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Abstract— Fixed-wing drones must navigate to the desired
location accurately for maneuvers such as picking up objects
and perching. However, current GNSS receivers limit their
navigation accuracy to several meters in outdoor environments,
making such maneuvers impossible. RTK GNSS can improve
flight accuracy, but it requires ground stations at the target
location and additional communication modules on the drone.
Here, we describe a fixed-wing platform with onboard compu-
tation that uses positional information from a GNSS receiver
and vision from an onboard camera. The drone relies on a
GNSS signal for flying towards a point of interest and switches
to vision-based information to accurately reach the target. We
conducted outdoor experiments to compare the flight accuracy
of three navigation methods: GNSS, RTK GNSS, and the
proposed GNSS-vision method. We also systematically assessed
the robustness of vision-based control to compensate for GNSS
errors and quantify the accuracy of the proposed method. Our
results show that the accuracy of the proposed GNSS-vision
system is on par with RTK GNSS. GNSS-vision reduces the
average error of GNSS by over an order of magnitude, from
3.033 m to 0.283 m, and reduces the variance across repeated
flights from 2.095 m to 0.309 m. We open-source the software-
hardware architecture used in this paper to enable the research
community to build on these results and expand the capabilities
of fixed-wing drones.

I. INTRODUCTION

Fixed-wing drones are gaining increasing attention for
their larger flight endurance compared with rotary-wing
drones of similar mass. However, perching on a precise
spot [1], [2], [3], [4] or picking up an object in flight [5]
requires accurate localization with respect to the target. In
laboratory conditions, highly accurate localization is often
accomplished with an optical motion capture system [6].
However, when flying in outdoor environments such systems
are no longer available and accurate localization becomes
challenging.

GNSS receivers are routinely used for long-range flight,
but they result in a position error of approximately 2 m
during flight [7]. Therefore, GNSS is well suited to approach
a target region from far away, but is not sufficiently precise
for the accurate flight leading to perching on a spot, picking
up an object, or passing through a narrow gap. Real-time
Kinematic Global Navigation Satellite Systems (RTK GNSS)
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Fig. 1. Fixed-wing drone accurately flying towards a yellow balloon using
a combination of GNSS and vision.

or the beacon-based ultra-wideband positioning systems can
support precise flight outdoors, but require the positioning
of additional communication hardware on the ground. Fur-
thermore, all control methods based on absolute localization
systems assume that the target area is static.

Here, we describe a fixed-wing platform with embedded
sensing and computation that combines GNSS information
with visual information from an onboard camera for accurate
relative localization with respect to a target. The control
method relies on a GNSS signal during long-range flight
and uses vision-based navigation for accurate flight towards
the target spot.

Accurate vision-based flight has received some attention
on rotary-wing drones [8], [9], [10], [11], [12]. Despite the
increased range of fixed-wing over rotary-wing vehicles [6],
research on accurate vision-based flight for fixed-wing vehi-
cles has been limited [13], [14], [15]. This can be explained
by the increased complexity of fixed-wing aerodynamics,
the difficulty of creating a controlled environment outdoors,
and the comparatively higher speed of fixed-wing drones
to prevent stalling. In addition, there is a lack of readily
available hardware and software platforms to study vision-
based flight of winged drones, resulting in different custom
setups. While a few works investigated accurate vision-
based flight with fixed-wing drones [13], [14], [15], none
of them report statistically representative accuracy values.
Furthermore, reproducing those results is difficult because
the hardware setup and software is not publicly available.

In this article, we address these gaps by (1) describing
a fixed-wing research platform that allows the development
and testing of vision-based flight for fixed-wing drones, (2)
developing a controller that brings together GNSS and vision
to achieve accurate and reliable flight to a target, and (3)
characterizing the accuracy of the proposed method against
GNSS and RTK GNSS.
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A. Related Work

A method for achieving accurate flight towards a target
consists of adding sensory equipment at the target location.
For example, an optical motion capture system has been
used to achieve perching with a flat plate vehicle on a
powerline [1], [2]. Similarly, perching on an office chair with
a dihedral-wing drone was successfully achieved [3], [4].
Ground cameras have been used outdoors to localize drones
and land them on a runway [16], [17], [18], [19].

Onboard cameras have mostly found application on rotary-
wing vehicles. Quadrotors relied on a front-facing camera
to estimate the position of a window or racing gate to fly
through it [9], [10], [20]. In the context of the Mohamed
Bin Zayed International Robotics Challenge (MBZIRC),
quadrotors achieved successful landing on a slowly moving
vehicle by detecting a tag [12], [21], [22], [23]. In all of
these applications, the vehicles either fly significantly slower
than it is possible with most fixed-wing drones or require
temporary hovering.

In fixed-wing vehicles, onboard cameras were mostly used
to land on a runway where edge-detection algorithms were
used to detect and align the drone with the runway [24], [25],
[26] or horizon detection was employed to land in an open
field [27]. None of these works quantify how accurately the
drone landed on a target line or position. Another approach
for accurate localization with onboard sensors on a fixed-
wing drone consists of using a 2D LIDAR sensor [28].
However, this method requires prior mapping of the area
and was only demonstrated for indoor flight. Scaling such an
approach to large outdoor areas requires extensive resources.

Only a few papers report data on vision-based flight with
a fixed-wing drone to a target position or object. A large
red airbag was used as a landmark and soft landing spot to
fly into; color filtering and shape based descriptors called
Hu’s moments were used to identify the red air bag [29].
Image-based visual servo control then guided the drone to the
bag [14], [30]. The control algorithm, however, is platform
dependent and is not guaranteed to be stable. Carrying out
tests on our platform resulted in unstable behavior, which
we describe in section M Furthermore, the authors only state
that the target bag had a radius of 2 m but did not specify
an achieved accuracy. Similarly, a red inflatable triangle and
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Figure depicting the key components and their position on the 1.55 m wingspan fixed-wing drone.

moving red truck were landed onto by estimating their posi-
tion in GNSS coordinates and flying towards it [13], [31]. A
success rate of 12 out of 15 was reported for landing on the
2 m? truck platform. Finally, an autonomous landing system
was demonstrated by detecting and flying into a red net [15].
The approach was reported to achieve a flight accuracy of
2.21 m which was based on GNSS measurements with an
accuracy of 2.5 m. Furthermore, in these lastly mentioned
works [13], [15], [31], the authors used detections of the net
to guide the drone in a global frame, as a result, the method
relies on GNSS data even during the final phase.

In summary, the accuracy of vision-based flight for fixed-
wing vehicles reported in the literature is in the order of
2 m, although statistically representative accuracy values are
missing. The lack of an easily available platform makes
the results difficult to reproduce and leverage for additional
research.

II. FIXED-WING RESEARCH PLATFORM

We start by describing a simple fixed-wing drone plat-
form to carry out vision-based flight experiments. The
platform is composed of a lightweight off-the-shelf drone
with fixed wings and is equipped with sensors and pro-
cessing power for real-time computation during autonomous
flight. Here, we employ the open-source hardware and
software autopilot PX4 [32], which is supported by an
active community that provides regular bug fixes and
updates. Along with this article, we make how-to in-
structions, a list of readily available hardware parts, 3d
printed parts, and our software code publicly available at
github.com/lis-epfl/lis-vision-flight. We hope
that this will enable additional research on intelligent, vision-
based flight of winged drones. In the following, we briefly
describe the hardware and software stack in more detail.

A. Hardware Components

The drone body consists of an H-King Bixler 3 that is
widely used in the RC-hobby drone community. With its
1.55 m wingspan and large fuselage cavity, it can carry
a large number of components making the setup easily
adaptable. The drone contains a 3S, 2400 mAh lithium
polymer battery, four servo motors (Corona DS-919MG) to
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Fig. 3. Scheme of the software stack on the drone and ground station.

actuate ailerons, elevator, and rudder, and a brushless motor
(Scorpion SII-2212-1400KV) to produce thrust.

For the experiments described in this paper, we equipped
the drone (see Fig. ) with a PX4 autopilot (Holybro
Pixhawk4) which builds the core of the electronics setup.
The drone carries a GNSS receiver with an antenna (Drotek
FOP RTK GNSS & DA233) to receive GNSS. A telemetry
radio (Holybro SiK Telemetry Radio V3 433 MHz) on-
board communicates with the ground station to receive RTK
corrections. For vision-based flight, an optic flow sensor
(PX4FLOW) and a point lidar (Garmin LIDAR-Lite v3HP)
are used to estimate the ground velocity of the drone without
the use of GNSS. The drone is capable of measuring airspeed
with the use of a pitot tube and a differential pressure sensor
(Sensirion SDP3x). To detect the tag, a global shutter camera
(Flir Firefly S) with a 56° field of view lens (Arducam
1/2.5” M12 Mount 6mm) captures images at a resolution of
1440x1080 pixels at 20 fps. These images are then processed
on a capable single board computer (Nvidia Jetson Nano and
a custom carrier board that we open-source) to detect the tag
and log data from both the camera and the autopilot.

The ground station is made up of a laptop, the same
telemetry module, and the same GNSS receiver with antenna.

B. Software Stack

The autopilot consists of the PX4 software stack on the
Pixhawk 4 autopilot. We show an overview of the software
in Fig. 3] The PX4 software stack filters and fuses sensor
data from the point lidar, optic flow sensor, IMU, GNSS,
and differential pressure sensor in an Extended Kalman Filter
(EKF). Based on the measurements, the PX4 software runs
the attitude control and commands the thrust motor, ailerons,
elevator, and rudder servos. Through telemtry link, PX4 com-
municates with the ground station. The PX4 stack also com-
municates to the companion computer. The communication
is achieved thorugh the communication layer mavros [33],
which allows inspection of measurements and setting of
commands on the PX4 autopilot. The companion computer is
also responsible for image processing. It receives image from
the camera through ROS, rectifies it and detects a Whycon
tag in it [34]. The guidance control law receives the detection
information and state estimation through mavros, calculates a
roll and pitch command and sends it back through mavros to
PX4. On the ground station, QGroundControl [35] is running
to monitor the experiment and set parameters of the PX4
autopilot. Through the telemtry link, QGroundControl sends
RTK corrections to the drone for high accuracy positioning.
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Fig. 4. Graphical representation of the control inputs in orange and control
outputs in green. Variables are explained in the main text. This graphical
representation is adapted from [36].

IIT. CONTROL AND ESTIMATION

Traditional GNSS-based fixed-wing position control oper-
ates in an inertial, world frame. However, onboard cameras
measure relative position in a body-fixed frame. Therefore,
using vision as a primary sensor requires a change in the
design of the control scheme. Concurrently, we estimate
the attitude of the body in the world using an Extended
Kalman Filter (EKF) based on measurements from the
Inertial Measurement Unit (IMU) [32]. Naively rotating
camera detections into the world frame, however, does not
lead to the desired accuracy. This can be accredited to
unreliable yaw estimates. While roll and pitch are observable
through accelerometer measurements, the yaw of a drone is
commonly observed through the magnetometer, which often
suffers from large inaccuracies. This in turn leads to large
position estimation errors of the target location.

Within this work, we thus operate in a gravity-oriented
frame, i.e. a frame whose z direction is aligned with the
gravity vector and has the same yaw angle as the plane. This
choice allows us to easily integrate camera detections into
the control pipeline without the issues of yaw inaccuracies.
Additionally, it also allows us to split the dynamics into
lateral and longitudinal components.

1) Lateral control: The lateral control is based on the L,
guidance [37]. This control law relies on the fact that given
a constant roll angle ¢, the fixed-wing will ideally follow a
circular trajectory with a fixed radius r. In order to calculate
the radius of the trajectory required to reach a target location,
we need to know the flight velocity V, the relative horizontal
position of the target d,,, and the angle 1 between the two,
as shown in Fig. The radius can then be related to the
centripetal acceleration with a. = V2 /r from which follows
that the centripetal acceleration a. and the desired roll angle
¢, are:



where ¢ is the gravitational constant. In the original pa-
per [37] Ly is Ly = d,,. Note that both terms a. and ¢
are independent of the mass of the drone, which makes this
control law applicable to a wide range of fixed-wing vehicles.

To keep the target in the camera frame, it is desirable to
align the line-of-sight (LOS) of the drone with the target.
To achieve such a behavior, we define L; different from
the original paper. We choose L; to be smaller by defining
L1 = min(Lq max, dzy), Where Lq max is a design parameter.
The larger L1 max is, the slower the lateral behavior gets when
the horizontal distance to the target is larger than Lq max. As
demonstrated in [38], both choosing a constant L1 = L max
or time dependent L; = d,, have been shown to lead to
asymptotically stable behavior.

2) Longitudinal control: The longitudinal control aims
to fly accurately to a target while keeping it in the field
of view. We detect a Whycon tag [34] placed at a known
height difference d. o below our target. Whenever the tag
is detected in the image, we transform the detection from the
body frame to the gravity-oriented frame. This allows us to
obtain the horizontal distance d, and the vertical distance d,
to the tag. We obtain the commanded pitch angle 6. through:

(90 = tan'l <dz _ dz70ff> — 90ff,

day

where 0 is the angle of attack at trim flight condition.

3) Estimation: In the experiments, we investigate the per-
formance of GNSS-based control and vision-based control.
When we refer to GNSS-based control, the drone is using
GNSS data for guidance control. However, when we refer
to vision-based control, the drone is not using any GNSS
information for guidance control and thus operates in the
gravity-oriented frame. The control system uses the tag
detection to obtain the relative position and uses the output
of the EKF, which is fusing measurements from the optic
flow, the lidar, and the IMU, to obtain an estimate of the
ground velocity.

IV. RESULTS

We first define the terms of accuracy and precision which
will be used throughout the evaluation and then describe the
experimental setup. We proceed by evaluating the vision-
based controller for the case with very low initial offsets
due to the GNSS. By systematically introducing expected
GNSS offsets, we then analyze the effect of lateral and
longitudinal offsets on the accuracy and study whether the
proposed system is able to compensate for them. Finally, we
analyze the accuracy in a scenario that is close to various
applications and report on the accuracy and precision that
can be expected.

A. Metrics: Accuracy and Precision

We define two metrics to report the findings of our
experiments in a consistent and quantitative manner. In the
context of target-directed flight, it is both important to have
a measure of closeness to the target value and a measure of
statistical variability. We thus define the metrics of accuracy

and precision. A simplified representation of the two metrics
is shown in Fig. [}
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Fig. 5. Schematic graphical representation of accuracy and precision.
We first introduce the mean error as p = =370 | r;,

where r; € R? is the vector from the target to the
measurement. We then define the accuracy as its 2-norm
|||, [39]. Similar to the standard deviation in one di-
mension, we define the variability measure precision as
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B. Experimental Setup

The experiments consist of autonomously flying the drone
towards a target position indicated by a balloon. The balloon
is positioned on top of a 4.8 m long vertical pole to increase
the distance to the ground and avoid any crashes during
initial testing. Below the balloon, at a distance of 0.75 m, we
attach a Whycon [34] tag, which will allow us to estimate
the drone’s relative position to the tag and subsequently to
the target. The tag has a diameter of 0.24 m, enabling the
first detection on average 35 m away from to target, which
corresponds to a time to impact of around 3 s for our flights
at 12 m/s.

Before the experiment begins, we manually fly the drone
to line it up with the target in a distance of 80 m. The
location of the target is given to the control system in
GNSS coordinates and control is handed over to the onboard
companion computer. The companion computer steers the
drone towards the target by using GNSS-based control. When
the drone reaches a distance of 60 m from the target, the
experiment flight begins. Each experiment flight is split into
three phases: GNSS phase, vision phase, and blind phase as
shown in Fig. [6] In the GNSS phase, the drone continues
flying towards the coordinate of the target with the GNSS-
based control. During this phase, the target cannot yet be
detected by the onboard camera. The vision phase is initiated
as soon as the target is detected for the first time. In this
phase, control is switched to the vision-based control and
the drone does not rely on GNSS anymore. When the plane
gets close to the target, the tag disappears from the field
of view (blind phase) and the drone keeps flying using the
last roll and pitch command received from the vision-based
controller. In the following, we will refer to the strategy of
relying on GNSS for the long range and on vision after the
first detection of the tag as vision-GNSS.

The experiments were conducted on an open area with
trees being 65 m away and low-rise buildings 95 m away
while receiving data from at least 20 satellites. In all ex-
periments, we measure the flight accuracy with the onboard
RTK GNSS, which reports an accuracy of 1.0-5.0 cm both
vertically and horizontally.
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the blind phase. The drone aims to hit the red sphere, which represents the
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Fig. 7. Representation of the cross plane for the experiment of low GNSS
inaccuracies and the influence of GNSS inaccuracies on the performance of
the vision-based control. The crosses indicate the points where the drone
passes by the target, shown as a red sphere. The shaded areas shows the
95% confidence ellipses.

C. Comparison of Vision-GNSS to RTK GNSS

Flight accuracy can be affected by multiple factors, such
as control and vision estimation. To disentangle the causes
of accuracy errors, we perform an experiment with two sets
of flights. In the first set, we determine the upper bound
for accuracy and precision with the proposed controller by
using the RTK GNSS for all three phases of the flight. In the
second set of flights, we only use GNSS for the first phase
and switch to the vision-based controller as soon as the tag
is detected for the first time (see Fig. [6).

The first set of flights consists of 13 approaches to the
target. We visualize the positions of where the drone passes
through the cross plane (blue shaded plane in Fig. [6) in
Fig. The target is located at (0,0) and is visualized by
a red sphere with a radius of 0.15 m — the diameter of a
standard sized latex balloon. The red crosses indicate the
positions where the drone passes the cross plane. We refer
to these positions as cross points. Note that these cross points
are defined by only a horizontal and vertical distance to the
target. We therefore report the error in these two directions.
We visually represent the variance of the cross points by
the 95% confidence ellipse, where the center of the ellipse
corresponds to the mean cross point. During these 13 flights,
we achieved an accuracy of 0.361 m, with a horizontal offset
of 0.314 m during a side wind of 1.6 m/s to the right of
the cross plane (as estimated by the onboard autopilot). The

TABLE I
Summary of flight experiments with systematic initial offsets
corresponding to expected GNSS errors during the approach phase. We
report the mean cross point, side wind, achieved accuracy, and precision.

# of initial offset mean cross point side
sensor | flights (right, above) (right, above) wind accuracy precision
[m] [m] [m/s]  [m] [m]

RTK 13 0, 0) (0.314, 0.179) 1.6 0.361 0.070
vision | 15 (0, 0) (0.455, 0.138) 1.2 0475 0.384
vision | 5 (-2, 0) (0.374, 0.013) 1.2 0374 0.317
vision | 5 0, 2) (-0.105, 0.231) 1.1 0.254 0.662
vision | 5 (-2,2) (0.268, 0.179) 1.2 0322 0.292

precision is as small as 0.070 m, indicating that the proposed
control system can achieve highly accurate flights.

The second set of flights consists of 15 approaches to
the target. The cross points are shown as yellow crosses in
Fig. The drone passed by the target with an accuracy of
0.475 m and a precision of 0.384 m with a horizontal offset
caused by an estimated lateral wind of 1.2 m/s. In terms of
accuracy, vision-GNSS is only about 30% worse than RTK
GNSS. The vision-based controller is less precise than the
RTK GNSS upper bound but on par in terms of accuracy.
The results are summarized in the top part of Table

D. Robustness of vision-based control to inaccurate GNSS

In the previous experiment, we used RTK GNSS which is
accurate but requires ground stations and is less practical as a
result. While raw GNSS only requires a sensor on the plane,
it is less accurate and can lead to large offsets between the
estimated and actual state of the platform or target. In order
to evaluate the robustness of the vision-based controller to
this sensor noise, we emulate GNSS errors by introducing
both horizontal and vertical initial offsets at the beginning of
the vision phase.

GNSS errors reported in the literature vary largely. In
a study that is closest to the flight conditions of these
experiments, the authors report a median error of 2.0 m
for a GNSS receiver on a bicycle [7]. In accordance with
these data, the u-blox NEO-M8N shipped with the Pixhawk
autopilot, reports an average accuracy of 2.2 m. We thus
choose a horizontal and vertical offset of 2 m each. The
horizontal offset was set to the left of the target only
because the behavior for offset to the left and right should
be identical. The vertical offset was 2 m above the target for
two reasons: firstly, approaching a target from above applies
to a large range of situations, such as pick-up, landing, and
drop-off; secondly, since the Whycon tag is below the target,
setting an offset below the target would artificially facilitate
the task. Finally, we apply both the horizontal and vertical
offsets at the same time. We approach the target five times
for each offset (in meters): (-2, 0), (0, 2), and (-2, 2), where
the first number depicts an offset to the right and the second
number an offset above. The results are summarized at the
bottom of Table [l



TABLE II
Comparison of vision-based flights to flights using GNSS only.

# of mean cross point side
sensor | flights (right, top) wind accuracy precision
[m] [m/s] [m] [m]
GNSS 17 (1.181, 2.793) -1.0 3.033 2.095
vision 15 (-0.175, 0.222) 0.3 0.283 0.309

For all offsets, the vision system was able to reliably detect
the target and the vision-based controller was able to correct
for the offsets.

We show a visual representation of the flight distributions
as confidence ellipses in Fig. To increase legibility, we
refrain from showing the cross points, but show the confi-
dence ellipse from the vision-based flights in section
for comparison. We report the accuracy, precision, the mean
cross point, and the estimated side wind during each of the
set of flight approaches in Table [ Taken together, these
results indicate that the vision-based control was able to
compensate for the 2 m offsets that a GNSS receiver could
introduce, and report an accuracy below 0.4 m, which is
comparable to the absence of any initial offset. The mean
cross points in all sets of flights are horizontally less than
0.5 m and vertically less than 0.25 m from the target.
Furthermore, the precision was not greatly affected by the
offsets and was only slightly worse for the (0,2) offset. These
findings suggest that expected GNSS inaccuracies can in fact
be compensated for with the vision-based control without
adversely affecting flight accuracy.

E. Comparison of GNSS and vision-GNSS

Finally, we compare flights using exclusively GNSS-based
control with flights where vision-based control replaces
GNSS-based control as soon as the target is detected. We
summarize the comparison between them in Table

The GNSS-based control uses the u-blox NEO-MSN
GNSS module without differential RTK corrections. In the
first set of experiments, we use GNSS in all three phases of
the flight experiment. We evaluate the accuracy over a set
of 17 target flights and show the cross points in dark red in
Fig. [§]

In these experiments, the drone crossed the target plane
with an accuracy of 3.033 m and a precision of 2.095 m. As
shown in Fig. |8} we observed large errors that confirm pre-
vious results. The mean cross point was shifted horizontally
by 1.181 m (with an estimated side wind of -1.0 m/s) and
vertically by 2.793 m. Such large offsets are prohibitive for
tasks such as pick-up and perching.

In the second set of 15 flights, the drone flies with GNSS-
based control and switches to vision-based control after the
first visual detection; during the final blind phase, the latest
control command is applied.

In these experiments, accuracy was improved by more than
an order of magnitude from 3.033 m to 0.283 m and the
precision was greatly improved as well from 2.095 m to

vertical error [m]
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vertical error [m]
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Fig. 8. Accuracy comparison of GNSS-based flight and vision-based flight.

0.309 m. A similar trend is observable in the mean cross
point, which was reduced by an order of magnitude to below
0.25 m horizontally and vertically. These experiments led to
significantly more accurate vision-based flight with fixed-
wing drones than any previous work in the literature (which
reported errors in the order of 2 m). More importantly, the
accuracy measured in the vision-GNSS experiment showed
no significant loss of accuracy over RTK GNSS. The drastic
improvement of vision-based control over GNSS and the
comparable performance to RTK GNSS highlights the po-
tential of using fixed-wing vehicles for long-range missions
that require accurate flight without ground stations.

V. CONCLUSION

This paper presented a method for accurate vision-based
flight with fixed-wing drones. We also introduced a research
platform based on widely available hardware components
and an open-source code for further research and develop-
ment by the robotics and machine learning community. The
bill of material, an assembly guide, and the code are available
at github.com/lis—epfl/lis-vision—-flight. The re-
search platform we present here allowed systematic and
precise comparisons of navigation methods described in the
literature for the first time. We showed that vision-based
control could compensate for inaccuracies of commonly used
GNSS and improve the achieved accuracy by one order of
magnitude. It is thus comparable with RTK GNSS-based
flights (albeit with lower precision), which however requires
dedicated ground installations. We hope that the fixed-wing
platform described here and the open-access code developed
for these experiments will pave the way for new research
in agile, multi-functional, and vision-based flight with fixed-
wing drones.
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APPENDIX

We additionally demonstrate the results of our outdoor
experiments implementing the visual-servoing approach pre-
sented in [29] on our proposed fixed-wing drone. In our tests,
we simulated visual detections by projecting the relative
position vector from the drone to the target into the body
frame. This allowed us to calculate the heading and pitch
angle deviations (A, A6) that were used in [29] to servo
the drone to the target.

In our first experiments, we applied the control as it was
described in the paper. While the control applies corrective
actions, it introduces oscillations that lead to an unstable
behavior on our drone. We show a demonstrative example
of the resulting flight behavior in Fig. 0] as a red dashed
line ([29], P gain 1.0). The figure shows the top view of the
trajectory flying towards the target at (0,0), indicated by the
red circle with a radius of 1.5 m. We rotated the trajectory
such that the the starting point is aligned with the z-axis.
The trajectory ends, when our safety pilot took over the
control because the oscillations were leading to dangerous
flight behavior.
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Fig. 9. Top down view of flight experiments with the vision-based control
approach presented in [29] of flying towards a target at (0,0) depicted by
the red circle. The red dashed trajectory depicts a flight paths following
the control as described in [29], while the dashed blue trajectories represent
flights where an additional proportional gain (P gain) of 0.2 was introduced.
For comparison, we add 15 flights of our proposed flight approach in grey.

In an attempt to reduce the oscillations, we introduced a
proportional gain (P gain) term and set it to 0.2 which should
reduce the direct effect an error has on the guidance control.
We recorded six flights but still observed unstable behavior
with increasing oscillation over the duration of the trajectory
for all flights.

In our experiments with a P gain of 0.2, we observed
oscillations on the length scale of about 70 m. Decreasing
the P gain further may potentially lead to stable behavior,
however, in turn it would lead to a less reactive control.
Considering that the first target detections on our platform
are on average at a distance of 35 m, further decreasing the P
gain would likely lead to a control system that is not reactive
enough.

For comparison, we additionally visualize the 15 flights
from the experiment described in section [V-E] using our
proposed vision-GNSS approach.

Since the introduced P gain was not part of the original
work [29] and all shown flights using their approach resulted
in unstable flights, we conclude that the control proposed
in [29] is platform dependent and may generally lead to
unstable behavior.
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