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Abstract

H
umans have good bi-manual manipulation skills. They can effortlessly co-

ordinate the motion of their two hands and execute successfully a given

task. For instance, humans often resort to their bi-manual manipulation skills

when moving a large or heavy object or when a task is too complex to be per-

formed by a single hand. Bi-manual picking up of objects to place or toss them

on a conveyor belt are manipulation activities generated daily in the industry,

particularly in logistics and warehouses. Such repetitive and physically demand-

ing tasks are still done largely by humans for lack of similarly fast, precise, and

robust bi-manual robotic systems. With nowadays booming of e-commerce, the

needs for faster package handling solutions continue to increase. Hence, automa-

tion and robotics is the only viable solution as the current workforce cannot keep

up with the growing industry demands. In current applications, however, robots

usually use quasi-static approaches (with near zero relative velocities) to grab

and release objects, mainly to avoid impacts.

Thus, this thesis proposes dynamic alternative solutions to quasi-static ma-

nipulation approaches with the goal to accelerate object handling operations

and improve their energy efficiency. It focuses on bi-manual (dual-arm) robotic

manipulation for its potential to mimic human dexterity. The thesis tackles

the bi-manual manipulation problem from a coordination perspective of both

motion and interaction forces to enable robust reaching, stable grabbing and co-

operative manipulation tasks. It also considers smooth and dynamic transitions

between non-contact and contact motion phases. To validate its approach, the

thesis considers different scenarios with two types of bi-manual systems: a biped

humanoid robot and a pair of fixed base robot manipulators.

The first part of the thesis starts by endowing the humanoid robot with bal-

ance and locomotion abilities needed for dual-arm cooperative tasks. It proposes

a reactive locomotion controller that exploits the capture point dynamics to gen-

erate on-the-fly adjustable omnidirectional walking patterns that are consistent

with balance constraints. In the second part, the whole body of the humanoid

robot is controlled to accomplish bi-manual motion coordination and coopera-

tive compliant manipulation tasks. The proposed approach relies on dynamical

systems and exploits a shrinkable virtual object concept with its associated con-

straints to achieve robust coordination of the robotic hands with smooth tran-
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sitions between non-contact and contact motion phases. The framework uses

quadratic programming (QP) to generate interaction wrenches that are consis-

tent with the contact constraints in order to stabilize the grasp and perform the

desired manipulation tasks.

The third part of the thesis considers more dynamic interactions of the dual-

arm system with the objects by allowing the grabbing and releasing of objects

with non-zero relative velocities. Such an approach, besides speeding up the task,

offers the possibility to expand the robot’s reach beyond its physical boundaries.

Thus, a unified coordination framework based on modulated dynamical systems

is proposed for reaching, grabbing with impact, and tossing objects in one swipe.

It is based on modulated dynamical systems that ensure motion continuity and

robustness throughout the task. The last part of the thesis extends the dynamic

capabilities of the framework by enabling the precise tossing of objects onto

a moving target carried by a conveyor belt. It uses a learned inverse throwing

map within a kinematic-based bi-level optimization to determine feasible tossing

parameters required by the precise positioning task. Moreover, it proposes and

uses a model of the tossable workspace (set of all positions reachable by an

object if tossed by the robot) to determine intercept locations that yield high

probability of success.

Finally, the proposed approaches are validated both in simulation and on

real robotic platforms, namely: the humanoid robot iCub and a pair of KUKA

LBR (IIWA7 and IIWA14) robots. Kinetic comparisons with the classical pick-

and-place strategy are conducted and the results show that the proposed swift

pick-and-toss reduces the task duration and the energy expenditure.

Keywords: bi-manual manipulation, dynamic manipulation, fast grabbing, toss-

ing, pick-and-toss, dual-arm robot, dynamical systems
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Résumé

L
es humains ont de bonnes capacités de manipulation bi-manuelle. Ils peu-

vent coordonner sans effort le mouvement de leurs deux mains et exécuter

avec succès une tâche donnée. Par exemple, les humains ont souvent recours à

leurs capacités de manipulation bimanuelle lorsqu’ils veulent déplacer un objet

lourd ou volumineux ou lorsqu’une tâche est trop complexe pour être exécutée

par une seule main. La prise bimanuelle d’objets pour les placer ou les lancer sur

un tapis roulant est une activité de manipulation générée quotidiennement dans

l’industrie, notamment dans la logistique et les entrepôts. Ce genre de tâches

répétitives et physiquement exigeantes sont encore effectuées en grande par-

tie par des humains, faute de systèmes robotisés bimanuels tout aussi rapides,

précis et robustes. Cependant, avec l’essor actuel du commerce électronique, les

besoins en solutions de manutention rapide des colis ne cessent d’augmenter.

L’automatisation et la robotique sont donc la seule solution viable, car la main-

d’œuvre actuelle ne peut pas répondre aux exigences croissantes du secteur.

Cependant, dans les applications actuelles, les robots utilisent généralement des

approches quasi-statiques (avec des vitesses relatives proches de zéro) pour saisir

et libérer les objets, principalement pour éviter les impacts.

Ainsi, cette thèse propose une approche dynamique comme alternative aux

approches de manipulation quasi-statiques dans le but d’accélérer les opérations

de manipulation d’objets et d’améliorer leur efficacité énergétique. Elle se con-

centre sur la manipulation robotique bimanuelle (à deux bras) pour son potentiel

à imiter la dextérité humaine. La thèse aborde le problème de la manipula-

tion bimanuelle d’un point de vue de la coordination des mouvements et forces

d’interaction pour permettre des tâches d’atteinte robustes, de saisie stable et

de manipulation coopérative. Elle considère également les transitions douces et

dynamiques entre les phases de mouvement sans contact et avec contact. Pour

atteindre son objectif, la thèse considère différents scénarios avec deux types de

systèmes bimanuels: un robot humanöıde bipède et une paire de robots manip-

ulateurs à base fixe.

La première partie de la thèse commence par doter le robot humanöıde des

capacités d’équilibre et de locomotion nécessaires aux tâches coopératives à deux

bras. Elle propose un contrôleur de locomotion réactif qui exploite la dynamique

du point de capture pour générer à la volée des trajectoires de marche omni-
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directionnels et ajustables qui sont cohérents avec les contraintes d’équilibre.

Dans la deuxième partie, le corps entier du robot humanöıde est contrôlé pour

accomplir des tâches de coordination de mouvements bimanuels et de manipu-

lation coopérative compliante. L’approche proposée s’appuie sur des systèmes

dynamiques et exploite un concept d’objet virtuel rétrecissable avec ses con-

traintes associées pour obtenir une coordination robuste des mains robotiques

avec des transitions douces entre les phases de mouvement sans contact et avec

contact. Le cadre utilise la programmation quadratique (QP) pour générer des

forces d’interaction qui sont cohérentes avec les contraintes de contact afin de

stabiliser la prise et d’effectuer les tâches de manipulation souhaitées.

La troisième partie de la thèse considère des interactions plus dynamiques du

système à deux bras avec les objets en permettant leur saisie et relâche avec des

vitesses relatives non nulles. Une telle approche, en plus d’accélérer la tâche, offre

la possibilité d’étendre la portée du robot au-delà de ses limites physiques. Ainsi,

un cadre de coordination unifié basé sur des systèmes dynamiques modulés est

proposé pour atteindre, saisir avec impact et lancer des objets en un seul mouve-

ment. Il est basé sur des systèmes dynamiques modulés qui assurent la continuité

et la robustesse du mouvement tout au long de la tâche. La dernière partie de

la thèse étend le cadre dynamique en permettant le lancer précis d’objets sur

une cible mobile transportée par un tapis roulant. Elle utilise une carte apprise

de lancer inverse dans le cadre d’une optimisation à deux niveaux basée sur la

cinématique pour déterminer les paramètres de lancer réalisables requis par la

tâche. De plus, il propose et utilise un modèle de l’espace de travail lançable

pour déterminer les positions d’interception ayant une plus grande probabilité

de succès.

Enfin, les approches proposées sont validées à la fois en simulation et sur des

plateformes robotiques réelles, notamment : le robot humanöıde iCub et une

paire de robots KUKA LBR (IIWA7 et IIWA14). Des comparaisons cinétiques

avec la stratégie classique de pick-and-place sont effectuées et les résultats mon-

trent que le pick-and-toss rapide proposé réduit la durée de la tâche et la dépense

énergétique.

Mots Clés: manipulation bimanuelle, manipulation dynamique, saisie rapide,

lancer, prise-et-lancer, robot a deux bras, systemes dynamiques.
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Chapter 1

Introduction

1.1 Motivation

N
owadays, although still largely dominated by the manufacturing and elec-

tronics industries, the use of robots is experiencing a rapid growth in the

field of logistics, particularly in warehouses. This growth is essentially driven by

the rise of e-commerce, which has currently an estimate of 2.14 billion digital

buyers or 27.6% of the world population (Bigcommerce, 2022). Further rein-

forced by the recent covid-19 pandemic, which has confined billions of people

and pushed them towards online purchases, e-commerce represented in 2021 a

worldwide market of approximately 4.9 trillion U.S. dollar and is projected to

grow by 50% over the next four years to reach 7.4 trillion U.S. dollar by 2025

(Chevalier, 2022).

However, this rapid growth imposes enormous challenges on the supply chain

responsible for transporting the increasing number of products from sellers to

consumers. More particularly, this rapid growth increases the need for faster

and more flexible package handling solutions. In that regard, automation and

robotics is the only viable option as the current workforce, although having

better dexterity and flexibility, cannot keep up with the growing industry needs.

Indeed, it is still common to find in the industry, for example in palletizing or

sorting stations, humans carrying out bimanual picking up and placing or tossing

of objects on conveyor belts or on pallets. Given the physical demands of these

tasks associated with an aging population, particularly in the West and Asia-

Pacific (Nations et al., 2019), manual operations are more and more giving way

to robotic solutions.

However, current robots are far from showing the same level of dexterity

as the humans they are supposed to replace or complement. Robots most of-

ten evolve in well-structured environments with precisely defined trajectories.

Moreover, current robots use quasi-static manipulation approaches, whose inter-

actions with objects happen at near zero relative contact and release velocities

mainly to avoid impacts. In contrast, humans can operate in unstructured and

dynamic environments. They can immediately adapt to perturbations or changes

in their environment and effortlessly re-plan their motion to fulfill the desired

task. Moreover, humans often use dynamic manipulation approaches and can

1



(a) (b)

(c) (d)

Figure 1.1: Examples of structural forms of the dual-arm robotic systems. (a) a pair

of single-arm KUKA LWR robots as dual-arm system. (b) ABB YuMi robot as a semi-

anthropomorphic dual-arm robot with fixed base. (c) Humanoid robot ARMAR-6 (Asfour

et al., 2018) as a semi-anthropomorphic dual-arm robot with mobile base. (d) Humanoid

robot iCub as full-anthropomorphic dual-arm robot

safely interact with objects at non-zero relative contact velocities thanks to their

ability to predict the effects of impact. For instance, they can quickly grab an

object by snatching it; they can pass it along by throwing it, etc. Furthermore,

humans can effortlessly coordinate the motion of their two hands and execute

successfully a given task that is too complex to be performed by a single hand.

Having bimanual robots that exhibit such dynamic manipulation abilities with

similar level of adaptability and robustness is important to address the increas-

ing need for faster and more flexible package handling solutions. Moreover, if

the robot manipulation skills are complemented with mobility, the application

realm of the robots will be extended far beyond industrial settings.

Thus, this thesis aims to develop a framework that allows bimanual robotic

systems to perform dynamic manipulation tasks and interact with objects at

non-zero relative contact or release velocities. The purpose of this framework

is to speed up and improve the energy efficiency of quasi-static manipulation

approaches, beyond the mere optimization of the robot trajectories. It focuses on

bimanual (dual-arm) robotic systems (see Figure 1.1) for their potential ability

to perform manipulation tasks with human-like dexterity. An example of such a

solution is the introduction of robotic bimanual fast grabbing with impact and

tossing of parcels as an alternative to traditional pick-and-place operations.

2



1.2 Background

Devising a framework that can fulfill the bimanual manipulation objective

outlined above is nontrivial. The dynamic manipulation feature requires the

design of robot controllers that exploit dynamic characteristics of the tasks such

as induced impacts or projectile dynamics to achieve the desired manipulation

goals. Additionally, it requires a coordination control strategy as the robotic

systems considered in the thesis are bimanual robots.

1.2.1 Bimanual coordination

Bimanual manipulation is defined as a dual-arm coordination where the two

arms are in physical interaction (Smith et al., 2012). In general, this physical

interaction phase is preceded by a coordinated motion phase that ensures the

reaching of the object before contact. The cooperative manipulation phase starts

only once the contacts are established. During this phase, the interaction forces

arising from the closed kinematic chain around the object need to be controlled

to stabilize the grasp and to induce the desired motion of the object without

exerting excessive stress on it.

Bimanual manipulation has been extensively studied; more detailed review

on the subject can be found in (Smith et al., 2012; Wimböck et al., 2012; Cac-

cavale and Uchiyama, 2016). Several methods have been proposed to address

the motion coordination (Nakano et al., 1974; Uchiyama and Dauchez, 1992;

Caccavale and Uchiyama, 2008) and the control of both motion and forces (Hsu

and Su, 1992; Schneider and Cannon, 1992; Xi et al., 1996; Bonitz and Hsia,

1996a; Caccavale et al., 2008; Lin et al., 2018), etc. In the literature, the mo-

tion coordination during the reach-to-grasp and the cooperative manipulation

phases are generally addressed separately, as the robotic system is characterized

by two different dynamics: an unconstrained (free motion) and a constrained

dynamics, respectively.

Motion coordination

Two main approaches have been proposed to address the motion coordination

problem. The first known as master/slave (Nakano et al., 1974; Caccavale and

Uchiyama, 2008) which later evolved to the leader/follower approach is where

one robot, the master (leader), is aware of the desired motion and executes it

independently. The other robot, the follower, generates its respective motion ei-

ther from the state of the leader, from kinematic constraints of the task, or from

the interaction forces through the object. The second is a symmetry type ap-

proach, where all robots have equal importance; they are all aware of the task’s

goal and execute their actions accordingly (Uchiyama and Dauchez, 1992).

The reach-to-grasp problem has been often addressed with motion planning.

For instance, using algorithm based on rapidly-exploring randomized tree (RRT)
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in (Gienger et al., 2008; Vahrenkamp et al., 2009, 2010), and (Lertkultanon and

Pham, 2018) with a certified-complete planner. The bimanual reach-to-grasp

of moving objects, which require spatial and temporal motion coordination,

has been also addressed with dynamical systems-based approaches in (Salehian

et al., 2016a; Mirrazavi Salehian et al., 2017a, 2018b), where a concept of vir-

tual object was used to impose coordination constraints to the two robotic arms.

Cooperative manipulation

Works addressing the cooperative manipulation phase usually assumed an al-

ready grasped object and consider the interaction forces while trying to achieve

a desired behavior of the object. To control simultaneously the robot inter-

action forces and motion during the cooperative manipulation task, hybrid

force/position (Raibert et al., 1981) and impedance control (Hogan, 1984) and

their variants have been widely used (Hsu and Su, 1992; Schneider and Cannon,

1992; Hsu, 1993; Khatib et al., 1996; Xi et al., 1996; Bonitz and Hsia, 1996a,b;

Caccavale et al., 2008). In hybrid force/position, the manipulation task is de-

composed, whenever possible, into two orthogonal subspaces where motion and

forces are controlled independently. Whereas in impedance control, the inter-

action forces are controlled through a compliant motion governed by a virtual

mass-damper-spring dynamics. Other frameworks that deals with constrained

robotic systems such as projected inverse dynamics (Aghili, 2005) has also been

employed for cooperative manipulation in (Lin et al., 2018). The dual-arm dy-

namics is projected onto a constrained and an unconstrained subspaces orthog-

onal to each other. This allows the motion of the object to be controlled without

affecting the contact forces. Quadratic programming (QP) was used to compute

joint torque commands that enforce explicitly the unilateral force constraints

of the contacts. QP was also used in (Bouyarmane et al., 2017) to compute

constraint-consistent contact forces in a bimanual cooperative manipulation by

a humanoid robot.

In this thesis, we also consider bimanual coordination on a biped humanoid

robot. Such a robot is characterized by a floating base and limited contacts with

the ground. This increases the complexity of the control problem. Besides the

previous dual-arm coordination problem, it additionally requires ensuring the

balance of the robot and coordination between the robotic arms and the floating

base.

1.2.2 Transitions between coordination phases

The body of works dealing independently with the free motion and the cooper-

ative manipulation phases need to switch between controllers depending on the

manipulation phases. This is problematic for applications that involve frequent

transitions between these two motion phases and that require coordination at

4



contact to ensure a stable grasp. The transition can be quasi-static when it is

smooth, or dynamic when it is abrupt, for instance, when grabbing with impact

or when releasing objects by tossing them.

Quasi-static transitions

In the case of quasi-static transition, the integration problem of the two motion

phases is less challenging. For instance, a smooth transition between the free

motion phase (controlled by a dynamical system) and a cooperative manipula-

tion phase (controlled by a projected inverse dynamic controller) was proposed

in (Mirrazavi Salehian et al., 2018a). The approach uses a probabilistic estimate

of the contact confidence to switch between the two controllers. In (Amanhoud

et al., 2019), a smooth phase transition was achieved using a modulated dynam-

ical system that unifies the free and constrained motion phases by projecting

the contact forces into the motion space.

Dynamic transitions

Dynamic transitions, usually exploited in robotic locomotion dealing with hy-

brid dynamics, are now drawing an increasing interest in robotic manipulation.

Their resulting impacts and tossing must be controlled not only to generate the

desired object behavior but also to maintain the impact-induced velocity jumps

and forces within safe limits for both the robot and the object. To tackle such a

problem, an impact-aware controller applied to the bimanual swift grabbing of a

box was presented in (Wang et al., 2020); and more recently a model predictive

control-based extension applicable to deformable objects was proposed in (De-

hio et al., 2022). These methods allow to control the impact by computing the

limits of feasible contact velocities for rigid and deformable objects, respectively,

and by providing ways to enforce these constraints for robot safety.

1.3 Research Problem and Objectives

Robust coordination of both motion and forces is critically important for

faster and more flexible bimanual object manipulation. Although current bi-

manual approaches have made enormous progress, they are in general inade-

quate for faster object handling applications with dynamic transitions between

motion phases. The few recent works, that have considered dynamic transitions,

focused only on grabbing with impact and did not consider a dynamic release

such as tossing. Moreover, none of these works leverage the induced bimanual

impacts to speed up the post-grabbing process. Indeed, the directions of their

applied bimanual impact velocities, normal to the contact surfaces of the object,

are opposite to each other and therefore they have no resultant velocity applied

to the object.
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Our objective in this thesis is to develop a coordination control framework

that unifies the control of the free and constrained motion phases. It should

ensure robust quasi-static and more importantly dynamic transitions between

the manipulation phases. Ultimately, the framework should speed up the robotic

object grabbing and release process beyond the mere optimization of the robot

trajectories. Optimizing the trajectories of the robot, for example by using a

minimal time control strategy (Hassan et al., 2022), makes it possible to accel-

erate the desired task within the hardware limits of the robot. However, beyond

such approach, we seek to accelerate the process by reducing the duration of the

grabbing and release phases where, in traditional approaches, the robots often

decelerate to reach near zero relative velocities. The acceleration strategy pur-

sued in this thesis focuses essentially on the transitions between motion phases,

when picking up and releasing objects, and seeks to shorten these phases by

moving from quasi-static to dynamic transitions.

To evaluate and validate the proposed approach, this thesis considers two

types of dual-arm robotic systems: a biped humanoid robot and a pair of fixed

base robotic manipulators. Practically, the main objective can be divided into

the following sub-objectives:

1. Given the structure of a bipedal humanoid robot, develop a balance and lo-

comotion controller that easily integrates with bimanual cooperative tasks,

2. Develop, for a humanoid robot, a whole-body control-based bimanual co-

operative compliant manipulation with smooth transitions between motion

phases

3. Develop a dual-arm coordination framework that enables fast grabbing

and tossing of objects, and

4. Extent the dynamic capabilities of the fast grabbing and tossing framework

with the ability to precisely toss objects onto a moving target.

The first sub-objective is to equip the humanoid robot with balance and

locomotion capabilities to support cooperative bimanual tasks with a human

or another robot. The second allows to unify the free-motion and constrained

phases with smooth transitions in a more complex coordination framework.

Such a coordination, beyond the two arms, involves the whole body of the robot

which must remain balanced throughout the task. The last two sub-objectives

concern the coordination framework for dynamic manipulation and its applica-

tion modality to the precise positioning of objects on a moving target.
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1.4 Approach

In this thesis, we tackle the bimanual manipulation problem from a coor-

dination perspective of both motion and interaction forces to enable robust

reaching, stable grabbing, and cooperative manipulation tasks. We adopt a mo-

tion generation approach based on time-invariant dynamical systems to ensure

robustness to perturbations and adaptability to changes in the environment. We

adopt a force generation strategy using quadratic programming (QP) to opti-

mally distribute the task effort between the two hands and to enforce explicitly

the unilateral force constraints at the contacts.

Dynamical systems

The motion generation problem is generally addressed through motion plan-

ning. Consider the reach-to-grasp task, for instance, classical motion planning

approaches address such problem by finding a collision-free path from the ini-

tial robot state to the goal state. Then, specifying the execution of the plan

through the definition of the the robot state evolution along the path (Kavraki

and LaValle, 2016). Although such an approach works well in static environment

with no perturbations, it might become inadequate when there are uncertain-

ties and changes in the environment as re-computation of a new plan might be

required.

Thus, dynamical systems-based approaches have emerged as interesting al-

ternative solutions to classical motion generation problem. They naturally unify

the planning and execution phases (Selverston, 1980; Kelso, 1995; Schaal et al.,

2000; Ijspeert et al., 2001). This feature allows to provide fast re-planning ability

and adaptation to changes in the environment (Rimon and Koditschek, 1992;

Feder and Slotine, 1997; Khansari-Zadeh and Billard, 2011; Kronander and Bil-

lard, 2016; Salehian et al., 2016b; Khoramshahi and Billard, 2019; Figueroa

and Billard, 2022). Dynamical systems can be modulated to locally shape the

generated motion flow for specific purposes. For example, to avoid obstacles

(Khansari-Zadeh and Billard, 2012; Huber et al., 2019b), comply with external

signals (Sommer et al., 2017) or avoid impacts at contact (Mirrazavi Salehian

and Billard, 2018).

A motion generator based on DS represents a state-dependent map that

instantly provides, for any given state in the operational domain, the desired

direction and magnitude of the state evolution toward the goal state. Such mo-

tion generator inherits adaptability and robustness from the DS as they can

swiftly adopt new plans toward the goal if the robot state is perturbed or the

state of the environment changes. For these reasons, this thesis adopts motion

generation approaches based on dynamical systems.
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1.5 Contributions

The main contribution of this thesis lies essentially in providing a generic and

unified dynamical systems-based motion generation framework that enables dy-

namic manipulation tasks with desired transitory states1 such as desired impact

and tossing. The proposed framework is generic because it can be formulated in

task space as well as in joint space with first or second-order dynamics. Its unified

nature stems from the framework’s ability to handle both free and constrained

motions and to robustly transition between them in cooperative manipulation

settings. For instance, when considering dynamic transitions, this thesis offers

a novel approach to control a dual-arm robotic system for quickly grabbing and

tossing packages onto a fixed or moving target. The considered application is in-

spired by existing challenges in logistics, particularly in depalletizing or sorting

facilities, where bimanual tossing of packages onto a conveyor belt is common

and mainly performed by humans. Given the physical demands of such tasks,

the proposed dynamic grabbing and tossing can be a useful alternative for faster

and more reliable package handling operations. We demonstrate the accuracy,

repeatability, and robustness of the proposed framework. We also show that it

is faster, and requires less energy than the traditional pick and place strategy.

Specifically, the thesis contributions can be described as follows:

• Reactive omnidirectional walking motion generator

We propose a motion generation algorithm to address the dynamic bal-

ance and locomotion problem of a biped dual-arm humanoid robot. We

propose a capture-point-based walking controller that generates on-the-fly

omnidirectional walking patterns for a biped robot and stabilizes the robot

around them. The proposed algorithm, formulated within model predic-

tive control (MPC) framework, exploits concurrently the center of mass

(CoM) and capture-point (CP) dynamics. It allows the online generation

of the CoM reference trajectory and the automatic generation of footstep

positions and orientations in response to a given velocity to be tracked, or a

disturbance to be rejected by the robot while accounting explicitly for dif-

ferent walking constraints. For instance, in order to cope with disturbance

such as a push, the proposed controller not only adjusts the position of

the Center of Pressure (CoP) within the support foot but can also induce

at least one step with appropriate length allowing thus to maintain the

stability of the robot. We validate the proposed algorithm through simu-

lations and experiments on a real humanoid robot. We demonstrate the

reactive generation and adaptation of the robot’s footsteps respectively in

1Transitory states are states defined by desired position and velocity to be satisfied simul-
taneously. Unlike attractors where the system can converge to and settle, transitory states are
not equilibrium points, and therefore the system can only transit through such states.
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omnidirectional velocity tracking tasks and in a human-robot cooperative

object transportation task.

• Cooperative compliant manipulation on humanoid robot

We propose an approach to achieve stable bimanual reach-to-grasp and

compliant manipulation of an object by a humanoid robot. We use dynam-

ical systems and exploit a concept of shrinkable virtual objects to achieve

motion coordination by imposing virtual constraints on the robot’s hands.

Moreover, the shrinkage of the virtual object ensures smooth transitions

from virtual constraints in free motion to real constraints when the ob-

ject is grasped. Also, the controller computes contacts-consistent optimal

wrenches that stabilize the grasp and achieve desired manipulation tasks.

We validate the proposed solution on the humanoid robot iCub.

• Coordinated fast grabbing and tossing of objects

We propose a unified motion generator enabling a dual-arm robotic system

to grab and toss an object in one swipe. Unlike classical approaches that

grab the object with quasi-zero contact relative, the proposed approach

is able to grasp the object while in motion. The continuous coordinated

control of reaching, grabbing, and tossing motion is achieved by combining

a sequence of time-invariant dynamical systems in a single control frame-

work. We control the contact forces following the impact so as to stabilize

the dual-arm grip on the object. We demonstrate the effectiveness of the

proposed framework in fast pick-and-toss tasks with a real dual-arm sys-

tem. We show that such a dynamic grabbing and release of objects not

only speeds up the pick-and-place process but also reduces energy expen-

diture. To the best of our knowledge, this is the first dual-arm system to

demonstrate a fast grabbing and tossing of an object in one swipe.

• Grabbing and tossing of objects on moving target

We propose a control strategy that enables a dual-arm robotic system

to pick up an object and throw it precisely on a moving target carried

by a conveyor belt. Given the predicted trajectory of the moving target

along the conveyor belt, we determine the best intercept position of the

object and the target within the throwing workspace2 of the robot. We

also determine feasible throwing parameters (release position and release

velocity) necessary to land on the intercept position. The proposed ap-

proach achieves this, by learning from the non-linear projectile dynamics

of a thrown object an inverse throwing map that encodes a minimum

release speed strategy. It then combines this inverse map with a robot-

dependent optimization framework to generate, for the dual-arm system,

kinematically feasible release states associated with a given tossing task.

Moreover, building upon the obtained release states feasibility algorithm,

2set of all positions reachable by an object if tossed by the robot.
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we propose a modeling approach for the throwing workspace (that we de-

noted by tossable workspace) of the dual-arm robot. Our approach yields a

closed-form model of the tossable workspace, which allows fast prediction

of the reachability of a given tossing target before initiating any action

on the robot side. Besides the theoretical development, we provide exper-

imental validation of the proposed framework both in simulation and on

a real robotic system.

1.6 Thesis Outline

Chapter 2 Background

This chapter presents an overview of dual-arm manipulation. It

introduces the fundamental concepts of dual-arm manipulation and

presents modeling aspects of dual-arm systems from a motion and

force perspective. Finally, it presents a brief review of works related

to our thesis’s objectives and concludes with a summary of the

thesis’s proposed approach to achieve its objectives.

Chapter 3 Balance and Reactive Omnidirectional Walking Controller

This chapter presents our method to generate on the fly omnidi-

rectional stable walking patterns, for a biped robot, in response to

velocity to be tracked, or a disturbance to be rejected by the robot.

It describes our formulation that combines both the CoM and CP

dynamics in the same MPC framework to generate the CoM mo-

tion, and the footstep positions and orientations consistent with the

walking constraints. It validates our proposed approach by show-

casing its application in human-robot cooperative tasks where the

robot needs to react to human intentions.

Chapter 4 Cooperative compliant manipulation on humanoid robot

This Chapter presents an approach to achieve stable bimanual

reach-to-grasp and compliant manipulation of an object by a hu-

manoid robot. We use dynamical systems and exploits a concepts

of shrinkable virtual object to achieve motion coordination by im-

posing virtual constraints to the robot’s hands. Moreover, through

its shrinkage it ensures smooth transition from virtual constraints

in free-motion to real constraints when the object is grasped. Also,

the controller computes contacts-consistent optimal wrenches that

stabilize the grasp and achieve desired manipulation tasks. We val-

idate the proposed solution on the humanoid robot iCub.

Chapter 5 Dual-arm control for coordinated fast grabbing and tossing of an

object
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This chapter presents our method for generating coordinated mo-

tion for a dual-arm system to reach, grab and toss an object in one

swipe. It provides a first-order formulation of the modulated DS

that allows the coordination of a pair of robots and the local shap-

ing of their motions to achieve desired transitory states (impact and

tossing) when grabbing and releasing an object. It provides differ-

ent coordinated applications along with their convergence proofs.

It also describes the quadratic programming (QP)-based strategy

to generate grasping forces that stabilize the object during the co-

operative manipulation phase. Finally, it presents the experiments

validating the proposed methods and discusses the results and their

implications.

Chapter 6 Bimanual dynamic grabbing and tossing of objects onto a moving

target

This chapter builds upon the DS introduced in Chapter 5 and

presents our control strategy that now allows a dual-arm system

to toss an object precisely on a moving target. It provides a model

of the throwing situation that includes the free-flying dynamics

of the object once released. It describes our approach to learning

the inverse throwing map and its combination with the dual-arm

kinematics to determine feasible release states associated with a

given tossing task. It presents our proposed strategy to model the

tossable workspace of the robot in closed form. It also shows how

we complement the framework presented in Chapter 5 with an

adaptation strategy to achieve interception of the tossed object

with the moving target in the presence of motion perturbations.

Finally, it presents the experimental results validating the proposed

dynamic object positioning strategy.

Chapter 7 Conclusion

This chapter summarizes the main contributions of this thesis. It

also discusses its assumptions and limitations, and provides possi-

ble research directions to improve the work of this thesis.

1.7 Publications and Source Codes

Most of the work of this thesis is extracted from our peer-reviewed conference

and journal publications. The material of Chapter 3 was previously published

in (Bombile and Billard, 2017b), the material of Chapter 5 was published in

(Bombile and Billard, 2022) and the material of Chapter 6 is, at the time of pub-

lication of the thesis, under review in the Journal of Robotics and Autonomous
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Systems. The videos of the experiments are available on-line following the links

indicated in Table 1.1.

Table 1.1: Links of the videos of the experiments of each chapter

Chapter 3

https://youtu.be/1rPaMXguPDQ

Chapter 4

https://youtu.be/odoaZ8Oh7IA

Chapter 5

https://youtu.be/CeLoqXdPI0U

Chapter 6

https://youtu.be/pRSHH1866ug

The codes developed dual-arm robotic system and the humanoid robots are

also available on line and their links are indicated in Table 1.2.

Table 1.2: Links to the source codes

Chapter 3

https://github.com/epfl-lasa/biped-walking-controller

Chapter 4

https://github.com/epfl-lasa/icub_whole_body_task_controller

Chapter 5 and Chapter 6

https://github.com/epfl-lasa/iam_dual_arm_control
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Chapter 2

Background

This chapter presents an overview of dual-arm manipulation. The first Section

introduces fundamental concepts of dual-arm manipulation. It is followed by

the mathematical background Section, where modeling aspects of dual-arm ma-

nipulation are presented. These are namely: the dynamics of dual-arm systems

(for both the fixed base and the humanoid robot), the object dynamics, and

the model of the bimanual manipulation task with its related force and motion

constraints. After defining the bimanual coordination control problem in the

third Section, the Chapter presents a brief review of works related to our thesis

objectives in its fourth Section. Finally, the Chapter concludes with a summary

of our approaches proposed to achieve the thesis objectives.

2.1 Introduction

Bimanual manipulation is defined as a dual-arm coordination where the two

arms are in physical interaction (Smith et al., 2012). In general, this physical

interaction phase is preceded by a coordinated motion phase that ensures the

reaching of the object before contact. The cooperative manipulation phase that

ensures the grasping and handling of the object starts only once the contacts

are established.

Depending on the type of interaction at the contact, two types of coopera-

tive manipulation can be distinguished: 1) cooperative manipulation with fixed

grasp points, where the object and the manipulator are rigidly linked by bidirec-

tional contact constraints, and 2) cooperative manipulation with contact points

or surface, where the contact constraints are unilateral, which makes rolling

or sliding possible (Mason and Salisbury Jr, 1985; Bicchi and Kumar, 2000;

Okamura et al., 2000).

Three typical models of contacts are often used to explain the transmission of

forces to the object: frictionless contacts, frictional contacts and soft contacts. In

the first case, there is no transmission of tangential force components, whereas

in the second case, the transmission of tangential components is possible. In the

last case, frictional torque around the normal component can be transmitted as

the contact area could be large due to the softness of the contact (Li and Kao,

2001).
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(a) (b)

Figure 2.1: Illustration of the two situations of the considered during bimanual manip-

ulation tasks. (a): Reaching-to-grasp with hands in free motion dynamics. (b): Cooperative

manipulation with hands in constrained dynamics. Σw and Σo are the world and the object

frame. Σhl and Σhr denote respectively the robot’s left and right hands frames, while Σol and

Σor denote respectively their desired grasping configuration on the object side.

2.2 Modeling

Modeling a robot consists of deriving the set of mathematical expressions

that describe the geometric and temporal properties of the robot’s motion (Mur-

ray et al., 1994). Thus, by deriving the dynamic model of a dual-arm robot, we

seek to relate its motions to the forces/torques causing or resulting from these

motions (Craig, 2005).

For dual-arm with fixed-base, the overall dynamics can be obtained by stack-

ing individual robotic arms’s dynamics (Caccavale and Uchiyama, 2016). How-

ever, for a dual-arm system with a floating base, the dynamics is derived as a

whole because of the dynamic coupling introduced by the floating base (Bou-

yarmane et al., 2017). The model can also be augmented with the dynamics of

the manipulated object as in (Khatib, 1995) or (Dehio et al., 2018).

2.2.1 Robot Dynamics

Consider the bimanual robotic systems illustrated in Figure 2.1, which also

shows a free-motion and cooperative manipulation tasks. The dynamic model

of a robot interacting with its environment is generally expressed as

M(q)q̈ + b(q, q̇) = S>r Γ + J>e (q)fe (2.2.1)

where M(q) ∈ RnD×nD and b(q, q̇) ∈ RnD are the inertia matrix and the vector

of centrifugal, Coriolis, and gravity forces of the robotic system. q, q̇ ∈ RnD ,
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q̈ ∈ RnD denote the configuration (position), velocity and acceleration vectors,

respectively. Je(q) ∈ Rne×nD and fe ∈ Rne

are respectively the Jacobian matrix

of the interacting end-effector(s) and the vector of associated wrenches. S ∈
RnD×nD is a selection matrix of the actuated components of the joint torques

τ ∈ RnD .

Depending on the type of dual-arm systems considered in this thesis, whether

it is a biped humanoid robot or a pair of fixed-base arms, we have the following

specificities:

Case of humanoid robot:

• nD = nB + nr where nB and nr denote the number of the floating base

DoFs and robot actuated joints, respectively,

• q =
[
{x>B , φ>B} q>r

]>
, where xB ∈ R3 and φB ∈ SO(3) are the

position and orientation vector of the robot floating base, respectively.

qr ∈ Rnr is the vector of actuated joint positions of the robot.

• Je(q) =
[

Jh(q) Jf(q)
]
, where Jh(q) ∈ R12×nD and Jf(q) ∈ R12×nD

are the Jacobian matrices of the robot hands and feet, respectively, fe =[
fh

ff

]
with fh ∈ R12 and ff ∈ R12 are the wrench vectors of the robot

hand and feet, respectively.

• Sr ,

[
0nB×6 0nB×nr

0nr×nB Inr×nr

]
and Γ =

[
0nB

Γr

]
∈ RnD where Γr is the

actuated joint torque of the humanoid robot

Case of fixed base dual-arm robot

• nD = nL + nR, where nL and nR denote the number of DoFs of the left

and the right robot arm, respectively,

• q =
[

q>L q>R

]>
∈ RnD and M(q) = diag

{
ML(qR) MR(qR)

}
is

block-diagonal. ML(qR) ∈ RnL×nL and MR(qR) ∈ RnR×nR are inertial

matrices of the left and right robotic arms, respectively.

• Je(q) = Jh(q) = diag
{

JhL(qR) JhR(qR)
}
∈ R12×nD corresponds

to the block-diagonal Jacobian matrix of the dual-arm interacting end-

effector(s) and fe = fh is the vector of associated wrenches.

• Sr , InD×nD and Γ =

[
ΓL

ΓR

]
, where ΓL and ΓR are joint torque of the

left and the right robot arm, respectively,
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2.2.2 Object dynamics

The dynamics of the object assumed to be rigid, of mass mo and inertia Io

can be written as

Mov̇o + bo = fo (2.2.2)

where Mo =

[
moI3 03

03 Io

]
∈ R6×6 and bo =

[
−mog

ωo × Ioωo

]
∈ R6×1 de-

note the inertia matrix and the Coriolis and gravity forces vector, respectively.

vo ,

[
ẋo

ωo

]
∈ R6 denotes the object velocity twist, and ẋo ∈ R3 and ωo ∈ R3

are the object’s linear and angular velocity, respectively. fo ∈ R6 is the object

effective wrench acting at Σo as a result of the applied bimanual wrenches.

+

Figure 2.2: Grasp situation in a bimanual manipulation setting of an object

2.2.3 Task constraints

Bimanual cooperative constraints

When the object is stably grasped, the dynamic coupling between the robot

and the object can be written as

fo = Gofh (2.2.3)

where Go ∈ R6×12 denotes the bimanual grasp matrix (Murray et al., 1994;

Caccavale and Uchiyama, 2016). In our case, it is given by
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Go =
[

GoL GoR

]
with Goi =

[
I3 03

[xooi ]× I3

]
(2.2.4)

where xooi ∈ R3 is the relative position between the grasping point located

at Σoi and the object frame Σo. The vector fh , [ f>hL f>hR ]> ∈ R12, where

fhL ∈ R6 and fhR ∈ R6 are the wrenches of the left and right robot hands,

respectively.

Force decomposition

The bimanual grasp creates a redundancy in actuation (fh = [ f>hL f>hR ]> ∈
R12 while fo ∈ R6), which leads to infinite combinations of fhL and fhR that

can produce the same value of fo. This can be seen by solving Eq. (2.2.3) for

the wrench f∗h = [ f∗>hL
f∗>hR

]> that the dual-arm ought to apply to produce a

desired object wrench f∗o . Hence, we obtain

f∗h = G+
o f∗o + (I−G+

o Go)fho (2.2.5)

where the matrix G+
o ∈ R12×6 is a generalized pseudo-inverse of Go and fho ∈

R12×1 represents the end-effector wrenches that lie in the null-space of Go. The

term G+
o f∗o represents the component of f∗h that induces the object’s motion

and it is known as the effective (external) wrench applied on the object. The

term (I−G†oGo)fho , with fho ∈ R12×1 lying in the null-space of Go, represents

the internal wrench components of fh applied on the object. fho does not induce

object motion but exerts stress on the object. However, it can create deformation

if the object is non-rigid. fho is the applied wrench component responsible to

maintain the grasp; it must be consistent with the contact constraints (unilateral

or bilateral). The analysis of internal forces has also been studied based on other

models such as virtual truss (Chiacchio et al., 1991) or virtual linkage (Williams

and Khatib, 1993).

Motion decomposition

The bimanual grasp also creates motion constraints between the dual-arm and

the object. The mapping between their respective velocities can be obtained by

applying the virtual work principle to (2.2.5) and exploiting the duality between

wrench and velocity twist. Thus, we obtain

vo = (G+
o )>vh

voint
= (I−G+

o Go)>vh

(2.2.6)

where vh , [ v>hL v>hR ]> ∈ R12 is a vector gathering the velocity of the left

and right robotic hands. vo = (G+
o )>vh ∈ R6 represents the effective object

velocity twist describing the global displacement of the object (velocity twist of

Σo), and voint
, (I −G†oGo)>vh ∈ R12 represents the velocity of the object’s
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contact frames (Σoi) relative to the object’s frame Σo. For non-rigid object, the

components of voint are the velocities that describing the object deformation as

they result from contact wrenches that stress the object.

Balance of humanoid robot

The balance task is achieved when the dynamic wrench is equal to the sum

of the gravity and contact wrenches. The overall dynamic effect of the multi-

body humanoid robot can be deduced from the linear and angular momentum

of its center of mass (CoM). This yields a reduced dynamics known as centroidal

dynamics (Orin et al., 2013). Thus, assuming the humanoid robot interacts with

its environment only through the hands and feet, the balance task can be written

at the motion and forces level as

ḣ = Aqq̈ + Ȧqq̇ = Gcf ff + Gchfh + fgvt (2.2.7)

where h = [ Ṗ
>

L̇
>

]> represents the centroidal momentum, with P ∈
R3 and L ∈ R3 denoting the linear and angular momentum of the entire

robot, respectively. Aq ∈ R6×n is the centroidal moment matrix (Orin and

Goswami, 2008). Gcf ∈ R6×6 and Gch ∈ R6×6 represent wrench transfor-

mation matrices that map respectively the feet and hands contact wrenches

to the frame attached to the CoM (see Appendix A.1 for their derivation).

fgvt , [0, 0,−mrg, 0, 0, 0]> ∈ R6 denotes the gravity forces acting on the CoM

frame.

Contact constraints

When a biped humanoid robot is standing on its feet, the force components of

ffl and ffr that are normal to the ground (contact surface) must be unilateral

(i.e. forces that can only push against and not pull the ground). Moreover,

if the contacts are assumed to be static (non sliding) and frictional, all force

components of ffl and ffr that are tangent to the ground must stay within the

friction cone. For balance, the center of pressure of all contact points must

remain within the convex hull formed by the contacts.

These contact constraints are non-linear mainly because of the friction cone.

However, when linearized, these constraints can be lumped and written as (see

Appendix A.2 for more details)

Cf ff ≤ df (2.2.8)

where Cf ∈ Rnf×12 and df ∈ Rnf

denote the matrix and vector of the linearized

constraints, respectively. nf is the number of linearized contact constraints of

the robot feet.
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2.3 Coordination Control Problem

After modeling the dual-arm system, the object, and analyzing the force

and motion constraints resulting from the grasp, the next step is to address the

coordination control problem. This problem consists of computing the actuated

torque Γ such that:

• the two robot hands reach the object to grasp in a coordinated manner,

• once the object reached, the robot applies wrenches that achieve stable

grasp and the desired manipulation task,

• the dual-arm system complies with the hardware and task constraints

throughout the task.

The first two points concern the coordinated reach-to-grasp and the coop-

erative manipulation control problems. As stated in Section 1.2.1, the reach-

to-grasp problem is traditionally solved using motion planning. The coopera-

tive control problem is solved by computing (directly or indirectly) bimanual

wrenches that the robot should apply to produce stable grasps and perform

the desired tasks without excessive internal wrenches. How well the object is

grasped depends on the internal wrenches. Also, too high internal wrenches

could damage the robot or the object.

The third point ensures that the computed values of the torque τ yield mo-

tion and forces that are feasible for the robot. This implies satisfying constraints

such as the actuator and joints limits, collision avoidance. Moreover, there is an

additional challenge when considering a humanoid robot as in this thesis. Unlike

fixed-base robots, a biped humanoid robot is characterized by a floating base

and unilateral contact constraints with the ground. Such a robot can success-

fully perform the desired manipulation task only if the robot is balanced or has

stable gait. Thus, cooperative applications of humanoid robots are often pre-

sented along with walking or whole-body balance controllers.

In the next Sections, we will briefly review related work on bimanual ma-

nipulation. We start by reviewing works on balance and locomotion with an

emphasis on reactive walking generators or controllers. Afterward, we present

works relevant to bimanual coordination control and compliant manipulation

on a humanoid robot. Then, we review bimanual coordination studies that are

related to dynamic transitions between manipulation phases, especially when

grabbing and releasing objects. In light of this review, we summarize our ap-

proach to conclude the Chapter.
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2.4 Related Work

2.4.1 Reactive Omnidirectional walking controller

The balance and gait stability of a bipedal humanoid robot refer to its abil-

ity to stand and walk without falling (Kajita and Espiau, 2008). As shown in

Eq. (2.2.7), the balance of bipedal robots arises from the balance of forces and

moments. In the literature, different concepts have been proposed to ensure

balance and gait stability of bipedal robots. The most widely used is the Zero

Moment Point (ZMP), defined as the point of the ground where horizontal mo-

ments (tipping moments) are zero (Vukobratović and Stepanenko, 1972). The

ZMP assumes a horizontal ground where it corresponds to the centre of pres-

sure (CoP). The ZMP must stay within the support polygon for the robot to be

balanced.

In ZMP-based approaches, the footsteps of the robot are generally planned in

advance. This reduces the walking control problem to the generation of walking

patterns: CoM trajectories that are consistent with the robot dynamics and that

satisfy the desired ZMP associated with the footsteps (Kajita et al., 2003; Pratt

et al., 2006). For instance, walking patterns were generated in (Kajita et al.,

2003) using preview control that is able to reproduce the anticipatory motion of

the CoM over the footstep placements. Wieber (2006) proposed instead a linear

model predictive controller (LMPC) to enforce explicitly the ZMP constraints.

To deal with large perturbations such as pushes, collisions, or tripping, vari-

ous reactive stepping approaches have been proposed in the humanoid commu-

nity. Besides moving the ZMP within the support polygon as in (Kajita et al.,

2006; Diedam et al., 2008; Morisawa et al., 2007), the robot could either accel-

erate its angular momentum (through trunk or upper limbs motions), or take a

step in order to prevent a fall or to come to a stop (Pratt et al., 2006; Stephens

and Atkeson, 2010; Urata et al., 2011). In such a case, the “capture-point” (CP)

(Pratt et al., 2006) also called “extrapolated center of mass” (Hof, 2008), defined

as the point on the ground where a biped robot should step to in order to come

to a complete stop, has proven to be very effective. In (Koolen et al., 2012), the

CP was also used to define a concept for the stability analysis of legged loco-

motion, namely the “N-step capturability”, which was validated in (Pratt et al.,

2012).

Apart from push recovery, Englsberger et al. (2011) proposed a control ap-

proach of the unstable dynamics of the CP to facilitate the generation of walking

patterns. A backward recursive method to generate dynamically-consistent ref-

erence trajectories of the CP required by the task was proposed in (Englsberger

and Ott, 2012b). However, the stability constraints were not always satisfied by

the computed ZMP. The latter needed to be projected onto the support polygon,

yielding thus some discontinuities in the controller output.
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To address this problem, Krause et al. (2012) proposed a formulation of the

CP controller within an MPC framework. In (Griffin and Leonessa, 2016), the

3D extension of the CP called “divergent component of motion”(DCM) was con-

trolled using MPC for the ajustment of footstep positions and orientations in

the presence of disturbances. In (Shafiee-Ashtiani et al., 2016), a CP-based MPC

approach is used for push recovery. The ZMP is controlled to stay within the

support polygon while the CP is steered towards its desired location by mod-

ulating the Centroidal Moment Pivot (CMP) through the angular momentum.

This approach was extented in (Shafiee-Ashtiani et al., 2017) in order to include

the ajustment of footstep positions while walking.

Although benefiting from the robustness inherent to the CP control, the

above MPC based works still rely on predefined footstep placements. Conse-

quently, they are not suited for reactive walking situations, where the footsteps

cannot be planned beforehand but have to be determined on-the-fly. To address

the reactive walking problem, inspired by the formulation of continuous adap-

tation of the footsteps strategy in (Diedam et al., 2008), Herdt et al. (2010b)

proposed a ZMP-based walking algorithm with automatic generation of foot-

steps placements in response to translational velocities. The main idea is to

formulate the footstep placements as decision variables to be determined by the

optimization process based on velocity requirements. An extension to rotational

velocity was proposed in (Herdt et al., 2010a). However, because of the non-

linearity introduced by the rotation in that formulation, the authors suggested

a predetermination of the orientation, hence, limiting the reactive ability to the

translation. To overcome this challenge, a quasi-linear ZMP-based approach to

automatic generation of the orientation was proposed in (Bombile, 2015a). In

(Naveau et al., 2017), nonlinear model predictive control (NMPC) was proposed

for the automatic generation of both footstep positions and orientations.

Summary and thesis’s related contribution

In this Section 2.4.1, we have presented a brief overview of reactive walk-

ing pattern generators with emphasizes on ZMP and MPC-based controllers for

their ability to enforce explicitly walking constraints. As outlined above, despite

successful achievement of reactive omnidirectional walking, the works outlined

above were based on the ZMP control. In such approaches, the generation of

walking pattern generators generally operate in open loop as tracking the ZMP

with the CoM’s acceleration as one of the state variables often leads to prob-

lematic feedback systems.

Thus, in Chapter 3, this thesis proposes instead an approach to generate

reactive omnidirectional walking patterns based on the control of the CP to

leverage its inherent robustness. With the CP being a linear combination of

CoM’s position and velocity, implementing state feedback systems based on

the CP is simpler. Moreover, to achieve reactive omnidirectionality, unlike the

NPMC approach (Naveau et al., 2017), we formulated and solve our problem
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as a piece-wise linear problem by focusing on the discrete orientation of the

footsteps instead of the continuous rotation of the CoM (hip).

2.4.2 Bimanual coordinated compliant manipulation

on humanoid robot

Humanoid robots with their anthropomorphic structure have the potential abil-

ity to reproduce humans bimanual manipulation skills. Their combined manipu-

lation and mobility capabilities extends largely their workspace and make them

suitable to operate in various type of environments and numerous applications.

As stated in Section 1.3, we seek to realize versatile bimanual manipulation tasks

with a humanoid robot. More specifically, we consider a coordinated reach to

grasp task and compliant manipulation of an object. To accomplish this, consid-

ering the humanoid robot particular dynamics, the robot must be balanced and

the two arms must be coordinated both in motion and force to ensure compliant

interaction.

As outlined in Section 1.2.1, several methods have been proposed to address

the motion coordination (Nakano et al., 1974; Uchiyama and Dauchez, 1992;

Caccavale and Uchiyama, 2008) and the control of both motion and forces (Hsu

and Su, 1992; Schneider and Cannon, 1992; Xi et al., 1996; Bonitz and Hsia,

1996a; Caccavale et al., 2008; Lin et al., 2018), etc. Most of these approaches,

however, consider dual-arm robotic systems with fixed bases. A biped humanoid

robot is characterized by a floating base and limited contacts with the ground.

While the mobility of the floating base enlarges the robot’s workspace, it also

increases the complexity of the control. Besides the previous dual-arm coordi-

nation problem, it additionally requires the coordination between the robotic

arms and the floating base.

In general, for a robotic arm on a mobile-base, the coordination problem

between the arm and its base is usually handled with redundancy resolution

approaches, for instance by creating hierarchy between the arm and the mobile-

base tasks (Khatib et al., 1996, 1999), or through admittance coupling between

the base and the arm’s end-effector (Erhart et al., 2013). Unlike robots on

wheeled mobile bases, legged humanoid robots require active control of the their

balance due to their limited and unilateral contact with the ground. Thus, the

bimanual approaches outlined above could be used on a legged humanoid robot

provided that the robot is balanced and there is coordination between its arms

and the floating base.

In that regards, whole-body control approaches can meet simultaneously

these additional requirements (Khatib et al., 2004; Sentis and Khatib, 2006).

In (Garcia-Haro et al., 2019) a dual-arm manipulation task was integrated in

a passivity-based whole-body torque controller on the humanoid robot TORO.

The sum of the CoM and interaction wrenches is distributed between the feet

end-effector for the balance task, while the manipulation wrench is distributed
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between the two robotic hands. Although compliant behavior with good tracking

performance has been achieved, this framework does not explicitly enforce in-

equality constraints such as the joint limits and the unilateral contact constraints

necessary for the balance. Such a limitation is addressed when whole-body con-

trol is formulated as optimization problem, in particular quadratic programming

(QP) (Salini et al., 2010; Kanoun et al., 2011; Saab et al., 2013; Escande et al.,

2014; Dai et al., 2014; Feng et al., 2015; Herzog et al., 2016). It allows mul-

tiple task constraints including balance and contacts stability to be explicitly

enforced. For instance, QP-based whole-body control was used in (Bouyarmane

et al., 2017) to perform bimanual manipulation of an object with a humanoid

robot HRP-4. The task-space force constraints and the hardware constraints

were explicitly enforced. In (Hoffman et al., 2018), a QP-based whole-body in-

verse kinematics was used to balance a humanoid robot iCub performing a

bimanual manipulation task of a tray to stabilize an empty cup on it.

Most of the above works, however, assume an object already grasped by the

robot and focus on the post-contact manipulation phase. The free motion phase

and its transition towards the contact phase has been rarely considered. In (Mir-

razavi Salehian et al., 2018a), such transition was considered. The approach uses

DS-based multi-arm coordination framework (Mirrazavi Salehian et al., 2017a)

that employs a virtual object to achieve robust coordinated reaching of the ob-

ject by the robotic arms. Upon contact, the system smoothly switches to the

projected inverse dynamics controller (Lin et al., 2018) to handle the constrained

manipulation scheme. In (Amanhoud et al., 2019), a dual-arm coordination us-

ing DS with force modulation was proposed to smoothly integrate the motion

phases without switching between controllers. Although these approaches have

successfully integrated both free and constrained manipulation phases, they were

designed for fixed-base robots and were not concerned with the balance prob-

lem. In (Rakita et al., 2019), transitions between bimanual free and constrained

motion phases were considered in a share control context with the humanoid

robot HUBO. The dual-arm robot follows the human operator’s movements with

the goal to assist and ease the user’s task completion. Although validated on

the humanoid robot, this framework was limited to the robot’s kinematics and

consider neither the control of interaction forces nor the balance task.

Summary and thesis’s related contribution

In this Section 2.4.2, we presented bimanual coordination methods for both

free and constrained motion with a focus on quasi-static (smooth) transitions

between them. We narrowed our focus on bimanual manipulation by a humanoid

robot and highlighted the fact that previous works, in general, have only par-

tially addressed the dual-arm coordination problem on such robots. On the one

hand, works that considered the balance in addition to the coordination problem

assumed already grasped objects and focused on the cooperative manipulation

task. On the other hand, works that considered the reach-to-grasp and the co-
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operative manipulation phases including the transitions between them were not

concerned with the balance problem.

Thus, in Chapter 4 of this thesis, we propose an approach that considers

the whole-body control to achieve bimanual motion coordination and coopera-

tive compliant manipulation on a humanoid robot while enforcing the robot’s

balance. Our approach considers all bimanual motion phases including the tran-

sitions between them. The motion generation is based on DS and the force

generation uses QP to ensure, respectively, robust coordination and constraint-

consistency of interaction forces throughout the task.

2.4.3 Bimanual coordinated grabbing with impact and

tossing of objects

One of the objectives of the thesis is to develop a bimanual dynamic manip-

ulation framework to speed up object-handling operations. We thus propose a

bimanual coordination framework for grabbing with impact and tossing objects

in one swipe. To achieve this objective, in addition to generating the desired

impact and tossing motion, the framework must enforce the coordination of

the two robotic arms throughout the task. A poorly coordinated system would

lead to uncontrolled impact or tossing. The dual-arm coordination methods de-

scribed in the previous Section, namely (Mirrazavi Salehian et al., 2018a) or

(Amanhoud et al., 2019), can be extended to this case with dynamic transi-

tions between motion phases. However, the problem of achieving grabbing with

impact or tossing of objects is particular in the sense that these tasks require

that desired transitory states expressed in terms of desired position and velocity

be simultaneously satisfied (during contact or at the release time, respectively).

Moreover, the control of impacts and tossing is necessary not only to generate

the desired object behavior but also to guarantee the feasibility of the task and

safety of the robotic system. For instance, the impact-induced velocity jumps

and forces must remain within safe limits for both the robot and object.

Robotic impact generation

In the literature, besides robotic applications such as batting or hitting balls,

the generation of intentional impacts to achieve manipulation goals has also

been reported. For instance, in (Konno et al., 2011) intentional impacts were

generated using sequential quadratic programming (SQP) to induce high impul-

sive forces to break an object with a humanoid robot HOAP. In (Rijnen et al.,

2019), the control problem of a robotic system subject to inelastic impact was

considered. The reference spreading control law was proposed to mitigate the

effects of impact-induced state jumps in the feedback command. The problem

of constraining within the robot’s safe limits the state jumps induced by hard

impacts was considered in (Wang and Kheddar, 2019) and addressed using a

QP-based approach. A similar problem considering soft impact was addressed
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in (Dehio and Kheddar, 2021). Although the above-mentioned works offer ef-

fective approaches to generating controlled impact, they were not concerned by

the coordination problem as they considered the motion generation of a single

robotic arm. Few studies have considered the dual-arm impact generation prob-

lem. The work (Wang and Kheddar, 2019) was extended to dual-arm systems

and an impact-aware controller applied to the bimanual swift grabbing of a box

was presented in (Wang et al., 2020). More recently a model predictive control-

based extension applicable to deformable objects was proposed in (Dehio et al.,

2022). These methods allow controlling the impact by computing the limits of

feasible contact velocities for rigid and deformable objects, respectively, and by

providing ways to enforce these constraints for robot safety.

While these methods allow the safe generation of dual-arm impacts necessary

for the dynamic grabbing, they do not address the dual-arm arm tossing problem

that is considered in this thesis to achieve the dynamic release of objects.

Robotic throwing

Indeed, robotic throwing or tossing is a dynamic manipulation task that of-

fers the possibility of positioning objects within or outside the physical workspace

of a robot, and saving time and energy when compared to non-dynamic manip-

ulation methods (Mason and Lynch, 1993). Since the work on this subject by

Hove and Slotine (1991), several researchers have investigated robotic throwing.

Apart from the dynamic aspects, research on robotic throwing is also motivated

by potential applications in industry. As first suggested by Frank et al. (2006),

robotic throwing can serve as a more flexible alternative transportation method

for certain types of products.

Robotic throwing has been demonstrated in the literature using different

types of robotic systems that can be classified into three main categories: throw-

ing with specialized devices such as 1-DoF or 2-DoF (degrees of freedom) launch-

ing mechanisms (Mason and Lynch, 1993; Frank et al., 2006; Frank, 2008a,b;

Senoo et al., 2008; Ichinose et al., 2008; Frank et al., 2009; Mori et al., 2010),

throwing by industrial robots (August et al., 2010; Zhang et al., 2012; Zeng

et al., 2020; Gallant, 2020; Raptopoulos et al., 2020) and throwing by humanoid

robots (Kim et al., 2008; Satici et al., 2016). In the case of industrial robots,

August et al. (2010), for instance, used the KUKA KR-16 robot to demonstrate

accurate throwing of a tennis ball to a target located approximately 2.5 m away.

More recently, the TossingBot (Zeng et al., 2020) used a UR5 robot to throw

various objects with different shapes.

From the motion generation perspective, there are three main phases charac-

terizing robotic throwing: an acceleration phase, a release phase, and a free-flight

phase (Ruggiero et al., 2018). The first two phases are directly controlled by the

robotic system, which must transport the object in a prehensile or non-prehensile

manner to the desired release state (defined in terms of position and velocity)

before releasing the object. This represents a trajectory generation problem with
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desired intermediate or transitory states, often addressed through motion plan-

ning (Sintov and Shapiro, 2015; Zhang et al., 2012; August et al., 2010), where

a deceleration phase after release is often included to ensure the feasibility of

the movement throughout the task until the robot stops. There are also meth-

ods based on trajectory optimization (Okada et al., 2015; Gallant, 2020; Hassan

et al., 2022) and methods based on optimal control (Asgari and Nikoobin, 2021),

where the torques necessary to bring the robot to the desired state are directly

computed, ensuring the dynamic feasibility of the task. During the release phase

following the acceleration phase, the time required for the robot to release the

object may create uncertainty concerning the actual release state. To address

this problem, August et al. (2010), for example, proposed a solution based on

extending the movement of the robot beyond the release position and following

a parabolic trajectory to model the projectile (thrown object); (Okada et al.,

2015) optimized the release position such that the sensitivity of the landing

position to changes of the release position was minimized.

Summary and thesis’s related contribution

In this Section 2.4.3, we have presented an overview of approaches related

to dynamic bimanual grabbing and tossing of objects and highlighted the chal-

lenges associated with the generation of controlled impacts and tossing motion.

We have discussed the state-of-art solutions that have been proposed to address

them. We have outlined the fact that despite their ability to generate safe im-

pacts for the robot, works dealing with bimanual grabbing with impacts have

only been limited to this task. They did not consider combining it with other

bimanual manipulation tasks such as placing or tossing objects. Also, works that

considered throwing were not confronted with the problem of coordination since

they used special robotic devices, single-arm robots or parallel robots.

Thus, in Chapter 5, this thesis proposes a manipulation task that goes be-

yond dynamic grabbing and includes a dynamic release (throwing) of the objects

by a bimanual robotic system. For motion generation, unlike planning-based

methods which are less reactive and prone to spatial and temporal perturbations,

we adopt a DS-based approach. More specifically, we use modulated dynamical

systems that allow local shaping of the motion flow to achieve the desired task

objectives. The idea of locally modulating DS has been previously used for in-

stance in (Khansari-Zadeh and Billard, 2012) and (Huber et al., 2019a) to avoid

obstacles, in (Kronander et al., 2015) for incremental learning, or in (Salehian

and Billard, 2018) to avoid impact by achieving stable contact with a surface.

In Chapter 5, however, we use the local modulation to intentionally generate,

in a coordinated manner, specified impact velocities at desired locations on the

grabbing surfaces of an object. Moreover, we show how to adapt the local mod-

ulation to achieve other coordinated manipulation tasks such as object lifting

and tossing.
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2.4.4 Bimanual dynamic grabbing and tossing of

objects onto a moving target

The last objective of this thesis is to extend the dynamic grabbing and toss-

ing framework with the ability to precisely toss objects onto a moving target.

Tossing an object onto a moving target using a robotic system is challenging.

It requires a solution to the following main sub-problems: 1) Finding a feasible

intercept position for the thrown object to meet the moving target. 2) Finding

feasible throwing parameters (release position, release speed, and direction). 3)

Generating the motion of the robot to pick up the object and successfully reach

the desired release state on time, such that the thrown object intercepts the

target at the desired location.

Achieving such an objective requires solving an interception problem between

the moving target and the thrown object. Finding a valid intercept point is

straightforward; such a point lies along the path of the moving target within

the throwable workspace of the robot (the robot’s extended reachable workspace

when throwing objects). As this point must be determined beforehand, on the

target side, it requires estimation and prediction of the trajectory. On the robot

side, it requires learning the throwable workspace.

In general, an interception task, whether performed by a single arm or

a multi-arm system shares similar challenges with robotic catching (Burridge

et al., 1995; Lynch and Mason, 1999; Bätz et al., 2010; Kim et al., 2014; Schill

and Buss, 2018; Dong et al., 2020; Satici et al., 2022), batting or hitting of

flying objects (Anderson, 1988; Acosta et al., 2003; Senoo et al., 2006; Lai and

Tsay, 2011; Mülling et al., 2013; Serra et al., 2016; Jia et al., 2019), or juggling

(Aboaf et al., 1989; Buhler et al., 1990; Schaal and Atkeson, 1993; Lynch and

Black, 2001; Akbarimajd and Ahmadabadi, 2007; Reist and D’Andrea, 2012;

Serra et al., 2017; Poggensee et al., 2020). Unlike these tasks, in this thesis, the

interceptor is not the robot but rather the thrown object, whose final motion

phase is governed by projectile dynamics. For the thrown object to reach its tar-

get, the throwing parameters must be appropriate as the thrower can no longer

correct the trajectory of the object once it is released.

Determining throwing parameters is not a trivial problem. The object is

subjected to gravity, and to nonlinear aerodynamic forces and phenomena that

depend on its shape, its speed, and the environment (air density, pressure, etc.).

The object can have a complex movement combining translation and rotation

around its center of mass, which may not be at its geometric center, depending

on the mass distribution. Moreover, following the determination of the feasible

throwing parameters corresponding to the desired intercept point, the motion

of the robot must be generated and adapted such that the object is not thrown

too early or too late to achieve the desired interception.

Thus, in addition to robotic throwing literature, we briefly review a body of

work on robotic interception tasks, with a focus on how the intercept position
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(configuration) was determined and how the robot motion was generated.

Robotic throwing

In the previous Section, we mentioned that robotic throwing is characterized

by an acceleration phase, a release phase, and a free-flight phase (Ruggiero

et al., 2018). Focusing on the motion generation, we reviewed a number of works

related to the first two phases. We here complement the review with an emphasis

free-flying motion phase which is governed by projectile dynamics.

Given that no corrective action is possible after release of the object, the

throwing task accuracy depends on how well the throwing parameters are de-

termined, which in turn depend on the modeling approach used for the free-flying

object. In the literature, there are two main modeling approaches for throwing

motion, with a third between them. The first approach relies on an analytical

model of the object’s free-flying dynamics, with or without nonlinear aerody-

namic phenomena; the second approach is data-based. For instance, the authors

of (August et al., 2010) used a simple ballistic motion to determine the throwing

parameters, neglecting aerodynamic forces. Example of approaches that consid-

ered additionally the Newton drag forces can be found in (Frank, 2008b). In a

batting application of free-flying objects, which can be seen as an simultane-

ous catching and throwing task, Jia et al. (2019) considered the Magnus effect

Sturek et al. (1978) and proposed a closed-form expression approximating the

solution of the resulting nonlinear dynamics. Although physics-based analyti-

cal approaches can easily generalize to different conditions and objects, their

prediction accuracy depends on knowledge of the object’s physical properties

and aerodynamic phenomena that occur. The latter are generally difficult to

estimate, as discussed in (Mason and Lynch, 1993).

Estimation of throwing parameters has also been addressed from a learning

perspective. In an early work along this line, Aboaf et al. (1988) directly ex-

ploited the object–target landing error in throwing tasks to learn the correct

throwing parameters without modeling the underlying dynamics. Other exam-

ple of learning-based approach can be found in (Kober et al., 2011; Kim and

Doncieux, 2017). Although these approaches provide good accuracy, they do not

generalize well to conditions other than those they were trained for. Approaches

combining both physics and learning-based solutions have also been proposed

to leverage their respective strengths. Such a hybrid approach was proposed for

instance in (Zeng et al., 2020); to improve the success of throwing tasks, solution

of a physics-based model was complemented with data-based components that

learned the ”residual physics” (unknown and unmodeled dynamics not captured

by the physics-based model). The authors used deep neural networks to directly

learn the residual physics in the control space, considering the synergy between

grasping and tossing.

Although, this approach was successfully applied in tossing various small

objects, the feasibility problem of the tossing parameters has only been partially
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considered with the release speed as main throwing parameter. In (Zeng et al.,

2020) for instance, the release angle was set to 45 degrees and the release position

was cylindrically constrained at a fixed height and fixed distance relative to the

robot’s base. Thus, there a need to consider the full release state particularly

for dual-arm systems as considered in this thesis.

Robotic interception

Robotic interception consists of approaching a moving target to match its

position and velocity in the shortest possible time (Mehrandezh et al., 1999).

This problem has been widely investigated from different perspectives in the

literature. The cited works on catching, batting, and juggling addressed the

interception problem. For slowly moving targets or targets with long-term pre-

dictable trajectories such as objects moving on a conveyor belt, the solution

can be cast into the general prediction planning execution (PPE) framework

(Sharma et al., 1992; Mikesell and Cipra, 1994). In this framework, the motion

of the target is predicted. The robot’s motion to an intercept or rendezvous lo-

cation along the target trajectory is planned and the robot’s motion is executed.

To address uncertainty and prediction errors, these steps can be repeated until

interception, leading to an active PPE process (APPE). Interception of objects

on conveyor belts was addressed with such a framework in (Holland et al., 1979)

or (Mo and Liu, 1985) using a vision system. Allen et al. (1993) demonstrated

a more reactive vision-based hand–eye system with movement rates similar to

human movement to track and grasp a moving model train. Over four decades,

this topic has been addressed from different perspectives. Optimal control of

tasks with robot dynamics and constraints was considered in (Park and Lee,

1992), the optimal choice of interception point in (Croft et al., 1998), time-

optimal considerations of tasks in (Croft et al., 1995), or the grasp reachability

of the target in (Akinola et al., 2021). These works considered the interception

problem using a single robot. In this thesis, however, the joint motion of two

robotic systems must be considered when addressing the interception problem.

Robotic interception with dual-arm systems has been investigated. Previous

work by our group (Salehian et al., 2016a) addressed the problem of robustly

reaching moving objects with multi-arm systems. In that approach, generation of

coordinated robot motion to perform reaching was based on dynamical systems

and used a virtual object. A virtual object was also used in determination of

intercept points by predicting object progress using a forward model. To ensure

kinematic feasibility for the robots, the intercept points were determined along

the intersection between the predicted object motion and the robot reachable

space modeled with a Gaussian mixture model (GMM). Using this approach,

catching a flying rod was demonstrated in (Mirrazavi Salehian et al., 2017b) and

reaching for various car parts was demonstrated in (Mirrazavi Salehian et al.,

2018b).

Although dual-arm coordinated interception tasks including grabbing and
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catching flying objects have been successfully performed, a post-grabbing or

post-catching task such as a placing or tossing task has not been considered.

Moreover, unlike previous works where the interceptor (robot) was fully con-

trollable throughout the task, this thesis considers a task where the interceptor

(the thrown object) is only partially controllable.

Tossable workspace

Robotic throwing extends the robot workspace beyond its physical bound-

ary. The tossable workspace is the set of all positions (within and outside the

boundaries of the physical workspace) reachable by a given object if thrown by

the robot. Unlike the normal robot reachable workspace, which depends only on

robot joint configuration, the tossable workspace also depends on the kinematic

and dynamic characteristics of the robot, and the properties (inertia, size, aero-

dynamic characteristics) and desired landing orientation of the object, making

modeling difficult. Few studies have tackled the estimation problem of the toss-

able workspace of a robot. For instance, Gallant (2020) proposed an approach

for determining the maximum throwing reach of robots with kinematic and

dynamic feasibility constraints. A trajectory optimization-based solution was

proposed, with parameterized trajectories including cubic splines, polynomial

functions, and Fourier series. The maximum throwing reach of 2-DoF, 3-DoF,

and 5-DoF robots was determined. Although this approach can be a step toward

estimating the tossable workspace, it is not explicitly determined. More recently,

Asgari and Nikoobin (2021) proposed an indirect solution-based optimal control

approach to estimate the maximum set of points to which robotic manipulators

can throw an object. They called such set the ”maximum throw-able”workspace.

They modeled the throwing trajectory using the simple ballistic motion and ap-

plied it as a moving boundary conditions to optimize the release speed and

angle. While this approach could successfully estimate the feasible throw-able

workspace of 2 DoF planar and spatial robots, as highlighted by the author

themselves, it comes with high computation burden which makes it difficult for

online usage.

Summary and thesis’s related contribution

In this Section 2.4.4, we reviewed works related to robotic interception of

moving targets by thrown objects. We discussed works robotic throwing with

an emphasis on modeling the free-flying dynamics of a thrown object for the

determination of the throwing parameters. We saw that physics-based mod-

els provide good generalization but have limited accuracy, whereas data-driven

models have good accuracy but limited generalization. Hence, to leverage the

strengths of both approaches, in Chapter 6 of this thesis, we propose to use a

hybrid modeling approach where a throwing map is learned from a parameter-

ized physics-based model of the free-flying dynamics. Unlike works that consider
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only the release speed as the main throwing parameter, our approach considers

the full release state (position and velocity) and ensures their kinematic feasibil-

ity. The optimality of the release velocity is encoded in a learned model of the

throwing maps used in a bi-level optimization to compute the release states of

both the object and robots. Moreover, while previous robotic interception works

whether with a single arm or dual arm system usually consider a fully control-

lable interceptor (the robot), we consider an interceptor that is only partially

controllable (the thrown object is only controllable up to the release). Further-

more, unlike (Asgari and Nikoobin, 2021), we go beyond the estimation of the

throwable points, we derive a probabilistic model of their distribution and use it

to predict landing (intercept) positions that yield a high probability of success.
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Chapter 3

Capture-Point Based
Balance and Reactive

Omnidirectional Walking
Controller

This Chapter presents our method to endow a biped humanoid robot with bal-

ance and reactive locomotion abilities necessary to support cooperative ma-

nipulation tasks. It briefly reviews works on reactive walking controllers and

proceeds to describe our formulation that combines the capture-point (CP) and

center of mass (CoM) dynamics within a model predictive control (MPC) frame-

work to generate on-the-fly adjustable omnidirectional walking patterns that are

consistent with the walking constraints. It validates our proposed approach by

showcasing its application in human-robot cooperative tasks.

'

&

$

%

Publication note: The material presented in this Chapter was adopted

from:

• Bombile, M. and Billard, A., 2017, November. Capture-point based

balance and reactive omnidirectional walking controller. In 2017

IEEE-RAS 17th International Conference on Humanoid Robotics

(Humanoids) (pp. 17-24). IEEE.

Source codes:

• Reactive bipedal walking controller

https://github.com/epfl-lasa/biped-walking-controller

Supplementary Video:

• Capture-point based reactive omnidirectional walking controller

https://youtu.be/1rPaMXguPDQ
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Figure 3.1: iCub walking: left- in reaction to persistent pulling force, and right - in reaction
to human’s intention in a cooperative transporting task

3.1 Introduction

T
he potential ability of humanoid robots to operate in unstructured envi-

ronments with narrow passages and limited support areas renders them

very useful for service robotics. They could be employed for underground and

planetary explorations, rescue operations after disasters, etc. Moreover, their

anthropomorphic structure enables them to perform tasks in environments de-

signed for humans and potentially to better collaborate with humans. However,

working in such an environment is really challenging; the robots might be pulled

or pushed while interacting with humans. They could possibly bump into ob-

stacles, step on small objects lying on the floor or walk on different surfaces,

etc. Consequently, they must be balanced and have a stable and robust walk-

ing ability to successfully complete their missions and cope with perturbations.

The walking control problem, as outlined in Section 2.4.1, has been generally

addressed through the generation of walking patterns: CoM, ZMP trajectories,

and footstep positions that are often planned in advance.

Thus, this Chapter focuses on cases where the footsteps cannot be planned

beforehand, but have to be automatically determined on-the-fly. Such a reactive

behavior is particularly important when the humanoid robot is driven by a high-

level task objective which provides reference commands in form of velocities

to be followed by the walking robot (e.g. while cooperatively transporting an

object (see Figure 3.1)) or tasks which could generate a significant change of

the robot’s momentum (e.g. when handing over or throwing a heavy object).

Moreover, such a reactive behavior is suitable for the mitigation of the effects of

other disturbances such as pushing or pulling forces, ground unevenness, etc.,

that the robot could be subjected to while performing its prescribed task.
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Unlike reactive walking pattern generators (Herdt et al., 2010b,a; Bombile,

2015b; Naveau et al., 2017) discussed in Section 2.4.1, this Chapter proposes a

reactive omnidirectional walking algorithm based on the control of the capture-

point (CP). Our approach draws inspiration from these reactive walking algo-

rithms, designed for the ZMP tracking, but extends them to the tracking of the

CP to leverage its inherent robustness. Our walking controller has the ability to

automatically generate reference trajectories of the CP and their related foot-

step positions and orientations in response to desired locomotion velocities of the

robot, and adapt the position of the CoP within the support polygon in reaction

to perturbations. Moreover, in achieving reactive omnidirectionality, to tackle

the nonlinearity challenges introduced by the orientation, our approach focuses

on the discrete orientation of the footsteps instead of the continuous rotation

of the CoM (hip). As a result, this yields a piece-wise linear problem solved

with linear MPC. In addition to the theoretical development, the experimental

validation of the proposed controller is provided.

This Chapter is organized as follows. Section 3.2 briefly introduces the model

of the CoM-CP simplified dynamics and states the problem. Section 3.3 presents

the proposed reactive omnidirectional balance and walking controller. In Section

3.4, experimental results validating the proposed controller are presented and

briefly discussed. Finally, Section 3.5 summaries the Chapter and provides some

future perspectives.

3.2 Modeling and Problem Formulation

3.2.1 CoM-CP System Dynamics

Consider the illustration of Figure 3.2, which shows an inverted pendulum su-

perimposed on the stance leg of a standing humanoid robot executing a step.

The balance of a humanoid robot, as shown in Eq.(2.2.7), can be modeled by

the linear and angular momentum dynamics of the entire robot about the CoM

(centroidal dynamics (Orin et al., 2013)). Assuming that the robot is standing

on one foot and performing a step, the centroidal dynamics can be re-written as

ḣ =

Ṗ = mc̈ = fr +mg

L̇ = c×mc̈ = c×mg + r × fr + τr
(3.2.1)

s.t fr ⊂ friction cone

where m is the total mass of the robot. c = [ cx cy cz ]T is the position

of CoM and r = [ rx ry rz ]T denotes the position foot ankle (footstep

position) with respect to the inertial frame W. fr = [ fxr fyr fzr ]> and

τr = [ τxr τyr τzr ] denotes the reaction force and torque at the robot’s ankle.
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Figure 3.2: 3D Linear inverted pendulum model (LIPM) with finite-sized foot as simplified
model of a standing and stepping humanoid robot. c ∈ R3, r ∈ R3, p ∈ R3 and ξ ∈ R3 denote
the positions of the CoM, the footstep, the ZMP and the CP, respectively.

3D-LIPM with Point Mass and Finite-Sized Foot

Combining the rows of Eq.(3.2.1) reduces the moment balance expression to

fr × (c− r) + τr = 0 (3.2.2)

Developing Eq.(3.2.2) gives the expression of the CoM dynamics. Additionally,

if we assume that the CoM is constrained on a horizontal plane such that cz −
rz = cz0 and c̈z = 0, we obtain the famous equations of the 3D linear inverted

pendulum model (3D-LIPM (Kajita et al., 2001, 2003)) with finite-sized foot as

c̈x = ω2(cx − px) and c̈y = ω2(cy − py) (3.2.3)

where ω ,
√
g/cz0 denotes the natural frequency of the inverted pendulum. px ,(

rx − τyr
m(c̈z+g)

)
and py ,

(
ry +

τxr
m(c̈z+g)

)
represent the horizontal coordinates

of the ZMP.

Capture-Point Dynamics

Mathematically, the CP can be derived from the orbital energy of the in-

verted pendulum. Alternatively, it can be determined from the solution of Eq.

(3.2.3) which asymptotically tends toward the ZMP. Its expression is

ξx , cx +
1

ω
ċx and ξy , cy +

1

ω
ċy (3.2.4)

The dynamics of the CP can be determined from (3.2.4) and (3.2.3) to give

ξ̇x = ωξx − ωpx and ξ̇y = ωξy − ωpy (3.2.5)

Eq.(3.2.5) describes the evolution of the CP as function of the ZMP.
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CoM-CP joint dynamics

Finally, combining Eqs.(3.2.5) and (3.2.3) gives the CoM-CP joint dynamics,

which can be expressed as (Englsberger et al., 2011)[
ċh

ξ̇h

]
=

[
−ω ω

0 ω

][
ch

ξh

]
+

[
0

−ω

]
ph (3.2.6)

where the subscript h ≡ x, y is associated with the x and y coordinates. This

the dynamics governs the translational motions of the robot and it will be used

to propagate the states over the MPC’s prediction horizon.

3.2.2 Problem Formulation

The main idea to generate walking patterns on the fly based on CP control, as

in ZMP-based approaches (Herdt et al., 2010b,a; Naveau et al., 2017), consists

to formulate an optimization problem where the walking patterns including the

footstep positions and orientations are defined as decision variables. Then, let

the algorithm compute their values that satisfy desired high-level walking task

objectives (e.g. desired walking velocity) and constraints. Hence, the problem

can be mathematically synthesized as

r∗h, θ
∗
f , p
∗
h,

...
θ
∗

= argmin
rh,θf ,ph,

...
θ

(J1(ċh, θ̇) + J2(ξh, rh, θf ) + J3(ph,
...
θ )) (3.2.7)

s.t. balance & walking constraints

where rh and θf represent footstep position and orientation, respectively. sub-

jected to balance and walking constraints. ph is the ZMP and
...
θ denotes the

angular jerk of the CoM’s frame (more details in Section 3.3.3). J1−J3 are cost

functions with the following purposes:

• J1(ċh, θ̇) , JVCoM must ensure that the actual velocity of the frame at-

tached to the CoM tracks its reference velocity (translation + rotation),

• J2(ξh, fh, θf ) , JfPose must ensure that the actual CP position and foot-

step orientation follow their auto-generated references,

• J3(ph,
...
θ ) , Jctrl must ensure that the control effort to achieve the previ-

ous objectives is kept minimal,

The individual cost functions need to be defined to solve our walking patterns

generation problem, which will be formulated within MPC framework to handle

explicitly the balance and walking constraints. To that end, we will require:

1) the CoM-CP dynamics and a rotational dynamics of the robot that will

govern translational and rotational displacements of the robot, 2) a model for

the auto-generation of the CP reference trajectory, and 3) a formulation of

walking constraints that have to be respected by the robot.
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Figure 3.3: Proposed MPC based reactive walking controller. Given the estimated CoM
and CP states (ĉk, ξ̂k, θ̂k) of the robot (under perturbation or not), the controller generates
motions of the CoM (c∗k, θ

∗
k) and of the feet (r∗k, θ

∗
feet,k) to steer the CoM translational and

rotational velocities towards their reference (ċrefk , θ̇refk ) (feedforward + feedback coming from
the Compensator block). u∗k denotes the optimized decision variables and pk the ZMP.

3.3 Capture Point Based Reactive

Omnidirectional Walking Controller

This section presents the development of the proposed walking controller able

to generate reactively not only the footstep positions, but also their orientations.

A block diagram of the proposed MPC-based solution is shown in Figure 3.3.

3.3.1 CoM-CP Prediction Model

After discretizing Eq. (3.2.6) with the state vector defined as xk ,
[
ck ξk

]>
(index

h dropped to simplify notation), the prediction model over a horizon N of each

state of Eq. (3.2.6) can be written as

c−→k = Scxk + Uc p−→k−1

ξ
−→k = Sξxk + Uξ p−→k−1

(3.3.1)

where the notation .−→k means a stack of N predicted values of the considered

variable, starting from but not including the time index k. Here Sj ∈ RN×2 and

Uj ∈ RN×N (j ≡ c, ξ) represent respectively the sub-matrices associated with

the state c or ξ of the matrices Ss and Up given by

S ,


A
...

AN

 , U ,


A0B · · · 0

...
. . .

...

AN−1B · · · A0B


where the state transition matrix A and the control vector B of the discrete

model of (3.2.6) are given by

A =

[
e−ωT 1

2
eωT

(
1− e−2ωT

)
0 eωT

]
and B =

[
1− 1

2
eωT

(
1 + e−2ωT

)
1− eωT

]
(3.3.2)

with T is the sampling time.
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3.3.2 CoM Average Velocity

The average CoM velocity of a walking biped robot would be conveniently com-

puted between every two footsteps because of the sway motion. If, for instance,

four footsteps are considered within the MPC horizon N , the average velocity

can be written as

˙̃c−→k = E c−→k with E = 1
2Tsp

[
−I I

−I I

]
(3.3.3)

Here I ∈ RN
2 ×

N
2 is a unit matrix and Tsp denotes the duration of a step.

3.3.3 Robot’s Orientation

Angular Trajectory of the robot

In order to follow a rotational velocity, we attach a frame to the CoM and

consider only the yaw angle θ (assuming an upright posture). Using the jerk
...
θ k

as a control variable, the rotational motion of the CoM frame can be described

by (Herdt et al., 2010a) θk+1

θ̇k+1

θ̈k+1

 =

 1 T T 2

2

0 1 T

0 0 1


︸ ︷︷ ︸

Aθ

 θk

θ̇k

θ̈k


︸ ︷︷ ︸
θk

+


T 3

6
T 2

2

T


︸ ︷︷ ︸

Bθ

...
θ k (3.3.4)

Similarly to (3.3.1), the prediction model related to the first two states of (3.3.4)

over the horizon N can be written as

θ−→k = Sθθk + Uθ
...
θ−→k−1

θ̇−→k = Sθ̇θk + Uθ̇
...
θ−→k−1 (3.3.5)

Computed as in (3.3.1) but with (Aθ, Bθ) instead of (A, B), Sj ∈ RN×3 and

Uj ∈ RN×N (j ≡ θ, θ̇, θ̈) represent the sub-matrices associated with the state θ,

θ̇ and θ̈ over the horizon N . Thus, from (3.3.3) and (3.3.5) JVCoM can now be

written as

JVCoM =
∑
h=x,y

β
2

∥∥∥ ˙̃c−→k − ċh−→
ref
k

∥∥∥2 + αθ
2

∥∥∥ θ̇−→k − θ̇−→
ref
k

∥∥∥2 (3.3.6)

where ċh−→
ref
k ∈ RN×1 and θ̇−→

ref
k ∈ RN×1 are the translational and rotational

reference velocity of the CoM frame. β and αθ are weights of the cost function.
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3.3.4 Self-generated Capture-Point Reference

Trajectories

The reference trajectory of the CP, ξ∗(t), is derived from the solution of the CP

dynamics (3.2.6). Hence, for constant ZMP position, ξ∗(t) can be written as

ξ∗(t) = eωtξini + (1− eωt)r (3.3.7)

where ξini and r are respectively the initial CP and the footstep position (fixed

ZMP). Hence, for a sequence of m footsteps, if the CP at the end of the step i is

denoted by ξeos,i, the dynamically consistent initial CP, ξini,i, can be computed

with a backward recursion as (Englsberger and Ott, 2012a; Krause et al., 2012)

ξini,i = ξeos,ie
−ωTsp + (1− e−ωTsp)ri (3.3.8)

ξeos,i−1 = ξini,i (3.3.9)

Thus, starting from the final preplanned footstep (rm and ξeos,m), the ξini,i are

computed down to the current footstep.

Unlike in (Englsberger and Ott, 2012a; Krause et al., 2012; Griffin and

Leonessa, 2016; Shafiee-Ashtiani et al., 2017) where the reference footsteps were

predetermined, in this work, they are formulated as variables such that they can

be generated automatically on-line. To that end, let us consider that there are

only four (m = 4) footsteps (r1, r2, r3, r4) falling within the receding horizon

N (it only eases the computation of the CoM’s average velocity in the rest of

these developments). Thus, starting from the fourth footstep and using (3.3.7),

it can be shown that all ξini,i will be given by

ξini,1:4 = Ne ξeos,4 + Me r1:4 (3.3.10)

where ξeos,4 = ξeos,m = ξN is the end of horizon CP and

ξini,1:4 , [ ξini,1 ξini,2 ξini,3 ξini,4 ]>

r1:4 , [ r1 r2 r3 r4 ]>

Ne ,
[
e−4ωTsp e−3ωTsp e−2ωTsp e−ωTsp

]>

Me , δeω


1 e−ωTsp e−2ωTsp e−3ωTsp

0 1 e−ωTsp e−2ωTsp

0 0 1 e−ωTsp

0 0 0 1


with δeω , (1 − e−ωTsp). Substituting now (3.3.10) in (3.3.7), the four CP

reference trajectories can be shown to be given by

ξ∗(t) =

[
eωtMe + (1− eωt)Im︸ ︷︷ ︸

Ξrm

eωtNe︸ ︷︷ ︸
]

ΞξN

[
r1:m

ξN

]
(3.3.11)
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Separating the known current footstep position r1 of r1:m from the unknown

future footsteps r2:m (to be determined together with ξN ), the reference CP for

the m footsteps can now be written as

ξ∗(t) = ΞrmVcr1 + ΞrmVrr2:m + ΞξN ξN (3.3.12)

where the substitution r1:m = Vcr1 + Vfr2:m was used and where Vc ∈ Rm×1

and Vf ∈ Rm×(m−1) are constant selection vector and matrix given by

Vc ,


1

0
...

0

 , Vf ,


0 · · · 0

1
. . .

...

0
. . . 0

0 0 1

 (3.3.13)

Note that (3.3.12) defines a piecewise continuous trajectory whose discontinuity

stems from the discrete footsteps. Between two successive footsteps, this trajec-

tory is continuous and can be obtained for each footstep (each row of (3.3.12))

by varying the time t between [0, Tsp] (reinitialized due to change of initial

condition for each footsteps). Over the prediction horizon N, the overall CP ref-

erence trajectory ξ
−→
∗
k ∈ RN×1 will be obtained by superimposing the discretized

CP reference trajectories of each of the m footsteps.

3.3.5 Footstep Positions and Orientations

Footstep Orientations

During bipedal locomotion, the footstep positions are discrete over time and

so are their orientations. If it is assumed that there is no slippage between the

foot and the ground, then the current footstep orientation denoted θw
f,1 is fixed

and known with respect to the inertial frame W. In such a case, only the future

footstep orientations denoted θw
f,2:m have to be determined. Hence, the footstep

orientations over the prediction horizon can be written as

θ−→
∗
k

w = Hc
k+1θ

w
f,1 +Hf

k+1θ
w
f,2:m (3.3.14)

where Hc
k+1 ∈ RN×1 and Hf

k+1 ∈ RN×(m−1) are cyclic vector and matrix asso-

ciating each sample instant with a footstep. They are the same as those used for

translations in (Herdt et al., 2010b,a). The superscript w indicates a reference

to the frame W. Thus, in order to ensure the desired orientation of the robot,

the decision variables to be optimized are the future footstep orientations θw
f,2:m

in (3.3.14) and the jerk
...
θ−→h,k−1 in (3.3.5).
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Figure 3.4: Example of footstep positions when the robot performs a rotation. rw1 =
[xw1 yw1 ]> and rw2 = [xw2 yw2 ]> denote respectively the positions of the footsteps s1

and s2 with respect to the fixed inertial frame Fw (the world frame), while rij = [xij yij ]
>

represents the position of the footstep sj relative to the footstep si.

Footstep Positions

When accounting for the rotational motion of the robot, the X and Y trans-

lations which were previously independent will now be coupled by the nonlinear

orientation mapping. To illustrate that, consider Figure 3.4 depicting a sequence

of three footsteps. If rw
1 has an orientation θ1 with respect to the inertial frame

W, the position of rw
2 with respect to W is given by

xw
2 = xw

1 + cosθ1x
1
2 − sinθ1y

1
2

yw
2 = yw

1 + sinθ1x
1
2 + cosθ1y

1
2

(3.3.15)

Equation (3.3.15) shows clearly the introduced nonlinearity. However, keeping

the MPC linear or reducing the induced non-linearity will be beneficial for a

real-time implementation of the controller. To that end, let us rewrite (3.3.15)

as follows

rw
2 = rw

1 +Rw
s1r

1
2 (3.3.16)

The absolute footstep position (with respect to fixed inertial frame) rw
2 is writ-

ten as affine transformation of the relative footstep r1
2. Thus, considering four

footsteps (m = 4) over the horizon N , starting from the ith footstep denoted si
and following (3.3.16), the positions of the four footsteps rw

i:i+3 and the end of

horizon CP (end of the ith + 3 step), ξw
N , can be written as

rwi:i+3 = 14 r
w
si + Rxy4ri+1:3 (3.3.17)

ξwN = rwsi + Rxy(3:)4ri+1:3 +Rw
si+2

ξ
si+2

N (3.3.18)

with

4ri+1:3 ,

 rsisi+1

r
si+1
si+2

r
si+2
si+3

 , Rw
si ,

[
cosθsi −sinθsi
sinθsi cosθsi

]
(3.3.19)
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rwi:i+3 ,


rwsi
rwsi+1

rwsi+2

rwsi+3

 ,Rxy ,


0 0 0

Rw
si 0 0

Rw
si Rw

si+1
0

Rw
si Rw

si+1
Rw
si+2

 , (3.3.20)

where 14 ∈ R4×1 is a unit vector and in (3.3.18) Rxy(3:) ∈ R2×6 is the fourth row

of Rxy. rsisi+1
, [ rsix,si+1

rsiy,si+1
]> and ξsiN , [ξsix,N ξsiy,N ]> are respectively

the relative positions of the step si+1 and the end of horizon CP with respect

to the step si.

Using equations (3.3.17) and (3.3.18) in conjunction with the definitions

(3.3.19)-(3.3.20), and separating the x from the y components of the future

steps
(
rw
si+1

, rw
si+2

, rw
si+3

)
, it can be shown that the considered four footstep

positions expressed in a fixed inertial frame can be written as{
rwx,i:i+3 = (Vc + Vf13) rwx,i + VfRx4ri+1:3

rwy,i:i+3 = (Vc + Vf13) rwy,i + VfRy4ri+1:3

(3.3.21)

The matrices Rx and Ry ∈ R3×6 are defined as

Rx ,


cθsi −sθsi 0 0 0 0

cθsi −sθsi cθsi+1 −sθsi+1 0 0

cθsi −sθsi cθsi+1 −sθsi+1 cθsi+2 −sθsi+2

 ,

Ry ,


sθsi cθsi 0 0 0 0

sθsi cθsi sθsi+1 cθsi+1 0 0

sθsi cθsi sθsi+1 cθsi+1 sθsi+2 cθsi+2

 ,
where sθsi and cθsi stand for sinθsi and cosθsi , respectively.

Now, in order to generate automatically the reference trajectory of the CP,

the positions (3.3.21) can in turn be substituted in (3.3.12). Thus, the decision

variables to be determined in this case are now the relative footstep positions

given by

4ri+1:3 =
[
rsix,si+1

rsiy,si+1
rsi+1
x,si+2

rsi+1
y,si+2

rsi+2
x,si+3

rsi+2
y,si+3

]>
instead of their absolute values rwi:i+3 as in (Herdt et al., 2010b)(Herdt et al.,

2010a) or (Naveau et al., 2017). Similar reasoning applies also for ξN .

Thus, Jfpose and Jctrl can now be written as

JfPose =
∑
h=x,y

γ
2

∥∥∥ξh−→k − ξh−→
∗
k

∥∥∥2 + γθ
2

∥∥∥ θ−→k − θ−→
∗
k
w
∥∥∥2 (3.3.22)

Jctrl =
∑
h=x,y

κ
2

∥∥∥∆ph−−→k−1

∥∥∥2 + κθ
2

∥∥∥ ...
θ−→k−1

∥∥∥2 (3.3.23)

where ∆ph−−→k−1 is the variation of ph−→k−1. γ, γθ, κ and κθ are weights of the cost

function.
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3.3.6 Global Objective Function

From (3.3.6), (3.3.22) and (3.3.23), the global objective function J to be min-

imized so as to generate the CoM trajectory and the footstep positions and

orientations can now be written as



J ,
∑

h=x,y

β
2

∥∥∥ ˙̃c−→k − ċh−→
ref
k

∥∥∥2 + κ
2

∥∥∥∆ph−−→k−1

∥∥∥2
+ γ

2

∥∥∥ξh−→k − ξh−→
∗
k

∥∥∥2
+αθ

2

∥∥∥ θ̇−→k − θ̇−→
ref
k

∥∥∥2 + κθ
2

∥∥∥ ...
θ−→k−1

∥∥∥2
+ γθ

2

∥∥∥ θ−→k − θ−→
∗
k
w
∥∥∥2

(3.3.24)

Writing this objective as a QP problem leads to

u∗k = argmin
uk

(
1
2
· u>kQkuk + p>k uk

)
(3.3.25)

with uk ,
[
px−→k−1 py−→k−1 4ri+1:3 ξ

si+2

N

...
θ−→k−1 θ

w
f,i+1:3

]>
s.t |4rx,i| ≤ lx (3.3.26)

lyi ≤ |4ry,i| ≤ lyo (3.3.27)∣∣θsi+1 − θsi
∣∣ ≤ lθ, with i = 1...3 (3.3.28)

Nk( θ−→
∗
k
w)

 px−→k−1 − rwx−→k−1

py−→k−1 − rwy−→
k−1

 ≤ bk (3.3.29)

with rwh−→k−1 =
(
Hc
k+1 +Hf

k+113

)
rwh,i,k + Hf

k+1Rh4ri+1:3,k and where lx and lθ
represent respectively the upper bounds of the relative footstep longitudinal

and angular displacements, while lyi and lyo represent respectively the lower and

upper bounds of the relative footstep position in the lateral direction. Nk( θ−→
∗
k

w)

and bk represent respectively the matrix gathering the x and y components of

the normals to the edges of the support polygon and the bounds of the latter

in the direction of the normals. Also, in (3.3.25) we have

Qk =


Qpxk 0 Qpx4rk QpxξNk 0

0 Q
py
k Q

py4r
k Q

pyξN
k 0

Q4r,px
k Q

4r,py
k Q4r

k Q4rξN
k 0

QξNpxk Q
ξNpy
k QξN4r

k QξNk 0

0 0 0 0 Qθk

 and pk =



ppxk
p
py
k

p4rk
pξNk
p
...
θ
k

pθrk


(3.3.30)

with the Qh,ij and pk,i elements given in Appendix B.1.

Note that the use in the proposed MPC formulation of relative instead of

absolute footstep positions as decision variables has the advantage to transform

a global problem into a local one. It allows us, unlike in (Herdt et al., 2010b)

(Naveau et al., 2017), to keep the MPC’s footstep feasibility constraints linear

((3.3.26) and (3.3.27)) except the constraints on the CoP (3.3.29). However,
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based on (3.3.30) and the consideration that there is no obstacle in the biped’s

workspace, the angular variable (θ) of the foot is free to reach, independently

from the x and y variables, its prescribed value dictated by the desired rota-

tional velocity (provided that the latter is within the robot capabilities). Thus,

the orientation can be solved in a separated MPC and the obtained values at

each iteration substituted as parameters for the x and y variables. As a result,

this MPC problem which is non-linear in nature due to the rotation can be

solved sequentially as a linear problem (Bombile, 2015a,b).

Examples: To illustrate the behavior of the proposed controller, we simulate

the generation of omnidirectional walking patterns in response to desired trans-

lational and rotational velocities of the frame attached to the robot’s CoM.

We first consider a pure translation along the longitudinal direction (X)

as illustrated in Figure 3.5, which shows the associated walking patterns. The

values of the desired (blue line) and current (green line) velocities of the robot

model (3D-LIPM) are shown in Figure 3.5(a). The positions of the CP and the

automatically generated CP and ZMP references are shown in Figure 3.5(b).

The ZMP references correspond to the footstep positions. Figure 3.5(c) shows

additionally the trajectories of the CoM and the current ZMP acting as the

control variable of the CoM-CP dynamics (see Eq.(3.2.6)). The ZMP clearly

remains within its limits as can be seen in Figure 3.5(d), which shows the 2D

walking trajectories and the footstep position along with their support polygons.

Similarly, we simulate a pure lateral translation (Y direction) as illustrated

in Figure 3.6. The desired and current velocities of the 3D-LIPM are shown

in Figure 3.6(a). The velocity of the 3D-LIPM tracks on average its desired

value, although alternating between negative and positive values because of the

sway motion. Figure 3.6(b) shows how closely the position of CP follows its

generated reference (CPref). All walking patterns including the CoM and the

ZMP trajectories are shown in Figure 3.6(c). The 2D footstep positions during

this pure lateral translation are shown in Figure 3.6(d).

Finally, we simulate a pure planar rotation of the robot by specifying desired

angular velocities around the vertical axis (Z). The successive variations of the

desired angular velocity along with the angular velocity of the robot model

are shown in Figure 3.7(a). The discrete footstep orientations along with the

continuous angular positions of the frame attached to the CoM are shown in

Figure 3.7(b). Figure 3.7(c) and Figure 3.7(d) show the walking patterns in the

X and Y directions, respectively. It can be seen that each forward step of one

foot is followed by a backward step of the other foot, both with the desired

orientation. As a result, the robot performs in discrete steps a rotation without

translation, as can be seen in Figure 3.8, which shows a rotation of about π(rad)

with the footstep positions similar to their initial values.
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(a) (b)

(c) (d)

Figure 3.5: Example of generated walking trajectories for a biped robot in pure translation

along the longitudinal direction. (a) The reference and current velocity of the CoM. (b)

Trajectories of the CP and the footstep positions (ZMPref). (c) Trajectories of the CP, the

ZMP and CoM of the robot model. (d) 2D trajectories of the footsteps, ZMP and CoM.

(a) (b)

(c) (d)

Figure 3.6: Example of generated walking trajectories for a biped robot in pure translation

along the lateral direction. (a) The reference and current velocity of the CoM. (b) Trajectories

of the CP and the footstep positions (ZMPref). (c) Trajectories of the CP, the ZMP and CoM

of the robot model. (d) 2D trajectories of the footsteps, ZMP and CoM.
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(a) (b)

(c) (d)

Figure 3.7: Example of generated walking trajectories for a biped robot in pure rotation

around the vertical axis. (a) The reference and current angular velocity of the frame attached

to the CoM. (b) Discrete footstep orientations and continuous orientation of CoM’s frame.

(c)-(d) Trajectories of the CP, ZMP, CoM and footsteps along the X and Y directions.

Figure 3.8: Example of generated 2D trajectories of the footsteps, ZMP and CoM of a

robot model during a pure rotation. The magenta and black dashed rectangles indicate the

support polygons of the left and right foot, respectively. Their initial and final positions after

a rotation of about π(rad) are indicated the numbers 0, and 13 and 14, respectively.
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3.4 Empirical Validation

This section presents the results of two kinds of reactive walking experi-

ments carried out on the humanoid iCub (version 2.5). The first experiment is

about velocity driven reactive walking task whereas the second is about inter-

action force based walking tasks. A video (Bombile and Billard, 2017a) of all

experiments is provided as supplementary material.

From input velocity of the robot, the controller generates in real-time the

reference trajectories of the CoM, the pose of the next footstep, which are sent

to the inverse kinematics module. However, because the controller continuously

adapts the pose of the next footstep depending on the input velocities or dis-

turbances, quintic polynomial interpolation using the current and the predicted

footstep pose at each iteration was used to ensure smooth 3D trajectories of the

swing foot.

The MPC itself was solved with qpOASES (Ferreau et al., 2014) in an average

time of 1ms on an Intel(R) Core i7, 3.4GHz and 7.8GB RAM PC. However,

because the inverse kinematics solver took 6−11ms for each foot, the sampling

time was set at T = 0.040 s. The other MPC’s parameters were set as follows:

step duration Tsp = 0.640 s, gains β = 0.20, γ = 1.50, κ = 0.80, αθ = 1.0−6, βθ = 1.00,

γθ = 1.00, κθ = 0.10.

3.4.1 Velocity Driven Omnidirectional Walking

This experiment validates the ability of the proposed locomotion controller to

generate on-line stable and reactive omnidirectional walking trajectories and to

stabilize the robot around them. Thus, the robot performs a combination of

translations (longitudinal and lateral) and rotations. The desired velocity of the

CoM or rather of a frame attached to the CoM is defined relative to the robot

by the vector [vx vy ωz]
T , representing respectively the robot’s longitudinal and

lateral motion in [m/s] and the rotation motion in [rad/s].

The sequence of desired motion performed by the robot during this experi-

ment is summarized in Table 3.1.

Table 3.1: Desired velocities during the velocity-driven walking experiment

vx [m/s] vy [m/s] ωz [rad/s] time [s]

+0.06 0.03 0.00 6

0.00 0.00 −0.10 8

+0.05 0.00 −0.05 6

At the beginning, the robot translates in both longitudinal and lateral di-

rections, then performs a pure rotation and finally combines a translation and a

rotation. As can be seen in Figure 3.9 depicting the trajectories of the CP and

the CoM, the robot followed its prescribed velocities and reference trajectories

while staying stable.
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Figure 3.9: Time evolution of the CP and CoM positions and velocities during the tracking
task. The value of θCoM is actually the value of the orientation of the robot base (root) frame.
The first two figures at the top and the two figures in the middle represent the translational
positions and velocities in the X and Y direction, respectively. The last two figures represent
the angular positions and velocities of the base of the robot.

The ZMP, here the control variable, varies along its reference values gener-

ated by the algorithm. However, it stays within the support polygon as can be

seen in Figure 3.10, which depicts the footstep poses, the ZMP (reference and

actual) and their associated support polygons. If, for instance, the ZMP was

kept constant at the 6thsecond when the CoM state changed abruptly, the CP

would have evolved from that new state according to (3.3.7). Consequently, it

would have required a much bigger step to maintain the balance of the robot.

However, because the ZMP is free to move within the support polygon, the pro-

posed controller reacted by computing a minimal action that steered the robot

state back towards its desired value.
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Figure 3.10: Footstep positions and orientations during the velocity tracking task. The
magenta and black rectangles represent the support polygons of the left and right foot of the
robot, respectively. The black arrows indicate the walking direction.

3.4.2 Interaction Force based Reactive Walking

In this category two experiments were conducted: bimanual guidance and coop-

erative transportation tasks. They illustrate hypothetical collaboration tasks be-

tween the robot (follower) and a human with whom the robot interacts through

forces. To move the robot in a given direction, the human who acts as leader

can either push or pull the robot or even force it to rotate. The robot must

generate stable walking motions that comply with the intention of the leader.

The first uses the ZMP feedback and the second the arm forces/torques sensor

information to detect the leader intention.

Figure 3.11 and Figure 3.12 show the results of the feedback based reactive

walking. Throughout this experiment, the desired velocity of the robot was set

to zero. At the beginning the velocity loop was open and then closed after 4s.

The robot started by rocking around its initial position before being pulled

continuously by its arms in the longitudinal direction and then pushed and

pulled in the lateral direction. Furthermore, a torque around the vertical axis

was exerted on the robot in both clockwise and anticlockwise direction before

stopping the experiment, which lasted 60s.

The induced changes of the ZMP and the vertical moment with respect to

their reference values are interpreted as perturbations to the desired state of

the robot. To reduce these perturbations, the compensator shown in Figure
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Figure 3.11: Trajectories of the CP, ZMP and CoM and feedback velocities generated by

the controller in response to forces/torques exerted on the robot. The two figures at the top

and in the middle represent the motion in the X and Y direction, respectively. The last two

figures represent the orientation of the robot’s base and the feedback velocities, respectively.

3.3, computed the feedback velocities shown in Figure 3.11. The short delay

observed between the velocities and the robot’s motion is due to a low-pass filter

embedded in the compensator. In Figure 3.12, it can be seen that the generated

trajectories keep the robot stable as its ZMP stays within the support polygon.

For the transportation task, the forces and torques applied on the robot,

through the transported object, are measured by the robot’s arms forces sensors

and converted by an admittance law into velocities to be tracked by the robot.

Some snapshots of this experiment are shown in Figure 3.13.
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Figure 3.12: Footstep positions and orientations automatically generated during the in-
teractive guidance task. The magenta and black rectangles represent the support polygons
of the left and right foot of the robot, respectively. Their positions generated on-the-fly are
represented by ZMPref . The black arrows indicate the walking direction.

Figure 3.13: Illustration of reactive walking in a cooperative transportation task. The
bimanual interaction forces sensed by the robot are converted into velocities that the robot
tracks to comply to the human intentions.
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3.5 Conclusion and Future Works

This Chapter presented a Capture-Point based walking controller able to

generate reactively omnidirectional walking patterns for a biped robot and to

stabilize the robot around them. By implementing the proposed controller on

the humanoid robot iCub, its effectiveness was successfully demonstrated on two

kinds of tasks where the classical walking approach based on footsteps planning

could not apply. The first reactive walking experiment showed that the robot

could track omnidirectional velocities and could even rotate around a spot when

following a pure rotational velocity. The second experiment demonstrated how

this ability to automatically generate stable omnidirectional walking motions

could be further exploited in human-robot cooperative tasks. The robot, acting

as a follower, successfully adapted its footsteps in order to comply with the

intentions of the human, first in a guidance task and then in a cooperative

transporting task.

As future works, the proposed algorithm, currently tested in position control

mode, will be implemented with torque control in a whole body control frame-

work. Thus, the linear and angular momentum of the robot could be explicitly

regulated and the robot’s motions made more compliant. This will reduce the

high jerky motion observed during the experiments and could further improve

the robustness of the walking.

Although the transition between phases could play a key role to produce

dynamic bimanual coordination, it is often overlooked in the literature. We

consider transitions between unconstrained and constrained phases. One of our

objectives is to unify the control of the free and constrained motion phases.
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Chapter 4

Bimanual coordinated
motion and forces for
cooperative compliant

manipulation

This Chapter presents our approach to achieving coordinated bimanual reach-

to-grasp and cooperative compliant manipulation of an object by a humanoid

robot. After briefly reviewing relevant works, it introduces our coordination

approach in the context of whole-body control. It describes our formulation

of the free-motion coordination based on dynamical systems and a shrinkable

virtual object. Then, it presents our approach to cooperative manipulation with

force generation based on quadratic programming. Finally, it presents validation

results and discusses them before concluding1.

4.1 Introduction

H
umanoid robots with their human-like structure, and their combined ma-

nipulation and locomotion capabilities are expected to work alongside and

collaborate with humans. Endowing these robots with bimanual manipulation

skills would allow them to accomplish tasks that are too complex or delicate for

one hand. As stated in Section 1.3, we seek to realize bimanual manipulation

tasks that consider the coordinated free and constrained motion phases with

quasi-static transitions when performed by a humanoid robot. More specifically,

we want a humanoid robot to perform coordinated reach-to-grasp tasks that

smoothly transition to cooperative manipulation tasks of an object while being

compliant.

Solving this problem is challenging as the humanoid robot, with its par-

ticular structure and dynamics, must be balanced and the two arms must be

coordinated both in motion and force to ensure compliant interaction. As out-

lined in Section 2.4.2, previous works, in general, have only partially addressed

the dual-arm coordination problem on such robots. The works that considered

the balance in addition to the coordination problem assumed already grasped

1Supplementary materials:

• codes: https://github.com/epfl-lasa/icub_whole_body_task_controller

• video: https://youtu.be/odoaZ8Oh7IA
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Figure 4.1: The two situations of the considered during bimanual manipulation tasks. (left):

Reaching-to-grasp with hands in free-motion dynamics. (right): Cooperative manipulation

with hands in constrained dynamics. Σw and Σo are the world and the object frame. Σhl and

Σhr denote the robot’s left and right hands frames,respectively, whereas Σol and Σor denote

their respective desired grasping configurations on the object side.

objects and focused on the cooperative manipulation task. The works that con-

sidered the reach-to-grasp and the cooperative manipulation phases including

the transitions between them were not concerned with the balance problem.

Thus, this thesis proposes an algorithm integrated into a QP-based whole-

body controller to achieve bimanual motion coordination and cooperative ma-

nipulation on a humanoid robot while enforcing the robot’s balance. Inspired by

(Salehian et al., 2016a), our approach uses dynamical systems and exploits a vir-

tual object with its associated constraints to achieve robust coordination of the

two robotic hands. However, our virtual object is shrinkable to enable soft tran-

sitions between non-contact and contact phases by ensuring smooth transitions

between virtual constraints in free motion and real constraints when grabbing

the object with unilateral forces. Assuming approximate knowledge of the ob-

ject’s mass and the friction coefficients, our approach uses QP to generate online

interaction wrenches that achieve stable grasp and manipulation tasks while en-

forcing explicitly the contacts constraints. The stability and convergence of the

motion coordination scheme are proven and the proposed algorithm is validated.

4.2 Problem definition

Consider the bimanual task illustrated in Figure 4.1, where a humanoid

robot is required to reach and grasp a static or moving object for manipulation

purposes. The dynamics of the humanoid robot, the object and their coupling

are described by the equations (2.2.1), (2.2.2) and (2.2.3).

To control the humanoid robot with its multiple task objectives and con-

straints, we assume that we have a whole-body controller that executes tasks

specified in terms of desired motion and forces. We further assume that the

whole-body controller is based on quadratic programming (QP) (De Lasa et al.,

2010; Mansard, 2012; Saab et al., 2013; Escande et al., 2014; Herzog et al.,
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2016) that can enforce explicitly inequality constraints such as the unilateral

constraints of the feet contact forces necessary for the robot balance. Hence,

our QP-based whole-body controller that computes the joint torques Γ∗ nec-

essary to perform the desired manipulation task with desired hand motion ẍ∗h,

interaction forces f∗h and balance task ḣ∗ is formulated as follows

Γ∗ = argmin
Γ,q̈,ff ,ε

Jwb(Γ, q̈, ff , ε) (4.2.1)

subject to Mq̈− S>r Γ− J>f ff = −b + J>h f∗h (4.2.2)

Gcf ff + εḣ = ḣ∗ −Gchf∗h − fgvt (4.2.3)

Jtq̈ + εt = ẍ∗t − J̇tq̇ (4.2.4)

Cuu ≤ du (4.2.5)

where the cost function is defined as

Jwb(Γ, q̈, ff , ε) = ‖WΓΓ‖2 + ‖Wq̈q̈‖2 + ‖Wf ff‖2 + ‖Wεε‖2 (4.2.6)

where all decision variables are gathered in a vector u ,
[
Γ>, q̈>, f>f , ε

>]> ,

where ε = [ ε>
ḣ

ε>t ]> are slack variables used to soften the tasks constraints.

Wi are the weight matrices associated to each decision variable. The constraints

(4.2.2) ensures the dynamic consistency of the obtained solution. The constraint

(4.2.3) represents the balance task, where Gcf and Gch are transformation ma-

trices mapping the feet and hands wrenches to the center of mass (CoM) of

the robot, respectively (see Appendix A.1). fgvt is the gravity wrench acting

upon it. ḣ∗ denotes the desired rate of change of the robot’s centroidal momen-

tum. The constraint (4.2.4) represents the overall motion task of all the robot’s

end-effectors, including the joints posture. Jt ∈ Rntask×(nD) and ẍ∗t ∈ Rntask

represent respectively the stacked Jacobian matrix and its associated desired

acceleration vector (ẍ∗h ⊂ ẍ∗t ). Finally, constraint (4.2.5) gathers all inequality

constraints, namely the torque and joint limits, the friction cone and center of

pressure constraints.

Given the above whole-body controller, our main problem can now be stated

as follow:

P4.1: How to generate ḣ∗ = [ Ṗ
∗>

L̇
∗>

]> ∈ R6 such that the robot remains

balanced and stable throughout the task while being compliant?

P4.2: How to generate the overall motion task ẍ∗t , more specifically, the motion

of the hands ẍ∗h = [ ẍ>hl ẍ>hr ]> ∈ R12 such that the robot reaches the

object to be grasped in a coordinated manner?

P4.3: Once the object grasped, how to determine the necessary hands wrenches

f∗h = [ f∗>hl
f∗>hr

]> ∈ R12 to be applied on the object so as to maintain

a stable grasp and achieve the desired manipulation task?
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The problem P4.1 concerns the balance task, which is defined here by the

desired rate of the robot centroidal momentum ḣ∗. In this thesis, ḣ∗ is designed

as a proportional derivative (PD) law that defines the robot’s desired CoM

behavior and floating base orientation.

ḣ∗ = −DCh−KC

[
(xC − x∗C)

σ(φB,φ
∗
B)

]
(4.2.7)

where DC ∈ R6×6 and KC ∈ R6×6 denote the stiffness and damping matrices,

respectively. xC ∈ R3 and x∗C ∈ R3 are the current and desired position of the

CoM, respectively. σ(φB,φ
∗
B) ∈ R3 represents the relative orientation between

the current orientation of the floating base φB and its desired value φ∗B.

This Chapter focuses on P4.2 and P4.3, which define the bimanual coor-

dination problem with the desired coordinated motion ẋ∗h and force f∗h . Before

addressing this problem, we make the following assumptions for the object

A4.1: the object is rigid with known shape and dimensions, and known inertia

properties (mass and moments of inertia).

A4.2: the contacts between the object and end-effectors are unilateral and fric-

tional. They are geometrically modeled by contact surfaces (convex hull

of contact points).

A4.3: the grasping points are known and correspond to the centers of the con-

tact surfaces, they have coordinate frames attached to them to describe

their relative positions and orientations.

A4.4: The contact surfaces comply with a Coulomb friction model (Murray

et al., 1994) and their associated friction coefficients are known (at least

their minimum values).

Next, we present our approach to generate the bimanual coordinated motion

and force with smooth transition between the manipulation phases.

4.3 Proposed Approach

To address the bimanual coordination problem, we propose to encode both

free and constrained motions of the robot’s hands with autonomous dynamical

systems (DS). Thus, we propose to generate the desired hands motion vd
h and

wrench fd
h respectively as follows

vd
h = (1− λr)fu(xh,φh) + λrG

>
o fc(xo,φo) (4.3.1)

fd
h =

fh(fc(xo,φo),Mo,bo,Go) if λr = 1

0 if λr = 0
(4.3.2)
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where fu(xh,φh) ∈ R12 is a DS generating the unconstrained reach-to-grasp

motion of the robot’s hands, where xh and φh represent the positions and ori-

entations of the dual-arm end-effectors, respectively. fc(xo,φo) ∈ R6 is a DS

that generates the desired object’s motion and provides the constrained motion

of the robot’s hands through the mapping G>o fc(xo,φo), where Go ∈ R6×12

is the object’s grasp matrix. xo and φo represent the position and orientation

of the object. λr ∈ [0, 1] is binary variable that becomes 1 when the object is

grasped and 0 otherwise. Mo and bo are the object’s inertia matrix and Cori-

olis and gravity forces vector, respectively. A block diagram of the proposed

bimanual control scheme is shown in Figure 4.2.

4.3.1 Bimanual coordinated reach-to-grasp motion

To generate coordinated motion of the robot’s hands, we use a virtual object

as in (Salehian et al., 2016a). However, to allow bimanual grasping through

unilateral contacts, we consider a virtual object initially bigger than the real

object (see Figure 4.3). As the robot’s hands approach the real object, the virtual

object shrinks to match the size of the real object. This leads to the closing of

the robot’s hands aperture and thereby the grasping of the object. Overall,

the coordinated motion of the robot’s hands results from the combination of

three coupled dynamical systems (DS): one for the motion of the hands to the

scaled up virtual object (synchronization : Σhi → Σvi), one for the motion of the

scaled up virtual object ’s frame to the real object’s frame (approach: Σa → Σo ≡
Σv∗i
→ Σoi), and the last for the shrinking motion (grasping : Σvi → Σv∗i

).

Figure 4.3: Geometrical variables of the reach-to-grasp task with configurations of the real

object (black continuous lines) and virtual object (blue broken line in its scaled up size and

black dash lines when shrunk to the real object’s size). For index (i ≡ left, right) Σhi and Σoi

are respectively the ithhand’s and object’s grasp configuration frames. Σvi and Σv∗i
denote

the ith frame of the scaled up and real object’s size virtual object , respectively. Σo is the frame

of the real object, while Σa is the frame attached to the virtual object with its position as

middle of Σhl and Σhr and its orientation that of Σo
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Thus, using linear DS, we propose to generate the desired motion of the ith

robot’s hand as follows

vdhi = fui(xh,φh) = Chi(ξhi)ξhi (4.3.3)

where vdhi = [ ẋ>hi ω>hi ]> ∈ R6 is the desired velocity twist of the ith hand’s

frame Σhi . ξhi , [ξ>hivi
ξ>v∗i oi

ξ>viv∗i
]> ∈ R18 is the overall state vector, concate-

nating the state vectors of the three DS associated with the synchronization,

the approach and the grasping motion phases, respectively. Chi ∈ R6×18 maps

the states in local frames to velocity twist in world frame. It is defined as

Chi = [ L−1
hivi

Ahivi L−1
viv∗i

Av∗i oi L−1
v∗i oi

Aviv∗i
] (4.3.4)

where Ljk ∈ R6×6 with jk ≡ {hivi, viv
∗
i , v
∗
i oi} is a differential map such that

ξ̇jk = Ljk(ẋj−ẋk) (see Appendix C.2 for more details). The matrices Ajk ∈ R6×6

correspond to the dynamic matrices of each of the DS governing the coordination

such that

ξ̇jk = Ajkξjk (4.3.5)

The state vectors ξjk ∈ R6 are defined as relative poses between frames (position

of frame Σj relative to Σk and expressed in Σk, and axis/angle representation of

the orientation of Σj relative to Σk). Using such representation allows to better

handle both position and orientation simultaneously. Moreover, for all motion

phases (synchronization, approach and grasping), it yields autonomous DS (with

equilibrium at zero (ξdjk = [ 01×3 01×3 ]>)).

The virtual object is key to the coordination as it imposes constraints on the

motion of the dual-arm hands. Its position is the average between the robot’s

hands, and its orientation is equal to the real object’s when the latter is reach-

able. We define state-dependent couplings between the state vectors to ensure

smooth transitions and coordination between the task phases. For instance,

coupling the grasping and approach phases such that the aperture of the robot

hands is closed only when the hands are near the object. Thus, we design ξjk as

ξjk ,

[
wR>k [wxj − γjk

wxk − (1− γjk)wxdj ]

θµ(wRj,
wRk,

wRd
j , γjk)

]
(4.3.6)

where wxj and wRj respectively wxk and wRk are the position and rotation

matrix of the frame Σj respectively Σk with respect to the world Σw. wxdj and
wRd

j denote respectively desired standby position and rotation matrix of Σj

relative to Σw. γjk ∈ R1 is a state-dependent coordination factor that smoothly

varies between [0, 1]. θµ is the axis/angle representation of the orientation. It

varies from θµ = θµ(dRj) when γjk = 0 towards θµ = θµ(kRj) when γjk = 1.

For the synchronization phase, γjk depends on the reachability of the object
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as in Salehian et al. (2016a). However, for the approach and grasping phases,

γjk is defined as

γjk = 1− exp
(
− β
‖ξjk−1‖+ε

)
(4.3.7)

where ‖ξjk−1‖ denotes the error norm of the synchronization and approach

phase, respectively. β > 0 is a scalar that tunes the variation of γjk.

The proposed DS-based scheme is stable and asymptotically converges to its

equilibrium, that is: lim
t→∞

ξhi = 0 ∀i ∈ {left, right}, if the following condition is

satisfied (the proof is provided in appendix C.3).

A>hiPhi + PhiAhi = −Qhi ∀i ∈ {left, right} (4.3.8)

where Phi ∈ R18×18 and Qhi ∈ R18×18 are two positive definite matrices, and

Ahi , diag{Ahivi , Av∗i oi , Aviv∗i
}. When the DS reaches its equilibrium, the pose

of the ith hand reaches its desired configuration on the real object with a van-

ishing velocity (i.e. lim
t→∞

ξ̇hi = 0). This yields a smooth transition from the

non-contact to contact phase.

4.3.2 QP-based bimanual cooperative manipulation

When the robot’s hands have reached the object, how well the object is grasped

depends on the induced internal wrenches. The contacts being unilateral with

limited friction, insufficient or excessive wrenches might result in contact slip-

page or damage of the object and/or end-effectors. This is particularly impor-

tant, when the applied wrenches have to be adjusted to satisfy varying task

requirements.

Thus, given an object manipulation task specified by the desired effective

wrench fdo = fo(fc(xo,φo),Mo,bo,Go) ∈ R6, the problem is to determine each

robot’s individual wrench contribution to produce fdo with minimal internal

wrenches and satisfy the contact constraints. For instance, if the desired task

is encoded as vdo = fc(xo,φo), the object’s effective wrench can be computed

using a passive DS approach (Kronander and Billard, 2016) as 2

fdo = −Do(xo,φo)(vo − fc(xo,φo)) + bo (4.3.9)

where Do(xo,φo) ∈ R6×6 denotes a state varying damping matrix.

Considering assumptions A4.1-A4.4, we address this problem from an object-

centered perspective (Okamura et al., 2000) and propose to use quadratic pro-

gramming (QP) to generate minimum grasp and manipulation wrench, fdh , that

2Alternatively, if the desired acceleration of the object v̇do is available, the inverse dynamics
of the object can be used: fdo = Mov̇do + bo
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accomplishes the desired task and enforces the contact constraints. Hence,

fdh = argmin ‖Gofh − fdo ‖2 + ‖Whfh‖2 (4.3.10)

s.t. Cfhfh ≤ dfh (4.3.11)

Qhofh = 0 (4.3.12)

where Wh is a regularization matrix. (4.3.11) encapsulates the constraints on

the contact wrenches (i.e. unilateral, friction cone, center of pressure), with Cfh

and dfh their associated constraints matrix and vector (see Appendix A.2). Qho

represents the constraint matrix associated with the complementary condition

(4.3.12) between the force components normal to the contact, denoted fhiz , and

the normal distance to the contact, denoted zhioi (i = left and right). For the ith

hand, this condition translates into

zhioifhiz = 0, fhiz ≥ 0, zhioi ≥ 0 (4.3.13)

Condition 4.3.13 ensures that the QP generates forces only when the contacts

are established (if fhiz > 0 then zhioi
= 0, and if zhioi

> 0 then fhiz = 0).

QP (4.3.10)-(4.3.12) performs an optimal distribution of fdo between the two

robot’s hands based on the coupling (2.2.3) with unilateral contact forces.

4.4 Validation

The validation of the proposed controller is carried out on a simulated hu-

manoid robot iCub (Metta et al., 2008) in Gazebo environment. In our imple-

mentation, 29 out the 51 degrees-of-freedom of the iCub robot were controlled

in torque, in particular three joints in the torso, seven in each hand and six in

each leg. The dynamics of the robot was computed using iDyntree (Nori et al.,

2015) and the yarpWholeBodyInterface module was used for the communication

with the robot. All QPs (i.e. for the whole-body and the grasp wrenches) are

solved using CVXGEN (Mattingley and Boyd, 2012). The overall task is solved

in 2 to 5ms on a 3.6 GHz i7 PC. The controller is run at 100Hz.

Three main scenarios were considered : 1) coordinated reaching and manip-

ulation task, 2) coordinated reaching and grasping of a moving object, and 3)

whole-body and object-level compliant interaction. A video of the corresponding

simulations is provided as supplementary material.

4.4.1 Bimanual coordinated reaching and

manipulation task

In this scenario, we evaluate the motion coordination capability of our controller

and its ability to generate wrenches that perform a given manipulation task with

the object. The bimanual task consists of reaching an object of 0.5 kg, lifting it
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to a height of 0.6m and tracking in the YZ plane a circular trajectory define by

two sinusoidal motion along Y and Z axis. Figure 4.4 provides some snapshots

of the task execution.

Figure 4.4: Snapshots of the task consisting of coordinated reaching and grasping of an

object (first raw) and manipulation (second and third raws).

The initial poses (with Euler angle) of the left and right hands are respec-

tively xhl(to) = (0.187, 0.208, 0.639) and φhl(to) = (−1.271,−0.233, 0.190), and

xhr (to) = (0.187,−0.207, 0.639) and φhl(to) = (−1.871, 0.232, 0.190). The corre-

sponding grasp poses on the object are respectively xol(to) = (0.221, 0.091, 0.245)

and φol(to) = (−1.571,−0.00, 0.00) and xor (to) = (0.221,−0.070, 0.245) and

φol(to) = (−1.571,−0.00, 0.00). The two hands are required to move in a coor-

dinated manner their positions and orientations so as to reach the object at the

same time. Once the object reached, the grasping wrenches are applied and the

object is lifted.

The reaching phase is evaluated through the poses errors between the robot’s

hands and their desired grasp locations on the object. The time evolution of these

errors and the grasping wrenches are shown in Figures 4.5 and 4.6, respectively.

It can be seen that the robot reached the object around t = 20 s and lifted it

up. The zero pose errors during the task mean that the hands have reached and

remain at their desired grasping locations, which indicates stability of contacts.

The computed forces, as shown in Figure 4.6, were saturated to keep them

within the limits of the robots. At t = 40 s, when the object is required to

follow the sinusoidal trajectories in the Y and Z directions, one can notice that

the forces generated in the X direction have also sinusoidal profiles. This is

because the controller adapts the applied forces in order to maintain the desired

x motion at its desired values. Similar sinusoidal patterns are also followed by

their associated moments.
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Figure 4.5: Position and orientation errors of the left and right hands with respect to

their desired grasping locations on the object during the reach-to-grasp (before contacts) and

manipulation (after contacts) task. The contacts establishment is indicated by the vertical line.

The zero pose errors mean that the hands have reached and stay at their desired grasping

points

Figure 4.6: Applied forces and moments of the left and right hands on the object throughout

the reach-to-grasp and manipulation task. They remain at zero until t = 20s when the contacts

with object are established

The virtual object that helps to coordinate the reaching phase and its 3D

trajectory is shown in Figure 4.7, whereas Figure 4.8 shows the 3D components

of the object’s motion during the manipulation phase. It can be observed that

the object follows fairly well its desired trajectories.
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Figure 4.7: Illustration of the shrinkable virtual object as it is used to coordinate the robot’s

hands motion during the reaching phase

Figure 4.8: 3D trajectories realized by the object compared to the desired trajectories

during the manipulation phase

The robustness of the wrenches generator was also tested by reaching and

grasping other objects such as a cylinder and a sphere as illustrated in Figure 4.9.
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In those case, the contact surface reduces into a line and a point, respectively.

(a)

(b)

Figure 4.9: Simulations of bimanual reaching and grasping object with reduced contact

surfaces: (a) cylinder (line contact) (b) sphere (point contact)

To further assess our controller, we run multiple simulations of the task.

The ranges of initial poses (positions and orientations) are summarized in Table

4.1. Figure 4.10, provides a visualization of the 3D trajectories of 15 simulated

experiments of coordinated reach-to-grasp task (starting from different initial

poses). The average final reaching errors are shown in Figure 4.11.

Table 4.1: Ranges of initial poses of the robot’s hands and the object’s grasping points
during the assessment of the reaching and grasping task. The poses are expressed with
respect to the world frame, with the orientation using Euler angles.

(a)

x [m] y [m] z [m]

left hand [0.047, 0.210] [0.148, 0.346] [0.583, 0.951]

right hand [0.004, 0.210] [−0.335,−0.180] [0.629, 0.952]

left grasp point [0.157, 0.276] [−0.035, 0.146] [0.214, 0.349]

right grasp point [0.178, 0.276] [−0.189,−0.013] [0.214, 0.349]

(b)

ψx [rad] θy [rad] ϕz [rad]

left hand [−1.277, 0.131] [−0.792, 0.543] [0.089, 1.125]

right hand [−2.820,−1.830] [−0.861, 0.532] [−1.419,−0.278]

left grasp point [−1.570,−1.570] [0.00, 0.00] [−0.273, 0.523]

right grasp point [−1.570,−1.570] [0.00, 0.00] [−0.273, 0.523]
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Figure 4.10: Example of 15 three-dimensional coordinated reach-to-grasp trajectories
of the humanoid robot’s hands starting from different initial poses.

Figure 4.11: Boxplots of final reaching position errors along each 3D coordinate for
the left and right hand of the humanoid robot when performing coordinated reach-to-
grasp tasks from initial poses shown in Figure 4.10.

68



It can be noticed that the position errors in the y direction is relatively

small compared to the x and z directions. This is because it corresponds to the

squeezing direction, where the robot always ends in contact with the object due

to the applied forces. For the x and z directions, the errors depend on their

relative positions at the time the contact is assumed to have been established.

In effect, a threshold of 0.015m was set to consider that the robot’s end-effectors

have reached their desired locations on the object.

4.4.2 Coordinated reaching and grasping of a moving

object

We now evaluate the ability of our controller to generate coordinated motion

for a moving target. The velocity of the object goes up to 0.2m/s. When the

object is outside of the hands reachable workspace, the robot’s hands go to a

resting pose. As soon as the object enters the reachable space of the hands, the

latter start tracking their corresponding attractors on the object. As the robot

uses its entire body to perform this task, the whole-body controller ensures that

the robot remains stable throughout the task.

Snapshots of the robot during this task are given in Figure 4.12. Figures 4.13

shows poses errors and the grasping wrenches of the left hand during the task.

Although not shown here, similar patterns are observable for the right hand.

The controller generates no wrench until the contacts between the object and

both hands are established (around t = 112s).

Figure 4.12: Illustration of a whole-body bimanual coordinated tracking and grasping of a

moving object performed by a humanoid robot while keeping its balance.
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Figure 4.13: Poses errors and applied wrench for the left hand during the tracking and

grasping of a moving object. The wrenches are zero throughout the tracking task (from t = 0

to t = 112). They appear only when the contacts are established between the hands on the

object (t = 112)

4.4.3 Whole-body and object-level compliant

interaction

We also tested some tasks that exploit the redundancy and compliance of the

robot under the designed whole-body torque controller. For instance, Figure

4.14, shows a bimanual manipulation task where the robot is holding the ob-

ject at a given position while balancing and squatting, whereas Figure 4.14(b)

illustrates a case of interaction to external forces on the robot’s body during a

manipulation task. Here, the external force is applied on the hip of the robot,

the latter complies while balancing and thanks to its redundancy, it maintains

the object at the same location.

In Figure 4.15, we show an other interaction case where the external force is

applied, this time, directly on the grasped object. The challenge for the robot is

to keep its balance, maintain stable grasp of the object while being compliant.

In this case, a desired attractor was defined for the object, fdo . Thus, when the

object is pushed away from its attractor, the object’s effective wrench fdo (see

(4.3.9)) increases and the hands wrenches are adjusted accordingly to maintain

the grasp.

The variations of wrenches during this task are shown in Figure 4.16. In the
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(a) (b)

Figure 4.14: Simulations of bimanual manipulation scenarios that exploit the redundancy

and the compliance of the humanoid robot. (a) maintaining desired object’s location when

squatting. (b) keeping balance and maintaining desired object’s location despite external force

acting on the robot’s hip

first 20s, before the contacts are established, the wrenches are zero. Afterwards,

they suddenly increase to grasp the object and lift it. Thereafter, they start de-

creasing as the object approach its attractor. Around t = 50s an external force

is applied on the object, one can see that the wrenches increase to maintain

the grasp of the object. As mentioned before, the applied forces were saturated

around 20N. When a stronger external force was applied around t = 240s, the

robot could not compensated for it (see green circle in Figure 4.16), the con-

tacts with the object was broken and the wrenches returned to zero. However,

the robot started automatically a reach-to-grasp phase and re-grasped the ob-

ject 20s later.

Figure 4.15: Bimanual grasp with compliance to external forces acting directly on the

object
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Figure 4.16: Variations of the grasping wrenches of the left and right hands during the

interaction task with the object. The wrenches are updated on-line in response to external

forces applied directly on the object. The abrupt drop of the wrenches to zero (the green circle

region) around t = 250s is due to contacts loss caused by a strong perturbation in the contact

direction. It is then followed by a re-grasping of the object

4.4.4 Real robot bimanual object reaching and

grabbing based on whole-body inverse kinematics

Finally, to validate our bimanual coordination scheme on the real humanoid

robot, we implemented our framework using whole-body inverse kinematics as

our experimental platform had issues with its torque controller. Moreover, the

joints of the hands are not controllable in torque. Thus, the motion was gener-

ated, as in simulation, using our proposed DS. However, the grasping forces were

now applied through an impedance controller that exploits the relative distance

between the two robot’s hands. The balance task is ensured by the whole-body

inverse kinematics-based controller.

Figure 4.17 provides snapshots illustrating a bimanual coordinated reaching,

grabbing, and lifting up an object. The latter is equipped with markers that

allow the estimation of its pose using an Optitrack vision system. The grasping

points are defined with respect to the object and constitute the attractor for the

dynamical system that generates the coordinated reaching motion. As can be

observed, the humanoid robot successfully uses its whole body to bend and reach

the object before grabbing and lifting it while remaining balanced. Although,

we achieve the desired bimanual task, we lost, the whole-body compliance, as

shown in the previous section. This is because of the stiff control in position,

obtained from integrating the velocity generated by the inverse kinematics.
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Figure 4.17: Snapshot of real humanoid robot iCub performing a bimanual coordinated

reaching and grabbing of an object while balancing using whole-body inverse kinematic-based

control

73



4.5 Conclusion

This Chapter proposed a combined dynamical systems QP-based algorithm

to achieve robust reach-to-grasp and stable grasp and manipulation of an ob-

ject by a humanoid robot. Integrated to a whole-body controller, the generation

of coordinated motion and forces in non-contact and contact phases was the-

oretically demonstrated and validated in simulation. The results suggest that

the proposed approach enables bimanual coordinated reaching and grasping of

static as well as moving objects. As the proposed motion generation is based

on time-invariant dynamical systems, it has inherited the robustness and the

fast re-planning ability of the DS. Successful tracking and grabbing of moving

objects while balancing were demonstrated. Moreover, with the online com-

putation of constraint-consistent interaction wrenches using QP, the proposed

approach showed its robustness to the change of contact area (surface, line, and

point contacts). It also allows performing various manipulation tasks with direct

interaction with objects while keeping the grasp and the balance of the robot.

However, the proposed approach has some limitations that need to be ad-

dressed. For instance, the desired motion of the DS was not well executed by

the robot due to its slow dynamics. The reachable space of the bimanual system

was not computed explicitly but was roughly approximated. One way to tackle

this problem could be to learn it as in (Kim et al., 2014). Another problem that

could cause some failures of the task is the collision of the hands with the object

to grasp. This problem can be addressed by modulating the DS using, for in-

stance, the approach proposed in (Huber et al., 2019b) to move around part of

the object and reach the desired attractor. However, attention should be partic-

ularly paid to the fact that the attractor is located on one side of the “obstacle”

which, in our case, is the object itself. Besides, the collision at the end-effectors,

it was sometimes observed that the humanoid robot was moving in directions

that could lead to joint limits or to unnatural configurations. This is mainly

due to the fact that the proposed DS focuses only on the task space motion

and it is agnostic of what happens at the joint level. Thus, designing a control

scheme that could generate or induce some specific motion in the joint space

could be a solution to this problem. Moreover, although validated in simulation

and on a stiff-controlled robot, the effectiveness of the proposed framework with

compliant bimanual manipulation would be demonstrated only once tested on a

real humanoid robot with full torque control capabilities. In the next Chapter,

we will implement our framework, this time with dynamic transitions, on a pair

of torque-controlled robotic arms.
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Chapter 5

Dual-arm control for
coordinated fast grabbing
and tossing of an object

This Chapter presents a novel unified coordination framework for bimanual dy-

namic manipulation that enables reaching, grabbing with impact and tossing of

an object in one swipe. It models the dual-arm situation and presents our for-

mulation using modulated dynamical systems to unify the manipulation phases

and locally shape the generated motion to satisfy the impact and tossing tasks

requirements. Then, it presents the QP-based strategy to generate the bimanual

contact forces that stabilize the object. Finally, it presents experimental results

on a pair of two KUKA LBR robots and shows quantitatively that our approach

reduces the task duration and the energy expenditure when compared to the

classical pick-and-place task.
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Publication note: The material presented in this Chapter was adopted

from:

• Bombile, M.B. and Billard, A., 2022. Dual-Arm Control for Coor-

dinated Fast Grabbing and Tossing of an Object: Proposing a New

Approach. IEEE Robotics & Automation Magazine.

Source codes:

• Dual arm controller

https://github.com/epfl-lasa/iam_dual_arm_control

Supplementary Video:

• Dual-arm control for coordinated fast grabbing and tossing of an

object

https://youtu.be/CeLoqXdPI0U
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(a) (b)

Figure 5.1: Illustration of a dual-arm manual and robotic pick-and-place operations.
(a) human dual-arm grabbing and placing objects in a palletizing task within Van-
derlande facility (photo courtesy of Vanderlande). (b) pair of two real and simulated
real KUKA LBR IIWA robots grabbing an open box (top) and an object containing
a small moving object inside (bottom).

5.1 Introduction

S
wift robot manipulation of objects in unstructured and dynamic environ-

ments is crucial for the industry. This Chapter considers the problem of

dynamic grabbing and releasing an object in one swipe with a dual-arm robotic

system. The desired manipulation task is motivated by the need to pick and po-

sition faster objects in a depalletizing context, see Figure 5.1. Humans usually

perform such repetitive and physically demanding work for lack of similarly fast,

precise, and robust bimanual robot systems. As outlined in Section 2.4.3, the

bimanual tasks envisioned here extend the complexity of the control problem

as it requires, in addition to generating the desired impact and tossing motion,

to enforce the coordination of the two robotic arms throughout the task. For

instance, a poorly coordinated system, where one arm reaches the object before

the other, would lead to uncontrolled impact.

Achieving desired grabbing with impact and tossing of objects is challenging

as these tasks require that desired transitory states expressed in terms of desired

position and velocity be simultaneously satisfied (during contact or at the release

time, respectively). Moreover, the motion should be robust throughout the task

from grabbing with impact to release be it by placing, handing over, or tossing
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the object. Despite the ability of state-of-the-art approaches to generate safe

impacts for the robot, works dealing with bimanual grabbing with impacts have

only been limited to this task. They did not consider combining it with other

bimanual manipulation tasks such as placing or throwing objects. Also, works

that considered throwing were not confronted with the problem of coordination

since they used special robotic devices, single-arm robots, or parallel robots.

In this Chapter, in addition to a dynamic grab, we also consider a dynamic

release by throwing the objects with a dual-arm robotic system. Controlling

robustly such coordinated tasks of multi-arm systems opens the door to a variety

of applications. Besides depalletizing, this could include manipulations that are

too complex or heavy for a single robot and require two or more robotic arms.

Some applications could be fast picking up of open trays or cases, fast picking

up of luggage from airports’ conveyor belts, etc. Unlike planning-based methods

which are less reactive and prone to spatial and temporal perturbations, we

adopt a motion generation approach based on autonomous DS for their fast and

time-independent re-planning abilities and their robustness to perturbations.

More specifically, we use modulated DS to allow local shaping of the motion

flow and thus achieve the desired objectives of impact and tossing tasks. We

formulate the motion coordination problem using the extended cooperative task

space (ECTS) representation (Park and Lee, 2015). To stabilize the grasp and

achieve the desired bimanual manipulation tasks, as in Chapter 4, interaction

wrenches consistent with contact constraints are generated online using QP.

5.2 Problem statement

To control the dual-arm system, we assume that each robot is equipped with

torque controller that can compute the joint torques for tasks specified in terms

of desired task-space motion and forces. We consider, for instance, the passivity-

inspired impedance-based controller (Kronander and Billard, 2016) with the

gravity wrench already compensated for1. Hence, each robot’s joint torques to

achieve a desired task-space motion and wrench can be computed as

Γh = Γhẋ
+ Γhω with

Γhẋ
= J>hẋ

(q)
[
Dh(ẋdh)(ẋh − ẋdh) + fdh

]
Γhω = J>hω

(q)
[
Dh(ωdh)(ωh − ωdh) + τdh

] (5.2.1)

where Γh = Γhẋ
+ Γhω is the vector of joint torques of the hth robot, with

(h ≡ l, r) referring to the left or right robot of the dual-arm system. Γhẋ
and

Γhω denote the torque component due to the task-space linear motion or force

and angular motion or moments, respectively. Similarly, Jhẋ
(q) and Jhω (q) are

Jacobian matrices associated with the linear and angular velocities ẋh ∈ R3 and

ωh ∈ R3, respectively. ẋdh ∈ R3 and ωdh ∈ R3 are desired linear and angular

1For the dual KUKA arm platform at our disposal, we can use a built-in gravity compen-
sation module. In the absence of such a module, one should estimate the inertia of the links
and substract this.
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velocities, respectively. fdh ∈ R3 and τ dh ∈ R3 denote the force and moment

components of the desired task wrench, respectively. Dh(ẋdh) ∈ R3×3 is a state-

dependent damping matrix defined as Dh(ẋdh) , Qh(ẋdh)Λhẋ
Q>hi(ẋ

d
h), where

Qh(ẋdh) is an orthogonal matrix whose first eigenvector is aligned with ẋdh. Λhẋ

is a negative definite diagonal gain matrix (refer to (Kronander and Billard,

2016) for more details). Dh(ωdh) follows similarly definition to Dh(ẋdh) but for

ωdh.

As in the previous Chapter 4, our problem is to find ways to generate the

desired task-space motion {ẋdh,ωdh} and wrench {fdh , τ dh} that will produce co-

ordinated swift grabbing with impact and stable manipulation of the object by

the dual-arm robot.

We also make the following assumptions regarding the object and contacts:

A5.1: the object is rigid with known shape and dimensions, and known inertia

properties (mass and moments of inertia).

A5.2: the contacts between the object and end-effectors are unilateral and fric-

tional. They are geometrically modeled by contact surfaces (convex hull

of contact points).

A5.3: the the grasping points are known and correspond to the centers of the

contact surfaces, they have coordinate frames attached to them to de-

scribe their relative positions and orientations.

A5.4: The contact surfaces comply with a Coulomb friction model (Murray

et al., 1994) and their associated friction coefficients are known (at least

their minimum values).

Moreover, the scope of this Chapter being essentially motion and force gen-

eration, we leave aside the impact dynamics and assume that the associated

states’ jumps remain within the robots’ limits. The interested reader is referred

to (Rijnen et al., 2019) for the control of impact with states jump mitigation,

and (Wang et al., 2020) or (Dehio and Kheddar, 2021; Dehio et al., 2022) for

explicit enforcement of hardware limits during impact generation.

5.3 Proposed Approach

To induce the desired motion on the object when fast picking and when

tossing requires that the two robots’ arms adopt the required velocity just prior

to impact (for fast picking) and prior to release (when tossing). To obtain this

behavior, the robot arms must transit, at contact and release time, through

desired states expressed in both position and velocity simultaneously. Unlike

attractors, these transitory states are not equilibrium points and therefore the

robotic system can only transit through such states. Thus, to realize the desired
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Figure 5.2: Schematics illustration of the considered dual-arm task, which can be seen

as succession of two main phases: free motion phase when reaching (red dashed line), and

constrained motion phase when in contact and executing the placing or tossing motion (blue

and green dashed lines)). Σw and Σo are the world and the object frames. Σl and Σr denote

respectively the frames of the left and right end-effectors, while Σol and Σor denote respec-

tively their desired grasping configuration on the object side. Σi and Σoi are respectively the

ith end-effector’s and object’s grasp configuration frames, while Σvi denotes the ith frame of

an auxiliary attractor that shapes the trajectory for impact, with index (i ≡ left, right).

task in a robust way, we proposed an approach based on modulated dynamical

systems, where state-dependent functions shape locally the generated motion

of the robot - prior to contact or release of the object - such that the motion

aligns first with the desired velocity while moving towards the desired contact or

release position. Therefore, for a dual-arm system which requires coordination,

to realize fast grabbing and afterward a tossing task, we formulate at the position

level2the following modulated dynamical system (MDS).

ẋ = M(x)fn(x) + fg(x) (5.3.1)

where x =

[
xL

xR

]
∈ R6 is the state vector of the DS with xL and xR represent-

ing respectively the position of the left and right robot of the dual-arm system.

fn(x) ∈ R6 is the nominal DS that generates the coordinated motion towards

transitory attractors located in the vicinity of the desired positions. fg(x) rep-

resents the equivalent grasping force in the motion space, whereas M(x) ∈ R6×6

is the state-dependent modulation matrix that shapes locally the motion gener-

ated by fn(x). It is defined as

M(x) = E(x)Λ(x)E>(x) ∈ R6×6 (5.3.2)

where E(x) ∈ R6×6 and Λ(x) ∈ R6×6 are block-diagonal matrices respectively

2The control of orientation is described in appendix D.1
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Figure 5.3: Geometric representation of orthornormal basis EL(x), ER(x) and illus-
tration of modulation region (green ellipsoid) within which the dark-red cylindrical
region represents the activation of the normal distance to the vector xhd − xht

of state-dependent orthonormal basis and gains for the left and right robotic

arm. They are respectively defined as

E(x) = diag{EL(x), ER(x)}

Λ(x) = diag{ΛL(x),ΛR(x)}

In E(x), each basis Eh(x) = [ eh1 eh2 eh3 ] ∈ R3×3 with h = {L,R} is

designed such that its first vector eh1 is aligned with the intended impact direction

at contact.3 That is

eh1 =
ẋhd∥∥ẋhd∥∥ =

xhd − xht∥∥xhd − xht
∥∥

where [xhd ẋhd ] denotes the desired impact or tossing state of the hth robot, and

xht is the transitory attractor defined at a distance ρ of xhd , such that it is given

by xht = xhd+Eh(x)[ −ρ 0 0 ]>. Thus, as illustrated in Figure 5.3 for the case

of grabbing with impact, each robot is driven first towards a transitory attractor

xht before being moved with the appropriate orientation along eh1 towards xhd ,

the real attractor. In Λ(x), each sub-matrix Λh(x) ∈ R3×3 has entries λ̄hij(x)

defined as

λ̄hij(x) =

α(x)λhij(x) + (1− α(x)) if i = j

α(x)λhij(x) if i 6= j
(5.3.3)

where λhij(x) ∈ R1 represent state-dependent scalar terms defined in section

5.4.1, α(x) ∈ [0, 1] activates the modulation when the robots are in the vicinity

of their desired attractors.

The modulation is active in a region defined by an ellipsoid along the vector

xhd − xht as illustrated in Figure 5.3. To characterize the modulation, we define

three activation parameters namely: δradial, δnormal and δtangent which repre-

sent distances with their origin at xht in the basis Eh(x). These distances are

measured respectively in 3D, in 2D normal to eh1 , and in 1D along eh1 . Accord-

3The direction of impact is not limited to be normal to the contact surface, but can also
have other orientation.
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ingly, we define associated activation functions φi(x
h) ∈ [0, 1] with i={radial,

normal, tangent} such that

φi(x
h) =

1

1 + e−ai(δi−Γi(xh))
(5.3.4)

where Γhi (xh) represents state-dependent distances of the hth robot, whose ex-

pressions are as follow Γhi (xh) = [(xh − xht )>Eh(xh)Σi(E
h(xh))>(xh − xht )]

1
2 .

Σi ∈ R3×3 are diagonal matrices that select the considered directions of Eh(x).

The elements of Σi are mainly 0, but 1 at index(es) of the desired direction(s).

Hence, α(x) in Eq. (5.3.3), is designed such that α(x) = 1
2

∑2
h=1 φradial(x

h).

The behavior of the DS and the activation functions are shown in Figure 5.4.

(a)

(b)

Figure 5.4: Illustration of motion flow generated by the DS outside and within the
modulated region. (a) the motion of each robot is shaped within the modulation re-
gion (thick dotted blue line) such that it passes through the desired transitory state
(here an impact state) with the desired position represented by the red dot and the
direction of the desired velocity represented by the blue arrow. (b) representation of
spatial activation of the modulation terms, respectively φradial(x), φnormal(x), and
φtangent(x), which become equal to 1 in the yellow region.
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5.4 Modulation-based Coordinated Control

The motion coordination of the dual-arm system, in this thesis, exploits

the cooperative task space representation (Park and Lee, 2015), which relates

the states of each robot to the cooperative coordinates formed by the absolute

and relative states of the dual-arm system. The coordination is achieved by

controlling the two robots cooperative coordinates and mapping the resulting

motion to each robot.

Thus, assuming that the nominal DS fn(x) is linear, the coordinated motion

that it generates can be written as:

fn(x) = ẋ = T−1
b ATb︸ ︷︷ ︸
A′

(x− x∗) (5.4.1)

where Tb =

[
1
2I3

1
2I3

−I3 I3

]
∈ R6×6 is a matrix that maps the two robot positions

(xL and xR) to the absolute position xabs ∈ R3 and relative position xrel ∈ R3 of

the dual-arm system, such that

[
xabs

xrel

]
= Tb

[
xL

xR

]
and where I3 is a 3× 3

unit matrix. In Eq. (5.4.1), A ∈ R6×6 denotes the dynamics or gain matrix,

which is negative definite (A < 0) to ensure stability and convergence to a given

attractor x∗.

The coordination is thus achieved by controlling the dynamics of xabs and

xrel, which amounts to control respectively the two robots joint motion and their

relative displacement and thereby their synchronization. The resulting motion

of xabs and xrel is then mapped through T−1
b to each robot’s motion.

The modulation shapes the behavior of the nominal DS in the region where it

is active. This shaping must preserve the DS stability and convergence properties

of the nominal dynamical system fn(x) towards its equilibrium points x∗.

5.4.1 Stability and convergence to attractors

Based on the previous work (Mirrazavi Salehian and Billard, 2018) on single

robot, we can state the following proposition for dual-arm system:

Proposition 1

For any given state {x ∈ R3|α(x) = 1, fhn (x) 6= 0} setting the state depen-

dent coefficients of the modulation matrix Λh(x) as

λhij(x) = (ehi )>fhmi(x)
fhn (x)>ehj

fhn (x)>fhn (x)
, (5.4.2)

the motion generated by Eq. (5.3.1) will be governed by the dynamical system

fhmi(x). Moreover, if fhmi(x) is a stable linear or linear parameters varying (LPV)

DS, for instance, of the form of Eq. (5.4.1), the state x will asymptotically reach
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its attractor x∗ while maintaining the coordination between robots of the dual-

arm system. That is lim
t→∞

‖x− x∗‖ = 0.

Proof: See Appendix D.3.

5.4.2 Generation of impact velocity

To generate desired grabbing impact velocities with the dual-arm system, we

introduce the following proposition:

Proposition 2

For any given state {x ∈ R3|, fhr (x) 6= 0} setting the attractor x∗ as follows

x∗ =

(1− γ(x))xt + γ(x)(x−A′−1ẋd) if ehi=1

xt if ehi6=1

(5.4.3)

with γ(x) , φradial(x)φnormal(x), then for any state, the modulated DS (5.3.1)

with Eq. (5.4.1) will generate motion first towards xt and then, when γ(x) = 1,

it will generate desired velocity ẋd =

[
ẋLd
ẋRd

]
∈ R6 along the vectors eL1 and

eR1 while maintaining attraction towards them in their respective orthogonal

directions ((eL2 , e
L
3 ) and (eR2 , e

R
3 )).

Proof: See Appendix D.4.

5.4.3 Manipulation task

To generate desired motion of an object carried by a dual-arm system using the

proposed DS in Eq. (5.3.1), we introduce the following proposition:

Proposition 3

For an object grasped by a dual-arm system and whose position is given by

xo and desired attractor is given xod, for any state {x ∈ R3|κ(x) = 1, fhr (x) 6= 0}
setting the attractor x∗ of the proposed modulated DS in Eq. (5.3.1) as

x∗ = κ(x)T−1
b

[
xod + (xabs − xo)

xRo − xLo

]
(5.4.4)

where (xabs − xo) denotes the offset between the end-effector absolute position

and the object’s origin, and where xLo and xRo denote respectively the positions

of the grasping points of left and right robot, the proposed modulated DS will

generate coordinated robots motion that will make the grasped object’s position

to asymptotically converge to xod.

The scalar function κ(x) ∈ [0, 1] indicates the contact and it is defined as

κ(x) , γ(x)φtangent(x).

Proof: See Appendix D.5.
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Figure 5.5: Illustration of object’s motion flow generated by the DS once the object
is grabbed and carried by the dual-arm system. The boundaries of the modulation
region is represented by the thick green dashed line.

5.4.4 Tossing task

The tossing task is a form of manipulation task where the grabbed object needs

to be released at a desired position simultaneously with a desired velocity. Thus,

to perform a tossing task of an object with a dual-arm system using the DS

(5.3.1), we propose to generate the corresponding desired coordinated motion

by setting the desired absolute and relative velocities (ẋabsd and ẋreld ) as follows

ẋabsd = Mo(xo)fo(x
o) and ẋreld = −[xRo − xLo ]×ω

o (5.4.5)

where similarly to Eq. (5.3.1), fo(x
o) ∈ R3 denotes the nominal DS of the object

and Mo(xo) = Eo(xo)Λo(xo)(Eo(xo))> ∈ R3×3 is the associated modulation

matrix with Eo(x) ∈ R3×3 an orthonormal basis. To meet the tossing motion

constraints, Eo(xo) is defined with its origin at the desired release position xor

and with its first vector eo1 aligned with the desired release velocity (eo1 =
ẋor
‖ẋor‖

).

ωo is the angular velocity of the object. In pure translation (ωo = 0), ẋreld is set

to 0.

Now, the convergence to the release position with the desired release velocity

is a corollary of Proposition 1 and Proposition 2 applied to the object state,

and with

xo∗ =

(1− γ(xo))xot + γ(xo)(xo −A′−1ẋor) if eoi=1

xot if eoi6=1

(5.4.6)

where ẋor denotes the desired release velocity and xot ∈ R3 and γ(xo) are defined

as in (5.4.3), but this time for the object.
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5.4.5 QP-based contact force generation

When the robots end-effectors have reached the object, the grasp quality de-

pends on the induced internal wrenches. The contacts being unilateral with

limited friction, insufficient or excessive wrenches might result in contact slip-

page or damage of the object and/or end-effectors. Under the assumption that

the object’s mass and the friction coefficient (at least its minimum value) are

known, we propose to generate the contact wrenches, fde , satisfying the desired

task and the contact constraints through the following optimization

fde = argmin ‖Gofe − fdo ‖2wo + ‖fe − f∗e ‖2we (5.4.7)

s.t. Cf fe ≤ df

Qeofe = 0

where fdo ∈ R6 is the effective wrench required to perform the desired manipu-

lation task. wo and we are weight matrices. The constraint Cf fe ≤ df encapsu-

lates the friction cone and center of pressure constraints, whereas the constraints

Qeofe = 0 represents the complementary condition between the force compo-

nents normal to the contact and the normal distance to the contact.

To find the object’s effective wrench fdo required in Eq. (5.4.7), if, for instance,

the desired task is encoded as ẋdo = f(xo), one can use a passive DS approach

(Kronander and Billard, 2016) to compute as 4 fdo = −Do(xo)(ẋo−f(xo))+bo,

where Do(xo) ∈ R6×6 denotes a state varying damping matrix and bo is the

object’s Coriolis and gravity forces.

The QP in Eq. (5.4.7) is based on an object-centered approach and per-

forms nothing but a distribution of fdo between the two robot’s hands. It seeks a

distribution that will yield minimum internal wrenches and satisfy the contact

constraints.

5.5 Empirical Validation

The validation of the proposed algorithm is carried out on a dual-arm robotic

system consisting of two KUKA LBR robots, an IIWA7 and an IIWA14 spaced

by 1m in the lateral direction. Each robot end-effector is mounted with a 3D

printed grabber offering a contact surface of (0.15 × 0.1)m2. The robots are

connected to a 3.4 GHz i7 PC, that runs the dual-arm controller. The desired

task space velocity generated by the proposed law in Eq. (5.3.1) is executed by

a passivity inspired torque controller of the form (Kronander and Billard, 2016).

4Alternatively, if the desired acceleration of the object ẍdo is available, fdo can also be
obtained from the inverse dynamics of the object as fdo = Moẍdo + bo + fenv
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We extensively tested our algorithm both in Gazebo simulation and on the

real robots, but we report primarily on results obtained on the real platforms,

unless explicitly stated otherwise. To evaluate the performance of the proposed

algorithm, we compare it to a coordination algorithm that contacts the object

with near-zero velocity. We assess the controller’s ability to properly coordinate

the robots’ motion to ensure that the two robot impact the object simultane-

ously. We further quantify the performace of the process by computing task

duration and energy expenditure. Finally, we also show that such a tossing pro-

cedure expands the workspace of the robots and quantify the extension. A video

of the corresponding experiments is provided as supplementary material and the

code made available (see Section 1.7).

5.5.1 Fast object grabbing with impact

We evaluate here the motion coordination capability of our control scheme

and its ability to execute fast grabbing with impact while generating contact

wrenches that stabilize the grasp and perform the desired tossing motion of the

object. The robotic task consists of reaching and swiftly grabbing an object

of dimension (0.2, 0.2 0.2)m, mass 0.7 kg, initially located at (0.41, 0.0 0.32)m

and tossing it at (0.7, 0.0 0.7)m with of velocity of (0.8, 0.0 0.8)m. Figure 5.6

provides some snapshots of the task execution.

The velocities of the dual arm system throughout the task are shown in

Figure 5.7, where for both the left and the right arm, the norm of the velocity

appears on top and a close-up views of the velocities between the contact and the

release of the object appear at the bottom. The DS generating these velocities

has been ”boosted”by converting the generated motion flow into a unitary vector

field modulated in amplitude by reaching speed and tossing speed during the

reaching phase and the tossing phase, respectively. In Figure 5.7, it can be

observed that the end-effectors reach and impact the object around t=1.05s

with a speed of 0.5 m/s. The impact induces a drop of the real velocities despite

the increase of the desired end-effector velocities. A closer look at the bottom

sub-figure indicates that it is meanly the y components (normal to the contact)

that is dropping at the contact, whereas the x and z components slightly dropped

while continuing their pre-impact trends in the direction of the desired motion

of the object.

During the tossing phase, which starts from contact to release, the DS gener-

ates for the object a velocity with the desired tossing speed which is distributed

between the arms. To further illustrate the motion and forces coordination be-

tween the two end-effectors, the grasp position errors and grasping forces during

the task are shown in Figure 5.8. Despite the small offset of the right arm in the

x direction (tangent to the contact), it can be noticed that both end-effectors

make simultaneous contact with the object, while the grasping forces are quasi-

symmetric in the contact direction.
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(a) (b)

(c) (d)

Figure 5.6: Snapshots of fast dual arm grabbing with impact and holding an object. From

left to right, the snapshots show: the initial robots’ configuration, the pose of the robots’

arm at initial contact with the object, robot arms tossing the object with the desired tossing

velocity and at the desired release location; and fourth, the landing of the object.

During the tossing phase, which starts from contact to release, the DS gener-

ates for the object a velocity with the desired tossing speed which is distributed

between the arms. To further illustrate the motion and forces coordination be-

tween the two end-effectors, the grasp position errors and grasping forces during

the task are shown in Figure 5.8. Despite the small offset of the right arm in the

x direction (tangent to the contact), it can be noticed that both end-effectors

make simultaneous contact with the object, while the grasping forces are quasi-

symmetric in the contact direction.

The object’s desired and real motion over time are shown in sub-figure 5.9a,

whereas sub-figure 5.9b shows the 3D trajectories of the object and those of the

dual-arm system for a task cycle.
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(a) Left arm velocities

(b) Right arm velocities

Figure 5.7: Velocities of dual-arm end-effectors during a fast grabbing and tossing
of an object at 0.8m/s. (a): left arm (KUKA IIWA7) and (b): right arm (KUKA
IIWA14). For both sub-figures (a) and (b): top row shows the norm of the velocities,
and the bottom row shows a close-up view of the robots’ linear velocities in the time
period running from before contact and after releasing of the object.
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(a)

(b)

Figure 5.8: (a) Time evolution throughout the task of the position errors between
the end-effectors and their respective grasping points on the object. The top and bot-
tom sub-plots are respectively for the left and right end-effectors. (b) Time evolution
throughout the task of grasping forces for the left and the right end-effectors respec-
tively on the top and bottom sub-plots.
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(a)

(b)

Figure 5.9: (a). Motion of the object during the fast grabbing and tossing task. top: norm

of the linear velocity; middle: linear velocity; and bottom: position. The grabbing and lifting

phases start at the contact indicated by a cyan vertical line, whereas the release instant is

indicated by the magenta vertical line. (b). 3D trajectories of the overall dual arm and object

system during the fast grabbing and tossing task. The red continuous and dotted lines are for

the left and right end-effector, respectively, while the blue line is for the object. The object

at its initial and final location is depicted by the light green and blue box, respectively. The

magenta arrows indicate the direction of the impact velocity when the contact is established.
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In sub-figure 5.9a, one can see from top to bottom, the time evolution of the

velocity norm, the linear velocity components and the position of the object.

It can be observed that the object carried by the two end-effectors follows its

desired motion, although with tracking error, until it reaches the desired release

location within a tolerance of 0.03m. Then, the object is suddenly released and

its motion is now governed by the projectile dynamics. As the object is falling

under the gravity field, its vertical velocity component (blue continuous lines

on the middle plot) can be seen to linearly decrease while its position (on the

bottom plot) decreases in a quadratic-like manner. How well, under the proposed

scheme, the real position of the object denoted by (xo, yo, zo) satisfies its desired

position denoted by (xro, yro, zro) at the release time can be seen on the bottom

plot of sub-figure 5.9a.

In sub-figure 5.9b, the 3D trajectory of the object is shown in solid blue

from its initial position represented by the green box to its landing location

represented by the light blue box. The end-effector trajectories represented in

red described loops that start at the initial positions, go to the grasping points of

the object, lift the latter towards the release position and go back to their initial

positions. The magenta arrows represent the directions of the impact velocities

of the end-effectors when grabbing the object; it can be noticed that they are

aligned with the desired object motion.

A set of 50 trajectories of the tossed object with their landing positions along

with the reachable space of the end-effectors is shown in Figure 5.10. Thus, with

the range of achieved velocities, the “tossing reachable space” extends the dual-

arm system reachable workspace by at least 20%. The joint velocity and torque

limits during 30 experiments are provided in Appendix D.6

5.5.2 Pick-and-place vs. proposed pick-and-toss

The goal of this experiment is to evaluate the benefits obtained, in terms of

task duration (cylce time) and energy expenditure, in a depalletizing task when

using the usual pick-and-place operation with near-zero contact and release ve-

locities, and when using the proposed fast grabbing with impact and tossing. As

previously, the task of the dual-arm system consists of grabbing an object from

a pallet and moving it to a table located in front of the robots. The velocities of

the robots resulting from the two approaches are shown respectively in Figure

5.11a (top) and (bottom), whereas the associated power and energy expenditure

of both the left and right arm are shown in Figure 5.11b for the classical (top),

and the proposed approach (bottom), respectively.

In the pick-and-place case, the robots contact the object with a velocity of

0.11 m/s mainly in the normal direction to the contact surfaces. The object is

then moved with a velocity up to 1.0 m/s and later released with a velocity of
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Figure 5.10: Extension of the dual-arm system’s reachable space with the tossing reachable

space. (left): set of 50 3D trajectories of tossed object with respect the dual-arm workspace

(the green and red areas depict the left and right arms space of reachable positions). (right):

top view of the tossing-based extension (blue area with the landing positions in cyan) of the

joint reachable space depicted with the meshed region in magenta.

about 0.13 m/s at t ≈ 1.64 m/s (see Figure 5.11a (top)). In the pick-and-toss

case, like previously, the robots impact the object with an average speed of 0.40

m/s. The object is then moved throughout the task with a desired velocity of

1.0 m/s, but tossed instead of being gently placed (see Figure 5.11a (bottom)).

Thus, by reducing deceleration phase at pickup and release time, the task

duration in the proposed approach for tossing velocity of 1.0 m/s is around 19%

shorter than in the classical pick-and-place operation. Regarding the energy

expenditure for the considered velocity, it can be observed in Figure 5.11b that

the proposed approach consumed 24% less than the classical pick-and-place.

The difference of the observed variances between the two robots is mainly

due to their different dynamic characteristics. The left arm corresponds to the

KUKA LBR IIWA7 robot, which has smaller inertia properties and is less

damped than the right arm (KUKA LBR IIWA14 robot), and therefore it can

accelerate much faster for the same applied torque.

For velocities ranging from 0.5 m/s to 1.0 m/s, the comparison of the average

task duration and the overall energy expenditure of the two approaches is sum-

marized by the bar plots shown in Figure 5.12a and Figure 5.12b, respectively.
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(a)

(b)

Figure 5.11: (a) Time evolution of mean and standard deviation of measured and com-

manded velocity norms of the left and right arm for five pick-and-placing (top), and five

pick-and-tossing (bottom) experiments at 1.0 m/s. (b) Time evolution of estimated energy

consumption of the left and right arm for five pick-and-placing (blue), and five pick-and-

tossing (red) experiments at 1.0 m/s.
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(a)

(b)

Figure 5.12: (a) Comparison for velocities ranging between 0.5 and 1.0 m/s of the task

duration when the pick-up and placing happened at near-zero velocity (blue) and when the

dual arm system leverage impact at the pickup and toss the object (red). (b) Comparison of

overall energy expenditure of the dual arm system for tossing velocities ranging between 0.5

and 1.0m/s when grabbing the object with near-zero velocity (blue) and when performing

fast object grabbing in a swipe (red).
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5.6 Conclusion

This chapter proposed, for a dual-arm robotic system, a modulated DS-based

unified motion generation algorithm that allows swift grabbing and release of

an object. The desired states at contact and release are achieved through a local

shaping of the robots movement. The proposed motion generation algorithm,

whose stability and convergence towards the desired states was theoretically

proved, has been experimentally validated in simulation and on real robots. The

results confirmed that the proposed approach, besides motion coordination, en-

ables to generate, for the dual-arm system, desired impact and tossing motions.

The obtained results also suggest that grabbing with impact and tossing, espe-

cially when the impact direction anticipates the upcoming motion of the object,

lead to shorter and more energy efficient pick and place tasks. These results are

consistent with those obtained in (Raptopoulos et al., 2020), where a pick-and-

toss approach with a Delta robot was compared to a classical pick-and-place

approach in a waste sorting facility.

However, the application realm of such a dynamic pick and release extends

well beyond the experiments conducted in this thesis. Bimanual grabbing of an

object from the sides is more suitable than picking from the top with suction

cups mechanisms in many situations, such as picking up filled trays with open

lid, lifting cases with too fragile cover for supporting the case’s weight, or when

placing boxes in shelves with limited vertical space. Also, it is worth noting

that the proposed pick-and-toss scheme should be used for objects that may not

risk breaking under the impact or when such damage is not important. This is

important as the robot by itself cannot forecast the effects of impact on tossed

objects. Tossing of boxes filled with open bottles, as shown the supplementary

material, may be applicable when recycling or dispatching used bottles.

The system we described here can be integrated easily in current industrial

settings using existing industrial manipulators. Our synchronized control law

generates a reference trajectory that can be embedded in reference trajectories

for an industrial controller. Additionally, nothing in our control system prevents

a user to equip the robots with suction cups, instead of the flat grippers, used in

our experiments. This would allow the robots to lift heavier weights. Moreover,

the synchronization of the two robots could be easily disabled (by modifying

Eq. 4 and setting A′ to be block diagonal, and x∗ to specify one attractor

for each arm). This would allow each robot to perform individual tasks, when

appropriate; and to switch back to coordinated control, when the object that

needs to be grabbed requires a bimanual grasp. Such an approach would then

increase the flexibility of current industrial manipulators.

Nevertheless, the presented approach in its implementation has limitations.

The Passive DS controller (Kronander and Billard, 2016) used to compute the

joint torque from the generated motion has shown limited tracking abilities
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particularly during the tossing. Moreover, we used first order linear DS, which

works well for fixed or slowly varying attractors, but have no compensation abil-

ity in tracking and therefore differ this burden to the low-level controller (here

the Passive DS). Future work could use second order DS able to address the

compensation problem in tracking as in (Mirrazavi Salehian et al., 2016). In

addition, instead of the Passive DS, one could use an inverse dynamic controller

that not only compensates for gravity, but also for the inertial torques produced

by strong accelerations during tossing. Finally, the impact and the object dy-

namics could also be included to guarantee the hardware safety and improve

the task accuracy.
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Chapter 6

Bimanual dynamic grabbing
and tossing of objects
onto a moving target

This Chapter presents a dynamic manipulation approach where a dual-arm

robotic system picks up an object and throws it precisely on a moving target

carried by a conveyor belt. It describes our formulation to determine the throw-

ing parameters necessary to accomplish the precise positioning task. Then, it

introduces a modeling method for the dual-arm tossable workspace and presents

a dual-arm motion generation strategy that is robust and adaptive. Finally, the

Chapter presents the experimental results validating the proposed approach and

compares it to a traditional pick and place strategy before concluding.

'

&

$

%

Publication note: The material presented in this Chapter was adopted

from:

• Bombile, M. and Billard, A., Bimanual Dynamic Grabbing and Toss-

ing of Objects Onto a Moving Target.

Under review at the Journal of Robotics and Autonomous Systems.

Source codes:

• Dual arm controller

https://github.com/epfl-lasa/iam_dual_arm_control

Supplementary Video:

• Bimanual dynamic grabbing and tossing of objects onto a moving

target

https://youtu.be/pRSHH1866ug
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Figure 6.1: Example of dual-arm tossing task: an object is tossed at a target (in green)
partly located in the convex hull of the throwable workspace (tossable space) (in cyan) of the
dual-arm robot. The usual reachable workspace of each robot is shown in light green and light
red (left and right arms, respectively).

6.1 Introduction

T
hrowing or tossing is a method for quickly moving objects to desired

locations beyond the physical workspace. One can throw an object, if not

too fragile, to someone located at a certain distance instead of walking. Throwing

packages on a moving conveyor belt is fairly common in the logistics industry and

storehouse handling, particularly in manual depalletizing or sorting facilities.

Given the physical demands of such manual tasks and considering the aging

population in the West (Nations et al., 2019) this thesis proposes a robotic

solution for throwing packages to a target moving along a conveyor belt as a

fast and reliable alternative for package handling.

For throwing to be useful in industry, it must be accurate. The thrown object

must land on the target within a given tolerance. This implies the knowledge of

the throwing parameters, particularly the release position and velocity, which

must be appropriate for the thrown object to reach its target. Once an object

is thrown, the thrower can no longer apply corrective action if the object does

not follow the desired trajectory.

As outlined in Section 2.4.4, tossing an object onto a moving target using a

robotic system is challenging. It requires a solution to the following main sub-
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problems: 1) Finding a feasible intercept position for the thrown object to meet

the moving target. 2) Finding feasible throwing parameters (release position,

release speed, and direction). 3) Generating the motion of the robot to pick up

the object and successfully reach the desired release state on time, such that the

thrown object intercepts the target at the desired location.

We saw that the throwing parameters can be determined using physics-based

models or data-based models. In general, physics-based models allow better gen-

eralization in that they can be applied in different conditions and with different

objects. However, their precision depends on the simplifying assumptions they

are based on, especially with complex phenomena. Data-based models are able

to capture these complex phenomena and can be more precise. However, their

ability to generalize to other objects and conditions is limited. Hence, in this

thesis, to leverage the strengths of both models, we use a hybrid modeling ap-

proach where a throwing map is learned from a parameterized physics-based

model of the free-flying dynamics.

Unlike works such as (Zeng et al., 2020) that consider only the release speed

as the main throwing parameter, our approach considers the full release state

(position and velocity) and ensures their kinematic feasibility. The optimality

of the release velocity is encoded in a learned model of the throwing maps used

in a bi-level optimization to compute the release states of both the object and

robots.

Moreover, while previous robotic interception works whether with a single

arm or dual arm system usually consider a fully controllable interceptor (the

robot), this thesis considers an interceptor that is only partially controllable

(the thrown object is only controllable up to the release).

Despite reports on successful dual-arm coordinated interception tasks includ-

ing grabbing and catching flying objects, a post-grabbing or post-catching task

such as placing or tossing task has not been considered. Although we addressed

such a problem in the previous Chapter and demonstrated dual-arm fast grab-

bing and tossing of objects, the focus was however on the motion generation

using a dynamical system. We did not consider finding feasible throwing pa-

rameters for the throwing task. These parameters were directly provided to the

algorithm. In this Chapter, we determine the robot’s feasible throwing states

for the desired moving target.

Furthermore, we proposed to estimate the throw-able space based on the

kinematic feasibility of release states associated with landing points spanning

the robot workspace and beyond. Unlike (Asgari and Nikoobin, 2021), we go

beyond the estimation of the throwable points, we derive a probabilistic model

of their distribution and use it to predict landing (intercept) positions that yield

a high probability of success.

In summary, in this Chapter we propoe a framework that enables a dual-arm

robotic system to quickly grab and accurately toss an object to a target moving

on a conveyor belt. We extend the work presented in Chapter 5 by including
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Figure 6.2: Illustration of dual-arm robotic depalletizing task with fast grabbing and tossing
of an object. The overall motion can be split into three main phases; the system motion is
determined by the free robot motion, the constrained robot–object motion, and the object
free-flying motion before interception of the target at landing.

the free-flying object dynamics in the determination of the tossing velocity and

position. In addition, we propose a mixed learning–optimization approach to

compute an optimal kinematically feasible release state (position and velocity)

for the dual-arm system. We use this framework to learn the tossing workspace

(tossable space) of the dual-arm robot; it represents the set of all positions

reachable by a given object if tossed by the dual-arm robot. Finally, we present

an experimental validation and evaluation demonstrating that an actual dual-

arm robotic system quickly grabbing an object and tossing it to intercept a

specified target on a moving conveyor belt is advantageous in terms of task

completion time and energy expenditure compared with more traditional pick

and place systems.

6.2 Problem Definition and Proposed

Approach

Consider a dual-arm robotic system tasked to quickly grab an object from a

pallet and toss it onto a moving target on a conveyor belt, as shown in Figure

6.2. The system motion throughout the task is characterized by three main

phases: a free-motion phase where only the robot moves (from initial time (t0)

to pick up time (tp)), a constrained robot–object motion phase (from (tp) to the

release time (tr)), and a free-flying motion phase for the object (from (tr) to

the landing time (tl)). We assume that the task is executed under the following

assumptions:

A6.1: the dual-arm robot establishes rigid contacts with the grasped object

until its release.
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A6.2: the object is rigid with known shape and dimensions, and known inertia

properties (mass and moments of inertia).

A6.3: during its free-flying motion phase, the object does not rotate or tumble

and is subjected only to gravity and aerodynamic drag forces.

A6.4: the post-landing impact of the object is negligible

6.2.1 Robot-object motion constraints

The dynamic model governing the motion of a dual-arm robot interacting with

its environment has been described in Section 2.2.1. Now, according to as-

sumption A6.1, when the object is firmly grasped (during the constrained

robot–object motion phase), the kinematic constraints imposed by the rigid

grasp (described earlier in Eq. (2.2.6)) can be rewritten as

(G+
o )>Je(q)︸ ︷︷ ︸
Jo(q)

q̇ =

[
ẋo

ωo

]
and (I−G+

o Go)>Je(q)︸ ︷︷ ︸
Jc(q)

= 0 (6.2.1)

where ẋo and ωo are the linear and angular velocity of the object, respectively.

Jo(q) ∈ R6×nD and Jc(q) ∈ R12×nD denote the object’s motion and contact con-

straint Jacobian, respectively. We recall that Go ∈ R6×12 denotes the bimanual

grasp matrix (Caccavale and Uchiyama, 2016) and G+
o is its generalized inverse.

Therefore, during the constrained motion, all states of the dual-arm are

restricted within the kinematic feasible set, F , defined by

F =

s =

[
x(q)

ẋ(q, q̇)

] ∣∣∣∣∣∣∣∣∣∣
qmin ≤ q ≤ qmax

Jo(q)q̇ = [ẋo> ωo>]>

Jc(q)q̇ = 0

|q̇| ≤ q̇max

 (6.2.2)

where s = (x(q), ẋ(q)) represents the task-space state of the dual-arm robot;

x(q) and ẋ(q, q̇) are the pose and twist velocity vectors, respectively, obtained

through forward kinematics. qmin, qmax and q̇max are the joint position and

velocity limits, respectively.

Following assumption A6.2, the dynamic model of an object with mass mo

and inertia Io, described earlier in Section 2.2.2, can be expressed as[
moI3 03

03 Io

][
ẍo

ω̇o

]
+

[
−mog

ωo × Ioω
o

]
=

[
fo

τo

]
(6.2.3)

where ẍo ∈ R3 and ω̇o ∈ R3 are the object’s linear and angular acceleration,

respectively. g ∈ R3 represents the gravity vector; fo ∈ R3 and τo ∈ R3 denote

the effective force and torque, respectively, acting at the object’s frame Σo.
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During the free-flying motion phase, considering assumption A6.3 and fur-

ther assuming that the center of mass (CoM) of the object corresponds to its

geometric center, the object’s dynamics reduces to the first raw of Eq. (6.2.3).

Thus, its motion will be governed by

ẍo = g +
fD
mo

(6.2.4)

where fD = fo and represents the aerodynamic drag force (the lift force is

neglected) expressed as

fD = −ρaircDAo
2

ẋo ‖ẋo‖ (6.2.5)

where ρair is the air density, cD denotes the drag coefficient and Ao represents

the cross sectional area of the object in the motion direction. Eq. (6.2.4) can be

simplified and written as a function of the object’s states (xo and ẋo) as

d

dt

(
xo

ẋo

)
=

(
ẋo

−ηẋo ‖ẋo‖+ g

)
(6.2.6)

where η , ρaircDAo
2mo

. With these assumptions, Eq. (6.2.6) allows prediction of

the object trajectory from a given initial state that denoted as so
0 , (xo

0, ẋ
o
0) to

its landing state denoted as so
l , (xo

l , ẋ
o
l ).

6.2.2 Problem statement

Consider the robot-object motion constraints in Eqs. (6.2.1) and (6.2.2) and

the object’s dynamics in Eqs. (6.2.3) and (6.2.6). As in the previous Chapters,

assume also that the robot is equipped with a low-level controller that can

generate torque commands based on manipulation task expressed in terms of

desired end-effector motion 1 ẋd and forces2 fd
e . To accomplish the dual-arm task

consisting of grabbing and tossing an object onto a moving target, the following

three problems must be solve:

P6.1: how to determine a reachable intercept location (denoted by xI ∈ R3)

between the tossed object and the moving target;

P6.2: how to determine the object’s release position and velocity so∗r , (xo∗
r , ẋ

o∗
r )

and the associated release state of the dual-arm system s∗r , (x∗r , ẋ
∗
r) that

will result in the tossed object landing at the intercept location xI ;

P6.3: how to generate the desired robot motion ẋd and force fd
e to grab the

object and successfully reach the desired release state s∗r on time such

that the thrown object intercepts the target at xI .

Addressing (P6.1) requires a model of the dual-arm robot tossable workspace

to predict the likelihood of reaching any potential intercept location.

1The motion task can also be expressed in terms of ẍd

2On the object side, fde is distributed between effective (fo, τo) and contact wrench
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Solving (P6.2) requires finding a robot state that satisfies both kinematic

feasibility constraints and grasping constraints on the object. Thus, according

to (6.2.2), a valid release state for the robot should satisfy s∗r ∈ F .

Solving (P6.3) is nothing but developing a robust coordinated motion and

force control strategy for the dual-arm system to reach, grab, and toss the

object to ensure successful interception of the moving target by the object in

the presence of spatial and temporal perturbations. Such perturbations could

consist of a live modification of the target motion (speeding up or slowing down)

or a displacement of the target location on the conveyor belt.

6.2.3 Overview of proposed approach

Our proposed approach to address the above problem and achieve dual-arm

grabbing and precise tossing of an object on a moving target consists of three

parts:

S6.1: devise a kinematics based optimization algorithm that computes constraints-

satisfying throwing states while minimizing the throwing speed (see Sec-

tion 6.3);

S6.2: learn a model of the tossable workspace, ST , from a distribution of reach-

able points determined using the algorithm in S6.1 (see Section 6.4);

S6.3: generate the desired motion ẋd and force fd
e using our previously devel-

oped dynamical system based dual-arm controller for fast grabbing and

tossing of objects complemented with an adaptation factor a(x) to com-

pensate for changes of the target’s motion, and prediction and tracking

inaccuracies of the robot’s motion (see Section 6.5)

The proposed approach is summarized in the control architecture illustrated in

Figure 6.3. Target position measurements are used to estimate target motion

and predict target trajectory (determined by the conveyor belt). The predicted

trajectory of the target and the learned tossable workspace of the dual-arm

robot and its predicted motion are used to determine an optimal interception

point updated over time. The computed interception position is the desired

landing position of the thrown object, and is used in conjunction with the learned

projectile throwing map to determine a feasible release state of the object. The

obtained feasible release state is sent as a reference for the DS-based controller.

The motion generated by the DS-based controller is adapted to compensate for

state prediction and control error during execution of the desired motion.
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Figure 6.3: Block diagram showing processes and information flow in proposed approach
for dual-arm tossing of an object onto a moving conveyor belt. The blocks ”Learned Dual-
Arm Tossable Space” and ”Learned Projectile Throwing Parameters” are trained offline. The
black continuous and dashed lines represent information flow updated at 200 Hz and 10 Hz,
respectively. .

6.3 Estimation of Feasible Throwing States

In this section, we propose an approach for computing kinematically feasible

throwing release states (position and velocity) for a dual-arm robotic system

from desired landing positions. Finding the optimal feasible release state also

generally implies finding the best objective function. However, our primary goal

in this section is to find a solution that satisfies feasibility constraints rather than

finding the best solution. Thus, obtaining a feasible release state is considered

as a success.

6.3.1 Learning an inverse throwing map

Unlike the forward dynamics in Eq. (6.2.6), we are now concerned with the

inverse throwing problem, which consists of finding an initial throwing state

(xo
0, ẋ

o
0) that yields a desired landing position3 xo

l . As stated before, this problem

is not trivial and admits multiple solutions.

3We leave the landing velocity ẋo
l as a free variable as we are more concerned with the

object’s landing accuracy on the target than the landing speed.
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Proposed concept

To address this challenge, we propose a two-step approach:

Step 1: We determine a function ẋo = vr(x̄
o) ∈ R3 that computes the release

velocity from the relative position x̄o ∈ R3 between the desired landing position

and the release position of the object (x̄o = xo
l − xo

0). We resolve the inherent

redundancy problem by adopting a throwing strategy that seeks the minimal

throwing velocity. Such a strategy is also beneficial for the robot as it requires less

kinetic energy for throwing. Other strategies such as minimum landing velocity

(vertical or horizontal components) can be adopted (see Appendix E.2).

However, except for linear projectile motion, ẋo = vr(x̄) does not have a

closed-form solution mainly due to the non-linear aerodynamic forces. Thus, we

propose a closed-form expression of vr(x̄
o) learned from data. To that end, we

use Gaussian mixture regression (GMR) (Sung, 2004) for its ability to handle

multi-dimensional input and output data. We define throwing situations for a

given object as Cv = {x̄o, ẋo} and model a dataset of N such throwing situations

({Civ}i=1...N ) using a GMM. The model is assumed to have Kv Gaussian func-

tions, can be represented by its parameters as Ωvr ≡ {πk,µk,Σk}k=1...Kv , where

πk, µkand Σk are the prior, the mean and the covariance of the kth Gaussian

distribution, respectively.

At any query time, given a desired relative release position x̄o∗, the desired

release velocity ẋo∗ is obtained by computing the expectation over the condi-

tional distribution p(ẋo∗|x̄o∗,Ωvr
). The resulting function can be written as

ẋo ≈
K∑
k=1

hk(x̄o)µ̃kẋo|x̄o(x̄o) (6.3.1)

with µ̃kẋo|x̄o = µkẋo +Σkẋox̄o

(
Σkx̄ox̄o

)−1
(x̄o−µkx̄o), where µkx̄o and µkẋo are element

vectors of the mean µk of the kth Gaussian function associated with input data

x̄o and output data ẋo, respectively. Similarly, Σkx̄ox̄o and Σkẋox̄o are element ma-

trices extracted from the covariance matrix Σk. In Eq. (6.3.1), hk(x̄o) weights

the relative importance of the kth Gaussian function in the regression of vr(x̄
o).

Step 2: Using the obtained expression of vr(x̄
o), we seek through an optimiza-

tion process a value of the release position xo
0 that is reachable by the robot

and yields a minimum feasible ẋo. To that end, we must derive the Jacobian

between variations of vr and x̄o. With the smoothness of Gaussian functions,

this Jacobian can be derived in closed form. As x̄o is a function of the robot’s

forward kinematics, such that

x̄o = xo
l − xo(q) (6.3.2)

the Jacobian between variations of vr and q can obtained as
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dvr = Jvr (q)dq =
∂vr
∂x̄o︸︷︷︸

Jvr (x̄o)

∂x̄o

∂xo︸︷︷︸
−I3×3

∂xo

∂q︸︷︷︸
Jov(q)

dq (6.3.3)

where the expression of Jvr (x̄
o) is presented in Appendix (E.1). The Jov(q) ∈

R3×nD term is simply the translational block component of the direction of the

object’s motion Jacobian Jo(q) in (6.2.1).

Data generation and model training

The inverse throwing map in Eq. (6.3.1) encodes release velocity solutions

when the release position is given and a minimum release speed strategy is

adopted. These are parameterized by η (defined in Eq.(6.2.6)).

Thus, to train the model of the inverse throwing map and thereby validate

our approach, we need examples of throwing situations (set of release positions

and release velocities). To that end, we proceed as follows.

First, we artificially generate 105 3D relative release position corresponding

to 20 values of the non-linear drag force coefficient η within a spherical sector

defined by a throwing reach4 of [0 − 2.5]m, and throwing directions within a

cone angle of
[
± 5π

12

]
rad around the x axis as shown in Figure 6.5-(left).

Second, to generate the release velocity ˙̄x corresponding to the generated set

of x̄, we solve, for each point a two-point boundary value problem (TPBVP)

Laetsch and Keller (1970) defined by the object’s free-flying dynamics (6.2.6)

with the origin (0, 0, 0) as initial position and x̄ the final position. We solve this

problem using a shooting algorithm.

We assume that the projectile motion lies in a plane to reduce the dimension-

ality of the problem from 3D to 2D. We use a Cartesian-to-cylindrical coordinate

transformation to extract the equivalent planar coordinates lying in the verti-

cal plane containing the origin and the landing position. This yields a planar

release velocity parameterized by the release angle α0 and release speed v0. To

determine the release angle α∗0 and speed v∗0 , we initialize our shooting algo-

rithm with the analytical solution of the linear ballistic motion that yields the

minimal release speed.

α0 = arctan

(
z

r
+

√(z
r

)2

+ 1

)

v0 =

√
g.r2.(1 + tan2(α0))

2.(r.tan(α0)− z)

(6.3.4)

Our shooting algorithm has two stages. In the first stage, using v0 and starting at

α0, we search for the angle α∗0 that yields the maximal reach with the velocity

v0. Once α∗0 is obtained, the second stage searches for the release speed that

4This restriction on the spatial span of data considers the robot limits; for instance, a
maximum reach of 2.5 m requires a minimum release speed of 5 m/s, which is beyond the
robot capability.
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leads to the landing position (rl, zl), with the speed iteratively updated as

v0(i+ 1) = v0(i) + κ(rdl − rl) (6.3.5)

where κ denotes the update rate of the algorithm. The algorithm stops when the

predicted release position reach the desired landing position within a small tol-

erance distance. Figure 6.4 illustrates the obtained planar throwing parameters

(Figure 6.4(a)), with samples of three different values of η (Figure 6.4-(b)).

Once the release speed v∗0 and angle α∗0 were obtained, we reconstructed the

3D equivalent ẋo, which together with x̄o constitute the dataset required for the

training. The resulting dataset with position and velocity data points is shown

in Figure 6.5.

With the obtained dataset, we trained our GMM model with two-thirds of

the data using the expectation-maximization (EM) algorithm initialized with

k-means. Our model uses the Bayesian information criterion (BIC) to choose

the number of Gaussian functions, 25 in this case. With the obtained GMM,

we can predict with GMR the throwing release velocity based on the desired

relative position x̄o.

(a)

(b)

Figure 6.4: Illustration of optimal planar throwing parameters: (a) 5000 samples of
throwing parameters; (b) throwing parameters corresponding to three different values
of non-linear drag force η
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Figure 6.5: Example of dataset used to learn the inverse throwing map. The left figure
shows the desired landing position relative to the frame origin; the right figure shows the
corresponding 3D release velocities obtained when using a minimal throwing release speed
strategy.

We validated our GMR model using the remaining one-third of the data.

We obtained an RMSE of 0.13 m/s for the throwing velocities. Figure 6.6 shows

error histograms between velocities generated by the learned GMR model and

ground truth velocities (physics) in the x, y, and z dimensions.

Figure 6.6: Validation errors between velocities generated by the learned GMR model and

ground truth velocities (physics): velocity errors in x (left), in y (middle), and in z (right)

The landing position errors corresponding to the testing data set are illus-

trated in Figure 6.7 along with the ground truth landing errors (physics-based

model). It is observed that the physics-based parameters are accurately pre-

dicted by the GMR; 97% of the predicted landing positions fall within 0.1m

(4% of maximum reach of 2.5m) of the target and 80% fall within 0.05m.
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Figure 6.7: Validation errors for desired landing positions obtained using learned throwing

parameters and ground truth parameters: errors in x (left), in y (middle), and in z (right)

(a)

(b)

Figure 6.8: Example of ten trajectories and landing positions for throwing tasks using
learned throwing parameters and those obtained using physics: left: different desired landing
positions from the same release position at the origin; right: different release positions for the
same desired landing position
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6.3.2 Optimal feasible release state: Concept

To compute the optimal feasible release state, our main idea is to define a

throwing task-related cost function denoted as l(q, q̇), and then compute its

optimizer in terms of joint position and velocity (q∗, q̇∗) that satisfy the task

constraints. The task-space release state is obtained through forward kinematics

as s∗r = (xr(q
∗), ẋr(q

∗)) with

q∗, q̇∗ = argmin
q,q̇

l(q, q̇) (6.3.6)

s.t. Jc(q)q̇ = 0 (6.3.7)

qmin ≤ q ≤ qmax (6.3.8)

|q̇| ≤ q̇max (6.3.9)

where Eq. (6.3.7), (6.3.8) and (6.3.9) enforce the feasibility constraints, for the

grasp, joint position and joint velocity, respectively.

To define the overall objective function l(q, q̇), we use the previously learned

throwing map vr(x
d
l ,xr(q)) ∈ R3 that computes the throwing velocity from the

relative position between the release position xr(q) and the desired landing

position xdl . We aim at achieving throwing tasks with minimal release speed as

possible.

Based on the feasible set definition (6.2.2), we define the cost function as

l(q, q̇) = ‖vr(q)‖2wp + ‖Jo(q)q̇− vr(q)‖2wv
+
∥∥µθ(RO(qk),Rd

O)
∥∥2

wO
(6.3.10)

Thus, minimizing the first sub-objective in Eq. (6.3.10) amounts to seeking

joint configurations that yield minimal release velocity; minimizing the second

sub-objective produces (for configuration q) joint velocities q̇, whose associ-

ated task-space velocity approaches the desired throwing velocity (Jvo(q)q̇ =

ẋr(q)→ vr(q)). The third sub-objective helps resolve the redundancy by spec-

ifying desired end-effector orientation during the throwing task.

6.3.3 Optimal feasible release state: Solution

Optimization of Eq. (6.3.6) with the cost function in Eq. (6.3.10) is nonlinear

in terms of joint configuration and does not have a closed-form solution. Thus,

we propose to solve it iteratively using sequential quadratic programming (Boggs

and Tolle, 1995) with the joint acceleration as the decision variable. Such an ap-

proach allows simultaneous updating of both the position and velocity subjected

110



to their respective constraints as follows

q∗ ← qk+1 = qk + δtq̇k + (δt)2q̈∗

q̇∗ ← q̇k+1 = q̇k + δtq̈∗ (6.3.11)

until convergence

where δt is the time step and represents the step length of the algorithm; q̈∗ is

the optimal acceleration at the kth iteration and provides the stepping direction.

To compute the optimal acceleration q̈∗, we reformulate the problem as a

bilevel optimization problem (Colson et al., 2007); at the top level, we compute

the feasible release velocity ẋfr for the configuration qk as

ẋfr = Jo(qk)q̇fk with (6.3.12)

q̇fk = argmin
q̇

‖Jo(qk)q̇− vr(qk)‖2 (6.3.13)

s.t. |q̇| ≤ q̇max

The velocity ẋfr represents the closest throwing velocity to vr(qk) that the

robot can achieve from configuration qk, with q̇fk as its corresponding joint-

space value.

At the bottom level of the optimization, we solve for the acceleration q̈∗k that

minimizes: the difference between ẋfr and vr(qk), the module of vr(qk) and the

difference between the current and desired end-effector orientation (RO(q) and

Rd
O). Thus, following Eq. (6.3.6), the bottom level problem is reformulated as

q̈∗k = argmin
q̈

∑
i

l′i(qk, q̇k, q̈k) with i = {p, O} (6.3.14)

s.t. Jc(qk)q̈k + Jc(qk)q̇k = 0 (6.3.15)

qmin ≤ qk + δtq̇k + (δt)2q̈k ≤ qmax (6.3.16)

q̇min ≤ q̇k + δtq̈k ≤ q̇max (6.3.17)

qmin ≤ qk + δtq̇k + (δt)2q̈k ±∆q ≤ qmax (6.3.18)

where Eqs. (6.3.15)-(6.3.17) enforce the feasibility constraints. The constraint

(6.3.18) ensures that the joint has motion range ∆q to accelerate from zero to

q̇fk . ∆q for each joint is expressed as

∆qj =
(q̇fj )2

2q̈j,max
(6.3.19)

The term l′i(qk, q̇k, q̈k) represents the redefined sub-objectives at the acceler-

ation level. Exploiting the kinematics of the robots, we propose to formulate

l′i(qk, q̇k, q̈k) as in an acceleration-based inverse kinematics such that
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l′i(qk, q̇k, q̈k) , ||Ji(qk)q̈k − (ẍdi − J̇i(qk)q̇k)||2wi
(6.3.20)

with i = {p, O} where p and O relate to position and orientation, respectively.

Jp(q) and JO(q) = Jω(q) are the Jacobian matrices of the linear and angular

velocity of the end-effectors, respectively. ẍdi represents the desired task acceler-

ations, designed by defining error functions associated with each sub-objective

of Eq. (6.3.10) forcing the dynamics of these error functions to exponentially

decrease toward zero to achieve minimization. For instance, to design ẍdO, we de-

fined an orientation error function between the current and desired end-effector

(RO(qk) and Rd
O) using axis-angle representation of the relative orientation.

We designed the dynamics of this error such that it exponentially converges

toward zero using a stable proportional-derivative (PD) control law. We designed

ẍdp as a convex combination of two task components associated with the throwing

velocity as

ẍdp = γẍdfvr + (1− γ)ẍdmvr (6.3.21)

where ẍdfvr ∈ R3 and ẍdmvr ∈ R3 represent task accelerations that provide di-

rections toward feasibility of release velocity and minimum throwing velocity,

respectively; γ is a scalar weighting their relative importance. We propose to

define ẍdfvr and ẍdmvr as

ẍdfvr = −Kp(ẋ
f
r − vr(q))−KdJp(q)q̇

ẍdmvr = −Kd(Jp(q)q̇ +KpJ
−1
r (x)vr(q))

where Kp ∈ R3×3 and Kd ∈ R3×3 are positive definite gain matrices, and

Jr(x) = ∂vr(x)
∂x ∈ R3×3 is the Jacobian of the throwing velocity with respect to

the release position.

We mainly consider three stopping conditions for the proposed iterative al-

gorithm. The algorithm stops as soon as a feasible trajectory is found, with

a feasible state whose predicted landing position is within a predefined toler-

ance of the desired landing position. The algorithm stops when the objective

function reaches a plateau for number of iterations. The algorithm also stops

when the maximum number of iterations is reached. The task–space release state

s∗r = (xr(q
∗), ẋr(q

∗)) is obtained through forward kinematics of the joint-space

state. Algorithm 1 summarizes the proposed approach.

6.3.4 Generation of best feasible release states

Once the inverse throwing map is validated and its corresponding Jacobian

is obtained following Eq. (6.3.3), we can solve the optimization in Eq. (6.3.15)

for the best feasible release configurations of the dual-arm robot for tossing
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Algorithm 1: computing optimal feasible throwing state

1 Input: xdf, Rd
O, Go, qmin, qmax, q̇max, vr(xdf ,xr(q))

2 Output : desired release state q∗, q̇∗ and s∗r = (xr(q∗), ẋr(q∗, q̇f ))

3 Initialization: qk ← q0, q̇k ← 0, q̈k ← 0, iter = 0;

4 |
5 if (xdf is reachable)

6 | while (true) do

7 | | 1: update model: xr(qk), Ji(qk), J̇i(qk) with i = {p, O}
8 | | 2: compute x̄ = xdf − xr(qk), vr(x̄), Jr(x̄)

9 | | 3: compute feasible velocity: q̇fk and ẋfr (qk) according to (6.3.12)

10 | | 4: compute task acceleration: ẍdi with i = {p, O} (6.3.21)

11 | | 5: compute q̈∗k: solve optimization (6.3.14)

12 | | 6: update state:qk, q̇k ← (6.3.11)
13 | | 7: compute cost function:

∑
l′i(qk, q̇k)

14 | |
15 | | if ((|∆`′i(qk, q̇k)| ≈ 0, ∀k = {k . . . k + nplateau})
16 | | or (iter ≥ itermax))

17 | | | q∗ ← qk, q̇∗ ← q̇fk
18 | | | s∗r = (xr(q∗), ẋr(q∗, q̇f ))
19 | | | break;
20 | | end if
21 | | iter = iter + 1

22 end if

the object. Figure 6.9 shows ten release configurations and the corresponding

free-flying trajectories of the object to the desired landing position in task-space.

Figure 6.9: Illustration of ten computed feasible release configurations in 3D (green dot)
and corresponding object trajectories (blue) to the desired landing position (cyan points). The
magenta circle represents a tolerance radius of 0.05m around the landing position. The red
arrows indicate the directions of the 3D release velocities.

The corresponding joint–space release configurations for position and veloc-

ity are shown in Figure 6.10. It is observed that the computed configurations

are within the robot joint limits, and thus are kinematically feasible, with some
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joints reaching their maximum velocities.

Figure 6.10: Illustration of joint–space configurations corresponding to ten computed fea-
sible release states: top: joint positions for left and right robotic arms; bottom: joint velocities
for left and right arms. The joint limits for position and velocity are shown in red and black
dashed lines, respectively.

6.4 Learning Tossable Space

In this section, we address modeling of the tossable workspace of the dual-

arm robotic system. The tossable workspace is the set of all positions reachable

by an object if thrown by the robot. We propose to approximate it by modeling

the distribution of the reachable positions. Such modeling provides a probability

map of the reachability of possible landing positions. It is useful for selecting the

best interception positions, chosen as points that represent a high probability

of success.

We sampled the forward half space5 of the robot by randomly generating 105

uniformly distributed 3D positions within a radius of 0.2 − 1.75m and within

a cone of (±π3 rad) around the x axis, as shown in Figure 6.11. We determined

the throwing-reachability of the generated points using the optimization in Eq.

(6.3.15), which checks for each point whether or not the robot admits a feasible

release state. We modeled the probability distribution of the obtained feasible

points using a GMM. As with the previously learned projectile dynamics, the

5without loss of generality, we only consider the space beyond the forward half plane of
the robot’s workspace
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number of Gaussian functions, here 13 was determined using the BIC, and the

model was trained with the expectation–maximization algorithm initialized with

k-means. The likelihood contours are shown in Figure 6.12.

Thus, a given target position xt is considered in the robot tossable space if

its likelihood (or probability density function) expressed as

P(xt|Mtoss) =

Kt∑
k=1

πkN (xt|µk,Σk) (6.4.1)

exceeds a threshold δtoss. We chose this likelihood threshold such that it yields

99% prediction accuracy on the training set of feasible configurations (we ob-

tained a δtoss = 0.15).

Once the tossable space is learned, it is used to determine the interception

point. Valid interception points are restricted to the region defined by the inter-

section of the robot tossable space and the target path, mainly determined by

the conveyor belt. We described the target through a set of points and predicted

their future positions along the conveyor belt. We chose the best interception lo-

cation as the position along the target trajectory with the set of points yielding

the highest tossable likelihood.

Figure 6.11: Example of 4000 samples from the generated data set to learn the tossable
space of the dual-arm robot. The red points are those that admit feasible solutions, whereas
the blue points do not according to our algorithm
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(a) (b)

(c)

(d) (e)

(f)

Figure 6.12: Representation of 2D projections of 3D tossable positions (top) and corre-
sponding likelihood contours obtained by modeling the distribution of tossable points using
a GMM with 13 Gaussian functions: (a)–(d): projection on XY plane; (b)–(e): projection on
YZ plane; (c)–(f): projection on YZ plane. The likelihood of finding tossable states is lowest
in blue regions and highest in red regions. The spread of these regions is not uniform across
the workspace, and not symmetric with respect to the two robots (in our configuration, the
second and sixth joints are not symmetric between the robots), as they are dependent on the
highly nonlinear joint configurations for position and velocity.
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6.5 Dual-arm Throwing Task Control

Once the interception point is selected and a feasible release configuration

is found, the next step is to generate the motion of the robot to execute the

throwing task. We controlled the coordinated motion of the dual-arm robot using

our Modulated DS-based controller proposed in the previous Chapter, which

allows us to leverage the kinetic energy of the robot through quick grabbing and

tossing of the object. In this way, we ensure the dynamic feasibility of the task,

which requires that the robot, from its current state with its inertia and that of

the grasped object, can accelerate quickly enough to reach the desired release

state while remaining within its hardware limits. Thus, we avoid conditions in

which the robot holds the object and waits before tossing to intercept the target.

6.5.1 Dual-arm coordinated control

The desired motion of the dual-arm robot in the control framework presented

in Chapter 5 can be written as

ẋ = M(x)fn(x) + fg(x) (6.5.1)

where x =

[
xL

xR

]
∈ R6 is the state vector of the DS, with xL and xR represent-

ing the position of the left and right robot arms, respectively, in the dual-arm

system. fn(x) ∈ R6 is the nominal DS, and M(x) ∈ R6×6 is the state-dependent

modulation matrix that locally shapes the motion generated by fn(x). The fg(x)

term represents the equivalent grasping force projected in the motion space.

In that framework, we proposed a tossing task that consisted of releasing a

grabbed object at a desired position with a desired velocity by generating appro-

priate absolute and relative velocities (ẋabsd and ẋreld ) for the dual-arm system

(see Section 5.3 for more details).

However, regardless of the control strategy, the problem of when to release

the target for successful interception must be addressed. To that end, we propose

to determine a state of the target that should trigger the robot’s movement

(reach, pick and toss). We will refer to such a state as the target’s ”state-to-go”.

6.5.2 Estimation of the target’s state-to-go

We assume that the target and thrown object intercept at a position x∗I and

time t∗. Thus,

xt(t∗) = xo(t∗) = x∗I (6.5.2)

where xt denotes the target’s position, and xo denotes the object position. From

the robot-object perspective t∗ is expressed as the sum of: 1) the duration of
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the robot motion from its starting time up to the release time (tr) of the object,

and 2) the free-flying time of the object. Hence

t∗ = tr + ∆tff (6.5.3)

where ∆tff is the object’s free flying duration from the release time tr to the

landing. We can also express t∗ as function of the robot’s path to the release

position and the robot’s average speed along that path as

t∗ =
L(x(tr),x(t0))

v̄
+ ∆tff (6.5.4)

where xr is the robot position6, and L(xr(tr),x
r(t0)) denotes the robot path

length from its position at time t0 (xr(t0)) to its position at the release time tr

(xr(tr)), expressed as

L(x(tr),x(t0)) =

tr∫
t0

‖ẋ(t)‖ dt (6.5.5)

where ‖ẋr(t)‖) denotes the L2-norm of the robot’s velocity. In Eq. (6.5.4), v̄r

represents the average speed of the robot along its path (v̄ = 1
tr−t0

∫ tr
t0
‖ẋ(t)‖ dt).

Given that the target moves along a rectilinear path (the conveyor belt),

for the interception to ideally happen at x∗I with the robot’s motion starting

at the time t0, the target’s state-to-go or the state corresponding to t0 can be

determined as

xt(t0) = x∗I −
ẋt

‖ẋt‖
L(x∗I ,x

t(t0)) (6.5.6)

where ẋt

‖ẋt‖ accounts for the target’s direction of motion. L(x∗I ,x
t(t0)) denotes

the path length (distance) covered by the target during the interval from t0 to

t∗, it is expressed as a function of the robot’s motion as

L(x∗I ,x
t(t0)) = v̄t

[
L(x(tr),x(t0))

v̄
+ ∆tff

]
(6.5.7)

where v̄t = 1
tr−t0

∫ tr
t0
‖ẋt(t)‖ dt represents the average speed of the target along

the path from xt(t0) to xt(t∗) = x∗I .

Eqs. (6.5.6) and (6.5.7) indicate that given the intercept point x∗I and the

feasible release position xrr = xr(tr), the target’s state-to-go can be easily es-

timated with few assumptions. Indeed, what is left to be estimated is: 1) the

average speed of the target v̄t, which can be approximated from velocity mea-

6for the dual-arm robot, this position refers to the absolute position of the two end-effectors.
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surements over a time window; 2) the average speed of the robot v̄r, which can

be approximated from the forward integration of the velocity norm of the sta-

ble DS that drives the robot from its current position xr(t) until the release

position xrr is reached; 3) the robot’s path length L(xr(tr),x
r(t0)), which can

also be approximated, as in 2), from the DS; 4) the object’s free-flying duration

∆tff , which can be estimated from forward integration of the projectile dynam-

ics given the desired intercept location and the computed release state.

6.5.3 Motion Adaptation

The target’s state-to-go estimated in the previous section was based on the av-

erage speed of the target and the DS motion. It does not account for possible

perturbation of the target motion (slowing down or speeding up). Moreover, er-

rors in motion tracking and prediction (through forward integration) will create

divergence between the computed and actual states of the robot. Consequently,

the interception will not happen as planned.

To ensure successful completion of the task, we propose a twofold adapta-

tion strategy with, first, a velocity modulation strategy and second, an attractor

adaptation strategy.

Velocity modulation

The DS can be accelerated or decelerated at will by multiplying the function

by a positive scalar. This does not affect the stability properties at the attractor.

Thus, we can adapt the robot’s DS-based velocity at run time to adapt to

changes in the velocity of the moving target as follows:

ẋd = β(x)M(x)fn(x) + fg(x) (6.5.8)

where β(x) is the adaptation factor, which is simply a state-depend scaling

factor computed as

β(x) =
v̄t

v̄r

∣∣∣∣ L(xr(tr),x
r(t))

L(x∗I ,x
t(t))− v̄t.∆tff

∣∣∣∣ (6.5.9)

with β(x) ‖ẋd‖ ≤ ‖ẋ‖max, such that the adapted robot velocity does not exceed

the maximum allowable velocity. β(x) ≥ 0 to preserve the stability of the DS.
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Adaptation of attractor

Although the velocity modulation strategy can slow down or speed up the

velocity of the robot, it cannot, however, reverse the robot’s motion direction.

Such reversal may be useful, for instance to force the robot to retract to an initial

position. The robots needs to quickly accelerate to toss at the desired throwing

speed. It may not be able to do so, if the path is too short, as joint limits

may be reached. we propose additionally an adaptation strategy that adapts

the attractor of the nominal DS fn(x) when the target’s velocity changes its

direction. Hence, we define the attractor as

x∗ = α(xt, ẋt)xd + (1− α(xt, ẋt))xstb (6.5.10)

where xd is the desired attractor of the nominal DS, and xstb denotes a standby

attractor to which the robot should retract to. α(xt, ẋt) ∈ [0, 1] is a target’s

state-dependent scalar function that goes to 1 or 0 depending on whether the

target moves in the direction of the interception or not. We defined α(xt, ẋt) as

α(xt, ẋt) =
1

1 + e−a((x∗I−xt)>ẋt)
(6.5.11)

where a > 0 represents the steepness factor of the function defined by α(xt, ẋt).

Example: To illustrate how the proposed adaptation strategy works, we sim-

ulate a simplified interception problem, where a robot moving along the x-axis

must intercept a target moving along the y-axis. To successfully intercept the

target, the robot follows the motion of the target. The initial velocity of the

target is −0.4 m/s; after 1 s, the target velocity undergoes a sine wave per-

turbation with an amplitude of 0.3 m/s for 1.25 s and then the velocity goes

at 0 m/s for 0.25 s before suddenly increasing to −0.6 m/s, as observed in the

bottom-right of Figure 6.13-(b). Without adapting accordingly the velocity of

the robot, interception fails, as can be seen in Figure 6.13-(a). The time evolu-

tion of the positions and velocities of the target and robot are shown in Figure

6.13-(b); Figure 6.14 shows the adaptation factor β(x), which remains equal to 1.

When the robot velocity is adapted to compensate for changes in the target

velocity, the robot successfully intercepts the target and they begin moving

together. This is observed in Figure 6.15; the 2D motion is shown in Figure

6.15-(a) and the time-evolution of the positions and velocities are shown in

Figure 6.15-(b). The adaptation factor, which now changes, is shown in Figure

6.16. Note that in both cases (without and with adaptation), the robot velocity

remains initially at 0, and start changing only when the target reaches the

estimated state-to-go.
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(a)

(b)

Figure 6.13: Simulated simplified example of failed interception task when the target motion
undergoes changes or perturbations and the robot motion is not adapted accordingly. (a): 2D
positions of the target (red circle) and the robot (blue circle) with their trajectories represented
in red and blue, respectively. (b): time-evolution of positions and velocities of the target and
object in x coordinates (top) and y coordinates (bottom).

Figure 6.14: Time evolution of the adaptation factor β(x), which remains equals to 1 when
the adaptation is not active
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(a)

(b)

Figure 6.15: Simulated simplified example of successful interception task when robot mo-
tion is adapted according to changes or perturbations in target motion. (a): 2D positions
of target (red circle) and robot (blue circle) with their trajectories represented in red and
blue, respectively. (b): time-evolution of positions and velocities of the target and object in x
coordinates (top) and y coordinates (bottom).

Figure 6.16: Time evolution of the adaptation factor β(x), which start varying when the
target reached the estimated state-to-go to compensate for changes in the target motion.
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6.6 Empirical Validation

To validate the proposed approach, we used the same robotic setup as in

our previous Chapter, a dual-arm system consisting of a pair of KUKA LBR

IIWA7 and IIWA14 robots. To move the target, we used a conveyor belt with

velocity ranging from 0.05 m/s to 1.5 m/s. The object and target position were

measured using an Optitrack motion capture system; velocity information was

estimated using a Savitzky-Golay (Savitzky and Golay, 1964) smoother and

a Kalman filter. We used a 1.9-kg cubic box with dimensions of 0.26 m on

each side. The target speed ranged from 0.10 m/s to 0.450 m/s, determined

experimentally to avoid collision between the moving object after landing and a

robot while retracting after releasing the object. Speeds of up to 0.65 m/s were

reached with a smaller box (see video). We used a flat tray with dimensions

of 0.40 m × 0.30 m as the target. Figure 6.17 shows the robotic setup used

for our experimental validation. In the implementation, the DS and the feasible

release state are updated every 5 ms and 100 ms, respectively. We used qpOASES

(Ferreau et al., 2014) to solve the optimizations (6.3.12) and (6.3.14). The whole

feasibility algorithm is solved between 3 to 25 ms on a Intel(R) Core i7, 3.4 GHz

and 7.8 GB RAM PC.

The validation process was both simulated and conducted using an actual

robot. Three main tasks were considered: (i) tossing an object to a target moving

at a constant velocity; (ii) tossing an object to a target moving with a chang-

ing velocity; (iii) comparison of placing an object and tossing an object onto a

moving target. The experiments can be visualized in a video provided as sup-

plementary material. The implementation codes of the proposed approach are

also made available (see Section 1.7).

Figure 6.17: Experimental setup used for validating the proposed control scheme.
The image shows the two KUKA robots, the conveyor belt, some Optitrack cameras,
the target, and the object on a pallet.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.18: Snapshots illustrating a dual-arm grabbing and tossing task of an object
(white cubic box) on a moving target (white tray on the conveyor belt). At first, the
robots wait for the target to reach the estimated state-to-go before starting moving
towards the object to grab it and toss it on the target being moved by the conveyor
belt. From left to right, the snapshots show the instant when the dual-arm system
is waiting, when it is approaching the object, when the object is grabbed, when it
is tossed, when it lands and intercepts the moving target, and when they both move
together
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6.6.1 Tossing object to target moving at constant

velocities

The goal of this task is to evaluate the accuracy and repeatability of dual-arm

based positioning through tossing of an object to a target that moves at different

constant velocities. This task simulates a hypothetical depalletizing task on an

already loaded conveyor belt, where the robot must place an object in available

free space moving on the conveyor belt.

Initially, the robot remains stationary as the target approaches until the

target reaches the state-to-go as determined in Eq. (6.5.6) in Section 6.5.2.

Once reached, the dual-arm system moves, grabs the object, and throws it to

the desired intercept position as shown in Figure 6.18; task sequences such as

initiation of target movement and robot movement, throwing of the object,

interception, and unified movement of the object and target are observed in the

snapshots.

Corresponding plots of positions and velocities of the object and target are

shown in Figure 6.19 (top) and (bottom), respectively. In Figure 6.19-(top), the

Figure 6.19: Position and velocity plots of object and target throughout the task.
The target moves in the y-direction at a speed of -0.3 m/s (green dashed line in bottom
plot); its starting position [0.75 m, 2.0 m, 0.25 m] decreases linearly in the y-direction
(green dashed line in top plot); all other coordinates remain constant. The object starts
moving only after contact with the robots.

initial position offset and correspondence between the object and target after

landing are shown; the y-coordinates (representing the direction of conveyor

belt movement) decrease continuously (negative speed). The constant offset of
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the z-coordinate results from measurement of the object position at the center,

producing a height offset with the target on the conveyor belt. Small oscillations

result from bouncing of the object on the target caused by landing impact before

stabilizing.

A 3D illustration is shown in Figure 6.20, including the trajectories described

by the robotic system during the task, the object, and the target, indicated in

red, blue, and green, respectively. The end-effector trajectories indicate complete

cycles from standby positions and back after grabbing and tossing the object.

Figure 6.20: 3D trajectories of system in grabbing and tossing an object onto a
moving target. The trajectories described by the end-effectors are shown in red (solid
for left, dashed for right); the target trajectory is represented in green, the object
trajectory in blue. The initial position of the object is shown in black, the release
position in magenta. The rest position when the conveyor belt stops is shown in cyan.

The accuracy of the proposed scheme in intercepting moving targets is shown

in Figure 6.21, which reports intercept position errors across the XY plane for

ten experiments for each target speed. The norms of the errors per speed are

shown in Figure 6.21-(a); the x and y components of the error contributing

to the norm are shown in Figure 6.21-(b). The mean of the intercept error

norm for each speed was less than 0.06 m, representing one-fifth of the target

width (0.30 m). The variance in black indicates that few cases exceeded 0.06

m, remaining within a tolerance of 0.10 m. The 3D distribution of intercept

positions defined by the target and object at release and landing is shown in

Figure 6.22. Intercept locations are indicated with respect to feasibility and

tossable workspace described in Sections 6.3 and 6.4.
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(a)

(b)

Figure 6.21: Intercept position error per speed across the XY plane (the z coordinate
is not considered as the object height offset from its center is constant): (a) norm of
intercept error per target speed; (b) intercept error per coordinate and per target speed.
The intercept error for x-coordinates is denoted as ex; the error for y-coordinates is
denoted as ey

6.6.2 Tossing object on target moving with changing

velocities

The goal of this experiment is to assess the robustness and adaptivity of the pro-

posed algorithm to changes in the target velocity. In other words, we evaluate

how the proposed control strategy adapts the motion of the dual-arm system

carrying the object for successful interception in presence of changes in the tar-

get motion.

To that end, while changing the velocity of the target, we started by testing

the algorithm without adaptation (β(x) = 1 in Eq. (6.5.8)) and then activated

the adaptation scheme.
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Figure 6.22: Relative 3D distribution of intercept positions defined by the target
(blue), the object release position (magenta), and the object landing location on the
conveyor belt (red) for the dual-arm system and its kinematically feasible tossing
workspace (light blue)

The changing target speed was designed with a constant nominal component

vtnom as in the previous experiment, and with a changing perturbation compo-

nent vtpert, defined as vtpert = apert·sin((ωp+0.2·rand(ωp))t), where apert denotes

the maximum amplitude of the perturbation; ωp denotes its angular frequency,

and t is the running time of the algorithm. We have conducted 20 experiments

for each case; we set the following target speed parameters: vtnom = 0.30 m/s,

apert = 0.15 m/s and ωp = 2π.

Case without adaptation

Controlling robot motion based only on the state-to-go generally leads to

failed interception of the target as soon as perturbation affects the system. Such

a strategy amounts to open-loop control of interception, which only works if the

conditions that predicted the state-to-go remain the same after the dual-arm

system has initiated motion.

An example is illustrated in Figure 6.23. The X and Y position and velocity

plots for the object and target are presented in Figure 6.23-(a). The norm of

the linear velocities of the two robots triggered when the target reached the

estimated state-to-go is shown in Figure 6.23-(b). The tossed object fails to

intercept the target as the dual-arm motion generation ignores the changes in

target speed.
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(a)

(b)

Figure 6.23: Position and velocity plots of dual-arm system grabbing and tossing an
object onto a moving target with motion perturbation and without adaptation of
robot motion: (a) X and Y evolution over time for position (top) and velocity (bottom)
of the target (red) and object (blue); (b) norm of linear velocities of left robot (top),
right robot (middle), and adaptation factor β(x) (bottom). The robot motion remains
unaffected by changes in target speed.
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Case with adaptation

In this case, the adaptation scheme modulates the motion of the robot,

slowing it down or speeding it up based on a continuously updated prediction

of interception using current target and robot states. We evaluated adaptation

with two types of perturbation. The first perturbation of target motion was

similar to that in the case without adaptation; the second perturbation was

caused by manually stopping, pulling back, or pushing forward the target as it

moved on the conveyor belt.

Velocity-based perturbation

The position and velocity plots of the object and target are shown in Fig-

ure 6.24-(a). The object successfully intercepts the target despite changes in its

speed. Velocity plots of the left and right robot end-effectors and the adapta-

tion factor β(x) are shown in Figure 6.24-(b), at the top, middle, and bottom,

respectively.

Compared to the case without perturbation, the effect of β(x) on the dual-

arm velocities is clearly observed. The intercept position errors between the

object and target with and without adaptation are shown in Figure 6.25; error

histograms in the x-direction are shown in the left plot, and error histograms in

the y-direction are shown in the right plot for 20 experiments for each case.

In both cases, the mean of the error is about 0. However, considering the

variance, the error in the interception direction (Y) ranges from `0.45 m to

0.20 m without adaptation, and between `0.10 m and 0.10 m with adaptation;

13 out of 20 Y-position errors are within [`0.05, 0.05] m. However, in the main

tossing direction (X), the error with adaptation is slightly greater than the error

without adaptation; 10 out of 20 experiments had an absolute error between 0.05

m and 0.10 m (two had errors of 0.11 m). This is mainly due to the change in

momentum of the object before its release as the robot velocities are modulated.

One solution to mitigate this effect is to stop modulation (set β(x) = 1) as soon

as the object is near the release position.

Without adaptation, the object successfully intercepted the target with a

position error within the tolerance of 0.10 m in five out of 20 experiments. How-

ever, as the system was in open loop, the observed interceptions had a stochastic

nature, stemming from the randomness introduced in the speed perturbation,

and may have yielded target positions near the desired intercept location at the

landing time of the tossed object.
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(a)

(b)

Figure 6.24: Position and velocity plots of dual-arm system grabbing and tossing
an object onto a moving target with motion perturbation and adaptation of robot
motion: (a) X and Y evolution over time for position (top) and velocity (bottom) of
the target (red) and object (blue); (b) norm of linear velocities of left robot (top),
right robot (middle), and adaptation factor β(x) (bottom). (bottom). The robot mo-
tion was modulated based on estimated changes in target speed to ensure successful
interception.
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Figure 6.25: Distribution of intercept position errors in the x-direction (left) and
y-direction (right) in tossing an object onto a moving target with motion perturbation
without adaptation (blue) and with adaptation (orange). The distributions were de-
rived from 20 experiments with and without adaptation. The x-direction represents the
main tossing direction; the y-direction represents the interception direction in which
the target moves.

Human interaction-based perturbation

In this case, the target speed perturbation was manually induced through

interaction with the target. Figure 6.26 shows position and velocity plots for the

target–object–robot system with perturbation and with adaptation to compen-

sate for it. The y-components of the positions and velocities of the target and

object are shown at the top-left and bottom-left, respectively. The linear veloc-

ity norm of the left end-effector is shown on the top-right (the right end-effector

is not shown, but follows a similar pattern); the adaptation factor β(x) and the

y-velocity of the target that drives it are shown at the bottom-right.

Unlike the previous perturbation cases, the target velocity changes in sign

from negative to positive and vice versa according to the perturbation. As

β(x) ≥ 0, the modulation cannot reverse the motion direction of the robot

(a negative β(x) will make the system unstable). Thus, retraction of the robot

is achieved by smoothly changing the attractors of the dual-arm system be-

tween the grabbing points on the box and the predefined standby position of

the end-effectors.

Human interaction with the target, and which induced speed perturbation

shown previously in Figure 6.26-(bottom) is illustrated in snapshots of Figure

6.27. The target is pulled back three times, as shown in Figures 6.27 (b)-(c),

(d)-(e) and (f)-(g), respectively at t = 5.95s, t = 8.08s, and t = 9.98s, inducing

thereby the three velocity picks shown on Figure 6.26-(bottom).
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Figure 6.26: Position and velocity plots of dual-arm system with motion adaption
while grabbing and tossing an object onto a moving target with manual perturba-
tion: left: y-evolution of position (top) and velocity (bottom) of target (red) and object
(blue), respectively, over time; (right): norm of linear velocity of left robot (top) and
adaptation factor β(x) and y-velocity of target (bottom). The robot motion was mod-
ulated based on estimated changes in target speed to ensure successful interception.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.27: Snapshots illustrating adaptation of dual-arm system to manual pertur-
bations of target motion in grabbing and tossing of an object onto a moving target:
(a): dual-arm in standby, waiting for target to reach estimated state-to-go; (b)–(c),
(d)–(e), and (f)–(g): perturbation introduced by manually pulling back moving target,
causing retraction of robots; (h)–(i): grabbing and tossing of object as target moves;
(j): motion of object and target after successful interception.
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6.6.3 Comparison of placing and tossing object onto

moving target

The goal of this experiment was to compare the kinetic and energy efficiencies

of the widely used picking and placing operation with those of the proposed

picking and tossing of objects onto a moving target (on conveyor belt). Unlike

previous Chapter 5, where such a comparison was conducted from the standby

position to the release of the object, in this study, the comparison includes the

entire cycle (from the standby position and back after executing the motion), at

target speeds ranging from 0.1 m/s to 0.450 m/s in increments of 0.05 m/s. We

conducted ten experiments at each target speed and estimated the cycle time

and energy consumption of the dual-arm robotic system. Figure 6.28 shows the

comparison results of the cycle time, whereas Figure 6.29 shows the energy con-

sumption comparison.

The results indicate that the proposed picking and tossing produces a shorter

cycle time and consumes less energy than the picking and placing operation, con-

sistent with Chapter 5. Similar consistent results were observed across target

speeds for cycle time and energy expenditure. These experiments were conducted

with no perturbation of target speed; thus, the main control variable was the

estimated state-to-go, with adaptation having little effect. Slight variations in

results were caused by noise, state estimation, and control errors.

Figure 6.28: Comparison of total energy consumption for picking and placing and
picking and tossing of an object onto a moving target at different speeds
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Figure 6.29: Comparison of total energy consumption between operations of picking
and placing and picking and tossing of an object on moving target at different speed

The main results of the comparison of picking and placing and picking and

tossing are summarized in the histogram shown in Figure 6.30. The proposed

picking and tossing is approximately 5.5% faster and consumes approximately

11% less energy than the picking and placing operation for the same positioning

task.

Figure 6.30: Histograms summarizing cycle time and energy expenditure comparisons
in picking and placing and picking and tossing of an object onto a moving target
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6.7 Discussion and Conclusion

In this Chapter, we have presented a control strategy enabling a dual-arm

robotic system to pick up and toss an object to moving target locations on

a conveyor belt. Positioning objects on moving conveyor belts is common in

industry, and can represent depalletizing of parcels in a sorting facility.

To achieve precise dynamic positioning, we addressed this problem from an

interception perspective; a bimanually tossed object governed by projectile dy-

namics was intended to land at a desired position along the path of a moving

target. Using GMR, we learned an inverse throwing map from the nonlinear

projectile dynamics to determine the tossing parameters (release position and

velocity) necessary to reach the desired landing position, which serve as reference

inputs for the robotic system (Section 6.3.1). To ensure feasibility of the release

state, we embedded the learned throwing map into a bi-level kinematics-based

optimization framework. We translated and solved such a problem at the ac-

celeration level allowing to enforce concurrently velocity and position feasibility

constraints with off-shelves solvers (Section 6.3.3).

Building upon the obtained release state feasibility algorithm, we proposed

a method to model the tossable workspace of a dual-arm robot, representing the

set of all positions reachable by an object tossed by the robot. We generated 105

desired positions within and outside the dual-arm system workspace and deter-

mined for each whether our algorithm could find a corresponding feasible kine-

matic release state. We derived a closed-form model of the tossable workspace

by learning the distribution of all feasible landing positions using a GMM. The

obtained model allows us to predict the the probability of reaching potential in-

tercept positions of the object with the target before initiating the robot motion

(Section 6.5). For robust tossing, we used our dynamical system-based control

framework previously proposed in Chapter 5; and ww complemented it with an

adaptation strategy to modulate the generated motion of the dual-arm system

and enable grabbing and tossing of an object onto a moving target with motion

perturbations.

To demonstrate the validity of the proposed approach, in addition to simula-

tions, we conducted experiments using a pair of actual KUKA robots. We eval-

uated the accuracy and repeatability of interception at different target speeds,

with and without motion perturbations. To highlight the benefits of our ap-

proach with respect to classical positioning tasks based on pick-and-place oper-

ations, we implemented a picking and placing strategy for an object on a moving

target and compared it in terms of cycle time and energy consumption with the

proposed picking and tossing strategy.

We found that in the absence of target’s motion perturbation and for the

selected release configurations shown in Figure 6.22, the object landed within a

radius of 0.05 m from the center of the target in 67 out of 80 tossing cases, that

is 77%; the remaining tosses were within a radius of 0.10 m.
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With target motion perturbation and no adaptation of the robot motion, the

ratio of tosses with interception error norms less than 0.10 m decreased to 20%,

mainly due to increased errors in the intercept direction (direction of target

velocity); 75% of tosses were between 0.10 and 0.45 m from the target; in the

tossing direction (object’s release velocity direction), 95% of tosses were within

0.10 m of the target center. With the proposed adaptation scheme, although

errors in the tossing direction may slightly increase, we demonstrated that the

intercept error norms decreased significantly; 90% of tosses were within a 0.10

m radius of target.

When compared to the traditional pick and place strategy, we found that the

proposed pick and toss approach leads to a shorter cycle time (5.5% in our ex-

periments). This is consistent with previous results in Raptopoulos et al. (2020);

Hassan et al. (2022); Bombile and Billard (2022). Moreover, as in Bombile and

Billard (2022), we also found that the proposed approach consumes less energy

(11%).

Although the effectiveness of the proposed method was demonstrated using

actual robots, some limitations in approach and implementation were evident.

While the determined release states were kinematically feasible, their dynamical

feasibility was not guaranteed. Dynamical feasibility depends on the initial robot

configuration and the inertia of the object. Moreover, geometric properties of

the object and dual-arm grabbers may limit the feasible states due to collisions

at the release time if the robot cannot retract fast enough.

Furthermore, in determining the release configurations, we considered the

free-flying dynamics of the object after release, but did not consider the impact

dynamics of the object at landing. Thus, we observed that for some feasible

release states determined by our algorithm, the tossed object bounced on the

conveyor belt and fell from it instead of remaining on it. To prevent this, we

constrained the search space of feasible release configurations to a small set of

task-space release positions near the conveyor belt. Thus, the associated release

velocities were reduced and the landing impacts too. A more general solution in

determining the release state should consider the desired post-landing impact

state of the object and not simply the landing state. Moreover, uncertainty in

the release time should also be considered. Furthermore, to guarantee optimal

and safe behavior using the proposed approach and promote its use in industry,

future research should consider the full dynamics of the robots and the dynamics

of their interactions with the environment.
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Chapter 7

General Conclusion

In this Chapter, we summarize the main contributions of this thesis. We also dis-

cuss the limitations of the work presented in this thesis and we provide possible

improvement directions.

7.1 Main contributions

The main contribution of this thesis lies essentially in providing a generic

and unified modulated DS-based motion generation framework for manipulation

tasks with desired transitory states. The proposed framework is generic because

it can be formulated in task space as well as in joint space with first or second-

order dynamics. Its unified nature stems from the framework’s ability to handle

both free and constrained motions and to robustly transition between them in

cooperative settings.

7.1.1 Reactive omnidirectional walking motion

generator

In Chapter 3, we have presented a motion generation algorithm for a more com-

plex robotic system: a dual-arm humanoid robot. We focussed on dynamic bal-

ance and locomotion and proposed a capture-point-based walking controller able

to generate on the fly omnidirectional walking patterns for a biped robot and to

stabilize the robot around them. We combined the center of mass (CoM) and the

capture-point dynamics into an MPC framework to generate automatically foot-

steps positions and orientations and the associated motion of the CoM based on

desired velocities of the robot. We validated experimentally the proposed control

scheme on a real humanoid robot and we demonstrated its effectiveness in two

types of tasks where a walking approach based on a footstep planner could not

apply. In the first task, we required the robot to track changing translational and

rotational velocities. The experiments showed that the humanoid robot under

the proposed controller could track the commanded omnidirectional velocities

and could even perform a rotation on a spot, particularly when following a pure

rotational velocity. In the second type of experiment, we showed how the abil-

ity to automatically generate omnidirectional walking motions could serve in
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human-robot cooperative tasks. Thus, with the humanoid robot in the role of

follower, we demonstrated the reactive generation and adaptation of the robot’s

footsteps in order to comply with the intentions of the human, first in a guidance

task and then in a cooperative transportation task.

7.1.2 Cooperative compliant manipulation on

humanoid robot

In Chapter 4, we proposed an approach to achieve stable bimanual reach-to-

grasp and compliant manipulation of an object on a humanoid robot. We re-

lied on dynamical systems and exploits a concept of shrinkable virtual objects

to achieve motion coordination by imposing virtual constraints to the robot’s

hands. Moreover, the shrinkage ensured smooth transition from virtual con-

straints in free-motion to real constraints when the object was grasped. To

stabilize the grasp and achieve desired manipulation tasks, contacts-consistent

optimal wrenches were computed online using QP. We validate the proposed

solution on the humanoid robot iCub by simulating various bimanual manip-

ulation tasks such as coordinated reaching and grabbing of static as well as a

moving objects. Coordinated grabbing of objects with point, line, and surface

contacts, and bimanual grasp stability of the object subjected to strong external

forces were realized to illustrate the robustness of the proposed controller.

7.1.3 Coordinated fast grabbing and tossing of

objects

In Chapter 5, we presented the unified motion generation framework in coordi-

nated control tasks of a dual-arm robotic system. The motion generated allowed

the dual-arm robot to quickly grab with impact and toss an object in one swipe.

The modulation allowed to shape locally the motion of the two robots in order

to reach their desired states at the contact and release of the object while pre-

serving the coordination. We theoretically proved the stability of the proposed

framework as well as its convergence towards the desired states. Using a QP, we

have generated and combined with the motion framework constraints-consistent

forces necessary to stabilize the grasp and to achieve the dynamic cooperative

manipulation task. We then validated experimentally the overall control strat-

egy in pick and toss tasks. The obtained results confirmed that the proposed

unified framework enables indeed a dual-arm system to generate in a coordi-

nated manner desired impacts and tossing motion when grabbing and releasing

an object, respectively. The results have shown that grabbing with impact and

tossing, especially when the impact direction anticipates the upcoming motion

of the object, leads to shorter and more energy-efficient pick and place tasks.

140



7.1.4 Grabbing and tossing of objects on moving

target

In Chapter 6, we presented a control strategy that extends the dynamic capa-

bilities of the framework presented in Chapter 5 by enabling a dual-arm robotic

system to toss objects onto a moving target carried by a conveyor belt.

We proposed an algorithm to determine feasible tossing parameters (release

position and release velocity) necessary to achieve the precise dynamic position-

ing task of the object. Thus, using GMM/GMR, we learned from the non-linear

projectile dynamics of a thrown object an inverse throwing map and combined

it with a kinematics-based optimization framework. The developed algorithm

can generate, for the dual-arm system, kinematically feasible release states as-

sociated with a given tossing task.

Exploiting the obtained release states feasibility algorithm, we proposed a

modeling approach for the tossable workspace of the dual-arm robot. Based

on GMM, our approach yields a closed-form model allowing us to predict in

real-time the reachability of a given tossing target position before initiating any

action on the robot side. We relied on the DS-based framework developed in

Chapter 5 to execute in a robust way the object tossing task on a moving target.

To execute in a robust way the object tossing task, we relied on the DS-based

framework developed in Chapter 5, for which we proposed a complementary

adaptation strategy that enables tossing on the moving target in the presence

of motion perturbations.

Finally, we have validated experimentally the proposed dynamic manipula-

tion framework. We evaluated the accuracy and repeatability of the interception

tasks between the bimanually tossed object and the target moving at different

speeds. We also assessed the efficacy of the proposed adaptation strategy in the

presence of strong and sudden perturbations of the target motion. The obtained

results have confirmed the effectiveness of the proposed dynamic and coopera-

tive manipulation strategy to enable a dual-arm system to swiftly grab and toss

an object onto a moving target. Furthermore, we compared the efficiency in

terms of cycle time and energy expenditure of the proposed tossing framework

with respect to a classical framework where the object is gently placed on the

moving target. As in Chapter 5, the comparison results have shown that the

proposed tossing-based positioning framework is not only faster but consumes

less energy than a placing-based framework.
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7.2 Limitations and Future Works

Our thesis’s key contributions have limitations and shortcomings that were

essentially discussed in their respective chapters. In this section, we further

elaborate on the main limitations and provides research prospects that could

improve the presented work.

In Chapter 5 and Chapter 6, we generated desired impact velocities when

grabbing objects without however taking into account the impact dynamics

(both at the task level and at the control level). Throughout our experiments,

we limited the desired impact speeds and assumed that the induced impact

forces, as well as the jumps of velocities and torques, remained within the safe

limits for the robot and for the object. However, this assumption is limited since

the impact forces and the velocity jumps do not only depend on the pre-impact

velocities but also on the configurations of the robots and the properties of the

impacting materials (e.g. rigidity, coefficient of restitution, etc.). To address the

aforementioned problem, future works should include impact dynamics in deter-

mining impact velocity limits. Moreover, at the control level, a potential solution

would be to combine the proposed DS with controllers such as those proposed in

(Wang et al., 2020) or (Dehio and Kheddar, 2021; Dehio et al., 2022), designed

to keep force jumps and subsequent torque jumps within the limits of the robot.

In addition, the continuity of the torques sent to the robots’ motors can be en-

sured, for example, by projecting the command into an impact-invariant space

as proposed in (Yang and Posa, 2021) or by using control strategies inspired

by the reference spreading approach (Rijnen et al., 2019). Furthermore, while

the notion of feasibility is fairly clear for the robot, the acceptable limits of im-

pact forces and energy for the object are still to be determined and used in the

design of the grabbing and tossing strategy. Instead of a minimal release veloc-

ity strategy as adopted for tossing in this thesis, considerations of the object’s

limits might leads to adoption of a tossing strategy that seeks, for instance, to

minimize the landing speed or its components.

Regarding the parameters of the proposed dynamical systems, we limited

ourselves to the demonstrations of the developed concepts and their functionality

rather than to the optimality of the generated trajectories. Therefore, we used

quasi-linear dynamic systems which do not generate optimal motions either in

terms of energy or execution time. To address this problem, one solution would

be to use Linear Parameters Varying (LPV) DS as in (Mirrazavi Salehian et al.,

2017b) and embed the optimality of the trajectories in their parameters. These

DS parameters could then be learned from the trajectories generated off-line by

optimal controllers, for example, a minimum time controller as in (Hassan et al.,

2022) to minimize the cycle time, or a minimum energy control to minimize the

energy consumed during execution.

Although the proposed DS can be formulated both in task space and in joint
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space, we only implemented our dual-arm framework in task space (where the

coordination mattered the most). Hence the DS is agnostic of what happens at

the joint level and cannot take advantage of the robots configurations to achieve

a more efficient tossing motion. This was evident when analyzing the joint space

velocities (see Appendix D.6). We noticed that among the two main joints con-

tributing the most to the tossing motion (joint 2 and joint 4 of the KUKA LBR

IIWA robot whose rotation is more aligned with the tossing direction) one of

the joints, namely the joint 2, was under-utilized while the other was close to

its saturation at tossing time. One possible solution could be to use of joint

configuration-dependent modulation functions while still keeping the motion in

task space for coordination.

Indeed, the motion modulation framework, at the core of the method pre-

sented in this thesis, offers a very powerful framework to embed soft and hard

constraints into dynamical systems. While the handling of hard constraints such

as non-penetrability of obstacles has been demonstrated with task space modu-

lation functions in (Khansari-Zadeh and Billard, 2012) or (Huber et al., 2019a),

nothing prevents to use joint space configuration-dependent functions in con-

junction with the robot’s kinematics to modulate the motion of the robotic sys-

tem in order to satisfy, for instance, the robot joint limits or avoid self-collisions.

Thus, such a solution will result in constraint-aware DS, capable of generating

motions that are consistent with the constraints of a given robotic system.

Regarding the method presented in Chapter 6, the validity of the generated

feasible release states is subject to the satisfaction of mutual and self-collision

constraints which were not explicitly included in the proposed algorithm. In

general, we did not generate self-colliding configurations mainly because of the

grasp constraints of the object and its chosen orientation during the tossing task.

However, for operational safety in industrial settings, mutual and self-collision

constraints must be included in our framework. In that regard, a potential so-

lution to extend our presented framework could be inspired by the approach

proposed in (Mirrazavi Salehian et al., 2018b). Moreover, since the decision

variable in our framework is the joint acceleration, the inclusion of dynamic

constraints should be straightforward to generate release configurations that

are dynamically feasible for given initial configurations. Such an extension with

the robot’s dynamics and the self-collision constraints will certainly come at the

expense of increased computational cost. However, given the benefits provided

by the proposed method, efforts to improve the approach and foster its adoption

in the industry are worth being pursued.

The framework proposed in this thesis uses two robots simultaneously in a

single station. For such a solution to be adopted in the industry, it needs to

be flexible enough. While dual-arm systems can handle large or heavy objects

or can perform tasks too complex for a single-arm system, they have, how-

ever, a major drawback when mounted on fixed bases. They have a reduced

joint workspace, which limits their sphere of operations. Thus, the solution to
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expand their joint workspace is to increase the degrees-of-freedom of their com-

mon base, or better endowing the dual-arm system with mobility. This is for

example the case of the robot ARMAR-6 (Asfour et al., 2018) which combines

its bimanual capabilities with its mobility and has demonstrated its ability to

cover a large workspace in collaborative tasks with humans and also in cooper-

ative manipulation tasks (Gao et al., 2018). Thus, future work to expand our

proposed dynamic framework could explore such a direction while addressing

the potential balance problem that it might create.

Regarding the reactive walking algorithm, given the current state of the

art in humanoid balance and locomotion, for instance, with Boston’s dynamics

robots exhibiting highly agile balance and locomotion skills, one could ques-

tion the relevance of such a walking controller. However, exploiting the analogy

between dual-arm manipulation and the balance and locomotion of a biped

robot, the proposed framework, thanks to its reactivity could find applications

in dynamic grasp adaptation or in-hand manipulation with contacts relocation.

This stems from the observation that the force-level grasp adaptation is like

the balance task and the contacts relocation like the stepping (used to recover

from disturbance or to walk). Indeed, to compensate for strong grasp instability

or to deliberately change the grasping points or the orientation of a grasped

object, the proposed algorithm can be used to generate stable sequences of con-

tact positions for the end-effectors. From that perspective, the concept of the

capture-point and related capture-region (Koolen et al., 2012) (a region where a

legged robot should step to come to a complete stop) can be expanded and used

to identify a location where contact should be relocated to recover the grasp

stability of the manipulated object. Research interested in dual-arm in-hand

manipulation could explore such a direction.
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Appendix A

Appendices for Chapter 2

A.1 Computation of CoM wrench maps

The balance task of a n-DoF humanoid robot assumed to interact with its

environment only through the hands and feet can be written as

ḣ = Aqq̈ + Ȧqq̇ = Gcf ff + Gchfh + fgvt (A.1.1)

where Aq ∈ R6×n is the centroidal moment matrix (Orin and Goswami,

2008). Gcf ∈ R6×6 and Gch ∈ R6×6 represent wrench transformation matrices

that map respectively the feet and hands contact wrenches to the frame attached

to the CoM. fgvt ∈ R6 is the gravity forces acting on the CoM frame.

The expressions of Aq, Ȧq, Gcf and Gch can be obtained through the fol-

lowing transformation

CX−>B (Muq̈ + bu) = CX−>B (J>fuff + J>hu
fh) (A.1.2)

where the subscript .u indicates the six upper rows of the robot’s dynamics

that relate to the floating base1. CXB ∈ R6×6 is velocity twist transformation

matrix from the robot’s base frame to the frame attached to the center of mass

(CoM). CXB is given by (Nava et al., 2016)

CXB ,

[
I − [xC − xB]×
0 I

]
(A.1.3)

where xC and xB denote the positions of the CoM and floating base, respectively.

The notation [.]× denotes a skew symmetric matrix. Hence,

CX−>B (Muq̈ + bu) = Aqq̈ + Ȧqq̇− fgvt (A.1.4)

CX−>B J>fuff , Gcf ff (A.1.5)

CX−>B J>hu
fh , Gchfh (A.1.6)

where Gcf = CX−>B J>fu and Gch = CX−>B J>hu
.

1The dynamics can rewritten as

[
Mu

Ml

]
q̈+

[
bu

bl

]
=

[
0
Γ

]
+

[
J>fu
J>fl

]
ff +

[
J>hu

J>hl

]
fh
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A.2 Lumped Contact constraints matrix and

vector

Consider the contact situation represented in Figure A.1, where a robot’s

end-effector applies unilateral forces on a object.

Figure A.1: Geometrical modeling of contact and associated interaction wrench.

Let fc , [fxc f
y
c f

z
c τ

x
c τ

y
c τ

z
c ]> ∈ R6 denotes the contact wrench, with [fxc f

y
c f

z
c ]

and [τxc τ
y
c τ

z
c ] representing the force and moment components of fc, respectively.

If the z direction is assumed to be normal to the contact surface, the unilateral

force constraint implies that

fzc ≥ 0 (A.2.1)

Moreover, using Coulomb friction model, a non slipping contact implies that all

tangential components of fc remain within the friction cone. That is

µff
z
c ≥

√
(fxc )2 + (fyc )2 (A.2.2)

γff
z
c ≥ |τzc | (A.2.3)

where µf and γf are respectively the linear and rotational friction coefficients.

Furthermore, the tipping over is avoided by ensuring that the center of pres-

sure or zero moment point of each robot’s end-effector in unilateral contact stays

within the convex hull formed by the contact points or contact surface. Thus,

this can be written as

∆+
y f

z
c ≥ τxc ≥ −∆−y f

z
c

∆+
x f

z
c ≥ τyc ≥ −∆−x f

z
c

where ∆+
x and ∆−x , and ∆+

y and ∆−y as shown in Figure A.1 specify , respectively,

the length and width dimensions of the contact surface.
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Due to the friction cone, the constraint (A.2.2) is non-linear. However, it

can be linearized by approximating the friction cone by a convex polyhedron

(Wieber, 2002). In our case, we use a friction pyramid which results in the

following constraints

µf√
2
fzc ≥ |fxc | and

µf√
2
fzc ≥ |fyc | (A.2.4)

In the local frame, the above constaints can be lumped and expressed as

Ccfc = dc (A.2.5)

where

Cc =



0 0 −1 0 0 0

−1 0 − µf√
2

0 0 0

1 0 − µf√
2

0 0 0

0 −1 − µf√
2

0 0 0

0 1 − µf√
2

0 0 0

0 0 −γf 0 0 −1

0 0 −γf 0 0 1

0 0 −∆−y −1 0 0

0 0 −∆+
y 1 0 0

0 0 −∆−x 0 −1 0

0 0 −∆+
x 0 1 0



and dc =



0

0

0

0

0

0

0

0

0

0

0



(A.2.6)

Hence, in the world frame, these constraints can be obtained by transforming

the wrench from local frame to global frame using a wrench map.
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Appendix B

Appendices for Chapter 3

B.1 Hessian matrix and gradient vector of the

QP

The Qh,ij (h = x, y) and pk,i elements, respectively, of the Hessian matrix

and gradient vector are given by

Q
ph
k = βU>c E

>EUc + γU>ξ Uξ + κΓ>Γ

Q
ph4r
k = (Q

4fph
k )> = −γU>ξ (Ξrm−−→kVfΞrm−−→kRh + ΞξN−−→

kRh(3:))

Q
phξN
k = (Q

ξNpx
k )> = −γU>ξ ΞξN−−→

kR
w
h,si+2

Q4r
k,h = γ(Ξrm−−→kVfRh + ΞξN−−→

kRh(3:))
>(Ξrm−−→kVfRh + ΞξN−−→

kRh(3:))

Q
4rξN
k,h = (Q

ξN4r
k )> = γ(Ξrm−−→kVfRh + ΞξN−−→

kRh(3:))
>ΞξN−−−−→

kR
w
h,si+2

Q
ξN
k,h = γ(ΞξN−−→

k +Rwh,si+2
)>(ΞξN−−→

k +Rwh,si+2
)


Q4r
k , Q4r

k,x +Q4r
k,y

Q
4rξN
k , Q4rξN

k,x +Q
4rξN
k,y

Q
ξN
k , QξNk,x +Q

ξN
k,y

Qθ =

[
αθU

>
θ̇
Uθ̇ + γθU

>
θ Uθ + κθI −γθU>θ H

f
k+1

−γθ(Hf
k+1)>Uθ γθ(Hf

k+1)>Hf
k+1

]
, (B.1.1)

and the vector pk ,
[

p>kxy p>kθ

]>
, with

p
ph
k = κU>c E

>(EScxh(k)− ċh−→
ref
k )

+ γU>ξ (Sξxh(k)−Ξrm−−→k(Vc + Vf13)rwi,k)

+ γU>ξ ΞξN−−→
kr
w
i,k − κΓ>e1ph,k−1

p4rk = −γ(Ξrm−−→kVfRh + ΞξN−−→
kRh(3:))

>

(Sξxh(k)− (Ξrm−−→k(Vc + Vf13) + ΞξN−−→
k)rwi,k)

p
ξN
k = −γ(ΞξN−−→

kR
w
h,si+2

)>(Ξrm−−→kVcr
w
i,k − Sξxh(k))

(Sξxh(k)− (Ξrm−−→k(Vc + Vf13) + ΞξN−−→
k)rwi,k)
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pkθ =

[
αθU

>
θ̇

(Sθ̇θ(k)− θ̇−→
ref
k ) + γθU

>
θ (Sθθ(k)−Hc

k+1θ
w
f,i)

−γθ(Hf
k+1)>(Sθθ(k)−Hc

k+1θ
w
f,i)

]
(B.1.2)

152



Appendix C

Appendices for Chapter 4

C.1 Inequality constraints for the whole-body

controller

C.2 Definition of Matrix Ljk

The matrix Ljk ∈ R6×6 is here given by

Lij =

[
jRw 03×3

03×3 Lθµjk
iRw

]
(C.2.1)

where jRw ∈ R3×3 and kRw ∈ R3×3 are rotation matrices of the world frame

Σw with respect to Σj and Σk, respectively. Lθµjk
is given by Malis et al. (1999)

Lθµjk
= I3×3 −

θ

2
[µjk]× +

(
1− sinc θ

sinc2 θ2

)
[µjk]2×

where θsinc θ = sinθ and [µjk]× ∈ R3×3 denotes a skew-symmetric matrix

associated with µjk.

C.3 Stability and Convergence of the reach-to-grasp

Consider the following Lyapunov candidate function

Vhi = ξ>hiPhi
ξhi � 0 (C.3.1)

It is strictly positive except at ξhi
= 0. V̇hi will be given by

V̇hi = ξ>hiPhi ξ̇hi + ξ̇>hiPhiξhi (C.3.2)

Using recursively ξ̇jk = Ljk(ẋj − ẋk), it can be shown that
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ξ̇hi = [L−1
hivi

L−1
viv∗i

L−1
v∗i oi

]+(ẋhi − ẋoi) (C.3.3)

where [.]+ denotes a pseudo-inverse. Substituting (C.3.3) in (C.3.2) gives

V̇ = ξ>hi
Phi

[L−1
hivi

L−1
viv∗i

L−1
v∗i oi

]+(ẋhi − ẋoi)

+ (ẋ>hi
− ẋ>oi

)[L−1
hivi

L−1
viv∗i

L−1
v∗i oi

]+
>

Phi
ξhi

Using the proposed law (4.3.3) with Chi = [L−1
hivi

L−1
viv∗i

L−1
v∗i oi

]Ahi
yields

V̇ = ξ>hi
Phi

[L−1
hivi

L−1
viv∗i

L−1
v∗i oi

]+[L−1
hivi

L−1
viv∗i

L−1
v∗i oi

]Ahiξhi

+ ξ>hi
A>hi

[L−1
hivi

L−1
viv∗i

L−1
v∗i oi

]>[L−1
hivi

L−1
viv∗i

L−1
v∗i oi

]+
>

Phiξhi

= ξ>hi
PhiAhiξhi + ξ>hi

A>hi
Phiξhi

= ξ>hi
(Phi

Ahi
+ A>hi

Phi
)︸ ︷︷ ︸

−Qhi

ξhi
= −ξ>hi

Qhiξhi
≺ 0
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Appendix D

Appendices for Chapter 5

D.1 Orientation control

To control the orientation task, which consists of driving the current ori-

entation of the hthend-effector represented by the rotation matrix Rh
c ∈ R3x3

towards its desired value Rh
d ∈ R3x3, we define a state vector ξhθ ∈ R3 using the

axis/angle representation of the relative orientation, dRh
c , (Rh

d)>Rh
c . Hence,

ξhθ , θµ(dRh
c ), where µ ∈ R3 and θ ∈ R represent respectively the axis and the

angle associated with the rotation matrix dRh
c .

With ξhθ defined as above, its desired value is located at the origin, that is

ξhθd = 0. Thus, similarly to the position task, if we assume a linear or linear

parameters varying (LPV) DS for the orientation, we can write

ξ̇hθ = Aθ(ξ
h
θ − ξhθd) = Aθξ

h
θ

where Aθ ∈ R3×3 is the dynamic matrix chosen to be negative definite (Aθ < 0)

to ensure asymptotic converges of ξhθ towards its attractor 0 ( lim
t→∞

ξhθ = 0). Such

convergence indicates the matching Rh
c with Rh

d . The angular velocity associated

with the orientation DS is obtained as follows

ωh = L−1
ξh
ξ̇hθ = L−1

ξh
Aθξ

h
θ

where Lξh , Lhθµ(Rh
c )> with Lhθµ ∈ R3×3 a matrix mapping the angular velocity

to the time derivative of orientation state vector ξh and given by Malis et al.

(1999)

Lhθµ = I3×3 −
θ

2
[µh]× +

(
1− sinc θ

sinc2 θ2

)
[µh]2×

where θsinc θ = sinθ and [µh]× ∈ R3×3 denotes a skew-symmetric matrix

associated with µh.

To coordinate the position and the orientation task, the latter was coupled

to the position task using a state-depend coefficient η(x) function of the error

on the absolute position: η(x) = 1 − exp
(
− σ
‖xabs−xabsd ‖+ε

)
, where σ > 0 is a

scalar that tunes how fast η(x) varies within [0, 1].
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The orientation state vector ξhθ is now computed as ξhθ , θµ(∗Rh
c ), with

∗Rh
c , (Rh

∗(η))>Rh
c . Here Rh

∗(η) denotes the rotation matrix computed from

the spherical interpolation between a resting orientation Rh
r and the desired

orientation Rh
d as function of η(x). When η(x) → 0, Rh

∗(η) → Rh
r and when

η(x)→ 1, Rh
∗(η)→ Rh

d .

D.2 Determination of impact direction

To determine the impact direction, ~eh1 , that anticipates the desired motion

of the object once grasped, we use the normal vector to the hth contact denoted

~nh, and the desired object’s effective force fdo needed to realize the desired task

to build an orthonormal basis Uh = [~uh1 ~u
h
2 ~u

h
3 ] as

~uh1 = ~nh; ~uh2 = ~fo × ~nh; and ~uh3 = ~uh1 × ~uh2

where ~fo =
fdo
‖fdo ‖

denotes a unitary vector in the direction of the desired object

effective force. Then, we compute the angle formed by the impact direction with

the normal to the surface as

γh = arctan

(
fdo .~u

h
3

fdo .~u
h
1

)
For stable contact, we have 0 ≤ tan(γh) ≤ tan(γhmax), with tan(γhmax) = µ,

the coefficient of friction. Now, using the obtained angle γh and the basis Uh,

the impact direction ~eh1 is computed as:

~eh1 = Uh[cos(γh) 0 sin(γh)]>
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D.3 Proof of Proposition 1

Substituting (5.4.2) in (5.3.2) and then in (5.3.1) and multiplying by diag{(eLi )>, (eRi )>}
gives

(eLi )>ẋL

(eRi )>ẋR
=

(eLi )>EL(x)ΛL(x)(EL(x))>fLr (x)

(eRi )>ER(x)ΛR(x)(ER(x))>fRr (x)

Hence, for each h = {L,R} component, we have1

(ehi )>ẋh =

3∑
j=1

λhij(x)(ehj )>fhn (x)

= (ehi )>fhmi(x)

3∑
j=1

fhn (x)>ehj
fhn (x)>fhn (x)

(ehj )>fhn (x)︸ ︷︷ ︸
I

= (ehi )>fhmi(x) (D.3.1)

Finally, substituting (5.4.1) in (D.3.1) yields

(ehi )>ẋh = (ehi )>A′h(x− x∗) (D.3.2)

which gives in terms of the left and right components

(eLi )>ẋL

(eRi )>ẋR
=

(eLi )>[A′LL(xL − xL∗ ) +A′LR(xR − xR∗ )]

(eRi )>[A′RL(xL − xL∗ ) +A′RR(xR − xR∗ )]
(D.3.3)

Clearly, Eq. (D.3.3) shows the two robots interaction, which is necessary to

preserve the coordination. At the same time, all robots converge towards their

attractors since at the equilibrium (ẋL = 0 and ẋR = 0), we have

0 =

[
A′LL A′LR
A′RL A′RR

](
xL − xL∗

xR − xR∗

)
= A′(x− x∗)

This implies that x− x∗ = 0 given that A′ is full rank �

D.4 Proof of proposition 2

Proving the first motion towards xt when γ(x) = 0 is straightforward given

(5.4.1) and similar expression for fhmi(x), since x∗ = xt.

However, when γ(x) = 1 the attractor becomes x∗ = x− A′−1ẋd and when

substituted in (D.3.2), the later becomes

1where we use the following simplification∑3
j=1

fhn (x)>ehj
fhn (x)>fhn (x)

(ehi )>fhn (x) =
fhn (x)>

∑3
j=1 ehj (e

h
j )
>fhn (x)

fhn (x)>fhn (x)
= I
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(eh1 )>ẋh = (eL1 )>

[
A′h(A′)−1

(
ẋLd
ẋRd

)]
Given that A′(A′)−1 = I ∈ R6×6 then

A′L(A′)−1 = [I 0] andA′R(A′)−1 = [0 I]

Therefore, the generated velocities along eL1 and eR1 for the two robots become

(eL1 )>ẋL = (eL1 )>ẋLd and (eR1 )>ẋR = (eR1 )>ẋRd

whereas for ehi with i = 2 and 3, the dynamics will remain (ehi )>ẋh = (ehi )>A′h(x−
xt).�

D.5 Proof of Proposition 3

Following the definition of Tb in section 5.4, when the DS, as shown in Propo-

sition 1, asymptotically converges to its attractor, we have x = x∗. When using

x∗ as defined in (5.4.4) we have

T−1
b

[
xabsd
xreld

]
= T−1

b

[
xabs + (xod − xo)

xRo − xLo

]
Rewriting and simplifying the previous equation yields

(xabsd − xod)− (xabs − xo) = 0

xreld − (xRo − xLo ) = 0

The above expression is zero as it represents the difference between the offset(xabs−
xo) respectively the relative end-effectors position(xRo −xLo ) = xrel and their val-

ues after convergence. For stable grasp these quantities remain constant through-

out the task and therefore their difference is 0. �

D.6 Joint limits
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Figure D.1: Example of joint velocity limits for 30 experiments. The left subplots represent

the limits of the left arm while the right subplots represent the limits of the right arm. The

red horizontal dashed line represents the upper and lower limits.
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Figure D.2: Example of joint torque limits for 30 experiments. The left subplots represent

the limits of the left arm while the right subplots represent the limits of the right arm. The

red horizontal dashed line represents the upper and lower limits.
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Appendix E

Appendices for Chapter 6

E.1 Jacobian of Inverse throwing map

To account for objects with different mass and aerodynamic properties, the

inverse throwing map introduced in Section 6.3.1 is parameterized by η and can

be written as

vr ≈
K∑
k=1

hk(x̄o; η)µ̃kẋo|(x̄o;η)(x̄
o; η) (E.1.1)

where µ̃kẋo|(x̄o;η) = µkẋo + Σkẋox̄oΦkx̄ox̄o(x̄o−µkx̄o) + ξkẋoη and where ξkẋoη is defined

as

ξkẋoη = ΣkẋoηΦkηx̄o(x̄o − µkx̄o)

+ [Σkẋox̄oΦkx̄oη + ΣkẋoηΦkηη](η − µkη)

The Jacobian of vr with respect to x̄o and parametrized by η can be written as

Jvr (x̄
o) =

∂vr
∂x̄o

=

Kv∑
k=1

[
(ckvx̄ + Skvx̄x̄o)

∂hk(x̄o)

∂x̄o
+ hk(x̄o)Skvx̄

]
(E.1.2)

where the matrices Skvx̄ and vectors ckvx̄ are given by

Skvx̄ = Σkẋox̄oΦkx̄ox̄o + Ξkvη

ckvx̄ = µkẋo − Skvx̄µ
k
x̄o + ζkvη

with

Ξkvη = ΣkẋoηΦkηx̄o

ζkvη = Skvη(η − µkη)

where Skvη = Σkẋox̄oΦkx̄oη + ΣkẋoηΦkηη with the Φkii defined as

(Σkx̄)−1 =

[
Σkx̄ox̄o Σkx̄oη

Σkηx̄o Σkηη

]−1

,

[
Φkx̄ox̄o Φkx̄oη

Φkηx̄o Φkηη

]
(E.1.3)
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The expressions of πk(x̄) and ∂πk(x̄)
∂x̄ in the Jacobian are computed as follows

hk(x̄o) =
αkp(x̄o|µkx̄,Σkx̄)∑K
k=1 α

kp(x̄o|µkx̄,Σkx̄)
(E.1.4)

and

∂hk(x̄o)

∂x̄o
=

1

D2
(
∂N

∂x̄o
.D −N. ∂D

∂x̄o
) (E.1.5)

where the terms N(x̄), D(x̄), ∂N
k

∂x , and ∂Dk

∂x are respectively given by

N(x̄o) =
αk

(2π)
N
2 |Σk| 12

e−
1
2 (χkµ)>(Σk)−1(χkµ) (E.1.6)

D(x̄o) =

K∑
k=1

αk

(2π)
N
2 |Σk| 12

e−
1
2 (χkµ)>(Σk)−1(χkµ) (E.1.7)

∂Nk

∂x̄o
= − αk

(2π)
N
2 |Σk| 12

e−
1
2 (χkµ)>(Σk)−1(χkµ)(χkµ)>(Σk)−1Sx̄ (E.1.8)

∂Dk

∂x̄o
= − 1

(2π)
N
2

K∑
k=1

αk

|Σk| 12
e−

1
2 (χkµ)>(Σk)−1(χkµ)(χkµ)>(Σk)−1Sx̄ (E.1.9)

where xkµ is defined as χkµ =

[
x̄o − µkx̄o

η − µkη

]
and Sx̄ =

[
I3×3 03×1

01×3 01×1

]
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E.2 Throwing objectives

In the learning the inverse throwing map, to resolve the inherent redundancy

problem by adopting a throwing strategy that seeks the minimal throwing veloc-

ity. Here we compare it with other strategies such as minimum landing vertical

velocity and minimal landing horizontal velocity.

The comparison results are shown in Table E.1, where the top two images

concerned the minimum horizontal landing speed and the bottom two images

concerned the minimum vertical landing speed. Although these two approaches

may minimize the landing impact of the object, they require however larger

release speeds.

Table E.1: Illustration of alternative throwing objectives to address the redundancy
problem in a planar throwing task with given release and landing positions. (top):
minimal landing horizontal speed. (bottom): minimum landing vertical speed

Objective v0 vl

min(ṙl)

min(żl)
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Benôıt Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel
optimization. Annals of operations research, 153(1):235–256, 2007.

John J Craig. Introduction to robotics: mechanics and control. Pearson Educa-
cion, 2005.

Elizabeth A Croft, Robert G Fenton, and Beno Benhabib. Time-optimal in-
terception of objects moving along predictable paths. In Proceedings. IEEE

167

https://www.statista.com/statistics/728530/industrial-robot-market-size-worldwide/
https://www.statista.com/statistics/728530/industrial-robot-market-size-worldwide/
https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/
https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/


International Symposium on Assembly and Task Planning, pages 419–425.
IEEE, 1995.

Elizabeth A Croft, Robert G Fenton, and Beno Benhabib. Optimal rendezvous-
point selection for robotic interception of moving objects. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B (Cybernetics), 28(2):192–
204, 1998.

Hongkai Dai, Andrés Valenzuela, and Russ Tedrake. Whole-body motion plan-
ning with centroidal dynamics and full kinematics. In 2014 IEEE-RAS Inter-
national Conference on Humanoid Robots, pages 295–302. IEEE, 2014.

Martin De Lasa, Igor Mordatch, and Aaron Hertzmann. Feature-based locomo-
tion controllers. In ACM Transactions on Graphics (TOG), volume 29, page
131. ACM, 2010.

N. Dehio, J. Smith, D. L. Wigand, G. Xin, H. Lin, J. J. Steil, and M. Mistry.
Modeling and control of multi-arm and multi-leg robots: Compensating for
object dynamics during grasping. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 294–301, May 2018. doi: 10.1109/
ICRA.2018.8462872.

Niels Dehio and Abderrahmane Kheddar. Robot-Safe Impacts with Soft Con-
tacts Based on Learned Deformations. In ICRA, Xi’an, China, May 2021.
URL https://hal.archives-ouvertes.fr/hal-02973947.

Niels Dehio, Yuquan Wang, and Abderrahmane Kheddar. Dual-arm box grab-
bing with impact-aware mpc utilizing soft deformable end-effector pads. IEEE
Robotics and Automation Letters, 7(2):5647–5654, 2022.

H. Diedam, D. Dimitrov, P.-B. Wieber, K. Mombaur, and M. Diehl. Online
walking gait generation with adaptive foot positioning through Linear Model
Predictive control. 2008 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1121–1126, September 2008. doi: 10.1109/IROS.
2008.4651055.

Ke Dong, Karime Pereida, Florian Shkurti, and Angela P Schoellig. Catch the
ball: Accurate high-speed motions for mobile manipulators via inverse dy-
namics learning. In 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 6718–6725. IEEE, 2020.

Johannes Englsberger and Christian Ott. Walking stabilization for
humanoid robots based on control of the capture point. AT-
AUTOMATISIERUNGSTECHNIK, 60(11):692–703, 2012a.

Johannes Englsberger and Christian Ott. Integration of vertical com motion
and angular momentum in an extended capture point tracking controller for
bipedal walking. In Humanoid Robots (Humanoids), 2012 12th IEEE-RAS
International Conference on, pages 183–189. IEEE, 2012b.

Johannes Englsberger, Christian Ott, Máximo A Roa, Alin Albu-Schäffer, and
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El Rafei, Clovis Francis, and Damien Sallé. Time-optimal pick-and-throw
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