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Abstract

Occupant behavior, defined as the presence and energy-related actions of occupants,
is today known as a key driver of building energy use. Closing the gap between
“what is provided by building energy systems” and “what is actually needed by
occupants” requires a deeper understanding and consideration of the human factor
in the building operation. However, occupant behavior is a highly stochastic and
complicated phenomenon, driven by a wide variety of factors, and unique in each
building. Therefore, it cannot be addressed using analytical approaches traditionally used
to describe physics-based aspects of buildings. In conventional control systems, referred
to as Expert-based controls in this study, domain experts distill their knowledge into a
set of rules, heuristics (rule-based controls), or optimization models (model predictive
controls), and program it to the controller. Since they rely on the hard-coded knowledge
of experts, they are limited to expert knowledge. Furthermore, they cannot deal with
unexpected situations that were not foreseen by the experts. Given the unexpected
variations of occupant behavior over time, and its uniqueness in each building which
has limited the experts to globally model it, Expert-based controls have a low potential
for integrating occupant behavior into building controls. An alternative approach is
to program a human-like learning mechanism and develop a controller that is capable
of continuously learning and adapting the control policy by itself through interacting
with the environment and learning from experience, referred to as Learning-based
controls in this study. Reinforcement Learning, a Machine Learning algorithm inspired
by neuroscience, can be used to develop such a learning-based controller. Given the
learning ability, these controllers are able to learn optimal control policy from scratch,
without prior knowledge or a detailed system model, and can continuously adapt to the
stochastic variations in the environment to ensure an optimal operation. These aspects
make Reinforcement Learning a promising approach for integrating occupant behavior
into building controls.

The main question that this study deals with is:

How to develop a controller that can perceive and adapt to the occupant behavior to

minimize energy use without compromising user needs

In this context, the methodological framework of this dissertation is aimed at
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contributing to new knowledge by developing three occupant-centric control frameworks:

* DeepHot: focused on hot water production in residential buildings;

* DeepSolar: focused on solar-assisted space heating and hot water production in
residential buildings;

* DeepValve: focused on space heating in offices;
In developing these frameworks, special attention is paid to:
1. Transferability: To be easily transferred to many buildings;

2. Data efficiency: To quickly learn optimal control when implemented on a new

building;
3. Safety: To impose minimum risk on violating occupant comfort or health;

4. Minimal use of sensors and actuators: To reduce the initial cost and risk of failure

and facilitate filed implementations;

The DeepHot and DeepSolar are evaluated using real-world weather data and hot water
use behavior measured in Swiss residential houses. DeepValve is also first evaluated
using real-world occupancy data collected from other studies, and then experimentally
implemented in an environmental chamber. Comparison of these frameworks with
common practice indicated that there is a significant energy saving potential by integrating
occupant behavior into building controls, and Reinforcement Learning is a promising

method to achieve this goal.
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Résumé

Le comportement des occupants, défini comme la présence et les actions des occupants
liées a I’énergie, est aujourd’hui reconnu comme un facteur clé de la consommation
d’énergie des batiments. Pour combler I’écart entre "ce qui est fourni par les systemes
énergétiques du batiment" et "ce dont les occupants ont réellement besoin", il faut une
meilleure compréhension et considération du facteur humain dans le fonctionnement
du batiment. Cependant, le comportement des occupants est un phénomene hautement
stochastique et compliqué, régi par une grande variété de facteurs, et unique dans chaque
batiment. Par conséquent, il ne peut pas étre abordé a I’aide des approches analytiques
traditionnellement utilisées pour décrire les aspects physiques des batiments. Dans les
systemes de contrdle conventionnels, appelés controles basés sur des experts dans cette
étude, les experts du domaine appliquent leurs connaissances dans un ensemble de regles,
heuristiques (contrdles basés sur des regles) ou de modeles d’optimisation (contrdles
de modeles prédictifs), qu’ils integrent dans le contrdleur. Comme elles reposent sur
les connaissances des experts encodées en dur, elles sont limitées aux connaissances
des experts. En outre, ils ne peuvent pas faire face a des situations inattendues qui
n’ont pas été prévues par les experts. Etant donnée les variations inattendues qu’ont le
comportement des occupants au cours du temps et leur exclusivité dans chaque batiment,
ce qui a limité les experts dans leur modélisation globale, I’intégration du comportement
des occupants dans le contrdle des batiments dans le controle basé sur les experts a
un faible potentiel. Une approche alternative consiste a programmer un mécanisme
d’apprentissage de type humain et & développer un controleur capable d’apprendre et
d’adapter en permanence la politique de controle par lui-m&me en interagissant avec
I’environnement et apprenant selon ses expériences, ce que 1’on appelle dans cette étude
les controles basés sur I’apprentissage. L’apprentissage par renforcement, un algorithme
d’apprentissage automatique inspiré des neurosciences, peut étre utilisé pour développer
un tel contrdleur basé sur I’apprentissage. Grice a leur capacité d’apprentissage, ces
contrbleurs sont capables d’apprendre une politique de contrdle optimale en partant
de zéro, sans connaissances préalables ni modele détaillé du systeme, et peuvent
s’adapter en permanence aux variations stochastiques de 1’environnement pour garantir
un fonctionnement optimal. Ces aspects font de I’apprentissage par renforcement est une

approche prometteuse pour intégrer le comportement des occupants dans les controles des



batiments.

La question principale a laquelle cette étude répond est la suivante:

Comment développer un controleur capable de percevoir et de s’adapter au
comportement de ['occupant pour minimiser la consommation d’énergie sans
compromettre les besoins de [’utilisateur?

Dans ce contexte, le cadre méthodologique de cette these vise a contribuer a de

nouvelles connaissances en développant trois cadres de contrdle centrés sur 1’occupant:
* DeepHot: axé sur la production d’eau chaude dans les batiments résidentiels;

* DeepSolar: axé sur le chauffage des locaux et la production d’eau chaude assistés

par I’énergie solaire dans les batiments résidentiels;
* DeepValve: axé sur le chauffage des locaux dans les bureaux;
Une attention particuliere est accordée a 1’élaboration de ces cadres:
* La transférabilité: Etre facilement transférable a de nombreux batiments;

* L’efficacité des données: Pour apprendre rapidement le contrdle optimal lorsqu’il

est mis en ceuvre sur un nouveau batiment;

* La sécurité: Pour imposer un risque minimal d’atteinte au confort ou a la santé des

occupants ;

 Utilisation minimale de capteurs et d’actionneurs: Pour réduire le colt initial et le

risque de défaillance et faciliter les mises en ceuvre déposées;

DeepHot et DeepSolar sont évalués a 1’aide de données météorologiques réelles et
du comportement d’utilisation de I’eau chaude mesuré dans des maisons résidentielles
suisses. DeepValve est aussi d’abord évalué a I’aide de données d’occupation du monde
réel recueillies dans d’autres études, puis mis en ceuvre expérimentalement dans une
chambre environnementale. La comparaison de ces cadres avec la pratique courante
indique qu’il existe un potentiel d’économie d’énergie considérable en intégrant le
comportement des occupants dans les contrdles des batiments, et que 1’apprentissage par

renforcement est une méthode prometteuse pour atteindre cet objectif.
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Chapter 1

Introduction

1.1 Occupant behavior: An underexplored issue in

building controls

This section discusses:

What is energy-related occupant behavior?
Why does it matter?
Why it is under-explored?

Occupancy patterns can significantly influence the energy use of the buildings [1].
Furthermore, once the occupants are present, they try to achieve a personally comfortable
condition by performing different actions on building interfaces such as adjusting the
thermostat setpoint, switching lights, opening/closing windows, and adjusting window
blinds, which can significantly impact on the energy use of the buildings [2]. The
energy-related occupant behavior is defined by human-building interactions that affect
the building energy use, which can be divided into occupancy and occupants’ actions on
the building. Conventional efforts for energy saving in buildings are mostly focused on
technological improvements of the building such as installing better-insulated envelopes
or more efficient energy systems. However, nowadays, there is an increasing awareness
about the pivotal role of occupant behavior on building energy use [2, 3]. “Buildings don’t
use energy, people do!” [4], initiated by Jonda in 2011, is now turned to be an emblematic
headline in occupant-centered studies. Previous studies have highlighted the importance
of energy-related occupant behavior in several aspects including, but not limited to, the
difference in energy use between similar buildings, the gap between simulated and actual
energy use, and the potential energy saving by changing occupant behavior [5]. Several

studies have tried to explore to which extent occupant behavior can influence on energy



Chapter 1

use in buildings. For example, simulation studies in a single occupant office building
indicated that the occupant behavior can change the energy use of the office from 50% less
to 90% more energy use compared to a standard behavior [6]. Other studies indicated that
the occupant behavior in similar residential houses (having the same layout and climatic
conditions) can result in different energy consumption of over 300% [7-9]. Simulations
of different occupant behavior and schedules in commercial buildings indicated that
final energy use can vary from 30% to 150% only due to occupant behavior [10, 11].
Measurements from the real-world buildings also indicated a high variation of electrical
loads [12] or hot water energy use [13, 14] mainly due to different occupant behavior.
Difference of occupant behavior in buildings can be caused by many variables such as the
difference of occupancy patterns, perception of comfort, physiological characteristics of

the occupants, household lifestyle, etc., [15].

The importance of occupant behavior is also getting an increasing attention in
simulation studies aimed to predict building energy use. While the current simulation
tools can model the physical aspects (such as building envelope or thermal systems) with
a good accuracy, in some cases, there is a significant discrepancy between the predicted
and actual building energy use. A major source of this discrepancy is the occupant
behavior, which is over-simplified in the current modeling approaches, for example,
by considering static occupancy schedules, lights operation, or temperature settings
[2]. With the increased awareness of the importance of occupant behavior for energy
use simulations, probabilistic modeling approaches have been applied to represent the
stochastic nature of occupant behavior in buildings [16]. Probabilistic models have been
used to represent different aspects of occupant behavior such as occupancy [17], lighting
control [18], windows action [19], temperature setting [20], and plug-in appliances [21].
The considerable energy saving that can be achieved by only changing occupant behavior
is another indicator of the importance of occupant behavior. Behavioral change strategies
are recognized as a low-cost and efficient measure to reduce energy use in buildings
[22]. Energy awareness campaigns revealed an energy-saving potential of 15% to 20%
in residential buildings [23, 24]. Studies on energy engagement in offices also indicated
an energy-saving potential of 4% to 10% [25, 26] . The behavioral change is usually
stimulated by providing feedback to the users, through mobile or web apps, ambient

displays, or even games [27, 28].

Nowadays, the physical aspects of the building such as the envelope, space heating,
or energy storage devices can be described by mathematical models. However, occupant
behavior is highly stochastic in nature [29], depends on many variables that can not all
be quantified or measured [30] and is unique for each person [31], thus cannot be easily
modeled similar to the physical aspects of a building. Studies highlight that occupant

behavior can be affected by environment-related, time-related, individual, social, and

2
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random factors [2, 3, 5, 32, 33]. Examples of parameters included in each category are
shown in Figure 1.1. “Every individual is essentially unique and different from everyone
else” [31]. Even under similar environmental conditions (environmental factors), every
occupant is still affected by many other factors (individual, social, time-related, and
random factors), that make the behavior of each occupant unique, and different from the
other occupants in the same environment [34]. Every occupant perceives the environment
differently, have different preferences, motivations, and habits, and can be constrained by
a set of different social or economic barriers, which forms the unique decision-making

process of each occupant in performing an action (Figure 1.1). Stochasticity, being

Environmental factors

Indoor and outdoor air temperature
Air velocity
‘ Illuminance
Solar irradiance
Wind speed
ete.

[

Temporal factors Window open/close

Time of the day !
Day of the week - -

Season
Working day/Weekend
Day/Night Lighting ON/OFF
£ — —)
Individual factors

Preferences

7
N

\
4

Habits Perception  Satisfaction Motivation Action
, Energy awareness Hot water use
Gender
Age
etc.
708
Social factors Temperature setting
Groupe interaction
Social barriers
oo Household composition etc.
"' Social status

Building ownership
etc.

Figure 1.1: Unique decision-making process of each occupant

influenced by many different factors, and uniqueness, make the occupant behavior a very
complicated phenomenon that can not be easily understood, predicted, or mathematically
modeled by the experts. Researchers have only started to understand occupant behavior,
let alone accurately predicting it [35]. The field of energy-related occupant behavior is
quite new [3], with an increasing number of publications and many unanswered questions.
Fabi et al. [32] highlight that much is still unknown about the underlying motivation of
occupants in interacting with the building. Due to the complexity of occupant behavior,
conventional control systems in buildings are detached from occupant behavior and rely
on static and conservative assumptions to control building systems [36]. For example,
commercial buildings follow static schedules of occupancy estimated at the design phase,
while actual occupancy can significantly vary from assumptions, resulting in significant
energy waste. Masoso and Grobler [37] indicated that more energy is used during
non-working hours (56%) than during working hours (44%). It is estimated that almost

90% of existing space heating and cooling systems are not controlled optimally [38].
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Gunay et al. [39] indicated that if an office thermostat that can learn the arrival and
departure time of occupants, and accordingly schedule the temperature setback of the
office, it can reduce the space heating and cooling loads by 10%-15%. These studies has
raised the necessity of developing controllers that can perceive and react to the occupant
behavior, which has initiated the emerging field of occupant-centric control. Thus, the

next session of this chapter provides an overview of the field of occupant-centric control.

1.2 Introduction to occupant-centric controls

This section discusses:

What is occupant-centric control, and why does it matter?

What are different types of occupant-centric control?

The previous section provided a background about the importance of occupant
behavior in buildings. This chapter discusses about occupant-centric control, which is
an emerging approach to better integrate the stochastic occupant behavior in building

controls with the main aim of energy saving.

Occupant-centric control is a relatively recent area, and therefore there is no standard
and widely-known definition for that. By collecting and analyzing the definitions provided

by several review papers [40—43], this study defines occupant-centric controller as follow:

Occupant-centric control is a decision-making algorithm that in addition to the system
and environment data, takes into account the occupant-related data, and determines the

optimal control action(s) to save energy while maintaining occupants’ needs.

This definition is visualized in the Figure 1.2. The concept of occupant-centric control
can be applied to any kind of building systems that is influenced by occupant behavior,
such as space heating or cooling, hot water production, lighting, ventilation, etc. With the
common aim of energy saving, depending on the system and purpose, the additional users’
needs might be incorporated such as maintaining occupant comfort, health or improving

productivity.

A main aspect of occupant-centric controller is the integration of occupant-related data
for optimal decision-making. Required occupant-related data can be different dependent
on the system, type of building, purpose of control, etc. Melfi et al. [44] categorized the

occupant-related data into the following categories:

* Occupancy: a zone has at least one person in it

* Count: how many people are in a zone
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* Identity: who they are

* Activity: what they are doing

Occupant-related data

Occupancy
(Presence/Number/Location) o1
Building systems

=
s Occupant behavior Controller

Optimal control action
Environment/System data Decision making algorithm

E Indoor/Outdoor temperature

* Solar radiation

@ Photovoltaic power production

a Ete.

Figure 1.2: Definition of occupant-centric control

In another categorization, Naylor et al [40] included location of occupants as a
type of Occupancy data. In this study, to be compatible with the categorization of
occupant-centric algorithms that will be discussed later on, the occupant-related data
is divided into two categories of occupancy (Occupancy, count, location, identity) and

occupant-behavior, as explained below.

1.2.1 Categories of occupant-related data

Occupancy: Presence/Number/Location/Identity

Different forms of occupancy data include presence of occupants as a binary value,
number of occupants, their location and identity. There are different methods to obtain
each of these data. Occupant presence is the easiest one to be obtained with the current
technologies. To monitor the presence or number of occupants, one of the technological
solutions is to use the feed from cameras. While it is known as an accurate method,
it is costly, computationally expensive, and its accuracy heavily depends on lighting
conditions and space arrangement [45]. An alternative and cheaper method is to use a
single or a fusion of PIR motion and environmental sensors such as C'Os, light, acoustic,
temperature, relative humidity, etc [46, 47]. To infer the presence or number of occupants
from the measured data, the measurements should be first labeled with the ground-truth
data, which can be recorded manually by analyzing videos from cameras, or by using
highly accurate video-based methods. The labeled data are then used to train a Machine

Learning model, which afterward can be deployed on a hardware to directly infer presence
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or number of occupants from measurements [48]. Fusion of environmental and motion
sensors provides a low-cost and computationally cheap method. But the accuracy can be
lower and affected by many environmental parameters. For example, C'O, concentration
has a delayed response time, as C'O, exhaled by occupants takes time to accumulate to
elevated levels, and it is affected by ventilation rates and window openings [49]. This
can specifically affect the accuracy of inferring occupant number. Heidari et al.[50]
proposed a probabilistic Machine Learning method for occupancy number detection based
on sensor fusion. This method provides the estimated number of occupants, alongside
with the uncertainty of prediction, which can be used together for an uncertainty-aware

occupant-centric control method.

The location sensing provides a higher detailed information for tailoring the building
control to an individual level. But on the other hand, it causes more concerns about
privacy, and requires a higher technological level. A common method to detect occupant
location is to use wearable radio-frequency tags, to transmit signals to receivers located
around the sensed space [51-53]. In this method, occupants are expected to wear a tag,
which therefore limits the method to places with fixed occupants such as offices [54].
Facilities provided by smart devices, such as Wi-Fi beacons, Bluetooth beacons, GPS, or
orientation data from smart devices also can be used to determine occupant location [55,
56]. A dense network of motion or environmental sensors can also be installed to infer

occupancy data [57].
Occupant behavior

Occupant behavior-related data includes a vast variety of data. Basically, any
occupant-related data that does not fall into the occupancy-related category can be
considered occupant behavior-related data. The most common form of occupant
behavior-related data in the literature is focused on the sensing of occupant-building
interaction. Some examples are monitoring the interaction of occupants with the lighting
system [58], hot water appliances [59, 60], space heating and cooling systems through
thermostats [39, 61, 62], windows [63] or electric plugs [64]. The measurements of when
and how building systems are used by occupants can provide great insight for better design
and operation of these systems. Another common type of occupant behavior-related
data is the type of activity that occupants perform in the building. The type of activity
can be directly detected by a camera or indirectly inferred from different sensors such
as acceleration data from a wristband [65] or fusion of ambient, sound, motion, and
chair [66]. Occupant feedback about building services is also another type of occupant
behavior-related data. This data can be collected in real-time through mobile applications
or other specifically designed devices (such as push bottons). A common form of feedback

data is the occupant sensation of thermal comfort [61, 67]. However, as experimental
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studies also indicated [67], occupants do not keep their interaction with the feedback
system over the long term, even if they do not feel comfortable. This shows that directly
asking for occupant feedback, even if it is limited to the uncomfortable instances, can not
be a good solution in practice. An alternative is to infer occupant feedback indirectly from
their interaction with the adjustment devices such as thermostats or light switches [58],

assuming that more interactions are due to less comfort.

1.2.2 Categories of occupant-centric control

Occupant-centric control has a vast definition and therefore includes many different
approaches. These approaches can be categorized based on different metrics. This
study, taking into account the perspective of previous review studies [40—43], presents
two categorizations of occupant-centric controls. The first categorization is based on
the mechanism of response to occupant data, and the second is based on the type of

occupant-related data.
I. Categorization based on the mechanism of response to occupant data

Depending on the mechanism of response to occupant data, occupant-centric controls

can be divided into Reactive and Predictive controls, as discussed below.

Reactive: Reactive controls respond to occupant-related data in real-time. This
category of occupant-centric controls usually includes a simple algorithm and
hardware setup. Accordingly, they are easier to implement in practice and closer
to the commercialization level. A well-established example of these controls are
occupancy-based control of lighting systems. In these systems, which is mostly deployed
in commercial buildings, lighting is switched ON when a motion is detected by PIR
sensors, and switched OFF after a fixed time delay after the last motion event detected.
Another example is localized lighting based on the detected location of occupants [68,
69]. Reactive control can be also implemented for appliance power management. For
example, by integrating occupancy sensors with power plugs, electrical appliances can be
only powered when occupants are detected in the room, eliminating the sleep mode power
use [70]. As can be seen in these examples, the real-time response to occupancy data is

mainly suitable for the fast-response systems.

Predictive: In the case of slow-response systems, such as space heating and cooling
systems, the real-time reactive control might violate the occupant comfort, particularly,
upon arrival of occupants at the beginning of working day. To eliminate the risk of
comfort violation, the occupant-centric control of slow-response systems should integrate
a predictive model of occupancy. In this case, the occupant-centric controller can pre-heat

or pre-cool the space according to the predicted occupancy. Prediction of occupant
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behavior requires the construction of a model of occupant behavior through observations,
which can be done by Machine Learning models [40] or other innovative algorithms [39].
Therefore, the predictive model includes a more complicated decision-making algorithm,
requiring more computational power. Examples of this category are control of space
heating and cooling by learning occupancy [39, 71], or control of water heating systems
by learning occupant hot water use behavior [60]. Figure 1.3 shows the summary of

categorization based on the mechanism of response to occupant data.
I1I. Categorization based on the type of occupant-related data

Another categorization of occupant-related data is based on type of occupant-related
data that is used by the controller [41]. As discussed before, occupant data can be
divided into occupancy-related data and occupant behavior-related data. Accordingly,
the occupant-centric controls can be categorized into occupancy-centric controls and
occupant behavior-centric controls as shown in Figure 1.3. For example, controlling
lights with a motion sensor is categorized as occupancy-centric control, and controlling
hot water production based on hot water use behavior of occupants [60] is categorized as

occupant behavior-centric control.

Categorization based on the mechanism of Categorization based on the type of
response to occupant-related data occupant-related data
Occupant-centric controls Occupant-centric controls
Occupant
Reactive Predictive ch:r?t??ccy- behavior-
centric
Fast-response Slow-response
systems systems

Figure 1.3: Two different categorizations of occupant-centric controls
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1.3 The big picture

This section discusses:

What is the overall motivation of this study?

How the thesis is structured?

This section presents the big picture of this thesis. The first subsection states the overall
motivation of this study, and the second subsection presents the motivation of each chapter

and the structure of this thesis.

1.3.1 Overall motivation

In conventional control systems, domain experts distill their knowledge down to a set
of rules and heuristics (rule-based control) or complicated models (model-based control)
and program those rules or models into a controller. Since these controllers rely on the
hard-coded knowledge of the experts, in this study they are referred to as Expert-based
controls. Expert-based controls are robust, easy to interpret, and well-known in the
industry. But they have certain limitations. First of all, they cannot deal with unexpected
situations [72]. If they face a situation that was not expected during their programming,
they might fail to achieve requirements. Secondly, they are limited to expert knowledge
[73]. If the experts are supposed to hard-program the control solutions into the controller,
they should know these solutions in advance. As explained in the last sections, occupant
behavior is a highly stochastic phenomenon, that is influenced by a wide range of
parameters, evolves during the time, and differs from building to building [2, 3, 5]. Given
the complexity and uniqueness of occupant behavior in each building, in programming
expert-based controls, experts cannot deal with occupant behavior in the same way as
other physics-based aspects of a building that can be mathematically described. Instead,
they have to ignore, or over-simplify occupant behavior and follow conservative rules
to ensure the comfort of occupants regardless of their stochastic behavior. Examples are
conventional hot water systems that totally ignore occupant behavior and always maintain
a high temperature in the tank, or space heating systems that over-simplify occupant
behavior by following constant occupancy schedules. So there is a significant gap between
what is provided by expert-based controls and what is actually needed by the occupants.
To bridge this gap, building controls should perceive and adapt to the unique occupant
behavior in each building. An alternative to hard-programming the control solution is
to program a human-like learning ability to the controller, referred to as Learning-based
controls in this study. Reinforcement Learning is a method of Machine Learning that
can provide this learning ability for the controller. In this approach, which is inspired by
neuroscience and how the brain achieves cognition, the controller autonomously learns

the optimal control solution by itself rather than it being programmed by experts. The
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controller does not need any prior knowledge of the system and learns the optimal control
policy only through interacting and observing the feedback, which is a great advantage
over the Model Predictive Control that requires a detailed model of the system that
can be time-consuming to develop [74]. Another main potential of the Reinforcement
Learning method is adaptability. A Reinforcement Learning controller can continuously
learn and adapt to the changes to maintain an optimal operation. For example, it can
learn the daily variations of heat pump efficiency and accordingly schedule heating
cycles to benefit from high-efficiency hours and minimize energy use. Not relying on
the expert knowledge, and the adaptability potential, make Reinforcement Learning a
powerful tool for developing occupant-centric controls. While the occupant behavior is
under-explored (with very limited expert knowledge about it), varies over the time, and
is unique in each building, a Reinforcement Learning controller can autonomously learn
the occupant behavior without being pre-programmed by experts, adapt to the unique
occupant behavior in each building, and to the variations of occupant behavior over
time. Though, there are also several challenges in applying Reinforcement Learning
into occupant-centric control domain. For example, the agent in an occupant-centric
control deals with highly stochastic disturbances, behaviour observations come in very
infrequently unless discomfort is generated intentionally, and exploration (performing
random actions to better explore all possible actions) can generate lots of complaints, etc.
Therefore, applying an occupant-centric Reinforcement Learning controller is a major

challenge that is that is worthy proper researching in a doctoral degree.

Given the great potential of Reinforcement Learning to deal with occupant behavior on
the one hand, and the underexplored challenges on the other hand, this study focuses on
how to use Reinforcement Learning to integrate occupant behavior into building controls
(Figure 1.4). More specifically, this study aims to develop Reinforcement Learning-based

occupant-centric control frameworks that are:

1. Transferrable: To be easily transferred to many buildings;

2. Data efficient: To quickly learn optimal control when implemented on a new

building;
3. Safe: To impose minimum risk of violating occupant comfort or health;

4. Utilize minimum number of sensors and actuators: To reduce the initial cost and

risk of failure and facilitate field implementations;

These considerations are taken into account in the design of the hardware layout,
formulation of the framework, and training process of three different control frameworks
proposed in this study. The next sub-section briefly introduces each framework and

presents the overall structure of this thesis.

10
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Expert-based building controls Learning-based building controls
o Rely on hard-coded expert knowledge o Learn by itself from experience

o Cannot deal with unexpected o Can adapt to changes

o Limited to expert knowledge o Can surpass expert knowledge

o Over-simplify occupant behavior o Canlearn and adapt to occupant behavior

Figure 1.4: Transition from Expert-based to Learning-based controls

1.3.2 Thesis roadmap

With the overall aim of developing self-learning occupant-centric controls, three projects

were performed, organized as three different chapters of this thesis.

DeepHot control framework: In the field of occupant-centric control, limited attention
is paid to the hot water systems, while they have to follow an energy-intensive operational
strategy mainly due to the uncertainty of demand. Therefore, the first project of this thesis
is focused on integrating occupant behavior into the control of with-tank water heating
systems in buildings. Heat pump is used as the case study water heating system, as it is the
most energy-efficient system with a constantly increasing number in the building sector
in Europe [75], but is also more complicated to optimally control due to the variations
of energy efficiency with the outdoor air and hot water tank temperature [76]. This
chapter proposes a Reinforcement Learning control framework, that learns the hot water
use behavior of occupants, and accordingly plans heating schedules to reduce energy
use while ensuring the comfort and health of occupants. Maintaining the comfort aspect
means that when the occupants demand hot water, the temperature of supplied hot water
should be above the comfort level of 40 °C. A common health threatening risk in hot
water systems is the growth of Legionella, a bacteria that grows in water between 20 °C
and 45 °C, and can be transferred to occupants by breathing in the contaminated water
droplets, for example, during taking shower [77]. The proposed framework also learns
to periodically over-heat the tank to eliminate the risk of Legionella growth and ensure
the health of occupants with minimum energy use. To represent the real hot water use
behavior of occupants without imposing any risk on their comfort and health, in this study
the hot water use behavior of a residential house in Switzerland was monitored, and the
collected data were used in a simulation environment to assess the control framework. The
performance of the proposed framework is compared with the conventional rule-based

control method.
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DeepSolar control framework: In many cases, the hot water system is not stand-alone
but is combined with the hydronic space heating system. With the increasing penetration
of solar power generation in buildings, the integration of solar panels into the combined
space heating and hot water system is becoming more interesting as in such combination
the hot water tank can be assumed as low-cost energy storage. However, this combination
further complicates the development of optimal control solutions for experts. For
programming optimal control solutions, experts should answer many questions such as
when the occupants use hot water?, when is the best time to charge the hot water tank?,
how to get the best use of free solar power?, how to take into account the variations of
heat pump efficiency?, etc. Even if a model predictive control framework is developed for
such combined systems, due to the unique occupant behavior and system specifications in
each building, the control solution cannot be easily transferred to another building. The
advantage of the model-free learning-based approach over the expert-based approach is
further highlighted when it comes to more complicated systems. This chapter proposes an
occupant-solar-centric control framework for solar-assisted heat pump space heating and
hot water production system. The control framework learns the hot water use behavior
of occupants as well as stochastic solar power production, and accordingly schedules the
heating cycles of the tank, and adjusts the indoor air temperature setpoint to reduce the
energy use while ensuring the comfort and health of occupants. Comfort in this case
includes both indoor thermal comfort and hot water comfort. Similarly, to represent the
realistic conditions, the hot water use behavior of three residential houses in Switzerland
are monitored, the solar radiation and other weather data are collected from the nearby
weather stations, and the collected dataset was used in the simulation environment to
assess the control framework for three different houses. The proposed framework is then

compared to the conventional rule-based method.

DeepValve control framework: Space heating in offices usually assume pre-defined
static schedules for occupancy, while the occupancy of each office is different from others
and varies over time. As a result, for many hours in a week, energy is used to heat a
vacant office unnecessarily. Due to the slow response time of heating systems, space
heating systems cannot be only activated when occupants are detected, instead should
start working for enough time before the arrival of occupants. Thus, the third chapter
proposes an occupant-centric control framework for space heating in offices, that learns
the occupancy schedule, and the thermal response time of each office, and schedules the
heat emission to an office accordingly to ensure occupant comfort with minimum energy
use. This control framework is designed to be installed on the heat emission system
of each office and thus can be retrofitted to any hydronic heating system (regardless of
the layout of the central system) to provide adaptation to the occupancy schedule. This

framework is first tested in simulations, using real-world occupancy data collected from

12
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several other studies, to ensure superior performance compared to the rule-based methods.

Then, the control framework is experimentally implemented in an environmental chamber

to evaluate the adaptability of the framework to the type of heat emission system and

response time of the office in a real-world setup. Figure 1.5 visually presents the roadmap
of this thesis.

In summary,

to explore the potential of Reinforcement Learning for the

occupant-centric control, the DeepHot and DeepValve frameworks are focused on the

residential buildings, while the DeepValve framework is focused on the office buildings.

By covering both residential and office buildings, this research demonstrates the great

potential of Reinforcement Learning on a variety of building topologies.

Start

P)

Exploration phase
Field: Supervised learning

Publications: 2 Journal papers (Solar

energy, Sustaintable cities and society) + o Approach: Simulation using real-world data

1 Conference paper (BEHAVE)

DeepHot
o Focus: Hot water system

o Case study: 1 residential house

o Publications: 1 Journal paper (Applied Energy) + 1 Conference
paper (CISBAT)

DeepSolar
Focus: Solar-assisted space heating and hot water system

o Case study: 3 residential houses

o Approach: Simulation using real-world data

o Publications: 1 Journal paper (Applied Energy) + 1 Conference
paper (CLIMA)

End

DeepValve
o Focus: Space heating
o Case study: Simulated offices + Environmental chamber
o Approach: Simulation using real-world data + Experiments

o Publications: 1 submitted journal paper

Figure 1.5: Thesis roadmap
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Chapter 2

Background knowledge

2.1 Reinforcement Learning in simple words

Provides a simple introduction into Reinforcement Learning

Discusses different taxonomies of Reinforcement Learning

This section aims to provide a conceptual introduction into Reinforcement Learning
(RL), a general understanding of RL, the main concepts, and different methods.
Generally, the field of Machine Learning can be divided into 3 categories: Supervised
Learning, Unsupervised Learning, and Reinforcement Learning. In Supervised Learning,
a labeled dataset, including inputs and corresponding outputs, is provided to the
algorithm. The algorithm then learns to predict the right outputs given the inputs. If
the outputs are continuous values, it is called a Regression problem, and if they are
categories, it is called a Categorization problem. The term “Supervised” is used since
the algorithm is trained by providing the true answer to it (i.e., the true outputs for a set
of inputs). On the other hand, Unsupervised Learning is when an unlabeled dataset is
provided to the algorithm, and the algorithm is supposed to learn the underlying patterns
in the data, for example, to perform clustering. In RL, the algorithm learns how to
interact with an environment to maximize a predefined reward. Different from Supervised
and Unsupervised Learning methods, in RL there is no dataset, instead, the algorithm
learns optimal behavior based on interacting with the environment and observing the
feedback. Different Machine Learning algorithms differentiate in terms of how they
receive feedback after they make a decision/prediction. In Supervised Learning, the
algorithm will immediately know how accurate was its prediction by observing the ground

truth data. On the other hand, in Unsupervised Learning no feedback is provided for the
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algorithm. RL lies in the middle, as the feedback (reward) is provided with a delay after
few interactions with the environment. Figure 2.1 summarizes the comparison between

different Machine Learning methods.

Supervised Learning ¢ Unsupervised Learning ¢ Reinforcement Learning
Machine learns from a labeled Machine learn the undelying behg/\[/?(iillirr}lealrfilxifggzllt b

Concept dataset to predict outputs patterns from an unlabeled performing actions and y

given inputs dataset observing rewards
Example Regression Clustering

P Bressio Dimentionality reduction Control
tasks Classification .
Anomaly detection

Dataset Labeled dataset Unlabeled dataset No dataset
Feedback Immediate feedback No feedback Delayed feedback

Figure 2.1: Main categories of Machine Learning

2.1.1 Definition and main components of RL

RL can be defined as a learning technique, in which an agent interacts with its
environment, and uses feedback from the environment to determine the best possible
action to maximize a defined reward [78]. This learning technique is inspired by
neuroscience and how the human brain works [79]. An RL framework is consisted of

4 different components shown in Figure 2.2, each component is explained below:

* State: State is a numerical representation of the current condition of an
environment, that is designed to provide relevant information to the decision to
be made. Talking about HVAC control, the state can include current indoor air
temperature, and predicted outdoor air temperature over the next timestep, that can

help the controller to make a better decision [80].

* Action: Action is the decision made by the controller to be performed on the
environment. In an HVAC control problem, the action can be the indoor air
temperature setpoint, turning ON/OFF a heating system, or adjusting fan speed

[80].

» Environment: Environment is the system to be controlled. It can be represented
by two mathematical functions. The first function is Transition probability, which

determines what would be the next state of environment s, if the action a; is
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performed when the environment is at state s,. In other words, it is mapping the
state and action of the current time step to the state of the next time step [80]. The
second function is the Reward function which determines the immediate reward of
taking action a; when the environment is at state s;. It is therefore a mapping from

states and action to the reward.

» Agent: Agentis the learning controller, which tries to find optimal policy (7), which
outputs an optimal control action for each state of the environment. The objective
of an RL agent is to maximize the total future reward after a series of states and

actions. How the agent learns the optimal policy is dependent on the RL algorithm.

An important assumption in RL is that this sequential decision making process is a
Markov Decision Process (MDP). MDP states that the future state s;; is completely
decided by the current state s;, and is independent from the previous states s;_1, S;_o,. . ..
This means that the agent can select next optimal action only having the present state,
without the need to remember the whole history [81]. To hold the markovian property,
the state vector should be properly designed to include all necessary information for the
agent to decide the next optimal action. Even a good algorithm can fail if some pieces of
important information are not included in the state vector. The state vector can include
the value of a parameter over a few previous timesteps (look-back vector) or the predicted
value of a parameter over a few next timesteps. On the other hand, including more
parameters in the state vector increases the computational effort and learning time for the
agent, which is known as the curse of dimensionality [80]. Therefore, there is a tradeoff
in the design of the state vector. The state vector should include necessary information,
with minimum number of parameters. Some methods are proposed to include more
information while avoiding curse of dimensionality. For example, Ruelens et al. [82]
used an autoencoder to compress ten previous indoor air temperature and control signals
data into 6 hidden states. Investigation of pre-processing methods to compress a long state

vector can be a topic of future studies on RL-based building control frameworks.

The curse of dimensionality also includes in the selection of possible actions. A large
number of possible actions can over-complicate the decision making for the agent. A
building control problem can include many components (several fans, pumps, valves,
etc.) that increases the number of required actions to be included. A possible method
to avoid including many actions is to integrate RL. with conventional control methods,
where the RL acts as a supervisory control and conventional control directly controls the
system. An example is to use the RL for activating or deactivating a conventional control
method used to track the selected setpoint (DeepValve control framework in this study).
In this integration, the adaptive potential of the RL is combined with the robustness of the

conventional controls.
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Figure 2.2: Reinforcement Learning in a nutshell

2.1.2 Different taxonomies of RL algorithms

RL includes a wide variety of algorithms, that can be categorized based on different
criteria; therefore, there are multiple taxonomies for RL algorithms. The main taxonomies

of RL are discussed below and summarized in Figure 2.3.
Model-free RL VS Model-based RL

Depending on whether the agent has access to the model of the environment or
not, the RL algorithms can be divided into model-based or model-free methods. In
model-based methods, the model of the environment, which includes the transition
function p(s,11]|s:, a;) and reward function r(s;, a;), is either given to the agent or should
be learned by the agent prior to controlling the environment [80]. This model can be
a data-driven or a physics-based model. In model-based RL, the agent knows how the
environment will respond to the performed actions and can plan accordingly, which in turn
improves the data efficiency of the RL framework [83]. However, developing or learning
an accurate model of the environment is time-consuming and requires expertise and labor
work [84]. Also, a once accurately developed model of a system can become inaccurate
over time due to, for instance, renovation or aging of the system [85]. Model-free RL,
on the other hand, does not rely on any model and learns the optimal control policy from

interaction with the environment and observing the feedback from the environment [80].
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If a model of the environment is available, there are alternative methods such as MPC that
can be used. One of the main advantages of RL over alternative control methods is the
fact that the RL agent can learn how to control a system from scratch without any prior
knowledge, eliminating the cost and effort for model development and providing a higher
level of adaptation to the changes [74]. Due to this reason, model-free RL is far more
popular than model-based RL [40, 41, 74].

Value-based RL VS Policy-based RL

RL algorithms can also be classified based on the optimization process to generate the

optimal action. Before explaining this categorization, a few terms should be explained.

* Policy IIy(als): Is mapping function from state to action. This mapping function

can be a neural network with parameters of 6.

* Return (G,): Is the total summation of discounted rewards, presented in Equation
2.1.

Gy =Ry +YRip2 + ... = Z’Yth-i-k-'rl 2.1
k=0

In which + is used to reduce the importance of future rewards with respect to the

immediate rewards, which is usually desired in practice.

* Value function: There are two types of value functions: State-value function, which
measures the goodness of a state as shown in Equation 2.2 or state-action-value
function which measures the goodness of performing action a when the

environment is in state s, as represented in Equation 2.3.

VTr(S) = Eﬂ—[Gt|St = S] (22)

Qx(s,a) = E;[G{|S; = s, Ay = a (2.3)

Given these definitions, value-based RL methods aim to learn the value/state-value
function to determine the optimal action. For example, Q). (s, a) can be represented by
a neural network, taking s vector as input and calculating the Qualue of each action
as the output. Then, the action with the maximum expected Qualue is selected as the
optimal action. On the other hand, policy-based RL methods aim to directly learn the
parameters of the policy function my(a|s). The policy function can be a neural network
with parameters 6, taking s vector as input and generating the optimal action a as the
output. On the overlap of these two categories, there is the actor-critic method which

learns both value-function and policy-function. The value-based methods are suitable
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for problems with a discrete action space while policy-based methods are suitable for
problems with a continuous action space. Value-based methods are more data-efficient

and less sensitive to hyper-parameters [86].
On-policy RL VS Off-policy RL

The RL algorithms can be categorized based on how the data required to update the
policy are collected. The policy that is followed to take actions is called behavior policy,
and the policy that is used to determine optimal action is called target policy. If the policy
is updated based on the latest generated data, and that policy is then used to generate
new data, then the behavior policy and target policy are the same. These kinds of RL
algorithms are called on-policy. In other words, in on-policy RL, the same policy is used
for data (experience) generation and action selection. However, the algorithm can collect
experience data in a buffer, and periodically select some of the collected data to update the
behavior policy. Therefore, the behavior policy is updated periodically and the data used
to update the behavior policy are not necessarily the latest data. Therefore, the behavior

policy is not the same as the target policy. These algorithms are called off-policy.
On-policy RL: Behavior policy=Target policy
Off-policy RL: Behavior policy # Target policy
Online RL VS Offline RL

If the behavior policy is used to directly interact with the environment and generate
data, that is then used to update the target policy, the RL algorithm is an online RL.
Another approach is when the RL agent does not have access to the environment to
interact with and to collect the new data from, and, instead, it is provided with a fixed
dataset of transitions to learn the optimal policy. This approach is called offline RL, and it

follows a similar training principle of supervised learning.
Online RL: Behavior policy used to generate data
Offline RL: There is no behavior policy

The four explained taxonomies are summarized in Figure 2.3. It should be noted
that these 4 categories are not exclusive, for example, an algorithm can be off-policy,

model-free, offlie, and value-based.
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Off-policy On-policy
No Yes
Is the behavior policy
the same as the target
policy? Value-based
Value-
function,
Model-based
Yes
Does the agent have . Does the agent learn
Reinforcement g e
access to a model of ——— Learnin: ——— the value function or Actor-Critic
The environment? 8 the policy function?
Model-free No

Policy-
function

Can the agent
interact with the
environment for

training?

Policy-based
No Yes

Offline Online

Figure 2.3: Different taxonomies of Reinforcement Learning algorithms

2.2 Introduction to Double Deep Q-Learning

What is Q-learning?

What is Deep Q-learning?
What is Double Deep Q-learning?

This section provides the required theoretical understanding of the double deep
Q-learning, which is a value-based RL method used in this study. To understand this
method, first, the concept of Q-learning is explained, then the deep Q-learning method
is described and the limitation of this method is explained, and, finally, the double deep
Q-learning method is explained, which is meant to solve the limitation of simple deep

Q-learning method.
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2.2.1 Q-learning

Q-learning, as the name implies, is about learning the Q(s;,a;) function. Q(s,ay)
function is the value of performing action a; when the environment is at state s;. This
value function tends to combine the immediate and long-term impact of performing action

a; into one single value. Equation 2.4 represents the Q function.

Q(st,ar) = (8¢, a, Sev1) + 7. maz,Q (841, a) (2.4)

When the environment is in the state s;, by performing the action a;, the environment
transits to the next state s, . Since the agent observes these transitions, the immediate
reward 7(s;, a;, S.+1) can be directly quantified. But the Q function also needs to evaluate
the goodness of the performed action over a long time. When the environment transits
to s;11, the long-term effects of the performed action are not observed, and the only way
to somehow estimate these long-term effects. The long-term goodness of the performed
action is estimated by asking how good the new state of the environment s;; is. The
goodness of this new state s;; can be measured by calculating the Q value of all possible
actions in the new state and taking the maximum maz,Q(s;+1,a). Depending on the
relative importance of the long-term rewards versus the immediate reward, which depends
on the problem, the long-term reward is multiplied by a discount factor y € [0, 1] to adjust

its importance relative to the immediate reward.

Different Q-learning methods are all about how to learn this Q-function, which is
used to select the best action. To gain a better understanding, we start by explaining
the traditional learning methods and follow the evolution of methods to the double deep

Q-learning method used in this study.

2.2.2 Tabular Q-learning

The most traditional way of learning Q-function is called tabular Q-learning. In this
method, the discretized states and actions are sorted as the columns and rows of a table,
as shown in Figure 2.4 The value of performing action « in state s is the intersection of

the state and action in this table.

a az as a,
S1 1 4 3 6
Sy 2 7 10 4
S3 3 10 8 12
Sy 15 9 7 6

Figure 2.4: Tabular Q-learning example
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The learning process starts with initializing the Q values in the table by some guessed
values. After performing the action a; when the environment is in the state s;, the
immediate reward 7(s;, at, s¢+1) is observed. The future reward maz,Q(s;41,a) is also
calculated by looking at the row of the next state s;; and taking the maximum value
of all possible actions. The Q value of the state s; and action a; is calculated by the
Equation Q function and replaces the previous value. This process continues, and after
many interactions, the Q values converge to the true values. While this process is simple
and easy to be implemented, it is limited to environments with discrete states and actions.
For continuous states, discretization of states will result in a high dimensional table which

is not efficient for learning.

2.2.3 Deep Q-learning

Since tabular Q-learning is not efficient in dealing with high dimensional or continuous
states, an alternative is deep Q-learning. In deep Q-learning, a Neural Network is used
for mapping states to Q-values. In this method, a neural network takes the states as the
inputs and estimates the Q value of each action at that specific state. To train this Neural
Network, the estimated Q value of each action should be compared with a ground truth

value. The ground truth value is calculated as Equation 2.5.

Q* (s, at) = e + y.max,Q(si41, a) (2.5)

The ground truth Q value is composed of two terms, immediate reward r; and the
discounted future reward v.max,Q(s;+1, a). The immediate reward is directly calculated
after taking action on the environment and observing the next state. But similar to the
tabular Q-learning, the future reward cannot be directly calculated and should be somehow
estimated. Deep Q-learning also follows a similar method to tabular Q-learning for
estimating future rewards. In this method, the same neural network that was used to
estimate the Q value at the state s; (with the same parameters § that were used to estimate
Q(s¢, a4)) is also used to estimate the Q value of all actions over the next state s;,1. Then,
the maximum of these Q values is used as an indicator of the future rewards. The ground
truth value is therefore composed of the actual reward observed by performing an action
and the discounted future reward estimated by the same Neural Network. Having the
estimated Q value Q)(s¢, a;) and the ground truth Q value Q*(s;, a;), the typical training
process of Neural Network is used to minimize the loss function and update network
parameters 6. The loss function used to train the Neural Network is shown in Equation
2.6.

Ul(sy,ar) = %[Q(Sta ar) — Q" (s¢, at)]2 = %[Q(St; ap) — [ry +v.max,Q(se41, @)]]2 (2.6)
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This training process of deep Q-learning is visually presented in Figure 2.5 (a). A
potential issue with this method is that the estimated Q value (Q(s;, a;)) and part of the
ground truth Q value (y.maz,Q(st11,a)) are calculated with the same Neural Network
(same parameters #). Therefore, the estimated and ground-truth values can move in the

same direction. This can, in turn, result in the overestimation of the Q value [87].

2.2.4 Double Deep Q-learning

To solve the overestimation issue, an alternative method is introduced, which is called
double deep Q-learning. In this method, two neural networks are used, one for estimating
the Q value (Q(s¢, a;)) known as the main network, and the other for estimating the
future rewards (y.maz,Q(si+1,a)) known as the target network. The parameters of
the main network are continuously updated, but the parameters of the target network
are periodically updated based on the parameters of the main network. Therefore, the
network used to calculate the estimated Q value and the ground truth Q value are different.
This is known to provide better stability and solve the issue of overestimation. The
process of training a double deep Q-learning is visually presented in Figure 2.5 (b).
Further details about Double Deep-Q learning method are available in the publication

by Marszal-Pomianowska et al. [88].
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DeepHot: An occupant-centric control

framework for hot water systems

Actions (A) Stochastic environment
* Heat pump ON

© Heat pump OFF

Heat pump Legionella bacteria

Variating efficiency Complicated growth
Occupants

Highly stochastic

behavior

v

Reward (R)
o Energy

o Comfort

o Hygiene

Agent
(controller)

Outdoor temperature
Stochastic

Hot water tank
Variating temperature

States (S)
o Current
o Look-back

Figure 3.1: DeepHot control framework in a nutshell

3.1 Abstract

Occupants’ behavior is one of the most significant sources of uncertainty for optimal
scheduling and operation of building energy systems. Consequently, the conventional

control method of water heating systems follows a conservative operational approach
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to ensure the occupants’ comfort regardless of their stochastic behavior. Due to the
conservative operational approach, the energy use for water heating has not changed
significantly over the past decades and can reach up to 70% of total energy use in
modern buildings with low space heating demand. This study introduces a control
framework based on Reinforcement Learning, which can autonomously learn and adapt
to the stochastic occupant behavior and environmental conditions to ensure a balance
between water hygiene, comfort, and energy use in water heating systems. To ensure
transferability, a model-free approach is implemented. Also to achieve a fast convergence
while being model-free, an off-site training stage integrating a stochastic hot water use
model is included in the training methodology. As the second step, the control framework
is implemented on an actual hot water use dataset collected over 29 weeks from a
residential house in Switzerland. The performance of the proposed control framework
is compared to the conventional rule-based controller that is commonly used in hot water
systems. Despite the unusual hot water use behavior of occupants during the COVID-19
pandemic, results indicate that the proposed control framework could successfully learn
and adapt to the occupant behavior and achieve 23.8% energy saving while maintaining
the occupants’ comfort and water hygiene. The adaptive nature of the proposed control
framework provides a significant potential in reducing the discrepancy between supply

and demand in hot water systems.

3.2 Introduction

Despite the improved efficiency of water heating systems, the energy use for hot water
production has not changed considerably over the generations of buildings [89], while
the energy use for space heating and cooling has reduced significantly. Consequently, the
share of hot water energy demand in the total heat requirement can be up to 70% of total
energy use in modern low energy buildings [90]. The hot water systems not only account
for an increasing share in the building energy demand, but also they can provide several
other potentials to the building energy system. Some examples are renewable energy
integration [91, 92], demand response scenarios [93], and load shifting [94]. Thus, hot
water systems are increasingly becoming a vital factor for efficient energy management

in buildings.

Hot water usage in households is strongly correlated with Occupant behavior [95],
which is highly stochastic, differs from building to building, and varies over time in
the same building [96, 97]. Consequently, the highly stochastic nature of hot water use
behavior is a major challenge for developing energy-efficient control methods for hot
water systems. Due to this challenge, conventional control methods follow a conservative

approach to make sure enough hot water is available whenever it is required. The most
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conventional control method for hot water systems is a rule-based control, also known
as the two-point control, in which the hot water system is switched ON when the tank
temperature is below a lower threshold (usually 65 °C) and is switched OFF when the
tank temperature is above a higher threshold (usually 75 °C) [97, 98]. Although it is a
simple and easy-to-use controller, it is static and detached from the Occupant behavior,
and therefore energy-intensive due to over-preparing hot water. A more advanced control
method is the Model-Predictive Control (MPC) in which the predictions of stochastic
phenomena such as renewable energy availability and environmental conditions can be
used for optimal operation of energy systems in the built environment [99]. Predictions of
Occupant behavior can also be integrated as another stochastic parameter in the MPC
control framework. However, as there is no physical model for Occupant behavior,
either stochastic models or data-driven models should be used. Stochastic models are
usually developed based on the data of several buildings of a specific type and, therefore,
mimic the hot water use behavior of these specific buildings [100]. However, the hot
water use behavior of the target building can be very different from the buildings used
to generate stochastic models. Besides, the hot water use behavior of occupants can
change over time, for example, by the change in occupancy due to special situations
such as COVID19-imposed home office working. On the other hand, data-driven models
are usually based on supervised learning, which can learn the hot water use behavior
of a specific building by using data collected from the same building to predict the
future demand [97]. However, training of a supervised learning model requires enough
historical data of hot water demand, which limits its application to buildings with an
existing dataset. In addition to the difficulties to predict Occupant behavior, MPC requires
an accurate model of the system, which is time-consuming to develop and needs to be
updated (tuned) for every other system with different parameters [101]. Furthermore, an
accurately developed model could become fairly inaccurate over time due to the aging
or renovation of the water heating system, and subsequently sub-optimal policies would

continue to be executed because of the obsolete dynamic model [102].

Given the importance of occupant behavior in the energy use of buildings, an ideal
control system should be able to integrate the stochastic occupant behavior into the control
loop [103]. With recent advances in the Internet of Things (IoT) technologies (cheap
sensors and microelectronic boards, efficient online platforms, etc.) on the one hand
and vast progress in Machine Learning methods on the other hand, the implementation
of new control systems utilizing occupants-related data looks ever more realistic now.
Reinforcement Learning (RL) has recently gained increasing interest as a data-driven
control method for the built environment, as it can continuously adapt to the stochastic
occupant behavior, the time-varying environmental conditions, and the system aging with

no need for a rigorous mathematical representation of the system [104]. Subsequently, RL
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potential has been demonstrated for various applications in the built environment, such as
optimal control of space heating and cooling [105], lighting [106], windows [107], air
handling units [104], solar energy integration [108] and water heating systems [102].

A very common application of RL in the built environment is to optimize the control
of indoor air temperature. In these studies, the agent usually tries to balance the energy
consumption and occupants” comfort. Brandi et al. [109] proposed a double deep
Q-learning framework for optimal control of indoor air temperature using a water-based
space heating system in an office building. In this study, two important aspects of RL are
discussed in detail, which are the design of state-space, and the comparison of static versus
dynamic deployment. In the static deployment the learning process of the agent only
happens during the training phase, while in the dynamic deployment the agent continuous
to learn during the deployment phase. While the dynamic approach may enhance the
performance, it requires more computational resources. Zou et al. [104] developed an
RL framework for optimal control of air handling units. The agent tries to minimize the
energy consumption while preserving the comfort of occupants quantified by Predicted
Percentage of Discomfort (PPD). To represent the system, Neural Network models of air
handing units were developed using two years of operational data recorded by the building
automation system. The application of RL for occupant-centric control has been mostly
focused on indoor air temperature control, and little attention has been paid to the other
domains of occupant-building interaction. Park et al. [106] investigated the application
of RL for occupant-centric control of lights in offices. The agent tried to balance visual
comfort and energy consumption. A device called Lightlearn was specifically developed
for the experiments to allow both manual and automatic switching of lights. This allows
monitoring the interactions of occupants with the lighting system over the learning phase.
Han et al. [107] proposed an RL framework to optimize window opening/closing. The

agent in this case tried to make a balance between thermal comfort and indoor air quality.

Performed literature review shows that very few researchers have addressed the
application of RL in hot water systems. Kazmi et al. [102] proposed a model-based
RL control framework to balance comfort and energy use in heat pump water heating
systems. In particular, they used a model-based heuristic method that incorporates
the storage tank state and occupant hot water use behavior into the optimal control
problem. The models for heat pump, storage tank, and occupant behavior prediction
are probabilistic data-driven models that are trained with historical data. In another
study, Kazmi and Ali [108] proposed an RL framework based on deep Q-learning for
optimal operation of photovoltaic-assisted domestic hot water production systems. The
proposed framework tried to maximize the self-consumption of photovoltaic panels by
shifting the consumption into the production period. Correa-Jullian et al. [110] evaluated

the application of tabular Q-learning for the optimal operation of a heat pump water
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heater integrated with the solar thermal panels and heat recovery chiller. The proposed
framework tried to determine the operational schedules of the solar field and heat recovery
chiller to make a balance between energy efficiency and comfort indicators. Table 3.1
presents a summary of the above-mentioned and few other studies that have investigated
the application of RL on different aspects of the built environment.
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This literature review on the application of RL in water heating systems identified the

following limitations:

* Model-based: Most of the studies have relied on the modeling of the system and
predictions of occupants’ behavior. Although modeling of the system increases the
data efficiency as the agent does not need to learn the system model from scratch,
it reduces the transferability of the control framework to the other buildings, poses
a risk of model inaccuracy and predictions error, and increases the computational
load [118].

* Hygiene aspect: The risk of Legionella growth is not integrated into any of the
proposed frameworks, while it is an essential issue to be considered in the optimal
operation of hot water systems. Energy-saving efforts by lowering hot water tank
temperature can result in a higher risk of Legionella. For instance, the increasing
number of Legionella infection cases in Switzerland has elaborated the Legionella
control efforts [119]. Subsequently, ignorance of the hygiene aspect will limit the

widespread implementation of a control framework.

* Direct implementation on the target building: At the beginning of the learning
phase, the agent does not have enough experience with its environment and can
perform non-optimal actions causing user dissatisfaction. However, the previous

studies have directly started the learning process on the target houses.

The highly adaptive nature of RL makes it a great choice for hot water systems where
the occupant behavior plays a vital role. Currently, there is limited knowledge and practice
on the use of RL-based controls for hot water systems. The aim of this research is to fill the

knowledge gap by developing an RL control framework with the following main features:

* Model-free: It does not require a complex thermodynamic model to represent the
actual system. Rather, it learns the system and occupant behavior through the
interactions with the environment. Therefore, the controller can be implemented
to the systems with no prior knowledge of affecting parameters such as heat pump
capacity, tank size, efficiency, number of occupants, etc. This feature significantly

improves the transferability of the proposed framework to different buildings.

* Off-site training: A drawback of the model-free approach is a long learning period
as the control framework needs to learn the models from scratch. To reduce
the learning period without relying on any model, this framework includes an
off-site training stage where an agent gains prior knowledge in the safe simulation

environment before implementation on a target building. Over the off-site training,
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a stochastic model is integrated into the framework to mimic the occupant hot water

use behavior.

» Hygiene supervision: The hygiene aspect of the hot water tank is also included in
the framework to make sure that energy-saving efforts by the agent do not increase
the risk of Legionella growth. The agent should learn to regularly overheat the tank,
taking into account the demand profile, to eliminate the bacterial growth in the tank

while saving energy.

* Double deep Q-learning: All the reviewed papers on hot water systems with
model-free methods either have implemented tabular or deep Q-network. However,
it is known that both methods can overestimate the value of an action and continue
to generate a non-optimal policy. The proposed framework in this research is based
on double deep Q-learning, which is known to solve the issue of overestimation
[120].

This research addressed a novel research topic on occupant behavior-centric building
design and operation, which is the focus of a current research project of the international
energy agency (IEA-EBC Annex 79) [103].

3.3 Methodology

Reinforcement Learning (RL) is a machine learning method in which an agent learns
to choose an optimal action at each state of the environment to maximize a reward
over time. Through interactions with the environment and learning from mistakes,
the agent becomes increasingly more intelligent at decision-making under uncertainty.
As shown in Figure 3.2, at each time t, the agent receives the current state of the
environment (S;), then chooses an action (A;) from a set of possible actions. Caused by
this action, the environment moves to a new state (S;, 1), and the agent receives a reward
(Ry+1) that indicates the goodness of the performed action. This transition experience
(S, Ay, Spiq, Ryyq) is then stored as a single experience in the memory to be used for

training the agent.

The goal of an RL agent is to maximize the sum of the discounted future rewards,
known as the return function defined by Equation 3.1. The RL agent not only takes into
account the immediate effect of performing an action but also considers the discounted
future impact of the action. This feature makes it suitable for thermal systems with a slow

response time due to their thermal inertia.

R=) 4R, (3.1
t=0
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ﬁ ﬁ
Agent Environment

L

Figure 3.2: Interactions of agent and environment in a Reinforcement Learning
framework [121]

The most common method of RL is deep Q-learning [106] in which a neural network
takes the state of the environment as the input and estimates the value of performing each
action as the outputs. In the conventional deep Q-learning method, the action value is

calculated based on Equation 3.2:
Q(Si, A¢) = Riy1 +ymaz,Q(Sit1, A) (3.2)

in which Q (S, A;) is the value for the pair of S; and A;, R is the immediate reward,
7 is the discount factor and maz, Q(S:i1, Ar) is the estimated maximum value for the
next state which shows how good is the next state. Therefore, in this method, estimating
the value of performing an action in the current state relies on estimating the value of the
next state using the same network. It is indicated that this initial estimation of Q-value
can result in an overestimation and selecting non-optimal actions by DQN. To solve this
issue and also provide better stability over the training phase, in 2015 Hasselt et al.
[122] proposed Double Deep Q-Network (DDQN). In DDQN, the term Q(S;;1, A) in
Equation 3.2 is calculated using another neural network (called Target Network) which
its parameters are updated based on the main network but with less frequency. Since the
DDQN method solves the problem of overestimation by conventional DQN, the control

framework is developed based on the DDQN method in this work.

3.3.1 State, action, and reward design

Proper setup and sufficient training are two key factors to obtain a good performance in
RL. State vector should provide enough information to the agent for decision making.The
reward function also should be properly formulated to impose the desired balance between

the contrasting objectives when it is minimized. While the state vector should include
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enough information, a high dimensional vector should also be avoided as it can increase

the error and computational time. Figure 3.3 shows the state and action at a time step.
State

At each time step (indicated by the “current time” in Figure 2) the state vector includes

the following elements:

* M previous hours of demand intervals: The agent needs to learn the hot water
use behavior of the occupants to make the right decision that ensures the occupants’
comfort. Several studies have shown that an array with a sequence of previous
demands is the best feature for predicting future demands [92, 97, 123, 124]. To
include the previous demands in the state vector, the demand data is converted into
the demand intervals of 5 liters (e.g., a demand of 3 liters is in the first interval
and therefore would be 1). Considering that the effect of demands within the same
interval on the tank temperature is almost the same, categorizing the continuous
demand data into intervals makes it easier for the agent to learn the demand pattern.
An array including the demand intervals over the M previous hours is included in

the state vector. A sensitivity analysis is done to select the proper value of M;

* N previous hours of ambient temperature: As the outside air temperature affects
the heat pump Coefficient of Performance (COP), the agent should be able to learn
the outdoor air temperature and shift the heating schedules as much as possible to
the hours with higher ambient temperatures. Similarly, N previous hours of the
outdoor air temperature are also included in the state vector to enable the agent to

learn variations of ambient air temperature;

* Storage tank temperature 7;,,.,.: The current tank temperature is also included
in the state vector to inform the agent how much energy is currently stored in the
tank;

* Hour of the day: Studies show that the hot water use behavior is highly correlated
with the time of the day [92, 97, 123, 124]. To further assist the agent to predict the
upcoming hot water demand, the upcoming hour (for which the decision is going

to be taken) as an integer between 1 to 23 is included in the state;

* Type of the day: Studies highlighted that the hot water use behavior of the working
days are similar to each other and different from the weekends [97, 123]. Therefore,
the type of the day is informed to the agent as 1 for working days and O for

weekends.

Actions
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The decision to be taken by the agent is whether to turn ON or OFF the heat pump for

the upcoming hour. Including a limited number of actions can reduce the learning time

significantly.
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Figure 3.3: Representation of state and action design at each time step
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The reward function is defined in Equation 3.3, which includes the competing terms

R

multiplied by coefficients to weigh the importance of each term.

(3.3)

In this equation, P, is the electricity consumption of the heat pump (kWh), T}, is the
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storage tank temperature (°C), and Hours from overheat 1 the total number of hours from
the last time when the tank was heated above 60 °C. The first term is called the Energy
term, which gives a negative reward to the agent proportional to the energy consumption.
The second term is called the Comfort term. The temperature of 40 °C is known as the
highest temperature that occupants may request after mixing cold and hot water at the end
uses [98, 125, 126]. As the desired temperature differs for each fixture and can vary over
time [127], we considered 40 °C as a lower limit that can satisfy all the type of demands.
The comfort term gives a negative reward to the agent if water is supplied at a temperature
lower than 40 °C. As shown in Equation 4.12, when there is no demand, the comfort term
is excluded from the total reward. This allows the agent to save energy by lowering the
tank temperature when there is no demand predicated for a long time in future. The third
term is the Hygiene term, as a health-related term to make sure that the agent is aware of
the risk of Legionella growth in the tank and sterilizes the tank periodically. This term is
based on the recommendation to heat the hot water tank at least once a day at 60 °C for 11
min [98, 128]. Kenhove et al. [129] developed a model to quantify the concentration of
Legionella in the hot water system and integrated the model into a rule-based controller to
sterilize the tank when the concentration of Legionella bacteria in the tank is estimated to
be higher than a threshold. The resulted heating schedule showed that the tank was heated
above 60 °C once a day, which further confirms the validity of the recommendation in [98,
128]. To include the overheating rule in the reward function, the hygiene term counts the
number of hours from the last overheat and if it passes from 24 it gives a negative reward
proportional to the hours passed. Therefore, the agent needs to overheat the tank above 60
°C at least once a day to keep this term zero. The coefficients a, b and c adjust the relative

importance of each term.

3.3.2 Proposed sensing layout

The agent should receive certain data from the environment at each time step to extract the
required states and calculate the reward. To implement the proposed control framework
in practice, a set of sensors shown in Figure 3.4 should be installed on the heat pump.
An important consideration in developing the proposed framework is to rely on the
minimum required number of sensors, which in turn increases the economic feasibility
of this solution and reduces the probability of malfunctioning due to the fault of sensors.
Only four sensors are required to implement the proposed framework, including an air
temperature sensor to measure the temperature close to the evaporator, a power meter to
measure power use of the heat pump, a water flow sensor at the tank outlet to monitor hot
water use behavior, and a temperature sensor at the middle of the tank to monitor tank
temperature. The use of the temperature sensor in the middle of the tank is a conservative

approach to further ensure the occupants’ comfort. It means that the comfort limit of 40
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°C is considered for the middle part of the tank, while water at the tank outlet is at a higher

temperature. Thus, a temperature sensor at the tank outlet is not required.

In this study, the power and tank temperature sensors are considered in the energy
model of the system implemented in TRNSYS. The air temperature data from a nearby
weather station (downloaded from Agroscope, a competence center for agricultural
research in Switzerland [130]) is used in the TRNSYS model as the air temperature sensor
data. Hot water use behavior during the off-site training is modeled using a publicly
available stochastic model [100]. During the on-site training and test, the real-world
measured data from the case study building is used to represent an actual behavior. The
data collection layout to monitor the hot water use behavior of occupants is presented in

the case study section.

Shower

Bathroom faucet  Kitchen faucet

Evaporator

[ — —
~

§ T =} Flow sensor [1] Air temperature sensor

© — Water temperature sensor Power sensor
Hot water tank

Figure 3.4: Required sensors to implement the proposed framework in practice

3.3.3 Training and deployment

The proposed framework unfolds over three sequential stages, as shown in Figure 3.5.

» Off-site training: This stage aims to provide prior experience to the agent in
the lab (off-site) before being trained on the target building (on-site). This stage
is considered due to two main reasons: first and foremost, once the agent gains

prior experience with similar data, it will converge faster to the optimal operation
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policy on the target building. Secondly, it will reduce the probability of disturbing
occupants’ comfort over the on-site training phase. The RL agent during the
training should be able to directly interact with the environment and learn the
optimal behavior over the interactions. To provide these interactions, the transient
model of an air-source heat pump connected to a storage tank is developed in
TRNSYS. The agent model developed in Python (Tensorforce library) can send
actions to the TRNSYS model and receive back the next state and calculate the
reward function accordingly. Details of the agent-environment interaction are
discussed in the next sections. To simulate the environment, hot water demand
data and outdoor air temperature should also be provided to the TRNSYS model
of an air source heat pump. To provide the hot water demand data, a stochastic
hot water use model developed by Ritchie et al. [100] is used to generate 6 years
of hourly hot water use data. This stochastic model is recently developed based
on actual measurements from 77 households in South Africa. It was reported
that the simulated hot water profiles closely match the actual measurements and
were representative enough to be used for modeling the hot water use behavior in
residential households [100]. The outdoor air temperature data is provided collected
from a nearby weather station (from Agroscope). To improve the transferability of
the framework over Switzerland, for each year of the off-site training phase the
outdoor air temperature of a different city is used in the TRNSYS model. Six
different Swiss cities are selected as shown in Figure 3.6. Cities are selected from
the north, south, east, west, and center of the county to ensure that the agent gains
experience with different climatic conditions of the country and can adapt quickly

when implemented across Switzerland.

On-site training: After gaining prior knowledge in off-site training, the agent
needs to learn the specific system characteristics and occupant behavior in the target
building. Accordingly, a training period on the target building is also necessary to
obtain an optimal control performance. Twenty-seven weeks are considered for the
on-site training to ensure that the agent will have enough time to adapt to the target
household. The duration of 27 weeks is considered as a conservative choice because
it is expected that the agent will converge in a shorter time. The minimum required
duration can be selected by observing the variations of reward value. A sufficient
on-site training period will ensure that the agent has obtained enough experience
with occupants’ behavior in the target house. Similar to the off-site training, the
target system is modeled in TRNSYS to enable the interactions with the agent.
However, it should be noted that the role of the TRNSYS model in this stage is
different from the off-site training. In this stage, the TRNSYS model represents the

target system, while in the off-site training it is a part of the framework to train the
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3.34

model before being implemented on the target system. Therefore, the parameters of
the model used in this stage are different from the off-site training. To represent the
actual hot water use behavior of occupants, the demand data at this stage is based

on the measurements from the target house, as described in the case study section.

Deployment: Over the training stages, the agent is both controlling the system
and learning from its mistakes to improve its policy. Over the deployment stage,
however, the agent is no longer learning but only controlling the system. The
deployment stage needs much less computational power. Therefore, the agent can
be implemented on an inexpensive single-board computer (such as a Raspberry pi)
embedded in the heat pump. To test the performance of the proposed framework,
two weeks of deployment is considered in this study using the actual data of hot

water demand and outdoor air temperature of the target house.
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Figure 3.5: Different stages of the proposed framework
Agent setup

The agent model is developed in Python based on the Tensorforce library [131], which

provides very customizable classes for modeling the agent and environment. Table 3.2
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Figure 3.6: Location of the selected cities to use their temperature data in off-site training

shows the selected hyper-parameters after tuning. One of the important aspects of training
an RL framework is the trade-off between exploration and exploitation. To maximize the
rewards, the agent should select actions that are expected to achieve a higher reward in
that state, which is called exploitation. On the other hand, it is desired that the agent also
performs the actions that have not been experienced before in that state, which is called
exploration. One of the well-known methods to balance the exploration/exploitation
trade-off is the € — greedy method, in which a small probability of ¢ is specified and agent
performs exploration when a random number would be higher than €. In this study, it is
desired that the agent only performs exploration during the off-site training phase because
the execution of random actions on the target house can disturb the occupants and reduce
their satisfaction. Therefore, a linear decay is established for exploration, where the ¢
linearly decays from 0.9 to 0.001 at each time step over the first two weeks. The update
frequency is set as 12 hours, so the agent updates its policy two times a day. The memory

size is also considered as 20 weeks to keep enough history of occupant behavior.

3.3.5 Environment setup

An air-source heat pump connected to a storage tank is simulated in TRNSYS to represent
the environment. The heat pump evaporator is placed outdoors to evaluate the agent
adaptability in a more complicated situation where the COP varies with the outdoor air
temperature. The proposed framework without any change can also be used when the
evaporator is located indoor, which is easier for the agent to control. The parameters of

the models used in off-site and on-site training are different. This is because the model
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Table 3.2: Specifications of agent

Parameter Value

Type Double deep Q-network
Number of layers 2

Number of nodes in each layer 64

Nodes type Dense
Activation function tanh
Learning rate 0.0003
Batch size 24

Update frequency 12
Exploration Linear decay
Memory size 3360

used in off-site training is a part of the framework, while the model used in on-site training
is representative of the actual system. Using different model parameters for off-site and
on-site training (as listed in Table 3.3) can further highlight the transferability of the
proposed control framework.

Table 3.3: Main parameters of TRNSYS model

Parameter Off-site training model On-site model
Heat pump total cooling capacity 1.5 1.8

(kW)

Heat pump sensible cooling 1.36 1.63
capacity (kW)

Heat pump compressor power (kW) 0.5 0.6

Heat pump heat rejection rate (kW) 2 24
Storage tank volume (liters) 300 350
Thermal conductivity of the walls 0.7 0.7
(W/m.K)

3.3.6 Agent-Environment interaction

At each time step, the agent should be able to perform an action on the simulated
air-source heat pump and receive back the next state to calculate the reward. A Python
function is developed to make it possible. This function can run the TRNSYS simulations
from Python using the desired parameters. This function makes it very easy to automate
repetitive simulations that is needed in this study. As illustrated in Figure 3.7, at the first
time step the interactions start with the “Reset ( )” function that outputs a pre-defined
initial state to start the process. Based on the given state, the agent selects an action and

performs it on the TRNSYS model. This represents moving one step forward over time.
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Figure 3.7: Flow of information during the interactions between the agent and
environment

At each step, the outdoor air temperature and hot water demand of that specific hour are
imported to the TRNSYS model from a dataset. The TRNSYS simulation is performed
for a time-step of one hour. This simulation timestep outputs the state parameters and the
additional parameters required for calculating the reward (such as the power use over the
last hour). If the episode is not ended, the state is given to the agent to choose the next

action. The episode length is set as 168 hours (1 week).

3.3.7 Baseline controller

The performance of the proposed framework is compared to a rule-based (two-point)
controller, which is the most common control approach for with-tank water heating
systems. The two-point controller turns ON the heat pump when the tank temperature falls
below 65 °C and turns it OFF when the tank temperature exceeds 75 °C. The set-points

are selected based on the common practice [96].

It should be noted that the user adjusts the desired flow and temperature at the end-use
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by mixing hot and cold water streams. Consequently, if hot water is supplied with a
higher temperature, the user would mix a lower flow rate of the hot stream with a higher
flow rate of the cold stream to achieve the desired flow rate and temperature after mixing.
This should be considered in the comparison between the proposed and baseline control
framework. To do so, it is assumed that both cases need to provide the same flow rate
after mixing, with the same desired temperature of 40 °C. Considering the cold water
temperature of 10 °C the required flow rate of hot water to produce the desired water flow
at 40 °C after mixing is calculated at each time step based on the supply temperature of hot
water. In other words, it means that if a control method produces hot water with higher

temperature, the supply flowrate will be lower accordingly.

3.3.8 Case study description

To monitor the actual hot water use behavior of occupants, a detached residential building
in Switzerland is selected as the case study. The family living in this house is composed
of two adults and three children. The hot water demand of this family is monitored
for 29 weeks, from 28 August 2020 until 19 March 2021. The monitoring campaign
is coincident with the COVID-19 pandemic. Consequently, occupants’ schedule and hot
water use behavior have been different from the typical weeks before mid-March’2020.
To further evaluate how the occupancy schedule and hot water use behavior have been
changed over the pandemic, survey responses about the occupancy are collected at the end
of the monitoring campaign. The typical daily presence of occupants before and during
the COVID-19 pandemic is shown in Figure 3.8 and Figure 3.9, respectively. As can be
seen in Figure 3.8, before the COVID-19 pandemic most of the occupants used to leave
home around 8 A.M. and come back around 6 P.M., which follows a typical occupancy
pattern expected for a residential building. On the weekends, the occupants typically
used to stay at home. However, as shown in Figure 3.9, during the COVID-19 pandemic
(and therefore during the monitoring weeks) all the occupants used to work from home.
This will change the routine of hot water demand expected for a residential building
and can significantly increase the stochasticity of hot water demand. For example, the
occupants are more flexible with showering time than before. Figure 3.10 shows the
presence of occupants over different weeks of study. One of the children was present
only one week and the other one only 8 weeks during the 29 weeks of the monitoring
campaign. Varying the number of permanent occupants between 3 and 5 further increases
the stochasticity of demand in the case study. In the survey, a question was also asked
about whether the occupants’ hot water use habits have changed during the COVID-19
pandemic compared to the normal weeks or not. The occupants’ feedback shows that
their usage of kitchen and toilet faucets is increased both in frequency and duration. Their

showering frequency is reported to be the same as before, while its duration is reported
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to be longer. Therefore, both the stochasticity and amount of hot water use during the
pandemic have been different from the normal periods. This makes it harder for the agent
to learn and predict the occupants’ behavior. The outdoor air temperature of this case
study is also obtained from a weather station of Agroscope located about 200 meters

away from the building.
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Figure 3.8: Daily schedule of occupants before COVID-19 pandemic

3.3.9 Monitoring campaign

To implement the proposed control framework, the hot water use behavior can be
monitored using a single water flow sensor at the tank outlet, as shown in Figure 3.4.
In this research, a more comprehensive monitoring layout is implemented to monitor
the hot and cold water usage at each of the end-uses, such as shower, faucet, etc. This
detailed monitoring is not necessary for this framework but was implemented to collect
a more comprehensive dataset that can be used for other studies. There are particular
challenges with this kind of monitoring layout. First of all, sensors should continuously
work for several months while there is no plug available near to most of the end uses
and wiring in some places such as shower is not easy. Secondly, long-term data storage
using locally placed data loggers is expensive. Finally, a sensor placed in the shower
needs to be water-resistant (withstand high humidity and water splashes). To address all
these challenges, an IoT monitoring campaign was implemented with close collaboration

with Droople company, a startup company in Switzerland [132]. Figure 3.11 shows the
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Figure 3.9: Daily schedule of occupants during COVID-19 pandemic
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Figure 3.10: Presence of occupants over the weeks of monitoring campaign

data streaming architecture of the IoT sensors used in this research. A compact and
cost-effective hall-effect flow sensor is used to measure the flow and send pulses to the
hardware, called iLink. iLink is a board with a waterproof casing that works based on the
LoRaWAN, a low-power and wide area network designed to connect battery-operated loT
nodes wirelessly. This allows the iLink modules to monitor the hot water use behavior for
several months operating with a small battery. The data are then sent to the gateway, which
acts as a bridge between the LoORaWAN and WiFi networks. The gateway connected to a
power plug sends data to the cloud server for storing and monitoring in real-time. Figure
3.12 shows two examples of the installation of the sensors at the end uses. In total 11
sensors are installed, including one pair under the kitchen sink, 4 pairs under 4 faucets,

and 1 in the shower.
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Figure 3.11: Data streaming architecture from Droople IoT sensors for monitoring hot
water use behavior at each end-use

3.3.10 Implementation of the framework at the design stage or as a

retrofit

The proposed framework can be implemented both at the design stage of the heat pump
or as a retrofit to an existing heat pump water heating system. The only difference is
the communication of the action signal to the water heating system. Suppose the control
framework is going to be implemented at the design stage of the water heating system. In
that case, the action signal is an ON/OFF signal similar to the conventional controllers.
However, if the framework is going to be implemented as a retrofit to an existing water
heating system it should communicate to the existing controller. Most of the tank water
heating systems use a rule-based or two-point controller, as shown in Figure 3.13 (a). This
controller takes the temperature sensor readings as an input to determine the ON/OFF
signal for the heat pump. To retrofit the proposed framework, it might be desired not
to replace the built-in controller but to integrate the proposed controller to the existing
one to control the heat pump indirectly. In this case, the proposed controller should
simulate the sensor behavior as the input to the two-point controller to impose the desired
ON/OFF control action indirectly to the heat pump. As shown in Figure 3.13 (b), for the
temperatures in the “Hysteresis” range, the ON/OFF action of the two-point controller

is not only dependent on the current temperature but also on the previous temperatures.
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Figure 3.12: Installation of sensors at the different end uses: (a) a bathroom faucet (b) a
shower

However, if a synthetic temperature above the “Turn-off” temperature limit (indicated in
Figure 3.13) is sent to the two-point controller, this controller will certainly turn OFF
the heat pump regardless of previous temperatures. Similarly, for a synthetic temperature
below the “Turn-on temperature”, this controller will certainly turn ON the heat pump.
Accordingly, for a retrofit scenario the agent should be installed between the temperature
sensor and the two-point controller, as shown in Figure 3.13 (b). The agent then takes the
temperature sensor readings as an input and selects the optimal action. Then, it translates
the action to a synthetic voltage signal and sends it to the two-point controller to impose
an ON/OFF action.

3.4 Results and discussion

This section first discusses a primary analysis of the hot water use behavior during the
monitoring campaign and sensitivity analysis of the framework parameters to select the
best configuration for the framework. Finally, the detailed performance results of the

selected configuration are presented.

3.4.1 Evaluation of hot water use behavior of occupants during
COVID-19 pandemic

A better understanding of the routines in hot water use behavior helps properly design

the control framework, particularly to define the number of previous demands to be

considered in the state vector. Previous studies on residential buildings [97, 123, 124]

have shown that hot water use behavior of the weekdays are similar to each other and
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Figure 3.13: Integration of the proposed framework as a retrofit to the conventional water
heating systems: (a) a conventional two-point controller, (b) Integration of the proposed
framework into the conventional controller

different from the weekends. However, in this study the monitoring has taken place during
the COVID-19 pandemic, and the occupants’ schedule and habits have been different
from the “normal” behavior. Therefore, in this section the recorded hot water use data are
analyzed to better understand the Occupants’ behavior and the differences between the
pandemic period and the prior (normal) period described in the previous studies. Figure
3.14 shows the boxplots of hot water demand indicating how demand is distributed over
the weekdays and the day hours. For this diagram, all the non-zero demands are separated
and then categorized into days of the week (Figure 3.14 (a)) or hours of day (Figure
3.14 (b)). The average values over different days of the week are very similar, mainly
because the occupants have always been present at their homes (as shown in Figure 3.9).

The distribution of demands over the day hours indicates three peaks at 8, 10, and 21
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o’clock. This is while previous studies reported two peaks, typically between 6-9 and
18-22 o’clock over the day [97, 123]. This is mainly due to showering in the morning and
cooking or showering at the night. A third peak in the hourly average hot water demand

at 10 o’clock can be explained by the flexible schedule of occupants staying at home.
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Figure 3.14: Hot water demand of the monitored household over the weekdays (A) and
over the day hours (B)

To quantify the similarity of the demand patterns between different days in a week,
a Pearson correlation analysis is performed, as shown in Figure 3.15 (a). Previous
studies that used correlation analysis [97, 123] have reported that the weekdays have
a high correlation between each other and less correlation with the weekends, which

consequently have separated the correlation matrix into two sections of weekend days
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and weekdays. An example of a correlation matrix for data collected during the normal
days (before COVID-19 pandemic) reported in [97] is shown in Figure 3.15 (b). However,
comparison of Figure 3.15 (a) and (b) shows that the occupant behavior in our case study
household does not follow the same trend as normal days, and there is no longer a strong

correlation between the weekdays as well as between the weekend days.

1.0 )
Monday I IO 96
Tuesday 0.8
-0.88
Wednesday 0.6
Thursday -0.80
-0.4
Friday 0.72
Saturday 0-2 Saturday I
Sunday 0.64
Sunday I0.0 yr -
R
¥ B B B 7 7 % - T T 8 W T T
T e} o e} < kel o c (7] w0 w = = Pl
s 38 8 2 =) 5 £ c Y ¢ 5 & 2 3
S = = 3 - o 2 s 2 § = c U
= £ - = T @ F B = )
o B %) L
= =
(@) (b)

Figure 3.15: Correlation matrix between the days of the week (a) the data collected in this
research during COVID-19 pandemic and (b) the data collected in [97] before COVID-19

pandemic

Autocorrelation analysis can quantify the relationship between the hot water demand
of a specific hour with previous hours. This information can provide a good insight
for adjusting the number of prior demands to be included in the state vector. Figure
3.16 shows the Pearson autocorrelation of hot water demand data describing a negative
correlation (values [-1;0]) or a positive correlation (values [0;1]). The values on this figure
show how the variations of total hot water consumption of each hour is correlated with the
other hours of the day. The highest autocorrelation is observed at 168 hour and 24-hour
time lag, indicating that the demand at a specific hour has the highest correlation with
the demand at the same hour a week before and a day before, respectively. Although
the data have been recorded during the COVID-19 pandemic, the highest autocorrelation
with the demand of a prior week and a prior day is in line with previous studies reporting
pre-pandemic normal situations [97, 124]. It can be therefore concluded that although
during the pandemic occupants do not follow the normal schedule of residential houses,

there is still a repetition in their hot water use behavior similar to the normal situation.

Previous studies on prediction of hot water demand by supervised learning [97, 124,
125] have reported that temporal factors, such as the hour of the day and the day of the
week, are important features for prediction. Temporal features can also provide useful
information for an RL agent. Figure 3.17 shows the correlation between the hot water

demand pattern and three features available in the dataset. For example, the correlation
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Figure 3.16: Autocorrelation coefficient of hourly hot water demand data

factor between Demand and Hour shows that how a vector including the hourly hot
water demands of a day is correlated with a vector including the hour of the day (e.g.
[1,2,3,...,24]). A correlation coefficient close to 1 shows a linear relationship between
two variables. Therefore, that variable can be a valuable input to predict the other. As
shown in Figure 3.17, hot water demand has a positive correlation with both temporal
features of the hour and day number, and the value of correlation is higher than the
correlation with outdoor temperature. The magnitude of the positive correlation factors
between demand with an hour and day number is quite small, because the amount of hot
water demand is not direclty a linear function of the hour or day number. For example,
the amount of demand does not increase with the increment of hours. However, temporal
features are important for learning the routines of occupants, for example, at what time
the peaks of demands are expected to happen. A very useful characteristic of the agent
is to automatically adjust the relative importance given to each feature and neglect the
features which are not useful. Therefore, if one or both of the temporal features do not

provide useful information, the agent learns to neglect them over the training phase.
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Figure 3.17: Correlation between demand and other features in the dataset
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3.4.2 Sensitivity analysis of hyper-parameters

The proper selection of hyper-parameters can significantly improve the performance of
the RL framework. To select the best hyper-parameters, a sensitivity analysis is performed
on few main parameters such as the weight factors a, b, ¢ of the reward function and the
number of previous hours (demand lags) of demand to be used in the state array. Each set
of hyper-parameters is called a scenario in this chapter. All scenarios for the sensitivity
analysis are trained for 27 weeks and deployed for 2 weeks to ensure the convergence
of each scenario and thus a fair comparison. Some of the scenarios do not converge
if fewer train weeks are considered. The number of previous hours to be considered
for outdoor air temperature is fixed to 6 hours for all scenarios. Since both the train
and deployment stages should be repeated for each scenario, the number of evaluated
scenarios is limited to 6 to keep the analysis manageable. To compare the performance
of evaluated scenarios, two metrics to quantify energy-saving and comfort preservation

outcomes of the frameworks are defined in Equations 3.4 and 3.5.

Ebaseline - ERL

Energy saving = ———— x 100 (3.4
Err
Violated demand(L)
t=1- 1 3.5
Com for Total demand(L) X 100 (3-5)

Fhasetine and Egp are the total energy use of the RL and the baseline controllers in
kWh. Violated demand is the amount of demand supplied with a temperature below 40
°C. The comparison is made for the deployment stage in which all the scenarios are
converged. Figure 3.18 shows the selected parameters and performance metrics of each
scenario over the deployment phase. Due to the high weight of the reward function in
the reward function, all scenarios properly respect the hygiene aspect by over-heating
the tank at least once per day. This shows that the agent takes the health of occupants
as a priority. Therefore, evaluated scenarios are only compared in terms of energy and
comfort metrics. The first three scenarios aim to adjust the relative importance of the
reward terms. Then the last three scenarios aim to adjust the number of previous hours
of demand intervals to be included in the state. The first scenario is executed with
a = 1,b = 4,¢ = 1, and demandlags = 6. This scenario provides energy saving
of 16.25% compared to the baseline controller while preserving the occupants’ comfort
all the time. To identify the increase in energy-saving potential without the disturbance
of occupants’ comfort, the relative importance of the comfort term b is reduced to 3 in
scenario 2. It results in a higher energy saving of 29%. However, the occupants’ comfort
is violated by 8%. The average temperature of the instances when the occupants’ comfort
is violated is 39.1 °C which is very close to the comfort threshold of 40 °C. Therefore, this

scenario could be acceptable for the buildings where the occupants are not very sensitive
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to slight temperature violations but prefer higher energy savings. Since it is desired to
always maintain occupants’ comfort, the comfort weight b is increased from 3 to 3.5 in
scenario 3. In this scenario, the comfort of occupants is always preserved, while energy
saving increases to 17.6%. Therefore, the combination of weighting factors defined in
scenario 3 (a = 1,0 = 3.5,c¢ = 1) is selected to preserve comfort and hygiene. After
fixing the combination of the factors for the reward, the number of hours of the previous
demand intervals in the state (demand lags) is increased to 12, 24, and 48 as scenarios
4, 5, and 6, respectively. The number of hours of 12, 24, and 48 are selected to let the
agent observe the previous profile over half-day, one-day, and two-days ago. It should be
noted that increase of demand lags on one hand provides more information to the agent
but on the other hand increases the dimensionality of the state vector. Increasing the
demand lags from 6 to 12 has significantly increased the energy saving (from 17.67%
to 23.8%), while preserving the occupants’ comfort. Further increase of the demand
lags to 24 and 48 slightly increases the energy-saving potential while the occupants’
comfort is violated somewhat. Therefore, a demand lag of 12 can be considered as
optimum. Scenario 4 having the highest energy-saving potential among scenarios that
totally preserve occupants’ comfort is selected as the best performing scenario. Next
sections include the detailed performance of this scenario. It should be pointed that
an automated process can be developed to optimize hyperparameters in RL, which is
expected to significantly improve the performance. However, it was out of the scope of
this study.

Scenario 1: a=1, b=4, c=1, Demand lags= 6 16.25 100.0
Scenario 2: a=1, b=3, c=1, Demand lags= 6 29.02 91.89
Scenario 3: a=1, b=3.5, c=1, Demand lags= 6 17.67 100.0
Scenario 4: a=1, b=3.5, c=1, Demand lags= 12 23.78 100.0
Scenario 5: a=1, b=3.5, c=1, Demand lags= 24 26.69 98.54
Scenario 6: a=1, b=3.5, c=1, Demand lags= 48 25.58 97.33
100 75 50 25 0 25 50 75 100
Energy saving (%) Comfort (%)

Figure 3.18: Energy saving and comfort index by different scenarios

3.4.3 Performance of the selected scenario

The evolution of the reward over the training episodes is an important indicator of the
goodness of the training process. The higher the total reward the better the performance
of the agent. The convergence of the total reward over the training episodes should be
supervised to ensure that the agent reaches an optimal policy and the duration of the

training stage is sufficient. Figure 3.19 shows the evolution of the total reward and
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the constituting terms over the train and deployment stages on the target house. For
evaluating the variations of total reward, the potential range of variations should be
taken into account. The total reward function in this study is consisted of three terms:
energy reward, comfort reward, and hygiene reward. The comfort and hygiene terms are
supposed to reach zero at the optimal policy. However, the energy expenditure to heat
water is not avoidable. Therefore, the energy term is not expected to reach zero even
at optimal conditions. Fluctuations of the energy term over different episodes (different
weeks) are also affected by the amount of hot water demand over each week. Thus, small
variations of this term are caused by the demand variations and do not necessarily indicate

a non-convergent policy.

The evolution of the total reward shown in Figure 3.19 indicates that the agent has
converged to an optimal policy at the end of the training period, with the comfort and
hygiene terms stable at near zero. There are some fluctuations between weeks 15 and 21
of the training stage. Over this period, the energy reward is slightly increased, but the
comfort and hygiene rewards are decreased. Therefore, it shows that the agent has been
trying to save more energy by reducing the tank temperature during this period. However,
after receiving negative rewards on hygiene and comfort terms, it has learned from its
mistake and increased the energy expenditure again in week 21 to respect hygiene and
comfort terms. It should be noted that considering the possible range of variations of the
reward terms, the fluctuations over the on-site train period are negligible and should not be
interpreted as unstablility. In the worse case which has happened at week 16 the comfort
term has reached -2. Considering the formulation of the comfort term, it shows that the
average violation of comfort temperature in this case has been less than 1 °C, which is
negligible. Similarly, the hygiene reward over this week has reached -0.5. It shows that
the delay in daily overheating has been less than 1 hour on average. Although the results
show some fluctuations in the reward terms, the variations are very small and it can be
considered that the reward value has been almost stable from the first week of training
on the target house. This stability in the reward value shows that the agent has already
obtained significant experience during off-site training and does not violate the comfort
and hygiene terms from the very beginning week of on-site training. This indicates a fast
convergence over the on-site training stage, which shows the effectiveness of the intensive
off-site training (6 years of experience for agent). It also highlights that the statistical hot
water usage model to represent occupant behavior over the off-site training stage has
been very useful. Statistical models of other types of occupant behavior can be used in
the same methodology to apply RL in other occupant-centric problems. It also highlights
the substantial adaptability of the agent, as the behavior of occupants over the COVID-19
pandemic has been very different from the statistical-based normal behavior that the agent

has observed over the off-site training stage.
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Figure 3.19: Evolution of the reward over the train and deployment stages
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To better observe the agent performance, the operation of the selected scenario over
the deployment stage is shown in Figure 3.20. It is important to monitor if the agent
has learned and adapted to the occupant behavior, if it properly follows the hygiene
aspect, and if it considers the advantage of higher outdoor temperature for heating the
water. Comparison of the control signal (action) versus demand shows that the agent
has properly learned the occupant behavior, by turning ON the system during or even
before the demand and turning it OFF when no demand is expected. Therefore, the tank
temperature has never exceeded the lower limit of 40 °C and the occupants’ comfort has
always been preserved. Comparison of the tank temperature versus demand also indicates
that the overheating schedule is properly adapted to the demand, as most of the time
agent has overheated the tank before or during the demand to ensure that the energy
used for overheating the water will not be wasted by the heat losses. The cumulated
number of hours from the last superheat is consistently below 24, indicating that the tank
is adequately sterilized and the achieved energy saving is not achieved at a cost of higher
Legionella risk. Since the health of the occupants has a higher priority than their comfort,
the hygiene term in Equation 4.12 punishes the agent for every single hour exceeding the
24 hours threshold from the last superheat. Consequently, the agent is very considerate
about the health-related term, and non of the evaluated scenarios violate this aspect.
Analysis of the control signal with respect to the outdoor air temperature indicates that
most of the ON signals occur during the hours of high outdoor temperatures. However,
as comfort and hygiene are of a higher priority than energy saving, the ON signals do not
perfectly match the instances of elevated outdoor temperatures. There are even several

instances when the agent heats water even though the outdoor air temperature is low.
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Figure 3.20: Performance of the RL agent during the deployment stage

For comparison, the performance of the conventional two-point controller is also
evaluated and presented in Figure 3.21. By considering only the tank temperature, the
two-point controller turns ON the heat pump only when the temperature falls below the
threshold. It is not necessarily the best time for heating the tank due to the COP variations
of the heat pump. Therefore, the main advantage of the proposed RL-based control
framework over the conventional method is in adapting to the behavior of occupants which

enables the system to save more energy while preserving the occupants’ comfort.
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Control signal versus demand
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Figure 3.21: Performance of the rule-based controller during the deployment stage

3.5

Suggestions for future work

There is ample room for further research on this topic. A great potential of the RL is that

different dimensions can be easily added to the framework by including corresponding

terms in the states and reward. The proposed framework can be further developed by:

Including the time-varying electricity price in the states and the energy cost in the

reward function to optimize the heat pump operational cost;

Including the number of ON and OFF switchings in the states and the heat pump
age in the reward to ensure a smooth operation and a longer lifetime of the heat
pump;

Integration of a deep learning demand prediction model, trained on enough data

to be transferrable to different buildings and ensure the generalizability of the
framework;

Combination of renewable energy (photovoltaic or solar thermal panels) to the
system and the associated terms in the states and reward function for using the

flexibility of hot water tank for optimal integration of renewable energy resources;
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* Developing an off-site training stage that can ensure enough experience for the

agent and eliminate/minimize the need for an on-site training stage;

e Comparison with a more sophisticated baseline controllers; For example, a
rule-based controlled can be modeled that maintains the tank temperature as low
as possible (for example 45 °C), and only overheats the tank above 60 °C once per
day during the off-peak period. It is expected that the Reinforcement Learning

method still outperforms the baseline model due to its adaptation potential.

3.6 Conclusion

This chapter proposes an occupant-centric control framework based on the model-free
Reinforcement Learning (RL) for heat pump water heating systems. The proposed
framework balances water hygiene, a critical health-related aspect of water heating
systems, occupants’ comfort, and energy consumption. The training stage is separated
into two different stages in the proposed framework, including an off-site training using
a stochastic hot water use model and an on-site training. The off-site training aims to
provide the agent an initial experience with the system, occupants’ behavior, and climatic
conditions. Thus, it can ensure fast convergence and preservation of the occupants’
comfort on the target system. A stochastic hot water use model is included at this
stage to represent a realistic hot water use behavior. The agent is trained off-site for 6
different climatic conditions of Switzerland using 6 years of weather data (2014-2020).
For on-site training, the actual hot water use behavior of a single-family residential
building is monitored for 29 weeks. The monitoring campaign taken place during the
COVID-19 pandemic (28 August 2020 -19 March 2021) when almost all occupants were
working from home. This has resulted in an unusual hot water use behavior compared
to pre-pandemic times. The proposed framework does not rely on any model of the
system, which ensures its easy transferability to other residential buildings. The following

conclusions can be drawn from this study:

* Statistical analysis on the monitored demand data reveals the impacts of the
COVID-19 pandemic on the hot water use behavior. There is no strong
differentiation between the weekdays and weekends patterns compared to
the ”normal” (pre-pandemic) patterns reported in previous studies [97, 124].
Furthermore, there are 3 peaks in the average hourly pattern, while only 2 peaks

are reported for the normal, pre-pandemic cases [97, 124].

* The proposed framework with the selected choice of hyper-parameters can provide

an energy saving of 23.8% over two weeks of deployment compared to the
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common rule-based control method. The evolution of the total reward during the
training and the deployment phase on the target building shows a fast convergence
and preservation of the occupants’ comfort from the very beginning of training,
despite the unusual hot water use behavior due to the pandemic. It indicates the
effectiveness and importance of the off-site training with a stochastic hot water use

model.

* Analysis of scenarios with different combinations of hyper-parameters indicates an
optimum for the number of prior hours to be considered in the demand lags, thus,

the inclusion of more hours does not necessarily enhance the performance.

» Comparison of control actions (ON/OFF) versus water demand shows that the agent
has properly learned the occupant behavior to ensure their comfort, which indicates

the adaptive potential of the proposed framework.

The findings of this study, performed during the COVID-19 pandemic period with the
altered behavior of occupants, highlighted the importance of adaptive control for building
energy systems. Future studies on the current topic are therefore required to investigate

the potentials of RL for building energy systems.
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DeepSolar: An occupant-centric control
framework for solar-assisted space

heating and hot water systems
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Figure 4.1: DeepSolar control framework in a nutshell
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4.1 Abstract

To optimally control energy systems in residential buildings, several stochastic parameters
should be considered including renewable energy production, outdoor air conditions,
and occupants’ behavior. However, these parameters are hard to model and predict
accurately and even some of them (such as occupant behavior) are unique in each specific
building. This increases the complexity of developing a generalizable optimal control
method that can be transferred to different buildings. Rather than hard-programming
human knowledge into the controller (in terms of rules or models), a human-like learning
mechanism can be programmed to the controller so it can autonomously learn the optimal
control policy in each specific building. This research proposes a model-free control
framework based on Reinforcement Learning that autonomously learns how to make a
balance between the energy use, occupant comfort and water hygiene in a solar-assisted
space heating and hot water production system. To optimally control the building, this
framework tries to adapt to the stochastic hot water use behavior of occupants, solar
power generation, and weather conditions. A stochastic-based off-site training procedure
is proposed to give a prior experience to the agent in a safe simulation environment, and
further ensure occupants comfort and health when the algorithm starts learning on the
target house. To make a realistic assessment without interrupting the occupants, weather
conditions and hot water use behavior are experimentally monitored in three case studies
in different regions of Switzerland, and the collected data are used in simulations. Two
rule-based control methods are modeled as baseline. Results indicate that the proposed
framework could achieve an energy saving from 7% to 22% without violating comfort
or compromising the health of occupants, which is achieved mainly by adapting to solar

power generation.

4.2 Introduction

Occupant behavior is a major driver of energy use in buildings [133]. Occupants
influence the building energy use by their presence, activation or dis-activation of energy
devices and adjustment of desired setpoints [134]. The role of occupant behavior
is specifically important for indoor conditioning and hot water production systems
[135]. Occupant behavior is considered as a major source of uncertainty for optimal
operation of building energy systems [136]. Modeling the occupant behavior may,
therefore, help to better understand and integrate it into the control of energy systems
in buildings [137, 138]. However, occupant behavior can be affected by many different
parameters, including environment-related, time-related, and random factors, which
makes it extremely stochastic and complex [139, 140]. Even when an advanced modeling

method is developed to predict occupant behavior, it is challenging to quickly apply that
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model to a similar, but distinct building [136]. This is due to the uniqueness of occupant
behavior in each building. Consequently, it is challenging to develop a holistic and
transferable model of occupant behavior to be used by the controller without any prior
data of that specific occupants. Current controls of building energy systems are detached

from occupant behavior and follow a conservative and energy-intensive approach.

Besides occupant behavior, integration of renewable energy sources into the buildings
forms another source of uncertainty for their optimal operation. The share of renewable
energy sources in the building sector is projected to be doubled by 2030 [141]. While
this increasing share would reduce C'O, emissions, the fluctuating and stochastic nature
of renewable energy sources increases the complexity of optimal control. Due to the
intermittent nature of renewable energy sources, injecting the surplus power into the
grid also complicates the grid operation and can pose problems (e.g. voltage fluctuation)
[142]. One way to cope with the fluctuating supply is to make the local electricity demand
flexible and responsive to the supply, for example, by maximizing the self-consumption
[143]. Demand flexibility can be provided through several methods, such as flexible
thermal generators, electrical or thermal energy storage, demand-side measures, or even
grid-connected electric vehicles [144]. Among these options, storing the surplus energy
as heat (power-to-heat) is considered to be particularly promising because both the cost
of generating heat from electricity and the cost of heat storage are relatively low [145].
Air-to-water heat pumps emerge as a favorable power-to-heat option that can provide a
great opportunity for solar energy integration in the building sector. This is because, first
of all, the number of heat pumps as an energy-efficient technology is steadily increasing
in the building sector. For example, the number of installed heat pumps in Germany has
almost doubled over the last 6 years [146]. Secondly, hot water storage of a heat pump
is cost-effective energy storage that can provide the same level of self-consumption as
of electric storage, but at half of the levelized electricity cost [147]. Furthermore, the
thermal mass of the building itself can serve as an additional heat storage for heat pumps,
making it possible to further increase the flexibility without additional investments [143].

Buildings, therefore, can be seen as free batteries for the grid.

To incorporate the energy flexibility of residential heat pumps, their operation should
be responsive to the stochastic occupant behavior, climate conditions (that affect the
heat pump efficiency), and solar power production. The most conventional heat pump
controllers today are rule-based controllers, which follow a set of rules defined at
the design stage. These methods are computationally inexpensive and can be easily
programmed on a cheap hardware. However, rule-based controllers totally neglect
the stochasticity of the environment and follow a static operational strategy which is
usually far from optimal strategy. A more advanced control method is Model Predictive

Control (MPC), which uses a model of the system to make predictions about the future
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outputs. It solves an optimization problem at each time step to determine the next
actions that drive the predicted output as close as possible to the desired reference.
MPC has shown a promising performance when applied to complex air conditioning
systems [148—151]. However, there are several limitations to the application of MPC in
practice. First of all, the performance of MPC and other model-based control methods
is highly dependent on the accuracy of the developed model and prediction of the
stochastic parameters. However, developing an accurate model of the system is extremely
time-consuming and, therefore, not practical in most cases [152]. Moreover, even if an
accurate model is developed, it can become fairly inaccurate over the time due to, for
example, aging or modification of the system. Being dependent on an accurate model
also makes the MPC building-specific, limiting the transferability to the other buildings
and widespread adoption in the building sector [85]. To optimize the developed model at
each time-step, MPC requires a considerable computational power which further limits

its implementation in practice [153].

An alternative to hard-programming the expert knowledge as rule-based or
model-based control methods is to program a human-like learning mechanism to the
controller, and let it learn the optimal control strategy in each building by itself. With
recent advances in the Internet of Things (IoT) technology on the one hand, and vast
progress in Machine Learning methods on the other hand, the development of controllers
which can learn by themselves is ever more realistic [85]. Among Machine Learning
methods, Reinforcement Learning (RL) has recently gained popularity as a model-free
control method [154]. In RL, the learning controller, known as agent, interacts with its
environment and uses feedback from the environment to select the best possible action
given the current state [155]. RL is gaining increasing attention for the built environment
applications due to its three main advantages. First of all, it can be model-free, which
therefore does not require a complicated and costly model of the system. It is a big
advantage specifically when the system is complex [136]. Secondly, it is computationally
efficient (after training), even when the state-space has a high dimension [153]. Finally, an
RL agent can continuously adapt to the changes in the environment to maintain an optimal
control policy. It makes RL an ideal method for integrating time-varying parameters such
as solar energy potential, environmental conditions, or even occupant behavior into the
controller. The RL agent treats occupant behavior as an unknown factor and learns and

adapts to it over the time [136].

In recent years, RL has been investigated for a diverse set of applications in buildings.
Park et al. [58] proposed a device called Lightlearn, which uses RL for occupant-centric
control of lights in offices. The device was installed in five different offices for eight
weeks. The performance of the proposed solution was compared with conventional

occupancy-based and schedule-based methods in case of energy use and comfort of the
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people. Results showed that the occupant-centric control based on RL successfully made a
balance between occupant comfort and energy use and provided energy saving compared
to both conventional methods. RL is also studied for other applications such as thermal
storage inventory [156], natural ventilation [157] or integrated lighting and blind control
[158]. However, regarding the big share of thermal conditioning energy use in buildings,
most of the studies on RL have been focused on air conditioning systems. Zou et al. [159]
developed an RL model for optimal control of air handling units to minimize the energy
use, while preserving the comfort of occupants. The operational results indicate that the
agent has learned how to adapt to the occupancy schedule to save energy, for example, by
pre-cooling the spaces before the start of occupied hours. Schreiber et al. [153] proposed
the application of RL for load shifting of a cooling network under the dynamic pricing.
The cooling network included a chiller that supplied cooling to 3 different sites. The
RL agent in this system was supposed to regulate the cooling supply to each site, to
shift the power consumption to periods with lower electricity prices or lower outdoor
air temperature while keeping the indoor air temperature violations in an acceptable
range. Brandi et al. [154] implemented double deep Q-learning to control the operation
of a water-based space heating system in an office building. In this study, the static
deployment (where the agent is no longer trained over the deployment phase) is compared
to the dynamic deployment (where the agent continues training even over the deployment
phase). It was shown that the RL agent with carefully designed state-space is capable of
providing the required adaptability even in case of static deployment. Comparison with
the rule-based method showed that the RL-based controller could provide 5% to 12%
energy saving with an enhanced comfort. Valladares et al. [160] evaluated the potential
of deep Q-learning for controlling the indoor air temperature and air quality (CO2
concentration) while reducing energy use. Two different case studies were evaluated,
a laboratory room having around 2—-10 occupants and a classroom with up to 60 students.
The trained agent was tested in an experimental setup using IoT sensors and actuators.
The proposed method was then compared to the conventional rule-based control. Results
show that the proposed framework could provide a better comfort (measured by Predicted
Mean Vote (PMV) index) and 10% lower CO2 levels than the current control system while

using about 4-5% less energy.

There are only a few studies that have taken hot water production into account, while
it accounts for a big share of buildings’ energy use, and is usually integrated into the
space heating systems. Kazmi et al. [72] proposed a model-based RL control framework
to balance comfort and energy use in heat pump water heating systems. In particular,
they used model-based heuristics that incorporate the state of hot water tank and occupant
behavior into the optimal control problem. The models for heat pump, storage tank, and

occupant behavior prediction were probabilistic, data-driven models developed based on
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historical data. Thirty-two net-zero buildings in the Netherlands using heat pumps and
storage tanks were studied. It was shown that the proposed RL control approach reduces
energy use for hot water production by roughly 20% with no loss of occupant comfort.
Heidari et al. [161] proposed an RL-based control framework to learn and adapt to the
occupants’ hot water use behavior, and make a balance between energy use, comfort
and water hygiene. The proposed framework was tested over data collected in a Swiss
residential house. While the monitoring campaign was during COVID-19 pandemic with
an abnormal occupant behavior, the proposed framework could quickly learn the occupant

behavior and provide 24% of energy saving over the conventional rule-based method.

Regarding the increasing interest in integrating solar energy into buildings, a number
of studies have also focused on solar-assisted space heating and hot water production.
Correa-Jullian et al. [162] proposed a condition-based control approach based on
tabular Q-learning for the optimal control of a solar-assisted water heating system. The
Reinforcement Learning agent in this system was supposed to determine the operational
schedules of the solar field and heat recovery chiller according to the energy efficiency,
comfort levels, and participation of renewable energy sources. The results showed that
the Reinforcement Learning-based operation performed better than the nominal operation
schedule when solar radiation was low. On the other hand, nominal operation yielded
a higher performance when the solar radiation was highly available. Ali and Kazmi
[163] proposed an RL-based control framework for Photovoltaic-assisted (PV-assisted)
domestic hot water production systems. The control approach tried to maximize the
self-consumption of PV production by shifting the consumption into the periods of
PV power production. However, temperatures above 50 °C were awarded equally so
preventing the over-consumption of PV power for overheating the water. Comparison
of the RL-based control with the rule-based control over 6 different case studies showed
that the RL-based control successfully increased the self-consumption of PV production.
Lissa et al. [164] proposed a framework for optimal control of PV-assisted space heating
and hot water system. The proposed framework aimed to reduce energy use by optimizing
the operation of the heat pump and maximizing the PV self-consumption while keeping
the comfort of occupants. To monitor the comfort aspect, higher and lower temperature
limits were considered for indoor air and hot water temperatures. The limits of indoor
air temperature were based on the hourly average temperatures recorded in the case study
building, and the limits for hot water temperature are 40 °C and 55 °C. It was indicated
that as the indoor heating is a slow process, the agent can better follow the comfort
limits. However, as the water heating is a faster process, there is a higher probability
of surpassing the comfort limits. The evolution of reward term showed that after the first
month of training, the agent learned to keep the occupant comfort and the occupants no

longer experienced high deviations from comfort limits. The proposed framework could
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provide 8% to 16% energy saving compared to the rule-based controller.

4.2.1 Objectives and contributions

This chapter proposes an RL-based control framework for PV-assisted space heating and
hot water production. This framework can learn and adapt to the stochastic parameters,
namely hot water use behavior of occupants, PV power production, and outdoor air
temperature, and accordingly make a balance between energy use, comfort, and water
hygiene. Very few studies have investigated RL for the entire system of solar energy,
space heating, and hot water production. This study intends to further broaden the current

knowledge by investigating the following aspects:

* Model-free: This framework does not use any model, such as a data-driven or
thermodynamic model of the system, and rather learns the required knowledge
from scratch. The model free nature of this framework facilitates the transferability
of the control framework to the other residential buildings with different system

specifications;

* Integration of water hygiene: Legionella is a waterborne bacteria that grows in
warm water between 25 °C and 47 °C [165] and pose health risks to the occupants.
According to the literature review, the hygiene aspect of water is never investigated
in previous studies on RL. This is while the hygiene aspect, mainly Legionella, is
the main barrier for reducing water temperature to save energy [166]. This study
integrates water hygiene into the control framework by integrating a Legionella
growth model. This will help the agent to properly adjust hot water temperature for

reducing energy use without endangering the health of occupants;

* Stochastic-based off-site training: To speed-up the convergence and to minimize
the risk of violating comfort or hygiene aspects on the target house, a
stochastic-based off-site training phase is designed to provide enough experience
to the agent in the safe simulation environment before being implemented on the
target house. The off-site training phase integrates a stochastic hot water use model
and trains the agent over a variety of system sizes, geographical locations, and hot
water use behavior to ensure the agent has obtained a generalized experience and
can quickly adapt to different houses. Off-site training is done in simulation, which
is a safe environment where the agent can learn from scratch and even try random

actions without any consequences on the real occupants;

 Investigating the adaptation potential to different hot water use behaviors: Hot
water usage is a very stochastic parameter that the agent should take into account.

To evaluate the adaptation potential, real-world hot water use behavior is monitored
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in 3 Swiss residential houses. As the monitoring campaign was performed over
the COVID-19 pandemic, it allows investigating the adaptation potential to an
abnormal situation different from what the agent has observed during the off-site
training. Also, the behavior of 3 cases was found to be very different, which allows
to further investigate the adaptation potential of the agent to different occupant

behaviors;

* Investigating the generalization potential of the knowledge gained in off-site
training: A well-designed training procedure should provide a generalizable
knowledge to the agent. If the knowledge gained in off-site training is generalizable,
it can minimize or at the best case eliminate the need for an on-site training on the
real house. Since the on-site training of the agent on the cloud can be challenging
and costly, in practice, it would be much easier if an agent could be only trained
on simulations and directly deployed on the target environment. This chapter
investigates two scenarios. The first scenario is the direct deployment of the agent,
where the agent is directly deployed on the target house after off-site training,
without any on-site training on that specific house. The second scenario is long-time
deployment, where after a short-time on-site training the agent is deployed for a
long time to see if there is a need for sequential trainings or one initial training is
enough. These scenarios can provide insight for elimination or reduction of training
phase on the target house by a generalizable off-site training, which will facilitate

the practical implementation of RL in residential buildings;

The remaining of this chapter is organized into four sections. The first section presents
the methodology of the research. The second section gives a brief overview of the case
study houses and the monitoring campaign. The results of the study are outlined in the

third section. Finally, the fourth section concludes the chapter.

4.3 Methodology

The methodology section presents the layout of the energy system, the monitoring
campaign in the case study houses, the Legionella concentration model, the proposed

RL control framework as well as baseline control scenarios.

4.3.1 Case study description
4.3.1.1 System configuration

The proposed framework is focused on a residential energy system including space

heating, hot water production and PV power generation. There are many alternative
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configurations for this system, such as integrated or separated thermal storage for space
heating and hot water production. However, as the aim of this study is to prove the
potential of RL for optimal operation of these systems, one common configuration of the
system is examined as an example. The proposed framework can be easily adjusted to

other configurations. The configuration used in this study is shown in Figure 4.2.

The heating system is an air-to-water heat pump, a favorable power-to-heat option
with increasing number in building sector. Combined with a hot water storage tank, it
can provide a great opportunity for solar energy integration. Heat pump has a variable
Coefficient of Performance (COP) depending on outdoor air and hot water temperature.
This dependency makes it more challenging for the RL agent to schedule heating cycles
optimally. Secondly, hot water tank is considered as an energy storage, because it is more
cost-effective than electric storage [147], provides both functionalities of energy storage
and hot water provision, and is available in many buildings. While the space heating
can be integrated or detached from energy storage, in this configuration it is considered
to be integrated to storage to provide further energy flexibility. In this case, the surplus
solar energy can be stored in the tank also for the space heating purpose. PV panels are

considered to be grid-connected, so the surplus power can be also injected to the grid.

ED)

PV panels

T
3 =
© Flow sensor [1] Air temperature sensor
—
< > ~—=Water temperature sensor [[] Power sensor

Evaporator Hot water tank

Figure 4.2: Configuration of system to be controlled by RL
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4.3.1.2 Monitoring campaign

Hot water demand is less predictable than space heating demand, can be very different
between similar buildings [14] and can impose a fast change in the hot water tank
temperature which causes the violation of user comfort [167]. Thus, for the proposed
framework, the most challenging task for the agent is to learn the hot water use behavior of
occupants in each building. This study intents to evaluate the performance of framework
over the actual hot water usage measurements. In this research, a cost-effective,
low-power and water-proof monitoring system is implemented to monitor all the assets.
Then the flow rate of all end-uses are summed to obtain the main flow rate. For this
specific framework, monitoring all the end-uses is not necessary and a single sensor on
the tank outlet can provide the required demand data. The detailed monitoring in this

research was to provide a high-resolution dataset for future research.

Three residential houses in Switzerland are monitored for 20 weeks. Geographical
location of buildings is indicated in Figure 4.8. Monitoring period of houses 1 and 2 was
entirely during cold season (28 August 2020 to 15 January 2021), while for house 3 it also
includes the hot season (23 March 2021 to 10 August 2021). The third house is to analyse
how the agent will adapt to a period where PV power production is high, but energy
demand is low (as there is no space heating demand in this period). The heated area and
number of adults and children in each building are shown in Table 4.1. As shown in this
table, the case study buildings are selected to include a variety of family compositions,

which allows to further evaluate the adaptation potential of the agent to different houses.

The case studies were equipped with heat pump. But since they were occupied
residential buildings, in this phase of early evaluation it was not desired to test the
proposed framework directly on the actual systems as it could result to discomfort and
dissatisfaction of tenants who were volunteer in this study. Rather, the real-life collected
data can provide a more realistic evaluation in simulation environment, without violating

the comfort of occupants.

Table 4.1: Area and number of occupants in case study houses

heazted area Adults number Children
(m?) number
House 1 160 2 3
House 2 120 2 2
House 3 150 2 1
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4.3.2 Legionella concentration model

Legionella is a water-born bacteria that grows in water between 25 °C and 47 °C and can
be transferred to humans by breathing in the contaminated water droplets. Infection with
this bacteria results in a respiratory illness, known as Legionnaires’ disease (LD) [166].
Hot water systems are responsible for the most number of infection cases, as they can

provide the desirable temperature regime for the growth of Legionella [168].

While there are several disinfection methods, such as chemical methods, one of the
most conventional methods is thermal disinfection [168]. With a temperature of 60 °C
Legionella cells die in only 2 minutes [169]. Therefore, as a common practice, the hot
water tank temperature is constantly kept above 60 °C to ensure Legionella can not grow
in the tank. The high temperature of hot water tank reduces the heat pump COP, increases
the heat loss, and also increases the risk of scalding at the point-of-use. This conservative
operational approach is because the controller does not have any sense about the real-time
risk of Legionella in the tank. This framework aims to quantify the risk of Legionella for
the agent in real-time, so it can overheat and disinfect the tank only when it is needed.
Legionella growth is a complicated process that depends on many different factors such as
temperature, PH, and existence of nutrients [170]. It is therefore complicated to develop a
model for accurate calculation of Legionella concentration. Few mathematical models are
developed to estimate the Legionella concentration only based on the variations of water
temperature [165, 166, 171]. Assuming that the hot water tank has not been initially
contaminated with Legionella and biofilm, and also the network water is properly treated,
these models can be used to provide the real-time estimation of Legionella concentration
only based on temperature. Controlling the hot water tank temperature by considering
Legionella concentration can make a shift from energy-intensive conservative control
approaches into energy-efficient while safe methods. However, little attention has been
given to the integration of Legionella risk assessment into the control systems. Kenhove
et al. [172] integrated a model of Legionella concentration into the rule-based controller,
where the controller heats the tank when the estimated concentration passes a threshold.
Based on the literature review, there is no study on the integration of Legionella growth
into RL-based control frameworks. Different from the rule-based control which only
overheats the tank when a threshold is passed, an RL agent can learn how to proactively
plan overheating cycles while minimizing energy use. For example, when the RL agent
is informed about Legionella risk, it can overheat the tank when there is a surplus of PV
power, when the heat pump COP is higher, or when a demand is expected to happen in

near future.

Estimation of Legionella concentration in this study is based on the model proposed by

Amerongen et al. [165]. In this model, for the temperature range of 25 °C and 47 °C, the
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doubling time (the number of hours required for Legionella concentration to get doubled)
is calculated as:
DO = 0.5702 x T? 43.3 X Tyani + 829 (4.1)

ank

Where Ti,n, is the hot water tank temperature (°C) and DO is doubling time (hours).
Using this equation for doubling time, and considering the effect of inlet and outlet water

streams, the following equation can be used to calculate the concentration of Legionella:

(Oz'nitial + Danl) X ‘/tank + Cnetwork x Demand — Cinitial x Demand

C pu—
‘/tank

4.2)

Where Cj,itiai is the concentration of Legionella at the beginning of timestep
(CFU/L), the Cyework is the concentration of Legionella in network water (CFU/L),
Demand is the hot water demand (L), V4. 1S the tank volume (L), and C' is the
concentration of Legionella at the end of that timestep. Regarding that in the hot water
tanks the same amount of consumed hot water is replaced by the cold network water, the
term Chepwork X Demand is the amount of Legionella entering the tank from network
water, and Ciniir X Demand is the amount of Legionella exiting the tank. For the

temperature above 60 °C, the reduction in concentration is calculated as:

(Cinitial —0.999 x Cinitial) X V;Sank + Cnetwork X Demand - Cinitial X Demand

C pr—
V;fank

4.3)
For the temperatures below 25 °C or between 47 °C and 60 °C, the concentration of
Legionella is assumed to be constant. It is a conservative assumption to further ensure the
health of occupants, because for a temperature above 50 °C the disinfection still happens
but with a lower rate [169].

4.3.3 Reinforcement Learning control framework

A variety of RL algorithms have been developed so far. These algorithms can be divided
into two main categories of policy-based and value-based methods. Policy-based methods
are suitable for problems with a continuous action space (such as robotic applications),
while value-based methods are suitable for environments with a discrete action space,
where the agent implicitly finds a policy by learning the optimal value function [86]. It is
shown that value-based methods learn faster, as they include a limited number of possible
actions and are less sensitive to hyper-parameter tuning [173]. One of the most widely
used value-based RL algorithms is deep Q-learning. Deep Q-learning tries to estimate the

value of each action, known as Q values, and select the action with the highest estimated
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value. These values are calculated based on the following formula:

Qnew(su at) = QOld(St, at) + Oé-(?“t + 7-m@$aQ(5t+1; a) - Q(St; at)) (4.4)

Where Q%%(s;,a;) is the old estimated value, «[0,1] is the learning rate, r; is the
immediate reward, - is the discount factor, and maz,Q(s:+1,a) is the estimated future
reward. As the original deep Q-learning use the same network for the estimation of future
values, it can lead to the overestimation of value for some specific actions and therefore
a non-optimal action can be selected. To solve this issue, a modified technique called
double deep Q-learning is recently developed. The main characteristic of this technique
is the presence of two networks to counteract the overestimation of the Q-values. The
second network is an exact copy of the first one, but its weights are only updated every 7
steps. This network is used to calculate the target Q-values (Q(s:+1, a)) [88]. Therefore,
this research uses double deep Q-learning algorithm to develop the control framework.
Tensorforce library [131] is used to program this framework in Python. In spite of other
RL libraries that are mainly developed for computer games, Tensorforce is developed
with a modular design with customizable agent and environment that can be easily used

for other domains.

4.3.3.1 State, actions and reward design

The RL agent observes the state of the environment, then selects an action based on
the observed state, and tries to maximize a reward. The proper setup of state, actions
and reward is an important aspect to design a robust RL framework. State parameters
should provide all necessary information for the agent to predict future immediate reward,
and also should be possible to be measured by sensors in practice [154]. The following

parameters are included in the state vector:

* History of hot water demand: As one of the most important aspects of this
framework, the agent is supposed to learn and predict future hot water use behavior
of occupants. Studies have shown that there are some routines in hot water use
behavior of occupants in residential buildings, and therefore future hot water use is
correlated with the historical demand [13, 161, 174, 175]. Therefore, a look-back
vector of previous hot water demands is included in the state vector to enable the
agent to forecast future demands. The length of this vector (the number of previous
hours to be included) for this parameter and also other parameters of state will be
determined based on the sensitivity analysis. It should be noted that in the DeepHot
framework, the history of hot water demand was discretized into the 5 liters demand
intervals, but in the DeepSolar framework the demand is simply normalized into

[0-1] interval. Based on the lessons learned, the normalization approach performs
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better than the discretization.

* Demand ratio: It would be useful to the agent to estimate how much hot water
would be used in total by the end of today from now. Considering the routine in
occupant behavior, the total hot water demand of today can be close to yesterday.
Thus, the total demand at time ¢ to the end of the day, is expected to be close to
the total demand at time ¢ to the end of the day for the previous day. The following
equation quantifies the ratio of consumption up to the time ¢ = H of today, over
the total consumption of previous day. In simple words, this ratio tries to inform
the agent that how much more hot water demand is expected for today by looking
at the total demand of yesterday. This is indeed a very simple estimation and the

relative importance given to this estimation can be adjusted by the agent.

DR — ZhH:O Demandpay—p

= 4.5)
Ziio Demand pay—p-1

Where H is the current time of day, D is the day number, Demand is the volumetric
demand (L), and DR is the Demand Ratio.

* Outdoor air temperature: The outdoor air temperature affects the space heating
demand and also heat pump COP. A look-back vector of outdoor air temperature
lets the agent learn the variations of outdoor air temperature and heat pump COP.
The agent can then take advantage of hours with higher COP to charge the hot water
tank.

* Indoor air temperature: Indoor air temperature is important for the agent from
two aspects. First of all, it affects the occupants’ comfort and should be carefully
adjusted. Secondly, as the building thermal mass is also a potential energy storage,

it is indicating the current level of stored energy in the building thermal mass.

* PV power production: Another important functionality of this framework is to
learn the variations in PV power production and optimally schedule the future
actions. The look-back vector of PV power production enables the agent to learn

its variations.

* Heat pump outlet water temperature: The heat pump outlet water temperature

informs the agent about the rate of energy delivery to the tank and indoor air.

* Legionella concentration: For optimal adjustment of the hot water tank
temperature and overheating cycles, the agent should know the current estimated
concentration of Legionella in the tank (CFU/L). This lets the agent prevent
unnecessary thermal disinfection of the tank, and only overheat the tank when it

is necessary or when surplus of PV power production needs to be stored in the tank.
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* Hot water tank temperature: The agent should know the current tank temperature
to properly adjust it above the comfort level once needed. Also, it shows the current

energy stored in the tank.

* Hour of the day: Many of the stochastic parameters, such as occupants hot water
use behavior, solar energy and outdoor air temperature are strongly correlated with
the hour of the day. To further assist the agent to learn and predict these parameters,
hour of the day for the upcoming hour is also provided to the agent. Different from
other parameters, this is not a look-back vector but is associated to the upcoming

timestep.

* Day of the week: There is a significant difference between the hot water use profile
of working days and weekends. Also, the hot water use profile of each day is found
to be highly correlated with the profile of the same day over the last week [13,
161, 174, 175]. Accordingly, to learn and predict the hot water demand it would
be helpful for the agent to know what is the current day of week. To reduce the

number of states, the day number is provided to the agent as a single integer.

A visual representation of state parameters at a specific time step is shown in Figure
4.3. The length of look-back vector indicated for each parameter is symbolic in this figure

as it will be determined over the sensitivity analysis.

Given actions to the agent should also provide enough flexibility to maintain an optimal
operation. The possible actions in this study are selected according to the comfort limits
and hygiene aspects. As shown in Figure 4.4, the comfort limits for indoor air temperature
in winter are between 20 °C and 24 °C based on ISO7730 [176]. It is assumed that the
agent can select a setpoint to overwrite the existing thermostat. The possible setpoints are
21°C and 23 °C, with a dead-band of 2 °C. The option of 21 °C is an energy-saving choice
that maintains occupant comfort without overheating the indoor air. On the other hand,
the option of 23 °C provides the opportunity of storing surplus PV power in the building
thermal mass and thus can be seen as an energy-storing choice. In this study only these
two options are considered for the agent because the occupants are always present in the
building. It is assumed that in practice, a backup controller or a manual interface on the

thermostat can be used to turn OFF the heating system once the occupants are away.

In case of hot water tank, the multiplication of Legionella at each temperature range,
as well as the comfort limit for hot water are shown in Figure 4.4. While the required
temperature of mixed water at each point-of-use is different, 40 °C is assumed as the
minimum required supply temperature for simplicity [14]. In this research, 40 °C is

considered as the minimum comfort level for the tank temperature measured at the middle
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Figure 4.3: Visual representation of states and actions
of the tank. This is a conservative assumption that will further ensure the comfort of
occupants, because in practice the hot water is supplied from the top of the tank which

has a higher temperature due to the stratification of tank. Since the range of possible
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temperatures for hot water is quite wide, discretization of setpoints would result in
many different actions. To limit the number of potential actions while providing enough
flexibility for tank temperature, possible actions are considered as furning ON and turning
OFF the heat pump. This would give the possibility to the agent to adjust any temperature
with only two actions. On the other hand, the agent should properly learn how the tank

temperature varies based on the ON/OFF actions.

Indoor Tank
temperature (°C) . temperature (°C)
Legionella
Comfort region /_\ Possible setpoints multiplication /\
24 —— \

—% 23 Energy storage

56 ——

Comfort v Stable
1
population
| . 47 —— o
b 21 Energy saving ———— 40 Comfort lower limit
] Growth
20 —— v

25 ——

Figure 4.4: Temperature ranges for comfort limits of indoor air and Legionella
multiplication and comfort limit for hot water tank

All the possible actions for the agent are presented in Figure 4.5. Actions related to
the hot water tank are separated from the ones related to the space heating, meaning that
the agent can not simultaneously change the indoor air setpoint and heat pump status, and
should prioritize between them. While it is possible to combine the tank and space heating
actions, for example one action representing turning ON the heat pump and selecting
a setpoint of 21 °C for indoor air, initial evaluations in this study indicated that such
combined actions make it more complicated for the agent to learn the relationship between

performing each action and the associated impact on the environment.

The reward function should be well designed to clearly reflect the aims and priorities as
simple as possible. This control framework intends to minimize the energy usage of heat
pump, and maximize the self-consumption of PV power, while maintaining the occupants
comfort and water hygiene. The reward function is composed of four different terms as

follow:

* Energy term: The energy term penalizes the agent for (1) any energy usage of heat
pump and (2) the surplus of PV power not used by the heat pump. This term is
defined as

Renergy = —ax | H Ppower — PVypouwer | (4.6)
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Figure 4.5: Possible actions for the agent

Where H P,oer and PV, are the power usage of heat pump (kW) and power
production of PV panels (kW), accordingly. a is the weighting factor to adjust the

importance of the energy term compared to the other terms.

* Hot water comfort term: This term penalizes the agent if the temperature of hot

water tank falls below the comfort level of 40 °C.
Zf T;fank > 407 RDHWcomfort =0else —b (47)

Where T}, is the hot water tank temperature and b is the weighting factor. It is also
possible to penalize the agent proportional to the temperature deviation from the

comfort level, but here a constant number is used to speed up the learning process.

* Indoor air temperature comfort term: This term penalizes the agent if the
indoor air temperature is out of comfort limits. While the possible setpoints are
inside of comfort region, still a comfort violation can happen if the hot water tank
temperature is not high enough to provide required heat for radiators. This term is
defined as

Zf 20 S T%ndoor < 247 Rlndoor comfort — Oelse —c (48)

Where T;,,400- 18 the indoor air temperature and c is the weighting factor.

* Hygiene term: This term penalizes the agent if the estimated concentration of
Legionella in the tank exceeds the maximum acceptable level. This term is defined
as

if C < Cran, Ruygiene =0 else —d 4.9)
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C is the current concentration of Legionella (CFU/L), and C,,,, is the maximum
acceptable concentration (CFU/L) specified for residential buildings (5 x 10°
CFU/L) [165].

The total reward, which is going to be maximized by the agent, is the summation of

these rewards as

Rtotal = Renergy + RDHWcomfort + Rlndoorcomfort + RHygiene (410)

4.3.3.2 Training procedure

To train the RL agent, it is required to establish an interaction between the agent and the
environment, which lets the agent to perform actions on the environment, receive back the
next state and calculate the subsequent reward. The interactive procedure in this research
is established by coupling the agent developed in Python with the dynamic model of
the system developed in TRNSYS. Figure 4.6 presents how the agent and environment
interact with each other. At each timestep, the agent writes the selected action to the
input file of TRNSYS, runs the TRNSYS model for one timestep, and then reads the
subsequent parameters of state from TRNSYS output file. If the episode is not ended, the
state is again used by the agent to select the next action. And if it is the last timestep of
the episode, the state is reset and sent to the agent. As the agent tries to maximize the
reward over the period of each episode, the reset is to set the timestep counter as zero and
inform the agent that the episode is ended. The length of an episode is considered as one

week.

This study propose a multi-step training procedure in which the agent is first trained
off-site on a safe virtual environment, then trained on-site on the target house and finally
is deployed on that house. The overall procedure is presented in Figure 4.7. During
the off-site training phase, the agent is interacting with the virtual model of the system
for 10 years. An important consideration in the off-site training phase is to provide a
generalizable knowledge to the agent and avoid overfitting to a specific case. It lets the
agent to quickly adapt to different houses with different system sizes, located in different
weather conditions, and with different occupant behavior. To mimic the hot water use
behavior of occupants, a stochastic hot water use model driven by actual data [177] is
used in this stage. Actual weather data from multiple weather stations in Switzerland are
also collected. Then for each year of the off-site training phase, the solar and weather data
of a different city is used as presented on Figure 4.8. In addition, a different set of system
sizes (e.g. heat pump capacity, hot water tank volume, radiators and PV panels area, etc)
are used in each year. The pre-trained agent is then saved to be used for on-site training

on each of the target houses. It should be noted that the simulation model is only used to
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Figure 4.6: Procedure of interactions between the agent developed in Python and system
model developed in TRNSYS

provide an initial experience for the agent, so it does not need to be an exact model of the

target system.

On the on-site training phase, the pre-trained agent is again trained with the actual
hot water demand and weather data of the target house. While the off-site training phase
might be enough for the agent, the on-site training on the target house is to ensure that the
agent observes and adapts to the specific conditions of the target house. In this phase, the
actual hot water demand data that are measured experimentally in case study houses is
used to represent a real occupant behavior. Detailed description of monitoring campaign
is provided in the next sections. After the agent is trained for several weeks on the target
house, it is deployed on this house. It means that the agent is no longer learning, but
only controlling the system. This phase is computationally efficient and can be done on a

low-price hardware such as a Raspberry Pi.

While TRNSYS models are used in all phases, it should be noted that the model in
off-site training phase is a virtual model to be used in a laboratory, while the model used

in on-site train and deployment phases is to represent an actual building.
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Figure 4.7: Training procedure

4.3.3.3 Different training scenarios

three different scenarios for training phase are evaluated. These scenarios include:

To get the full potential of RL it should be continuously trained, which enables it to adapt
to all changes during the life-time of the system. This is, however, costly (in case of using
cloud services) and computationally expensive. This research aims to gain a good level
of adaptation by intensive off-site training to minimize the need for on-site training. Due
to the complex and error-prone setup required for on-site training, it would be easier in
practice if the on-site training phase would be reduced or even be totally eliminated. One
of the aims of this study is to assess if the stochastic-based intensive off-site training can

reduce or totally eliminate the need for on-site training on the target house. To this aim,

* On-site training and Short-time Deployment (RL-OSD): After off-site training,

the agent is trained on-site on the target house, and then deployed for a short period

of 1 month;

* On-site training and Long-time Deployment (RL-OLD): After off-site training,

the agent is trained on-site on the target house, and then deployed for a long period
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of 8 months;

* Direct Deployment (RL-DD): After off-site training, without any further on-site
training, the agent is directly deployed on the target house for a short period of 1

month;

For a better understanding, these three scenarios are visually presented in Figure 4.9.

4.3.4 Baseline control methods

In order to better highlight the advantage of a learning controller, it can be compared
to the conventional rule-based controllers that only follow static rules while ignoring
the variations of occupant behavior, solar energy or weather conditions. Two following

rule-based controllers are also modeled in this study:

* Rule-based controller with Conventional setpoints (RC): A rule-based method
which uses the setpoints of common practice. In this method, setpoint for indoor
air temperature is considered as 21 °C with a deadband of 2 K, which is a

recommended setpoint for healthy and comfortable air temperature [178, 179].

‘@ Case study houses i
@ Weather stations used in off-site training |

Figure 4.8: Location of cities used in off-site training phase as well as case study houses
on the Swiss map
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Figure 4.9: Visual presentation of different training and deployment scenarios

Also, the setpoint for the hot water tank is 60 °C with a deadband of 10 K, which
is a commonly used setpoint to follow hygiene requirements in storing hot water
[180, 181];

* Rule-based controller with Energy saving setpoints (RE): A rule-based method
with similar setpoint air temperature to the RC method, but with the setpoint

temperature of 50 °C for hot water tank to save energy;

Due to the hygiene aspects, the RE scenario is not common in practice. However,
in this study this scenario considered to illustrate that the energy saving of proposed
control framework is not only achieved by lowering the setpoint temperatures, but rather
by learning how to optimally schedule the heating cycles. There are many other alternative
control methods, such as using a heat curve, that are today applied in the buildings. These
methods are similar in the sense that they follow static rules, which are detached from
occupant behavior or renewable energy. Similar results are expected if a comparison is

made between the learning agent and other rule-based controllers.

4.3.5 System sizes

Table 4.2 shows the specifications of modeled systems used in the off-site training and
target houses. The agent is supposed to be able to adapt to a new building, with different
area and different system sizes than what it has observed during the off-site training phase.
The heated area and heat pump capacity in case study buildings are bigger (House 1),
smaller (House 2), and almost similar (House 3) to the off-site training phase. Area of PV
panels is equal to the available area for tilted roofs calculated based on [182]. The rated

heating of Heat pump is also proportional to the heated surface area, and is sized based
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on the capacity per area of a real-world similar installation presented in detail in [147].

The same tank size is considered in all houses for simplicity.

Table 4.2: System sizes used in off-site training and different case studies

off-site training House 1 House 2 House 3
Total heated area (m?) 140 160 120 150
Heat pump  rated 6 7 5 6
heating (kW)
Heat pump compressor 0.95 1.1 0.8 0.95
power (kW)
Tank size (L) 500 500 500 500
PV panels type Monocrystalline Monocrystalline Monocrystalline Monocrystalline
PV panels total area 10 11 8 12
(m?)
Panles slope 45 45 45 45

4.4 Results

In summary, the results of this study are presented in 5 sections as below:

» Dataset overview: Provides an overview of collected datasets during monitoring

campaign;

* Hyper-parameters: Describes the hyper-parameters selected for the proposed

framework;
* Reward evolution: Evaluates the convergence of the proposed framework;

* Visual assessment: Some operational parameters (e.g. air temperature, water
temperature, hygiene, etc) are visualized to provide a detailed and hourly

presentation of the agent performance;

¢ Quantified assessment: Quantification metrics are used to summarize and
compare the agent performance (such as total energy use) with respect to the

conventional methods;

4.4.1 Overview of datasets of different houses

Figure 4.10 shows the hourly variations of hot water demand, PV power production and

outdoor air temperature in three case study houses. It can be seen that there is a good
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diversity in hot water use behavior of case study houses. The Houses 1, 2 and 3 can be
categorized as high volume (up to 250 L/h), low volume (mostly below 50 L/h), and
medium volume (up to 150 L/h) consumers. There is a good variation also in the trend of
PV power production in case study houses. Hourly variations of PV power on the first and
second case studies show a decreasing trend, with higher values during the training phase
compared to the deployment phase. On the third house, the date of monitoring campaign
has been different from the first and second case studies, with the training phase starting
from cold weeks and the deployment phase during the warmer weeks. Therefore, the
trend of PV power production is increasing in this house, with higher hourly production
during the deployment phase compared to the training phase. Variations of hourly outdoor
air temperature also show a similar trend, with a decreasing trend on the first and second
case studies and an increasing trend on the third case study. The deployment phase of
the first and second case studies is during the cold weeks, when both space heating and
hot water production is required, while the deployment phase of the third house is during
the warm weeks, when only hot water production is required. The agent is supposed
to learn that during the warm weeks there is less energy demand, and the variations of
the hot water tank temperature only depends on the hot water demand. The overview of
datasets shows that there is a very good diversity between the case studies, and between
train and deployment phases. These variations provide a great opportunity to examine
how the agent can generalize its knowledge and adapt itself to different situations, such

as different hot water use behaviors.

To better explore the diversity in hot water use behavior between the case study houses,
boxplots of their hourly hot water use data are also presented in Figure 4.11. Datasets from
other residential buildings [13] show that hot water use pattern usually has two major
peaks, one in the morning and the other in the evening. Regarding that the monitoring
campaign in this study has been during COVID-19 pandemic, the monitored data over
these three houses show some differences with the normal pattern of residential buildings.
For example, the peak of average demand for the Houses 2 and 3 is located at the middle
of the day, while in the normal situation occupants are at work on this time and no peak
is expected. Also, the hot water use pattern in House 2 shows a quite uniform demand
between 7 A.M. and 9 P.M., which indicates that the occupants have been spending most
of their time at home. These differences indicate that the hot water use behavior over
the case studies is more stochastic and less predictable than the normal behavior that the
agent has observed during the off-site training. This abnormal occupant behavior on case
study houses is valuable, because it lets to evaluate the adaptation potential of the agent
to a behavior never observed before. It also shows if the agent can still perform well if the

occupant behavior is significantly different from the normal behavior.
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Figure 4.10: Hourly hot water demand, PV power production and outdoor air temperature
on the case study houses

4.4.2 Hyper-parameters

The RL framework include a number of hyper-parameters that should be selected based
on the specific problem and desired objectives [183]. The main hyper-parameters in
this framework include specifications of agent (e.g. Learning rate, Batch size, Update
frequency, Memory), weights of the reward function, and also the length of look-back
vector for some specific states that are expected to have a higher importance for the target
system to be controlled. The look-back vectors that are of specific interest in this study
are the number of previous hours of hot water demand, PV power production and indoor
air temperature to be included in the state vector. For each set of hyper-parameters all
the phases of off-site training, on-site training and deployment should be repeated which
takes a long time on a normal computer. Therefore, only a few of hyper-parameters could
be evaluated in the sensitivity analysis phase. The hyper-parameters for the agent are

selected based on the experience from our previous study [13], as presented in Table 5.1.

One of the important aspects of RL is the trade-off between exploration and
exploitation [154]. To maximize the reward, the agent tries to select actions that has
previously experienced and are expected to return a higher reward, which is called
exploitation. On the other hand, it is still possible that the action with expected highest
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Figure 4.11: Boxplots of hourly hot water demand in case study buildings

reward would not be the best action, so it is required that sometimes the agent randomly
selects an action during the training phase to better explore the environment, which is
called exploration. One of the commonly-used methods to make a balance between
exploration and exploitation is the e-greedy method, in which a small probability of e
is specified and the agent performs exploration when a random value between O to 1
would be higher than specified value for €. In this study, it is desired that during the
off-site training phase the agent performs higher exploration (more random actions) at the
beginning and then gradually reduces the exploration to near zero. Therefore, a linear
decay is established for exploration, where the € linearly decays from 0.9 to 0.0001 at

each time step over the first 12 weeks.

Weights of the reward function are selected based on the relative importance of each
term in the reward. The selected weights are indicated in Table 4.4. A weight of 1 is
selected for energy term, because it is multiplied by the net energy usage, which is in the
range of 0-4kWW. The agent is supposed to reduce energy usage, without violating the

comfort and hygiene aspects. Higher weights are selected for the hygiene and comfort
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Table 4.3: Selected parameters for the agent

Hyper-parameter Value

Agent type Double deep-Q network
Learning rate 0.003

Batch size 24

Update frequency 4

Memory 48x168

Discount factor 0.9

terms to highly penalize the agent if any of these aspects are violated. The weight of
hot water comfort is a bit higher than the weight of space heating. This is because the
hot water use behavior is more stochastic, and the hot water use can change the tank
temperature quite fast. Thus, the agent should be more conservative towards the comfort

of hot water use.

Table 4.4: Selected weights for reward function

Weight Associated term Value
a Energy 1

b Hot water use comfort 20

c indoor air temperature comfort 10

d Hygiene 10

4.4.3 Reward evolution

The evolution of reward over the training phase should be monitored to evaluate if the
agent has found an optimal control policy to minimize reward function. Figure 4.12
presents the weekly-averaged reward over the off-site training, as well as on-site training
on each of the houses. It should be noted that energy reward in this framework is not
avoidable. Therefore, depending on the heat pump capacity, variations of reward function
up to -5 are due to the power use of heat pump. Considering the weights presented in
Table 4.4, reward values lower than -10 (more negative values) indicate that the comfort
or hygiene terms are also violated. As can be seen from the first diagram, there are 5
periods during the off-site training phase, where the value of reward reaches to -10 or
below. In these periods, the agent has been trying to minimize the energy reward by
turning OFF the heat pump, but due to a low hot water tank temperature it has violated

comfort or hygiene terms. After each violation and receiving a high penalty, it has learned
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Figure 4.12: Evolution of reward over the off-site training stage and on-site training stages
in each house

that it should increase energy usage to avoid the violation of other terms. After the last
violation around week 377, reward value is almost stable. The value of reward function
during the on-site training on the target houses is always above -10, and shows a good
stability. This indicates that the agent has gained enough experience during the intensive
off-site training phase, which has guaranteed an optimal policy since the first week of
training phase on each target house. The fast convergence on the target houses, in spite of
abnormal hot water use behavior, shows that the variations included in the off-site training
phase (variations of the system sizes, hot water use pattern, weather conditions, etc) have
provided a generalizable knowledge for the agent, and ensured the transferability to the
other houses.
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4.4.4 Visual assessment of the proposed framework
4.4.4.1 Performance of the agent during the off-site training

As shown in Figures 4.7 and 4.8, off-site training phase was performed for 10 years,
each year on a different city and with different system sizes. It is interesting to have a
closer look at the off-site training phase to see if the agent could preserve the occupant
comfort with such variations. Figure 4.13 presents the boxplots of hot water tank and
indoor air temperatures during the off-site training phase. It can be seen that there is
a higher variance in hot water and indoor air temperatures over the first year, which is
due to the lack of experience by the agent, as well as performing random actions during
the exploration phase. From the second year, the hot water and indoor air temperatures
show a lower variance and are closer to the comfort limits. It indicates that in only few
hours the occupant comfort is slightly violated. Also, the average hot water and indoor
air temperatures are higher over the first year. It shows that at the beginning the agent has
been trying to preserve occupants comfort by spending more energy, but from the second
year it has learned to further reduce temperatures and save more energy while respecting
occupant comfort. Overall, from this figure it can be seen that although several parameters
(weather, solar radiation, occupant behavior and system sizes) vary from year to year in
the environment, the agent performance is stable since the second year. This indicates
the adaptation potential of RL to the potential variations that can happen from building to

building in a wide-spread implementation.

4.4.4.2 Performance of the RL-OSD

A major capability of the RL agent is adaptation to stochastic parameters, which in
this problem are mainly PV power production and hot water demand. To visualize the
adaptation potential of the agent, Figure 4.14 presents the control signal versus PV power
production and hot water demand. As can be seen in this Figure, the agent mostly turns
ON the heat pump when PV power is available. This is more clear in case of House 3. In
this house, the deployment phase has been during the summer, with a higher PV power
production and lower energy demand, which enables the agent to harvest most of the
required energy from PV panels. Hot water tank temperature is also visualized to assess
how the agent has adapted to the hot water use behavior to preserve the comfort aspect.
It can be seen that the agent has successfully learned the hot water use behavior, because
even in case of high volume demands, e.g. in House 1, the agent has always kept the hot

water tank temperature above the comfort limit.

Previous studies have usually used the self-consumption of PV power as an evaluation
metric for their proposed control approach [184]. However, it should be noted that in this

study a higher self-consumption can be caused by the higher energy use of heat pump,
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Figure 4.13: Boxplots of yearly hot water and indoor air temperature versus comfort limits

e.g. by operating with a lower COP, which is not desired. Rather, in this study the share
of PV power production in total power consumption of heat pump is used for comparison.
It should be noted that this share only indicates how much of heat pump energy use is
directly covered by PV panels. The surplus power injected to the grid is not considered
in this diagram. This is to better observe how the proposed control framework can get
a better use of PV power production and reduce the interaction with grid. As shown in
Figure 4.15, in all Houses, RL-OSD has obtained a higher share of energy consumption
from PV panels. This share is much higher in case of House 3, as the deployment phase
in this house has been during the summer, with much higher PV power production and
lower energy demand. These results indicate that the proposed framework would provide

a higher energy saving in regions with a high solar radiation.

To evaluate the comfort aspect during the deployment phase, boxplots of indoor air
and hot water tank temperatures by different control methods are shown for House 1 in
Figure 4.16. Due to the high number of plots only one house is presented, and the other
houses show a similar performance. Indoor air temperature has a narrow comfort range
which can be violated easily. Therefore, all of the methods show some violations of
comfort. RL-OSD shows more violations than the rule-based methods, but the violations
are less than 2 °C and happen in few hours, which therefore can be ignored. In case of

the hot water tank temperature, similarly, RL-OSD shows very slight violations that can

97



Chapter 4

House 1 &) House 1
10 1002 5
_ 9 —— Signal &; —— Signal 250
a 8 PV power 80 & —— Hot water demand
— —_
g7 —— Tank temperature o =
6 60 = —=
< 9
f 5 5 = =1
5] g = ©
2 af-M-- 0 g G &
o )
a 3 g A
[}
E f 20 >
n 4
o LT VAR APAMA TV FWA AATN RARL
IS AR AN SN RN S =
RN N L R L N SN
R I R v
Vv PV Vv PV P PV P Vv
House 2 House 2

100

]
31
)

80

W o

40

Signal
8] w
— )
w o
o o
Demand (L)

20

1T 1V

PV power & Signal
O R, N WA U OO

Tank average temperature (C)
o

Mk LALLM LALNRL L  aA

PN SR SN A, LR N > P P
RN AN N R L N SN LN N O R R N
OO RN S S S SN S S OSSN IO MO S SR S SO S S
P M S S R S S NN
House 3 [8) House 3
10 1002 s
9 e 250
] g 2 4
=) g 200 ~
4(;5 7 5] —
4 6 60 & =3 =
g 150 2
2 5 \,\\HJ\\/\/’\/\\JI\\I\V Q S) g
@ p =)
g4 10 5 »2 100 @
2 3 I =
z 2 20 % 1 50
1 o
il wlonl al gl =, i
> o o A > o N = > o © A S
N N N N N N ) N N N ) b : )
AN AT AN S A Sl A T A S
& o & o & o & o & o & 9 & Q
N S S S S S D ) S S S

Figure 4.14: Adaptation of control signal to the PV power production and hot water
demand in RL-OSD scenario

be ignored. Interestingly, violations by RL-OSD are even less than RE, which is due to
the fact that RL-OSD tries to save energy by adapting to the occupant behavior, while
RE tries to do so only by lowering the hot water tank temperature, regardless of occupant

behavior.

Boxplots of Legionella concentration over the deployment phase are shown in Figure
4.17. As expected, both of rule-based methods maintain a lower concentration than the
RL-OSD method, because they are over-conservative. While RL-OSD method is less
conservative, it has always respected the hygiene aspect as the maximum concentration is
less than 4500 CFU/L, which is much less than the risky limit of 500,000 CFU/L placed
for single-family residential houses [165]. It shows that RL-OSD has learned to maintain

hygiene aspect while avoiding over-necessary heating of the tank.

98



Chapter 4

House 1: RL-OSD House 1: RC House 1: RE

s PV

s Grid
20% 16% 15%

80% 84% 85%

House 2: RL-OSD House 2: RC House 2: RE

249%
° 14% 13%

76% 86% 87%
0

House 3: RL-OSD House 3: RC House 3: RE

79% 32% 33%

0,
2% 68% 67%

Figure 4.15: Contribution of PV power production in heat pump power consumption in
RL-OSD scenario
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Figure 4.17: Boxplots of Legionella concentration in tank by three control methods over
three case studies

4.4.4.3 Performance of RL-OLD

Figure 4.18 presents the performance of the agent over the long-time deployment
(RL-OLD scenario). As can be seen, there are a lot of variations in hot water use behavior
of occupants over this period, including a sudden decrease for one month, and an absence
period. In addition, this period includes a good diversity in outdoor air temperature as it
includes cold months at the beginning and hot months at the end. These diversities are
valuable to assess how the agent will adapt to the possible changes in environment over a
longtime deployment. As shown in this Figure, although there are significant variations
in hot water use behavior, the agent has always kept the hot water tank temperature above
comfort temperature of 40 °C. There is an increase in the temperature of pressurized hot
water tank from the middle of May (2021-05). This is because in this period there is a
higher PV power production, a lower demand for space heating, and at the same time a
sudden decrease in hot water demand. Therefore, hot water tank temperature is increased
as the agent is trying to get the best use of PV power production by storing the surplus
energy in the hot water tank. In this study an upper limit is not considered for the tank
temperature, so the agent is free to store surplus energy by reaching a high temperature. A
tempering valve should be installed at the tank outlet to mix hot and cold water to prevent
the risk of scalding at the point of use. Indoor air temperature is also within the comfort
limit, with slight violations of less than 2 °C. Legionella concentration is also always
below the risky limit, while it is higher during the cold season and lower during the warm

season, when extra energy is stored by over-heating the tank.
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Figure 4.18: Performance of the RL-OLD agent during long-time deployment on House
1

4.4.4.4 Performance of RL-DD

Figure 4.19 compares the performance of the agent which is also trained on the target
house (RL-OSD), versus the agent which is only trained off-site and has never observed
the behavior of that specific house (RL-DD). The training phase of RL includes some
randomness, mainly due to the exploration phase. Therefore, even if two agents are
trained with exactly same specifications, they can have slightly different performances.
So the slight differences between these two agents should not be associated with the
lack of an on-site training phase in RL-DD. The two agents, thus, show very similar
performance on Houses 1 and 2. The only significant difference is on House 3, where
the RL-DD agent has kept a higher hot water tank temperature than the RL-OSD agent.
This is because the RL-OSD has observed and learned the specific behavior of occupants
on House 3, and is better adapted to their behavior than the off-site trained agent which

has only observed the stochastic-based hot water use behavior. These diagrams show that
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Figure 4.19: Performance of the RL-DD agent during direct deployment

while the RL-DD agent has never seen the specific parameters of the target house (weather

conditions, occupant’ behavior, etc.), it can still maintain the comfort and hygiene aspects.

4.4.5 Quantified assessment of the proposed framework

To compare the energy performance of the proposed RL framework with the conventional
rule-based methods, the net energy use from grid by each control framework is calculated
as Equation 4.11.

H H
Energy use = Z En, — Z B, “4.11)
h=0 h=0

Where Z Ej, and Z E,, are the summation of hourly energy use by the heat pump
h=0
and hourly energy productlon by PV panels over the intended period, respectively. This

metric can be negative if the total energy production of PV panels are higher than the total
energy used by the heat pump in that period.
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4.4.5.1 RL-OSD versus baseline methods

Table 4.5 presents the performance metrics of RL-OSD versus RC and RE methods during
the deployment phase. RL-OSD consumes the least energy in all the Houses. In House 3,
all the methods have a negative energy consumption, which indicates that the total energy
production of PV panels has been more than the total energy consumption of the heat
pump and thus the difference is injected to the grid. The RL-OSD method in this house
has a higher surplus of PV power production, which shows a better performance of this
control method. To quantify the comfort aspect of the RL-OSD method, the percentage
of total hot water demand which was met with a temperature less than the comfort limit
is also indicated in this table. At the worst case, which has happened in House 1, 8% of
total demand is violated. The average temperature of these violations is 38.9 °C, which
is very close to the comfort limit of 40 °C. In case of space heating, although RL-OSD
has violated the comfort limits during a few hours, the average of violations is very close
to the comfort limits. In Houses 2 and 3, this average is in comfort limits because some
of the violations has been less than 20 °C and some other more than 24 °C. It can be
therefore considered that in all the houses RL-OSD has properly maintained the occupant
comfort. The average COP of heat pump by RL-OSD is always equal or lower than by
RE. It proves that the energy saving by RL-OSD is not achieved just by lowering the hot
water tank temperature (and therefore increasing the COP), but by properly scheduling of

heating cycles to profit more from PV power production.

4.4.5.2 RL-OLD versus baseline methods

Table 4.6 presents the metrics of RL-OLD scenario. These metrics show that over the
long-time, even without any other on-site training, the agent has provided an energy
saving while maintaining the occupant comfort and water hygiene. This scenario was
presented to prove the performance of the trained agent over a long time deployment
without any further on-site training. But if it is technically possible in practice, sequential

or continuous training of the agent will probably provide a higher energy saving.
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Table 4.6: Summary of performance of Long-time deployment scenario (RL-OLD) with
other control methods

RL-OLD RC RE

Energy use (MWh) 5.17 7.6 54
Violation of DHW comfort (%) 53 0 9.2
Average temperature of DHW comfort violations (°C) 38.7 0 385
Number of space heating comfort violations (Hours) 1015 548 532

Average temperature of space heating comfort violations

. 23.8 198 199
O

4.4.5.3 RL-OSD versus RL-DD

Table 4.7 represents the energy use and comfort metrics of RL-OSD versus RL-DD.
The performance of two scenarios are quite similar in different houses. In House 1, the
RL-OSD has a bit higher energy use, but in turn has provided a better comfort. So it can
be concluded that the off-site training step has provided a generalizable experience for the
agent and eliminated the need for further on-site training. However, in case a significant
change of occupant behavior happens during the operation, the RL-DD can fail to adapt

to the new conditions and provide comfort.

4.4.6 Conclusion

There are several stochastic parameters such as occupant behavior, renewable energy
potential, and weather condition, that increase the complexity of developing an optimal
control method for residential energy systems. Among them, occupant behavior is of
significant concern, as it is highly stochastic, unique in each building, varies by time,
and therefore very challenging to model and predict. This study proposes a data-driven
and model-free control method based on Reinforcement Learning, that can learn these
stochastic parameters by itself, and maintain an optimal operation. The agent in this
framework also takes into account the hygiene aspect of hot water to save energy without
compromising the occupants’ health. The goal of the learning agent is to save energy
while maintaining the health and comfort of occupants. The energy system evaluated
in this study was a PV-assisted air-source heat pump for space heating and hot water
production, though the methodology and proposed framework are easily adjustable to
other systems. A two-step training method is proposed, including an off-site phase
integrating stochastic hot water use behavior to provide an initial experience for the

learning agent, and an on-site phase to learn and adapt to the behavior of the target house.
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Table 4.5: Comparison of performance between RL-OSD and rule-based control methods
in three case studies during the deployment phase

House 1

House 2

House 3

RL-OSD RC

RE RL-OSD RC

RE

RL-OSD

RC RE

Energy use
(MWh)

Violation of DHW
comfort (%)

1.24 1.6

Average

temperature of
DHW comfort
violations (°C)

Number of space
heating comfort 153 0
violations (Hours)

Average

temperature of

space heating 243 -
comfort violations

§®)

1.34

0.62

39

84

222

0.8

-0.97

1.7

38

29

23.5

-0.78 -0.9

Table 4.7: Comparison of performance between RL-OSD and RL-DD in three houses

during the deployment phase

House 1

House 2

House 3

RL-OSD RL-DD RL-OSD RL-DD RL-OSD RL-DD

Energy use (MWh) 1.24

Violation of DHW 3 14
comfort (%) )
Average

temperature of

DHW comfort 38.9

violations (°C)

Number of space
heating comfort 153
violations (Hours)

Average

temperature of

space heating 243
comfort violations

C)

1.03

17.1

37.9

142

24.2

0.62

5

38.9

84

22.2

0.63

39

30.8

126

242

-0.97

1.7

38

29

23.5

-0.94

0

136

249
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The framework was evaluated for three houses in different regions of Switzerland. For
these case study houses, weather and solar radiation data were collected from nearby
weather stations, and hot water use data was experimentally monitored to evaluate the
framework on a realistic occupant behavior. The following main conclusions can be

drawn from this study:

* The proposed framework (RL-OSD scenario) achieved 7% to 22% energy-saving
compared to an energy-saving rule-based method (RE), and 22% to 47% compared
to the common practice rule-based method (RC), without violating the occupant

comfort and water hygiene.

* The agent properly learned the variations of PV power production in each building
and adapted the heating cycles to the PV power production to get the best use of

free solar energy (As can be seen in Figure 4.14).

* Evaluation of direct deployment scenario (RL-DD) indicated that the
stochastic-based intensive off-site training provides a generalizable knowledge
for the agent, and therefore it could still outperform rule-based methods even
without any on-site training on the target houses. As expected, the agent that
was also trained on the target houses (RL-OSD scenario) indicated slightly better
performance. It shows that, if enough computational power is available, the
stochastic-based off-site training can be further extended by including many
possible conditions that can happen in reality (e.g., a sudden change in occupant
behavior and weather conditions, change of system components, etc.), which
makes it possible to directly implement the trained agent on several houses without
any need for on-site training. It will significantly facilitate the transferability of the

proposed framework to other buildings.

 Evaluation of long-time deployment scenario (RL-OLD) indicated that the agent
could provide a satisfactory performance over long time, and further sequential or

continuous training is not necessary.

With the increasing complexity of residential energy systems, rather than
hard-programming the expert knowledge as a rule-based or model-based control
method, it is possible to let the agent learn the optimal control method by itself in each
specific building. In this study, experimentally measured data was used in simulations
to provide a realistic while safe environment to perform a primary test of the agent

performance.
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DeepValve: An occupant-centric control
framework for space heating in offices
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Figure 5.1: DeepValve control framework in a nutshell

5.1 Abstract

Stochastic occupancy profile and unique thermal response time of each office are two
main challenges to adapt space heating schedule to occupancy profile in offices. Space
heating controls in offices are usually programmed to follow static and conservative
schedules detached from actual occupancy, which usually results in energy waste by

heating vacant offices unnecessarily. A control solution should be developed to be easily
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transferred to many offices and continuously adapt the space heating to the occupancy
profile. This study introduces DeepValve, a novel occupant-centric control framework
based on Reinforcement Learning that can simultaneously learn the unique occupancy
behavior and unique thermal response behavior of each office, and accordingly schedule
office heating to save energy while maintaining comfort. Algorithm, hardware setup, and
training methodology of DeepValve are specifically designed to ensure an easy transfer to
many offices to save energy. The performance of the proposed framework is tested in two
steps, first step with simplistic simulation tests and second step with realistic experimental
tests in an environmental chamber by applying different thermal response behavior in each
test. It was observed that the agent came up with interesting strategies to save energy, for
example, turning OFF the system at a proper time before occupants’ departure. Results
indicate that the agent can quickly adapt to new offices and save significant energy while

maintaining occupant comfort.

5.2 Introduction

An ideal controller for space heating should heat the building only when it is needed
[47]. To this aim, the controller should be able to continuously adapt the space heating
to the occupancy schedule. Adaptation to occupancy behavior in a fast-response system
such as lighting can be easily provided by incorporating an occupancy detection sensor
and a simple logic to turn ON the lights when an occupant is detected [40]. However,
there are two main challenges in using the same approach for space heating systems.
Space heating systems have a slow response time, depending on several parameters, such
as thermal inertia of the building, heat losses, and the heating rate of air conditioning
systems, which is unique in each building [185]. Given the slow response time of
heating system, to maintain the occupant comfort the heating system should predict
the occupancy and start to heat the building in advance. This requires a model that
can properly predict the occupancy behavior. However, the occupancy behavior is
highly stochastic and complicated, can be affected by environmental, temporal, and
random factors, and is unique in each building [186], which makes it challenging to
develop a generalizable model to predict occupancy behavior in many offices. Current
control systems can be called expert-based controls, in which a group of domain experts
hard-program their knowledge as a set of rules and heuristics (rule-based methods (RBC))
[147] or optimization models to be solved dynamically over time (Model Predictive
Control (MPC)) [187, 188]. Expert-based systems are limited to expert knowledge
[189]. Uniqueness of occupant behavior and thermal response in each building make it
challenging for the experts to program generalizable rule-based or model-based controls
that can be easily transferred to many offices and optimally adapt heating schedule to

occupancy behavior.
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An alternative to the expert-based approach is the learning-based approach, which
is inspired by neuroscience and how the brain works [79]. In this approach, instead
of hard-programming the solution to the controllers a human-like learning mechanism
is programmed to the controller, that enables it to autonomously learn the optimal
control strategy from scratch [189]. Reinforcement Learning (RL) is a method of
Machine Learning that can provide this learning ability [80]. In RL, the learning
controller (so-called agent) learns the system model and subsequently the optimal control
policy only by interacting with the system and observing the impacts of its actions
[155, 190]. With the increasing complexity of energy systems in buildings due to
intermittent renewable energy generation on site, increasing use of heat pumps with
variable efficiency, electric car charging, energy storage, grid interactions, etc. [80],
developing accurate models for expert-based methods (such as MPC) is becoming more
complicated and time-consuming than ever. This is while an RL agent does not require
any prior model of the system, can learn the system model by itself from scratch, and
continuously adapt to the changes [159]. Secondly, a learning controller can learn a
unique control strategy for each building, depending on the unique occupant behavior,

which can not be easily achieved by expert-based controllers [191-193].

Researchers have used RL to provide learning ability to different building systems,
such as solar thermal systems [162], air handling units [159], lighting [58], space
heating [154, 192] and hot water systems [72, 191, 194], and indicated promising
performance compared to expert-based systems. Among them, some studies evaluated
RL for developing occupant-centric controllers. An occupant-centric controller is defined
as a controller that perceives occupant behavior through sensory data and accordingly
adapts the control actions [41]. Depending on the type of occupant-related data that is
taken into account by the controller, occupant-centric control can be categorized into
occupancy-centric and occupant behavior-centric. Occupancy-centric controls tend to
adapt the control actions to the occupancy state or number of occupants, whereas occupant
behavior-centric controls tend to adapt to any other kind of occupant-related data, such as
hot water demand, indoor temperature preferences, etc [41]. Occupant-centric controls
can also be categorized depending on the temporal aspect of the algorithms. If the
algorithm responds to occupant behavior in real time, for example by turning on the
lights when a motion is detected, it is categorized as reactive control. If the algorithm
relies on the prediction of occupant behavior to take actions in advance, it is categorized
as predictive control [40]. Given that stochastic occupant behavior is a major source
of uncertainty for optimal control of buildings, the field of occupant-centric control
is gaining increasing interest and indicates promising results [80]. For fast-response
systems, such as lighting, a reactive occupant-centric control based on simple logics

can be used. However, for slow-response systems, such as thermal systems, a predictive
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occupant-centric control is required to take actions in advance [40].

Considering that RL can learn occupant behavior to adapt future actions, it has a
good potential to be used for occupant-centric controls. There are yet few studies
on RL for occupant-centric control, while the number of publications is increasing in
recent years [80]. Jung et al. [65] proposed an RL control framework for personalized
control of indoor air temperature based on occupants’ activity and physiological data. A
wristband is used to wirelessly collect physiological and acceleration-related data from
the occupants. A CNN-based deep learning model is used to recognize the occupant
activity (e.g., sitting, walking) based on the acceleration data from a wristband. The RL
model then takes into account the activity type and physiological data to decide the best
setpoint temperature to balance between comfort and energy use. The proposed method
reduced the thermal discomfort of occupants by 10.9%. Soares et al. [195] used RL to
maximize the self-consumption of PV power production by storing the excess heat in a
hot water tank or batteries. The proposed algorithm learns the stochastic hot water use
behavior of the occupants, uses predictions of local PV production, and considers the
dynamics of the system to increase self-consumption while maintaining the comfort of
the occupants. Marantos et al. [196] proposed an RL-based smart thermostat that takes
into account the presence of occupants, their number and activity, the indoor and outdoor
weather data and energy use to select the indoor temperature setpoint. The aim of the
proposed controller was to make a balance between comfort and energy use. Zhang
and Lam [67] proposed an RL model to control the supply water temperature to the
radiant system regulated by a three-way valve that mixes the supply and return water.
The agent tried to reduce the heating provided by the radiator while maintaining the
occupants’ comfort. The behavior of occupants considered in this study included the
occupancy status and the thermal comfort feedback, both included in the state vector.
The thermal comfort feedback collected using a mobile app was converted to Predicted
Percentage of Dissatisfied (PPD) and provided to the agent. Lee et al. [197] proposed an
RL framework to control the indoor air temperature in a room with a variable air volume
system. It was a simulation-based study where a room and a heating system were modeled
in EnergyPlus. Two aspects of occupant behavior were considered, namely occupants’
presence and their desired air temperature setpoint. Both parameters were simulated
based on stochastic models and integrated into the EnergyPlus model. Fazenda et al.
[198] proposed an RL control framework which learns the schedule and desired setpoint
temperature of occupants, and controls the heating system accordingly to make a balance
between comfort and energy use. System models were developed in MATLAB, and
stochastic models were used to represent occupants’ behavior. Park et al. [58] proposed a
device called Lightlearn, which uses RL for occupant-centric control of lights in offices.

The device was designed to enable both manual and automatic switching ON/OFF lights,
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which therefore allowed learning of occupant interactions over time. It was installed in
five different offices for eight weeks. The performance of the Lightlearn solution was
compared with occupancy-based and schedule-based methods in terms of energy use and
comfort. Kazmi et al. [72] proposed a model-based RL control framework to balance
comfort and energy use in heat pump water heating systems. In particular, they used
model-based heuristics that incorporate the vessel state and occupants’ behavior into the

optimal control problem.

The RL studies for occupant-centric building controls usually consider comfort and
energy use aspects. Another important aspect that can be also taken into account by
the RL agent is the health of occupants, which can be influenced by regulating air
temperature, water temperature, air quality, etc. Heidari et al. [191] proposed an RL
control framework for water heating systems that learns the hot water use behavior of
occupants and plans the heating cycles accordingly. The algorithm aimed to save energy
while maintaining the occupant comfort and water hygiene in the storage tank. Water
hygiene, as the health-related aspect, is about the growth of Legionella bacteria in the tank
which should prevented by periodical over-heating of stored water. The trained agent was
tested using the real-world hot water use and weather data collected over 29 weeks from
a residential house in Switzerland. In another study, Heidari et al. [192] proposed an
RL control framework for occupant-solar-centric control of a photovoltaic-assisted space
heating and hot water production system. By learning the hot water use behavior and solar
power generation, the algorithm plans the heating cycles of hot water tank and select the
indoor air temperature setpoint to save energy while maintaining comfort and hygiene.
The proposed framework was tested using the real-world hot water use and weather data
measured in 3 residential houses in Switzerland. Yang et al. [199] proposed an RL
framework for the simultaneous control of indoor air quality and air temperature. The
framework aimed to minimize the energy cost while maintaining C'O, level and indoor
temperature within the desired healthy ranges. The study was simulation-based, and the

number of occupants was modeled as a random number.

Research on the use of RL for occupant-centric building control has indicated
promising results, but it is still at the early stage. Several gaps should be addressed in

this field. Following are the main limitations associated with the previous studies:

* Simulation-based: Most of the studies in RL are simulation-based, in which
both building and occupant behavior are simulated. Building models are usually
developed using building simulation software, and occupant behavior is modeled
using stochastic or random models. This is mainly because the hardware setup
required for establishing an RL framework in practice is usually complicated

and requires a coordinated work between Internet of Things (IoT), controls, and
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energy engineers. A simulation model is a simplified representation of an actual
building, and an agent performing well in a simplified simulation environment does
not necessarily have a good performance in a more complicated actual building.
Similarly, a stochastic model of occupant behavior may not represent all the

complexities of real occupants, such as changes in number, habits, or preferences.

* Case-specific: Most of the control frameworks proposed by previous studies are
developed for a specific case and little/no attention is paid to transferability. This
is because in most of them, the algorithm and hardware setup was developed for a
specific layout of energy system, or the framework was only trained and then tested

on the target case study without evaluating the transferability potential.

* Complicated hardware setup: In some studies, data from several sensors were
needed to provide the required information for the agent. Relying on the input from
several sensors is a drawback in practice and limits the widespread implementation
of the proposed methods. Because it will increase the risk of failure due to the
malfunctioning of sensors, a higher initial and maintenance cost, and a higher labor

work for installation.

5.2.1 Research Scope

Space heating in office buildings usually follows static schedules that are set once to
the thermostat and rarely updated afterward. The indoor temperature is usually set to
a comfort temperature for the expected occupancy hours and set to a lower (setback)
temperature for the rest of the hours such as nighttime, holidays, and weekends. This
approach has to assume a static schedule for the office occupancy, while the actual
occupancy of an office is dynamic and can vary from day to day. Consequently, it
commonly happens that the office is heated when the occupants are not present. An
ideal control approach should schedule indoor heating, taking into account the unique
occupancy behavior and thermal response of each office. Due to the uniqueness of
occupancy and thermal response in each office, rule-based or model-based controls
can be developed only for a specific office, but they lack generalization potential. To
transfer expert-based controls to different offices, specific parameters such as thermal
characteristics of room should be updated for every other office. This study aims to
develop a novel control framework that can simultaneously learn the unique occupancy
schedule and the unique thermal response time of each office, and accordingly adapt
the heating schedule to save energy while maintaining the thermal comfort. This study

includes the following main novel aspects:

* Simultaneous learning of occupancy and thermal response: To adapt the space

heating schedule to occupancy, a possible approach is to separately predict the
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arrival and departure time of the next day and then schedule the office heating
accordingly [39]. In this approach, the optimal time for starting and ending of space
heating should be determined by experts, depending on the thermal response time of
each specific office. DeepValve simultaneously learns the occupancy and thermal
response time of each office to optimally adapt the heating schedule without any
expert knowledge. This can provide a plug-and-play occupant-centric controller

for offices.

* Easy Transfer to many offices: A major objective of this study is to design a
control framework that can be easily transferred to many offices and convert their
heating into occupant-centric. To this aim, several considerations are taken into
account in developing this framework. First, the framework is only focused on
scheduling the heat emission system in each room, independent of the type and
layout of the main heating system. The framework can be implemented on any
hydronic-based heating system (floor heating, ceiling heating, radiator, etc) as the
most common system in Europe offices [200]. It is worth mentioning that the same
methodology can be also applied to the air-based systems. In that case, an additional
constraint about the ventilation requirements should be taken into account. Second,
the framework is formulated to rely on a minimum number of sensors and actuators.
It will also reduce the installation cost, and the risk of failure due to hardware
malfunctioning. Finally, training methodology is designed to provide generalizable

knowledge to the agent and ensure quick adaptation to a new office.

* Experimental assessment on different setups: After ensuring good performance
in simulations, the framework is experimentally implemented on different setups
representing different offices. Each setup includes a different hydronic heat
emission system (ceiling or floor heating), with a different thermal response time
adjusted by the air change rate. While most of the previous studies have only
implemented RL in simulations [80], the experimental tests in this study can firmly
prove the performance of the proposed framework in a real-world case with higher
complexity than a simulated environment. Given the limited experimental studies
on RL, the detailed description of experimental setup also provides a guideline for

future studies.

5.3 Methodology

5.3.1 Physical Layout of the Control Framework

The physical layout of the proposed framework is shown in Figure 5.2. It is designed

to rely on a minimum number of sensors and actuators and to be compatible with any
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hydronic heating system. The framework only needs to collect two types of data from a
single thermal zone of the office: the indoor air temperature and the state of occupancy as
a binary value. The indoor air temperature can be easily obtained with an air temperature
sensor, and the occupancy status can be obtained using any kind of reliable occupancy
detection method. Previous studies proposed several occupancy detection methods, such
as using a Bluetooth module to detect cellphone devices [201], infrared thermopile array
sensor [202] that can detect both stationary and moving people, WiFi usage data [48],
environmental sensors (air temperature, C'O,, etc) [203], smart power meters [204], or a
combination of these methods [205]. Figure 5.2 shows the use of an infrared thermopile
array sensor, as a non-intrusive, simple, and robust method to obtain occupancy status
[202]. But occupancy detection method is not the focus of this study, and any method that
can provide a binary value with acceptable accuracy can be used. For big offices, several
air temperature sensors and occupancy detection devices can be used, and their data can
be combined (e.g., averaging air temperature data and taking the maximum of occupancy
status binary value). A controller reads and stores the data from the mentioned sensors
to be used by the algorithm. The proposed control framework can be implemented on a
cloud service or on a local computer. Figure 5.2 shows a local computer connected to the
controller to read data and write values to the controller. To regulate the heat emission to
the office, an electric valve can be installed at the inlet of the heat emission system. The
emission system can be any type of hydronic heating systems such as radiator, radiant
floor heating, or radiant ceiling heating. The controller can open or close the electric
valve, depending on the decision made by the control framework. As can be seen in Figure
5.2, the hardware layout of the proposed framework is simple and easy to be applied in
many offices. The control framework is designed for one single thermal zone. If there are
multiple radiators available in the zone, a single valve can be installed on the main inlet

of hot water before divisions.

5.3.2 Conceptual layout of the control Framework

The conceptual block diagram of the proposed framework is shown in Figure 5.3. This
framework is consisted of the RL model and the RB model. The RL model is based on
Double Deep Q-learning, which is a value based method suitable for problems with a
discrete action space. In a typical deep Q-learning method, the Q value of performing the

action a in the state s (Q(s;, a;)) is calculated as follow:

Q(s¢,a¢) = 1y + 7. max,Q (541, a) (5.1)

In which r; is the immediate reward, and max,Q(s;+1) is the highest possible Q value
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Figure 5.2: Physical layout of the DeepValve control framework

in the next state. In this formulation, both the current Q-value (Q)(s;, a;)), and the future
Q-value (max,Q(s11)) are calculated with the same neural network. It is known that it
can lead to the overestimation of the Q-value for a specific action, which results in the
selection of a non-optimal action. To overcome this issue, a modified version of Deep
Q-learning, known as Double Deep Q-learning [206] is used. Double Deep Q-learning
involves two neural networks. The first network, called the online network, is used to
control the environment directly, and its weights are constantly updated. The second
network, called the target network, is only used to predict the target value, and its weights
are updated only after N iterations. Therefore, in a Double Deep-Q learning, the online
network calculates the Q)(s;, a;) term and the target network calculates the maz,Q(s;+1)
term in Equation 5.1. This solves the overestimation issue and also improves the stability
of learning [206]. The RL model takes the current state of the environment and selects
between two possible actions: Disable action and Enable action. If Disable action
is selected, then the RB model is not called, and the electric valve is turned OFF. If
the E'nable action is selected, the RB model is activated. The RB model is the typical
Rule-Based method commonly used in thermostats. This method follows a simple rule,
which turns ON the system when the indoor air temperature is below a lower limit and
turns OFF the system once the temperature is above a higher limit. The RB control keeps

the air temperature within an interval centered on the setpoint temperature (e.g. 22°C £
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0.5°C). Once the RB model is activated, it observes the current air temperature, considers
the setpoint temperature given by the user, and turns ON/OFF the valve to reach and
maintain the air temperature within the interval of Tieyp0in: == AT°C. This study considers
a setpoint of 22 °C with a dead band of 0.5 °C. However, both of temperature setpoint
and temperature interval can be selected by user with the only limitation that it should be
within the thermal comfort zone. This framework integrates the adaptiveness of the RL
method with the robustness of the RB method. If a single RL model was used to directly
control the electric valve, the agent had to also learn the relationship between the valve
opening and the indoor air temperature to properly regulate the air temperature based on
the occupancy schedule. But in the proposed framework, the complicated control problem
is decoupled into two simpler problems of (1) adapting to occupancy schedule and thermal
response that is handled by RL, and (2) tracking the user-input setpoint that is handled by
RB. It simplifies the problem for the RL agent, increases the safety and robustness of the

controller, and also facilitates the integration of user-input setpoint temperature.
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Figure 5.3: Conceptual block diagram of the DeepValve control framework

5.3.2.1 Agent and Environment setup

RL is consisted of an agent and an environment. This study uses Tensorforce [131], which
is a Python library based on Tensorflow with very customizable classes for modeling the
RL agent and environment. Table 5.1 presents the hyperparameters selected for the agent.
To balance the exploration and exploitation tradeoff in this study, the ¢ — greedy method
is used. A linear decay is established for exploration, where the € linearly decays from

0.99 to 0.0001 at each time step over the first 30% of the training timesteps. The update
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frequency is set to 24 timesteps, which means that the agent updates the policy every 12

hours. The rest of hyperparameters are tuned by running the models multiple times.

Table 5.1: Selected parameters for the agent

Hyperparameter Value

Agent type Double Deep-Q network
Learning rate 0.003

Batch size 24

Update frequency 24

Memory 672000
Discount factor 0.9

The environment in this framework is a Python class that receives the selected action
by the agent, executes it, and gives back the new state and reward value to the agent. It
can execute the action on a simulated model of the system or on an actual system. As will
be explained in section Training and Testing Procedure, the training and initial testing
of the agent is done in a simulated environment, and the final test is done in an actual

environment (environmental chamber).

5.3.2.2 States, Actions, and Reward Design

The RL model in this framework uses a timestep of 30 minutes, which means that the
RL model receives the states and the reward and selects the next action every 30 minutes.
Due the certain response time of the space heating systems, a duration of 30 minutes is
considered to ensure that the system has enough time to respond to the selected action, and
the agent can observe the consequence of the selected action at the end of the timestep. In
practice, a backup controller can be also added to sense the occupancy more frequent (e.g.
every 1 minute) and turn ON the system if occupants are present and the temperature is
not in comfort zone. Integration of backup controller is not evaluated in this study. Figure
5.4 shows the states and actions used in the RL model (The number of layers and nodes do
not represent the actual Neural Network used in this study. The figure is just to show the
states and actions). Given the complexity of the occupants’ behavior, enough information
should be provided to the agent to be able to learn and predict the occupants’ behavior
properly. The states vector in the RL framework includes 17 parameters; out of them,
16 parameters are focused on the behavior of occupants to provide useful information
for predicting the presence of occupants, and 1 parameter is used to provide the current

indoor air temperature. The following parameters are included in the state vector:
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* OS(t — m): This parameter shows the occupancy status of the office during the
timestep starting at t —n. For example, if the current time is 16:00, O.S(t —1) shows
the occupancy status from 15:30 to 16:00, and OS(t — 2) shows the occupancy
status from 15:00 to 15:30. The status of occupancy is a binary, indicating "1"
for the occupied office and "0" for the empty office, regardless of the number of
occupants. To be more conservative with the comfort of occupants, if the office was
occupied only part of a timestep, it is still considered as 1. The occupancy status
during the time steps of (t—1), (t—2), (t—3), (t—4), (t—5) and (t—6) are included
to provide the history of occupancy status during the last 3 hours from the current
timestep. Considering the repetitive habits and routines in occupancy, to predict
the future occupancy status it will be helpful for the agent to know the occupancy
status of the same time during the previous day. To include this information, the
occupancy status during the timesteps of (t — 43), (¢t — 44), (¢t — 45), (t — 46),
(t —47) and (¢t — 48) are also included. Considering that the duration of time
interval is 30 minutes, these parameters show the occupancy status during the next
3 hours from time ¢ over the last day. Previous studies on other kinds of occupant
behavior, such as hot water use behavior [191, 194], have shown that the future
occupant behavior has a strong correlation with the historical behavior. Therefore,
providing the mentioned historical occupancy information for the agent is expected

to be very useful for the prediction of future occupancy.

e TLO(t): This parameter represents the total number of timesteps passed from the
last occupancy. For example, if occupants leave the office at 18:00, TLO(t) at 19:30
is equal to 3. This parameter helps the agent to (1) learn the common durations of

occupants’ absence and (2) distinguish between Monday and other working days.

* Timeg;,(t) and Time os(t): Time of day is highly correlated with occupancy
[207] and thus should be provided to the agent. To better reflect the cyclic nature of
time of day to the agent, each timestep is converted into two coordinates of sin and

cos terms as follow:

2 x m X timestep(t)
48

Timeg;, (t) = sin( ) (5.2)

2 X m X timestep(t)
48

) (5.3)

Time.os(t) = cos(

Converting to sin and cos terms, and the use of dummy variables [13] are two
common method for encoding the temporal features in Machine Learning to

represent their cyclic nature.

* Daytype(t): To help the agent to learn the difference between the occupancy
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pattern of working days and weekends, a binary parameter is included to indicate
working days as "1" and weekends as "0". Therefore, the agent can learn when this
parameter is "0", it is a weekend and no occupancy is expected. Similarly, when it

is "1" the normal occupancy of a working day is expected.

* Tindoor(t): This parameter shows the current indoor air temperature, which should

be known by the agent to properly plan heating cycles.

The values of all these state parameters are normalized into [0-1] by dividing by a

constant number. The possible actions of the RL model are as follows:
* Disable: Disable the RB control and turn OFF the electric valve.

* Enable: Enable the RB control to achieve the desired setpoint air temperature.

The proposed framework aims to reduce energy use while maintaining comfort, with
the comfort as a priority to energy saving. Therefore, The reward function is consisted
of two competing terms, energy reward and comfort reward. The energy reward is

calculated as follows:

_aX,Tinoort_,Tinoort_]- [ Enoort >,Tinoort_]-
Ruorsy = (Tindoor (t) door(t = 1)) Lf Tindoor(t) door (t — 1) (5.4)

0 [f Endoor(t) S T‘indoor(t - ]-)

where Tindo0r(t) and the Tj,g00-(t — 1) are the indoor air temperatures at the end and
the beginning of each timestep, accordingly. The heat given to the indoor space can
be calculated as ) = My C), 4ir AT, This formulation of energy reward means that
the agent should try to minimize the total temperature increment of the office over the
episode, which is proportional to the total heat given to the office air. Although other
sources of heat such as internal gains can contribute to the temperature increment, with
this formulation the agent learns how to minimize the part of the temperature increment
that is dependent on the agent decision. This formulation of the energy reward only
requires an air temperature sensor and eliminates the need for an energy meter or water
flow and temperature sensors at the inlets and outlets. Also, it is independent of whether
the inlet water flow and temperature are fixed or variable. To adjust the importance of the

energy term in the total reward function, a scaling factor a is used.

The comfort term punishes the agent if the occupants are present and the indoor air
temperature is not within the thermal comfort zone. If the occupants are not present, or

if they are present and the temperature is within the comfort zone, the comfort reward
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would be zero. The comfort reward is calculated as follow:

—b  If occupancy =1 and (Tinaoor(t) < 20 or Tingoor(t) > 24)
Rcomfort = (55)
0 else

where b is a constant number. Although the comfort reward could be proportional to
the distance of the current air temperature from the comfort limits, the use of a constant

number facilitates the learning for the agent.
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Figure 5.4: States and actions used in the RL model

5.3.2.3 Training and Testing Procedure

Simulation is a safe environment in which the agent can interact with a virtual model of
the system and learn the optimal behavior without causing any discomfort to the occupants
or any damage to the physical system. Figure 5.5 shows the training and testing steps of
the framework. Although the proposed framework can directly start learning on the target
office, this work proposes an intensive training process in a simulation environment prior
to the implementation on the target office. The first step is the intensive training, which
aims to provide a generalizable knowledge to the agent and speed up the learning process
when implemented on the target office. To gain generalizable knowledge, in this step the
agent is trained on a variation of thermal response time and occupancy profiles. A large
dataset of the office occupancy from the literature is collected (e.g., from works [58, 208,

209]). The dataset includes 23 different offices in three different countries as overviewed
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Figure 5.5: Training and testing procedure of the DeepValve control framework
development

in Table 5.2. Each monitored office included 1 or 2 (maximum) occupants. The variations
of thermal response time and occupant behavior prevents the agent to be overfitted to a

specific case, and accelerates the adaptation to a new office.

Table 5.2: Overview of different sources used in the occupancy dataset

Offices Location Reference

Office 1-17 Frankfurt, Germany [208]
Office 18 Calabria, Italy [209]
Offices 19-23 Texas, USA [58]

Duration of the collected data, as well as boxplots of the occupied hours for each
office are shown in Figure 5.6. Offices 1-17 were monitored for an extended period of 2
to 4 years, while office 18 was monitored for around 13 months, and offices 19-23 were
monitored for shorter periods of around 2 months. The boxplots show that there is a good

variation in the occupied hours between offices. For example, occupied hours has a high
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variation in office 10, while it has a low variation in office 20. Out of the collected data,
offices 3, 17 and 22, are kept for testing. The data from the rest of the offices are combined
to form 45 years of training data.
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Figure 5.6: Duration of data collection and boxplots of occupancy hours in different
offices (Data from [58, 208, 209])

In this study, the extensive training in the simulation environment is more focused
on providing experience with potential variations of occupant behavior (as the main
stochastic variable), with less emphasis on variations of building characteristics. This
is because once the pre-trained agent starts learning on a specific office, the occupant
behavior has a higher variation than the building characteristics over the building lifetime.
Therefore, to facilitate training on the big dataset of occupancy data, a simple building
model written in Python [210] (developed based on the hourly dynamic model of ISO
13790) is used to simulate the office room. The simplicity of the model, and the fact that
both agent and environment are in Python, significantly reduces the computational time
and makes it feasible to train on a large occupancy dataset. This is more desired than
training on a detailed building model (e.g. developed in TRNSYS) but with a smaller

dataset of occupancy.

As shown in Figure 5.5, at the beginning of each timestep the environment class
executes the control signal (ON/OFF signal of the valve) on the building model and at
the end of the timestep it gives back the new state and reward to the agent. The occupancy
status is read for each timestep based on the current time of the day from the collected

occupancy dataset. The variations in occupancy behavior is based on real-world collected
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data, and the variations in thermal response time is implemented by gradually altering
the heated area, thermal capacitance, and heat loss at each month. It is equivalent of
implementing the agent on a different office every other month. The office area is 30 m?
in the first month, and increases by 0.1 m? every month to 88 m? in the last month. The
thermal capacitance and heat loss coefficient of the office are altered proportional to the
floor area, as indicated in Equations 5.6 and 5.7. It should be noted that these equations
use arbitrary numbers and do not reflect the thermal characteristics of any kind of specific

office building.

kJ
Thermal capacitance = 400 X area I (5.6)

Heat loss coef ficient = 2 X area % 4.7

Once the agent is trained, it should be tested and compared to the baseline models
before being implemented in practice. Therefore, the second step, as shown in Figure 5.5,
aims to evaluate the agent performance and compare with the baseline control methods on
3 different offices. In each office, a different area (thus different thermal characteristics
based on Equations 5.6 and 5.7) with a different occupancy behavior that is never seen
before by the agent is used. A possible approach for implementing the RL agent on
the target offices is static deployment, in which the agent is no longer learning and
updating the policy but only controlling the system. Static deployment is computationally
efficient and can be implemented using cheap hardware such as Raspberry Pi. But if
enough computational power is available, the agent can continue to learn and update
control policy while controlling the system. In this case, it can adapt to any future
changes in the occupant behavior or system and continuously get smarter over time.
In this study, to explore the full potential of the RL agent, the agent continues to learn
while controlling the system during the tests. Table 5.3 shows the main specifications
of these tests. In each of these tests, two baseline control methods are also modeled,
namely Schedule-driven Rule-Based control (SRB) and Occupancy-driven Rule-Based
control (ORB). SRB method is the common practice in offices, in which the setpoint
air temperature is set at a comfort temperature for specific hours (in this study 22 °C
from 6 AM to 7 PM), and it is set at a lower temperature (16 °C in this study) (called
setback) for the rest of the hours and during the weekends. In this study, the setpoint
is 22 °C from 6 AM to 7 PM over working days and is 16 °C for the rest of time. In
ORB method, the rule-based controller with the setpoint of 22 °C is enabled only when
the presence of people is detected by an occupancy detection method and disabled for the

rest of the hours. It is not a common approach in practice, but it is modeled to represent
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a reactive occupant-centric control where the heat emission control is synchronized with

the occupancy schedule.

Table 5.3: Specifications of three simulation tests

Simulation test Office area (m?) Occupancy data Duration

1 50 Office 3 4 weeks
2 60 Office 22 4 weeks
3 70 Office 17 4 weeks

Once the agent outperforms the baseline models in simulation environment, the third
step (shown in Figure 5.5) is to test the RL agent on an actual (physical) system. Due
to the simplifying assumptions in simulations, controlling an actual system for the agent
is more challenging than controlling a simplified simulation model. For example, in the
simulation model it is assumed that no heat is emitted to the room after the valve was
closed. But in practice once the water supply valve is closed the heat emission system
remains warm and continues to heat the room until its temperature equalizes with the
indoor environment. Thus, the experimental tests aim to assess the adaptation potential
of the agent to different thermal response time on an actual system. An experimental
test facility with a high degree of flexibility is used to assess the agent adaptation to
different thermal response time of the office. The thermal response time is altered
by using different heat emission systems (e.g., floor heating, ceiling heating, and a
combination of both) and by adjusting the air change rate per hour. Altering the type
of heating system and air change rate is to represent different offices that the agent can be
implemented on. A detailed description of the experimental test setup is provided in the
following sections. The objective of the third step in the control framework development
is not to compare the RL performance with the baseline models. Instead, the aim is to
observe if the agent can properly adapt to different thermal response time to maintain the
comfort in an actual system. Due to the limited availability of the experimental facility,
long-time tests to compare with baseline models were not possible. While the agent is
not expected to outperform the baseline methods only after one day, the SRB method is
also tested to better observe the difference of RL with SRB. Table 5.4 summarizes the
three experimental tests using RL, as well as the test using the baseline method. The
abbreviations in this table reflect the type of the activated heat emission system and the
set air change rate per hour (e.g., the label "RL-CF-4" indicates the RL method using
both ceiling and floor heating at 4 air changes per hour). For easier comparison, the
heat emission system and air change rate per hour of the baseline test are similar to

Experimental test 2.
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Table 5.4: Specifications of experimental tests

Test ID Heat Air Supply Duration
emission change air
system per hour temperature
(ACH) C)
Experimental test 1 RL-CF-4 Ceiling and 4 14 24 Hours
floor panels
Experimental test2 RL-F-6  Floor panels 6 14 24 Hours
Experimental test 3 RL-C-8 Ceiling 8 14 24 Hours
panels
Baseline test SRB-F-6 Floor panels 6 14 24 Hours

5.3.3 Testing on the Experimental Setup
5.3.3.1 Experimental Facility

An environmental chamber (EPFL- Smart Living Lab, Switzerland) was used to
experimentally test the performance of the RL-based control framework. The chamber is
a highly insulated room of 4.3(w) x 5.8(1) x 2.5(h) m? volume. It is specially designed as
a multi-purpose, versatile, and programmable facility for thermal comfort studies. Figure
5.7 illustrates a drawing of the facility and the interior of the room. The chamber is
equipped with radiant panels and air supply diffusers both on the ceiling and the floor.
Radiant panels on the ceiling and the floor include 6 independent sections with 8 panels
each. Water supply to each section can be controlled independently by an electric valve.
All air diffusers could also be controlled independent of each other. Air flow rate and
the direction of air supply and extract can be changed by electric dampers. Figure 5.8
details the installation of air dampers and electric valves on the ceiling, floor, and the
main water supply pipe. The hot or cold water required for the radiant panels is provided
by a water-to-water heat pump (Hidros WZAO12HELSRVP2U). The required air supply
is also provided by an air handling unit (AHU) located outdoors.
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Ceiling air supply Ceiling panels

Floor air extract Floor panels

Figure 5.7: Overview of the experimental facility: (a) 3D schematic of the environmental
chamber (b) an interior view
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Figure 5.8: Installation of electric valves and dampers for flexible control of air and water
systems in the environmental chamber: (a) electric air dampers on the ceiling, (b) electric
air dampers on the floor, (c) electric water valves on the ceiling, (d) electric water valves
on the floor, (e) electric valves on the main supply pipes (outside the climatic chamber)

Figure 5.9 shows the schematics of the control system in the environmental chamber.
The sensors and actuators are wired to the SIEMENS controller, which is connected
to the WiFi network. The RL control framework is implemented on a PC connected
to the same network. The agent is exactly the same as in the simulation-based tests.
The environment class needs to be modified to read state parameters and write control
actions to the actual controller rather than the simulation model. The interaction between

the RL control framework (on PC) and the controller is based on the BACnet protocol.
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To communicate with the controller through this protocol, the environment class uses a
Python library called BACO. BACO is developed to process BACnet messages on an IP
network. Using this setup, the developed control framework can wirelessly control the

environmental chamber and record performance data.

[ Management level | [ Controller level | Fieldlevel |

RL model in Python (BACO) Controller
BACnet IP -
protocol I IMMHIMIIIIIIIIIIi'IjIlIIIIIIWuTuI >
Local network / T T
R Internet e i

—————— Wireless connection
Wired connection

Figure 5.9: Layout of the implemented control system in the environmental chamber

5.3.3.2 Representation of the Occupancy

Typical office work can be characterized as sitting or standing (light activity, typing,
filing). Thus, metabolic rate of people would vary in the range of 1.2-1.5 met [176]. The
maximum heat emitted by the human body in offices can be considered as 100 W [211].
To mimic the presence of occupants and their impact on the indoor air temperature a
programmable electric heater is assembled as shown in Figure 5.10. A mini 100 W electric
heater is used to represent the presence of one person in the chamber. This fan-assisted
electric heater can heat up and cool down faster than water-based or oil-based systems.
It makes the heater a more realistic device for mimicking the presence of occupants. A
Raspberry Pi with a relay hat is programmed to turn ON/OFF the heater based on the

occupancy data in an excel file.

Raspberry pi with relay hat
pOsTY P 4 100 W air heater

Figure 5.10: Electric heater to represent occupant heat gain
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5.4 Results

The results of this study are categorized into the Training phase, Simulation tests, and

Experimental tests.

5.4.1 Training Phase

The reward function combines the energy and comfort performance of the agent into
a single value. Higher values of the reward indicate better performance of the agent.
Lower values or high oscillations during the training phase may indicate that the agent
has failed to achieve the optimal control policy. The evolution of the reward value during
the training phase is a good indicator to assess whether the agent has converged to the
optimal control policy. When evaluating the reward value, the minimum and maximum
possible values should be taken into account. The values for the coefficients a and b in
the reward function (Equations 5.4 and 5.5) are selected as 1 and 30, respectively. A
high value is selected for the comfort reward to ensure that the energy saving is not at
the cost of comfort violations. Therefore, the values higher than -30 are only due to the
energy use, which is not totally avoidable. The values equal or lower than -30 indicate
that the comfort is also violated. Figure 5.11 (a-c) shows the evolution of the total reward,
the energy reward, and the comfort reward averaged over each month during the training
phase. As seen in Figure 5.11(a), the total reward shows many fluctuations over the time.
The evolution of the energy and the comfort rewards indicate that the variations of the
total reward are mainly caused by the comfort reward, and the energy reward follows a
converging trend. It should be noted that the occupancy data used for the training phase
include the data of 20 different offices. Therefore, the agent should deal not only with the
daily change of occupancy schedule in each office but also with the change of office (with
different occupants). Considering the variations in occupancy data and office thermal
characteristics included in the training phase, the agent is not expected to converge the
reward value during the first training phase. rather, the aim of the first training phase is
to gain a generalizable and transferable knowledge by experiencing different offices. A
converging reward value is only expected over the testing steps, in which the agent is

applied to one specific office.

5.4.2 Simulation Tests

Each of the three simulation tests includes a different office area (accordingly, a different
thermal capacitance and heat losses) and occupancy data that was never observed by the
agent before. To better understand and interpret the results of this section, 5 consecutive
days of the occupancy data used in each simulation test are shown in Figure 5.12. In

conventional schedule-based control methods domain experts assume the occupancy of
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Figure 5.11: Evolution of total reward, energy reward and comfort reward over the
training phase

offices are static and similar. However, observing the actual occupancy data indicates that
the occupancy schedule can significantly vary from day to day and from office to office. In
occupancy data used in simulation test 2 the occupants usually leave the office quite early,
while in that of simulation test 3 they stay in the office till late afternoon. The occupancy
data in simulation test 2 shows more variations between different days than simulation
test 3. These insights from the real-world occupancy measurements further highlight the
uniqueness of occupant behavior in each office and the importance of integrating actual
occupancy into office controls.

Figure 5.13 shows the daily average of the total reward during the three simulation
tests. As mentioned, the first training phase included variations in occupancy data and
office area between each month. But in this step, each simulation test is performed on
a single office without changing the occupancy dataset or office thermal characteristics.
This represents the implementation of pre-trained agent on a target office. Therefore, the

reward function in this stage is expected to converge or be stable over the days. Figure
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Figure 5.12: One week of occupancy data used in each simulation test

5.13 shows that the reward value in all 3 tests is almost stable, with only few violations of

the comfort during the first 3 weeks. The reward value in all offices becomes stable over

the last week, which indicates that the agent has adapted the control policy to that specific

office.

To observe how the agent has adapted the heating schedule to the occupancy and

how it differs from the baseline methods, Figure 5.14 shows office occupancy, indoor air

temperature and the temperature setpoints by three control methods. This Figure is only

focused on the third week of simulation test 1, where the RL exhibits the most number

of comfort violations.

The first hour in this Figure is the start of the week (Monday

morning). The Enable action in RL activates the RB controller with a setpoint of 22,

and the Disable action deactivates the RB controller and turns OFF the valve. Therefore,

the setpoint during the Enable action is 22 °C. For the visualization purpose the Disable

action is visualized as a setpoint of 0 °C. As can be seen in Figure 5.14(a), during the

working days the agent tries to pre-heat the room from early morning (1 A.M.) to be able

to reach to the comfort zone before the occupants arrive. Then it tries to maintain the

comfort temperature until the occupants leave the office. It performs the heating in a very

cautious manner by sequentially turning ON/OFF the valve. This shows that the agent is
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Figure 5.13: Evolution of the total reward over three simulation tests

trying to reach the comfort zone with minimum temperature increment and to stay only
slightly above the minimum comfort limit to save energy. An interesting strategy that the
agent follows to save energy is turning OFF the heat emission system a few hours before
the occupants leave the office and taking advantage of the stored heat in the office for the
remaining occupied hours. Most of the days the end of the heating schedule is adjusted
very well, such that the air temperature drops below the comfort level only a short time
after occupants leave the office. Properly adjusting the end of heating schedule highlights
the benefit of learning occupancy behavior. Also, the results indicate that the agent can
distinguish between the weekdays and weekends and does not try to reach the comfort
level during the weekends. The air temperature at the begining of the week was very low,
which indicates that the agent did not heat the office over the preceding weekend days.
Consequently, although the agent starts heating in the early morning and continuously
heats the office until the arrival of occupants the air temperature did not reach the comfort
zone before their arrival. Interestingly, the agent learns from this mistake that the heating
rate of the emission system in this office is quite low, and it preheats the office on Sunday
to make sure it can reach the comfort level on Monday morning. This example shows that

the RL controller becomes smarter over time, which is not the case for baseline methods.

Figure 5.14(b) shows the operation of the conventional SRB control, which is static
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and detached from the actual occupancy. In common practice, usually the same heating
schedule is set for all the offices in a multi-office building regardless of the fact that the
occupancy in each office can be different. To represent this common practice, a constant
heating schedule of 6 AM to 7 PM is set in this study without considering the actual
occupancy data of each of the three test offices separately. In the office presented in
Figure 5.14, the occupants arrive after 6 AM and leave before 7 PM. Therefore, the air
temperature is within the comfort zone during occupancy hours. The inefficiency of the
SRB method is further highlighted when the occupancy schedule unexpectedly changes
on some days. An example of this case can be seen on the last working day in Figure
5.14(b), in which the occupants leave the office a few hours earlier than other working
days. In this case, the controller keeps heating a vacant office that will be empty for the
next two days. Another drawback of the SRB method is the need for maintaining the
indoor temperature at 16 °C during the nights and weekends. The setback temperature
is considered to make sure a fast temperature rise at the start of working days and if
occupants arrive out of the scheduled hours and manually turn ON the system. The
setback temperature is actually a conservative approach in which the vacant office is
still heated for many hours due to being detahced from the actual occupancy. The RL
agent, on the other hand, learns the occupant behavior and only heats the vacant office
if it seems necessary based on the expected arrival of occupants. Figure 5.14(c) shows
the performance of the ORB method. As expected, it can be seen that this method fails
to maintain the occupants’ comfort on their arrival. This shows that in the slow-response
thermal systems a method for predicting the occupancy is necessary to properly preheat
the office. If the occupancy prediction is done seperately, then the experts should properly
calculate how advance should the system starts heating at each office. The advantage of
the proposed RL model is that the agent learns when to preheat the office and no expert

knowledge is needed.
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Figure 5.14: Temperature setpoint, indoor air temperature and occupancy during third
week in simulation test 1

Comfort of occupants should be considered as the main constraint in developing
energy-saving control methods in buildings. Control methods that save energy by
violating comfort will result in user dissatisfaction and can not be widely implemented
in buildings. This applies to all comfort-related services in buildings, such as lighting
[58], space heating [154, 192], and hot water production [191]. For a detailed evaluation
of the comfort aspect, Figure 5.15(a) shows the total number of timesteps when indoor
air temperature is out of the comfort zone during each day of deployment. Figure 5.15(b)
also shows the average temperature of these violations. The RL method has maintained
the occupants’ comfort very well, with a few violations that have happened in 3 days out
of 28 days of testing. On 2 of these days the comfort violation has occurred only for one
timestep (30 minutes) with an average temperature very close to 20 °C, which might not
be even noticed by occupants. Another significant day is a Monday, in which the comfort
is violated for 6 consecutive timesteps (3 hours in total) with an average temperature of
18.6 °C. As explained before, this has happened because the agent did not pre-heat the
office during the weekend and started to heat the office from a quite low temperature in the

early morning of Monday. The agent then learned from this mistake to pre-heat the office
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on Sunday, and therefore the comfort is not violated over the next Monday. Although the
SRB method is very conservative, there are still a few comfort violations over 4 days of
the test period. This is because the occupants arrived a bit earlier than usual and the indoor
air temperature has not yet reached the comfort zone. As expected, the ORB method has

violated the comfort temperature for 1.5 hours to 4.5 hours after arrival of occupants.
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Figure 5.15: Comfort temperature violations by different methods during 28 days of
deployment

A set of quantified metrics should be used to compare the control methods and to
ensure that the proposed control framework outperforms the baseline methods before
implementing on the experimental setup. The total number of timesteps with violated
comfort and the average temperature of comfort violations are used to assess comfort
aspect. The energy aspect is compared based on the total increment of the indoor air
temperature. If the temperature of the building is increased during a timestep, the total

heat received by the indoor air can be calculated by Equation 5.8.

Qtimestep=t = Mair X Cpair X (Tindoory — Tindoor;—y) if  Tindoor; > Tindoor;_,

Qtimestep—t = 0 if  Tindoor; < Tindoor;_y
(5.8)

The heat loss from building is the same between different methods, and the only

internal heat gain is from the heating system. Therefore, it can be assumed that the heating
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system that has resulted in a higher total temperature increment has used a higher energy.
The total temperature increments, as expressed by Equation 5.9, is the basis for energy
use comparison between different methods. This proportion might not be the case in more
complicated models with internal heat gains. The total temperature increment is used as a
metric because this study is only focused on the zone level without considering the main

heating system.

n

ATotal = Z(deoort — Tindoor;_y)[Tindoor; > Tindoor;_1] (5.9
=0

Table 5.5 shows the comfort and energy metrics for different methods in three
simulation tests. The RL method in all offices has a lower AT}, and, therefore, a lower
energy use than the baseline methods. It shows that the agent has learned to minimize total
temperature increment. Regarding the comfort aspect, in simulation tests 1 and 3 the RL
method provides the same level of comfort as the SRB method. In both cases, the comfort
is violated only in a few timesteps with an average temperature higher than 19 °C. In the
case of simulation test 2, the number of timesteps with a violated comfort in case of the RL
method is almost half of the SRB method. However, the average temperature of violations
by the RL method is 4°C lower than the SRB method. This is mainly due to the fact that
the occupancy profile used in simulation test 2, as shown in Figure 5.12, is sparse and
different from what the RL agent has mostly observed during the training phase. Overall,
the comparison of energy and comfort metrics over three different offices indicates that
the proposed RL method outperforms the baseline models and can be transferred to the
experimental test step for evaluation on a real system. It should be noted that the superior
performance of the RL framework is achieved only within a short time of one-month
training on the target office. Considering the learning and adaptation potential of the RL
agent, it is expected that after a few additional months of gaining experience on the target
offices the RL framework will show even better performance and increasingly get better

than the baseline models.

5.4.3 Experimental Tests

The results of the simulation tests demonstrated the ability of the agent to adapt to
different real-world occupancy schedules. As the following step, the experimental tests
are supposed to prove the adaptation potential to the thermal response time of the office.
The flexible environmental chamber makes it possible to represent different thermal
response times by using different heat emission systems and applying different air change
rates. The occupancy data of office 3 is used in all experiments. Figure 5.16 shows the

control actions and the indoor air temperature versus occupancy status in the experimental
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Table 5.5: Performance metrics of different control methods on three simulation tests over
the entire test period (4 weeks)

RL SRB ORB

Number of comfort violations 8 5 97
Simulation test | Average temperature of comfort violations (°C) 19 19.1 18
ATotal 248.5 445 426.5

RL SRB ORB

Number of comfort violations 22 40 114
Simulation test 2 Average of comfort violations (°C) 133 175 17.8
AT otal 270.9 370.7 4153

RL SRB ORB

Number of comfort violations 3 12 161
Simulation test 3\ uera0e of comfort violations (°C) 196 194 179
AT ora 3006 3077 3127

tests.

Over experimental tests 1 to 3, the air change rate is increased and the heat emission
system is changed from the higher heating rate (combination of ceiling and floor panels)
to the lower heating rate (ceiling panels). This imposes very different thermal response
behaviors as in experimental test 1 the office is heated quickly and reduces in temperature
slowly. On the other hand, in experimental test 3 the office is heated slowly and reduces
in temperature quickly. Comparison between Figures 5.16(a)-5.16(c) indicates that the
agent has always maintained occupants’ comfort by properly scheduling the heating
cycles despite of the significant difference between thermal response time. Similar to
the simulation tests, the agent (i) starts to preheat the office before the occupants arrive
to ensure comfort and (ii) maintains the temperature as close as possible to the lower
comfort limit and stops heating the office a few hours before the occupants’ departure to
reduce energy use. The agent can maintain thermal comfort under different conditions,
which shows that the training phase has provided generalizable knowledge to the agent
and it can adapt to different offices quickly. These results firmly indicate that the proposed
framework can be implemented in different offices. Although the agent is trained on the
offices with 1 or 2 occupants, considering its learning potential it is expected that it can
quickly adapt to the offices with more occupants. In such a case, a higher number of

sensors would be needed to capture the occupancy and a longer time might be needed
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Figure 5.16: Results of experimental tests: variations of control actions and indoor air
temperature versus occupancy in 4 tests

to learn the occupancy by multiple people. Figure 5.16(d) shows the performance of the
SRB method to provide a better insight into the differences between the proposed method
and common practice. The baseline test can be only compared with the experimental
test 2 as they are done on a similar setup (floor heating at 6 ACH). In both cases the
control system heats the vacant office for few hours. But with a difference that the RL
method heats the office before the occupants’ arrival to ensure their comfort, while the
SRB method heats the vacant office after the occupants’ departure. So the heating of the
vacant office by the RL method is more rational.

Table 5.6 shows the performance metrics of the experimental tests. Comparison
of experimental test 1 with the baseline model shows that the RL model provided the
same level of comfort as the baseline model with slightly lower temperature increment.

Although the difference is very small and cannot be considered as a superior performance.
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As mentioned before, only one day of experimental test cannot be enough for comparison

of energy aspects. Furthermore, the RL agent has successfully maintained occupant

comfort. The results indicate that the proposed control framework can be transferred to

many offices with any type of hydronic heating system to save energy while maintaining

the occupants’ comfort.

Table 5.6: Performance metrics of experimental tests

Parameter Experimental Experimental Experimental Baseline
test 1 (RL-CF-4) test2 (RL-F-6) test3 (RL-C-8) test
(SRB-F-6)
ATotar 13.3 8.3 15 8.6
Number 0 0 0 0
of comfort
violations

It should be noted that this study only focused on the zone-level control decisions. In

practice, the system-level controller should be in harmony with the zone-level controller.

For example, the temperature and flow rate of supply water should be selected in

accordance with the zone-level actions.

5.5 Conclusion

The following conclusions can be drawn from this study:

e Simulation results indicate that the proposed RL framework can provide a

significant energy saving (up to 44% lower total temperature increment) while
providing the same or better comfort level compared to the conventional
schedule-driven control method (SRB);

Experimental tests in the environmental chamber by imposing different thermal
response behavior indicate that the agent can quickly adapt to different offices
and maintain occupants’ comfort. While the agent is only trained on a simplified
simulation model, the good performance in experiments indicates that it can quickly

adapt to an actual system with a higher complexity;

To maintain thermal comfort of occupants, the agent pre-heats the office before
the occupants’ arrival. In order to save energy it keeps the temperature as close as
possible to the lower comfort limit and stops heating the office a few hours before
occupants departure. These strategies indicate that the agent has properly learned

the occupancy behavior;
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* A simple rule-based occupant-centric control method was simulated that turns ON
the heating system immediately when occupancy is detected. Results indicate that
this method provides a poor level of comfort, that proves the necessity of using a

prediction-based algorithm for the slow-response heating systems;

Theoretical and experimental results prove the generalization and adaptability of the
proposed framework and indicate that it can be applied to many offices. Further research
steps can be done to facilitate the widespread implementation of DeepValve control
framework in offices. The dataset, Python codes, and trained agent can be shared with

researchers interested in taking next steps.
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Overall conclusions and future outlook

This section discusses:

Overall conclusions from the proposed frameworks
Challenges of real-world implementation

Limitations of this study

Potential future steps

6.1 Overall conclusions

Expert-based building controls rely on the hard-coded knowledge of the experts. They are
effective in dealing with problems that can be mathematically described and programmed
to the controller by domain experts. Thus, they are limited to expert knowledge. Occupant
behavior is a highly stochastic and complex phenomenon and is unique in each building,
which makes it hard to deal with for the experts [2]. In programming conventional
expert-based controls, occupant behavior is either ignored or over-simplified, which has
resulted in a gap between what is provided by building systems and what is actually needed
by occupants. The overall motivation of this study was to investigate the Learning-based
building controls that can perceive, learn, and adapt to the occupant behavior to
save energy. Reinforcement Learning is used to provide the ability of learning and
adaptiveness to the controller. Overall, this study contributes to the existing knowledge of

occupant-centric controls by:

e Proposing three novel occupant-centric Reinforcement Learning control
frameworks that are formulated and trained with the specific consideration
about robustness, transferability, fast convergence, and minimum use of sensors

and actuators;
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* Integration of occupant health (water hygiene) into the commonly used pillars of

energy and comfort;

* Integration of Reinforcement Learning with static rule-based method to increase

learning speed and robustness;

* Evaluation of intensive virtual trainings (using stochastic or real-world data) to
provide a generalizable knowledge and warm-start the agent before controlling the

target building;
» Simulation investigations using real-world data;

» Experimental investigations in an environmental chamber;
More specific contributions of each framework are presented in each chapter. Table
6.1 provides a summary of three proposed frameworks.

The following presents some main remarks from this study that can help the future

research on Reinforcement Learning for occupant-centric controls.

How to efficiently integrate occupant behavior into a Reinforcement Learning

control framework?

This thesis work focused on two forms of occupant behavior, namely hot water
use behavior (DeepHot and DeepSolar), and occupancy behavior (DeepValve). In
Reinforcement Learning, the agent observes the current condition of the environment
through states. Similar to the other aspects of the environment such as indoor and
outdoor air temperature, occupant behavior can also be monitored through sensors, and
collected data can be used to form occupant behavior-related states. To follow Markov
Decision Process in the Reinforcement Learning framework, the state vector should
provide enough information for the agent to decide the next action [212]. As listed in the
introduction section, occupant behavior can be influenced by many different parameters
(environmental-related, time-related, individual, social, and random parameters). To
enable the agent to implicitly predict the future occupant behavior and accordingly plan
the next control actions, many of these influencing parameters can be monitored and
included in the state vector. A preliminary study by the authors on the prediction of hot
water use indicated that the future hot water use is strongly correlated with the previous
hot water use, and therefore a vector including historical usage forms a very useful feature
for predicting the future usage [13]. Based on this experience, occupant behavior-related
state in the Reinforcement Learning framework was formed as a history of previous

occupant behavior (hot water use behavior or occupancy behavior). The results indicate
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Table 6.1: Summary of main results

DeepHot

DeepSolar

DeepValve

System to be

With-tank heat
pump water heating

Solar-assisted heat
pump for space

Zone-level heating
of offices using

controlled Svstem heating and hot Hydronic heat
y water production emission system
1 residential 3 residential Simulated offices
Case study e o . .
buildin building in buildings in + Environmental
& Switzerland Switzerland chamber
. Energy use, Energy use,
Objectives Energy use, comfort

comfort, hygiene

comfort, hygiene

Using real-world

data of occupant Yes Yes Yes
behavior?

Experimental No No Yes
deployment?

¢ Rule-based

¢ Rule-based

. with a
with .
onal conventional
« Rule-based conve.ntlona schedule
Baseline control with setpoints
methods conventional « Rule-based * Rule-based
setpoints : with a
with
energy-savin schedule
o 8 synchronized
setpoints
to occupancy
* 22% to 47%
compared to
Rule-based
with
conve:ntlonal « Up to to 44%
setpoints reduction
Energy saving * 24% * 7% to 22% in total
energy-saving Femperature
Increment

compared to
Rule-based
with
energy-saving
setpoints
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that the agent could properly anticipate and adapt to the occupant behavior. This shows
that a low-cost and effective approach for integrating occupant behavior is to include a
history of behavior in the state vector. It limits the number of sensors, reduces initial cost,

and reduces the risk of failure due to sensor malfunctioning.

The Reinforcement Learning agent has a learning process, including exploration
of random actions, that can impose the risk of violating comfort and health of

occupants. How to overcome this risk?

To minimize the risk of violating comfort and health during the learning process, this

study proposes the following solutions to take into account at the same time:

1. Pre-training and exploration in the safe simulation environment: Nowadays,
there are several simulation tools available for the energy modeling of buildings.
The simulation environment provides a safe environment for the agent to learn
initial knowledge and to try random actions (exploration phase). As the first
solution, this study proposes to integrate realistic occupant behavior into the
simulation environment and pre-train the agent in the simulation environment for
a certain duration to reach a stable performance. To include a realistic occupant
behavior, in DeepHot and DeepSolar frameworks, a statistical model of hot water
use behavior was integrated to generate hot water use profiles, and in DeepValve
framework, real-world measured data was used. The exploration phase, when the
agent is allowed to perform random actions to better explore the environment, is
only allowed during the training phase in simulation. This study demonstrated
that the agent pre-trained for a long-time using realistic occupant behavior showed
a good performance at the very beginning of the deployment phase on the target

house.

2. Enabling manual interaction: For implementing the proposed frameworks on real
buildings, this study proposes to avoid full automation and enable the possibility of
manual interaction for the occupants. For example, if the agent has decided to
turn OFF the heat pump, but the occupants need hot water, they should be able to

deactivate the agent and manually turn ON the heat pump.

[ How to ensure the transferability potential to many buildings? ]

To ensure the proposed frameworks can be easily transferred to many different

buildings, this study took the following considerations in all the frameworks:

* Model-free: While the integration of a model reduces the learning time and

increases the robustness, on the other hand, it will reduce the transferability
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potential to the other buildings (similar to the Model Predictive Control) since
the model of the system should be updated according to the target building. All
the frameworks in this study are model-free to enable an easy transfer to other

buildings.

* Variations in pre-training phase: To provide a generalizable knowledge to the
agent, the pre-training phase includes variations in occupant behavior, system
sizes, building area, geographical location, etc. This will prevent the agent from
over-fitting to a specific case, and increase the adaptation potential to different

buildings.

* Relying on the minimum number of sensors and actuators: This will reduce the

dependency on the system layout and facilitates implementation in several houses.

[ Should the agent be continuously trained during the system lifetime? ]

The central part of the proposed frameworks is occupant behavior, which is
characterized by temporal variations and unpredictability. The combination, number,
preferences and behavior of occupants can change over time, which can significantly vary
their requirements in buildings. The static deployment (deployment without training)
indicated a good performance in this study. However, to harness the full adaptation
potential of Reinforcement Learning and ensure an optimal operation, the agent should
be continuously trained when controlling the system. It might not be economic in some
cases since it requires higher computational power. In that case, the pre-training phase
should be further enriched by including more occupant behavior-related data. Then the
trained agent can be deployed on low-cost hardware such as Raspberry Pi. As a possible
improvement, the low-cost hardware can also collect the occupant behavior-related data.
Then the agent can be periodically trained in the simulation environment with the new
data (for example every 6 months), and the updated agent then be deployed back to the
low-cost hardware. It will reduce the cost of hardware but increases the labor work. This
process might be automated using a combination of cloud computation and local low-cost

hardware.

[ Can the proposed controls be retrofitted to the existing controls? ]

The DeepHot and DeepSolar frameworks are designed to be replaced with the existing
controls. But the DeepValve can be retrofitted to the end-use level (heat emission unit)
of a hydronic heating system to work in parallel with the existing control. If there is a
separate supply valve to the zone that is controlled by the main controller, that should be

replaced by the DeepValve control framework. Otherwise, a valve can be installed on the
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supply pipe to the zone and controlled by DeepValve to regulate heat emission based on

occupancy.

6.2 Challenges for implementing occupant-centric

Reinforcement Learning controllers in buildings

While a major contribution of this study has been to demonstrate the potential
of Reinforcement Learning for integrating occupant behavior in building controls,
implementing RL in real-world settings can be hampered by a few challenges.
This section discusses some of these challenges to be considered in real-world

implementations.

* Interpretability of the control policy by the building managers: A major
challenge to the acceptability of occupant-centric Reinforcement Learning
controllers is the fact that domain experts and building managers prefer to be able
to interpret or to understand the decisions made by the controller. This is while
Reinforcement Learning, similar to the other artificial intelligence algorithms, has
a black-box nature that is hard to interpret. Advances in explainable artificial
intelligence are needed to develop algorithms that are easier to be explained, even

with the cost of sub-optimal performance [213].

* Large state/action space: In a large building, the control of the energy system
might include several pumps, valves, dampers, and plenty of sensors. This will
increase the dimension of state and action space which, in turn, significantly
increases the complexity of the control problem for the agent. A possible solution
is to use multiple agents, that either collaboratively or independently control a

sub-system of the problem.

* Sensitive system constraints that should never be violated: An agent can
perform actions that are non-optimal, for example, due to the sudden changes in
the system or occupant behavior. It would be challenging if there are some safety
constraints in the system. By including the safety constraints in the reward function
and pre-training the agent, the probability of safety violations would be much less.
But if the safety aspects are very critical, some supervisory rules can be integrated
into the Reinforcement Learning algorithms that post-process the agent actions and

revise the risky ones.

* Sensor failure or malfunctioning: The agent observes the state of the environment
through sensors. In case one of the sensors fails or sends a wrong signal, it can

provide wrong information resulting in a non-optimal action. To deal with this
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issue, a set of rules can be used to check if the sensor data is correct, for example
by comparing the data with the expected range, and raise an alarm if a sensor is
malfunctioning. In addition, as taken into account in this study, the RL framework

could be designed to rely on minimum number of sensors and actuators.

* Including multiple objectives: An occupant-centric control framework can
include multiple objectives in addition to energy saving, such as comfort, health,
and productivity of occupants. Adjustment of weighting factors in the objective
function was found to affect the performance significantly. It is, however, very
time-consuming as it requires multiple runs in the simulation environment. Proper
adjustment of the weights in a reasonable time might require powerful computation
hardware. Automated hyper-parameter optimization methods can be used to adjust

the weighting factors properly.

* Latency in actions: Reinforcement Learning algorithms, especially if trained
continuously, include much more computations than the conventional simple
rule-based methods. In addition, they might rely on IoT sensors and data transfer
from the cloud. These aspects may result in a delay in executing control action after
acquiring the states. To take into account this latency, the timesteps of the control
framework should be designed accordingly (e.g., taking actions every 30 minutes).
But it would raise a challenge if the timestep cannot be longer than the controller
latency. In this case, it might be required to use more powerful computational
hardware or to change the hardware layout to reduce the dependency on online data

transfer.

6.3 Limitations

With the contributions made, this thesis also have several limitations that are mentioned

in this section.

* Field implementation on residential houses: The DeepValve control framework
was experimentally implemented in a real-world setup to show that it can deal
with the higher complexity of a real system. However, DeepHot and DeepSolar
frameworks require to be tested on a residential house with real occupants, which is
very challenging unless there is an adjustable and programmable setup like NEST
building (Empa, Switzerland). So the current study collected real-world occupant
behavior with a non-intrusive approach and integrated the data into the simulation
environment. With the satisfactory results of this study, future research can be

focused on implementing the proposed frameworks in a real house with occupants.
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* Data collection during COVID-19 pandemic: Data collection from residential
houses used for DeepHot and DeepSolar control frameworks was during the
COVID-19 pandemic when all the occupants were mostly working from home.
Therefore, the hot water use behavior has been different from the normal
(pre-pandemic) period. In addition, for the DeepSolar framework, a constant
occupancy profile had to be considered because all the occupants have been working
from home, and therefore it was assumed that the indoor air temperature should be
always within the comfort zone. The DeepSolar framework can be further improved
by including the occupancy profile, and an additional action of turning OFF the

space heating system.

* Occupancy detection method for DeepValve framework: In the development
of the DeepValve control framework, it was assumed that there is an occupancy
detection method that detects the occupancy with high accuracy. But the method
was not discussed as it was out of the research scope. However, the accuracy of
the occupancy detection method can also affect the performance of the DeepValve
control framework. A future study can implement the Deep Valve control framework
with an actual occupancy detection method and evaluate the performance of the

whole setup in a real office.

* Evaluation on a short period: Given the limited period of available data, all the
frameworks have been evaluated for the periods of a few months. However, the
climatic conditions and occupant behavior can significantly change over a long
period, for example, by the change of season. If the required data are available
for a longer period, the frameworks can be evaluated over the long-time to evaluate

the adaptiveness to more significant and sudden changes of occupant behavior.

* Lack of Legionella growth model in the pipe : Legionella growth is only modeled
for the hot water tank, assuming that the length of piping in a residential house is
not significant and the pipes will be periodically disinfected manually. Integration

of a Legionella growth model in the pipe can further ensure the health of occupants.

* Investigation on a limited number of houses: All the frameworks are tested on
a few case studies (DeepHot on 1 residential house, DeepSolar on 3 residential
houses, and DeepValve on 3 offices and the environmental chamber). Considering
the potential variations in occupant behavior, especially between residential houses,
these frameworks should be evaluated on a more number of cases with different
lifestyles and climatic conditions. However, the cost of implementing [oT
monitoring system, and the limited duration of this PhD study, limited the number

of possible cases.
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* Evaluation of different sensing layouts: The sensing approach in DeepHot and
DeepSolar are not exhaustive. There can be alternative state designs (and thus
sensing approaches) that could yield different energy saving. For example, the
temperature of cold water incoming to the water tank, or temperature of hot water

leaving the tank can be included in the state vector.

6.4 Future outlook

Based on the contribution done in this thesis, several research gaps and potential further
research topics are discovered. The following list provides a guidance for conducting

future studies on this topic:

* Domain knowledge-assisted Reinforcement Learning: The proposed
frameworks in this study do not rely on domain (expert) knowledge and
learn the control strategy from scratch. Future research can be done to evaluate
how the domain knowledge can be incorporated into the control framework to
increase robustness and data efficiency without limiting the adaptiveness and
generalizability potential. Most of the available domain knowledge in building
controls is in the form of "if,then" rules. Thus, a possible approach to integrate
domain knowledge is to develop set of rules based on domain knowledge that
provides the expert suggestion to the agent. Based on the suggested action and
the current state, the agent then decides the next action. This architecture ensures
adaptability since the agent is free to either follow the expert suggestion or to take
another action. It also ensures transferability since the expert knowledge is not
case-specific. In addition, some pre-checking rules can be used to evaluate current
conditions before the agent takes decision, and take an action if the decision of
optimal action is obvious. For example, if the occupants are present, and the
temperature is too low, the optimal action is obviously turning ON the heating
system. These two approaches are expected to speed-up the learning of agent and

robustenss of control framework.

* Integration of a pre-processing method to compress state vector: To enable
the agent to perceive and learn occupant behavior, a history of occupant behavior
can be used in the state vector. This will, in turn, increase the dimensionality of
the state vector and the learning time for the agent. A possible future research
topic is to develop a method that can compress the state vector into less number
of parameters while providing the required information to the agent. For example,
an auto-encoder network can be used to compress the state parameters into less

number of hidden states.
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* Integration of occupancy detection to DeepHot and DeepSolar: The history of
building occupancy can help the agent to better anticipate future hot water use
behavior and accordingly schedule the heating cycles. A low-cost and transferrable
occupancy detection method can be integrated into DeepHot and DeepSolar control
frameworks to improve the agent performance without limiting the transferability
of the frameworks.

* Eliminating the necessity of continuous learning for DeepHot framework:
Domain experts and current producers of hot water systems can accept a new
controller easier if it follows a plug-and-play approach. Since the DeepHot control
framework is only focused on the hot water systems, it has a good potential to
eliminate the need for online training and turn it into a plug-and-play controller.
To this aim, the future research can design a very intensive offline training session,
that includes variations of water heating system (heat pump, boiler, electric heater,
etc.), variations and changes in occupant behavior (a sudden change of occupant
behavior, short-term absence, etc.), different climatic locations, and other aspects,
to provide a generalizable knowledge to the agent. A backup controller can be also
integrated to further assist the acceptability of the occupant-centric controller. After
the intensive training, the agent can be deployed on a low-cost hardware to control
the hot water system. A local occupant-centric controller (e.g. on a Raspberry pi)
is easier to be implemented on the current hot water systems than a cloud-based

solution.

* Field implementation of the DeepHot and DeepValve control frameworks:
The DeepHot and DeepValve control frameworks have less complexity and thus
are easier to be implemented in actual buildings. Considering the limited field
studies on Reinforcement Learning, potential future research is to experimentally

implement these frameworks and evaluate their performance.

* Design and integration of the backup controller: A backup controller seems
to be very important for increasing the robustness of the Reinforcement Learning
frameworks. So possible future research is how fto design the backup controller and

how to integrate it to the proposed Reinforcement Learning frameworks.

* Experts learning from agents: With proper setup and enough training, the agent
can surpass expert knowledge and come up with the solutions that experts are not
aware of them. This provides an opportunity for experts, to train the agent with
enough data, and then try to convert the agent policy into rules and heuristics that

can be used in expert-based controls.

* Integration of more sophisticated Legionella growth models: This study, for the

first time, integrated a Legionella growth model into the Reinforcement Learning
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control framework for hot water systems. This study incorporated a simple model
that is only dependent on the water temperature. But more accurate models using
other parameters, such as PH of the water, can be also used to further improve the

safety and health aspects of the framework.

* Addressing the privacy aspects: The proposed frameworks rely on occupant
behavior-related data, which always raises privacy concerns. This study was
performed after obtaining ethical approval from EPFL-HREC. But the privacy
issues can be a barrier to the widespread adoption of the proposed frameworks. A
multi-disciplinary study by computer scientists and sociologists can focus on how
to improve the privacy and acceptability of the proposed occupant-centric control
frameworks, especially for DeepHot and DeepSolar frameworks that are designed

for the residential houses.

* Automation of hyper-parameter adjustment: Hyper-parameters found to
significantly change the performance of the proposed frameworks. Similar to
the Supervised Learning, there is a need to develop automated hyper-parameter

optimization methods for Reinforcement Learning.

* Alternative algorithms: The focus of this study was more on the application
aspect of RL than the algorithm. But with the advances in Reinforcement Learning,
alternative novel algorithms can be used in the proposed frameworks to increase
stability and data efficiency.

Considering the characteristics of occupant behavior, Reinforcement Learning found
to be a promising method for integration of occupant behavior into building controls.
Further theoretical and experimental studies can unlock the potentials of Reinforcement

Learning and facilitate wide-spread implementation in future buildings.
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Achievements

7.1 Publications

The framework of this Ph.D. thesis allowed for contributing to the current knowledge in

literature through a series of journal and international conference papers, including:
* 4 published first author papers in Q1 journals;
* 1 submitted first author paper to a Q1 journal;
* 3 published first author papers in international conferences;

Few more papers were published during the Ph.D. study. But they are not included in the
dissertation since their topic have not been directly related to the Ph.D. thesis . Following

is a list of publications categorized by the topic.
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Initial exploration

Journal papers

Solar Energy

Sustainable Cities and

Society

Conference papers

BEHAVE 2021

CLIMA 2022

Amirreza Heidari,
2020
Dolaana Khovalyg

Amirreza Heidari,
Nils Olsen, Paul
Mermod,
Alexandre Alahi,
Dolaana Khovalyg

2021

Amirreza Heidari,
Verena Marie
Barthelmes,

2021

Dolaana Khovalyg

Caroline Risoud,
Amirreza Heidari, 2022

Dolanaa Khovalyg

Short-term energy use prediction of
solar-assisted water heating system:
Application case of combined
attention-based LSTM and time-series

decomposition

Adaptive hot water production based

on Supervised Learning

Probabilistic Machine Learning for
Occupancy Prediction based on

Sensor Fusion

Customized Neural Network training
to predict the highly imbalanced data

of domestic hot water usage

Journal papers

Applied Energy

Frangois Maréchal,

Amirreza Heidari,
2022
Dolaana Khovalyg

An occupant-centric control
framework for balancing comfort,
energy use and hygiene in hot water
systems: A model-free reinforcement

learning approach
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Conference papers

CISBAT 2021

Amirreza Heidari,
Francgois Maréchal,

Dolaana Khovalyg

2021

An adaptive control framework based
on Reinforcement learning to balance
energy, comfort and hygiene in heat

pump water heating systems

DeepSolar

Journal papers

Applied Energy

Conference papers

CLIMA 2022

Amirreza Heidari,
Francois Maréchal,

Dolaana Khovalyg

Amirreza Heidari,
Frangois Maréchal,

Dolaana Khovalyg

2022

2022

Reinforcement Learning for proactive
operation of residential energy
systems by learning stochastic
occupant behavior and fluctuating
solar energy: Balancing comfort,

hygiene and energy use

Reinforcement learning for
occupant-centric operation of
residential energy system: Evaluating
the adaptation potential to the unusual
occupants * behavior during
COVID-19 pandemic

DeepValve

Journal papers

Submitted

Amirreza Heidari,

Dolaana Khovalyg

2022

DeepValve: Development and
experimental assessment of a
system-independent Reinforcement
Learning control framework for

occupant-centric space heating in

offices
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7.2 Awards

During this Ph.D. study, we realized that Legionella bacteria is an increasing issue
in the hot water systems in Switzerland. Legionella is a bacteria that can grow in a
water between 20 °C- 45 °C and can be transferred to the humans by breathing in the
contaminated water droplets. Constantly increasing number of infections in Switzerland
shows that there is a lack of knowledge and technological solutions in practice. Legionella
can grow in the stagnant water. Therefore, the risk of Legionella is dependent on the
hot water use behavior (frequency of usage) and the temperature variations. Parallel
to this Ph.D. work, we developed the prototype of an IoT solution that can (1) predict
the Legionella risk based on previous hot water use and temperature variations, (2)
communicate the risk to the occupants in advance, and (3) disinfect the water at the
point of use (e.g., shower, faucet) using a developed compact disinfection reactor based
on UVC-LED. Figure 7.1 shows some pictures of the prototype development and test.
The device include a water flow and temperature sensor, an Arduino to predict and
communicate the risk and a reactor with UVC-LED to disinfect the water. This prototype

has awarded two following grants:

* Student Incubator Grant- Smart Living Lab, Baloise Insurance- 2020

e ENAC Innovation Seed Grants-EPFL- 2021
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Disinfection Reactor
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Figure 7.1: Prototyping of IoT product for prediction and elimination of Legionella risk
(a) Testing disinfection reactor (b) Parts of disinfection reactor (c¢) Arduino-based IoT
hardware (d) Hardware connected to water flow and temperature sensor
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