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Abstract
Two ways for producing a transport barrier through strong shear of the E×B poloidal flow
have been investigated using GYSELA gyrokinetic simulations in a flux-driven regime.
The first one uses an external poloidal momentum (i.e vorticity) source that polarizes
locally the plasma, and the second one enforces a locally steep density profile that also
stabilizes the Ion Temperature Gradient (ITG) instability modes linearly. Both cases
show a very low local turbulent heat diffusivity coefficient χturbT and an increase in core
pressure when a threshold of ωE×B ≈ 3γlin (respectively the E×B shear rate and average
linear growth rate of ITG) is reached, validating previous numerical results. This pressure
increase and χT quench are the signs of a transport barrier formation. This behaviour is
a result of a reduced turbulence intensity which strongly correlates with the shearing of
turbulent structures as evidenced by a reduction of the auto-correlation length of potential
fluctuations as well as an intensity reduction of the kθ spectra. Moreover, a small shift
towards smaller poloidal wavenumber is observed in the vorticity source region which
could be linked to a tilt of the turbulent structures in the poloidal direction.

1 Introduction
Transport is an important topic in magnetic confinement fusion devices because of its
impact on the reactor efficiency. On top of the neoclassical transport [1] (i.e outward
radial transport), the dominant loss channel is the anomalous [2][3][4] (i.e turbulent)
one. This anomalous transport is mainly due to micro-instabilities [5] [6] leading to large
values of heat conductivity and radial heat fluxes. Ion Temperature Gradient (ITG) [7][8]
and Trapped Electron Modes (TEM) [9][10] in the core region or Kelvin-Helmoltz and
Rayleigh-Taylor modes in the separatrix region are exemples of such instabilities.

However, overall transport can be reduced (i.e increasing confinement time) by trig-
gering a plasma transition to a higher confinement state. Such transition, usually called
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"Low-to-High transition" [11][12][13] (L-H transition), is a bifurcation of the plasma state
observed experimentally in many tokamaks, e.g DIII-D [14][15], JFT-2M [16], Alcator C-
mod [17], JET [18], ASDEX [11] and ASDEX Upgrade [19][20], COMPASS [21] or MAST
[22], characterized by edge transport barriers (ETB) in H-mode. Their triggering occurs
when a certain power threshold is exceeded and exhibit many interesting properties such
as a very steep pressure gradient and a strong radial electric field. As a result a strong
poloidal E × B sheared flow is generated. Part of this shearing (i.e zonal flows [23] [24]
[25]) is generated by turbulence and leads to a self-regulated state through a prey-predator
mechanism [26]. The main interest of this article is to invstigate the effect of a locally
imposed flow shear on ITG modes and its radial structures.

The effects of flow shear on a turbulent plasma have been studied [27] [28] [29] using
different theoretical explanations for the underlying mechanisms leading to a turbulence
quench. The main hypothesis which will be explored here is that large scale turbulent
structures are suppressed and teared by an R×B poloidal shearing. The decorrelation rate
of the turbulence, both spatial and temporal, is then largely increased by sheared flows
and reduces the transport locally as a result of lower turbulence intensity. An empiric
criteria gives an estimate of ωE×B, the E × B shear rate, which should within the same
order as γmaxlin , the maximum linear growth rate of the instability.

We propose here to extend a previous study of A. Strugarek [30] [31] using an updated
version of GYSELA, a full-f 5D gyrokinetic code, using the same vorticity source to
produce a sheared poloidal momentum profile. In section 2, we give a brief description
of the model used in GYSELA and the construction of the vorticity source term used.
Simulation conditions and parameters are given in section 3. Section 4 is dedicated to the
onset of a transport barrier using the vorticity source. Section 5 focuses on a transport
barrier triggered by a fixed steep density gradient profile. A conclusion is provided in
section 6.

2 Model and source term
GYSELA [32] is a 5D full-f gyrokinetic [33] electrostatic code coupling the Vlasov equa-
tion and the quasi-electroneutrality equation. The electron density response is taken
adiabatic so that, up to compressible effects, time-averaged particle transport across cir-
cular magnetic surfaces vanishes. The following set of equations are solved for Deuterium
particles:
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B?
‖miv̇G‖ = −B? · ∇Λ. (4)

Here, F̄ is the gyrocentre distribution function, φ the electrostatic potential, xGC
and vG‖ the gyro-center position and parallel velocity, Zi and mi the charge number
and particle mass of Deuterium, B0 the magnetic field amplitude, b = B/ ‖B‖ and
B?
‖ = B? · b = B + mi

qi
vG‖b · (∇× b) the phase space Jacobian defined through
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B? = B +
mi

qi
vG‖∇× b. (5)

J is the gyro-average operator, C
(
F̄
)
is the collision operator which conserves en-

ergy and particles [34], and Λ = eZiJ [φ] + µB is the gyrocenter energy with µ =
miv

2
⊥

2B

the magnetic moment. S represents the source terms, including for example the heat
source and/or the poloidal momentum (equivalent to a vorticity) source. 〈. . .〉FS =∫∫

. . . Jχdθdϕ/
∫∫

Jχdθdϕ is the average over a flux-surface with Jχ = (B · ∇θ)−1 the
flux-surface jacobian. The kinetic poloidal momentum source term, also referred as a
vorticity source term, is defined as

SΩ =
mv2

G‖ − µB
Ts

Sr (r)SΩ
0 exp

(
−

1
2
mv2

G‖ + µB

Ts

)
(6)

with S0 the source amplitude, Sr (r) the radial profile and Ts the source temperature.
The former two are GYSELA input parameters while the latter is fixed at Ts/T0 = 1
and is a reference temperature. This source is built so that no heat nor particles are
injected in the system. A marginal quantity of parallel momentum is injected along with
the poloidal momentum as well as a pressure anisotropy. With the chosen parameters,
the anisotropy is such that P‖/P⊥ ≈ 2.4 once the source saturates. As attested by [30],
this anisotropy tends to destabilize the plasma and any transport barrier that could be
generated through the vorticity source. The mathematical constructions of the heat and
vorticity sources are detailed in [35] and [36]. The vorticity conservation equation is given
by

∂tW + ∂rK = S0∇2
⊥Sr (7)

with W = −
〈
∇ ·
(neq,sms

B2 ∇⊥φ
)〉

FS
= e

〈∫
dv?J · F̄

〉
FS

being the fluid vorticity ,
K = e

〈∫
dv?J ·

{
(dtxG · ∇r) F̄

}〉
FS

the fluid vorticity flux and S0∇2
⊥Sr the fluid vor-

ticity source. Figure 1 (orange dashed line) represents the normalized fluid vorticity
source profile as a function of the normalized radius. One can note the main central lobe
at r/a = 0.75 which is later reffered as the source location. This equation is obtained by
taking the gyro average of the Vlasov equation (1) and integrating over velocity space. A
flux-surface average is then performed to obtain a 1D (i.e radial) equation for vorticity.

It can be difficult to inject a sheared radial electric field Er in a full-f code; trying to
inject such field directly in the quasi-neutrality equation proved to be uneffective [37] due
to immediate screening effect of the plasma. Three different approaches are then possible
to generate a E ×B flow shear:

1. Impose a reversed radial safety factor profile q(r) as studied in [37]. This method
yielded no transport barrier behaviour and is not pursued here.

2. Use the poloidal momentum (also referred to as vorticity hereafter) source previously
described. The idea is to add a term in the right-hand-side of the Vlasov equation
(1) instead of the quasi-neutrality (2) to polarize the plasma. It adds a small
term equivalent to a polarization density, effectively biasing locally the plasma and
creating a local Er field.
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Figure 1: Normalized radial profiles of the buffer diffusion (blue line), fluid energy source
(dotted green line) and fluid vorticity source (dashed orange line).

3. Locally change the radial force balance using a steep pressure gradient:

Er = − 1

eini

∂P⊥
∂r

+ vθBϕ − vϕBθ (8)

Since radial transport is negligable with adiabatic electrons, we expect the imposed
density gradient to remain and a sheared Er to be generated to balance out the
pressure gradient throughout the simulation. This case is referred as the steep
gradient case hereafter. However, we expect the steep density gradient to stabilize
linearly the ITG [7] and limit locally the turbulence level in the first place. This
will be discussed in depth in section 5.

3 Parameters and saturation level

3.1 Simulation parameters

Three simulations with similar parameters are studied; the vorticity and reference cases
are two branches of the same initial simulation where in the former the source is activated
from tωc,0 = 126400 while the source stays deactivated in the latter. The third one is the
so-called steep-gradient case. All of them use a normalized gyro radius ρ? = ρ0/a ≡ 1/200
with ρ0 the hydrogen Larmor radius and a the minor radius. The domain goes from
r/a = 0 to r/a = 1 with the last 10% of the radial domain subject to a buffer diffusion
region to damp out fluctuations at the edge and avoid possible numerical oscillations.
Its radial profile is shown on figure 1 (solid blue line). Thus, the domain of interest is
r/a ∈ [0, 0.9]. The isotropic heat source used in those simulations, localized in the inter-
val r/a = 0 to r/a ≈ 0.4 (See figure 1, green line), evolves in time; for the vorticity and
reference cases, the amplitude of the source is fixed at a "high" value until turbulence
intensity saturates. The heat source amplitude is then lowered so that the pressure profile
stays roughly constant (i.e, its evolution becomes very slow in time). For the steep gra-
dient case, the source amplitude is fixed at the same "high" value throughout the whole
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duration of the simulation. Parameters are summarized in table 1.

3.2 Initial conditions

The initial temperature and density profiles are chosen such that ITG instabilities rise,
meaning the ratio η ≡ T−1∂rT

n−1∂rn
= κT/κn = 3 is constant on most of the domain except

in the steep gradient case peaking at κn ≈ 15 at r/a = 0.75 (see section 5) leading to
η ≈ 0.44. The vorticity case density profile (figure 2, dashed blue line) is close to a L-mode
profile whereas the steep gradient one (figure 2, dotted orange line) is similar to what can
be observed in H-mode discharges with a steep density gradient at the edge (See [21] for
example).
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Figure 2: Radial profiles of the flux surface averaged guiding-center density at tωc,0 = 0
for the vorticity case (blue dotted line) and for the steep gradient case (orange dashed
line).

3.3 Saturation level

We denote each mode as (n,m), where n and m are the toroidal and poloidal mode num-
bers. Figure 3 shows the time evolution of the (0, 0) and (0, 1) as well as some unstable
(n,m) modes of the electrostatic potential at r/a = 0.5 in the reference simulation. All
three simulations show very similar behaviours until the saturation happens since the pa-
rameters are almost identical, the steep density gradient at r/a = 0.75 being the only dif-
ference during the time frame shown hence the choice to only show the reference/vorticity
case. The oscillating phase of the (0, 0) and (0, 1) modes from tωc,0 = 0 to tωc,0 ≈ 3 · 104

is due to the low frequency GAMs [38] (Geodesic Acoustic Modes). These oscillations are
negligeable after the main plasma instability starts its linear growth, namely ITG. This
linear growth phase starts at around tωc,0 ≈ 3 · 104 until turbulence saturation is reached
at approximately tωc,0 ≈ 6 · 104 thanks to the rise of zonal flows. For each simulation, the
global mean linear growth rate 2γlin ≈ 6 · 10−4ωc,0 is computed by fitting the linear part
on Ek =

∑
m,n φ

2
m,n − φ2

0,0 − φ2
0,±1 (black line on figure 3), the perturbed potential energy

at r/a = 0.5. Values for the different simulations are reported on table 1.
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Parameters Reference Vorticity Steep gradient
Charge / atomic numbers Zi = 1, Ai = 2
Time step ∆tωc,0 = 16
Nr ×Nθ ×Nϕ ×Nv‖ ×Nµ 511× 512× 64× 127× 31

Normalized gyroradius ρ? = ρc,0/a = 1/200
Inverse aspect ratio ε = R0/a = 4.4
Density κn = R/Ln = 2.2 κn = R/Ln = 2.2*
Temperature κT = R/LT = 6.6
Poloidal momentum amplitude SΩ

0 = 0** SΩ
0 = 0.08** SΩ

0 = 0
Average ITG linear growth rate γlin/ωc,0 ≈ 3 · 10−4

Table 1: Simulation parameters used in this study. *For the steep gradient case, κn ≈ 15
at r/a = 0.75 from tωc,0 = 0 until the end. **The poloidal momentum source is activated
from tωc,0 = 126400 for the vorticity case and disabled in the reference case.
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Figure 3: φn,m modes (i.e poloidal and toroidal, respectively) at r = 0.5 plotted against
time (up to tvorωc,0 = 126400, the vorticity activation time). The solid black line Ek
represents the energy of the electrostatic potential perturbation and is used to compute
the average linear growth rate of ITG modes. This plot is also representative of the steep
gradient case since we look at the mode evolution at r/a = 0.5, away from the steep
gradient region at r/a = 0.75.
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4 Poloidal momentum (vorticity) source

4.1 Onset of a transport barrier

The source described in equation (6) is used to produce a sheared poloidal momentum
profile to the system once turbulence intensity saturates and the pressure profile no longer
shows any significant evolution. Figure 4a shows the E×B poloidal flow at the last simu-
lation time for both the reference (green dotted line) and vorticity cases (blue dashed line).
The vorticity source effectively injects the desired E ×B flow shear compared to the ref-
erence case with a significant amplitude difference at r/a = 0.7 and r/a = 0.8. As stated
in [39] and [30], it is empirically found in numerical simulations that the ωE×B shearing
rate should be within the same order of magnitude as γMAX

lin , the maximum linear growth
rate of the relevant instability (i.e ITG in this case) to stabilize the said instability. This
simple rule of thumb is useful to have an idea of the amount of shear we should impose
on the plasma a priori. Here we choose to normalize the shearing rate to γlin < γMAX

lin

the average linear growth rate of the electrostatic potential Fourrier modes which is more
representative of the actual "growth rate of ITG" instability. The idea is then to establish
a shear flow around one order of magnitude higher than γlin (i.e ωE×B ≈ 10γ̄lin) to fullfil
the previously discussed stabilizing conditions.
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Figure 4: E × B velocity (a) and pressure (b) radial profiles at the end of the vorticity
case tfvor and of the reference case tfref . The red vertical line represents the vorticity source
position if activated.

Figure 4b shows the radial pressure profiles of the reference (dotted green line) and
vorticity (dashed blue line) at the last simulation time. Two main features appear when
the source is turned on: a "plateau" appears at the source location and the core pressure
increases relative to the reference case. This behaviour is necessarely due to the vorticity
source since it is not observed in the reference case. The vorticity source used here does
not inject energy in the system, and the heat source is the same as the reference case
which means the increase seen on the radial profile is linked to the presence of some sort
of transport barrier mechanisms.
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To quantify the effect of such shearing conditions on confinement and turbulent heat
transport of the main species, we choose to diagnose first the evolution of the effective
heat diffusivity coefficient χT as a function of time in different radial regions by assuming
heat transport is mainly diffusive, meaning Q = −nχT∇T . For this purpose, we compute
the radial perpendicular heat fluxes with

Qneo
⊥ =

QD,⊥︷ ︸︸ ︷∫
µB (vD · ∇r) F̄sdv+

Qn=0
E×B,⊥︷ ︸︸ ︷∫

µB 〈v̄E×B · ∇r〉ϕ F̄sdv, (9)

Qturb
⊥ =

∫
µB (v̄E×B · ∇r) F̄sdv︸ ︷︷ ︸

QE×B,⊥

−Qn=0
E×B,⊥ = Qn6=0

E×B,⊥. (10)

The former is the neoclassical guiding-center heat flux, which is the sum of the neoclas-
sical drift velocity contribution and the toroidally axisymmetric E ×B drift contribution
(i.e zonal flows and GAMs) while the latter is the turbulent guiding-center heat flux which
consists in the non toroidally axisymmetric E×B drift contribution. Radial parallel heat
fluxes are computed the same way by replacing µB by 1

2
v2
G‖:

Qneo
‖ =

QD,‖︷ ︸︸ ︷∫
1

2
v2
G‖ (vD · ∇r) F̄sdv+

Qn=0
E×B,‖︷ ︸︸ ︷∫

1

2
v2
G‖ 〈v̄E×B · ∇r〉ϕ F̄sdv, (11)

Qturb
‖ =

∫
1

2
v2
G‖ (v̄E×B · ∇r) F̄sdv︸ ︷︷ ︸

QE×B,‖

−Qn=0
E×B,‖ = Qn6=0

E×B,‖. (12)

Finally, we consider the total radial heat flux as the sum of all the turbulent and
neoclassical contributions detailed from equations 9 to 12:

Qtot =

Qturb
tot︷ ︸︸ ︷

Qturb
‖ +Qturb

⊥ +

Qneo
tot︷ ︸︸ ︷

Qneo
‖ +Qneo

⊥ (13)

A radial average is then performed on equation 13 to get

〈Qtot〉∆r =
〈
Qturb
tot

〉
∆r

+ 〈Qneo
tot 〉∆r (14)

Assuming diffusive heat fluxes, one can write the different heat diffusivity components
as follows:

χneoT = −
〈Qneo
⊥ 〉∆r

〈n∇T 〉∆r
, (15)

χturbT = −
〈
Qturb
⊥
〉

∆r

〈n∇T 〉∆r
, (16)

χtotT = χturbT + χneoT . (17)
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The heat diffusivity coefficients are normalized to χGB = ρ?χB = ρ? Te
qiB

, the gyro-Bohm
diffusivity [40]. Both the turbulent and neoclassical channels are studied without the
convection contribution since electrons are adiabatic and time-averaged particle transport
vanishes. For this analysis, we select two radial regions:

• ∆r = [0.7, 0.8], the region where the flow shear is injected.

• ∆r = [0.38, 0.48], the region where the turbulence amplitude is found maximum.

Since a core pressure increase and a plateau are observed, a local decrease in diffusivity
is expected as less energy is lost to the edge. Figures 6a and 7a show the time evolution
of the spatial-averaged diffusivity coefficients in the source and core region regions respec-
tively. The turbulent coefficient χturbT quickly drops to zero in the source region (figure
6b, dotted blue line) when the poloidal momentum source is activated compared to the
reference simulation (figure 6b, dashed orange line) which confirms the origin of the core
presure increase and plateau. The neoclassical diffusivity χneoT then becomes the main
contributor to χT in this region due to the poloidal momentum source. Because of the
B gradient along the major radius, the polarization created by the source is not purely
poloidally symmetric and drives a small poloidal asymmetry in potential, which impacts
the density profile through the quasi-neutrality equation (2), and ultimately pressure pro-
file. The amount of vorticity injected is measured to be 30% higher for θ = 0 than θ = π.
This affects locally the neoclassical transport but doesn’t change the magnitude of χneoT .
Interestingly, the plasma core turbulent diffusivity (figure 7a and 7b) seems affected by
the activation of the source even if it is not as impactful as near the source itself. Bursts
are more noticeable and frequent in the core with the source than without (figure 7b,
dashed orange line), but an overall decaying trend seems to take place after the source
activation.

One can check the shear rate threhold at which the turbulence is suppressed by check-
ing the evolution of the turbulent diffusivity χturbT relative to the shear rate ωE×B. A
threshold at which the turbulence is suppressed appears clearly on figure 5 at around
ωE×B ≈ 3γlin, which is coherent with the rule of thumb presented previsouly.

The observed reduction in χturbT can be explained through quasi-linear arguments. Let
us consider a simple expression for the turbulent heat flux with Qr

turb =
〈
PurE×B

〉
with

P = (n+ δn) (T + δT ) and δurE×B ≈ 1
B0r

∂θδφ, the δ referring to fluctuating quantities
and δurE×B the perturbed E ×B drift velocity. This leads to:

Qr
turb ≈

1

B0r

〈n〉 〈δT∂θδφ〉︸ ︷︷ ︸
diffusion

+ 〈T 〉 〈δn∂θδφ〉︸ ︷︷ ︸
convection

 . (18)

From a linear point of view, δT = βδφ where β is a complex constant that can be
determined through linear analysis. Then, from a quasi-linear standpoint, the 〈δn∂θδφ〉
contribution to the turbulent heat flux is related to the Reynolds stress tensor Πrθ and
more generally to the convection term TΓ ≡ 〈T 〉

〈
δnδurE×B

〉
. Since electrons are adiabatic,

this convection term vanishes. Considering a single poloidal mode for δφ such that δφ ∝
φ̃ exp [i (mθ + nϕ− ωt)], we get
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activation time for the vorticity case tvorωc,0 = 126400.
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[0.7, 0.8] region. The red vertical line represents the vorticity activation time for the
vorticity case. (a) Time evolution of the heat diffusivity coefficients for the vorticity case.
(b) Turbulent contribution of the heat diffusivity as a function of time for the vorticity
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intensity plotted against time for the vorticity (blue dotted line, "vor") and reference
cases (orange dashed line, "ref"). (b) and (c) signals are in phase.
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[0.38, 0.48] region. The red vertical line represents the vorticity activation time for the
vorticity case. (a) Time evolution of the heat diffusivity coefficients for the vorticity case.
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cases (orange dashed line, "ref"). (b) and (c) signals are in phase.
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Qr
turb ≈

〈n〉
B0

〈
kθ (δφ)2〉 . (19)

Equation (19) ultimately shows that Qr
turb ∝ (δφ)2 and reciprocally χturbT ∝ (δφ)2.

If the analysis presented here holds, (δφ)2 and χturbT must be in phase. To verify this
hypothesis, the following definition of electrostatic potential fluctuations is used:

δφ (r, θ, ϕ = 0, t) = φ (r, θ, ϕ = 0, t)− 〈φ (r, θ, ϕ)〉ϕ , (20)
〈δφ〉θ,∆r = 〈δφ (r, θ, ϕ = 0, t)〉θ,∆r . (21)

〈φ (r, θ, ϕ)〉ϕ represents the toroidally axisymmetric modes of the potential and are
substracted specifically to remove the contribution coming from :

• The mean potential, or the so-called φ0,0 Fourier mode, which is related to zonal
flows [41].

• The convection cells [41], which are toroidally axisymmetric but exhibit poloidal
asymetries noticeably produced by the vorticity source as discussed previously. They
are associated with the φm6=0,0 Fourier components.

The focus here is on a single poloidal plane (r, θ, ϕ = 0) representative of the whole
simulation box. The information of interest being the local turbulence intensity and later
the radial and poloidal geometric structures, this will provide sufficient informations on
those variables as discussed in [42] and [43].

Figures 6c and 7c represent the time evolution of the turbulence intensity in the source
and core region respectively. As expected, those signals are in phase with χturbT (figures 6b
and 7b) in both regions, implying the previous relationship found between χturbT and (δφ)2

holds in the case of adiabatic electrons. The turbulence intensity then largely decreases
in the source region by a factor of 3. Note that there is still some lower level turbulence
present locally. Moreover, the turbulence intensity also decreases in the core due to the
source activation. The reduction in turbulent diffusivity is then directly linked to the
reduction of turbulence intensity as deduced from the previous quasi-linear arguments.

4.2 Involved mechanisms: auto-correlation length and perpen-
dicular wavenumber

As already discussed in the introduction, one of the main hypothesis is that an E × B
flow shear is able to tear the turbulent structures locally to reduce their mean size and
therefore stabilize the plasma. We propose two different approaches to verify this claim
in our simulations:

1. Compute and compare the local auto-correlation radial length of the perturbed
electrostatic potential for both the reference and vorticity cases. The aim is to
check any shift or change in typical radial structure size.

2. Compute the poloidal wavenumber spectra of the perturbed electrostatic potential
to monitor what scales are specifically affected by this turbulence intensity quench.
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4.2.1 Auto-correlation radial length

The aim in this paragraph is to check whether we can see an effect on the "mean" size
of turbulent structures due to the E × B shear flow. For this purpose, we calculate the
fluctuations as written in equation (20) and then compute a correlation length Probability
Density Function (PDF), following reference [42]:

Cδφ,δφ (r, θ, ϕ = 0, t, δr) =

∑
δr δφ (r + δr, θ, ϕ = 0, t) δφ (r, θ, ϕ = 0, t)

[δφ (r, θ, ϕ = 0, t)]2
(22)

This autocorrelation function is computed for each θ angle and radial location r on a
radial window [r − δrmax, r + δrmax]. Here we adjust the radial extent to δrmax = 20ρc,0,
which is found to be sufficient to capture most of the turbulent radial structures. Thus
we obtain a PDF for each time step, θ angle and radius r/a ∈ [0.1, 0.9]. The Half Width
at Half Maximum (HWHM) of this PDF is taken along δr to obtain a time dependent
poloidal map of the radial correlation length:

Cδφ,δφ

(
r, θ, ϕ = 0, t, LδφAC

)
= 0.5. (23)

Finally, the flux-surface average of the poloidal map obtained is computed before doing
a time average over 3000 time steps (3000∆tωc,0 = 48000).

〈LAC〉FS (r) =
〈
LδφAC (r, θ, t)

〉
FS
, (24)

with the overline representing the time average.
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Figure 8: Flux surface and time average of the correlation length (a) and E×B shearing
rate (b) as a function of radius for the reference ("Ref") and vorticity ("Vor") cases.
The red vertical line indicates the source location.

Figure 8a shows the flux-surface and time averaged auto-correlation length as a fuction
of the normalized radius while 8b shows the radial profile of the shear rate ωE×B at
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the last simulation time. The reference case (figure 8a, dotted green line) represents
the correlation length without the vorticity source. LAC stays close to 3.5ρc,i with a
small poloidal shearing level (figure 8b, dotted green line), but if the source is turned
on (figure 8a, dashed blue line), the radial correlation decreases where the flow shear
rate is maximal (figure 8b, dashed blue line), at r/a = 0.75, but also from r/a = 0.45
to r/a ≈ 0.9. This is consistent with the turbulent structure shearing hypothesis: the
E × B shear flow reduces locally the radial extension of the turbulent structures. This
ultimately leads to a spatial decorrelation of those structures and a quench in turbulence
intensity as previously observed. However, the correlation length increases in the range
r/a ∈ [0.2; 0.4], suggesting that the decrease of χT and thus turbulence intensity in that
region is not the direct result of a local reduction in the auto-correlation length.

4.2.2 Poloidal wavenumber spectra

To complete this analysis, we compute the kθ spectra of the perturbed electrostatic poten-
tial to monitor the intensity evolution of the different poloidal structure scales at different
radius. The kθ spectrum is computed through

δφ (r, θ, ϕ = 0)→ I (r, kθ) = |δφ (r, kθ, ϕ = 0)|2. (25)

For each time step, a 1D FFT is performed along the poloidal axis before averaging it
over 1000∆t to get a cleaner signal. This is comparable to I3D (r, kθ) =

∑
kϕ
|δφ (r, kθ, kϕ)|2

because the dominant modes are the resonant ones.
Figure 9a shows the core region (i.e r/a = 0.43) poloidal wavenumber spectra for the
reference case (dotted green line) and vorticity case (dashed blue line). A lower turbulence
intensity on most of the scales is observed except for kθρc,i = 0.5 and kθρc,i = 0.1 for the
vorticity case compared to the reference case. However the spectra keeps most of its
features without any striking changes; the poloidal extension of the core turbulence stays
approximately the same with a slightly lower amplitude. Figure 9b shows the poloidal
wavenumber spectra for the source region (i.e r/a = 0.75). A clear difference can be
seen between the reference (dotted green line) and vorticity case (dashed blue line). The
smallest poloidal scales (kθρc,i > 0.1) undergo a much more important decrease in intensity
than the bigger (kθρc,i < 0.3) and especially the medium scales (0.3 < kθρc,i < 0.6). This
shows a reorganisation of the turbulent structures at that location with a dominant scale
shifting from kθρc,i ≈ 0.2 to kθρc,i ≈ 0.1, meaning the poloidal structures got bigger
but also less intense. One explanation for this local shift is that turbulent structures
may get tilted along the poloidal axis due to shearing as shown in figure 1 of [39]. As a
result turbulent structures are radially smaller and poloidally bigger with an overall lower
intensity.

5 Steep gradient case
Another way to generate a localized E × B poloidal shear flow is to produce a radially
strong pressure gradient as shown with the radial pressure profile on figure 4a. Since the
temperature profile is allowed to evolve (flux-driven condition) but not the ion density
profile (adiabatic electrons), we can enforce an initial density profile with a steep gradient
at the desired location, the pressure gradient intensity defining the poloidal shear flow
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Figure 9: Poloidal wavenumber spectra using a 1D FFT averaged over the last 100 time
steps for the reference (Ref) and vorticity (Vor) cases for r/a = 0.43 (a) and r/a = 0.75
(b).

amplitude. A simulation with such gradient and characteristics detailed in table 1 shows
that this method creates indeed the desired radial profile of poloidal E ×B shear flow as
shown in figure 10b. However, the velocity profile is different from the vorticity-induced
one (figure 4b, dashed blue line) with a single lobe instead of 2 at r/a = 0.75. Otherwise,
the E ×B velocity profile is similar to what is observed to the reference case outside the
steep gradient region.

Figure 11a shows the time evolution of the heat diffusivity components in the steep
gradient region. The turbulent diffusivity is close to zero in that region and does not con-
tribute heavily to the total diffusivity. Similarly, the turbulence intensity (figure 11c) does
show the exact same trend as the turbulent diffusivity (figure 11b) and stays extremely
low even compared to the turbulence intensity levels of the vorticity case. Moreover, the
same decaying trend in the core as the vorticity case can be seen on figure 12a and 12b
which correlates strongly again with the turbulence intensity in the same region as shown
on figure 12c. This method then seems to be effective to reduce the heat turbulent trans-
port coefficient and turbulence intensity both near the steep gradient and in the core. A
similar transport barrier is then formed with this method.

The origin of the barrier is however more ambiguous than for the vorticity case. Two
main factors need to be taken into account here.
The first one is the linear stabilization of ITG by the density gradient. One of the criteria
to enable ITG to grow, roughly η = κT/κn ≥ 2, is not satisfied in the steep gradient
region from the start of the simulation with a local value of η ≈ 0.44. The ITG modes
are then linearly stabilized locally by the steep gradient in the first place.
Moreover, one cannot neglect the impact of the E ×B shear flow generated by the pres-
sure gradient. As shown on figure 8b and 13b, the shearing levels generated by the source
and the steep gradient bear different shapes (i.e two vs one lobe) but are within the same
order of magnitude of ∼ 10 ¯γlin. The E×B flow shear avoids ITG instabilities to grow by
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case. (b) Turbulent contribution of the heat diffusivity as a function of time for the steep
gradient case. (c) Turbulence intensity plotted against time for the steep gradient case.
(b) and (c) signals are in phase.
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r/a = [0.38, 0.48] region. (a) Time evolution of the heat diffusivity coefficient for the
steep gradient case. (b) Turbulent contribution of the heat diffusivity as a function of
time for the steep gradient case. (c) Turbulence intensity plotted against time for the
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shearing radial turbulent structures that could develop either through non-linear interac-
tions or turbulence diffusion. This results in an even more "effective" transport barrier
with two different stabilizing mechanisms taking place simultaneously.
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Figure 13: Flux surface and time average of the correlation length (a) and E×B shearing
rate (b) as a function of radius for the steep gradient case. The red vertical line indicates
the steep gradient location.

Figure 13a tends to confirm the previous analysis by showing that the auto-correlation
radial length of the perturbed potential is significantly lower near the steep gradient po-
sition at r/a = 0.75. This shows that almost no turbulence structures are present here
while the rest of the plasma shows a similar behaviour as the reference case shown of
figure8b (dotted green line).

The kθ spectrum completes this analysis: in the steep gradient region, the intensities
of all poloidal scales are significantly lower than in the core region. This confirms the near-
absence of turbulence in the steep gradient region and the barrier mechanism involved
here.

6 Discussion and conclusion
We showed in this study using the GYSELA code two different ways to reduce turbulence
and make the plasma transit to what can be described as an enhanced confinement mode
with the development of a transport barrier.

The first way is based on a method proposed by A. Strugarek [30] [31] that uses a
vorticity source to locally polarize the plasma to generate a strong E × B shear flow.
This method leads to an immediate effect on the turbulent heat diffusivity χturbT in the
source region, going quickly to zero when the shear rate ωE×B reaches a threshold of
ωE×B ≈ 3γlin, meaning no fluctuations persist around the strongly sheared region. A
reduction in χturbT is observed as well in the core region compared to a reference case,
showing that the edge-localized source has an impact on the core. One must note a side-
effect on the local neoclassical transport by the source, the latter generating a poloidal
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asymmetry that leads to the former. This reduction in turbulence can be explained by the
shearing of the larger turbulent structures into smaller ones as shown by the correlation
length. The kθ spectra analysis shows the impact of the source with lower turbulence
intensity, shifting the maximum of the spectra to the lower wavenumber possibly due to
the structures being tilted in the poloidal direction. This reduction in heat transport led
to higher pressure in the core than the reference scenario without the vorticity source.

The second way consists in enforcing a H-mode-like density profile to generate through
the force equilibrium a localized strong E × B shear flow. This alternate method man-
aged to stabilize the plasma locally by linearly stabilizing ITG modes through the steep
gradient profile enforced. In addition to this linear stabilization effect, the E × B flow
shear generated by the steep pressure gradient also helps stabilizing the plasma by tearing
apart any turbulent structures that could grow in the steep gradient region. The edge
reduction in heat transport still leads to higher core temperatures, meaning the transport
barrier created is efficient enough to increase energy confinement.
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