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The vertebrate axis is segmented into repetitive structures, the vertebrae. In fish,

these segmented structures are thought to form from the paraxial mesoderm

and the adjacent notochord. Recent work revealed an autonomous patterning

mechanism in the zebrafish notochord, with inputs from the segmented

paraxial mesoderm. The notochord pattern is established in a sequential

manner, progressing from anterior to posterior. Building on this previous

work, here, we propose a reaction wavefront theory describing notochord

patterning in zebrafish. The pattern is generated by an activator–inhibitor

reaction–diffusion mechanism. Cues from the paraxial mesoderm are

introduced as a profile of inhibitor sinks. Reactions are turned on by a

wavefront that advances from anterior to posterior. We show that this

reaction wavefront ensures that a pattern is formed sequentially, in register

with the cues, despite the presence of fluctuations. We find that the velocity and

shape of the reaction wavefront can modulate the prevalence of defective

patterns. Normal patterning is supported in a wide range of sink profile

wavelengths, while a minimum sink strength is required for the pattern to

follow the cues. The theory predicts that distinct defect types occur for small or

large wavelengths. Thus, the reaction wavefront theory provides a possible

scenario for notochord patterning, with testable predictions that prompt future

experiments.
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1 Introduction

Biological pattern formation underlies the structure of tissues and organs that form

during embryonic development [1]. The formation of these structures results from an

interplay between gene expression patterns and cell movements [2–5]. In developing

tissues, cells regulate the expression of different genes and communicate with neighboring

cells by means of signals. Biochemical noise due to fluctuations in molecule number and

the stochastic nature of gene expression hamper the formation of patterns [6]. However,
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embryonic development is a very reproducible process. Thus, a

general question is how patterns form reliably despite the

presence of biochemical fluctuations.

The vertebrate body plan is organized around the vertebral

column, a structure of repetitive segments—the

vertebrae—running from the head to tail. An early pattern of

axial segments is laid out during somitogenesis. Somites form

from the paraxial mesoderm tissue on both sides of the embryo

midline. Somitogenesis occurs from anterior to posterior in a

rhythmic manner and is controlled by a molecular genetic

oscillator called the segmentation clock [7–11]. Later in

development, the bone-forming cells derived from the somites

are reorganized in a process termed re-segmentation, and this

pattern is eventually translated into an array of vertebrae [12].

In some vertebrates, such as amniotes, it is thought that the

segmented vertebral structure derives entirely from previously

established somites [13]. However, fish mutants that have an

impaired segmentation clock show normal formation of the

majority of their vertebral centra [14–16]. This suggests that,

at least in fish, normal somites are not required to determine the

structure of the vertebral centrum. Still, a mutant which has a

slower segmentation clock produces fewer vertebrae [17],

indicating that vertebral structure does receive information

from segmentation clock-derived somite segments.

Recently, it was shown that vertebral patterning is

concomitantly driven by the notochord in zebrafish [16]. The

notochord is an unsegmented cylinder formed bymesoderm cells

that lie along the anteroposterior axis of the embryo and is

flanked to both sides by somites (Figure 1A). In teleosts—fish

with bones—the notochord comprises a layer of epithelial sheath

cells, called chordoblasts, enveloping a column of large

vacuolated cells that provide mechanical support [18, 19].

New evidence indicates that there is an autonomous

patterning mechanism in the notochord that is influenced but

not determined by the pre-existing somite pattern in the adjacent

tissue [16].

Although the nature of the zebrafish notochord

patterning mechanism remains unknown, an autonomous

reaction–diffusion system with an activator and an inhibitor

operating in the notochord sheath cells has been proposed

[16]. The cues provided by the paraxial mesoderm pattern

were introduced as a distribution of inhibitor sinks. Starting

from an anteriorly localized perturbation, this theory proved

capable of producing an autonomous pattern, sequentially

adding notochord segments from anterior to posterior in

register with the cues. However, this theory did not explicitly

account for random perturbations and their effects on

patterning.

Here, we extend this previous theory, introducing a

wavefront that moves from anterior to posterior, turning on

reactions in its wake. Such reaction wavefront could have a

biological origin in a molecular maturation gradient invading

the notochord from the anterior. Introducing measures to

characterize defective patterns, we analyze the robustness of

the reaction wavefront theory upon random initial

perturbations and dynamic fluctuations. We explore how the

shape and velocity of the reaction wavefront modulate defect rate

and analyze the effects of fluctuations in the sink positions and

strength.

2 Theory

Here, we describe the notochord as a one-dimensional

system. To describe pattern formation in the notochord

sheath cells, we propose a reaction–diffusion system with an

activator U and an inhibitor V. As we do not know the molecular

components involved and their interactions, here, we follow [16]

and consider a generic FitzHugh–Nagumo model to describe

activator and inhibitor dynamics [20].

zU

zt
� DU

z2U

zx2
+ k1U − k3U

3 − k4V + k0 (1)
zV

zt
� DV

z2V

zx2
+ k5U − k6V − SV, (2)

where DU and DV are diffusion coefficients, and ki are reaction

rate constants. The effective variables U (x, t) and V (x, t) depend

on position x and time t and represent activity levels that could be

associated with actual physical concentrations through an

unknown non-linear mapping.

FIGURE 1
(A) Scheme showing the dorsal view of a portion of the
segmented notochord (green bands) extending from anterior (A)
to posterior (P). In the embryo, somites (gray squares) are located
on the left and right sides relative to the notochord. The sink
profile (light blue line) matches somite boundaries. (B) Interactions
between activator U, inhibitor V, and the inhibitor sinks S. Pointed
arrows indicate activation, and blunt-ended arrows indicate
inhibition. (C) Activator (green line) and inhibitor (red line) activities.
Inhibitor sinks profile (light blue line) of sink strength S0,
wavelength λ, steepness α, and width 2δS. (D) Reaction wavefront
profile f(x) of steepness β.

Frontiers in Physics frontiersin.org02

Fernández Arancibia et al. 10.3389/fphy.2022.933915

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.933915


Both species have positive linear terms for the activator

and negative linear terms for the inhibitor. There is a cubic

term for the activator that limits growth and enables

stabilization of steady states (Figure 1B). The effect of the

segmentation clock input is introduced as an additional

degradation term for the inhibitor, spatially modulated by

S = S(x) (Figures 1A–C). This spatial modulation takes the

form of an inhibitor sinks profile S(x) = S0s(x), where S0 is a

rate constant representing the sink strength and s(x) is a

dimensionless profile shape.

In order to reduce the number of parameters of the model, we

introduce an activity scale U0 and a timescale T0 and define new

dimensionless variables u, v, x′, and t′ that verify

U � U0u, V � U0v, x � L0x′, t � T0t′, (3)

where L0 is a fixed length that relates the notochord length with

the dimensionless system size. We can rewrite Eqs 1, 2 in terms of

the new variables. Dropping primes to simplify the notation and

setting the source term k0 = 0,

U0

T0

zu

zt
� DUU0

L2
0

z2u

zx2
+ k1U0u − k3U

3
0u

3 − k4U0v, (4)

U0

T0

zv

zt
� DVU0

L2
0

z2v

zx2
+ k5U0u − k6U0v − S0s x( )U0v. (5)

These two equations have units of activity over time, so we

multiply both by T0/U0 to render them dimensionless.

Regrouping parameters:

zu

zt
� DUT0

L2
0

z2u

zx2
+ k1T0 u − k3U

2
0

k1
u3 − k4

k1
v( ), (6)

zv

zt
� DVT0

L2
0

z2v

zx2
+ k1T0

k5
k1

u − k6
k1

v − S0
k1

s x( )v( ). (7)

Selecting a timescale and an activity scale through the relations

DUT0

L2
0

≡ 1 and
k3U

2
0

k1
≡ 1 (8)

and introducing definitions for the remaining dimensionless

groups

δ ≡
DV

DU
, γ ≡

k1L
2
0

DU
, κi ≡

ki
k1

s0 ≡
S0
k1
, (9)

we obtain

zu

zt
� z2u

zx2
+ γ u − u3 − κ4v( ), (10)

zv

zt
� δ

z2v

zx2
+ γ κ5u − κ6v − s0s x( )v( ). (11)

For the inhibitor sinks profile shape s(x), we choose a

combination of opposing tanh (. . .) functions that compose

localized peaks of steepness α = 100 and width 2δs = 0.1

separated by a wavelength λ:

s x( ) � 1
2
∑
i

−tanh α −xi + x − δs( )( )+(
tanh α −xi + x + δs( )( )).

(12)

A first sink is placed at λ/2, and positions xi of consecutive sinks

are determined by the wavelength λ (Figure 1C).

Starting from an anteriorly localized perturbation in

otherwise uniform, vanishing initial conditions, the theory

described so far is capable of producing an autonomous

pattern, sequentially adding notochord segments from anterior

to posterior in register with the cues [16]. However, it appears

unlikely that activity values for the activator and inhibitor are

perfectly uniform across the notochord. Random perturbations

to the initial activities may occur, for example, due to leaky

transcription causing stochastic bursts [21]. In the presence of

such random initial perturbations, the theory cannot account for

the observed sequential segmentation [16]. Moreover,

stochasticity in gene expression may introduce noise in the

dynamics of both the activator and the inhibitor [6, 22]. To

account for such dynamic fluctuations, we include a white noise

term

zu

zt
� z2u

zx2
+ γ u − u3 − κ4v( ) + σξu x, t( ), (13)

zv

zt
� δ

z2v

zx2
+ γ κ5u − κ6v − s0s x( )v( ) + σξv x, t( ), (14)

where ξu (x, t) and ξv (x, t) are Gaussian processes with zero mean

and uncorrelated in space, time, and between themselves, and σ

sets the noise strength.

Here, we extend this theory to restore sequential patterning

in the presence of noise in the initial condition and dynamics.

With the scaling that we chose in Eq. 8, all reaction rates are

weighted by the dimensionless parameter γ, which sets the

relative strength of reaction terms. By allowing γ to depend

on position and time, this dimensionless formulation permits a

spatiotemporal control of the balance between reaction rates and

diffusion. We use this feature to introduce a wavefront that

moves from anterior to posterior, turning reactions on in its

wake. Ahead of such wavefront, reactions are disabled and

cannot trigger spontaneous patterning from random

fluctuations. Behind the wavefront, reactions turn on and can

generate patterns. Thus, we implement a reaction wavefront in

the theory through the space and time dependence in

parameter γ:

zu

zt
� z2u

zx2
+ γ x, t( ) u − u3 − κ4v( ) + σξu x, t( ), (15)

zv

zt
� δ

z2v

zx2
+ γ x, t( ) κ5u − κ6v − s0s x( )v( ) + σξv x, t( ), (16)

where γ(x, t) is a wavefront of invariant shape

f x( ) � 1
2

1 − tanh β −X0 + x( )( )( ), (17)
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moving from anterior to posterior with a velocity ]. Thus,
γ(x, t) = γ0f (x − ]t), where γ0 is the relative strength of

reactions. The wavefront profile f(x) is a dimensionless

sigmoidal function that takes values between 0 and 1, with

front steepness β, and centered at X0 (Figure 1D).

Next, we solve partial differential equations using a custom

Python implementation of the Heun method [23]. Spatial

discretization length is Δx = 0.01, and time discretization is

Δt = 0.9Δx2/(2.103). Unless something else is specified, default

parameter values are given in Table 1.

Solutions to the reaction wavefront theory with random

initial conditions and noise can produce a segmented pattern

sequentially (Figure 2A). Without a reaction wavefront, random

perturbations are quickly amplified in the entire domain and

trigger non-sequential defective pattern formation (Figure 2B

and Supplementary Video S2). This suggests a possible test for

the wavefront scenario that could, in principle, be implemented

in an embryonic experiment. A small perturbation within the

posterior region of the domain representing the notochord dies

out in a reaction wavefront scenario (Figure 3A). In contrast, in

the absence of a reaction wavefront, such perturbation is

amplified and trigger segment formation occurs in both

directions, disrupting the sequential segmentation from

anterior to posterior and likely generating a defective pattern

(Figure 3B and Supplementary Video S3). Thus, introducing a

bead soaked in the activator within the posterior region of the

unsegmented notochord would provide a test for the wavefront

hypothesis. In the next section, we study how fluctuations induce

pattern formation defects in the reaction wavefront theory.

3 Noise and initial conditions

A normal pattern is here defined by a one-to-one

correspondence between sinks and activator peaks

(Figure 2A). When this correspondence is broken, we call

the pattern defective (Figure 2B). One source of defects is

local pattern inversions, where a trough occurs at a sink

position in place of a peak (Figure 4A). These pattern

inversions occur because solutions to the partial

differential Eqs. 15 and 16 have an inversion symmetry: if

(u, v) is a solution, then so is (−u, − v). Consequently, in the

presence of noise, the pattern may switch locally between

peaks and troughs at sink positions. Solutions and their

inverses are separated by an unstable vanishing solution

(0, 0). For initial conditions with a vanishing mean value

μ = 0, the resulting patterns often switch between the two

solutions. Thus, the value of μ may affect the formation of

normal patterns. We also expect that increasing noise

strength σ will interfere with the formation of normal

patterns. Thus, we first set to explore pattern robustness

when these parameters change, with the aim of

constructing quantitative maps that we can use to guide

further exploration of the theory (Figure 4).

Two types of pattern defects occur: 1) misplaced peaks are

not aligned with any inhibitor sink, and 2) unmatched sinks

do not have a matching activator peak (Figure 4A). In this

work, we have set a threshold distance between sinks and

peaks for segments to be classified as normal or defective.

When the distance between an activator peak and a sink is less

than 10% of the mean distance between sinks, we consider

this a match, and it is classified as a normal segment. Peaks

without a match are defined as misplaced peaks, and sinks

without a match are defined as unmatched sinks. The

frequencies of these two defect types provide measures for

the number of errors in the resulting pattern: fmp is the ratio

between the number of misplaced peaks and the total number

of peaks in the pattern, and fus is the ratio between the

number of unmatched sinks and the total number of sinks.

Both these measures take values between zero and one. We

assess the effects of noise and initial activities on individual

patterns by counting the occurrence of these defect types

(Figures 4B–G). The fraction of misplaced peaks fmp and

unmatched sinks fus increases with noise strength (Figures

4C,F). This means that individual patterns deteriorate

with increasing noise. However, defect frequencies fmp and

fus decrease with increasing initial activity μ (Figures 4D,G).

While fmp and fus characterize the frequency of defects in

individual patterns, we are also interested in quantifying

defective patterns at the population level. Thus, we

introduce the fraction of defective patterns fd as the ratio

between the number of realizations that contain at least one

defect to the total number of realizations. This fraction of

defective patterns increases with noise strength σ and

TABLE 1 Reaction wavefront theory dimensionless parameters:
default values and description.

Model parameters

Parameter Value Description

δ 100 Relative diffusion coefficient

γ0 1,000 Relative reactions strength

κ4 1 Reaction rate constant Eq. 15

κ5 10 Reaction rate constant Eq. 16

κ6 5 Reaction rate constant Eq. 16

μ 0.01 Mean initial activity of u and v

σ0 0.01 Initial standard deviation of u and v

σ 0.1 Noise strength

] 81.77 Wavefront velocity

β 5 Wavefront steepness

X0 0 Wavefront initial position

λ 0.57 Sink profile wavelength

Δλ 0 Sink position fluctuation amplitude

s0 80 Sink strength

Δs0 0 Sink strength fluctuation amplitude

Frontiers in Physics frontiersin.org04

Fernández Arancibia et al. 10.3389/fphy.2022.933915

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.933915


decreases with increasing initial activity μ (Figures 4H–J). We

observe that fd can become large while fmp and fus remain

relatively low (Figures 4B,E,H). In embryological terms, the

fraction of defective patterns is a measure of phenotype

penetrance at the population level, and the frequency of

defects in individual patterns provides a measure of

phenotype expressivity within individual embryos. While

these quantities should be related to some extent, this

relation is not straightforward since the occurrence of a

defect in a pattern might favor further defects.

In summary, these results show how increasing noise causes

more pattern defects and defective patterns. In contrast, shifting

the mean of the initial condition away from the boundary of the

unstable vanishing solution reduces defect prevalence (Figure 4).

In the following sections, we use these maps to choose values of σ

and μ to further explore other sources of noise and variability in

the theory.

4 Wavefront velocity and shape

In addition to dynamic activity fluctuations, the other novel

component in the theory is the reaction wavefront γ(x, t). This

reaction wavefront moves with velocity ], and its shape is

determined by the wavefront profile steepness β (Eq. 17 and

Figure 1D).

In the absence of noise and reaction wavefront, starting

from a small anterior perturbation with otherwise vanishing

initial conditions, a pattern forms sequentially, invading the

unpatterned region with a natural propagation velocity ]0
[16]. To determine the value of ]0, we set a threshold activity

value for the activator and determine the trajectory of the

posterior-most position where the pattern activity

exceeds this threshold. A linear fit of this

trajectory returns the value ]0 = 81.77 that we use to scale

velocities.

FIGURE 2
Reaction wavefront theory can produce a sequential pattern without defects in the presence of noise. Snapshots of solutions (A) of reaction
wavefront theory Eqs 15, 16, and (B) Eqs 13, 14 lacking a reaction wavefront. Activator (green line) and inhibitor (red line) dimensionless activities (left
axis scale) together with reaction wavefront γ(x, t) (purple line and shade, right axis scale) at different times. The bottom panel shows the inhibitor sink
profile (light blue line). Position is scaled by the dimensionless system size, L= 30λ= 17.1, which is chosen to accommodate 30 segments, similar
to the 31 segments in zebrafish [17, 24]. Time is expressed in frames and 1 frame ≈ 0.0004 time units. Random initial conditions have mean μ = 0.01
and standard deviation σ0 = 0.05. Other parameters are as in Table 1.
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We find that decreasing the reaction wavefront velocity

below ]/]0 = 1 can reduce the fraction of defective patterns

(Figure 5A). This indicates that retarding pattern propagation

may be favorable for normal pattern formation. Normal pattern

formation is also affected by the shape of the reaction wavefront

(Figure 5B). The fraction of defective patterns peaks around β =

2, decaying both above and below this value. However, for small

β, the wavefront profile becomes too gradual and sequential

pattern formation is lost, compromising a key role of the reaction

wavefront (Supplementary Video S5). Thus, a steeper reaction

wavefront would be beneficial for normal pattern formation.

In summary, both the velocity and shape of the reaction

wavefront critically affect the fraction of defective patterns. A

slower and steeper wavefront could have a dual role: 1)

allowing for sequential pattern formation and 2) rendering

patterning more robust in the presence of random

fluctuations.

5 Sink profile wavelength and
strength

The forming notochord segments should align with

previously formed somites in the adjacent tissue. It is thought

that the adjacent paraxial mesoderm provides signals that

influence notochord segment formation to be in register with

somites [16]. In the theory, paraxial mesoderm signals are

introduced as an inhibitor sinks profile s(x) with a

characteristic wavelength and strength s0 (Eq. 12). In the

following section, we explore how the reaction wavefront

theory responds to changes in this sinks profile. To decouple

defects due to dynamic noise while perturbing sink wavelength

and strength, we set parameters σ = 0.1 and μ = 0.01 with a very

low fraction of defective realizations fd ≈ 0.02 (Figure 4H).

Alterations to the segmentation clock can induce changes

in somite length, as in the case of hes6mutant [17]. Therefore,

FIGURE 3
A perturbation in the posterior region of the notochord vanishes in a reaction wavefront scenario. Snapshots of solutions (A) of reaction
wavefront theory Eqs 15, 16, and (B) Eqs 13, 14 with σ = 0, without a reaction wavefront. A perturbation is introduced in the activator at frame t = 75.
Color coding and plot layout are as in Figure 2. Initial conditions are (A) randomwithmean μ=0.01 and standard deviation σ0 = 0.05 and (B) vanishing
except for the anterior perturbation. Other parameters are as in Table 1. Time is expressed in frames and 1 frame ≈ 0.0004 time units.
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FIGURE 4
Effects of initial activity and noise in pattern formation. (A) Activator (green line), inhibitor (red line) patterns, and inhibitor sink profile (light blue
line) showingmisplaced peaks (blue triangles) and an unmatched sink (orange dot). (B) 〈fmp〉 for different values of μ and σ. (C) fmp vs. σ for fixed μ =
0.05. (D) fmp vs. μ for fixed σ = 0.7. (E)〈fus〉 for different values of μ and σ. (F)fus vs. σ for fixed μ = 0.05. (G)fus vs. μ for fixed σ = 0.7. (H) fd for different
values of μ and σ. (I) fd vs. σ for fixed μ = 0.05. (J) fd vs. μ for fixed σ = 0.7. (I and J) Errors in fd (dark cyan shade) are the standard deviation
determined using a statistical bootstrap. (C,D,F, and G) Middle line marks the median, box limits are 25 and 75 percentiles, and whiskers are 5 and
95 percentiles. Brackets 〈.〉 denote average over realizations. Other parameters are as in Table 1. In all cases, we performed 300 realizations for each
parameter combination.
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we next explore whether pattern formation can adapt to

different sink profile wavelengths. In the absence of a

wavefront and noise, Eqs 10, 11, and for a vanishing sink

profile s0 = 0, the unforced reaction–diffusion system selects a

natural wavelength λ0 = 0.398 that is determined by

parameters values (Supplementary Material). Thus, we

compute defect fractions for different sink profile

wavelengths λ, taking this natural wavelength as a

reference (Figure 6C). We find that for small profile

wavelengths, the predominant type of defect is unmatched

sinks (Figures 6A,C and Supplementary Video S6A). The

reason for this may be that the system often fails to produce

activator peaks at the short distances imposed by the sinks. In

contrast, for sufficiently large wavelengths, the predominant

type of defect is misplaced peaks (Figures 6B,C and

Supplementary Video S6B). Here the reason maybe that,

with enough space in between sinks, the system tries to

produce a segment of the shorter natural wavelength, so

activator peaks are often intercalated. For intermediate

profile wavelength values, we find a broad range where no

defects occur (Figure 6C). It is interesting that this defect-free

range is centered at λ/λ0 ≈ 1.4, which is away from the natural

wavelength λ0. This may result from a non-trivial interplay

between sinks and the unforced reaction–diffusion system,

which alters the patterning mode.

In addition to wavelength fluctuations, another possible

source of sink profile variability is the sink strength s0. To

characterize the effects of sink strength on pattern formation,

we first alter s0 uniformly across the axis. For large sink strength,

the fractions of defects are vanishing (Figures 6E,F). As the sink

strength is reduced, defect fractions abruptly grow to large values

(Figures 6D,F). When the sink strength is small, it may be

insufficient to entrain the formation of a segment at that

position. With this resolution, the onset of defects appears to

occur at a sink strength threshold s0 = 30.

Thus, segments form normally above a critical sink strength

and for a wide range of sink profile wavelengths. This tolerance

for different wavelengths is consistent with the hes6 mutant

phenotype. For short sink profile wavelengths, defects are

predominantly unmatched sinks, while for large wavelengths,

misplaced peaks dominate the defective patterns.

6 Sink profile fluctuations

So far, we have considered sink profiles with a fixed

wavelength, where sink positions are regularly spaced.

However, the segmentation clock that drives somite formation

is subject to fluctuations that may cause segment length

variability [16, 24, 25]. Thus, we next ask how the pattern

responds to local fluctuations in individual sink positions. To

introduce sink position fluctuations, we generate the sink profile

sequentially, placing sinks at perturbed positions a distance λ + δλ
from the previous sink. Here, δλ is a random variable uniformly

distributed in the interval ±Δλ, and Δλ controls the amplitude of

sink position fluctuations. We find that the reaction wavefront

theory is robust against small position fluctuations (Figure 7A).

Up to Δλ/λ = 0.25, we see a vanishing fraction of both defect

types, which then appear to grow gradually (Figures 7B and C).

Here, fluctuations in sink position are relative to a mean

wavelength λ = 0.57, so λ/λ0 ≈ 1.43 is close to the midpoint

of the defect-free region in Figure 6C. The defect-free region

spans a range that extends about 20% above and below this

midpoint, so fluctuations of up to 25% of the mean wavelength

are mostly included in the defect-free region of Figure 6C. Thus,

the observed onset of defects in Figure 7C may be due to the fact

that fluctuations of about 25% can cause consecutive sinks that

are either closer or further apart than the supported wavelengths

in the defect-free region.

In the embryo, the information provided by the paraxial

mesoderm could be variable along the segmenting axis. Thus, a

relevant question is how the reaction wavefront theory responds

to sink strength variability. We set individual sink strengths to s0
+ δs, where δs is a random variable uniformly distributed in the

interval ±Δs0, and Δs0 controls the amplitude of sink strength

fluctuations. The fraction of defects is vanishing or very small for

a wide range of the relative fluctuations amplitude Δs0/s0 (Figures
7D–F). For relatively large fluctuations Δs0/s0 = 1, the pattern can

correctly entrain to the sink profile even when individual sink

strength falls way below the critical threshold for uniform

profiles, asterisk in Figure 7E.

In summary, the system can buffer fluctuations in sink

position up to 25%. Stronger sink position fluctuations can

FIGURE 5
Reaction wavefront can modulate defect rates. Fraction of
defective patterns fd vs. (A) relative velocity ]/]0 and (B) steepness
β. Errors in fd (dark cyan shade) are the standard deviation
determined using a statistical bootstrap. Other parameters
are as in Table 1, except μ = 0.05 and σ = 0.7. In all cases, we
performed 300 realizations of each simulation.
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disturb the patterns inducing defects of both types.

Additionally, the median of defective fractions vanishes up

to a relative sink strength fluctuation Δs0/s0 = 0.85

(Figure 7F). With this value, sinks may be as weak as s0 =

12, which in uniform patterns generate large defect fractions

(Figure 6F). This indicates that nonuniform sink

profiles display a high tolerance for large sink strength

fluctuations.

7 Discussion

We presented a reaction wavefront theory describing

notochord pattern formation in zebrafish. Building on a one-

dimensional activator–inhibitor reaction–diffusion system

subject to external cues [16], we introduced a reaction

wavefront that travels from anterior to posterior and enables

reactions in its path. Although we do not know the nature of this

FIGURE 6
Sink profile wavelength and strength. Activator (green line) and inhibitor (red line) patterns together with the scaled sink profile (faint light blue
line) are shown for sink profiles of wavelength (A) λ/λ0 = 0.86 and (B) λ/λ0 = 2.086. Here, λ0 = 0.398 is the wavelength of the unforced pattern. Sink
profile (light blue line) is also shown separately in the top panels for clarity. (C) Fraction ofmisplaced peaks fmp (blue box plot) and unmatched sinks fus
(orange box plot) vs. relative sink profile wavelength λ/λ0. Activator and inhibitor patterns for sink profiles of strength (D) s0 = 10 and (E) s0 = 80.
Color coding and plot layout are as in panels (A and B). (F) Fraction of misplaced peaks fmp (blue box plot) and unmatched sinks fus (orange box plot)
vs. sink profile strength s0. Box plots in (C) and (F) are as in Figure 4. Other parameters are as in Table 1. In all cases, we performed 300 realizations for
each parameter combination.
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reaction wavefront, we can speculate that a maturation gradient

progressing posteriorly could trigger synthesis reactions. The

gradient progression could control the synthesis of an adaptor

molecule that binds DNA at the promoter of the activator and the

inhibitor, allowing binding and action of the activator.

Alternatively, the gradient could be an inhibitor of U and V

that is initially present across the notochord and then gradually

degraded as cells stop synthesizing it—or start degrading it

actively. Such mechanisms would make the activation terms

turn on when the maturation wavefront arrives at the cell. In

the context of our model, this could be described effectively by

parameters k1, k3, and k5 in Eqs 1and 2. In the dimensionless

FIGURE 7
Fluctuations in sink position and strength. Activator (green line) and inhibitor (red line) patterns together with the scaled sink profile (faint light
blue line) are shown for sink profiles with relative sink position fluctuation amplitudes (A) Δλ/λ=0.2 and (B) Δλ/λ=0.4.We choose ameanwavelength
λ=0.57, so λ/λ0 ≈ 1.43 is close to the center of the defect free region in Figure 6C. Sink profile (light blue line) is also shown separately in the top panels
for clarity. (C) Fraction of misplaced peaks fmp (blue box plot) and unmatched sinks fus (orange box plot) vs. relative sink position fluctuation
amplitudes Δλ/λ. Activator and inhibitor patterns for sink profiles with relative sink strength fluctuation amplitudes (D) Δs0/s0 = 0.1 and (E) Δs0/s0 = 1,
with mean sink strength s0 = 80. Color coding and plot layout are as in panels (A and B). (E) Asterisk marks a sink of strength s0 ≈ 15. (F) Fraction of
misplaced peaks fmp (blue box plot) and unmatched sinks fus (orange box plot) vs. relative sink strength fluctuation amplitude Δs0/s0. Box plots in (C)
and (F) are as in Figure 4. Other parameters are as in Table 1. In all cases, we performed 300 realizations for each parameter combination.
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theory, since γ ∝ k1, the wavefront γ(x, t) could be caused by a

posteriorly decreasing synthesis rate for the activator and other

coupled reactions.

First put forward by Turing [26] and later rediscovered by

Gierer and Meinhardt [27], reaction diffusion systems have been

applied to a variety of biological pattern formations [20]. Specific

molecular components and their interactions have been

proposed in some cases, such as for skin patterns in angelfish

[28] and zebrafish [29] and the primary hair follicle pattern

formation in the skin of vertebrates [30, 31], among other

examples [32]. While the conditions for pattern formation in

reaction–diffusion systems have been thought to be very

restrictive, recent efforts have shown that these conditions

may be relaxed in a wide range of cases. Along this line is a

proposal for a synthetic circuit architecture capable of patterning

with quenched oscillators that might be implemented in

synthetic multicellular systems or cell aggregates [33]. In

another study, the presence of a binding immobile substrate

was shown to relax the constraints on reaction kinetics for

diffusion-driven instability [34]. The need for constraints on

diffusion rates for Turing patterns was also challenged in a study

that used an automated framework to identify cell autonomous

features that allow for pattern formation [35]. More recently, the

plausibility of network motifs to give rise to reaction–diffusion

patterns was systematically surveyed by means of graph theory

[36]. Here, we have not chosen a specific network motif to

implement the cell autonomous component. Instead, we

choose a generic model to describe the dynamics, given that

we do not know the molecular components involved and their

interactions. It may be interesting future work to study howmore

specific networks respond to the presence of cues and a

wavefront.

In this article, we have considered a theory that can generate a

pattern from an unstable homogeneous state. Another possibility

could be a pushed front invading a stable homogeneous state that

is perturbed beyond unstable fixed points and is attracted by non-

vanishing stable fixed points [37, 38]. This can occur in the

context of an amplitude equation with a quintic term introducing

the possibility of a subcritical bifurcation. In our theory, the only

nonlinear term is the stabilizing cubic term in the activator

equation, so we expect that the amplitude equation will have

only up to third-order terms [39]. We expect that an additional

fifth-order term in the equation that contains the cubic

nonlinearity would cause a subcritical bifurcation and allow

patterning from a stable homogeneous state, without requiring

a wavefront. This could constitute an alternative scenario for the

notochord patterning, and it would be interesting to study how

this instability responds to an external input source providing the

cues for the segments.

In addition to the reaction wavefront, the theory accounts for

stochastic gene expression incorporating both noise in the initial

condition for the activities of the components and a dynamic

noise term in the differential equations. The theory describes the

sequential patterning of the notochord in register with cues, from

anterior to posterior, as observed in zebrafish [16], even in the

presence of noise (Figure 2). A perturbation in the posterior

region of the notochord should die out in the presence of a

reaction wavefront but grow and generate a non-sequential

defective pattern in its absence (Figure 3). Thus, the reaction

wavefront hypothesis could be tested by introducing a bead

soaked in the activator within the posterior notochord region.

In the embryo, the wild-type notochord segments are in

register with the previously patterned paraxial mesoderm: one

notochord segment is formed for each adjacent pair of somites.

Thus, in the theory, we hypothesize that cues from somite

boundaries instruct the notochord patterning mechanism,

taking the form of a sink profile for the inhibitor. A normal

pattern is defined by a one-to-one correspondence between

individual activator peaks and inhibitor sinks. Two types of

defects can occur in the theory: an inhibitor sink without a

corresponding peak and a peak that does not have a

corresponding inhibitor sink. Such defects may be amenable

to observation in the embryo since somite boundaries can be seen

as morphological landmarks with a bright field microscope or the

DMD transgenic line [40], and notochord segment precursors

can be revealed using a reporter for entpd5 [16].

In the dimensionless theory that we considered here, the sink

profile appears under the control of the wavefront γ(x, t) (see Eq.

16). However, note that if the spatiotemporal dependence of γ(x,

t) is given by k1 as we hypothesize above, the sink term would be

time-independent, since s0 = S0/k1 in the dimensionless theory

(Eq. 9). This could be made explicit by keeping the sink term out

of the wavefront in Eq. 7, by introducing an additional

dimensionless parameter ζ = T0S0 that is constant in time and

uniform in space, that is, not wavefront controlled.

Both wavefront velocity and steepness can modulate defect

rate (Figure 5). We observe an interesting non-monotonic

relation of the fraction of defective patterns with the

wavefront steepness, peaking at β = 2. However, below this

vale of β, the wavefront becomes very gradual, causing the

pattern to trigger ahead of the wavefront middle point, with

more than one activator peak forming simultaneously. We

speculate that this might allow the reaction system to read the

information of more than one sink in advance and accommodate

the activator peaks more reliably. We also observe that slower

wavefront velocities cause a decrease in the fraction of defective

patterns, suggesting that this could be beneficial for embryonic

patterning. A slower wavefront may allow the reaction system to

average out fluctuations introduced by the dynamic noise source,

and this may prevent defect formation. It is intriguing that while

zebrafish somitogenesis takes about 12 h, notochord patterning is

relatively much slower, taking about 3 weeks [16]. The theory

predicts that accelerating the wavefront in a wild-type context

may induce segment defects. A possible test of this prediction

could be to slow down the wavefront in an experimental

condition that is prone to making defects. Presumably,
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transcriptional noise levels would be increased in a heterozygous

mutant for a component of the notochord patterning system. In

this context, the notochord pattern would be expected to make

more defective segments, and we could ask whether a slower

wavefront can partially rescue the phenotype.

The hes6mutant has larger somite segments and still patterns

the notochord in register with these [17]. Consistent with this,

here, we find a broad range of sink profile wavelengths where no

defects occur (Figure 6C). Different defect types dominate for

large and small wavelengths. For sufficiently small wavelengths,

the system fails to produce peaks at such short distances, so it

often misses every other sink. For large wavelengths, the pattern

often intercalates a peak in between sinks. These characteristic

defective patterns could be tested experimentally in conditions

with altered somite lengths. Very small somites would cause

notochord defects that skip adjacent somite boundaries, while

large somites would cause misplaced notochord segments to

happen more often. The transient modulation of Fgf or Wnt

signaling during somitogenesis may provide a means to locally

induce the formation of a small number of somites with altered

length [41, 42], offering a way to test these predictions for

segment lengths outside the range observed in the known

segmentation clock period mutants.

We found an abrupt transition to defective patterns as a

function of sink strength (Figure 6F). To decouple defects due to

dynamic noise while perturbing sink strength, in this work, we

have chosen a low dynamic noise strength σ = 0.1. There may be

an interplay between sink strength and dynamic noise strength in

determining both the onset and shape of this transition. This

remains an interesting open question for future work.

Sink profile alterations may involve sink strength and

wavelength fluctuations. There is a minimum sink strength

required for the pattern to follow sink cues normally

(Figure 6). However, in a sink profile with fluctuating

strengths, sink strength values below the threshold do not

cause pattern defects as long as they are surrounded by

stronger sinks (Figure 7). Furthermore, fluctuations of up to

20% in the distance between sinks do not cause pattern defects

(Figure 7). This is important because, in the embryo, we can

expect some variability both in the intensity of cues provided by

somite boundaries and in the distances between them [25]. We

have not considered the changes to sink width and steepness, that

is, sink shape fluctuations, which may be an interesting topic for

future work.

The role of the notochord in vertebral column

development seems to differ in different species, such as

amniotes and teleosts [19]. The amniote notochord lacks

the layer of epithelial cells and is formed by vacuolated

cells only, surrounded by an extracellular matrix [43]. In

chicks, vertebrae are thought to derive entirely from somite

cells, while a cross-talk between somites and notochord

ensures that the notochord contribution to vertebral discs

is in register with vertebral bodies [43]. In teleosts, the inner

part of the vertebral bodies derives from notochord cells [13].

In particular, zebrafish notochord sheath cells are the initial

substrate for the vertebral bodies patterning and formation. A

sequential ring-like pattern of entpd5 expression is observed

in the notochord sheath cells as the first sign of vertebral

patterning [16]. In this work, we considered the notochord as

a one-dimensional tissue for simplicity. In future work, it

would be interesting to study ring pattern formation

considering the notochord as a cylindrical surface. This

geometry might support a richer variety of patterns, for

example, helical defects.

The notochord tissue has remarkable mechanical properties.

It is thought that the notochord serves as a hydrostatic scaffold

during embryonic development [44, 45]. The particular

structural configuration of the notochord, with the central

vacuolated cells and its enveloping sheath cells, provides it

with mechanical support as well as elasticity [18, 46].

Caveolae located in the vacuolated cells are essential for

notochord structural integrity [47]. The arrangement of

vacuolated cells is achieved by a self-organizing mechanical

process and has been realized in a physical notochord model

[48]. Here, we have considered a purely biochemical mechanism

of notochord patterning. An interesting question for future

enquiry is whether mechanical signaling has a role in

providing either the sink cues or some other aspect of the

patterning mechanism.

In summary, we have presented a possible scenario for an

autonomous notochord patterning mechanism. The reaction

wavefront theory is consistent with the observed

spatiotemporal pattern in the notochord. We expect that this

work will motivate future experimental designs to test the distinct

predictions from this theory.
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