Files

Abstract

Multi-energy microgrid (MEMG) has the potential to improve the energy utilization efficiency. However, the uncertainty caused by distributed renewable energy resources brings an urgent need for multi-energy co -optimization to ensure secure operation. This paper focuses on the distributionally robust energy management problem for MEMG. Various flexible resources in different energy sectors are utilized for uncertainty mitigation, then, a data-driven Wasserstein distance-based distributionally robust joint chance-constrained (DRJCC) energy management model is proposed. To make the DRJCC model tractable, an optimized conditional value-at-risk (CVaR) approximation (OCA) formulation is proposed to transfer the joint chance-constrained model into a tractable form. Then, an iterative sequential convex optimization algorithm is tailored to reduce the solution conservatism by tuning OCA. Numerical result illustrates the effectiveness of the proposed model.

Details

Actions

Preview