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A B S T R A C T

Multi-energy microgrid (MEMG) has the potential to improve the energy utilization efficiency. However, the
uncertainty caused by distributed renewable energy resources brings an urgent need for multi-energy co-
optimization to ensure secure operation. This paper focuses on the distributionally robust energy management
problem for MEMG. Various flexible resources in different energy sectors are utilized for uncertainty mitigation,
then, a data-driven Wasserstein distance-based distributionally robust joint chance-constrained (DRJCC) energy
management model is proposed. To make the DRJCC model tractable, an optimized conditional value-at-risk
(CVaR) approximation (OCA) formulation is proposed to transfer the joint chance-constrained model into a
tractable form. Then, an iterative sequential convex optimization algorithm is tailored to reduce the solution
conservatism by tuning OCA. Numerical result illustrates the effectiveness of the proposed model.
The main notations and symbols are listed here. The remaining are
defined later when they first appear. Boldface lower case and upper
case letters represent vectors and matrices, respectively, and 𝟏𝑛 ∈ R𝑛

denotes the vector of ones with dimension 𝑛. Z𝑧2
𝑧1 = {𝑧 ∈ Z|𝑧1 ≤

𝑧 ≤ 𝑧2} denotes integer ranges. And EP denotes the expectation over
distribution P. For a given set  , we use notation 1 (𝑥) = 1 if 𝑥 ∈ 
and 1 (𝑥) = 0, otherwise. For a random vector 𝝃 governed by a
distribution P, we define the conditional value-at-risk at level 𝜖 ∈ (0, 1)
of a measurable loss function 𝐿(𝝃) by

P-CVaR𝜖 [𝐿(𝜉)] ∶= min
𝜏

{

𝜏 +EP [max(0, 𝐿(𝝃) − 𝜏)] ∕𝜖
}

. (1)

1. Introduction

In the past decades, distributed energy resources (DERs) have devel-
oped rapidly. However, DERs have the characteristics of intermittent
and random, which has a great impact on the safe operation of the
distribution network [1]. To address this challenge, microgrids are
gaining more and more attention as an effective solution to increase
the integration rate of renewable energy. Compared with traditional
microgrids, multi-energy microgrids (MEMG) aim to integrate multiple
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energy carriers such as electricity, heat, and cooling energy to achieve
higher energy efficiency.

Recently, some methodologies have been conducted to plan and
manage MEMG or multi-energy systems. The dynamic economic dis-
patch model and temporally-coordinated operation model of MEMG
aming for improving the operating efficiency is respectively proposed
in [2,3]. A stochastic deployment strategy considering demand re-
sponse for residential MEMG is aproposed in [4]. An optimal config-
uration with respect to capacity sizes and types of DERs for MEMG is
presented in [5]. An interval-based planning model for MEMG with
multiple uncertainties is proposed in [6]. The robustly coordinated
operation models for grid-connected and islanded MEMG with flexible
loads are proposed in [7,8]. Meanwhile, a distributionally robust opti-
mization (DRO) model for electricity and heating networks is presented
in [9]. However, the uncertainties propagated from the electricity
system to other energy system via the coupling facilities are not fully
modeled in these models. This motivates us to design a strategy to fully
utilize various flexible resources in different energy sectors of MEMG
for uncertainty mitigation.
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Nomenclature

Sets

𝑖 Set of parent node of node 𝑖
 Set of nodes with BSs
 Set of nodes with CCHPs
𝑖 Set of children nodes of node 𝑖
 Set of nodes with EBs
 Set of nodes with ECs
 Set of power lines, indexed by 
 Set of non-root nodes
  Set of nodes with TSs
 Set of time periods
 Set of nodes with WTs

Parameters

𝜂loss𝑖 Heat loss factor of MT
𝜂𝐵𝑆𝑖 ∕𝜂𝑇𝑆𝑖 Storing/releasing efficiency of BS/TS
𝜂𝑀𝑇
𝑖 ∕𝜂𝐴𝐶𝑖 ∕𝜂𝐸𝐶

𝑖 ∕𝜂𝐸𝐵
𝑖 Efficiency of MT/AC/EC/EB

𝑃𝑊 𝑇
𝑖𝑡 ∕𝑄̂𝑊 𝑇

𝑖𝑡 Forecasted active/reactive power of WT
𝐻

𝐶
𝑖 ∕𝐻

𝐷
𝑖 Maximum storing/releasing rate of TS

𝑃
𝑇

Maximum active power exchange with
upper-level grid

𝑃
𝐸𝐵
𝑖 ∕𝑃

𝐸𝐶
𝑖 ∕𝐻

𝐴𝐶
𝑖 Maximum output of EB/EC/AC

𝑢𝑖∕𝑑𝑖 Maximum upward/downward reserve ad-
justment of MT

𝜌𝐿𝐻𝑉 Low heating value of natural gas
𝐸𝐵𝑆

𝑖 ∕𝐸
𝐵𝑆
𝑖 Minimum/maximum electricity stored in

BS
𝐸𝑇𝑆

𝑖 ∕𝐸
𝑇𝑆
𝑖 Minimum/maximum heating energy stored

in TS
𝑃𝑀𝑇
𝑖,𝑡 ∕𝑃

𝑀𝑇
𝑖,𝑡 Lower/upper active power of MT

𝑄𝑀𝑇
𝑖,𝑡

∕𝑄
𝑀𝑇
𝑖,𝑡 Lower/upper reactive power of MT

𝑉 𝑖∕𝑉 𝑖 Lower/upper nodal voltage magnitude
𝜑 Constant power factor
𝜗heat Heating coefficient
𝑐𝑂 Operation and maintenance cost of energy

storage facilities
𝑐𝑀𝑇 Fuel cost of MTs
𝑐𝐵𝑡 ∕𝑐

𝑆
𝑡 Electricity purchasing/selling price

𝐻𝐻𝐿
𝑡 ∕𝐻𝐶𝐿

𝑡 Heating/cooling load
𝑃𝐿
𝑖𝑡 ∕𝑄

𝐿
𝑖𝑡 Nodal active/reactive load

𝑟𝑖∕𝑥𝑖 Resistance/reactance of power line
𝑉0,𝑡 Voltage magnitude of root node

Random Variables

𝜉𝑃𝑗,𝑡∕𝜉
𝑄
𝑗,𝑡 Active/reactive power forecasting error of

WT, and 𝜉𝑄𝑗,𝑡 =
√

(1 − 𝜑2)∕𝜑2𝜉𝑃𝑗,𝑡

Uncertainties from renewable energy can pose significant challenges
nd complicate the energy management of MEMG. DRO is an ef-
ective way to handle diverse uncertainties, which incorporates the
vailable probability distribution information into an ambiguity set
o characterize the true probability distribution of uncertainties and
educes the solution conservatism of robust optimization (RO) [10,
1]. Presently, DRO adopts two main types of ambiguity sets, that
s, moment-based [9,12] and metric-based [13–16] ambiguity sets.
ecently, the moment-based DRO models for multi-energy systems
2

Decision Variables

𝛼𝐴𝐶𝑖,𝑡 ∕𝛼𝐵𝑆𝑖,𝑡 ∕𝛼𝑇𝑆𝑖,𝑡 Adjustment factors of AC/BS/TS
𝛼𝐵𝑆𝐶𝑖,𝑡 ∕𝛼𝐵𝑆𝐷𝑖,𝑡 Adjustment factors of storing/releasing rate

of BS
𝛼𝑀𝑇
𝑖,𝑡 ∕𝛼𝐸𝐵

𝑖,𝑡 ∕𝛼𝐸𝐶
𝑖,𝑡 Adjustment factors of MT/EB/EC/BS

𝛼𝑇𝑆𝐶𝑖,𝑡 ∕𝛼𝑇𝑆𝐷𝑖,𝑡 Adjustment factors of storing/releasing rate
of TS

𝐸̂𝐵𝑆
𝑖,𝑡 ∕𝐸̂𝑇𝑆

𝑖,𝑡 BS/TS stored energy under nominal state
𝐻̂𝑇𝑆𝐶

𝑖,𝑡 ∕𝐻̂𝑇𝑆𝐷
𝑖,𝑡 TS storing/releasing rate under nominal

state
𝑃𝑖,𝑡∕𝑄̂𝑖,𝑡 Active/reactive power flow of power line

under nominal state
𝑃𝐵𝑆𝐶
𝑖,𝑡 ∕𝑃𝐵𝑆𝐷

𝑖,𝑡 BS storing/releasing rate under nominal
state

𝑃𝐸𝐵
𝑖,𝑡 ∕𝑃𝐸𝐶

𝑖,𝑡 ∕𝐻̂𝐴𝐶
𝑖,𝑡 Power/heat consumption of EB/EC/AC un-

der nominal state
𝑃𝑀𝑇
𝑖,𝑡 ∕𝑄̂𝑀𝑇

𝑖,𝑡 MT active/reactive power under nominal
state

𝑉𝑖,𝑡∕𝑉𝑖,𝑡 Nodal voltage magnitude under nominal
state/under uncertainty

𝐸𝐵𝑆
𝑖,𝑡 ∕𝐸𝑇𝑆

𝑖,𝑡 BS/TS stored energy under uncertainty
𝐻𝑇𝑆𝐶

𝑖,𝑡 ∕𝐻𝑇𝑆𝐷
𝑖,𝑡 TS storing/releasing rate under uncertainty

𝑃𝐵
𝑡 ∕𝑃 𝑆

𝑡 Electricity buying/selling
𝑃𝑖,𝑡∕𝑄𝑖,𝑡 Active/reactive power of distribution line

under uncertainty
𝑃𝐵𝑆𝐶
𝑖,𝑡 ∕𝑃𝐵𝑆𝐷

𝑖,𝑡 BS storing/releasing rate under uncertainty
𝑃𝐸𝐵
𝑖,𝑡 ∕𝑃𝐸𝐶

𝑖,𝑡 ∕𝐻𝐴𝐶
𝑖,𝑡 Power/heat consumption of EB/EC/AC un-

der uncertainty
𝑃𝑀𝑇
𝑖,𝑡 ∕𝑄𝑀𝑇

𝑖,𝑡 MT active/reactive power under uncer-
tainty

were presented in [9,12], which comprise all probability distribution
informations with an identical mean and covariance. Yet, only the
first two moments do not constitute a detailed characterization of the
true probability distribution. Especially when we have a lot of data
at hand, more probabilistic distribution information can be extracted
and utilized than just the first two moments. In contrast, the metric-
based DRO models can take full advantage of the existing historial
data at the cost of the increased computational burden. In addition,
the decision-maker can also regard the radius of the metric-based
ambiguity set as a tuning parameter to adjust their risk attitude towards
the system operation. Recently, metric-based DRO models have at-
tracted much attention in power systems, including optimal power flow
(OPF) [14], unit commitment [15], and home energy management [16]
problems. However, the aforementioned moment-based or metric-based
DRO models [9,12,14–17] mainly focus on the distributionally robust
individual chance-constrained (DRICC) problems.

Different from the DRICC model, the distributionally robust joint
chance-constrained (DRJCC) model can provide stronger guarantees
for overall power systems safety with high probability by enforcing
multiple safety constraints to be satisfied simultaneously [18]. That
is, DRJCC is more expressive and can overcome the drawback that
solutions of DRICC to achieve joint feasibility are overly conserva-
tive [19–21]. However, handling DRJCC models are mathematically
harder than DRICC models [22]. The standard way for approximating
a joint chance constraint is to decompose it into multiple individual
chance constraints using Bonferroni’s inequality. Moreover, the suffi-
cient condition for ensuring the feasibility of joint chance-constrained
problem is to ensure that the total sum of violation probabilities of
multiple individual chance constraints is less than that of the joint

chance constraint. However, there is no systematic way to choose a
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Fig. 1. Multi-energy microgrid demonstration.
better allocation of risk factors among individual chance constraints.
The natural choice is to divide the constraint violation probability
equally among the multiple individual chance constraints [23]. Unfor-
tunately, even if the individual chance constraints are independent, the
Bonferroni’s inequality is only an approximation at best. In the events
when the individual chance constraints are correlated, the Bonferroni’s
inequality may be more conservative [22].

Recently, a few up to date moment-based or metric-based DRJCC
single-period dispatch models for power transmission system are pro-
posed [18,19,21,24]. In [18,24], a Wasserstein metric-based DRJCC
dispatch model based on the Bonferroni approximation (BA) formula-
tion is proposed. In [21], the moment-based DRJCC DC-OPF model is
proposed, where the optimized BA method is presented to reduce the
solution conservatism of Bonferroni’s inequality. In [19], the Bonfer-
roni’s inequality and the optimized CVaR tractable approximations for
the metric-based joint chance-constrained real-time dispatch problem
are proposed. Even so, the DRJCC models applied to power systems
are still limited due to the great challenge of handling joint chance
constraints. To the best of authors’ knowledge, the merits of DRJCC
have not been investigated in multi-energy systems.

Additionally, when the samples are drawn independent and iden-
tically distributed (i.i.d.) from an underlying probability distribution,
some existing researches have established rigorous bounds for Wasser-
stein metric-based DRO models between the empirical probability dis-
tribution and the data-generating probability distribution, such as the
cross validation method [14] and the holdout method [25]. However,
the renewable energy data is not necessarily being drawn from any
underlying probability distribution in an independent manner. Thus,
the i.i.d. assumption for renewable energy data may be too strong so
that it may be violated in practice [24]. The above motivates us not
only to look for a better approximation for joint chance-constrained
problems, but also enable further incorporation of spatial–temporal
correlations among uncertain renewable energy at different nodes and
periods.

To address the research gap, this paper contributes in the following
aspects:

(1) A data-driven Wasserstein metric-based DRJCC energy manage-
ment model for MEMG is proposed to account for complicated
spatial–temporal correlations among uncertain renewable en-
ergy. Under the joint feature of distributionally robust chance
constraints, various flexible resources in different energy sectors
is utilized for uncertainty mitigation. Then, a unified linear
decision rule model is adopted to facilitate further reformulation
of joint chance constraints.

(2) An optimized conditional value at risk (CVaR) approximation
(OCA) formulation for joint chance constraints is presented to
transfer the data-driven DRJCC energy management model into
a tractable form. The tightness of the OCA formulation depends
3

on a set of scaling parameters. Then, an iterative sequential
convex algorithm is tailored to tune the OCA to reduce the
solution conservatism.

The rest of this paper is organized as follows: Section 2 shows the
DRJCC energy management formulation for MEMG. Section 3 describes
the data-driven tractable reformulation. Case study and conclusion are
presented in Sections 4 and 5.

2. DRJCC energy management formulation

This section describes the structure of MEMG and presents the
DRJCC energy management model for MEMG which can utilize various
flexible resources in different energy sectors for uncertainty mitiga-
tion. A unified linear decision rule (ULDR) model is also presented to
facilitate further reformulation of joint chance constraints.

2.1. System structure

A typical MEMG structure is presented in Fig. 1. The MEMG has a ra-
dial topology based multi-energy supply system, integrating renewable
energy (e.g. wind turbine (WT)), battery storage (BS), thermal storage
(TS), electric boiler (EB), electric chiller (EC), and combined cooling,
heat, and power (CCHP) plant to satisfy electric, heat, and cooling
loads simultaneously. The CCHP plant generally includes three parts:
a micro-turbine (MT), an absorption chiller (AC) and the heat recovery
(HR) system. Since long-distance thermal transmission will lead to
great thermal loss, the thermal energy is supplied locally within a
geographical region and heat networks among different thermal groups
are not considered [2–4,6–8].

2.2. Unified linear decision rule for uncertain energy flow

In practice, renewable energy is usually hard to predict accurately a
day ahead. The forecast errors need to be compensated in the real-time
stage by adjusting the flexible resources. Linear decision rule (LDR) is
widely used in DRO decision-making, which can offer tractable and
equivalent reformulations under quite a few ambiguity sets [14,15,18].
Meanwhile, from application perspective, LDR is applicable in many
practical decision-making frameworks of electricity industry due to its
simplicity [26,27]. In order to facilitate further reformulation of the fol-
lowing DRJCC energy management model, ULDR model is adopted to
exploit various flexible resources in MEMG for uncertainty mitigation,
shown in Fig. 2.

The electricity facilities of MT, EB, EC, and BS in MEMG are se-
lected to adjust their power output based on the following ULDR. And
(2d) guarantees that the renewable energy forecasting errors are fully
mitigated in MEMG.

𝑃𝑀𝑇
𝑖,𝑡 = 𝑃𝑀𝑇

𝑖,𝑡 − 𝛼𝑀𝑇
𝑖,𝑡

∑

𝜉𝑃𝑗,𝑡, 𝑖 ∈  , 𝑡 ∈  (2a)

𝑗∈
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𝑄

Fig. 2. ULDR framework for DRJCC energy management model.

𝑀𝑇
𝑖,𝑡 = 𝑄̂𝑀𝑇

𝑖,𝑡 − 𝛼𝑀𝑇
𝑖,𝑡

∑

𝑗∈
𝜉𝑄𝑗,𝑡, 𝑖 ∈  , 𝑡 ∈  (2b)

𝑃 ∗
𝑖,𝑡 = 𝑃 ∗

𝑖,𝑡 + 𝛼∗𝑖,𝑡
∑

𝑗∈
𝜉𝑃𝑗,𝑡, ∗∈ {, ,,},

𝑖 ∈  ∪  ∪  , 𝑡 ∈  (2c)

1 =
∑

𝑖∈
𝛼𝑀𝑇
𝑖,𝑡 +

∑

𝑖∈
𝛼𝐸𝐵
𝑖,𝑡 +

∑

𝑖∈
𝛼𝐸𝐶
𝑖,𝑡 +

∑

𝑖∈

(

𝛼𝐵𝑆𝐶𝑖,𝑡 + 𝛼𝐵𝑆𝐷𝑖,𝑡

)

, 𝑡 ∈ 

(2d)

𝛼𝑀𝑇
𝑖,𝑡 , 𝛼𝐸𝐵

𝑖,𝑡 , 𝛼𝐸𝐶
𝑖,𝑡 , 𝛼𝐵𝑆𝐶𝑖,𝑡 , 𝛼𝐵𝑆𝐷𝑖,𝑡 ∈ [0, 1] (2e)

The linearized DistFlow model for radial distribution network is
adopted to describe the AC power flows and ensure the nodal voltage
security under uncertainties. The uncertain power line flow affected by
the renewable energy injections is derived as

𝑃𝑖,𝑡 = 𝑃𝑖,𝑡 − 𝑩𝑖∗

⎛

⎜

⎜

⎝

𝝃𝑃𝑡 − 𝜶𝑡
∑

𝑗∈
𝜉𝑃𝑗,𝑡

⎞

⎟

⎟

⎠

(3a)

𝑄𝑖,𝑡 = 𝑄̂𝑖,𝑡 − 𝑩𝑖∗

⎛

⎜

⎜

⎝

𝝃𝑄𝑡 − 𝜶𝑡
∑

𝑗∈
𝜉𝑄𝑗,𝑡

⎞

⎟

⎟

⎠

(3b)

for all 𝑖 ∈  and 𝑡 ∈  . Here, 𝝃𝑃𝑡 and 𝝃𝑄𝑡 denote the active and reactive
power forecasting errors of renewable energy on non-root nodes. 𝜶𝑡
denotes the adjustment factors of non-root nodes, if node 𝑖 has no DERs,
then 𝛼𝑖,𝑡 = 0. 𝑩𝑖∗ denotes the 𝑖th row of 𝑩 ∈ R||×| | with 𝑏(𝑖𝑗) = 1 if
power line 𝑖 is part of the path from root node to node 𝑗 and 𝑏(𝑖𝑗) = 0,
otherwise.

Accordingly, the nodal voltage magnitude is derived as

𝑉𝑖,𝑡 = 𝑉𝑖
− (𝑟𝑖𝑃𝑖,𝑡 + 𝑥𝑖𝑄𝑖,𝑡)∕𝑉0,𝑡

= 𝑉𝑖,𝑡 + 𝑩⊤
∗𝑖

⎡

⎢

⎢

⎣

𝑹𝑩(𝝃𝑃𝑡 − 𝜶𝑡
∑

𝑗∈
𝜉𝑃𝑗,𝑡) +𝑿𝑩(𝝃𝑄𝑡 − 𝜶𝑡

∑

𝑗∈
𝜉𝑄𝑗,𝑡)

⎤

⎥

⎥

⎦

∕𝑉0,𝑡
(4)

for all 𝑖 ∈  and 𝑡 ∈  . 𝑹 and 𝑿 are || × || matrices with diagonal
entries consisting of power line resistances and reactances respectively:
𝑅(𝑖𝑖) = 𝑟𝑖, 𝑅(𝑖𝑗,𝑖≠𝑗) = 0, 𝑿 in analogy.

Electricity stored in BS under uncertainty is modeled by

𝐸𝐵𝑆
𝑖,𝑡 = 𝐸̂𝐵𝑆

𝑖,𝑡 + 𝛼𝐵𝑆𝑖,𝑡

∑

𝑗∈
𝜉𝑃𝑗,𝑡, 𝑖 ∈  , 𝑡 ∈  (5)

while 𝐸𝐵𝑆
𝑖,𝑡 by definition is given by

𝐸𝐵𝑆
𝑖,𝑡 = 𝐸𝐵𝑆

𝑖,𝑡−1 + 𝑃𝐵𝑆𝐶
𝑖,𝑡 𝜂𝐵𝑆𝑖 𝛥𝑡 − 𝑃𝐵𝑆𝐷

𝑖,𝑡 ∕𝜂𝐵𝑆𝑖 𝛥𝑡, 𝑖 ∈  , 𝑡 ∈  (6)

Such that combining (2) and (5) yields

𝐸̂𝐵𝑆
𝑖,𝑡 = 𝐸̂𝐵𝑆

𝑖,𝑡−1 + 𝑃𝐵𝑆𝐶
𝑖,𝑡 𝜂𝐵𝑆𝑖 𝛥𝑡 − 𝑃𝐵𝑆𝐷

𝑖,𝑡 ∕𝜂𝐵𝑆𝑖 𝛥𝑡, 𝑖 ∈  , 𝑡 ∈  (7a)

𝛼𝐵𝑆𝑖,𝑡 = 𝛼𝐵𝑆𝑖,𝑡−1 + 𝛼𝐵𝑆𝐶𝑖,𝑡 𝜂𝐵𝑆𝑖 + 𝛼𝐵𝑆𝐷𝑖,𝑡 ∕𝜂𝐵𝑆𝑖 , 𝑖 ∈  , 𝑡 ∈  (7b)
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It is clear that making (6) be satisfied is equivalent to enforcing (7).
According to [28], the binary variables reflecting that the energy
storage system cannot be charged and discharged simultaneously can
be omitted.

Uncertainties from renewable energy will propagate from the power
network to the heat and cooling network via HR, EB, and EC facilities.
Then, the TS and AC within the heat and cooling system can be utilized
for uncertainty mitigation.

The heat consumption of AC and heat storing and releasing rates of
TS under uncertainty are modeled by

𝐻∗
𝑖,𝑡 = 𝐻̂∗

𝑖,𝑡 + 𝛼∗𝑖,𝑡
∑

𝑗∈
𝜉𝑃𝑗,𝑡, ∗∈ {,  ,  },

𝑖 ∈  ∪   ∪  , 𝑡 ∈ 
(8)

Similarly, the heat energy stored in the TS under uncertainty is
modeled by

𝐸𝑇𝑆
𝑖,𝑡 = 𝐸̂𝑇𝑆

𝑖,𝑡 + 𝛼𝑇𝑆𝑖,𝑡

∑

𝑗∈
𝜉𝑃𝑗,𝑡, 𝑖 ∈   , 𝑡 ∈  (9)

while 𝐸𝑇𝑆
𝑖,𝑡 is defined by

𝐸𝑇𝑆
𝑖,𝑡 = 𝐸𝑇𝑆

𝑖,𝑡−1 +𝐻𝑇𝑆𝐶
𝑖,𝑡 𝜂𝑇𝑆𝑖 𝛥𝑡 −𝐻𝑇𝑆𝐷

𝑖,𝑡 ∕𝜂𝑇𝑆𝑖 𝛥𝑡, 𝑖 ∈   , 𝑡 ∈  (10)

Such that combining (8) and (9) yields

𝐸̂𝑇𝑆
𝑖,𝑡 = 𝐸̂𝑇𝑆

𝑖,𝑡−1 + 𝐻̂𝑇𝑆𝐶
𝑖,𝑡 𝜂𝑇𝑆𝑖 𝛥𝑡 − 𝐻̂𝑇𝑆𝐷

𝑖,𝑡 ∕𝜂𝑇𝑆𝑖 𝛥𝑡, 𝑖 ∈   , 𝑡 ∈  (11a)

𝛼𝑇𝑆𝑖,𝑡 = 𝛼𝑇𝑆𝑖,𝑡−1 + 𝛼𝑇𝑆𝐶𝑖,𝑡 𝜂𝑇𝑆𝑖 − 𝛼𝑇𝑆𝐷𝑖,𝑡 ∕𝜂𝑇𝑆𝑖 , 𝑖 ∈   , 𝑡 ∈  (11b)

Thus, enforcing (10) is equivalent to enforcing (11).
The heat balance under uncertainty of each thermal group (omit the

index) can be expressed as
∑

𝑖∈

(

𝐻𝑀𝑇
𝑖,𝑡 −𝐻𝐴𝐶

𝑖,𝑡

)

+
∑

𝑖∈ 

(

𝐻𝑇𝑆𝐷
𝑖,𝑡 −𝐻𝑇𝑆𝐶

𝑖,𝑡

)

+
∑

𝑖∈
𝐻𝐸𝐵

𝑖,𝑡 = 𝐻𝐻𝐿
𝑡 , 𝑡 ∈ 

(12)

where the heat output of MT can be expressed as

𝐻𝑀𝑇
𝑖,𝑡 =

𝑃𝑀𝑇
𝑖,𝑡

(

1 − 𝜂𝑀𝑇
𝑖 − 𝜂loss𝑖

)

𝜗heat

𝜂𝑀𝑇
𝑖

, 𝑖 ∈  , 𝑡 ∈  (13)

The heat output of EB can be expressed as

𝐻𝐸𝐵
𝑖,𝑡 = 𝜂𝐸𝐵

𝑖 𝑃𝐸𝐵
𝑖,𝑡 , 𝑖 ∈ , 𝑡 ∈  (14)

Combining (2a), (2c), (8), (13), and (14) yields

∑

𝑖∈

[

𝑃𝑀𝑇
𝑖,𝑡

(

1 − 𝜂𝑀𝑇
𝑖 − 𝜂loss𝑖

)

𝜗heat

𝜂𝑀𝑇
𝑖

− 𝐻̂𝐴𝐶
𝑖,𝑡

]

+
∑

𝑖∈
𝜂𝐸𝐵
𝑖 𝑃𝐸𝐵

𝑖,𝑡 +
∑

𝑖∈ 

(

𝐻̂𝑇𝑆𝐷
𝑖,𝑡 − 𝐻̂𝑇𝑆𝐶

𝑖,𝑡

)

= 𝐻𝐻𝐿
𝑡 , 𝑡 ∈  (15a)

∑

𝑖∈

[

−𝛼𝑀𝑇
𝑖,𝑡

(

1 − 𝜂𝑀𝑇
𝑖 − 𝜂loss𝑖

)

𝜗heat

𝜂𝑀𝑇
𝑖

− 𝛼𝐴𝐶𝑖,𝑡

]

+
∑

𝑖∈
𝜂𝐸𝐵
𝑖 𝛼𝐸𝐵

𝑖,𝑡 +
∑

𝑖∈ 

(

𝛼𝑇𝑆𝐷𝑖,𝑡 − 𝛼𝑇𝑆𝐶𝑖,𝑡

)

= 0, 𝑡 ∈ 

(15b)

Thus, enforcing (12) is equivalent to enforcing (15).
The cooling balance under uncertainty of each thermal group is

expressed as
∑

𝑖∈
𝐻𝐸𝐶

𝑖,𝑡 +
∑

𝑖∈
𝜂𝐴𝐶𝑖 𝐻𝐴𝐶

𝑖,𝑡 = 𝐻𝐶𝐿
𝑡 , 𝑡 ∈  (16)

where the cooling output of EC can be expressed as

𝐻𝐸𝐶 = 𝜂𝐸𝐶𝑃𝐸𝐶 , 𝑖 ∈ , 𝑡 ∈  (17)
𝑖,𝑡 𝑖 𝑖,𝑡
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Combining (8) and (17) yields
∑

𝑖∈
𝜂𝐸𝐶
𝑖 𝑃𝐸𝐶

𝑖,𝑡 +
∑

𝑖∈
𝜂𝐴𝐶𝑖 𝐻̂𝐴𝐶

𝑖,𝑡 = 𝐻𝐶𝐿
𝑡 , 𝑡 ∈  (18a)

∑

𝑖∈
𝜂𝐸𝐶
𝑖 𝛼𝐸𝐶

𝑖,𝑡 +
∑

𝑖∈
𝜂𝐴𝐶𝑖 𝛼𝐴𝐶𝑖,𝑡 = 0, 𝑡 ∈  (18b)

hus, enforcing (16) is equivalent to enforcing (18).

.3. DRJCC energy management model

The DRJCC energy management model for MEMG is formulated as

inmax
P∈

EP
∑

𝑡∈

[

∑

𝑖∈

𝑐𝑀𝑇 𝑃𝑀𝑇
𝑖,𝑡

𝜌𝐿𝐻𝑉 𝜂𝑀𝑇
𝑖

+
∑

𝑖∈
𝑐𝑂

(

𝑃𝐶
𝑖,𝑡 + 𝑃𝐷

𝑖,𝑡

)

+
∑

𝑖∈ 
𝑐𝑂

(

𝐻𝐶
𝑖,𝑡 +𝐻𝐷

𝑖,𝑡

)

+ 𝑐𝐵𝑡 𝑃
𝐵
𝑡 − 𝑐𝑆𝑡 𝑃

𝑆
𝑡

]

(19)

ubject to

≤ 𝑃𝐵
𝑡 ≤ 𝑃

𝑇
, 0 ≤ 𝑃 𝑆

𝑡 ≤ 𝑃
𝑇
, 𝑡 ∈  (20a)

𝑖̂,𝑡 =
∑

𝑗∈𝑖

𝑃𝑗,𝑡 − 𝑃𝑀𝑇
𝑖,𝑡 − 𝑃𝑊 𝑇

𝑖,𝑡 + 𝑃𝐸𝐵
𝑖,𝑡 + 𝑃𝐸𝐶

𝑖,𝑡 + 𝑃𝐶
𝑖,𝑡 − 𝑃𝐷

𝑖,𝑡 + 𝑃𝐿
𝑖,𝑡 (20b)

ith 𝑃1,𝑡 = 𝑃𝐵
𝑡 − 𝑃 𝑆

𝑡 , 𝑖 ∈  , 𝑡 ∈ 
̂ 𝑖,𝑡 =

∑

𝑗∈𝑖

𝑄̂𝑗,𝑡 − 𝑄̂𝑀𝑇
𝑖,𝑡 − 𝑄̂𝑊 𝑇

𝑖,𝑡 +𝑄𝐿
𝑖,𝑡, 𝑖 ∈  , 𝑡 ∈  (20c)

̂𝑖,𝑡 = 𝑉𝑖
−
(

𝑟𝑖𝑃𝑖,𝑡 + 𝑥𝑖𝑄̂𝑖,𝑡
)

∕𝑉0,𝑡, 𝑖 ∈  , 𝑡 ∈  (20d)

min
P∈

P
[

𝑃𝑀𝑇
𝑖 ≤ 𝑃𝑀𝑇

𝑖,𝑡 ≤ 𝑃
𝑀𝑇
𝑖 , 𝑖 ∈  , 𝑡 ∈ 

]

≥ 1 − 𝜖1 (20e)

min
P∈

P

[

−𝑑𝑖 ≤ −𝛼𝑀𝑇
𝑖,𝑡

∑

𝑗∈
𝜉𝑃𝑗,𝑡 ≤ 𝑢𝑖, 𝑖 ∈  , 𝑡 ∈ 

]

≥ 1 − 𝜖2 (20f)

min
P∈

P
[

0 ≤ 𝑃𝐵𝑆𝐶
𝑖,𝑡 ≤ 𝑃

𝐵𝑆𝐶
𝑖 , 𝑖 ∈  , 𝑡 ∈ 

]

≥ 1 − 𝜖3 (20g)

min
P∈

P
[

0 ≤ 𝑃𝐵𝑆𝐷
𝑖,𝑡 ≤ 𝑃

𝐵𝑆𝐷
𝑖 , 𝑖 ∈  , 𝑡 ∈ 

]

≥ 1 − 𝜖4 (20h)

min
P∈

P
[

𝐸𝐵𝑆
𝑖 ≤ 𝐸𝐵𝑆

𝑖,𝑡 ≤ 𝐸
𝐵𝑆
𝑖 , 𝑖 ∈  , 𝑡 ∈ 

]

≥ 1 − 𝜖5 (20i)

min
P∈

P
[

𝑉 𝑖 ≤ 𝑉𝑖,𝑡 ≤ 𝑉 𝑖, 𝑖 ∈  , 𝑡 ∈ 
]

≥ 1 − 𝜖6 (20j)

min
P∈

P
[

0 ≤ 𝐻𝐴𝐶
𝑖,𝑡 ≤ 𝐻

𝐴𝐶
𝑖 , 𝑖 ∈  , 𝑡 ∈ 

]

≥ 1 − 𝜖7 (20k)

min
P∈

P
[

𝑄𝑀𝑇
𝑖

≤ 𝑄𝑀𝑇
𝑖,𝑡 ≤ 𝑄

𝑀𝑇
𝑖 , 𝑖 ∈  , 𝑡 ∈ 

]

≥ 1 − 𝜖8 (20l)

min
P∈

P
[

0 ≤ 𝑃𝐸𝐶
𝑖,𝑡 ≤ 𝑃

𝐸𝐶
𝑖 , 𝑖 ∈ , 𝑡 ∈ 

]

≥ 1 − 𝜖9 (20m)

min
P∈

P
[

0 ≤ 𝑃𝐸𝐵
𝑖,𝑡 ≤ 𝑃

𝐸𝐵
𝑖 , 𝑖 ∈ , 𝑡 ∈ 

]

≥ 1 − 𝜖10 (20n)

min
P∈

P
[

0 ≤ 𝐻𝑇𝑆𝐶
𝑖,𝑡 ≤ 𝐻

𝑇𝑆𝐶
𝑖 , 𝑖 ∈   , 𝑡 ∈ 

]

≥ 1 − 𝜖11 (20o)

min
P∈

P
[

0 ≤ 𝐻𝑇𝑆𝐷
𝑖,𝑡 ≤ 𝐻

𝑇𝑆𝐷
𝑖 , 𝑖 ∈   , 𝑡 ∈ 

]

≥ 1 − 𝜖12 (20p)

min
P∈

P
[

𝐸𝑇𝑆
𝑖 ≤ 𝐸𝑇𝑆

𝑖,𝑡 ≤ 𝐸
𝑇𝑆
𝑖 , 𝑖 ∈   , 𝑡 ∈ 

]

≥ 1 − 𝜖13 (20q)

(2), (4), (7)–(9), (11), (15), (18) (20r)

ith prescribed violation probabilities 𝜖1,… , 𝜖13 ∈ (0, 1). Here, we
consider the set of time periods given by  = Z𝑇

1 . In the following,
we stack all uncertainties by 𝝃 = [𝝃⊤1 ,… ., 𝝃⊤𝑇 ]

⊤ ∈ R𝑛𝑠⋅𝑇 with 𝝃𝑡 ∈ R𝑛𝑠 for
all 𝑡 ∈  . As the uncertainty distribution P is in general, not precisely
known, this DRJCC model restricts it to lie in the ambiguity set  that
defines a family of probability distribution supported by 𝛺 ⊆ R𝑛𝑠⋅𝑇 .

Objective function (19) aims to find an optimal solution that min-
imize the worst-case expected operation costs. (20b)–(20d) denote
the DistFlow model under nominal state. (20a) introduces the buying
and selling power limit with the upper-level grid. Chance constraints
(20e)–(20q) ensure that even under the worst case distribution, MT
active power, MT power adjustment, BS charging rate, BS discharging
5

𝝌

rate, BS stored energy, nodal voltage magnitude, MT reactive power,
AC output, EC output, EB output, TS storing rate, TS releasing rate,
and TS stored energy are still satisfied with the prescribed probability.

3. Data-driven tractable reformulation

This section proposes an OCA formulation for joint chance con-
straints to transfer the data-driven Wasserstein metric-based DRJCC
energy management model into a tractable form, where complicated
spatial–temporal correlations among uncertain renewable energy are
considered. Then a sequential convex optimization algorithm is tailored
to tune the OCA to reduce the solution conservatism.

To this end, we first rewrite the problem into a dense form. In
the following, we use shorthands 𝜶𝑡 ∈ R𝑛𝑐 and 𝒙𝑡 ∈ R𝑛𝑥 to stack all
adjustment factors and the other decision variables in the Nomenclature
for all 𝑡 ∈  , respectively. In a result, substituting the proposed ULDR
in Section 2.2 into the DRJCC model in Section 2.3 yields

min
(𝒙,Λ)∈𝛩

𝒄⊤0,1𝒙 + max
P∈

EP

[

𝒄⊤0,2Λ𝑪0𝝃
]

(21a)

s.t. min
P∈

P
[

𝑪𝓁(Λ)𝝃 ≤ 𝒄𝓁(𝒙)
]

≥ 1 − 𝜖𝓁 , 𝓁 ∈ Z13
1 (21b)

with coefficients 𝒄0,1, 𝒄0,2 and 𝑪0. We stack all decision variables by
Λ = [𝜶1,… ,𝜶𝑇 ] ∈ R𝑛𝑐×𝑇 and 𝒙 = [𝒙⊤1 ,… ,𝒙⊤𝑇 ]

⊤ ∈ R𝑛𝑥⋅𝑇 over time
𝑡 ∈  that satisfy the polyhedral constraints 𝛩 including deterministic
constraints (20a)–(20d) and (20r). Here we consider the complicated
spatial–temporal correlations among uncertain renewable energy 𝜉𝑗,𝑡 at
different nodes and periods, i.e. correlations over nodes 𝑗 ∈  and
time periods 𝑡 ∈  , but not assume they are i.i.d..

The objective (19) is the sum of a linear function at the reference
output under nominal state and a linear function to denote the incre-
mental operation cost under renewable energy uncertainties. Therefore,
we separate it from the deterministic term

𝒄⊤0,1𝒙 ∶=
∑

𝑡∈

[

∑

𝑖∈

𝑐𝑀𝑇 𝑃𝑀𝑇
𝑖,𝑡

𝜌𝐿𝐻𝑉 𝜂𝑀𝑇
𝑖

+
∑

𝑖∈
𝑐𝑂

(

𝑃𝐶
𝑖,𝑡 + 𝑃𝐷

𝑖,𝑡

)

+
∑

𝑖∈ 
𝑐𝑂

(

𝐻̂𝐶
𝑖,𝑡 + 𝐻̂𝐷

𝑖,𝑡

)

+ 𝑐𝐵𝑡 𝑃
𝐵
𝑡 − 𝑐𝑆𝑡 𝑃

𝑆
𝑡

]

, (22)

nd the worse-case term

⊤
0,2Λ𝑪0𝝃 ∶=

∑

𝑡∈

{[

∑

𝑖∈
𝑐𝑂

(

𝛼𝐵𝑆𝐶𝑖,𝑡 − 𝛼𝐵𝑆𝐷𝑖,𝑡

)

(23)

+
∑

𝑖∈ 
𝑐𝑂

(

𝛼𝑇𝑆𝐶𝑖,𝑡 + 𝛼𝑇𝑆𝐷𝑖,𝑡

)

−
∑

𝑖∈

𝑐𝑀𝑇 𝛼𝑀𝑇
𝑖,𝑡

𝜌𝐿𝐻𝑉 𝜂𝑀𝑇
𝑖

]

×
∑

𝑗∈
𝜉𝑃𝑗,𝑡

}

or facilitating further reformulation. Here, coefficients 𝑪0 have ele-
ents either 0 or 1. Chance constraints (21b) represent (20e)–(20q),
here 𝑪𝓁(⋅) and 𝒄𝓁(⋅) for all 𝓁 ∈ Z13

1 denote a linear matrix and vector
perator of Λ and 𝒙, respectively.

.1. Wasserstein-metric-based ambiguity set

efinition 1 (Wasserstein Metric). For two distributions P𝑎 and P𝑏
n R𝑛, the type-1 Wasserstein distance is defined by

(P𝑎,P𝑏) = min
𝛹

{

∫R𝑛×R𝑛
‖𝝌𝑎 − 𝝌𝑏‖1 𝛹 (𝑑𝝃𝑎, 𝑑𝝃𝑏)

}

,

here 𝛹 is a joint distribution on R𝑛 × R𝑛 with marginals P𝑎 and P𝑏.

The Wasserstein metric between P𝑎 and P𝑏 can be viewed as the
ost of an optimal mass transportation plan 𝛱 that minimizes the cost
f moving P𝑎 to P𝑏 with ‖𝝌𝑎−𝝌𝑏‖1 the cost of moving a unit mass from

𝑎 to 𝝌𝑏.
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It is assumed that a finite number of samples 𝛯 = {𝝃̂1,… , 𝝃̂𝑁} ⊆ 𝛺
can be drawn independently from the unknown distribution P of 𝝃.
Accordingly, we can denote the ambiguity set based on Definition 1

 ∶=
{

P ∈ (𝛺) ∶W(P, P̂) ≤ 𝜃
}

(24)

here (𝛺) is the set of all probability distributions on 𝛺 and the radius
> 0. For the power system operator, the radius 𝜃 is a tuning parameter

o adjust the risk attitude.

.2. Reformulation of objective function

Without loss of generality, this paper considers the uncertainty 𝝃
upported by a polytope 𝛺 = {𝝃 ∶ 𝑳𝝃 ≤ 𝒍}. According to [25,
orollary 5.1], the worst-case expectation term maxP∈EP

[

𝒄⊤0,2Λ𝑪0𝝃
]

s equivalent to the conic program

min
𝑜 ,𝜷𝑜 ,𝜸𝑜

𝜅𝑜𝜃 + 1
𝑁

𝟏⊤𝑁𝜷𝑜 (25a)

s.t. 𝒄⊤0,2Λ𝑪0𝝃̂𝑖 + 𝝉𝑜𝑖
⊤(𝒍 −𝑳𝝃̂𝑖) ≤ 𝛽𝑜𝑖 , 𝑖 ∈ Z𝑁

1 (25b)
‖

‖

‖

𝑳⊤𝝉𝑜𝑖 + 𝐂⊤
0Λ

⊤𝒄0,2
‖

‖

‖∞
≤ 𝜅𝑜, 𝑖 ∈ Z𝑁

1 (25c)

𝜅𝑜 ≥ 0, 𝜸𝑜𝑖 ≥ 0, 𝑖 ∈ Z𝑁
1 (25d)

or a given radius 𝜃 > 0. As the Wasserstein metric defined by
efinition 1 uses the 𝓁1-norm, Problem (25) is a linear program by

ewriting (25c) element-wise [29].
In practice, if there is no prior knowledge about the polytopic

upport, as discussed in [30], one can simply choose 𝛺 = R𝑛𝑐 ⋅𝑇 such
hat (25) is reduced to

min
𝑜 ,𝜷𝑜 ,𝜸𝑜

𝜅𝑜𝜃 + 1
𝑁

𝟏⊤𝑁𝜷𝑜 s.t.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝒄⊤0,2Λ𝑪0𝝃̂𝑖 ≤ 𝛽𝑜𝑖 ,𝑖 ∈ Z𝑁
1 ,

‖

‖

‖

𝐂⊤
0Λ

⊤𝒄0,2
‖

‖

‖∞
≤ 𝜅𝑜,𝑖 ∈ Z𝑁

1 ,

𝜅𝑜 ≥ 0, 𝜸𝑜𝑖 ≥ 0, 𝑖 ∈ Z𝑁
1 .

3.3. OCA for joint chance constraints

In order to transfer the joint chance constraints approximately into a
tractable form, we omit the index in (21b) for notational simplification
in the following discussion, i.e.,

𝛤 ∶=
{

(𝒙,Λ) ∶ min
P∈

P [𝑪(Λ)𝝃 ≤ 𝒄(𝒙)] ≥ 1 − 𝜖
}

(26a)

=
{

(𝒙,Λ) ∶ min
P∈

P
[

𝑪𝑘(Λ)𝝃 ≤ 𝒄𝑘(𝒙), 𝑘 ∈ Z𝐾
1
]

≥ 1 − 𝜖
}

(26b)

with 𝑪𝑘 and 𝒄𝑘 the 𝑘th row of 𝑪 and 𝒄, respectively. The classical
method to reformulate (26) based on the ambiguity set (24) first utilizes
Bonferroni’s inequality to transfer it into individual chance constraints,
i.e.,

𝛤B ∶=
{

(𝒙,Λ) ∶ min
P∈

P
[

𝑪𝑘(Λ)𝝃 ≤ 𝒄𝑘(𝒙)
]

≥ 1 − 𝜖𝑘, 𝑘 ∈ Z𝐾
1

}

and then, conservatively approximate the individual chance constraints
above by the worst-case CVaR constraints.

𝛤BC ∶=
{

(𝒙,Λ) ∶ max
P∈

P-CVaR𝜖𝑘
[

𝑪𝑘(Λ)𝝃 − 𝒄𝑘(𝒙)
]

≤ 0, 𝑘 ∈ Z𝐾
1

}

Here, the definition of P-CVaR𝜖𝑘 follows (1). One can show the
inclusion 𝛤 ⊆ 𝛤B ⊆ 𝛤BC as discussed in [31]. Moreover, [32, Corollary
2] shows that if we choose 𝜖𝑘 ≤ 𝑁−1 for all 𝑘 ∈ Z𝐾

1 , we can have
𝛤BC = 𝛤B. This implies that 𝛤BC constitutes the best convex inner
approximation of 𝛤B.

However, the choice of 𝜖𝑘 greatly affects the performance of BA.
The standard way for BA is to set 𝜖𝑘 = 𝜖∕𝐾, which is overly conserva-
tive [33]. An open question related to BA is how to choose 𝜖𝑘. It would
6

be attractive to treat 𝜖𝑘 as decision variables (subject to 𝜖𝑘 > 0 and a
∑

𝑘 𝜖𝑘 ≤ 𝜖). Unfortunately, such an attempt destroys the convexity and
thus, makes the approximation intractable. Recent works [21,34] treat
𝜖𝑘 as decision variables and develop the optimized BA (OBA) algorithm
for moment-based DRJCC problem. However, it is of huge challenge to
incorporate OBA to the metric-based DRJCC model [21].

Moreover, the classical Bonferroni’s inequality approximation is
insufficient when the sets of violations of renewable energy scenarios
for different individual chance constraints in 𝛤B have significant over-
lap [35]. Therefore, we present the OCA formulation that provides an
intuitive dual interpretation and is provably tighter than the BA.

The main idea of OCA is first to equivalently reformulate (26) as a
distributionally individual chance constraint

min
P∈

[

max
𝑘∈Z𝐾

1

{

𝛿𝑘
[

𝑪𝑘(𝛬)𝝃 ≤ 𝒄𝑘(𝒙)
]}

≤ 0

]

≥ 1 − 𝜖 (27)

for any 𝜹 = [𝛿1,… , 𝛿𝐾 ]⊤ ∈ 𝛱++ ∶=
{

𝜹 ∈ R𝐾
++ ∶ 𝟏⊤𝐾𝜹 = 1

}

. Here, set 𝛱++

denotes the relative interior of the probability simplex. Then, directly
applying the CVaR approximation for (27) yields

𝛤C(𝛿) ∶=

{

(𝒙,Λ) ∶ max
P∈

P-CVaR𝜖

[

max
𝑘∈Z𝐾

1

{

𝛿𝑘
[

𝑪𝑘(𝛬)𝝃 − 𝒄𝑘(𝒙)
]}

]

≤ 0

}

.

One can show the inclusion 𝛤C(𝛿) ⊆ 𝛤 for all 𝜹 ∈ 𝛱++ as discussed
in [33, Section 4.2]. Moreover, the approximation 𝛤C(𝜹) becomes essen-
tially exact when the scaling parameters 𝜹 are chosen optimally and the
worst-case CVaR constraints can be evaluated efficiently if the scaling
parameters are kept constant [36].

Based on the definition of P-CVaR given by (1), [30, Proposition 2]
shows that the left-hand side of CVaR approximation 𝛤C(𝛿) for a given
𝛿 ∈ 𝛱++ coincides with the optimal value of the following conic
program

min
𝜅𝑐 ,𝜎𝑐 ,𝜷𝑐 ,𝜸𝑐

𝜅𝑐𝜃 + 1
𝑁

𝟏⊤𝑁𝜷𝑐 (28a)

s.t. 𝜎𝑐 ≤ 𝛽𝑐𝑖 , 𝜸
𝑐
𝑖,𝑘 ≥ 0, 𝑖 ∈ Z𝑁

1 , 𝑘 ∈ Z𝐾
1 , (28b)

𝛿𝑘
[

𝑪𝑘(Λ)𝝃̂𝑖 − 𝒄𝑘(𝒙)
]

+ (𝜖 − 1)𝜎𝑐

+ 𝜖(𝒍 −𝑳𝝃̂𝑖)⊤𝜸𝑐𝑖,𝑘 ≤ 𝜖𝛽𝑖, 𝑖 ∈ Z𝑁
1 , 𝑘 ∈ Z𝐾

1 , (28c)
‖

‖

‖

𝜖𝜸𝑐𝑖,𝑘𝑳 − 𝛿𝑘𝑪𝑘(Λ)‖‖
‖∞

≤ 𝜖𝜅𝑐 , 𝑖 ∈ Z𝑁
1 , 𝑘 ∈ Z𝐾

1 . (28d)

Similar to the reformulation of the objective function, we can
ewrite the infinity norm in (28d) element-wise such that (28) becomes
linear program.

.4. Sequential convex algorithm for OCA

Let us recap the original problem (21). We denote the number of
nequalities in the 𝓁th chance constraint by 𝐾𝓁 and define 𝛱++

𝓁 as the
ssociated relative interior of the 𝐾𝓁-dimensional probability simplex.
oreover, for any 𝜹𝓁 ∈ 𝛱++

𝓁 , the discussion in Section 3.3 implies that

(∆) ∶= min
(𝒙,Λ)∈𝛩

𝒄⊤0,1𝒙 + max
P∈

EP

[

𝒄⊤0,2Λ𝑪0𝝃
]

(29)

.t. max
P∈

P-CVaR𝜖

⎡

⎢

⎢

⎣

max
𝑘∈Z𝐾𝓁

1

{

𝛿𝑘𝓁
[

𝑪𝑘
𝓁(𝛬)𝝃 − 𝒄𝑘𝓁(𝒙)

]}

⎤

⎥

⎥

⎦

≤ 0, ∀𝓁

onstitutes a tractable problem and provides an upper bound on (21)
or a given ∆ = [𝜹⊤1 ,… , 𝜹⊤13]

⊤. Therefore, we can optimize over all
𝓁 ∈ 𝛱++

𝓁 to find the best bound 𝛷⋆, i.e,

⋆ = min
𝜟

𝛷(∆) s.t. 𝜹𝓁 ∈ 𝛱++
𝓁 , 𝓁 ∈ Z13

1 . (30)

Unfortunately, treating 𝛿𝑗 as additional decision variables makes
30) nonconvex. Therefore, the iterative algorithm proposed in [30,37]
s tailored to deal with it by sequentially optimizing (𝒙,Λ) and 𝜟 in

n alternating direction style. There are two main steps outlined in
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Algorithm 1 Sequential convex algorithm for OCA
Input: 𝜍 > 0, a sufficient large 𝜙 > 0, 𝜹𝓁 = 𝟏𝐾𝓁

∕𝐾𝓁 , 𝓁 ∈ Z13
1 .

epeat:

S1 Solve

𝜙+ = min
(𝒙,𝜦)∈𝛩,𝝂≥0

𝒄⊤0,1𝒙 + 𝜔𝟏⊤13𝝂 + max
P∈

EP

[

𝒄⊤0,2𝜦𝑪0𝝃
]

(31)

s.t. max
P∈

P-CVaR𝜖

⎡

⎢

⎢

⎣

max
𝑘∈Z𝐾𝓁

1

{

𝛿𝑘𝓁
[

𝑪𝑘
𝓁(𝛬)𝝃 − 𝒄𝑘𝓁(𝒙)

]}

⎤

⎥

⎥

⎦

≤ 𝜈𝓁 ,∀𝓁

by replacing the objective and the joint chance constraints
according to the tractable reformulation (25) and (28). If
|(𝜙+ − 𝜙)∕𝜙| < 𝜍 or the maximum number of iteration has been
executed, then stop and return the solution (𝒙,𝜦, 𝝂) of (31), else
go to Step 2.

S2 Update 𝜹+𝓁 for all 𝓁 ∈ Z13
1 by solving

min
𝜟

13
∑

𝓁=1
max
P∈

P-CVaR𝜖

⎡

⎢

⎢

⎣

max
𝑘∈Z𝐾𝓁

1

{

𝛿𝑘𝓁
[

𝑪𝑘
𝓁(𝛬)𝝃 − 𝒄𝑘𝓁(𝒙)

]}

⎤

⎥

⎥

⎦

s.t. 𝜹𝓁 ∈ 𝛱++
𝓁 , 𝓁 ∈ Z13

1 (32)

with substituting the objective by the tractable reformula-
tion (28). Then, return to Step 1.

Algorithm 1, Step 1 solving (31) with a fixed 𝜹, which is a relaxed
ersion of (29) while Step 2 updating 𝜹 based on the solution of (31).

In Algorithm 1, 𝜍 denotes a prescribed minimum relative improve-
ent during an iteration. Moreover, we introduce the auxiliary slack-
ess via 𝝂 ≥ 0 in Problem (31) and penalize it in the objective weighted
y 𝜔 > 0. They ensure feasibility in case of poor initialization of
caling parameters. If 𝜔 is chosen large enough, then the algorithm is

guaranteed to terminate at 𝝂 = 0, so the output is feasible w.r.t (29).

emark 1. The main idea is optimizing 𝜟 at each iteration to achieve
a desired improvement. This follows the fact that 𝜟 constitutes a vector
of scaling parameters, which can be tuned to optimize the quality of the
CVaR approximation. The sequence of objective values 𝜙 generated by
the algorithm is non-increasing and thus guaranteed to converge.

4. Numerical results

In this paper, an IEEE 33-bus distribution network is modified as
a MEMG, shown in Fig. 3. The network topology and power line
parameters were acquired from Matpower. The risk parameters 𝜖 of
all joint chance constraints is set to be 5%. For the sequential convex
optimization Algorithm 1, the maximum number of iterations is set to
10, the minimum relative improvement 𝜍 = 0.1. The proposed method
is tested in MATLAB R2021a on an Intel Core i7-8565U, 1.8 GHz, 8 GB
RAM PC using Gurobi 9.0.

The relative wind output data provided by the Australian Energy
Market Operator [38] is utilized to establish the data-driven metric-
based ambiguity set. Noted that the hourly wind power samples of
each WT are converted into a wind power curve over 24 h manu-
ally. The energy management is conducted for a 24 h horizon with
the time resolution as 1 h. The WT capacity, daily electricity load
profiles, multi-energy load profiles of each thermal group, and other
parameters for DERs are all made available online [39]. We select
𝑁 ∈ {25, 50, 100, 200} samples and 𝑆 = 1000 test samples 𝝃̂𝑁+𝑖,
𝑖 ≤ 𝑆 to illustrate the out-of-sample performance. Here, the out-
f-sample cost ̂𝐶 is estimated under the assumption that only the
ominal state decisions 𝒙̂ is executed and that the output adjustments
f DERs are determined by solving a deterministic operation model
7

without considering uncertainties. Moreover, drastic measures such as
load shedding and renewable energy curtailment must be included
in the deterministic operating model to ensure the feasibility of the
model. Here we take into account a penalty cost of 0.5 $/kWh for
load shedding and 0 $/kWh for renewable energy curtailment. The
out-of-sample constraint violation probability ̂𝑉 denotes the average
violations of 13 chance constraints (20e)–(20q), assessed by

̂𝑉 =
13
∑

𝓁=1

{

1
𝑆

𝑆
∑

𝑖=1
1𝛤 𝑐

𝓁
(𝝃̂𝑁+𝑖)

(𝒙̂, 𝜦̂)

}

with 𝛤 𝑐
𝓁 (𝝃) ∶=

{

(𝒙,𝜦) |
|

𝑪𝓁(Λ)𝝃 > 𝒄𝓁(𝒙)
}

.

Here, (𝒙̂, Λ̂) is the output of Algorithm 1.

4.1. Out-of-sample performance of BA and OCA for DRJCC model

4.1.1. Impact of wasserstein radius
Since the renewable energy output data is not necessarily being

drawn from any underlying distribution in an independent manner,
the guarantees to establish rigorous bounds [14,25] on the Wasserstein
distance are not necessarily applicable for the multi-period operation
problem of MEMG. As a result, we empirically evaluate the out-of-
sample performance of both BA and OCA for varying radii, averaged
over 20 independent simulation runs to increase statistical robustness.
The non-i.i.d. samples and test samples are selected intentionally from
historical data of different time windows. Taking the sample set 𝑁 =
100 as an example, an empirical study on ̂𝐶 and ̂𝑉 as a function of
radii 𝜃 is carried out, shown in Fig. 4. With the increasing of radius, ̂𝑉

tends to decrease while ̂𝐶 tends to increase. This is because a larger
Wasserstein ball results in higher robustness to sampling errors.

4.1.2. Impact of sample size
The out-of-sample cost ̂𝐶 under different sample sizes for both BA

and OCA is shown in Fig. 5. It is shown that ̂𝐶 is negatively correlated
with the sample size 𝑁 , that is, the larger the available samples, the
smaller the out-of-sample cost. Therefore, the conservatism of the pro-
posed DRJCC energy management model for MEMG is mitigated with
the increase of sample size. The reason is that when more historical data
is available, the more probabilistic information of the true probability
distribution about the uncertainty will be revealed.

From Figs. 4 and 5, we can see that the out-of-sample cost ̂𝐶 of the
BA is larger than the OCA for all radii, and there is a sharp increase in
the BA when the radius is close to 10−3. It can be concluded that the
solution obtained from the BA tends to be more conservative (with a
larger ̂𝐶 and a lower ̂𝑉 ) than the OCA when the radius 𝜃 is relatively
large. This is because that the choice of 𝜖𝑘 = 𝜖∕𝐾 for BA is overly
conservative. Moreover, a closer inspection reveals that when radius is
smaller than 10−2 (this critical radius is different for different sample
sets 𝑁), there is no significant change in the out-of-sample performance
for OCA. It means that there is a critical radius corresponding to a better
out-of-sample performance (with smaller ̂𝐶 and lower ̂𝑉 ) for OCA.
We can conclude that the out-of-sample performance of the proposed
DRJCC model can be improved by acknowledging the ambiguity for
sophisticated system operators. However, the optimal ex-ante selection
of this critical radius in the OCA formulation is not straightforward and
may require learning from experience, i.e., the past outcome of the
DRJCC model. Accordingly, we suggest that the decision-maker may
select a radius ranging from this critical radius that provides the best
out-of-sample performance to infinity, leading to similar decisions of
robust optimization.

In short, radius is a principled way to evaluate the trade-off between
the solution robustness and performance. In a robust formulation, it
can be cumbersome to directly adjust the multiple different bounds of
the uncertain parameters, while the radius in the metric-based DRJCC
model is a scalar parameter that can control the degree of distributional

robustness. For a larger radius, the joint chance constraints are required
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Fig. 3. IEEE 33-bus radial distribution network based MEMG.
Fig. 4. Out-of-sample performance under different radius (𝑁 = 100).

Fig. 5. Out-of-sample cost under different sample size.
8

Fig. 6. Electricity dispatch.

to be holded for a larger set of distributions. This is useful when the
number of samples available is small. The decision-maker can choose
a larger radius to improve the robustness of the solution to uncertain
parameters that have not yet been realized. When large amounts of his-
torical data are available, the empirical distribution tends to represent
uncertain parameters well, and the decision-maker can choose a smaller
radius to reduce operation cost.

4.2. Energy scheduling results

The energy scheduling results obtained from the metric-based DR-
JCC model using OCA with the radius 𝜃 = 10−2 and the sample size
𝑁 = 100 are illustrated in Figs. 6 and 7, as OCA outperforms BA. It
can be seen that due to the low electricity prices at 1–6 h and 13–16 h,
MEMG purchases more power from the upper-level grid to supply local
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Fig. 7. Heat and cooling energy dispatch.
Table 1
Adjustment factors of electricity facilities.

No. Time periods (h)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

𝛼𝑀𝑇

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0.26 0.50 0.51 0 0.47 0 0 0.41 0 0.07 0 0.60 0 0.06 0.21 0 0 0 0 0.33 0 0.60 0.57
3 0 0 0.14 0.09 0.20 0.14 0 0 0 0.09 0 0.08 0 0.63 0 0 0.09 0.34 0 0 0.28 0.08 0 0
4 0 0.21 0 0 0.50 0 0.30 0.14 0 0.52 0.53 0.53 0 0 0.54 0.39 0.51 0 0.32 0.34 0 0.52 0 0.05

𝛼𝐸𝐵 1 0 0 0.26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0.38 0 0.34 0 0.31 0.06 0 0.27 0 0.05 0 0.40 0 0.04 0.14 0 0 0 0 0.22 0 0.40 0.38
3 0 0.14 0 0.06 0.30 0 0.20 0 0.18 0.39 0.17 0.26 0 0.12 0.10 0 0.27 0.04 0.21 0 0 0.40 0 0

𝛼𝐸𝐶
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0.08 0 0 0.08 0 0.10 0 0 0.18 0.13 0 0.25 0.26 0.26 0.13 0.17 0 0.23 0.17 0 0 0

𝛼𝐵𝑆𝐶 1 0.37 0.01 0 0 0 0 0.44 0 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0.63 0.01 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝛼𝐵𝑆𝐷 1 0 0 0 0 0 0 0 0.52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0.24 0 0 0 0 0 0 0 0 0 0.45 0.47 0.43 0 0 0 0
power demand and generate heat and cooling energy via EBs and ECs.
Meanwhile, the extra electricity is used to charge the BSs, and the extra
heat is used to charge the TSs. When the load or electricity price is high,
BSs and TSs will discharge. Moreover, cooling energy is mainly supplied
by the ECs using electricity and supplemented by the ACs of CCHP
system. Clearly, the thermal energy is stored and released for several
times during the whole day to decouple the electric, heat, and cooling
outputs of DERs. We can conclude that through CCHP plants, EBs, BSs,
ECs, and TSs, multiple energies are coordinated and CCHP operation is
more flexible: when the electricity prices are low, EBs and ECs outputs
more to transfer power to heat or cooling energy; when the electricity
prices are high, thermal energy is mainly served by the CCHP plants
and TSs. In fact, the operation of MEMG is tightly coupled and the
proposed model achieves flexible coordination of different energies. For
simplicity, only the adjustment factors of electricity facilities MT, EB,
EC, and BS are demonstrated in Table 1. The sum of these adjustment
factors are all equal to 1 in all time periods, guaranteeing that the
renewable energy forecasting errors are fully mitigated.

4.3. Impact of risk parameters

Table 2 shows the total operation cost (in-sample cost) obtained
from the proposed metric-based DRJCC model using OCA with the same
9

Table 2
Comparison of different risk parameters for DRJCC using OCA.
𝜖 3% 5% 10% 15% 20%

Total operation cost ($) 6696 6482 6343 6247 6201

radius 𝜃 = 10−2 and the same sample size 𝑁 = 100 under different risk
parameters 𝜖. Since a larger 𝜖 will allow to tolerate some constraint
violation probability, the total operation cost will decrease. That is,
the choice of 𝜖 also has an impact on the solution conservatism. This
confirms that DRJCC model allows to reduce the total operation cost by
allowing constraint violation to some extent. This also implies that the
DRJCC model can find an optimal trade-off between the total operation
cost and operational risk. In fact, the system operators can reduce the
total operation cost by increasing 𝜖 as long as they can tolerate a
relatively high operational risk.

4.4. Comparison with SO, RO, & moment-based DRJCC model

To comprehensively assess the performance of the metric-based DR-
JCC model using OCA formulation, four different models are compared.
The first is the proposed model with radius 𝜃 = 10−2 and the sample

size 𝑁 = 100. The second is an ULDR-based adjustable RO model,
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Table 3
Comparisons of different optimization models.

Model Total operation cost ($) Out-of-sample performance

̂𝐶 ($) ̂𝑉

Metric-based DRJCC 6482 6396 1.9%
Moment-based DRJCC 6772 6765 1.1%
ULDR-based adjustable RO 6961 6902 0
Scenario-based SO 5849 6028 7.4%

which requires the security constraints satisfied in a box uncertainty
set obtained by the largest samples 𝑁 = 200. The third is the scenario-
based SO model, which minimizes the expectation operation cost under
the largest samples 𝑁 = 200. The fourth is the moment-based DRJCC

odel formulating as a second-order cone program P1 in [21], whose
mbiguity set is constructed with the sample mean and covariance
btained by the largest samples 𝑁 = 200.

The total operation cost (in-sample cost) and the out-of-sample
erformance is compared in Table 3. It can be seen that the ̂𝑉 in
O, moment DRJCC, and metric DRJCC models are all lower then the
equired constraint violation probability 5% since these three models
re quite robust. However, the ̂𝑉 in SO model is 7.4%, which cannot
uarantee the required constraint violation probability. This is because
he SO model is solved under a series of scenarios, and thus, some
xtreme scenarios could inevitably be neglected. The total operation
ost of moment and metric DRJCC models are smaller than RO model
hile larger than SO model. In contrast to RO, metric DRJCC offers a

isk-aware framework that provides performance guarantees when the
istribution of uncertainty is not perfectly known. In metric DRJCC,
ystem operator may view the radius 𝜃 as a tuning parameter to impose
is risk attitude by varying the size of ambiguity set. It can also be
een as a proxy representing the confidence level of the operator to his
nowledge about the underlying uncertainty. Under two extreme cases,
.e., the smallest ambiguity set containing a unique distribution and
he largest one containing all potential distributions, the outcomes of
etric DRJCC will be similar to those in a SO model and in a RO model,

espectively. The choice for the size of ambiguity set between those two
xtreme cases enables the system operator to take a risk attitude in
etween. Metric DRJCC generally outperforms SO and RO due to their
nherent shortcomings. On the one hand, scenario-based SO provides
oor out-of-sample performance unless the number of scenarios is very
igh, which in turn, increases the computational burden. On the other
and, RO provides a conservative solution for a given uncertainty set. It
s also challenging to describe all potential distributions using a single
ncertainty set.

It can also be seen that the solution obtained by the moment
RJCC model is more conservative than the metric DRJCC model.
his is because the first two moments are adopted to establish the
mbiguity set in the moment DRJCC model. Once the moment infor-
ation is determined, the ambiguity set in moment-based model is

ixed and the solution conservativeness is determined. However, the
roposed metric-based DRJCC energy management model for MEMG
an flexibly balance the system economic and constraint reliability.
or metric-based DRJCC, the more statistical data are available, the
ore trustworthy and smaller the ambiguity set is, which generates less

onservative solution.

.5. Scalability of Algorithm 1 with Respect to the Number of Constraints

In order to assess the impact of the number of constraints in each
oint chance constraint, we test different scheduling time periods with
4 h, 18 h, 12 h, and 6 h under fixing the radius 𝜃 = 10−2 and sample
ize 𝑁 = 100. For simplicity, the adopted 18 h, 12 h, and 6 h data
s part of the 24 h data. As the results shown in Table 4, the tailored
equential convex algorithm 1 for OCA formulation usually terminates
fter 3 iterations, which verifies its fast convergence in practice. And
10
Table 4
Comparisons for different scheduling time periods of OCA-based DRJCC Model.

Time periods Out-of-sample performance Iterations Solution time (s)

̂𝑉 ̂𝐶 ($)

24 h 1.9% 6396 3 1416
18 h 1.9% 4702 3 657
12 h 1.9% 3039 3 61
6 h 1.7% 1408 3 21

the longest solution time of 24 h scheduling time periods is less
than 0.5 h, which is acceptable for a day-ahead energy management
problem. Therefore, the proposed OCA formulation and its associated
solution algorithm 1 is scalable and the effectiveness is not affected by
the number of constraints in each joint chance constraint.

5. Conclusions

This paper proposes a data-driven Wasserstein metric-based DR-
JCC energy management model for MEMG to account for compli-
cated spatial–temporal correlations among uncertain renewable energy.
Various flexible resources in different energy sectors is utilized for
uncertainty mitigation. Then, a ULDR model is adopted to facilitate
further reformulation of joint chance constraints. Based on a tailored
sequential convex algorithm, an OCA formulation for joint chance
constraints is proposed to make the data-driven DRJCC model tractable.
Numerical results illustrate that the OCA formulation for joint chance
constraints is less conservative than the standard BA algorithm. The
tailored sequential convex algorithm for solving OCA can achieve high
computational efficiency. Moreover, a critical Wasserstein radius exists
corresponding to a better out-of-sample performance (with smaller
out-of-sample cost and lower constraint violation probability) for the
DRJCC energy management model. This illustrates that the out-of-
sample performance can be improved by acknowledging the ambiguity
for sophisticated system operators.

Future works can be investigated in the following directions. First,
extending the proposed model to the nonlinear AC-OPF problem with
joint chance constraints is an interesting topic. Second, exploring the
OBA formulation for metric-based DRJCC problem is a valuable direc-
tion. Then, OBA and OCA can be compared in terms of out-of-sample
performance to verify their superiority in joint chance-constrained
modeling.

CRediT authorship contribution statement

Junyi Zhai: Conceptualization, Software, Investigation, Data cura-
tion, Funding acquisition, Writing – original draft. Sheng Wang: Data
uration, Writing – original draft. Lei Guo: Formal analysis, Writing

– review & editing. Yuning Jiang: Methodology, Validation, Writing –
review & editing, Writing – original draft. Zhongjian Kang: Validation,
Supervision. Colin N. Jones: Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.



Applied Energy 326 (2022) 119939J. Zhai et al.
References

[1] Lu S, Gu W, Meng K, Dong Z. Economic dispatch of integrated energy sys-
tems with robust thermal comfort management. IEEE Trans Sustain Energy
2021;12(1):222–33.

[2] Li Z, Yan X. Optimal coordinated energy dispatch of a multi-energy mi-
crogrid in grid-connected and islanded modes - sciencedirect. Appl Energy
2018;210:974–86.

[3] Li Z, Xu Y. Temporally-coordinated optimal operation of a multi-energy
microgrid under diverse uncertainties. Appl Energy 2019;240.

[4] Li Z, Xu Y, Feng X, Wu Q. Optimal stochastic deployment of heteroge-
neous energy storage in a residential multienergy microgrid with demand-side
management. IEEE Trans Ind Inf 2021;17(2):991–1004.

[5] Zidan A, Gabbar H, Eldessouky A. Optimal planning of combined heat and power
systems within microgrids. Energy 2015;93:235–44.

[6] Yang D, Jiang C, Cai G, Yang D, Liu X. Interval method based optimal planning of
multi-energy microgrid with uncertain renewable generation and demand. Appl
Energy 2020;277:115491.

[7] Zhang C, Xu Y, Li Z, Dong ZY. Robustly coordinated operation of a multi-
energy microgrid with flexible electric and thermal loads. IEEE Trans Smart Grid
2019;10(3):2765–75.

[8] Zhang C, Xu Y, Dong ZY. Robustly coordinated operation of a multi-energy
micro-grid in grid-connected and islanded modes under uncertainties. IEEE Trans
Sustain Energy 2020;11(2):640–51.

[9] Zhou Y, Shahidehpour M, Wei Z, Li Z, Sun G, Chen S. Distributionally robust
unit commitment in coordinated electricity and district heating networks. IEEE
Trans Power Syst 2020;35(3):2155–66.

[10] Zhai J, Zhou M, Li J, Zhang X, Li G, Ni C, Zhang W. Hierarchical and robust
scheduling approach for vsc-mtdc meshed ac/dc grid with high share of wind
power. IEEE Trans Power Syst 2021;36(1):793–805.

[11] Zhai J, Jiang Y, Li J, Jones C, Zhang XP. Distributed adjustable robust optimal
power-gas flow considering wind power uncertainty. Int J Electr Power Energy
Syst 2022;139.

[12] Yz A, Wei LA, Zh A, Feng ZA, Jian LB, Shu ZB. Distributionally robust
coordination optimization scheduling for electricity-gas-transportation coupled
system considering multiple uncertainties. Renew Energy 2021;163:2037–52.

[13] Ji R, Lejeune MA. Data-driven distributionally robust chance-constrained
optimization with wasserstein metric. J Global Optim 2021;79(4):779–811.

[14] Yao L, Wang X, Li Y, Duan C, Wu X. Distributionally robust chance-constrained
ac-opf for integrating wind energy through multi-terminal vsc-hvdc. IEEE Trans
Sustain Energy 2020;11(3):1414–26.

[15] Zhu R, Wei H, Bai X. Wasserstein metric based distributionally ro-
bust approximate framework for unit commitment. IEEE Trans Power Syst
2019;34(4):2991–3001.

[16] Saberi H, Zhang C, Dong ZY. Data-driven distributionally robust hierar-
chical coordination for home energy management. IEEE Trans Smart Grid
2021;12(5):4090–101.

[17] Zhou Y, Shahidehpour M, Wei Z, Li Z, Sun G, Chen S. Distributionally robust
co-optimization of energy and reserve for combined distribution networks of
power and district heating. IEEE Trans Power Syst 2020;35(3):2388–98.

[18] Zhai J, Jiang Y, Shi Y, Jones CN, Zhang XP. Distributionally robust joint
chance-constrained dispatch for integrated transmission-distribution systems via
distributed optimization. IEEE Trans Smart Grid 2022;13(3):2132–47.
11
[19] Ordoudis C, Nguyen VA, Kuhn D, Pinson P. Energy and reserve dispatch with
distributionally robust joint chance constraints. Oper Res Lett 2021.

[20] Peña-Ordieres A, Molzahn DK, Roald LA, Wächter A. Dc optimal power flow
with joint chance constraints. IEEE Trans Power Syst 2021;36(1):147–58.

[21] Yang L, Xu Y, Sun H, Wu W. Tractable convex approximations for distributionally
robust joint chance constrained optimal power flow under uncertainties. IEEE
Trans Power Syst 2021;1.

[22] Chen W, Sim M, Sun J, Teo CP. From cvar to uncertainty set: Implications in
joint chance-constrained optimization. Oper Res 2010;58(2):470–85.

[23] Xie W, Ahmed S, Jiang R. Optimized bonferroni approximations of
distributionally robust joint chance constraints. 2017.

[24] Poolla BK, Hota AR, Bolognani S, Callaway DS, Cherukuri A. Wasserstein
distributionally robust look-ahead economic dispatch. IEEE Trans Power Syst
2021;36(3):2010–22.

[25] Mohajerin Esfahani P, Kuhn D. Data-driven distributionally robust optimiza-
tion using the Wasserstein metric: Performance guarantees and tractable
reformulations. Math Program 2018;171(1):115–66.

[26] Kuhn D, Wiesemann W, Georghiou A. Primal and dual linear decision rules in
stochastic and robust optimization. Math Program 2011;130(1):177–209.

[27] Arrigo A, Ordoudis C, Kazempour J, De Grève Z, Toubeau JF, Vallée F.
Wasserstein distributionally robust chance-constrained optimization for energy
and reserve dispatch: An exact and physically-bounded formulation. European J
Oper Res 2022;296(1):304–22.

[28] Li Z, Xu Y, Fang S, Zheng X, Feng X. Robust coordination of a hybrid ac/dc
multi-energy ship microgrid with flexible voyage and thermal loads. IEEE Trans
Smart Grid 2020;11(4):2782–93.

[29] Boyd S, Vandenberghe L. Convex optimization. Cambridge University Press;
2004.

[30] Ordoudis C, Pinson P, Morales JM. An integrated market for electricity
and natural gas systems with stochastic power producers. Eur J Oper Res
2019;272(2):642–54.

[31] Shapiro A, Dentcheva D, Ruszczyński A. Lectures on stochastic programming.
Society for Industrial and Applied Mathematics; 2009.

[32] Zhi G, Kuhn D, Wiesemann W. Data-driven chance constrained optimization
under wasserstein ambiguity sets. 2018, arXiv preprint arXiv:1809.00210v1.

[33] Nemirovski A, Shapiro A. Convex approximations of chance constrained
programs. SIAM J Optim 2007;17(4):969–96.

[34] Xie W, Ahmed S, Jiang R. Optimized bonferroni approximations of
distributionally robust joint chance constraints. Math Program 2019;1–34.

[35] Chen W, Sim M, Sun J, Teo CP. From CVaR to uncertainty set: Implications in
joint chance-constrained optimization. Oper Res 2010;58(2):470–85.

[36] Chen Z, Kuhn D, Wiesemann W. Data-driven chance constrained programs over
wasserstein balls, optimization online. 2018.

[37] Zymler S, Kuhn D, Rustem B. Distributionally robust joint chance constraints
with second-order moment information. Math Program 2013;137(1–2):167–98.

[38] Dowell J, Pinson P. Very-short-term probabilistic wind power forecasts by sparse
vector autoregression. IEEE Trans Smart Grid 2016;7(2):763–70.

[39] https://github.com/JunyiZhai1990/MEMG.

http://refhub.elsevier.com/S0306-2619(22)01196-5/sb1
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb1
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb1
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb1
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb1
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb2
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb2
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb2
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb2
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb2
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb3
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb3
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb3
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb4
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb4
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb4
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb4
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb4
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb5
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb5
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb5
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb6
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb6
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb6
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb6
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb6
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb7
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb7
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb7
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb7
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb7
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb8
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb8
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb8
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb8
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb8
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb9
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb9
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb9
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb9
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb9
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb10
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb10
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb10
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb10
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb10
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb11
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb11
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb11
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb11
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb11
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb12
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb12
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb12
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb12
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb12
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb13
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb13
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb13
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb14
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb14
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb14
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb14
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb14
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb15
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb15
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb15
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb15
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb15
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb16
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb16
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb16
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb16
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb16
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb17
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb17
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb17
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb17
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb17
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb18
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb18
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb18
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb18
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb18
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb19
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb19
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb19
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb20
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb20
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb20
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb21
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb21
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb21
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb21
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb21
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb22
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb22
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb22
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb23
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb23
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb23
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb24
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb24
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb24
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb24
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb24
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb25
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb25
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb25
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb25
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb25
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb26
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb26
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb26
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb27
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb27
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb27
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb27
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb27
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb27
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb27
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb28
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb28
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb28
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb28
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb28
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb29
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb29
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb29
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb30
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb30
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb30
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb30
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb30
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb31
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb31
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb31
http://arxiv.org/abs/1809.00210v1
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb33
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb33
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb33
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb34
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb34
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb34
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb35
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb35
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb35
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb36
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb36
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb36
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb37
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb37
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb37
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb38
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb38
http://refhub.elsevier.com/S0306-2619(22)01196-5/sb38
https://github.com/JunyiZhai1990/MEMG

	Data-driven distributionally robust joint chance-constrained energy management for multi-energy microgrid
	Introduction
	DRJCC energy management formulation
	System structure
	Unified linear decision rule for uncertain energy flow
	DRJCC energy management model

	Data-driven tractable reformulation 
	Wasserstein-metric-based ambiguity set
	Reformulation of objective function
	OCA for joint chance constraints
	Sequential convex algorithm for OCA

	Numerical results
	Out-of-sample performance of BA and OCA for DRJCC model
	Impact of wasserstein radius
	Impact of sample size

	Energy scheduling results
	Impact of risk parameters
	Comparison with SO, RO,  moment-based DRJCC model
	Scalability of Algorithm 1 with Respect to the Number of Constraints

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


