Therefore, closing a receiving agent into the “filter bubble” determined by the overwhelming
flow of data coming from S1 essentially makes these agents blind to the solicitations coming
from S2.

— Setup 3 or Truth is somewhere in between. We now address the balanced case where the
sending subnetworks have the same size and similar number of connections to the receiving
subnetwork (π1 = π2 = 0.5). Under this setting, it is expected that no dominant behavior
emerges, and (3.19) holds. We see in Figure 3.3 that the opinions of receiving agents 9, 10, 11, 12
tend to converge with full confidence to hypothesis θ = 2 (mθ = 0), which is an opinion pushed
by none of the sending agents. How can we explain this effect? One interpretation is that, in
the presence of conflicting suggestions coming from the two subnetworks, the receiving agent
opts for a conservative choice. If sending subnetwork S1 says “choose −∆”, while sending
subnetwork S2 says “choose +∆”, then the receiving agent prefers to be agnostic and stays
in the middle, i.e., it chooses 0. Referring to real-life situations, we can think of one person
betting on a soccer match between teams A and B. Assuming that discordant solicitations
come from the environment, i.e., the person receives data suggesting to bet on the victory of
team A, as well as data suggesting to bet on the victory of team B. If there is no sufficient
evidence to let one suggestion prevail, then the most probable choice would be betting on a
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draw! This “truth-is-somewhere-in-between” effect is a remarkable effect that is peculiar to the
weakly connected setting, and that has been not observed before, e.g., it was not present in [48].

In summary, it is the cumulative influence of a sending group over a receiving agent that
determines whether it will follow the group’s opinion or not. This situation emulates the social
phenomenon of herd behavior: agents choose to ignore their private signal in order to follow
the most influencing group of agents. When none of the above dominance situations occurs,
the receiving agent can opt for an opinion that is not promoted by any of the sending agents.

3.3 Influence Recovery

In the previous section we examined the effect of the network topology on the social learning of
the agents. In particular, we discovered how the topology and the states of the sending agents
determine the opinion formation by the receiving agents. The way the information is delivered
across the network ultimately determines the minimizers in (2.65), i.e., the hypothesis around
which each receiving agent’s belief will concentrate. We now examine the reverse problem.
Assume we observe the belief evolution of part of the network. We would like to use this
information to infer the underlying topological influences. This is a useful question to consider
because understanding the topology can help us understand why a particular agent adopts a
certain opinion. The main question we consider now is this: given some measurements collected
at the receiving agents, can we recover the influence exerted from sending subnetworks?

We answer this question under the following assumption of homogeneity of likelihoods and
true distributions inside the individual sending subnetworks.

Assumption 3.1 (Homogeneity within sending subnetworks). For s = 1, 2, . . . , S,
we assume that the distribution and the likelihood functions within the s-th sending
subnetwork are equal across all agents in that subnetwork, namely, for all ℓ ∈ Ss:

fℓ = f (s), Lℓ(θ) = L(s)(θ). (3.21)

One main consequence of Assumption 3.1 is that (3.4) becomes:

Dk(θ) =
∑
ℓ∈S

ωℓkD(fℓ||Lℓ(θ))

=
S∑

s=1

D(f (s)||L(s)(θ))
∑
ℓ∈Ss

ωℓk

 , (3.22)

where Ss denotes the collection of agents in the s-th sending subnetwork. Equation (3.22) has
the following relevant implication. Under Assumption 3.1, the network topology influences the
average divergence Dk(θ) through an aggregate weight:

xsk ≜
∑
ℓ∈Ss

ωℓk =
∑
ℓ∈Ss

wℓk. (3.23)

The latter equality, using wℓk instead of ωℓk, comes straightforwardly from (2.58) and (2.59).

49



Chapter 3. Recovering Influences in Weak Graphs

This equality reveals that the aggregate weights depend solely on the matrix W , and not on the
matrix E of Perron eigenvectors. In other words, the inner structure of the pertinent sending
subnetwork s does not influence the aggregate weight xsk . We notice that, while a combination
weight aℓk accounts for a local, small-scale pairwise interaction between agent ℓ and agent k,
the aggregate weight xsk accounts for macroscopic topology effects, for two reasons. First of all,
xsk is determined by the limiting weights ωℓk , which embody not only direct connection effects
between ℓ and k, but also effects mediated by multi-hop paths connecting ℓ and k. Second,
from (3.23) we see that xsk embodies the global effect coming from all agents belonging to the
s-th sending component. In other words, xsk is a measure of the effect from all agents in sending
subnetwork s on agent k. Since, in view of Theorem 2.2, the average divergence determines the
behavior of the limiting belief, we conclude from (3.22) that the network topology ultimately
determines the particular hypothesis chosen by a receiving agent only through these global
influence weights {xsk}.

We assume that the data available for estimating xsk are the shared (intermediate) beliefs,
ψk,i(θ). We will say that consistent influence recovery is achievable if the xsk can be correctly
guessed when sufficient time is given for learning, i.e., we will focus on the limiting data, for all
θ ̸= θ⋆

k:3

yk(θ) ≜ lim
i→∞

logψk,i(θ)
i

a.s.= Dk(θ⋆
k) − Dk(θ). (3.25)

Accordingly, the influence recovery problem we are interested in can be formally stated as
follows. For any receiving agent k, introduce its influence-weight vector:

xk ≜ [x1k, x2k, . . . , xSk]T, (3.26)

and consider the vector stacking the H limiting beliefs yk(θ) (i.e., the data):

yk ≜ [yk(1), yk(2), . . . , yk(H)]T, (3.27)

The main question is whether we can estimate xk consistently from observation of yk. In the
sequel we will sometimes refer to this problem as a macroscopic topology learning problem—see
Figure 3.4 for an illustration. In order to avoid confusion, we remark that the method proposed
in this work does not allow retrieving the topology of the network (for that purpose, we refer the
reader instead to [61], [62]), but the influence quantified by the aggregate weights xsk that each
sending subnetwork exerts on each receiving agent. While this information has the real topology
of the network embedded in it, some other information is missing. For instance, topology inside
the sending subnetworks and inside the receiving subnetworks is not considered.

As compared to topology inference problems, we are faced here with one critical element of
novelty. We have no data coming from the sending agents. This means that correlation between
sending and receiving agent pairs cannot be performed. This is in sharp contrast with traditional
topology inference problems, where the estimation of connections between pairs of agents is

3In view of (3.2), we can write for θ, θ′ ∈ Θ:

log
ψk,i(θ)
ψk,i(θ′) = log

µk,i−1(θ)
µk,i−1(θ′) + log

Lk(ξk,i|θ)
Lk(ξk,i|θ′) . (3.24)

Thus the asymptotic properties of ψk,i(·) are the same as µk,i(·).
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Figure 3.4: Influence recovery (or macroscopic topology learning) problem. The problem of influence
recovery aims at finding the global influence weights xsk from sending subnetwork s to receiving agent
k. For example, consider a weakly connected network with two sending subnetworks, S1 and S2, and two
receiving subnetworks R1 and R2. The weight x1k in the figure embodies the influence of all sending
agents in S1, from all paths (possibly including intermediate receiving agents) leading to receiving agent
k ∈ R1.

heavily based on comparison (e.g., correlation) between data streams coming from these pairs
of agents [61]–[63]. In contrast, we focus here on the asymmetrical case that, when estimating
the weights xsk from sending to receiving agents, no data are available from the sending agents.
For this reason, the influence recovery problem addressed in this work is significantly different
from traditional topology problems studied in the literature.

3.4 Is Influence Recovery Feasible?

We now examine the feasibility of the influence recovery problem illustrated in the previous
section.

Let us preliminarily introduce a matrix D = [dθs], which collects the H × S divergences
between any true distribution in the sending subnetworks and any likelihood, and whose
(θ, s)-th entry is:

[D]θs = dθs = D(f (s)||L(s)(θ)). (3.28)

Using (3.26) and (3.28) in (3.22), the network divergence of receiving agent k, evaluated at θ,
can be written as:

Dk(θ) =
S∑

s=1
dθsxsk. (3.29)

Through (3.27) we can rewrite the limiting data in (3.25) as:

yk(θ) = D(θ⋆
k) − D(θ) =

S∑
s=1

(dθ⋆
k

s − dθs) xsk. (3.30)
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It is useful to introduce the matrix:

Bk ≜
(
1HeT

θ⋆
k

− IH

)
D, (3.31)

where em is an H × 1 vector with all zeros and a one in the m-th position. It is important to
note that Bk has its θ⋆

k-th row equal to zero. We can now formulate the influence recovery
problem in terms of the following constrained system:

Find x̃k ∈ RS , such that


yk = Bk x̃k,∑S

s=1 x̃sk = 1,

x̃k > 0,

(3.32)

where we remark that the notation x̃k > 0 signifies that all entries in the solution vector
x̃k must be strictly positive. This positivity constraint is enforced because by assumption,
each receiving subnetwork is connected to at least one agent from each sending subnetwork,
which implies that the true vector we are looking for, xk, has all positive entries. The equality
constraint in (3.32) can be readily included in matrix form by introducing the augmented matrix
and vector:

Ck ≜
[
Bk

1T
S

]
, ỹk ≜

[
yk

1

]
, (3.33)

which allow rewriting (3.32) as:

Find x̃k ∈ RS : ỹk = Ck x̃k, x̃k > 0. (3.34)

We are now ready to state formally the concept of feasibility for the influence recovery problem.
First, we want to solve the problem under the assumption that the matrix of divergences, D,
is known, i.e., that sufficient knowledge is available about the underlying statistical models
(likelihoods and true distributions). In this respect, we remark that the matrix Bk in (3.31)
depends on θ⋆

k, which in turn depends on the unknowns xsk as well through (2.65). However,
from (3.5) we know that the beliefs (and also the intermediate beliefs) converge to 1 at θ⋆

k.
Therefore, we can safely estimate θ⋆

k from the limiting data yk(θ), which is tantamount to
assuming that the matrix Bk is known.

Therefore, achievability of a consistent solution for the influence recovery problem translates
into the condition that the linear system in (3.34) should admit a unique solution. We will now
prove the following result.

Lemma 3.1 (Necessary condition for influence recovery). The influence recovery
problem described by the system in (3.34) admits a unique solution if, and only if:

rank(Ck) = S. (3.35)

Thus, a necessary condition for influence recovery is that the number of hypotheses is at least
equal to the number of sending subnetworks, namely, that:

H ≥ S. (3.36)
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Proof. We remark that we are not concerned with the existence of a solution for the constrained
linear system (3.34). In fact, this system admits at least a solution, namely, the true weight
vector, xk ∈ RS

+, which by assumption fulfills the equation ỹk = Ck xk.

Let us now focus on the unconstrained system (i.e., the system in (3.34) without the inequality
constraints), whose set of solutions is given by [59]:

x̃k = C†
k ỹk + (IS − C†

kCk)z, (3.37)

where z ∈ RS is an arbitrary vector, and C†
k is the Moore-Penrose pseudoinverse of Ck. If

rank(Ck) = S, it is well known [59] that C†
k = (CT

k Ck)−1CT
k , which implies that the second

term on the RHS in (3.37) is zero, which in turn implies that the unconstrained system has the
unique solution:

x̃k = C†
kỹk = (CT

k Ck)−1CT
k ỹk = xk. (3.38)

The latter equality holds because, if the unconstrained system has a unique solution, this is
also the unique solution for the constrained system, i.e., it coincides with xk and satisfies
the positivity constraints. Accordingly, we have proved that whenever rank(Ck) = S, the
constrained system has the unique solution corresponding to the true vector xk.

We now show that when rank(Ck) < S the constrained system has infinite solutions. Since
any solution of the unconstrained system takes on the form (3.37), and since xk is a particular
solution, there will exist a certain vector z0 such that the xk can be written as:

xk = C†
k ỹk + (IS − C†

kCk)z0. (3.39)

Consider a solution x̃k in (3.37) that corresponds to another vector, z = z0 + ϵ, where ϵ is a
perturbation vector:

x̃k = C†
k ỹk + (IS − C†

kCk)(z0 + ϵ) = xk + (IS − C†
kCk)ϵ. (3.40)

Since by assumption xk > 0, we conclude from (3.40) that for sufficiently small perturbations
it is always possible to obtain a distinct x̃k > 0, which implies that the constrained system
in (3.34) has infinite solutions.

In summary, we conclude that the influence recovery problem is feasible if, and only if,
rank(Ck) = S. Finally, by observing that the augmented matrix Ck is an (H + 1) × S
matrix with an all-zeros row, we have in fact proved the claim of the lemma.

Lemma 3.1 has at least three useful implications. First, it reveals a fundamental interplay
between social learning and influence recovery: the possibility of estimating xk depends on
the comparison between two seemingly unrelated quantities, the number of hypotheses H
(an attribute of the social inferential problem) and the number of sending subnetworks S (an
attribute of the network topology).

Second, the necessary condition in (3.36) highlights that influence recovery over social networks
is challenging. For example, if the agents of the social network want to solve a binary detection
problem (H = 2), then the maximum number of sending subnetworks that could allow faithful
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influence estimation is S = 2. Increasing the complexity of the social learning problem (i.e.,
increasing H) is beneficial to influence estimation, since it allows to increase also S.

Third, we see that having more sending subnetworks makes influence recovery more compli-
cated. This is because increasing the number of sending subnetworks increases the number of
unknowns (i.e., the dimension of xk), while not adding information since in our setting we are
not allowed to probe the sending nodes. Remarkably, when examining jointly the social learning
and the influence recovery problems, the role of the data and of the unknowns is exchanged.
In the social learning problem, more hypotheses means more unknowns and more sending
subnetworks means more data; in the influence recovery problem, the situation is exactly
reversed.

3.4.1 Structured Gaussian Models

In this section we consider the practical case of a Gaussian model, defined as follows.

• All agents use the same family of likelihood functions {L(θ)}, for θ = 1, 2, . . . , H .

• These likelihoods are unit-variance Gaussian likelihoods with different means {mθ}.

• Each true distribution coincides with one of the likelihoods. This implies that the dis-
tribution of the s-th sending subnetwork, f (s), is a unit-variance Gaussian distribution
with mean νs that is chosen among the means {mθ}, namely, for s = 1, 2, . . . , S:

νs ∈ {m1, m2, . . . , mH}. (3.41)

• The sending subnetworks have different means.

Using (3.28) and the definition of KL divergence between Gaussian distributions, the matrix D
is given by:

D = 1
2


(m1 − ν1)2 (m1 − ν2)2 . . . (m1 − νS)2

(m2 − ν1)2 (m2 − ν2)2 . . . (m2 − νS)2

...
...

(mH − ν1)2 (mH − ν2)2 . . . (mH − νS)2

 . (3.42)

From (3.42) it is readily seen that, if the sending subnetworks share the same true distribution
(i.e., if ν1 = ν2 = · · · = νS), then the matrix D has rank 1, and, hence, the influence recovery
problem is obviously not feasible. As said, we will instead focus on the opposite case where the
true expectations are all distinct.

For ease of presentation, and without loss of generality we can assume that the sending
subnetworks are numbered so that the expectations of the true distributions are:

ν1 = m1, ν2 = m2, . . . , νS = mS , (3.43)
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which implies that (3.42) takes on the form:

D = 1
2


0 (m1 − m2)2 . . . (m1 − mS)2

(m2 − m1)2 0 . . . (m2 − mS)2

...
...

(mH − m1)2 (mH − m2)2 . . . (mH − mS)2

 . (3.44)

The structure in (3.44) implies that, for H = S, the matrix D is a Euclidean distance matrix (but
for the constant 1/2) [64]. These matrices are constructed as follows. Given points r1, r2, . . . , rL,
belonging to Rdim, the (i, j)-th entry of the matrix EDM(r1, r2, . . . , rL) is given by the squared
Euclidean distance between points ri and rj . Accordingly, we see from (3.44) that, for H = S:

D = 1
2EDM(m1, m2, . . . , mH). (3.45)

For H > S, the matrix D can be described as an extended Euclidean distance matrix, constructed
as follows. Let:

ES ≜ 1
2EDM(m1, m2, . . . , mS),

EH ≜ 1
2EDM(m1, m2, . . . , mH),

EH−S ≜ 1
2EDM(mS+1, mS+2, . . . , mH), (3.46)

and let F be the (H−S)×S matrix with entries, for θ = S+1, S+2, . . . , H and s = 1, 2, . . . , S:

[F ]θs = 1
2(mθ − ms)2. (3.47)

Then, we have the following representation:

D =
[
ES

F

]
, EH =

[
ES F T

F EH−S

]
. (3.48)

The following theorem, which establishes the feasibility of the influence recovery problem for
the considered Gaussian model, relies heavily on some fundamental properties of Euclidean
distance matrices.

Theorem 3.1 (Influence recovery under structured Gaussian models). Let S ≥ 2 and
H ≥ S. Assume that all sending subnetworks have the same family of unit-variance Gaussian
likelihood functions L(θ) with distinct means {mθ}, for θ = 1, 2, . . . , H . Assume that the
true distributions f (s), within the sending subnetworks s = 1, 2, . . . , S, are unit-variance
Gaussian with distinct means νs, chosen from the collection {mθ}. Then, under Assumption 2.6
(so that the matrix Bk in (3.31) is well defined), for all receiving agents k ∈ R we have that:

rank(Ck) = 2. (3.49)

Proof. The proof is reported in Appendix 3.A.
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In view of Lemma 3.1, Eq. (3.49) has the following implication. Under the considered Gaussian
model, influence recovery is feasible only when S = 2. We remark also that, when S = 2,
condition (3.36) plays no role, since any meaningful classification problem has at least H = 2.
In summary, Theorem 3.1 reveals that the structure of the Gaussian model makes influence
recovery very challenging, as this problem is not solvable for networks with more than 2
sending subnetworks. Thus, the theorem reveals that H ≥ S is not a sufficient condition for
consistent influence recovery.

3.4.2 Diversity Models

We can now examine the effect that diversity in the models of the sending subnetworks can have
on influence recovery. Since the limiting beliefs are essentially determined by the divergence
matrix D, it is meaningful to impose a form of diversity in terms of the divergences between
distributions and likelihoods. In other words, differently from the Gaussian case illustrated in
the previous section, we now require that the entries of D are not tightly related to each other,
namely, we allow them to assume values in RH×S

+ (where we denote by R+ the nonnegative
reals) with no strong structure linking them.

One typical model for this type of diversity is that the divergences perceived by the different
agents (i.e., across index s), and corresponding to different hypotheses (i.e., across index h),
are modeled as absolutely continuous random variables. This randomness is a formal way to
embody some degree of variability in how the agents “see” the world. For example, this is a
useful model to consider when the agents, due to imperfect knowledge, have likelihoods that
are slightly perturbed versions of some nominal model. Examples of this type are illustrated in
the next section.

In order to avoid confusion, it is important to remark one fundamental property. Under the
diversity setting, the matrix D is random4 with entries modeled as absolutely continuous
random variables. The full-rank property for this type of matrices is a classical result. However,
we observe from (3.31) that the matrix Bk is obtained from D by multiplying a matrix that
depends on a random variable θ⋆

k, which in turn depends statistically upon the entries ofD.
Finally, we know from (3.33) thatCk is obtained fromBk by adding an all-ones row. Accordingly,
to determine the rank of Ck we need to address carefully these intricate dependencies. This is
accomplished in the proof of the forthcoming Theorem 3.2.

Theorem 3.2 (Influence recovery under general models with diversity). Let H ≥ S,
and assume that the array {dθs}, with θ = 1, 2, . . . , H and s = 1, 2, . . . , S, is made of
random variables that are jointly absolutely continuous with respect to the Lebesgue measure
onRH×S

+ . Then, for all receiving agents k ∈ Rwe have that, with probability 1, Assumption 2.6
is verified and the matrix Ck is full column rank, namely,

P (θ⋆
k is unique and rank(Ck) = S) = 1. (3.50)

Proof. The proof is reported in Appendix 3.B.

4Accordingly, we will now use the bold notation for the matrix entries, dθs, as well as for other related quantities.
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The meaning of Theorem 3.2 is that configurations of KL divergence that lead to a rank-deficient
matrix Ck are rare. In other words, if some diversity exists in the statistical models of the sending
components, then the influence recovery problem is feasible for almost all configurations.

3.5 Simulation Results

We now present some illustrative examples. The first example refers to the Gaussian model
presented in Section 3.4.1. The other two examples refer to the setting with diversity presented
in Section 3.4.2.

a) Gaussian with H = S = 2. We consider the topology shown in the left panel of Figure 3.5.
The likelihoods and true distributions for the sending subnetworks are unit-variance Gaussian
with means ν1 = m1 = 1, ν2 = m2 = 2. The receiving agents5 employ the same likelihoods of
the sending agents, and their true distributions are unit-variance Gaussian with mean equal to
1. In Figure 3.5 (right) we show the belief convergence for four receiving agents.

Next, we address the influence recovery problem. First, for an observation time i, we construct
the empirical data ŷk(θ) = (1/i) logψk,i(θ), and construct an estimate θ̂⋆

k as the value of θ that
maximizes ŷk(θ) (i.e., the hypothesis where ŷk(θ) will collapse to 1). We can then construct an
estimate for Bk as:

B̂k =
(
1HeT

θ̂⋆
k

− IH

)
D, (3.51)

from which we obtain Ĉk by adding an all-ones row, according to (3.33). At this point, we have
verified on the simulated data that, for any receiving agent k ∈ {9, 10, 11, 12}, the matrices Ĉk

are full column rank. Then, we used (3.38) with empirical matrices replacing the exact ones to
estimate the connection-weight vector xk as:6

x̂k = Ĉ†
k

[
ŷk

1

]
= (ĈT

k Ĉk)−1ĈT
k

[
ŷk

1

]
. (3.52)

We see from Figure 3.6 that this procedure allows us to retrieve the influence weights {xsk},
provided that the system evolves for a sufficiently long time.

b) Randomly perturbed Gaussian with H = S = 3. The network topology has three
sending subnetworks and one receiving subnetwork as shown in the left panel of Figure 3.7.
When S > 2, we know from Theorem 3.1 that for the structured Gaussian model, diversity in
the sending components is not enough to ensure the full column rank of the matrix Ck. In
order to increase diversity, we consider a randomly perturbed model for the likelihood functions,
where the likelihood of the s-th sending subnetwork, evaluated at hypothesis θ, is unit-variance
Gaussian with mean θ + ϵθs. The random variables {ϵθs} are equally correlated zero-mean
Gaussian with variance equal to 0.02 and Pearson correlation coefficient equal to 0.5. For the
receiving subnetwork we use the same type of random perturbation of the likelihoods. The true
distributions for all sending and receiving agents are unit-variance Gaussian with mean equal to

5We recall that the models of the receiving agents will be ultimately immaterial as regards their limiting beliefs.
6The symbol ̂ is used for quantities estimated from the data, to be not confused with the symbol ˜ used for the

exact quantities appearing in (3.34).
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Figure 3.5: Unperturbed Gaussian model: (Left) Network topology. (Right) Belief convergence at the
receiving agents.

1. The belief convergence for four receiving agents can be seen in the right panel of Figure 3.7.
In Figure 3.8 we see how the estimates {x̂sk} of the influence weights converge to the true
values {xsk}. In contrast with the structured Gaussian case, influence recovery is now feasible
for S > 2 and even if the true distributions are equal across all sending components. This
change in behavior is due to the diversity in the models of the sending subnetworks, represented
by the different means of the likelihoods. Moreover, we see from the parameters of the random
variables {ϵθs} that a relatively small perturbation is already sufficient to enable consistent
influence recovery.

c) Beta with H = S = 3. Finally, we consider a non-Gaussian example. Moreover, since in
the previous examples (motivated by what is typically observed in many networks) we have
considered a number of receiving agents fairly larger than the size of the sending subnetworks,
we now explore a case where the size of the receiving subnetwork is equal to the size of the
sending subnetworks.

The non-Gaussian setting used in Figure 3.9 considers likelihood functions following a Beta
distribution with scale parameter equal to 2 and with shape parameters given by θ + 1 + uθs,
where {uθs}, for θ ∈ {1, 2, 3} and s ∈ {1, 2, 3}, are independent random variables sampled
from a uniform distribution with support [−0.1, 0.1]. The true distributions coincide with
the unperturbed likelihoods, i.e., the true distribution of the s-th sending subnetwork is a
Beta distribution with scale parameter equal to 2 and shape parameter equal to s + 1. For
the receiving subnetwork we apply the same type of random perturbation of the likelihoods,
whereas the true distributions are Beta with scale and shape parameters equal to 2. The belief
convergence for the receiving agents can be seen in the right panel of Figure 3.9. In Figure 3.10,
we see the convergence of the estimated influence weights.

58



3.5 Simulation Results

estimated weights

0 1000 2000

i

0.0

0.5

1.0

x̂
s9

0.65

0.35

0 1000 2000

i

0.0

0.5

1.0

x̂
s1

0 0.59

0.41

0 1000 2000

i

0.0

0.5

1.0
x̂
s1

1 0.51
0.49

0 1000 2000

i

0.0

0.5

1.0

x̂
s1

2

0.50
0.50

s = 1 s = 2

Figure 3.6: Unperturbed Gaussian model: Estimated influence weights. For each of the four panels, the
numbers on the right denote the true values {xsk}, with different colors denoting different s, according
to the legend.

3.5.1 An Example of Noisy Influence Recovery

Let us consider an influence recovery problem that is feasible according to our previous models
and results. In practice, different sources of error can alter these models (and possibly the
results). In this section we focus on a relevant source of error and show that the proposed
strategy is stable with respect to it.

In the previous treatment, the divergence matrix D was assumed known. However, in some
applications this knowledge can be approximate, and D can be known up to a certain error
δD ∈ RH×S . Under this assumption, the solution in (3.38) is replaced by the following noisy
version (agent index k suppressed for ease of notation):

x + δx = (C + δC)† ỹ, (3.53)

where δC ∈ R(H+1)×S is the error induced by δD on C—see (3.31) and (3.33)—and δx ∈ RS is
the error induced by δC on the true solution x. We now quantify the error δx.

Since we are considering a feasible influence recovery problem, we have H ≥ S and rank(C) =
S. We also know that a noisy matrix δD would typically preserve the rank7 of C , and, hence, we
assume that rank(C + δC) = S. Finally, we introduce the condition number κ ≜ ∥C∥2∥C†∥2
(where ∥ · ∥2 is the spectral norm), and assume that the matrix C is well-conditioned and the
noise is small such that ∥δC∥2∥C†∥2 < 1. Under these assumptions, Theorem 5.1 in [65]

7For example, if the entries of δD are modeled as jointly absolutely continuous random variables, reasoning as
in Theorem 3.2 we have rank(C + δC) = S with probability 1.
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Figure 3.7: Perturbed Gaussian model: (Left) Network topology. (Right) Belief convergence at the
receiving agents.

provides the following bound on the relative error:

∥δx∥2
∥x∥2

≤ κ

1 − κ∥δC∥2
∥C∥2

∥δC∥2
∥C∥2

, (3.54)

which reveals that, for sufficiently small deviations δC , the relative error ∥δx∥2/∥x∥2 is on the
same order as the relative error ∥δC∥2/∥C∥2 [59].

Let us now provide a numerical example to illustrate how (3.54) works in practice. We consider
the same setting of Figure 3.5, focusing on receiving agent 10, for which the exact weight vector
is given by x = [0.59, 0.41]T. Now, in the considered example we have:

D =
[

0 0.5
0.5 0

]
, (3.55)

We generate the matrix δD as follows. The off-diagonal entries of δD are independent random
variables following a zero-mean Gaussian distribution with standard deviation σ (when the
resulting off-diagonal entries of D + δD are negative we resample until nonnegative entries
are obtained). The main-diagonal entries of δD are independent random variables distributed
as the absolute value of zero-mean Gaussian random variables with standard deviation σ. Then
we apply the influence estimation procedure described in Section 3.5. In Table 3.1 we report,
for several values of σ, the root-mean-square error, ∥δx∥rms

2 , computed over 103 Monte Carlo
iterations for each value of σ. Examining Table 3.1, we see that the influence recovery strategy
is in fact stable w.r.t. to the noise introduced on the divergence matrix.8

8In the considered example, it is straightforward to relate the error ∥δx∥rms
2 to the errors relative to the individual

entries of the true solution, x = [0.59, 0.41]T. Since both the perturbed and true solution have sum equal to 1, the
entries of δx have sum equal to 0, which implies that their (common) root-mean-square value is ∥δx∥rms

2 /
√

2.
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Figure 3.8: Perturbed Gaussian model: Estimated influence weights. For each of the four panels, the
numbers on the right denote the true values {xsk}, with different colors denoting different s, according
to the legend.

Table 3.1: Root-mean-square error for different values of σ. The true solution is x = [0.59, 0.41]T.

σ 0.001 0.026 0.051 0.075 0.100

∥δx∥rms
2 0.001 0.033 0.069 0.105 0.156

3.6 Concluding Remarks

We considered a network where agents solve the Social Learning (SL) problem. These agents
aim at forming their opinions after consulting the beliefs of their neighbors through an itera-
tive update-and-combine SL algorithm. In this chapter we addressed the Influence Recovery
(IR) problem, where a receiving agent (or some entity monitoring its behavior) attempts to
get knowledge about the influence, in the form of network connections, from each sending
subnetwork upon that receiving agent. We can refer to the SL problem as the direct learning
problem, in the sense that it is the original inferential problem the network is deployed for.
Likewise, we can refer to the IR problem as the dual learning problem, since it is an inferential
procedure that takes as input data the output of the direct SL problem.

The analysis conducted in this chapter has revealed an interesting interplay between SL and IR
problems. First, we established in Lemma 3.1 that H ≥ S is a necessary condition to achieve
consistent IR, where S denotes the number of sending subnetworks, and H the number of
hypotheses. In a sense, the number of hypotheses is an index (even if not the only one) of
complexity associated to the SL problem since, other conditions being equal, more hypotheses
make the SL problem more complicated. Likewise, the number of sending components represents
an index of complexity of the IR problem, since, other conditions being equal, estimating more
links is more complicated. According to these remarks, the condition H ≥ S implies that
the IR problem can be feasible when its complexity is not greater than the complexity of the SL
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Figure 3.9: Perturbed Beta model: (Left) Network topology. (Right) Belief convergence at the receiving
agents.

problem. In contrast, in topology inference problems, the connections between agents are
inferred from some kind of pairwise measure of their dependence. In our setting, since we
cannot measure the output of the sending subnetwork, we do not have data quantifying the
direct topological dependence between a receiving and a sending agent. Our IR inference is
based instead on beliefs at receiving agents. The belief contains some richness of information,
i.e., its H components, which is critical to enable feasibility of the IR problem. In particular,
H ≥ S means that the richness of information in the belief function should be greater than or
equal to the number of unknown influence weights to be estimated, S.

Having established a necessary condition for consistent IR, we moved on to examine some useful
models to see whether and when consistent IR is in fact achievable. First, we have considered a
structured Gaussian model where all sending subnetworks use the same family of Gaussian
likelihoods, and the sending subnetworks have distinct true distributions, each one coinciding
with one of the likelihoods. We have shown in Theorem 3.1 that the IR problem is feasible only
if S = 2, for any H ≥ 2. The limited possibility of achieving consistent IR can be explained
by the limited diversity existing between the different subnetworks, i.e., they all use the same
family of likelihoods. This observation motivated the analysis of more general models with a
certain degree of diversity, a condition formalized by saying that the KL divergences between
true distributions and likelihoods are not structured, i.e., they are nonnegative real numbers
with no particular relationship among them. Under this setting we have showed that, if H ≥ S,
the IR problem becomes feasible for almost all configurations, in a precise mathematical sense
as stated in Theorem 3.2. In summary, two critical features that enable consistent IR are: More
hypotheses than sending components and a sufficient degree of diversity.

3.A Proof of Theorem 3.1

Preliminarily, it is useful to introduce some auxiliary matrices. We let, for all θ = 1, 2, . . . , H :

I(θ) ≜ 1HeT
θ − IH (3.56)
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Figure 3.10: Perturbed Beta model: Estimated influence weights. For each of the four panels, the numbers
on the right denote the true values {xsk}, with different colors denoting different s, according to the
legend.

and

B(θ) ≜ I(θ)D, C(θ) =

B(θ)

1T
S

 . (3.57)

In view of Eqs. (3.31) and (3.33), the definitions in (3.56) and (3.57) imply:

Bk = B(θ⋆
k), Ck = C(θ⋆

k). (3.58)

We continue by showing some useful properties of the matrix D under the considered Gaussian
model. Let us focus on the representation in (3.48). It is a known result that the rank of a
Euclidean distance matrix with n points in Rdim is at most dim + 2 [64]. Since in our case
dim = 1, we, can write:

rank(ES) ≤ 3 (3.59)

Moreover, for the cases S = 2 and S = 3 we have that:

E2 =1
2

 0 (m1 − m2)2

(m2 − m1)2 0

 , (3.60)

E3 =1
2


0 (m1 − m2)2 (m1 − m3)2

(m2 − m1)2 0 (m2 − m3)2

(m3 − m1)2 (m3 − m2)2 0

 (3.61)

and, hence:

det(E2) = −1
4(m1 − m2)2,
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det(E3) = 1
4 (m1 − m2)2(m1 − m3)2(m2 − m3)2. (3.62)

Therefore, when the points that determine the Euclidean distance matrix are all distinct, both
the above matrices are full rank. Thus, when S = 2, we have that rank(ES) = 2. When
S > 2, since E3 is full rank, and in view of (3.59), we have instead rank(ES) = 3. From the
representation of D in (3.48), we then conclude that:

rank(D) =

 2, if S = 2,

3, if S > 2.
(3.63)

Next we state and prove a useful lemma.

Lemma 3.2. Let I(θ) be defined as in (3.56). Then, for all θ = 1, 2, . . . , H we have that:

IH − I†(θ)I(θ) = 1
H
11T. (3.64)

Proof. For ease of notation, in the following proof the explicit dependence on θ is suppressed,
and we write I in place of I(θ). By definition of the Moore-Penrose inverse, matrix I† satisfies:

II†I = I, (I†I)T = I†I. (3.65)

Then we note that:
I(IH − I†I) = I − II†I = I − I = 0, (3.66)

where in the second equality we used the first identity in (3.65). Equation (3.66) implies that the
columns of (IH − I†I) belong to the null space of I, denoted by N (I) = {v : Iv = 0}. On the
other hand, in view of (3.56) we can write:

Iv = 1HeT
θ v − v = 1Hvθ − v = 0, (3.67)

with vθ the θ-th element of v. As a result, Eq. (3.67) will be satisfied only if vh = vθ for all
h = 1, . . . , H . Therefore, we obtain:

N (I) = {α1H : α ∈ R}, (3.68)

further implying, in light of (3.66), that, for each h = 1, 2, . . . , H , the h-th column of IH − I†I
is of form αh1H for some {αh}. On the other hand, since IH − I†I is symmetric in view of the
second identity in (3.65), we conclude that αh = α for all h, namely,

IH − I†I = α1H1
T
H , (3.69)

for some α ∈ R. Finally, since in particular 1H ∈ N (I), we can write:

(IH − I†I)1H = 1H − I†I1H = 1H , (3.70)
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which, in view of (3.69), yields:

α1H1
T
H1H = αH1H = 1H ⇒ α = 1

H
(3.71)

and we have in fact proved (3.64).

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. We will now show that

rank(C(θ)) = 2 for all θ = 1, 2, . . . , H, (3.72)

which clearly implies the claim of the theorem in view of the second equation in (3.58).

For the case H = S = 2, it is immediately seen that the matrix C(θ) (assuming, e.g., θ = 1)
takes on the form:

C(1) =


0 0

−(m1 − m2)2

2
(m1 − m2)2

2
1 1

 , (3.73)

which reveals that rank(C(θ)) = 2.

Let us move on to examine the other cases where H ≥ S (excluding H = S = 2). We will
examine first the properties of the matrix B(θ) in (3.57). As done before, the dependence on
θ is suppressed for ease of notation, and, in particular, we write B, C , and I in place of B(θ),
C(θ), and I(θ), respectively. Applying Sylvester’s inequality to the first equation in (3.57) we
can write [59]:

rank(B) ≥ rank(D) + rank(I) − H = rank(D) − 1, (3.74)

where in the latter equality we used the fact that rank(I) = H − 1. Therefore, from (3.63)
and (3.74) we conclude that:

rank(B) ≥ 1, if S = 2, (3.75)

rank(B) ≥ 2, if S > 2. (3.76)

Now we would like to see if equality is satisfied for the cases S = 2 (with H > 2) and S > 2
(with H ≥ S).

To this end, we start by noticing that equality in Sylvester’s inequality holds if, and only if,
there exist matrices X and Y that solve [59]:

DX + Y I = IH , (3.77)

which in turn admits a solution if, and only if, [66]:

(IH − DD†)(IH − I†I) = 0. (3.78)
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Applying Lemma 3.2, from (3.78) we get:

(IH − DD†) 1
H
1H1

T
H = 0, (3.79)

which means that the equality sign in (3.75) or (3.76) holds if, and only if:

DD†1H = 1H . (3.80)

In particular, we will now show that (3.80) does not hold for S = 2, while it holds for S > 2.

Let us start with the case S = 2 (and H > 2). We will appeal to the representation of D in (3.48),
which for the case S = 2 can be written as:

D = 1
2



0 (m1 − m2)2

(m2 − m1)2 0

(m3 − m1)2 (m3 − m2)2

...
...

(mH − m1)2 (mH − m2)2


. (3.81)

Let us now consider the linear system Dv = 1H . From the first two rows of D, we get the
unique solution: v = 2(m1 − m2)−212. Considering now the third row, we get the identity
(m3 − m1)2 + (m3 − m2)2 = (m1 − m2)2, which is true only if the third point, m3, is equal
to one of the previous points. We conclude that there exist no v such that Dv = 1H , which
further implies that DD†1H ̸= 1H Therefore, for S = 2 Eq. (3.75) gives rank(B) > 1, which
since B is of dimension H × 2, with H > 2, implies that rank(B) = 2.

Let us move on to examine the case S > 2 and H ≥ 2. It is known that, for an L × L Euclidean
distance matrix M , one has MM †1L = 1L, implying that 1L belongs to the range space of
M [67]. We can apply this result to the matrices ES and EH in (3.48), since they are proportional
to Euclidean distance matrices. In particular, we can say that there exist vectors uS and uH

such that ESuS = 1S and EHuH = 1H . In particular, one of the (infinite) solutions is given by

u⋆
H =

uS

0

 . (3.82)

Applying now (3.82) into (3.48), we can write:

1H = EHu⋆
H =

ES F T

F EH−S

uS

0

 =

ES

F

uS = DuS . (3.83)

Equation (3.80) now follows by observing that:

DD† 1H︸︷︷︸
DuS

= DD†D︸ ︷︷ ︸
D

uS = DuS = 1H . (3.84)

66



3.A Proof of Theorem 3.1

We have in fact shown that (3.80) holds true for S > 2, which implies that (3.76) becomes an
equality for S > 2.

In summary, we have shown so far that rank(B) = 2 for all H ≥ S (but for the case H = S = 2,
which has been examined separately). We will now use this result to prove the claim of the
theorem, namely, that rank(C) = 2. Since C is obtained from B by adding an all-ones row,
determining the rank of C from that of B amounts to check whether the row vector 1T

S lies in
the row space of B, which is tantamount to ascertaining whether there exists z such that:

zTID = 1T
S . (3.85)

Since we exclude the case H = S = 2, we have always H ≥ 3. Now, let us consider an EDM E3
defined on 3 distinct points p1, p2, p3. Since in this case E3 is full rank, the system vT

3 E3 = 1T
3

has the following (unique) solution:

vT
3 =

[
e13+e12−e23

e13e12
e12+e23−e13

e12e23
e13+e23−e12

e13e23

]
, (3.86)

where we denoted by eij = 1/2(pi − pj)2 the (i, j)-th entry of E3. Let us now introduce the
vector:

vT
H = [vT

3 0T
H−3]. (3.87)

Since, for H ≥ 3, we know that rank(EH) = 3, we conclude that:

vT
3 E3 = 1T

3 ⇒ vT
HEH = 1T

H , (3.88)

which, using the block representation of D in (3.48), yields:

vT
HD = 1T

S . (3.89)

In view of (3.89), one solution z to (3.85) exists if zTI = vT
H , that is, if vT

H lies in the row space
of I.

On the other hand, from the definition in (3.56), we see that the matrix I can be represented as:

I =



−1 0 . . . 0 1 0 . . . 0

0 −1 . . . 0 1 0 . . . 0
...

...
...

0 0 . . . −1 1 0 . . . 0

0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 1 −1 . . . 0
...

...
...

0 0 . . . 0 1 0 · · · − 1



, (3.90)

where the bold notation highlights the θ-th row and column. According to (3.90), the row space
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of I is:

Row(I) =

[α1 α2 . . . αH ] : αθ = −
∑
h̸=θ

αh

 , (3.91)

which is equivalent to:

Row(I) =
{

[α1 α2 . . . αH ] : αT1H = 0
}

. (3.92)

Examining (3.86), from straightforward algebra it can be shown that vT
3 13 = 0, which, in light

of (3.87), implies that vT
H1H = 0. Using (3.92), we conclude that vT

H lies in fact in the row space
of I, which finally implies, for H ≥ S (excluding the case H = S = 2) that rank(C) = 2.

3.B Proof of Theorem 3.2

We remark that in our setting the divergences are modeled as random variables, which implies
that the value of θ⋆

k is random as well. We should take this into account when proving the claim
of the theorem. First, we observe that:

P (θ⋆
k is unique and rank(Ck) = S)

= P (θ⋆
k is unique and rank(C(θ⋆

k)) = S)

=
H∑

θ=1
P (θ⋆

k = θ, rank(C(θ)) = S). (3.93)

We now show that, for all θ = 1, 2, . . . , H :

P (rank(C(θ)) = S) = 1. (3.94)
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3.B Proof of Theorem 3.2

It is useful to visualize the matrix C(θ) as follows:

dθ1 − d11 dθ2 − d12 . . . dθS − d1S

dθ1 − d21 dθ2 − d22 . . . dθS − d2S

...
...

...

dθ1 − d(θ−1)1 dθ2 − d(θ−1)2 . . . dθS − d(θ−1)S

0 0 . . . 0

dθ1 − d(θ+1)1 dθ2 − d(θ+1)2 . . . dθS − d(θ+1)S
...

...
...

dθ1 − dH1 dθ2 − dH2 . . . dθS − dHS

1 1 . . . 1



. (3.95)

The matrix C(θ) has H − 1 random rows (i.e., excluding the all-zeros and all-ones rows). Thus,
when H > S there are at least S rows with random entries. These random entries are jointly
absolutely continuous since i) so are the entries of D; and ii) the mapping from D to (the
random entries of) C(θ) is non-singular.9 This implies that, for H > S:

P (rank(C(θ)) = S) = 1, (3.96)

which proves (3.94) for the case H > S.

We switch to the case H = S. Let us denote byBS−1(θ) the sub-matrix ofB(θ) obtained by
deleting its last column, and with bS(θ) the last column ofB(θ). We can write:

C(θ) =

BS−1(θ) bS(θ)

1T
S−1 1

 . (3.97)

We notice that BS−1(θ) depends only on the sub-matrix DS−1 that is obtained by deleting
fromD the last column. It is thus meaningful to introduce the set of matrices:

E ≜ {DS−1 : rank(BS−1(θ)) = S − 1} . (3.98)

Recalling that BS−1(θ) contains an all-zeros row, we see that, given a matrix DS−1 ∈ E, there
exists a unique sequence of weights:

w1, w2, . . . , wθ−1, wθ+1, . . . , wS (3.99)

9For example, property ii) can be grasped by noting that, conditioned on dθ1, . . . , dθS , the random entries
in (3.95) are jointly absolutely continuous.
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to obtain the row vector 1T
S−1 as a weighted linear combination of the rows of BS−1(θ).

Accordingly, given a matrix DS−1 ∈ E, the rank of C(θ) will be equal to S if the last row in
C(θ) cannot be obtained as a linear combination of the rows of B(θ). In view of (3.97), this
corresponds to check whether the linear combination of the elements in bS with the same
weights is equal to 1, namely, if: ∑

h̸=θ

wh(dθS − dhS) = 1. (3.100)

Consider now a matrix DS−1 ∈ E We have that:

P

∑
h̸=θ

wh(dθS − dhS) = 1

∣∣∣∣∣∣DS−1

 = 0, (3.101)

since (also conditioned onDS−1) the random variables {dhS}, with h = 1, 2, . . . , H , are jointly
absolutely continuous. We then conclude that:

P (rank(C(θ)) = S|DS−1) = 1, (3.102)

which implies (3.94) since, in view of the joint absolute continuity of the entries in D, we have
that:

P (rank(BS−1(θ)) = S − 1) = 1 ⇒ P (DS−1 ∈ E) = 1. (3.103)

If we now apply (3.94) in (3.93), we conclude that:

P (θ⋆
k is unique and rank(Ck) = S)

=
H∑

θ=1
P (θ⋆

k = θ) = P (θ⋆
k is unique). (3.104)

The proof of the theorem will be now complete if we show that the probability of having a
unique θ⋆

k is equal to 1. To this aim, by using (2.65) and (3.29), we see that:

θ⋆
k = argmin

θ∈Θ

S∑
s=1

xskdθs. (3.105)

Let us consider the summations in (3.105) corresponding to different values of θ. Since the
random variables {dθs} are jointly absolutely continuous (and since xk is not an all-zeros
vector), the probability that two or more summations are equal is zero, which finally implies
that θ⋆

k is unique.
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4 Exchange of Partial Information

4.1 Introduction1

In this chapter, we consider that agents observe the world under the objective evidence scenario.
That is, each agent observes world measurements, describing some phenomenon or event of
interest, which are explained by one of the hypotheses, namely the true state of the world,
denoted by θ0 ∈ Θ. In this case, the observed signal at each instant i for each agent k is
generated according to the marginal likelihood function Lk(ξ|θ0):

ξk,i ∼ Lk(ξ|θ0) (4.1)

The purpose of social learning in this context is to allow agents to learn the truth by leveraging
collaboration and the exchange of opinions. In other words, agents will share their beliefs with
neighbors, and information will thus diffuse across the network, enabling truth learning—see
Section 2.1.3 on social learning under objective evidence. For example, consider a network
of meteorological stations at different locations monitoring weather conditions. Each of the
stations (or agents) observes measurements such as temperature, humidity, atmospheric pressure
and wind speed, which are functions of the underlying weather condition (or state of the world).
Agents then try to infer the underlying weather state such as declaring that it is sunny, rainy,
cloudy, or snowing.

As described in Chapters 1 and 2, several existing social learning implementations successfully
drive the agents to identify the true state of nature with full confidence. Under objective evidence,
global identifiability plays an important role in enabling truth learning—see Assumption 2.5.
In this case, for each θ ̸= θ0, there exists at least one agent k⋆(θ) that is able to distinguish
hypothesis θ from the truth θ0. We refer to each of these agents as a clear-sighted agent.

In this chapter, we examine the scenario in which agents within a strongly connected network
do not share their full belief vectors but only the confidence they have in a particular hypothesis
of interest (such as their opinion about whether the weather conditions are rainy or not). In
this setting, agents only share partial information. The best learning outcome agents could
hope for with the sharing of such minimal information is to infer whether the hypothesis of

1This chapter is adapted from [68], [69].
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interest corresponds to the truth or not. We will see that this process gives rise to a rich set of
convergence regimes.

The main contributions of this chapter consist in the characterization of the learning and
mislearning regimes, under the social learning process with partial information. We will propose
two approaches for diffusing partial information: i) An approach without self-awareness; ii) An
approach with self-awareness, in which each agent can combine neighbors’ partial information
to its own full belief vector. The theoretical results highlight some interesting phenomena. One
of them being that truth sharing preserves truth learning, but also that, when the hypothesis
of interest is false, a sufficient distance between this hypothesis and the truth must exist in
order for agents to make a clear distinction between both and to correctly discard the presumed
hypothesis.

4.2 Problem Setting

In traditional social learning, in order to learn the true state of the world out of a set of
H hypotheses, agents share the full extension of their intermediate belief vector with their
respective neighbors. We consider now that agents are interested in answering a different
question. For instance, in our example of the network of meteorological stations, consider that
these stations want to answer the question “is it sunny?”. Do the agents still need to share their
entire belief vectors repeatedly to find out whether it is sunny or not? If we devise a cooperation
scheme where agents share only, at every iteration, the confidence they have regarding the
“sunny” condition, can agents still learn?

In this chapter, we adapt the social learning framework by incorporating the following commu-
nication constraint (due, for example, to communication or regulation requirements): Agents
share a single belief component, namely ψℓ,i(θTX), where θTX denotes a hypothesis of interest
or the transmitted hypothesis. This constraint reflects a situation in which agents possess a
certain level of private knowledge, but, for reasons such as social dynamics, limited bandwidth,
regulation, diffuse only certain aspects of it. For example, consider the following situation.
A group of agents exchanges reviews concerning a product from brand θ1 that was recently
released in the market. The information contained in these reviews is limited to the product of
interest, i.e., the hypothesis of interest. The content of these reviews can be positive or negative
according to the agent’s perception of the product, i.e., the review conveys a soft decision. From
these repeated interactions, agents would like to reach a conclusion on which product brand is
best among brands {θ1, θ2, θ3}. In their reviews, agents do not share opinions on brands θ2, θ3,
which correspond to the non-transmitted hypotheses.

Besides the appeal of the partial information strategy from a behavioral standpoint, a second
relevant aspect consists in taking into account compressed information. While technological
advances allow for improved communication bandwidth capacity, therefore enabling many
edge-intelligent solutions such as distributed and federated learning, we see a growing interest
for communication efficiency [70].

In Figure 4.1, we see how the output of the Bayesian update step is limited to the transmitted
component ψℓ,i(θTX). We see also that an intermediate step is included between the Bayesian
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Figure 4.1: Diagram of the social learning strategy with a partial information mechanism.

update and combination steps. This additional step is referred to as a partial information
mechanism and its role consists in transforming the received transmitted components into a
valid belief vector to be used in the combination step. To this end, the red block in Figure 4.1
implements some transformation

ψℓ,i(θTX) 7→ ψ̂ℓ,i (4.2)

to incorporate the information contained in the transmitted component into an estimate ψ̂ℓ,i

of the locally-updated belief vector ψℓ,i for each neighbor ℓ ∈ Nk. Different transformations
correspond to different application scenarios and represent various types of behavior of the
learning agents.

Given that the only information shared by neighbors is the transmitted component of the
intermediate beliefs, the transformationψℓ,i(θTX) 7→ ψ̂ℓ,i, performed in the partial information
mechanism, can be designed according to:

ψ̂ℓ,i(θ) =
{
ψℓ,i(θTX), θ = θTX,

1
H−1(1 −ψℓ,i(θTX)), θ ̸= θTX.

(4.3)

Intuitively the partial information mechanism in (4.3) preserves the component of interest
shared by agent ℓ, i.e., ψℓ,i(θTX), and redistributes the excess mass, i.e., 1 −ψℓ,i(θTX), over the
remaining hypotheses θ ̸= θTX uniformly following a maximum entropy principle. We say that
(4.3) implements partial information using a memoryless approach, that is, disregarding prior
knowledge that might bias the agents to give more or less importance to the non-transmitted
components. From a behavioral perspective, this choice reflects well situations where the agents
focus on the transmitted hypothesis (for example, they are discussing/sharing opinions on a
particular candidate in an election process), and their learning mechanism does not allow them
to care about the detailed update of the other components.

We propose two algorithms that include partial information sharing regarding one hypothesis
of interest θTX and examine how the constrained communication affects truth learning in this
setup. The objective of the agents, in both approaches, is to verify whether the state of nature
agrees with θTX or not. We consider that agent k succeeds in doing so whenever it learns the
truth according to Definition 4.2.1.
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Definition 4.2.1 (Truth Learning with Partial Information). Within the partial infor-
mation framework, the definition of truth learning depends on the choice of θTX:

• If θTX = θ0, agent k learns the truth when

µk,i(θTX) a.s.−→ 1. (4.4)

• If θTX ̸= θ0, agent k learns the truth when

µk,i(θTX) a.s.−→ 0. (4.5)

Any other case is classified as a mislearning outcome.

4.2.1 Social Learning under Partial Information

In the first partial information approach, we propose the following modified version of the
social learning algorithm (2.2)–(2.3), where at each instant i = 1, 2, . . . each agent k performs
the following operations:

ψk,i(θ) =
Lk(ξk,i|θ)µk,i−1(θ)∑

θ′∈Θ Lk(ξk,i|θ′)µk,i−1(θ′) , (4.6)

ψ̂ℓ,i(θ) =
{
ψℓ,i(θTX), θ = θTX,

1
H−1(1 −ψℓ,i(θTX)), θ ̸= θTX,

(4.7)

µk,i(θ) =
exp

{
K∑

ℓ=1
aℓk log ψ̂ℓ,i(θ)

}
∑

θ′∈Θ
exp

{
K∑

ℓ=1
aℓk log ψ̂ℓ,i(θ′)

} . (4.8)

In (4.6), agent k performs a local Bayesian update to incorporate its new private observation
ξk,i. By doing so, the agent builds its intermediate belief vector ψk,i, which in the traditional
social learning implementation would have been the variable shared with the neighbors of k.
In the partial information setting, however, agent k will only share the component ψk,i(θTX)
with its neighbors, which will then split the remaining mass 1 −ψk,i(θTX) uniformly across
the hypotheses θ ̸= θTX. This process is shown in (4.7), which gives origin to the modified
belief vector ψ̂k,i. The final belief vector µk,i is obtained by locally aggregating the neighbors’
modified belief vectors using the same log-linear combination rule as shown in (4.8).

Note that the aggregation step in (4.8) implies for every pair θ, θ′ ∈ Θ that

log
µk,i(θ)
µk,i(θ′) =

K∑
ℓ=1

aℓk log
ψ̂ℓ,i(θ)
ψ̂ℓ,i(θ′)

. (4.9)

The social learning strategy with partial information hereby proposed admits a useful relation
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to traditional social learning, which is described in Proposition 4.1.

Proposition 4.1 (Binary hypothesis test). The social learning algorithm with partial
information presented in (4.6)-(4.8) can be interpreted as solving a binary hypothesis test
problem for the set Θb = {θTX, θ̄TX}, with the likelihood Lk(ξ|θ̄TX) associated to θ̄TX
defined as:

Lk(ξ|θ̄TX) ≜
∑

τ ̸=θTX

Lk(ξ|τ)
H − 1 . (4.10)

In other words, the original problem with H hypotheses considered by the agents can be
reformulated as a binary hypothesis test problem over Θb, with a fictitious likelihood for the
“aggregate” fictitious hypothesis θ̄TX, namely, Lk(ξ|θ̄TX).

Proof. See Appendix 4.A.

The proposition shows that the algorithm under partial information in (4.6)–(4.8) can be rein-
terpreted in terms of a traditional social learning algorithm with a binary set of hypotheses
Θb = {θTX, θ̄TX}, and with likelihoods Lk(ξ|θTX) and Lk(ξ|θ̄TX). Intuitively, hypothesis θ̄TX
corresponds to an artificial hypothesis that representing any hypothesis distinct from θTX.

When θTX ̸= θ0, the algorithm is equivalent to a traditional (binary) social learning algorithm
with mismatched distribution, i.e., with a distribution of the data that does not match the
assumed likelihood. Under these conditions, the evolution of beliefs, particularly its asymptotic
learning behavior, is known to depend on the KL divergence between the true likelihood Lk(ξ|θ0)
and likelihoods Lk(ξ|θ̄TX) and Lk(ξ|θTX), an can be characterized using the theoretical results
in [40]. In order to keep this chapter self-contained, we establish the convergence behavior of
beliefs in Lemma 4.1 (see Appendix 4.B), Theorem 4.1 and Theorem 4.3.

In the second approach, we take into account the fact that each agent k has full knowledge
about its own intermediate belief vector ψk,i. Agent k will still perform the same Bayesian
update seen in (4.6) and share only its belief component corresponding to the hypothesis of
interest θTX, reflected in (4.7). However, now, we rewrite the combination step of the algorithm
in such a way that agent k combines its neighbors’ modified beliefs {ψ̂ℓ,i}ℓ∈Nk\k with its own
true belief ψk,i, using the following log-linear combination rule:

µk,i(θ) =

exp

akk logψk,i(θ) +
K∑

ℓ=1
ℓ̸=k

aℓk log ψ̂ℓ,i(θ)


∑

θ′∈Θ
exp

akk logψk,i(θ′) +
K∑

ℓ=1
ℓ̸=k

aℓk log ψ̂ℓ,i(θ′)


. (4.11)

Note that this combination step leads to:

log
µk,i(θ)
µk,i(θ′) = akk log

ψk,i(θ)
ψk,i(θ′) +

K∑
ℓ=1
ℓ̸=k

aℓk log
ψ̂ℓ,i(θ)
ψ̂ℓ,i(θ′)

, (4.12)
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where we can distinguish two terms on the RHS of (4.12): A first term representing the self-
awareness of agent k and a second term, which combines the neighbors’ partial information
contribution. In this formulation, it is necessary that akk > 0 in order for the self-awareness of
agent k to count in the combination step. We will refer to it as self-awareness coefficient and we
will assume that akk > 0 for all k = 1, 2, . . . , K in this setup.

4.2.2 Non-Transmitted Components

Before presenting the theoretical results, it is useful to make a parallel between the evolution of
non-transmitted belief components for both partial information approaches. For the algorithm
without self-awareness, all non-transmitted components of the belief vector evolve equally over
time. To see that, replace (4.7) into (4.9) for any two non-transmitted components τ, τ ′ ̸= θTX:

log
µk,i(τ)
µk,i(τ ′) =

K∑
ℓ=1

aℓk log
ψ̂ℓ,i(τ)
ψ̂ℓ,i(τ ′)

=
K∑

ℓ=1
aℓk log

1−ψℓ,i(θTX)
H−1

1−ψℓ,i(θTX)
H−1

= 0

⇒ µk,i(τ) = µk,i(τ ′). (4.13)

Since the entries of the vector µk,i sum up to one, it follows that we can write, for any non-
transmitted hypothesis τ ̸= θTX:∑

τ ̸=θTX

µk,i(τ) = 1 − µk,i(θTX)

⇒ µk,i(τ) =
1 − µk,i(θTX)

H − 1 . (4.14)

This equal evolution for all τ ̸= θTX will have the following important effect on the learning
behavior: If one non-transmitted hypothesis is rejected, then so are all the non-transmitted
hypotheses.

For the approach with self-awareness, the non-transmitted belief components no longer evolve
equally as is the case for the first partial information strategy. More precisely, for two non-
transmitted hypotheses τ, τ ′ ̸= θTX, considering (4.7), the combination step in (4.12) yields:

log
µk,i(τ)
µk,i(τ ′) = akk log

ψk,i(τ)
ψk,i(τ ′) +

K∑
ℓ=1
ℓ̸=k

aℓk log
1−ψℓ,i(θTX)

H−1
1−ψℓ,i(θTX)

H−1

(a)= akk log
µk,i−1(τ)
µk,i−1(τ ′) + akk log

Lk(ξk,i|τ)
Lk(ξk,i|τ ′) , (4.15)

where in (a) we used (4.6). In Lemma 4.5 (Appendix 4.D), we show that the log-ratio of beliefs for
non-transmitted hypotheses in the LHS of (4.15) converges in distribution to some asymptotic
random variable. In practice, this implies that the non-transmitted components will exhibit an
oscillatory behavior over time. Lemma 4.6 (Appendix 4.D) will nevertheless ensure the following
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stronger result: for the algorithm with self-awareness all non-transmitted components are
rejected in parallel. Although not as strong as the equal evolution seen in (4.14), this property
will be essential to enable learning in the self-aware case.

4.3 Performance Analysis

Before delving on the analysis of the learning performance, it is useful to introduce some
auxiliary quantities. First, we recall from (2.38) that, under objective evidence, the KL divergence
between the true likelihood and the likelihood corresponding to some hypothesis θ at agent k
is denoted by:

dk(θ) = D(Lk(θ0)||Lk(θ)) (4.16)

Using the Perron eigenvector entries, the network KL divergence is denoted for all θ ̸= θ0 as

D(θ) ≜
K∑

ℓ=1
πℓdℓ(θ), (4.17)

which will play an important role in the results that follow.

Second, recall the definition of θ̄TX, which corresponds to a “fictitious” hypothesis that represents
occurrence of any hypothesis distinct from θTX. This fictitious hypothesis does not explicitly
belong to Θ, and therefore is not associated to any of the likelihood functions. To this end, we
use instead the definition of the fictitious likelihood, seen in (4.10), which embodies compressed
information on all likelihoods relative to θ ̸= θTX. These two concepts allow us to extend the
notation of the KL divergence introduced in (4.16) to likelihood Lk(ξ|θ̄TX):

dk(θ̄TX) ≜ E
(

log
Lk(ξk,i|θ0)

Lk(ξk,i|θ̄TX)

)
. (4.18)

We also introduce the corresponding network divergence:2

D(θ̄TX) ≜
K∑

ℓ=1
πℓdℓ(θ̄TX). (4.21)

In the following sections, we are interested in determining for each of the algorithms, and for
different choices of the transmitted hypothesis, the conditions for learning and mislearning.

2From the convexity of − log(·) and using Jensen’s inequality, we have that:

log
Lk(ξk,i|θ0)

1
H−1

∑
τ ̸=θTX

Lk(ξk,i|τ)
≤ 1

H − 1
∑

τ ̸=θTX

(
log

Lk(ξk,i|θ0)
Lk(ξk,i|τ)

)
. (4.19)

Taking expectation of both sides in (4.19) allows us to relate dk(θ̄TX) to the KL divergences relative to the non-
transmitted hypotheses according to:

dk(θ̄TX) ≤
∑

τ ̸=θTX

dk(τ)
H − 1 . (4.20)

From (4.20), we see that the finite KL divergence assumption (Assumption 2.4) extends naturally to dk(θ̄TX) for all
k = 1, 2, . . . , K .
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The convergence analysis will be split in two complementary cases: i) when θTX = θ0; and ii)
when θTX ̸= θ0.

4.3.1 Truth Learning when θTX = θ0

For both partial information strategies, we will show that truth sharing, i.e., choosing θTX = θ0,
results in truth learning. Consider first the approach without self-awareness, namely algorithm
(4.6)–(4.8). Truth learning under truth sharing is guaranteed conditioned on the existence of at
least one agent that is clear-sighted in the following sense (we use the notation θ̄0 in place of
θ̄TX since we are focusing on the case θTX = θ0).

Assumption 4.1 (Existence of a clear-sighted agent: Approach without self-aware-
ness). There exists at least one agent k⋆ that satisfies the following condition:

dk⋆(θ̄0) > 0. (4.22)

From (4.22), we require that this clear-sighted agent is endowed with the ability of distinguishing
the true likelihood Lk⋆(ξ|θ0) from the fictitious likelihood Lk⋆(ξ|θ̄0) defined in (4.10). Note
that Assumption 4.1 implies that |Θ̄k⋆ | > 0. Actually, requiring that the true likelihood is not a
combination, with weights 1/(H−1), of all the likelihoods for θ ̸= θ0, is tantamount to requiring
that the true likelihood is not a combination, with weights 1/|Θ̄k⋆ |, of the distinguishable
hypotheses. This is not a strong assumption, since the case in which the true likelihood matches
exactly a mixture of the likelihoods relative to the distinguishable hypotheses with uniform
weights is deemed to be an unlucky coincidence.

Theorem 4.1 (Truth sharing implies truth learning: Approach without self-aware-
ness). Under Assumptions 2.4, 2.2 and 4.1, if θTX = θ0, then every agent k learns the truth,
i.e.,

µk,i(θTX) a.s.−→ 1. (4.23)

Proof. See Appendix 4.B.

Next, consider the partial information approach with self-awareness, whose algorithm can be
seen in (4.6), (4.7) and (4.11). For this algorithm, truth learning under truth sharing requires
another notion of clear-sighted agent.

Assumption 4.2 (Existence of a clear-sighted agent: Approach with self-awareness).
There exists at least one agent k⋆ that satisfies the following condition. For any convex
combination vector α ∈ ∆|Θ̄k⋆ |,

E

 log
Lk(ξk,i|θ0)∑

τ∈Θ̄k⋆

α(τ)Lk(ξk,i|τ)

 ≥ c > 0. (4.24)
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Figure 4.2: Learning mechanism for the traditional social learning and the two partial information
approaches under the truth-sharing regime.

First note that Assumption 4.2 implies that |Θ̄k⋆ | > 0. This assumption is stronger than
Assumption 4.1 since it requires that the true likelihood Lk⋆(ξ|θ0) is not an arbitrary mixture
of the likelihoods relative to distinguishable hypotheses. We will discuss these differences in
due detail in Section 4.3.3.

Theorem 4.2 (Truth sharing implies truth learning: Approach with self-awareness).
Under Assumptions 2.4, 2.2 and 4.2, when θTX = θ0 we have:

µk,i(θTX) a.s.−→ 1. (4.25)

Proof. See Appendix 4.C.

Theorems 4.1 and 4.2 ensure, under some technical assumptions, that both partial information
approaches drive agents to learn the truth when they share information relative only to the
true hypothesis. These results motivate us to draw a parallel between the learning behaviors of
the partial information and the traditional social learning strategies.

Learning with Traditional Social Learning (Figure 4.2a)

Consider a fixed hypothesis θ ̸= θ0. In view of the global identifiability assumption (As-
sumption 2.5), there is (at least) one clear-sighted agent whose data and likelihoods allow it to
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distinguish θ from θ0. Due to the propagation of information across the strongly connected
network, the other agents are eventually endowed with the same ability. As a result, all agents
are able to discard θ from θ0. Repeating the above process for every θ ̸= θ0 leads the agents to
choose finally θ0.

Learning without Self-Awareness (Figure 4.2b)

In this case, the meaning of the qualification “clear-sighted” changes. Let k⋆ be the index of a
clear-sighted agent, and recall that the distinguishable set of this agent is denoted by Θ̄k⋆ . In
the context of partial information without self-awareness, the clear-sighted agent is required
to distinguish θ0 from some fictitious hypothesis “aggregating” the hypotheses in Θ̄k⋆—see
Assumption 4.1. We showed that if this condition is verified, then all agents decide correctly.
This result admits a useful interpretation. Assumption 4.1 implies that the clear-sighted agent
has some capability of discounting Θ̄k⋆ . Now, since we have shown in (3.74) that under partial
information without self-awareness the beliefs evaluated at θ ̸= θTX evolve equally in parallel
(i.e., µk,i(θ) takes the same value for all θ ̸= θTX during the algorithm evolution), once the
clear-sighted is able to discount the hypotheses in Θ̄k⋆ , it is also able to discount all θ ̸= θTX.
Finally, this possibility is extended to all the other agents by propagation of information across
the strongly connected network.

Learning with Self-Awareness (Figure 4.2c)

As happens in the case without self-awareness, we need a clear-sighted agent, say agent
k⋆, that is required to distinguish θ0 from some aggregate hypothesis involving Θ̄k⋆ , but
now in a different sense. In the self-aware strategy, the clear-sighted agent must be able to
discern the likelihood at θ0 from any convex combination of likelihoods of the distinguishable
hypotheses, as detailed in condition (4.24). This condition is stronger than (4.22) since (4.22)
requires discriminability for a particular (uniform) combination. The reason for this stronger
requirement is as follows. In the Bayesian update rule, the social learning algorithms evaluate
convex combinations of the likelihoods that use as weights the beliefs µk,i−1(θ)—see the
denominator in (4.6). In the social learning strategy without self-awareness, due to the equal
evolution of the beliefs at the non-transmitted hypotheses, this convex combination ends up
being a uniformly weighted convex combination of the likelihoods. In contrast, as discussed in
Section 4.2.2, in the strategy with self-awareness the beliefs at θ ̸= θTX experience unpredictable
mutual oscillations, and due to this unpredictability we require discriminability with respect to
any convex combination.

Now, as we show in Lemma 4.3 (Appendix 4.C), if condition (4.24) is satisfied, the clear-sighted
agent is able to discount the hypotheses in Θ̄k⋆ . We will be able to show that also in this case
the correct choice of the clear-sighted agent propagates across the other agents, albeit with a
different learning mechanism, due to the self-awareness term. Comparing (4.8) against (4.11), we
see that the self-awareness term introduces a slight asymmetry in the social learning algorithm,
since the self-loop term is treated differently from all the other terms. On the theoretical side,
this slight asymmetry entails a significant complication in the technical proofs required to
examine the learning performance. On the practical side, the beliefs at the non-transmitted
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hypotheses do not evolve equally in parallel as happens in the case without self-awareness.
Instead, as already mentioned, the beliefs will feature mutual oscillations among different entries
θ ̸= θTX. Lemma 4.6 (Appendix 4.D) is used to show that the oscillatory behavior of the beliefs
does not impair the extension of this knowledge to the remaining θ ̸= θTX. As a result, despite
the oscillatory behavior, the clear-sighted agent is able to discount all the hypotheses θ ̸= θTX.
Finally, this possibility is extended to all the other agents by propagation of information across
the network (see Lemma 4.4 in Appendix 4.C).

4.3.2 Truth Learning/Mislearning when θTX ̸= θ0

For both partial information approaches, we will establish conditions for obtaining truth learning
and mislearning as an outcome of choosing θTX ̸= θ0. First, we introduce these results for the
strategy without self-awareness.

Theorem 4.3 (Learning/mislearning regimes: Approach without self-awareness).
Under Assumptions 2.4 and 2.2, for every agent k = 1, 2, . . . , K , we observe two convergence
behaviors:3

1. If D(θTX) > D(θ̄TX),

µk,i(θTX) a.s.−→ 0 and then µk,i(θ) a.s.−→ 1
H − 1 , (4.26)

for all θ ̸= θTX.

2. If D(θTX) < D(θ̄TX),
µk,i(θTX) a.s.−→ 1. (4.27)

Proof. See Appendix 4.E.

Theorem 4.3 shows two possible convergence behaviors for the beliefs across the network:
Asymptotically, either agents correctly discard θTX or they mistakenly believe that θTX is the
true hypothesis. The former case takes place whenever the transmitted hypothesis is sufficiently
distinct from the true hypothesis. The latter case happens whenever the transmitted hypothesis
is more easily confounded with the true one than the fictitious complementary hypothesis θ̄TX.

Before presenting similar results for the strategy with self-awareness, we introduce an extra
assumption on the boundedness of the likelihood functions.

Assumption 4.3 (Bounded likelihoods). Let there be a finite constant B > 0 such that,
for all k: ∣∣∣∣log Lk(ξ|τ)

Lk(ξ|τ ′)

∣∣∣∣ ≤ B, (4.28)

3We rule out the pathological case in which D(θTX) = D(θ̄TX), which typically results in a (non-convergent)
asymptotic oscillatory behavior of the belief components.
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for all τ, τ ′ ∈ Θ \ {θTX} and for all ξ ∈ Xk.

Theorem 4.4 (Learning/mislearning regimes: Approach with self-awareness). Under
Assumptions 2.4 and 2.2, when θTX ̸= θ0, for any agent k, we have:

1. If D(θTX) > 1
H−1

∑
τ ̸=θTX

D(τ),

µk,i(θTX) a.s.−→ 0. (4.29)

2. Under Assumption 4.3, if D(θTX) < D(θ̄TX) −
∑K

k=1 akk(dk(θ̄TX) + πkB),

µk,i(θTX) a.s.−→ 1. (4.30)

Proof. See Appendix 4.F.

Comparing the conditions for truth-learning when θTX = θ0 (Theorems 4.1 and 4.2) against the
conditions for truth-learning/mislearning when θTX ̸= θ0 (Theorems 4.3 and 4.4), we see that a
fundamental difference arises. The conditions relative to the case θTX = θ0 are formulated at
an individual agent level, i.e., they depend on local characteristics of a clear-sighted agent. In
contrast, the conditions relative to the case θTX ̸= θ0 are formulated at a network level, since
they depend on average KL divergences and network parameters in a way that does not allow
disentangling the individual agent contributions.

Let us now provide some interpretation of the results in Theorems 4.3 and 4.4. We will examine
the two theorems separately.

Learning and Mislearning without Self-Awareness

To explain the intuition behind Theorem 4.3, we will introduce a numerical example. Let there
be a strongly connected network of K = 10 agents solving a social learning problem under the
partial information regime without self-awareness, i.e., under (4.6)-(4.8). The set of hypotheses
is Θ = {1, 2, 3}, where we assume the true hypothesis is θ0 = 1. We consider that all agents
possess the same family of Gaussian likelihood functions with same variance and distinct means,
denoted by L(ξ|θ) for θ ∈ Θ, which are illustrated in Figure 4.3a.

Since the likelihood functions are the same across all agents, the Perron eigenvector does not
play a role in the convergence behavior, and only the following two quantities of interest will
determine the behavior of all agents—subscript k is dropped:

d(θTX) and d(θ̄TX), (4.31)

which, in the considered example, are the same across all agents, and which quantify, respec-
tively, the KL divergence between the likelihood of the true hypothesis and hypothesis of

82



4.3 Performance Analysis

−4 −2 0 2 4 6 8 10
ξ

0.0

0.2

0.4

L
(ξ
|θ)

θ = 1 θ = 2 θ = 3

(a) Family of Gaussian likelihoods.

−4 0 4 8

ξ

0.0

0.2

0.4

0.6

L
(ξ
|θ) d(θTX) = 0.50

−4 0 4 8

ξ

0.0

0.2

0.4

0.6

L
(ξ
|θ) d(θ̄TX) = 0.63

0 50 100

i

0

1

µ
1,
i(
θ T

X
)

Belief evolution

θ0 = 1 θTX = 2 θ̄TX ≡ {1, 3}

(b) Transmitted hypothesis θTX = 2.

−4 0 4 8

ξ

0.0

0.2

0.4

0.6

L
(ξ
|θ) d(θTX) = 7.99

−4 0 4 8

ξ

0.0

0.2

0.4

0.6

L
(ξ
|θ) d(θ̄TX) = 0.11

0 10 20

i

0

1

µ
1
,i
(θ

T
X
)

Belief evolution

θ0 = 1 θTX = 3 θ̄TX ≡ {1, 2}

(c) Transmitted hypothesis θTX = 3.

Figure 4.3: Example of family of likelihood functions with θ0 = 1. In the middle panels of (b) and (c),
solid lines represent the actual likelihood functions and dashed lines depict the “fictitious” likelihood
functions associated with the complementary hypothesis θ̄TX, defined in (4.10).

interest θTX, and the KL divergence between the likelihood of the true hypothesis and the
fictitious likelihood of the complementary hypothesis θ̄TX—see (4.10).

Consider first that the hypothesis of interest is chosen to be θTX = 2. We see in Figure 4.3b
that the likelihood relative to the transmitted hypothesis is closer to the true likelihood in
comparison with the likelihood relative to the non-transmitted hypothesis, i.e.,

d(θTX) < d(θ̄TX), (4.32)

which implies that condition 2) of Theorem 4.3 is satisfied, and all agents are fooled into believing
that θTX is the true state. This behavior is confirmed by the experiment shown in the righmost
panel of Figure 4.3b for agent 1.

When the hypothesis of interest is chosen as θTX = 3, Figure 4.3c shows that the likelihood
relative to the transmitted hypothesis is farther from the true likelihood in comparison with
the likelihood relative to the non-transmitted hypothesis, i.e.,

d(θTX) > d(θ̄TX), (4.33)

and agents can properly distinguish the transmitted hypothesis as being false, as seen in case 1)
of Theorem 4.3. Therefore agents are able to discount hypothesis θTX, as shown in the belief
evolution in the rightmost panel of Figure 4.3c.

Learning and Mislearning with Self-Awareness

Let us comment on the result for the algorithm with self-awareness in the case θTX ̸= θ0.
The addition of a self-awareness term is expected to improve the learning performance, and
this behavior will be examined in the forthcoming section. However, as already noticed, the

83



Chapter 4. Exchange of Partial Information

0
<latexit sha1_base64="rsPGDo38dCUrLsAt/ftnosrChUA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPemeMuA==</latexit>

–<latexit sha1_base64="voqTz+rJmOAvSs8rgX4tY6Gk5vc=">AAAB6XicbVA9SwNBEJ3zM8avqKXNYhAsTLiLhZYBG8so5gOSI+xt9pIle3vH7pwQjvwDGwtFbP1Hdv4bN8kVmvhg4PHeDDPzgkQKg6777aytb2xubRd2irt7+weHpaPjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWeqhU+qWyW3XnIKvEy0kZcjT6pa/eIGZpxBUySY3pem6CfkY1Cib5tNhLDU8oG9Mh71qqaMSNn80vnZJzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieONnQiUpcsUWi8JUEozJ7G0yEJozlBNLKNPC3krYiGrK0IZTtCF4yy+vklat6l1Va/e1cv0yj6MAp3AGF+DBNdThDhrQBAYhPMMrvDlj58V5dz4WrWtOPnMCf+B8/gDX4ozU</latexit>

dave(✓̄TX)
<latexit sha1_base64="15FCRG8GWkuYe38/K3iZy6prQtc=">AAACC3icbVDLSgNBEJz1bXxFPXoZDEIECbtR0KPgxaOCMYFsCL2T3mRw9sFMrxCWvXvxV7x4UMSrP+DNv3HyOGi0oKGo6qa7K0iVNOS6X87c/MLi0vLKamltfWNzq7y9c2uSTAtsiEQluhWAQSVjbJAkha1UI0SBwmZwdzHym/eojUziGxqm2ImgH8tQCiArdcv7vW7um5DDPRZVPwCd+zRAgmIi37SKw2654tbcMfhf4k1JhU1x1S1/+r1EZBHGJBQY0/bclDo5aJJCYVHyM4MpiDvoY9vSGCI0nXz8S8EPrNLjYaJtxcTH6s+JHCJjhlFgOyOggZn1RuJ/Xjuj8KyTyzjNCGMxWRRmilPCR8HwntQoSA0tAaGlvZWLAWgQZOMr2RC82Zf/ktt6zTuu1a9PKudH0zhW2B7bZ1XmsVN2zi7ZFWswwR7YE3thr86j8+y8Oe+T1jlnOrPLfsH5+AbgxZrd</latexit>

1
H�1

P
⌧ 6=✓TX

dave(⌧)
<latexit sha1_base64="RcR9/9JmRXr9x0rJKfEVnzJoT1M="></latexit><latexit sha1_base64="RcR9/9JmRXr9x0rJKfEVnzJoT1M="></latexit><latexit sha1_base64="RcR9/9JmRXr9x0rJKfEVnzJoT1M="></latexit><latexit sha1_base64="RcR9/9JmRXr9x0rJKfEVnzJoT1M="></latexit>

mislearning
<latexit sha1_base64="Zdmy3hSfYJQMhxxYofR4tLwOssI=">AAACCXicbVDLSgNBEJyNrxhfUY9eBoPgKexGQY8BLx4jmAdsljA76SRD5rHMzAphyRd49qrf4E28+hV+gn/hJNmDSSxoKKq66e6KE86M9f1vr7CxubW9U9wt7e0fHB6Vj09aRqWaQpMqrnQnJgY4k9C0zHLoJBqIiDm04/HdzG8/gTZMyUc7SSASZCjZgFFinRQKZjgQLZkc9soVv+rPgddJkJMKytHolX+6fUVTAdJSTowJAz+xUUa0ZZTDtNRNDSSEjskQQkclEWCibH7yFF84pY8HSruSFs/VvxMZEcZMROw6BbEjs+rNxP+8MLWD2yhjMkktSLpYNEg5tgrP/sd9poFaPnGEUM3crZiOiCbUupSWtnAWg/tFpmbqsglWk1gnrVo1uKrWHmqV+nWeUhGdoXN0iQJ0g+roHjVQE1Gk0At6RW/es/fufXifi9aCl8+coiV4X7+WJput</latexit>

learning
<latexit sha1_base64="JeWYxpJSvlLXCLFlMcs6+f+HnjI=">AAACBnicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY8BLx4jmAckS5id9CZDZmeXmVkhLLl79qrf4E28+ht+gn/hJNmDSSxoKKq66e4KEsG1cd1vp7CxubW9U9wt7e0fHB6Vj09aOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfzfz2EyrNY/loJgn6ER1KHnJGjZU6AqmSXA775Ypbdecg68TLSQVyNPrln94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n83un5MIqAxLGypY0ZK7+nchopPUkCmxnRM1Ir3oz8T+vm5rw1s+4TFKDki0WhakgJiaz58mAK2RGTCyhTHF7K2EjqigzNqKlLYIHaH+RqZ7abLzVJNZJq1b1rqq1h1qlfp2nVIQzOIdL8OAG6nAPDWgCAwEv8ApvzrPz7nw4n4vWgpPPnMISnK9fCymaRg==</latexit>

w/ SA
<latexit sha1_base64="3AchbT6fhqOqhIO73UoMn3vFfVk=">AAACA3icbVDLTgJBEOzFF+IL9ehlIjHxhLtookeMF48Y5ZHAhswODUyYnd3MzGoI4ejZq36DN+PVD/ET/AsH2IOAlXRSqepOd1cQC66N6347mZXVtfWN7GZua3tndy+/f1DTUaIYVlkkItUIqEbBJVYNNwIbsUIaBgLrweBm4tcfUWkeyQczjNEPaU/yLmfUWKn6dEbur9v5glt0pyDLxEtJAVJU2vmfVidiSYjSMEG1bnpubPwRVYYzgeNcK9EYUzagPWxaKmmI2h9Njx2TE6t0SDdStqQhU/XvxIiGWg/DwHaG1PT1ojcR//Oaiele+SMu48SgZLNF3UQQE5HJ56TDFTIjhpZQpri9lbA+VZQZm8/cFsEDtL/IRI9tNt5iEsukVip658XSXalQvkhTysIRHMMpeHAJZbiFClSBAYcXeIU359l5dz6cz1lrxklnDmEOztcvbV+YMg==</latexit>

w/o SA
<latexit sha1_base64="4XfEmN3I19VSyfIOYO7ViUh7L54=">AAACBHicbVC7TgMxEPSFVwivACWNRYREFe4CEpRBNJRBkIeUnCKfs5cYfPbJ9oGiU1pqWvgGOkTLf/AJ/AVOcgVJGGml0cyudneCmDNtXPfbyS0tr6yu5dcLG5tb2zvF3b2GlomiUKeSS9UKiAbOBNQNMxxasQISBRyawcPV2G8+gtJMijszjMGPSF+wkFFirNR4OpH49rJbLLlldwK8SLyMlFCGWrf40+lJmkQgDOVE67bnxsZPiTKMchgVOomGmNAH0oe2pYJEoP10cu0IH1mlh0OpbAmDJ+rfiZREWg+jwHZGxAz0vDcW//PaiQkv/JSJODEg6HRRmHBsJB6/jntMATV8aAmhitlbMR0QRaixAc1s4SwA+4tI9Mhm480nsUgalbJ3Wq7cVErVsyylPDpAh+gYeegcVdE1qqE6ougevaBX9OY8O+/Oh/M5bc052cw+moHz9QtGmZir</latexit> learning

<latexit sha1_base64="JeWYxpJSvlLXCLFlMcs6+f+HnjI=">AAACBnicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY8BLx4jmAckS5id9CZDZmeXmVkhLLl79qrf4E28+ht+gn/hJNmDSSxoKKq66e4KEsG1cd1vp7CxubW9U9wt7e0fHB6Vj09aOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfzfz2EyrNY/loJgn6ER1KHnJGjZU6AqmSXA775Ypbdecg68TLSQVyNPrln94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n83un5MIqAxLGypY0ZK7+nchopPUkCmxnRM1Ir3oz8T+vm5rw1s+4TFKDki0WhakgJiaz58mAK2RGTCyhTHF7K2EjqigzNqKlLYIHaH+RqZ7abLzVJNZJq1b1rqq1h1qlfp2nVIQzOIdL8OAG6nAPDWgCAwEv8ApvzrPz7nw4n4vWgpPPnMISnK9fCymaRg==</latexit>

mislearning
<latexit sha1_base64="Zdmy3hSfYJQMhxxYofR4tLwOssI=">AAACCXicbVDLSgNBEJyNrxhfUY9eBoPgKexGQY8BLx4jmAdsljA76SRD5rHMzAphyRd49qrf4E28+hV+gn/hJNmDSSxoKKq66e6KE86M9f1vr7CxubW9U9wt7e0fHB6Vj09aRqWaQpMqrnQnJgY4k9C0zHLoJBqIiDm04/HdzG8/gTZMyUc7SSASZCjZgFFinRQKZjgQLZkc9soVv+rPgddJkJMKytHolX+6fUVTAdJSTowJAz+xUUa0ZZTDtNRNDSSEjskQQkclEWCibH7yFF84pY8HSruSFs/VvxMZEcZMROw6BbEjs+rNxP+8MLWD2yhjMkktSLpYNEg5tgrP/sd9poFaPnGEUM3crZiOiCbUupSWtnAWg/tFpmbqsglWk1gnrVo1uKrWHmqV+nWeUhGdoXN0iQJ0g+roHjVQE1Gk0At6RW/es/fufXifi9aCl8+coiV4X7+WJput</latexit>

dave(✓̄TX)

�
KX

k=1

akk(dk(✓̄TX) + Bvk)

<latexit sha1_base64="xbChXuqhVA3Wtw7FnC2y9mG56hc=">AAACX3icdVBNaxRBFOwdPxKjxlFP4qVxETZIlpkY0IsQ9CJ4iZBNFnbG4U3Pm2wz3T1D95uFZZif54/w6FG86t3ej4NJtKChqHrFe115o6SjKPo2CG7dvnN3Z/fe3v0HD/cfhY+fnLu6tQInola1nebgUEmDE5KkcNpYBJ0rvMirDyv/YoHWydqc0bLBVMOlkaUUQF7KwqzIusSVHBbYj5IcbJfQHAn6jXw27Q94kswOY9TpYeJanXXVu7j/8gk8qfpRkVX/ib16v8iqgywcRuNoDX6TxFsyZFucZuGPpKhFq9GQUODcLI4aSjuwJIXCfi9pHTYgKrjEmacGNLq0WxfR85deKXhZW/8M8bX6d6ID7dxS535SA83ddW8l/subtVS+TTtpmpbQiM2islWcar5qlRfSoiC19ASElf5WLuZgQZDv/soWJXP0fzGt63038fUmbpLzo3H8enz0+Xh4crxtaZc9Zy/YiMXsDTthH9kpmzDBvrKf7Bf7Pfge7AT7QbgZDQbbzFN2BcGzP8p4uVg=</latexit> 1

H � 1

X

⌧ 6=✓TX

d(⌧)

<latexit sha1_base64="G+D9s/I1G2GjrHbDErI2PEqWSK8=">AAACG3icbVBNS8NAEN34WetX1KOXxSLowZLUgh4LXnqs0GqhKWWzndjFzSbuToQS8j+8+Fe8eFDEk+DBf+O29uDXg4G3782wMy9MpTDoeR/O3PzC4tJyaaW8ura+selubV+YJNMcOjyRie6GzIAUCjooUEI31cDiUMJleH028S9vQRuRqDaOU+jH7EqJSHCGVhq4tSDSjOd+kTeP/CIwWTzIA2RZoOAmwBEgs28T0Xa3KIYHE+dw4Fa8qjcF/Uv8GamQGVoD9y0YJjyLQSGXzJie76XYz5lGwSUU5SAzkDJ+za6gZ6liMZh+Pr2toPtWGdIo0bYU0qn6fSJnsTHjOLSdMcOR+e1NxP+8XobRaT8XKs0QFP/6KMokxYROgqJDoYGjHFvCuBZ2V8pHzIaFNs6yDcH/ffJfclGr+sfV2nm90qjP4iiRXbJHDohPTkiDNEmLdAgnd+SBPJFn5955dF6c16/WOWc2s0N+wHn/BLf9occ=</latexit>

D(✓̄TX)

�
KX

k=1

akk(dk(✓̄TX) + ⇡kB)

<latexit sha1_base64="17W315v8EtG1p4+vIUJbMyFA8t8="></latexit>

D(✓̄TX)
<latexit sha1_base64="rKuTQsM3SwnV0rxp9ZsLTyn1TIk=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSxC3ZSkCros6MJlhb6gCWEynbRDJw9mboQS4sZfceNCEbf+hTv/xmmbhbYeuHA4517uvcdPBFdgWd/Gyura+sZmaau8vbO7t28eHHZUnErK2jQWsez5RDHBI9YGDoL1EslI6AvW9cc3U7/7wKTicdSCScLckAwjHnBKQEueeXxbdXwiMwdGDEjuZY4KcKuXn3tmxapZM+BlYhekggo0PfPLGcQ0DVkEVBCl+raVgJsRCZwKlpedVLGE0DEZsr6mEQmZcrPZBzk+08oAB7HUFQGeqb8nMhIqNQl93RkSGKlFbyr+5/VTCK7djEdJCiyi80VBKjDEeBoHHnDJKIiJJoRKrm/FdEQkoaBDK+sQ7MWXl0mnXrMvavX7y0rDKuIooRN0iqrIRleoge5QE7URRY/oGb2iN+PJeDHejY9564pRzByhPzA+fwDfJpZ1</latexit>

X

⌧ 6=✓TX

D(⌧)

H � 1
<latexit sha1_base64="nonYDAeLEQS9q3Si3rbAg0LEg9E=">AAACGnicbVBNS8NAEN34bf2KevSyWIR6sCRV0GNBDx4VrBaaUjbbSbt0s4m7E6GE/A4v/hUvHhTxJl78N25rD2p9MPD2vRl25oWpFAY979OZmZ2bX1hcWi6trK6tb7ibW9cmyTSHBk9kopshMyCFggYKlNBMNbA4lHATDk5H/s0daCMSdYXDFNox6ykRCc7QSh3XD0wWd/IAWRYouA2wD8js20T0qlkUQaQZz88qI3+/yM8P/KLjlr2qNwadJv6ElMkEFx33PegmPItBIZfMmJbvpdjOmUbBJRSlIDOQMj5gPWhZqlgMpp2PTyvonlW6NEq0LYV0rP6cyFlszDAObWfMsG/+eiPxP6+VYXTSzoVKMwTFvz+KMkkxoaOcaFdo4CiHljCuhd2V8j6zaaBNs2RD8P+ePE2ua1X/sFq7PCrXvUkcS2SH7JIK8ckxqZNzckEahJN78kieyYvz4Dw5r87bd+uMM5nZJr/gfHwBElWhaA==</latexit>

D(✓TX)
<latexit sha1_base64="pmcieQWcudBqXLCamjETYWeSGbY=">AAAB+3icbVDLSsNAFJ3UV62vWJduBotQNyWpgi4LunBZoS9oQphMJ+3QyYOZG7GE/IobF4q49Ufc+TdO2yy09cCFwzn3cu89fiK4Asv6Nkobm1vbO+Xdyt7+weGReVztqTiVlHVpLGI58IligkesCxwEGySSkdAXrO9Pb+d+/5FJxeOoA7OEuSEZRzzglICWPLN6V3dgwoB4maMC3BnkF55ZsxrWAnid2AWpoQJtz/xyRjFNQxYBFUSpoW0l4GZEAqeC5RUnVSwhdErGbKhpREKm3Gxxe47PtTLCQSx1RYAX6u+JjIRKzUJfd4YEJmrVm4v/ecMUghs341GSAovoclGQCgwxngeBR1wyCmKmCaGS61sxnRBJKOi4KjoEe/XlddJrNuzLRvPhqtayijjK6BSdoTqy0TVqoXvURl1E0RN6Rq/ozciNF+Pd+Fi2loxi5gT9gfH5A/fJk7A=</latexit>

Figure 4.4: Learning regions for D(θTX) for the partial information algorithm without and with self-
awareness (denoted by “w/o SA” and “w/ SA” respectively) when θTX ̸= θ0.

asymmetry introduced in the learning algorithm by the self-awareness term makes the theoret-
ical analysis more complicated. For example, different from the case without self-awareness,
the learning/mislearning bounds are not tight, and, as far as we can tell, do not suggest a
neat physical interpretation of the learning/mislearning behavior. We notice furthermore that
the RHS of condition 2) in Theorem 4.4, can in principle be negative, particularly when the
self-awareness coefficients approach 1. In this case, the mislearning condition is never satisfied,
and simulation results, detailed in the next section, suggest that higher self-weights can mitigate
mislearning.

In summary, Theorems 4.3 and 4.4 show, for both partial information approaches, that when
θTX ̸= θ0 there exist regions of D(θTX) for which respectively truth learning and mislearning
occur. These regions are illustrated in Figure 4.4. As a general comment applying to both
algorithms, we see that if the transmitted hypothesis is more easily confounded with the true
one (small D(θTX)) we have mislearning, while the converse behavior occurs for relatively high
values of D(θTX). However, a difference emerges between the results available from the two
theorems. For the algorithm without self-awareness, we can determine the learning/mislearning
behavior for any value of D(θTX), whereas for the algorithm with self-awareness, we cannot
determine the behavior whenever D(θTX) is found in the gray area of Figure 4.4.

Exploiting the structure of the lower boundary in Figure 4.4, we can examine how this boundary
is influenced by the self-weights akk. If the value of one or more self-terms decreases (i.e., if
self-awareness decreases) the lower boundary moves upward, and the region where mislearning
occurs becomes wider, eventually approaching the threshold D(θ̄TX) pertaining to the algorithm
without self-awareness when the self-terms vanish. Conversely, if akk increases the lower
boundary moves downward. This implies that the gray area becomes wider, i.e., the region
where we are sure to mislearn reduces. On the other hand, a wider gray area leaves open the
possibility that correct learning occurs over an ampler range of cases. We will get confirmation
of this behavior in the forthcoming section.

84



4.4 Simulation Results

4.3.3 Discussion and Overview of Results

Comparative Discussion on Main Assumptions

As seen in Section 2.1.3, traditional social learning requires global identifiability, i.e., for every
θ ̸= θ0, at least one agent should be able to distinguish θ from θ0. In comparison, Assump-
tions 4.1 and 4.2 require the existence of one agent whose true likelihood is not equal to convex
combinations of the other likelihoods, which are in some sense representative of the “alternative”
w.r.t. the transmitted hypothesis. The situation that one likelihood is a convex combination
of the other likelihoods is often an unlikely situation (for example, if we have Gaussian or
exponential likelihoods, a convex combination thereof is not Gaussian or exponential). In
summary, Assumptions 4.1 and 4.2 can be verified even if global identifiability is violated. For
example, if θ⋆ is indistinguishable from θ0 at all agents, our results imply that when θTX = θ0
we can still guess the right hypothesis. This might appear strange in view of traditional social
learning, however we must not forget that the problem of truth learning contemplates also the
case θTX ̸= θ0. In the latter case, the impact of indistinguishability becomes more relevant,
since the partial information strategies learn well provided that condition 1) in Theorem 4.3
(without self-awareness) or condition 1) in Theorem 4.4 (with self-awareness) holds. Examining
(4.26) and (4.29), we see that one necessary condition for them to hold is that D(θTX) > 0,
which implies that some agent must be able to distinguish θTX from θ0. In particular, if we
require truth learning for all θTX ̸= θ0, we need D(θTX) > 0 for all θTX ̸= θ0, i.e., at least global
identifiability is required. In summary, in the truth sharing regime, conditions for learning
are weaker than in traditional social learning, whereas in the regime with θTX ̸= θ0, global
identifiability is necessary but not sufficient.

Main Questions in Social Learning with Partial Information

In summary, the main questions to be answered in social learning with partial information
sharing are overall ones like:

1. In which instances the agents learn regardless of the true state?

2. When agents mislearn, how does this happen?

The answer to question 1 is provided by Theorems 4.1–4.4. In particular, since Theorems 4.1
and 4.2 reveal that, when θTX = θ0, truth learning is guaranteed, both with and without
self-awareness, the answer to question 1 is contained in Eqs. (4.26) and (4.29), which provide
conditions under which truth learning takes place regardless of the transmitted hypothesis.
Likewise, the answer to question 2 is provided by (4.27) and (4.30), which in particular specify
that when an agent mislearns, it gives full credit to the transmitted (wrong) hypothesis.

4.4 Simulation Results

In this section, we illustrate the results seen in Theorems 4.1–4.4. To do so, we set up an
inference problem with ten hypotheses, i.e., Θ = {1, 2, . . . , 10}, from which θ0 = 1 is the true

85



Chapter 4. Exchange of Partial Information

1

2
3

4

5

6

7

8

9

10

Figure 4.5: Strongly connected network topology with K = 10 agents.

state of nature. We consider a strongly connected network of 10 agents, whose topology can be
seen in Figure 4.5, designed so that all agents have self-loops.

Besides, the adjacency matrix is designed to be left-stochastic using a parametrized averaging
rule [37]:

aℓk =


λ, if ℓ = k,

(1 − λ)/nk, if ℓ ̸= k and ℓ ∈ Nk,

0, otherwise.

(4.34)

where nℓ is the degree of node (agent) ℓ, excluding node ℓ itself. Each agent is trying to determine
whether some hypothesis θTX ∈ Θ corresponds to the true state of nature, by exchanging
among neighbors partial information regarding the hypothesis of interest. In the following we
consider two inference problems, one with continuous observations, the other with discrete
observations.

4.4.1 Continuous Observations

The first example considers a family of unit-variance Gaussian likelihood functions given by:

fn(ξ) = 1√
2π

exp
{

−(ξ − 0.5(n − 1))2

2

}
, (4.35)

for n = 1, 2, . . . , 10.

We assume that the inference problem is globally identifiable (see Assumption 2.5). More partic-
ularly, we consider the following identifiability limitations: For each agent k = 1, 2, . . . , 10,

Lk(ξ|θ) =
{

f1(ξ), for θ ≤ k,

fθ(ξ), for θ > k.
(4.36)

In this case, only agent 1 is able to solve the inference problem alone, that is, the indistinguishable
set of hypotheses satisfies:

|Θk| > 1, for k = 2, . . . , 10. (4.37)

Under the aforementioned setup, we now examine both the partial information algorithm
proposed in (4.6)–(4.8) and the algorithm with self-awareness in (4.6), (4.7) and (4.11). We also
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4.4 Simulation Results
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(a) Self-awareness parameter λ = 0.7.
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(b) Self-awareness parameter λ = 0.95.

Figure 4.6: Convergence of the belief component regarding different transmitted hypotheses for agent 5,
where θ0 = 1.

wish to compare the performance of both algorithms with the performance of the traditional
social learning algorithm (seen in (2.2)–(2.3)), in which the agents share all elements of the
belief vector.

At first, we consider that the combination matrix is parameterized according to (4.34) with
λ = 0.7. In Figure 4.6a we can see the evolution of belief at agent 5 (similar behavior is observed
for the other agents) for each different hypothesis of interest θTX. Colorful solid and dashed
lines refer to the partial information algorithm without and with self-awareness, respectively.
Black dotted lines refer to traditional social learning.

We start by examining the behavior of the algorithm under truth sharing, i.e., when θTX = θ0 = 1
(leftmost panel in Figure 4.6a). We see that all social learning algorithms are able to learn the
true hypothesis, as predicted by Theorems 4.1 and 4.2 for the partial information algorithms,
and by the existing results on traditional social learning. We switch to the case θTX ̸= θ0
(middle and rightmost panel in Figure 4.6a). As expected, traditional social learning learns well.
The partial information algorithms behave instead in accordance with Theorems 4.3 and 4.4:
When the hypothesis of interest is sufficiently “close” to the true one, which is the case for
θTX = 3 (middle panel), the agent mistakenly learns that θTX is the true hypothesis. Conversely,
when the hypothesis of interest is far enough from the true one, which is the case for θTX = 6
(rightmost panel), the agent learns well.

It is interesting to see what happens when all agents give more weight to their individual
information by increasing the self-awareness parameter, setting it to parameter λ. In Figure 4.6b
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Chapter 4. Exchange of Partial Information

we consider the case λ = 0.95. The algorithm with self-awareness is now able to learn the
truth for any of the three transmitted hypothesis, and its convergence curve is now closer to the
curve of the traditional social learning algorithm. In a nutshell, concentrating the weights of
the combination matrix A around the self-loops entails a decrease in cooperation and hence a
slower convergence. It also mitigates the effect of partial information received from neighbors,
allowing for truth learning in all three cases.

Another interesting phenomenon emerging from the simulations pertains to the learning
rate. In the considered example, the algorithm without self-awareness can be faster4 than
that with self-awareness, which can, in turn, be faster than traditional social learning. This
can be counterintuitive, since one could expect that traditional social learning is the best
one. However, in making this observation one should not forget the inherent trade-off of
decision systems. Think of a decision system that always chooses θTX. This system learns
instantaneously when θTX = θ0, but fails invariably in the other cases. In other words, the
superiority of traditional social learning resides in the fact that it always allows correct learning.
In contrast, the algorithms with partial information can learn faster when they learn well, but
they can fail. Likewise, the fact that the algorithm without self-awareness can be faster than the
algorithm with self-awareness when θTX = θ0, is justified by the fact that the latter algorithm
can perform better when θTX ̸= θ0.

4.4.2 Discrete Observations

Consider the same network topology seen in Figure 4.5 and combination matrix in (4.34). Under
θ0 = 1, and the same identifiability constraints enunciated in the previous example, we now
consider a family of discrete likelihood functions given by fn(ξ) for n = 1, 2, . . . , 10, defined
over a discrete space of signals X ≜ {0, 1, 2}, which can be seen in Figure 4.7. We highlight in
blue the distribution f1, which we associated with the true likelihoods Lk(ξ|θ0) for all agents.

0 1 2
ξ
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0.50

f n
(ξ

)

n = 1
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n = 4

n = 5

n = 6
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n = 8

n = 9
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Figure 4.7: Family of discrete likelihood functions.

At first, we consider a self-awareness parameter λ = 0.7. We wish to compare the two partial
information approaches for different transmitted hypotheses and the traditional social learning
strategy with full information sharing. We can see in Figure 4.8a the evolution of belief at agent
5 for each transmitted hypothesis θTX ∈ Θ (similar behavior is observed for the other agents).
As in the previous example, due to the likelihood functions setup, when θTX = 3, the true

4We have also noted that, for very small values of λ, it is possible for this convergence to be slightly slower
instead.
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(a) Self-awareness parameter λ = 0.7.
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Figure 4.8: Convergence of the belief component regarding different transmitted hypotheses for agent 5,
where θ0 = 1.

hypothesis and θTX = 3 are confounded by the algorithm with partial information, and the
agent mislearns.

However, when the self-awareness parameter increases to λ = 0.95, again a switch in the
convergence behavior happens as can be seen in Figure 4.8b for θTX = 3. As the agents are
more self-aware, they are able to make correct decisions for all scenarios of θTX.

Different from the previous example with Gaussian likelihoods, in the present example with
discrete likelihoods Assumption 4.3 holds. This implies that we can exploit the lower boundary in
Figure 4.4 corresponding to the algorithm with self-awareness. Examining this lower boundary,
we see that as self-awareness grows (i.e., as λ grows), the mislearning region shrinks and gives
place to a gray area, where either learning or mislearning could possibly occur. We recall that
getting a wider gray region does not allow to conclude that the algorithm with self-awareness
would learn inside this region. However, a wider gray area reduces the region where we would
be sure to observe mislearning. As a matter of fact, in the specific example we are dealing with,
self-awareness can be used to tune the learning behavior in the case θTX = 2, and bring the
network from mislearning to full learning.

4.5 Concluding Remarks

In this chapter, we introduced two approaches for taking into account partial information
within the social learning framework, where agents communicate their belief about a single
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hypothesis of interest. In the first approach, agents consider only partial beliefs. In the second,
each individual agent becomes self-aware, in the sense that it exploits its own full belief (being
still forced to use partial beliefs from its neighbors).

We established the following main trends. While the traditional social learning algorithms,
which leverage full belief sharing, are always able to learn correctly the true hypothesis, a richer
behavior characterizes social learning under partial information. Both social learning algorithms
with partial information proposed in this work learn correctly when the hypothesis of interest is
the true hypothesis. When the transmitted hypothesis is false, however, mislearning can occur.
Moreover, we showed that there are cases where the algorithm without self-awareness mislearns,
while the algorithm with self-awareness can be led to the right conclusion by increasing the
self-weights in the combination matrix.

4.A Proof of Proposition 4.1

Let the belief vector µk,i be split into two components for every agent k: µk,i(θTX) and
µk,i(θ̄TX), the latter defined as

µk,i(θ̄TX) =
∑

τ ̸=θTX

µk,i(τ). (4.38)

Similarly, for the intermediate belief vector ψk,i, we define:

ψk,i(θ̄TX) =
∑

τ ̸=θTX

ψk,i(τ). (4.39)

Remember, from (3.74), that all non-transmitted components of µk,i evolve equally according
to:

µk,i(τ) =
µk,i(θ̄TX)

H − 1 (4.40)

for any τ ̸= θTX. Replace (4.6) into (4.39):

ψk,i(θ̄TX) =

∑
τ ̸=θTX

µk,i−1(τ)Lk(ξk,i|τ)∑
θ′∈Θ

µk,i−1(θ′)Lk(ξk,i|θ′)

(a)=

∑
τ ̸=θTX

µk,i−1(θ̄TX)Lk(ξk,i|τ)/(H − 1)

µk,i−1(θTX)Lk(ξk,i|θTX) +
∑

θ′ ̸=θTX

µk,i−1(θ̄TX)Lk(ξk,i|θ′)/(H − 1)

(b)=
µk,i−1(θ̄TX)Lk(ξk,i|θ̄TX)

µk,i−1(θTX)Lk(ξk,i|θTX) + µk,i−1(θ̄TX)Lk(ξk,i|θ̄TX)
, (4.41)

where in (a) the non-transmitted components are replaced by (3.74), and in (b) the likelihood
function corresponding to the complementary hypothesis θ̄TX is replaced by (4.10). Note that
(4.41) corresponds to the Bayesian update for the complementary hypothesis θ̄TX under the set
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4.B Proof of Theorem 4.1

of two hypotheses Θb = {θTX, θ̄TX}, and with the fictitious likelihood in (4.10).

Similarly to the belief vectors µk,i, we now show that the non-transmitted components of
the modified belief ψ̂k,i evolve equally over time. From (4.7) and (4.39) we have, for any
non-transmitted hypothesis τ ̸= θTX:

ψ̂ℓ,i(τ) =
ψℓ,i(θ̄TX)

H − 1 . (4.42)

Consider now the combination step. Replacing (3.3) into (4.38) results in:

µk,i(θ̄TX) =

∑
τ ̸=θTX

exp
(

K∑
ℓ=1

aℓk log ψ̂ℓ,i(τ)
)

∑
θ′∈Θ

exp
(

K∑
ℓ=1

aℓk log ψ̂ℓ,i(θ′)
)

(a)=

∑
τ ̸=θTX

exp
(

K∑
ℓ=1

aℓk log ψℓ,i(θ̄TX)
H−1

)

exp
(

K∑
ℓ=1

aℓk logψℓ,i(θTX)
)

+
∑

θ′ ̸=θTX

exp
(

K∑
ℓ=1

aℓk log ψℓ,i(θ̄TX)
H−1

)

=
exp

(
K∑

ℓ=1
aℓk logψℓ,i(θ̄TX)

)

exp
(

K∑
ℓ=1

aℓk logψℓ,i(θTX)
)

+ exp
(

K∑
ℓ=1

aℓk logψℓ,i(θ̄TX)
) , (4.43)

where in (a), the non-transmitted components of the modified belief vector are replaced by
(4.42). Note that (4.43) is equivalent to writing a (log-linear) combination step for the binary set
of hypotheses Θb = {θTX, θ̄TX}.

Since µk,i(θTX) and µk,i(θ̄TX) (and similarlyψk,i(θTX) andψk,i(θ̄TX)) sum up to one, we have
that for every θ ∈ Θb, the partial information algorithm enunciated in (2.2)–(2.3) behaves in
the same manner as if each agent k performed the two steps in the traditional social learning
algorithm seen in (2.2)–(2.3) for the two hypotheses in Θb, which agrees with the claim in
Proposition 4.1.

4.B Proof of Theorem 4.1

We first introduce an intermediate result, where we show that for each agent the log-ratio
between any non-transmitted and transmitted belief components will have an asymptotic
exponential behavior. In order to avoid misunderstanding, we remark that this result is already
known in social learning theory [40]. Nevertheless, we deem it useful to report here a proof for
this result to make the chapter self-contained, and to make useful connections of this particular
proof with other results that we prove relying on the recursive inequalities in Lemmas 4.8
and 4.9 further ahead.
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Lemma 4.1 (Asymptotic rate of convergence). Under Assumptions 2.4 and 2.2, for all
θ ∈ Θ \ {θTX} and every agent k = 1, 2, . . . , K , we have that:

1
i

log
µk,i(θ)
µk,i(θTX)

a.s.−→ D(θTX) − D(θ̄TX). (4.44)

Proof. We know from (4.13) that for any non-transmitted hypotheses τ, θ ̸= θTX:

µk,i(τ) = µk,i(θ). (4.45)

Moreover, from (4.7):

log
ψ̂ℓ,i(θ)
ψ̂ℓ,i(θTX)

= log

(
1 −ψℓ,i(θTX)

)
/(H − 1)

ψℓ,i(θTX)

= log
∑

τ ̸=θTX
ψℓ,i(τ)/(H − 1)
ψℓ,i(θTX) . (4.46)

Substituting (4.6) into (4.46), we obtain:

log
ψ̂ℓ,i(θ)
ψ̂ℓ,i(θTX)

= log
∑

τ ̸=θTX
µℓ,i−1(τ)Lℓ(ξℓ,i|τ)/(H − 1)

µℓ,i−1(θTX)Lℓ(ξℓ,i|θTX) . (4.47)

Using (4.45) in (4.47) yields:

log
ψ̂ℓ,i(θ)
ψ̂ℓ,i(θTX)

= log
µℓ,i−1(θ)

∑
τ ̸=θTX

Lℓ(ξℓ,i|τ)/(H − 1)
µℓ,i−1(θTX)Lℓ(ξℓ,i|θTX)

= log
µℓ,i−1(θ)
µℓ,i−1(θTX) + log

∑
τ ̸=θTX

Lℓ(ξℓ,i|τ)/(H − 1)
Lℓ(ξℓ,i|θTX)

(a)= log
µℓ,i−1(θ)
µℓ,i−1(θTX) + log

Lℓ(ξℓ,i|θ̄TX)
Lℓ(ξℓ,i|θTX) , (4.48)

where in (a) we used the definition of the likelihood for the non-transmitted hypotheses found
in (4.10). Using (4.9), we obtain the following recursion:

log
µk,i(θ)
µk,i(θTX) =

K∑
ℓ=1

aℓk log
µℓ,i−1(θ)
µℓ,i−1(θTX) +

K∑
ℓ=1

aℓk log
Lℓ(ξℓ,i|θ̄TX)
Lℓ(ξℓ,i|θTX) . (4.49)

Define the vectors:

yi(θ) ≜ col
{

log
µk,i(θ)
µk,i(θTX)

}K

k=1
, xi ≜ ATcol

{
log

Lk(ξk,i|θ̄TX)
Lk(ξk,i|θTX)

}K

k=1
, (4.50)

where the col operator concatenates a sequence of variables into a column vector. We can then
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4.B Proof of Theorem 4.1

rewrite (4.49) in vector form for all θ ∈ Θ \ {θTX}:

yi(θ) = ATyi−1(θ) + xi. (4.51)

First, note that the recursion in (4.51) takes the form of the sequence of random vectors seen in
auxiliary Lemma 4.8 (see Appendix 4.G). Since the random vectors xi are i.i.d. across time and
have finite expectation5, Property 4.1 (also found in Appendix 4.G) can be applied and shows
that xi satisfies the three conditions (4.145)–(4.147) required by Lemma 4.8. Particularly, in
view of Property 4.1, the vector x̄ takes the form of the expectation vector E (xi). Since A is
left-stochastic, all conditions in Lemma 4.8 are satisfied and we can therefore apply its result as
follows. For each θ ̸= θTX, we have that

1
i

log
µk,i(θ)
µk,i(θTX)

a.s.−→
K∑

k=1
πk

K∑
ℓ=1

aℓkE
(

log
Lℓ(ξℓ,i|θ̄TX)
Lℓ(ξℓ,i|θTX)

)

=
K∑

ℓ=1
πℓE

(
log

Lℓ(ξℓ,i|θ0)
Lℓ(ξℓ,i|θTX)

)
−

K∑
ℓ=1

πℓE
(

log
Lℓ(ξℓ,i|θ0)

Lℓ(ξℓ,i|θ̄TX)

)
= D(θTX) − D(θ̄TX), (4.53)

where we recall that
∑K

k=1 πkaℓk = πℓ since π is the Perron eigenvector.

Proof of Theorem 4.1. Note that the RHS of (4.44) represents a key quantity in the algorithm:
conditionally on its sign, we have that the log-ratio of belief components on the LHS of (4.44)
will increase or decrease indefinitely.

If θTX = θ0, we have that
D(θ0) = 0. (4.54)

Under Assumption 4.1, there exists at least one clear-sighted agent in the network, say agent
k⋆, for which

dk⋆(θ̄0) > 0. (4.55)

From the positivity of the Perron eigenvector, we have that

D(θ̄0) > 0. (4.56)

Finally, from (4.53) with θTX = θ0, we obtain

1
i

log
µk,i(θ)
µk,i(θ0)

a.s.−→ D(θ0) − D(θ̄0) < 0

5The i.i.d. property across time is inherited from variables ξk,i for all k = 1, 2, . . . , K . Note that for each
element of xi, E (xk,i) can easily be rewritten as a function of two KL divergences:

E (xk,i) =
K∑

ℓ=1

aℓkE
(

log
Lℓ(ξℓ,i|θ̄TX)
Lℓ(ξℓ,i|θTX)

)
=

K∑
ℓ=1

aℓk

(
dℓ(θTX) − dℓ(θ̄TX)

)
. (4.52)

The first term on the RHS is finite from Assumption 2.4, whereas the second term is finite from Assumption 2.4 and
the inequality in (4.20).
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⇒ log
µk,i(θ)
µk,i(θ0)

a.s.−→ −∞

⇒ µk,i(θ) a.s.−→ 0, (4.57)

which holds for all θ ∈ Θ \ {θTX}. This, in turn, implies that

µk,i(θ0) a.s.−→ 1, (4.58)

thus concluding the proof of Theorem 4.1.

4.C Proof of Theorem 4.2

In order to reach the conclusion in Theorem 4.2, we need first to establish some intermediate
results (see Lemmas 4.2, 4.3, and 4.4 enunciated next), which depend on auxiliary results found
in Appendix 4.D (these results are stated in Lemmas 4.5, 4.6 and 4.7). We resort moreover to two
auxiliary lemmas (see Lemmas 4.8 and 4.9 in Appendix 4.G) which refer to statistical properties
of more general recursions.

Consider the truth sharing case, for which θTX = θ0. The first key result, which can be seen in
Lemma 4.2 enunciated next, is that the random sequence

mi ≜
K∑

k=1
πk logµk,i(θTX) (4.59)

is a submartingale. To lighten the notation we will denote the KL divergence between the true
likelihood function Lk(ξ|θ0) and a convex combination of the likelihoods Lk(ξ|θ) by:

δk(α) ≜ E

log
Lk(ξk,i|θ0)∑

θ∈Θ
α(θ)Lk(ξk,i|θ)

 , (4.60)

where α is the convex combination vector, i.e., α is a vector belonging to the H−simplex ∆H .

We define the signal profile at each instant i as ξi ≜ {ξ1,i, ξ2,i, . . . , ξK,i}. We also define the
filtration over the past observations as Fj for j = 1, 2, . . . , where Fj is the sub-σ-field generated
by the observations up to instant j, namely,

Fj ≜ σ
(
ξ1, ξ2, . . . , ξj

)
, (4.61)

which satisfies F1 ⊆ F2 ⊆ · · · ⊆ F∞ ≜ σ (ξ1, ξ2, . . . ).
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Lemma 4.2 (Submartingale sequence). Let θTX = θ0, and consider the random sequence
{mi} in (4.59). This sequence has the following properties.

1.

E [mi|Fi−1] ≥ mi−1 +
K∑

k=1
πkδk(µk,i−1). (4.62)

2. The sequencemi is a nonpositive submartingale with respect to the process {ξi}.

3. There exists a random variablem∞ such that:

mi
a.s.−→ m∞. (4.63)

4. The expectation E (mi) converges to a finite limit.

Proof. Consider (4.11) with θ = θTX. In view of (4.7), we have:

µk,i(θTX) =
exp

(
K∑

ℓ=1
aℓk logψℓ,i(θTX)

)

∑
θ′∈Θ

exp

akk logψk,i(θ′)+
K∑

ℓ=1
ℓ̸=k

aℓk log ψ̂ℓ,i(θ′)


. (4.64)

To simplify the notation, we define the following auxiliary variables:

Yk,i(θTX) ≜ exp
(

K∑
ℓ=1

aℓk logψℓ,i(θTX)
)

, (4.65)

Zk,i(θ̄TX) ≜
∑

τ ̸=θTX

exp

akk logψk,i(τ) +
K∑

ℓ=1
ℓ̸=k

aℓk log ψ̂ℓ,i(τ)

 , (4.66)

from which we can rewrite the combination step in (4.64) as:

µk,i(θTX) = Yk,i(θTX)
Yk,i(θTX) + Zk,i(θ̄TX)

. (4.67)

Using (4.7), we can develop the expression for Zk,i(θ̄TX) as:

Zk,i(θ̄TX) =
∑

τ ̸=θTX

exp

akk logψk,i(τ) +
K∑

ℓ=1
ℓ̸=k

aℓk log
1 −ψℓ,i(θTX)

H − 1


(a)=

∑
τ ̸=θTX

exp

log
ψk,i(τ)akk

(H − 1)1−akk
+

K∑
ℓ=1
ℓ̸=k

aℓk logψℓ,i(θ̄TX)
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= exp

 K∑
ℓ=1
ℓ̸=k

aℓk logψℓ,i(θ̄TX)


∑

τ ̸=θTX
ψk,i(τ)akk

(H − 1)1−akk
, (4.68)

where in (a) we introduced ψℓ,i(θ̄TX) ≜ 1 − ψℓ,i(θTX). Now, applying the sum-of-powers
inequality6 to the rightmost term in (4.68) results in:

∑
τ ̸=θTX

ψk,i(τ)akk

(H − 1)1−akk
≤

 ∑
τ ̸=θTX

ψk,i(τ)

akk

= exp
(
akk logψk,i(θ̄TX)

)
. (4.69)

Replacing (4.69) to (4.68) we get:

Zk,i(θ̄TX) ≤ exp
(

K∑
ℓ=1

aℓk logψℓ,i(θ̄TX)
)

≜ Yk,i(θ̄TX). (4.70)

In view of (4.70), we can lower bound the expression in (4.67):

µk,i(θTX) ≥ Yk,i(θTX)
Yk,i(θTX) + Yk,i(θ̄TX)

= 1

1 + Yk,i(θ̄TX)
Yk,i(θTX)

. (4.71)

Applying log(·) to both sides of (4.71), and replacing back the definitions of Yk,i(θTX) and
Yk,i(θ̄TX) from (4.65) and (4.70) respectively, we can write the following inequality:

logµk,i(θTX) ≥ log 1

1 + exp
(

K∑
ℓ=1

aℓk log ψℓ,i(θ̄TX)
ψℓ,i(θTX)

)

≜ f

(
K∑

ℓ=1
aℓk log

ψℓ,i(θ̄TX)
ψℓ,i(θTX)

)
, (4.72)

6For r, s ̸= 0 with r < s, and for positive values xi, we have that [71] :(
1
n

n∑
i=1

xr
i

)1/r

≤

(
1
n

n∑
i=1

xs
i

)1/s

.

In particular, with the choice s = 1 we can write the following inequality:

1
n1−r

n∑
i=1

xr
i ≤

(
n∑

i=1

xi

)r

.
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where we defined the concave function7

f(x) ≜ log 1
1 + ex

. (4.73)

Using Jensen’s inequality, we have that

logµk,i(θTX) ≥
K∑

ℓ=1
aℓk log 1

1 + e
log

ψℓ,i(θ̄TX)
ψℓ,i(θTX)

=
K∑

ℓ=1
aℓk log 1

1 + ψℓ,i(θ̄TX)
ψℓ,i(θTX)

=
K∑

ℓ=1
aℓk log

ψℓ,i(θTX)
ψℓ,i(θTX) +ψℓ,i(θ̄TX)

=
K∑

ℓ=1
aℓk logψℓ,i(θTX)

(a)=
K∑

ℓ=1
aℓk logµℓ,i−1(θTX) +

K∑
ℓ=1

aℓk log
Lℓ(ξℓ,i|θTX)∑

θ′∈Θ
µℓ,i−1(θ′)Lℓ(ξℓ,i|θ′) , (4.74)

where in (a), we replaced ψℓ,i(θTX) using the Bayesian update seen in (4.6).

Taking the expectation of both sides of (4.74) conditioned on Fi−1, we have that:

E
[
logµk,i(θTX)

∣∣∣∣Fi−1

]
≥

K∑
ℓ=1

aℓk logµℓ,i−1(θTX)

+
K∑

ℓ=1
aℓkE

log
Lℓ(ξℓ,i|θTX)∑

θ′∈Θ
µℓ,i−1(θ′)Lℓ(ξℓ,i|θ′)

∣∣∣∣Fi−1

 . (4.75)

Since the current signal profile ξi is independent from the past data vectors (and, hence, is
independent from the past belief vector µℓ,i−1), we see that the second term on the RHS of
(4.75) is the following KL divergence, as defined in (4.60) (we recall that we are considering the
case θTX = θ0):

E

log
Lℓ(ξℓ,i|θTX)∑

θ′∈Θ
µℓ,i−1(θ′)Lℓ(ξℓ,i|θ′)

∣∣∣∣Fi−1

 = δℓ(µℓ,i−1). (4.76)

Multiplying both sides of (4.75) by πk, summing over k, and recalling that
∑K

k=1 πkaℓk = πℓ

because π is the Perron eigenvector, Eqs. (4.75) and (4.76) imply part 1) of the lemma.

Part 2) follows from part 1). In fact,mi is nonpositive because µk,i ≤ 1, andmi is a submartin-
gale because the KL divergence is nonnegative, and, hence, Eq. (4.62) implies:

E [mi|Fi−1] ≥ mi−1. (4.77)

7The concavity of the function f(x) can be seen from its second derivative:

d2f(x)
dx2 = −ex

[1 + ex]2
< 0,

for any x ∈ R.
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Part 3) follows from the martingale convergence theorem [18].

Finally, part 4) follows by taking the total expectation in (4.77), which yields:

0 ≥ E (mi) ≥ E (mi−1) ≥ . . . ≥ m0 =
K∑

k=1
πk log µk,0(θTX), (4.78)

which implies that the sequence of expectations is a (monotonically) convergent sequence.

Using part 3) of Lemma 4.2, we can establish the following technical corollary which will be
useful later in the analysis.

Corollary 4.1 (Expectation of log-beliefs ψk,i). Let θTX = θ0. For all i ≥ 1 we have
that:

E
(

log 1
ψk,i(θTX)

)
≤ 1

πk

K∑
ℓ=1

πℓ log 1
µℓ,0(θTX) . (4.79)

Proof. Using the Bayesian update in (4.6) we can write:

E
(

log 1
ψk,i(θTX)

)
= E

(
log 1

µk,i−1(θTX)

)
− E

log
Lk(ξk,i|θTX)∑

θ∈Θ
µk,i−1(θ)Lk(ξk,i|θ)


= E

(
log 1

µk,i−1(θTX)

)
− E

(
δk(µk,i−1)

)
≤ E

(
log 1

µk,i−1(θTX)

)
. (4.80)

On the other hand, using (4.78) we can write:

πk logµk,i−1(θTX) ≥
K∑

ℓ=1
πℓ log µℓ,i−1(θTX) = mi−1

⇒ E
(

log 1
µk,i−1(θTX)

)
≤ 1

πk

K∑
ℓ=1

πℓ log 1
µℓ,0(θTX) , (4.81)

which combined with (4.80) yields the desired claim.

Lemma 4.3 (The clear-sighted agent learns the truth). Let θTX = θ0. Under Assump-
tions 2.4, 2.2 and 4.2 we have that:

µk⋆,i(θTX) p−→ 1 (4.82)

Proof. We start by considering an arbitrary agent k. Taking the total expectation in (4.62) we
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get:

0 ≥ E (mi) ≥ E (mi−1) +
K∑

k=1
πkE

(
δk(µk,i−1)

)
. (4.83)

First of all, we remark that the last expectation in (4.83) is computed with respect to the only
random quantity that appears within brackets, that is µk,i−1. Using (4.83) along with the fact
that the KL divergence is nonnegative, we see that:

0 ≤
K∑

k=1
πkE

(
δk(µk,i−1)

)
≤ E (mi) − E (mi−1), (4.84)

which, in view of part 4) of Lemma 4.2 implies that [72]:

lim
i→∞

K∑
k=1

πkE
(
δk(µk,i−1)

)
= 0 (4.85)

Recalling that πk > 0, we conclude that δk(µk,i−1) converges to zero in mean. This implies in
particular that δk(µk,i−1) converges to zero in probability, namely,

δk(µk,i−1) p−→ 0. (4.86)

Recalling that δk(µk,i−1) is the KL divergence between Lk(θTX) and
∑

θ∈Θµk,i−1(θ)Lk(θ) as
defined in (4.60), from Pinsker’s inequality [16] we can write:

δk(µk,i−1) ≥ 1
2

∥∥∥∥Lk(θTX) −
∑
θ∈Θ

µk,i−1(θ)Lk(θ)
∥∥∥∥2

, (4.87)

where ∥ · ∥ denotes the total variation norm.

Let us now specialize the analysis to the clear-sighted agent k⋆. From Assumption 4.2, the set
of distinguishable hypotheses Θ̄k⋆ is non-empty. Thus, we have that:

Lk⋆(θTX) −
∑
θ∈Θ

µk⋆,i−1(θ)Lk⋆(θ)

=

1 −
∑

θ∈Θk⋆

µk⋆,i−1(θ)

Lk⋆(θTX) −
∑

θ∈Θ̄k⋆

µk⋆,i−1(θ)Lk⋆(θ)

=
∑

θ∈Θ̄k⋆

µk⋆,i−1(θ)

Lk⋆(θTX) −
∑

τ∈Θ̄k⋆

α(τ)Lk⋆(τ)

, (4.88)

where we defined:

α(τ) =
µk⋆,i−1(τ)∑

θ∈Θ̄k⋆

µk⋆,i−1(θ) . (4.89)

Assumption 4.2 establishes a lower bound c on the KL divergence between the true likelihood
and any convex combination of the distinguishable likelihoods, which implies that the true
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likelihood is not in the convex hull of distinguishable likelihoods. This further implies that
there exists some c′ > 0, for which∥∥∥∥Lk⋆(θTX) −

∑
τ∈Θ̄k⋆

α(τ)Lk⋆(τ)
∥∥∥∥ ≥ c′, (4.90)

where ∥ · ∥ represents the total variation norm [18]. From (4.88) and (4.90) we can write:∥∥∥∥Lk⋆(θTX) −
∑
θ∈Θ

µk⋆,i−1(θ)Lk⋆(θ)
∥∥∥∥

=
∣∣∣∣ ∑

θ∈Θ̄k⋆

µk⋆,i−1(θ)
∣∣∣∣ ∥∥∥∥Lk⋆(θTX) −

∑
τ∈Θ̄k⋆

α(τ)Lk⋆(τ)
∥∥∥∥

≥ c′
∣∣∣∣ ∑

θ∈Θ̄k⋆

µk⋆,i−1(θ)
∣∣∣∣. (4.91)

Joining the latter inequality with (4.87) we get:

δk⋆(µk⋆,i−1) ≥ c′2

2

∣∣∣∣ ∑
θ∈Θ̄k⋆

µk⋆,i−1(θ)
∣∣∣∣2. (4.92)

Since c′ is strictly positive, we conclude from (4.86) that, for every θ ∈ Θ̄k⋆ :

µk⋆,i(θ) p−→ 0. (4.93)

It remains to show that the same result holds for the indistinguishable non-transmitted hy-
potheses, i.e., for θ ∈ Θk⋆ \ {θTX}. But this result comes directly from Lemma 4.6, under
Assumptions 2.4 and 2.2. We have therefore shown that, for the clear-sighted agent k⋆, the
beliefs for all θ ∈ Θ \ {θTX} vanish in probability, which finally yields the claim since the sum
of the beliefs over Θ is equal to 1.

Lemma 4.4 (Influence of a learning agent). Let θTX = θ0. Under Assumptions 2.4, 2.2
and 4.2, if, for a certain agent h,

µh,i(θTX) p−→ 1, (4.94)

then the same result holds for all agents k ̸= h.

Proof. Let h be an agent that fulfills (4.94). Consider that the combination weight ahk is strictly
positive. From (4.12) we can therefore write:

log
µk,i(θ)
µk,i(θTX)

= akk logψk,i(θ) +
∑
ℓ ̸=k

aℓk log
1 −ψℓ,i(θTX)

H − 1 +
K∑

ℓ=1
aℓk log 1

ψℓ,i(θTX)
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≤ ahk log(1 −ψh,i(θTX)) +
K∑

ℓ=1
aℓk log 1

ψℓ,i(θTX) . (4.95)

By exponentiating (4.95) we can write:

µk,i(θ) ≤
(
1 −ψh,i(θTX)

)ahk︸ ︷︷ ︸
≜xi

e

∑K

ℓ=1 aℓk log 1
ψℓ,i(θTX)︸ ︷︷ ︸

≜yi

. (4.96)

First, we prove that the term xi in (4.96) goes to zero in probability. To this end, we observe
that:

1 −ψh,i(θTX) =

∑
θ ̸=θTX

µh,i−1(θ)Lh(ξh,i|θ)

µh,i−1(θTX)Lh(ξh,i|θTX) +
∑

θ ̸=θTX

µh,i−1(θ)Lh(ξh,i|θ)

≤
∑

θ ̸=θTX

µh,i−1(θ)
µh,i−1(θTX)

Lh(ξh,i|θ)
Lh(ξh,i|θTX) . (4.97)

We now show that each individual term of the summation,

µh,i−1(θ)
µh,i−1(θTX)︸ ︷︷ ︸

≜si

Lh(ξh,i|θ)
Lh(ξh,i|θTX)︸ ︷︷ ︸

≜ti

, (4.98)

vanishes in probability as i → ∞. Indeed, the term si in (4.98) vanishes in probability as i → ∞
in view of Lemma 4.3. On the other hand, the random variables ti are identically distributed.8

By application of Slutsky’s theorem [73], we conclude that the product siti converges to 0 in
distribution (and, hence, in probability).

Second, we show that yi matches the conditions in (4.112) (see Lemma 4.7 in Appendix 4.D).
By application of Markov’s inequality we conclude that, for any M > 0:

P (yi > M) = P
(

K∑
ℓ=1

aℓk log 1
ψℓ,i(θTX) > log M

)

≤ 1
log M

K∑
ℓ=1

aℓkE
(

log 1
ψℓ,i(θTX)

)

≤ 1
log M

K∑
ℓ=1

aℓk

πℓ

K∑
m=1

πm log 1
µm,0(θTX) , (4.99)

where the latter inequality follows by Corollary 4.1. Since the final upper bound in (4.99) does
not depend on i, we see that yi fulfills (4.112) with the choice g(M) = C/ log M for some
finite positive constant C .

8We remark that the random variables ti are well-behaved since
Lh(ξh,i|θ)

Lh(ξh,i|θTX) is a (nonnegative) random variable
with finite expectation equal to 1.
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Therefore, we conclude from Lemma 4.7 that the product xiyi appearing in the upper bound in
(4.96) goes to zero in probability and, hence, that:

µk,i(θ) p−→ 0, (4.100)

for any agent k for which ahk > 0. Since the network is strongly connected, given an agent h
that fulfills (4.94), and an arbitrary agent k (not necessarily a neighbor of h), there will always
be a path connecting h to k. Iterating the above reasoning along this path implies the desired
result.

We can now conclude the proof of Theorem 4.2. Under Assumption 4.2, there exists at least
one clear-sighted agent k⋆. Lemma 4.3 guarantees that agent k⋆ learns the truth in probabil-
ity, whereas Lemma 4.4 ensures that learning propagates across the network. It is therefore
legitimate to write:

K∑
k=1

πk logµk,i(θTX) p−→ 0. (4.101)

Using part 3) of Lemma 4.2 (and since almost-sure convergence implies convergence in proba-
bility), and applying jointly (4.63) and (4.101) we conclude that:

K∑
k=1

πk logµk,i(θTX) a.s.−→ 0. (4.102)

On the other hand, since πk > 0 and logµk,i(θTX) ≤ 0, the convergence in (4.102) implies that:

logµk,i(θTX) a.s.−→ 0 ⇒ µk,i(θTX) a.s.−→ 1, (4.103)

for all agents k = 1, 2, . . . , K .

4.D Auxiliary Lemmas
Lemma 4.5 (Convergence for non-transmitted hypotheses). Let θ, θ′ ∈ Θ \ {θTX},
and define:

qk,i(θ, θ′) ≜ log
µk,i(θ)
µk,i(θ′) . (4.104)

For every k = 1, 2, . . . , K , under Assumptions 2.4 and 2.2, there exists a random variable
qk,∞(θ, θ′) ensuring the following convergence in distribution:

qk,i(θ, θ′) d−→ qk,∞(θ, θ′). (4.105)

Proof. Since θ and θ′ are distinct from θTX, using (4.6), (4.7) and (4.11) we can write:

log
µk,i(θ)
µk,i(θ′) = akk log

µk,i−1(θ)
µk,i−1(θ′) + akk log

Lk(ξk,i|θ)
Lk(ξk,i|θ′) . (4.106)
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The result in (4.105) follows from part 1) of auxiliary Lemma 4.9 by setting:

a = akk, yi = log
µk,i(θ)
µk,i(θ′) , xi = log

Lk(ξk,i|θ)
Lk(ξk,i|θ′) , (4.107)

where Assumption 2.4 guarantees that xi satisfies the conditions in Lemma 4.9, and Assump-
tion 2.2 guarantees that y0 assumes a finite value.

From Lemma 4.5, we see that the log-ratio of belief components concerning non-transmitted
hypotheses converges in distribution to a random variable qk,∞. Investigating this limiting
random variable in more detail, thanks to part 1) of Lemma 4.9, we are able to write it as

qk,∞(θ, θ′) =
∞∑

i=1
ai

kk log
Lk(ξk,i|θ)
Lk(ξk,i|θ′) . (4.108)

For each realization of signal profiles (ξ1, ξ2, . . . ), the infinite summation in (4.108) will con-
verge almost surely to a random value. The distribution with which these random values are
generated will be the same distribution that governs the oscillatory behavior of qk,i(θ, θ′) as
i → ∞.

Although the characterization of the limiting random variable qk,∞(θ, θ′), described in (4.108),
does not appear intuitive, its mere existence will enable other (stronger) convergence results
starting from the one presented in Lemma 4.6. We see now that if a certain agent k discards any
non-transmitted hypothesis θ ∈ Θ \ {θTX}, then the existence of the limiting random variable
qk,∞(θ, θ′) will allow it to discard all other non-transmitted hypotheses.

Lemma 4.6 (Rejection of non-transmitted hypotheses). Assume, for a given agent k,
and for one non-transmitted hypothesis θ′ ∈ Θ \ {θTX}:

µk,i(θ′) p−→ 0, (4.109)

and that Assumptions 2.4 and 2.2 hold. Then the same convergence holds for all hypotheses
θ ∈ Θ \ {θ′, θTX} for the same agent.

Proof. Let θ ̸= θTX be a non-transmitted hypothesis that fulfills (4.109). In view of (4.104), for
any θ′ ∈ Θ \ {θ, θTX} we can write:

µk,i(θ) = µk,i(θ′)eqk,i(θ,θ′). (4.110)

Now, under Assumptions 2.4 and 2.2, Lemma 4.5 reveals that qk,i(θ, θ′) converges in distribution
to a certain random variable qk,∞(θ, θ′). In view of the continuous mapping theorem [73], we
conclude that:

eqk,i(θ,θ′) d−→ eqk,∞(θ,θ′). (4.111)

Examining (4.110), we see that µk,i(θ) is given by the product of two random sequences: i)
the first sequence, {µk,i(θ′)}, vanishes in probability as i → ∞ in view of (4.109); ii) the
second sequence, {eqk,i(θ,θ′)}, converges in distribution as i → ∞ in view of (4.111). S Using
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Slutsky’s Theorem [73], we conclude that µk,i(θ) converges to zero in distribution, and, hence,
in probability.

In other words, whenever an agent discards a non-transmitted hypothesis, it will automatically
discard all other non-transmitted hypotheses. This result will bind together the evolution of the
non-transmitted hypotheses in the case when the respective beliefs components are converging
in probability to zero, which we refer to as parallel rejection of non-transmitted hypotheses.

Finally we introduce a technical result, which is used in the proof of Lemma 4.4.

Lemma 4.7 (Useful convergence result). Let zi = xiyi, where {xi} and {yi} are two
sequences of nonnegative random variables such that xi vanishes in probability, and:

P (yi > M) ≤ g(M), with lim
M→∞

g(M) = 0. (4.112)

Then, we have that:
zi

p−→ 0. (4.113)

Proof. Let us consider the following implication of events, for any positive values M and γ:{
xi ≤ γ

M

}⋂{
yi ≤ M

}
⇒
{
xiyi ≤ γ

}
, (4.114)

which, using De Morgan’s laws [18], is equivalent to:{
xiyi > γ

}
⇒
{
xi >

γ

M

}⋃{
yi > M

}
. (4.115)

Since, for any two events A,B, the condition A ⇒ B implies that P (A) ≤ P (B), from (4.115),
and using the union bound, we conclude that:

P (zi > γ) ≤ P (xi > γ/M) + P (yi > M)
≤ P (xi > γ/M) + g(M), (4.116)

where the latter inequality follows by the upper bound in (4.112). Now, let us fix a value ε > 0.
For sufficiently large M , we have that g(M) ≤ ε/2 in view of the limit appearing in (4.112). On
the other hand, since by assumption xi converges to zero in probability, for given values of M
and γ there exists certainly a sufficiently large i0 such that, for every i ≥ i0, also the quantity
P (xi > γ/M) is upper bounded by ε/2, which implies, for i ≥ i0:

P (zi > γ) ≤ ε, (4.117)

and the claim of the lemma is proved.
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4.E Proof of Theorem 4.3

From Lemma 4.1 (see Appendix 4.B), we see that the sign of the quantity on the RHS of
(4.44) will dictate different convergence behaviors. Note that KL divergences are finite from
Assumption 2.4. First, consider the case when

D(θ̄TX) > D(θTX), (4.118)

which implies that the asymptotic rate of convergence seen in (4.44) is strictly negative. Since
µk,i(θ) is bounded by 1 for any hypothesis θ, then

1
i

log
µk,i(θ)
µk,i(θTX)

a.s.−→ D(θTX) − D(θ̄TX) < 0

⇒ log
µk,i(θ)
µk,i(θTX)

a.s.−→ −∞

⇒ µk,i(θ) a.s.−→ 0, (4.119)

which holds for all θ ∈ Θ \ {θTX}. This, in turn, implies that

µk,i(θTX) a.s.−→ 1. (4.120)

Next, consider the case:
D(θ̄TX) < D(θTX), (4.121)

implying that the asymptotic rate of convergence in (4.44) is strictly positive. In this case, since
again µk,i(θ) is bounded, we have that

1
i

log
µk,i(θ)
µk,i(θTX)

a.s.−→ D(θTX) − D(θ̄TX) > 0

⇒ log
µk,i(θ)
µk,i(θTX)

a.s.−→ +∞

⇒ µk,i(θTX) a.s.−→ 0, (4.122)

which, in view of (3.74), implies that, for every θ ∈ Θ \ {θTX},

µk,i(θ) a.s.−→ 1
H − 1 . (4.123)

4.F Proof of Theorem 4.4

We will start by addressing the first part of Theorem 4.4. Let us develop the recursion in (4.12)
with θ = θTX and θ′ = θ0.

log
µk,i(θTX)
µk,i(θ0) = akk log

µk,i−1(θTX)
µk,i−1(θ0) + akk log

Lk(ξk,i|θTX)
Lk(ξk,i|θ0)
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+
K∑

ℓ=1
ℓ̸=k

aℓk log
µℓ,i−1(θTX)Lℓ(ξℓ,i|θTX)∑

τ ̸=θTX

1
H−1µℓ,i−1(τ)Lℓ(ξℓ,i|τ)

(a)
≤

K∑
ℓ=1

aℓk log
µℓ,i−1(θTX)
µℓ,i−1(θ0) +

K∑
ℓ=1

aℓk log
Lℓ(ξℓ,i|θTX)
Lℓ(ξℓ,i|θ0)

+
K∑

ℓ=1
ℓ̸=k

aℓk log
(
µℓ,i−1(θ0)Lℓ(ξℓ,i|θ0)

)

−
K∑

ℓ=1
ℓ ̸=k

aℓk

∑
τ ̸=θTX

log
(
µℓ,i−1(τ)Lℓ(ξℓ,i|τ)

)
H − 1

=
K∑

ℓ=1
aℓk log

µℓ,i−1(θTX)
µℓ,i−1(θ0) +

K∑
ℓ=1

aℓk log
Lℓ(ξℓ,i|θTX)
Lℓ(ξℓ,i|θ0)

−
K∑

ℓ=1
ℓ ̸=k

aℓk

H − 1
∑

τ ̸=θTX

(
log

Lℓ(ξℓ,i|τ)
Lℓ(ξℓ,i|θ0) + log

µℓ,i−1(τ)
µℓ,i−1(θ0)

)
, (4.124)

where (a) follows from Jensen’s inequality applied as follows:

log

 ∑
τ ̸=θTX

1
H − 1µℓ,i−1(τ)Lℓ(ξℓ,i|τ)

 ≥
∑

τ ̸=θTX

1
H − 1 log

(
µℓ,i−1(τ)Lℓ(ξℓ,i|τ)

)
. (4.125)

Setting yk,i = log µk,i(θTX)
µk,i(θ0) and

xk,i =
K∑

ℓ=1
aℓk log

Lℓ(ξℓ,i|θTX)
Lℓ(ξℓ,i|θ0) −

K∑
ℓ=1
ℓ ̸=k

aℓk

H − 1
∑

τ ̸=θTX

log
Lℓ(ξℓ,i|τ)
Lℓ(ξℓ,i|θ0)

−
K∑

ℓ=1
ℓ̸=k

aℓk

H − 1
∑

τ ̸=θTX

log
µℓ,i−1(τ)
µℓ,i−1(θ0) , (4.126)

we can write (4.124) in vector form as:

yi ≼ ATyi−1 + xi, (4.127)

where the symbol ≼ denotes element-wise inequality. Therefore, the recursion in (4.127)
matches the model in (4.143), but for the fact that we have an inequality in place of an equality.
Since the matrix A has nonnegative entries, we can still develop the recursion preserving the
inequality, allowing us to use the results from Lemma 4.8 (Appendix 4.G) in the form of an
inequality.

We need now to show that xi, as defined in (4.126), satisfies the conditions (4.145)–(4.147)
in Lemma 4.8. Regarding the log-likelihood ratio terms, i.e., the first two terms on the RHS
of (4.126), since these terms satisfy Assumption 2.4 and since the observations ξℓ,i are i.i.d.
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across time, the result of Lemma 4.8 can be applied to these terms, in view of Property 4.1
(Appendix 4.G). For these two terms, we have that

x̄k =
K∑

ℓ=1
aℓkE

(
log Lℓ(θTX)

Lℓ(θ0)

)
−

K∑
ℓ=1
ℓ̸=k

aℓk

H − 1
∑

τ ̸=θTX

E
(

log Lℓ(τ)
Lℓ(θ0)

)
. (4.128)

For what concerns the log-belief ratio, i.e., the third term on the RHS of (4.126), we have that
this term behaves like the recursion seen in (4.106), which reveals that the log-belief ratio for the
non-transmitted hypotheses matches the model in (4.162). As a result, conditions (4.145)–(4.147)
are automatically satisfied in view of Lemma 4.9.

From Lemma 4.8, we have that

lim sup
i→∞

1
i

log
µk,i(θTX)
µk,i(θ0)

a.s.
≤ −

K∑
ℓ=1

πℓdℓ(θTX) +
K∑

ℓ=1
πℓ

K∑
n=1
n ̸=ℓ

anℓ

H − 1
∑

τ ̸=θTX

dn(τ)

−
K∑

ℓ=1
πℓ

K∑
n=1
n̸=ℓ

anℓ

H − 1
∑

τ ̸=θTX

lim
i→∞

1
i

i∑
j=1

log
µn,j−1(τ)
µn,j−1(θ0) . (4.129)

We recall that for τ, θ0 ̸= θTX and τ ∈ Θ̄n, according to Lemma 4.9 (Appendix 4.G),

1
i

i∑
j=1

log
µn,j(τ)
µn,j(θ0)

a.s.−→ ann

1 − ann
E
(

log Ln(τ)
Ln(θ0)

)
= − ann

1 − ann
dn(τ). (4.130)

Thus replacing (4.130) into (4.129), yields

lim sup
i→∞

1
i

log
µk,i(θTX)
µk,i(θ0)

a.s.
≤ −

K∑
ℓ=1

πℓdℓ(θTX) +
K∑

ℓ=1
πℓ

K∑
n=1
n ̸=ℓ

anℓ

(
ann

1 − ann
+ 1

) 1
H − 1

∑
τ ̸=θTX

dn(τ)

= −
K∑

ℓ=1
πℓdℓ(θTX) + 1

H − 1
∑

τ ̸=θTX

K∑
ℓ=1

πℓ

K∑
n=1
n̸=ℓ

anℓ
1

1 − ann
dn(τ)

= −
K∑

ℓ=1
πℓdℓ(θTX) + 1

H − 1
∑

τ ̸=θTX

K∑
ℓ=1

πℓdℓ(τ), (4.131)

where (4.131) follows from algebraic manipulations, taking into account the left stochasticity of
matrix A and the definition of the Perron eigenvector π. As long as the RHS of (4.131) assumes
a negative value, this implies that

µk,i(θTX) a.s.−→ 0. (4.132)
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The proof for the first part of Theorem 4.4 is complete. We proceed now to examine the second
part. Considering Assumption 4.3 and developing the recursion in (4.106) for θ = τ and θ′ = τ ′,
the boundedness of log-likelihood ratios is inherited by the ratio of the log-beliefs for any
non-transmitted hypotheses τ, τ ′ ∈ Θ \ {θTX}. In fact, exploiting (4.106) and the upper bound
in (4.28), and iterating over i, we can write:

log
µk,i(τ)
µk,i(τ ′) ≤ ai

kk log
µk,0(τ)
µk,0(τ ′) + B

i∑
j=1

ai−j+1
kk

= ai
kk log µk,0(τ)

µk,0(τ ′) + akk
1 − ai

kk

1 − akk
B. (4.133)

We know that ai
kk converges to zero as i → ∞. For an arbitrarily small ε > 0, there exists an

instant i0 such that for i > i0 we have that:

log
µk,i(τ)
µk,i(τ ′) ≤ akk

1 − akk
B + ε log µk,0(τ)

µk,0(τ ′)

⇒ µk,i(τ) ≤ µk,i(τ ′)e
akk

1−akk
B+ϵ

. (4.134)

where we defined:

ϵ ≜ ε log µk,0(τ)
µk,0(τ ′) . (4.135)

Note that if ε is arbitrarily small, ϵ will also be arbitrarily close to zero due to Assumption 2.2.

Developing the recursion in (4.12) with θ ∈ Θ \ {θTX} and θ′ = θTX, we have that:

log
µk,i(θ)
µk,i(θTX)

= akk log
ψk,i(θ)
ψk,i(θTX) +

K∑
ℓ=1
ℓ ̸=k

aℓk log
∑

τ ̸=θTX
Lℓ(ξℓ,i|τ)µℓ,i−1(τ)

Lℓ(ξℓ,i|θTX)µℓ,i−1(θTX)(H − 1)

=
K∑

ℓ=1
aℓk log

ψℓ,i(θ)
ψℓ,i(θTX) +

K∑
ℓ=1
ℓ ̸=k

aℓk log
∑

τ ̸=θTX
Lℓ(ξℓ,i|τ)µℓ,i−1(τ)

Lℓ(ξℓ,i|θ)µℓ,i−1(θ)(H − 1)

(a)
≤

K∑
ℓ=1

aℓk log
ψℓ,i(θ)
ψℓ,i(θTX) +

K∑
ℓ=1
ℓ̸=k

aℓk log
∑

τ ̸=θTX
Lℓ(ξℓ,i|τ)

Lℓ(ξℓ,i|θ)(H − 1) +
K∑

ℓ=1
ℓ̸=k

aℓk

(
aℓℓ

1 − aℓℓ
B + ϵ

)

(b)=
K∑

ℓ=1
aℓk log

µℓ,i−1(θ)
µℓ,i−1(θTX) +

K∑
ℓ=1

aℓk log
Lℓ(ξℓ,i|θ)

Lℓ(ξℓ,i|θTX)

+
K∑

ℓ=1
ℓ̸=k

aℓk log
Lℓ(ξℓ,i|θ̄TX)
Lℓ(ξℓ,i|θ) +

K∑
ℓ=1
ℓ̸=k

aℓk

(
aℓℓ

1 − aℓℓ
B + ϵ

)

=
K∑

ℓ=1
aℓk log

µℓ,i−1(θ)
µℓ,i−1(θTX) +

K∑
ℓ=1

aℓk log
Lℓ(ξℓ,i|θ)

Lℓ(ξℓ,i|θTX) +
K∑

ℓ=1
aℓk log

Lℓ(ξℓ,i|θ̄TX)
Lℓ(ξℓ,i|θ)
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− akk log
Lk(ξk,i|θ̄TX)
Lk(ξk,i|θ) +

K∑
ℓ=1
ℓ̸=k

aℓk

(
aℓℓ

1 − aℓℓ
B + ϵ

)

=
K∑

ℓ=1
aℓk log

µℓ,i−1(θ)
µℓ,i−1(θTX) +

K∑
ℓ=1

aℓk log
Lℓ(ξℓ,i|θ̄TX)
Lℓ(ξℓ,i|θTX)

− akk log
Lk(ξk,i|θ̄TX)
Lk(ξk,i|θ) +

K∑
ℓ=1
ℓ̸=k

aℓk

(
aℓℓ

1 − aℓℓ
B + ϵ

)
, (4.136)

where in (a) we used the bound in (4.134) for τ ′ = θ, that is:

µℓ,i−1(τ)
µℓ,i−1(θ) ≤ e

aℓℓ
1−aℓℓ

B+ϵ (4.137)

and in (b) we used the definition of Lℓ(θ̄TX) seen in (4.10). Setting yk,i = log µk,i(θ)
µk,i(θTX) and:

xk,i =
K∑

ℓ=1
aℓk log

Lℓ(ξℓ,i|θ̄TX)
Lℓ(ξℓ,i|θTX) − akk log

Lk(ξk,i|θ̄TX)
Lk(ξk,i|θ) +

K∑
ℓ=1
ℓ ̸=k

aℓk

(
aℓℓ

1 − aℓℓ
B + ϵ

)
, (4.138)

we can rewrite (4.136) in vector form as:

yi ≼ ATyi−1 + xi, (4.139)

for all i > i0. Accordingly, the recursion in (4.139) satisfies the model in (4.143) with inequality,
and with initial state yk,i0 . As we develop the recursion, the inequality in (4.139) is preserved.
Regarding the conditions on xi for applying Lemma 4.8, the first two terms on the RHS of
(4.138) inherit the i.i.d. property of the observations ξi and have finite expectation. The third
term on the RHS of (4.138) is deterministic and bounded. Applying Property 4.1, we see that xi

satisfies the conditions (4.145)–(4.147) in Lemma 4.8. From Lemma 4.8 and for each θ ̸= θTX,
we have that

lim sup
i→∞

1
i

log
µk,i(θ)
µk,i(θTX)

a.s.
≤

K∑
k=1

πk

K∑
ℓ=1

aℓkE
(

log Lℓ(θ̄TX)
Lℓ(θTX)

)
−

K∑
k=1

πkakkE
(

log Lk(θ̄TX)
Lk(θ)

)

+
K∑

k=1
πk

K∑
ℓ=1
ℓ̸=k

aℓk

(
aℓℓ

1 − aℓℓ
B + ϵ

)
. (4.140)

Taking into account the arbitrariness of ϵ, we end up with the following result:

lim sup
i→∞

1
i

log
µk,i(θ)
µk,i(θTX)

a.s.
≤ −

K∑
k=1

πkdk(θ̄TX) +
K∑

k=1
πkdk(θTX) +

K∑
k=1

πkakkdk(θ̄TX)

−
K∑

k=1
πkakkdk(θ) + B

K∑
k=1

πk

K∑
ℓ=1
ℓ̸=k

aℓk
aℓℓ

1 − aℓℓ
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(a)
≤ −

K∑
k=1

πkdk(θ̄TX) +
K∑

k=1
πkdk(θTX) +

K∑
k=1

πkakkdk(θ̄TX)

+ B
K∑

k=1
πk

K∑
ℓ=1
ℓ̸=k

aℓk
aℓℓ

1 − aℓℓ

(b)=
K∑

k=1
πkdk(θTX) −

K∑
k=1

πk(1 − akk)dk(θ̄TX) + B
K∑

k=1
πkakk,

(4.141)

where in (a) we considered that
∑K

k=1 πkakkdk(θ) ≥ 0 from the nonnegativity of the KL
divergences and of terms akk and the positivity of the Perron eigenvector. In (b), we considered
the left stochasticity of matrix A and the definition of the Perron eigenvector. As long as the
RHS of (4.141) assumes a negative value, it implies that for all θ ∈ Θ \ {θTX}:

µk,i(θ) a.s.−→ 0 ⇒ µk,i(θTX) a.s.−→ 1. (4.142)

4.G Auxiliary Results

Lemma 4.8 (Main vector recursion). Let a sequence of random vectors yi with dimension
K × 1 be defined through the following recursion, for i = 1, 2, . . .

yi = ATyi−1 + xi. (4.143)

where y0 is an initial (a.s. finite) random vector, and A is a primitive left-stochastic (deter-
ministic) matrix satisfying:

lim
i→∞

Ai = π1T, (4.144)

for some vector π with positive entries such that 1Tπ = 1. Moreoverxi is a sequence of random
vectors (with entries {xℓ,i}) possessing the following properties, for a certain deterministic
vector x̄:

1
i

i∑
j=1
xℓ,j

a.s.−→ x̄ℓ, (4.145)

lim sup
i→∞

1
i

i∑
j=1

|xℓ,j | a.s= M , (4.146)

xℓ,i

i
a.s.−→ 0, (4.147)

whereM is a nonnegative (a.s. finite) random variable. Then we have that,

1
i
yi

a.s.−→ 1πTx̄. (4.148)
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Proof. Iterating the recursion in (4.143), we get:

yi = (Ai)Ty0 +
i−1∑
j=0

(Aj)Txi−j . (4.149)

Once scaled by i, the first term on the RHS vanishes almost surely when i tends to infinity in
view of the properties of A. We focus on the second term. It is useful to rewrite the summation
in (4.149) as follows:

1
i

i−1∑
j=0

(Aj)Txi−j = 1
i

i−1∑
j=0

(Aj − π1T)Txi−j + 1
i

i−1∑
j=0

1πTxi−j . (4.150)

Regarding the last term on the RHS of (4.150), in view of (4.145), we have that:

1
i

i−1∑
j=0

1πTxi−j = 1πT 1
i

i∑
j=1
xj

a.s.−→ 1πTx̄. (4.151)

Accordingly, the claim of the lemma will be proved if we show that the first term on the RHS
of (4.150) vanishes with probability one. From (4.144), for some ε > 0, there exists an index i0
such that, for all j > i0: ∣∣∣[Aj ]ℓk − πℓ

∣∣∣ < ε. (4.152)

Let us therefore split the term of interest as:

1
i

i−1∑
j=0

(Aj − π1T)Txi−j = 1
i

i0∑
j=0

(Aj − π1T)Txi−j + 1
i

i−1∑
j=i0+1

(Aj − π1T)Txi−j . (4.153)

Regarding the first term on the RHS of (4.153), we can write the absolute value of its k−th
component as:

1
i

∣∣∣∣∣∣
i0∑

j=0

K∑
ℓ=1

(
[Aj ]ℓk − πk

)
xℓ,i−j

∣∣∣∣∣∣ ≤ 1
i

i0∑
j=0

K∑
ℓ=1

∣∣∣∣[Aj ]ℓk − πk

∣∣∣∣|xℓ,i−j |

(a)
≤

i0∑
j=0

K∑
ℓ=1

|xℓ,i−j |
i

a.s.−→ 0, (4.154)

where the inequality in (a) follows because A is left-stochastic and π is the Perron eigenvector
and the almost sure convergence to 0 is due to (4.147).

Let us address the second term on the RHS of (4.153). Considering its k-th component, we can
write its absolute value as:

1
i

∣∣∣∣∣∣
i−1∑

j=i0+1

K∑
ℓ=1

(
[Aj ]ℓk − πℓ

)
xℓ,i−j

∣∣∣∣∣∣
(a)
≤ ε

K∑
ℓ=1

1
i

i−1∑
j=i0+1

|xℓ,i−j |

= ε
K∑

ℓ=1

1
i

i−i0−1∑
j=1

|xℓ,j |, (4.155)
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where in (a) we used the bound in (4.152). From (4.155), in view of (4.146), it follows that

lim sup
i→∞

1
i

∣∣∣∣∣∣
i−1∑

j=i0+1

K∑
ℓ=1

(
[Aj ]ℓk − πℓ

)
xℓ,i−j

∣∣∣∣∣∣ a.s.
≤ εM . (4.156)

Finally, in view of (4.154) and (4.156) we can write the absolute value of the k−th component
of (4.153) as:

lim sup
i→∞

1
i

∣∣∣∣∣∣
i∑

j=0

K∑
ℓ=1

(
[Aj ]ℓk − πk

)
xℓ,i−j

∣∣∣∣∣∣ a.s.
≤ εM . (4.157)

From (4.157), due to the arbitrariness of ε, the term on the LHS of (4.153) vanishes and the proof
is complete.

The following property shows that conditions (4.145)–(4.147) in Lemma 4.8 are satisfied for the
particular case in which the random vectors {xi} are i.i.d. and have finite expectation.

Property 4.1 (Properties of random variables with finite expectation). Consider the
sequence of i.i.d. integrable random vectors {xi} with E (xi) = x̄. Then, the following
properties are satisfied:

1
i

i∑
j=1
xj

a.s.−→ x̄, (4.158)

1
i

i∑
j=1

|xj | a.s.−→ E (|xj |) < ∞ (4.159)

xi

i
a.s.−→ 0, (4.160)

where the almost sure convergence holds element-wise for the random vector summations.
Eqs. (4.158) and (4.159) follow from the Strong Law of Large Numbers (SLLN) [18] and
(4.160) follows from integrability9.

Lemma 4.9 (Scalar recursion). Let yi be a (scalar) random variable satisfying, for 0 <
a < 1 and i = 1, 2, . . . :

yi = ayi−1 + axi, (4.162)

where {xi} are i.i.d. integrable random variables whose expectation is given by E (xi) = mx ,
and y0 is an initial (a.s. finite) random variable. We have that:

9For any integrable random variable z, and any ε > 0, we have that [74][Theorem 3.2.1]:

ε

∞∑
i=1

P (|z| > εi) ≤ E (|z|) < ∞. (4.161)

Since xi are integrable and identically distributed, from (4.161), we have
∑∞

i=1 P (|xi| > εi) < ∞. Therefore,
condition (4.160) follows from the Borel-Cantelli lemma[18].
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1. yi converges in distribution, as i → ∞, to a random variable y∞ that can be defined
as:

yi
d−→ y∞ ≜

∞∑
j=1

ajxj . (4.163)

2. The following conditions are satisfied:

yi

i
a.s.−→ 0, (4.164)

1
i

i∑
j=1
yj

a.s.−→ a

1 − a
mx, (4.165)

lim sup
i→∞

1
i

i∑
j=1

|yj |
a.s.
≤ a

1 − a
E (|xj |). (4.166)

Proof. For item 1), we develop the recursion in (4.162):

yi = aiy0 +
i∑

j=1
ajxi−j+1. (4.167)

As i goes to infinity, the first term on the RHS of (4.167) vanishes almost surely. Regarding
the second term on the RHS of (4.167), since xi are i.i.d. across i, we can write the following
equality in distribution for i = 1, 2, . . . :

i∑
j=1

ajxi−j+1
d=

i∑
j=1

ajxj . (4.168)

The random series on the RHS of (4.168) is the sum of independent random variables, with

∞∑
j=1

E (|ajxj |) = E (|x|)
∞∑

j=1
aj = E (|x|) a

1 − a
< ∞, (4.169)

where index j was suppressed due to identical distribution across time. This condition is
sufficient to conclude that the random series is almost-surely (and absolutely) convergent [75,
Lemma 3.6′]. Denoting the value of the series by y∞, we conclude that:

yi
d−→ y∞. (4.170)

For item 2), we will first show the result in (4.164). To do that, consider again the recursion in
(4.167):

yi = aiy0 +
i∑

j=1
ajxi−j+1

⇒ 1
i
yi = 1

i
aiy0 + 1

i

i∑
j=1

ajxi−j+1. (4.171)
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The first term on the RHS of (4.171) converges to zero almost surely as i goes to infinity. Since
0 < a < 1, we know that {aj} forms a converging sequence, which implies that for some
ε > 0, there exists an index i0 such that, for all j > i0:

|aj | < ε. (4.172)

We can therefore rewrite the second term on the RHS of (4.171) as

1
i

i∑
j=1

ajxi−j+1 = 1
i

i0∑
j=1

ajxi−j+1 + 1
i

i∑
j=i0+1

ajxi−j+1. (4.173)

Let us address the first term on the RHS of (4.173), but considering its absolute value:

1
i

∣∣∣∣∣∣
i0∑

j=1
ajxi−j+1

∣∣∣∣∣∣ ≤ 1
i

i0∑
j=1

|xi−j+1| =
i∑

j=i−i0+1

|xj |
i

a.s.−→ 0, (4.174)

which vanishes almost surely in view of Property 4.1 and similar arguments as the ones used in
(4.161). Now consider the second term on the RHS of (4.173). In view of (4.172), the term can
be bounded as:

1
i

∣∣∣∣∣∣
i∑

j=i0+1
ajxi−j+1

∣∣∣∣∣∣ ≤ 1
i

ε
i∑

j=i0+1
|xi−j+1| = 1

i
ε

i−i0∑
j=1

|xj | (4.175)

⇒ lim sup
i→∞

1
i

∣∣∣∣∣∣
i∑

j=i0+1
ajxi−j+1

∣∣∣∣∣∣ a.s.
≤ εE (|xj |), (4.176)

where the RHS of (4.175) converges to the RHS of (4.176) in view of the SLLN (since xj is
integrable). Taking the absolute value of the LHS of (4.173) and using (4.174) and (4.176), we
can write:

lim sup
i→∞

1
i

∣∣∣∣∣∣
i∑

j=1
ajxi−j+1

∣∣∣∣∣∣ a.s.
≤ εE (|xj |). (4.177)

Due to the arbitrariness of ε in (4.177), we conclude that the limit superior in (4.176) vanishes,
and therefore (4.164) holds.

Let us now show the result in (4.165), but considering the original recursion in (4.162):

yi = ayi−1 + axi

⇒ 1
n

n∑
i=1
yi = a

n

n∑
i=1
yi−1 + a

n

n∑
i=1
xi. (4.178)

Note that the first term on the RHS of (4.178) can be written as

1
n

a
n∑

i=1
yi−1 = a

n

n−1∑
k=0

yk = a

n

n∑
k=1

yk − a
yn

n
+ a

y0
n

, (4.179)
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and therefore (4.178) can be rewritten as

(1 − a) 1
n

n∑
i=1
yi = −a

yn

n
+ a

y0
n

+ a
1
n

n∑
i=1
xi

a.s.−→ amx, (4.180)

where the first term on the RHS vanishes almost surely in view of (4.164) and so does the second
term, whereas the third term converges almost surely to amx from the SLLN. It remains to
verify condition (4.166). To this aim, it is useful to introduce the recursion:

si = asi−1 + |xi|, with initial condition s0 = |y0|. (4.181)

From (4.181) we can write:

si = ai|y0| +
i∑

j=1
aj |xi−j+1|. (4.182)

Comparing (4.182) against (4.167), by application of the triangle inequality we conclude that
|yi| ≤ si. On the other hand, si matches the model in (4.162) and, hence, in view of (4.165) we
can write (E (|x|) is the common mean of the random variables |xj |):

lim
i→∞

1
i

i∑
j=1
sj = a

1 − a
E (|x|). (4.183)

Moreover, since |yi| ≤ si we have that:

lim sup
i→∞

1
i

i∑
j=1

|yj |
a.s.
≤ lim

i→∞

1
i

i∑
j=1
sj

a.s.= a

1 − a
E (|x|) < ∞, (4.184)

which reveals that condition (4.166) holds.
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5 Adaptive Social Networks

5.1 Introduction1

In previous chapters, we have considered social learning in the context of a stationary world.
The real world is however constantly changing over time, and engineering systems should
account for this nonstationarity. For example, a real-time weather forecast system should be
able to detect changes in air pressure and humidity and adapt its prediction based on these
measurements.

Although existing social learning strategies incorporate streaming observations from the world,
they are designed under the assumption that the operating conditions (e.g., the underlying state
of nature, the network topology, the quality of data, the statistical models,...) are fixed over
time. In this stationary setting, agents manage to concentrate their beliefs around the true state
of the world, often at an exponentially fast rate of convergence. Such superior convergence
properties have however the collateral effect of hindering adaptation in face of nonstationary
world conditions, which we illustrate next by means of an example.

Consider a network of agents aiming to solve a weather forecast problem using a social learning
algorithm. At each instant, these agents collect data arising from one among three possible
hypotheses: “sunny”, “cloudy”, “rainy”. At first, data is consistent with the hypothesis “sunny”,
but, in view of a weather change at instant i = 200, data then indicates that the correct forecast
is “rainy”. As we see in Figure 5.1 (the curves illustrate the behavior of Agent 1), the social
learning algorithm reacts with a considerable inertia to the hypothesis drift.

In fact, Figure 5.1 shows clearly that the agent learns well until instant i = 200, whereas
from i = 200 onward, the situation changes greatly. The classic social learning algorithm
has a delayed reaction. First, agents perceive a change only at i ≈ 350, but start opting for
the wrong hypothesis “cloudy”. Then, after a prohibitive number of iterations, at i ≈ 550,
agents manage to overcome their stubbornness and opt for the correct hypothesis “rainy”. To
tackle this problem, this chapter proposes an Adaptive Social Learning (ASL) strategy, whose
performance is shown in the second column of Figure 5.1 for the same example. We see that
the ASL algorithm manages to track the target change at instant i ≈ 200, exhibiting a higher

1This chapter is adapted from [76], [77].
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Figure 5.1: Classic social learning vs. adaptive social learning. Top panels: Belief evolution of agent
1, with θ0 changing at time i = 200. Bottom panels: The instantaneous decision taken by agent 1 by
choosing the hypothesis that maximizes the current belief.

adaptation capacity than that of the classic social learning algorithm.

In this chapter, we first introduce a novel social learning strategy that enables adaptation. Then,
we provide a detailed analysis of this strategy. In particular, by exploiting recent advances
in the field of distributed detection over adaptive networks—see [78] for an overview—we
present a characterization of the social learning performance at each individual agent, in
terms of i) convergence of the system at the steady-state (Theorem 5.1); ii) achievability of
consistent learning (Theorem 5.2); iii) a Gaussian approximation for the learning performance
(Theorem 5.3); iv) the error exponents for the learning error probabilities (Theorem 5.4); and
v) the transient evolution for the instantaneous error probabilities. As the analysis will show,
the ASL model allows the user to design the adaptation time, at the expense of losing some
learning accuracy, i.e., agents no longer achieve full confidence around the true hypothesis.
Instead, agents maintain some skepticism regarding the true hypothesis, as illustrated in the
belief curves of Figure 5.1.

5.2 Problem Setting

We consider a strongly connected network, where agents observe the world under objective
evidence—see Section 2.1.3. In other words, the observations measured by agent k at every
instant are generated from one of the likelihood models Lk(ξ|θ0) with θ0 ∈ Θ.

We would like to account for nonstationary world conditions, e.g., for changing θ0 over time.
To that purpose, we devise an adaptive social learning strategy, which should be able to react
promptly in view of environment changes and deliver proper inference performance in a
reasonable reaction time. It is thus necessary to first identify formally the concepts of adaptation
and learning, and the technical framework that will be used to characterize these concepts.
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5.3 ASL Strategy

• Learning: In the context of social learning, “learning" means “guessing the right hy-
pothesis". In order to quantify the learning performance, we specialize the standard
prescriptions of adaptation theory to the social learning context. Given that the data are
steadily generated according to a certain true likelihood model, what is the probability
that an agent guesses the true state of nature? In the theory of adaptation, this analysis
is commonly referred to as steady-state analysis [37].

• Adaptation: Assume that the system has been in operation for an arbitrary time. During
this time, several phenomena can have occurred, i.e., variations of the true hypothesis,
variations in the statistical conditions (i.e., malfunctioning of the system giving rise to
distributions different from the nominal ones), missing observations, and so on. Due to the
recursive nature of the social learning algorithms, at a given time i0 all these variations
are simply summarized in a certain initial belief vector µi0 . From i0 + 1 onward, assume
that the system becomes stable and the data are steadily generated according to a given
likelihood model. Accordingly, the adaptation ability will be quantified by measuring
how long it takes (adaptation time), given an arbitrary initial belief µi0 , for an agent to
enter the steady-state regime and reach a prescribed probability of guessing the true
hypothesis. In the theory of adaptation, this analysis is commonly referred to as transient
analysis [37].

5.3 ASL Strategy

Examining the Bayesian update in (2.2), we see that it incorporates the new information into
the past belief by giving equal weight to both µk,i−1 and the new information contained in
Lk(ξk,i|θ). In order to promote adaptation, it is necessary to increase the relative credit given
to the new data with respect to the belief accumulated over time by learning from past data. To
this end, we turn the Bayesian update step into the following adaptive form:

ψk,i(θ) =
µ1−δ

k,i−1(θ)Lδ
k(ξk,i|θ)∑

θ′∈Θµ
1−δ
k,i−1(θ′)Lδ

k(ξk,i|θ′)
, (5.1)

where 0 < δ < 1 is a design parameter employed by each agent to modulate the relative weights
assigned to the past and new information. In particular, relatively large values for δ give more
importance to the new data, whereas small values for δ give more importance to the past beliefs.
In this way, as we will show later in Section 5.7, the step-size parameter δ infuses the social
learning algorithm with an adaptation mechanism.

The intermediate belief resulting from (5.1) is propagated across neighboring agents, and locally
aggregated using the combination rule in (2.3) that we report here for ease of reference:

µk,i(θ) =
∏

ℓ∈Nk
ψℓ,i(θ)aℓk∑

θ′∈Θ
∏

ℓ∈Nk
ψℓ,i(θ)aℓk

(5.2)

Examining (5.1), we see that the ASL strategy implements a convex combination of probability
functions at the exponent, by discounting both the past belief and the new likelihood through
the weights 1−δ and δ, respectively. However, the update (5.1) cannot be considered a Bayesian
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update because the likelihood exponentiated to δ does not integrate to one (w.r.t. ξ).

We can however modify (5.1) to get an adaptive Bayesian update:

ψk,i(θ) =
µ1−δ

k,i−1(θ)Lk(ξk,i|θ)∑
θ′∈Θµ

1−δ
k,i−1(θ′)Lk(ξk,i|θ′)

. (5.3)

Observe from (5.3) that the limiting choice δ = 0 (i.e., no adaptation) gives back the classic
Bayesian update in (2.2). In contrast, the update in (5.1) cannot be reduced to (2.2) for any
selection of δ ∈ (0, 1). This notwithstanding, we now argue that the ASL strategies (5.1) and
(5.3) are in fact equivalent. To this aim, we can develop the recursion obtained by combining
(5.2) and (5.3) and get:

log
µk,i(θ)
µk,i(θ′) = (1 − δ)

∑
ℓ∈Nk

aℓk log
µℓ,i−1(θ)
µℓ,i−1(θ′) +

∑
ℓ∈Nk

aℓk log
Lℓ(ξℓ,i|θ)
Lℓ(ξℓ,i|θ′)

= (1 − δ)i
K∑

ℓ=1
[Ai]ℓk log

µℓ,0(θ)
µℓ,0(θ′) +

i−1∑
m=0

K∑
ℓ=1

(1 − δ)m[Am+1]ℓk log
Lℓ(ξℓ,i−m|θ)
Lℓ(ξℓ,i−m|θ′) . (5.4)

Doing the same for (5.1) and (5.2) in an expression similar to (5.4), except that an additional
term δ multiplies the second term on the RHS of (5.4). In both cases, the first term on the RHS
dies out exponentially fast with time, whereas the relevant term that determines the algorithms’
evolution over time is given by the second term on the RHS, which differ only on the scaling
factor δ.

As a result, we conclude that the time-evolution of the log-belief ratios for the two ASL strategies
is equivalent. For example, the opinion that maximizes the belief function would be the same
under both strategies, implying the same error probability. In fact, proportionality of the
log-belief ratios implies that the belief function of one strategy is simply an exponentiated
(and normalized) version of the belief function of the other strategy. This does not mean that
the beliefs of the two strategies would take on the same values. In particular, our results will
show that, as δ → 0, the steady-state log-belief ratios are stable under (5.1), which immediately
implies that they diverge (i.e., achieving a belief close to 1 at the true hypothesis) under
(5.3). While immaterial from a technical perspective, these differences might matter from a
behavioral perspective [43], namely, to understand which update strategy reflects better the
way of reasoning that an individual agent uses in social learning environments. For the sake of
clarity, in the presentation of our technical results we opt for sticking to the update rule in (5.1),
since the log-belief ratio is stable.

5.4 Statistical Descriptors of Performance

Assume that the algorithm has been running until a certain time i0, with the evolution of the
system up to i0 being summarized in the “initial” belief vectors µk,i0 . Starting from i0, the
ASL algorithm behavior will exhibit two important phases: a transient phase where, given the
(possibly wrong) initial belief, each agent must suddenly adapt in order to depart from µk,i0
and start learning the correct hypothesis; and a steady-state phase where, given sufficient time
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5.4 Statistical Descriptors of Performance

to learn (i → ∞), each agent must achieve high confidence in learning the correct hypothesis.
According to the theory of adaptive inference, the performance of an adaptive learning strategy
is characterized under the steady-state regime.

By examining the algorithm recursions (5.1) and (5.2), in light of Assumptions 2.4 and 2.2, the
belief remains always nonzero at any θ during the algorithm evolution—a similar argument is
presented in Chapter 2. Now, assume that the algorithm has been running up to time i0, and
that from i0 + 1 onward the system remains stationary for sufficiently long time, with the data
being generated according to hypothesis θ0. In order to perform a steady-state analysis from
i0 + 1 onward, we need to consider µk,i0 as initial state. Since we have observed that the beliefs
are always nonzero, we can see that the initial belief vector µk,i0 fulfills Assumption 2.2.

In summary, for the purpose of the steady-state analysis and without loss of generality, we will
assume that the steady-state analysis starts at time i0 = 0 and consider an initial belief vector
µk,0 that fulfills Assumption 2.2. The true hypothesis θ0 is kept constant over time, yielding:

ξk,i ∼ Lk(ξ|θ0), k = 1, 2, . . . , K, i = 1, 2, . . . (5.5)

Therefore, for the purpose of the steady-state analysis, we will always imply that expectations
and probabilities are evaluated under the distributions Lk(ξ|θ0). Note also that the observations
{ξk,i} are independent and identically distributed (i.i.d.) over time, i.e., over the index i. We
will assume that they can have different distributions across the agents, i.e., across the index k.
Statistical independence across the agents will be only used to prove some of the forthcoming
results (Theorems 5.3 and 5.4 further ahead).

Log-Belief Ratios: In order to characterize the learning performance, it is convenient to
introduce the logarithm of the ratio between the belief evaluated at θ0 and the belief evaluated
at a generic hypothesis θ ̸= θ0:

λ
(δ)
k,i(θ) ≜ log

µk,i(θ0)
µk,i(θ) , (5.6)

which is well-defined since, as already remarked, the belief remains nonzero at any θ during the
algorithm evolution. With the symbol λ(δ)

k,i(θ) we denote a random function of: the agent index
k = 1, 2, . . . , K , the time index i = 0, 1, . . ., the hypothesis θ ∈ Θ \ θ0, and the adaptation
parameter δ. When we omit the argument θ and writeλ(δ)

k,i , we will be referring to the (H−1)×1
vector of log-belief ratios, namely,

λ
(δ)
k,i =

[
λ

(δ)
k,i(θ1),λ(δ)

k,i(θ2), . . . ,λ
(δ)
k,i(θH−1)

]T
, (5.7)

where the elements in the set of wrong-hypotheses have been indexed as:

Θ \ θ0 = {θ1, θ2, . . . , θH−1}. (5.8)

Error Probability: One natural way for the agents to choose a hypothesis is to select the
hypothesis that maximizes the belief. Therefore, the error probability at each time i can be
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Figure 5.2: Evolution of the error probability of two agents in a network running the ASL algorithm.

expressed as

p
(δ)
k,i = P

(
arg max

θ∈Θ
µk,i(θ) ̸= θ0

)
. (5.9)

It is useful to rewrite the error probability as a function of the log-belief ratios. To this end,
observe that the event within brackets in (5.9) corresponds to saying that the belief is not
maximized at θ0, which in turn corresponds to saying that the log-belief ratios in (5.6) are less
than or equal to zero for at least one θ ̸= θ0. Therefore, the instantaneous error probability can
be equivalently rewritten as:

p
(δ)
k,i = P

(
∃θ ̸= θ0 : λ(δ)

k,i(θ) ≤ 0
)

. (5.10)

Finally, we introduce the steady-state error probability:

p
(δ)
k ≜ lim

i→∞
p

(δ)
k,i . (5.11)

Theorem 5.1 will show that the steady-state error probability exists and can be characterized by
the steady-state behavior of the log-belief ratios. To evaluate this probability, we will perform an
asymptotic analysis in the regime of small δ, which will allow us to obtain reliable predictions
of the steady-state performance.

In Figure 5.2 we show an example of evolution for the error probability of two agents in a
network implementing the ASL strategy.2 All the probabilities are estimated empirically by
Monte Carlo simulation. We see how the instantaneous error probability p

(δ)
k,i converges to a

steady-state nonzero value p
(δ)
k as i increases. It is useful to remark that this behavior is different

from that of classic social learning, where, under stationary conditions, the error probability of
each agent vanishes as time elapses. This is one instance of the adaptation/learning trade-off:
Non-adaptive strategies can increase their accuracy indefinitely under stationary conditions.
However, astronomically low values of the error probabilities lead to a detrimental inertia in
responding to possible changes.

Log-Likelihood Ratios: For k = 1, 2, . . . , K , i = 0, 1, . . ., and θ ̸= θ0, we introduce the
2The details of the network topology as well as of the statistical learning problem are immaterial at this stage of

the presentation.
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5.5 Steady-State Analysis

log-likelihood ratio:

xk,i(θ) ≜ log
Lk(ξk,i|θ0)
Lk(ξk,i|θ) , (5.12)

and its expectation:
dk(θ) ≜ E (xk,i(θ)) < ∞, (5.13)

namely, the KL divergence between Lk(ξ|θ0) and Lk(ξ|θ), which is finite in view of Assump-
tion 2.4, implying that the log-likelihood ratios cannot diverge (but for an ensemble of real-
izations with zero probability). We recall that the expectation in (5.13) is computed assuming
that the random variable ξk,i is distributed according to model Lk(ξ|θ0). Since we focus on the
steady state, this distribution is constant over time, which explains why dk(θ) does not depend
on i. Furthermore, since the true hypothesis θ0 is held fixed during the steady-state analysis, in
order to avoid a heavier notation we are not emphasizing the dependence of the KL divergence
dk(θ) on θ0.

We continue by introducing an average variable that will play a role in the forthcoming results,
namely, the network average of log-likelihood ratios, for all θ ̸= θ0:

xave,i(θ) =
K∑

ℓ=1
πℓxℓ,i(θ). (5.14)

The random variable xave,i(θ) appearing in (5.14) is obtained by combining linearly the local
log-likelihood ratios xℓ,i(θ). The combination weight assigned to the log-likelihood ratio of the
ℓ-th agent is given by the limiting combination weight, i.e., by the ℓ-th entry, πℓ, of the Perron
eigenvector. We will see in the following that the asymptotic properties of the ASL strategy as
δ → 0 are directly related to the statistical properties of the vector of average variables, xave,i.

5.5 Steady-State Analysis

Different from the classic social learning setting, in the adaptive setting the belief will not
converge as i → ∞. In contrast, the belief of each agent will preserve a random behavior—this
can be seen in the example shown in Figure 5.1. This everlasting randomness is critical to
ensure that the algorithm will adapt quickly to a change in the environment. On the other hand,
it makes the steady-state analysis more difficult, since the beliefs preserve a random character
even when i → ∞. The first step in the steady-state analysis is to establish whether such
random fluctuations lead to stable random variables as i → ∞, which is shown in Theorem 5.1.

Before stating the theorem, let us examine the evolution of the log-belief ratios. Exploiting (5.2)
and (5.1), we end up with the following recursion, for every θ ̸= θ0:

λ
(δ)
k,i(θ) =

∑
ℓ∈Nk

aℓk

{
(1 − δ)λ(δ)

ℓ,i−1(θ) + δxℓ,i(θ)
}

, (5.15)

which can be rewritten as the following two-step recursion:

ν
(δ)
ℓ,i (θ) = (1 − δ)λ(δ)

ℓ,i−1(θ) + δ xℓ,i(θ), (5.16)

125



Chapter 5. Adaptive Social Networks

λ
(δ)
k,i(θ) =

∑
ℓ∈Nk

aℓk ν
(δ)
ℓ,i (θ). (5.17)

The time-evolution of the log-belief ratios in (5.16) and (5.17) is in the form of a diffusion
algorithm with constant step-size δ—see, e.g., [37]. This is why we refer to δ as the step-size.

Developing the recursion in (5.15) and recalling that A = [aℓk] is the combination matrix we
can write, for all θ ̸= θ0:

λ
(δ)
k,i(θ) = (1 − δ)i

K∑
ℓ=1

[Ai]ℓkλℓ,0(θ)︸ ︷︷ ︸
transient term

+ δ
i−1∑

m=0

K∑
ℓ=1

(1 − δ)m[Am+1]ℓk xℓ,i−m(θ). (5.18)

Since the transient term dies out as i → ∞, in order to evaluate the steady-state behavior of
λk,i(θ), we can ignore it and focus on the second term:

λ̂
(δ)
k,i(θ) = δ

K∑
ℓ=1

i−1∑
m=0

(1 − δ)m[Am+1]ℓk xℓ,i−m(θ). (5.19)

5.5.1 Steady-State Log-Belief Ratios

The goal of the steady-state analysis is to evaluate the performance (i.e., the error probability)
for large i. For this evaluation to be meaningful, we must ascertain that the error probability in
(5.10) converges as i → ∞. To this end, we will now establish that there exists a certain limiting

random vector, λ̃
(δ)
k , such that the probability distribution of the vector of log-belief ratios, λ̂

(δ)
k,i ,

converges, as i → ∞, to the probability distribution of λ̃
(δ)
k . This notion of convergence can be

formally defined as follows.

We say that the sequence (over the index i) of random vectors λ̂
(δ)
k,i converges in distribution or

weakly as i → ∞ if we can define a random vector λ̃
(δ)
k such that [73]:

lim
i→∞

P
(
λ̂

(δ)
k,i ∈ B

)
= P

(
λ̃

(δ)
k ∈ B

)
(5.20)

for all measurable setsBwhose boundary ∂B has zero probability under the limiting distribution,
namely, for all measurable sets B fulfilling the condition:

P
(
λ̃

(δ)
k ∈ ∂B

)
= 0. (5.21)

In the following, weak convergence will be compactly denoted as:

λ̂
(δ)
k,i

d−→ λ̃
(δ)
k , (5.22)

and the vector λ̃
(δ)
k will be referred to as the steady-state log-belief vector, since it provides the

statistical characterization of the log-belief vector λ̂
(δ)
k,i as i → ∞.
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5.5 Steady-State Analysis

We are now ready to present the theorem that establishes the existence of steady-state log-belief
ratios.

Theorem 5.1 (Steady-state log-belief ratios). Let Assumptions 2.4 and 2.2 hold, and let

λ̃
(δ)
k,i(θ) ≜ δ

K∑
ℓ=1

i−1∑
m=0

(1 − δ)m[Am+1]ℓk xℓ,m+1(θ) (5.23)

be the random sum obtained from (5.19) by taking the summands in reversed order.

First, we have that all the K inner sums in (5.23) are almost-surely absolutely convergent as
i → ∞, implying that λ̃

(δ)
k,i(θ) converges almost surely to the random series:

λ̃
(δ)
k (θ) ≜ δ

K∑
ℓ=1

∞∑
m=0

(1 − δ)m[Am+1]ℓk xℓ,m+1(θ). (5.24)

Second, we have that the vector of log-belief ratios λ̂
(δ)
k,i (with the original, i.e., non-reversed

ordering of summation) converges in distribution to the vector λ̃
(δ)
k , namely,

λ̂
(δ)
k,i

d−→ λ̃
(δ)
k . (5.25)

Proof. See Appendix 5.B.

It is useful to make some comments on Theorem 5.1. First, finiteness of the expectation of
xk,i is sufficient (through Assumption 2.4) to guarantee the existence of a steady-state random
variable. No assumption is made on higher-order moments.

Second, it is important to notice that (5.24) does not correspond to letting i → ∞ in the
summation in (5.19). To explain why, let us compare the random sums:

λ̂
(δ)
k,i(θ) = δ

i−1∑
m=0

K∑
ℓ=1

(1 − δ)m[Am+1]ℓk xℓ,i−m(θ), (5.26)

and

λ̃
(δ)
k,i(θ) = δ

i−1∑
m=0

K∑
ℓ=1

(1 − δ)m[Am+1]ℓk xℓ,m+1(θ). (5.27)

In Figure 5.3 we examine a sample path for these sums, and we can see that they exhibit different
behavior. The random sum in (5.26), displayed with solid line in Figure 5.3, exhibits steadily
random fluctuations as time elapses. In contrast, the random sum in (5.27), displayed with

dashed line, converges as time elapses, specifically to the random value λ̃
(δ)
k (θ) defined in

(5.24). Both behaviors are consistent with what we have already shown in Theorem 5.1. These
profoundly different behaviors depend on the different ordering of the summands in (5.26) and
(5.27). In particular, in (5.27) the most recent term, xℓ,i(θ), takes the smallest weight (1 − δ)i−1,
which lets the remainder of the series vanish (almost surely). In contrast, in (5.26) the most
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Figure 5.3: Comparison of the random sequences λ̂
(δ)
k,i(θ) and λ̃

(δ)
k,i(θ) for δ = 0.1, for the Gaussian

setting described in Section 5.8 further ahead.

recent term, xℓ,i(θ) takes the highest weight (1 − δ)0 = 1, thus keeping fluctuations (hence,
adaptation) alive.

Even though the sums in (5.26) and (5.27) exhibit a markedly different behavior in terms of their
time-evolution (i.e., on the sample paths), one notable conclusion from Theorem 5.1 is that their
probability distributions converge to the same distribution, that is the distribution of the limiting

variable λ̃
(δ)
k . This equivalence can be explained as follows. With reference to the top panel

in Figure 5.3, consider a sufficiently large i (say, i = 300) and take the corresponding values
of the dashed curve and the solid curve, namely, λ̂k,300(2) and λ̃k,300(2). These values are
different. However, if we now repeat the experiment in Figure 5.3 several times, the realizations
of λ̂k,300(2) across different experiments will be distributed in the same way as the realizations
of λ̃k,300(2).

The existence of a limiting distribution for the log-belief vector λ̂
(δ)
k,i makes the definition of

a steady-state error probability meaningful, since from Eqs. (5.10) and (5.11) we see that the
steady-state error probability can be computed as:3

p
(δ)
k = P

(
∃θ ̸= θ0 : λ̃(δ)

k (θ) ≤ 0
)

. (5.28)

However, it should be noticed that Theorem 5.1 constitutes only a first, albeit fundamental step
towards the characterization of the ASL performance, since it establishes only the existence of
a steady-state error probability without providing any explicit characterization thereof. Such

3According to the definition of convergence in distribution, the result in (5.28) holds provided that the limiting

random variable λ̃
(δ)
k has no point mass at 0. However, we rule out such pathological case that is in practice the

exception rather than the rule.
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characterization is in general not available. In the next sections we tackle this challenging

problem by focusing on an asymptotic characterization of λ̃
(δ)
k in the regime of small δ.

5.6 Small-δ Analysis

We have ascertained that there exist steady-state random variables characterizing the log-belief
ratios. Then, the steady-state learning performance can be determined by examining the
probability that these random variables fulfill certain conditions. For example, the steady-state
probability that an agent learns the truth is the probability that the steady-state log-belief ratio
of that agent is positive only at the true value θ0. In general, the exact characterization of these
steady-state variables is a formidable task. For this reason, we resort to an asymptotic analysis
in the regime of small δ. We will provide three types of asymptotic results.

• Section 5.6.1: Weak law of small step-sizes (Theorem 5.2). We show that, for small

δ, the steady-state vector λ̃
(δ)
k concentrates around the weighted average of the agents’

KL divergences defined in (5.29). This concentration property guarantees that, with high
probability as δ → 0, the true hypothesis is chosen by each agent. This result requires
only finiteness of the first moments of the log-likelihood ratios, i.e., finiteness of the KL
divergences.

• Section 5.6.2: Asymptotic normality (Theorem 5.3). We obtain a Central Limit
Theorem (CLT) that provides a normal approximation, holding for small δ, for the error
probabilities of each individual agent. This result is proven assuming independence across
agents and requires finiteness of the variance of the log-likelihood ratios. We remark
that previous results of asymptotic normality for adaptive distributed detection assumed
finiteness of higher-order moments [79]. To the best of our knowledge, the result in
Theorem 5.3 (which is based on part 5 of Lemma 5.1) is the first result that assumes the
minimal requirement of finiteness of second moments.

• Section 5.6.3: Large deviations analysis (Theorem 5.4). We characterize the expo-
nential rate of decay of the error probabilities as δ → 0. This result is proven assuming
independence across agents and requires the existence of the moment generating function
of the log-likelihood ratios.

Notably, the above three steps reflect perfectly a classic path in asymptotic statistics. However,
in order to avoid misunderstandings, it is necessary to clarify one fundamental difference
between the small-δ analysis and classic results. In order to illustrate this difference let us refer,
for example, to the CLT result. In the classic setting of asymptotic statistics, one examines the
asymptotic behavior of sums of random variables when the number of terms of the sum goes to
infinity. In contrast, the CLT proved in this work does not affirm that the sums involved in (5.19)
converge to a Gaussian as i → ∞. As a matter of fact, we have shown in Theorem 5.1 that the
sums in (5.19) converge to certain random variables, but these variables are not Gaussian, in
general. The CLT that we prove deals instead with the behavior, as δ goes to zero, of the steady-

state random vector λ̃
(δ)
k . The same distinction applies to the other two types of asymptotic

results, namely, the weak law and the large deviations analysis. For this reason, as explained
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in [78], the correct way to deal with the asymptotic regime of small step-sizes in the adaptation
context is made of two steps:

• First, introduce a proper steady-state vector λ̃
(δ)
k , which already embodies the effect

of combining an infinite number of summands. This steady-state vector will be non-
degenerate (i.e., no weak law as i → ∞), will be non-Gaussian (i.e., no CLT as i → ∞),
and will be non-vanishing (i.e., no large deviations as i → ∞).

• Then, characterize the asymptotic behavior of the steady-state random vector λ̃
(δ)
k as δ

goes to zero.

It is worth noticing that, in the adaptation literature, the critical role of the first step is usually
not emphasized. This is because the adaptation literature mostly focuses on estimation problems,
where one usually quantifies the performance by evaluating convergence of the moments [37].
In contrast, when dealing with decision problems (as in our case), the performance is quantified
through probabilities, namely, the probabilities of making a wrong (or correct) decision. In order
to evaluate probabilities at the steady state, it is critical to obtain first a representation of the
steady-state random variables [78].

5.6.1 Consistent Social Learning

Before stating the consistency result, we introduce the expectation of the average log-likelihood
ratio in (5.14):

mave(θ) ≜ E (xave,i(θ)) =
K∑

ℓ=1
πℓdℓ(θ), (5.29)

which does not depend on i owing to the identical distribution over time implied by the steady-
state analysis. We will rely on the assumptions presented in Chapter 2 for the classical social
learning setting.

Theorem 5.2 (Consistency of ASL). Under Assumptions 2.4 and 2.2, we have the following
convergence:

λ̃
(δ)
k

p−→
δ→0

mave (5.30)

Since under Assumption 2.5 all entries of mave are strictly positive, Eq. (5.30) implies that each
agent learns correctly the true hypothesis as δ → 0, namely, for all θ ̸= θ0 we have that the
steady-state error probability of all agents k = 1, 2, . . . , K converges to zero as δ approaches
zero:

lim
δ→0

p
(δ)
k = 0. (5.31)

Proof. See Appendix 5.C.

The result of Theorem 5.2 relies on the weak law of small step-sizes proved in Lemma 5.1, part 3.
Technically, this law requires finiteness of only the first moments dℓ(θ), which is guaranteed by
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Assumption 2.4. Moreover, the result of Theorem 5.2 requires that mave(θ) > 0 for all θ ̸= θ0.
Since the entries of the Perron eigenvector are all strictly positive, we see that mave(θ) is strictly
greater than zero for every θ if, for every θ, there exists at least one agent ℓ for which the KL
divergence dℓ(θ) is strictly positive. In other words, in order to achieve consistent learning, it is
sufficient that at least one of the first moments (i.e., the KL divergence) is nonzero, which is
guaranteed by Assumption 2.5. As already mentioned in previous chapters, although individual
agents might not be able to learn properly on their own, under a global identifiability condition,
agents are encouraged to collaborate since the network possesses sufficient information to learn
the true hypothesis.

Theorem 5.2 establishes that the error probability vanishes as δ → 0. On the other hand, it
does not establish how it vanishes. We will see that the ASL strategy is characterized by an
exponential law, since the error probability of each individual agent decays exponentially fast
as a function of the inverse step-size 1/δ.

5.6.2 Normal Approximation for Small δ

We will now prove a central limit theorem for the steady-state random vector λ̃
(δ)
k . To this end,

we will assume finiteness of second-order moments for the log-likelihoods. We furthermore
assume statistical independence across the agents.

In order to state the CLT, it is convenient to define some useful quantities. First, we introduce
the covariance between the log-likelihood ratios at θ and θ′, that is:

ρℓ(θ, θ′) = E
[(
xℓ,i(θ) − dℓ(θ)

)(
xℓ,i(θ′) − dℓ(θ′)

)]
. (5.32)

Then we introduce the covariance between the average variables xave,i(θ) and xave,i(θ′) which,
exploiting independence across agents, can be evaluated as:

cave(θ, θ′) ≜
K∑

ℓ=1
π2

ℓ ρℓ(θ, θ′). (5.33)

Next, it is necessary to examine the behavior of the first two moments of the log-belief ratios.
In view of Lemma 5.1, part 2, it is possible to conclude that the expectation of the steady-state

random vector λ̃
(δ)
k can be expressed as:

m(δ)
k (θ) ≜ E

(
λ̃

(δ)
k (θ)

)
= mave(θ) + O(δ), (5.34)

where O(δ) is a quantity such that the ratio O(δ)/δ remains bounded as δ → 0. Likewise, using

part 4 of Lemma 5.1, we conclude that the covariance of the steady-state random vector λ̃
(δ)
k is:

c
(δ)
k (θ, θ′) ≜ E

[(
λ̃

(δ)
k (θ) − m(δ)

k (θ)
)(
λ̃

(δ)
k (θ′) − m(δ)

k (θ′)
)]

= cave(θ, θ′)
2 δ + O(δ2). (5.35)
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Equations (5.34) and (5.35) can be rewritten in vector and matrix form, respectively as:

m(δ)
k = mave + O(δ), C(δ)

k = Cave
2 δ + O(δ2), (5.36)

where C(δ)
k = [c(δ)

k (θ, θ′)] and Cave = [cave(θ, θ′)] are the matrices that collect the individual
covariances. We see from (5.36) that, as δ → 0, there is a leading term that does not depend on
the agent index k (whose impact is implicitly included in the higher order corrections, i.e., the
O(·) terms).

The first relation in (5.36) reveals that the expectation vector of the steady-state log-belief ratios,
m(δ)

k , approximates, for small δ, the expectation vector of the average log-likelihood ratios,
mave. In comparison, the second relation in (5.36) reveals that the covariance matrix of the
steady-state log-belief ratios, C(δ)

k , goes to zero as Cave δ/2, where Cave is the covariance matrix
of the average log-likelihood ratios, namely,

lim
δ→0

2C(δ)
k

δ
= Cave. (5.37)

We are now ready to state our central limit theorem.

Theorem 5.3 (Asymptotic normality). Assume that the data {ξk,i} are independent across
the agents (recall that they are always assumed i.i.d. over time), and that the log-likelihood
ratios have finite variance. Then, under Assumptions 2.4, 2.2 and 2.5, the following convergence
holds:

λ̃
(δ)
k − mave√

δ

d−→
δ→0

G

(
0,

Cave
2

)
, (5.38)

where G (0, C) is a zero-mean multivariate Gaussian with covariance matrix equal to C .

Proof. See Appendix 5.D.

Theorem 5.3 entails the following approximation, holding for δ ≈ 0:

λ̃
(δ)
k ≈ G

(
mave,

Cave
2 δ

)
. (5.39)

We see that such approximation does not depend on the agent index k. As shown in [78],
in order to capture differences in performance across the agents, it is possible to replace
the limiting expectation vector mave and the limiting covariance matrix Cave δ/2 with their
exact counterparts, i.e., with the series appearing in (5.34) and (5.35), yielding the refined
approximation:

λ̃
(δ)
k ≈ G

(
m(δ)

k , C(δ)
k

)
. (5.40)

The approximations in (5.39) and (5.40) will be tested in the section devoted to numerical
experiments.

132



5.6 Small-δ Analysis

5.6.3 Large Deviations for Small δ

In this section we focus on another relevant type of asymptotic analysis, namely, a large
deviations analysis [80], [81]. The application of large deviations to adaptive networks was used
in [78], [79], [82].

The basic aim of the LD analysis is to estimate the exponential decay rate of the probabilities
associated to certain rare events. In our setting, the rare event is the probability that an agent
opts for the wrong hypothesis. We will show that, at the steady state, this type of event becomes
in fact rare as δ approaches zero.

More formally, the LD analysis will furnish the following type of representation for the steady-
state error probability [80], [81]:

p
(δ)
k

·= e−Φ/δ, (5.41)

where the notation ·= means equality to the leading exponential order (as δ → 0) or, more
explicitly:

lim
δ→0

δ log p
(δ)
k = −Φ, (5.42)

for a certain value Φ that is called the error exponent. Notably, in the exponent Φ we did not
put any dependence on the agent index k. This is because, as shown in Theorem 5.4 further
ahead, all agents will exhibit the same error exponent.

On the other hand, it should be remarked that the equality at the leading exponential order in
(5.41) does not imply that we can approximate the probability of error as e−Φ/δ , namely,

p
(δ)
k ̸≈ e−Φ/δ. (5.43)

This is because any LD analysis neglects sub-exponential corrections. For example, it is immedi-
ate to check that the probabilities e−Φ/δ and 100 e−Φ/δ have the same LD exponent (equal to Φ),
but the second probability is two orders of magnitude larger. These sub-exponential corrections
embody higher-order differences in the error probabilities (see, e.g., Figure 5.2) that can arise
across the agents due to different factors, for example, due to differences between very central
agents, with a high number of neighbors, as opposed to peripheral agents, with few neighbors.
To compensate for sub-exponential corrections, a refined LD framework exists, referred to as
“exact asymptotics”, which has been applied to binary adaptive detection [78], [82].

In summary, the aim of a large deviations analysis is to evaluate the asymptotic decay rate of the
error probabilities, which is a meaningful and significant index of the inferential performance.
Before stating the main result about the LD analysis, it is necessary to introduce the Logarithmic
Moment Generating Function (LMGF), a.k.a. cumulant generating function, of the log-likelihood
ratios:

Λk(t; θ) = logE
(
etxk,i(θ)

)
. (5.44)

We recall that, in the steady-state regime, the expectation is computed under the true model
Lk(ξ|θ0), which does not change over time, and this explains why Λk(t; θ) does not depend
on i. It is also useful to introduce the LMGF of the average variable xave,i(θ) which, under the
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assumption that the data are independent across the agents, is:

Λave(t; θ) = logE
(
etxave,i(θ)

)
=

K∑
ℓ=1

Λℓ(πℓt; θ). (5.45)

Theorem 5.4 (Error exponents). Assume that the data {ξk,i} are independent across the
agents (recall that they are always assumed i.i.d. over time), and that the logarithmic moment
generating function of xk,i(θ) exists everywhere, namely, for all k = 1, 2, . . . , K and θ ̸= θ0:

Λk(t; θ) < +∞ ∀t ∈ R. (5.46)

Let
ϕ(t; θ) =

∫ t

0

Λave(τ ; θ)
τ

dτ. (5.47)

Then, under Assumptions 2.4, 2.2 and 2.5 we have the following two results holding for every
agent k = 1, 2, . . . , K . First, we have that:

P
(
λ̃

(δ)
k (θ) ≤ 0

)
·= e−Φ(θ)/δ, Φ(θ) = − inf

t∈R
ϕ(t; θ). (5.48)

Second, the error probability is dominated by the worst-case (i.e., smaller) exponent:

p
(δ)
k

·= e−Φ/δ, Φ = min
θ ̸=θ0

Φ(θ). (5.49)

Proof. See Appendix 5.E

The main message conveyed by Theorem 5.4 is that the steady-state error probability of each
individual agent converges to zero as δ → 0, exponentially fast as a function of 1/δ. This
exponential law provides a universal law for adaptive social learning, which reflects the universal
scaling law of distributed adaptive detection—see [78]. The exponent Φ governing such an
exponential decay is computed from the logarithmic moment generating function of the average
log-likelihood, where the weights of this average are the limiting weights, i.e., the entries of the
Perron eigenvector.

The need for cooperation has been already motivated in relation to social learning problems
that are locally non-identifiable. Theorem 5.4 implies another potential benefit of cooperation,
namely, that cooperation improves the learning accuracy. We will illustrate this aspect through
one example. Assume the most favorable case where all agents could learn the true hypothesis
individually. Consider then a doubly-stochastic combination matrix, yielding a Perron eigen-
vector with uniform entries πℓ = 1/K for all ℓ = 1, 2, . . . , K . Exploiting (5.49), we can easily
see that in this particular case the error exponent of the network is given by:

Φ = KΦind, (5.50)

where Φind is the error exponent of an individual agent. According to (5.50), we see that the
network error exponent is K times larger than the individual error exponent, which in turn
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implies an K-fold exponential improvement in the learning accuracy. Intuitively, a network of
K agents observes K times as much data as a single agent at each time instant. The strong-
connectivity of the network allows for the data to fully propagate across agents and yields the
aforementioned learning performance improvement.

5.7 Transient Analysis

5.7.1 Qualitative Description of the Transient Phase

Preliminarily, we deem it is useful to provide a qualitative overview of the transient behavior of
adaptive social learning in comparison to classic social learning. To this end, we consider initially
a simple example consisting of a single-agent (indices k and ℓ dropped) binary (Θ = {1, 2})
problem, with symmetric KL divergences:

E 1

(
log L(ξi|1)

L(ξi|2)

)
= −E 2

(
log L(ξi|1)

L(ξi|2)

)
≜ x > 0, (5.51)

where E θ denotes expectation under the distribution L(ξ|θ). We assume that at time i = 1,
the true underlying hypothesis is θ0 = 1, and the situation remains stationary until a certain
time T1, after which data start being generated according to θ0 = 2, and that is why a transient
analysis is necessary to see how the learning algorithm is able to track this drift.

To examine how the learning process progresses over time, it is sufficient to consider the
time-evolution of the log-belief ratio:

ri ≜ log µi(1)
µi(2) , (5.52)

whose positive (resp., negative) values will let the agent opt for θ = 1 (resp., θ = 2). Specializing
(2.2) and (2.3) to the single-agent binary setting, classic social learning evolves according to the
recursion (we add a superscript to distinguish classic from adaptive social learning):

rSL
i = rSL

i−1 + log L(ξi|1)
L(ξi|2) , rSL

0 = 0. (5.53)

Likewise, replacing (2.2) with (5.1), the adaptive social learning strategy in this single-agent
binary case evolves according to the recursion:

rASL
i = (1 − δ)rASL

i−1 + δ log L(ξi|1)
L(ξi|2) , rASL

0 = 0. (5.54)

In both (5.53) and (5.54), we assume flat initial priors (i.e., rSL
0 = rASL

0 = 0). To get a flavor of
the main trade-offs involved in the transient behavior, let us focus on the time-evolution of the
expected values. Taking expectations in (5.53), at time T1 we have:

E
(
rSL

T1

)
= T1x, (5.55)

where x is the symmetric KL divergence introduced in (5.51). Equation (5.55) shows that the
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ASL

Figure 5.4: Diagram of the time evolution of the log-belief ratio in expectation for the classic social
learning strategy (in blue) and for the ASL strategy (in red) within the single-agent case.

expected value of the log-belief ratio grows linearly with the stationarity interval T1. This linear
growth is a reflection of the increasing knowledge acquired by the agent as it aggregates new
information represented by the log-likelihood ratio log L(ξi|1)

L(ξi|2) . In a virtual asymptotic regime,

this knowledge becomes a certainty, i.e., as T1 −→ +∞, rSL
T1

→ +∞, which implies that if
hypothesis 1 remains in force indefinitely, the belief of the agent regarding this hypothesis
achieves full confidence. Unfortunately, this increasing confidence comes at the cost of a slow
adaptation regime. Indeed, since from time T1 + 1 the true hypothesis is θ0 = 2, from (5.53)
and (5.55) we have that:

E
(
rSL

i

)
= E

(
rSL

T1

)
− ix = (T1 − i)x. (5.56)

Now, the adaptation time can be roughly identified by considering the time necessary to
overcome the initial bias towards hypothesis 1 once the true hypothesis switches from 1 to
2. In terms of our qualitative mean-value analysis, this is the time necessary for the expected
log-belief ratio to change from positive to negative, which, in view of (5.56) implies that the
adaptation time for the classic social learning strategy is on the order of:

TSL = T1. (5.57)

This behavior is clearly not admissible for an adaptive algorithm, since it implies that the time
necessary to recover from a wrong opinion is proportional to the stationarity interval where
this opinion was actually true.

Let us switch to the adaptive strategy. Developing the recursion until time T1, from (5.54) we
get, respectively:

E
(
rASL

T1

)
= δ

i−1∑
m=0

(1 − δ)mx =
(
1 − (1 − δ)T1

)
x ≈ x, (5.58)

where the approximation is motivated from assuming a sufficiently large T1. Considering then
that from time T1 + 1 onward the true hypothesis is θ0 = 2, Eqs. (5.54) and (5.58) yield, for any
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i > T1:

E
(
rASL

i

)
= (1 − δ)iE

(
rASL

T1

)
− δ

i−1∑
m=0

(1 − δ)mx

≈ −
(
1 − 2(1 − δ)i

)
x. (5.59)

Now, equating (5.59) to zero to evaluate the adaptation time, we obtain:

TASL = log 2
log(1 − δ)−1 ≈ log 2

δ
. (5.60)

A visual comparison of the enhanced adaptation provided by the ASL strategy is exemplified in
Figure 5.4.

Comparing (5.60) against (5.57), we see that, in contrast to the undesirable behavior exhibited by
classic social learning, the adaptive formulation exhibits a controlled initial bias. This is because,
after a relatively long stationarity interval T1, the expected log-belief is concentrated around a
fixed value x, and the adaptation time will then increase roughly as 1/δ. In a nutshell, while the
reaction capacity of classic social learning is not controlled by design and is severely affected by
the duration of previous stationarity intervals, in adaptive social learning the adaptation time
is not affected by previous stationarity intervals and is controlled through the step-size. This
enhanced adaptation comes at the expense of learning accuracy. In fact, as we have established
in the previous sections, the steady-state error probability does not converge to zero as time
elapses, but converges to some stable value. However, this value vanishes exponentially fast
as a function of 1/δ, highlighting the fundamental trade-off of adaptive social learning: The
smaller the step-size δ, the smaller the error probability and the slower the adaptation.

In the theory of adaptation and learning, the transient analysis is typically performed by char-
acterizing the evolution of suitable higher-order moments, such as second or fourth order
moments of the pertinent statistics [37]. However, this analysis is more appropriate for esti-
mation/regression problems where the focus of the transient analysis is to ascertain how long
it takes for the pertinent system state to attain a prescribed neighborhood of the expected
value. In our social learning setting, it is more appropriate to identify an adaptation time in
terms of error probabilities. As established in Theorem 5.4, the behavior of these probabilities is
governed by the logarithmic moment generating function of the observations which, as the
name itself suggests, incorporates dependence upon all moments. Accordingly, a meaningful
way to perform the transient analysis is to examine the time-evolution of logarithmic moment
generating functions, rather than individual moments. This characterization constitutes the
core of Theorem 5.5, which is introduced in the next section.

5.7.2 Quantitative Description of the Transient Phase

In this section, we provide a rigorous analysis to support the qualitative description of the
transient behavior, seen in Section 5.7.1. We assume that the ASL strategy has been in operation
for a certain arbitrary time i0. All the knowledge accumulated by the agents until this time is
summarized in the belief vector µi0 . We remark that the evolution of the statistical models
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from i = 0 to i = i0 is left completely arbitrary, that is, the system could have experienced
several drifts in the statistical conditions, including change of the underlying hypotheses, data
generated according to models that do not match the assumed likelihoods, and so on. From
the ASL algorithm viewpoint, all these effects are summarized in the belief vector µi0 that
acts as initial state at time i0. In order to perform the transient analysis, we assume that from
i0 + 1 onward, the true hypothesis is steadily equal to θ0, and will establish how much time is
necessary to stay sufficiently close to the steady-state learning performance starting from a
given (arbitrary) realization µi0 . As done before, to simplify the notation we set i0 = 0 and the
initial state becomes µ0.

In a social learning problem the adaptation time should be properly related to the time-evolution
of the error probability, and particularly to the time necessary for the instantaneous error
probability to approach the steady-state error probability. Accordingly, in the next theorem we
start by providing an upper bound on the instantaneous error probability introduced in (5.10).

Theorem 5.5 (Bounds on the instantaneous error probability). The claim of the
theorem holds under the same assumptions of Theorem 5.4. Let κ and β be the constants
defined in Property 2.1, and let t⋆

θ < 0 be the unique solution to the equation:

Λave(t⋆
θ; θ)

t⋆
θ

= 0. (5.61)

Let

λave,0(θ) =
K∑

ℓ=1
πℓλℓ,0(θ) (5.62)

be the network average of the initial log-belief ratios λℓ,0(θ), and let, for all θ ̸= θ0:

K1(θ) ≜ |t⋆
θ|
(

mave(θ) − λave,0(θ)
)

, (5.63)

K2(θ) ≜ κ|t⋆
θ|

K∑
ℓ=1

|λℓ,0(θ)|. (5.64)

Then, the instantaneous error probability p
(δ)
k,i is upper bounded as:

p
(δ)
k,i ≤

∑
θ ̸=θ0

e
1
δ (−Φ(θ)+K1(θ)(1−δ)i+K2(θ)(1−δ)iβi+O(δ)), (5.65)

where the notation O(δ) signifies that the ratio O(δ)/δ stays bounded as δ → 0.

Proof. See Appendix 5.F.

Theorem 5.5 reveals the main behavior of the transient error probability. Examining the error
exponent of the upper bound in (5.65) we see, up to higher-order small-δ corrections embodied
in the term O(δ), the emergence of three terms: the steady-state error exponent Φ(θ) already
identified in Theorem 5.4, and two other terms that characterize the transient behavior. The
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first transient term decays as (1 − δ)i, and is thus influenced solely by the step-size. The
second transient term, (1 − δ)iβi, decays faster and is influenced also by the parameter β. This
parameter, according to Property 2.1, is determined by the second largest-magnitude eigenvalue
of A, and accordingly determines the mixing properties of A (i.e., the convergence rate of [Ai]ℓk

to the Perron eigenvector entry πℓ). Therefore, the second transient term, with rate (1 − δ)iβi,
determines a transient phenomenon that is related to the convergence of the matrix-powers to
a “centralized” solution with combination weights πℓ. In comparison, the first term, with rate
(1 − δ)i, determines a transient phenomenon ruled by the step-size only.

In summary, Theorem 5.5 provides an upper bound on the instantaneous error probability
that converges, as i → ∞, to a sum of exponential terms with steady-state error exponent
Φ = minθ ̸=θ0 Φ(θ). Accordingly, we identify as a meaningful definition for the adaptation
time the critical time instant after which the error probability decays with an error exponent
(1 − ϵ)Φ, for some small ϵ. This is made precise in the following corollary.

Corollary 5.1 (Adaptation time). Under the same notation and assumptions of Theorem 5.5,
let

K1 ≜ max
θ ̸=θ0

K1(θ) = max
θ ̸=θ0

{
|t⋆

θ|
[
mave(θ) − λave,0(θ)

]}
,

K2 ≜ max
θ ̸=θ0

K2(θ) = κ max
θ ̸=θ0

{
|t⋆

θ|
K∑

ℓ=1
|λℓ,0(θ)|

}
. (5.66)

Then, the upper bound:
p

(δ)
k,i ≤ e− 1

δ
[(1−ϵ)Φ+O(δ)] (5.67)

holds for all i > TASL, where TASL is given by the following rules:

i) (Favorable case, all initial states are good).

If λave,0(θ) ≥ mave(θ) for all θ ̸= θ0:

TASL = 1
log β−1 log K2

ϵ Φ , ϵ <
K2
Φ . (5.68)

ii) (Unfavorable case, at least one initial state is bad).

If λave,0(θ) < mave(θ) for at least one θ ̸= θ0:

TASL = 1
log(1 − δ)−1 log K1

ϵ Φ , ϵ <
K1
Φ . (5.69)

Proof. See Appendix 5.G.

Let us now examine the main parameters and phenomena affecting the adaptation time TASL.
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• Memory: The memory coming from the past algorithm evolution is summarized in the
starting belief vector µ0, which in turn determines the average log-belief λave,0(θ).

First of all, we notice that an average initial state λave,0(θ) greater than mave(θ) creates
already a (favorable) bias toward the true hypothesis. Accordingly, when λave,0(θ) ≥
mave(θ) the transient term K1(θ)(1 − δ)i reduces the error probability since K1(θ) < 0.
In this case, the dominant transient term is (1 − δ)iβi, and the corresponding adaptation
time in (5.68) is essentially determined by the mixing parameter β, i.e., by how fast
the combination weights converge to the Perron eigenvector. Under this regime, the
adaptation time does not depend critically on the step-size.

In comparison, the case where λave,0(θ) < mave(θ) is the unfavorable case where we are,
as λave,0(θ) decreases, progressively far from the steady-state. Under this regime, for
small δ the dominant transient term is K1(θ)(1 − δ)i, and the adaptation time scales with
the step-size as 1/ log(1 − δ)−1 ≈ 1/δ.

One particularly interesting case is when the average initial state is negative. This
happens, for example, when the initial state comes from a previous learning cycle where
the agent converged to a certain hypothesis that has then changed at the beginning of
the subsequent learning cycle. In line with intuition, the adaptation time (5.69) increases
with increasing size of the wrong starting conditions. Moreover, this dependence upon
the past states is only logarithmic, which reveals that the past algorithm evolution has
not a dramatic impact on the adaptation time.

• KL divergences and error exponent: By ignoring the initial state, Eq. (5.69) becomes:

TASL = 1
log(1 − δ)−1 log maxθ ̸=θ0 [|t⋆

θ|mave(θ)]
ϵ Φ . (5.70)

From Property P2) in Lemma 5.2 (see Appendix 5.F), we know that:

Φ(θ) ≤ |t⋆
θ|mave(θ), (5.71)

which shows that the ratio maxθ ̸=θ0 [|t⋆
θ|mave(θ)] /Φ appearing in (5.70) is greater than 1.

Even if declaring a general behavior for this ratio for all statistical models is not obvious,
we see that the numerator and the denominator are not independent. For example, having
an “easier” detection problem where the KL divergences (numerator) increase typically
corresponds to an increase of the error exponent (denominator) as well. However, in all
cases the dependence on these parameters is not critical, since it is logarithmic.

• Parameter t⋆
θ: First of all, to evaluate and interpret the bound on the adaptation time

it is useful to remark that the term |t⋆
θ| is comprised between 1/πmax and 1/πmin—see

property P3) in Lemma 5.2. Apparently, these bounds introduce a dependence on the
network parameters (i.e., on the Perron eigenvector). However, we should be careful here,
and recall that the network error exponent Φ depends on the whole network as well.
In order to get insights on this dependence, let us ignore the initial state and consider
the case where all likelihoods are equal across agents and the combination matrix is
doubly stochastic (yielding a uniform Perron eigenvector). Under these assumptions,
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from property P3) in Lemma 5.2 we get t⋆
θ = −K , and using (5.50) we obtain:

TASL = 1
log(1 − δ)−1 log maxθ ̸=θ0 [mave(θ) − λave,0(θ)]

ϵ Φind
, (5.72)

which shows how the network size appearing in the parameter t⋆
θ = −K is perfectly

compensated by the network size embodied in the network exponent Φ = KΦind.
Accordingly, we expect that the network parameters have a reduced impact on the
transient time in (5.69), while, as observed before, the effect of the network is embodied
in the parameter β controlling the higher-order transient term (1 − δ)iβi in (5.65), which
is neglected in the small-δ regime.

• Parameter ϵ: The smaller ϵ is, the closer the error exponent to the steady-state exponent
Φ will be. Remarkably, the dependence is logarithmic in 1/ϵ, which means that this
parameter is not critical.

• Step-size: Finally, in the (more interesting) case where the initial state is not good, see
(5.69), the adaptation time scales as 1/δ. We remark that this behavior matches well the
qualitative analysis of Section 5.7.1.

The bottom line of Corollary 5.1 is that the adaptive capabilities of the ASL strategy
are enhanced by a larger value of δ, by yielding a reduced adaptation time. A larger δ
however is not always desirable, since it can reduce the accuracy in the decision-making
process (as seen in Theorem 5.4, the steady-state probability of error is increased for
larger δ). Both phenomena represent the trade-off adaptation vs. learning present in the
ASL strategy and should be taken into account when designing δ. Such trade-off can be
better summarized by combining Theorem 5.4 and Corollary 5.1, which shows that the
error probability decays exponentially fast with the adaptation time, roughly as:

p
(δ)
k ≈ exp

{
− Φ

log[K1 × (ϵ Φ)−1] TASL

}
. (5.73)

Stability over successive learning cycles: The characterization of the transient stage provided
by Theorem 5.5 and the related corollary is valid under an arbitrary choice of the starting state
λk,0. However, as we have commented in the previous section, if we start from a wrong state the
level of this state affects adversely the adaptation time. Therefore, some fundamental questions
arise. Assume that the time axis is divided into successive intervals (learning cycles) wherein
the system evolves under stationary conditions. Then, the belief accumulated at the end of a
learning cycle can be wrong in relation to the subsequent learning cycle. How “wrong” are
the initial beliefs at the beginning of a learning cycle as the algorithm progresses? Do these
initial states compromise the learning capability of the algorithm over successive cycles? These
fundamental questions can be answered by combined steady-state and transient analyses. In
fact, from the steady-state analysis carried out in the previous sections, we learned that the
steady-state log-belief ratios fluctuate in a small neighborhood (of size ∼

√
δ) of the expected

values of the pertinent KL divergences. This means that at the end of each cycle the ASL strategy
converges to some stable state, i.e., a state that does not diverge as the step-size δ becomes
small. As a result, the initial states of each learning cycle would evolve in a stable manner
and, hence, do not compromise the learning performance of the algorithm, provided that the
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Figure 5.5: (Left) Strongly connected network topology with K = 10 agents. (Right) Family of Laplace
likelihood functions.

adaptation time is smaller than the duration of the learning cycles. These aspects will be more
quantitatively illustrated in Section 5.9, with reference to specific illustrative examples.

5.8 Illustrative Examples

We consider the strongly connected network of K = 10 agents displayed in the left panel
of Figure 5.5, where all agents have a self-loop (not displayed in the figure). Besides, the
combination matrix is designed using an averaging rule, resulting in a left-stochastic matrix [37].

The network is faced with the following statistical learning problem. We consider a family
of Laplace likelihood functions with scale parameter 1, seen in the right panel of Figure 5.5.
Formally, we are given three Laplace densities:

fn(ξ) = 1
2 exp {−|ξ − 0.1n|} , (5.74)

for n ∈ {1, 2, 3}. The likelihoods of the data collected by the agents are chosen from among
these Laplace densities.

To make things more interesting, we assume that the inference problem is not locally identifiable.
The setup for each agent’s family of likelihood functions can be seen in Table 5.1.

Table 5.1: Identifiability setup for the network in the left panel of Figure 5.5.

Agent k
Likelihood function: Lk(ξ|θ)

θ = 1 θ = 2 θ = 3
1 − 3 f1(ξ) f1(ξ) f3(ξ)
4 − 6 f1(ξ) f3(ξ) f3(ξ)
7 − 10 f1(ξ) f2(ξ) f1(ξ)
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Figure 5.6: Consistency of the ASL strategy (Theorem 5.2). According to the weak-law of small step-sizes,
the steady-state log-belief ratios for agent 1 concentrate around the predicted expectation values in mave
as δ approaches zero.

In summary, the data {ξk,i} are i.i.d. (across time and agents) Laplace random variables, with
expectations that depend both on the agent k and the hypothesis θ. Accordingly, we will use
the notation ek(θ) to denote the expectation of ξk,i, computed under likelihood Lk(ξ|θ). For
example, using Table 5.1, we see that:

e1(1) = 0.1, e4(3) = 0.3, e7(2) = 0.2. (5.75)

We are now ready to delve into a detailed illustration of the numerical experiments. In particular,
in this section we will test how the empirical performance matches the steady-state performance
as characterized in Theorems 5.1–5.4. In order to examine the steady-state behavior empirically,
we need that the ASL algorithm run for a sufficiently long period of time. In line with the
prescriptions from Section 5.7, the duration of this this period is chosen as at least one order of
magnitude larger than the inverse of the step-size, 1/δ.

5.8.1 Consistency

We consider that all agents are running the ASL algorithm for a fixed θ0 = 1 over 8000 time
samples (after which we consider that they achieved the steady state). From Theorem 5.2, we
saw that as δ approaches zero, all agents k are able to consistently learn—see (5.30). In order to
show this effect, for each value of δ (50 sample points in the interval δ ∈ [0.001, 1] are taken),
we consider a different realization of the observations. In Figure 5.6, for agent 1 and θ = 2, 3, we
show how the log-belief ratios λ(δ)

1 (θ) behave for decreasing values of δ. We see the weak-law
of small step-sizes arising, since the limiting log-belief ratios tend to concentrate around mave.

5.8.2 Asymptotic Normality

We consider 10000 time samples, where again all agents are collecting data under a true
hypothesis θ0 = 1. From Theorem 5.3, we saw that in steady state we can approximate the log-
belief ratios distribution by a multivariate Gaussian pdf, see Eqs. (5.39) and (5.40). In Figure 5.7,
we assume that the ASL algorithm has reached the steady state at i = 10000, and display the
log-likelihood ratios corresponding to instant i = 10000. The experiment is repeated over
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Figure 5.7: Distribution of data samples at steady state compared with the limiting and empirical Gaussian
distributions.

100 Monte Carlo runs, such that we obtain 100 realizations of the steady-state variable λ(δ)
k .

Moreover, we consider 4 values of δ.

In dashed blue lines we see the ellipses representing the confidence intervals relative to one
and two standard deviations computed for the empirical Gaussian approximation seen in (5.40):
the smaller ellipse encompasses approximately 68% of the samples whereas the larger ellipse
encompasses 95%. In red dotted lines, we see the corresponding ellipses for the limiting
theoretical Gaussian approximation seen in (5.39), with the red cross indicating the limiting
theoretical expectation mave. Note how as δ decreases, the ellipses tend to be smaller, which
is in accordance with the scaling of the covariance matrices by δ in (5.39) and (5.40), and the
distributions tend to overlap, which is in accordance with the behavior predicted by Theorem 5.3.

5.8.3 Error Exponents

We start by evaluating the theoretical exponents for the Laplace example at hand. To this aim,
we need to compute first the logarithmic moment generating function of the log-likelihood
ratios xk,i(θ) in (5.12). Since the data follow a Laplace distribution, the log-likelihood ratio is:

xk,i(θ) = |ξk,i − ek(θ)| − |ξk,i − ek(θ0)|. (5.76)

Before we proceed to characterize the random variable xk,i(θ), let us define the auxiliary
quantity:

∆k,θ ≜ ek(θ) − ek(θ0). (5.77)
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We also introduce the centered variable ξ̃k,i = ξk,i − ek(θ0), and therefore we can write:

xk,i(θ) = |ξ̃k,i − ∆k,θ| − |ξ̃k,i|. (5.78)

For the case in which ∆k,θ > 0, the random variable xk,i(θ) depends on the random variable
ξ̃k,i in the following manner:

xk,i(θ) =


−∆k,θ, if ξ̃k,i > ∆k,θ,

∆k,θ − 2ξ̃k,i, if ξ̃k,i ∈ [0, ∆k,θ] ,

∆k,θ, if ξ̃k,i < 0.

(5.79)

We can then express the cumulative distribution function of xk,i(θ) as

P[xk,i(θ) ≤ x] =


0, if x < −∆k,θ,

P
(
ξ̃k,i ≥ ∆k,θ−x

2

)
, if x ∈ [−∆k,θ, ∆k,θ] ,

1, if x > ∆k,θ,

(5.80)

where P[A] is the probability of event A, computed from the distribution of ξ̃k,i. Note that its
probability density function is given by Lk(ξ + ek(θ0)|θ0), which is a Laplace distribution with
zero mean and scale parameter 1.

From the cumulative distribution function in (5.80), we can derive the density function of xk,i(θ)
as:

p(x) = P
(
ξ̃k,i > ∆k,θ

)
δ(x + ∆k,θ) + P

(
ξ̃k,i < 0

)
δ(x − ∆k,θ)

+ 1
2Lk

(∆k,θ − x

2 + ek(θ0)
∣∣∣∣θ0

)
rect

(
x

2∆k,θ

)
,

= 1
2 exp [−∆k,θ] δ(x + ∆k,θ) + 1

2δ(x − ∆k,θ)

+ 1
4 exp

[
−(∆k,θ − x)

2

]
rect

(
x

2∆k,θ

)
, (5.81)

where rect(·) is the rectangle function, i.e., it is equal to 1 in the interval ]− 1
2 , 1

2 [ and 0 elsewhere.
Also we should distinguish the notation δ(x), which represents the Dirac delta-function, from
the notation δ, which refers to the step-size parameter.

The LMGF of variable xk,i(θ), whose expression was seen in (5.44), can be explicitly computed
using (5.81):

Λk(t; θ) = log
(∫

R
etxp(x)dx

)
= log

[1
2 exp(−∆k,θ(t + 1)) + 1

2 exp(∆k,θt)

+ 1
2 exp

(
−∆k,θ

2

) sinh(∆k,θ(t + 1/2))
t + 1/2

]
. (5.82)
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Figure 5.8: Steady-state error probability. Markers refer to the empirical probability curves estimated via
Monte Carlo simulation. The dotted line refers to the theoretical error probability in (5.10) computed
using the Gaussian approximation in (5.39). The slope of the probability curves is compared against the
slope Φ (i.e., the error exponent) predicted by Theorem 5.4, and shown with dashed line.

If similar steps are followed for the case ∆k,θ < 0, we would find the following expression for
the LMGF:

Λk(t; θ) = log
[1

2 exp(∆k,θ(t + 1)) + 1
2 exp(−∆k,θt)

−1
2 exp

(∆k,θ

2

) sinh(∆k,θ(t + 1/2))
t + 1/2

]
. (5.83)

Assuming that the true state is θ0 = 1, we can then evaluate numerically Φ(θ) by employing
the expressions in Theorem 5.4, for θ = 2 and θ = 3, from which we obtain Φ(2) = 0.03348
and Φ(3) = 0.05051. Finally, the error probability dominant exponent is given by:

Φ = min
θ∈{2,3}

Φ(θ) = 0.03348 (5.84)

Now we illustrate the details of the numerical experiments. We consider that the true state
of nature is set as θ0 = 1, and we let all agents execute the ASL algorithm for 3000 iterations
and for 20 values of δ in the interval [1/150, 1/10]. We run 20000 Monte Carlo experiments
and we compute the steady-state empirical probability of error for each agent and each value
of δ. In Figure 5.8, the empirical probability curves of agents 1, 3, 6, 7, 9 are compared against
the theoretical error probability in (5.10) computed using the Gaussian approximation in (5.39).
The slope of these curves is compared against the slope Φ (i.e., the error exponent) predicted by
Theorem 5.4.
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5.9 Evolution over Successive Learning Cycles

In this section we focus on a specific nonstationary setting to illustrate in more detail the
role of adaptation. We consider the time axis can be divided into successive random intervals
(learning cycles) wherein the system conditions remain stationary. We do not focus here on
situations where the system parameters can vary smoothly at each time instant following
some “trajectory”, as happens, e.g., in tracking applications. While from the analysis of similar
algorithms we can expect that the ASL strategy possesses some inherent tracking ability, the
study of this scenario is left for future work.

We examine an environment where there are three different sources of nonstationarity, which
will be modeled as (mutually independent) homogeneous Markov chains, as now specified:

• The true hypothesis can change over time. For i = 1, 2, . . ., the true state of nature at time
i, denoted by θ0(i), follows a Markov process with possible states in Θ = {1, 2, 3} and
with transition probabilities described by the finite-state diagram in Figure 5.9 (where only
transition probabilities are displayed, with the complementary probabilities of remaining
in a state being omitted).

• The combination policy can change over time. We assume that the agents employ two
possible combination matrices, one doubly-stochastic (DS), the other left-stochastic (LS).
For i = 1, 2, . . ., the combination matrix in force at time i, denoted by A(i), follows
a Markov process with transition matrix represented by the corresponding finite-state
diagram in Figure 5.9.

• The system can be in one of three possible functioning states, namely, nominal (N),
perturbed (P), and bad (B). For i = 1, 2, . . ., the operating state at time i is denoted by
f(i). Under state f(i) = nominal, the data are generated according to the true likelihood
corresponding to hypothesis θ0(i). Under state f(i) = perturbed, some noise is added to
perturb the true data model (while the agents still rely on the nominal likelihood to run
their ASL strategy). State f(i) = bad corresponds to a failure of the system, where a large
amount of noise is added to the data so as to impair the learning process. The transition
matrix of the functioning process is encoded in the pertinent finite-state diagram in
Figure 5.9.

Let us evaluate the average duration of a learning cycle. In order to be conservative, we focus
on the worst case, i.e., on the shorter average duration, which is obtained when the system
is in the most unstable case (i.e., the state where transitions are more frequent). Examining
Figure 5.9, the most unstable state is obtained when: i) the hypothesis in force is θ0(i) = 2,
since from such intermediate state the Markov chain can move leftward or rightward, while
from the other states it cannot; ii) the combination policy is either left stochastic or doubly
stochastic; and iii) the system works under a perturbed state of functioning, for the same
reasons as in point i). Now, given that the overall system is in the joint state {θ0(i) = 2,A(i) =
left stochastic,f(i) = perturbed}, the probability that the system remains stable for a single
step is equal to:

q⋆ = (1 − 2 qhyp)(1 − qmat)(1 − 2 qfun). (5.85)
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<latexit sha1_base64="RnAq8uD7WlmzLQJy60mbfH8nVGc=">AAACEHicbVDLSgMxFM3UV62vUZdugkVwVWZE1GXRjcsK9gHtMGTSTBuaZMY8CmXoT7h2q9/gTtz6B36Cf2GmnYVtPRA4nHMv9+REKaNKe963U1pb39jcKm9Xdnb39g/cw6OWSozEpIkTlshOhBRhVJCmppqRTioJ4hEj7Wh0l/vtMZGKJuJRT1IScDQQNKYYaSuFrvsUZj2O9FDyLDZiOg3dqlfzZoCrxC9IFRRohO5Pr59gw4nQmCGlur6X6iBDUlPMyLTSM4qkCI/QgHQtFYgTFWSz5FN4ZpU+jBNpn9Bwpv7dyBBXasIjO5mHVMteLv7ndY2Ob4KMitRoIvD8UGwY1AnMa4B9KgnWbGIJwpLarBAPkURY27IWrjAaEfsXYVTejb/cxCppXdT8q9rlw2W1flu0VAYn4BScAx9cgzq4Bw3QBBiMwQt4BW/Os/PufDif89GSU+wcgwU4X7+q1p56</latexit>qfun

<latexit sha1_base64="ShazB/0y6H87VhIcyDBYt0f4wgw=">AAACEHicbVBLTsMwFHTKr5RfgCUbiwqJVZUgBCwr2LAsEv1IbRQ5rtNatZ1gO5WiKJdgzRbOwA6x5QYcgVvgtFnQlpEsjWbe0xtPEDOqtON8W5W19Y3Nrep2bWd3b//APjzqqCiRmLRxxCLZC5AijArS1lQz0oslQTxgpBtM7gq/OyVS0Ug86jQmHkcjQUOKkTaSb9tPfjbgSI8lz8ZpnOe+XXcazgxwlbglqYMSLd/+GQwjnHAiNGZIqb7rxNrLkNQUM5LXBokiMcITNCJ9QwXiRHnZLHkOz4wyhGEkzRMaztS/GxniSqU8MJNFSLXsFeJ/Xj/R4Y2XUREnmgg8PxQmDOoIFjXAIZUEa5YagrCkJivEYyQR1qashSuMBsT8RSSq6MZdbmKVdC4a7lXj8uGy3rwtW6qCE3AKzoELrkET3IMWaAMMpuAFvII369l6tz6sz/loxSp3jsECrK9ft8aegg==</latexit>qhyp

<latexit sha1_base64="ShazB/0y6H87VhIcyDBYt0f4wgw=">AAACEHicbVBLTsMwFHTKr5RfgCUbiwqJVZUgBCwr2LAsEv1IbRQ5rtNatZ1gO5WiKJdgzRbOwA6x5QYcgVvgtFnQlpEsjWbe0xtPEDOqtON8W5W19Y3Nrep2bWd3b//APjzqqCiRmLRxxCLZC5AijArS1lQz0oslQTxgpBtM7gq/OyVS0Ug86jQmHkcjQUOKkTaSb9tPfjbgSI8lz8ZpnOe+XXcazgxwlbglqYMSLd/+GQwjnHAiNGZIqb7rxNrLkNQUM5LXBokiMcITNCJ9QwXiRHnZLHkOz4wyhGEkzRMaztS/GxniSqU8MJNFSLXsFeJ/Xj/R4Y2XUREnmgg8PxQmDOoIFjXAIZUEa5YagrCkJivEYyQR1qashSuMBsT8RSSq6MZdbmKVdC4a7lXj8uGy3rwtW6qCE3AKzoELrkET3IMWaAMMpuAFvII369l6tz6sz/loxSp3jsECrK9ft8aegg==</latexit>qhyp

<latexit sha1_base64="ShazB/0y6H87VhIcyDBYt0f4wgw=">AAACEHicbVBLTsMwFHTKr5RfgCUbiwqJVZUgBCwr2LAsEv1IbRQ5rtNatZ1gO5WiKJdgzRbOwA6x5QYcgVvgtFnQlpEsjWbe0xtPEDOqtON8W5W19Y3Nrep2bWd3b//APjzqqCiRmLRxxCLZC5AijArS1lQz0oslQTxgpBtM7gq/OyVS0Ug86jQmHkcjQUOKkTaSb9tPfjbgSI8lz8ZpnOe+XXcazgxwlbglqYMSLd/+GQwjnHAiNGZIqb7rxNrLkNQUM5LXBokiMcITNCJ9QwXiRHnZLHkOz4wyhGEkzRMaztS/GxniSqU8MJNFSLXsFeJ/Xj/R4Y2XUREnmgg8PxQmDOoIFjXAIZUEa5YagrCkJivEYyQR1qashSuMBsT8RSSq6MZdbmKVdC4a7lXj8uGy3rwtW6qCE3AKzoELrkET3IMWaAMMpuAFvII369l6tz6sz/loxSp3jsECrK9ft8aegg==</latexit>qhyp

Figure 5.9: Transition matrices of the Markov chains corresponding to the sources of nonstationarity
illustrated in Section 5.9.

Likewise, the probability that the system remains stable for a certain number of steps is ruled
by a geometric distribution of parameter q⋆, yielding the following average duration for the
worst-case learning cycle:

TLC = q⋆

1 − q⋆
. (5.86)

In order to model a nonstationary environment where the system parameters remain stable
during the learning cycles, we take inspiration from the Gilbert-Elliott model typically employed
to model random bursts of errors over communication channels [83], [84]. According to the
Gilbert-Elliott model, the transition probabilities between states of the chain are kept small so
as to ensure that the chain remains in the same state for some contiguous time samples (i.e., we
have “bursts” where the same state is repeatedly observed).

For what concerns the nominal likelihood models, we use the following family of Laplace
likelihood functions, for n ∈ {1, 2, 3}:

fn(ξ) = 1
2 exp {−|ξ − n|} , (5.87)

under the same identifiability setup as in Table 5.1. The network topology is the same as in
the left panel of Figure 5.5, on top of which we build two possible combination matrices: a
left-stochastic matrix obtained through a uniform-averaging combination policy, and a doubly-
stochastic matrix obtained through a Laplacian combination policy [37]. Under this setting, we
evaluate the adaptation time exploiting (5.69). Regarding the initial states appearing in (5.69),
we assume that in a given learning cycle the system comes from a previous learning cycle where
the agents converged to a hypothesis different from that in force during the current learning
cycle. Then we consider the worst-case initial state, and further the worst-case over all possible
θ and θ0. With these conservative choices, the time necessary to stay at 3 dB from the exponent
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5.9 Evolution over Successive Learning Cycles

<latexit sha1_base64="+nUr8H5Zq3d3e/vlo1yf2Xl82Ls=">AAACBXicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6jHoxWME84BkCbOT2WTIPJaZWSEsOXv2qt/gTbz6HX6Cf+Ek2YNJLGgoqrrp7ooSzoz1/W9vbX1jc2u7sFPc3ds/OCwdHTeNSjWhDaK40u0IG8qZpA3LLKftRFMsIk5b0ehu6reeqDZMyUc7Tmgo8ECymBFsndSSSjCJea9U9iv+DGiVBDkpQ456r/TT7SuSCiot4diYTuAnNsywtoxwOil2U0MTTEZ4QDuOSiyoCbPZuRN07pQ+ipV2JS2aqX8nMiyMGYvIdQpsh2bZm4r/eZ3UxjdhxmSSWirJfFGccmQVmv6O+kxTYvnYEUw0c7ciMsQaE+sSWtjCWUTdLzI1E5dNsJzEKmlWK8FV5fKhWq7d5ikV4BTO4AICuIYa3EMdGkBgBC/wCm/es/fufXif89Y1L585gQV4X79L9Znt</latexit>

nominal
<latexit sha1_base64="74LLouz7/X9uDfNdGxI5HuOCRNk=">AAACB3icbVDLSgNBEJyNrxhfUY9eBoPgKewGUY9BLx4jmIckS5id7U2GzM4u8xDCkg/w7FW/wZt49TP8BP/CSbIHk1jQUFR1090VpJwp7brfTmFtfWNzq7hd2tnd2z8oHx61VGIkhSZNeCI7AVHAmYCmZppDJ5VA4oBDOxjdTv32E0jFEvGgxyn4MRkIFjFKtJUeU5DayADCfrniVt0Z8CrxclJBORr98k8vTKiJQWjKiVJdz021nxGpGeUwKfWMgpTQERlA11JBYlB+Njt4gs+sEuIokbaExjP170RGYqXGcWA7Y6KHatmbiv95XaOjaz9jIjUaBJ0vigzHOsHT73HIJFDNx5YQKpm9FdMhkYRqm9HCFs4Cmw0TRk1sNt5yEqukVat6l9WL+1qlfpOnVEQn6BSdIw9doTq6Qw3URBTF6AW9ojfn2Xl3PpzPeWvByWeO0QKcr18Cw5rg</latexit>

perturbed

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit> 2<latexit sha1_base64="jk/1fpohXujb3eq/tOFNvjxoFrw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZq1frrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8ffW+Mug==</latexit>

3
<latexit sha1_base64="LNUgVcgcWmrkAqMqFwJgrNe8JZM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyVy1XGlel2m0WRx7O4BwuwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AH7zjLs=</latexit>

<latexit sha1_base64="0zrLUqHkQHQ4qyvA4BeTwziwr5I=">AAAB/3icbVA9SwNBEJ3zM8avqKXNYhCswl0QtbAI2FgmYD4gOWRvM5cs2ds7dveEcKSwttXfYCe2/hR/gv/CTXKFSXww8Hhvhpl5QSK4Nq777aytb2xubRd2irt7+weHpaPjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A5Gd1O//YRK81g+mHGCfkQHkoecUWOlRv2xVHYr7gxklXg5KUMO2//T68csjVAaJqjWXc9NjJ9RZTgTOCn2Uo0JZSM6wK6lkkao/Wx26IScW6VPwljZkobM1L8TGY20HkeB7YyoGeplbyr+53VTE974GZdJalCy+aIwFcTEZPo16XOFzIixJZQpbm8lbEgVZcZms7BF8ADtLzLVE5uNt5zEKmlVK95V5bJRLddu85QKcApncAEeXEMN7qEOTWCA8AKv8OY8O+/Oh/M5b11z8pkTWIDz9QsvR5cN</latexit>

P
<latexit sha1_base64="KrH6+aZgfr9B1PfMIaZ1gzL+Cp0=">AAAB/3icbVA9SwNBEJ3zM8avqKXNYhCswl0QtbAI2lgmYD4gOcLeZi5Zsrd37O4JIaSwttXfYCe2/hR/gv/CTXKFSXww8Hhvhpl5QSK4Nq777aytb2xubed28rt7+weHhaPjho5TxbDOYhGrVkA1Ci6xbrgR2EoU0igQ2AyG91O/+YRK81g+mlGCfkT7koecUWOl2l23UHRL7gxklXgZKUKGarfw0+nFLI1QGiao1m3PTYw/pspwJnCS76QaE8qGtI9tSyWNUPvj2aETcm6VHgljZUsaMlP/ToxppPUoCmxnRM1AL3tT8T+vnZrwxh9zmaQGJZsvClNBTEymX5MeV8iMGFlCmeL2VsIGVFFmbDYLWwQP0P4iUz2x2XjLSaySRrnkXZUua+Vi5TZLKQencAYX4ME1VOABqlAHBggv8ApvzrPz7nw4n/PWNSebOYEFOF+/GM2W/w==</latexit>

B
<latexit sha1_base64="pUwNcth5DQotj5RZxPSHl5g9RG4=">AAAB/3icbVA9SwNBEJ3zM8avqKXNYhCswl0QtbAI2FhJAuYDkiPsbeaSJXt7x+6eEEIKa1v9DXZi60/xJ/gv3CRXmMQHA4/3ZpiZFySCa+O6387a+sbm1nZuJ7+7t39wWDg6bug4VQzrLBaxagVUo+AS64Ybga1EIY0Cgc1geDf1m0+oNI/loxkl6Ee0L3nIGTVWqj10C0W35M5AVomXkSJkqHYLP51ezNIIpWGCat323MT4Y6oMZwIn+U6qMaFsSPvYtlTSCLU/nh06IedW6ZEwVrakITP178SYRlqPosB2RtQM9LI3Ff/z2qkJb/wxl0lqULL5ojAVxMRk+jXpcYXMiJEllClubyVsQBVlxmazsEXwAO0vMtUTm423nMQqaZRL3lXpslYuVm6zlHJwCmdwAR5cQwXuoQp1YIDwAq/w5jw7786H8zlvXXOymRNYgPP1CywRlws=</latexit>

N

<latexit sha1_base64="IXBOzyvg2FvFps/jub0Z0Bh7DTQ=">AAACAHicbVC7TsNAEFyHVwivACWNRYREFdkRAgqKSDQUFOGRh5RY0fmyTk45n627M1JkpaGmhW+gQ7T8CZ/AX3BJXJCEkVYazexqd8ePOVPacb6t3Mrq2vpGfrOwtb2zu1fcP2ioKJEU6zTikWz5RCFnAuuaaY6tWCIJfY5Nf3g98ZtPKBWLxKMexeiFpC9YwCjRRrq/fegWS07ZmcJeJm5GSpCh1i3+dHoRTUIUmnKiVNt1Yu2lRGpGOY4LnURhTOiQ9LFtqCAhKi+dXjq2T4zSs4NImhLanqp/J1ISKjUKfdMZEj1Qi95E/M9rJzq49FIm4kSjoLNFQcJtHdmTt+0ek0g1HxlCqGTmVpsOiCRUm3DmtnDmo/lFJGpssnEXk1gmjUrZPS+f3VVK1asspTwcwTGcggsXUIUbqEEdKATwAq/wZj1b79aH9TlrzVnZzCHMwfr6BdNjl2Y=</latexit>

LS
<latexit sha1_base64="btLffXei3kGyQy9d8soOwQ7vHbI=">AAACAHicbVC7TsNAEFyHVwivACWNRYREFdkRAgqKSFBQhkceUmJF58s6OeV8tu7OSJGVhpoWvoEO0fInfAJ/wSVxQRJGWmk0s6vdHT/mTGnH+bZyK6tr6xv5zcLW9s7uXnH/oKGiRFKs04hHsuUThZwJrGumObZiiST0OTb94fXEbz6hVCwSj3oUoxeSvmABo0Qb6f7moVssOWVnCnuZuBkpQYZat/jT6UU0CVFoyolSbdeJtZcSqRnlOC50EoUxoUPSx7ahgoSovHR66dg+MUrPDiJpSmh7qv6dSEmo1Cj0TWdI9EAtehPxP6+d6ODSS5mIE42CzhYFCbd1ZE/etntMItV8ZAihkplbbTogklBtwpnbwpmP5heRqLHJxl1MYpk0KmX3vHx2VylVr7KU8nAEx3AKLlxAFW6hBnWgEMALvMKb9Wy9Wx/W56w1Z2UzhzAH6+sXxoOXXg==</latexit>

DS
<latexit sha1_base64="p2raIl5tdeGiJ17ZIopAscaUBA8=">AAACEnicbVDLSgMxFM3UV62vsS7dBIvgapgpoi5cFNy4rGAf0A4lSTNtaJIZkoy0DP0L1271G9yJW3/AT/AvTNtZ2NYDgcM593JPDk4408b3v53CxubW9k5xt7S3f3B45B6XmzpOFaENEvNYtTHSlDNJG4YZTtuJokhgTlt4dDfzW09UaRbLRzNJaCjQQLKIEWSs1HPLWRdHkMQCe1Ago9h42nMrvufPAddJkJMKyFHvuT/dfkxSQaUhHGndCfzEhBlShhFOp6VuqmmCyAgNaMdSiQTVYTbPPoXnVunDKFb2SQPn6t+NDAmtJwLbSZtvqFe9mfif10lNdBNmTCapoZIsDkUphyaGsyJgnylKDJ9YgohiNiskQ6QQMbaupSucYWr/IlM96yZYbWKdNKtecOVdPlQrtdu8pSI4BWfgAgTgGtTAPaiDBiBgDF7AK3hznp1358P5XIwWnHznBCzB+foFrZ2eWA==</latexit>

comb. matrix
<latexit sha1_base64="BpD8DUoBxlM38qkDHN2dziiNKkM=">AAACEXicbVDLSgNBEJz1GeMr0aOXwSB4CrtB1IOHgBePEcwDkhBmJ73JkNnZZaZXCUu+wrNX/QZv4tUv8BP8C2eTHExiQUNR1U13lx9LYdB1v5219Y3Nre3cTn53b//gsFA8apgo0RzqPJKRbvnMgBQK6ihQQivWwEJfQtMf3WZ+8xG0EZF6wHEM3ZANlAgEZ2ilXqGYdvyABoniZWqQIUx6hZJbdqegq8SbkxKZo9Yr/HT6EU9CUMglM6btuTF2U6ZRcAmTfCcxEDM+YgNoW6pYCKabTk+f0DOr9GkQaVsK6VT9O5Gy0Jhx6NvOkOHQLHuZ+J/XTjC47qZCxQmC4rNFQSIpRjTLgfaFBo5ybAnjWthbKR8yzTjatBa2SOGD/UUlJsvGW05ilTQqZe+yfHFfKVVv5inlyAk5JefEI1ekSu5IjdQJJ0/khbySN+fZeXc+nM9Z65oznzkmC3C+fgHaHZ3l</latexit>

func. state

<latexit sha1_base64="lGvYrfFPExN9L7fSZGxad7wTesU=">AAACEHicbVDLSgNBEJyNrxhfqx69DAbBU9gNoh48BLx4jGAekIQwO+lNhszOLjO9gbDkJzx71W/wJl79Az/Bv3DyOJjEgoaiqpvuriCRwqDnfTu5jc2t7Z38bmFv/+DwyD0+qZs41RxqPJaxbgbMgBQKaihQQjPRwKJAQiMY3k/9xgi0EbF6wnECnYj1lQgFZ2ilrutm7SCkqFOgBhnCpOsWvZI3A10n/oIUyQLVrvvT7sU8jUAhl8yYlu8l2MmYRsElTArt1EDC+JD1oWWpYhGYTja7fEIvrNKjYaxtKaQz9e9ExiJjxlFgOyOGA7PqTcX/vFaK4W0nEypJERSfLwpTSTGm0xhoT2jgKMeWMK6FvZXyAdOMow1raYsUAdhfVGqm2firSayTernkX5euHsvFyt0ipTw5I+fkkvjkhlTIA6mSGuFkRF7IK3lznp1358P5nLfmnMXMKVmC8/ULhzGdwQ==</latexit>true state

<latexit sha1_base64="Kho88zitn6GAb3JkLzy8x0+75Yk=">AAACB3icbVC7SgNBFJ31GeMramkzGASrsBtELSwiNhYWEc1DkhBmJ3eTITOzy8ysEJZ8gLWtfoOd2PoZfoJ/4WyyhUk8cOFwzr3ce48fcaaN6347S8srq2vruY385tb2zm5hb7+uw1hRqNGQh6rpEw2cSagZZjg0IwVE+Bwa/vA69RtPoDQL5YMZRdARpC9ZwCgxVnpM2n6Ar+5vx91C0S25E+BF4mWkiDJUu4Wfdi+ksQBpKCdatzw3Mp2EKMMoh3G+HWuICB2SPrQslUSA7iSTg8f42Co9HITKljR4ov6dSIjQeiR82ymIGeh5LxX/81qxCS46CZNRbEDS6aIg5tiEOP0e95gCavjIEkIVs7diOiCKUGMzmtnCmQ/2FxnrNBtvPolFUi+XvLPS6V25WLnMUsqhQ3SETpCHzlEF3aAqqiGKBHpBr+jNeXbenQ/nc9q65GQzB2gGztcv4gGaKQ==</latexit>

ASL

<latexit sha1_base64="SlPM2H6FznHPKe5fCsWMNluqZN0=">AAACBnicbVA9SwNBEJ3zM8avqKXNYhCswl0QtbAI2FhYRDQfkISwt5lLluztHbt7QjjSW9vqb7ATW/+GP8F/4V6SwiQ+GHi8N8PMPD8WXBvX/XZWVtfWNzZzW/ntnd29/cLBYV1HiWJYY5GIVNOnGgWXWDPcCGzGCmnoC2z4w5vMbzyh0jySj2YUYyekfckDzqixUjNt+wF5uBt3C0W35E5Alok3I0WYodot/LR7EUtClIYJqnXLc2PTSakynAkc59uJxpiyIe1jy1JJQ9SddHLvmJxapUeCSNmShkzUvxMpDbUehb7tDKkZ6EUvE//zWokJrjopl3FiULLpoiARxEQke570uEJmxMgSyhS3txI2oIoyYyOa2yK4j/YXmegsG28xiWVSL5e8i9L5fblYuZ6llINjOIEz8OASKnALVagBAwEv8ApvzrPz7nw4n9PWFWc2cwRzcL5+AVIbmd4=</latexit>
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Figure 5.10: Evolution of the learning strategies over successive learning cycles, with step-size δ = 0.1
and average learning-cycle duration TLC ≈ 100. First (top) row. Observed transitions for the three
sources of nonstationarity illustrated in the main text, namely, state of functioning, combination matrix,
and hypothesis. Second row. Time-evolution of the belief at agent 1 for the adaptive social learning
strategy. Third row. Time-evolution of the error probability at agent 1 for the adaptive social learning
strategy. Fourth row. Time-evolution of the belief at agent 1 for the classic social learning strategy.

Φ is equal to:

TASL ≈ 2.7286
δ

. (5.88)

We now examine two settings that correspond to (relatively) short and long learning cycles,
respectively.

– “Short” Learning Cycles. First of all, we consider that malfunctioning events and variations of
the combination matrix are rare as compared to changes in the hypothesis. In particular, we set:

qhyp = 5 × 10−3, qmat = 10−3, qfun = 10−3. (5.89)

Exploiting (5.86), the average duration of a learning cycle can be approximated as TLC ≈ 76.
If we equate the value found for TLC to the adaptation time in (5.88), we get δ = 0.035. For
proper learning, we need that the adaptation time is smaller than the average duration of a
learning cycle to ensure convergence to the correct hypothesis. In the experiments shown in
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Figure 5.11: Evolution of the learning strategies over successive learning cycles, with step-size δ = 0.01
and average learning-cycle duration TLC ≈ 1000. First (top) row. Observed transitions for the three
sources of nonstationarity illustrated in the main text, namely, state of functioning, combination matrix,
and hypothesis. Second row. Time-evolution of the belief at agent 1 for the adaptive social learning
strategy. Third row. Time-evolution of the error probability at agent 1 for the adaptive social learning
strategy. Fourth row. Time-evolution of the belief at agent 1 for the classic social learning strategy.

Figure 5.10 we made the choice:
δ = 0.1, (5.90)

which corresponds to an adaptation time not larger than one third of the average worst-case
learning cycle. In Figure 5.10, we display: in the second row, the time-evolution of the beliefs at
agent 1 corresponding to one realization of the process; in the third row, the corresponding error
probability; and in the fourth row, the time-evolution of the beliefs at agent 1 for a classic social
learning strategy (same realization considered for the ASL strategy). During the considered time
interval, several variations occurred, according to the nonstationary model described before.

First, we see that, except for the learning cycle corresponding to a bad state of functioning, the
ASL strategy is able to learn well in all learning cycles, after a relatively short transient at the
beginning of each cycle. The ability of learning well is showed by the time-evolution of the
beliefs (second row), which shows how the maximum belief corresponds to the true hypothesis,
after relatively short adaptation intervals necessary to react in face of nonstationarities. More
quantitatively, the ability of learning is showed by the time-evolution of the error probabilities
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(third row), where we see some peaks (error probability close to 1) that clearly correspond to
the changes, and that have a short duration dictated by the adaptation times. In sharp contrast,
the classic social learning strategy looses irremediably its learning ability yet after the first
learning cycle.

Zooming in on Figure 5.10, we see that nonstationarities in the hypotheses induce a perceivable
change in the learning performance, whereas nonstationarities in the combination policy or in
the state of functioning deserve a separate analysis.

For what concerns the combination policies, we see that the learning ability is preserved in face
of a change, i.e., the system does not undergo an interval of poor performance. This behavior
makes perfect sense, since from the theoretical analysis we know that the ASL strategy must
consistently learn both with a left-stochastic or a doubly-stochastic matrix. What can be different
are the “steady-state" beliefs, which depends on the Perron eigenvector. In this particular
example, we have verified that, as opposed to the uniform Perron eigenvector corresponding
to the doubly-stochastic matrix, the eigenvector of the left-stochastic matrix features higher
weights corresponding to more informative agents (i.e., agents with higher KL divergences),
which provides an explanation of the slightly distinct belief levels observed in Figure 5.10.

Regarding the state of functioning, we see that during the “bad” functioning state the data does
not provide useful information, and the system undergoes an interval of failure (error probability
≈ 0.5). The adaptivity of the ASL strategy allows the agents to recover from this failure state in
the successive learning cycles. In particular, the agents are able to recover and learn well already
during the “perturbed” state of functioning. Actually, this regime of operation where the data
does not follow any of the nominal likelihoods is not covered by our steady-state analysis. Our
results could be in principle extended by allowing arbitrary distributions for the true data—this
is actually carried out partly in [85]. In this case, it is expected that, for reasonable amounts of
perturbation, the agents are still able to learn, as happens in the considered example. Moreover,
we expect that passing from a perturbed to a nominal state, the performance improves. Visually,
this effect can be more clearly appreciated in the subsequent example shown in Figure 5.11.

In summary, we see that the starting values at the beginning of each learning cycle are stable,
since they arise as steady-state limiting values from at the end of the previous learning cycle.
As such, these starting values do not diverge as time elapses, guaranteeing proper learning
over successive learning cycles. This is a critical property, since it reveals that the number
of variations of the underlying statistical conditions occurring during the entire algorithm
evolution does not impair learning with the ASL strategy. What really matters is that the
duration of the learning cycle is sufficiently large to allow a (small) value of δ to enable accurate
learning.

– “Long” Learning Cycles. In Figure 5.11, we consider the more favorable situation where
the average duration of the learning cycle is increased by one order of magnitude, using the
following transition probabilities for the pertinent Markov chains:

qhyp = 5 × 10−4, qmat = 10−4, qfun = 10−4. (5.91)

Accordingly, we expect that the adaptation properties of the system will be preserved if we
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reduce the step-size by one order of magnitude, yielding:

δ = 0.01. (5.92)

Comparing Figure 5.11 against Figure 5.10, we see that the general behavior is perfectly con-
firmed, and two notable effects emerge. First, the adaptation properties are preserved, i.e., the
system is able to adapt to the changes sufficiently fast to guarantee a stable evolution over
successive learning cycles. Second, the fluctuations around the limiting steady-state are reduced
w.r.t. Figure 5.10, yielding a smaller error probability, as it must be according to the theoretical
analysis carried out in the previous sections since we are now using a smaller step-size δ = 0.01.

5.10 Concluding Remarks

Existing social learning implementations do not operate well in nonstationary environments.
For example, even if the agents learned correctly the true state, when this state changes, agents
in classic social learning tend to be stubborn and keep on believing the old state. In this chapter
we proposed an adaptive social learning strategy, which overcomes this issue, and examined
its performance and provided convergence guarantees in great detail. The key insight is the
introduction of an adaptive update depending on a step-size parameter δ that allows to tune the
degree of adaptation. The introduction of the step-size δ allows the user to explore the trade-off
between accuracy in decision making and adaptation time.

In the steady-state phase, with focus on the small step-size regime, we have ascertained that
the ASL strategy is able to learn consistently, and we have provided reliable performance
characterization of the learning performance at each individual agent. In the transient phase,
we have shown how the learning performance evolves over time and how the choice of the
step-size affects the adaptation time.

The strategy proposed is able to infuse the network with adaptation capabilities, without any
assumptions on the nature of the nonstationarity. Assuming additional knowledge, we could
derive more specialized strategies, tailored to a given nature of nonstationarity. An extension
in this direction can be found in [86], where the true state of the world is assumed to evolve
according to a Markov chain. Inspired by hidden-Markov-model filtering, the authors propose
a modification to the social learning algorithm, resulting in superior tracking performance.

The work described in this chapter has motivated interesting scientific ramifications. In [87],
[88], the problems of topology learning and graph explainability are investigated in the context
of adaptive social learning. Meanwhile, in [85], [89], the authors find that doubly-stochastic
combination policy is optimal in the sense that it minimizes the steady-state probability of
error. This implies that the optimal way of combining the beliefs in adaptive social learning is
to attribute uniform centrality scores to all agents.

5.A Main Lemma

In the following, the symbols So and S denote the interior and the closure of set S, respectively.
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5.A Main Lemma

Lemma 5.1 (Asymptotic properties of random series useful for adaptation). For
m = 0, 1, . . ., let {zm} be a sequence of i.i.d. integrable random variables with:

mz ≜ E (zm), mabs
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5. Asymptotic normality. If zm has finite variance σ2
z , then the following convergence in

distribution holds:
s(δ) − mz√

δ

d−→
δ→0

G

(
0, α2σ2

z/2
)

, (5.102)
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Let Λαz(t) = Λz(αt) be the LMGF of the scaled variable αzm, where α is defined in (5.95).
Denoting by Λδ(t) the LMGF of s(δ), we have that:

lim
δ→0

δΛδ(t/δ) = ϕ(t) =
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τ
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A careful analysis of the system performance has been
provided. Specifically, with focus on the small step-size
regime, we have ascertained that the ASL strategy is able
to learn consistently, and we have provided reliable perfor-
mance characterization of the learning performance at each
individual agent.

The ASL strategy can have significant impact on online
distributed machine learning in relation to classification
problems. In particular, the analysis conducted in this work
focused on a parametric modeling of the underlying distri-
butions, where it is assumed that the agents use a certain
family of admissible distributions (or likelihoods) for the
social learning task, and that the true underlying distribution
belongs to this family. We are currently pursuing a useful
generalization for the case where the underlying distribu-
tion does not necessarily belong to the assumed family
of distributions. This setting can be relevant in distributed
machine learning problems, where the agents construct the
class of admissible likelihoods during a training stage, and
due to finiteness of the training set, their knowledge of
the admissible models cannot be perfect. New fundamental
questions arise, including: the links between the accuracy
of the training phase and the achievability of consistent
social learning; the interplay between training, adaptation,
and prediction performance; and the interplay between non-
stationarity in the training set and in the streaming data.

In the following, the symbols So and S denote the interior
and the closure of set S, respectively.
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regime, we have ascertained that the ASL strategy is able
to learn consistently, and we have provided reliable perfor-
mance characterization of the learning performance at each
individual agent.

The ASL strategy can have significant impact on online
distributed machine learning in relation to classification
problems. In particular, the analysis conducted in this work
focused on a parametric modeling of the underlying distri-
butions, where it is assumed that the agents use a certain
family of admissible distributions (or likelihoods) for the
social learning task, and that the true underlying distribution
belongs to this family. We are currently pursuing a useful
generalization for the case where the underlying distribu-
tion does not necessarily belong to the assumed family
of distributions. This setting can be relevant in distributed
machine learning problems, where the agents construct the
class of admissible likelihoods during a training stage, and
due to finiteness of the training set, their knowledge of
the admissible models cannot be perfect. New fundamental
questions arise, including: the links between the accuracy
of the training phase and the achievability of consistent
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Consider, without loss of generality, a positive t. Since the
random variables ezm have finite expectation, the first deriva-
tive of the characteristic function, '0

z̃(t), is a continuous
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5The following inequality is known for complex numbers xm, ym, with
|xm|  1 and |ym|  1 [27]:

�����
iY

m=0

xm �
iY

m=0

ym

����� 
iX

m=0

|xm � ym|, (94)

14

13
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butions, where it is assumed that the agents use a certain
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generalization for the case where the underlying distribu-
tion does not necessarily belong to the assumed family
of distributions. This setting can be relevant in distributed
machine learning problems, where the agents construct the
class of admissible likelihoods during a training stage, and
due to finiteness of the training set, their knowledge of
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Fig. 10. Typical shape of the rate function.

if, � = mz . A typical shape of the rate function is
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if, � = mz . A typical shape of the rate function is
illustrated in Fig. 10. Exploiting the aforementioned
regularity properties of �?(�), from (79)–(80) we have
in particular that, for any � 2 Do:

lim
�!0

� log P[s(�) � �] = ��?(�) 8� > mz, (83)

lim
�!0

� log P[s(�)  �] = ��?(�) 8� < mz. (84)

Proof: We prove sequentially the six parts of the lemma.

Part 1. In view of (67), the following series of (absolute)
expectations is convergent:

�

1X

m=0

(1 � �)m↵mE
h
|zm|

i
= mabs

z �

1X

m=0

(1 � �)m↵m

 mabs
z �

1X

m=0

(1 � �)m

= mabs
z < +1.

(85)

In view of [25, Lemma 3.60], convergence of the series of
absolute first moments implies that the random series sabs(�)
is almost-surely finite, which in turn implies that so is s(�),
and part 1 is proved.

Part 2. Since the series of (absolute) expectations is con-
vergent, so is the series of expectations:

1X

m=0

(1 � �)m↵mE[zm] = mz

1X

m=0

(1 � �)m↵m. (86)

On the other hand, by triangle inequality we have the
following upper bound:

|si(�)|  �

iX

m=0

(1 � �)m↵m|zm|  sabs(�). (87)

Now we observe that sabs(�) is a proper random variable
in view of part 1. Furthermore, it is an integrable random
variable from Beppo Levi’s monotone convergence theo-
rem [26], thanks to the convergence of absolute expectations
in (86).

We conclude that the random sequence si(�) is upper
bounded by an integrable random variable. Therefore, the
dominated convergence theorem [26] implies that the ex-
pectation of the a.s. limit s(�) is equal to the convergent
series of expectations, and the first equality in (72) follows.
Moreover, we can write:

�

1X

m=0

(1 � �)m↵m = �

1X

m=0

(1 � �)m (↵m � ↵)

+ ↵ �
1X

m=0

(1 � �)m

| {z }
=1

. (88)

In view of (69), the absolute value of the first summation
on the RHS in (88) is dominated by:

 �

1X

m=0

⇣
�(1 � �)

⌘m

=
 �

1 � �(1 � �)
= O(�). (89)

We conclude from (86), (88) and (89) that the second
equality in (72) holds.

Part 3. Let
⇣m , �(1 � �)m↵m, (90)

and consider the following centered variables:

es(�) = s(�) � E[s(�)], ezm = zm � E[zm]. (91)

In view of parts 1) and 2), the centered partial sums:

si(�) � E[si(�)] =
iX

m=0

⇣mezm (92)

converge in distribution to es(�) as i ! 1. By Lévy’s con-
tinuity Theorem, the corresponding characteristic functions
must converge [27]. Since the zm’s are i.i.d. we can write:

's̃(t) , E
h
ejes(�)t

i
=

1Y

m=0

'z̃(⇣mt), (93)

where j =
p
�1. We want to show that es(�) converges in

probability to 0 as � ! 0. In view of Lévy’s continuity
Theorem this is tantamount to showing that 's̃(t) converges
to 1 as � ! 0. Using (93) we can write:5

|'s̃(t) � 1| 
1X

m=0

|'z̃(⇣mt) � 1|. (95)

Consider, without loss of generality, a positive t. Since the
random variables ezm have finite expectation, the first deriva-
tive of the characteristic function, '0

z̃(t), is a continuous
function, and by the mean-value theorem we can write (since
in particular E[ezm] = 0):

'z̃(⇣mt) = 1+ ⇣mt'0
z̃(tm), for some tm 2 (0, ⇣mt). (96)

5The following inequality is known for complex numbers xm, ym, with
|xm|  1 and |ym|  1 [27]:

�����
iY

m=0

xm �
iY

m=0

ym

����� 
iX

m=0

|xm � ym|, (94)

Figure 5.12: Typical shape of the rate function.

lim
δ→0

δ logP (s(δ) ≤ γ) = −ϕ⋆(γ), ∀γ ≤ αmz. (5.110)

Proof. We prove sequentially the six parts of the lemma.

Part 1. In view of (5.93), the following series of (absolute) expectations is convergent:

δ
∞∑

m=0
(1 − δ)mαmE (|zm|) = mabs

z δ
∞∑

m=0
(1 − δ)mαm

≤ mabs
z δ

∞∑
m=0

(1 − δ)m

= mabs
z < +∞. (5.111)

In view of [75][Lemma 3.6′], convergence of the series of absolute first moments implies that
the random series sabs(δ) is almost-surely finite, which in turn implies that so is s(δ), and part
1 is proved.

Part 2. Since the series of (absolute) expectations is convergent, so is the series of expectations:

∞∑
m=0

(1 − δ)mαmE (zm) = mz

∞∑
m=0

(1 − δ)mαm. (5.112)

On the other hand, by triangle inequality we have the following upper bound:

|si(δ)| ≤ δ
i∑

m=0
(1 − δ)mαm|zm| ≤ sabs(δ). (5.113)

Now we observe that sabs(δ) is a proper random variable in view of part 1. Furthermore, it is an
integrable random variable from Beppo Levi’s monotone convergence theorem [90][Th. 1.5.7,
p. 27], thanks to the convergence of absolute expectations in (5.112).

We conclude that the random sequence si(δ) is upper bounded by an integrable random variable.
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Therefore, the dominated convergence theorem [90][Th. 1.5.8, p. 27] implies that the expectation
of the almost-sure limit s(δ) is equal to the convergent series of expectations, and the first
equality in (5.98) follows. Moreover, we can write:

δ
∞∑

m=0
(1 − δ)mαm = δ

∞∑
m=0

(1 − δ)m (αm − α)

+ α δ
∞∑

m=0
(1 − δ)m

︸ ︷︷ ︸
=1

. (5.114)

In view of (5.95), the absolute value of the first summation on the RHS in (5.114) is dominated
by:

κ δ
∞∑

m=0

(
β(1 − δ)

)m

= κ δ

1 − β(1 − δ) = O(δ). (5.115)

We conclude from (5.112), (5.114) and (5.115) that the second equality in (5.98) holds.

Part 3. Let
ζm ≜ δ(1 − δ)mαm, (5.116)

and consider the following centered variables:

s̃(δ) = s(δ) − E (s(δ)), z̃m = zm − E (zm). (5.117)

In view of parts 1 and 2, the centered partial sums:

si(δ) − E (si(δ)) =
i∑

m=0
ζmz̃m (5.118)

converge in distribution to s̃(δ) as i → ∞. By Lévy’s continuity theorem, the corresponding
characteristic functions must converge [91][Th. 2, p. 431]. Since the zm’s are i.i.d. we can write:

φs̃(t) ≜ E
(
ejs̃(δ)t

)
=

∞∏
m=0

φz̃(ζmt), (5.119)

where j =
√

−1. We want to show that s̃(δ) converges in probability to 0 as δ → 0. In view of
Lévy’s continuity Theorem this is tantamount to showing that φs̃(t) converges to 1 as δ → 0.
Using (5.119) we can write:4

|φs̃(t) − 1| ≤
∞∑

m=0
|φz̃(ζmt) − 1|. (5.121)

4The following inequality is known for complex numbers xm, ym, with |xm| ≤ 1 and |ym| ≤ 1 [91]:∣∣∣∣∣
i∏

m=0

xm −
i∏

m=0

ym

∣∣∣∣∣ ≤
i∑

m=0

|xm − ym|, (5.120)
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Consider, without loss of generality, a positive t. Since the random variables z̃m have finite
expectation, the first derivative of the characteristic function, φ′

z̃(t), is a continuous function,
and by the mean-value theorem we can write (since in particular E (z̃m) = 0):

φz̃(ζmt) = 1 + ζmt φ′
z̃(tm), for some tm ∈ (0, ζmt). (5.122)

Accordingly we can write:

|φz̃(ζmt) − 1| ≤ ζm|t| max
τ∈[0,δt]

|φ′
z̃(τ)|, (5.123)

where the latter inequality follows from the fact that ζm ≤ δ, see (5.116). Applying (5.123) to
(5.121) we get:

|φs̃(t) − 1| ≤ |t| max
τ∈[0,δt]

|φ′
z̃(τ)|

∞∑
m=0

ζm︸ ︷︷ ︸
≤1

. (5.124)

On the other hand, since φ′
z̃(0) = E (z̃m) = 0, from the continuity of φ′

z̃(t) it follows that:

lim
δ→0

max
τ∈[0,δt]

|φ′
z̃(τ)| = 0, (5.125)

which proves that s(δ) converges to E (s(δ)) in probability as δ → 0. The claim in (5.99) then
follows from (5.98).

Part 4. Since the variables zm have common finite variance σ2
z and are independent, it is

immediate to see that:

lim
i→∞

VAR(si(δ)) = σ2
z δ2

∞∑
m=0

(1 − δ)2mα2
m < ∞. (5.126)

Consider now the squared and centered variables:

(
si(δ) − E (si(δ))

)2
= δ2

(
i∑

m=0
(1 − δ)mαm(zm − mz)

)2

. (5.127)

In view of parts 1 and 2 the quantity on the LHS converges almost surely, as i → ∞, to:(
s(δ) − E (s(δ))

)2
. (5.128)

Given the convergence of the variance of the partial sums in (5.126), by Fatou’s lemma we
conclude that [90][Th. 1.5.5, p. 26]:

VAR(s(δ)) ≤ lim
i→∞

VAR(si(δ)), (5.129)

i.e., the limiting variable s(δ) has finite variance. But since the limiting variable s(δ) can be
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written as:

s(δ) = si(δ) + δ
∞∑

m=i+1
(1 − δ)mαmzm, (5.130)

with the two quantities on the RHS being statistically independent, the variance of s(δ) cannot
be smaller than the variance of si(δ) for all i, implying that:

VAR(s(δ)) ≥ lim
i→∞

VAR(si(δ)). (5.131)

Combining (5.129) with (5.131) we see that the variance of the almost-sure limit s(δ) is equal
to the convergent series of variances, which is the first equality in (5.101).

In order to prove the second equality in (5.101) we write:

VAR
(

δ
∞∑

m=0
(1 − δ)mαmzm

)
= σ2

zδ2
∞∑

m=0
(1 − δ)2mα2

m

= σ2
zδ2

∞∑
m=0

(1 − δ)2m
(
α2

m − α2
)

+ α2σ2
zδ2

∞∑
m=0

(1 − δ)2m. (5.132)

Reasoning as done to prove part 2, we can easily show that the first summation on the RHS in
(5.132) is O(δ2). The second summation is instead equal to:

α2σ2
zδ2

1 − (1 − δ)2 = α2σ2
zδ

2 − δ
, (5.133)

and the second equality in (5.101) follows.

Part 5. Let

σ2
lim ≜ α2σ2

z

2 . (5.134)

The claim in (5.102) is equivalent to prove that the random variable s(δ)−mz√
δσlim

converges in
distribution to a standard Gaussian. On the other hand, we have that:

s(δ) − mz√
δσlim

= s(δ) − E (s(δ))√
δσlim

+ E (s(δ)) − mz√
δσlim

. (5.135)

Since the second term in (5.135) converges to zero in view of (5.98), from Slutsky’s theo-
rem [73][Th. 1.11, p. 60] it suffices to show that the random variable s(δ)−E (s(δ))√

δσlim
converges in

distribution to a standard Gaussian. To this end, we start by introducing, with slight abuse of
notation w.r.t. (5.116) and (5.117), the quantities:

ζm ≜
√

2δ(1 − δ)mαm

α
, (5.136)
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and:

s̃(δ) = s(δ) − E (s(δ))√
δσlim

, z̃m = zm − E (zm)
σz

. (5.137)

We notice that z̃m has zero mean and unit variance.

We will now show that s̃(δ) converges in distribution to a standard Gaussian. In view of Lévy’s
continuity theorem, this claim is equivalent to the convergence, as δ → 0, of the characteristic

function of s̃(δ) to the characteristic function e− t2
2 . From (5.97), (5.134), (5.136) and (5.137) we

see that:

s̃(δ) =
∞∑

m=0
ζmz̃m. (5.138)

Reasoning as done to compute (5.119), the characteristic function of s̃(δ) in (5.137) can be
written as:

φs̃(t) =
∞∏

m=0
φz̃(ζmt). (5.139)

Using the triangle inequality for complex numbers we can write:∣∣∣∣φs̃(t) − e− t2
2

∣∣∣∣ ≤
∣∣∣∣∣φs̃(t) − e−

∑∞
m=0 ζ2

mt2

2

∣∣∣∣∣+
∣∣∣∣∣e−

∑∞
m=0 ζ2

mt2

2 − e− t2
2

∣∣∣∣∣ . (5.140)

Now, that the second term on the RHS of (5.140) converges to zero follows from part 4), since
from (5.101) and the definition of ζm in (5.136) we conclude that:

lim
δ→0

∞∑
m=0

ζ2
m = 1. (5.141)

Let us now focus on the first term on the RHS of (5.140). Since the characteristic functions have
magnitude not greater than 1, in view of (5.120) and (5.139) we can write:∣∣∣∣∣φs̃(t) − e−

∑∞
m=0 ζ2

mt2

2

∣∣∣∣∣ ≤
∞∑

m=0

∣∣∣∣φz̃(ζmt) − e− ζ2
mt2

2

∣∣∣∣
≤

∞∑
m=0

∣∣∣∣∣φz̃(ζmt) − 1 + ζ2
mt2

2

∣∣∣∣∣
+

∞∑
m=0

∣∣∣∣∣e− ζ2
mt2

2 − 1 + ζ2
mt2

2

∣∣∣∣∣ , (5.142)

where in the latter step we applied the triangle inequality. Now, the last term in (5.142) converges
to zero since for any positive s we have |e−s − 1 + s| ≤ s2/2, and since it is immediate to show
that (see the proof in [79]):

lim
δ→0

∞∑
m=0

ζ4
m = 0. (5.143)

On the other hand, using [90][Lemma 3.3.19, p. 134] we can write, for an arbitrarily small ϵ > 0:∣∣∣∣ejz̃mζmt − 1 − jz̃mζmt + 1
2 z̃

2
mζ2

mt2
∣∣∣∣
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≤ I
[
|z̃m|ζm ≤ ϵ

] |z̃mζmt|3

6 + I
[
|z̃m|ζm > ϵ

]
(z̃mζmt)2

≤ ϵz̃2
mζ2

m

|t|3

6 + z̃2
mI
[
|z̃m|ζm > ϵ

]
ζ2

mt2

≤ ϵz̃2
mζ2

m

|t|3

6 + z̃2
mI
[
|z̃m| > ϵα/

√
2δ

]
ζ2

mt2, (5.144)

where I [E] is the indicator of event E, and the last inequality follows because ζm ≤
√

2δ/α—see
(5.136). Let now:

g(δ) = E
(
z̃2

mI
[
z̃2

m > ϵα/
√

2δ

])
. (5.145)

Owing to identical distribution of z̃m across index m, the function g(δ) does not depend on m.
Since z̃m has finite variance, we have that g(δ) → 0 as δ → 0. In view of (5.144), recalling that
the magnitude of the expectation is upper bounded by the expectation of the magnitude, and
that z̃m has zero mean and unit variance, we have that:∣∣∣∣∣φz̃(ζmt) − 1 + ζ2

mt2

2

∣∣∣∣∣ ≤
∞∑

m=0
ζ2

m

(
ϵ
|t|3

6 + t2g(δ)
)

, (5.146)

and, hence,

lim sup
δ→0

∣∣∣∣∣φz̃(ζmt) − 1 + ζ2
mt2

2

∣∣∣∣∣ ≤ ϵ
|t|3

6 , (5.147)

finally implying, due to the arbitrariness of ϵ, that φs̃(t) converges to e−t2/2 as δ → 0. We
have therefore shown that s̃(δ) in (5.137) converges to a standard Gaussian as δ → 0, and this
completes the proof of part 5.

Part 6. The convergence in (5.104) can be proved as done in [79, Appendix C]. Then the
convergence in (5.104) implies the LDP in (5.105)–(5.106) in view of the Gärtner-Ellis theo-
rem [80][Th. 2.3.6, p. 44], [81][Th. V.6, p. 54].

Next we focus on the regularity properties of the Fenchel-Legendre transform ϕ⋆(γ). Following
the development used in [79, Appendix C], we can prove that Do is an interval, that ϕ⋆(γ)
is smooth and strictly convex for γ ∈ Do, and that ϕ⋆(γ) ≥ 0 with equality if, and only if,
γ = αmz .

Thus, it remains to characterize the boundaries of Do and the behavior of the rate function at
these boundaries. To this end, it is sufficient to prove the claim with α = 1 and for the right
boundary, since the proof for other values of α and for the left boundary is simply obtained
using the scaling and reflection properties of the LMGF [80], [81].

Now, since it has been shown in [79, Appendix C] that the right boundary of Do is equal to
limt→∞ Λz(t)/t, we must now prove that this limit equals z+ (recall that we are working with
α = 1). We start by noticing that, letting z− < z < z+, the LMGF Λz(t) can be written as:

Λz(t) = log
(
E
(
I [zm ≤ z]ezmt

)
+ E

(
I [zm > z]ezmt

))
. (5.148)
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From (5.148) we get, for all t > 0:

Λz(t)
t

≥
log

(
ezt E (I [zm > z] )

)
t

= z + log q

t
, (5.149)

where we set q = P (zm > z). We remark that 0 < q < 1 since z is internal to the support of
zm. From (5.149) we get:

lim inf
t→∞

Λz(t)
t

≥ z. (5.150)

If z+ = +∞ the result is proved due to arbitrariness of z. If z+ < +∞, we can choose
z = z+ − ϵ, and conclude that the limit inferior in (5.150) is equal to z+. The fact that the
corresponding limit superior is equal to z+ follows by observing that, in view of (5.148), for all
t > 0 the quantity Λz(t)/t is upper bounded by z+.

Finally, we characterize the behavior of the rate function at the boundaries of Do. We focus
again on the right boundary z+. When z+ = +∞, it suffices to notice that the rate function
ϕ⋆(γ) is strictly convex in Do and is strictly increasing for γ > mz (see Figure 5.12) to conclude
that the rate function diverges to +∞ as γ → z+.

We move on to examine the case z+ < +∞. Exploiting (5.148) we can write, for all t > 0:

Λz(t) ≤ log
(
(1 − q)ezt + qez+t

)
= z+t + log

(
(1 − q)e−(z+−z)t + q

)
. (5.151)

Since z+ > z, for any ϵ > 0 there exists tϵ > 0 such that:

(1 − q)e−(z+−z)t ≤ ϵq, for all t ≥ tϵ, (5.152)

implying, in view of (5.151):

Λz(t) ≤ z+t + log((1 + ϵ)q), for all t ≥ tϵ. (5.153)

Using (5.153) in (5.104) we can thus write:

ϕ(t) =
∫ t

0

Λz(τ)
τ

dτ =
∫ tϵ

0

Λz(τ)
τ

dτ +
∫ t

tϵ

Λz(τ)
τ

dτ

≤ ϕ(tϵ) + z+(t − tϵ) +
∫ t

tϵ

log ((1 + ϵ)q)
τ

dτ

= ϕ(tϵ) + z+(t − tϵ) + log ((1 + ϵ)q) log t

tϵ
. (5.154)

Plugging the latter inequality in (5.107) we get:

ϕ⋆(z+) ≥ sup
t≥tϵ

[z+t − ϕ(t)] ≥ −ϕ(tϵ) + z+tϵ

+ log 1
(1 + ϵ)q sup

t≥tϵ

log t

tϵ
= +∞, (5.155)
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where we have chosen ϵ so small to ensure that (1 + ϵ)q < 1. Finally, in view of (5.107) we can
write, for a generic t ∈ R:

lim
γ→z+

ϕ⋆(γ) ≥ lim
γ→z+

[γt − ϕ(t)] = [z+t − ϕ(t)], (5.156)

and from (5.155) we conclude that ϕ⋆(γ) → +∞ as γ → z+.

5.B Proof of Theorem 5.1

We are interested in characterizing, for each agent k, the joint behavior of the random variables

λ̂
(δ)
k,i(θ) for all values of θ ̸= θ0. To this end, it is useful to consider the (H − 1) × 1 vector

λ̂
(δ)
k,i similarly defined as the vector in (5.7). We also introduce, for a fixed time epoch i, the

K × (H − 1) data matrixXi, whose entries, for ℓ = 1, 2, . . . , K and θ ̸= θ0, are:

[Xi]ℓθ = xℓ,i(θ). (5.157)

In light of (5.19) we can write:

λ̂
(δ)
k,i = f

(δ)
k,i (X1,X2, . . . ,Xi), (5.158)

to highlight that the random vector λ̂
(δ)
k,i is a certain function f

(δ)
k,i of the data matricesX1,X2, . . . ,Xi.

Since the data are i.i.d. over time, reversing the order of the data matrices in (5.158) does not
change the distribution of the resulting random vector, i.e.:

λ̃
(δ)
k,i = f

(δ)
k,i (Xi,Xi−1, . . . ,X1) d= λ̂

(δ)
k,i , (5.159)

where d= denotes equality in distribution. Considering this reversed order of the data matrices
in (5.19) and exchanging the order of summation we obtain:

λ̃
(δ)
k,i(θ) =

K∑
ℓ=1

δ
i−1∑

m=0
(1 − δ)m[Am+1]ℓk xℓ,m+1(θ). (5.160)

From part 1) of Lemma 5.1 in the Appendix, each of the K inner partial sums (scaled by δ)
converges almost surely. In fact, the random variables xℓ,m+1(θ) have finite first moment in
view of Assumption 2.4, and the weights [Am+1]ℓk fulfill condition (5.95) in view of Property 2.1.
It makes thus sense to define a proper random variable as the (almost-surely convergent) value
of the random series in (5.160), which corresponds to (5.24). This in turn implies the following

almost-sure convergence, as i → ∞, of the vector with reversed ordering, λ̃
(δ)
k,i , to the limiting

random vector λ̃
(δ)
k . In view of (5.159), this almost-sure convergence implies the convergence

in distribution of the original (i.e., with correct ordering of the data matricesXi) vector λ̂k,i,
finally yielding the claim of the theorem.
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5.C Proof of Theorem 5.2

We start by proving (5.30). Examining (5.24) we see that each one of the K inner series matches
the conditions in Lemma 5.1, part 3, implying that the ℓ-th inner series converges in probability,

as δ → 0, to the expected value πℓE (xℓ,m+1(θ)) = πℓdℓ(θ). As a result, λ̃
(δ)
k (θ) converges in

probability to mave(θ), which implies, for any ϵ > 0:

lim
δ→0

P
(
λ̃

(δ)
k (θ) < mave(θ) − ϵ

)
= 0. (5.161)

Since under Assumption 2.5 the quantity mave(θ) is strictly positive, we conclude that:

lim
δ→0

P
(
λ̃

(δ)
k (θ) ≤ 0

)
= 0, (5.162)

which, by application of the union bound, in light of (5.10) gives:

p
(δ)
k = P

(
∃θ ̸= θ0 : λ̃(δ)

k (θ) ≤ 0
)

≤
∑

θ ̸=θ0

P
(
λ̃

(δ)
k (θ) ≤ 0

)
δ→0−→ 0, (5.163)

and the claim of the theorem is proved.

5.D Proof of Theorem 5.3

In the following we will refer to the elements θ1, θ2, . . . , θH−1 in the set Θ \ {θ0}—see (5.8).
Consider a zero-mean Gaussian random vector:

g = [g(θ1), g(θ2), . . . , g(θH−1)]T, (5.164)

with covariance matrix equal to Cave/2. We recall that the (θ, θ′)-th entry of Cave is the
covariance cave(θ, θ′) defined in (5.33). What we want to show is that the random vector:

λ̃
(δ)
k − mave√

δ
(5.165)

converges in distribution to g.

When dealing with convergence in distribution of random vectors, the standard path is to
reduce the vector problem to a scalar problem through the following argument. In view of
Lévy’s continuity theorem for random vectors, convergence in distribution takes place if, and
only if, convergence of the pertinent (multivariate) characteristic functions takes place [73].
This implies that5 our claim will be proved if we show that, for any sequence of real numbers

5This corollary of Lévy’s continuity theorem is also known as Cramér-Wold device or theorem [73][Th. 1.9,
p. 56].
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t(θ1), t(θ2), . . . , t(θH−1):

∑
θ ̸=θ0

t(θ) λ̃
(δ)
k (θ) − mave(θ)√

δ

d−→
δ→0

∑
θ ̸=θ0

t(θ)g(θ). (5.166)

Obviously, the linear combination on the RHS in (5.166) is a Gaussian random variable with
zero mean and with variance:

VAR

∑
θ ̸=θ0

t(θ)g(θ)

 =
∑

θ ̸=θ0

∑
θ′ ̸=θ0

t(θ)t(θ′)cave(θ, θ′)
2 . (5.167)

Let us now examine the LHS in (5.166). Using (5.160) we get:

∑
θ ̸=θ0

t(θ)λ̃(δ)
k (θ) =

K∑
ℓ=1

δ
∞∑

m=0
(1 − δ)m[Am+1]ℓk

∑
θ ̸=θ0

t(θ)xℓ,m+1(θ), (5.168)

whereas using (5.13) we have:

∑
θ ̸=θ0

t(θ)mave(θ) =
K∑

ℓ=1
πℓ

∑
θ ̸=θ0

t(θ)dℓ(θ). (5.169)

Let us now set:

z(ℓ)
m ≜

∑
θ ̸=θ0

t(θ)xℓ,m+1(θ), (5.170)

α(ℓ)
m ≜ [Am+1]ℓk, (5.171)

s(ℓ)(δ) ≜ δ
∞∑

m=0
(1 − δ)mα(ℓ)

m z
(ℓ)
m . (5.172)

We observe that:

E
(
z(ℓ)

m

)
=
∑

θ ̸=θ0

t(θ)dℓ(θ), (5.173)

VAR
(
z(ℓ)

m

)
=
∑

θ ̸=θ0

∑
θ′ ̸=θ0

t(θ)t(θ′)ρℓ(θ, θ′). (5.174)

Exploiting Eqs. (5.170)–(5.173), the LHS in (5.166) can be cast in the form:

K∑
ℓ=1

s(ℓ)(δ) − E
(
z

(ℓ)
m

)
√

δ
. (5.175)

We see from Eqs. (5.170)–(5.172) that the random variables s(ℓ)(δ) match the structure of the
random series used in Lemma 5.1. We now verify that s(ℓ)(δ) fulfills the conditions of part 5 in
Lemma 5.1, for every ℓ = 1, 2, . . . , K . First we note that z(ℓ)

m has finite variance since it is a
linear combination of random variables that have finite variance. Second we see that condition
(5.95) is verified in view of Property 2.1. We conclude then from part 5 of Lemma 5.1 that the
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following convergence in distribution holds:

s(ℓ)(δ) − E
(
z

(ℓ)
m

)
√

δ

d−→
δ→0

G

(
0,

π2
ℓ

2 VAR
(
z(ℓ)

m

))
. (5.176)

Since the data are independent across agents, we have that the random variables s(ℓ)(δ) are
independent across index ℓ. For this reason, and in view of (5.176), we conclude that the LHS in
(5.166) is asymptotically normal, with zero mean and with variance given by:

π2
ℓ

2

K∑
ℓ=1

VAR
(
z(ℓ)

m

)
=
∑

θ ̸=θ0

∑
θ′ ̸=θ0

t(θ)t(θ′)
K∑

ℓ=1

π2
ℓ

2 ρℓ(θ, θ′)

=
∑

θ ̸=θ0

∑
θ′ ̸=θ0

t(θ)t(θ′)cave(θ, θ′)
2 , (5.177)

where we have used (5.174). Since the RHS in (5.177) coincides with the variance in (5.167), the
proof is complete.

5.E Proof of Theorem 5.4

In light of (5.10), the error probability of not choosing θ0 can be bounded as follows (with the
lower bound holding for every θ ̸= θ0):

P
(
λ̃

(δ)
k,i(θ) ≤ 0

)
≤ p

(δ)
k,i ≤

∑
θ ̸=θ0

P
(
λ̃

(δ)
k,i(θ) ≤ 0

)
, (5.178)

where the upper bound is the union bound. At the steady state, Eq. (5.178) implies:

P
(
λ̃

(δ)
k (θ) ≤ 0

)
≤ p

(δ)
k ≤

∑
θ ̸=θ0

P
(
λ̃

(δ)
k (θ) ≤ 0

)
. (5.179)

One key point to prove the claim of the theorem is the exponential characterization of the

probability P
(
λ̃

(δ)
k (θ) ≤ 0

)
. Preliminarily, let us set:

z(ℓ)
m ≜ xℓ,m+1(θ), (5.180)

α(ℓ)
m ≜ [Am+1]ℓk, (5.181)

s(ℓ)(δ) ≜ δ
∞∑

m=0
(1 − δ)mα(ℓ)

m z
(ℓ)
m , (5.182)

which yields:

λ̃
(δ)
k (θ) =

K∑
ℓ=1
s(ℓ)(δ). (5.183)

Recall that the log-likelihood ratios xℓ,m(θ) are assumed to be independent across agents (i.e.,
across ℓ). Thus s(ℓ)(δ) are also independent random variables. Now, part 6 of Lemma 5.1
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would provide the required exponential characterization for the individual variable s(ℓ)(δ). We

need instead the characterization for λ̃
(δ)
k (θ), which is the sum of the (independent) variables

s(ℓ)(δ). Let us elaborate on this aspect. The starting point to prove part 6 in Lemma 5.1 is
the convergence in (5.104). Exploiting additivity of the LMGF for independent variables, we

conclude that the LMGF of λ̃
(δ)
k , scaled by δ and evaluated at t/δ, converges to the sum:

K∑
ℓ=1

∫ t

0

Λℓ(πℓτ ; θ)
τ

dτ =
∫ t

0

Λave(τ ; θ)
τ

dτ ≜ ϕ(t; θ), (5.184)

where: i) we used the fact that the LMGF of z(ℓ)
m is Λℓ(t; θ); ii) the intermediate equality comes

from (5.45) (having exchanged the integral with the sum); and iii) the last equality comes from
(5.47). Moreover, the properties of the rate function in part 6 of Lemma 5.1 depend only on
the fact that Λαz(t) is a logarithmic moment generating function that is finite for all t ∈ R.
Since Λave(τ ; θ) is the LMGF of the average variable xave,i(θ) (and is finite for all t ∈ R by
assumption), all the remaining results in part 6 of Lemma 5.1 hold true, provided that the
properties pertaining to αzm are now referred to xave,i(θ).

We conclude that it is legitimate to use the exponential characterization provided in Lemma 5.1.
In particular, since we have γ = 0 < mave(θ), the pertinent relation is given by (5.110) with
the choice γ = 0, yielding:

lim
δ→0

δ logP
(
λ̃

(δ)
k (θ) ≤ 0

)
= −Φ(θ), (5.185)

where the exponent Φ(θ) is accordingly computed as the value of the rate function at γ = 0,
namely,

Φ(θ) = sup
t∈R

[−ϕ(t; θ)] = − inf
t∈R

ϕ(t; θ). (5.186)

Using the lower bound in (5.179), we can readily conclude from (5.185) and from the definitions
appearing in (5.49) and (5.186) that:

lim inf
δ→0

δ log p
(δ)
k ≥ max

θ ̸=θ0

(
− Φ(θ)

)
= − min

θ ̸=θ0
Φ(θ) = −Φ. (5.187)

Let us now focus on the upper bound in (5.179). By definition, for all θ ̸= θ0 we have that
Φ ≤ Φ(θ). Accordingly, the convergence in (5.110) implies that, given an arbitrary ϵ > 0, for
sufficiently small δ we can write:

P
(
λ̃

(δ)
k (θ) ≤ 0

)
≤ e−(1/δ)(Φ−ϵ). (5.188)

Exploiting (5.188), the upper bound in (5.179) yields:

δ log p
(δ)
k ≤ δ log(H − 1) − Φ + ϵ, (5.189)

where we recall that H is the number of hypotheses or admissible models. Due to the arbitrari-
ness of ϵ, we have:

lim sup
δ→0

δ log p
(δ)
k ≤ −Φ. (5.190)
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Bridging (5.187) and (5.190) implies the desired claim.

5.F Proof of Theorem 5.5

We start by proving an auxiliary lemma.

Lemma 5.2 (Useful properties of the LMGF Λℓ(t; θ)). The lemma is proved under the
same assumptions used in Theorem 5.4. Let

Λℓ(t; θ) = logE
(
etxℓ,i(θ)

)
= logE

(
e

t log
Lℓ(ξℓ,i|θ0)
Lℓ(ξℓ,i|θ)

)
(5.191)

be the LMGF of the log-likelihood at the ℓ-th agent, let

Λave(t; θ) = logE
(
etxave,i(θ)

)
=

K∑
ℓ=1

Λℓ(πℓt; θ) (5.192)

be the LMGF of the network average of log-likelihoods, xave,i(θ) =
∑K

ℓ=1 πℓxℓ,i(θ), and let:

ϕ(t; θ) =
∫ t

0

Λave(τ ; θ)
τ

dτ. (5.193)

Then, we have the following properties:

P1) The error exponent Φ(θ) is given by:

Φ(θ) = − inf
t∈R

ϕ(t; θ) = −ϕ(t⋆
θ; θ), (5.194)

where t⋆
θ < 0 is the unique solution to:

Λave(t⋆
θ; θ)

t⋆
θ

= 0. (5.195)

P2) For all t ∈ R we have:
Λℓ(t; θ) ≥ dℓ(θ)t, (5.196)

implying in particular that:

Φ(θ) ≤ |t⋆
θ|mave(θ). (5.197)

P3) Let πmin and πmax be the minimum and maximum entry of the Perron eigenvector,
respectively. Then we have:

1
πmax

≤ |t⋆
θ| ≤ 1

πmin
. (5.198)

Proof. From the convexity properties of ϕ(t; θ) (see [79], [82] for a detailed summary) we know
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that the infimum of ϕ(t; θ) in (5.194) is in fact a unique minimum located at the solution t⋆
θ to

the stationary equation:
ϕ′(t⋆

θ; θ) = 0, (5.199)

where ′ denotes derivative w.r.t. t. Therefore, Eq. (5.195) follows from (5.193). On the other
hand, in view of the convexity properties of ϕ(t; θ), the function ϕ′(t; θ) is strictly increasing
in t, and since ϕ′(0; θ) = Λ′

ave(0; θ) = mave(θ) > 0 (we use the fact that the first derivative of
the LMGF evaluated in 0 is equal to the mean of the relative random variable), from (5.199) we
conclude that the value t⋆

θ that minimizes the function ϕ(t) in (5.194) cannot but be negative,
and the proof of property P1) is complete [79], [82].

Regarding property P2), from the convexity of the local LMGF Λℓ(t; θ) we can write, for all
t ∈ R:

Λℓ(t; θ) ≥ tΛ′
ℓ(0; θ) = tdℓ(θ). (5.200)

Exploiting (5.192), (5.193), (5.194), and (5.200), we obtain:

Φ(θ) = −ϕ(t⋆
θ; θ) = −

∫ t⋆
θ

0

Λave(τ ; θ)
τ

dτ

=
K∑

ℓ=1

∫ 0

t⋆
θ

Λℓ(πℓτ ; θ)
τ

dτ

≤ |t⋆
θ|

K∑
ℓ=1

πℓdℓ(θ) = |t⋆
θ|mave(θ), (5.201)

and property P2) is proved.

Finally we prove property P3). Making explicit the definition of Λave(t; θ), Eq. (5.195) can be
written as: ∑K

ℓ=1 Λℓ(πℓt
⋆
θ; θ)

t⋆
θ

= 0. (5.202)

In view of (5.191), with expectation computed under the model Lℓ(ξ|θ0), we have that Λℓ(−1; θ) =
0. Accordingly, when πℓ = 1/K for all ℓ, Eq. (5.198) is obvious. Let us focus on the case where
the Perron eigenvector is not uniform. From the strict convexity of Λℓ(t; θ), we know that:

Λℓ(πℓt; θ) > 0 for t < − 1
πℓ

,

Λℓ(πℓt; θ) < 0 for − 1
πℓ

< t < 0, (5.203)

see Figure 5.13. Since the equality in (5.202) requires that Λℓ(πℓt
⋆
θ; θ) takes on at least one

positive and one negative value, Eq. (5.203) implies property P3).

Proof of Theorem 5.5. From (5.159) we know that λ̂
(δ)
k,i(θ) and λ̃

(δ)
k,i(θ) share the same distribution.
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1

Let
λmin

0 = min
θ ̸=θ0

min
ℓ=1,2,...,N

min[λℓ,0(θ), 0]. (1)

From (??) we know that λ̂
(δ)
k,i(θ) and λ̃

(δ)
k,i(θ) share the same

distribution. Thus, from (??) and (??) we have that (we recall
that d

= denotes equality in distribution):

λ
(δ)
k,i(θ)

d
= λ̃

(δ)
k,i(θ) + (1 − δ)i

N∑

ℓ=1

[Ai]ℓkλℓ,0(θ)

(a)
≥ λ̃

(δ)
k,i(θ) + (1 − δ)iλmin

0 , (2)

where the inequality follows from (??) and the fact that A
is a left-stochastic matrix.

Let us introduce the following LMGFs:

Λ
(δ)
k,i(t; θ) = log E

[
etλ̃

(δ)
k,i

(θ)
]
, Λ

(δ)
k (t; θ) = lim

i→∞
Λ

(δ)
k,i(t; θ),

(3)
which can be written explicitly as:

Λ
(δ)
k,i(t; θ) =

N∑

ℓ=1

i−1∑

m=0

Λℓ

(
δ(1 − δ)m[Am+1]ℓkt

)
,

Λ
(δ)
k,i(t; θ) =

N∑

ℓ=1

∞∑

m=0

Λℓ

(
δ(1 − δ)m[Am+1]ℓkt

)
, (4)

with Λℓ(t; θ) being the LMGF of the log-likelihood ratio
xℓ,m+1(θ). From the large-deviations analysis that we have
performed in Theorem ??, we know that:

lim
δ→0

δΛ
(δ)
k (t/δ; θ) = φ(t; θ), (5)

where:

φ(t; θ) =

∫ t

0

Λave(τ ; θ)

τ
dτ, (6)

with

Λave(t; θ) =

N∑

ℓ=1

Λℓ(πℓt; θ). (7)

Let us introduce the corresponding rate function:

φ⋆(γ; θ) != sup
t∈R

[γt − φ(t; θ)], (8)

and recall that the error exponent in our setting corresponds
to a threshold γ = 0, and is accordingly defined as:

Φ(θ) = φ⋆(0; θ) != − inf
t∈R

φ(t; θ) > 0. (9)

Consider now a value t > 0. From the properties of the rate
function φ⋆(γ; θ), we have that:

−φ(t; θ) < mave(θ)t − φ(t; θ)φ⋆(mave(θ); θ) = 0. (10)

Accordingly, the value of t that maximizes the function
−φ(t) in (9) cannot but be negative. Let −τθ such negative
value, we can further write:

Φ(θ) = −φ(−τθ; θ). (11)

For later use, we observe that −τθ is the solution to the
following equation:

φ′(−τθ; θ) = 0 ⇒
N∑

ℓ=1

Λℓ(−πℓτθ; θ) = 0. (12)

where in the last equality we applied (6) and (7). Since

Λℓ(t; θ) = E[e
log

Lℓ(ξ|θ0)

Lℓ(ξ|θ0 ], with expectation computed under
the model Lℓ(ξ|θ0), we have that Λℓ(−1; θ) = 0. From the
strict convexity of Λℓ(t; θ), we know that Λℓ(t; θ) must be
positive for t < −1. Assume now that τθ > 1/πmin. In this
case, we would have:

t − 1

πℓ
Λℓ(πℓt; θ) (13)

πℓτθ >
πℓ

πmin
≥ 1 ⇒ Λℓ(−πℓτθ; θ) > 0, (14)

and, hence, in order to satisfy the last equality in (12), we
must surely have:

τθ ≤ 1

πmin
(15)

Now, using (11) in (5), implies:

Λ
(δ)
k (−τθ/δ; θ) =

1

δ
[φ(τθ/δ; θ) + o(1)] = −1

δ
[Φ(θ) + o(1)] ,

(16)
where o(1) denotes a quantity that vanishes as δ → 0.

P[λ
(δ)
k,i(θ) ≤ 0] ≤ P

[
−τθ

δ
λ̃

(δ)
k,i(θ) ≥ τθ

δ
(1 − δ)iλmin

0

]

≤ e− (1−δ)i

δ λmin
0 τθeΛ

(δ)
k,i(−τθ/δ;θ)

= e− (1−δ)i

δ λmin
0 τθeΛ

(δ)
k (−τθ/δ;θ)

× eΛ
(δ)
k,i(−τθ/δ;θ)−Λ

(δ)
k (−τθ/δ;θ)

= e−(1/δ)[Φ(θ)+o(1)]e− (1−δ)i

δ λmin
0 τθ

× eΛ
(δ)
k,i(−τθ/δ;θ)−Λ

(δ)
k (−τθ/δ;θ). (17)

Now we observe that, in view of (4), the exponent of the
last term in (17) can be represented as:

−
N∑

ℓ=1

∞∑

m=i+1

Λℓ

(
−(1 − δ)m[Am+1]ℓkτθ

)
. (18)

Moreover, from the convexity properties of the LMGF
Λℓ(t; θ), we can write, for all t < 0:

Λℓ(t; θ) ≥ tΛ′
ℓ(0; θ) = tdℓ(θ), (19)

where ′ denotes derivative w.r.t. t, and where we used the
fact that the first derivative of the LMGF evaluated in 0 is
equal to the mean of the relative random variable. Using
(19) the difference of LMGFs in (18) can be upper bounded
by:

τθ

N∑

ℓ=1

dℓ(θ)

∞∑

m=i+1

(1 − δ)m[Am+1]ℓk ≤ (1 − δ)i

δ
τmaxdmax,

(20)

0 
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λmin

0 = min
θ ̸=θ0

min
ℓ=1,2,...,N

min[λℓ,0(θ), 0]. (1)

From (??) we know that λ̂
(δ)
k,i(θ) and λ̃

(δ)
k,i(θ) share the same

distribution. Thus, from (??) and (??) we have that (we recall
that d

= denotes equality in distribution):

λ
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d
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ℓ=1

[Ai]ℓkλℓ,0(θ)
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≥ λ̃

(δ)
k,i(θ) + (1 − δ)iλmin

0 , (2)

where the inequality follows from (??) and the fact that A
is a left-stochastic matrix.

Let us introduce the following LMGFs:

Λ
(δ)
k,i(t; θ) = log E

[
etλ̃

(δ)
k,i

(θ)
]
, Λ

(δ)
k (t; θ) = lim

i→∞
Λ

(δ)
k,i(t; θ),

(3)
which can be written explicitly as:

Λ
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Λℓ

(
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ℓ=1
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Λℓ

(
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)
, (4)

with Λℓ(t; θ) being the LMGF of the log-likelihood ratio
xℓ,m+1(θ). From the large-deviations analysis that we have
performed in Theorem ??, we know that:

lim
δ→0

δΛ
(δ)
k (t/δ; θ) = φ(t; θ), (5)

where:

φ(t; θ) =

∫ t

0

Λave(τ ; θ)

τ
dτ, (6)

with

Λave(t; θ) =

N∑

ℓ=1

Λℓ(πℓt; θ). (7)

Let us introduce the corresponding rate function:

φ⋆(γ; θ) != sup
t∈R

[γt − φ(t; θ)], (8)

and recall that the error exponent in our setting corresponds
to a threshold γ = 0, and is accordingly defined as:

Φ(θ) = φ⋆(0; θ) != − inf
t∈R

φ(t; θ) > 0. (9)

Consider now a value t > 0. From the properties of the rate
function φ⋆(γ; θ), we have that:

−φ(t; θ) < mave(θ)t − φ(t; θ)φ⋆(mave(θ); θ) = 0. (10)

Accordingly, the value of t that maximizes the function
−φ(t) in (9) cannot but be negative. Let −τθ such negative
value, we can further write:

Φ(θ) = −φ(−τθ; θ). (11)

For later use, we observe that −τθ is the solution to the
following equation:

φ′(−τθ; θ) = 0 ⇒
N∑

ℓ=1

Λℓ(−πℓτθ; θ) = 0. (12)

where in the last equality we applied (6) and (7). Since

Λℓ(t; θ) = E[e
log

Lℓ(ξ|θ0)

Lℓ(ξ|θ0 ], with expectation computed under
the model Lℓ(ξ|θ0), we have that Λℓ(−1; θ) = 0. From the
strict convexity of Λℓ(t; θ), we know that Λℓ(t; θ) must be
positive for t < −1. Assume now that τθ > 1/πmin. In this
case, we would have:

t − 1

πℓ
Λℓ(t; θ) (13)

πℓτθ >
πℓ

πmin
≥ 1 ⇒ Λℓ(−πℓτθ; θ) > 0, (14)

and, hence, in order to satisfy the last equality in (12), we
must surely have:

τθ ≤ 1

πmin
(15)
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Moreover, from the convexity properties of the LMGF
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where the inequality follows from (??) and the fact that A
is a left-stochastic matrix.

Let us introduce the following LMGFs:

Λ
(δ)
k,i(t; θ) = log E

[
etλ̃

(δ)
k,i

(θ)
]
, Λ

(δ)
k (t; θ) = lim

i→∞
Λ

(δ)
k,i(t; θ),

(3)
which can be written explicitly as:

Λ
(δ)
k,i(t; θ) =

N∑

ℓ=1

i−1∑

m=0

Λℓ

(
δ(1 − δ)m[Am+1]ℓkt

)
,

Λ
(δ)
k,i(t; θ) =

N∑

ℓ=1

∞∑

m=0

Λℓ

(
δ(1 − δ)m[Am+1]ℓkt

)
, (4)

with Λℓ(t; θ) being the LMGF of the log-likelihood ratio
xℓ,m+1(θ). From the large-deviations analysis that we have
performed in Theorem ??, we know that:

lim
δ→0

δΛ
(δ)
k (t/δ; θ) = φ(t; θ), (5)

where:

φ(t; θ) =

∫ t

0

Λave(τ ; θ)

τ
dτ, (6)

with

Λave(t; θ) =

N∑

ℓ=1

Λℓ(πℓt; θ). (7)

Let us introduce the corresponding rate function:

φ⋆(γ; θ) != sup
t∈R

[γt − φ(t; θ)], (8)

and recall that the error exponent in our setting corresponds
to a threshold γ = 0, and is accordingly defined as:

Φ(θ) = φ⋆(0; θ) != − inf
t∈R

φ(t; θ) > 0. (9)

Consider now a value t > 0. From the properties of the rate
function φ⋆(γ; θ), we have that:

−φ(t; θ) < mave(θ)t − φ(t; θ)φ⋆(mave(θ); θ) = 0. (10)

Accordingly, the value of t that maximizes the function
−φ(t) in (9) cannot but be negative. Let −τθ such negative
value, we can further write:

Φ(θ) = −φ(−τθ; θ). (11)

For later use, we observe that −τθ is the solution to the
following equation:

φ′(−τθ; θ) = 0 ⇒
N∑

ℓ=1

Λℓ(−πℓτθ; θ) = 0. (12)

where in the last equality we applied (6) and (7). Since

Λℓ(t; θ) = E[e
log

Lℓ(ξ|θ0)

Lℓ(ξ|θ0 ], with expectation computed under
the model Lℓ(ξ|θ0), we have that Λℓ(−1; θ) = 0. From the
strict convexity of Λℓ(t; θ), we know that Λℓ(t; θ) must be
positive for t < −1. Assume now that τθ > 1/πmin. In this
case, we would have:

t − 1

πℓ
Λℓ(πℓt; θ) (13)

πℓτθ >
πℓ

πmin
≥ 1 ⇒ Λℓ(−πℓτθ; θ) > 0, (14)

and, hence, in order to satisfy the last equality in (12), we
must surely have:

τθ ≤ 1

πmin
(15)

Now, using (11) in (5), implies:

Λ
(δ)
k (−τθ/δ; θ) =

1

δ
[φ(τθ/δ; θ) + o(1)] = −1

δ
[Φ(θ) + o(1)] ,

(16)
where o(1) denotes a quantity that vanishes as δ → 0.

P[λ
(δ)
k,i(θ) ≤ 0] ≤ P

[
−τθ

δ
λ̃

(δ)
k,i(θ) ≥ τθ

δ
(1 − δ)iλmin

0

]

≤ e− (1−δ)i

δ λmin
0 τθeΛ

(δ)
k,i(−τθ/δ;θ)

= e− (1−δ)i

δ λmin
0 τθeΛ

(δ)
k (−τθ/δ;θ)

× eΛ
(δ)
k,i(−τθ/δ;θ)−Λ

(δ)
k (−τθ/δ;θ)

= e−(1/δ)[Φ(θ)+o(1)]e− (1−δ)i

δ λmin
0 τθ

× eΛ
(δ)
k,i(−τθ/δ;θ)−Λ

(δ)
k (−τθ/δ;θ). (17)

Now we observe that, in view of (4), the exponent of the
last term in (17) can be represented as:

−
N∑

ℓ=1

∞∑

m=i+1

Λℓ

(
−(1 − δ)m[Am+1]ℓkτθ

)
. (18)

Moreover, from the convexity properties of the LMGF
Λℓ(t; θ), we can write, for all t < 0:

Λℓ(t; θ) ≥ tΛ′
ℓ(0; θ) = tdℓ(θ), (19)

where ′ denotes derivative w.r.t. t, and where we used the
fact that the first derivative of the LMGF evaluated in 0 is
equal to the mean of the relative random variable. Using
(19) the difference of LMGFs in (18) can be upper bounded
by:

τθ

N∑

ℓ=1

dℓ(θ)

∞∑

m=i+1

(1 − δ)m[Am+1]ℓk ≤ (1 − δ)i

δ
τmaxdmax,

(20)

Figure 5.13: Typical shape of the LMGF of the ℓ-th likelihood.

Thus, from (5.18) and (5.19) we have that (we recall that d= denotes equality in distribution):

λ
(δ)
k,i(θ) d= λ̃

(δ)
k,i(θ) + (1 − δ)i

K∑
ℓ=1

[Ai]ℓkλℓ,0(θ)

≥ λ̃
(δ)
k,i(θ) + (1 − δ)i

K∑
ℓ=1

πℓλℓ,0(θ) − κ(1 − δ)iβi
K∑

ℓ=1
|λℓ,0(θ)|

= λ̃
(δ)
k,i(θ) + (1 − δ)i

K∑
ℓ=1

πℓλℓ,0(θ) − K2(θ)
|t⋆

θ|
(1 − δ)iβi, (5.204)

where the inequality follows from Property 2.1, and in the last equality we used (5.64). In view
of (5.204), and since t⋆

θ < 0, we can write:

P (λ(δ)
k,i(θ) ≤ 0) ≤ P

(
λ̃

(δ)
k,i(θ) ≤ −(1 − δ)iλave,0(θ) + K2(θ)

|t⋆
θ|

(1 − δ)iβi

)
(a)= P

(
t⋆
θ

δ
λ̃

(δ)
k,i(θ)≥ |t⋆

θ|
δ

(1 − δ)iλave,0(θ)− K2(θ)
δ

(1 − δ)iβi
)

(b)
≤

E
(

exp
{

t⋆
θ
δ λ̃

(δ)
k,i(θ)

})
exp

{ |t⋆
θ
|

δ (1 − δ)iλave,0(θ) − K2(θ)
δ (1 − δ)iβi

}
(c)= e

1
δ

[
δΛ(δ)

k,i

(
t⋆
θ
δ

;θ
)

−(1−δ)i|t⋆
θ |λave,0+K2(θ)(1−δ)iβi

]
, (5.205)

where (a) follows from multiplying by t⋆
θ/δ both sides of the inequality in the probability

brackets and taking into account the fact that t⋆
θ < 0; (b) follows from applying Chernoff’s

bound; and in (c) we applied Property P3) and introduced the LMGF of λ̃
(δ)
k,i(θ), which can be

explicitely defined as:
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with Λℓ(t; θ) being the LMGF of the log-likelihood ratio xℓ,m+1(θ). Now, letting

ci ≜ (1 − δ)i−1, (5.207)

and applying Eqs. (85) and (86) from [82] to the inner summation in (5.206), we have the
following representation:
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, (5.208)

where (a) follows from (5.193), while (b) and (c) from properties P1) and P2) in Lemma 5.2,
respectively. Using now (5.208) in (5.205) and using the definition of K1(θ) in (5.63) we get the
upper bound in (5.65).

5.G Proof of Corollary 5.1

We now determine the adaptation time as the critical instant after which we stay close to
the exponent Φ, in the precise sense specified by (5.67). Let us consider first the case where
λave(θ) ≥ mave(θ) for all θ ̸= θ0. In this case, we have K1(θ) ≤ 0 for all θ and, hence, in view
of (5.65), condition (5.67) will be met if we ensure that:

i >
1

log β−1 log K2
ϵ Φ ⇒ K2 βi < ϵΦ, (5.209)

which shows that the choice for TASL in (5.68) guarantees (5.67) for all i > TASL.

We continue by examining the unfavorable case where λave(θ) < mave(θ) for at least one value
θ ̸= θ0. In this case we have K1 = maxθ ̸=θ0 K1(θ) > 0, and we can write:

i >
1

log(1 − δ)−1 log K1
ϵ Φ ⇒ (1 − δ)iK1 < ϵΦ. (5.210)

Then, if we set the adaptation time TASL according to the law in (5.210), the quantity βi

appearing in (5.65) would decay to zero as ≈ β1/δ , and, hence, would be incorporated into the
higher-order term O(δ), and the claim of the corollary is proved.
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6 Learning with Imperfect Models

6.1 Introduction1

The social learning problem, introduced in Chapter 1, can be cast into the problem of decen-
tralized classification of streaming observations. In this framework, hypotheses are replaced
by classes and observations by features. The network of agents aims to find the class that
best explains the growing number of observed features. For example, a network of cameras
is recording a particular road intersection, and the network is trying to detect whether at any
time an accident takes place. In this case, the possible classes are {accident, normal traffic} and
the features are RGB frames captured by the cameras.

Social learning solutions, discussed in the previous chapters, require however prior knowledge
of the true probability distributions characterizing the received features, referred to as likelihoods,
which are in general not available in real-world applications. In practice, these models are only
approximate, oftentimes the result of a previous training stage, where, from limited data, a
parameterized model is learned.

In this chapter, we propose the Social Machine Learning (SML) strategy, which is a decentralized
algorithm for combining the outputs of a heterogeneous network of classifiers over space and
time, based on the social learning algorithms proposed in [41], [42], [76], [77]. The network
is heterogeneous in two main aspects: First, agents may be observing different (possibly non-
overlapping) sets of attributes of the same observed scene; Second, their statistical models need
not be the same, e.g., agents may be observing the same attribute from different perspectives,
which allows for a distribution diversity across agents. The strategy consists of two phases: A
training phase, in which the classifiers are independently trained given a finite set of labeled data
samples, and a prediction phase, in which the trained classifiers are deployed in a collaborative
structure while observing streaming unlabeled samples.

The SML strategy proposed in this chapter inherits the following qualities from social learning:
i) It is able to combine heterogeneous classifiers, i.e., using features with different dimensions
and statistical models; ii) It can adapt in view of non-stationary conditions, i.e., under changing
real-time measurements; iii) It has asymptotic performance guarantees, achieving consistent

1This chapter is adapted from [92], [93].
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learning with high probability despite the imperfectly trained models; iv) It allows for continuous
accuracy improvement as the number of prediction samples grows.

6.1.1 Related Work

The issue of considering imperfect likelihood models in social learning is recognized in the
works [94], [95], where the authors propose a framework for incorporating uncertainty into
non-Bayesian social learning. While [94] focuses only on sets of Gaussian distributions, their
proposed strategy in [95] broadens the approach, but requires nonetheless prior knowledge
about the structure of the likelihoods models, i.e., the exact parameterization of the distributions.
While relevant for numerically generated data, in practical applications there is generally little
a priori evidence regarding the structure of likelihoods, e.g., in the distributed classification of
images or videos. Our proposed SML strategy, on the other hand, has the advantage of allowing
the use of a fairly general class of distributions, which is relevant in practical machine learning
tasks.

In the strategy we propose, agents (or classifiers) cooperate with neighbors to overcome local
spatial limitations. They also aggregate their instantaneous opinions from streaming obser-
vations, strengthening their decision-making capabilities over time. These two aspects, i.e.,
information aggregation over space and time, are common topics of research in the fields of
ensemble [96] and multi-view learning [97].

Popular examples of ensemble approaches are bagging [98] and boosting [99], in which classifiers
combine weighted decisions across space. However, such combination takes place in a centralized
manner, namely, it is assumed that all agents communicate their decisions to a fusion center.
This mechanism is fundamentally different from the fully decentralized setting addressed here,
where only local cooperation between neighboring agents is permitted, and each individual
agent is eventually able to learn the correct class. Moreover, both bagging and boosting methods
do not address the streaming data case, i.e., they do not leverage the temporal quality of the
online observations.

In multi-view learning, multiple views of the same data are available, which are jointly used
to improve generalization performance. Multi-view co-training approaches [100] are notably
suitable for semi-supervised learning, where a substantial number of unlabeled samples are
available. In these approaches, distinct classifiers are trained on different views, and one
classifier’s predictions on new unlabeled examples are used to enlarge the labeled training set
of the other. The procedure is repeated over the unlabeled samples, improving their accuracy
over successive iterations. However, multi-view learning does not address the decentralized and
streaming-data aspects. Regarding the former aspect, in multi-view learning the classifiers are
not spatially distributed or, if they are, it is simply assumed that they can share their beliefs
without any constraints (i.e., as if they were co-located). Regarding the latter aspect, multi-view
learning does not assume that streaming data are available for prediction.
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6.2 Problem Setting

In this section, we revisit some concepts introduced in Chapter 2 and present the social learning
problem from a classification perspective.

6.2.1 Inference Problem

We consider a network of K agents or classifiers, indexed by k ∈ {1, 2, . . . , K}, trying to
identify the true state of nature γ0 out of a binary set of hypotheses or classes Γ = {−1, +1}.
The true state characterizes the scene all agents are observing. To make a decision on the true
state, each agent relies on the observation of streaming private data, which are features reflecting
on the observed scene. Data are qualified as private due to the implicit assumption that raw
observations cannot be shared among agents in order to, for example, minimize communication
costs or preserve secrecy.

More specifically, each agent k observes at each instant i the feature vector hk,i ∈ Hk. The
feature vectors are assumed to be independent and identically distributed (i.i.d.) over time.
Moreover, the features hk,i at agent k given the state γ0 form a sequence of i.i.d. random vectors
distributed according to some conditional distribution (or likelihood):

hk,i ∼ Lk(h|γ0), h ∈ Hk, γ0 ∈ Γ. (6.1)

Notably, the model allows the features to be dependent across agents. The feature set Hk is
particular to agent k, allowing agents to observe different attributes from the same scene; in
particular, the dimension of Hk can be generally different across the agents. For example, an
agent might be observing RGB video frames while another might be receiving infrared imagery
taken both from the same street scene. Another source of heterogeneity is the likelihood
model Lk(h|γ), which differs across agents and reflects their individual perceptions. Within the
previous street scene example, agents might observe frames captured under different, possibly
non-overlapping, fields of view.

We can treat the true state of nature as a random variable γ0 and furthermore establish that the
pair (hk,i,γ0) is distributed according to the following joint distribution:

(hk,i,γ0) ∼ pk(h, γ) = Lk(h|γ)pk(γ), (6.2)

with h ∈ Hk, γ ∈ Γ, for every i = 1, 2, . . . due to the i.i.d. assumption over time. Here, the
notation pk(γ) corresponds to the prior distribution at agent k for γ0 over the discrete set of
hypotheses Γ.

If the likelihood and prior distributions are perfectly known to agent k, different strategies can
be deployed to enable truth learning. In a noncooperative framework, where each agent has
enough information to solve the problem on their own, we can resort to the Bayes classifier.
Alternatively, to leverage the data spread across different agents of the network, a cooperative
strategy can be used, such as one of the existing social learning methods. We discuss each of
the two strategies in more detail in the next paragraphs.
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<latexit sha1_base64="VFc4RsLeNETQSSn3f+ieLTFu1yU=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtsQ9lsJ+3SzSbsboQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LejFMMYjqQPOKMGis90l4+Il0UYtKr1ty6OwNZJl5BalCg2at+dfsJy2KUhgmqdcdzUxPkVBnOBE4q3UxjStmIDrBjqaQx6iCfXTwhJ1bpkyhRtqQhM/X3RE5jrcdxaDtjaoZ60ZuK/3mdzESXQc5lmhmUbL4oygQxCZm+T/pcITNibAllittbCRtSRZmxIVVsCN7iy8vEP6tf1b2781rjukijDEdwDKfgwQU04Baa4AMDCc/wCm+Odl6cd+dj3lpyiplD+APn8wfSK5CO</latexit><latexit sha1_base64="VFc4RsLeNETQSSn3f+ieLTFu1yU=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtsQ9lsJ+3SzSbsboQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LejFMMYjqQPOKMGis90l4+Il0UYtKr1ty6OwNZJl5BalCg2at+dfsJy2KUhgmqdcdzUxPkVBnOBE4q3UxjStmIDrBjqaQx6iCfXTwhJ1bpkyhRtqQhM/X3RE5jrcdxaDtjaoZ60ZuK/3mdzESXQc5lmhmUbL4oygQxCZm+T/pcITNibAllittbCRtSRZmxIVVsCN7iy8vEP6tf1b2781rjukijDEdwDKfgwQU04Baa4AMDCc/wCm+Odl6cd+dj3lpyiplD+APn8wfSK5CO</latexit><latexit sha1_base64="VFc4RsLeNETQSSn3f+ieLTFu1yU=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtsQ9lsJ+3SzSbsboQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LejFMMYjqQPOKMGis90l4+Il0UYtKr1ty6OwNZJl5BalCg2at+dfsJy2KUhgmqdcdzUxPkVBnOBE4q3UxjStmIDrBjqaQx6iCfXTwhJ1bpkyhRtqQhM/X3RE5jrcdxaDtjaoZ60ZuK/3mdzESXQc5lmhmUbL4oygQxCZm+T/pcITNibAllittbCRtSRZmxIVVsCN7iy8vEP6tf1b2781rjukijDEdwDKfgwQU04Baa4AMDCc/wCm+Odl6cd+dj3lpyiplD+APn8wfSK5CO</latexit><latexit sha1_base64="X/BbPPQRM1pmBhxdK1enSbL+gJw=">AAAB2HicbZDNSgMxFIXv1L86Vq1rN8EiuCozbtSd4MZlBccW2qFkMnfa0ExmSO4IpfQFXLhRfDB3vo3pz0KtBwIf5yTk3pOUSloKgi+vtrW9s7tX3/cPGv7h0XGz8WSLygiMRKEK00u4RSU1RiRJYa80yPNEYTeZ3C3y7jMaKwv9SNMS45yPtMyk4OSszrDZCtrBUmwTwjW0YK1h83OQFqLKUZNQ3Np+GJQUz7ghKRTO/UFlseRiwkfYd6h5jjaeLcecs3PnpCwrjDua2NL9+WLGc2uneeJu5pzG9m+2MP/L+hVl1/FM6rIi1GL1UVYpRgVb7MxSaVCQmjrgwkg3KxNjbrgg14zvOgj/brwJ0WX7ph0+BFCHUziDCwjhCm7hHjoQgYAUXuDNG3uv3vuqqpq37uwEfsn7+AaqKYoN</latexit><latexit sha1_base64="CyWPt4PQuZbrCGDJTEs0b23jtvw=">AAAB5XicbZDNSgMxFIXv1L9aq1a3boJFcFVm3Kg7wY3LCtYW26Fk0jttaCYzJHeEMvQt3LhQ8ZXc+TamPwttPRD4OCch954oU9KS7397pY3Nre2d8m5lr7p/cFg7qj7aNDcCWyJVqelE3KKSGlskSWEnM8iTSGE7Gt/O8vYzGitT/UCTDMOED7WMpeDkrCfeL8ash0pN+7W63/DnYusQLKEOSzX7ta/eIBV5gpqE4tZ2Az+jsOCGpFA4rfRyixkXYz7ErkPNE7RhMZ94ys6cM2BxatzRxObu7xcFT6ydJJG7mXAa2dVsZv6XdXOKr8JC6iwn1GLxUZwrRimbrc8G0qAgNXHAhZFuViZG3HBBrqSKKyFYXXkdWheN60Zw70MZTuAUziGAS7iBO2hCCwRoeIE3ePes9+p9LNoqecvajuGPvM8fl+WPMw==</latexit><latexit sha1_base64="CyWPt4PQuZbrCGDJTEs0b23jtvw=">AAAB5XicbZDNSgMxFIXv1L9aq1a3boJFcFVm3Kg7wY3LCtYW26Fk0jttaCYzJHeEMvQt3LhQ8ZXc+TamPwttPRD4OCch954oU9KS7397pY3Nre2d8m5lr7p/cFg7qj7aNDcCWyJVqelE3KKSGlskSWEnM8iTSGE7Gt/O8vYzGitT/UCTDMOED7WMpeDkrCfeL8ash0pN+7W63/DnYusQLKEOSzX7ta/eIBV5gpqE4tZ2Az+jsOCGpFA4rfRyixkXYz7ErkPNE7RhMZ94ys6cM2BxatzRxObu7xcFT6ydJJG7mXAa2dVsZv6XdXOKr8JC6iwn1GLxUZwrRimbrc8G0qAgNXHAhZFuViZG3HBBrqSKKyFYXXkdWheN60Zw70MZTuAUziGAS7iBO2hCCwRoeIE3ePes9+p9LNoqecvajuGPvM8fl+WPMw==</latexit><latexit sha1_base64="MobXesnSIGc3InI0DLv742IJ/go=">AAAB8HicbVBNT8JAEJ3iF+IX6tHLRmLiibRexBvRi0dMrBChIdtlChu222Z3a0Ia/oUXD2q8+nO8+W9coAcFXzLJy3szmZkXpoJr47rfTmltfWNzq7xd2dnd2z+oHh496CRTDH2WiER1QqpRcIm+4UZgJ1VI41BgOxzfzPz2EyrNE3lvJikGMR1KHnFGjZUeaT8fkx4KMe1Xa27dnYOsEq8gNSjQ6le/eoOEZTFKwwTVuuu5qQlyqgxnAqeVXqYxpWxMh9i1VNIYdZDPL56SM6sMSJQoW9KQufp7Iqex1pM4tJ0xNSO97M3E/7xuZqJGkHOZZgYlWyyKMkFMQmbvkwFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88irxL+pXde/OrTWvizTKcAKncA4eXEITbqEFPjCQ8Ayv8OZo58V5dz4WrSWnmDmGP3A+fwDQ65CK</latexit><latexit sha1_base64="VFc4RsLeNETQSSn3f+ieLTFu1yU=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtsQ9lsJ+3SzSbsboQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LejFMMYjqQPOKMGis90l4+Il0UYtKr1ty6OwNZJl5BalCg2at+dfsJy2KUhgmqdcdzUxPkVBnOBE4q3UxjStmIDrBjqaQx6iCfXTwhJ1bpkyhRtqQhM/X3RE5jrcdxaDtjaoZ60ZuK/3mdzESXQc5lmhmUbL4oygQxCZm+T/pcITNibAllittbCRtSRZmxIVVsCN7iy8vEP6tf1b2781rjukijDEdwDKfgwQU04Baa4AMDCc/wCm+Odl6cd+dj3lpyiplD+APn8wfSK5CO</latexit><latexit sha1_base64="VFc4RsLeNETQSSn3f+ieLTFu1yU=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtsQ9lsJ+3SzSbsboQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LejFMMYjqQPOKMGis90l4+Il0UYtKr1ty6OwNZJl5BalCg2at+dfsJy2KUhgmqdcdzUxPkVBnOBE4q3UxjStmIDrBjqaQx6iCfXTwhJ1bpkyhRtqQhM/X3RE5jrcdxaDtjaoZ60ZuK/3mdzESXQc5lmhmUbL4oygQxCZm+T/pcITNibAllittbCRtSRZmxIVVsCN7iy8vEP6tf1b2781rjukijDEdwDKfgwQU04Baa4AMDCc/wCm+Odl6cd+dj3lpyiplD+APn8wfSK5CO</latexit><latexit sha1_base64="VFc4RsLeNETQSSn3f+ieLTFu1yU=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtsQ9lsJ+3SzSbsboQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LejFMMYjqQPOKMGis90l4+Il0UYtKr1ty6OwNZJl5BalCg2at+dfsJy2KUhgmqdcdzUxPkVBnOBE4q3UxjStmIDrBjqaQx6iCfXTwhJ1bpkyhRtqQhM/X3RE5jrcdxaDtjaoZ60ZuK/3mdzESXQc5lmhmUbL4oygQxCZm+T/pcITNibAllittbCRtSRZmxIVVsCN7iy8vEP6tf1b2781rjukijDEdwDKfgwQU04Baa4AMDCc/wCm+Odl6cd+dj3lpyiplD+APn8wfSK5CO</latexit><latexit sha1_base64="VFc4RsLeNETQSSn3f+ieLTFu1yU=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtsQ9lsJ+3SzSbsboQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LejFMMYjqQPOKMGis90l4+Il0UYtKr1ty6OwNZJl5BalCg2at+dfsJy2KUhgmqdcdzUxPkVBnOBE4q3UxjStmIDrBjqaQx6iCfXTwhJ1bpkyhRtqQhM/X3RE5jrcdxaDtjaoZ60ZuK/3mdzESXQc5lmhmUbL4oygQxCZm+T/pcITNibAllittbCRtSRZmxIVVsCN7iy8vEP6tf1b2781rjukijDEdwDKfgwQU04Baa4AMDCc/wCm+Odl6cd+dj3lpyiplD+APn8wfSK5CO</latexit><latexit sha1_base64="VFc4RsLeNETQSSn3f+ieLTFu1yU=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtsQ9lsJ+3SzSbsboQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LejFMMYjqQPOKMGis90l4+Il0UYtKr1ty6OwNZJl5BalCg2at+dfsJy2KUhgmqdcdzUxPkVBnOBE4q3UxjStmIDrBjqaQx6iCfXTwhJ1bpkyhRtqQhM/X3RE5jrcdxaDtjaoZ60ZuK/3mdzESXQc5lmhmUbL4oygQxCZm+T/pcITNibAllittbCRtSRZmxIVVsCN7iy8vEP6tf1b2781rjukijDEdwDKfgwQU04Baa4AMDCc/wCm+Odl6cd+dj3lpyiplD+APn8wfSK5CO</latexit><latexit sha1_base64="VFc4RsLeNETQSSn3f+ieLTFu1yU=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtsQ9lsJ+3SzSbsboQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LejFMMYjqQPOKMGis90l4+Il0UYtKr1ty6OwNZJl5BalCg2at+dfsJy2KUhgmqdcdzUxPkVBnOBE4q3UxjStmIDrBjqaQx6iCfXTwhJ1bpkyhRtqQhM/X3RE5jrcdxaDtjaoZ60ZuK/3mdzESXQc5lmhmUbL4oygQxCZm+T/pcITNibAllittbCRtSRZmxIVVsCN7iy8vEP6tf1b2781rjukijDEdwDKfgwQU04Baa4AMDCc/wCm+Odl6cd+dj3lpyiplD+APn8wfSK5CO</latexit>

a`k
<latexit sha1_base64="YvPFM27b8ZVaped9klo4iffTb8I=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lEUG9FLx4rGFtIQ9lsJ+3SzSbsToQS+jO8eFDx6r/x5r9x2+ag1QcDj/dmmJkXZVIYdN0vp7Kyura+Ud2sbW3v7O7V9w8eTJprDj5PZaq7ETMghQIfBUroZhpYEknoROObmd95BG1Equ5xkkGYsKESseAMrRSwfkF7ICUdT/v1htt056B/iVeSBinR7tc/e4OU5wko5JIZE3huhmHBNAouYVrr5QYyxsdsCIGliiVgwmJ+8pSeWGVA41TbUkjn6s+JgiXGTJLIdiYMR2bZm4n/eUGO8WVYCJXlCIovFsW5pJjS2f90IDRwlBNLGNfC3kr5iGnG0aZUsyF4yy//Jf5Z86rp3Z03WtdlGlVyRI7JKfHIBWmRW9ImPuEkJU/khbw66Dw7b877orXilDOH5Becj28qZZC4</latexit><latexit sha1_base64="YvPFM27b8ZVaped9klo4iffTb8I=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lEUG9FLx4rGFtIQ9lsJ+3SzSbsToQS+jO8eFDx6r/x5r9x2+ag1QcDj/dmmJkXZVIYdN0vp7Kyura+Ud2sbW3v7O7V9w8eTJprDj5PZaq7ETMghQIfBUroZhpYEknoROObmd95BG1Equ5xkkGYsKESseAMrRSwfkF7ICUdT/v1htt056B/iVeSBinR7tc/e4OU5wko5JIZE3huhmHBNAouYVrr5QYyxsdsCIGliiVgwmJ+8pSeWGVA41TbUkjn6s+JgiXGTJLIdiYMR2bZm4n/eUGO8WVYCJXlCIovFsW5pJjS2f90IDRwlBNLGNfC3kr5iGnG0aZUsyF4yy//Jf5Z86rp3Z03WtdlGlVyRI7JKfHIBWmRW9ImPuEkJU/khbw66Dw7b877orXilDOH5Becj28qZZC4</latexit><latexit sha1_base64="YvPFM27b8ZVaped9klo4iffTb8I=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lEUG9FLx4rGFtIQ9lsJ+3SzSbsToQS+jO8eFDx6r/x5r9x2+ag1QcDj/dmmJkXZVIYdN0vp7Kyura+Ud2sbW3v7O7V9w8eTJprDj5PZaq7ETMghQIfBUroZhpYEknoROObmd95BG1Equ5xkkGYsKESseAMrRSwfkF7ICUdT/v1htt056B/iVeSBinR7tc/e4OU5wko5JIZE3huhmHBNAouYVrr5QYyxsdsCIGliiVgwmJ+8pSeWGVA41TbUkjn6s+JgiXGTJLIdiYMR2bZm4n/eUGO8WVYCJXlCIovFsW5pJjS2f90IDRwlBNLGNfC3kr5iGnG0aZUsyF4yy//Jf5Z86rp3Z03WtdlGlVyRI7JKfHIBWmRW9ImPuEkJU/khbw66Dw7b877orXilDOH5Becj28qZZC4</latexit><latexit sha1_base64="YvPFM27b8ZVaped9klo4iffTb8I=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lEUG9FLx4rGFtIQ9lsJ+3SzSbsToQS+jO8eFDx6r/x5r9x2+ag1QcDj/dmmJkXZVIYdN0vp7Kyura+Ud2sbW3v7O7V9w8eTJprDj5PZaq7ETMghQIfBUroZhpYEknoROObmd95BG1Equ5xkkGYsKESseAMrRSwfkF7ICUdT/v1htt056B/iVeSBinR7tc/e4OU5wko5JIZE3huhmHBNAouYVrr5QYyxsdsCIGliiVgwmJ+8pSeWGVA41TbUkjn6s+JgiXGTJLIdiYMR2bZm4n/eUGO8WVYCJXlCIovFsW5pJjS2f90IDRwlBNLGNfC3kr5iGnG0aZUsyF4yy//Jf5Z86rp3Z03WtdlGlVyRI7JKfHIBWmRW9ImPuEkJU/khbw66Dw7b877orXilDOH5Becj28qZZC4</latexit>

C1
<latexit sha1_base64="dG+YcICHo4fdm4gYTnUp7Dj2pLk=">AAACE3icbVBLSgNBFOzxG+Mv6tJNYxBchZko6DKQjSuJYD6QDKGn8yZp0vOx+40QhhxD3Oo53IlbD+AxvIE9ySxMYkFDUVXv9aO8WAqNtv1tra1vbG5tF3aKu3v7B4elo+OWjhLFockjGamOxzRIEUITBUroxApY4Eloe+N65refQGkRhQ84icEN2DAUvuAMjeT2AoYjzmRan/adfqlsV+wZ6CpxclImORr90k9vEPEkgBC5ZFp3HTtGN2UKBZcwLfYSDTHjYzaErqEhC0C76ezoKT03yoD6kTIvRDpT/06kLNB6EngmmR2pl71M/M/rJujfuKkI4wQh5POP/ERSjGjWAB0IBRzlxBDGlTC3Uj5iinE0PS1systxU0i0ScY4LZqOnOVGVkmrWnEuK9X7q3LtLm+rQE7JGbkgDrkmNXJLGqRJOHkkL+SVvFnP1rv1YX3Oo2tWPnNCFmB9/QJlPJ8/</latexit>

C2
<latexit sha1_base64="NyM/EDqhCagZKUFVTbsy4muFyzE=">AAACE3icbVDLSsNAFL3xWeur6tJNsAiuSlIFXRa6cSUV7APaUCbTSTt0MokzN0IJ/Qxxq9/hTtz6AX6Gf+CkzcK2Hhg4nHPuncvxY8E1Os63tba+sbm1Xdgp7u7tHxyWjo5bOkoUZU0aiUh1fKKZ4JI1kaNgnVgxEvqCtf1xPfPbT0xpHskHnMTMC8lQ8oBTgkbyeiHBESUirU/71X6p7FScGexV4uakDDka/dJPbxDRJGQSqSBad10nRi8lCjkVbFrsJZrFhI7JkHUNlSRk2ktnR0/tc6MM7CBS5km0Z+rfiZSEWk9C3ySzI/Wyl4n/ed0Egxsv5TJOkEk6/yhIhI2RnTVgD7hiFMXEEEIVN7fadEQUoWh6WtiUl+OlLNEmGeO0aDpylxtZJa1qxb2sVO+vyrW7vK0CnMIZXIAL11CDW2hAEyg8wgu8wpv1bL1bH9bnPLpm5TMnsADr6xdm359A</latexit>

C3
<latexit sha1_base64="Bfx6ulq7Yob0EQFstGaRboWxm9E=">AAACE3icbVDLSsNAFL2pr1pfVZduBovgqiStoMtCN66kgn1AG8pkOmmHTiZxZiKUkM8Qt/od7sStH+Bn+AdO2ixs64GBwznn3rkcL+JMadv+tgobm1vbO8Xd0t7+weFR+fiko8JYEtomIQ9lz8OKciZoWzPNaS+SFAcep11v2sz87hOVioXiQc8i6gZ4LJjPCNZGcgcB1hOCedJMh/VhuWJX7TnQOnFyUoEcrWH5ZzAKSRxQoQnHSvUdO9JugqVmhNO0NIgVjTCZ4jHtGypwQJWbzI9O0YVRRsgPpXlCo7n6dyLBgVKzwDPJ7Ei16mXif14/1v6NmzARxZoKsvjIjznSIcoaQCMmKdF8ZggmkplbEZlgiYk2PS1tystxExork4x0WjIdOauNrJNOrerUq7X7q0rjLm+rCGdwDpfgwDU04BZa0AYCj/ACr/BmPVvv1of1uYgWrHzmFJZgff0CaIKfQQ==</latexit>

C4
<latexit sha1_base64="kASPsrM+5WAUxGbgImIC7rzdZJY=">AAACE3icbVDLSsNAFJ3UV62vqks3g0VwVZJa0GWhG1dSwT6gDWUyvWmHTiZxZiKUkM8Qt/od7sStH+Bn+AdO2ixs64GBwznn3rkcL+JMadv+tgobm1vbO8Xd0t7+weFR+fiko8JYUmjTkIey5xEFnAloa6Y59CIJJPA4dL1pM/O7TyAVC8WDnkXgBmQsmM8o0UZyBwHRE0p40kyH9WG5YlftOfA6cXJSQTlaw/LPYBTSOAChKSdK9R070m5CpGaUQ1oaxAoiQqdkDH1DBQlAucn86BRfGGWE/VCaJzSeq38nEhIoNQs8k8yOVKteJv7n9WPt37gJE1GsQdDFR37MsQ5x1gAeMQlU85khhEpmbsV0QiSh2vS0tCkvx00gViYZ6bRkOnJWG1knnVrVuarW7uuVxl3eVhGdoXN0iRx0jRroFrVQG1H0iF7QK3qznq1368P6XEQLVj5zipZgff0CaiWfQg==</latexit>

C5
<latexit sha1_base64="/jfIymwJIZhyYVNfCxj560kW3OM=">AAACE3icbVDLSsNAFL2pr1pfVZduBovgqiRV0WWhG1dSwT6gDWUynbRDJ5M4MxFKyGeIW/0Od+LWD/Az/AMnbRa29cDA4Zxz71yOF3GmtG1/W4W19Y3NreJ2aWd3b/+gfHjUVmEsCW2RkIey62FFORO0pZnmtBtJigOP0443aWR+54lKxULxoKcRdQM8EsxnBGsjuf0A6zHBPGmkg6tBuWJX7RnQKnFyUoEczUH5pz8MSRxQoQnHSvUcO9JugqVmhNO01I8VjTCZ4BHtGSpwQJWbzI5O0ZlRhsgPpXlCo5n6dyLBgVLTwDPJ7Ei17GXif14v1v6NmzARxZoKMv/IjznSIcoaQEMmKdF8aggmkplbERljiYk2PS1systxExork4x0WjIdOcuNrJJ2repcVGv3l5X6Xd5WEU7gFM7BgWuowy00oQUEHuEFXuHNerberQ/rcx4tWPnMMSzA+voFa8ifQw==</latexit>

C6
<latexit sha1_base64="5bnWRxPy0JsQ8gz7Qt7mGOXpSyg=">AAACE3icbVDLSsNAFL2pr1pfVZduBovgqiRV1GWhG1dSwT6gDWUynbRDJ5M4MxFKyGeIW/0Od+LWD/Az/AMnbRa29cDA4Zxz71yOF3GmtG1/W4W19Y3NreJ2aWd3b/+gfHjUVmEsCW2RkIey62FFORO0pZnmtBtJigOP0443aWR+54lKxULxoKcRdQM8EsxnBGsjuf0A6zHBPGmkg6tBuWJX7RnQKnFyUoEczUH5pz8MSRxQoQnHSvUcO9JugqVmhNO01I8VjTCZ4BHtGSpwQJWbzI5O0ZlRhsgPpXlCo5n6dyLBgVLTwDPJ7Ei17GXif14v1v6NmzARxZoKMv/IjznSIcoaQEMmKdF8aggmkplbERljiYk2PS1systxExork4x0WjIdOcuNrJJ2repcVGv3l5X6Xd5WEU7gFM7BgWuowy00oQUEHuEFXuHNerberQ/rcx4tWPnMMSzA+voFbWufRA==</latexit>

C7
<latexit sha1_base64="DeWjKP1kIwm4mtWfsXc/KCeoQKI=">AAACE3icbVDLSsNAFJ3UV62vqks3g0VwVZIq1GWhG1dSwT6gDWUyvWmHTiZxZiKUkM8Qt/od7sStH+Bn+AdO2ixs64GBwznn3rkcL+JMadv+tgobm1vbO8Xd0t7+weFR+fiko8JYUmjTkIey5xEFnAloa6Y59CIJJPA4dL1pM/O7TyAVC8WDnkXgBmQsmM8o0UZyBwHRE0p40kyH9WG5YlftOfA6cXJSQTlaw/LPYBTSOAChKSdK9R070m5CpGaUQ1oaxAoiQqdkDH1DBQlAucn86BRfGGWE/VCaJzSeq38nEhIoNQs8k8yOVKteJv7n9WPt37gJE1GsQdDFR37MsQ5x1gAeMQlU85khhEpmbsV0QiSh2vS0tCkvx00gViYZ6bRkOnJWG1knnVrVuarW7q8rjbu8rSI6Q+foEjmojhroFrVQG1H0iF7QK3qznq1368P6XEQLVj5zipZgff0Cbw6fRQ==</latexit>

C8
<latexit sha1_base64="FHlYMJeDQWsOAk+XEofE/zSX6+k=">AAACE3icbVDLSsNAFJ3UV62vqks3g0VwVZIq2GWhG1dSwT6gDWUynbRDJ5M4cyOUkM8Qt/od7sStH+Bn+AdO2ixs64GBwznn3rkcLxJcg21/W4WNza3tneJuaW//4PCofHzS0WGsKGvTUISq5xHNBJesDRwE60WKkcATrOtNm5nffWJK81A+wCxibkDGkvucEjCSOwgITCgRSTMd1oflil2158DrxMlJBeVoDcs/g1FI44BJoIJo3XfsCNyEKOBUsLQ0iDWLCJ2SMesbKknAtJvMj07xhVFG2A+VeRLwXP07kZBA61ngmWR2pF71MvE/rx+DX3cTLqMYmKSLj/xYYAhx1gAeccUoiJkhhCpubsV0QhShYHpa2pSX4yYs1iYZQVoyHTmrjayTTq3qXFVr99eVxl3eVhGdoXN0iRx0gxroFrVQG1H0iF7QK3qznq1368P6XEQLVj5zipZgff0CcLGfRg==</latexit>

C9
<latexit sha1_base64="8Nb9x4cJMyXqtiw2uzPO9uv8cK8=">AAACE3icbVDLSsNAFL2pr1pfVZduBovgqiRVUHeFblxJBfuANpTJdNIOnUzizEQoIZ8hbvU73IlbP8DP8A+ctFnY1gMDh3POvXM5XsSZ0rb9bRXW1jc2t4rbpZ3dvf2D8uFRW4WxJLRFQh7KrocV5UzQlmaa024kKQ48TjvepJH5nScqFQvFg55G1A3wSDCfEayN5PYDrMcE86SRDm4G5YpdtWdAq8TJSQVyNAfln/4wJHFAhSYcK9Vz7Ei7CZaaEU7TUj9WNMJkgke0Z6jAAVVuMjs6RWdGGSI/lOYJjWbq34kEB0pNA88ksyPVspeJ/3m9WPvXbsJEFGsqyPwjP+ZIhyhrAA2ZpETzqSGYSGZuRWSMJSba9LSwKS/HTWisTDLSacl05Cw3skratapzUa3dX1bqd3lbRTiBUzgHB66gDrfQhBYQeIQXeIU369l6tz6sz3m0YOUzx7AA6+sXclSfRw==</latexit>

CK
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Figure 6.1: Diagram of the network of classifiers.

6.2.2 Bayes Classifier

When the KL divergence [16] between likelihoods Lk(h| + 1) and Lk(h| − 1) is strictly positive,
we say that agent k possesses informative likelihoods and can therefore distinguish classes
+1 and −1. Therefore, if the likelihood and prior distributions are known to agent k and its
likelihoods are informative, the agent can employ the Bayes classifier to solve the following
maximum-a-posteriori (MAP) problem given an observed sequence of features {hk,j} with
j = 1, 2, . . . , i:

γ
Bayes
k,i = arg max

γ∈Γ
pk(γ|hk,1,hk,2, . . . ,hk,i), (6.3)

where pk(γ|hk,1,hk,2, . . . ,hk,i) indicates the posterior probability of the event {γ = γ} given
the sequence {hk,j} with j = 1, 2, . . . , i.

In Section 1.1.1, we have seen that the Bayes classifier, or MAP estimator, can be obtained
from the recursive Bayesian update, and it learns the true underlying class with probability
one asymptotically. While this result ensures consistent learning, it requires each individual
agent to have informative likelihoods and thus to be able to distinguish both hypotheses. This
restriction motivates the pursuit of collaborative social learning schemes, where agents exchange
information to resolve ambiguities arising from incomplete information.

6.2.3 Social Learning

In a multi-agent setup, a network of agents is modeled as a strongly connected graph (Figure 6.1)—
see Chapter 2 for a more detailed discussion on strongly connected networks. Since the K−agent
network is collectively observing streaming features

h1,i,h2,i, . . . ,hK,i, (6.4)

it is beneficial for agents to cooperate to solve the inference problem. Cooperation allows agents
to aggregate K times more data at every instant and it furthermore enables successful learning
even when the decision problem is not identifiable for the individual agents, but is globally
identifiable at the network level.
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6.2 Problem Setting

In non-adaptive social learning [40]–[43], at every instant i, each agent k updates its belief
φk,i(γ) , i.e., a probability mass function over the set of classes Γ, according to a two-step
protocol:

ψk,i(γ) = φk,i−1(γ)Lk(hk,i|γ)∑
γ′∈Γ φk,i−1(γ′)Lk(hk,i|γ′) , (6.5)

φk,i(γ) =
exp

{∑K
ℓ=1 aℓk logψℓ,i(γ)

}
∑

γ′∈Γ exp
{∑K

ℓ=1 aℓk logψℓ,i(γ′)
} , (6.6)

where in the first step (Eq. (6.5)) agent k updates its intermediate belief ψk,i using the observed
feature vector hk,i. Then in the second step (Eq. (6.6)), agents share their intermediate beliefs
with neighboring agents and update their beliefs using a geometric averaging rule.

An equivalent linear way of representing (6.5) and (6.6) is in the form of the diffusion strategy [36],
[37]:

ηk,i = λk,i−1 + ck(hk,i), (6.7)

λk,i =
K∑

ℓ=1
aℓkηℓ,i, (6.8)

in terms of the following scalar quantities:

λk,i ≜ log
φk,i(+1)
φk,i(−1) , ηk,i ≜ log

ψk,i(+1)
ψk,i(−1) , (6.9)

ck(hk,i) ≜ log Lk(hk,i| + 1)
Lk(hk,i| − 1) . (6.10)

Equations (6.9) and (6.10) can be joined into a single equation as:

λk,i =
K∑

ℓ=1
aℓk

(
λℓ,i−1 + cℓ(hℓ,i)

)
. (6.11)

Following the discussion in Chapter 2, by developing the recursion in (6.11) it is possible to
show that, as i → ∞, the belief function is maximized at the true hypothesis, provided that
a weighted combination (through the Perron eigenvector weights) of the detection statistics
cℓ(hℓ,i) has positive expectation under hypothesis +1 and negative expectation under −1,
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Chapter 6. Learning with Imperfect Models

namely,2

K∑
ℓ=1

πℓELℓ(+1)cℓ(hℓ,i) > 0,
K∑

ℓ=1
πℓELℓ(−1)cℓ(hℓ,i) < 0 (6.13)

where ELℓ(γ) indicates that the expectation is computed with respect to the distribution Lℓ(h|γ).
We remark that the condition for consistency in (6.13) would apply to general detection statistics
cℓ(·), and not only to log-likelihood ratios as in (6.10). For example, detection statistics different
from (6.10) may arise because the agents compute mismatched log-likelihood ratios due to
imperfect knowledge. This observation is particularly relevant in our work since, when we will
examine the social machine learning setting (where the likelihoods are unknown) we will need
to work with general detection statistics learned from a training set. On the other hand, for the
specific case where the likelihoods are known and (6.10) is employed, the conditions in (6.13) are
satisfied whenever the network satisfies the global identifiability assumption(Assumption 2.5),
i.e., at least one agent in the network is able to distinguish the hypotheses. In this case, for at
least one agent k, it follows that

ELk(+1)ck(hk,i) = D(Lk(+1)||Lk(−1)) > 0 (6.14)

ELk(−1)ck(hk,i) = −D(Lk(−1)||Lk(+1)) < 0. (6.15)

From the positivity of the Perron eigenvector π, (6.14) and (6.15) imply that (6.13) is satisfied.
Therefore, the strategy in (6.5) and (6.6) allows agents to learn the truth asymptotically, as
i tends to infinity, with probability one [40], [41]. As already discussed in Chapter 5, the
implementation above is suitable only for a stationary world.

In a real-time application, we expect the environment conditions to change with time, and the
learning strategy should be able to track the drifting conditions within a reasonable response
time. In Chapter 5, an adaptive social learning strategy was proposed to overcome the lack of
adaptation in traditional social learning under non-stationary conditions [76], [77].

In one of the formulations seen in Chapter 5, the first step of the update rule in (6.16) is replaced
by the adaptive update seen in (5.3):

ψk,i(γ) =
φ1−δ

k,i−1(γ)Lk(hk,i|γ)∑
γ′∈Γ φ1−δ

k,i−1(γ′)Lk(hk,i|γ′)
, (6.16)

where 0 < δ ≪ 1 is a small step-size (or learning) parameter. The introduction of a step-size to
the local update in (6.16) infuses the algorithm with the ability to adapt in face of non-stationary
conditions with an adaptation time that scales as O(1/δ) [77]. In the limit case, when δ → 0,
we recover the Bayesian update in (6.5).

2The sufficient condition for consistent learning in (6.13) can be reached by following similar arguments as in
Appendix ??. Developing the recursion in (6.11) and dividing by i, we can conclude that

1
i
λk,i

a.s.−→
K∑

ℓ=1

πℓELℓ(γ0)cℓ(hℓ,i). (6.12)

If
∑K

ℓ=1 πℓELℓ(γ0)cℓ(hℓ,i) > 0, then λk,i goes to +∞, and thus agents decide for class +1. Otherwise if∑K

ℓ=1 πℓELℓ(γ0)cℓ(hℓ,i) < 0, then λk,i goes to −∞, and thus agents decide for class −1 .

176



6.3 Social Machine Learning

Similarly to (6.8), we can represent (6.6) and (6.16) in the form of an adaptive diffusion strat-
egy [78]:

ηk,i = (1 − δ)λk,i−1 + ck(hk,i), (6.17)

λk,i =
K∑

ℓ=1
aℓkηℓ,i, (6.18)

which yields:

λk,i =
K∑

ℓ=1
aℓk

(
(1 − δ)λℓ,i−1 + cℓ(hℓ,i)

)
. (6.19)

From (6.19), we see clearly that the step-size δ attenuates the influence of past data, embodied
by λℓ,i−1. As long as δ is strictly greater than zero and smaller than one, the recursion in (6.19)
can be shown to be stable, i.e., λk,i does not degenerate to ±∞ as i → ∞. This non-degenerate
behavior is the reason why the adaptive social learning algorithm can quickly recover from a
previous state when faced with changes in the environment.

The price for this improved adaptation is reflected on the learning accuracy. In contrast with the
almost sure convergence found in traditional social learning, consistent learning now occurs
asymptotically (as i → ∞) with high probability in the regime of small step-sizes (as δ → 0) [76],
[77]. The same sufficient condition for attaining consistent truth learning enunciated in (6.13),
applies for the adaptive social learning algorithm as well, even for general detection statistics
cℓ(·) [78].

In both social learning strategies detailed above, one important statistic diffused across agents
and over time is the log-ratio of likelihoods, cℓ(·) as in (6.10), which is classically employed as
the basic building block to design other types of distributed detection strategies [101], [102]. In
real-world applications, these likelihood models are generally unavailable. Instead, they are
obtained as the result of a prior training step in which (parameterized) models are trained using
a finite set of data examples.

In view of this practical limitation of social learning, we propose in this work a two-phase
learning strategy, which we refer to as Social Machine Learning (SML). In this strategy, the
likelihood models are assumed to be unknown.

6.3 Social Machine Learning

The SML strategy is designed as a two-step approach. In the training phase, the classifiers are
trained individually given private finite datasets. In the prediction phase, classifiers are deployed
in a cooperative social learning structure. In Figure 6.2, we show a diagram depicting the SML
approach. These distinct learning phases are detailed in the following sections.

To avoid confusion, random variables related to the training phase are topped with a symbol
∼. Furthermore, data samples pertaining to the training datasets are indexed by n, whereas,
in the prediction phase, they are indexed by i. For example, h̃k,n ∈ Hk represents the n−th
feature vector available in the training dataset of agent k, whereas hk,i ∈ Hk represents the
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C5
<latexit sha1_base64="/jfIymwJIZhyYVNfCxj560kW3OM=">AAACE3icbVDLSsNAFL2pr1pfVZduBovgqiRV0WWhG1dSwT6gDWUynbRDJ5M4MxFKyGeIW/0Od+LWD/Az/AMnbRa29cDA4Zxz71yOF3GmtG1/W4W19Y3NreJ2aWd3b/+gfHjUVmEsCW2RkIey62FFORO0pZnmtBtJigOP0443aWR+54lKxULxoKcRdQM8EsxnBGsjuf0A6zHBPGmkg6tBuWJX7RnQKnFyUoEczUH5pz8MSRxQoQnHSvUcO9JugqVmhNO01I8VjTCZ4BHtGSpwQJWbzI5O0ZlRhsgPpXlCo5n6dyLBgVLTwDPJ7Ei17GXif14v1v6NmzARxZoKMv/IjznSIcoaQEMmKdF8aggmkplbERljiYk2PS1systxExork4x0WjIdOcuNrJJ2repcVGv3l5X6Xd5WEU7gFM7BgWuowy00oQUEHuEFXuHNerberQ/rcx4tWPnMMSzA+voFa8ifQw==</latexit>

C6
<latexit sha1_base64="5bnWRxPy0JsQ8gz7Qt7mGOXpSyg=">AAACE3icbVDLSsNAFL2pr1pfVZduBovgqiRV1GWhG1dSwT6gDWUynbRDJ5M4MxFKyGeIW/0Od+LWD/Az/AMnbRa29cDA4Zxz71yOF3GmtG1/W4W19Y3NreJ2aWd3b/+gfHjUVmEsCW2RkIey62FFORO0pZnmtBtJigOP0443aWR+54lKxULxoKcRdQM8EsxnBGsjuf0A6zHBPGmkg6tBuWJX7RnQKnFyUoEczUH5pz8MSRxQoQnHSvUcO9JugqVmhNO01I8VjTCZ4BHtGSpwQJWbzI5O0ZlRhsgPpXlCo5n6dyLBgVLTwDPJ7Ei17GXif14v1v6NmzARxZoKMv/IjznSIcoaQEMmKdF8aggmkplbERljiYk2PS1systxExork4x0WjIdOcuNrJJ2repcVGv3l5X6Xd5WEU7gFM7BgWuowy00oQUEHuEFXuHNerberQ/rcx4tWPnMMSzA+voFbWufRA==</latexit>

C7
<latexit sha1_base64="DeWjKP1kIwm4mtWfsXc/KCeoQKI=">AAACE3icbVDLSsNAFJ3UV62vqks3g0VwVZIq1GWhG1dSwT6gDWUyvWmHTiZxZiKUkM8Qt/od7sStH+Bn+AdO2ixs64GBwznn3rkcL+JMadv+tgobm1vbO8Xd0t7+weFR+fiko8JYUmjTkIey5xEFnAloa6Y59CIJJPA4dL1pM/O7TyAVC8WDnkXgBmQsmM8o0UZyBwHRE0p40kyH9WG5YlftOfA6cXJSQTlaw/LPYBTSOAChKSdK9R070m5CpGaUQ1oaxAoiQqdkDH1DBQlAucn86BRfGGWE/VCaJzSeq38nEhIoNQs8k8yOVKteJv7n9WPt37gJE1GsQdDFR37MsQ5x1gAeMQlU85khhEpmbsV0QiSh2vS0tCkvx00gViYZ6bRkOnJWG1knnVrVuarW7q8rjbu8rSI6Q+foEjmojhroFrVQG1H0iF7QK3qznq1368P6XEQLVj5zipZgff0Cbw6fRQ==</latexit>

C8
<latexit sha1_base64="FHlYMJeDQWsOAk+XEofE/zSX6+k=">AAACE3icbVDLSsNAFJ3UV62vqks3g0VwVZIq2GWhG1dSwT6gDWUynbRDJ5M4cyOUkM8Qt/od7sStH+Bn+AdO2ixs64GBwznn3rkcLxJcg21/W4WNza3tneJuaW//4PCofHzS0WGsKGvTUISq5xHNBJesDRwE60WKkcATrOtNm5nffWJK81A+wCxibkDGkvucEjCSOwgITCgRSTMd1oflil2158DrxMlJBeVoDcs/g1FI44BJoIJo3XfsCNyEKOBUsLQ0iDWLCJ2SMesbKknAtJvMj07xhVFG2A+VeRLwXP07kZBA61ngmWR2pF71MvE/rx+DX3cTLqMYmKSLj/xYYAhx1gAeccUoiJkhhCpubsV0QhShYHpa2pSX4yYs1iYZQVoyHTmrjayTTq3qXFVr99eVxl3eVhGdoXN0iRx0gxroFrVQG1H0iF7QK3qznq1368P6XEQLVj5zipZgff0CcLGfRg==</latexit>

C9
<latexit sha1_base64="8Nb9x4cJMyXqtiw2uzPO9uv8cK8=">AAACE3icbVDLSsNAFL2pr1pfVZduBovgqiRVUHeFblxJBfuANpTJdNIOnUzizEQoIZ8hbvU73IlbP8DP8A+ctFnY1gMDh3POvXM5XsSZ0rb9bRXW1jc2t4rbpZ3dvf2D8uFRW4WxJLRFQh7KrocV5UzQlmaa024kKQ48TjvepJH5nScqFQvFg55G1A3wSDCfEayN5PYDrMcE86SRDm4G5YpdtWdAq8TJSQVyNAfln/4wJHFAhSYcK9Vz7Ei7CZaaEU7TUj9WNMJkgke0Z6jAAVVuMjs6RWdGGSI/lOYJjWbq34kEB0pNA88ksyPVspeJ/3m9WPvXbsJEFGsqyPwjP+ZIhyhrAA2ZpETzqSGYSGZuRWSMJSba9LSwKS/HTWisTDLSacl05Cw3skratapzUa3dX1bqd3lbRTiBUzgHB66gDrfQhBYQeIQXeIU369l6tz6sz3m0YOUzx7AA6+sXclSfRw==</latexit>

CK
<latexit sha1_base64="/KY7appta8byIMhzk04wnfWr4aU=">AAACE3icbVDLSsNAFL2pr1pfVZduBovgqiRV0GWhG0GQCvYBbSiT6aQdOpnEmYlQQj5D3Op3uBO3foCf4R84abOwrQcGDuece+dyvIgzpW372yqsrW9sbhW3Szu7e/sH5cOjtgpjSWiLhDyUXQ8rypmgLc00p91IUhx4nHa8SSPzO09UKhaKBz2NqBvgkWA+I1gbye0HWI8J5kkjHdwOyhW7as+AVomTkwrkaA7KP/1hSOKACk04Vqrn2JF2Eyw1I5ympX6saITJBI9oz1CBA6rcZHZ0is6MMkR+KM0TGs3UvxMJDpSaBp5JZkeqZS8T//N6sfav3YSJKNZUkPlHfsyRDlHWABoySYnmU0MwkczcisgYS0y06WlhU16Om9BYmWSk05LpyFluZJW0a1Xnolq7v6zU7/K2inACp3AODlxBHW6gCS0g8Agv8Apv1rP1bn1Yn/NowcpnjmEB1tcvj8qfWQ==</latexit>

C`
<latexit sha1_base64="NDFZDl5wJ09NfmE2fgjIzUFnJrE=">AAACGHicbVDLSsNAFJ34rPUVdekmWARXJamCLgvduJIK9gFNCJPpTTt0Mgkzk0IJ+RFxq9/hTty68zP8AydtFrb1wMDhnHPvXE6QMCqVbX8bG5tb2zu7lb3q/sHh0bF5ctqVcSoIdEjMYtEPsARGOXQUVQz6iQAcBQx6waRV+L0pCElj/qRmCXgRHnEaUoKVlnzTdCOsxgSzrJX7LjDmmzW7bs9hrROnJDVUou2bP+4wJmkEXBGGpRw4dqK8DAtFCYO86qYSEkwmeAQDTTmOQHrZ/PLcutTK0ApjoR9X1lz9O5HhSMpZFOhkcadc9QrxP2+QqvDOyyhPUgWcLD4KU2ap2CpqsIZUAFFspgkmgupbLTLGAhOly1raVPbjZZBKnUxUXtUdOauNrJNuo+5c1xuPN7XmQ9lWBZ2jC3SFHHSLmugetVEHETRFL+gVvRnPxrvxYXwuohtGOXOGlmB8/QKuR6D2</latexit>

Ck
<latexit sha1_base64="DGtp7MnoZlnon43qvJgWlIqbUkI=">AAACE3icbVDLSsNAFL3xWeur6tJNsAiuSlIFXRa6cSUV7APaUCbTSTt0MokzN0IJ/Qxxq9/hTtz6AX6Gf+CkzcK2Hhg4nHPuncvxY8E1Os63tba+sbm1Xdgp7u7tHxyWjo5bOkoUZU0aiUh1fKKZ4JI1kaNgnVgxEvqCtf1xPfPbT0xpHskHnMTMC8lQ8oBTgkbyeiHBESUirU/7436p7FScGexV4uakDDka/dJPbxDRJGQSqSBad10nRi8lCjkVbFrsJZrFhI7JkHUNlSRk2ktnR0/tc6MM7CBS5km0Z+rfiZSEWk9C3ySzI/Wyl4n/ed0Egxsv5TJOkEk6/yhIhI2RnTVgD7hiFMXEEEIVN7fadEQUoWh6WtiUl+OlLNEmGeO0aDpylxtZJa1qxb2sVO+vyrW7vK0CnMIZXIAL11CDW2hAEyg8wgu8wpv1bL1bH9bnPLpm5TMnsADr6xfEKp95</latexit>

classi�er k
<latexit sha1_base64="WQKTtdrKVE2yP7xUZt5cvU5x+WM=">AAACDHicbVDLTgIxFL3jE/GFunTTCCauyAwudEl04xITeSQwkk65QEOnM2k7JmTCL7h2q9/gzrj1H/wE/8IysBDwJE1Oz7m39/YEseDauO63s7a+sbm1ndvJ7+7tHxwWjo4bOkoUwzqLRKRaAdUouMS64UZgK1ZIw0BgMxjdTv3mEyrNI/lgxjH6IR1I3ueMGis9MkG1tldUpDQqdQtFt+xmIKvEm5MizFHrFn46vYglIUqTvdT23Nj4KVWGM4GTfCfRGFM2ogNsWyppiNpPs60n5NwqPdKPlD3SkEz925HSUOtxGNjKkJqhXvam4n9eOzH9az/lMk4MSjYb1E8EMRGZRkB6XCEzYmwJZYrbXQkbUkWZsUEtTBE8QPsXmeiJzcZbTmKVNCpl77Jcua8UqzfzlHJwCmdwAR5cQRXuoAZ1YKDgBV7hzXl23p0P53NWuubMe05gAc7XL682nDg=</latexit>

labeled data
<latexit sha1_base64="eRxcvavP8muoHiu14y2uhKnB3wM=">AAACCnicbVDLSgNBEJyNrxhfUY9eBoPgKezGgx6DXjxGMA9IltA725sMmZ1dZmaFEPIHnr3qN3gTr/6En+BfOEn2YBILGoqqbrq7glRwbVz32ylsbG5t7xR3S3v7B4dH5eOTlk4yxbDJEpGoTgAaBZfYNNwI7KQKIQ4EtoPR3cxvP6HSPJGPZpyiH8NA8ogzMFbqCQhQYEhDMNAvV9yqOwddJ15OKiRHo1/+6YUJy2KUhgnQuuu5qfEnoAxnAqelXqYxBTaCAXYtlRCj9ifzm6f0wiohjRJlSxo6V/9OTCDWehwHtjMGM9Sr3kz8z+tmJrrxJ1ymmUHJFouiTFCT0FkANOQKmRFjS4Apbm+lbAgKmLExLW0RPED7i8z01GbjrSaxTlq1qndVrT3UKvXbPKUiOSPn5JJ45JrUyT1pkCZhJCUv5JW8Oc/Ou/PhfC5aC04+c0qW4Hz9Ap41m68=</latexit>

prediction
<latexit sha1_base64="EyBMguBci4Q7+QupvrNFiZcqdnM=">AAACCHicbVC7TsNAEFzzDOEVoKSxiJCoIjsUUEbQUAaJPERiRefzOjnlfLbuzkiRlR+gpoVvoEO0/AWfwF9wTlyQhJFWGs3sanfHTzhT2nG+rbX1jc2t7dJOeXdv/+CwcnTcVnEqKbZozGPZ9YlCzgS2NNMcu4lEEvkcO/74Nvc7TygVi8WDniToRWQoWMgo0UZ6NL0BozkdVKpOzZnBXiVuQapQoDmo/PSDmKYRCk05UarnOon2MiI1oxyn5X6qMCF0TIbYM1SQCJWXzS6e2udGCewwlqaEtmfq34mMREpNIt90RkSP1LKXi/95vVSH117GRJJqFHS+KEy5rWM7f98OmESq+cQQQiUzt9p0RCSh2oS0sIUzH80vIlVTk427nMQqaddr7mWtfl+vNm6KlEpwCmdwAS5cQQPuoAktoCDgBV7hzXq23q0P63PeumYVMyewAOvrF8oFm0k=</latexit>

training
<latexit sha1_base64="aEZABmAT5G42E59N74ADdrxFwkw=">AAACBnicbVA9SwNBEJ2LXzF+RS1tFoNgFe5ioWXQxjKC+YDkCHubuWTJ3t6xuyeEI721rf4GO7H1b/gT/BdukitM4oOBx3szzMwLEsG1cd1vp7CxubW9U9wt7e0fHB6Vj09aOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfzfz2EyrNY/loJgn6ER1KHnJGjZU6RlEuuRz2yxW36s5B1omXkwrkaPTLP71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5vdOyYVVBiSMlS1pyFz9O5HRSOtJFNjOiJqRXvVm4n9eNzXhjZ9xmaQGJVssClNBTExmz5MBV8iMmFhCmeL2VsJGVFFmbERLWwQP0P4iUz212XirSayTVq3qXVVrD7VK/TZPqQhncA6X4ME11OEeGtAEBgJe4BXenGfn3flwPhetBSefOYUlOF+/IwWaYA==</latexit>

streaming
unlabeled data

<latexit sha1_base64="+HDkADxrjKz4FWX1ivLXHmqHFJ0=">AAACNnicbVDLSsNAFJ34Nr6iLt0MFsFVSSqoS9GNywq2FZpQbia3dXAyCTMToYT+iR/i2q3+gBt3Iu78BCdtBV8HBg7n3MOde+JccG18/9mZmZ2bX1hcWnZXVtfWN7zNrbbOCsWwxTKRqasYNAousWW4EXiVK4Q0FtiJb84qv3OLSvNMXpphjlEKA8n7nIGxUs87DGMccFkylAbVyNWmSnM5CEO3kAJiFJjQBAy4Icrka67n1fy6Pwb9S4IpqZEpmj3vPUwyVqQ2zgRo3Q383EQlKMOZwJEbFhpzYDcwwK6lElLUUTm+b0T3rJLQfqbsk4aO1e+JElKth2lsJ1Mw1/q3V4n/ed3C9I+jksu8MCjZZFG/ENRktCqLJlwhM2JoCTDF7V8puwYFzHbwc4vgMdpbZKGrboLfTfwl7UY9OKg3Lhq1k9NpS0tkh+ySfRKQI3JCzkmTtAgjd+SBPJIn5955cV6dt8nojDPNbJMfcD4+Aaclre0=</latexit>

decision
variables

<latexit sha1_base64="gq1VXF1bwqQxinHjzbxgAymm4JU=">AAACNnicbVDLSsNAFJ3UV42vqEs3wSK4KkkFdVl047KCfUATymRy0w6dTMLMpFBC/8QPce1Wf8CNOxF3foKTtos+vDBwOOfce+eeIGVUKsf5MEobm1vbO+Vdc2//4PDIOj5pySQTBJokYYnoBFgCoxyaiioGnVQAjgMG7WB4X+jtEQhJE/6kxin4Me5zGlGClaZ61rUXQJ/yPGKZHDCI1MQMgdDC73nmCAuK9ShpesDDBVPPqjhVZ1r2OnDnoILm1ehZP16YkCwGrgjDUnZdJ1V+joWihMHE9DIJKSZD3IeuhhzHIP18et/EvtBMaEeJ0I8re8ouduQ4lnIcB9oZYzWQq1pB/qd1MxXd+jnlaaaAk9miKGO2SuwiLDukAohiYw0wEVT/1SYDLDBROtKlLYwGoG/hmSyycVeTWAetWtW9qtYea5X63TylMjpD5+gSuegG1dEDaqAmIugZvaI39G68GJ/Gl/E9s5aMec8pWirj9w9gnq5c</latexit>models
<latexit sha1_base64="JHKK0BIIWpLZ2RiMoxqzoJUILFw=">AAACKHicbVC7TsNAEDyHVzAvAyWNRYSUKrJDAWUEDWWQyEOKreh8XiennM/W3RkpsvILfAg1LXwDHUpLx19wTlyEhJFWGs3sancnSBmVynHmRmVre2d3r7pvHhweHZ9Yp2ddmWSCQIckLBH9AEtglENHUcWgnwrAccCgF0zuC7/3DELShD+paQp+jEecRpRgpaWhVfcCGFGeRyyTYwaRmplxEgKTpgc8XJGHVs1pOAvYm8QtSQ2VaA+tHy9MSBYDV4RhKQeukyo/x0JRwmBmepmEFJMJHsFAU45jkH6++GhmX2kltKNE6OLKXqirEzmOpZzGge6MsRrLda8Q//MGmYpu/ZzyNFPAyXJRlDFbJXYRjx1SAUSxqSaYCKpvtckYC0yUDvHPFkYD0L/wTBbZuOtJbJJus+FeN5qPzVrrrkypii7QJaojF92gFnpAbdRBBL2gN/SOPoxX49P4MubL1opRzpyjPzC+fwHhQKiL</latexit>

for k = 1, 2, . . . , K :
<latexit sha1_base64="1s24WD60Ac0zGpg4D9Ult2t4zRI=">AAACNnicbVC7SgNBFJ2NrxhfUUubwShYhLAbQUUQRBvBRsEkQhLC7ORuMmR2dpm5K4Qlf+KHWNvqD9jYidj5Cc7GFEa91eGcc1/Hj6Uw6LovTm5mdm5+Ib9YWFpeWV0rrm/UTZRoDjUeyUjf+syAFApqKFDCbayBhb6Ehj84z/TGHWgjInWDwxjaIespEQjO0FKd4kHLh55QaSAT05cQ4KgQRJruDE68crXc6kZoypc7x4UWqO4PU6dYcivuuOhf4E1AiUzqqlP8sLN4EoJCLpkxTc+NsZ0yjYJLGBVaiYGY8QHrQdNCxUIw7XT834juWqZLs7uCSCEdsz87UhYaMwx96wwZ9s1vLSP/05oJBkftVKg4QVD8e1GQSIoRzcKiXaGBoxxawLgW9lbK+0wzjjbSqS1S+GB/UYnJsvF+J/EX1KsVb79Sva6WTs8mKeXJFtkme8Qjh+SUXJArUiOc3JNH8kSenQfn1Xlz3r+tOWfSs0mmyvn8AhSKrGw=</latexit>

Figure 6.2: Social Machine Learning (SML) diagram.

feature vector observed by agent k at instant i during the prediction phase. We assume that the
random variables are independent between different learning phases.

6.3.1 Training Phase

During training, each agent k has access to Nk examples consisting of pairs {h̃k,n, γ̃n}Nk
n=1. We

assume that the training set is balanced so that both classes are sufficiently explored, namely,
we assume that, during training, labels γ̃n are uniformly distributed over Γ = {−1, +1}. This
is a standard technical assumption that will be useful to obtain readable bounds for the social
machine learning strategy. However, we remark that the assumption of a balanced dataset
during the training phase does not impose any constraint on the behavior of the true hypothesis
during the prediction phase. In particular, the data observed during prediction are all coming
from a certain true state of nature γ0, and we will establish that the SML strategy achieves
vanishing error regardless of the particular hypothesis being in force.

The pair (h̃k,n, γ̃n) is distributed according to the joint distribution:

(h̃k,n, γ̃n) ∼ p̃k(h, γ) = Lk(h|γ)p̃k(γ), (6.20)

where h ∈ Hk, γ ∈ Γ and p̃k(γ) = 1/2 for γ ∈ Γ. Note that, given a label γ, the corresponding
feature vector h̃k,n is distributed according to

h̃k,n ∼ Lk(h|γ), h ∈ Hk, γ ∈ Γ. (6.21)

Using these training samples, we wish to deploy a fully data-driven solution inspired by the
social learning algorithms presented in Section 6.2.3. To accomplish this, we first need to
approximate the key unknown function ck used in (6.11) and (6.19) by a quantity resulting from
some statistical learning method. The choice of method and the characteristics of the problem
at hand, e.g., training samples and class of models considered, will heavily determine the quality
of the resulting approximation. These decisive factors and their impact will be examined later
in this work.
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6.3 Social Machine Learning

Let us delve into the details of our training setup. First, note that, under the assumption of
uniform priors during training, and using Bayes’ rule, we can write:

ck(h) = log Lk(h| + 1)
Lk(h| − 1) = log p̃k(+1|h)

p̃k(−1|h) , (6.22)

where p̃k(γ|h) represents the posterior probability of {γ̃n = γ} given {h̃k,n = h} using the
joint model seen in (6.20). The significance of the log-ratio of posterior probabilities on the RHS
of (6.22) can be interpreted in an intuitive manner: the log-ratio is positive whenever class +1
is more likely to be the true state of nature given the observation of h and negative when class
−1 is more likely to explain the same data evidence. It is therefore reasonable that we seek an
approximation for the log-ratio of posteriors in (6.22) during the training phase.

One relevant machine learning paradigm to approximate the posterior distribution is the
discriminative paradigm (which includes, e.g., logistic regression and neural networks), where the
output of the classifier is in the form of approximate posterior probabilities for each class, namely,
p̂k(+1|h) and p̂k(−1|h). In order to illustrate this paradigm, it is convenient to introduce the
logit statistic:

log p̂k(+1|h)
p̂k(−1|h) = log p̂k(+1|h)

1 − p̂k(+1|h) ≜ fk(h), (6.23)

where the function fk can be chosen from an admissible class Fk, namely,

fk ∈ Fk : Hk 7→ R. (6.24)

The choice of the class Fk depends on the choice of classifier. For example, in linear logistic
regression with h ∈ RM , Fk is parameterized by a vector w ∈ RM , and we have the linear logit
function [103]:

fk(h; w) = wTh. (6.25)

Another example is to consider MultiLayer Perceptrons (MLPs) with L hidden layers and a
softmax output layer, whose weight matrices are given by {Wℓ} over layers ℓ = 1, 2, . . . , L. In
the binary classification case, the network outputs two approximate posterior quantities [104],
namely p̂k(+1|h; W ) and p̂k(−1|h; W ), where W represents the parameterization of the clas-
sifier w.r.t. matrices {Wℓ}. In this case, the logit function is given by the expression:

fk(h; W ) = log p̂k(+1|h; W )
p̂k(−1|h; W ) , (6.26)

where the class of functions Fk is parameterized by matrices {Wℓ} in a nonlinear manner.
Note that the forthcoming analysis does not assume a specific model for the logit function, and
applies instead to general classes Fk.

The logit functions fk are trained by each classifier k = 1, 2, . . . , K by finding the function fk

within Fk that minimizes a suitable risk function Rk(fk). For example, in the already mentioned
logistic regression and MLP cases, the training process results in optimal parameters w and Wℓ

for ℓ = 1, 2, . . . , L, respectively.
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Chapter 6. Learning with Imperfect Models

One common risk function adopted in binary classification is the logistic risk:

Rk(fk) = E h̃k,γ̃ log
(

1 + e−γ̃nfk(h̃k,n)
)

, (6.27)

where E h̃k,γ̃ corresponds to the expectation computed under the (unknown) joint distribution
p̃k(h, γ) seen in (6.20). We remark that the logistic risk can be used either in association
with the linear model in (6.25) or with more complex structures such as neural networks with
softmax output layers. The logistic risk can be shown to be equivalent in the binary case to the
cross-entropy risk function [105].

We define the target risk at every agent and the weighted network average according to:

Ro
k ≜ inf

fk∈Fk

Rk(fk), Ro ≜
K∑

k=1
πkRo

k. (6.28)

Unfortunately, in practice the expectation in (6.27) cannot be computed since the underlying
feature/label distribution is unknown. The agents rely instead on a finite set of training samples
to minimize an empirical risk:

f̃k ≜ arg min
fk∈Fk

R̃k(fk), (6.29)

given by

R̃k(fk) = 1
Nk

Nk∑
n=1

log
(

1 + e−γ̃nfk(h̃k,n)
)

, (6.30)

which is computed over the training set. The resulting function f̃k can then be used by the
agents to approximate the logit statistic in (6.23). For future use, we also define the network
average for the expected risk and the empirical risk expressions:

R(f) ≜
K∑

k=1
πkRk(fk), R̃(f) ≜

K∑
k=1

πkR̃k(fk), (6.31)

where the argument f represents the dependence of the risk expressions on the collection of
functions {fk}, i.e., R(f) = R(f1, f2, . . . , fK). This concise notation will be used whenever
we are dealing with network-averaged quantities.

We will detail in the next section how the trained models can be deployed in the prediction
phase, when agents are faced with streaming unlabeled feature vectors.

6.3.2 Prediction Phase

In the prediction phase, agents find themselves in the setup described in Section 6.2.1. They
aim at solving the inference problem of determining the true state γ0 ∈ Γ, given streaming
unlabeled private features hk,i, i = 1, 2, . . . . The difference now is that they are equipped with
the trained models {f̃k}, which are constructed so as to provide a reasonable approximation for
the log-ratio of posterior probabilities (see Figure 6.2 for an illustrative diagram of this process).
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6.3 Social Machine Learning

During prediction, agents deploy one of the SL algorithms enunciated in Section 6.2.3 using the
following approximation for the function ck:

c̃k(h) = f̃k(h) − µ̃k(f̃k), (6.32)

where the second term on the RHS of (6.32) is called the empirical training mean and is defined
for any function fk ∈ Fk as:

µ̃k(fk) = 1
Nk

Nk∑
n=1

fk(h̃k,n), (6.33)

i.e., it is defined as the average of function fk over the training samples. Discounting the
empirical training mean in (6.32) prevents the logit statistic from being biased towards one class
or another. This is relevant considering that the decision of each agent is taken according to
the rule

γSML
k,i ≜ sign(λk,i), (6.34)

where sign(x) = +1, if x ≥ 0 and sign(x) = −1 otherwise, i.e., the decision threshold is zero.
Note that c̃k is a random function, whose randomness stems from the training phase.

Next, we illustrate how the debiasing operation used in (6.32) helps preventing biased decisions,
but first let us define for any function fk ∈ Fk the following conditional means:

µ+
k (fk) ≜ ELk(+1)fk(hk,i), µ−

k (fk) ≜ ELk(−1)fk(hk,i). (6.35)

Assume that fk is fixed, i.e., c̃k(h) = fk(h) − µ̃k(fk), and that Nk is sufficiently large. Then,
the empirical mean µ̃k(fk) approximates the expected value of fk(h̃k,n) in the training phase,
namely, [µ+

k (fk) + µ−
k (fk)]/2 (see Eq. (6.68) in Appendix 6.A). In this case, function c̃k is

deterministic, and we can write:

c̃k(h) = fk(h) −
µ+

k (fk) + µ−
k (fk)

2 . (6.36)

Taking the conditional expectation of c̃k(hk,i), computed w.r.t. the prediction samples hk,i

given classes +1 and −1, yields:

ELk(+1)c̃k(hk,i) = µ+
k (fk) − µ−

k (fk)
2 , (6.37)

ELk(−1)c̃k(hk,i) = −
µ+

k (fk) − µ−
k (fk)

2 . (6.38)

The approximation c̃k satisfies the conditions for consistent learning in (6.13) if (6.37) is strictly
positive and if (6.38) is strictly negative. Note that the debiasing operation introduces a symme-
try to (6.37) and (6.38). Therefore both consistent learning conditions in (6.13) are satisfied by
ensuring that the weaker condition µ+

k (fk) > µ−
k (fk) holds, regardless of the sign of the indi-

vidual terms µ+
k (fk) and µ−

k (fk). Thus, even in the biased case, in which µ+
k (fk) > µ−

k (fk) > 0,
consistent learning using c̃k can be achieved.

We proceed now to formally translate the consistent learning conditions for the SL algorithms
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Chapter 6. Learning with Imperfect Models

seen in (6.13), considering the approximation c̃k(hk,i) in (6.32). First, we define the network
average of the conditional means in (6.35):

µ+(f) ≜
K∑

k=1
πkµ+

k (fk), µ−(f) ≜
K∑

k=1
πkµ−

k (fk), (6.39)

and the network average of the empirical training mean:

µ̃(f) =
K∑

k=1
πkµ̃k(fk). (6.40)

The training phase will generate the set of models {f̃k}, which are random with respect to
the training datasets. Given a particular training setup, we can “freeze” the randomness of the
training set and work conditionally on a particular realization of learned models {f̃k}.

We are now interested in ascertaining whether or not these particular learned models allow
for consistent learning during the prediction phase. To this end, we can apply the condition
for consistent learning seen in (6.13) to the functions {c̃k} in (6.32), for a frozen set of trained
models {f̃k}, resulting in the following two conditions:

K∑
k=1

πkELk(+1)f̃k(hk,i) >
K∑

k=1
πkµ̃k(f̃k), (6.41)

K∑
k=1

πkELk(−1)f̃k(hk,i) <
K∑

k=1
πkµ̃k(f̃k). (6.42)

where we recall that ELk(γ) is the expectation computed with respect to the prediction samples
hk,i under the distribution Lk(h|γ), and the prediction samples are independent of any random
variable generated in the training phase. Finally, substituting the definitions in (6.35) and (6.39)
respectively into (6.41) and (6.42), yields the following necessary conditions for consistent
learning within the SML paradigm, conditionally on a given set of trained models {f̃k}.

µ+(f̃) > µ̃(f̃) and µ−(f̃) < µ̃(f̃) (6.43)

Since, the above description is given conditioned on a set of trained models {f̃k}, the conditions
in (6.43) depend on the randomness stemming from the training phase. Therefore, characterizing
the consistency of learning requires characterizing probabilistically the occurrence of both
events described in (6.43). More precisely, we can define the probability of consistent learning,
namely,

Pc ≜ P
(
µ+(f̃) > µ̃(f̃) , µ−(f̃) < µ̃(f̃)

)
, (6.44)

where boldface fonts now highlight the randomness in the training set. In the next section, we
provide the characterization of (6.44) for classifiers belonging to general classes of bounded
real-valued functions Fk. In this case, we assume that there exists some real value β > 0 such
that:

|fk(h)| ≤ β, fk ∈ Fk, h ∈ Hk. (6.45)
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6.4 Consistency of Social Machine Learning

For example, consider the linear logistic regression case seen in (6.25). In practical applications,
features belong to a bounded set Hk , and thus condition (6.45) would be satisfied if the vector of
weights w is constrained according to ∥w∥2 ≤ b, where b is some positive real value. Similarly,
in the multilayer perceptron example seen in (6.26), the condition in (6.45) is satisfied for norm-
constrained neural networks [106], i.e., where the weight matrices are bounded in norm by a
certain positive real value b.

6.4 Consistency of Social Machine Learning

We will need to call upon well-established statistical learning paradigms (e.g., the Vapnik-
Chervonenkis theory) and adapt them to the distributed network setting considered in this
work [107], [108]. More specifically, we will move along the path summarized below.

• We will assume that the individual agents minimize an empirical risk, producing a col-
lection of K learned models, namely, the functions {f̃k}. As usual, these functions are
random due to the randomness of the training samples.

• We will examine the prediction (i.e., classification) performance obtained with the learned
models {f̃k}. In particular, we will establish technical conditions for the social learning
algorithm to predict reliably the correct label as the number of streaming data gathered
during the prediction phase increases.

• Since the learned models inherit the randomness of the training set, the consistency
guarantees must be formulated in a probabilistic manner—see (6.44). Specifically, we
guarantee a high probability that the samples in the training set lead to models {f̃k} that
enable correct classification.

• As it happens in classical statistical learning frameworks, the interplay between empirical
and optimal risk will be critical to ascertain the learning and prediction ability of the
classifiers. However, differently from what is obtained in classical statistical learning
frameworks, our results will depend significantly on the graph properties. In particular, a
major role will be played by weighted combinations of the individual risk functions. The
combination weights are the entries of the Perron eigenvector reflecting the combination
matrix that governs the social learning interactions among the agents. This property
leads to novel and interesting phenomena, for example, consistent classification can be
achieved even if some of the agents learn bad models, but the plurality of the agents is
able to reach a satisfying aggregate risk value.

Under the framework described above, the nontrivial interplay between the training and
prediction phases might lead to some confusion. Therefore, it is useful to clarify the main path
followed in the forthcoming analysis. We will focus on the probability of consistent learning
Pc in (6.44), namely, the probability that the training set produces, at the end of the training
phase, a consistent classifier. By “consistent”, we mean that the classifier is able to mark the
unlabeled data observed during the prediction phase correctly as i → ∞. The probability Pc

will be shown to be close to 1 if the training set size is large enough, namely, we will show that
consistent learning is achievable provided that sufficient training is allowed. As Theorem 6.1
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will show, in order to quantify the qualification “sufficient”, it is critical to introduce a formal
way to characterize the classifier structure.

The complexity of the classifier structure is related to the complexity of the class of functions
Fk . The latter is quantified by using the concept of Rademacher complexity (initially introduced
as Rademacher penalty in [109]). We follow the definition in [110] and [106] and consider a
class of functions F and a set x with N training samples, namely, x ≜ {x1, x2 . . . , xN }, where
xn ∈ X for all n = 1, 2, . . . , N . We also introduce the set of vectors F (x) defined as:

F (x) ≜
{

[f(x1), f(x2), . . . , f(xN )]
∣∣∣∣xn ∈ X , f ∈ F

}
. (6.46)

Then, the (empirical) Rademacher complexity associated with F (x) is:

R (F (x)) ≜ E r sup
f∈F

∣∣∣∣∣ 1
N

N∑
n=1

rif(xn)
∣∣∣∣∣ , (6.47)

where rn are independent and identically distributed Rademacher random variables, i.e., with
P (rn = +1) = P (rn = −1) = 1/2. This quantity can be seen as a measure of overfitting
during training over the class of functions F [111]. In general, to avoid overfitting during
training, and to ensure an improved generalization performance, we choose models with small
classifier complexity.

Applying the above definition to our multi-agent case, we define the individual empirical
Rademacher complexity of agent k for samples h(k) ≜ {hk,1, . . . , hk,Nk

} as

R(Fk(h(k))) = E r sup
fk∈Fk

∣∣∣∣∣∣ 1
Nk

Nk∑
n=1

rnfk(hk,n)

∣∣∣∣∣∣ , (6.48)

and its expected Rademacher complexity, for features hk,1,hk,2, . . . ,hk,N as

ρk ≜ Ehk
R(Fk(h(k))), (6.49)

which represents the Rademacher complexity of the k-th classifier structure, averaged over the
feature distribution. We also define the (expected) network Rademacher complexity according to:

ρ ≜
K∑

k=1
πkρk, (6.50)

which represents an average complexity across all agents in the network, weighted by their
centrality scores (given by the elements of the Perron eigenvector π).

6.4.1 Learning Consistency

In Theorem 6.1, we show that the SML strategy consistently learns the truth during the prediction
phase, with high probability as the number of training samples grows and for a moderately
complex classifier structure. Before introducing the theorem, we define the following two
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6.4 Consistency of Social Machine Learning

quantities (we assume Nk > 0 for all k):

αk ≜ Nmax
Nk

, α ≜
K∑

k=1
πkαk, (6.51)

with Nmax ≜ maxk Nk . The individual imbalance penalty αk quantifies how distinct the number
of training samples of agent k is compared with Nmax . The network imbalance penalty α is the
average of αk over the network, and it quantifies how unequal the training samples are across
different agents. For example, if all agents possess the same number of training samples, i.e.,
Nk = Nmax, for all k = 1, 2, . . . , K , then α assumes minimal value with α = 1. The value of
α tends to grow when agents have very different number of training samples, e.g., when, for
some k, Nk ≪ Nmax.

Moreover, we assume that the target risk Ro is strictly smaller than log 2. To understand the
meaning of such assumption, we first consider a single agent k, for which Ro

k < log 2. This
assumption eliminates the case where the classifier makes uninformed decisions of the form:

p̂k(γ|h) = 1
2 , for any h ∈ Hk and γ ∈ Γ, (6.52)

i.e., where the classification decision is independent of the input feature vector. In this case,
from (6.23), fk(h) = 0 for any h ∈ Hk, which in view of (6.27) implies Rk(fk) = log 2. This
situation arises, for example, when the classifier structure is not complex enough to address the
classification task at hand. Requiring Ro

k < log 2 guarantees that the classifier k performs better
than a classifier that randomly assigns labels +1 and −1 with equal probability. Requiring that
the network target risk satisfies Ro < log 2 is an even weaker assumption, since it establishes
this bound to the risk values averaged over the graph. For example, suppose that, in a K−agent
network, K − 1 classifiers yield uninformed decisions like in (6.52), for which Ro

k = log 2. To
satisfy Ro < log 2 on a network level, it suffices that one classifier performs better than the
uninformed ones.

The next theorem characterizes the consistency of the SML strategy during the prediction phase
in terms of an exponential lower bound on the probability of consistent learning in (6.44).

Theorem 6.1 (SML consistency). For the logistic risk, assume that Ro < log 2 and that
fk(h) ≤ β for every h ∈ Hk , fk ∈ Fk and k = 1, 2, . . . , K , with β > 0. Assume ρ < E (Ro),
where E (Ro) is exactly computed in (6.93) and can be approximated as (see Figure 6.8 in
Appendix 6.A):

E (Ro) ≈ 0.2812
(

1 − Ro

log 2

)
. (6.53)

Then, we have the following bound for the probability of consistent learning, defined in (6.44):

Pc ≥ 1 − 2 exp
{

−8Nmax
α2β2

(
E (Ro) − ρ

)2
}

. (6.54)

Proof. See Appendix 6.A.
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Theorem 6.1 has at least two important implications. First, if the network-average Rademacher
complexity ρ is smaller than the function E (Ro), then the probability of consistent learning is
bounded in an exponential way. Now, the function E (Ro) is an error exponent that determines
how fast the probability of consistent learning approaches 1. It is a function of the optimal risk
Ro—see the definition in (6.93). An excellent approximation for E (Ro) is (6.53), showing that
such exponent quantifies how close the target risk is to the log 2 risk boundary. As already
discussed, the log 2 risk boundary corresponds to the risk associated with a binary classifier that
randomly classifies samples with labels +1 and −1. The closer the target model is to the log 2
risk, the smaller the value of E (Ro). In other words, smaller values of E (Ro) are symptomatic
of more difficult classification problems. Therefore, Eq. (6.54) reveals a remarkable interplay
between the inherent difficulty of the classification problem (quantified inversely by E (Ro))
and the complexity of the classifier structure (quantified by ρ). Ideally, we would like to have
simple classification problems (i.e., higher values of E (Ro)) and low Rademacher complexity ρ.
Notably, both indices are network indices that embody the network structure inside them.

Second, the exponent characterizing the bound in (6.54) depends on the size of the training sets
at the individual agents (through the network imbalance penalty α and the maximum training-
set size), and the bounding constant β. In particular, we see from (6.54) that the exponent (and,
hence, the probability of consistent learning) increases if we have larger training sets (i.e., larger
Nmax and/or smaller α) and more constrained class of functions (i.e., smaller β).

In summary, the bound in (6.54) can be used to establish conditions under which the probability
of consistent learning approaches 1 exponentially fast as the training-set sizes increase. To this
end, we must observe that the quantity ρ itself depends on the training-set sizes. Accordingly, it
is necessary to obtain an estimate (or a bound) for the network-average Rademacher complexity.
Once this is done, we will be in the position of evaluating the sample complexity of the SML
strategy, namely, of evaluating how many samples are necessary to achieve a target probability
of consistency. This analysis will be pursued in the next section.

6.4.2 Sample Complexity

Under typical classifier structures, the Rademacher complexity scales as Ck/
√

Nk, where Nk

is the number of training samples pertaining to agent k, and Ck is a constant quantifying the
inherent complexity of the k−th classifier structure [106]. As an example, we will show in the
next section how the Rademacher complexity behaves for the particular structure of multilayer
perceptrons, and provide an upper bound for a given design of number of hidden layers and
hidden units.

Now, assuming that the Rademacher complexity of each classifier k is bounded as Ck/
√

Nk,
the network Rademacher complexity will be bounded as:

ρ ≤
K∑

ℓ=1
πk

Ck√
Nk

= 1√
Nmax

K∑
k=1

πkCk
√

αk︸ ︷︷ ︸
≜C

, (6.55)

where C is an average constant that mixes the individual complexity constants Ck, accounting
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for the Perron eigenvector entries πk and the individual imbalance penalties αk. In the case
where (6.55) is satisfied, exploiting (6.54) we obtain the bound:

Pc ≥ 1 − 2 exp
{

−8Nmax
α2β2

(
E (Ro) − C√

Nmax

)2}
. (6.56)

Equation (6.56) shows that when Nmax scales to infinity (with the relative proportions between
Nmax and Nk kept fixed, i.e., α kept constant), the probability of consistent learning approaches
1 exponentially fast. Moreover, Eq. (6.56) can be used to carry out a sample-complexity analysis
of the SML strategy, as stated in the forthcoming theorem.

Theorem 6.2 (SML sample complexity). Assume ρk ≤ Ck/
√

Nk for some constant
Ck > 0 for all k = 1, 2, . . . , K , and let

C ≜
K∑

k=1
πkCk

√
αk. (6.57)

Then, for the logistic risk, consistent learning takes place with probability at least 1 − ε, if the
maximum number of training samples across the network satisfies:

Nmax >

( C
E (Ro)

)2(
1 + αβ

2C

√
1
2 log

(2
ε

))2

. (6.58)

Proof. See Appendix 6.C.

We now examine how the relevant system parameters appearing in (6.58) influence the sample
complexity.

• Target performance: The desired probability of consistent learning, 1 − ε, influences
the bound in (6.58) only logarithmically, and, hence, has a mild effect on the necessary
number of training samples.

• Term α: Term α quantifies how unequal the number of training samples is across agents.
Larger values of α imply that agents have a more uneven number of samples, and thus
require that Nmax be increased to compensate for the lack of data at some agents in the
network.

• Term β: Term β corresponds to the bound of the output of the logit function fk and,
hence, increasing β corresponds to increasing the possible logit functions to choose from.
Accordingly, from (6.58) we see that the larger the value of β, the larger the number of
training samples necessary to result in highly probable consistent learning.

• Term C: The constant C quantifies the complexity of the chosen classifier structure.
The necessary number of training samples grows quadratically with an increase in the
classifiers’ complexity.
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• Term E (Ro): As explained before, the term E (Ro) quantifies (inversely) the difficulty of
the classification problem. Smaller values of E (Ro) are representative of more difficult
classification problems, and accordingly correspond to the necessity of acquiring more
training samples.

• Role of the network: Given the networked nature of our inference problem, described
in the early Section 6.2.1, and the fact that the conditions for consistent learning are given
with respect to network average values as seen in (6.43), it is expected that the network
structure plays a significant role in the results of Theorems 6.1 and 6.2. The network
influence, as well as the graph topology, are captured by the presence of the Perron
eigenvector π in the probability expression for consistent learning, through the network
terms α, ρ and Ro, namely, the network imbalance penalty, the network Rademacher
complexity and the network target risk.

The Perron eigenvector represents the centrality or influence of each agent in determining
the values of the pertinent network terms, e.g., a more influential agent k has more power
to steer the value of the network target risk Ro towards its own private target risk Ro

k . For
doubly-stochastic combination matrices, the vector π is a vector with elements 1/K [37],
thus influence is uniform across agents. While the dependence on the structure connecting
the classifiers is not found in existing statistical bounds in the literature for ensembles
of classifiers [110], [112], similar network average dependences are key quantities in
distributed estimation and social learning [37], [41], [77]. For example, in social learning,
convergence occurs around the hypothesis γ ∈ Γ that minimizes the network average
KL divergence, i.e.,

∑K
k=1 πkD(Lk(γ0)|Lk(γ)) [41], [42], [77].

In summary, Eq. (6.58) quantifies how the main system parameters act on the SML sample
complexity. Specifically, we see that: i) owing to the exponential bound, the dependence on the
target error probability ε is mild; ii) the number of samples to achieve a prescribed performance
increases with the “size” of the class of functions (higher β), the heterogeneity among classifiers
(higher α), the complexity of classifiers (higher C), and the difficulty of the learning problem
(lower E (Ro)); and iii) the network role is encoded in the Perron eigenvector that appears in
the network-averaged values α, C, and Ro.

In the next section, we discuss in greater detail the expression of the classifier complexity ρ for
feedforward neural networks as a function of the classifier structure, i.e., number of hidden
layers (depth of the neural network) and weight of hidden units (width of the neural network),
and the size of the training dataset.

6.4.3 Neural Network Complexity

In this section, we complement the result from Theorem 6.1 by showing that the term ρ in (6.50),
which depends on the Rademacher complexity of the classifier, vanishes with an increasing
number of training samples in the case of the MultiLayer Perceptron (MLP). Assume that one
classifier has the structure of a MLP with L layers (excluding the input layer) and activation
function σ. We drop index k as we are referring to a single MLP. Each layer ℓ consists of nℓ

nodes, equivalently the size of layer ℓ is given by nℓ.
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At each node m = 1, 2, . . . , nℓ of layers ℓ = 2, 3, . . . , L, the following function g
(ℓ)
m is imple-

mented:

g(ℓ)
m (h) =

nℓ−1∑
j=1

w
(ℓ)
mjσ

(
g

(ℓ−1)
j (h)

)
. (6.59)

The parameters w
(ℓ)
mj correspond to the elements of the weight matrix Wℓ of dimension nℓ×nℓ−1.

For the first layer, the function implemented at node m is of the form:

g(1)
m (h) =

n0∑
j=1

w
(1)
mjhj , (6.60)

where the input vector h has dimension n0. A bias parameter can be incorporated in (6.60) by
considering an additional input element hn0+1 = 1.

For a MLP whose purpose is to solve a binary classification problem, we denote the output at
layer L by z ∈ R2, where zm = g

(L)
m (h) for m = 1, 2. The final output is given by applying the

softmax function to z, that is,

p̂(+1|h) = ez1

ez1 + ez2
, p̂(−1|h) = ez2

ez1 + ez2
. (6.61)

In this case, the logit function is given by:

fNN(h) = log p̂(+1|h)
p̂(−1|h) = z1 − z2, (6.62)

where we say that fNN belongs to a class of functions FNN, which is parameterized by matrices
Wℓ, for ℓ = 1, 2, . . . , L, according to (6.59), (6.60) and (6.62).

The general evolution for the Rademacher complexity of class FNN described above is well
known in the literature as scaling with C/

√
N [106]. We would like nonetheless to obtain an

expression for this complexity, which depends explicitly on the design choices for the MLP, i.e.,
depending on the depth and weights of the network. The objective is to provide the user with a
general guideline on how to choose these parameters for a desired complexity value. With this
purpose, a formal upper bound for this complexity is enunciated in Proposition 6.1 inspired by
results from [106], [113].

Proposition 6.1 (Rademacher complexity of norm-constrained MLPs). Consider
an L-layered multilayer perceptron, satisfying3∥Wℓ∥1 ≤ b, for every layer ℓ = 1, 2, . . . , L.
Assume that the input vector x ∈ Rn0 satisfies maxi |xi| ≤ c, and that the activation function
σ(x) is Lipschitz with constant Lσ with σ(0) = 0. Then the Rademacher complexity for the
set of vectors FNN(x) is bounded as:

R(FNN(x)) ≤ 4√
N

[
(2bLσ)L−1bc

√
log(2n0)

]
. (6.63)

Proof. See Appendix 6.D.
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Figure 6.3: Each fraction of the image is observed by a different agent. (Left) Agents 1 and 9, highlighted
in blue, correspond to the least informed agents. (Right) Topology of the network of agents.

Assume we have a network of K classifiers, each with a MLP structure. Given Proposition 6.1,
we can explicitly characterize the constant Ck found in (6.55) as:

Ck = 4
[
(2b(k)L(k)

σ )(L(k)−1)b(k)c(k)
√

log(2n
(k)
0 )

]
, (6.64)

where we introduce superscript (k) to indicate that the classifier structural parameters can
change across different agents. This characterization in association with Theorem 6.2 can be
used to design the MLP architecture, according to the available training samples, or yet to select
the number of samples needed for a given set of previously fixed architectures.

6.5 Simulation Results

6.5.1 MNIST Dataset

In the simulations, we consider the MNIST dataset [114], building a binary classification problem
aimed at distinguishing digits 0 and 1. We employ a network of 9 spatially distributed agents,
where each agent observes only a part of the image (see left panel of Figure 6.3). These agents
wish to collaborate and discover which digit corresponds to the image they are collectively
observing.

As we can see in the left panel of Figure 6.3, different agents will observe data with different
levels of informativeness, e.g., agents 1 and 9 will dispose of little or no information within
their attributed image patch. To overcome this lack of local information, agents are connected
through a strongly connected network, whose combination matrix was generated using an
averaging rule [37]. In the right panel of Figure 6.3, we show the network topology.

In the training phase, each agent is provided with a balanced set of 212 labeled images. Using
this set of examples, classifiers are independently trained using a MLP with 2 hidden layers,
each with 64 hidden units and tanh activation function, over 30 training epochs. The updates

3Note that ∥W ∥1 corresponds to the maximum column sum matrix norm of matrix W .
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Figure 6.4: Empirical training risk averaged over 5 repetitions. The risk corresponding to agents 1 and 9
are highlighted in blue.

are performed using a batch size of 10 with learning rate 0.0001. The training is repeated 5
times for each agent. The empirical training risk for each classifier over the training epochs can
be seen in Figure 6.4, where the risk was averaged over the 5 training repetitions.

As expected, in Figure 6.4 we see that classifiers 1 and 9 result in the least reliable training
performances, i.e., their empirical risks exhibit the most variance across training. This could be
problematic if these agents were to solve the classification problem on their own, but we will
see that their individual poor classification performance is mitigated when collaborating within
the network.

In the prediction phase, agents observe unlabeled images over time. The nature of images
switches at every prediction cycle: In the cycle corresponding to interval i ∈ [0, 1000) agents
start observing digits 0. In the following cycle, i.e., i ∈ [1000, 2000), the nature of images
changes to depict digits 1. Then, from instant i = 3000 it switches back to digits 0, and so on.
We implement the SML strategy based on the adaptive social learning algorithm described in
Section 6.2.3. In Figure 6.5, we see the evolution of the decision variable λ1,i for agent 1 with
δ = 0.01.

0 1000 2000 3000 4000 5000

i

−500

0

500

λ
1
,i

Digit 0

Digit 1

Figure 6.5: Evolution of the decision variable for agent 1 over the test phase. The observed digit is 0
within interval [0,1000), then it switches every 1000 time instants.

In Figure 6.5, we see how, despite the limited information available during training, agent 1
is able to clearly distinguish digits 0 and 1. The instantaneous decision of agent 1 is given by
the sign of the decision variable λ1,i at any given time, i.e., whether the decision variable lies
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above or below the decision threshold (the orange dashed line in Figure 6.5). Moreover, within
the same prediction cycle, we can see in Figure 6.5 that the decision variable moves away from
the decision threshold in the correct sense, i.e., it becomes more positive under digit 1 and more
negative under digit 0.

6.5.2 Comparison with AdaBoost

We compare the performance of the Social Machine Learning strategy with the classical Ad-
aBoost strategy, as presented in [115]. In Boosting strategies, agents are trained sequentially,

yielding a logit statistic f̃
Boost
k for each classifier k. The agents in this case are neural network

classifiers, with the same architecture as described in the previous example. Once each agent is
trained, its performance on the training dataset is evaluated and results in a boosting weight ak

(see [115] for further details on the implementation of AdaBoost). Larger values of ak indicate
that agent k has a better accuracy in the training dataset and makes less mistakes.

During the prediction phase, as agents observe unlabeled data hk,i, the decision of an individual
agent is given by:

γBoost
k,i = sign

(
f̃

Boost
k (hk,i)

)
, (6.65)

and the collective decision is performed using the boosting weights determined during training,
according to:

γBoost
i = sign

(
K∑

ℓ=1
aℓγ

Boost
ℓ,i

)
. (6.66)

Note that computing γBoost
i requires centralized information, i.e., knowledge of the instanta-

neous decisions of all agents. We compare this centralized boosting decision with the individual
instantaneous decision of agent 1 from the SML strategy, whose decision variable was seen
in Figure 6.5. The comparison can be seen in Figure 6.6, for a similar prediction setup as
previously described. As a result from training AdaBoost, the lowest boosting weights were
obtained for agents 1, 3, 4, 9. This result is expected since these agents are observing less
relevant information (see Figure 6.3) and can be regarded as the weakest agents.

In Figure 6.6, we see how the SML strategy results in virtually no misclassified samples when
detecting the true class, whereas the AdaBoost solution makes mistakes throughout the predic-
tion phase. We highlight that SML achieves such superior performance in a fully decentralized
environment, where agents only communicate with their neighbors, whereas AdaBoost re-
quires sequential training of each agent and centralized processing to establish the combined
classification decisions.

In the second simulation setup, we can observe how the SML strategy improves its learning
performance (i.e., the error probability decreases) over time during the prediction phase. To
emphasize this behavior, we reduce the number of hidden units in the neural network structure
to 10, and the number of training samples available at each agent to 40. The SML strategy and
AdaBoost are trained for the new setup, and deployed in two prediction scenarios: a stationary
scenario, in which the true underlying class corresponds to digit 0 throughout the simulation
period; and a nonstationary scenario, when the true underlying class starts at digit 0 and at
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Figure 6.6: Comparison of the individual decision of Agent 1 within the SML framework and the collective
AdaBoost decision. The observed digit is 0 within interval [0,1000), then it switches every 1000 time
instants.

instant i = 20 switches to digit 1.

The SML strategy is implemented considering distinct social learning approaches. In the
stationary scenario, we use traditional social learning (SL), implemented with the Bayesian
update in (6.5) and combination rule in (6.6). In the nonstationary scenario, we use adaptive
social learning (ASL), implemented with the adaptive Bayesian update in (6.16) and combination
rule in (6.6). In Figure 6.7, we depict the probability of error of the centralized Boosting algorithm
and the SML strategy at agent 1 (now with the choice of parameter δ = 0.1) for the two scenarios.
The probability is empirically estimated from 1000 Monte Carlo runs.

In the top panel of Figure 6.7, we note that the SML strategy, associated with the SL protocol,
quickly surpasses AdaBoost’s performance and attains a significantly improved accuracy over
time. Notably this improvement in accuracy exhibits a linear behavior as times progresses.
The traditional social learning strategy, although powerful, is not suitable to operate under
nonstationary conditions, as discussed in [77]. This is why, in the bottom panel of Figure 6.7,
we consider instead the SML strategy with the ASL protocol. In this scenario, we can clearly
distinguish two prediction cycles, corresponding to the period under different underlying classes
of digits. Compared with AdaBoost, SML yields the best performance as time passes. It is able
to adapt its predictive behavior in view of the change in the observed digit, and it eventually
surpasses the performance of AdaBoost with an adaptation time that scales with the chosen
step-size 1/δ.

This improved performance can be explained by noticing the following aspect. The SML strategy
leverages not only information distributed across agents, but also knowledge accumulated over
time. We see that by considering, for example, the SML strategy associated with the SL protocol
in (6.11), the evolution of the decision variable of agent k over the prediction phase is governed
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Figure 6.7: Evolution of the probability of error for the SML strategy and AdaBoost (centralized decision)
estimated from 1000 Monte Carlo runs. (Top) SML is run with the traditional social learning rule (SL).
The true state corresponds to digit 0. (Bottom) SML is run with the adaptive social learning rule (ASL).
Until instant i = 20, the true state corresponds to digit 0, after which the true state is digit 1.

by the recursion:

λk,i =
K∑

ℓ=1
aℓk

(
λℓ,i−1 + c̃ℓ(hℓ,i)

)
. (6.67)

As we can see in (6.67), at every instant i, λk,i aggregates information from the past through the
term λℓ,i−1. The aggregation of past decision variables leverages the fact that the underlying
class changes slowly during the prediction phase, thus allowing the classifiers to grow in
confidence over time.

We should also note that, in face of a single observation, i.e., at instant i = 1 in Figure 6.7,
AdaBoost outperforms SML in its classification accuracy. This can be explained by the fact that
SML is a decentralized algorithm, i.e., at each iteration, agent k communicates only with its
one-hop neighbors. If the agent’s neighbors happen to be poorly informed classifiers, then
their 1−iteration decision will also be unreliable. As the time passes, that is, as i grows, this
challenge is overcome due to the strong-connectivity of the graph topology, which enables the
diffusion of information across all agents. In the example above, this is accomplished around
instant i = 4, when SML surpasses AdaBoost in performance.

194



6.6 Concluding Remarks

6.6 Concluding Remarks

In this chapter, we focused on the following classification problem. A network of spatially
distributed agents observes an event and all agents wish to determine the underlying class
exploiting a growing number of streaming observations collected over time. Such problem has
been thoroughly studied within the social learning literature, where agents possess a set of
possible models to explain their observations. By cooperating with neighbors, these agents
are able to overcome local limitations and achieve collective consistent learning of the true
underlying class.

These methods, however powerful, depend on the prior knowledge of the set of possible models,
or likelihoods, which characterize the distribution of observations given different underlying
classes. In this chapter, we provided a fully data-driven solution to the aforementioned problem.
We introduced Social Machine Learning, which is a two-step framework that allows aggregating
the information perceived by heterogeneous classifiers to improve their decision performance
over time, as the classifiers observe streaming data. The classifiers are heterogeneous in the
sense that their private observations originate from different distributions. In our approach, we
introduce a training phase that, with a finite training dataset, results in approximate models for
the unknown data logit statistics. These models are deployed in a prediction phase, where one
of the available social learning algorithms can be used.

We show that consistent learning in the prediction phase can be achieved with high probability,
and we describe how the number of training samples should scale to yield the desired consistency.
Furthermore, the decentralized collaboration among agents results in an increased robustness
in face of poorly informed agents, as seen in the simulation results. Simulations also show that
our solution continually improves performance over time, leveraging past acquired knowledge
to make better informed decisions in the present.

6.A Proof of Theorem 6.1

Before detailing the proof of Theorem 6.1, we enunciate Lemma 6.1, which provides a lower
bound on the probability of consistent learning. We denote the total expected value of fk(h̃k,n)
by:

µk(fk) ≜ E h̃k
fk(h̃k,n) = µ+

k (fk) + µ−
k (fk)

2 , (6.68)

where we considered equal priors over the two classes +1 and −1. We also denote its average
across the network by:

µ(f) ≜
K∑

ℓ=1
πkµk(fk) (a)= µ+(f) + µ−(f)

2 , (6.69)

where (a) follows from using (6.68) and the definition of µ+(f) and µ−(f) found in (6.39).

195



Chapter 6. Learning with Imperfect Models

Lemma 6.1 (Probability bound for consistent learning). For any d > 0, we have that:

Pc ≥ 1 − P
(∣∣∣µ̃(f̃) − µ(f̃)

∣∣∣ ≥ d
)

− P
(
R(f̃) ≥ ∆

)
, (6.70)

where ∆ ≜ log(1 + e−d) and Pc is the probability of consistent learning defined in (6.44).

Proof. Define the following events, which will be used in the proof:

A ≜
{∣∣∣∣µ(f̃) − µ̃(f̃)

∣∣∣∣ ≥ µ+(f̃) − µ−(f̃)
2

}
, (6.71)

B ≜
{

µ+(f̃) − µ−(f̃)
2 > d

}
. (6.72)

First, in view of (6.44) and using de Morgan’s law [18], we can write:

1 − Pc = P
({

µ+(f̃) ≤ µ̃(f̃)
}

∪
{

µ−(f̃) ≥ µ̃(f̃)
})

(a)= P
({

µ+(f̃) − µ(f̃) ≤ µ̃(f̃) − µ(f̃)
}

∪
{

µ−(f̃) − µ(f̃) ≥ µ̃(f̃) − µ(f̃)
})

(b)= P

µ+(f̃) − µ+(f̃) + µ−(f̃)
2 ≤ µ̃(f̃) − µ(f̃)


∪
µ−(f̃) − µ+(f̃) + µ−(f̃)

2 ≥ µ̃(f̃) − µ(f̃)




= P

µ+(f̃) − µ−(f̃)
2 ≤ −

(
µ(f̃) − µ̃(f̃)

)
∪
µ+(f̃) − µ−(f̃)

2 ≤ µ(f̃) − µ̃(f̃)




(c)= P (A)
(d)= P

(
A , B

)
+ P

(
A , B

)
(e)
≤ P

(∣∣∣∣µ(f̃) − µ̃(f̃)
∣∣∣∣ ≥ d

)
+ P

(
µ+(f̃) − µ−(f̃)

2 ≤ d

)
, (6.73)

where in (a) we subtract µ(f̃) from both terms within the probability operator, in (b) we replace
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µ(f̃) with (6.69), and (c) follows from the following relation:µ+(f̃) − µ−(f̃)
2 ≤ −

(
µ(f̃) − µ̃(f̃)

)
∪
µ+(f̃) − µ−(f̃)

2 ≤ µ(f̃) − µ̃(f̃)


⇔


∣∣∣∣µ(f̃) − µ̃(f̃)

∣∣∣∣ ≥ µ+(f̃) − µ−(f̃)
2

 ≜ A. (6.74)

In (d), we used the law of total probability, and (e) follows from:

A ∩B ⇒
{∣∣∣∣µ(f̃) − µ̃(f̃)

∣∣∣∣ ≥ d

}
, (6.75)

where B is defined in (6.72), and also from the fact that the probability of intersection of two
events is upper bounded by the probability of one of the events.

Let us address the second probability term on the RHS of (6.73). Consider the average network
risk evaluated on the training samples (h̃k,n, γ̃n), computed for a given function fk ∈ Fk:

K∑
k=1

πkRk(fk) =
K∑

k=1
πkE h̃k,γ̃ log

(
1 + exp

(
− γ̃nfk(h̃k,n)

))
(a)
≥

K∑
k=1

πk log
(

1 + exp
(

− E h̃k,γ̃ γ̃nfk(h̃k,n)
))

(b)
≥ log

(
1 + exp

(
−

K∑
k=1

πkE h̃k,γ̃ γ̃nfk(h̃k,n)
))

(c)
≥ log

(
1 + exp

(1
2

K∑
k=1

πkELk(−1)fk(h̃k,n) − 1
2

K∑
k=1

πkELk(+1)fk(h̃k,n)
))

(d)= log
(

1 + exp
(

− µ+(f) − µ−(f)
2

))
, (6.76)

where in (a) and (b) we used Jensen’s inequality with the convexity of function log(1 + ex). In
(c), we used the assumption of uniform priors during training, and in (d) we used the definition
of the conditional means averaged over the network found in (6.35) and (6.39). From (6.76), we
have the following implication for a given fk ∈ Fk for k = 1, 2, . . . , K :

µ+(f) − µ−(f)
2 ≤ d ⇒

N∑
k=1

πkRk(fk) ≥ log
(
1 + e−d

)
. (6.77)

Replace fk in (6.77) by f̃k (i.e., the models obtained in the training phase). Then (6.77) results
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in:

P
( N∑

k=1
πkRk(f̃k) ≥ log

(
1 + e−d

))
≥ P

(
µ+(f̃) − µ−(f̃)

2 ≤ d

)
= P

(
B
)

. (6.78)

Using (6.78) in (6.73) and defining ∆ ≜ log(1 + e−d) yields the bound in (6.70).

Proof of Theorem 6.1. From Lemma 6.1, we obtain the lower bound in (6.70) for the probability
of consistent learning. Next, we need to examine each of the terms on the RHS of (6.70).

Regarding the first term, we can write:∣∣∣µ̃(f̃) − µ(f̃)
∣∣∣ ≤ sup

f∈F

|µ̃(f) − µ(f)| , (6.79)

which implies that

P
(∣∣∣µ̃(f̃) − µ(f̃)

∣∣∣ ≥ d
)

≤ P
(

sup
f∈F

|µ̃(f) − µ(f)| ≥ d

)
, (6.80)

providing us with a uniform bound for the first term on the RHS of (6.70). We will now call
upon Theorem 6.3 (Appendix 6.B) to obtain an exponential upper bound on the RHS of (6.80).
Using (6.103) with the choice x = d in (6.80) yields:

P
(∣∣∣µ̃(f̃) − µ(f̃)

∣∣∣ ≥ d
)

≤ exp
{

−(d − 4ρ)2Nmax
2α2β2

}
, (6.81)

for any positive d such that d > 4ρ.

Next, we examine the second term on the RHS of (6.70). Using Lemma 6.2 (Appendix 4.G), with
the choice x = ∆ − Ro, we can derive the following uniform upper bound:

P
(
R(f̃) ≥ ∆

)
≤ P

(
sup
f∈F

∣∣∣R̃(f) − R(f)
∣∣∣ ≥ ∆ − Ro

2

)
, (6.82)

for any positive d such that ∆ = log(1 + e−d) > Ro. Such d exists since, by assumption,
Ro < log 2.

Next, consider Eq. (6.102) of Theorem 6.3 (Appendix 6.B), with the choice x = (∆ − Ro)/2 and
function ϕ(x) = log(1 + ex), which is a function with Lipschitz constant Lϕ = 1. Replacing
(6.102) with these choices into (6.82) results in the bound:

P
(
R(f̃) ≥ ∆

)
≤ exp

{
−(∆−Ro

2 − 4ρ)2Nmax
2α2β2

}
, (6.83)

for any d such that (∆ − Ro)/2 > 4ρ. Using (6.81) and (6.83) in (6.70) results in the following
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bound on the probability of consistent learning

Pc ≥ 1 − exp
{

−8(d
4 − ρ)2Nmax

α2β2

}
− exp

{
−8(∆−Ro

8 − ρ)2Nmax
α2β2

}
, (6.84)

for any d satisfying
d

4 − ρ > 0 and
∆ − Ro

8 − ρ > 0, (6.85)

i.e., for any d contained in the following interval:

d ∈ (4ρ, − log(e8ρ+Ro − 1)). (6.86)

For simplicity, we can rewrite (6.84) in the following manner:

Pc ≥ 1 − exp
{

−8E2
1(x)Nmax
α2β2

}
− exp

{
−8E2

2(x)Nmax
α2β2

}
, (6.87)

where we introduced the auxiliary functions:

E1(x) ≜ x − ρ, (6.88)

E2(x) ≜ log(1 + e−4x) − Ro

8 − ρ, (6.89)

and the free variable d was replaced by x ≜ d
4 . We can now maximize the minimum exponent,

i.e., the slowest decay rate, over the free parameter x. To this end, let us consider the value x⋆

that solves the equation:
E1(x⋆) = E2(x⋆), (6.90)

which corresponds to:

x⋆ = log(1 + e−4x⋆) − Ro

8 ⇔ eRo
e12x⋆ − e4x⋆ − 1 = 0. (6.91)

Setting e4x⋆ = y, we have to solve the third-order equation:

eRo
y3 − y − 1 = 0, (6.92)

whose unique real-valued solution y⋆ is available in closed form. Within the range Ro ∈ [0, log 2],
y⋆ is strictly greater than 1, yielding:

x⋆ = 1
4 log(y⋆)

= 1
4 log

(
2 × 3

1
3 + 2

1
3 e−Ro [Z(Ro)]

2
3

6
2
3 [Z(Ro)]

1
3

)
≜ E (Ro), (6.93)

where
Z(Ro) = 9e2Ro +

√
3e3Ro(−4 + 27eRo). (6.94)
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Figure 6.8: Comparison between the exact expression in (6.93) and the approximation in (6.95).

A good approximation for the function E (Ro) is the linear fit—see Figure 6.8:

E (Ro) ≈ 4E (0)
(

1 − Ro

log 2

)
, (6.95)

where the maximum allowed complexity corresponding to a zero risk is:

4E (0) = 0.2812, (6.96)

which is related to the solution of the third-order equation:

y3 − y − 1 = 0. (6.97)

Figure 6.8 shows how accurate the linear approximation in (6.95) is with respect to the exact
expression for E (Ro) in (6.93) within the interval Ro ∈ [0, log 2].

Now, since E1(x) is an increasing function of x, while E2(x) is a decreasing function of x,
we conclude that if we choose a value x ̸= x⋆ the minimum exponent necessarily decreases.
Accordingly, the minimum exponent is maximized at the value x⋆ = E (Ro).

Finally, letting
ρ < E (Ro), (6.98)

we end up with the following bound:

Pc ≥ 1 − 2 exp
{

−8Nmax
α2β2

(
E (Ro) − ρ

)2
}

, (6.99)

and the proof is complete.
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6.B Auxiliary Theorem

To develop the forthcoming result, we consider a Lϕ-Lipschitz loss function ϕ : R 7→ R+. The
individual expected and empirical risks are written accordingly as:

Rk(fk) = Ehk,γk
ϕ(−γk,nfk(hk,n)), (6.100)

R̃k(fk) = 1
Nk

Nk∑
n=1

ϕ(−γk,nfk(hk,n)), (6.101)

where we removed the symbol ∼ from the top of random variables γk,n and hk,n for simplicity
of notation. Their network averages R(f) and R̃(f) are defined as shown in (6.31).

Theorem 6.3 (Uniform law of large numbers). Assume that the loss function ϕ : R 7→ R+
is Lϕ−Lipschitz and that there exists β > 0 such that fk(h) ≤ β for every h ∈ Hk, and
fk ∈ Fk and k = 1, 2, . . . , K . Then we have the following two results. First,

P
(

sup
f∈F

∣∣∣R̃(f) − R(f)
∣∣∣ ≥ x

)
≤ exp

{
−Nmax (x − 4Lϕρ)2

2α2L2
ϕβ2

}
, (6.102)

for any x > 4Lϕρ. Second,

P
(

sup
f∈F

|µ̃(f) − µ(f)| ≥ x

)
≤ exp

{
−Nmax (x − 4ρ)2

2α2β2

}
, (6.103)

for any x > 4ρ, where Nmax ≜ maxk Nk, ρ is the network Rademacher complexity defined
in (6.50), and α is defined as (6.51).

Proof. In the proof, we use the known independent bounded differences inequality, which is also
known as McDiarmid’s inequality [116]. The inequality is reproduced here without proof to
facilitate its reference in the forthcoming results.

McDiarmid’s Inequality. Let x represent a sequence of independent random variables xn,
with n = 1, 2, . . . , N and xn ∈ Xn for all n. Suppose that the function g :

∏N
n=1 Xn 7→ R

satisfies for every j = 1, 2, . . . , N :

|g(x) − g(x̌)| ≤ cj (6.104)

whenever the sequences x and x̌ differ only in the j−th component. Then we have for t > 0:

P
(

g(x) − Eg(x) ≥ t

)
≤ e

−2t2/
N∑

j=1
c2

j

, (6.105)

P
(

g(x) − Eg(x) ≤ −t

)
≤ e

−2t2/
N∑

j=1
c2

j

. (6.106)
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We now develop the proof of (6.102) and (6.103) in Theorem 6.3 separately as follows.

Proof of (6.102): Consider that the sequence of samples xn is replaced by a sequence of
random pairs (hn,γn), with n = 1, 2, . . . , Nmax , where Nmax ≜ maxk Nk . The quantity hn is
a sequence collecting random variables (or vectors) hk,n for k = 1, 2, . . . , K :

hn ≜ {h1,n,h2,n, . . . ,hK,n}, (6.107)

and γn is a sequence of random variables γk,n for k = 1, 2, . . . , K :

γn ≜ {γ1,n,γ2,n, . . . ,γK,n}. (6.108)

The pairs (hn,γn) are independent and identically distributed over time, i.e., for all n.

Define the following auxiliary quantity:

χk(fk) ≜ Ehk,γk
ϕ(−γk,nfk(hk,n)), (6.109)

where we recall that Ehk,γk
is the expectation computed according to the joint distribution of

hk,n and γk,n. Our function of interest is the following:

g(h, γ) = sup
f∈F

∣∣∣∣∣∣
K∑

k=1
πk

[
χk(fk) − 1

Nk

Nk∑
n=1

ϕ(−γk,nfk(hk,n))
]∣∣∣∣∣∣, (6.110)

where, to keep a concise notation, the arguments h, γ indicate that the function g(·) depends on
the collection of sequences hn (defined in (6.107)) and γn (defined in (6.108)) for n = 1, 2, . . . , Nk .
The argument f represents the ensemble of functions {fk}, where fk ∈ Fk, and we define the
global space of functions:

F ≜ F1 × F2 × · · · × FK . (6.111)

From the collections h and γ, we can construct collections ȟ and γ̌, by replacing hk,j and γk,j

respectively with the distinct samples ȟk,j and γ̌k,j for all k = 1, 2, . . . , K . If j > Nk , the inner
summand in (6.110) is not altered, then, using the indicator function, we can write

g(ȟ, γ̌) = sup
f∈F

∣∣∣∣∣∣
K∑

k=1
πk

[
χk(fk) − 1

Nk

Nk∑
n=1
n̸=j

ϕ(−γk,nfk(hk,n))

− I [j ≤ Nk]
Nk

ϕ(−γ̌k,jfk(ȟk,j)) − I [j > Nk]
Nk

ϕ(−γk,jfk(hk,j))
]∣∣∣∣∣∣

= sup
f∈F

∣∣∣∣∣∣
K∑

k=1
πk

χk(fk) − 1
Nk

Nk∑
n=1

ϕ(−γk,nfk(hk,n))

+ I [j ≤ Nk]
Nk

(
ϕ(−γk,jfk(hk,j)) − ϕ(−γ̌k,jfk(ȟk,j))

)∣∣∣∣∣∣, (6.112)
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where I [E] is the indicator function defined as: I [E] = 1, if event E takes place, I [E] = 0
otherwise. It is convenient to introduce the following quantities:

uk(fk) ≜ χk(fk) − 1
Nk

Nk∑
n=1

ϕ(−γk,nfk(hk,n)), (6.113)

vk(fk) ≜ I [j ≤ Nk]
Nk

[
ϕ(−γk,jfk(hk,j)) − ϕ(−γ̌k,jfk(ȟk,j))

]
, (6.114)

where the dependence of uk(·) upon (h, γ) and of vk(·) upon (ȟ, γ̌) has been skipped for ease
of notation. In view of the definitions in (6.113) and (6.114), we can rewrite (6.110) and (6.112)
as:

g(h, γ) = sup
f∈F

∣∣∣∣∣∣
K∑

k=1
πkuk(fk)

∣∣∣∣∣∣ (6.115)

g(ȟ, γ̌) = sup
f∈F

∣∣∣∣∣∣
K∑

k=1
πkuk(fk) +

K∑
k=1

πkvk(fk)

∣∣∣∣∣∣. (6.116)

Applying Lemma 6.4 (Appendix 6.E) with the choices s1 = g(h, γ), s2 = g(ȟ, γ̌), and

S(f) =
K∑

k=1
πkuk(fk), T (f) =

K∑
k=1

πkvk(fk), (6.117)

we obtain:

|g(h, γ) − g(ȟ, γ̌)| ≤ sup
f∈F

∣∣∣∣ K∑
k=1

πkvk(fk)
∣∣∣∣ (a)

≤
K∑

k=1
πk sup

fk∈Fk

∣∣∣∣vk(fk)
∣∣∣∣, (6.118)

where (a) follows from the triangle inequality and the subadditive property of the supremum
operator. Replacing (6.114) into (6.118) yields

|g(h, γ) − g(ȟ, γ̌)| ≤
K∑

k=1
πk sup

fk∈Fk

∣∣∣∣∣∣I [j ≤ Nk]
Nk

[
ϕ(−γk,jfk(hk,j)) − ϕ(−γ̌k,jfk(ȟk,j))

]∣∣∣∣∣∣
≤

K∑
k=1

πk sup
fk∈Fk

∣∣∣∣∣∣ 1
Nk

[
ϕ(−γk,jfk(hk,j)) − ϕ(−γ̌k,jfk(ȟk,j))

]∣∣∣∣∣∣
(a)
≤ Lϕ

K∑
k=1

πk

Nk
sup

fk∈Fk

∣∣∣∣∣∣γk,jfk(hk,j) − γ̌k,jfk(ȟk,j)

∣∣∣∣∣∣
(b)
≤ Lϕ

K∑
k=1

πk

Nk
sup

fk∈Fk

{∣∣∣∣γk,j

∣∣∣∣ ∣∣∣∣fk(hk,j)
∣∣∣∣+ ∣∣∣∣γ̌k,j

∣∣∣∣ ∣∣∣∣fk(ȟk,j)
∣∣∣∣}

(c)
≤ 2Lϕβ

K∑
k=1

πk

Nk

(d)= 2αLϕβ

Nmax
. (6.119)
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where (a) follows from the Lipschitz property of ϕ, (b) follows from the triangle inequality, (c)
follows from the boundedness assumption fk(h) ≤ β and the fact that |γk,n| = 1 for all k and
i. Finally, in (d) we used the definition in (6.51), namely,

α ≜
K∑

k=1
πk

Nmax
Nk

. (6.120)

Applying McDiarmid’s Inequality in (6.105) with cj = 2αLϕβ/Nmax, we obtain the following
deviation bound:

P
(

sup
f∈F

|R(f) − R̃(f)| − E sup
f∈F

|R(f) − R̃(f)| ≥ t

)
≤ e−t2Nmax/(2α2L2

ϕβ2), (6.121)

holding for all t > 0. To conclude the proof, we seek to upper bound the second term inside
the probability operator in (6.121). The result from Lemma 6.3 (Appendix 6.E) can be directly
employed to conclude that:

E sup
f∈F

|R(f) − R̃(f)| ≤ 4Lϕρ. (6.122)

In view of (6.122), we have that

sup
f∈F

|R(f) − R̃(f)| ≥ t + 4Lϕρ

⇒ sup
f∈F

|R(f) − R̃(f)| − E sup
f∈F

|R(f) − R̃(f)|) ≥ t. (6.123)

From (6.123) and (6.121), we can conclude that

P
(

sup
f∈F

|R(f) − R̃(f)| ≥ t + 4Lϕρ

)
≤ e−t2Nmax/(2α2L2

ϕβ2). (6.124)

Defining x = t + 4Lϕρ, and noting that x > 4Lϕρ since t > 0, completes the proof of (6.102).

Proof of (6.103): The proof for the uniform bound in (6.103) follows similar arguments and
will be thus presented in a concise manner. We start by using McDiarmid’s Inequality with the
following choice of function g:

g(h) = sup
f∈F

∣∣∣∣∣∣
K∑

k=1
πk

[
νk(fk) − 1

Nk

Nk∑
n=1

fk(hk,n)
]∣∣∣∣∣∣ , (6.125)

where we define the auxiliary quantity:

νk(fk) ≜ Ehk
fk(hk,n). (6.126)

We follow similar steps as the ones used to prove (6.102), which results in the following bound:

P
(

sup
f∈F

|µ(f) − µ̃(f)| − E sup
f∈F

|µ(f) − µ̃(f)| ≥ t

)
≤ e−t2Nmax/(2α2β2). (6.127)
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We use again Lemma 6.3 (Appendix 6.E) to bound the second term inside the probability
operation in (6.127). For this we take Lϕ = 1 and we take γn = 1 as a deterministic variable,
which allows us to derive the result:

E sup
f∈F

|µ(f) − µ̃(f)| ≤ 4ρ. (6.128)

Replacing this bound in (6.127), defining x = t + 4ρ, with x > 4ρ, yields the final result.

6.C Proof of Theorem 6.2

Assuming ρk ≤ Ck/
√

Nk, it follows that (6.55) holds, i.e.,

ρ ≤ C√
Nmax

. (6.129)

For the bound in Theorem 6.1 to hold, the Rademacher complexity must satisfy

ρ ≤ E (Ro). (6.130)

In view of (6.129), (6.130) is met if we choose:

C√
Nmax

< E (Ro) ⇐ Nmax >

( C
E (Ro)

)2
. (6.131)

Next, for a desired minimum probability of consistent learning we should consider the bound
found in (6.56). We have that:

Pc ≥ 1 − ε

⇔ 2 exp
{

−8Nmax
α2β2

(
E (Ro) − C√

Nmax

)2}
≤ ε

⇔ Nmax

(
E (Ro) − C√

Nmax

)2
≥ α2β2

8 log
(2

ε

)
. (6.132)

We can develop the quadratic term in the LHS of (6.132) as

Nmax

(
E (Ro) − C√

Nmax

)2

= Nmax [E (Ro)]2 − 2
√

Nmax C E (Ro) + C2. (6.133)

Let

z =
√

Nmax E (Ro), b = C2 − α2β2

8 log
(2

ε

)
. (6.134)

To solve the inequality in (6.132), we must study the following quadratic equality:

z2 − 2Cz + b = 0, (6.135)

205



Chapter 6. Learning with Imperfect Models

whose positive solution is:

z = C +
√

α2β2

8 log
(2

ε

)
. (6.136)

Thus the inequality in (6.132) is satisfied whenever:

√
Nmax >

1
E (Ro)

C +
√

α2β2

8 log
(2

ε

) , (6.137)

or yet when:

Nmax >

( C
E (Ro)

)2(
1 + αβ

2C

√
1
2 log

(2
ε

))2

. (6.138)

The final result of the theorem is established, since the bound in (6.138) is more stringent than
(6.131).

6.D Proof of Proposition 6.1

Before introducing the proof, in order to establish the complexity of class FNN, we will resort
to a set of known inequalities involving the Rademacher complexity operator [113], [117],
summarized in Property 6.1 (Appendix 6.E). The proof follows an inductive argument similar
to the one used in [106], where we establish an upper bound for the Rademacher complexity
of the output of one layer with respect to the output of the previous layer, then this bound is
iterated over the depth of the Multilayer Perceptron (MLP).

We wish to analyze the complexity of the class of functions FNN, which is defined in (6.62) as
the difference between the outputs of the neural network z1 and z2, for an input vector x ∈ Rn0 .
That is, function fNN has the following form (as seen in (6.62)):

fNN(x) = log p(+1|x; f)
p(−1|x; f) = z1 − z2, (6.139)

where z1, z2 implement functions g(L) ∈ G(L) as defined in (6.59) for ℓ = L. We thus say that
fNN ∈ FNN, with

fNN(x) = g
(L)
1 (x) − g

(L)
2 (x), (6.140)

where g
(L)
1 , g

(L)
2 ∈ G(L).

From items 1 and 2 in Property 6.1 (Appendix 6.E). choosing c = −1, the empirical Rademacher
complexity of FNN(x) will satisfy:

R
(
FNN (x)

)
≤ R

(
G(L) (x)

)
+ R

(
G(L) (x)

)
= 2R

(
G(L) (x)

)
. (6.141)
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From (6.59), the Rademacher complexity of G(ℓ)(x) can be expressed as:

R
(
G(ℓ) (x)

)
= E r sup

wj ,g
(ℓ−1)
j

∣∣∣∣∣∣ 1
N

N∑
i=1
ri

m∑
j=1

wjσ
(
g

(ℓ−1)
j (xi)

)∣∣∣∣∣∣ , (6.142)

where ri are independent and identically distributed Rademacher random variables, with
P (ri = +1) = P (ri = −1) = 1/2. The term on the RHS of (6.142) can be rewritten as:

E r sup
w,g(ℓ−1)

∣∣∣∣∣∣ 1
N

m∑
j=1

wj

N∑
i=1
riσ

(
g

(ℓ−1)
j (xi)

)∣∣∣∣∣∣
(a)
≤ E r sup

w,g(ℓ−1)
∥w∥1 max

j

∣∣∣∣∣ 1
N

N∑
i=1
riσ

(
g

(ℓ−1)
j (xi)

)∣∣∣∣∣
(b)
≤ bE r sup

g(ℓ−1)
max

j

∣∣∣∣∣ 1
N

N∑
i=1
riσ

(
g

(ℓ−1)
j (xi)

)∣∣∣∣∣
(c)= bR

(
σ ◦ G(ℓ−1)(x)

) (d)
≤ 2bLσR

(
G(ℓ−1)(x)

)
, (6.143)

where (a) follows from triangle inequality and taking the maximum w.r.t. j, (b) follows from the
assumption that ∥w∥1 ≤ b, (c) follows from the fact that g

(ℓ−1)
j ∈ G(ℓ−1) for all j = 1, 2, . . . , m,

(c) and (d) follows from the contraction principle (item 3 in Property 6.1, Appendix 6.E) in
association with the assumption that σ is a Lipschitz function with constant Lσ .

Replacing (6.143) into (6.142), we have the following recursion:

R
(
G(ℓ) (x)

)
≤ 2bLσR

(
G(ℓ−1) (x)

)
. (6.144)

We can develop the recursion above across all layers up to ℓ:

R
(
G(ℓ)(x)

)
≤ (2bLσ)ℓ−1R

(
G(1) (x)

)
. (6.145)

It remains to bound the Rademacher complexity relative to G(1)(x) of the first layer, whose
functions have the form of g

(1)
m defined in (6.60). For this purpose, we can directly use the result

in Lemma 15 of [106], which bounds the Rademacher complexity of a linear separator with
bounded ℓp norm. Applying this lemma with p = 1, γ = b and ∥x∥∞ = maxi |xi| ≤ c, we
have:

R
(
G(1)(x)

)
= E r sup

wj

∣∣∣∣∣∣ 1
N

N∑
i=1
ri

d∑
j=1

wjxi,j

∣∣∣∣∣∣
≤ 2bc

√
log(2n0)√

N
. (6.146)

Replacing (6.145) with ℓ = L and (6.146) into (6.141) yields the final result.
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6.E Auxiliary Lemmas

We list three key properties of Rademacher complexity, which are used in some of our results.
These properties are well known and therefore are reported here without proof, which can be
found in [113], [117].

Property 6.1 (Inequalities involving Rademacher complexity [113]). LetF,F1, . . . ,FK

be classes of real-valued functions, and x a sequence of samples {x1, x2, . . . , xN }. The
Rademacher complexity defined in (6.47) satisfies the following properties:

1. Subadditivity:
R
(∑K

k=1 Fk(x)
)

≤
∑K

k=1 R(Fk(x)), (6.147)

with F1(x) +F2(x) ≜ {[f1(x1) + f2(x1), f1(x2) + f2(x2), . . . , f1(xN ) + f2(xN )] :
f1 ∈ F1, f2 ∈ F2}.

2. Scaling: For every c ∈ R,

R(cF(x)) ≤ |c|R(F(x)), (6.148)

where cF(x) ≜ {[cf(x1), cf(x2), . . . , cf(xN )] : f ∈ F}.

3. Contraction principle: Let ϕ : R 7→ R+ be Lipschitz with constant Lϕ and ϕ(0) = 0.
Then:

R(ϕ ◦ F(x)) ≤ 2LϕR(F(x)), (6.149)

with ϕ ◦ F(x) ≜ {[ϕ(f(x1)), ϕ(f(x2)), . . . , ϕ(f(xN ))] : f ∈ F}.

The next three lemmas are important auxiliary results used in the proofs of Theorem 6.1 and
Theorem 6.3.

Lemma 6.2 (Upper bound on the estimation error for the empirical risk). From the
definitions in (6.28)–(6.29) and (6.31), for x > 0 we have that:

P
(
R(f̃) − Ro ≥ x

)
≤ P

(
sup
f∈F

∣∣∣R̃(f) − R(f)
∣∣∣ ≥ x

2

)
. (6.150)

Proof. From (6.28) and (6.29), we can verify that for all k = 1, 2, . . . , K :

R̃k(f̃k) ≤ R̃(fk), for all fk ∈ Fk, (6.151)

which imply, from the definitions in (6.31), that

R̃(f̃) ≤ R̃(f), for all f ∈ F, (6.152)

where F is the global class of functions defined in (6.111). We can develop the expression of the
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estimation error to obtain the following uniform bound:

R(f̃) − Ro (a)= R(f̃) − inf
f∈F

R(f)

= R(f̃) − R̃(f̃) + R̃(f̃) − inf
f∈F

R(f)

= R(f̃) − R̃(f̃) + sup
f∈F

(
R̃(f̃) − R(f)

)
(b)
≤ R(f̃) − R̃(f̃) + sup

f∈F

(
R̃(f) − R(f)

)
≤ 2 sup

f∈F

∣∣∣R̃(f) − R(f)
∣∣∣ , (6.153)

where (a) follows from the definition in (6.28) and (b) follows from (6.152).

Finally, from (6.153) and using the target risk notation in (6.28), we note that

R(f̃) − Ro ≥ x ⇒ sup
f∈F

∣∣∣R̃(f) − R(f)
∣∣∣ ≥ x/2, (6.154)

for any x > 0, thus concluding the proof.

Lemma 6.3 (Uniform upper bound for Lipschitz cost functions). Assume that the
pair of sequences (hn,γn) is sampled independently from the same joint distribution for
all n = 1, 2, . . . , Nmax. Let fk : Hk 7→ R be a function belonging to class Fk, and let
ϕ : R 7→ R+ be a Lϕ−Lipschitz function. Then it follows that

Eh,γ sup
f∈F

∣∣∣∣∣∣
K∑

k=1
πk

[
χk(fk) − 1

Nk

Nk∑
n=1

ϕ(−γk,nfk(hk,n))
]∣∣∣∣∣∣ ≤ 4Lϕρ, (6.155)

with
χk(fk) ≜ Ehk,γk

ϕ(−γk,nfk(hk,n)). (6.156)

Proof. Introduce the artificial pair h′
n,γ ′

n, sampled independently with the same joint distribu-
tion of hn,γn. We develop the following symmetrization argument, inspired by the ones used
in [110], [113].

First, we use the triangle inequality and the subadditive property of the supremum operator:

Eh,γ sup
f∈F

∣∣∣∣∣∣
K∑

k=1
πk

[
χk(fk) − 1

Nk

Nk∑
n=1

ϕ(−γk,nfk(hk,n))
]∣∣∣∣∣∣

≤
K∑

k=1
πkEhk,γk

sup
fk∈Fk

∣∣∣∣∣∣χk(fk)− 1
Nk

Nk∑
n=1

ϕ(−γk,nfk(hk,n))

∣∣∣∣∣∣, (6.157)
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where we recall that the argument f represents the ensemble of functions {fk}, with fk ∈ Fk,
and F denotes the global space of functions defined in (6.111).

We focus on the individual elements of the summation on the RHS of (6.157), that is, on each
term indexed by k. We drop subscript k everywhere to simplify the notation.

Eh,γ sup
f∈F

∣∣∣∣∣∣χ(f) − 1
N

N∑
n=1

ϕ(−γnf(hn))

∣∣∣∣∣∣
(a)= Eh,γ sup

f∈F

∣∣∣∣∣∣Eh′,γ′
1
N

N∑
n=1

[
ϕ(−γ ′

nf(h′
n))−

N∑
n=1

ϕ(−γnf(hn))
]∣∣∣∣∣∣

(b)
≤ Eh,γEh′,γ′ sup

f∈F

∣∣∣∣∣ 1
N

N∑
n=1

[
ϕ(−γ ′

nf(h′
n)) − ϕ(−γnf(hn))

]∣∣∣∣∣
(c)= Eh,γEh′,γ′E r sup

f∈F

∣∣∣∣∣∣ 1
N

N∑
n=1
rn

[
ϕ(−γ ′

nf(h′
n))−ϕ(−γnf(hn))

]∣∣∣∣∣∣
(d)
≤ 2Eh,γE r sup

f∈F

∣∣∣∣∣∣ 1
N

N∑
n=1

rnϕ(−γnf(hn))

∣∣∣∣∣∣
(e)
≤ 4LϕEh,γE r sup

f∈F

∣∣∣∣∣ 1
N

N∑
n=1

rnγnf(hn)
∣∣∣∣∣

(f)
≤ 4LϕEhE r sup

f∈F

∣∣∣∣∣ 1
N

N∑
n=1

rnf(hn)
∣∣∣∣∣

= 4LϕEhR (F(h)) . (6.158)

We explain now each of the steps (a)–(f) performed in (6.158). In (a) we used the i.i.d. property
of the artificial samples (h′

n,γ ′
n), (b) follows from the following two properties: i) |Ex| ≤ E |x|;

ii) supf∈F E |y(f)| ≤ E supf∈F |y(f)|.

In (c) we introduced the i.i.d. Rademacher random variables, i.e., rn ∈ {−1, +1} with uniform
probability, which are independent of samples (hn,γn) and (h′

n,γ ′
n). Since (hn,γn) and

(h′
n,γ ′

n) are identically distributed and independently sampled, exchanging (hn,γn) and
(h′

n,γ ′
n) is immaterial and therefore we can safely introduce the Rademacher random variables

rn in the summation.

In (d), we used the triangle inequality for the absolute value and the fact that (hn,γn) and
(h′

n,γ ′
n) are identically distributed. In (e), we use the Lipschitz property of ϕ associated with

the contraction principle of the Rademacher complexity (item 3 in Property 6.1) to conclude
that:

E r sup
f∈F

∣∣∣∣∣∣ 1
N

N∑
n=1

rnϕ(−γnf(hn))

∣∣∣∣∣∣ ≤ 2LϕE r sup
f∈F

∣∣∣∣∣ 1
N

N∑
n=1

rnγnf(hn)
∣∣∣∣∣ . (6.159)
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Step (f) follows from similar symmetrization arguments, considering that γn assumes values
±1 and that rn and −rn are equally distributed and independent form the samples and over
i. Finally replacing (6.158) into (6.157) for each of the summands indexed by k, for all terms
indexed by k, and recalling the definition of ρ in (6.50), we obtain (6.155).

Lemma 6.4 (Auxiliary result for bounded differences). Assume S(f) and T (f) are
operators dependent on a real-valued function f ∈ F, and consider the following quantities:

s1 = sup
f∈F

∣∣∣∣S(f)
∣∣∣∣, s2 = sup

f∈F

∣∣∣∣S(f) + T (f)
∣∣∣∣. (6.160)

Then, we have that:

|s1 − s2| ≤ sup
f∈F

∣∣∣∣T (f)
∣∣∣∣. (6.161)

Proof. The proof is split in two cases.

a) Case s2 ≥ s1:

s2 − s1 = sup
f∈F

∣∣∣∣S(f) + T (f)
∣∣∣∣− sup

f∈F

∣∣∣∣S(f)
∣∣∣∣

≤ sup
f∈F

∣∣∣∣S(f)
∣∣∣∣+ sup

f∈F

∣∣∣∣T (f)
∣∣∣∣− sup

f∈F

∣∣∣∣S(f)
∣∣∣∣ = sup

f∈F

∣∣∣∣T (f)
∣∣∣∣, (6.162)

where the inequality follows from the triangle inequality and the subadditive property of the
supremum operator, i.e., supf∈F[a(f) + b(f)] ≤ supf∈F a(f) + supf∈F b(f).

b) Case s2 < s1:

s1 − s2 = sup
f∈F

∣∣∣∣S(f)
∣∣∣∣− sup

f∈F

∣∣∣∣S(f) + T (f)
∣∣∣∣

= sup
f∈F

(∣∣∣∣S(f)
∣∣∣∣− s2

)
(a)
≤ sup

f∈F

(∣∣∣∣S(f)
∣∣∣∣− ∣∣∣∣S(f) + T (f)

∣∣∣∣)
≤ sup

f∈F

∣∣∣∣ ∣∣∣∣S(f)
∣∣∣∣− ∣∣∣∣S(f) + T (f)

∣∣∣∣ ∣∣∣∣
(b)
≤ sup

f∈F

∣∣∣∣S(f) − S(f) + T (f)
∣∣∣∣ = sup

f∈F

∣∣∣∣T (f)
∣∣∣∣, (6.163)

where (a) follows from the definition of s2, and (b) from the reverse triangle inequality, i.e.,
|a − b| ≥ | |a| − |b| |.

Using (6.162) and (6.163), we obtain the desired result in (6.161).
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7 Conclusions

In this thesis, we studied multiple aspects of social learning strategies. Our investigations
allowed us to examine questions regarding the topology learning problem and the effect of
sharing partial information under stationary conditions—seen in Part I of the thesis. They also
enabled us to overcome two critical assumptions in social learning, namely, that world conditions
are stationary and that perfect statistical models are available. Both premises are neither realistic
to model social dynamics since the world with which we interact is nonstationary, nor desirable
in a decision-making system since the statistical models used by sensors in the system are
usually the result of a training process. The solutions proposed in Part II of the thesis take us
one step closer to making social learning strategies suitable for fully data-based applications.

7.1 Summary of Main Results

In Chapter 3, we considered the network aspect of social learning and addressed the reverse
learning problem in weakly connected networks. The weakly connected network models the
existence of influence dynamics in real social networks, wherein some influential (sending)
subnetworks have control over the opinions at influenced (receiving) subnetworks. In Chapter
3, we propose to learn the amount of power exerted by each sending subnetwork on each
receiving agent, from observing the belief evolution of the latter. The reverse learning task is
formally posed as a topology learning problem. We show that a necessary condition for the
problem to be feasible is that the number of hypotheses is greater or equal than the number
of sending subnetworks. More specifically, we show that when the likelihood models across
sending networks present little diversity, i.e., they all belong to the same family of Gaussian
distributions, the topology learning problem is not feasible in general. This is mitigated when
the models across sending networks have greater diversity, i.e., they do not follow a fixed family
of distributions, under which the problem is almost always feasible.

In Chapter 4, we tapped into the exchanged information in social learning and addressed the
problem of sharing partial information in strongly connected networks. Instead of allowing
agents to share their full belief vectors with neighbors, we constrain the communication among
agents even further. They can share only one hypothesis of interest at all times. The objective of
the network is to assess the validity of such hypothesis, i.e., whether it corresponds to the true
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state of the world or not. We show that the network learns the truth unequivocally when the
true hypothesis is shared. When the shared hypothesis is not the truth but sufficiently close to
it, the network can converge to a wrong conclusion. The exact limitations to this approach are
analytically detailed in Chapter 4.

In Chapter 5, we consider nonstationary world conditions. Social learning is designed for
stationary environments, and performs poorly when the environment changes, e.g., when there
is a change in the underlying true state. We explain this phenomenon and propose an adaptive
social learning strategy, which allows agents to adapt their opinion in view of changing world
conditions. A step-size parameter is introduced to the formulation allowing agents to exploit
a trade-off between learning performance and adaptation. We characterize the steady-state
behavior and show that consistent learning occurs for small step sizes. In particular, we show
that the steady-state error probability decreases exponentially with a decreasing step size. We
then investigate the transient behavior and show that the adaptation time decreases with a
growing step size, therefore characterizing how the aforementioned trade-off, between learning
accuracy and adaptation, relies on the step-size parameter.

In Chapter 6, we consider imperfect likelihood models. Social learning assumes that likelihood
models are exactly known. In this chapter, we propose instead a fully data-based strategy, in
which these models are trained using a finite amount of data. We also cast the social learning
problem into a distributed classification problem under streaming observations. We propose
a machine learning framework, where, in a first stage, multiple classifiers, belonging to a
fairly general functional class, are independently trained given heterogeneous features, and
in a second stage, these classifiers collaborate to classify streaming unlabeled observations
in a distributed manner. We show that this structure results in consistent learning with high
probability, and characterize how the number of training samples should scale as a function of
different parameters of the learning problem. Contrary to traditional boosting solutions, the
proposed solution also enables agents to continually improve accuracy over time.

7.2 Future Directions

Partial Information

The results in Chapter 4 suggest interesting future directions of research. In contrast to the
memoryless approach to partial information introduced in (4.3), we can also consider a memory-
aware approach, namely, for θ ̸= θTX:

ψ̂ℓk,i(θ) =
ψk,i(θ)

1 −ψk,i(θTX)(1 −ψℓ,i(θTX)). (7.1)

The memory-aware choice allows agent k to use local prior knowledge, in the form of their
intermediate beliefsψk,i, to fill in the knowledge gap regarding the non-transmitted components
received from its neighbor ℓ. Preliminary results using this strategy suggest that the mislearning
scenarios of the memoryless approach can be completely avoided.

Another interesting extension is to consider that the global hypothesis of interest evolves
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randomly over time. This extension finds motivation in the fact that real social networks do
not always discuss the same topics or hypotheses. Instead, discussions follow trends depending
on contemporary events. A first setup with randomized transmitted hypothesis is investigated
in [118], where the hypothesis of interest is sampled from a fixed distribution at every time
instant. The authors found that the randomization allows agents to overcome communication
constraints and learn the truth in the traditional social learning sense. More involved scenarios
would be to consider that this global hypothesis of interest evolves according to a Markov chain,
mimicking the setting in which a topic of discussion evolves over time with a certain coherence
with respect to the past. Another more intricate scenario would take into account that subsets of
the network discuss different topics at the same time, in which case the transmitted hypothesis
is a localized instead of a global random variable.

Privacy in Social Learning

In social interactions, a key human concern is to preserve privacy. People are usually unwilling
to share information that is deemed too personal or that might make them feel disapproved
of by other individuals. An example is the Bradley effect in political polls, where voters give
inaccurate answers for fear of criticism from society. Similar privacy concerns can be found
when information is exchanged in distributed engineering systems. Agents do not want to
give away any information regarding their private observations, except the strict necessary for
performing the distributed learning task. Therefore, an interesting future extension is to add a
privacy mechanism to social learning.

For that purpose, the concept of differential privacy [119] is frequently used. Its main strategy is
to add noise to the algorithm output, and it provides guarantees that the output does not carry
information about private data samples. The strategy has been used in distributed learning [120],
[121], with successful privacy-preserving results at the expense, however, of their learning
performance. To mitigate the loss in performance, graph-homomorphic perturbations, as shown
in [122], can be used to enable differential privacy.

Social Machine Learning

In Chapter 6, the social machine learning framework uses a set of classifiers distributed in
space to perform social learning during the prediction phase over a growing data stream. We
require, however, a large amount of streaming observations, i.e., i → ∞, to guarantee consistent
learning during prediction with high probability. In other words, the expression of consistent
learning found Theorem 6.1 takes into account implicitly the steady-state performance during
prediction.

A meaningful extension would be to characterize the learning performance assuming a finite
number of unlabeled samples in the prediction phase. The expression of consistent learning
found in Theorem 6.1 should be modified to incorporate an additional multiplicative probability
term that should approach 1 as i grows. This important contribution would allow us to exploit,
not only the number of training samples Nk for k = 1, 2, . . . , K , but also the length of the
prediction data stream as an additional dimension of the social learning problem.
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