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Abstract

Strong gravitational lensing results from the space-time distortions induced by massive

objects. The trajectory of light rays coming from a background source is deflected if they pass

near a massive body before reaching the observer. Strong lensing happens when the distortion

is significant enough to cause the appearance of multiple images of the source. Analyzing

gravitationally lensed objects enables a wide range of physical and cosmological applications,

such as probing the dark matter content in galaxies and clusters or measuring the Universe’s

expansion rate. The precision of these applications can be improved drastically with a larger

number of lenses. For this reason, finding new strong gravitational lensing systems is crucial.

Traditionally, gravitational lenses were found with meticulous visual inspections of imaging

datasets. However, the next generation of large-scale imaging surveys will produce such a large

amount of data that visual inspection will be impractical, thus motivating the development

of efficient automated detection methods to handle large datasets and improve the accuracy

of the different applications. The main topic of this thesis is to develop and improve our

lens-finding algorithms and to study new strong gravitational lenses in large-scale imaging

surveys.

The first part of this thesis has been to develop a new tool that allows the production of lens

simulations. Deep learning algorithms, particularly convolutional neural networks (CNNs),

have recently proven their efficiency in detecting lensing systems. In particular, CNNs can be

adapted to find a large variety of lenses at once, making them especially suited to be part of

automated detection pipelines. However, convolutional neural networks usually require large

sets of images to be trained. Unfortunately, the number of known lenses is at this time too

low to constitute a sufficient training set. For this reason, robust and flexible tools to simulate

realistic lenses have to be developed to generate training sets. Lens simulations must, however,

be as realistic as possible to avoid biases. In this thesis, we propose a simulation tool that

enables the production of large sets of realistic lens simulations. This tool has been designed

to be flexible and, thus, enables the production of lens simulations with different types of

deflectors for any imaging survey.

The second part consists in separating the light of a lensed source from the foreground object.

Indeed, in some cases, the lens features are hidden by the light of the foreground object

and deblending might help to identify the lenses with small image separation and enables

photometric redshift measurements or the initialization of lens models. This thesis presents a
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new data-driven method for deblending strong gravitational lenses based on neural networks.

Finally, due to the low occurrence rate of strong lensing, the false positive rate of detection

algorithms is still a significant challenge. Therefore, we present different tools that enable

the inspection of large sets of candidate images. In addition, evaluating the quality of lens

candidates is somewhat subjective since the features that define a lens may differ for different

experts. Therefore, we propose a set of grading guidelines that can be used for the subsequent

ground-based imaging lens searches in this thesis.

The CNN-based classifier, the deblending algorithm, and the simulation and visualization

tools are part of an automated lens-finding pipeline. This flexible pipeline can be adapted

to future large-scale surveys. We discuss in this thesis its first applications to the Canada-

France Imaging Survey and the Dark Energy Survey, which led to the discovery of 133 and 403

high-quality lens candidates, respectively.

Key words: Strong gravitational lensing – Deep Learning – galaxy lensing – galaxy surveys.
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Résumé

L’effet de lentille gravitationnelle intervient lorsque des rayons lumineux émis par une source

distante passent à proximité d’un objet massif. Lorsque que cela se produit, les rayons lumi-

neux sont déviés par la courbure de l’espace-temps engendrée par la présence de cet objet.

Quand cette courbure est suffisamment importante pour que plusieurs images de la même

source de lumière apparaisse, on parle de lentille gravitationnelle forte.

L’analyse des lentilles fortes est utile à un large éventail d’applications physiques et cosmo-

logiques allant de l’estimation du contenu en matière noire des galaxies à la mesure de la

vitesse d’expansion de l’Univers. La précision de ces applications pourrait être grandement

améliorée grâce à la découverte de nouvelles lentilles. Pour cette raison, la recherche de nou-

velles lentilles est actuellement un sujet important en astronomie. Dans le passé, les images de

lentilles gravitationnelles étaient découvertes grâce à une inspection méticuleuse des images

provenant de différents relevés astronomiques. Cependant, la prochaine génération de relevés

d’images astronomiques à grande échelle produira une telle quantité de données qu’une

inspection visuelle de chaque objet serait fastidieuse. Il est donc essentiel de développer des

méthodes de détection automatisées efficaces. Cette thèse est dédiée au développement et à

l’amélioration d’algorithmes pour trouver et étudier de nouvelles lentilles gravitationnelles

fortes dans les programmes de relevé d’images astronomiques à grande échelle.

Les algorithmes d’apprentissage automatiques profonds, plus particulièrement les réseaux

de neurones convolutifs, se sont récemment distingués dans le domaine de la détection de

lentilles dans les images astronomiques. Leur flexibilité les rend particulièrement adaptés lors

d’une utilisation à l’intérieur de pipelines de détection de lentilles. Cependant, l’entraînement

de réseaux de neurones convolutifs nécessite un grand nombre de données. Or, le nombre

de lentilles connues est encore très restreint et ne suffit pas pour entraîner des réseaux de

neurones. Pour cette raison, il est également important de développer des outils robustes et

flexibles pour simuler des lentilles fortes en parallèle de la recherche de lentilles. Les simula-

tions doivent cependant être aussi réalistes que possible pour éviter la création d’artefacts

pouvant perturber les réseaux de neurones. Dans cette thèse, je présente un outil de simu-

lation permettant de produire des ensembles de lentilles simulées dans le but d’entraîner

des réseaux de neurones. Cet outil est conçu pour être flexible et permettre de réaliser des

simulations de différents types de déflecteurs ou de différents télescopes.
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Dans certains cas, les images de la source passant par la lentille sont perturbées par la lumière

de l’objet occupant le premier plan. Distinguer ces deux flux lumineux permet d’aider à

la détection des lentilles pour lesquelles la séparation entre les images est très faible. La

distinction entre les images rend également possible l’estimation du décalage vers le rouge

des composants de la lentille ainsi que l’initialisation des paramètres pour la modélisation des

lentilles. Cette thèse présente une nouvelle méthode basée sur les réseaux de neurones pour

séparer les composants de lentilles gravitationnelles fortes.

En raison de la rareté des lentilles gravitationnelles fortes, le taux de faux positifs reste très

important avec les algorithmes de détection actuels. Pour cette raison, une partie de cette

thèse est consacrée à l’élaboration d’outils permettant l’inspection de grands ensembles

de candidats lentilles. De plus, l’évaluation de la qualité des candidats identifiés par les

algorithmes de détection est subjective. En effet, les caractéristiques qui définissent une

lentille peuvent varier d’un expert à l’autre. Par conséquent, j’introduis dans cette thèse un

ensemble de lignes directrices qui pourront être utilisées lors des prochaines recherches de

lentilles.

Le détecteur de lentille basé sur les réseaux de neurones convolutifs, l’algorithme de séparation

et les outils de simulation et de visualisation font partie d’un pipeline automatisé dédié à la

recherche de lentilles fortes. Ce pipeline est très flexible et peut être adapté à de nombreux

types de données. Je présente dans cette thèse la première application de ce pipeline sur les

données de deux relevés d’images astronomiques : "Canada-France Imaging Survey" et "Dark

Energy Survey" qui a conduit à la découverte de 133 et 405 nouvelles potentielles lentilles.

Mots clefs : Lentillage gravitationnel fort – Apprentissage automatique profond – lentillage de

galaxies– relevé de galaxies.
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1 Introduction

Gravitational lensing is a visible consequence of the curvature of space-time by massive

objects. Multiple images of the source may appear when a background source is located

behind a massive object such as a galaxy or a cluster. This phenomenon is called strong

lensing. This thesis aims to improve the search for strong lenses in large-scale imaging surveys.

More precisely, we focus on galaxies lensed by other galaxies ( galaxy-galaxy lenses).

1.1 Gravitation from Newton to Einstein

To describe the chain of events that led to the development of General Relativity, I follow

the historical introduction from S. Weinberg (1972) , to which the interested reader can refer

for more details. In the era of Newtonian mechanics, scientists understood gravitation as

an attractive force proportional to the masses of the objects involved in the interaction and

inversely proportional to the squared distance between the two objects. Einstein, however,

revolutionized the description of gravitation at the beginning of the nineteen-hundreds with a

new theory, General Relativity, in which gravity is described as a curvature of space-time so

that the concept of gravitational force is no longer needed.

In developing this theory, Einstein was guided by the observation that the motion of an object

in an inertial reference frame is indistinguishable from the motion of the same object in

free space subjected to a suitable uniform acceleration. This finding led him to formulate

the so-called strong equivalence principle: "Locally, and at any point of space-time physics

follows the special relativity laws and is not affected by the presence of a gravitational field."

Einstein already described in his previous theory, Special Relativity, how space and time can

be represented as intertwined dimensions of a four-dimensional continuum.

However, the combination of this vision of space, time, and gravity with his equivalence

principle was only possible thanks to the development of non-Euclidean geometry. The idea

of non-Euclidean geometry arose from the efforts of numerous mathematicians to prove the

fifth postulate of Euclidean geometry: "If a straight line falling on two straight lines makes

1



Chapter 1 Introduction

the interior angles on the same side of the lines taken together smaller than two right angles,

then the two straight lines, if produced indefinitely, meet on the side where the sum of the

angles is smaller than two right angles," can be derived from the other postulates, definitions,

and axioms described by Euclid in his treatise "Elements." All attempts to convert the fifth

postulate into a simple theorem failed. However, this prompted some mathematicians to

consider the possibility of a geometry framework in which the fifth postulate would not

be satisfied. The first variant of non-Euclidean geometry, called hyperbolic geometry, was

discovered independently by Carl Friedrich Gauss (1777-1855), János Bolyai (1802-1860),

and Nikolai Lobachevsky (1793-1856). The space described by this geometry has fascinating

properties and consequences, such as constant negative curvature and triangles where the

sum of the angles is less than 180 degrees. The real breakthrough here was not in the odd

properties of such a space but in the fact that a geometry with curvature opened up the

possibility of describing curved spaces as a function of their inner properties, such as their

metrics, without having to refer to conventional Euclidean space. This opened the possibility

of describing our physical world as a curved space and incidentally gave Einstein the necessary

mathematical background to develop the General Theory of Relativity, in which gravity is

described as a curvature of the space-time metric.

1.2 Gravitational lensing

Gravitational lensing is an observable consequence of General Relativity. Massive bodies such

as stars, black holes, or galaxies cause distortions in the space-time metric. The trajectory

of photons coincides with the geodesics of this metric. Gravitational lensing occurs when a

photon has to pass through the gravitational potential of a massive object before reaching

an observer. In this case, its trajectory is deflected. Therefore, the observer sees the photon

as if it had been emitted from another location. Although gravitational lensing was already

described in the framework of Newtonian mechanics, in particular by Johan von Soldner in

1804, the correct calculation of the deflection angle was only possible in the framework of

General Relativity. It should also be noted that the Newtonian calculation of the deflection

angle requires a mathematical trick to assign a mass to the photons. This fact already seemed

to unsettle Soldner when he wrote, "Hopefully no one will find it objectionable that I treat

a ray of light completely like a heavy body. Because those light rays have all fundamental

properties of matter, one sees the phenomenon of aberration, which is only possible if light

rays are material. - And nothing can be imagined to exist and act on our senses without having

the properties of matter.".

After achieving the development of General Relativity, Einstein recomputed the value of the

deflection angle and found a value two times greater than the Newtonian value. He was proven

right on the occasion of a solar eclipse in 1919. On this occasion, Arthur Stanley Eddington

and Frank Watson Dyson conducted an experiment where they measured the displacement

of the stars during the eclipse and found that the values matched the prediction of General

Relativity. Not long after the eclipse, in 1924, Orest Khvolson suggested for the first time
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that gravitational lensing may produce multiple images of the same source or even ring-like

features (Chwolson, 1924). Einstein was, however, very pessimistic about the possibility of

observing this phenomenon as he considered lensing by stars. He concluded in Einstein

(1936) that the separation between the images would be on the order of the milli- arcsecond,

and the multiple images could therefore not be resolved. Fritz Zwicky was, however, more

optimistic on the subject. Instead of considering lensing by stars, he assessed the possibility

of observing lensing by galaxies (even though, at this time, galaxies were not completely

understood and called "extra-galactic nebulae"). He concluded that the separation between

the images is sufficiently large for such objects to be resolved by ground-based telescopes.

Therefore, he thought such an event is very likely to be observed. He gathered his thoughts in

two publications Zwicky (1937a) and Zwicky (1937b) , where he also described for the first

time the possibility of using gravitational lensing as a way to probe the mass of galaxies.

As we detail in Sect. 2.3, gravitational lensing has numerous applications in astrophysics, going

from constraining cosmological models to probing the fraction of dark matter in foreground

galaxies. The precision of these measurements depends dramatically on the number of lenses.

The first galaxy acting as a gravitational lens was discovered fortuitously by Walsh et al. (1979) .

Here, the lensed source was a quasar. Similar discoveries of quasars lensed by galaxies followed

shortly after this observation (e.g. Huchra et al., 1985; Weymann et al., 1980).

Gravitational lensing not only changes the observed position of the background source but

can also magnify it. Consequently, in a magnitude-limited sample, the probability of an object

being magnified is higher than for a random field source (Narayan & Wallington, 1993). The

first systematic searches of gravitational lenses used this effect, called the magnification bias.

They looked for bright sources within populations of quasars or radio sources. The candidates

obtained with this method were then reinspected with high-quality imaging data to confirm

their lens nature.

The first lensed quasars found in the context of systematic searches in the optical domain are

described in Magain et al.; Surdej et al. (1988, 1987) . They were followed by larger searches

performed for example in the Hamburg-ESO bright quasars catalogue (Blackburne et al.,

2008; Wisotzki et al., 2004; Wisotzki et al., 2003; Wisotzki et al., 2002; Wisotzki et al., 2000;

Wisotzki et al., 1993) or in the Sloan Digital Sky Survey (SDSS) (Inada et al., 2012; Oguri et al.,

2006). Similar strong lens searches were also performed in the radio domain, for example, in

the CLASS survey (Myers et al., 2003). In this type of search, the pre-selection of candidates

is carried on the properties of the lensed sources. They are therefore often referred to as

"source-selected" searches. Source-selected searches enable us to identify very bright objects

as quasars.

Galaxies lensed by galaxies can also produce visible lensing features. Since there are much

more galaxies than quasars in the visible universe, we expect that galaxy-galaxy lenses are

more frequent than quasar-galaxy lenses. The main difference here is that even considering

the magnification effect, the difference between the luminosity of the foreground objects and
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the lensed features is small. Therefore such lenses cannot be found via the magnification

bias. The searches for galaxy-galaxy lenses are usually performed by pre-selecting samples

of galaxies that have a high probability of acting as lenses and are therefore called "lens-

selected". Luminous red galaxies (LRG) are the most frequent deflectors targeted in lens-

selected searches due to their large masses. However, other types of galaxies, such as spirals,

may sometimes produce visible lenses.

One of the first examples of lens-selected search is the Sloan Lens ACS (SLACS) survey (Bolton

et al., 2006). It was performed by looking for the presence of potential high redshift emission

lines in the spectra of a sample of LRGs. Other examples using a similar method are the BOSS

Emission-Line Lens Survey (BELLS) (Brownstein et al., 2012) which targeted LRG acting as

lenses, and the Sloan WFC Edge-on Late-type Lens Survey (SWELLS) (Treu et al., 2011) which

focused on edge-on spiral galaxy deflectors. Spectroscopic searches are limited in redshift

since they require visible emissions lines. By contrast, searches on imaging data allow us

to find lensed sources at high redshift, provided that they display visible lensing features.

However, some of the candidates found with spectroscopic searches may not be found with

imaging searches if the separation between the source images is too small, especially with low-

resolution data. The two methods are therefore complementary and find different candidates.

Recently, lens-selected searches have been performed in different surveys such as the Kilo

Degree Survey (KiDS) (de Jong et al., 2013), the Dark Energy Survey (DES) (Dark Energy

Survey Collaboration et al., 2016), Panoramic Survey Telescope And Rapid Response System

(PanSTARRS) (Chambers et al., 2016), the Hyper Suprime-Cam Subaru Strategic Program (HSC)

(Aihara et al., 2019) and in the Ultraviolet Near- Infrared Optical Northern Survey (UNIONS)

(Guinot et al. in prep.).

Future and ongoing large-scale imaging surveys, for example Euclid (e.g. Amiaux et al., 2012;

Laureijs et al., 2011), the Rubin Observatory Legacy Survey of Space and Time (LSST) (e.g.

Ivezić et al., 2019) and Roman (Spergel et al., 2015) will provide a large amount of high-quality

imaging data and consequently numerous gravitational lenses.

There exist several methods to find lenses in imaging data, such as clustering algorithms

using pixel intensities to detect the presence of elongated and curved objects in an image

(Cabanac et al., 2007; Lenzen et al., 2004) or analysis of the residuals after the subtraction of

the foreground galaxy (Gavazzi et al., 2014; Joseph et al., 2014). Nevertheless, recently the use

of machine learning, in particular convolutional neural networks (CNN), to classify images

has become prevalent due to the significant improvement of the graphics processing units. It

has already been used successfully to find candidates in the surveys mentioned above (e.g.

Jacobs et al., 2019a; Rojas et al., 2021; Savary et al., 2021; Cañameras et al., 2020; Petrillo et al.,

2018; Jacobs et al., 2017; Petrillo et al., 2017).

The long-term goal of this thesis is to enable astrophysical and cosmological applications

of strong gravitational lensing at galaxy, group, and cluster scales, given present and future

wide-field surveys like DES, CFIS, Euclid, LSST. The focus of my thesis was principally on
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enabling the detection of galaxy-galaxy lenses. This involves developing a reliable set of tools

to find and classify these rare objects and understanding the limitations of the algorithms used

for this purpose. In this thesis, the focus is on the use of neural networks to find galaxy-scale

lenses. It will first require to design tools to produce the training sets for Machine Learning

methods and then the design of a fully flexible but robust lens-finding pipeline.

In this thesis, I detail my contributions to the realization of the lens-finding pipeline. It is

organized as follows. Chapter 2 introduces the theoretical aspects of graviational lensing. It

also summarizes the main applications of strong lensing. Chapter 3 summarizes the theoretical

concepts and machine learning methods used throughout this work. Chapter 4 summarizes

the methods used to search galaxy-galaxy lenses in imaging data and the main challenges

encountered with machine learning methods. I also discuss our participation in the Lens

finding challenge 2.0. Chapter 5 presents our tool to simulate lenses, which serves to produce

training sets to train the classifiers of the lens-finding pipeline. In Chap. 6, I present the

interface I developed to inspect large sets of candidates as well as the guidelines we built to

standardize the visual inspection. In Chap. 7, the algorithm I developed to deblend the light of

the background source from the light of the deflector in imaging data is presented. Finally,

Chap. 8 describes the two first applications of the lens finding pipeline to real data.
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2 Gravitational lensing theoretical
framework

Gravitational lensing is one of the observable consequences of General Relativity. It is also

a powerful tool for a variety of astrophysical applications. In this Chapter, I summarize the

theoretical aspects of gravitational lensing and present the different regimes of gravitational

lensing: strong, weak, and micro. At the end of this chapter, I detail some applications of

strong lensing at galaxy scale, which is the main focus of this thesis.

2.1 Formalism

Here, I summarize the theoretical aspects of gravitational lensing. A more complete descrip-

tion can be found, for example, in Narayan and Bartelmann (1996) , Schneider (2006) and

Meneghetti (2021) from which this section is widely inspired.

2.1.1 The lens equation

We present a simplified scheme of a gravitational lens in Fig. 2.1. Let us consider a source and

lens placed respectively at a distance DS and DL from the observer. The distance between

the source and the lens is DLS . It should be emphasized that the distances used here are

angular distances and thus, depends on the choice of the cosmological model. In particular,

DLS = DL +DS is not necessarily true. We hypothesize that the lens and source plane are

much thinner than DL and DS and that the deflection angle is very small, such that we

can approximate the source and the lens as 2D objects lying in the source and lens plane,

respectively. In this model, called the thin lens approximation, the deflection effect takes

place within the lens plane, and therefore, the bending of the light is approximated as a sharp

angle. Let’s further assume that all the angles depicted in Fig. 2.1 are very small. Consequently,

we can express the impact parameter as ξ⃗ = DL θ⃗ and the real angular position of the source

η⃗ = DLSβ⃗. We define the optical axis as the axis perpendicular to the source and lens planes

and passing through the center of the deflector.

Due to the presence of a massive deflector in the line of sight, the light emitted from the
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Figure 2.1: Illustration of the geometry of a gravitational lens. θ⃗ and β⃗ are the angular position
of one image and the source, respectively. Due to the gravitational lensing effect, the observer
sees the source light as if it came from the angular position θ⃗.

angular position β⃗ is seen as if coming from the angular position θ⃗. The deflection angle

α⃗s is always expressed for a particular angular position θ⃗) such that we write it α⃗s(θ⃗). It was

the parameter measured in the first observations of gravitational lensing. However, we use

another quantity here, the scaled deflection angle α⃗(θ⃗), which directly expresses the difference

between the real angular position of the source β and the position of the images seen by the

observer α.

The scaled deflection angle can be related to the deflection angle as follows:

α⃗(θ⃗) =
DLS

DS
α⃗S(θ), (2.1)

where αS(θ) is the deflection angle. The relation between the angular position of one of the

lensed source image θ and the real angular position of the source β can then be derived using

simple geometry:

β⃗ = θ⃗− α⃗(θ⃗), (2.2)

where α⃗(θ⃗) is the scaled deflection angle.

Equation 2.2 is called the lens equation. If more than one angular position θ verifies the lens

equation for a fixed β, the observer sees multiple images of the source.
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In analogy with classical mechanics, the scaled deflection angle can be expressed as the

gradient of a potential, called the deflection potential, α⃗(θ⃗) = ∇Φ(θ). It is defined as follows:

Φ(θ⃗) =
1

ı

∫
κ(θ⃗′) ln(|θ⃗− θ⃗′|)d⃗θ′, (2.3)

where κ(θ) is the dimensionless surface mass density, also called convergence for a given

angular position of the source. It can be written:

κ(θ) =

∑
(DL θ⃗)∑

c
, (2.4)

where the critical density
∑

c corresponds to:

∑
c

=
c2

4πG

Ds

Dl DLS
. (2.5)

The lens equation, in combination with the expression of the deflection potential, links the

angular position of the observed images with the surface mass density of the lens and the

different distances involved in the problem.

With the help of these two equations, we will now derive some properties of the lensed source

images.

2.1.2 Properties of the lensed source images

Gravitational lensing is achromatic, meaning that all photons are deflected similarly indepen-

dently of their wavelength, and the surface brightness of the source is conserved because of

Liouville’s theorem. However, gravitational lensing affects the source images’ size, shape, and

total flux.

To understand better the distortion of the source images, let us consider the mapping f : θ⃗→ β⃗

which converts the angular position of the observed images of the source θ⃗ into the real

angular position of the source β⃗. With the help of the lens equation 2.2, we can express the

Jacobian matrix of this transformation, also called the amplification matrix, as follows:

A(θ) =
∂β⃗

∂θ⃗
=
∂θ⃗

∂θ⃗
− ∂α⃗

∂θ⃗
= I2 − ∂2Φ

∂θi∂θ j
=

(
1−κ−γ1 −γ2

−γ2 1−κ+γ1

)
, (2.6)

where κ is the convergence defined in Eq. 2.4 and γ1 and γ2 correspond to the following terms:

γ1 =
1

2

(
∂2Φ

∂2θx
− ∂2Φ

∂2θy

)
, (2.7)
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γ2 =
1

2

(
∂2Φ

∂θx∂θy

)
. (2.8)

The amplification matrix A(θ) give use access to a first order approximation of the mapping

f : θ⃗→ β⃗. To highlight better the transformations happening to the source f : β⃗→ θ⃗ we will

look at the inverse of the amplification matrix, the magnification matrix:

M(θ) =µ

(
1−κ+γ1 γ2

γ2 1−κ−γ1

)
= (1−κ)µ

(
1 0

0 1

)
+µ

(
γ1 γ2

γ2 −γ1

)
, (2.9)

where µ = det A(θ)−1 is named magnification since it corresponds to the ratio of the fluxes of

the lensed image of the source and the real source. The existence of the magnification matrix

M(θ) is conditioned by the fact that det A(θ) must be non null. In fact, all the positions of the

lens plane θ where det A(θ) = 0 form a boundary called critical curve where the magnification

is theoretically infinite. The magnification remains however finite in practice, even if very

high, since the geometrical optics approximation does not hold in this case, and wave optics

predicts a finite magnification. The mapping of the critical curve to the source plane is called

the caustic lines. Each time the source crosses a caustic from the outside to the inside, a new

pair of images of the source either appears. Conversely, an image pair disappears when the

source crosses the caustic in the reverse direction. The first term of the magnification matrix

(1−κ)µ

(
1 0

0 1

)
, (2.10)

operates an isotropic re-scaling of the coordinates. The convergence κ acts therefore on the

size of the images but does not change the shape. The second part of the magnification matrix

µ

(
γ1 γ2

γ2 −γ1

)
, (2.11)

stretches the coordinates along the axis θx = θy and either θx = 0 or θy = 0. For this reason

γ1 and γ2 are called shear components. The effect of κ, γ1 ,and γ2 on the source images is

represented in Fig. 2.2.

Gravitational lensing preserves the surface brightness of the source, provided that there is no

absorption or emission of light. The apparent solid angle of the lensed source dΩθ is, however,

different from the real one dΩβ because of the deformations induced by lensing.

We mentioned earlier that the lens equation could have multiple solutions, and thus the

multiple images of the source can be visible. We will now examine the formation of multiple
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Convergence only Shear only

κ>1 γ1>0 γ2>0κ<1 γ1<0 γ2<0

Figure 2.2: Illustration of the effect of the convergence κ and shear γ1, γ2 on a circular source
(in black).

images and their positions.

By using the mathematical identity β⃗−θ⃗ = 1
2∇(β⃗−θ⃗)2, the lens equation Eq.2.2 can be rewritten

as follows:

∇(
1

2
(β⃗− θ⃗)2 −Φ(θ⃗)) = ∇τ(β⃗, θ⃗) = 0, (2.12)

where we introduced the Fermat potential τ(β⃗, θ⃗) = 1
2 (β⃗− θ⃗)2 −Φ(θ⃗). Therefore, the lens

equations’ solutions correspond to the Fermat potential’s stationary points. As we will detail

in Sect. 2.3.3, this equation also reflects Fermat’s principle, which states that light follows

trajectories for which the travel time is stationary.

The condition ∇τ(β⃗, θ⃗) = 0 forces images to appear only at the extrema of the Fermat potential.

Provided the source is not located on a caustic, the images’ positions correspond to the

Fermat potential’s minima, maxima, or saddle points. Since the amplification matrix is the

Hessian matrix of the Fermat potential, the type of extrema on which images are located will

be reflected by the signs of the eigenvalues of the amplification matrix A(θ) and hence with

the sign of the magnification µ. The trace of the amplification matrix can be expressed:

tr A(θ⃗) = 2(1−κ). (2.13)

We can therefore have one of the following three situations:

• The image is positioned at a minimum of the Fermat potential. The eigenvalues of

the amplification matrix are positive, as well as the magnification µ. The trace of the

amplification matrix is positive. Therefore 2(1−κ) > 0 implies κ< 1.

• The image is positioned at a maximum of the Fermat potential. The eigenvalues of

the amplification matrix are all negative. Thus, the magnification µ is positive, and the
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convergence κ> 1.

• The image is positioned at a saddle point of the Fermat potential. The eigenvalues of

the amplification matrix have opposite signs; hence the magnification is negative. tr A

can be either negative or positive. Therefore, we cannot conclude on the sign of the

convergence κ. In this situation, the image is seen as flipped by a mirror effect.

The number of images for a fixed source position β is predicted by the odd-number theorem

(Burke, 1981), which states that the number of multiple images produced by a bounded and

smooth lens is odd and equal to the number of saddle points +1. For this, we can deduce the

conditions for multiple images to happen. As we said earlier, each time the source crosses a

caustic, i.e., a point where det A(θ⃗) = 0, two images appear or disappear. We also know that

if the source is located far from the optical axis, only one image should be visible, and this

image should be located at a minimum of the Fermat potential. Therefore because of the

odd-number theorem, a lens can produce multiple images if and only if there exist positions

θ for which det A(θ⃗) < 0. Similarly, κ> 1 ensures that multiple images are produced. This is,

however, not a necessary condition.

The shape of the observable lensing features depends on the geometry of the deflector’s

gravitational potential and the source’s position. We show in Fig. 2.3 the three main possible

configurations for an elliptical deflector approximated with a singular isothermal ellipsoid

(SIE) (Kormann et al., 1994; Kassiola & Kovner, 1993). More complex profiles may lead to a

larger number of images and possible configurations (e.g. Orban de Xivry & Marshall, 2009). It

is, therefore, difficult to concisely word the visual aspect of a gravitational lens.

2.1.3 Einstein radius

The Einstein radius estimates the order of magnitude of the separation between the images. We

will derive its expression here in the context of a simple model of lens called the Schwarzschild

lens. This model approximates the lens and the source as point masses. We can, therefore,

use the Schwarzschild metric, which is an exact solution to the Einstein field equations and

describes the gravitational field outside a spherical mass. Using the Schwarzschild metric, the

deflection angle can be expressed as follow:

αS(θ⃗) =
4GM

c2ξ
, (2.14)

where G is the gravitational constant, and M is the mass of the lens. Note that we expressed all

the angular positions as scalar since the problem can be projected in a 2D plane. If the lens

and the source are perfectly aligned, the observer will see a ring around the lens. The radius of

this ring is what we call the Einstein radius. We can derive its expression by inserting Eq. 2.14
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Source plane Lens plane

Cross

Cusp

Fold

Figure 2.3: Scheme illustrating examples of the three typical lensing configurations formed
with an elliptical deflector approximated as an SIE. The left column displays the source
positions (in blue) in the source plane with respect to the caustics (in black). The right column
shows the shape position with respect to the critical lines (in black) and the shape of the
observed lensing features (in blue).

13



Chapter 2 Gravitational lensing theoretical framework

Figure 2.4: Image of the lensed quasar J1131–1231, combined image from NASA’s Chandra
X-ray Observatory (X-rays domain) and HST (optical domain). It displays the effect of strong
lensing on punctual and extended objects since the source is the addition of a point source
(the quasar in pink) and an extended source (the galaxy hosting the quasar, in orange). The
substructure of the host galaxy is also visible in the Einstein ring. Credit: adapted from
Chandra X-ray observatory (2018)

into the lens equation Eq. 2.2:

θE = 2

√
GM

c2

DLS

DSDL
. (2.15)

Cluster scale lenses with masses that can be higher than 5× 1014M⊙ can give rise to Ein-

stein radii in the order of magnitude of 10 arcseconds (Bartelmann & Schneider, 2001). For

galaxy-scale lenses (early type deflector), the Einstein radii are in the order of magnitude of 1

arcsecond (e.g. Gavazzi et al., 2012).

2.2 Regimes of gravitational lensing

Gravitational lensing events can usually fit into one of the following three categories: strong,

weak, or micro, depending on the mass of the lens and the relative alignment between all
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bodies taking part in the lens system.

We use the expression strong or macro lensing when multiple images or arclets are noticeable

around the lens. Since the image separation is proportional to the lens mass, it requires very

massive foreground bodies. For this reason, the foreground objects involved in strong lensing

events are usually galaxies or galaxy clusters. However, the sources can be galaxies, quasars, or,

less frequently, supernovae. The aspect of the lensing features changes drastically depending

on the nature of the source. If the source is an extended object, such as a galaxy, the lensing

features take the form of arclets or a ring. More precisely, the lensed source forms a ring,

named the Einstein ring, around the deflector when the alignment between the source, the

lens, and the observer is perfect. If the lensing system departs from this position, the ring splits

into arclets until the alignment becomes too off-axis, and the multiple images disappear. In

this case, the lensing system enters the weak lensing regime. In the case of a point source, the

Einstein ring is replaced with an Einstein cross. In this configuration, there is also a fifth image

in the center of the Einstein cross. However, it is usually not visible as it is demagnified and

blended into the lens light. When the source moves away from the configuration producing

the Einstein cross, the number and relative position of the images varies based on the position

of the source with respect to the caustics. We show in Fig. 2.4 an example of a gravitational

lens that displays both point-like and extended lensing features.

Weak lensing encompasses the cases where only distortions are visible in the lensed source

image. It generally occurs when the lens is very massive, but the source is not sufficiently well

aligned with the lens and the observer to cause a strong lensing event. In such a case, there are

no multiple images. Weak lensing is challenging to observe on a unique lensed source since

the distortions can be minimal. However, it is visible in the spatial distribution of ellipticities

and the alignment of objects close to the lens. In general, the galaxies affected by weak lensing

seem slightly aligned and elongated in the direction tangential to the lens.

Microlensing is essentially analogous to strong lensing since it also leads to multiple images of

the lensed source. The difference is that the mass of the lens is much smaller than for strong

lenses, generally in the range of 10−6 ≤ m/M⊙ ≤ 106m/M⊙ (Schneider, 2006). This induces

very small image separation, on the order of the milli- arcsecond for distances 10kpc ≤ DLS ≤
1Gpc Therefore, the different images cannot be observed separately with a telescope. The

overlap of the images boosts the observed luminosity of the lensed source. The apparent

magnification of the source corresponds then with the sum of the individual magnification of

the images.

2.3 Strong lensing applications

By forming and magnifying multiple images, strong lensing can provide invaluable help in

an extensive range of astrophysical and cosmological problems. We will present here a brief

overview of the leading applications.

15



Chapter 2 Gravitational lensing theoretical framework

2.3.1 Natural telescope

Thanks to the magnification effect, strong lensing makes the images of distant background

sources appear brighter and larger than if they were observed directly. This allows us to observe

galaxies that are too faint or too small to be resolved by usual instruments, for example, in

Welch et al. (2022) , who report a strongly lensed star at redshift 6.2. This also enables us to

probe the small scales structures of distant galaxies (Marshall et al., 2007) and in particular

to study their properties, for example, their ages or star formation (e.g. Vanzella et al., 2022;

Khullar et al., 2021; Johnson et al., 2017; Wuyts et al., 2014). This application is not limited to

the visible domain. It is also used to detect high redshift sub-millimeter galaxies to estimate

their contribution to the cosmic background radiation (e.g. Blain & Phillips, 2002; Blain et al.,

1999).

Cluster scales lenses allow us to unveil the furthest and fainter objects. However, galaxy-

galaxy lenses enable a detailed study of particular sources. Examples of such sources are

the Cloverleaf Quasar (Magain et al., 1988), a quasar at redshift 6.5 (Fan et al., 2019), SPT-S

J031132-5823.4 (Vieira et al., 2013) and a quasar at redshift 6 in a compound lens (Collett &

Smith, 2020). Deep and high-resolution imaging with the new generation of telescopes, such

as the James Webb Space Telescope (JWST), will enable a larger use of this application with

galaxy-galaxy lensing.

2.3.2 Dark matter content of clusters and galaxies

The first evidence of the existence of an invisible but massive matter populating the universe

comes from Zwicky (1933) . He noted that the velocity dispersion of galaxies within the Coma

cluster was significantly larger than expected from the luminous mass. He derived the cluster’s

mass from the Virial Theorem and noted a large discrepancy between the luminous and

gravitational masses. The existence of an unknown, invisible matter left most astronomers

skeptical until the seminal work of Vera Rubin (Rubin et al., 1980, 1978), who established that

the rotation curves of galaxies (i.e., the orbital velocities of stars and gas relative to their radial

distance from the center of the galaxy) remain flat beyond the half-light radius. From this, we

know that galaxies are surrounded by a halo of invisible matter called dark matter. The nature

of dark matter is still unknown. We know, however, that it only interacts with baryonic matter

through gravitational force.

Strong lensing is linked to the mass distribution of the deflector. In particular, it is sensitive

not only to the luminous mass but also to the dark matter component and can be used to

study galaxy mass profiles (Bellagamba et al., 2017; Sonnenfeld et al., 2015; Koopmans & Treu,

2003).

For example, this property can be used to confirm the presence of dark matter halos around

galaxies. Indeed, strong gravitational lensing combined with stellar kinematics of the deflector

galaxy allows us to probe the mass distribution at radii beyond the effective radius (e.g. Barnabè
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et al., 2009; Treu & Koopmans, 2004). Gravitational lensing can also be used to probe the dark

matter distribution, which could help to understand the interplay between baryon and dark

matter (e.g. Jiang & Kochanek, 2007). Numeral simulations of cold dark matter predict a cusp in

the center of the density profile of galaxies. However, this prediction contradicts observations

of the rotation curve of cold dark matter-dominated dwarf galaxies, which indicate a flat

profile in the center. Because of its ability to probe the dark matter, strong lensing can help to

solve the contradiction (e.g. N. Li & Chen, 2009).

The CDM model predicts the existence of substructures of the dark matter halos. However,

there is a discrepancy between the abundance of luminous satellites observed around galaxies

and the theoretical prediction obtained from N-body simulations (e.g. Kravtsov, 2010). One

possibility to explain this discrepancy is that the substructures are constituted with dark matter

only and thus are not visible. In the case that non-visible substructures could not explain the

discrepancy, this would involve an alternative model for dark matter and galaxy formation (e.g.

Miranda & Macciò, 2007). Gravitational lensing is currently the only method able to observe

dark matter substructures(e.g. Kravtsov, 2010).

Small massive bodies belonging to the deflector galaxies, such as stars or dark matter clumps,

cause small luminosity variations between the lensed source’s different images. These changes

in the luminosity of the images depend on the velocity and frequency of the small deflectors

and their nature and are visible as perturbation of the magnification pattern. In the case of

point sources, this effect produces important differences in the flux ratio between the different

images to what could be excepted without the substructures. It can therefore be used to detect

their presence (e.g. Ritondale et al., 2019; Chatterjee & Koopmans, 2018; Dalal & Kochanek,

2002; Metcalf & Zhao, 2002; Mao & Schneider, 1998).

The presence of substructures can also reveal itself in astrometric and time-delay measure-

ments. Indeed the substructures affect geometry of the lensing system, and thus, the lensing

observables (e.g. Keeton & Moustakas, 2009; Chen et al., 2007). In the case of galaxy-galaxy

lenses, the perturbations can be observed in systems with a complete or almost complete

Einstein ring (Vegetti et al., 2018; Vegetti et al., 2014; Vegetti et al., 2012; Vegetti et al., 2010;

Vegetti & Koopmans, 2009; Koopmans, 2005).

2.3.3 Hubble constant measurement

The current expansion rate of the Universe or Hubble constant H0 is one of the parameters of

the ΛCDM model. Finding its value would represent an essential step toward validating and

constraining the cosmological model of the Universe (D. H. Weinberg et al., 2013).

Latterly, a discrepancy emerged between the value of H0 obtained from “early” universe

measurements and "late" universe measurements (Freedman, 2017). The value derived from

the temperature fluctuations of the cosmic microwave background (Planck Collaboration

et al., 2020; Planck Collaboration et al., 2016) is in tension with the value obtained from local
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measurements of supernovae type Ia and Cepheid distances from the Supernova H0 for the

Equation of State (SH0ES) project (Riess et al., 2019; Riess et al., 2016). The measurements of

H0 using the cosmological microwave background fluctuations (CMB) strongly depend on the

cosmological model since they depend on the fraction of the different Universe components.

However, local measurements of H0 are almost independent of the cosmological model.

A discrepancy between these two values could therefore call into question the validity of

the ΛCDM model. This necessitates independent measurements of H0, which gravitational

lensing can provide via so-called ’time delay’ measurements (e.g. Linder, 2011; Treu et al.,

2011).

The Fermat potential is related to the time delay between a photon emitted from a source

affected by the gravitational potential of the lens and a photon emitted from the same position

but in the absence of the lens in the following way:

t (β⃗, θ⃗) =
1

c

DLDS

DLS
(1+ zs)τ(β⃗, θ⃗), (2.16)

where zs is the redshift of the source.

This quantity is not directly measurable because we do not have access to the travel time of

the unlensed light ray. However, it is possible to observe the difference in time delays between

pairs of images.

The difference of time delay between images i and j is given by:

∆ti , j =
1

c

DLDS

DSL
(1+ zS)

(
τi (β⃗i , θ⃗i )−τ j (β⃗ j , θ⃗ j )

)
. (2.17)

The different angular distances mentioned in Eq.2.17 are inversely proportional to H0. Since

the other terms do not depend on H0, ∆ti , j is proportional to H−1
0 . Time delay differences

also depend on the cosmological model since the angular distances depend on the matter,

dark energy, and curvature density. Nevertheless, this dependence is weak (only to the power
1
2 ). Thanks to this weak dependency, time delay measurements can be used as an independent

probe to solve the H0 tension. This method requires using a varying source, i.e., a source

whose luminosity is not constant in time. To estimate the time delay, we measure the shift

between the light curves (luminosity as a function of time) of the different images of the source.

This method was first proposed by Refsdal (1964) using type Ia supernovae (SNIa) as lensed

sources. However, this method has not yet been used with this type of source as the first

resolved lensed SNIa was only recently discovered by Goobar et al. (2017) . Instead, the first

measurements were performed with lensed quasars.

Measurements of time delays of strongly lensed quasars have been conducted by the H0

Lenses in COSMOGRAIL’s Wellspring collaboration (H0LiCOW) (Suyu et al., 2017). Recently,

they achieved 2.4% accuracy in the measurement of H0 (Wong et al., 2020) using joint analysis

of the time delays of six lensed quasars.
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However, using quasars for this type of measurement has some drawbacks compared to

SNIa. First, degeneracies that can affect the measurement of time delays arise during the

reconstruction of the lens potential. The so-called source-position transformations of the lens

mass model leave the positions of the images and the flux ratios unchanged. They are known

as the source-position transformations expounded in Schneider and Sluse, 2013 (2014, 2013) ,

of which the mass sheet degeneracy is a particular case. SNIa can overcome these degeneracies

since they are standard candles. Indeed, the knowledge of the intrinsic luminosity gives the

possibility to estimate the absolute magnification of the images (e.g. Schneider & Sluse, 2014,

2013) which is impossible for quasars. In addition, measurements of SNIa time delays require

much shorter monitoring than quasars (weeks compared to years) (Bonvin et al., 2019).

In the future, the precision H0 measurements with lensed SNIa will be possible thanks to future

large-scale surveys. For example, around 500 lensed SNIa are expected in LSST; among them,

100 would be suitable for measurement time delays (Suyu et al., 2020). In this context, the

Highly Optimized Lensing Investigations of Supernovae, Microlensing Objects, and Kinematics

of Ellipticals and Spirals (HOLISMOKES) (Suyu et al., 2020) was launched to measure H0 with

SNIa. In the context of their project, the sample of lensed SNIa will be extended by monitoring

the position of known galaxy-galaxy lenses in search of transient events with the Zwicky

Transient Facility (ZTF) (Bellm et al., 2019; Masci et al., 2019). The lens candidates found in

the context of this thesis in the CFIS survey are included in the sample of known lenses that

HOLISMOKES currently monitors.
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In the previous chapters, we described the formalism of gravitational lensing and the impor-

tance of finding large sets of new lenses. With the advent of large-scale surveys, the available

data will grow exponentially. This requires the development of automated algorithms to detect

or classify astronomical objects. Because of their ability to make inferences directly from data,

machine learning algorithms are especially suited for such tasks. In this thesis, the focus is on

automated methods to detect galaxy-galaxy lenses in imaging data. We present here the basic

concepts of machine learning and a set of techniques and metrics especially suited to the field

of lens finding. This chapter is inspired from Goodfellow et al. (2016) to which we refer the

interested reader for a more detailed description.

3.1 A simple introduction to machine learning

In the early day of computer algorithms, computers were used for tasks that could be solved

with a list of instructions. The era of big data called for another type of algorithm to deal with

tasks that are not easily translatable into sets of instructions. One good example is image

classification. If one wants to build an algorithm to separate images of oranges from pears

images, one can write instructions about the fruits’ shape and color. For example: "if the

object is orange and round: classify the image as an orange. If the object is green or red and

not round: classify the fruit as a pear". However, an image as Fig. 3.1 will be impossible to

classify with this algorithm.

In contrast, it will be straightforward for a human to identify the image as an orange even

if the color is altered. The algorithm may be improved by adding a set of more complex

instructions but will fail to classify images that do not match precisely the instructions. A

cleverer approach would be to mimic how a child would learn to differentiate oranges from

apples, i.e., by inferring the important features after being exposed to a large number of

examples of the two different kinds of fruits. It is the idea behind machine learning. Machine

learning encompasses a large set of algorithms able to infer information directly from the

data.
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Figure 3.1: Orange with altered colors. In the context of classification of fruits images, this type
of image is difficult to categorize with an algorithm based on a list of instructions. A machine
learning algorithm will identify the presence of features typical to orange and may classify it
correctly despite its unusual color.

3.1.1 Learning in the context of machine learning

The term "learning" within the framework of machine learning has to be understood as

learning by experience, as stressed in the definition by Mitchell (1997) : "A computer program

is said to learn from experience E with respect to some class of tasks T and performance

measure P, if its performance at tasks in T, as measured by P, improves with experience E."

It is very important to realize that, in machine learning, it is not only the algorithm that plays

an essential role. The choice of the experience and the performance metrics are also crucial

to solving a task. For a machine learning algorithm, the experience corresponds to the data

given to the algorithm. These data can be of different nature, for example, images, numer-

ical measurements, text, and sound. The performance is measured with a function called

"objective function" or "loss function" that the algorithm aims to optimize. The definition of

learning provided by Mitchell (1997) highlights that learning is a step-by-step process. After

each iteration, the performance on the task is quantified by performance measurement. Then,

the algorithm adjusts its parameters to maximize the performance.

Machine learning algorithms can be separated into two categories: "supervised" or "unsu-

pervised," depending on the type of data they are exposed to. In supervised learning, the

algorithm learns a function or a model that maps a set of inputs with a set of desired outputs

which are called the labels. These outputs are provided to the algorithm during the training.

In supervised learning, the performance measures the difference between the labels and

the algorithm’s output. By contrast, in unsupervised learning, the algorithm has to learn a

representation of the set of inputs without having any feedback from the desired output. In

unsupervised learning, the loss function penalizes the difference between the output of the

algorithm and the input itself, i.e., the inputs serve as labels.
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3.1.2 Model parameter versus hyper-parameter

Most machine learning algorithms analyze the data through statistics, i.e., at each step, they

update the parameters of a statistical model based on the data and the performance metric.

Machine learning models can have two different types of parameters. The first category

encompasses variables external to the model. They cannot be estimated directly from data

and must be adjusted by the programmer. The second category contains inner variables. The

algorithm estimates these from data during the learning phase. To make a clear difference

between the two, we name the variable belonging to the first category "hyper-parameter" and

the second type "parameter."

3.1.3 Overfitting, underfitting

Following the definition of Mitchell (1997) , we can understand machine learning as an

optimization problem. However, in machine learning, we are generally interested in applying

the model to new data. The generalization error measures the algorithm’s error when applied

to unseen data. Two situations can lead to a large generalization error. They are illustrated in

3.2 for an example with a linear regression algorithm. On the one hand, the model can adapt

"too well" to the training data and thus, may not be able to generalize when applied to new

data. This situation is called overfitting and usually happens when a model learns the details

and noise of the training data. This is a problem because these details will not necessarily be

the same or present in the new data. On the contrary, underfitting refers to a model that can

neither explain well the training data nor generalize to new datasets. It happens when the

model cannot capture all the essential features of the training data.

For this reason, we usually split the data into three different sets. the training, validation, and

test set. The instances of the different sets must be independent and identically distributed.

Before reaching the optimal model, not only must the parameters be optimized, but also

the hyper-parameters. The validation set serves to optimize the hyperparameters. After the

training, the performance is evaluated on the validation set, and the hyperparameters are

adapted if necessary. The reason for not using the test set to this end is that in this case,

the error on the test set would not correspond anymore to the generalization error as the

hyper-parameter would have been chosen to maximize the performance on the test set. The

test set is used only after the hyperparameters and parameters are optimized to estimate the

generalization error correctly. The validation set can also be used for early stopping, which

consists of stopping the training when the error on the validation set increases. This limit the

risk of overfitting, (e.g Caruana et al., 2000).

3.1.4 The curse of dimensionality

When the number of dimensions of the input data is high, many machine learning problems

become incredibly difficult. The problem called "the curse of dimensionality" arises when the

23



Chapter 3 Machine learning methods

x

f(x
)

Underfit

Model
Ground truth
Data points

x

f(x
)

Ideal fit

Model
Ground truth
Data points

x

f(x
)

Overfit

Model
Ground truth
Data points

Figure 3.2: Example of underfitting and overfitting with linear regression: The true function
is shown in orange. The data points correspond to this function plus noise. the left panel
shows a situation of underfitting. The function is fitted with a degree 1 polynomial, which is
insufficient to fit the data. The middle panel shows a fit with a degree 4 polynomial, which
is sufficient to approximate correctly f (x). The right panel displays a fit with a degree 15
polynomial. In this case, the polynomial has too many degrees of freedom, the fit captures the
noise present in the data leading to overfitting. Credit: adapted from the documentation of
scikit-learn (Pedregosa et al., 2011).

number of possible configurations in the data (the dimension of the problem) is much larger

than the number of training samples. The curse of dimensionality, which is a widespread

issue in actual machine learning applications, was first described in (Bellman, 1957). Since the

number of possible configurations grows exponentially with the dimension of the problem

Dp (∼ exp(Dp ), this issue may occur when the dimension of data is increased if the number of

training examples is not adapted.

For example, if one chooses to work on the generation of 256 by 256 greyscale images of faces,

the dimension of the pixel space is already 65536. This problem can be visualized by taking

an example of binary classification. Let us consider the problem of classifying cats and dogs.

We have at our disposal numerical values corresponding to specific features such as size, ear

shape, and the number of paws for each animal. We can first consider only one feature, for

instance, the size, and project all the data on the subspace spanned by all the possibilities for

this particular feature. The situation is displayed schematically in the top panel of Fig. 3.3.

However, as we can see, this feature is insufficient to separate the two classes well. A model

considering only this feature will under-fit the training data. If we add a second feature, for

instance, the ear shape as presented in the middle panel of Fig. 3.3, we can easily classify the

data by drawing a line in y = 11. We may be tempted to consider more features, for example, the

number of paws, to refine the classification (i.e., to augment the dimension of the problem).

However, if we keep the same number of training data, there will not be enough representative

training data for each possible configuration to enable the algorithm to generalize. This is

what we call"the curse of dimensionality."
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In Fig. 3.3 we can observe that the 3D plot becomes already very sparse (i.e., some con-

figurations are not or are hardly represented in the training dataset). The sparsity grows

exponentially as a function of the dimension of the problem if the number of data stays con-

stant. Therefore if we add more dimensions without augmenting the number of examples in

the training set, the model may overfit the training data. When this happens, the model will

have trouble drawing the boundary between the two classes in the parts of the feature space

that are less represented in the training set. This will translate into a discrepancy between the

training and generalization errors. One solution to this problem is to select only the "most

meaningful" features. For example, if we aim to build a face recognition algorithm, not all the

pixels of the images contain relevant information. The pixels in the nose and eyes are more

valuable to identify a person than those in the picture’s edges containing only the background.

Theoretically, all supervised machine learning models must be limited by the curse of dimen-

sionality. Consequently, the number of necessary training examples grows exponentially with

the dimension of the data. However, deep neural networks can, in practice, overcome this

effect (e.g. Mallat, 2016). We present them in Sect. 3.2.1

3.1.5 Principal component analysis

Principal component analysis (PCA) (F.R.S., 1901) is a standard method to reduce the di-

mensionality of the data by finding the most meaningful features. Since it is also a simple

illustrative example of an unsupervised algorithm, we quickly summarize the different steps

of the algorithm. Let us consider the problem of reducing the dimension of a set of n im-

ages containing k pixels each. The dataset is represented as a matrix x with k rows and n

columns. Before applying the PCA, the data must be standardized and mean-subtracted. The

space spanned by all the possible values each pixel can take is called the feature space. Each

coordinate axis of the feature space represents the value of one of the K pixels.

PCA aims at finding the directions that explain the most of the data, i.e., where the variance

among the data is maximal, and project the data on a meaningful basis. Finding the direction of

maximal variance c⃗, called the first principal component, can be reformulated as maximizing

c⃗T
1 X T X c⃗1 under the constraint cT

1 c1 = 1. Solving this problem is equivalent to computing the

eigenvalues of the covariance matrix Cov(X , X ). c⃗ is then the eigenvector associated with the

largest eigenvalue.

Therefore, the first step of PCA is to compute the covariance matrix. The eigenvector of the

covariance matrix (principal component) forms a basis of the feature space. We then sort

the principal components such that the first corresponds to the eigenvector with the largest

eigenvalue, the second to the second largest eigenvalue, and so forth. We can then project the

data on the new basis formed by the principal components. Fig. 3.4 displays a simple example

in 2D of the first steps of PCA.

The total variance corresponds to the sum of the variance of the data along the direction
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Figure 3.3: Illustration of the curse of dimensionality problem. Here, the aim is to find a
classification boundary between the 20 orange dots and the 20 blue dots. The upper panel
represents the two data-sets projected on the dimension spanned by one of the features. In
the middle panel, we added the dimension spanned by a second feature. The lower panel
represents the data-set as a function of the two features used in the previous plots and a third
feature.
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c1c2

Figure 3.4: Example of PCA for a set of 12 images with 2 pixels. The direction e1 and e2

represent all possible values for pixels 1 and 2. The first component of the PCA c1 is aligned
with the direction where the variance among the data is maximal. The second axis of the PCA
c2 correspond to the direction where the variance is maximal after c1 with the constrain to be
perpendicular to c1.

of each individual principal component. We define the fraction of variance explained by a

principal component as the ratio between the variance of the data along the direction of that

principal component and the total variance. By construction, the eigenvalues are directly

related to the fraction of variance explained in the axis of the corresponding eigenvector. The

variance explained by each principal component can be visualized on a scree plot, We show in

Fig. 3.5 an example of scree plot, which displays the percentage of explained variance for each

principal component for the PCA decomposition of the test set of Modified National Institute

of Standards and Technology (MNIST) dataset of handwritten digits (L. Deng, 2012), which

consists of 28x28 grey-scale images of handwritten digits. The last step of the PCA is to discard

the last principal components that explained the less variance and project the data on the first

p principal components such that the dimension will be reduced from k to p but most of the

essential information is kept. This corresponds to the matrix operation:

Y = Ap X , where Ap =


c⃗T

1
...

c⃗T
p

 . (3.1)

The number p must be adjusted as a function of the desired quality of the reconstruction. The

scree plot can help finding the right number of dimensions to keep. We display in Fig. 3.6 an

example of the reconstruction of the MNIST images after PCA for different p. We can see that

using only two principal components is insufficient to obtain recognizable numbers. This

could have been guessed from the scree plot 3.5 where we see that these two components

explain only 9.8 % of the variance. Starting from 60 principal components, the shapes are well
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Figure 3.5: Percentage of explained variance for the 24 first component of the PCA decomposi-
tion of the MNIST dataset.

reconstructed. Increasing to 100 principal components does not significantly improve the

quality of the reconstruction.

PCA has already been used in gravitational lensing, for example, to find lensed sources in the

quasar spectra (Courbin et al., 2012; Boroson & Lauer, 2010) or to deblend lenses (Paraficz

et al., 2016; Joseph et al., 2014). It has, however, a few limitations. First, PCA can apply

only linear mapping. Since it uses a covariance matrix, PCA assumes that the data follows a

multidimensional normal distribution. There are currently multiple generalizations of PCA

able to overcome these issues. An alternative to PCA for dimension reduction is auto-encoders

which are described in Sect. 3.2.3. We present one of them in Sect. 3.2.3, the auto-encoder,

which can be seen as a generalization of PCA.

3.2 Neural networks

The idea of artificial neural networks arose at the end of the 1950s with the need to imitate

the brain’s functioning for research in the field of psychology. To this end, Frank Rosenblatt

developed the idea of the Perceptron (Rosenblatt, 1957) which was the first version of artificial

neural networks. It consisted of one layer of artificial neurons.

The output of each of these neurons was binary, 0 or 1. Although this perceptron could perform

simple classification, it was only able to learn linear functions. At this time, the stacking of

layers was not considered since it was thought they would take an infinite time to be trained.

Rumelhart et al. (1986) overcame this limit by discovering error backpropagation.

Not long after, Cybenko (1989) proved the first version of the Universal Approximation Theo-

rem which states that a network with at least one hidden layer can approximate any continuous

functions on compact subsets of IRn. Consequently, multi-layer perceptrons are potent tools
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Figure 3.6: Reconstruction after PCA of images from the MNIST test set. The first row displays
the original images and the following rows the reconstruction using respectively 2, 20, 60 and
100 principal components.

since they are not limited to approximating linear functions as one-layer perceptrons. How-

ever, these algorithms were extremely demanding in computational resources. Neural network

research was, therefore, slowed until the advent of graphics processing units (GPU) in the

2010s. The interest in neural network methods took off in particular after the outstanding per-

formance of "ALexNet", a convolutional neural network, in the Large Scale Visual Recognition

Challenge (Krizhevsky et al., 2012a).

3.2.1 Artificial neural networks: Theoretical introduction

The neurons are the basic building blocks of an artificial neural network (ANN). They are

developed to mimic the behavior of biological neurons. Biological neurons have dendrites

to receive signals, a cell body to process their electrical inputs, and an axon to send signals

to other neurons. Similarly, artificial neurons have inputs, a processing stage, and a unique

output that is transferred to other artificial neurons. The processing stage can be summarized

in three steps schematized in Fig. 3.7.
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Figure 3.7: Scheme of an artificial neuron with four inputs and one output.

First, the input data are re-scaled with multiplication by a specific weight assigned to each

input component. During the training phase, the neurons adjust the weights to reduce the

final output error. All the weighted inputs are summed in the second step, and an offset is

added to this sum. This offset is called bias and is also adjusted during the training phase.

Finally, the results of the neuron calculation are passed to the activation function. This

function decides the neuron’s output and introduces non-linearity in neural networks. One of

the most simple activation functions is the Heavyside step function, which takes the following

form:

σ(x) =

{
1 if w · x +b > 0

0 otherwise
, (3.2)

where x is the vector of the inputs, w is the vector containing all the weights, and b is the vector

of the biases.

Using this activation function allows the network to be only in two states, activated when the

output is equal to one or inactive when the output is equal to zero. This behavior mimics very

well the behavior of biological neurons. However, this function is not differentiable at zero and

differentiates to zero at all other points. As we will see later, this causes problems during the

training phase since gradient descent is used to optimize the weights and biases. A suitable

alternative to the Heavyside step function this activation is the sigmoid activation:
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σ(x) =
1

1+e−x (3.3)

Sigmoid activation is commonly used in binary classification problems. Its shape is close

to the one of the Heavyside step function. However, it is differentiable in all its domain of

definition. In the case of multi-class classification (more than two categories), a generalization

of the sigmoid function called the softmax function can be used. It takes the following form:

σ(xi ) =
e−xi∑k

j =1 e−x j
, (3.4)

where k is the number of classes in the problem. The softmax and sigmoid function output

continuously span the interval between 0 and 1. Thus, if used in the model’s output neurons,

they reflect the probability for x to belong to one of the classes.

The main flaw of the sigmoid function is its saturation at the tails. The gradient in these

regions is very close to zero and may increase the training time or prevent the model from

converging if the output falls here. The sigmoid function was one of the most widely used

activation function until the emergence of rectified linear units (ReLUs) (Fukushima, 1975):

σ(x) = max(x,0) (3.5)

ReLUs activations are the most simple nonlinear activations functions. They allow the usage

of shorter training time than with sigmoid activation Krizhevsky et al. (2012b) . They also ease

the obtainment of a sparse representation with the network. For example, if the weights are

uniformly initialized, the output of roughly 50 percent of hidden units will be zero due to the

shape of the function below zero. This property is, however, double-edged. The gradient of

the ReLU is canceled for values below zero, which may cause the ReLU units to freeze during

the training. Indeed, the weights and biases are not updated anymore during gradient descent

if the gradient is zero. This issue is called the dying ReLU problem (e.g Lu et al., 2019). To

avoid this but keep some benefits, it is possible to use slightly modified ReLU functions as an

exponential linear unit or leaky ReLU.

A single neuron is already able to perform some simple tasks. For example, a neuron with

the Heaviside activation can perform an easy linear classification. It is necessary to connect

multiple neurons for more complex tasks. Such an ensemble of neurons is called a neural

network. The neurons in a neural network are organized in layers, as depicted in the example

in Fig. 3.8. The first layer is called the input layer, and the last is the output layer. The

inner layers of the network are called hidden layers. The neurons belonging to a same layer
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Figure 3.8: Example of a neural network composed of three dense layers. This network has only
one four-dimensional hidden layer (In light green). The input dimension is three (violet) and
the dimension output is two (blue). The arrows depict the connections between the neurons
and the direction of propagation of the information through the network.

are not connected together. It allows them to react differently to identical input data and,

consequently, makes them sensitive to different data features. The number of neurons per

layer is only constrained in the input and output layers, where the number of neurons has to

match the input and output dimensions. However, the number of neurons in the hidden layers

and, similarly, the number of hidden layers are part of the hyper-parameters for a machine

learning model based on a neural network. The user, therefore, settles them.

Learning with gradient descent and error back propagation

The non-linearity of neural networks is one of their main assets since it allows them to approx-

imate easily non-linear function or non-linear decision boundaries in the case of a classifi-

cation problem. However, the non-linearity transforms the training of neural networks into

a non-convex optimization problem. For this reason, neural networks are generally trained

with a variation of the stochastic gradient descent algorithm, which can be used either for

convex or non-convex optimization. We must, however, keep in mind that in the case of

non-convex problems, the convergence is not certain and depends strongly on the choice of

initial parameters.

During the learning phase, the parameters of neural networks are optimized to minimize the

value of the loss function. There are many valid options for the choice of the loss function
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used for neural network optimization. One example is the mean square error (MSE) which is

widely used for linear regression or image reconstruction:

J (θ) =
1

N

N∑
i =1

( f (i )(xi , θ⃗)− y (i ))2, (3.6)

where N is the number of data, xi are the input data, θ the model parameters, f (i )(xi , θ⃗) the

output of the model and y (i ) the truth vector which contains the target values the model aims

to recover.

If the activation functions are sigmoids, this loss function may cause slow convergence toward

the target since, as detailed below, during gradient descent, the gradient of the loss function is

used to update the parameters. This gradient takes the form:

∂J

∂θ
= −(y − f (x⃗, θ⃗)) f ′(x⃗, θ⃗)x⃗ (3.7)

The particular shape of the sigmoid function implies that when f tends to 0 or 1, f ′ is close to

0. Therefore, if the difference between the output function f and the truth vector y is large, the

derivative f ′ will approach 0, leading to a decrease in the convergence speed. This behavior is

critical since we expect the convergence speed to be higher when the error is significant. An

alternative can be used for binary classification problems (assuming the target values are 0 or

1), the cross entropy function:

J (θ) =
1

N

N∑
i =1

(y (i ) log( f (i )(xi , θ⃗))+ (1− y (i )) log(1− f (i )(xi , θ⃗)) (3.8)

The cross-entropy measures the divergence between two probability distributions. If the cross

entropy is large, the difference between the two distributions will be significant too. On the

other hand, if the cross entropy is small, this implies that the two distributions are almost

similar. Cross entropy can be easily generalized for multi classes problems in the following

way:

J (θ) =
N∑

i =1

K∑
k=1

−(y (i )(k) log( f (i )(k)(xi , θ⃗)), (3.9)

where K is the total number of classes.

Generally, loss functions penalize the reconstruction error, i.e., the error related to the model’s

output. To help the model generalize on new data and limit the chance of overfitting is

possible to add an additional term in the loss function, called the regularization function. The

regularization function often takes the form:

λR(θ), (3.10)

where R is a function that becomes large when the parameters θ are large. The constant λ has
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to be tuned according to the importance we want to put on generalization. Choosing a large λ

may lead to underfitting. On the contrary, a too small λ may not inhibit enough overfitting.

One of the most common regularization functions is the Ridge regression, also named L2

regularization. It takes the following form:

R(θ) =
λ

2
||θ||2. (3.11)

Intuitively, the L2 regularization encourages the network to use all of its inputs rather than

focusing only on a few inputs by penalizing "very large" weight vectors (Krogh & Hertz, 1991).

Another standard regularization function is the Lasso regression or L1 regularization function:

R(θ) =λ||θ|| (3.12)

Contrary to L2 regression, L1 regression encourages the network to use only a small subset of

the inputs containing the most important features. This regularization tends to yield a sparse

representation of the inputs and to determine the most relevant features (Ng, 2004).

In addition to adding a regularization term to the loss function, other methods exist to limit

overfitting. One example is dropout, which consists of randomly deleting some connections

in neural networks (Hinton et al., n.d.; Srivastava et al., 2014).

In order to be used to train a neural network, the loss function has to fulfill two hypotheses.

First, the loss function can be decomposed as J =
∑N

i =1
Ji
N where N is the number of sample.

Secondly, it can be expressed as a function of the outputs from the neural network.

As mentioned earlier, the training phase aims to find the global minimum of the loss function

with respect to the weights and biases of the network. To illustrate how backpropagation and

gradient descent are used to optimize the network, let us consider a neural network containing

L layers. The backpropagation algorithm from Rumelhart et al. (1986) can be decomposed

into a few simple steps. The steps are written only for one training sample to simplify the

notation.

1. Weights and biases are initialized to a chosen value.

2. An input and the related trust vector are fed into the neural network

3. Weighted sums z and activations a are computed by propagating forward the input.

4. The error for the neurons of the last layer is computed as follows:

∂ j L =
∂J

∂a j L

∂a j L

∂z j L
(3.13)

5. The error on the last layer is back-propagated to the next to the last layer. The error for
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the neurons belonging to this layer is computed as follows:

∂ j L−1 =
∑
j L

∂J

∂z j L

∂z j L

∂a j L−1

∂a j L−1

∂z j L−1
=

∑
j L
∂ j L

∂z j L

∂a j L−1

∂a j L−1

∂z j L−1
(3.14)

6. The error for the neurons located in the remaining layers is computed in the same way

as (3.14).

7. The parameters of the network are updated. For the parameters related to the j st neuron

in the 1st layer, the update step is:

θ(t+1) = θ(t ) −α
∂J

∂θ j l−1 j l
= θ(t ) −α∂ j L

∂z j l

∂θ j l−1 j l
, (3.15)

where α is a hyper-parameter called the learning rate. The update procedure we just described

is called stochastic gradient descent (SGD). However, updating the parameters after each input

makes the training procedure unstable and sensitive to outliers. For this reason, in practice, we

prefer to feed many inputs (batches) forward to the network before updating the parameters.

In this case, the error is computed by summing the error obtained for all the individual inputs

in a batch. The parameters are updated after all batch inputs are passed through the network.

Choosing the value of the learning rate α is crucial. A too low value for α may lead the system

to get stuck in a local minimum or increases dramatically the number of steps necessary to

reach the global minimum. On the contrary, a too high value leads to substantial and noisy

parameter changes. In this case, the system may even miss the local minimum.

Batch gradient descent does not guarantee the convergence of the model because of the

non-convexity of the loss function. In addition, finding the optimal learning rate for the

problem is complex, and applying the same learning rate on all the parameters may not be

optimal for some cases. In particular, when the data are sparse or if the features are not

standardized, updating the parameters at different rates may drastically improve the chances

for the algorithm to find the global minimum. Many improvements to the gradient descent

algorithm have been implemented. In this work, we use the Adaptive Moments Estimation

(Adam) optimization (D. P. Kingma & Ba, 2014), which is an extension of stochastic gradient

descent. The Adam algorithm computes adaptive learning rates for each parameter. At the

end of each complete pass of the training dataset through the algorithm, an exponentially

decaying average of past squared gradients vt and exponentially decaying average of past

gradients mt are saved. These two values are computed as follows:

mt =β1mt−1 + (1−β1)g t and vt =β2mt−1 + (1−β2)g 2
t (3.16)

where mt and vt are estimates of the first moment (mean) and the second moment (non

centered variance) of the gradient g t andβ1 andβ2 are the decay rates applied to the moments.

The moments tend to be biased toward zero when they are initialized with null vectors. To
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avoid this D. P. Kingma and Ba (2014) propose to use their unbiased equivalents:

m̂t =
mt

(1−βt
1)

and v̂t =
vt

(1−βt
2)

(3.17)

The parameters are then updated in this way:

θ(t+1) = θ(t ) − α√
v̂t +ϵ

m̂t , (3.18)

where ϵ is a small smoothing term used to avoid division by zero.

3.2.2 Convolutional neural networks

To identify the content of an image, we usually do not scan the entire image at once, but we

look for the presence of known features. Indeed, in image recognition, the spatial correlation

between pixels is more important than their values. This idea lies behind the concept of

convolutional neural networks (CNNs), which were introduced by Lecun and Bengio (1995) .

Unlike fully connected neural networks, CNNs can account for spatial structures in the data.

Convolutional layers are the most important building blocks of CNNs as they act as feature

detectors. The neurons of such layers are arranged along three dimensions: width, height,

and depth. The width and height correspond to the dimensions of the images in the first

layer or the dimension of the previous feature maps for deeper layers. The depth matches the

number of channels of the images (i.e., in astronomy, the number of bands). In convolutional

layers, neurons are only connected to a small number of neurons of the previous layer by

contrast to a fully connected layer where they would receive inputs from all the neurons in

the previous layer. If the convolutional layer receives an image as input, it will treat a small

area of the image separately. We call the sets of neurons connected to a particular area of the

receptive image units. These units can extract spatial features such as edges, corners, or more

complex patterns. In image classification, the features specific to a class must be detected

independently of their position in the image (translation invariance). To implement this in

convolutional layers, the receptive units tracing the same feature at different positions are

forced to share the same biases and weights and span the entire image, hence the name. This

process can be visualized as a convolution with a similar kernel or filter across the entire image.

We display an example of this process in Fig. 3.9. The output of all the convolutions with the

same kernel is called a feature map. It is important to emphasize that the filters spread along a

defined width and height but always operate on the entire image depth.

The number of filters, their dimensions, and the stride (i.e., the distance the filter moves over

the input image between two convolutions) are the hyper-parameters of CNNs. Therefore,

they must be decided by the programmer. The kernels are learned during the training through

the weights and biases of the receptive units. It allows CNNs to select the most appropriate

filters for each task. In some cases, the dimension of the input image is not a multiple of the
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Figure 3.9: Illustration of the convolution operation taking place in convolutional layers. The
behavior of the neurons belonging to convolutional layers can be represented by a convolution
of the input image by filters than are learned during the training.

dimension of the filters. Thus we must decide what happens when the filter falls partially

outside the input image. There exist two options of padding to expand the original image:

• Valid padding or no padding: In this case, the convolutions in which parts of the filters

are located outside the image are not considered. This results in a feature map smaller

than the input image.

• Same padding: The input image is expanded by adding pixels of a given value (usually

zero) to the input image so that the last convolution does not fall outside the image. If

the stride is equal to one, this produces a feature map with the same dimensions as the

input image.

For a square kernel, the width of the feature map can be calculated as follows:

W1 −F +2P

S
, (3.19)

where W1 is the width of the input image, F the filter size, P the amount of padding, and S the

stride. Similarly, the height of the feature map is expressed:

H1 −F +2P

S
, (3.20)

where H1 is the height of the input image.
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A minor drawback of convolutional layers is that the result of the convolution with the filter de-

pends strongly on the position of the features with respect to the filter. The results can be very

different for small shifts in the original image. Adding pooling layers after convolutional layers

is common to reduce this effect. Like convolutional layers, pooling layers can be represented

by a filter that scans all locations of the input image according to its stride and returns a single

output number for each time the filter stops. However, pooling layers have no parameters

since the filters are not learnable. Instead, they return the result of a predefined operation, for

example, the maximum pixel value over the region of the input image spanned by the filter

(maximum pooling). Pooling layers have the additional advantage of reducing the dimension

of the learned feature maps, decreasing the number of parameters and, consequently, the

computational cost.

Deep convolutional neural networks were designed to capture more abstract features and

potentially more efficiently classify complex images. Indeed, when CNNs are used to classify

images, the first convolutional layer generally learns to detect edges, the second layer the

textures, and the third layer more complex features and similar for the last layers (Mallat, 2016).

However, in practice, there is a limited number of layers above which the performance of the

CNNs starts to drop compared to shallower architectures. This limitation was overcome with

residual networks (ResNet) (He et al., 2015).

The idea of the residual blocks, which are the basic building blocks of ResNet, stemmed from

the fact that there exists a theoretical solution allowing a deeper network to reach at least the

same accuracy as shallower networks. Indeed, if we consider a shallow CNN and add layers to

it to obtain a deeper CNN, then the added layers could learn the identity mapping, and the

original layers could take the same values as in the shallower CNN. The performance of the

two networks would therefore be the same. However, as the weights of convolutional layers are

usually initialized with random values or zeros, finding the identity function is as challenging

to learn as any other function. To solve this, residual blocks include a new type of connection,

the shortcut connections or skip connections, that allow them to learn the difference between

the input and the output instead of the whole mapping. More precisely in convolutional block

the output takes the form H(x) = f (w x +b) ,where x is the input, w the weights and b the

biases. In a residual block, the output is changed to H (x) = f (w x +b)+x. By using this type of

connection, the network can "skip" the training of the useless layers. In addition, it avoids

the vanishing gradient problem that can happen with deep CNNs. We present in Fig. 3.10

a scheme of a residual block. Residual networks are built by stacking residual blocks. The

ImageNet Large Scale Visual Recognition Challenge 2015 (Russakovsky et al., 2015) was won

by a Resnet. Since then, they have been widely used in image classification.

3.2.3 Auto-encoders

Neural networks are often used for classification or regression tasks. That is to say, they

determine a mapping y = f (x) between the input X and the labels y . Auto-encoders are
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Figure 3.10: Illustration of a residual block. The skip connection, which is the particularity of
ResNets, is depicted in blue. Credit: adapted from He et al. (2015) .

noteworthy in this respect because the inputs serve as labels, i.e., the mapping inferred by

the auto-encoder takes the form X = f (X ). The interest in such mapping lies in the ability of

the hidden layers to learn meaningful representations of the data. Thus, auto-encoders can

be used for many applications such as dimensionality reduction and denoising (e.g. Vincent

et al., 2010; Vincent et al., 2008). Auto-encoder-derived architectures such as variational

auto-encoders (VAEs) may be used as generative models (e.g. D. Kingma & Welling, 2014).

We show a simple example of an auto-encoder architecture in Fig. 3.11. We can separate the

architecture in two parts: the encoder and the decoder. The decoder is symmetrical to the

encoder, meaning they have the same number of layers and neurons per layer. The central

layer, called the bottleneck layer, connects the two parts of the autoencoder. In general, the

number of neurons decreases from the input and output layers to the bottleneck layer. This

peculiar architecture allows the network to learn a lower-dimensional representation of the

original input.

In the context of denoising and dimensionality reduction, auto-encoders can be understood

as a generalization of PCA (Hinton & Salakhutdinov, 2006). An auto-encoder with only one

hidden layer of dimension p and linear activation is closely related to PCA. When trained with

a mean-square cost function, they find the same optimal feature subspace as the PCA for

p principal components (Bourlard & Kamp, 1988). However, unlike the eigenvectors of the

PCA, the basis vectors of the optimal subspace found by the auto-encoder, may be correlated

(not orthogonal) and are not sorted as a function of the explained variance. With non-linear

activations, auto-encoders can encode the essential information in fewer dimensions than

the PCA (Hinton & Salakhutdinov, 2006).
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Figure 3.11: Sketch of an autoencoder. The architecture contains a bottleneck in its center that
allows the network to learn a simplified representation of the original image

To highlight the advantage of the non-linear activation of auto-encoders, we present in Fig.

3.12 the results obtained on the MNIST dataset using an auto-encoder with one hidden layer

only and sigmoid activation. We present the results for hidden layers of different dimensions.

We can compare these results to those in Fig. 3.6, which displays the reconstruction of the

same MNIST images with PCA. We see that the reconstruction with an auto-encoder is more

accurate for an optimal subspace with an equal number of dimensions. The numbers are

recognizable with a 20D optimal subspace in the case of the auto-encoder. In contrast, at least

60 principal components are necessary for the PCA reconstruction to reach an equivalent

result.

In astrophysics, auto-encoders have found use in numerous applications, e.g., spectral energy

distribution denoising (Frontera-Pons et al., 2017), galaxy deblending (Arcelin et al., 2021),

gravitational wave detection (Moreno et al., 2022; Morawski et al., 2021), or galaxy image

generation (e.g. Lanusse et al., 2021).

In Sect. 7, we present a new application of auto-encoder in the field of gravitational lensing.

We use a modified auto-encoder architecture to separate the source and the lens light in

images of gravitational lenses.

3.3 Performance metrics

During training, performance is approximated by the loss function that the algorithm aims

to optimize. Although important for optimization, the loss function may not be the optimal
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Figure 3.12: Reconstruction of MNIST images using an auto-encoder with one hidden layer
and sigmoid activation in the output layer. The first row displays the original images and
the following rows the reconstruction using a hidden layer with 2, 20, 60 and 100 neurons,
respectively.

metric to evaluate the quality of the model. Therefore, defining meaningful metrics for the

tasks we want to perform is crucial to evaluate the algorithm’s performance correctly.

An important point that has already been mentioned is that once the training is completed,

the performance must always be evaluated on the test set and not on the training or validation

sets. This way, we can better understand the generalization error and avoid overestimating

performance due to overfitting.

We present some metrics used in this work to evaluate our different algorithms.

3.3.1 Binary classification

Binary classification allows us to divide the data into two different classes: the positive exam-

ples (usually written as "1") and the negative examples (usually written as "0"). Therefore,

the data classified by the algorithm can be in four situations. If the algorithm classifies them

correctly, they are either true positives (TP) or true negatives (TN), depending on their original
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Figure 3.13: Confusion matrix representing the four possible outcomes of a binary classifi-
cation. The situations where the algorithm predictions are correct are represented in green,
whereas the incorrect predictions are shown in red.

class. Similarly, if they are classified incorrectly, they are false positives (FP) or false negatives

(FN). We summarize the different situations under the form of a confusion matrix in Fig. 3.13

The algorithm’s output can be either binary or a score between zero and one, reflecting the

probability of belonging to the positive class. In the latter case, the final classification depends

on a threshold score, chosen by the user, that defines the value above which the data is

considered to belong to the positive class. If we choose a higher threshold, we generally get

fewer false positives, but we also recover fewer true positives. This is reflected in Precision

(P) and Recall (R) metrics. Precision, also referred as Purity, measures the proportion of true

positive among all objects labeled as positive, while Recall, also called "true positive rate" or

"completeness," gives the fraction of true positive that the algorithm identified among all true

positive objects in the training set. They are defined as follows:

P =
T P

T P +F P
, (3.21)
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R =
T P

T P +F N
, (3.22)

These two metrics can be combined in one curve, named the Precision-Recall curve (PR-curve),

which displays the value of the Precision and Recall for all score thresholds. An example is

shown in the upper panel of Fig. 3.14. For a random classifier, the precision is about 0.5

regardless of the score threshold, so such an algorithm produces the red line visible in Fig. 3.14.

In contrast, a perfect algorithm produces a PR-curve that touches the upper right corner of

the graph. Using this curve, the optimal threshold for the score can be estimated, depending

on the limit we set for precision and recall. In the field of lens finding, all positive examples

found by the algorithm must be confirmed by visual inspection. Therefore, we generally

put more emphasis on precision, since low precision would mean that many false-positive

examples would have to be re-inspected, which can be extremely time-consuming. The area

under the PR-curve (AUC-PR) gives an indication of performance and allows us to compare

different algorithms. AUC-PR ranges from 0.5 to 1, 1 for a perfect classifier and 0.5 for a random

classifier.

A similar curve is widely used in binary classification, the Receiver Operating Characteristic

(ROC) curve, which plots the true positive rate (T PR = T P
T P+F P ) versus the false positive rate for

all score thresholds (F PR = F P
F P+T N ). We show an example in the bottom panel of Fig.3.14. Note

that recall and true-positive rate are the same. However, since the term false-positive rate is

often used in the context of the ROC curve and recall when we talk about the PR-curve, we keep

the two denominations. Similar to the PR-curve, the area under the ROC curve (AUC-ROC)

can also be used as a performance measure.

The ROC curve and PR-curve are closely related. If a classifier surpasses another in ROC space,

it will also be better in PR space (Davis & Goadrich, 2006). However, the PR-curve is sensitive to

the imbalance between classes, whereas the ROC curve produces similar results independently

of the imbalance ratio. When the imbalance between classes is very high, the ROC curve can

give a too optimistic result (Drummond & Holte, 2004). On the other hand, the PR-curve

can highlight better the difference between classifiers when the data are highly imbalanced

since the precision is affected by the change in class ratio. The PR-curve must, however

always be interpreted with the knowledge of the class ratio for the same reason (Brabec et al.,

2020). It is also important to highlight that an algorithm that obtains the best performance in

terms of AUC-ROC will not necessarily be the best in terms of AUC-PR, especially with highly

imbalanced test-sets (Davis & Goadrich, 2006).

Another metric that is of interest when one wants to prioritize precision over recall (or con-

versely) is the F-beta score. It is defined as follows:
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Figure 3.14: Comparison of precision-recall curve and ROC curve Upper panel: Illustration of
a precision-recall curve. The precision and recall are given for each score threshold. A perfect
classifier produces the green curve, while the red curve corresponds to a random classification.
The precision-recall curve of an arbitrary classifier (blue curve) lies between these two curves.
The closer the curve is to the upper right upper corner (red arrow), the better the classification
performance. Lower panel: Illustration of a ROC curve. The diagonal (in red) is produced by a
random classifier and the green curve by a perfect classifier. The closer the ROC curve of the
algorithm (blue curve) is to the top left corner, the better the performance
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Fβ =
(1+β2)

β2P +R
, (3.23)

where R is the recall and P is the precision. For β< 1, more emphasis is put on precision. On

the contrary, a β > 1 will give more importance to the recall. For β = 1, the F-beta score is

equivalent to the so-call F-1 score, which returns the harmonic mean of precision and recall.

Since the F-beta score depends on the chosen score threshold, we usually indicate the maxFβ,

which is the maximum F-beta score reached on all possible score thresholds.

3.3.2 Image Generation

Evaluating the quality of images generated with an algorithm is not as straightforward as for bi-

nary classification or regression tasks. In the context of the generation of astronomical images,

the physical soundness of the generated images is the most critical point. The Concentration,

Asymmetry and Smoothness (CAS) statistics (Lotz et al., 2004; Conselice, 2003; Bershady et al.,

2000) are commonly used for morphological classification (e.g. Lotz et al., 2004; Conselice,

2003; Bershady et al., 2000) and can be adapted to evaluate sets of simulations of lens. There

exist slightly different definitions of the CAS parameters in the literature. In this work, we use

the definitions proposed in Lotz et al. (2004) , which we summarize here.

The concentration index (C) measures how "compact" the galaxies are. For example, elliptical

galaxies have a higher concentration index than spiral galaxies. It is defined as follows:

C = 5log
r80

r20
, (3.24)

where r80 and r20 are the circular radii containing 20% and 80% of the total flux, respectively.

The rotational symmetry of a galaxy’s light is characterized by the asymmetry parameter (A). It

is calculated in the following way:

A =

∑
i , j |I (i , j )− I180(i , j )|∑

i , j |I (i , j )| −B180, (3.25)

where I is the original galaxy image, I180 the image rotated by 180 degrees, and B180 the

average asymmetry measured in the background. This last term is introduced to correct the

asymmetry caused by the noise. It must be noted that high levels of noise prevent the correct

measurement of the asymmetry.

The smoothness parameter (S) quantifies the degree of small-scale structures present in the

images. It can be computed as follows:
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S =

∑
i , j |I (i , j )− IS(i , j )|∑

i , j |I (i , j )| −BS , (3.26)

where IS is the image smoothed by a boxcar of width 0.25 times the Petrosian radius of the

galaxy, and BS corresponds to the average smoothness of the background.
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ing data

In the past, images of strong lenses were found essentially by visual inspection by a small

group of experts. To reduce the number of candidates to classify, color and magnitude cuts at

the catalog level are usually applied. Typical examples of this type of searches are Faure et al.

(2008) , Jackson (2008) , Sygnet et al. (2010) , Pawase et al. (2014) . However, future imaging

surveys involve such a large amount of data that the visual inspection by experts becomes

very cumbersome, even with color and magnitude cuts.

Future and current large-scale imaging surveys are expected to provide large samples of

observable strong lenses. To give an order of magnitude, Collett (2015) predicts 400, 12 0000,

and 17 0000 observable galaxies lensed by galaxies for DES, LSST, and Euclid, respectively.

The difference in the number of expected lenses in the different surveys is mainly due to the

difference in spatial resolution, which is key to resolving systems with smaller separation

and Einstein radii. This will be particularly the case with Euclid since it is a space-based

telescope. Such a large number of lenses forecast to be detected raises the need to design

efficient methods to detect strong lenses in imaging data. Visual inspection is, however, still

used to validate potential candidates found with other methods.

This chapter reviews the different methods available to search for galaxy-galaxy lenses in

imaging surveys. Although this work focuses on CNN-based algorithms, it must be kept in

mind that the different methods are not mutually exclusive and can be used simultaneously in

future lens searches. Indeed, each method finds different types of candidates, and there is,

therefore, a great scientific interest in combining them on the same datasets.

4.1 Citizen science

Citizen science relies on a large number of non-experts volunteers called citizen scientists.

They are provided with the essential guidelines to perform the classifications and a visual

summary with examples of objects belonging to each category. Because many participants

inspect each image, the classification of each object is made more robust by aggregating their
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decisions. This approach has been used successfully in different fields of astrophysics, for

example, in the morphological classification of galaxy (e.g. Willett et al., 2017) or discovery of

transiting exoplanets (e.g. Schwamb et al., 2012).

Citizen science has been applied for the first time to gravitational lens search in the context of

the SPACE WARPS project (Marshall et al., 2016; More et al., 2016). This first search involved

around 37 000 volunteers who inspected 430 000 images from the Canada-France-Hawaii

Telescope Legacy Survey (CFHTLS). They obtained a total of 49 lens candidates. The Space

Warps project was then extended with a lens search within Hyper Suprime-Cam (HSC) images

which resulted in around 1500 candidates, among which 143 have been classified as "very

likely candidates" (Sonnenfeld et al., 2020).

Strong lensing can produce a large variety of lensing configurations, making it challenging to

summarize the properties of a good lens candidate in a concise set of textual descriptions or

visual examples. Some astrophysical objects, such as ring or spiral galaxies, may fulfill most of

the criteria described in the guidelines provided to citizen scientists and are especially difficult

to distinguish from lenses for a non-expert eye. These points are critical for applying citizen

science to the lens finding search. To overcome these difficulties, the method described in

Marshall et al. (2016) proposes a two-step training consisting first of a small tutorial where

classification guidelines are given, and various possible lens configurations are shown as

examples to the citizen scientist. The second step of training is done during the classification.

Real lens images, non-lenses, and lens simulations validated by experts (training examples) are

added to the set of objects to classify and displayed randomly during the classification to the

citizen scientists. When a training example is displayed and classified, the participants receive

immediate feedback, and their performance is stored. The advantage of this "supervised"

approach is that the combined weighted scores of all participants obtained on the training

examples can be used to weigh the contribution of each particular user. They combine the

weighted scores of all participants with a Bayesian pipeline to obtain the probability for an

image to be a lens. In addition, at the end of the first classification, some participants are

invited to reinspect the candidates in order to lower the false positive rate.

One advantage of citizen science is that humans can easily understand how to extend the

guideline to classify unseen lensing configurations. It enables the discovery of more exotic

types of lenses than algorithms (More et al., 2016). One good example is the gravitationally

lensed hyperluminous infrared galaxy found in the context of the SPACE WARPS project

(Geach et al., 2015), which displays unusual bright red arcs. Citizen science requires finding

a large number of volunteers to inspect the images. The limited pool of persons interested

in participating in astronomical experiments might thus be the critical limitation to the

generalization of lens searches (or any other astronomy-related project) with citizen science.
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4.2 Automated methods

Citizen science is very efficient to detect strong lenses in images. The recall of known lenses

can reach values up to 65 % with non-expert classifier with this method (More et al., 2016).

However, it requires a large number of volunteers. It is therefore not possible to use this

method for all searches. For this reason, automated methods have to be developed in parallel.

4.2.1 Early methods

The early attempts at automated detection of extended lensing features, which are produced

by galaxies acting as sources, consisted of clustering algorithms using pixel intensities coupled

with shape measurements in order to detect the presence of elongated and curved objects(e.g.

More et al., 2012; Cabanac et al., 2007; Estrada et al., 2007; Seidel & Bartelmann, 2007; Lenzen

et al., 2004). In Maturi et al. (2014) the combination of arc detection with color information

leads to an increase in the completeness of the sample of candidates and a reduction of false

positives compared with simple arc detection in single-band images.

The lensed source features are often hidden behind the light of the lens. In such a case, the

detection with arc-detection-based algorithms only is almost impossible. For this reason,

methods were developed to remove the lens light and detect possible lensing features in the

residuals. A good example is the RINGFINDER tool (Gavazzi et al., 2014), which detects the

presence of blue residuals hidden behind early-type galaxies using difference imaging. The

method was applied to CFHTLS two-band images (i,g) and returned 2 500 candidates, among

which 330 were labeled as possible lenses after a visual inspection. With the same idea of

subtracting the foreground galaxy light, Joseph et al. (2014) presents a method based on PCA

to subtract the lens light and two algorithms to detect evidence of lensing in the residuals.

The main advantage of this approach is that, unlike Gavazzi et al. (2014) , it does not rely

on models for the lens subtraction and thus is more adaptable to more diverse populations

of foreground objects. The idea of PCA lens subtraction was then reused in the lens finding

algorithm proposed in Paraficz et al. (2016) and applied to CFHTLS data. They found a sample

of 1098 candidates, which was reduced to 109 after visual inspection.

Interestingly, the candidates of More et al. (2012) , Gavazzi et al. (2014) , Maturi et al. (2014)

and Paraficz et al. (2016) do not overlap entirely. This difference can be explained partially by

the different preselection functions but also highlights the fact that each type of algorithm

is specialized in identifying limited categories of lenses. Indeed, all of these algorithms were

rule-based, i.e., the criteria for being a lens must be hard-coded by the user, for example,

displaying blue residual or arc-like features. This lack of flexibility suggested the need for a

new type of detection method, namely machine learning-based algorithms. Unlike rule-based

methods, machine learning algorithms directly infer essential features from the data. They

open up the possibility of finding a wider variety of lenses.

Different machine learning methods have been applied to the detection of strong lenses
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in images such as support vector machines (SVM) (e.g. Hartley et al., 2017) or Gaussian

Mixture Models (GMMs) (e.g. Ostrovski et al., 2017). The recent improvement of graphics

processing units (GPU) capacities enabled further astrophysics application of neural networks.

In particular, CNNs stand out in the field of strong lens search in imaging surveys. One big

advantage of CNN-based detection methods or, more generally, machine learning methods is

their flexibility. Since they do not require hard-coded rules, they can easily be adapted to any

type of lens, provided we have an adequate training set. We present them in the next section

and other neural networks.

4.2.2 Neural networks based methods

We can understand strong gravitational lens search as a binary classification problem, where

the two classes are the lenses and the non-lenses. The main issue faced when using supervised

machine learning methods to find lenses is the extremely low number of known lenses. Indeed,

neural networks need, in general, large training sets, and enough representative examples

of each class must be provided to span the entire diversity of possible lens features. For this

reason, lens examples must be simulated to constitute labeled training sets. Since this point

is crucial, we dedicate Chap. 5 to lens simulations. Recently, unsupervised learning was

introduced in the field of lens finding (Cheng et al., 2020). It represents a promising alternative

to supervised learning since it does not require labeled data. We summarize here the different

applications of the two methods.

Supervised

CNNs are especially suited to find lenses in imaging surveys as they are known to perform

well in image classification (e.g. He et al., 2015). One of the first applications of CNNs to

lens finding was Petrillo et al. (2017) . They applied a CNN architecture to a selection of

21 789 luminous r-band images of red galaxies (LRGs) taken from 255 square degrees of the

Kilo-Degree Survey survey (KIDS). To train the network, they used a training set composed of

50 percent of lens simulations and 50 percent of non-lens examples than are either LRGs, false

positives obtained from previous searches, or contaminants identified by visual inspection.

The network retrieved 761 candidates among which 56 were classified as possible lenses after

visual inspection. The visual inspection is used to evaluate the performance of the network, in

particular the false positive rate. One important result of Petrillo et al. (2017) is the nature of

the false positives, which are essentially ring galaxies, spiral galaxies, or mergers, e.g., types

of objects that have features that look like lensing features. Ring galaxies are very difficult

to differentiate from lenses since they consist in a luminous core surrounded by a disk that

contains young blue stars. Therefore they mimic the shape and color of lensing features. This

search was then extended by retraining the network with more complete training sets (R. Li

et al., 2021; R. Li et al., 2020; C. E. Petrillo et al., 2019; Petrillo et al., 2018)

Similar efforts have been applied to CFHTLS data by Jacobs et al. (2017) who used a CNN-
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based method on three-bands images (i,r,g). They performed two different searches: the first

one on a subsample of LRGs selected by color-magnitude cuts at the catalog level similarly as

Petrillo et al. (2017) and the second search on all the 171 square degrees of CFHTLS without

preselection. The main difference with Petrillo et al. (2017) is that they used a committee of

four CNNs, allowing them to obtain a lower false positive rate in the catalog-based search.

Unsurprisingly, the search on all CFHTLS led to a larger false positive rate than the catalog-

based search and did not enable the discovery of more exotic types of lenses. This highlights

the importance of a representative training set since the CNNs recover mainly the lenses

similar to those in the training set.

Jacobs et al. (2019a) conducted a search targeting high-redshift strong lenses in DES, using

a similar method to Jacobs et al. (2017) . This search was then extended to a wider range of

redshifts and color-magnitude cut in Jacobs et al. (n.d.) and led to a total of 511 lens candidates.

Recently, I contributed to applying a lens finding pipeline using CNN to the first data release

of DES (Rojas et al., 2021). Our results are presented in Chap. 8.

Similarly, Cañameras et al. (2020) discovered 330 wide separation galaxy-galaxy lens candi-

dates in the Pan-STARRS 3π survey with a CNN-based approach. In VST Optical Imaging of

the CDFS and ES1 fields (VOICE survey), Gentile et al. (2021) trained two CNNs: one on one

band data and the second done on three-band data. We conducted the first lens search in the

initial 2 500 square degrees of CFIS using a committee of CNN (Savary et al., 2021), our results

are summarized in Chap. 8.

Overall, the number of lens candidates was increased by a factor of 1000 thanks to the afore-

mentioned studies, proving that CNNs are a promising tool for future large-scale surveys. In

view of these future surveys, their efficiency has been tested on simulated data. For example,

this has been done in Lanusse et al. (2018) , where they applied an improved architecture

to LSST g-band mock images. They achieved completeness of 90 percent for lenses with an

Einstein radius larger than 1.4 arcsec and with signal to noise ratio larger than 20 and a rejec-

tion rate of 99 percent for the non-lens simulations. They however highlighted the fact that

their simulations are not complex enough to evaluate the improvement of this architecture

in comparison to more traditional CNNs as in Petrillo et al. (2017) . Similarly, CNNs have

been tested on Euclid simulations in the context of the gravitational lens finding challenge

presented in Sect. 4.3.

Although the number of known lenses is generally thought to be too small to train CNNs,

Huang et al. (2020) and Huang et al. (2021) have proven the possibility of using only a limited

number of lenses to train CNN in the Dark Energy Spectroscopic Instrument Legacy Imaging

Surveys (DECaLS) Data Release 7 and the Dark Energy Spectroscopic Instrument (DESI) Legacy

Surveys Data Release 8, respectively. The positive examples of their training set consist only

of known lenses taken from the Master Lens Database (Moustakas, 2012). They were able

to find 335 and 1210 new lens candidates, respectively. In the context of future large-scale

surveys such as Euclid, this opens the possibility to reuse the lens candidates found in the first
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iterations of the lens searches to train the future classifiers using only real data or a reduced

amount of simulated data. This may limit the biases induced by simulations.

The studies mentioned earlier targeted essentially LRG acting as lenses. However, CNNs are

especially suited to search for more exotic deflectors such as edge-on galaxies or quasi-stellar

objects acting as lenses because of their flexibility. They, however, require to be retrained with

specific training sets.

Unsupervised

The main drawback of CNNs used in a supervised setting is that they struggle to find the more

rare type of lenses that are hardly represented in the training set. They also require meticulous

manual labeling of all images used to train them. Unsupervised learning algorithms, which

do not requires labeled data, may represent an interesting alternative. Since the algorithm

deduces how to separate the images directly from the data, it is also less prone to suffer from

human biases.

The first example of an unsupervised method applied to lens finding is Cheng et al. (2020) .

They use a combination of a convolutional auto-encoder, which acts as a feature extractor,

and a Bayesian Gaussian mixture model, which classifies the data as a function of the features

extracted by the auto-encoder. They applied this method to the space-based images provided

by the strong gravitational lens finding challenge (Metcalf et al., 2019) and were able to reach

an accuracy of 0.77 and an AUC of 0.86 with a probability threshold of 0.5. Although the

performance is slightly lower than the supervised CNN’s entries of the challenge, this method

shows a remarkable ability to pick up different features characteristic of lenses. Moreover,

each cluster created by the Bayesian Gaussian mixture model seems to contain a different

type of feature, which suggest that in addition to the classification, it is possible to obtain

information on the similarity between the candidates.

With the same idea of decreasing the need for labeled data, Stein et al. (2021) applied a

self-supervised method to find lenses in the Data Release 9 of the DESI Legacy Survey. Self-

supervised learning offers a balanced approach between supervised and unsupervised learn-

ing as it uses only a limited number of labeled data (e.g. Caron et al., 2021). They first trained a

CNN encoder to learn lower dimensional representations of 43 million images without labels.

Using a contrastive loss function, they force the network to encode the similarity between

images in the lower dimensional representation. They then used three different methods to

find lenses. The first is a similarity search, where they obtained lens candidates similar to

the set of known lenses using a similarity measure on the lower dimensional representations

of the images. The main advantage of this approach is that it does not require labeled data

apart from the set of known lenses. The second and third methods compared a linear classifier

applied to the low dimensional features learned by the CNN encoder and the pre-trained

CNN encoder fine-tuned specifically for the classification task. Since these two methods are

supervised, they require more labeled data. However, since both use the features learned
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during the first phase, they require less labeled data than traditional CNN- based methods.

Using all these three combined methods, they could identify 1 192 lens candidates on 18 000

DESI legacy survey images.

4.3 Gravitational lens finding challenge 1.0 and 2.0

With the idea of comparing the different lens finding automated methods, the Bologna Lens

Factory group launched two strong gravitational lens finding challenges (Metcalf et al., 2019),

(Metcalf, in. prep). The Bologna Lens Factory project is led by members of the Strong Lensing

Working Group of the Euclid Consortium and aims at gathering a large and diverse set of strong

lens simulations that can be used by the scientific community for any kind of application. The

first challenge tested the performance of algorithms on both ground-based and space-based

simulations, whereas the second challenge was focused on Euclid-like data. We summarize

here the results of the first challenge and present our submission to the second challenge.

4.3.1 Challenge 1.0

The first challenge was split into two categories: ground-based with four-band KIDS simula-

tions (u,g,r, i) and space-based with one-band Euclid simulations (VIS). The lens simulations

of the ground-based set were obtained with two different methods. Most ground-based sim-

ulations (85 percent) are entirely synthetic images where both the source and the lens have

analytical profiles. The remaining 15 percent are composite images in which lensing features

are added to a real image of LRG of the KIDS survey. The participants in the challenge used

various methods such as visual inspection, arc-finder, machine learning methods making

inferences from pre-selected features, and CNNs.

The most important result of the challenge is that CNN-based methods outperformed all

other entries of the challenges for ground-based and space-based data in terms of AUROC.

They also represent the majority of the entries in the top five in terms of TPR0, defined as

the highest TPR reached before a non-lens image of the test set is classified as a lens (false

positive). Interestingly, the group who participated in the challenge using a visual inspection

method ranked sixth in terms of the TPR0 for the space-based and ground-based challenges.

It highlights the fact that even classification done by experts can lead to false positives and that

automated methods have the potential to outperform experts when the training set has similar

properties to the testing set. However, visual inspection was the only one that identified the

jackpot-lens, i.e., a lens with two lensed sources, present in the ground-based challenge.

All methods, including human classification, performed worse on composite simulation

images than on synthetic simulations. This illustrates the importance of using realistic simula-

tions to evaluate the classifier performance and training machine learning-based algorithms.

Indeed, machine learning algorithms can struggle to generalize from simulated data to real

data, leading to a drop in performance.
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A question raised by this challenge is whether the color information can improve the perfor-

mance of classifiers. All the methods obtained better AUROC scores in the ground-based part

of the challenge. It was hypothesized that the color might help considerably to distinguish

lensing features from spiral arms, rings, or other features mimicking lensing. It was tested

for CNNs on KIDS data in Petrillo et al. (2018) , which trained two similar architectures with

three-band images and one-band images. The network trained with color images has more

trouble retrieving lenses with redder features and obtains a more significant number of false

positives. They suggest that adding mock lenses with more diverse colors can improve the

performance of the CNN on color images. However, this highlights the difficulty of using

color images since the lens simulations must span all the possible lens configurations (shape

of the lens features) and an extensive range of colors for the source. More recently, Gentile

et al. (2021) compared the performance of the of CNN architecture of Petrillo et al.; Petrillo

et al. (2018, 2017) on one-band and three-band data from the VOICE survey. They observed

that, on simulated data, the three-band CNN identifies more systems with smaller Einstein

radii, whereas the single-band CNN obtains a higher accuracy, especially with larger Einstein

radii systems. The one-band CNNs focus on the shape of the lensing features and thus are

more efficient to discriminate with false positives such as spiral galaxies. Nevertheless, the

multi-band CNNs are able to discover lenses with smaller Einstein radii with the help of the

color difference between the lensing features and the deflector. This shows that if multi-band

images are available, the performance can be improved by combining the results of CNNs

trained with single-band and color images.

4.3.2 Challenge 2.0

Recently, the Bologna Lens Factory (BLF) group launched a second Lens Finding Challenge.

The 2.0 version of the competition focuses only on Euclid simulations. The training set consists

of 100,000 Euclid-like images. All images are provided in 4 different bands (VIS images of

dimension (200,200) and the near-infrared (NIR) Y, J, and H bands of dimension (60,60)). The

pixels sizes are 0.1 arcseconds for VIS, and 0.3 arcseconds for NIR bands. Along with the

imaging data, a catalog summarizing the properties of the images is provided. We summarize

here the entries of the catalog we used for our submission:

• x_cr i t , y_cr i t : coordinates of the center of the critical curve

• z_sour ce, z_lens: redshifts of the source and the deflector, respectively

• sour ce_I D : ID number of the source

• mag _sour ce, mag _l ens: magnitude of the source and the deflector, respectively

• ei n_ar ea: Einstein area computed from the largest critical curve

• n_pi x_sour ce: pixels above 1σ in source images

• n_sour ce_i m: number of lensed sources
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• mag _e f f : effective magnification of the source

The lenses are defined in the challenge rules by the objects in which n_sour ces > 0, mag _e f f >
1.6 and n_pi x_sour ce > 20. The non-lenses are the objets with n_sour ces = 0.

The metric used to evaluate the submission is the maxFβ(s), which represents the maximum

Fβ measure for all score thresholds between 0 and 1. The value of β is very small (0.001).

Therefore more emphasis is put on the precision than the completeness of the sample of

candidates.

The main difficulty in the challenge is that when we apply the definition of lenses provided

in the challenge rule, the simulation set contains 49 % of lenses, but many of them do not

display visible lens features. In addition, the proportion of lenses in the test set used to

evaluate the simulations is not specified and may differ from the proportion in the training

set. Another particularity of the challenge is the fact that the non-lens represent only 10%

of the set of simulations. Our lab participated in the challenge with six master students,

Boris Bergsma, Nicolas Frank, Alexandre Di Piazza, Daniel Forero Sanchez, Andrei Variu, and

Yaroslav Ilichenko, supervised by myself. We split the training set in two, keeping 30% of the

images in a validation set that was used to monitor the performance of our networks. We

adapted and tested three different architectures, a Residual Network (ResNet) inspired by

He et al. (2015) , the best model of Schaefer et al. (2018) (LASTROmodel), and a variation

of Efficientnet architecture B0 (Tan & Le, 2019). The last architecture is a Resnet, in which

the depth, width, and resolution are scaled uniformly to limit the usage of computational

resources. To refine the classification, we added fully connected and dropout layers at the

top of Efficientnet B0. Our modified Efficientnet architecture is presented in Fig. 4.1. The

advantage of Efficientnet B0 is that it has been pre-trained on ImageNet data (J. Deng et al.,

2009). Hence, we initialized Efficientnet layers of our network with the weights and biases of

the pre-trained model. It enabled us to shorten the training by a factor of 4 compared to the

two other networks, even though they have a comparable number of parameters.

For all architectures, we implemented a one-band version using only VIS images and a three-

band version where the second and third bands correspond to a weighted average of all the

NIR bands 0.15 Y +0.35 J+ 0.5 H and the H band alone, respectively.

All images were normalized between 0 and 1 before being passed to the CNNs. The CNNs

were trained using mini-batch stochastic gradient descent with batches of 128 images flipped

randomly along the x- and y-axes. Except for Efficientnet, which was initialized with pre-

trained weights from the ImageNet, all models were initialized randomly following the method

described in He et al. (2015) .

After the training, we evaluated the performance of the CNNs on the validation set. The

maximum F0.001 value we could achieve with all three architectures was 0.7. We hypothesized

that the low performance resulted from the large number of objects labeled as lenses in the

training set but with no visible lensing features. Since the metric used to evaluate the challenge,
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efficientnetb0_input: InputLayer

efficientnetb0: Functional

flatten: Flatten

batch_normalization: BatchNormalization

Dense1_add: Dense

dropout: Dropout

Dense2_add: Dense

dropout_1: Dropout

fc_out: Dense

Figure 4.1: Architecture of our modified Efficientnet B0. The red rectangle corresponds to the
Efficientnet B0 architecture of Tan and Le (2019) . The layers we added are indicated with
black rectangles.
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F0.001, puts more emphasis on the precision than on the recall, we chose to drastically reduce

the set of lenses we use for training by including only the ones with manifest lensing features.

We first selected the lenses in which the number of pixels in the lensed source image above 1σ,

n_pix_source, fulfill the following condition:

• RE < 2 => n_pi x_sour ce > 90

• 2 < RE < 2.5 => n_pi x_sour ce > 145

• 2.5 < RE < 3 => n_pi x_sour ce > 150

• 3 < RE < 3.5 => n_pi x_sour ce > 300

• 3.5 < RE < 4 => n_pi x_sour ce > 400

• 4 < RE => n_pi x_sour ce > 800

where RE is the Einstein radius of the lenses.

The reason to use a more restrictive limit for large Einstein radii is that, in this case, the lensed

source features are generally more spread, making them more difficult to identify. We also

imposed a limitation on the magnitude of the deflector mag _lens:

mag _l ens > 20 (4.1)

This enables us to remove the images where the lensing features are blended in the light of

very bright deflectors. Using these criteria, we selected 12 562 lenses from the 49 218 original

lens simulations. Examples of lenses accepted in our training set are shown in Fig. 4.2. As we

can see, the lenses are not necessarily at the center of the image. We retrained all our networks

with the subset of lenses we selected and the 10 000 original non-lenses images.

With this new training set and our new definition of lenses, we reached F0.001 above 0.95 on

the validation set with all our models. The results are summarized in the first row of Table

4.1. We found no improvements and, in fact, even a slight decrease in the performance of

all our models when using the NIR images. This can be explained by the fact that due to the

low resolution, the lensing features in NIR images are very often blended in the noise for NIR

images and thus invisible to the networks. We submitted the two best models for the challenge

and obtained an F0.001 higher than 0.97 on the test set (using the original lens definition). The

detailed results are presented in the second row of Table 4.1.

The winner of the challenge, Bom et al. (2022) used a deeper Efficientnet architecture (B2).

However, the main difference with our submission lies in the preprocessing method they use

to reduce the number of positive examples without visible lensing features, which consist of

clipping and contrast enhancement.

57



Chapter 4 Finding galaxy-galaxy lenses in imaging data

Table 4.1: Results of our three architectures after training with the modified set of lenses on
VIS band data. The results on the validation set are obtained using our definition of lenses.
The test set results were obtained by the organizer on a separate test set that was not available
for the participants during the challenge. The Resnet architecture displays no score on the test
set since we submitted only our two best models.

Architecture LASTROmodel Resnet Efficientnet B0
maxF0.001 (validation set) 0.96 0.95 0.99
maxF0.001 (test set) 0.97 - 0.98

The definitive ranking, as well as the detailed results, will be described in Metcalf et al. (in

prep.). One interesting observation from the intermediate results is that even if we trained

our network with a restricted number of lenses, we obtained a recall value comparable to the

other groups who used the original training set. The essential question raised by this point

is if a CNN trained on blatant lensing features would be able to generalize and also detect

some of the less evident lenses. The detailed results of the challenge will partially answer

this interrogation. In the meantime, our results show that too many invisible lensing features

prevent the network from learning to identify even the most conspicuous lenses.

4.4 Limitations of CNN-based methods

As we have seen in the previous section, CNNs are a very efficient tool for finding lenses, and

numerous new lenses have been found with the advent of this new method. However, using

them in larger-scale surveys requires overcoming some challenges. We summarize here the

main difficulties encountered during the previous searches and explore solutions.

4.4.1 Low occurrence rate of lenses

Gravitational lensing is a sporadic event, and the set of known lenses is still limited. Therefore,

simulations of lenses have to be used in most cases when using a supervised learning approach.

Nevertheless, this is not the only issue with the very low occurrence rate of lenses.

Indeed, the classifiers are often trained and tested with sets containing an unrealistic fraction

of lenses (typically 50%). However, the probability for an image labeled as a positive example

by the algorithm to be a real lens P (L|C ) depends on the occurrence rate of lenses P (L) within

the dataset investigated. It can be deduced from the Bayes’ rule:

P (L|C ) =
P (L)P (C |L)

P (L)P (C |L)+ (1−P (L))P (C |N L)
, (4.2)

where P (C |L) and P (C |N L) correspond to the precision and the false discovery rate obtained

on the testing set, respectively. This effect limits the precision we can reach on real data

for a fixed false discovery rate. For a small P (L), P (L|C ) will be small even when P (C |L) is
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high. Conversely, a fixed precision forces the false discovery rate to be in the same order

of magnitude as the occurrence rate to make significant predictions. This mathematical

phenomenon is named the "base rate fallacy" and is already known in the field of anomaly

detection (e.g. Axelsson, 2000).

The prevalence of lenses is different depending on the survey. Indeed, as discussed in Chap.6,

what we define as a lens depends mainly on the presence of visible lensing features. The

detectability of lenses depends on parameters related to the telescopes and conditions of

observations such as the point spread function, noise level, seeing, and sky-brightness and

related to the lensing system such as the Einstein radius (Collett, 2015). The number of

lenses visible in photometric surveys has already been estimated for point-source lenses

(Oguri & Marshall, 2010) and extended sources lensed by LRG (Collett, 2015) with the help of

simulations. However, the occurrence rate of lenses among a general population of galaxies is

still unknown.

A solution to limit the importance of the base rate fallacy is to increase the prevalence of

lenses in the sample with a preselection of objects. This selection generally takes the form

of a color-magnitude-cut, for example, in Jacobs et al. (2017) , Petrillo et al. (2017) , Petrillo

et al. (2018) , Jacobs et al. (2019a) , Cañameras et al. (2020) . It must be kept in mind that the

presence of lensing features shifts the lenses towards the bluer and brighter regions of the

color-magnitude diagram in comparison to similar deflectors without lensing features. The

color-magnitude cut must consider this effect, for example, by estimating the extent of the

shift with lens simulations as in Jacobs et al. (2019a) . Nevertheless, color-magnitude-cuts

may remove some more exotic lenses, such as those with red arcs, and must therefore be as

conservative as possible.

4.4.2 High false positive rate

One common observation between all the searches mentioned in Sect. 4.2.2 is the high false

positive rate. False positives are usually spiral galaxies, ring galaxies or merging galaxies, and

any other object that mimics in one way or another the morphology of lensed system (Petrillo

et al., 2017, e.g.). In the case of color images, blue sources can confuse the CNNs (Jacobs et al.,

2017, e.g.).

This high false positive rate is partially a consequence of the base rate fallacy mentioned in

the previous section. For this reason, a visual inspection of the candidates found with CNNs is,

at the moment, inevitable. However, there are ways to reduce the false positive rate and thus

diminish the number of images to inspect visually.

One method to reduce the false positive rate is to add examples of common false positives in

the training set. It can be done by retraining the network with false positives found in a previous

classification (Cañameras et al., 2020; Petrillo et al., 2017, e.g.). However, like lenses, the usual

false positives are not common. Therefore simulating the most common contaminants can
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be a solution to constitute a sufficiently large training set for neural networks. Nonetheless,

false positives are more challenging to simulate analytically than lenses since their luminous

profile is particularly complex and can belong to a large variety of astronomical objects. To

circumvent this difficulty, we propose a data-driven approach to produce sets of false positive

examples.

A first test has been done on color images of spiral galaxies from SDSS using a generative

adversarial neural network (GAN) trained with a Wasserstein cost function. This collaborative

work is the subject of a paper (Dia et al., 2019, see appendix A) (see Appendix A). In order to

improve the reconstruction of small features like spiral arms, we use a progressive training

method. It consists of training first the inner layers of the generator with smaller images and

then expanding the dimension of the discriminator and the generator simultaneously as the

dimension of the images. The galaxies generated by the GAN display complex structures and

morphologies. However, some simulations present unrealistic shapes. This aspect must be

improved in subsequent versions of the generator, for example, by acting on the latent space

of the GAN. To produce various false positives for different surveys, we plan to add the type of

galaxy and the survey in the information given to the network during the training. This can

be done with a supervised or semi-supervised method using a variation of Conditional GAN

architectures (e.g Odena et al., 2016). Training the network with images from different surveys

could also decrease the number of training examples needed compared for training a different

generator for each survey.

4.4.3 The problem of using simulations in training sets

Because of the small number of known lenses, CNNs are usually trained with simulated lenses.

To this end, multiple methods have been developed to simulate lenses (see 5). A decrease in

performance is observed when the CNNs trained with lens simulations are applied to real

data. This happens partially because of the different prevalences of lenses in the simulated

sets and real data but can also be understood as a domain transfer problem, i.e., when the

inference set is not drawn from the same distribution as the training set. In such a case, the

performance may drop significantly.

One solution proposed by Petrillo et al. (2018) is to build a benchmark set of known lenses

from surveys in which many lens searches have been conducted, such as KiDS and DES.

This set could be used to compare the performance of the different classifiers on real data.

The realization of such a benchmark set will be possible with the future extension of the

Master Lens Database (Moustakas, 2012) which is a project that aims to compile all discovered

strong gravitational lenses in a unique database. At the time of writing, it contains the lenses

discovered up to 2016 representing hundreds of objects. However, its extension (Lemon et al.,

in prep) will include all the new candidates found in the recent lens searches and allow users

to enter new lenses easily. In addition, the database will provide a grade reflecting the quality

of the lens candidates, which could give more information when we re-use the candidates to
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evaluate CNNs.

Another solution is to use more realistic simulations. To this end, we developed a simulation

pipeline presented in Chap. 5. In our simulations, only the lensing effect is simulated. It

reduces the risk of creating synthetic features that CNNs can recognize. However, the biases

induced by the usage of the simulations must be identified and quantified in the view of future

large-scale surveys.

4.5 Summary

This chapter summarized the different methods to find galaxy-galaxy lenses in imaging surveys.

We also presented our contribution to the second strong gravitational lens finding challenge.

In this work, we essentially focused on CNN-based lens finders. As we have seen, there are

some challenges to overcome when using CNNs to find lenses. Galaxy-galaxy lenses are rare

events. This has two main consequences. First, the set of known lenses is small. Therefore

simulations are needed to train the CNN. Secondly, the low occurrence rate of lenses in real

data leads to a significant false positive rate due to the base rate fallacy. Therefore, a visual

inspection of the candidates is difficult to avoid. However, solutions exist to lower the false

positive rate, such as retraining the CNNs against the false positives found during previous

searches. In the future, sets of false positives may also be produced with generative models.

The quality of the training examples is crucial for the performance of CNNs. During our

participation in the second strong gravitational lens finding challenge, we observed that

including a large number of lenses without visible lensing features dramatically lowered the

classification’s performance.

In the following chapters, we present the parts of our lens-finding pipeline and how we

addressed the abovementioned issues.
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Figure 4.2: Examples of Euclid lens simulations (VIS band) matching the criteria to be included
in the positive examples of our training set.
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As mentioned earlier, CNNs-based lens finders require a large set of lenses to be trained.

Although some recent examples such as Huang et al. (2021) and Stein et al. (2021) have

shown the possibility of using a minimal set of known lenses only to train neural networks,

simulations of lenses are required for at least the first iterations of most CNN-based lens

searches. This will be, in particular true for Euclid. However, we hope to retrain the classifier

using only real data or a hybrid set with real lenses and simulations when a sufficient number

of candidates and contaminants will be found in the first batch of data of the survey.

One method to produce sets of lenses is to produce entirely synthetic images where all light

profiles are analytical models. For example, such an approach is used in Jacobs et al.; Metcalf

et al. (2019a, 2019) . This method gives full control of the lensing parameters to the users.

Thus, it allows easy production of training sets with specific distributions, i.e., a limited

range of Einstein radii and colors. Since, by construction, this type of simulation does not

contain instrumental effects or usual "defects" in images such as cosmic rays or companions, a

random real background image is often added to the simulations to make them more realistic.

However, it is challenging to recreate all of the subtleties of genuine lenses using fully analytical

simulations. It is especially true if the foreground object has a more complex light profile,

for example, spiral galaxies. An alternative consists of combining real deflector images with

simulated sources, as in Petrillo et al. (2017) and Pourrahmani et al. (2018) to have foreground

galaxies with a realistic light profile. In such cases, noise and "defects" are included in the

images by construction.

CNNs trained with mock lenses may learn to recognize features characteristic of simulated

data instead of learning lensing features (Jacobs et al., 2017). A significant drop in performance

is observed when applying such CNNs on real data. In some cases, CNNs can even learn

features that are invisible to the eye. This has been observed, for example, in Wilde et al. (2022)

, where a part of the training set was rotated. The CNN learned the orientation of the images

thanks to the asymmetric PSF. The rotated images were, as a consequence, misclassified. For

this reason, improving the realism of lens simulations used in training sets is crucial. On the

other hand, the computational cost of simulations must stay reasonable since large numbers
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of mock lenses must be produced. In the context of future large-scale imaging surveys, we

developed a flexible simulation pipeline, which is aimed to be easily adaptable to any survey

and type of lens. It is designed to produce both single and multi-band images. With the

idea of producing more realistic simulations, we choose a similar approach to Pourrahmani

et al.; Petrillo et al. (2018, 2017) by using real foreground images, but go further in the realism

of the simulation by using real source images. This method has already been applied in

Cañameras et al. (2020) . This method allows us to have sources with small structures and

realistic magnitudes. With our method, only the lensing effect is simulated. We hope, therefore,

to limit the formation of artifacts in the simulations. The pipeline has already been applied to

produce r-band lens simulations for CFIS (Savary et al., 2021), and DES (Rojas et al., 2021).

We tested two different lensing software to simulate the lensing effect GLEE software package

(Suyu et al., 2012; Suyu & Halkola, 2010) for the production of CFIS lens simulations (Savary

et al., 2021) and LenstronomyI (Birrer & Amara, 2018; Birrer et al., 2015) in the context of a

DES lens search (Rojas et al., 2021). We used the source galaxies sample of Cañameras et al.

(2020) in both cases. The morphology of these galaxies is taken from HST/ACS F814W images

and the color is inferred from HSC ultra-deep stacked images. Since HST is a space telescope,

we neglect the effect of its PSF on ground-based simulations.

Apart from the foreground galaxy and source images, our simulation pipeline requires the

knowledge of the redshift of the source and the foreground galaxy and the velocity dispersion

of the deflector as a proxy of the mass.

We describe here the main steps of the simulation pipeline and the difference between the

two versions. The pipeline can be decomposed into two parts: The "match" part, where we

associate a foreground galaxy with a source (Steps 1 to 3), and the simulation part, where we

simulate a lens using the source and the foreground galaxy selected in the first part (Steps 4 to

7). The two parts of the pipeline are summarized in Fig.5.1.

1. In general, the background source images must be deconvolved from the PSF of the

telescope. However, as explained above, if we aim to simulate lenses from a ground-

based survey and the source images are provided by a space-based telescope, this step

can generally be skipped. This step is, however, crucial for Euclid simulations as, in this

case, the PSF of the source cannot be neglected.

2. We select a foreground galaxy in the deflector catalog. We assume that the lensing mass

model is an SIE (Kormann et al., 1994; Kassiola & Kovner, 1993), which has five free

parameters: the Einstein radius, the coordinates of the lens center, the ellipticity (or axis

ratio), and the position angle (PA). It is important to highlight that with such a model,

the ellipticity and PA are identical for the light and the mass distributions.

3. A random source is extracted from the background galaxy catalog. We ensure that the

Einstein radius is sufficiently large to be visible in the lens image. For CFIS simulation

Ihttps://github.com/sibirrer/lenstronomy
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we allow the Einstein radius value to lie in the range 0.8′′ < RE < 3.0′′, whereas for DES

we chose 1.2′′< θE < 3.0′′. The larger lower limit for DES simulation is due to the lower

resolution of DES images. The upper limit depends on the size of the cutouts and

ensures that the lensing features lie within the image. If the Einstein radius does not

fulfill the conditions, we take another random source from the source catalog. This

step is repeated until we can produce a sufficiently large Einstein radius. If, after 100

iterations, no good match is found, we multiply the velocity dispersion by 1.5 and repeat

the process. If the procedure fails again we discard the foreground galaxy from our

catalog and restart at step one. (See Fig. 5.1)

4. The source is placed randomly in a region of the source plane that can produce a

strong lens system. This region is defined differently in the two versions of the pipeline.

With lenstronomy, the region corresponds to the smallest rectangle encompassing

the caustics, whereas with GLEE, the region is defined with a constraint on the total

magnification µ≥ 2. In the last case, the possible locations of the sources are therefore

limited to the ones producing a total magnification µ≥ 2.

5. Once the source position is determined, the lensing effect is computed using the GLEE
software or Lenstronomy. This results in a high-resolution image of the lensed source.

6. The PSF of the foreground image is rescaled to the pixel size of the source image. We then

convolve the lensed source image with this rescaled PSF. In the case of CFIS and DES

simulations, resizing the lensed source image to the pixel size of the foreground image

and then convolving directly with the PSF eventually saves computational resources and

does not lead to a significant decrease in the quality of the lens simulations. However, to

simulate high-resolution lenses, such as for Euclid, it is imperative to rescale the PSF

image first if the size and resolution of the source images are greater than the foreground

images.

7. The convolved lensed source image is then re-sampled to the pixel size of the foreground

image and added to the foreground galaxy image.

5.1 Comparison of the two versions of the simulation tool

The two versions of the pipeline can produce comparable simulations of similar quality. This

can be observed, for example, in Fig. 5.2 which depicts four pairs of CFIS simulations produced

with the same foreground galaxies and sources using the two pipeline versions. In the pairs,

only the position of the source is different. The velocity dispersions and the redshifts of the

foreground galaxies and sources are the same. The simulation time is highly dependent on the

lens and source image sizes and is similar for the two versions.

With both versions, a significant number of simulations displayed no visible features. In the

GLEE version, this problem is more limited since the condition on the magnification helps
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Figure 5.1: Illustration of the two different parts of the simulation pipeline. First, a foreground
galaxy and a source are associated (Upper panel). Then, the lens is simulated using the selected
foreground galaxy and source.

66



Lens simulations Chapter 5

L

L

L

L

G

G

G

G

Figure 5.2: Comparison of CFIS lens simulations produced with the two versions of the
simulation pipeline. Each pair depicts simulations with similar parameters (identical sources,
deflectors, velocity dispersions and redshifts) for the Lenstronomy (L) and the GLEE (G) version
of the pipeline. Only the position of the source is different in each pair.

to ensure the visibility of the features. However, we decided to keep only the simulations

for which the sum of the brightness of all pixels of the lensed source is at least 20 times the

mean rms value of the sky noise measured in the four corners of the deflector image. In the

Lenstronomy version, an option allows decreasing the magnitude by a chosen number (boost).

This increases the source’s brightness and, thus, the visibility of the features. However, with this

method, we artificially shift the magnitude distribution of the sources toward brighter ends

and thus produce less realistic simulations than with the GLEE version. In the GLEE version,

the condition on the total magnification allows us to increase the probability of producing

visible lensing features. Nevertheless, since the condition forces the source to be placed in a

higher magnification region, this can reduce the diversity of lensing features.

With our actual method of positioning the source, some lensing configurations occur less

frequently. This is, in particular, the case for the cusp configuration with the SIE profile (see

Fig. 2.3). This happens because, when we attribute the position in a random uniform way, the

probability of falling into the positions producing the cusp position is lower than for fold and

cross positions. Since the sources are extended, this effect is less important when producing a

training set for galaxy-galaxy lenses. However, this must be taken into account if the pipeline is

used to produce lenses with point source sources. For point sources, the function to position

the source must be adapted to ensure a sufficient number of cusp configurations.

We presented in this chapter our lens simulation pipeline. It was designed to limit the creation

of synthetic features that neural networks may learn. To do so, we use real images for the
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deflectors and the sources and simulate only the lensing effect. The simulation tool allows us

to produce lenses with different deflectors easily. Recently, the pipeline has been updated to

produce lenses with edge-on galaxies to search for such lenses in CFIS (Acevedo, in prep). It is

possible to produce simulations for any ground-based imaging survey with this tool. However,

for space-based images, an additional step must be added to deconvolve the PSF of the source

images.
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As explained in the previous chapters, lens finding algorithms are hampered by a large false

positive rate. Even if solutions can lower the false positive rate, because of the low occurrence

rate of lensing, the classification of the lens finding algorithms cannot be trusted blindly. For

this reason, visual inspection is a crucial step in all lens searches. In addition, the definition of

what specific features define a lens can differ between the persons participating in the visual

inspection of candidates. In this chapter, we present different tools designed to standardize

and ease the visual inspection of sets of candidates. We also propose guidelines that can be

used to rate lens candidates from ground-based imaging surveys.

6.1 Visual inspection tool

To provide an efficient method to inspect large samples of lens candidates, I developed a

python library containing tools that allow a detailed grading and inspection of images one

by one and a rapid selection of potential lenses among images displayed in mosaics. This

library is available on Github on https://github.com/esavary/Visualisation-tool/. The interest

of using this library is to ease the grading of large sets of candidates and standardize the visual

inspection between visual inspectors.

6.1.1 Detailed inspection tool

The detailed inspection tool is available in two different versions for 1 band and color images.

An example screenshot of the tool is presented in Fig. 6.1.

The detailed inspection tool allows the user to assign a classification (Lens/Maybe Lens/ Non

Lens) and sub-classification (Merger / Spiral/ Ring/ Elliptical/ Disk) to each image. If more

categories or subcategories are necessary, buttons can easily be added to the tool. The user

can add comments about the candidates that are stored with the classifications. This allows,

for example, the flagging of images that do not fit into the categories proposed in the buttons

or candidates of special interest. Provided that a coordinate list of the candidates is given to
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Figure 6.1: Screenshot of the one-band version of the detailed inspection tool. For each
image the user can choose a main classification (Lens/Maybe Lens/ Non Lens) and a sub-
classification (Merger / Spiral/ Ring/ Elliptical/ Disk).

the code, the user can also visualize Legacy Survey images (LS; Dey et al., 2019) in a separated

window when available. This tool also enables the user to open the images in the software

SAOImageDS9 (Joye & Mandel, 2003) in case more advanced visual settings are needed.

The user can correct his classification at any time and move forward or backward in the set of

images by using the arrows or by specifying the image’s position directly to inspect.

Mosaic inspection tool

The mosaic tool allows the user to inspect multiple images simultaneously. It is designed for

a quick selection of potential candidates and therefore does not enable detailed labeling of

them. It is possible to display either color or one-band images with the mosaic tool. We show

a screenshot of the tool in Fig. 6.2.

The images are arranged randomly in frames of 10 by 10 images according to a random seed

that can be given as an argument to the code. This allows us to force all visual inspectors to see

the images in the same position (By using the same random seed) or in a different order. We

also added the possibility to repeat images intentionally from the set if needed for statistics.
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Figure 6.2: Screenshot of the color version of the mosaic tool. The user can flag the potential
lenses by clicking on the images

Clicking once on an image changes its classification to "Lens". Clicking a second time on the

same image cancels this classification. When an image is selected, it is replaced by an "L".

This avoids unnoticed misclick on candidates. Similarly, as in the detailed inspection tool, it is

possible to go one frame backward or forward or jump directly to a given page.

In the context of two lens searches in DES (Rojas et al., 2021) and CFIS (Savary et al., 2021),

we analyzed the biases induced by the position of the images on the grid of the mosaic tool

during the first step of the visual inspection. In the two searches, the candidates were shown

at a random position, different for each visual inspector. We display in Fig. 6.3 the normalized

mean number of clicks per cell of the mosaic tool computed with the contribution of all visual

inspectors participating in each search. As we can see, the cells in the top part of the mosaic

tool are slightly more likely to be selected. In the DES search, the bottom part of the Mosaic

tool also received more clicks. This confirms the importance of showing the candidates at

different positions to the visual inspectors to limit the effect of the location of images during

visual inspection.
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Figure 6.3: Color-map depicting the mean number of clicks in each cell of the Mosaic tool dur-
ing the visual inspection of the candidates of the lens searches (Savary et al., 2021) (left panel)
and (Rojas et al., 2021) (right panel). The values are computed among all visual inspectors
participating to the searches and are normalized by the mean number of clicks per cell. Credit
of the right panel image: adapted from (Rojas et al., 2021).

6.1.2 Classification guidelines

The notion of what can be a lens may differ significantly among visual inspectors. The grading

schemes are also very heterogeneous between the different lens searches. For example Petrillo

et al. (2017) , Petrillo et al. (2018) use three categories, "Lens", "Maybe lens" or "Non lens",

whereas Jacobs et al. (2017) , Jacobs et al. (2019a) use four numerical categories ranging from

0 to 3. However, what belongs to each category depends on the appreciation of the visual

inspector.

In the context of the CFIS and DES lens searches (Rojas et al., 2021; Savary et al., 2021), we

established a grading scheme that could easily be adapted for the search of extended lensing

features in other ground-based surveys. Our grading scheme is divided into four categories,

for which we provide precise guidelines. This is done to standardize the classification between

all visual inspectors. We display in Fig. 6.4 illustrative examples for each of the four categories.

The four categories are summarized below:

• Secure lens (SL): SL must display clear signatures of strong-lensing as several clear

multiple images, signs of counter-image or an Einstein cross or ring. This category

contains only the best candidates; no additional observation is needed to confirm their

classification.

• Maybe lens (ML): ML candidates present a lens-like configuration and a large tangential

distortion. However, they are classified as ML because they have no distinct multiple

images or all images or arcs are on one side of the galaxy without signs of counter images.

Candidates in this category require higher resolution imaging and modeling to confirm
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their lens nature. Ml category can include spiral or ring galaxies that mimic lensing

features.

• Flexion (F) or Single arc: F category includes all galaxies surrounded only by a single

distant arc with possible tangential distortion. F category can contain galaxies distorted

by weak lensing effect.

• Non-lens (NL): NL candidates are all objects that do not fit into the three previous

categories. They can be, for example, rings, spirals, merging or irregular galaxies or

companions.

These guidelines will be reused in the lens database currently under development at LAS-

TRO/EPFL (Lemon, in prep). The lenses will be provided with observational and model-

derived quantities and a grade. Our guidelines serve as the basis for grading extended lens

candidates from ground-based surveys.

SL ML F NL
Figure 6.4: Illustrative examples for the four categories of the grading guidelines.

6.2 Method

A detailed inspection of each candidate found by the classifier is laborious and time-consuming

for the visual inspectors. For this reason, we designed an efficient method in three steps that

aim to reduce the time spent on the inspection of large sets of candidates found by CNNs. The

steps are summarized below:

1. Preliminary inspection: We use the Mosaic tool to select all candidates found by the

classifier that display possible signs of lensing. This pre-selection aims to eliminate a

large part of the false positive, so the selection of possible lenses must be large. Depend-

ing on the number of images and time available for the second phase, we can choose to

take the union or intersection of the selections of all visual inspectors or only images

that obtain a certain number of votes as our final selection.

2. Detailed inspection: We reinspect all the objects selected during the first step with the

detailed inspection tool. For all images, we assign a main classification following the

grading guidelines and, if the image is a non-lens, a sub-classification to precise its

nature.

73



Chapter 6 Visual inspection of the lens candidates

3. Joint inspection: We investigate each image labelled as ML or SL by at least one visual

inspector and decide with the entire group of visual inspectors on one unique grade

for each image. As it will be explained later, we introduced this step because of the

lack of agreement between the classifications of the visual inspectors. However, with

improvements in the guidelines and the method to convey them, this step may become

optional in future lens searches.

6.3 Discussion

In this chapter, we presented a method to inspect large set of lens candidates. This method

has already been applied to two lens searches Rojas et al. (2021) and Savary et al. (2021) . For

the visual inspection of the candidates of these two searches, we communicated the grading

guidelines in the form of slides displaying a short description of each category along with

example images. However, we observed that despite the guidelines, the agreement between

the classification of the different visual inspectors was very low.

To illustrate this, we present in Table 6.1 a summary of the classification from all visual

inspectors after the detailed inspection step of Savary et al. (2021) . In total 4 626 images were

graded during this inspection. As we can see, for the same set of images, the proportions of

the different categories vary greatly between the different visual inspectors. Category F causes

the largest confusion. Some visual inspectors use this category only for galaxies surrounded

by very large arcs, whereas others include most galaxies with companions that present a slight

deformation. In some cases, objects identified as F by some visual inspectors were classified

as SL by others since the boundary between a very large single arc and an incomplete Einstein

ring is ambiguous. Even though all visual inspectors identified a similar fraction of SL, they

selected different candidates. All visual inspectors classified only 8 from the 4 626 images as

SL.

Table 6.1: Percentage of objects classified as SL , ML, F, and NL for each visual inspector after
the detailed visual inspection step of Savary et al. (2021)

Visual inspector SL ML F NL
User 1 0.5 2.1 0.4 97.1
User 2 0.7 9.1 0.5 89.7
User 3 0.7 3.1 1.3 94.8
User 4 0.8 10.2 3.8 85.2
User 5 1.0 16.7 8.8 73.4
User 6 0.8 7.7 4.8 86.7

Although it is impossible to reach a perfect agreement on the candidates, this large discrepancy

in the classification of the different visual inspectors shows that there is room for improvement

in the phrasing of the guidelines to make them more precise and in the method to present

them. This point will be essential for the future lens database (Lemon et al. in prep) since

the contributors must provide a grade for their candidates. A reflection has to be done on
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methods to homogenize the grading, such as training the visual inspectors on a labeled data-

set or including labeled examples within the set of candidates to evaluate the performance of

inspectors.

A large-scale study on the efficiency of visual inspection is currently taking place on Zooniverse
I (Rojas et al. in prep). The experiment consists of classifying 1 500 color images from DES

into four categories following simple instructions given on the website. The study involves

only professionals working in the field of strong lensing since they are usually the ones that

participate in the inspection of candidates but include people with different levels of expertise.

At the moment, 69 persons participated in the experiment.

The aim of this work is to understand the limits and biases of visual inspection and what

parameters improve or decrease the performance of visual inspectors. It will also estimate the

number of candidates missed during the visual inspection step of previous lens searches. This

work will provide invaluable help to improve the strategies of visual inspection for large-scale

lens searches. In the future, the visualization tools and the guidelines must therefore be

updated taking into account the result of this research.

During the visual inspection, the inspectors had access to color images of the objects from

the Legacy Survey with a button of the detailed visual inspection tool. In the case of CFIS,

this provided additional information on the color difference between the lensing features and

the central galaxy. The Legacy Survey images were meant to help grade the candidates, but

the main decision was based on the CFIS images. The majority of our candidates displayed

blue lensing features and red deflectors. This is visible in Fig.6.5. However, some candidates

contain red arcs. In most cases, the Legacy survey images confirmed our decision, and none

of the candidates were discarded based on the color image.

Ihttps://www.zooniverse.org/projects/krojas26/experts-visual-inspection-experiment/about/research
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CFIS LS LS LS resCFIS CFIS LSLS res LS res

Figure 6.5: Legacy Survey images of the 33 SL candidates of the CFIS lens search. For each
candidates, the CFIS image, the Legacy survey image and the model subtracted image are
shown.
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In most ground-based images of strong lenses, the light of the source is hidden behind the

light of the deflector. Deblending the lensing features from the images of lens candidates has

multiple interests. First, deblending can reveal the faint structures either in the lens or in the

source. Therefore, it can be used either to ease the visual inspection of candidates or as a

pre-processing step before classification. Providing deblended images can also reduce the

computational cost of modeling the candidates by providing an estimation of the lens model

parameters. Finally, deblending enables the source and deflector redshift estimation for color

images.

Usually, lens systems are deblended by fitting an analytical light profile on the deflector and

subtracting its contribution from the lens image. However, this method can result in large

residuals since the deflector’s light profile does not perfectly match the analytical profile. Thus,

we cannot use this method to highlight the lensing features as the residual may mimic their

shape. Moreover, this procedure is hardly applicable to deflectors with complex light profiles

since it requires analytical profiles.

Joseph et al. (2014) proposed a machine learning approach that removes the necessity of

analytical profiles. The algorithm is trained on large sets of galaxies with morphologies

similar to the deflectors. Since the lensing features are rare in the training set, they are not

learned by the algorithm. When given an image of a lens, the algorithm returns the image

of the deflector without the lensing features. Although very efficient, this method has some

limitations. The number of principal components must be adapted for each survey depending

on the characteristics of the lens images, such as deflectors’ size or noise level. Additionally,

the algorithm can interpret the orientation of the galaxies as a principal component. To avoid

this, the galaxies must be aligned in the same direction before being passed to the algorithm.

Companions galaxies can affect the quality of the reconstruction. It is, therefore, necessary to

mask them for the process. The main limitation of the method is the large number of examples

needed to learn a particular morphology of deflector. This requirement may be difficult to

fulfill for surveys with a small number of objects or with a complex deflector.
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The color information provides a valuable help to deblend lensing system images since the

color of the source, and the deflectors are usually different. Generally, the lensing features

appear bluer than the deflector since the sources are often high redshift star-forming galaxies.

In this case, it is possible to use the information of color to deblend the lenses. This property

was already used in the first automated lens finding algorithms (Gavazzi et al., 2014). The core

principle of this algorithm to subtract a scaled i-band image from the g-band image to reveal

the lensing features. However, this method’s application is limited to lenses with early-type

galaxy deflectors and, since it is based on color difference, on blue sources.

Recently, Joseph et al. (2016) proposed a method to deblend color images of lenses, Multi-band

morpho-Spectral Component Analysis Deblending Tool (MuSCADeT) that uses a combination

of color difference and geometrical information. Similarly, as the PCA-based method (Joseph

et al., 2014), this technique has the advantage of not requiring the fitting of analytical light

distributions with an analytical profile. The idea behind the method is that the source and the

deflector signals are sparse in different morpho-spectral representation domains and can thus

be separated. This method was used in combination with the scarlet software (Melchior

et al., 2018) in Rojas et al. (2021) to deblend color images of DES lens candidates. The method

is well suited to provide deblended images in the context of a lens finding pipeline as it is

entirely automated and does not require analytical light profiles. However, it relies on the

assumption that the lensed features are bluer than the deflector and, therefore, will fail to

deblend more exotic lenses, i.e., lenses with red arcs or blue deflectors.

The resolution of the NIR bands in Euclid will be much lower than the VIS band. For this reason,

the combination of MuSCADeT and scarlet may not be optimal in this context since it re-

quires color images. This motivated the development of an alternative automated deblending

method based on morphology only that can be applied to single-band data.

Similarly, as the PCA deblending (Joseph et al., 2014), our method is entirely data-driven and

does not require assumptions on the light profiles of the deflectors. Encouraged by the good

performance of PCA to deblend lenses and the similarities between PCA and auto-encoders,

we designed a modified auto-encoder architecture to separate the source and the deflector

images.

In this chapter, I present our deblending auto-encoder. I also investigate a more conventional

auto-encoder architecture and compared its performance with our model. I also introduce

the first application of our method on real data.

7.1 Multi-output auto-encoder

Similar to traditional auto-encoder, our architecture contains an encoder and a decoder. The

particularity of our network is that the decoder part is duplicated. This allows us to extract

the lensed source and deflector image simultaneously, representing an advantage over the

PCA deblending algorithm, which only outputs the deflector. The network also outputs the
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reconstructed lens system. To do so, it computes the addition of the reconstructed lensed

source and the reconstructed lens through an Add layer. Our algorithm can currently deblend

single-band images but will be adapted for color images soon. The detailed architecture is

presented in Fig. B.1 of Savary et al. (2021) (see Chap. 8).

We integrated our deblending algorithm in the lens finding pipeline of Savary et al. (2021) . We

summarize here the main steps of the training and the main points of the results.

7.1.1 Training

The modified auto-encoder was trained with 10 000 CFIS lens simulations produced following

the procedure described in Sect. 5 and 5 000 CFIS images of LRGs. During the training the

images are flipped randomly along the x and y axis We use mini-batch stochastic gradient

descent with Adam optimization (D. P. Kingma & Ba, 2014). We include a small percentage of

non-lenses in training set to teach the algorithm not to deblend the potential false positives.

This point is important since the auto-encoder aims to deblend sets of lens candidates before

a human visual inspection is performed. The sets can therefore contain a significant amount

of false positives. Ideally, we would use the result of the deblending to discard a part of the

false positives.

The input of the auto-encoder is the images of the lens systems. The ground truth we use

is different from traditional auto-encoders. Instead of using only the input image as labels,

we provide three ground truth images: the lens system, the lensed source, and the deflector.

For the images of the training set containing an LRG without lensing features, the ground

truth images for the lensed source and deflector are an image filled with zero and the LRG

image itself, respectively. In doing so, we expect the network to return no lensing feature for a

non-lens image.

The three output layers of the network have sigmoid activation functions. Therefore, we

normalize the input and ground truth images between 0 and 1 as follows:

X −min Xlens

max Xl ens −min Xlens
, (7.1)

where X is the image to normalize and Xl ens is the image of the lens system. We must highlight

that we use the minimum and maximum of the lens system image to normalize all ground

truth images, including the lensed source and deflector images. This allows us to conserve the

original ratio of intensity between the lensed source and lens images. As the lens image is the

sum of the two others, it ensures that its maximal value is larger than or equal to the one from

the two images. Consequently, the pixel values for the three images lie between 0 and 1 after

the normalization.

To train the network, we designed a custom loss function that takes into account the recon-

struction error on the three different ground truth images:
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L = 0.4×Ldeflector +0.4×Lsource +0.2×Llens, (7.2)

where Ldeflector, Lsource and Llens correspond to the binary cross-entropy losses evaluated

between the real deflector and the deblended deflector images, the lensed source and the

deblended lensed source images, and the lens system and the combination of the deblended

deflector and the lensed source image, respectively.

We included the term Llens to improve the lens system’s magnitude estimation. However, we

attribute a lower weight to this term in the loss function since we want to give more importance

to the correct reconstruction of the lensed source and deflector.

7.1.2 Evaluation of the deblended images

Since we aim not only to use the deblending auto-encoder to highlight the lensing features but

also to initialize the lens model, we must ensure that the physical information contained in

the images, such as the shape of the different components or the small structures, is correctly

reconstructed. The reconstruction error metrics that are commonly used in computer vision,

such as Mean-squared error or Chi-squared error, provide only little indication on the physical

soundness of the reconstructed images. For this reason, we use the CAS parameters described

in section 3.3.2 to evaluate the reconstructed images.

In Fig. 7.1 we compare the CAS statistics for a population of 400 simulated lenses and their

reconstruction with the auto-encoder. We used the python library statmorph to measure

the CAS parameters. As we can see, the asymmetry and concentration of the lenses are well

reconstructed by the auto-encoder. However, the reconstructed lenses are slightly smoother

than the simulated lenses. It indicates that the auto-encoder missed some of the small

structures. As we discuss below, this effect is also observed on real data and may partially

be due to our choice of training data. However, alternative architectures such as generative

adversarial neural networks may improve this issue and must be tested for future versions.

One interest of the deblending is to provide a photometric measurement of the deflector

and the source to estimate their redshifts. In simulations, the deblending auto-encoder can

provide reliable photometry of the deflector. It tends to reconstruct too bright lensed source

features, especially for faint lensed sources. It is visible in Fig.7.2 which displays the difference

in magnitude between the reconstructed lensed source and deflector and their ground truth. It

is, however, possible to obtain the photometry of the sources by subtracting the reconstructed

deflectors to the lens images with the actual version of the deblending auto-encoder. Including

the source photometry in the loss function could theoretically improve this aspect. However,

all tests we performed with photometry as an additional term in the loss function led to

very unstable training and our model did not converged. More work must be done on the

loss function and training set to improve the reconstruction of the small features and the
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Figure 7.1: Comparison of the CAS statistics for 1000 lens simulations (in grey) and 1000
lenses reconstructed with the multi-output auto-encoder (in blue). C corresponds to the
concentration index and measures the compactness of the galaxies. A is the asymmetry
parameter, and S is the smoothness parameter which estimates the degree of small-scale
structures.
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correctness of the photometry of the sources.
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Figure 7.2: Difference in magnitudes between lensed sources and deflectors reconstructed
with the multi-output deblending auto-encoder and their ground truth. The magnitude are
computed on aperture of 4 arc-seconds.

7.2 Comparison of the two-output auto-encoder with two separated

auto-encoders

We study here an alternative for the deblending auto-encoder. It uses two auto-encoders, each

specialized in extracting either the lensed source or the deflector in the lens images. We present

in Fig. 7.3 the two possibilities. The multi-output model (option A) is our actual deblending

auto-encoder, whereas the two separated auto-encoders (option B) are the alternative. The

layers inside the encoders, decoders, and bottleneck layers are identical in each case. The

detail of these layers is given in Savary et al. (2021) .

The two auto-encoders of option B are trained separately. The ground-truth images given to

these models during the training are the lensed sources for the first auto-encoder and the

deflector images for the second. The two models were trained with the same training set as

Option A using a binary-cross entropy loss.

We show in Fig.7.4 the difference in magnitude between the reconstructed lensed source

and deflector and their ground truth obtained with option B. By comparing with Fig. 7.2,

which displays the same measurements for the multi-output model, option A, we see that

the photometry of the sources is less precise with option B. However, the precision of the
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Figure 7.3: Scheme of two possible deblending models. Option A is a multi-output auto-
encoder that outputs at the same time the lensed source and the deflector images. Option B
consists of two different auto-encoders. One of them extracts the lensed sources and the other
the deflector images. The encoder, decoder, and bottleneck layers blocks are identical in each
option. The details of the layers inside these blocks can be found in Savary et al. (2021) .

photometry of the deflectors is similar for the two options.

Figure 7.5 displays examples of lens simulations deblended with the multi-output model,

option A, and the two separated auto-encoders, option B. We see that the reconstruction of

the shape of the lensed source is less blurry with the multi-output model. Additionally, lensing

features often appear in the LRG images with option B. Option A and Option B are both trained

to reconstruct the companion galaxies in the LRG images. However, we observe that with

option B, the companions are systematically mistaken with lensing features and reconstructed

in the lensed source images.

Given these results, we think that training the auto-encoder to output the lensed source and

the deflector image simultaneously helps it to specialize better on the deblending task. More

investigations have to be done to understand the cause of the better performance of the

multi-output model.
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Figure 7.4: Difference in magnitudes between lensed sources and deflectors reconstructed with
two different auto-encoders (Option B) and their ground truth. The magnitude is computed
on apertures of 4 arc-seconds.

7.3 Application on real data

We applied our multi-output auto-encoder to the 32 SL candidates of Savary et al. (2021) . The

deblended images are presented in Fig. 7 of Savary et al. (2021) . We also display in Fig 7.7 the

deblending results for a subsample of the ML candidates of Savary et al. (2021) .

The performance of the deblending is generally not affected by the presence of compan-

ions in the lens system images, except if the companions are very close to the lensing fea-

tures (see, e.g., UNIONS J090919+351503 (F) in Fig. 7.7). This is an advantage of the auto-

encoders over the other deblending methods. Contrary to what was observed with sim-

ulations, in most cases, the auto-encoder does not reconstruct the companions present

in the real lens images. This is the case, for example, in UNIONS J121959+340210 (E),

UNIONS J165402+444252 (I), UNIONS J080114+455838 (J), UNIONS J135800+492334 (K)

or UNIONS J101441+504451 (N) in Fig.7.7. Less frequently, the companion appears in the

deflector image as in UNIONS J085335+352650 (H) in Fig.7.7. This is, however, not an issue

for photometric measurements as the companions can easily be isolated and masked from

the LRG images.
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Figure 7.5: Comparison of deblending results on simulated lenses for two different architec-
tures. Upper panel: Results of the two separated auto-encoders (option B). Lower panel:
Results of the multi-output auto-encoder (option A). Two lens systems are shown in each
row. For each lens system, we display from left to right: the original image in asinh grayscale;
the lensed source and deflector deblended using the auto-encoder; and the standardized
residuals.
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Figure 7.6: Result of the auto-encoder deblending for 4 spirals extracted from the false positive
catalog of Savary et al. (2021) . Upper panel: Results with the original training set composed
with LRG and lens simulations only. Lower panel: Results after retraining with 900 additional
spiral galaxies in the non-lens examples.

We can observe that the auto-encoder fails to capture some of the high frequencies features.

This effect is visible, for example, in UNIONS J182125+510038 (O) Fig.7.7 and to a lesser

extent in UNIONS J102147+500808 (L), where the point-like structure is mistaken for arcs

by the auto-encoder. We believe this happens partially because the training set contains

essentially extended and smooth arc-like features and no point-like substructure. This will

be improved with retraining with more detailed simulations when the simulation pipeline

is adapted for more diverse lens types. One of the main issues with the implementation of

Savary et al. (2021) is that the network tends to find arcs in false-positive images, as shown

in the examples presented in the upper panel of Fig.7.6. This is a consequence of our choice

of training examples. The network was trained with LRG and lenses only and thus, was not

exposed to objects such as spiral, ring, or merger galaxies. We retrained the network with

900 spirals identified during the visual inspection in Savary et al. (2021) . The spirals were

added to the non-lens examples of the previous training set. Surprisingly, after retraining, the

auto-encoder still considers the spiral arms as lensing features, as shown in the lower panel of

Fig.7.6. However, the shape of the spiral arms is restored with more precision, allowing us to

distinguish them from genuine lensing features. The next iteration of lens searches within the

CFIS survey will provide us with a larger false-positive sample. We expect, therefore, that the

subsequent versions of the algorithm will perform better with this issue.

86



Lens deblending Chapter 7

J020255+300539

Original L. source LRG Residuals

J160308+333036

Original L. source LRG Residuals

J160903+335108 J231403+335806

J121959+340210 J090919+351503

J111018+351716 J085335+352650

J165402+444252 J080114+455838

J135800+492334 J102147+500808

J135525+503250 J101441+504451

J182125+510038 J151250+510553

0.0 0.5 1.0 0.2 0.2 0.2 0.2 0.3 0.3 -10.0 0.0 0.0 0.5 1.0 0.3 0.3 0.3 0.3 -10.0 0.0

0.0 0.5 1.0 0.3 0.3 0.3 0.3 0.3 -10.0 0.0 0.0 0.5 1.0 0.4 0.4 0.4 0.4 0.4 -10.0 0.0

0.0 0.5 0.2 0.2 0.2 0.2 -10.0 0.0 10.0 0.0 0.5 1.0 0.3 0.3 0.3 0.3 0.0 25.0

0.0 0.5 1.0 0.3 0.3 0.3 0.3 0.3 -10.0 -5.0 0.0 0.0 0.5 1.0 0.3 0.3 0.4 0.4 -10.0 0.0 10.0

0.0 0.5 1.0 0.3 0.3 0.3 0.3 0.4 0.4 -10.0 0.0 0.0 0.5 1.0 0.3 0.3 0.3 0.3 0.3 -10.0 0.0 10.0

0.0 0.5 1.0 0.4 0.4 0.4 0.4 0.4 -4.0 -2.0 0.0 0.0 0.5 1.0 0.4 0.4 0.4 0.4 -10.0 0.0

0.0 0.5 1.0 0.3 0.3 0.3 0.3 -5.0 -2.5 0.0 0.0 0.5 1.0 0.3 0.3 0.3 0.3 0.3 -10.0 0.0

0.0 0.5 1.0 0.3 0.3 0.3 0.3 0.0 20.0 0.0 0.5 1.0 0.4 0.4 0.4 0.4 0.4 -10.0 -5.0 0.0

A B

C D

E F

G H

I J

K L

M N

O P

Figure 7.7: Result of the auto-encoder deblending for 16 ML candidates of Savary et al. (2021) .
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7.4 Summary

In this chapter, I described a new method to deblend images of gravitational lenses based on a

modified auto-encoder architecture. This approach is entirely data-driven since it does not

rely on analytic light profiles. The auto-encoder method is easily adaptable to other surveys

and different deflector types provided a training set is available. The lens simulations produced

to train the CNN-based lens finders can be reused to train the auto-encoder. Therefore, the

auto-encoder deblending algorithm can easily be integrated into future lens finding pipelines.

In its actual version, the deblending auto-encoder provides help during the visual inspection

by enhancing the visibility of the lensing features. We applied it to the 32 SL candidates in

Savary et al. (2021) to establish the presence of lensing features. In the future, the deblended

images could be used to initialize lens models. In addition, the deblending may serve as a pre-

processing step for classifiers to improve the detection of lenses with small image separation.

The next step is to provide a three-band version of the auto-encoder. This will allow us to

compare the performance with the standard deblending methods.
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8 First application of an end-to-end
lens finding pipeline in CFIS and DES

In the light of future wide-field surveys, we built a flexible lens finding pipeline. This pipeline

includes modules to detect strong lenses in imaging data, deblend the light from the source

and the deflector, and model the lens candidates automatically.

The core of our detection module is a variation of Efficientnet architecture B0 (Tan & Le, 2019),

which we used for the lens finding challenge 2.0 (see section 2.0). This model obtained the

best performance among all the models we tested in the challenge.

To deblend the lens candidates, we applied two different algorithms. For DES candidates, we

used a combination of MuSCADeT and scarlet, which is very appropriate to deblend the color

images of LRG lenses with blue features. In the case of CFIS, only r-band images were available

for all the candidates. Therefore, as described in Chap 7, we designed an auto-encoder-based

method to deblend one-band images. This method is not only useful for CFIS images but also

for Euclid since the VIS band will have a higher resolution than the infrared bands.

The automated modeling module was the subject of the master thesis of Mark Maus and will

be detailed in an upcoming publication (Maus, in prep.). We summarize here its key features

and limitations. The automated modeling algorithm is aimed at modeling automatically large

sets of potential lens system images. The modeling is done with the Lenstronomy package. In

its current version, the deflectors are modelized with an SIE mass profile with external shear.

However, since Lenstronomy is very flexible, one can adapt the mass profile to modelize

more complex lenses. The modeling is possible both for one-band or multi-band images.

Lens candidate images often contain companion galaxies or artifacts, and the size of the lens

features may differ a lot between candidates. With the automated modeling module, they are

automatically detected and masked. In addition to providing an estimation of the parameters

of the lensing system, the automated modeling enables the distinction between lenses and

ring galaxies (Maus, in prep.). The main limitation of the automated modeling occurs when

companions reside either close to the deflector or the lensing features. In such a case, the

automated masking procedure fails, and the companions must be masked manually. However,

future versions of the automated algorithm may take advantage of the deblended images to
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improve this issue. This is particularly true with color images, for which the color difference

may help to identify the companions. We applied the pipeline to the search of LRG acting as

lenses in two different surveys: CFIS and DES.

8.1 Lens finding in CFIS and DES

We describe in this section the details of the two first applications of our lens finding pipeline

to CFIS and DES. They are the first applications of an end-to-end lens finding pipeline that

enables automated modeling and model-independent deblending of the candidates. The two

lens searches allowed us to test different dimensions of the lens finding pipeline. Our galaxy-

galaxy lens search is the first applied to CFIS. It will therefore provide new candidates since

the excellent-seeing r -band imaging of CFIS allows the unveiling of candidates that have been

missed by previous strong lens searches performed from the Southern hemisphere. Indeed,

the image quality enables us to detect lenses with smaller image separation. In addition,

applying the pipeline to r-band images gives an overview of the potential of our pipeline when

applied to the VIS band of Euclid.

Since DES data are public, some galaxy-galaxy lens searches have already been performed

in DES (Jacobs et al., 2019a; Jacobs et al., n.d.) and many will follow. Therefore, this survey

can serve as a benchmark to compare the performance of our lens finding pipeline with other

methods. Since multiple bands are available, we can probe the efficiency of our lens finding

pipeline on color data.

8.1.1 Statement of contribution

The following papers, which are accepted for publication in Astronomy Astrophysics, present

our application of the lens finding pipeline to the initial 2 500 square degrees of CFIS and the

first data release of the Dark Energy Survey. The two papers are reproduced with permission

from co-authors.

In Savary et al. (2021) , the cutouts were prepared by R.Gavazzi, and the lens simulations

were produced by myself in collaboration with S.H. Suyu, R.Canameras, S.Schuldt. The

adaptation of the CNN was made by myself in collaboration with K.Rojas. The visual inspectors

of the candidates were K.Rojas, B.Clément, F.Courbin, J.H.H.Chan, G.Vernardos, and me.

The modeling of the candidates was performed by M.Maus. The deblending algorithm was

designed by myself. All co-authors contributed to the correction of the paper. In Rojas

et al. (2021) , the simulations were produced by K.Rojas. We collaborated with K.Rojas on

the adaption of the CNN. The candidates were inspected visually by K.Rojas, B.Clément,

F.Courbin, J.H.H.Chan, G.Vernardos, C.Lemon, and myself. M.Maus performed the modeling

of the candidates and R.Joseph the deblending. All co-authors participated in the corrections

of the paper.
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ABSTRACT

We present a search for galaxy-scale strong gravitational lenses in the initial 2 500 square degrees of the Canada-France Imaging
Survey (CFIS). We designed a convolutional neural network (CNN) committee that we applied to a selection of 2 344 002 exquisite-
seeing r-band images of color-selected luminous red galaxies (LRGs). Our classification uses a realistic training set where the lensing
galaxies and the lensed sources are both taken from real data, namely the CFIS r-band images themselves and the Hubble Space
Telescope (HST). A total of 9460 candidates obtain a score above 0.5 with the CNN committee. After a visual inspection of the
candidates, we find a total of 133 lens candidates, of which 104 are completely new. The set of false positives mainly contains ring,
spiral, and merger galaxies, and to a lesser extent galaxies with nearby companions. We classify 32 of the lens candidates as secure
lenses and 101 as maybe lenses. For the 32 highest quality lenses, we also fit a singular isothermal ellipsoid mass profile with external
shear along with an elliptical Sersic profile for the lens and source light. This automated modeling step provides distributions of
properties for both sources and lenses that have Einstein radii in the range 0.5′′ < θE < 2.5′′. Finally, we introduce a new lens and/or
source single-band deblending algorithm based on auto-encoder representation of our candidates. This is the first time an end-to-end
lens-finding and modeling pipeline is assembled together, in view of future lens searches in a single band, as will be possible with
Euclid.

Key words. Gravitational lensing: strong – Surveys – Techniques: image processing

1. Introduction

Strong gravitational lensing provides a unique astrophysical tool,
via the formation of several distinct images of a high-redshift
source. Depending on the source light profile and lensing mass
distribution, multiple images of the source can appear as partial
arcs or even complete arcs called Einstein rings. Such strongly
lensed systems offer a vast range of astrophysical and cosmo-
logical applications, from the determination of cosmological pa-
rameters (Suyu et al. 2017; Bonvin et al. 2017; Wong et al.
2020) to the study of galaxy mass profiles (Koopmans & Treu
2003; Sonnenfeld et al. 2015; Bellagamba et al. 2017) and halo

? Tables F.0 and D.1 are only available in electronic form at the CDS
via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http:
//cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/

substructure (Mao & Schneider 1998; Dalal & Kochanek 2002;
Koopmans 2005; Vegetti & Koopmans 2009; Vegetti et al. 2010,
2012; Nierenberg et al. 2013; Vegetti et al. 2014; Hezaveh et al.
2016; Despali et al. 2016; Gilman et al. 2017; Vegetti et al. 2018;
Chatterjee & Koopmans 2018; Ritondale et al. 2019). Observa-
tions of such lenses provide important calibrations for N-body
cosmological simulations (e.g., Peirani et al. 2019; Mukherjee
et al. 2021) and allow deeper higher resolution views of faint
distant galaxies otherwise too faint to be studied (e.g., Paraficz
et al. 2018). However, due to the rarity of lens systems, many of
these studies are limited by small sample sizes, prompting tar-
geted lens searches by the community.

Lens searches can be divided into two broad classes: source-
selected and lens-selected. The first requires follow-up of a
known high-redshift source, in the hope of observing signs
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Fig. 1. Illustration of the planned and current CFIS footprint. The contours of the final CFIS-r footprint and the CFIS-u footprint are shown in red
and blue, respectively. Shown are the current areas covered in the r band for DR2 (in red), in the u band (in blue), and where r-band and u-band
data are available simultaneously (in violet). In this work the u band is used, when available, for visual inspection purpose only. Also indicated
is the position of the 32 highest quality candidates (stars) and the 101 maybe lenses (crosses) obtained after the joint visual inspection of the
CNN-committee candidates. Of these candidates 104 are new.

of strong lensing. Examples include early lens searches, such
as the Cosmic Lens All-Sky Survey (CLASS, Myers et al.
2003; Browne et al. 2003) and the SDSS Quasar Lens Search
(SQLS, Oguri et al. 2006). In contrast, lens-selected searches
look for signs of a lensed high-redshift source in imaging or
spectroscopy in known samples of massive galaxies. Some of the
most well-studied lens systems come from the Sloan Lens ACS
survey (SLACS) (Bolton et al. 2006, 2008), the BOSS Emis-
sion Line Lens Survey (BELLS, Brownstein et al. 2012), and the
SLACS for The Masses Survey (S4TM, Shu et al. 2015), which
pre-selected high velocity-dispersion galaxies from SDSS, with
signs of emission lines of a higher redshift source blended in the
spectra. High-resolution HST imaging subsequently confirmed
many of these systems as lenses. Lens searches are not limited
to the visible domain. Similar efforts are done at longer wave-
lengths, particularly in the submillimeter regimes, even if the
search methods are then very different and mostly done by tak-
ing advantage of the magnification bias at the catalog level. Typ-
ical examples are searches in the Herschel Astrophysical Tera-
hertz Large Area Survey (Bussmann et al. 2013; Wardlow et al.
2013; Nayyeri et al. 2016; Negrello et al. 2017), the South Pole
Telescope Survey Data (SPT) (Vieira et al. 2010, 2013), and
the Planck all-sky survey (Cañameras et al. 2015). With numer-
ous ongoing and upcoming wide-field imaging surveys, such as
Euclid (e.g., Laureijs et al. 2011; Amiaux et al. 2012), Roman
(Spergel et al. 2015), and the Rubin Observatory Legacy Survey
of Space and Time (LSST) (e.g., Ivezić et al. 2019), lens samples
can be built directly from imaging data. Previous imaging-only
samples have come from visual inspection of HST images (Faure
et al. 2008; Pawase et al. 2014) or ground-based imaging with
the help of citizen science (e.g., Sonnenfeld et al. 2020). With
increasing depth and survey areas, visual searches alone become
unsustainable and require automated techniques to condense the
sample size. Early work included ring-finding algorithms, as was

done with the SL2S sample (Cabanac et al. 2007; Gavazzi et al.
2012) or model-aided search in HST (Marshall et al. 2009) and
HSC (Chan et al. 2015). More recently, machine-learning meth-
ods have been applied to ground-based surveys, including the
Kilo Degree Survey (KiDS, e.g., Petrillo et al. 2017; Kuijken
et al. 2019; Petrillo et al. 2019); the Dark Energy Survey (DES,
e.g., The Dark Energy Survey Collaboration 2005; Jacobs et al.
2019b,a), and the Hyper Suprime-Cam SSP Survey (HSC, e.g.,
Aihara et al. 2018; Sonnenfeld et al. 2018; Wong et al. 2018;
Sonnenfeld et al. 2019; Chan et al. 2020; Sonnenfeld et al. 2020;
Cañameras et al. 2020; Jaelani et al. 2020, 2021).

The application of machine-learning techniques to lens
searches encompasses a wide range of methods, from support
vector machines to deep neural networks. However, in recent
years convolutional neural networks (CNNs) have emerged out
thanks to their well-tested reliability for image classification (He
et al. 2015). In particular, the top five algorithms of the first
strong gravitational lens finding challenge (Metcalf et al. 2019)
were mainly CNN-based. In this challenge CNNs were able to
recover 50% of the lenses. However, false positives, such as ring
galaxies, spirals, mergers, or galaxies with companions, were a
severe problem for CNNs trained with overly simplistic simula-
tions. Using a training set that is as realistic and exhaustive as
possible is thus crucial. The current number of known lenses in
the CFIS footprint is very small, which complicates the compo-
sition of a training set for machine-learning algorithms. For this
reason, we still use simulations in this paper. However, recent
lens searches conducted in the Dark Energy Spectroscopic In-
strument Legacy Imaging Surveys’ Data Release 8 have proven
the possibility to train neural networks with a small number of
lenses (Huang et al. 2020, 2021). We therefore hope to reuse our
lens candidates to train the next versions of classifiers with real
lenses only or a mix of simulations and real lenses. A typical
approach to producing training sets for CNNs is to use entirely
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synthetic images, as in Jacobs et al. (2019b), where the lens light,
the lens mass, and the light profile of the source are analytical.
Random images are then taken from real data and added to the
simulated “clean” lenses to introduce instrumental effects and
more realistic features, such as companions around the central
galaxy. The main advantage of this approach is the ability to con-
trol the distribution of the lensing parameters. However, it may
be difficult to reproduce all the complexity of real lenses with
this method.

One approach to mitigating this consists in creating train-
ing sets that combine images of real foreground galaxies with
simulated sources, as in Petrillo et al. (2017) and Pourrahmani
et al. (2018). In this case the training set contains deflectors with
more realistic light profiles. In the present work we go one step
further toward more realistic simulations by also using a real im-
age for the background source, as in Cañameras et al. (2020).
The main difference with Petrillo et al. (2017) and Pourrahmani
et al. (2018) is that in our case only the lensing effect is sim-
ulated; the shape and the light profile of both the deflector and
the source are taken from real data. In general, any classifica-
tion performed by the CNNs is imperfect and candidates must
be confirmed by follow-up observations. For efficient use of tele-
scope time, the candidates are first visually inspected in order to
remove the most obvious false positives. The timescale for this
visual inspection must remain reasonable, in particular for future
large-scale surveys. Therefore, it is crucial to keep a very low
false positive rate. A common way to reduce the occurrence of
false positives is to increase the proportion of the most common
misleading objects in the negative training set (e.g., Cañameras
et al. 2020). However, these must be taken as often as possi-
ble from real data. Simulating negative examples is not reliable
enough, and using modified images from other surveys involves
re-sampling and PSF mismatch, not to mention K-corrections
and evolution effects due to redshift mismatch between surveys.
We thus believe it is important to provide a catalog of false pos-
itives taken from our specific data. These false positives can be
used to improve the training sets of future searches in CFIS.

In this paper we use CNNs to look for lensed galaxies in
2 500 deg2 of the excellent-seeing r-band imaging of CFIS. This
complements past and ongoing searches mostly carried out in
the south. We first describe the data in Sect. 2, along with our
machine-learning method and simulation pipeline in Sect. 3, and
then carry out a visual inspection of the machine-classified ob-
jects in Sect. 4 to remove false positives. In Sect. 5 we present
a single-band method based on auto-encoders that separates the
lens and source light and enhances the contrast of each com-
ponent. We additionally carry out automated mass modeling of
the best candidates in Sect. 6, and derive basic properties of the
lens and source populations. Finally, in addition to our best can-
didates, we provide a catalog of false positives, which will be
useful for future lens searches based on neural networks. To
our knowledge, it is the first time a full lens-finding and mod-
eling pipeline has been presented for single-band data. Although
it specifically targets galaxies lensed by luminous red galaxies
(LRG), we expect to make it more general when looking for
lenses in the full CFIS footprint and for all types of lens galaxies.

2. Data

The Canada France Imaging Survey (CFIS) is an ongoing legacy
survey using the Canada-France-Hawaii Telescope (CFHT), a
3.6 m telescope at the summit of Mauna Kea in Hawaii. CFIS is
a component of the multi-band Ultraviolet Near Infrared Optical
Northern Survey (UNIONS). This effort will the provide the nec-
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Fig. 2. Statistics of the deflectors and sources used in the lens simu-
lations Upper panel: Redshift distribution of the sources and deflectors
used for the lens simulations. Lower panel: Measured velocity disper-
sion distribution for the deflectors.

essary ground-based optical counterparts of the forthcoming Eu-
clid space mission, along with stand-alone immediate scientific
applications (Ibata et al. 2017; Fantin et al. 2019, Guinot et al. in
prep.). When completed, the survey will have imaged 8 000 deg2

of the northern sky in the u band (CFIS-u) and 4 800 deg2 in the
r band (CFIS-r). The imaging data used in this work are from the
CFIS Data Release 2 (DR2; see Fig. 1), covering around 2 500
deg2. CFIS-r has exquisite image quality with a median seeing
of 0.6′′, down to a depth of 24.1 (point source, 10σ rms). CFIS-u
has a median seeing of 0.8′′ to a depth of 23.6 (point source, 10σ
rms). Here we use the CFIS-r footprint to search for lenses with
CNNs based purely on high-resolution morphological informa-
tion. Since not all r-rand images have u-band counterparts, the
CNNs use only r-band information. However, CFIS-u is used,
when available, to refine the sample of candidates found through
the CNNs by visual inspection. For each target, we have also
produced models of the point spread function (PSF) and its spa-
tial variations across co-added images which were reduced, pro-
cessed, and calibrated at the Canadian Astronomical Data Centre
using an improved version of the MegaPipe pipeline (Gwyn
2008). For each lens candidate we exploited the model PSF ob-
tained with PSFEx (Bertin 2011) to produce an image of the lo-
cal PSF oversampled by a factor of 2. Weight images along with
other data quality diagnostics are also produced for each candi-
date in each of the available bands. Details of the spatial varia-
tions of the PSF may not always be well accounted for in such
a model performed on stacked data, involving largely dithered
exposures. This is, however, not a major issue for the strong lens
modeling applications in this work.

Our goal is to provide an automated pipeline to find, deblend,
and model high-quality galaxy-scale lenses. Our sample is by
construction lens-selected, meaning that we look for lensed sys-
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tems among a large sample of pre-selected LRG. These objects
are bright and massive, and are therefore expected to have the
largest possible lensing cross section. (Turner et al. 1984).

2.1. Data selection for the lens search

A reliable color selection of LRGs is not possible with CFIS
data alone. Even with color information, it is necessary to ac-
count for the fact that LRGs acting as lenses have colors biased
toward the blue with respect to LRGs without lensing features:
lensing LRGs are blended with the lensed image of a background
galaxy (which is often blue). Fortunately, the CFIS footprint is
entirely included in the first part of Pan-STARRS1 (PS1), hence
we used PS1 to carry out our color selection, thus accounting for
the blue bias. This has already been implemented by Cañameras
et al. (2020) and consists of a color cut in the PS1 3π catalog,
broadly matching the aperture magnitudes and colors of 90 000
Pan-STARRS simulations of lensing systems. This photometric
selection is very large, since it was designed to include 96% of
the mock lens, and thus hopefully all LRG lens galaxies. In re-
turn, however, it may contain a large number of interlopers such
as spirals and rings due to the Pan-STARRS data quality. After a
cross-match with this catalog, we obtained 2 344 002 images to
carry out our lens search.

2.2. Data selection for the simulated training set

Our simulation set is constructed from real data (i.e., a deflector
from CFIS imaging data and a background source from HST
images), as described in Sect. 3.2. The image stamp size in this
work is 8.17′′ per side corresponding to 44 pixels.

The selection of deflectors is taken directly from Cañam-
eras et al. (2020). This corresponds to a subsample of the LRG
spectroscopic sample (Eisenstein et al. 2001), which uses color-
magnitude cuts to select intrinsically red and luminous galax-
ies. They have SDSS spectra, and thus also velocity disper-
sion (σ?) and redshift (z) estimates. In Fig. 2 we summarize
the spectral properties of our selection, which spans the ranges
200 < σ? < 500 km s−1 and 0.1 < z < 0.7. After a cross-match
with the whole CFIS-r catalog from DR2, we obtained 624 170
LRG images, which form the basis of our training set.

The background galaxies were taken from the sample of
Cañameras et al. (2020). We used galaxy morphologies from
HST/ACS F814W images and converted to r band using HSC
ultra-deep stacked images. The original stamps have a size of
10′′ per side and the same pixel size as the HST/ACS F814W
image (i.e., 0.03′′). Since the PSF of the HST images is much
sharper than the CFIS PSF, we neglected its effect during the
simulation process and we did not attempt to deconvolve the
HST images from their PSF. All sources are included in the
COSMOS2015 photometric catalog (Laigle et al. 2016) and in
the Galaxy Zoo catalog (Willett et al. 2017). The redshift in-
formation for our sources, when available, was obtained from
public spectroscopic catalogs (Lilly et al. 2007; Comparat et al.
2015; Silverman et al. 2015; Le Fèvre et al. 2015; Tasca et al.
2017; Hasinger et al. 2018). When no spectroscopic redshift
was available, the best photometric redshift estimate from Laigle
et al. (2016) was used. Then with all this information combined
we obtained high-resolution r-band images of unlensed sources
with known redshift. These selected foreground LRGs and back-
ground HST sources provided the basis for building our training
set for the CNN search, as described in Sect. 3.2

3. Method

One way to address the problem of lens detection is to consider
it as a binary image classification task where the positive class
members are the lenses and the negative class members are the
galaxies without lensing features. CNNs are especially suited
to this task as they are able to detect local correlations of two-
dimensional features in images (Lecun et al. 2015). The convo-
lutional layers of CNNs can be understood as a set of kernels
that act as specific feature detectors.

3.1. Classifier

In this work we use a recent class of CNNs called EfficientNets
(Tan & Le 2019). They outperform the most common CNN ar-
chitectures on the classification of images from different stan-
dard data sets while using a smaller number of parameters (see
Fig. 1 of Tan & Le 2019). This is achieved by scaling uniformly
the depth, width, and resolution as a function of the available
computing resources.

In our case we did not scale the models ourselves, but used
the models already implemented in the Keras application pro-
gramming interface (API) (Chollet et al. 2015). It includes eight
versions of EfficientNet, named B0 to B7, depending on the
number of free parameters involved. The dimensions of our im-
ages, 44 pixels per side, are much smaller than the dimensions
of the images of the standard machine-learning data sets used in
Tan & Le (2019). Therefore, we used the B0 architecture, which
contains the smallest number of parameters of the eight mod-
els. The B0 architecture, from the Keras API is pre-trained on
ImageNet data (Deng et al. 2009). We took advantage of this
pre-training by reusing the parameters of the trained model in-
stead of initializing them randomly, which allowed us to speed
up the training. However, since the dimensions of our images
are different, we adapted the size of the first layer and the last
fully connected layers and randomly initialized the parameters
of these layers. The classification was performed using the so-
called ensemble-averaging method. This consists of separately
training models with the same architecture but different subsets
of the training set and combining their results in order to reduce
the variance of the predictions. In the following we call the set
of models a “committee” and each individual model a “mem-
ber” of the committee. Here, we use three separate instances of
EfficientNet B0 as our committee members. We also tested ver-
sions of the committee with more instances. This did not lead to
a significant improvement in the quality of the classification.

3.2. Design of the training set

Since we performed a binary classification we needed to build
a training set containing images with either positive or negative
labels. The negative examples were drawn randomly from the
lens search sample described in Sect. 2.1. The negative exam-
ples may contain a few real lenses, but we expected that this
would have only a marginal effect on the performance of the
network since the prevalence of gravitational lenses is very low.
Creating a set of positives examples required more preparation.
Not enough lenses have been confirmed in the CFIS footprint
to build a training set that spans the full diversity of lens sys-
tems. We therefore generated a set of simulated lenses using the
pipeline described in Schuldt et al. (2020). We present below the
most important steps of this process.

We first selected an LRG image from the deflector catalog
constructed in Sect. 2.2 and assigned a mass profile to the se-
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Fig. 3. Examples of simulated galaxy-scale systems of the CFIS survey.
Each stamp is the sum of a real CFIS r-band image of a galaxy, to which
a lensed HST galaxy convolved with the CFIS PSF is added. Each stamp
is 8.17′′ per side, and the pixel size is 0.18′′.

lected galaxy assuming a simple parametric model, the singular
isothermal ellipsoid (SIE) (Kassiola & Kovner 1993; Kormann
et al. 1994). This mass model has five free parameters: the Ein-
stein radius, the coordinates of the lens center, the ellipticity (or
axis ratio), and the position angle (PA). The lens center coordi-
nates were fixed to the center of the deflector image, whereas
the values of the axis ratio and the position angle were derived
from the second moment of the lens light profile. In this model
we note that the ellipticity and PA are assumed to be the same
for the light and mass distribution.
A source was then randomly selected from the source catalog.
Knowing both the deflector redshift and velocity dispersion, we
computed the Einstein radius and checked, given the redshift of
the source, that it fell in the range 0.8′′ < RE < 3.0′′. The lower
limit was chosen to prevent lensing features becoming blended
with the deflector light. If the Einstein radius was outside the
given range, we randomly selected another source from the cat-
alog. We repeated this until a matching source was found, oth-
erwise after 100 iterations we increased the velocity dispersion
(and hence the Einstein radius) of the deflector by 50% and re-
peated the process. The goal was to obtain a sufficient number
of simulations. If no match was found after increasing the ve-
locity dispersion, we discarded this deflector from our catalog.
Since this boost involved only a few objects with small velocity
dispersion at the lower end of the distribution shown in Fig. 2,
we did not expect this to introduce a morphological bias in our
training set.

In the next step the position of the source was chosen ran-
domly in the source plane. However, we imposed a total magni-
fication constraint, µ ≥ 2. This limit corresponds to the minimum
magnification threshold to produce multiple images. Choosing a
higher limit gives more striking lensing features, but also artifi-
cially increases the proportion of Einstein rings among the sim-
ulations. This may bias the classifier toward this class of objects

or even lead to more false positives, such as ring galaxies. Only
the positions resulting in a magnification µ ≥ 2 were considered,
hence constraining the source to be within or close to the caus-
tics and resulting in multiple images. Once the source position
was chosen, we computed a high-resolution image of the lensed
source using the GLEE software package (Suyu & Halkola 2010;
Suyu et al. 2012).

As a final step, the CFIS PSF was re-sampled to the HST
pixel size and the image of the lensed source was convolved
with this re-sampled PSF. The result of the convolution was then
down-sampled back to the pixel size of CFIS and added to the
deflector image. Our simulations are therefore a hybrid between
simulations and real data (i.e., built from the CFIS data them-
selves for the lens and from deep HST images for the source).

For some of the simulations produced with this method the
lensing features are too faint or too heavily blended with the
deflector light. Including images with indistinguishable lensing
features may increase the false positive rate. Therefore, we used
only the simulations for which the sum of the brightness of all
pixels of the lensed source was at least 20 times the mean rms
value of the sky noise measured in the four corners of the deflec-
tor image. We then proceeded to a rough visual inspection of all
simulations above this threshold to remove images with lensing
features blended in the deflector light. This resulted in 10 600
accepted lens simulations, of which we show a few examples in
Fig. 3. This number is relatively small. However, since the pre-
cision and recall on the validation set are close to perfect, we do
not expect that increasing the size of the training set would have
a significant impact on the performance measured on validation
data.

3.3. Pre-processing and training

Before being passed to the CNNs, all images were normalized
so that the full dynamical range lies between 0 and 1. We also
applied a logarithmic stretch in order to enhance the contrast of
the lensing features. After this pre-processing, the data were sep-
arated into three different sets: (1) the training set (80 % of the
training data); (2) the test set (10 %), and (3) the validation set
(10%). The validation set is used both to monitor the training
process and to define the conditions to end the training, whereas
the test set is used only at the end of the training to evaluate the
performance of the committee.

Our images were only available in the r band, but the Ef-
ficientNet architectures from the Keras API are built to handle
three-band images. Hence, we transformed our single-band im-
ages into a three-band data cube by duplicating three times the
images before passing them to the network. In doing so, we were
able to use the pre-trained version of the network, allowing us to
shorten the training time. We trained the three members of the
committee independently (each member being an instance of the
EfficientNet B0 architecture), each with a different subset of the
training set. The subsets were constructed using a different frac-
tion of lenses; the fraction was drawn randomly in the range 0.2
to 0.5 to mitigate the tendency of the network to learn the frac-
tion of positive examples seen in the training set. The instance
trained with the lower fraction will be less optimistic and find
fewer lenses, but will reach a lower false positive rate. However,
the fraction of lenses is set to 0.5 in the validation and test sets.

To train the CNNs we performed a mini-batch stochastic gra-
dient descent using binary cross-entropy as a loss function and
an Adam optimization (Kingma & Ba 2014). The batches con-
tained 128 images picked from the data set and flipped randomly
along the x- and y-axes using the Data Augmentation method
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Fig. 4. Probability density distribution of the score assigned by the com-
mittee for the test set (red), containing 50% of lens simulations, and
50% of galaxies without lensing features taken from the lens search
sample. In blue are shown the scores predicted by the network on the
data set containing real images described in Sect. 2.1. In the lens search
sample the proportion of lenses is by definition unknown.

from Keras. Overfitting is one common pitfall encountered dur-
ing the training of machine-learning algorithms. It occurs when
the algorithm learns the specifics of the training data, and thus
is not able to generalize on new data. When overfitting occurs,
the classification error on the training data becomes very small,
while the error on previously unseen data starts to grow. Since
the batches contain different images each time, the data augmen-
tation procedure allows us to artificially increase the size of the
training set and limit the risk of overfitting. Since our network
was previously trained on ImageNet data, we only needed to
fine-tune the parameters. Therefore we started directly with a
relatively low learning rate of 10−4.

The maximum number of epochs, which is the number of
times the machine-learning algorithm is allowed to see the en-
tire training data set, was fixed at 200. However, in order to op-
timize the training time, we used the early stopping procedure
from the Keras API, which interrupts the training before reach-
ing the maximum number of epochs if the validation loss is no
longer improving. More precisely, the training stops if the vali-
dation loss reaches a plateau, or if it increases during ten consec-
utive epochs, or if neither of the other two conditions is met after
200 epochs. Using early stopping with a validation set allows us
to interrupt the training if the classifiers start to overfit the train-
ing data. At the end of the training, the weights and biases are
restored to the epoch achieving the smallest validation loss. The
three members of the committee are combined such that the final
output corresponds to the mean of all the outputs assigned by the
three independent networks.

3.4. Candidate detection and performance of the classifier

Convolutional neural networks are generally not invariant under
rotation and the final output of the committee, hereafter referred
to as the score, can change significantly for the same image if this
image is rotated in different ways. In some extreme cases, an im-
age with a high score can even fall under the selection threshold
after a rotation due to statistical fluctuations. In order to miti-
gate this effect, we rotated and flipped all images in seven differ-
ent ways: three rotations of 90, 180, and 270 degrees, and flips
along the x-axis of all rotations including the flip of the origi-
nal unrotated image. We then considered the mean of the scores

given by the committee in all directions as the final score. The
final scores of the committee range from 0 to 1. If the classifier
were ideal, we would expect the scores of galaxies without lens-
ing features to be 0 and the scores of the lenses to be 1. Figure
4 shows the distribution of scores assigned by the committee on
all images from the lens search sample and for the test set. The
test set distribution is not bi-modal, indicating that our classifier
is not perfect. In the case of the lens search sample the distribu-
tion has only one peak centered on zero, and decreases exponen-
tially afterward. This can be explained partially with the very
low prevalence of lenses in the lens search sample and by the
fact that the committee may less easily identify lenses than sim-
ulations, as explained below. The performance of the network
is evaluated using two metrics on the test set: Precision (P) and
recall (R). The precision or purity indicates the fraction of true
lenses among all images labeled as lenses, whereas the recall,
also called “true positive rate” or “completeness,” gives the frac-
tion of true lenses recovered by the committee among all the true
lenses of the training set. They are defined as

P =
T P

T P + FP
, (1)

R =
T P

T P + FN
, (2)

where T P, FP, and FN are the number of true positives, false
positives, and false negatives, respectively.

The number of true positives, true negatives, false positives,
and false negatives from Eqs. 1 and 2 depend on the score we
chose as a cutoff threshold (i.e., the score above which the im-
ages are considered to be lens candidates). We show in Fig. 5
the precision and recall values for all cutoff thresholds between
0 and 1. Choosing a high cutoff threshold increases the preci-
sion as the number of false positives decreases, but lowers the
recall since fewer true positives are included. In Fig. 5 we ob-
serve that the precision and recall on the test set stay fairly high,
independently of the cutoff threshold. Since a large part of the
contaminants in CNN-based lens searches are spiral galaxies, we
estimated the proportion of spiral false positives for each cutoff
threshold. Therefore, we evaluated 8 200 CFIS images of spiral
galaxies with our trained CNNs. All of these spirals were taken
from the Galaxy Zoo catalog (Willett et al. 2017). The fraction of
spirals mislabeled as lenses as a function of the cutoff threshold
is presented in Fig. 6 and shows that the contamination rate falls
below 0.001 for any CNN score above 0.5. For scores higher
than 0.8 there are no spiral false positives.

Taking into account both the precision and recall curves, we
chose a cutoff threshold of 0.5 for our lens search in the real
CFIS data. This results in a precision of 1 and a recall of 0.96
on the test set. However, these results must be interpreted with
caution, since the committee may have learned to recognize the
simulations, and the performance may decrease on real data. In
addition, it should be kept in mind that the real occurrence rate of
strong lensing events is very low. The probability for an image
classified as a candidate to be a real lens (P(L|C)) can then be
deduced from the Bayes rule to take into account the occurrence
rate (P(L)) of lenses in the data set as

P(L|C) =
P(L)P(C|L)

P(L)P(C|L) + (1 − P(L))P(C|NL)
, (3)

where P(C|L) and P(C|NL) are the precision and false discovery
rate obtained on the testing set, respectively. If P(L) is very low,
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Fig. 5. Precision and recall as functions of the cutoff threshold in CNN
scores applied to a test set composed of 1 060 galaxies without lensing
features taken from our selection for the lens search and 1 060 lenses
taken from our simulation set.
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Fig. 6. Fraction of CFIS r-band images of 8 200 Galaxy Zoo spiral (Wil-
lett et al. 2017) galaxies mislabeled as lenses as a function of the cutoff
threshold on the CNN-committee score.

P(L|C) will stay low even when the precision is very high. This
effect, called the base rate fallacy, is known to limit the perfor-
mance of intrusion detection algorithms (e.g., Axelsson 2000)
and may be non-negligible for lens detection.

4. Visual inspection of the candidates

Of the 2 344 000 images selected for our lens search, 9 460 ob-
tained a CNN score higher or equal to 0.5. All these candidates
were visually inspected independently by the six authors of this
paper (E.S., B.C., K.R., F.C., J.C., and G.V.). We separated the
candidates following the score attributed by the committee into
five CNN-score bins of 0.1 in size and inspected them separately.
This separation may introduce some biases in the visual inspec-
tion, meaning that the users may give more optimistic grades
for objects in the bins corresponding to the highest score. In or-
der have a consistent visual inspection between the users and
the bins, we defined common guidelines and designed a quick

and flexible python tool1 to display the images in two different
ways: a mosaic tool to display a large number of images si-
multaneously and a single-object display tool to review each
object in detail. Both tools can handle single-band and color im-
ages.

For each score bin, we first performed a crude pre-selection
of potential lenses using the mosaic tool. This tool displays a
grid of 10 × 10 cutouts so that users can quickly flag any of the
systems. The images are arranged randomly in the mosaic for
each user, hence minimizing any biases depending on the order
and positions in which the images are shown, for example due to
varying attention levels of users through the inspection process.
We also flagged misclassified ring galaxies in this pre-selection
in order to improve our set of negative examples for future lens
searches.

At the end of this pre-selection, we obtained a list of possible
lens candidates and ring galaxies. This sample unavoidably con-
tained other objects, such as spirals and interacting galaxies that
resemble lenses, which were inspected in more detail in a second
step (see below). In other words, this first step rejects any object
that can be immediately demoted to a false positive and keeps
the rest. We then considered the union of all objects selected by
at least one of the six users (4 626 images).

For all images selected during the mosaic inspection,
we proceeded with a more detailed inspection using our
single-object tool. This tool displays one single stamp at a
time, but offers a dynamic contrast control, more classification
options, and a direct link to the Legacy Survey (LS; Dey et al.
2019) cutouts, when available. The LS data are shallower than
the CFIS data, but have color information. We note that the LS
color images are not displayed systematically during the classi-
fication process to avoid the users’ decisions being driven by the
color information. They are rather used to support the r-band
CFIS classification when a candidate requires further data to
make a decision. In this step we classify the images into four
categories: secure lenses (SLs), maybe lenses (MLs), single arcs
(SAs), and non-lenses (NLs).

Our single-object classification follows the same guidelines
as in Rojas et al. (2021), where the SL category includes im-
ages displaying obvious signatures of strong-lensing features,
such as multiple images or arcs with counter images. The sec-
ond category, ML, corresponds to images that exhibit structures
compatible with lensing, but that would require further inves-
tigation with lens models or follow-up with higher resolution
data, higher signal-to-noise data, or spectroscopy. When single
arcs with small distortions and no counter-images are seen, we
use the category SA. Naturally, the SA category contains for-
tuitous object alignments or galaxies with a curved shape that
may not be due to lensing. All the images that do not belong to
the first three categories are labeled NLs. The NL objects can be
subclassified into three subcategories: rings, spirals, and merg-
ers. However, these subcategories are used by the users only if
they are very confident about their classifications. This allows
us to obtain a catalog of the most common false positives as a
by-product of this search. These samples are valuable for future
searches with CNNs being trained against false positives that can
be reliably identified. At this stage, however, the size of this false
positive sample remains too small to retrain the CNNs used in
this work.

We obtained a total of 1 423 images selected as MLs or SLs
by at least one user (out of the six users). However, the agree-
ment between the potential lens candidates selected by the dif-

1 https://github.com/esavary/Visualisation-tool
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ferent users remained low after the two-step visual inspection.
More details about the classification are given in Appendix A.
In order to obtain an agreement, we reinspected all images se-
lected by at least one user in a joint visual inspection session.
In doing so, we considered all 1 423 objects that were identified
as SL or ML by at least one person and chose one unique grade
for each object after a discussion among all the users. In this last
part, we also showed the image of the candidates in the u band
when available, and used only the categories SL, ML, and NL to
further clean the sample. It should be noted that this process is
very selective as we require the agreement of all users to grade
an image as SL or ML.

After the joint inspection we obtained 32 objects classified
as SLs and 101 MLs, which are shown in Fig. 7 and Fig. C.1,
respectively. These represent 1.4 % of all the candidates selected
by the committee of CNNs. After a cross-match with Vizier
(Ochsenbein et al. 2000), Simbad (Wenger et al. 2000), the Mas-
ter Lens database, and the catalogs of various lens-finding papers
with candidates or confirmed lenses included in the CFIS foot-
print (e.g., Cañameras et al. 2020; Chan et al. 2020; Jaelani et al.
2020; Huang et al. 2021; Talbot et al. 2021), we obtained 15 new
SL and 89 new ML candidates. The results of the cross-match
and the coordinates of the candidates are presented in Table F.0.
With our visual inspection, we also obtained three catalogs with
238 mergers, 361 ring galaxies, and 950 spiral galaxies identi-
fied by at least one user, which can be used to expand our neg-
ative sample for future searches. Examples of each category are
shown in Fig. E.1. Because we consider the unions of all votes
to include a candidate in our false positive list, there is a small an
overlap between the three catalogs. Among all images labeled as
ring or spiral by any user, 11 were finally classified as ML or SL
after the joint inspection step. We therefore removed them from
the final spiral and ring catalog. The relatively small number of
ML and L candidates in our final catalog in comparison with the
number of rings, spirals, and mergers can partially be explained
by the visual inspection method: we require a unanimous deci-
sion of all users during the joint inspection to include objects in
the ML or L, whereas only one vote is sufficient for an image to
be included in the false positive catalogs.

5. Lens–source deblending with auto-encoders

Independently of the lens search itself, it is desirable to provide
reliable deblending of the lens and source light of the candidates
without relying on a lens model. First, deblending reduces the
dynamical range of the data and allows faint structures to be
seen more clearly either in the lens or in the source. Second,
it allows the remeasurement of clean photometry of the lens and
source for future photometric redshifts estimates when color in-
formation become available (e.g., from public release of other
surveys). Finally, it can be used to initialize lens model parame-
ters when implementing composite profiles with both stellar and
dark mass.

Rojas et al. (2021) propose a method for deblending lens
candidates based on the scarlet2 (Melchior et al. 2018) and
MuSCADeT (Joseph et al. 2016) algorithms. However, this method
is not directly applicable to our case since it requires color im-
ages. Therefore, we present here a fully data-driven alterna-
tive approach based on a class of neural networks called auto-
encoders, with the goal of deblending our 32 SL candidates. In
general, neural networks find a mapping, Y = f (X), between the
inputs X and the labels Y . In the case of auto-encoders the labels

2 https://github.com/pmelchior/scarlet

are the inputs themselves. In other words, the mapping made by
the auto-encoder rather writes as X = f (X). Auto-encoders can
be decomposed into two symmetrical parts: the encoder and the
decoder. If the dimensions of the layers decrease from the two
ends of the auto-encoder to the central layer, the network is able
to learn a simplified representation of the original input. Thus,
auto-encoders may be used for data compression, feature learn-
ing, dimensionality reduction, and denoising. The architectures
derived from auto-encoders, like variational auto-encoders, can
also be used as generative models, to then generate realistic im-
ages of galaxies (Lanusse et al. 2020).

The scheme of the auto-encoder we used for the deblending
is presented in Fig. B.1. The input of the network is the image of
the lensed system. Unlike traditional auto-encoders, the decoder
is split into two parallel parts. The first part extracts the lensed
source, whereas the second extracts the deflector image. The di-
mension of the inner dense layers correspond to the flattened
dimension of the last convolutional layer of the encoder and the
first of the decoder part. In the end, we obtained three different
outputs: the lensed source, the deflector and the lens system re-
constructed by the auto-encoder. The reconstructed lens system
was obtained by summing the lensed source and deflector im-
ages derived with the two different parts of the decoder.

5.1. Training process

We trained the auto-encoder using 10 000 simulations of lenses
taken from the sample described in Sect. 3.2 and 5 000 images of
LRGs from the spectroscopic LRG selection detailed in Sect. 2.
Before the training all images were normalized between 0 and
1. We also set aside 20% of them to constitute the validation
set, with the rest as the training set. For each image, we used
the following for the ground truth: the image of the lens system
itself, and the lensed source and deflector images obtained in the
final step of the simulation pipeline before the two images were
combined. In the case of LRG-only images, we define the lensed
source image as an array of zeros and the deflector image as the
image of the LRG. The loss function takes into account the three
different outputs and gives more weight to the part containing
the lensed source and deflector terms in order to put emphasis
on the accurate deblending of the images. It is defined as

L = 0.4 × Ldeflector + 0.4 × Lsource + 0.2 × Lcombined, (4)

where Ldeflector, Lsource, and Lcombined are respectively the binary
cross-entropy losses computed between the true deflector image
and the deblended deflector, between the lensed source image
and the deblended lensed source, and between the lens system
image and the combination of the deblended deflector and the
lensed source. We also tested a combination of mean squared er-
ror losses instead of binary cross-entropy losses. However, the
version trained with mean squared error failed to correctly re-
store the shape of the lensed source. In most of the case the lens-
ing features appeared incomplete or distorted, or were absent.

We set the maximum number of epochs to 200 and use early
stopping to avoid overfitting.

5.2. Secure lens deblending

We present in Fig. 7 the result of the auto-encoder deblending for
the 32 SL systems. The auto-encoder correctly captures the gen-
eral shape of the lensed source features and the deflector. The
main advantage of this method is that it does not rely on any
assumptions about the light profile of the lens and the source,
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and is therefore also able to deblend complex lenses. This is
true in particular for UNIONS J155923+314712 in which the
deflector is an edge-on spiral. However, as is seen in the resid-
ual column of Fig. 7, it tends not to correctly deblend some of
the high-frequency features from the original images. The auto-
encoder clearly distinguishes companion galaxies from lensing
features since in general, if companions are reconstructed by the
auto-encoder, they appear in the deblended LRG image but not
in the deblended lens source image (see Fig 7). One exception
is UNIONS J113952+303204, where one of the companions is
very close to the arc of the lensed source and is then mistaken
for a lensing feature.

In its current implementation, our method provides reliable
photometry of the deflectors, according to tests performed on
simulations, but performs less well on the photometry of the
lensed source because auto-encoders do not capture all high-
frequency features, especially the fainter ones. This results in a
loss of flux in some of the deblended lensed sources, and indeed
the residuals displayed in Fig. 7 show signal at the locations of
small features of the lensed sources. However, we can still obtain
reliable photometry of the lensed sources by subtracting the de-
blended deflectors from the original images and then by carrying
out the photometric measurements on the subtracted images. Fu-
ture work with auto-encoders will focus on better representation
of the high-frequency signals contained in the data.

In conclusion, inspecting the auto-encoders results allows us
to confirm the presence of promising potential lensing features
in our SL sample. The deblended images support our classifica-
tion for all our SL candidates. In some cases they enhance the
visibility of features that are hardly visible in the original low-
contrast images, and thus can provide significant help during the
visual inspection step of future lens searches.

6. Automated modeling of best lens candidates

Future lens surveys will discover tens of thousands or hundreds
of thousands of galaxy-scale strong lenses. From these lenses
it will be necessary to define subsamples of objects suited to
specific science goals. For example, not all lenses are useful for
constraining dark matter substructures and not all lenses are use-
ful for studying galaxy evolution, constraining the initial mass
function, or inferring the lens mass-to-light ratio. It is therefore
crucial to obtain a basic characterization of the lens and sources
properties of the candidates already at the level of the discovery
catalog. In the absence of redshift information this boils down
to the Einstein radius of the system, its external shear, and the
light properties of the lens and of the source. In this section we
use our 32 best objects in the SL category as a test bench for a
simple automated lens characterization pipeline.

6.1. Modeling pipeline

We model the lens mass, lens light, and source light profiles us-
ing simple analytical profiles. We use a SIE profile to model the
lens mass distribution to which we add external shear (SIE+γext
model). The light distributions of both the lens and the source
are represented as single elliptical Sersic profiles. As we show
below, these simple models are sufficient to fit most of our lens
candidates.

The pipeline is based on the Lenstronomy3 Python pack-
age (Birrer et al. 2015; Birrer & Amara 2018) and has two main
steps, a pre-sampling optimization, followed by a full Markov

3 https://github.com/sibirrer/lenstronomy

chain Monte Carlo (MCMC) sampling. The pre-sampling step
uses the particle swarm optimization (PSO) method (Kennedy
& Eberhart 1995), which ensures that we initialize the MCMC
with model parameter values close to the maxima of the posterior
probability distribution. We then perform the MCMC sampling
using the emcee4 package, which is a Python implementation of
the affine-invariant Markov chain Monte Carlo ensemble sam-
pler (Goodman & Weare 2010; Foreman-Mackey et al. 2013).
While lens modeling is a fairly easy task for isolated lenses, it
is complicated by the presence of intervening objects unrelated
to the lens, which introduce spurious light contamination. Such
objects should be masked to avoid being mistakenly identified
as lensed images of the source. This masking procedure is ad-
dressed in different ways by different authors. Shajib et al. (2020)
modeled 23 lenses from the SLACS sample (Auger et al. 2009),
and specifically chose systems that do not contain any contami-
nating sources of light. Nightingale et al. (2018) did not restrict
their sample, but adopted a circular mask with a fixed radius of
3.9′′, which selects only the regions of the data dominated by the
lensed source light.

In our case the masking algorithm is designed to adapt to
systems with very different angular sizes. Figure 8 depicts the
steps of the following algorithm:

1. A Laplacian of Gaussian (LoG) filter is applied to the image
to highlight areas of the image with a strong flux gradient.

2. All pixels whose flux is below a threshold of 6σsky, where
σsky is the rms background noise, are set to zero.

3. All of the nonzero pixels in the filtered image are located,
and the locations of the peaks are identified. Peaks are
defined as local maxima in the image detected using the
peak_local_max function of the skimage Python package.
We require that detected maxima be separated by more than
one pixel from each other in order to be considered a peak.

4. The detected objects near the center of the image are as-
sumed to be the lensing galaxy and lensed images and/or
arcs from the source light. These objects are used to estimate
the angular size of the lens–source system. This is done by
sorting the list of detected peaks by their distance from the
image center: the first peak corresponds to the lens galaxy–
LRG, and the second detected object is one of the images
of the lensed source. In order to not mask part of the light
from the lensed source image, the lens size is estimated to
be eight pixels larger than the distance from the center to
the second detected object. All of the brightest pixels far-
ther from the center are treated as contaminant light to be
masked. The mask itself is created by using the subset of all
nonzero valued pixels from step 3 whose location is farther
from the center than the lens system size (red cross-hatched
areas outside the black circle in Fig. 8).

5. The final mask is a Boolean array of the same shape as the
original image, containing zeros for all pixels that are to be
ignored in the modeling and a value of one elsewhere. At
each pixel marked with a red plus sign (+) in Fig. 8, the sur-
rounding pixels within a circular area with a radius of two
pixels are set to zero. The final mask is shown in the last
frame of Fig. 8. For the majority of the 32 SLs we mod-
eled, a visual inspection of the robustness of the automated
masked convinced us that it always masked out all the spuri-
ous neighboring light that would have been deleted by hand
on an object-by-object basis. Only very minor corrections
would have been applied (see discussion in Sect. 6.2).

4 https://github.com/dfm/emcee
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Fig. 7. Results of the auto-encoder deblending for our 32 SL candidates. Two objects are displayed in each row. For each object, we show
the original image displayed using a asinh grayscale, and the lensed source and lens light deblended using the auto-encoder and the scaled
residuals.

Before applying lenstronomy to our 32 SLs, we adopt re-
alistic priors on the different parameters. First, for the mass and
light profiles of the lens, we constrain the axis ratios between the
semi-minor and semi-major axes, q = b/a, using Gaussian pri-
ors centered on a value of q = 0.8, with a standard deviation of

σ = 0.1. This choice was motivated by the results presented in
Kelvin et al. (2012), where over 100 000 galaxies of the Galaxy
And Mass Assembly(GAMA) survey were modeled, finding dis-
tributions in eccentricities peaking at (1 − q) ' 0.2. In addition,
we expect some similarity between the ellipticity of the deflector
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Fig. 7. Cont.

mass and deflector light profiles; however, small deviations are
allowed. We therefore apply Gaussian priors, with σ = 0.01, on
both of the ellipticity parameters of the lens mass (em

1 , em
2 ) that

are centered on the corresponding values of the light profile (e1l,
el

2).

In addition to the priors on the ellipticity parameters, we
also constrain the effective radius Reff and Sersic index ns of the

source light through the use of prior probability distributions ob-
tained from a catalog of 56 062 galaxies from the COSMOS sur-
vey that were modeled using a single Sersic profile to serve as a
training set for the GALSIM5 galaxy image simulation software
(Rowe et al. 2015). We show these prior distributions in Reff and

5 https://github.com/GalSim-developers/GalSim
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Image LoG filtered image Final filtered image

Detected objects
r = 3.352"

Mask locations Mask

Fig. 8. Illustration of our masking procedure. The upper row shows the
original CFIS image in the r band, followed by the image after applying
the LoG filter in the top middle panel. This image is then thresholded
and all pixels below 6σsky are set to zero, as shown in the top right panel.
The bottom row shows the detected peaks, whose centroids are marked
with black crosses. The bottom middle panel displays the estimated lens
size as a black circle and the red areas indicate what we consider as
contaminants. These are masked as the red area on the bottom right
image.
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Fig. 9. Priors used for the effective radius Reff and Sersic index ns of
the source light. The priors are derived from 56 062 galaxies from the
COSMOS survey.

ns in Fig. 9. For simplicity, we do not assume any covariance in
the prior distribution of these two parameters nor do we assume
any covariance with the deflector’s flux or magnitude.

6.2. Modeling results

We apply our lenstronomy-based pipeline with the priors de-
scribed above to the best 32 lenses found with the CNN search.
Figure 10 shows histograms for the model parameters describing
the deflector mass, the source light, and the deflector light pro-
file. The Einstein radii of the lenses are in the range 1.2′′< RE <
2.5′′ and the external shear strengths are all 0.3 or less. The CNN
is biased to find lenses with Einstein radius matching the range of
the training set, but the Einstein radius range 1.2′′< RE < 2.5′′ in
the SL sample also highlights the fact that the visual inspection
predominantly selects obvious wide-separation lenses with de-
blended counter images. Seven lenses have models with a shear
compatible with zero, but since no account for the strong corre-
lation of external shear and internal ellipticity is made, this must
be interpreted carefully. For the lens light the effective radius
and Sersic index distributions peak at 2.5′′ and 5.0, respectively,

1 2 3
RE (arcsec)

0

2

4

6

Oc
cu

rre
nc

es

Einstein radius (RE)
2 3.0
2 > 3.0

0.0 0.1 0.2 0.3
ext

0

2

4

6

Oc
cu

rre
nc

es

Shear strength ( ext)
2 3.0
2 > 3.0

0.0 2.5 5.0 7.5
Reff (arcsec)

0

2

4

6

Oc
cu

rre
nc

es

Lens light: Reff (arcsec)
2 3.0
2 > 3.0

0 5 10
ns

0

1

2

3

4

5

Oc
cu

rre
nc

es

Lens light: ns

2 3.0
2 > 3.0

0.0 0.5 1.0
Reff (arcsec)

0

2

4

6

8

10
Oc

cu
rre

nc
es

Source light: Reff (arcsec)
2 3.0
2 > 3.0

0 2 4 6
ns

0

2

4

6

8

10

Oc
cu

rre
nc

es

Source light: ns

2 3.0
2 > 3.0

Fig. 10. Parameter distributions from our lens modeling results using
the SIE+γext model. The top row gives the Einstein radii and external
shear values of the mass model. The middle and bottom rows show the
effective radius and Sersic index, for the lens and source light, respec-
tively. The models with an acceptable reduced χ2 (≤ 3.0) are shown in
green and those with a reduced χ2 > 3.0 are shown in red (see text).
After a manual fix of the masking procedure, the bad fits improved to
χ2 < 3.0.

which is not surprising as our lenses are selected among a sam-
ple of LRGs. The source galaxies are generally much smaller
than the deflector LRGs, with the distribution in effective radius
peaking at Reff ∼ 0.2′′ and with Sersic index peaking at ns ∼ 1.0,
also unsurprising given that source galaxies are often low mass
and/or star-forming disks. In Figs. D.1–D.7 we show mosaics of
the modeling results for the 32 lenses. Table D.1 lists the best-fit
parameters obtained from these fits. In spite of the simplicity of
our models the residuals are acceptable for most systems (i.e.,
with a mean reduced χ2 close to 1.0) (see Table D.1). However,
setting a limit of 3 on the reduced χ2 allows us to spot outliers.
These objects are indicated with a red rectangle in Figs. D.1–D.7
and show that the bad fits are due to complex lens light profiles
beyond Sersic, inaccurate masking, or objects in the source plane
being modeled as if they were in the lens plane or vice versa.
A notable example is UNIONS J155923+314712 (first row of
Fig. D.3) which has a bright elongated deflector that is not well
described by a single Sersic profile. This specific example also
shows the limitation of our pre-selection of LRG deflectors as
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obviously this system has a lens with an edge-on disk and a
bulge component. In all cases with χ2 > 3.0, we were able to
immediately identify the problem and correct it in a simple way,
bringing the new χ2 value close to 1.0 (objects indicated with an
asterisk in Table D.1).

Four additional objects have χ2 > 3
(UNIONS J113952+303204, UNIONS J165710+315052,
UNION J075346+341633, UNIONS J112053+342146). For
three of these the mask produced by our automated procedure is
simply not large enough to cover all of the light contaminants.
In the case of UNIONS J165710+315052, part of the lensed
source light in the bottom right corner of the image is mistaken
for a companion, while the contaminant directly to the right
of the deflector is treated as a lensed source image. This is a
very specific configuration that would be extremely difficult to
accommodate in an automated masking procedure for thousands
of objects, as will be the case with future wide-field surveys.
Nonetheless, since we only have 32 objects, we can afford to
create new customized masks, and we show in Figs. D.1–D.4
the results with new masks directly beneath the results with the
automated masks. In each subpanel the two modeling results
are enclosed in the red dashed rectangles, and the manual masks
significantly improve the residuals.

We have a total of six modeling failures. Of these six, one
fails due to the deflector light being more complex than for the
rest of the sample, while three are due to imperfect masking that
can certainly be improved in future versions of the pipeline. One
of the failures, UNIONS J081959+535624, is in fact known as
a lensed quasar (Inada et al. 2009) and therefore fails because
our modeling procedure does not allow for point sources (see
Fig. D.8). This point will be addressed in future work. For the
25 successful automated models, the average modeling time is 2
hours for a 44 pixel × 44 pixel stamp, which is well achievable
in the context of future surveys like Euclid, which is expected to
find 20–30 SLs per day.

7. Discussion and conclusions

In this paper we presented the design of an automated pipeline
to find galaxy-scale strong lenses using convolutional neural net-
works and applied it to the CFIS wide-field optical imaging sur-
vey being carried out with the 3.6 m CFHT in Hawaii. We used
only the deep and sharp r-band images for which the median see-
ing is 0.6′′ down to a 10σ depth of r = 24.6. We used 2 500 deg2

of CFIS in the present work since the survey is still ongoing; it is
expected to reach a total area of 5 000 deg2 of the northern sky,
when completed.

In training our CNNs, we used data-driven simulations
where the light distribution of the lens plane is taken directly
from the data. This naturally includes the PSF, companions, and
noise properties of the actual data and any companion galaxies.
The lens mass, modeled as a SIE profile, was derived from the
measured velocity dispersion of our sample of LRGs, which we
further adapted to ensure that the lensing features were system-
atically visible in the training set. Our background sources are
from the HST images of the COSMOS survey, and are convolved
by the local CFIS PSF after lensing.

Starting from a sample of CFIS r-band images of LRGs se-
lected both from spectroscopy and color-cuts, we used a com-
mittee of three neural networks, leading to a CNN-based sample
of 9 460 objects passing a CNN score of 0.5, averaged over the
three members of our committee. The adopted threshold of 0.5
on the CNN identification is based on experiments with our val-

idation set and on the CNN score obtained for real CFIS images
of spiral galaxies identified in GalaxyZoo.

Even though the precision of the CNN committee is ex-
tremely high using a score threshold of 0.5, the large sample
of two million galaxies to classify implies a large number of
false positives among the 9 460 objects passing our threshold
due to the low prevalence of lenses in real data, as explained in
Sect. 3.4. Fortunately, visually inspecting 9 460 objects by eye is
still doable and this task was done by six independent authors of
this paper. Even though strict and homogeneous rules were set
for the visual classification, we note that the six human classi-
fiers still had very different opinions on what a lens is and what
it is not, meaning that any automated CNN may still require a
time consuming human check, for example with citizen-science
projects for future wide-field space surveys like Euclid, Rubin-
LSST, or Roman. More effort should be devoted to visual inspec-
tion methods to reach better consensus between classifiers.

Following the visual inspection, we found 32 objects with
striking lensing features and 101 objects that show strong signs
of lensing but that need further data to confirm (i.e., higher reso-
lution, and deeper imaging and/or spectroscopy). This represents
around 0.05 candidates per square degree, which is much lower
than the 1.95 and 11.95 lenses per square degree estimated in
Collett (2015) for LSST and Euclid, respectively. This number is
however comparable with that found by Cañameras et al. (2020),
from which we take our lens search sample, who obtain 0.0117
lenses per square degree. The slightly larger number of lenses
per square degree in our case can be explained by the higher res-
olution of CFIS r-band images and the different lower limit on
the Einstein radii of the simulations from the training set.

A by-product of our simulations set is that we were able
to train auto-encoders to learn the lens light and lensed-source
light separately and we then deblended the lens plane from the
source plane for all 133 objects. We see this process, or future
evolutions of it, as a way to infer photometric redshifts for the
lens and source if many bands are available, which will be the
case in future wide-field imaging surveys. With the CFIS r-band
data alone, we still find our application of auto-encoders useful
to evaluate the quality of the lens candidates, especially for the
smallest Einstein radii and/or for objects with strong contrast be-
tween the lens and source light.

Finally we developed a simple lens modeling pipeline based
on the lenstronomy software in which we adopt an SIE mass
profile with external shear. We also developed an automated
masking procedure to enforce only relevant objects to be mod-
eled and avoid objects unrelated to either the lensed source or the
lensing galaxy. The optimization process using particle swarm
optimization followed with Markov chain Monte Carlo sampling
takes on the order of two hours per object for our 44 pixel ×
44 pixel stamps. With the present ground-based data, even with
deep high-resolution ground-based imaging, we find that the SIE
plus shear model is sufficient to fit most of the data. The main
sources of failure are the following: (1) the lens light was too
complex to be described by a single Sersic profile (1 object out
of 32); (2) the masking procedure failed to capture the entire ex-
tent of the objects to be masked (2 objects out of 32); and (3)
the misidentification of source images that should not have been
masked (1 object out of 32). We consider only the last case to be
a real limitation to a fully automated procedure.

We also produced a catalog of contaminants that mimic lens-
ing geometry (i.e., 238 mergers, 369 ring galaxies, and 961 spi-
ral galaxies). All these contaminants are provided in electronic
form as they can be useful for future lens searches in order to
train CNNs against false positives.

Article number, page 13 of 31



A&A proofs: manuscript no. output

We demonstrated the possibility to build an automated
pipeline to find, deblend, and model lenses in future large-scale
surveys, even though there are still challenges to overcome. In
particular, human intervention was required at two steps of the
pipeline: in the verification of the lens candidates and, to a lesser
extent, in the modeling. The importance of the visual inspec-
tion step may be decreased in future versions of the pipeline
by retraining the CNNs with our catalog of false positives and
by combining the information obtained with the deblending and
modeling with the classification score provided by the commit-
tee. Since the CFIS imaging data are among the best available
so far in terms of depth and seeing, our results, although sub-
ject to improvements, can be seen as an illustration of what can
be achieved with in a single Rubin-LSST band built by stack-
ing some of the best seeing epochs after about a month of data
acquisition. With a spatial resolution three times better than the
best CFIS images, Euclid (and then Roman) will give us access
to a larger number of small separation systems, especially with
Einstein radii smaller than 1′′. These data will also help us to
decide on our less secure candidates, since space-based imaging
will provide high signal-to-noise ratios for the lensing features
of the lenses presented here, allowing us to test more complex
mass models, and thus probe astrophysical questions like galaxy
evolution and the structure of their dark matter halos.
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Appendix A: Visual inspection results

We present in Table A.1 the results of the single-object inspec-
tion for each user. The agreement between the human classifiers
is low, as can be observed in Fig. A.1, which displays the num-
ber of images labeled as either ML or SL by each user and the
numbers shared between each pair of users. The discrepancy be-
tween users is less pronounced for the NL images. The category
SA causes the most confusion since no image is labeled as SA by
all users, and the overlap between the users selecting the greatest
and lowest number of SA (User 1 and User 5) is only five objects.
As a result, despite the classification guidelines, the number of
ML or SL candidates varies greatly between users (see Fig. A.1).
Even so, the agreement between users is the greatest for the SL
category, hence showing a good consensus for the objects with
the most striking lensing features.

User
 1

User
 2

User
 3

User
 4

User
 5

User
 6

User 1

User 2

User 3

User 4

User 5

User 6

119

65 454

44 113 178

69 205 82 509

65 223 95 254 822

52 164 110 129 175 395

Fig. A.1. Illustration of the overlap between the visual classification of
different users. The diagonal terms show the number of SL and ML
labeled by each user during the first steps of the inspection, whereas the
nondiagonal terms correspond to the number of ML and SL objects that
are shared between the users in the corresponding rows and columns.

Appendix B: Auto-encoder architecture

We present in Fig. B.1 the architecture of the deblending auto-
encoder. In this scheme all layers are represented by a box and
the connections between the different layers are shown with ar-
rows. The decoder is separated in two independent and symmet-
rical sections that specialize in extracting the lensed source fea-
tures and the deflector images. For both the encoder and the de-
coder we use a combination of dense and convolutional layers.
The decoder part has three output layers. The last two convo-
lutional layers output the deblended lensed-source and deflector
images and the Add layer returns the sum of the two deblended
images. We applied “Relu” activations to all neurons of the net-
work except in the last three layers for which we used sigmoid
activations in order to keep the range of the output between -1
and 1.

Appendix C: Maybe lens candidates

We show in Fig. C.1 the 101 ML candidates obtained at the
end of the visual inspection process. It includes all candidates
displaying convincing probable lensing features but that require
follow-up observations to be confirmed.

Appendix D: Modeling results

The best-fit parameters for the 32 SL obtained after the modeling
procedure are listed in Table D.1. We show in Figs. D.1–D.7 a
mosaic with the modeling results for the 32 SL candidates.

Appendix E: Examples of contaminants

We present in Fig. E.1 examples of images taken randomly from
the 238 mergers and 361 ring galaxies, and the 950 identified
after the visual inspection.

Appendix F: Lens candidates

We present in Table F.0 all the candidates obtained after the last
stage of the visual inspection. For each one the score given by
the CNN committee is indicated.
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Table A.1. User results of the detailed visual inspection.

Classification User 1 User 2 User 3 User 4 User 5 User 6
NL 4492 4151 4389 3941 3398 4012
SA 17 23 61 178 408 221
ML 96 423 144 474 775 357
SL 23 31 34 35 47 38

Fig. B.1. Architecture of the deblending auto-encoder. Each box represents a layer and the arrows show the connections between the different
layers of the networks. The names indicated in the rectangles correspond to the different layer subclasses of the Keras API used in the model. The
dimensions of the input and output of each layer are indicated in brackets. For convolutional layers the last dimension corresponds to the number
of filters
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J130354+315655 J163847+320109 J154613+320732 J130530+321143 J164624+321352 J083044+322708 J114050+322955 J120659+323602 J132126+323845
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J231403+335806 J121959+340210 J005359+340231 J234747+341149 J232225+341458 J094931+343819 J154613+350448 J090919+351503 J111018+351716

J085335+352650 J121351+353334 J120729+355838 J131719+355859 J115458+362005 J004211+362510 J104949+362926 J104233+362936 J124724+364403

J100422+364821 J011119+365506 J164113+370415 J165911+371346 J171127+380843 J082216+381337 J091952+390350 J082141+391539 J174744+391856

J114609+395955 J152012+402157 J092056+404009 J091957+413848 J102618+414208 J114114+414544 J113203+430718 J165239+442135 J165402+444252

J080114+455838 J171725+461830 J100021+474746 J150803+485728 J135800+492334 J133645+495308 J102147+500808 J152414+502559 J141559+502742

J135525+503250 J164433+503638 J101441+504451 J182125+510038 J151250+510553 J164753+511308 J073301+513431 J135131+520718 J172451+532101

J082055+533513 J165643+535717 J071431+543145 J150036+551015 J143158+554329 J145252+580240 J145432+584957 J182524+590228 J144129+601008

J151505+612848 J071707+701827

Fig. C.1. Images classified as maybe lenses (MLs) after the final visual inspection step.
Article number, page 18 of 31



E. Savary et al.: Strong lensing in UNIONS: Toward a pipeline from discovery to modeling

J113952+303204 Reconstructed Residuals Convergence Source

J113952+303204

J021219+303310

J090129+303355

J093542+303803

Fig. D.1. Modeling results for the first four of the 32 SL lens candidates. Shown inside the red dashed box are two modeling results for the same
image, but with different masks. The top row corresponds to the results from the automated masking procedure, and in the bottom row to the
results after applying a custom mask. 1st column: CFIS r-band image. 2nd column: Image reconstruction using best-fit model parameters. The
white regions are masked pixels corresponding to locations of neighboring objects in the observed image. In red we show the critical lines of
the lens model. 3rd column: Normalized residual map of the image reconstruction. 4th column: Lens mass model convergence map. 5th column:
Reconstructed source light profile (unlensed). In red are shown the caustic lines of the lens model.
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J164940+304909 Reconstructed Residuals Convergence Source

J115830+312349

J165049+312328

J124223+312905

J095335+313238

Fig. D.2. Continued from Fig. D.1
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J155923+314712 Reconstructed Residuals Convergence Source

J165710+315052

J165710+315052

J094411+322038

J235527+325244

Fig. D.3. Continued from Fig. D.2
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J110219+334224 Reconstructed Residuals Convergence Source

J075346+341633

J075346+341633

J112053+342146

J112053+342146

Fig. D.4. Continued from Fig. D.3
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J075523+344539 Reconstructed Residuals Convergence Source

J153959+354954

J171340+364204

J094819+373739

J174828+374539

Fig. D.5. Continued from Fig. D.4
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J124548+375435 Reconstructed Residuals Convergence Source

J143004+410557

J155517+415138

J090728+423301

J091415+431855

Fig. D.6. Continued from Fig. D.5
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J143611+432921 Reconstructed Residuals Convergence Source

J103148+434256

J163522+510828

J131730+564054

J144037+591141

Fig. D.7. Continued from Fig. D.6
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J081959+535624 Reconstructed Residuals Convergence Source

J081959+535624

Fig. D.8. Continued from Fig. D.7
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Table D.1. Lens mass best-fit parameters from lens modeling.

Candidate Reduced χ2 RE (arcsec) qm φm (deg) γext φext (deg)

UNIONS J113952+303204 3.36 3.048+0.380
−0.049 0.737+0.191

−0.041 −15+29
−15 0.215+0.248

−0.015 −65+63
−4

UNIONS J113952+303204* 2.19 2.204+0.013
−0.013 0.980+0.021

−0.021 −76+61
−59 0.072+0.011

−0.010 3+8
−8

UNIONS J021219+303310 1.88 2.044+0.003
−0.012 0.670+0.006

−0.008 −56+1
−1 0.068+0.002

−0.003 −77+2
−3

UNIONS J090129+303355 1.04 1.694+0.010
−0.009 0.957+0.022

−0.023 49+31
−31 0.027+0.008

−0.008 −38+16
−15

UNIONS J093542+303803 1.35 0.670+0.029
−0.033 0.890+0.023

−0.022 28+13
−12 0.337+0.023

−0.024 57+5
−5

UNIONS J164940+304909 0.92 2.061+0.007
−0.007 0.855+0.013

−0.012 55+7
−5 0.031+0.004

−0.005 −61+8
−8

UNIONS J115830+312349 0.98 1.633+0.021
−0.019 0.732+0.023

−0.021 −75+5
−5 0.138+0.010

−0.011 13+4
−4

UNIONS J165049+312328 0.98 1.404+0.012
−0.012 0.716+0.028

−0.028 −87+7
−7 0.073+0.011

−0.011 45+8
−9

UNIONS J124223+312905 1.19 1.511+0.011
−0.009 0.785+0.015

−0.016 −18+5
−5 0.217+0.007

−0.008 59+2
−2

UNIONS J095335+313238 2.09 2.241+0.004
−0.009 0.672+0.007

−0.008 42+2
−2 0.094+0.003

−0.005 79+1
−2

UNIONS J155923+314712 15.45 1.760+0.004
−0.004 0.788+0.004

−0.020 51+2
−2 0.134+0.002

−0.003 72+1
−1

UNIONS J165710+315052 3.21 1.562+0.021
−0.030 0.144+0.010

−0.011 −68+1
−1 0.175+0.011

−0.007 16+3
−2

UNIONS J165710+315052* 1.12 2.810+0.008
−0.009 0.593+0.013

−0.012 −26+2
−2 0.080+0.006

−0.006 31+4
−4

UNIONS J094411+322038 1.00 1.871+0.007
−0.007 0.888+0.022

−0.023 43+14
−14 0.089+0.007

−0.008 −84+4
−4

UNIONS J235527+325244 1.36 2.381+0.002
−0.003 0.873+0.012

−0.011 −75+7
−6 0.046+0.005

−0.003 43+4
−4

UNIONS J110219+334224 1.39 2.105+0.007
−0.007 0.900+0.015

−0.016 60+9
−10 0.052+0.006

−0.006 68+6
−6

UNIONS J075346+341633 17.30 1.372+0.004
−0.004 0.760+0.035

−0.032 −84+18
−7 0.129+0.011

−0.006 7+20
−6

UNIONS J075346+341633* 2.06 1.133+0.006
−0.006 0.766+0.005

−0.008 −66+1
−2 0.012+0.002

−0.001 −87+15
−4

UNIONS J112053+342146 4.37 1.352+0.009
−0.008 0.695+0.016

−0.014 85+4
−4 0.294+0.005

−0.005 −68+1
−1

UNIONS J112053+342146* 1.97 1.776+0.018
−0.062 0.902+0.041

−0.045 −17+19
−21 0.142+0.007

−0.004 69+3
−1

UNIONS J075523+344539 1.48 2.134+0.006
−0.008 0.544+0.011

−0.008 6+1
−2 0.124+0.004

−0.004 −28+2
−2

UNIONS J153959+354954 1.30 1.338+0.008
−0.008 0.892+0.018

−0.018 46+9
−9 0.006+0.006

−0.006 80+69
−69

UNIONS J171340+364204 1.15 2.251+0.009
−0.009 0.732+0.015

−0.015 41+3
−3 0.015+0.005

−0.005 −78+23
−23

UNIONS J094819+373739 1.25 1.234+0.005
−0.004 0.400+0.012

−0.012 −85+1
−1 0.130+0.006

−0.007 87+2
−2

UNIONS J174828+374539 1.09 1.567+0.029
−0.030 0.939+0.050

−0.063 24+54
−65 0.026+0.004

−0.009 48+7
−9

UNIONS J124548+375435 0.91 1.136+0.063
−0.065 0.653+0.025

−0.024 −14+4
−4 0.310+0.038

−0.039 83+4
−4

UNIONS J143004+410557 1.96 1.508+0.004
−0.004 0.808+0.009

−0.009 −29+3
−3 0.055+0.004

−0.004 78+4
−4

UNIONS J155517+415138 1.13 1.402+0.010
−0.011 0.787+0.026

−0.026 5+9
−8 0.089+0.012

−0.010 48+6
−9

UNIONS J090728+423301 2.52 1.511+0.003
−0.003 0.579+0.011

−0.010 39+1
−1 0.031+0.003

−0.003 3+6
−6

UNIONS J091415+431855 1.02 1.249+0.005
−0.005 0.766+0.018

−0.018 −37+3
−3 0.020+0.006

−0.005 33+14
−14

UNIONS J143611+432921 0.97 2.146+0.022
−0.007 0.710+0.014

−0.018 −13+3
−3 0.080+0.007

−0.005 −52+7
−5

UNIONS J103148+434256 1.04 1.392+0.005
−0.005 0.756+0.015

−0.015 −38+4
−4 0.119+0.005

−0.005 71+2
−2

UNIONS J163522+510828 1.17 2.092+0.007
−0.008 0.760+0.015

−0.015 −36+3
−3 0.040+0.006

−0.005 49+8
−8

UNIONS J131730+564054 1.10 2.020+0.028
−0.039 0.684+0.023

−0.026 −56+6
−7 0.138+0.020

−0.024 35+7
−14

UNIONS J144037+591141 1.61 1.979+0.010
−0.011 0.668+0.013

−0.013 38+2
−2 0.073+0.007

−0.007 25+5
−5

UNIONS J081959+535624 5.88 1.929+0.014
−0.018 0.393+0.023

−0.021 43+2
−2 0.093+0.007

−0.011 15+4
−9

UNIONS J081959+535624* 2.69 2.291+0.004
−0.005 0.744+0.014

−0.014 58+3
−2 0.185+0.003

−0.007 57+1
−1

Notes. R is the Einstein radius, qm is the axis ratio (semi-minor/semi-major axis), and φm is the position angle of the lens mass SIE model. The
parameters γext and φext correspond to the strength and angle of the external shear, respectively. We indicate with an asterisk the parameters for our
best fits (i.e., for the manually customized mask) when applicable.
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J010017+312808 J022515+312815 J155356+312831 J112453+312907 J095444+312934

J164114+312932 J165123+312953 J004442+313015 J164129+313217 J174452+313325

J021347+300232 J093820+300443 J021217+300631 J021611+300837 J174750+300913

J160840+300932 J232642+300944 J091245+301026 J173624+301245 J174844+301243

J231402+300531 J104508+300753 J162830+300738 J111632+300839 J122933+301643

J165456+302326 J105928+302349 J173124+302607 J154117+302631 J010406+303221

Spirals

Mergers

Rings

Fig. E.1. Examples of images classified by at least one person as spirals (first two rows), mergers (two rows in the middle), or ring galaxies (last
two rows) during the visual inspection. Each of them were identified by at least one user.
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Table F.0. Lens candidates obtained after the final stage of visual inspection.

Name RA DEC CNN score References
UNIONS J165710+315052 254.294217 31.847955 0.99 [8], [11]
UNIONS J115830+312349 179.62672 31.397025 0.79 None
UNIONS J131730+564054 199.378529 56.68182 0.97 None
UNIONS J143611+432921 219.046299 43.489219 0.98 [10]
UNIONS J090728+423301 136.86744 42.550401 0.99 [8],[12], [11]
UNIONS J113952+303204 174.968967 30.534686 0.99 None
UNIONS J103148+434256 157.952047 43.715754 0.99 [8], [11]
UNIONS J174828+374539 267.120502 37.760876 0.99 None
UNIONS J163522+510828 248.845539 51.141378 0.99 None
UNIONS J143004+410557 217.517011 41.099238 0.98 [1]
UNIONS J171340+364204 258.419705 36.701363 0.97 None
UNIONS J021219+303310 33.082568 30.552995 0.99 [11]
UNIONS J235527+325244 358.865775 32.879142 0.99 [8]
UNIONS J153959+354954 234.999752 35.831739 0.98 None
UNIONS J124548+375435 191.451962 37.909935 0.99 None
UNIONS J095335+313238 148.399699 31.544166 0.99 None
UNIONS J094411+322038 146.049312 32.344091 0.99 [8]
UNIONS J165049+312328 252.706648 31.391165 0.99 [8]
UNIONS J081959+535624 124.999119 53.940081 0.7 [2]
UNIONS J090129+303355 135.371629 30.565434 0.87 None
UNIONS J155923+314712 239.847219 31.786779 0.87 [8]
UNIONS J155517+415138 238.823966 41.860723 0.99 [6],[9],[8],[12]
UNIONS J093542+303803 143.925535 30.63432 0.82 None
UNIONS J124223+312905 190.598116 31.484828 0.99 [11]
UNIONS J164940+304909 252.418703 30.819194 0.99 [8]
UNIONS J112053+342146 170.22424 34.362826 0.99 None
UNIONS J075346+341633 118.442572 34.276024 0.98 [5]
UNIONS J075523+344539 118.847955 34.761005 0.99 [4],[7]
UNIONS J094819+373739 147.081482 37.627583 0.99 None
UNIONS J144037+591141 220.155419 59.194928 0.94 None
UNIONS J110219+334224 165.579915 33.706789 0.96 None
UNIONS J091415+431855 138.564324 43.31547 0.99 [12]
UNIONS J112901+311925 172.254715 31.323845 0.95 None
UNIONS J143158+554329 217.995754 55.724873 0.64 [3]
UNIONS J164753+511308 251.974251 51.219046 0.84 None
UNIONS J104949+362926 162.455302 36.490762 0.85 None
UNIONS J150036+551015 225.150662 55.170865 0.99 None
UNIONS J115458+362005 178.741706 36.334761 0.99 None
UNIONS J164822+332824 252.092057 33.473465 0.95 None
UNIONS J082141+391539 125.422624 39.260887 0.6 None
UNIONS J094931+343819 147.380711 34.638801 0.88 None
UNIONS J113203+430718 173.014645 43.121823 0.92 None
UNIONS J152414+502559 231.059906 50.433218 0.72 None
UNIONS J141559+502742 213.997269 50.461768 0.82 None
UNIONS J092056+404009 140.233516 40.669275 0.81 None
UNIONS J154613+320732 236.55542 32.12574 0.76 None
UNIONS J163115+324034 247.813118 32.676273 0.84 None
UNIONS J080114+455838 120.309377 45.9774 0.96 None
UNIONS J071431+543145 108.63086 54.529382 0.96 None
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Table F.0. continued.

Name RA DEC CNN score References
UNIONS J232205+311448 350.521187 31.246802 0.97 None
UNIONS J091952+390350 139.970218 39.064101 0.83 None
UNIONS J001119+324635 2.83263 32.77663 0.99 None
UNIONS J114114+414544 175.309537 41.762407 0.9 None
UNIONS J021058+304423 32.744232 30.739869 0.98 [11]
UNIONS J005359+340231 13.498377 34.042151 0.75 None
UNIONS J085335+352650 133.397432 35.447405 0.99 None
UNIONS J004211+362510 10.549333 36.419549 0.63 None
UNIONS J121351+353334 183.466463 35.559484 0.84 None
UNIONS J172451+532101 261.216655 53.35028 0.83 None
UNIONS J164624+321352 251.600986 32.231342 0.75 None
UNIONS J074144+311642 115.434351 31.27839 0.79 None
UNIONS J165239+442135 253.165234 44.359909 0.92 None
UNIONS J015835+325940 29.649733 32.994532 0.95 None
UNIONS J124724+364403 191.85275 36.734418 0.51 [8],[11]
UNIONS J233812+301327 354.552069 30.224249 0.73 None
UNIONS J131719+355859 199.329276 35.983279 0.94 None
UNIONS J132126+323845 200.360122 32.645929 0.98 None
UNIONS J171127+380843 257.863509 38.145351 0.86 None
UNIONS J135131+520718 207.883099 52.121882 0.99 [12]
UNIONS J083044+322708 127.685572 32.452379 0.96 None
UNIONS J121959+340210 184.997596 34.036332 0.95 None
UNIONS J101441+504451 153.67308 50.747535 0.98 None
UNIONS J112035+325158 170.146207 32.866338 0.73 None
UNIONS J020255+300539 30.732029 30.094366 0.53 None
UNIONS J151250+510553 228.208395 51.098312 0.995 None
UNIONS J154613+350448 236.555281 35.080241 0.95 [11]
UNIONS J104233+362936 160.640653 36.49354 0.98 None
UNIONS J163847+320109 249.696824 32.019203 0.84 None
UNIONS J164433+503638 251.140747 50.610568 0.97 None
UNIONS J154600+303600 236.503001 30.600112 0.86 None
UNIONS J133645+495308 204.191213 49.885661 0.82 None
UNIONS J152012+402157 230.051775 40.365852 0.93 None
UNIONS J145432+584957 223.634534 58.832696 0.99 [12]
UNIONS J091957+413848 139.990868 41.646885 0.99 None
UNIONS J130530+321143 196.376255 32.195307 0.82 None
UNIONS J073301+513431 113.256743 51.575494 0.98 [11]
UNIONS J164700+315322 251.753434 31.889623 0.59 None
UNIONS J175507+334318 268.781414 33.72189 0.56 None
UNIONS J232225+341458 350.605096 34.249556 0.94 None
UNIONS J112140+303748 170.420714 30.630111 0.95 None
UNIONS J111018+351716 167.576918 35.287779 0.88 None
UNIONS J145252+580240 223.220491 58.04453 0.99 [12]
UNIONS J102147+500808 155.447437 50.135595 0.99 None
UNIONS J130354+315655 195.97702 31.9487 0.69 None
UNIONS J021336+301804 33.403042 30.301241 0.9 None
UNIONS J182524+590228 276.351457 59.041283 0.77 None
UNIONS J173658+305817 264.245714 30.971567 0.95 None
UNIONS J082216+381337 125.570203 38.227187 0.69 None
UNIONS J165643+535717 254.180951 53.954788 0.55 None
UNIONS J182125+510038 275.357473 51.010559 0.89 None
UNIONS J234747+341149 356.947866 34.196982 0.79 None
UNIONS J150803+485728 227.013274 48.957797 0.55 None
UNIONS J135800+492334 209.504125 49.392834 0.99 None
UNIONS J090919+351503 137.330317 35.25094 0.99 [8]
UNIONS J130259+300953 195.745854 30.164815 0.93 None
UNIONS J120729+355838 181.87263 35.977381 0.83 None
UNIONS J095505+303230 148.771722 30.541826 0.87 [12]
UNIONS J071707+701827 109.279891 70.307512 0.78 None
UNIONS J082055+533513 125.232609 53.587001 0.84 None
UNIONS J120329+311304 180.874396 31.218011 0.92 None

Article number, page 30 of 31



E. Savary et al.: Strong lensing in UNIONS: Toward a pipeline from discovery to modeling

Table F.0. continued.

Name RA DEC CNN score References
UNIONS J093114+300703 142.812224 30.117749 0.96 None
UNIONS J160308+333036 240.786202 33.510113 0.99 [8]
UNIONS J231403+335806 348.51442 33.968598 0.5 None
UNIONS J171725+461830 259.357806 46.308496 0.99 None
UNIONS J165911+371346 254.797098 37.22968 0.96 None
UNIONS J120659+323602 181.749009 32.600781 0.88 None
UNIONS J174744+391856 266.934787 39.315775 0.97 None
UNIONS J135525+503250 208.857143 50.547389 0.98 None
UNIONS J102618+414208 156.575959 41.702331 0.88 None
UNIONS J164113+370415 250.304317 37.070838 0.99 None
UNIONS J114609+395955 176.537956 39.998664 0.99 None
UNIONS J151505+612848 228.771508 61.480081 0.97 None
UNIONS J114050+322955 175.209408 32.498829 0.96 None
UNIONS J100021+474746 150.090655 47.796124 0.99 None
UNIONS J123129+302224 187.874467 30.37355 0.95 None
UNIONS J162540+331556 246.4202 33.265777 0.81 [11]
UNIONS J160903+335108 242.265886 33.852487 0.86 None
UNIONS J011119+365506 17.832415 36.918446 0.97 None
UNIONS J144129+601008 220.374691 60.169088 0.88 None
UNIONS J100422+364821 151.093545 36.805996 0.73 None
UNIONS J234324+305858 355.852619 30.982916 0.9 None
UNIONS J165402+444252 253.51002 44.71453 0.98 None
UNIONS J081258+305338 123.242546 30.894062 0.95 None

Notes. The first section corresponds to the secure lens candidates (SL) and the bottom section to the maybe lens candidates (ML)

References. [1] Bolton et al. (2008), [2] Inada et al. (2009), [3] Paraficz et al. (2016), [4] Shu et al. (2016), [5] Shu et al. (2017), [6] Sonnenfeld
et al. (2018),[7] Cao et al. (2020), [8] Cañameras et al. (2020), [9] Chan et al. (2020), [10] Jaelani et al. (2020), [11] Huang et al. (2021),
[12] Talbot et al. (2021)
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ABSTRACT

We present a search for strong lens galaxy-scale systems in the first data release of the Dark Energy Survey (DES), from a color-
selected parent sample of 18 745 029 Luminous Red Galaxies (LRGs). A Convolutional Neural Network (CNN) is used to grade this
LRG sample with values between 0 (non-lens) and 1 (lens). Our training set of mock lenses is data-driven, i.e. using lensed sources
taken from HST-COSMOS images and lensing galaxies from DES images of our LRG sample. A total of 76 582 cutouts obtained
a score above 0.9. These were visually inspected and classified into two catalogs. The first one contains 405 lens candidates, where
90 present clear lensing features and counterparts, while the others 315 require more evidence, such as higher-resolution imaging or
spectra, to be conclusive. A total of 186 candidates are newly identified by our search, of which 16 are among the 90 best ones. The
second catalog includes 539 ring galaxy candidates. This catalog will be a useful false positive sample for training future CNNs. For
the 90 best lens candidates we carry out color-based deblending of the lens and source light without fitting any analytical profile to
the data. This method is shown to be very efficient in the deblending, even for very compact objects and for objects with complex
morphology. Finally, from the 90 best lens candidates we select 52 systems having one single deflector, to test an automated modeling
pipeline which successfully modeled 79% of the sample within an acceptable amount of computing time.

Key words. Gravitational lensing: strong – Surveys – Techniques: image processing

1. Introduction

Gravitational lensing is the phenomenon by which light rays are
deflected by a gravitational field. In strong lens systems it is pos-
sible to observe multiple images, arcs or rings of a distant source
around a foreground galaxy, group or cluster. In such cases, the
systems can serve as important tools to study diverse and fun-
damental questions about the Universe. Some examples are the
study of luminous and dark matter components of the deflector
(Kochanek & Dalal 2001; Oguri et al. 2002; Davis et al. 2003;
Jiménez-Vicente et al. 2015), measuring the Hubble constant H0
using time delays (Falco et al. 1997; Vuissoz et al. 2007; Bon-
vin et al. 2017; Wong et al. 2020; Millon et al. 2020), and con-
straining the dark energy equation of state (Biesiada et al. 2010;
Collett & Auger 2014; Cao et al. 2012, 2015). However, most of
these applications are limited by the paucity of known systems;
only a few hundred such systems are confirmed. Therefore, an
effort on the discovery and confirmation of more lenses is re-
quired.

Since the serendipitous discovery of the first lensed quasar
(Walsh et al. 1979), discovery methods have developed depend-
ing on novel datasets and techniques. Recent searches include:
algorithms based on identifying lens features like Arc-finder
(Alard 2006), Ringfinder that searches for blue features blended
with red light (Gavazzi et al. 2014), Principal Component Anal-
ysis (PCA) of galaxies to search for lensed features in the resid-
ual images using machine learning (Joseph et al. 2014; Paraficz
et al. 2016), and CHITAH which evaluates point source config-

urations as possible lensed images using lens modeling (Chan
et al. 2015). In recent years the growing amount of available
data has motivated the use of more automated techniques like
Artificial Neural Networks (ANNs) (Rosenblatt 1957) and in
particular Convolutional Neural Networks (CNNs; LeCun et al.
1989). This technique is based on supervised machine learning
algorithms capable of solving complex problems such as pattern
recognition or image classification when a proper training set is
provided.

The biggest challenge of using CNNs for lens finding is cre-
ating a robust training set that contains diverse lens systems for
positive examples and non-lens galaxies, including some that can
be mistaken as lenses like spirals, rings, and mergers, as negative
examples. We currently lack sufficient numbers of known exam-
ples of both lens systems and common false positives. The only
solution is to then simulate them as realistically as possible. This
has already been addressed in several ways: fully simulating im-
ages using analytical profiles for both the lens and source (Ja-
cobs et al. 2019a), using an analytical profile for the source but a
real image of the lens Petrillo et al. (2019b), and using real data
for both the deflector and background galaxy (Cañameras et al.
2020). The fully-analytical approach has the advantage of hav-
ing full control over all parameters to create a sample as varied
as possible, but lacks the ability to mimic features of real images
like artifacts, noise, and companion galaxies.

The main differences between previous searches depend on
mock simulation methods, use of single or multi-band data, and
the architecture design. Previous searches include: the Canada-

Article number, page 1 of 38



A&A proofs: manuscript no. output

France-Hawaii Telescope Legacy Survey (CFHTLS) (Jacobs
et al. 2017), the Kilo Degree Survey (KiDS) (Petrillo et al. 2017,
2019a,b; He et al. 2020), the Dark Energy Survey (DES) Year
3 (Jacobs et al. 2019a,b), the Dark Energy Spectroscopic In-
strument (DESI) Legacy Imaging Surveys (Huang et al. 2020,
2021), the Pan-STARRS 3π survey (Cañameras et al. 2020), the
VST Optical Imaging of the CDFS and ES1 fields (VOICE sur-
vey) (Gentile et al. 2021). Overall, these studies have shown
that CNNs are a promising tool, listing thousands of new lens
candidates. However, all of them rely on large amounts of hu-
man visual inspection afterwards to compile the final candidate
list. Improving the training process with realistic lenses and di-
verse types of galaxies is therefore of key importance when the
next generation of surveys like Euclid Space Telescope (Laureijs
et al. 2011) and the Rubin Observatory Legacy Survey of Space
and Time (LSST, LSST Science Collaboration et al. 2009; Ivezić
et al. 2019) start producing data. Current lens finding efforts, in-
cluding some performed in simulated data (Lanusse et al. 2018;
Avestruz et al. 2019), serve as important preparation, as it is ex-
pected that over 100 000 new strong lensing systems will be dis-
covered (Collett 2015), and a visual inspection process is not
affordable.

In this work our main aim is to find new strong lensing sys-
tems. As a secondary goal we want to characterize a subset of
our false positives. We perform our search in the footprint of
the Dark Energy Survey (DES) (The Dark Energy Survey Col-
laboration 2005). The data description is presented in Section 2.
Details of the simulation procedure of our training sets are in
Sect. 3. Sect. 4 presents details of both the CNN training and
validation. We grade the parent sample using the CNN model,
and we select the ones with higher score to perform a dedicated
visual inspection to identify the best lens candidates and subclas-
sify false positives. In Sect. 5 we present our visual classification
procedure for the best graded candidates from the CNN, present-
ing both the best lens candidates and a compilation of ring galaxy
candidates that will help to improve future lens finding searches.
Finally in Sect. 6 we show the results of an automatic modeling
tool on a sample of our best candidates.

2. Data selection

We use data from DES, which used the Dark Energy Camera
(DECam, Honscheid & DePoy 2008; Flaugher et al. 2015) on
the Blanco 4-m telescope at Cerro Tololo Inter-American Obser-
vatory (CTIO), Chile. DECam is a 570 Megapixel camera with a
field of view of 2.2 square degrees and a pixel size of 0.27′′. Ob-
servations were performed in the optical grizY bands. The first
DES Data release (DES-DR1, Abbott et al. 2018) contains im-
ages taken over the first three years of operation, covering an
area of 5186 deg2. The images from DR1 have been coadded,
and each filter has been re-scaled to have a fixed zero point of
30 mag.

We use the NOAO Data Lab (Fitzpatrick et al. 2016) service
to build our sample from the des_dr1.galaxies catalog and
selected a sample of Luminous Red Galaxies (LRGs) in order to
maximize the lensing cross-section (e.g. Turner et al. 1984). To
do so, we applied the following cuts in color and magnitude:

1.8 < g − i < 5,
0.6 < g − r < 3,
18 < r < 22.5,
g > 20,
i > 18.2,

(1)
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Fig. 1. Color-color diagram of our parent sample of ∼19 million galax-
ies. The plot displays where most galaxies in our selection are located
(see Eq. 1). The green shaded area shows the density of galaxies from
the parent LRG sample. The green solid lines shows the 1, 2, 3, and
6σ contours. The lens candidates and contaminants from this work are
shown in overlay: Sure Lens (purple stars), Maybe Lens (open red tri-
angles), and ring galaxies (open cyan circles). See Sect. 5.3 for details.

where the magnitude used is the mag_auto column reported in
the DES data release. Our color selection is summarized in Fig. 1
and is similar to the one adopted by Jacobs et al. (2019b). How-
ever, we slightly widened the g − i range and adopted a brighter
magnitude limit in the r-band. This selection allows us to bet-
ter account for the contamination of the lens light by the bluer
color of any putative lensed source, but also increases the prob-
ability that other types of galaxies, e.g. mergers, spirals, or ring
galaxies, can be selected in the sample. The result is a sample of
18 745 029 galaxies located in 10 388 coadded tiles from DES
DR1, which we refer to as the parent sample in this work. We
downloaded all the g, r, and i bands of these tiles, and generated
cutouts around the galaxies of 50 × 50 pixels, corresponding to
∼ 13 × 13′′. When the Point Spread Function (PSF) is required
for the simulation process and modeling, PSFEx (Bertin 2011) is
run on the relevant coadd tile, extracting a model of the PSF from
the FITS image, allowing us to retrieve a PSF at any position on
the tile.

3. Simulated galaxy-scale lenses

Since our search for galaxy-scale strong lenses will use a CNN,
we require a training set that mimics as closely as possible both
the lenses we want to find and also the common non-lensed sys-
tems. When simulating lenses, we adopt an approach where the
training set is data-driven, in the sense that both the images of the
lenses and the background sources are obtained from real data.
The outline of our procedure is as follows. First, we select a sam-
ple of high-redshift background galaxies with available high-
resolution imaging and accurately measured colors (Sect. 3.1).
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Then, we select a sample of LRGs that will act as deflectors and
match them to the background sources to create pairs of lens-
source suitable for simulations (Sect. 3.2). Finally, we lens the
source light using the lens equation – whose parameters (deflec-
tion angles) are defined by the lens – to produce a simulated
image of a lens system that combines images from both samples
(Sect. 3.3).

3.1. Background galaxies selection

We want realistic source galaxies, imaged at HST-resolution,
with color information and high S/N. Such a catalog of back-
ground sources has already been compiled by Cañameras et al.
(2020). The galaxies in this catalog were selected from the
Galaxy Zoo catalog (Willett et al. 2017), and are in the COS-
MOS2015 photometric catalog (Laigle et al. 2016). All the ob-
jects categorized as galaxies in these catalogs were picked, with
no previous selection in color or magnitude, as the depth is lim-
ited by the Galaxy Zoo selection, i.e. down to F814W ∼ 23.5.
Stars and artifacts were manually removed from the sample, but
also extended galaxies and galaxies with nearby companions
were removed, leaving a final sample of 52 696 objects. Spec-
troscopic redshifts were obtained from several follow-up surveys
(Lilly et al. 2007; Comparat et al. 2015; Silverman et al. 2015;
Le Fèvre et al. 2015; Tasca et al. 2017; Hasinger et al. 2018),
and photometric redshifts from Laigle et al. (2016) for the ones
lacking spectra.

To create high-resolution gri-images of our sources, we cre-
ated cutouts combining the morphological information from
HST/ACS F814W high-resolution images (Leauthaud et al.
2007; Scoville et al. 2007; Koekemoer et al. 2007) and the color
information from Hyper Suprime Cam (HSC) ultra-deep stack
images (Aihara et al. 2018). The detailed procedure to combine
the information from these two surveys is described in Cañam-
eras et al. (2020) who followed the steps described in Grif-
fith et al. (2012). In summary, HST/ACS F814W images were
aligned and rescaled as if they were observed in the HSC i-band.
These HSC images were then resampled to the resolution of the
HST/ACS F814W images and were multiplied by an illumina-
tion map obtained by dividing the HST/ACS F814W image by
the HSC i-band image. Each galaxy stamp has a size of 10×10′′
and a pixel size of 0.03′′, i.e. HST resolution and PSF but with
the HSC observed colors. The morphology of the source is the
same in each band. Since the HST PSF is much sharper than
that of the ground-based DES images we do not deconvolve our
stamps from the HST PSF, which would introduce noise and pos-
sible artefacts.

3.2. Lens-source association

Ideally, we would want spectroscopic redshift and velocity dis-
persions for each member of our LRG sample but the vast ma-
jority are lacking this information. To cope with this limitation,
we perform a prediction of those parameters using a simple K-
nearest-neighbors (KNN) algorithm, assuming that other galax-
ies with similar gri magnitudes will also have similar redshifts
and velocity dispersions. For a reference data set where colors,
redshifts and velocity dispersions are available, the KNN algo-
rithm provides a match between the gri magnitudes and the red-
shift and velocity dispersion of the galaxies. It then predicts the
redshift and velocity dispersions for new data based on the K-
objects with the most similar colors. We trained the algorithm
with 1 400 000 SDSS galaxies that match the color-magnitude

cuts of the parent sample and have redshift and velocity disper-
sion measurements available. We tested the model on another set
of 99 382 spectroscopically-confirmed SDSS galaxies, obtaining
the predictions for the parameters from the ten nearest neighbors
in the gri color space of the training set. We found that the rms
scatter in the predictions was σz = 0.06 for the redshift, and
σvel = 69 km s−1for the velocity dispersion. Finally, we used this
model to predict the most likely redshift and velocity dispersion
for each of our galaxies in the parent sample. The distributions
of the predicted redshifts and velocity dispersions are shown in
Fig. 2.

We now pair LRGs with source galaxies, requiring that our
simulations have a uniform distribution in Einstein radii span-
ning 1.2′′ < θE < 3.0′′. We choose a conservative lower limit
on θE because we noticed that, given the average seeing in the
gri bands of 1.12′′, 0.97′′, and 0.88′′respectively (Abbott et al.
2018), simulations with θE < 1.2 create lensing features that are
too close or blended with the lens galaxy, and can easily be mis-
taken as non-lenses, e.g. galaxies with extended disks. To evalu-
ate θE we use the redshift of the source galaxy, the redshift of the
lens, and the velocity dispersion of the lens. To match a source
to each LRG, we first take a random lens galaxy from the par-
ent sample and compute the Einstein radii for all source galax-
ies. We then form lens-source pairs that produce Einstein radii
falling only within our desired bounds and filling bins that pro-
duce an uniform distribution. In case no lens-source pairs satisfy
the θE conditions we artificially increase the velocity dispersion
of the lens galaxy up to 1.5 times its original value. If still no pair
satisfies our criteria we discard the LRG. Note that, as illustrated
in Fig. 2, this results in a high bias of the velocity dispersion dis-
tribution of the lenses. Although this procedure tends to produce
lenses with dark matter halos larger than the predicted from the
actual galaxy velocity dispersion, this ensures that the lensing
features are clearly noticeable to the CNN.

Finally, we enforce the final Einstein radii distribution to be
uniform. In other words, our training set is not representative of
the true distribution of Einstein radii on the sky, but gives equal
probability to all possible values, allowing for more discriminat-
ing power in our trained CNN.

3.3. Lensing simulation

We now combine these components to create realistic images
of lenses. We adopt the Singular Isothermal Ellipsoid (SIE) as
our lensing mass model, which is defined by the Einstein ra-
dius (θE), the Position Angle (PA) and axis ratio converted into
a complex ellipticity (e1, e2), and the central position (x1, x2).
As mentioned before, the Einstein radius follows a uniform dis-
tribution, while the other parameters are acquired individually
according to the light distribution of each lens galaxy. Our sim-
ulation toolbox uses the Python package Lenstronomy1 (Birrer
et al. 2015; Birrer & Amara 2018). The first step is to determine a
simple but realistic representation for the mass of the lensing ob-
ject. The Einstein radius is calculated using the lens and source
redshifts as well as the lens velocity dispersion of the lens de-
rived in Sec. 3.2. The ellipticity parameters and mass centroid
are estimated by fitting an elliptical Sérsic profile to the DES r-
band image of the LRG. We optimized the fitting procedure us-
ing 50 iterations of Particle Swarm Optimization (PSO; Kennedy
& Eberhart 1995), with 50 particles. This simple model provides
us with parameters for a mass distribution that broadly follows
the light distribution of the brightest object in the image. Note

1 https://github.com/sibirrer/lenstronomy
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Fig. 2. Top panel: redshift distributions of the lenses (red) and sources
(blue) in the simulated training set. Bottom panel: lens velocity disper-
sion distribution, predicted from the K-nearest neighbor algorithm (red)
and shifted to match the criteria of pairing lenses and sources (orange),
as described in Sec. 3.2. Note that the actual lens velocity dispersions
used in the simulations are shifted to higher values, so that lensing fea-
tures can be seen even at the DES resolution.

that limiting to 50 iterations results in ellipticity parameters that
are not perfect and that naturally mimic the effect of deviations
of the dark matter profile with respect to the light, without intro-
ducing extra complexity in the simulation pipeline. Even though
it could produce a few lenses with exotic properties, e.g. very
elliptical mass profiles or unusually large dark matter halos, it
was found to be adequate for our goal of building realistic simu-
lations in the vast majority of the cases.

The second step is to deflect the light rays from the source ac-
cording to the lensing mass model. To ensure we can distinguish
the final lensed source features against the lens galaxy light we
first increase the original source brightness by one magnitude.
To decide where in the source plane our background galaxy is lo-
cated, we select a random position inside a square that encloses
the caustic curves (curves that mark the location of the maxi-
mum magnification and delimit the region inside which a source
will be multiply-imaged). Then, we perform a ray-tracing sim-

Fig. 3. Top: examples of simulated lenses based on real DES images.
Sstamps are ordered by increasing Einstein radii (top-left to bottom-
right). The top row corresponds to θE=1.2-1.8′′, the middle row to
θE=1.8-2.4′′, and the bottom row to θE=2.4-3.0′′. Bottom: examples of
LRGs used either as non-lenses during the training of the CNNs (see
Sec. 4.1) or as objects onto which we inject a lensed source to build
simulated lens systems, as shown in the top panel. All the cutouts are
50 pixels on-a-side, corresponding to 13′′.

ulation to map the source image onto the image plane and we
further convolve the resulting lensed source with the relevant
stamp PSF. To convert this image into the DES characteristic
pixel resolution we down-sample the pixels from 0.03′′(HST) to
0.27′′(DES), and re-scale the flux to match the DES zero points
in each filter. As a last step, we add the convolved, resized, and
flux-normalized image of the lensed source to the original image
of the LRG lens. The latter has, by construction, the right DES
PSF and noise properties. Thus, our simulations preserve the
characteristics of the original image, such as background noise,
seeing, the presence of artifacts, and neighbouring galaxies or
stars in the field of view.

To build the multi-band gri simulations we use the same
mass model for all bands, with its parameters derived only from
the r-band, and lens the source image in each band according
to this model. We then add the lensed source in each band to
the corresponding image of the lens taken from the DES images
in the g, r and i bands. Our final set of simulated galaxy-scale
lenses consists of 100 000 systems with a uniformly distributed
Einstein radius in the range 1.2′′< θE < 3.0′′. Examples of these
stamps are shown in Fig. 3 as well non-lens objects.

4. Lens Finding using CNN

Artificial Neural Networks (ANNs; Rosenblatt 1957) consist of
an interconnected group of nodes which are typically organized
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into the so-called input, hidden, and output layers. In particular,
CNNs (LeCun et al. 1989) – which are especially good at solv-
ing image classification problems (He et al. 2015) – have hidden
layers that are of key importance, as they highlight the patterns in
the data using a series of convolutional, pooling, normalization
and fully connected layers. The level of abstraction in the pat-
tern features increases with the depth of the convolutional lay-
ers, helping classification of objects into different classes. Here,
we train a CNN to recognize strong lens systems against isolated
red galaxies.

4.1. CNN training

The training set, consisting of 50×50 pixel cutouts in each of
the gri-bands, is composed of two equal subsets: the first being
100 000 simulated lens cutouts from Sect. 3, and the other con-
taining LRGs that were not used in the simulation process. We
labeled our data using 1 for lenses and 0 for non-lenses. We kept
20% of each sample as a validation set. Before training the CNN
we pre-processed our data by normalizing each image brightness
to range between 0 and 1. We also augmented our sample by flip-
ping each image horizontally and vertically. Data augmentation
increases the probability that the network correctly classifies dif-
ferent orientations of the same image, but it does not transform
the CNN into a rotationally invariant one. To achieve this, a dif-
ferent architecture must be used that is not explored in this work.
The training process is performed using the Keras Deep Learn-
ing framework (Chollet et al. 2015).

Our CNN uses a model from the EfficientNet family (Tan
& Le 2020), which has been designed to achieve better per-
formance than other CNNs. The network of this model uses a
compound coefficient to scale the depth, width, and resolution,
which are key parameters for obtaining better accuracy and effi-
ciency. EfficientNet implementation in Keras counts with 8 dif-
ferent variants B0-B7, whose depth, width, and resolution pa-
rameters have been carefully selected and tested to produce good
results. The complexity and requirements of the models grow as
we move from B0 to B7. As running a more complex model also
implies the use of more computational resources, we decided to
use an EfficientNet-B0, whose architecture is described in (Tan
& Le 2020), and is sufficient for our classification task and the
characteristics of our data. After this CNN model we add a se-
quence of fully connected hidden layers. The network has a total
of 4 182 205 trainable parameters.

During training, the neural network learned how to grade im-
ages of galaxies and distinguish between lenses and non-lenses.
At each iteration the network analyzed subsets of 32 images.
When all iterations are completed through the entire training set,
it is counted as one epoch. Within each epoch the accuracy and
loss of the model is monitored using the validation set. We mini-
mize a binary cross-entropy loss function using a stochastic gra-
dient descent optimizer (Adam) with a learning rate of 0.0001,
and stop the training if either the loss value does not improve by
more than 0.0001 during 10 epochs, or if 100 epochs are reached.

4.2. Evaluation of the CNN performance

The network provides a score, S CNN, between 0 and 1, for each
processed image. This means that those images classified as
lenses obtain S CNN ∼ 1 while non-lenses obtain S CNN ∼ 0. The
training process was performed in a single GPU Nvidia GTX
1080 Ti in about 8 hours. It converged, within our criteria above,
after 57 epochs and achieved a 99.9 (99.8) percent accuracy in
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Fig. 4. Learning curves for the accuracy (top) and loss (bottom) for the
training (blue) and validation (red) sets, as a function of epoch. In the
case of loss we crop the y-axis, but the initial training set loss is 0.76.

the training (validation) sets and a loss of 0.01 (0.02). This near-
perfect accuracy achieved in the training set might be understood
as overfitting, thus, to evaluate this possibility we compared the
loss and accuracy learning curves for the training and valida-
tion sets (Fig. 4). For both loss and accuracy we see that after
10 epochs the training set reaches a stable point with minimal
changes, while the validation set follows the same trend with a
small gap showing less accuracy and more loss than the training
set, as is expected. The lack of overfitting signs, i.e. training loss
continues decreasing and/or the validation loss starts increasing
again after several epochs, leads us to the conclusion that our
model is able to learn and generalize this classification problem.

In order to evaluate the performance of the CNN we built
two test sets. The first one contains 40 000 cutouts with the
same characteristics as the training set, i.e. half simulated lenses
and half LRGs. The second one has 636 cutouts where half are
known lenses or lens candidates (visually selected to have no-
ticeable lensing features) and half are LRGs not seen by the CNN
during training. The known lenses are taken from the Master
Lens Database2 and the candidates from Jacobs et al. (2019b,a).
The purpose of this second test set is to have a more realistic
idea of the performance of the CNN in grading real strong lens
systems instead of simulations. The distribution of S CNN for both
test sets (Fig. 5) shows that objects labelled as lenses are concen-
trated around S CNN > 0.9 and non-lenses around S CNN < 0.1, as
expected.

To evaluate the number of lenses correctly identified, we use
a Receiver Operating Characteristic (ROC) curve, (Fig. 6) which
shows the True Positive Rate (TPR) against the False Positive
Rate (FPR), and are naturally both functions of the decision
threshold applied to the score. It illustrates the performance of
a binary classifier in discriminating between the two classes as
the decision threshold is varied. The first test set shows a very
good performance reaching an accuracy of 99.7% and a loss of
0.02. From the ROC curve we see that choosing S CNN = 0.5(0.9)
gives a TPR = 99.8% (99.4%) and a FPR = 0.21% (0.12%). On
the other hand, in the second test set the performance of the net-

2 http://admin.masterlens.org/index.php
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Fig. 5. CNN score (S CNN) distribution for the different datasets. The
top panel shows the S CNN distribution of both test sets: lens simula-
tions (dashed line) and real confirmed/candidate lenses (solid line). Both
datasets contain images labeled as lenses (purple lines) and real LRGs
labeled as non-lenses (red lines). The two test-sets are normalized to
their corresponding maximum value in the distribution. We shifted the
x-axis of the second test set distribution by 0.02 for clarity. The bottom
panel shows the S CNN distribution for the objects in the Parent sample
with scores above 0.5. We crop the x-axis for visualization as 99% of
the sample is below 0.5.

work decreases obtaining an accuracy of 89.6%, and a loss of
0.44, with TPR = 76.1% (65.7%) and FPR= 0.31% (>0.01%)
for S CNN = 0.5(0.9). Thus, whereas the accuracy in the sec-
ond test set is still high and the network did not grade any LRG
above 0.9, the loss and TPR are significantly worse than for the
dataset with similar characteristics to the training set. We think
that this decrease in the performance of the CNN is because it
was trained to recognize lens simulations which, despite being
created in a fully data-driven way, lack the diversity and unique-
ness of some strong lens systems, e.g., multiple deflectors, dis-
tortions produced by substructures or external sources, etc. For
example, most of the false negatives in this second test set are
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Fig. 6. Receiver Operating Characteristic (ROC) curve for the test
set containing simulations (test set 1 in red) and confirmed/candidates
lenses (test set 2 in blue); both datasets contain real LRGs as non-lens
examples. The FPR is plotted on a logarithmic scale to aid visualization.
The TPR and FPR for S CNN = 0.5 (green) and S CNN = 0.9 (black) are
also shown for each set.

compact lens systems or have lensing features that are too faint to
be properly recognized. Nevertheless, we found that our model is
able to generalize and accomplish the goal of successfully clas-
sifying a high percentage of strong lens systems, although we
are aware that in a realistic scenario we misclassify more objects
compared to the simulations, as Fig. 5 and Fig. 6 show.

When we applied the CNN to our parent sample, we found
that 98.6% of cutouts obtained S CNN ≤ 0.1, 133 322 obtained
S CNN ≥ 0.5 (Fig. 5, bottom panel), and 76 582 cutouts obtained
S CNN ≥ 0.9. The choice of S CNN ≥ 0.9 is driven both by the
ROC shown in Fig. 6, and also the resulting number of candi-
dates being reasonable for human inspection.

5. Visual inspection

The 76 582 cutouts scored above S CNN = 0.9 by the CNN were
visually inspected by 7 authors of this work (K.R., E.S., B.C.,
F.C., C.L., J.C., and G.V.).

5.1. Visualization tools and guidelines

We created two visualization tools3: one to quickly select lens
candidates from many objects displayed simultaneously in a mo-
saic configuration, and one to visually inspect each individual
object in more detail and classify them into specific categories.

The mosaic tool simultaneously displays 100 color cutouts,
each of which the user can mark for selection. The user can
choose a random seed for displaying the images in a random
fashion on the grid, to avoid all users seeing each object at the
same location in the grid. This has the objective of preventing
any possible bias from the position of the object on the mosaic
coupled with the different level of concentration when looking
at many mosaics in a row. This turned out to be very efficient,
as illustrated by the "heat-map" of user grid selections displayed

3 https://github.com/esavary/Visualisation-tool
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in Fig. 7, that are fairly flat, with a small bias towards selecting
more objects from the top, bottom and left row for this particular
example. With the mosaic tool, we classify into only two cate-
gories, i.e. objects that we select as displaying potential strong-
lensing features, and the rest that we discard from any following
step of the visual inspection.
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Fig. 7. Heat-map for the normalized mean number of times that each
cell in the Mosaic was clicked on, among all seven visual inspectors-
during Phase 1 of the visual inspection. The values in each cell were
obtained by calculating the mean of the total number of clicks per-cell
among the 7 users, we normalized these values by a factor of 24.78 that
represents the mean number of clicks in a cell for this specific classifi-
cation.

The second visualization tool allows us to inspect one by
one all lens candidates selected with the mosaic tool. In doing
so, we display the gri color stamps allowing the user to change
the display scale and color-map. With this tool, we classify each
object into one of four categories: 1- Sure Lens, 2- Maybe Lens,
3- Single Arc, and 4- Non Lens. In addition, we define 5 sub-
categories for objects classified as Non Lens: 1- ring, 2- spiral,
3- elliptical, 4- disk and 5- merger.

In order to achieve a more consistent classification among
users, we all agreed to follow the same guidelines for the four
main categories. “Sure Lens” is selected when the cutout shows
a clear strong lensing configuration without the help of a higher
resolution image. This means that several clear multiple im-
ages can be identified or that there are signs of a counter-image.
“Maybe Lens” is chosen if the object shows a promising lensing-
like configuration but a clear identification of multiple images is
not possible visually. This category also includes cases where
several objects or a single arc-like object lie on one side of the
central galaxy but no clear counter-image can be distinguished
on the other side. In this case, high-resolution imaging or spec-
troscopy will be required to decide whether it is a false positive
or a genuine lens. When there is a single image object or a sin-
gle arc far away from the central galaxy with signs of tangential
distortion, the cutout goes to the category “Single Arc”. Finally,
everything else that does not fit these categories is classified as
“Non Lens”.
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Fig. 8. Number of objects classified by a certain number of visual in-
spectors in phase 1 (top panel; to select lenses and ring galaxies), and
phase 2 (bottom panel; to select only the ring galaxies from phase 1).
Objects selected by 7 visual inspectors represent a 100% in agreement
among users, while the sum along the different bins give us the union,
i.e. the number of objects selected by at least one user. The exact num-
ber in each bin is shown at the top of each bar.

5.2. Visual selection procedure

We used both tools in 4 different phases to ensure that we have
a clean sample of not only potential lens candidates but also a
sub-sample of contaminants, such as ring galaxies, which are a
source of confusion for CNNs and a matter of debate among
visual inspectors. The steps carried out are described below:

1. Lens and ring galaxy selection. Using the mosaic tool we se-
lected from the 76 582 cutouts all objects that presented signs
of lensing features or looked like ring galaxies in one cate-
gory and we discarded the rest. An average of 2 478 cutouts
were selected per visual inspector, the normalized mean dis-
tribution of clicks per cell are shown in Fig 7. A total of
9 210 objects was selected by at least one user, while 89 of
them were selected by all the users unanimously (see Figure
8, top panel).

2. Ring galaxies selection. We used the mosaic tool to select
only ring galaxies from the 9 210 objects. A mean of 230
cutouts were selected per visual inspector, but only 71 were
classified by all seven, while a total of 1 445 were selected
by at least one (see Figure 8, bottom panel).

3. Lens systems classification. We visually inspected all the
9 210 objects selected in phase 1 using the one by one visu-
alization tool, looking specifically for lens systems. Here, we
showed again the classified ring galaxies from the previous
step as a consistency check (users should re-classify them
as rings, or at least not classify them as lenses). We classi-
fied each object into: Sure lens, Maybe lens, Single Arc and
Non-lens. Optionally, if a Non-lens was clearly identified by
the user as a spiral, merger or ring galaxy, the object was
sub-classified into the corresponding category. From this vi-
sual inspection we obtained a total of 275 Sure lens, 2 666
maybe lens, 2 602 Single Arc and 9 125 non lenses, classified
at least by one visual inspector. In a unanimous agreement
among the 7 visual inspectors we counted only 6 sure lenses,
1 maybe lens, 1 Single Arc and 4 716 non lenses. On the
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other hand, K.R., E.S., B.C., F.C., and J.C. sub-classified 359
ring galaxies, 22 mergers and 49 spirals with an agreement of
50% among the visual inspectors. In Table 1 we summarize
the individual classification by category and subcategory of
each user and in Fig. 9 we show examples of objects classi-
fied in each category and sub-category, except "Sure Lens".

4. Final group visual inspection. We implemented this last step
due to the lack of agreement among users for the main classi-
fication categories (Sure lens and Maybe lens), as the Fig. 10
shows. In this figure we can see for example that User 2 clas-
sified 1396 objects in both categories, being the one that clas-
sified more cutouts as candidates, but the overlap with other
users is not higher than 321 (with User 4 and User 5). This
step was performed by K.R., E.S., B.C., F.C., J.C, and G.V.
all together. Using the one by one visualization tool we re-
vised 2 690 objects selected as Sure or/and Maybe lens by at
least one visual inspector. The aim was to obtain a final selec-
tion of potential candidates that can be suitable for follow-up
high-resolution imaging and spectroscopic confirmation and
to avoid spending telescope time on false positives. We clas-
sified them into the two main categories as follows: 81 sure
lenses and 296 maybe lenses. This represents 0.5% of the
sample with S CNN ≥ 0.9 and 0.002% of the initial LRG se-
lection sample.

An extra visual inspection step was performed for the cutouts
classified by the CNN with scores between 0.8 < S CNN < 0.9
(hereafter referred to as bin80) by K.R., E.S and B.C. with the
purpose of quantifying how many objects we could have missed
by selecting only those with S CNN > 0.9. Similarly to the pre-
vious analysis we first used the mosaic visualization tool to in-
spect the 17 779 cutouts, selecting 190 potential lens candidates,
which were then inspected one by one. A set of 24 objects were
classified as lenses by at least one visual inspector and 115 as
maybe lenses. Finally, K.R., E.S., B.C, F.C, J.C, and G.V. con-
ducted a group visual inspection of the 190 firstly selected can-
didates to compile a final sample with 9 sure lenses and 19
maybe lenses that were then added to our candidate list. In to-
tal, only 0.2% of the data visually inspected in the bin80 was
considered as a lens candidate, while for all the objects with
S CNN ≥ 0.9 we selected 0.5% of the cutouts in the categories
Sure or Maybe Lens. Furthermore, taking into account that the
amount of cutouts classified in the bin80 is about 4 times smaller
than those with S CNN ≥ 0.9, we conclude that the number of ex-
pected candidates with 0.8 < S CNN < 0.9 was very low, show-
ing that we reached a point of diminishing returns which would
make the additional human visual inspection of images classified
with S CNN < 0.8 ineffective.

5.3. Final Catalogs

As a final product we present two main catalogs: one contain-
ing lens candidates and one containing ring galaxy candidates.
We assigned a Visual Inspection Score (VIS) to each candidate,
computed using the percentage of visual inspectors that classi-
fied it into a certain category. In the case of lens candidates, we
used the percentage of users that classified a system as either a
"Sure lens" and as "Maybe lens". We summed these percentages
to obtain a "strong lensing percentage". Then, we considered this
percentage as the final visual inspection score for lens systems
(VISL). In the case of ring galaxies we had candidates from step
2 (using the mosaic tool) and/or step 3 (the one by one method).
We average the percentage of users who classified each object as
a ring in each step, and present this as the final visual inspection

score for Rings (VISR). If the candidate was selected only by one
of the tools, the final score obtained is the one corresponding to
that classification (i.e. not the average).

The ultimate catalog of lens systems can be split in two cat-
egories, "Sure lens" (SL) with 90 systems (Fig. 15 to 20) with
prominent lensing features and counterpart images, and "Maybe
Lens" (ML) with 315 systems that show promising lensing fea-
tures but for which more evidence, such as higher resolution
imaging and spectra, is needed (see Fig. 9 for examples). From
the figures we can conclude that a large portion of our candidates
are group- and cluster-scale lenses. This is mostly because to be
able to identify them in ground-based data, most of them should
have an Einstein radius above 1′′.

The CNN and visual inspection scores of both the SL and
ML candidates is shown in Figure 11. Here, we clearly see that
most "Sure Lens" systems are clustered towards the upper right
corner, indicating that in general they obtained a high score from
both methods, while very few of them had either CNN scores
below 0.95 or visual inspection scores below 0.5. On the other
hand, a large majority of "Maybe Lens" objects did not receive a
high visual inspection score, including two that originally were
rejected by visual inspectors, but upgraded after the group visual
inspection. Several of the "Maybe Lens" objects still got very
high scores from the CNN, indicating that the visual inspection
step is needed to refine the final catalog.

In order to identify lens candidates that were not previously
published, we cross-matched our final catalog with available as-
tronomical databases such as Vizier (Ochsenbein et al. 2000),
Simbad (Wenger et al. 2000), the Master Lens database, and
other lens-finding papers including Wong et al. (2018); Jacobs
et al. (2019b,a); Petrillo et al. (2019b); Cañameras et al. (2020);
Jaelani et al. (2020); Huang et al. (2020, 2021). As a result, we
found that our catalog contains 219 previously identified candi-
dates (74 SL, 145 ML), including at least 5 spectroscopically-
confirmed systems, and 186 new candidates (16 SL, 170 ML).
The detailed information for these systems can be found in Ta-
ble 2, available at the CDS.

Our second catalog is composed of ring galaxy candidates
classified during two different steps of the visual inspection pro-
cess. We identified 1 445 ring galaxy candidates during the
second visual inspection step using the mosaic tool, while 985
galaxies were classified into this category by at least one visual
inspector using the one by one tool in the third step. A cross-
match between these two selections gave an intersection of 854
galaxies for a total of 1 576 ring galaxies selected by at least
one user using either of the two methods. The final catalog was
built by selecting the objects picked by at least 50% of the visual
inspectors using the mosaic or the one by one tool, resulting in
539 ring galaxy candidates. In Fig. 9 we present the 6 top-graded
candidates and in Table 3, available at the CDS, we detail the in-
formation for the full sample.

Finally a catalog using the classification "Single Arc" will be
created after a more detailed analysis of these objects, but this is
beyond the scope of the current work. We expect that this catalog
could serve as a probe for works like Birrer (2021).

5.4. Lens-source decomposition

In the ground-based observations of most strong lensing sys-
tems, the light from the source and lens galaxies are blended. In
order to better visualize our 90 lens candidates in the Sure Lens
catalog, we designed a prototypical automated procedure for de-
blending the light from lens and source galaxies based primarily
on their colors.
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Table 1. Classification and sub-classification details per visual inspector during Phase 3

Classification User 1 User 2 User 3 User 4 User 5 User 6 User 7
Sure Lens 116 41 79 146 120 19 90

Maybe Lens 612 1355 492 691 849 203 141
Single Arc 654 1421 540 300 812 473 26
Non Lens 7828 6393 8099 8073 7429 8515 8953

Sub-classification
Spiral 33 100 651 59 - 35 -
Ring 713 111 393 364 - 563 -

Merger 112 9 246 70 - 15 -
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Fig. 9. Example of objects classified as "Maybe Lens" or "Single Arc", and sub-classified as "Ring galaxy", "Spiral", or "Merger", "Sure Lens"
category is shown in Fig. 15. At the top of each image is the name of each system, while at the bottom we show the CNN score (SCNN) and visual
inspection score (VIS) obtained in the corresponding category.

Due to the complexity of the light profile of the lensed
sources we choose to represent them in a non-parametric way us-
ing undecimated isotropic wavelets (starlets, Starck et al. 2007),
as implemented in the Multi-band morpho-Spectral Component
Analysis Deblending Tool �MuSCADeT (Joseph et al. 2016).
Starlets are a family of functions that allow free-form modelling
of images at various spatial scales and present advantages for
modelling smooth galaxy profiles as discussed in the MuSCADeT
paper. Estimating both color and morphology of sources requires
a large number of parameters, larger than the number of pixels

in the starlet-decomposed image, making it a degenerate prob-
lem. To overcome this we use a combination of the �scarlet
(Melchior et al. 2018) and MuSCADeT algorithms. In both meth-
ods, multi-band images are modeled as sums of factorised com-
ponents, where each object i in an image has a 2-dimensional
surface brightness S i with as many pixels as there are in the im-
age bands, and a spectrum Ai with as many entries as there are
bands (see details in Melchior et al. 2018; Joseph et al. 2016),
such that:
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Table 2. Excerpt of the Maybe lens catalog available online.

Candidate RA Dec SCNN VISL
a References

DES J034130−513044 55.378331 -51.512411 1.00 1.00 [7] [10]
DES J034744−245431 56.935562 -24.908741 1.00 1.00 [9] [10]
DES J044408−655430 71.034707 -65.908598 1.00 1.00 This work
DES J010548−372542 16.450174 -37.428457 1.00 1.00 [10]
DES J015138−242628 27.909990 -24.441314 1.00 1.00 [18]
DES J024301−281642 40.754315 -28.278515 1.00 1.00 This work
DES J025052−552411 42.717809 -55.403251 1.00 1.00 [10]
DES J014358−470037 25.995764 -47.010469 1.00 1.00 This work
DES J001718+015818 4.325557 1.971828 1.00 1.00 [10]
DES J040349−352601 60.955780 -35.433763 0.99 1.00 This work
DES J225146−441220 342.943254 -44.205688 0.99 1.00 [7]
DES J002056−594016 5.236669 -59.671225 0.99 1.00 This work
DES J011758−052717 19.494766 -5.454924 0.98 1.00 [10] [13]
DES J015904−345009 29.767747 -34.835994 0.98 1.00 This work
DES J015009−030438 27.537943 -3.077297 0.98 1.00 [9] [10]

Notes. (a) Visual Inspection Score for Strong lens systems

References. [1] Cabanac et al. (2007), [2] Limousin et al. (2009), [3] More et al. (2012), [4] Maturi et al. (2014), [5] More et al. (2016), [6] Paraficz
et al. (2016), [7] Diehl et al. (2017), [8] Wong et al. (2018), [9] Jacobs et al. (2019b), [10] Jacobs et al. (2019a), [11] Petrillo et al. (2019b),
[12] Cañameras et al. (2020), [13] Huang et al. (2020), [14] Jaelani et al. (2020), [15] Lemon et al. (2020), [16] Li et al. (2020), [17] Nord et al.
(2020), [18] Huang et al. (2021)

Table 3. Excerpt of the ring galaxy candidates catalog available online.

Candidate RA Dec SCNN VISR
a

DES J013040−160110 22.666806 -16.019599 1.00 1.00
DES J012733−151618 21.888203 -15.271692 1.00 1.00
DES J010723−151315 16.847733 -15.221047 1.00 1.00
DES J004346−304929 10.942121 -30.824795 1.00 1.00
DES J033913−260914 54.805084 -26.154158 1.00 1.00
DES J045112−262143 72.804088 -26.362060 1.00 1.00
DES J012542−231630 21.427496 -23.275137 1.00 1.00
DES J003809−224742 9.537798 -22.795153 1.00 1.00
DES J012843−350926 22.183211 -35.157252 0.99 1.00
DES J041502−404547 63.762073 -40.763330 0.99 1.00
DES J010902−450634 17.258607 -45.109657 0.98 1.00
DES J012746−444820 21.942424 -44.805651 0.98 1.00
DES J004837−330630 12.156848 -33.108576 0.98 1.00
DES J024746−243851 41.941910 -24.647757 0.97 1.00
DES J021101−315721 32.757447 -31.956016 0.97 1.00

Notes. (a) Visual Inspection Score for Ring galaxy candidates.

Y =
∑

i<o

AiS i + N, (2)

where Y is a multi-band cube of images, o is the number of ob-
jects in the scene and N is the noise map.

The strategy implemented in MuSCADeT only allows for
crude estimates of source colors, based on principal compo-
nent analysis of pixel fluxes. Instead, the scarlet software is
able to estimate the colors of each source in the field provided
that the morphology is constrained to be a monotonic profile.
Monotonicity of galaxy profiles from the center out does not suit
the description of complex lensed sources, hence the need for
MuSCADeT to model strongly lensed galaxies in a non-parametric
way coupled with sparse regularization. In short, MuSCADeT is
used to model the 2-dimensional profile of galaxy images, in-
cluding a complex lensed source, while scarlet recovers the
colour of the objects.

Scarlet requires detection of the brightest pixel of each
source to model, which is a challenging and ill-defined problem
in the case of strongly lensed galaxies, where lensed features
are often multi-modal and strongly blended with the deflector’s
light. In order to circumvent this issue and make sure we capture
(lensed) sources with a bluer spectrum than the central LRGs,
we allow scarlet to model one source with Starlets, initialised
with a "blue" spectrum. This allows scarlet to capture blue
features with complex morphologies that might not have been
detected due to blending, while limiting degeneracies with other
sources. The blue, normalised spectra used for initialisation are
empirically set to [0.4, 0.4, 0.2], where each of the three values
reflect the relative contributions to g, r and i bands respectively.
Other non-lensed sources are detected using the �sep package
(Bertin & Arnouts 1996). We run sep on a filtered version of
the images. The filtering is done by computing the starlet de-
composition of an image and setting to zero the coefficients that
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Fig. 10. Correlation among different classifiers for the categories "Sure
Lens" and "Maybe Lens" after Phase 3. The values in the diagonal rep-
resent the total number of objects classified into both categories for each
user, while in the adjacent rows and columns the number of objects that
both users classified into the same category.

contribute to low frequencies before reconstructing the image.
This amounts to a high pass filtering that favours peak detec-
tion. The position of the brightest pixels of objects detected by
sep are fed as entries to scarlet. For each object detected with
sep, scarlet estimates a spectrum (flux in each band). From
these spectra obtained with scarlet, we select the bluest and
reddest spectra by finding those that maximize the scalar prod-
uct between the normalized spectra [0.667, 0.333, 0] (for blue)
and [0, 0.333, 0.667] (for red). This ensures that two compo-
nents with different colors are extracted, with the expectation
that the red component features the morphology of the LRG and
its neighbours, while the blue component extracts the morphol-
ogy of the lensed star-forming background galaxies.

The summary of the procedure for deblending strong gravi-
tational lens candidates is as follows:

– Detection of sources in the image using the source extraction
package, �sep (Bertin & Arnouts 1996) on a starlet-filtered
version of the image where only the first two levels of the
starlet decomposition are used. We set detection threshold
to 1 noise standard deviation of the noise upon running sep.
This may seem aggressive and potentially leading to a shred-
ding of the objects upon deblending, but the smoothness of
the images imposed by the PSF prevents such and effect. Fur-
thermore, shredding is not an issue as we only intend to cap-
ture the spectra of the reddest and bluest objects.

– Initialization of scarlet sources: one extended source per
detected object plus one starlet component with blue spectra.
Scarlet uses a target PSF of Gaussian profile with a standard
deviation of 0.5 pixel. This is the target resolution to which
all bands are uniformly deconvolved to.

– Run Scarlet for up to 200 iterations and extract spectra for
each source in the field of view by simply measuring the flux
in each source.
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– Identify the bluest and reddest sources through scalar prod-
uct with predefined red and blue spectra.

– Run MuSCADeT with the red and blue spectra for 200 iter-
ations. The threshold for starlet reconstruction is set to 5
sigma of the standard deviation of the noise. This means that
the model reconstructs features that are 5-sigma above noise
levels.

– Extract red and blue components by computing the differ-
ence between the multi-band images and the model for each
MuSCADeT component.

The details of the processing can be found in the notebook
that was used to generate these images: �Lens-Deblend.

The results for our best lens candidates are shown in Figs. 15-
20 and display for each system the red residuals, i.e. the data
from which the blue model has been subtracted, and the blue
residuals, i.e. the data from which the red model has been sub-
tracted. In the following we refer to these as Rr and Rb respec-
tively, defined as:

Rb, j∈{g,r,i} = Y j − Ar, jS r, j, (3)
Rr, j∈{g,r,i} = Y − Ab, jS b, j, (4)

Where Ar, jS r, j and Ab, jS b, j are the models for the red and blue
components in each band j.

The results in Figs. 15-20 show that the lens and source
light can be deblended efficiently without fitting any analytical
profile. The effectiveness of the method to deblend the profiles
comes mostly from the spectral decomposition of the objects and
on their representation on an array of pixels to which we ap-
ply sparse regularization with wavelets (starlets). This procedure
is well suited to automated use in a pipeline but assumes that
lensed sources are significantly bluer than the lens light. This
is the case for most of our lenses as by construction our lens
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finding method is based on a preselection of objects that favors
such a configuration. Still, we do have objects where the lens-
source color contrast deviates significantly from our assump-
tion. In this case the deblending works less efficiently and we
see leakage of flux between the lens and source. Another case
of leakage, leading to sub-optimal deblending can be observed
in systems where the image contains sources with colors differ-
ent from those of the lenses or sources. In this case, since the
whole image is modeled as 2 fields of light, the spectra of the
color components tends to offset towards an average spectrum
that better matches all the colors in the patch. This can be ob-
served in systems DES J013522-423223, DES J024911+004848
and DES J010826-262019, where the blue components contain
light from the lens galaxies and contain objects with colors dif-
ferent from that of the main deflector. These shortcomings are
motivation enough for further refinement of our deblending, in
particular with focus on using scarlet to better model individ-
ual, non-lensed sources, which is beyond the scope of this paper.
Finally it is important to emphasize that our light deblending
confirms our visual grading and does not discard any of our best
candidates.

6. Model

We developed an automated modeling pipeline in order to fur-
ther explore the highest rated lens candidates obtained from the
visual inspection. Our candidate sample is very heterogeneous,
containing galaxy, group and cluster scale systems. Thus, in or-
der to perform this automatic modeling we split the sample and
selected through visual inspection only the images in which there
appeared to be a single lens galaxy as a deflector. The 52 images
selected for modeling are labeled with an "M" in the mosaics of
Figs. 15 - 20.

This pipeline allows us to efficiently model large samples of
lens candidates acquired in current and future lens finding ef-
forts, and to explore the model parameter distributions in search
of meaningful trends.

6.1. Automated Modeling Pipeline

We modeled the images using single elliptical Sérsic profiles for
the light distributions of both the deflector and source. For the
mass distribution of the deflector, we use a Singular Isothermal
Ellipsoid profile (SIE) along with an additional external shear
component (γext). The simplicity of these profiles allows us to
model many lens candidates efficiently, while still fitting most
images well enough for us to observe large-scale trends in the
properties of the sample. The pipeline supports multi-band fit-
ting, so we fit the DES lens candidates using images in the g,
r, and i bands. We used a separate elliptical Sérsic profile for
each of the three photometric bands when fitting the deflector
and source light components, although we fixed the center po-
sitions between bands and we added priors to bound the semi-
minor and semi-major axes. The deflector mass profile is shared
across all bands.

The modeling pipeline was entirely written in Python and
makes use of the Lenstronomy lens modeling package (Birrer
et al. 2015; Birrer & Amara 2018). For parameter optimization
we used the Particle Swarm Optimization (PSO) (Kennedy &
Eberhart 1995), and to estimate the variances in the sample we
used a Markov Chain Monte Carlo (MCMC) sampler. For each
image, the pipeline first performed a chain of pre-sampling PSOs
before running the sampling with the MCMC. The MCMC is
performed using an affine-invariant MCMC ensemble sampler
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Fig. 12. Prior distributions for the effective radius (Reff) and the Sérsic
index (ns) used for constraining source light parameter values.

(Goodman & Weare 2010; Foreman-Mackey et al. 2013), which
is implemented using the emcee4 Python package.

In order to obtain realistic results on the parameters, we in-
troduced priors that punitively discourage extremes in some of
the model parameter values. While we can not assume anything
about the position angles of the Sérsic or SIE profiles, we use
Gaussian priors on the ratio between the semi-minor and semi-
major axes, q. The Gaussian prior was centered on a value of
q̄ = 0.8, in accordance with the distributions of 138 269 galax-
ies from the Galaxy And Mass Assembly (GAMA) database that
were modeled in Kelvin et al. (2012). This prior is applied first
to the r-band, and then to allow only small variations between
bands in the light components of the model, the Gaussian prior
of the other two bands is centered on the result obtained in the r-
band. We also used a similar Gaussian prior method to constrain
the deflector mass eccentricity and position angle to values close
to those of the deflector light. Lastly, we also applied a prior dis-
tribution for the effective (half-light) radius, Reff, and Sérsic in-
dex ns parameters of the source light. The source priors we used
came from the Sérsic parameter distributions of 56 062 galaxies
from the COSMOS survey. This data was used as a training set
in the development of the GalSim5 software. (Rowe et al. 2015).
We show these distributions in Fig. 12.

When modeling the lens candidates, it is common for image
cutouts to contain neighboring objects in the field of view that
are unrelated to the lens system. Light contamination from these
"satellites" can be mistaken as originating from the lensed source
if not masked properly. In the literature, this problem is han-
dled differently by various authors. Shajib et al. (2020) excluded
systems contaminating satellites in their sample, and modeled
only isolated lenses from the SLACS survey (Auger et al. 2009).
Nightingale et al. (2018) did not pre-select isolated lenses, but
instead masked all pixels outside of a circular region with a fixed
radius of 3.9′′.

In our case, we designed the pipeline to be flexible in han-
dling a large variety of lens system configurations and sizes. The
steps of our masking procedure are illustrated in Fig. 13, and be-
gins with applying filters in order to identify the brightest regions
in the image as well as their centroid locations. We first applied
a Laplacian of Gaussian (LoG) filter to detect areas with rapid
changes in flux. Next we took all remaining pixels with flux less
than a threshold of six times the rms background, and set them
to zero. This results in a final filtered image with only the areas
of the image containing the most light. We find the centroid lo-
cations of these areas by finding the local maxima, or peaks, in

4 https://github.com/dfm/emcee
5 https://github.com/GalSim-developers/GalSim
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Fig. 13. Illustration of the automated masking procedure using an ex-
ample DES image. In the upper row we show (from left to right) the
original image, the image after applying an LoG filter, and the result of
setting pixels with flux below the threshold to zero. In the bottom row
we show in the leftmost frame the original image annotated with the
remaining pixels from the filtering step (red ’+’ marks), along with the
detected peaks (black ’x’ marks). In the middle we show the estimated
size of the lens system with a black circle, as well as the detected bright
pixels that are considered contaminant light. These pixels are then used
for the mask, and we show the areas covered in the rightmost panel by
setting the corresponding pixels to a large constant value.

the final filtered image. For our masking algorithm we made use
of both these peak locations as well as the pixel values – these
are labeled with black and red markings in the bottom left panel
of Fig. 13, respectively. The peak locations are used first for de-
termining the center of the lens system, i.e. the position of the
deflector galaxy, and assume that this is the peak detected object
nearest to the image center. Because the deflector is assumed to
be an LRG, we use the reddest available band (i-band) for this
step. Next, we take the detected peaks in the bluest band (i.e.
the g-band) to estimate the lens system size. This is because the
source galaxies in lens systems are usually younger, more ac-
tive galaxies, meaning that the lensed source light will be more
prominent in the bluest image band. We assume that the sec-
ond closest detected peak to the center is the first of the lensed
images of the source. We also assume that the furthest lensed im-
age from the deflector is not more than 1.5′′further out than the
nearest one. Therefore, our estimated lens system radius is the
distance from the deflector to the closest lensed source object
plus 1.5′′. We show this estimation as a black circle enclosing
the lens system in the bottom middle panel of Fig. 13.

Using the estimated size of the lens system from the g-band
image and the location of the deflector obtained from the i-band,
we create a circular mask for each band that is centered on the
deflector location and only covers detected bright pixels outside
of the circular region with our determined size. The mask it-
self is a boolean array with the same shape as the original data,
and has the value of zero at any pixel that is to be ignored in
Lenstronomy computations and ones everywhere else. In the
bottom right panel we illustrate the coverage of the mask by set-
ting all of the "ignored" pixels of the original image to a large
constant value.

On average our pipeline took 4.3 hours to model a gri DES
system. This includes reading data, the masking process, and
performing the modeling sequence to find the best parameters
that describe the lens candidate.

6.2. Modeling Results

Using our automated pipeline, we modeled 52 of the systems
in the "Sure Lens" catalog that appeared to have only a single
galaxy as a deflector. We show in Figs. 21−33 a sequence of
images to visualize the modeling results in the r-band, includ-
ing the corresponding image, a reconstructed image, normalized
residuals, convergence map, and the reconstructed source light.
In Tab. ?? we present the best model parameters obtained for
each system, and we show the obtained distributions for the Ein-
stein Radii, the external shear, the effective radius and Sérsic in-
dex for the lens and source light, in the histograms in Fig. 14.

We obtained acceptable fits for 41 systems, which represent
79% of the sample, and we observed 11 failures in the fitting,
which we define as fits with mean reduced χ2 per pixel above
χ2 = 1.5. In the lens mass components, we observed Einstein
Radii, RE , distributed between ∼ 1′′ and ∼ 3.5′′. For the external
shear strengths we observed γext ≲ 0.47 for all lenses except for
one in which the fit failed. The distribution of the values have a
peak at 0.14 , these are typical shear values for strong lens sys-
tems (Keeton et al. 1997). For the effective radii, Reff and Sérsic
indices, ns, of the lens light profiles in the r-band, we observed
peaks at Reff ∼ 2′′ and ns ∼ 5, respectively. Because the CNN
searches selected lens systems from a catalogue of LRGs, we
expect to obtain deflector light parameters that are typical for
LRGs, and that is indeed what we recover. For the parameter
distributions of the source light, we observe the effective radii
and Sérsic indices peaking at Reff ∼ 0.2′′ and ns ∼ 1, respec-
tively. This is also the expected behavior for smaller, low-mass
galaxies that are usually dominating the lensed galaxy source
population.

When modeling these lenses, the primary source of fail-
ures lies in the masking procedure. For example, the estimated
size for the lens system is either slightly too small or too
large, resulting in parts of the lensed source light being masked,
or neighboring contaminants not being masked and instead
treated as lens features. This happened for four systems with
failed models (DES J060653−585843, DES J015216−583842,
DES J032216−523440, and DES J051047−263222) and for two
considered as having acceptable fits (DES J034713−453506,
DES J040822−532714). Since it is common for images to con-
tain companion objects very close to the lens systems, there is
a small margin for error in determining the lens system size.
For the system, DES J012042−514353, the contaminant is ac-
tually residing among the lensed images of the source, a sit-
uation which can not simply be handled with a more precise
measurement of the lens size. A method would be needed for
better untangling the contaminant light from the lens features.
Finally, there are two lens systems (DES J010553−053419,
DES J041809−545735) in which the contaminant light distribu-
tions were spread out enough that the mask failed to adequately
cover all this light. In general we need to improve our mask-
ing procedure to avoid these problems during an automatic fit-
ting of the lens. In the meantime, for all of these systems for
which the masking algorithm did not perform well, we recre-
ated masks by hand and performed the modeling a second time.
These results are shown in the rows directly below the origi-
nal results for the specific system, and both sets of results are
enclosed in a red dashed box in Figs. 21−33. Each time, we
see a significant improvement in residuals after using the better
mask. On the other hand, the rest of the models that are consid-
ered as failures (DES J010659−443201, DES J021159−595624,
DES J024803−061606, DES J202855−523118) do not show an
obvious reason for it, but are likely due to the compactness of
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Fig. 14. Model best-fit parameter distributions for the lens mass, lens
light, and source light profiles. Results for which reduced χ2 ≤ 1.5 are
shown in green and those with reduced χ2 > 1.5 are displayed in red.
Top left: Einstein radii in arcseconds. Top right: External shear strength,
γext. Middle left: Sérsic half-light radii of the lens light. Middle right:
Sérsic indices of the lens light. Bottom left: Sérsic half-light radii of the
source light. Bottom right: Sérsic indices of the source light.

the system, faint lens features, or the complexity in the shape
of the source. For these cases we need further investigation to
find a general solution to improve their models in the automatic
pipeline.

7. Conclusions

We used DES-DR1 to search for galaxy-scale strong lensing sys-
tems using a Convolutional Neural Network that carries out a bi-
nary classification of optical images in the g, r and i bands. In
doing so, we targeted massive galaxies, i.e. LRGs, which were
selected using a wide color-magnitude cut accounting for realis-
tic color contamination by the putative background star-forming
blue galaxies.

The design of our training set was data-driven in the sense
that real DES images of LRGs were used to mock the light distri-
bution of the lens plane. Real images of galaxies from the COS-
MOS HST were used to mock lensed sources. This helps ensure
diversity in colors and morphologies for the sources and lenses,
but also preserves the sky background characteristics, galaxies
and/or stars acting as companions, and any artifacts in the im-
ages.

We used these data-driven simulations as positive examples
to train a Convolutional Neural Network, while we used a por-
tion of the LRG sample as negative examples, despite some pre-

vious searches that included as negative examples other types
of galaxies. We concluded after analyzing the results from the
visual inspection that the lack of representation of other types
of galaxies was not important as they were not the most rele-
vant source of false positives. LRGs with bluish satellites near
the line-of-sight are our most important contaminants. The CNN
was trained and validated using a total of 200 000 images, half
of them being mocked lens systems labeled as 1, and the other
half being LRGs labeled as 0. Evaluating our model on a test
set built from images with the same characteristics of the train-
ing set gave us an accuracy of 99.7%. On the other hand a small
test set built with 300 lens candidates and the same proportion of
LRGs, gave us a more realistic evaluation reaching an accuracy
of 89.6%.

Applied to the 18 745 029 LRGs drawn from our color-
magnitude selection, we obtained 76 582 images with CNN
scores above or equal to 0.9, that several authors visually in-
spected. To do so, we created guidelines to separate them into
different categories: “Sure Lens”, “Maybe Lens”, “Single Arc”,
“Non Lens”, and subcategories: “Ring galaxy”, “Spiral galaxy”,
“Merger” for objects falling in the “Non Lens” category. To per-
form the classification we used a mosaic visualization tool dis-
playing 100 images at once, as well as a one-by-one visualization
tool that displayed the color composite image and each band for
one object at a time. We classified 0.5% of the 76 582 images as
lens candidates, 81 falling in the “Sure Lens” category and 296
in the “Maybe Lens” category. Additionally we inspected the
17 779 cutouts with a CNN score in the range 0.8 < S CNN < 0.9,
with only 0.2% of the images classified as lens candidates, i.e. 9
“Sure Lens” objects and 19 “Maybe Lens”. The visual inspection
of these low-score lenses allowed us to conclude that the reward
for inspecting images with scores below 0.9 was very poor com-
pared with the amount of work. We therefore did not consider
systems with even lower scores at all.

From our visual inspection we created two main catalogs: a
lens candidates catalog and a ring galaxy candidates catalog, the
latter being our main source of contaminants. The first catalog
contains a total of 405 lens candidate systems: 90 “Sure Lens”
and 315 “Maybe Lens”. Out of these, 186 were totally new sys-
tems and 219 were identified (but not necessarily confirmed) in
previous searches. We deblended the lens and source light for our
90 “Sure Lens” systems using the MuSCADeT software, which
does not involve any profile fitting, but uses the color contrast
between the lens and source together with sparse regularization.
This was successful in deblending most of the cases, where there
were clear differences in the colors of the lens and source. The
second catalog contains 539 ring galaxy candidates. We expect
to use this ring catalog in the future to improve the training of
machine learning algorithms in the recognition between lenses
and ring galaxies. Still, 539 objects is not much to train CNNs
and further work, e.g. with Generative Adversarial Networks, is
likely to be needed.

Finally we selected from the “Sure Lens” category the 52
systems that apparently had one well-defined galaxy as a deflec-
tor to test an automated modeling pipeline. The relatively sim-
ple SIE + γext and elliptical Sérsic profiles used in the model-
ing appear to be sufficient in describing these lens systems, and
additional complexity is not necessary for the purposes of this
automated modeling pipeline, at least with the image quality of
DES-DR1. We successfully modeled 41 of these systems, while
the other 11 failed mainly due to problems in the masking al-
gorithm, especially in the estimation of the lens system size. To
address these failures we plan improvements in a future version
of the pipeline including the use of the decomposed images from
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MuSCADeT to initialize the code and find the correct position and
size of the system.

The outcomes of this lens finding work in DES-DR1 include
a catalog with 405 meticulously-selected lens candidates that
can serve as a start for spectroscopic confirmation. In our se-
lection, we did our best to privilege quality of the candidates
over their quantity. The methods and tools studied, developed
and presented here have room for improvement, but serve as a
preview of what can soon be achieved for the future generation
of surveys, i.e. LSST, Roman telescope and the Euclid mission.
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Fig. 15. Images for the 90 lens candidates in the category Sure lens and their corresponding decomposition performed with MuSCADeT. In the first
and fourth columns we have the gri-composite image of the system, the name is on the top, while the CNN score and the visual inspection score
(VISL) are displayed at the bottom of each image. Additionally we marked with a "M" those that we modeled in sect. 6. Columns 2 and 5 show the
subtraction of the blue model from the respective data. Columns 3 and 6 show the subtraction of the red model from the respective data, isolating
the lensing features.
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Fig. 16. Continued from Fig. 15
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Fig. 17. Continued from Fig. 16
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Fig. 18. Continued from Fig. 17
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Fig. 19. Continued from Fig. 18
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Fig. 20. Continued from Fig. 19
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Fig. 21. Modeling results for the 52 lens candidates that appear to have only a single lens galaxy acting as a deflector. 1st column: Observed DES
image of the lens system in the r-band. 2nd column: Reconstructed image using best-fit model parameters. The black regions are "masked" pixels
that are ignored in the modeling as they contain light from contaminant objects in the image. The red curves are the critical lines of the lens model.
3rd column: Normalized residual map showing the difference between the best-fit model and the original data. 4th column: Convergence map of
the lens model. 5th column: Reconstructed source light profile (un-lensed). The caustic curves are shown in yellow.
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Fig. 22. continued from Figure 21
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Fig. 23. continued from Figure 22
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Fig. 24. continued from Figure 23
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Fig. 25. continued from Figure 24
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Fig. 26. continued from Figure 25
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Fig. 27. continued from Figure 26
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Fig. 28. continued from Figure 27
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Fig. 29. continued from Figure 28
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Fig. 30. continued from Figure 29
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Fig. 31. continued from Figure 30
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Fig. 32. continued from Figure 31
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Appendix A: Comparison with Jacobs et al.
(2019b,a)

We attempted to compare our results with (Jacobs et al. 2019b,a,
hereafter J19AB). These two searches use DES and obtained a
total of 1256 candidates falling in three categories defined by the
authors: “Definitely”, “Probably”, and “Possibly” a lens. Com-
paring with our work is more than challenging as our procedures
are very different in color and magnitude selections, cutout size,
simulated training sets, CNN architectures, and visual inspec-
tion. Being aware of these methodological differences, we com-
pared the results for the 693 candidates in J19AB that are in
our parent sample. Our CNN gave a score above 0.8 to 262 of
these objects. Among these, 39 are classified as "Definitely", 98
are "Probably", and 125 are "Possibly" a lens, according to the
J19AB classification. After our visual inspection we found that
50 are in our list of Sure lenses (splitting as 28 "Definitely", 21
"Probably", 1 "Possibly", in the J19AB classification) and 83 in
our maybe lens classification (8 "Definitely", 51 "Probably", 24
"Possibly"). This means that 129 candidates in the J19AB list
that were also selected by our CNN did not pass our final visual
inspection criteria. These objects are shown in Fig. A.1. Aside
from a few objects in the first 3 rows on the top of the figure,
we still find that no other object show sufficient evidence for
strong lensing. And indeed, J19AB graded them all as "Possi-
bly" lenses. The main difference between our work and J19AB
for these 129 objects is that we discard them while J19AB still
include them in their list, hence leading to a list of candidates
that is larger than ours.

In addition, 505 candidates from J19AB obtained a score be-
low 0.8 from our CNN and were not visually inspected. They
split into 6 being in the "Definitely" category of J19AB, 113 as
"Probably", and 386 as "Possibly". We display 56 examples of
these objects in Fig. A.2 and see that, if we were to visually in-
spect them now, very few objects would pass our criteria, for
the following reasons: 1- the bluish features are too close to the
central galaxy that could be mistaken as a star forming galaxy,
or 2- there is no evidence for lensing at all, because the lensing
features are outside our stamp size or because of too low signal-
to-noise. Determining more specific reasons why our CNN dis-
carded these candidates would require a more detailed study that
remains well beyond the scope of our work.
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Fig. A.1. Images for the 129 candidates in J19AB that we discarded after visual inspection. Our CNN score is indicated below each object as well
as the category allocated by J19AB, in which A stands for “Definitely”, B for “Probably”, and C for “Possibly” a lens.
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Fig. A.2. Example of cutouts of 56 candidates in J19AB that our CNN graded below 0.8. Our CNN score is indicated below each object as well as
the category allocated by J19AB, in which A stands for “Definitely”, B for “Probably”, and C for “Possibly” a lens.
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Chapter 8 First application of an end-to-end lens finding pipeline in CFIS and DES

8.2 Discussion

In Rojas et al. (2021) , we compared our results with the work of Jacobs et al. (2019a) and

Jacobs et al. (n.d.) . From the 1256 candidates of Jacobs et al. (2019a) and Jacobs et al. (n.d.)

693 were in our pre-selection. Among these, 431 were not selected by our CNN. We visually

inspected the images rejected by our networks. Most images would not meet our criteria

to be considered secure lenses or maybe lenses. For some candidates, we found no lensing

features in our images. This may happen because our cutout size is smaller; therefore, some

of the lensing features detected in Jacobs et al. (2019a) and Jacobs et al. (n.d.) may be located

outside our images. A large part of the 431 objects not selected by our CNN contains blue

features blended in the light of the deflector. This type of object is difficult to differentiate

from a star-forming galaxy. We built our set of positive examples to avoid the presence of

such objects. In addition to the lower limit on Einstein radii in the simulations, the boost

of the source’s magnitude allows us to unveil the shape of lensing features. Since CNN was

trained mainly with simulations with blatant lensing features, it tends to give lower scores to

the star-forming galaxy-like objects. Notably, a few of the candidates from Jacobs et al. (2019a)

and Jacobs et al. (n.d.) missed by our CNN are doubly imaged sources. This lens type is rare

in our training set due to our lens mass model and our method of positioning the source.

Including more doubles in our training set may improve this issue in future search iterations.

On the 262 candidates of Jacobs et al. (2019a) and Jacobs et al. (n.d.) selected by our CNN,

129 were rejected during our visual inspection. This illustrates the need to define common

grading guidelines that can be used in the future version of the Master Lens Database.

In Savary et al. (2021) , we used a committee of three CNNs trained with subsets of the training

set. Each subset contains a different proportion of positive examples. The ratio is drawn

randomly in the range of 20 to 50 percent. This aims to mitigate the tendency of the network to

learn the fraction of positive examples seen in the training set. Compared with a committee of

three occurrences of Efficientnet trained with the same training set, this drastically reduced the

number of images that obtained a score above 0.5 (45 823 in comparison with 9 460 candidates).

To estimate the impact of the training with different fractions of lenses on the false positive

rate, we evaluated 8 200 CFIS images of spiral galaxies taken from the Galaxy Zoo catalog

(Willett et al., 2017) with the two versions of the committee. The committee trained with the

three same training sets classified 57 spirals as lenses (score above 0.5), whereas the committee

trained with a different proportion classified only eight spirals as lenses. Therefore, we think

this approach can reduce the false positive rate. Nevertheless, a visual inspection of the 45 823

in the same conditions as in Savary et al. (2021) would be necessary to estimate precisely

the effect of the different training sets on the false positive rate and the completeness of our

sample. A visual inspection of 45 823 has a high cost in terms of human resources. For this

reason, it has not been done for the moment.

Following what has been observed in Gentile et al. (2021) , we found that the CNN trained

with color images could detect more candidates with a small image separation. However, due

to our strict visual inspection guidelines, there were not taken into account in our final sample
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of lenses. The DES candidates’ sample contained significantly more galaxies with point-like

companions than the CFIS sample. We think the network with color images tends to select

some of these images because of the color difference between the companions and the central

galaxy. However, to confirm this, a visual inspection of the candidates found with a CNN

trained on one-band DES images has to be done in the future. The false positive sample of

CFIS contained mainly objects mimicking the shape of lensing features and images with CCD

artifacts. Methods to exclude the images with CCD artifacts must be implemented before the

next iteration of the CFIS lens search.

We presented in this chapter the two first applications of our lens finding pipeline to CFIS

and DES LRG images. It allowed us to find 405 lens candidates, of which 186 are new in DES

and 133 lens candidates in CFIS, among which 104 were not known. In addition to the lens

candidates, these two searches provided catalogs of the ring, spiral, and merger galaxies found

during the visual inspection. These catalogs can be used to retrain the CNNs against the

common false positives in the subsequent iterations of the searches in CFIS and DES.

These two searches demonstrated the efficiency of our pipeline to find, deblend, and model

lenses in future large-scale surveys. Some improvements could, however, be necessary for the

following lens searches. In particular, we must sustain efforts to decrease the false positive

rate. It can be done, for example, by retraining the CNNs with the false positives found during

the first iterations of the search or by combining the decision of different algorithms at the

classification step.
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9 Conclusion

Strong gravitational lensing is an incredible tool for a large number of applications. The main

goal of this thesis is to present an adaptable pipeline for the automated detection of galaxy-

galaxy gravitational lenses in ongoing and future large-scale imaging surveys. As we have

seen, several significant challenges have to be overcome to build an automated lens-finding

pipeline. In particular, this thesis addresses lengthy visual inspection processes, deblending

issues, and realistic simulation of lenses.

The occurrence rate of strongly lensed systems is low. As a consequence, the set of known

lenses is still limited. Machine learning algorithms, particularly CNNs, require large datasets

to be trained. Hence, simulations of lenses must be used to train such algorithms. Mock

lenses must always be used with care as CNNs can learn simulation artifacts. In this thesis, we

presented a tool to simulate realistic lenses. The main difference with previous simulation

software is that only the lensing effect is simulated with this tool since the source and deflector

images are drawn from real images. Therefore, we limit the risk of creating synthetic features

in our simulations.

The low occurrence rate of lenses has another critical consequence. Because of the base rate

fallacy effect, reaching a low false positive rate on real data is extremely difficult. Follow-up

observations of lens candidates require expensive telescope time. Even if we can reduce

the number of false positives by improving the training methods, a visual inspection of the

candidates will still be necessary for the upcoming lens searches. Therefore, we developed

tools to inspect large sets of astronomical images. These tools enable us to speed up the

process and limit the biases due to the use of different visualization software by different

users. In the context of the visual inspection of CFIS and DES lens candidates, I contributed to

drafting general guidelines that can be used to grade candidates in the future lens database.

The light of the lensed source is often blended with the light of the deflector. Therefore, we

included a deblending module in our lens finding pipeline. On this occasion, I developed

a new method to deblend lenses based on neural networks. This method does not rely on

analytical light profiles and thus can be adapted to all kinds of deflectors and sources. It
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deblended successfully the 32 SL candidates we found in the initial 2 500 square degrees of

CFIS. In addition to highlighting the faint lensing structures and enabling the measurement of

photometric redshifts, we can use it to initialize the lens model parameters. In the future, we

may extend the applications of the auto-encoder deblending. Since it is very flexible and easy

to train, it can also potentially be adapted to provide help to detect the lenses. For example,

the auto-encoder-based deblending may be used as a pre-processing step before classification

to highlight the potential lensing features, similar to the PCA-based deblending algorithm.

Since it is a neural network-based method, a modified version could eventually even deblend

and classify the images simultaneously.

The pipeline was applied to the search of galaxies lensed by LRGs in 2 500 deg2 of CFIS and

the first data release of DES. It allowed us to find 133 and 405 high-quality lens candidates in

CFIS and DES, respectively. These candidates will be confirmed with follow-up spectroscopic

observations. When confirmed, these lenses can be used, for example, to study the distribution

of dark matter in the deflector. The CFIS candidates are monitored to detect the appearance

of a lensed SNIa, which could allow us to measure the Hubble constant. In addition to the lens

candidates, I contributed to building catalogs of the most common false positives that can be

used to retrain the lens-finding algorithms. These sets of false positives can also serve to train

GANs to produce larger sets of non-lens examples. The next step is to apply the pipeline to the

entire CFIS survey.

I demonstrated in this thesis the ability of our automated pipeline to find, deblend, and model

lenses in future large-scale surveys. In view of future large-scale surveys, we must sustain

efforts to decrease the false positive rate to reduce the importance of visual inspection. It

can be done, for example, by retraining the CNNs on the false positives found in the previous

searches and using the information obtained with the deblending and modeling to refine the

classification score obtained with the CNNs. Combining the strengths of the various methods

to detect lenses may also improve the performance of the classification.
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A Galaxy Image Simulation Using Pro-
gressive GANs

I present here an additional publication I contributed to during my thesis. It introduces a new

data-driven method to generate mock spiral galaxy images. The method is based on GANs

that trained with progressively larger images in order to improve the quality of the generated

images. This method can produce large samples of self-similar images and could therefore

be used in the future to produce non-lens examples for the training sets of CNNs-based

lens finders. The content of this publication was presented in the form of a poster at the

Astronomical Data Analysis Software and Systems (ADASS) conference 2019.
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Abstract. In this work, we provide an efficient and realistic data-driven approach
to simulate astronomical images using deep generative models from machine learning.
Our solution is based on a variant of the generative adversarial network (GAN) with
progressive training methodology and Wasserstein cost function. The proposed solu-
tion generates naturalistic images of galaxies that show complex structures and high di-
versity, which suggests that data-driven simulations using machine learning can replace
many of the expensive model-driven methods used in astronomical data processing.

1. Introduction

Investigating the reasons behind the accelerated expansion of the universe is one of the
main challenges in astronomy and modern cosmology. Future space missions, such as
Euclid, will provide images of billions of galaxies in order to investigate the so-called
dark matter and probe the geometry of the universe through the gravitational lensing
effect. Due to the very large-scale of data provided by such missions, automated algo-
rithms are needed for measurement and detection purposes. The training and calibration
of such algorithms require simulated, or synthetic, images of galaxies that mimic the
real observations and exhibit real morphologies.

In the case of weak lensing for instance, the accuracy of the shape measurement
algorithms is very sensitive to any statistical bias induced by the Point Spread Function
(PSF). Therefore, simulated images of galaxies with known ground-truth lensing are
required to calibrate and detect any potential bias in the ensemble averages. Moreover,
the training of automated strong lensing detector, such as deep learning architectures
(Metcalf et al. 2019), requires simulated images in order to mitigate class imbalance
and avoid false-positive type of error in the current datasets.

2. Model-Driven v.s. Data-Driven Galaxy Image Simulation

The current approaches to simulate images of galaxies in the cosmology literature are
mostly model-driven, or rule-based, approaches. These might involve the fitting of
parametric analytic profiles (size, ellipticity, brightness, etc.) to the observed galax-
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ies. This approach is usually unable to reproduce all the complex morphologies. An
alternative, more expensive and often infeasible, model-driven approach is to start with
high-quality galaxy images as the input of the simulation pipeline followed by a model
that reproduces all the data acquisition effects (Rowe et al. 2015).

Recently, several data-driven approaches have been investigated in order to gener-
ate synthetic images of galaxies via generative models used in machine learning (Regier
et al. 2015; Ravanbakhsh et al. 2017), mainly variational autoencoder (VAE) (Kingma
& Welling 2013) and generative adversarial network (GAN) (Goodfellow et al. 2014).
Such approaches have shown some promising preliminary results in generating galaxy
images. Following this data-driven approach, and motivated by the success and re-
cent impressive improvements in GANs, we have further investigated the use of such
architecture in generating galaxy images.

3. Generative Adversarial Network

Unlike most of the generative models used in machine learning, GAN represents a novel
approach that learns how to sample from the data distribution without explicitly track-
ing the parameters of the probability distribution function via traditional maximum like-
lihood estimation. The GAN architecture consists of two neural networks that compete
against each other in a two-player minimax game. The first network is the “generator”
that is responsible of generating the data, while the second network is the “discrimi-
nator” that represents the adversarial loss function. Despite its elegant mathematical
formulation and the theoretical guarantees provided by a non-parametric analysis, the
initial GAN architecture suffered from some practical implementation problems.

After the invention of GAN in 2014, a plethora of work have been done to im-
prove the training (in terms of convergence and stability) and to obtain more realistic
generated data (in terms of quality and diversity). Most of this effort was made to-
wards improving the cost function and stabilizing the training methodology, which has
recently lead to unprecedented results in generating synthetic images. Based on these
recent advances, we have investigated variants of GAN that use the Wasserstein dis-
tance (Gulrajani et al. 2017) and the progressive training (Karras et al. 2018) on galaxy
images provided by the Galaxy-Zoo dataset (Willett et al. 2013).

4. Proposed Architecture

Following (Karras et al. 2018), we employ blocks of convolutional layers to progres-
sively build the generator and the discriminator as mirror images of each other (see
Table 1). Intuitively speaking, training a small network to generate low-resolution im-
ages that capture the large-scale structure of the galaxies is an easier task than directly
training a full network to generate high-resolution images with fine details. Hence, we
start by training the network to generate low-resolution images (4 × 4), we then pro-
gressively increase the resolution, in 4 steps until 64 × 64 resolution, by smoothly and
synchronously adding blocks of convolutional layers to both the generator and discrim-
inator. For the generator, each progress block is preceded by an up-sampling operation
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while a down-sampling operation follows each progress block in the discriminator.1
Such methodology leads to a more stable and faster training.

Table 1. Blocks of convolutional layers added progressively for both the generator
and the discriminator.

Generator Output Dimensions
Latent Space

Input latent vector 1 × 1 × 256
Conv 4 × 4 4 × 4 × 256
Conv 3 × 3 4 × 4 × 256
1st Progress
Conv 3 × 3 8 × 8 × 128
Conv 3 × 3 8 × 8 × 128
2nd Progress
Conv 3 × 3 16 × 16 × 64
Conv 3 × 3 16 × 16 × 64
3rd Progress
Conv 3 × 3 32 × 32 × 32
Conv 3 × 3 32 × 32 × 32
4th Progress
Conv 3 × 3 64 × 64 × 16
Conv 3 × 3 64 × 64 × 16

RGB Extraction
Conv 1 × 1 64 × 64 × 3

Discriminator Output Dimensions
RGB Reading
Input image 64 × 64 × 3
Conv 1 × 1 64 × 64 × 16
4th Progress
Conv 3 × 3 64 × 64 × 16
Conv 3 × 3 64 × 64 × 32
3rd Progress
Conv 3 × 3 32 × 32 × 32
Conv 3 × 3 32 × 32 × 64
2nd Progress
Conv 3 × 3 16 × 16 × 64
Conv 3 × 3 16 × 16 × 128
1st Progress
Conv 3 × 3 8 × 8 × 128
Conv 3 × 3 8 × 8 × 256

Cost Calculation
Conv 3 × 3 4 × 4 × 256
Conv 4 × 4 1 × 1 × 256
Conv 1 × 1 1 × 1 × 1

Moreover, the Wasserstein distance with gradient penalty (Gulrajani et al. 2017) is
used as a cost function to mitigate the gradient problems. Furthermore, various normal-
ization techniques are used to avoid the unhealthy competition between the generator
and discriminator. In particular, we use “weight scaling” and “pixelwise feature nor-
malization” as done in (He et al. 2015; Krizhevsky et al. 2012). In addition to that, the
“mini-batch standard deviation” (Karras et al. 2018) is computed and incorporated in
the cost function in order to favor diversity in the synthetic data.

4.1. Results

Our architecture is implemented in Python using PyTorch library and trained on a GPU
system. The dataset is made of 6157 images of galaxies in RGB format. The images
were centered at 64 × 64 resolution, normalized, and augmented using standard data
augmentation techniques. A batch size 16 was used with 8 data loading workers.

The training was performed over a total of 100 epochs and lasted less than 24
hours. During the first 40 epochs of training, the generator and discriminator were
competing to reach the minimax equilibrium and the performance was fluctuating (in
terms of their loss functions). The performance stabilized after that while the image
quality continued to improve. After training, the discriminator, which plays the role
of an adaptive loss function, is detached from the architecture and dismissed. The
generator is then able to generate galaxy images starting from a latent space made of
256 standard Gaussian i.i.d. random variables.

By changing the latent vector, we were able to obtain very diverse and high quality
images of galaxies showing complex structures and morphologies (e.g. arm and disk

1One can also use fractionally-strided and strided convolution respectively.
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Figure 1. Left: Progressive increase of resolution in four steps. Right: Diverse set
of simulated images obtained by the proposed GAN architecture.

features). Furthermore, the simulated images exhibited realistic effects (e.g. companion
stars) as shown in Figure 1.

5. Future Work

We are planning to investigate the latent space of our GAN model in order to gain in-
sight on the effect of each latent variable on the galaxies morphology. This will provide
us with more control on the generation task and will permit to interpolate between the
variables and perform latent space arithmetics. Furthermore, we are planning to incor-
porate the labels of the galaxies, when available, in a supervised or semi-supervised
approach using variants of "Conditional GAN" architectures (Odena et al. 2017) in or-
der to improve the quality of the generated images and guide the generator.
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