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Hydraulic fractures propagating at depth are subjected to buoyant forces caused by the
density contrast between fluid and solid. This paper is concerned with the analysis of
the transition from an initially radial fracture towards an elongated buoyant growth – a
critical topic for understanding the extent of vertical hydraulic fractures in the upper Earth
crust. Using fully coupled numerical simulations and scaling arguments, we show that
a single dimensionless number governs buoyant hydraulic fracture growth, namely the
dimensionless viscosity of a radial hydraulic fracture at the time when buoyancy becomes
of order 1. It quantifies whether the transition to buoyancy occurs when the growth
of the radial hydraulic fracture is either still in the regime dominated by viscous flow
dissipation or already in the regime where fracture energy dissipation dominates. A family
of fracture shapes emerge at late time from finger-like (toughness regime) to inverted
elongated cudgel-like (viscous regime). Three-dimensional toughness-dominated buoyant
fractures exhibit a finger-like shape with a constant-volume toughness-dominated head and
a viscous tail having a constant uniform horizontal breadth: there is no further horizontal
growth past the onset of buoyancy. However, if the transition to buoyancy occurs while
in the viscosity-dominated regime, both vertical and horizontal growths continue to match
scaling arguments. As soon as the fracture toughness is not strictly zero, horizontal growth
stops when the dimensionless horizontal toughness becomes of order 1. The horizontal
breadth follows the predicted scaling.

Key words: magma and lava flow, lubrication theory

1. Introduction

We investigate the propagation of three-dimensional (3-D) hydraulic fractures emerging
from a point source accounting for buoyancy forces. Hydraulic fractures (HFs) are
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tensile fluid-filled fractures propagating under internal fluid pressure that exceed the
minimum compressive in situ stress of the surrounding media (Detournay 2016). They are
encountered in various engineering applications (Germanovich & Murdoch 2010; Jeffrey
et al. 2013; Smith & Montgomery 2015), but also occur in nature due to fluid over-pressure
at depth, for example during the formation of magmatic intrusions (Spence, Sharp &
Turcotte 1987; Lister & Kerr 1991; Rivalta et al. 2015). The minimum physical ingredients
to model HF growth are lubrication flow within the elastically deformable fracture coupled
with quasi-static fracture propagation under the assumption of linear elastic fracture
mechanics (LEFM) (Detournay 2016). In the absence of buoyancy, theoretical predictions
reproduce well experiments in brittle and impermeable materials (Bunger & Detournay
2008; Lecampion et al. 2017; Xing et al. 2017).

Hydraulic fractures propagate radially from a point source and continue so in the
absence of buoyancy. For such a geometry, the growth is initially dominated by energy
dissipation in viscous flow and transitions to a regime dominated by fracture energy
dissipation at late time (in association with the increase of the fracture perimeter).
Growth solutions in both regimes are well known (Abé, Keer & Mura 1976; Spence &
Sharp 1985; Savitski & Detournay 2002). The presence of buoyant forces necessarily
elongates the fracture. A large body of work investigated the impact of buoyant forces
on two-dimensional (2-D) plane strain fractures (Weertman 1971; Spence & Turcotte 1985,
1990; Spence et al. 1987; Lister 1990a; Roper & Lister 2007). The early work of Weertman
(1971) focused on a toughness-dominated fracture with a linear pressure gradient, and did
not consider any fluid flow. These considerations led to a fluid-filled pocket with a stress
intensity factor equal to the material resistance at the upper tip, and zero at the lower tip,
of such a bubble crack. A 2-D pulse is hence created. Owing to the lack of coupling with
lubrication flow, a description of the dynamics of its ascent is missing. A first attempt to
include viscous effects was made by Spence et al. (1987) and Spence & Turcotte (1990).
Lister (1990a) has obtained solutions as a function of a dimensionless fracture toughness
with a focus on small fracture toughness / large viscosity cases. These 2-D buoyant HFs
exhibit a distinct head region, close to the propagating edge, where a hydrostatic gradient
develops, and a tail region where viscous flow occurs within a conduit of constant width.
The solution in the so-called toughness-dominated regime was obtained by Roper & Lister
(2007), complementing earlier work (Lister 1990a; Lister & Kerr 1991).

A pseudo-three-dimensional (pseudo-3-D) solution for viscosity-dominated buoyant
fractures was developed by Lister (1990b) in conjunction with a scaling analysis.
Assuming a large aspect ratio for the fracture allows for a partial uncoupling of elasticity
and lubrication flow. The boundary conditions of his model are such that the fracture
has an unprescribed open upper end, such that this approximate solution is deemed to
be valid in the near-source region. It predicts an ever-increasing horizontal extent of
the fracture, which must be limited in the case of a finite, non-zero fracture toughness.
A planar 3-D solution has been derived by Garagash & Germanovich (2014) (see also
Germanovich et al. 2014; Garagash & Germanovich 2022) in the limit of large material
toughness. This approximate solution is constructed by matching a constant-breadth
(blade-like) viscosity-dominated tail with a 3-D toughness-dominated head under a
hydrostatic gradient. This approximate toughness solution shows a propagating head akin
to a constant 3-D Weertman pulse (Weertman 1971) propagating upwards due to the linear
extension of a fixed breadth in a viscosity-dominated tail. Recently, the problem of a finite
volume release has been investigated in the limit of zero fluid viscosity numerically by
Davis, Rivalta & Dahm (2020), focusing on the minimal volume required for the start
of buoyant propagation. Similar simulations are reported in Salimzadeh, Zimmerman &

950 A12-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

80
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.800
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Khalili (2020), where lubrication flow is included but only small-volume releases are
investigated, without an extensive study of the late-time growth of buoyant 3-D HFs.

In this paper, we investigate the transition of initially radial expansion HFs to the
late-time fully 3-D buoyant regimes accounting for the complete coupling between
elastohydrodynamic lubrication flow and LEFM. Notably, we aim to clarify the domain
of validity of previous contributions in the viscosity- and toughness-dominated limits,
and fully understand the solution space of 3-D buoyant fractures under constant-volume
release.

2. Formulation and methods

2.1. Mathematical formulation
We consider a pure opening mode (mode I) HF propagating from a point source located
at depth in the x–z plane, as sketched in figure 1. This x–z plane is perpendicular to
the minimum in situ stress σo(z) (taken positive in compression). We assume that the
minimum in situ stress acts in the y direction and is thus perpendicular to the gravity
vector g = (0, 0, −g) (with g the Earth’s gravitational acceleration). Owing to the possibly
large fracture dimensions, we account for a linear vertical gradient of the in situ stress
(resulting from the initial solid equilibrium). Assuming a linear elastic medium with
uniform properties, the quasi-static balance of momentum for a planar tensile HF reduces
to a hyper-singular boundary integral equation over the fracture surface A(t). This integral
equation relates the fracture width w(x, z, t) to the net loading, which is equivalent to
the difference between the fluid pressure inside the fracture pf (x, z, t) and the minimum
compressive in situ stress σo(x, z) (Crouch & Starfield 1983; Hills et al. 1996):

p(x, z, t) = pf (x, z, t) − σo(x, z) = − E′

8π

∫
A(t)

w(x′, z′, t)
[(x′ − x)2 + (z′ − z)2]3/2 dx′ dz′, (2.1)

where E′ = E/(1 − ν2) is the plane-strain modulus, with E the material Young’s modulus
and ν its Poisson’s ratio. As typically observed in the Earth’s crust (Jaeger, Cook &
Zimmerman 2007; Cornet 2015; Heidbach 2018), the minimum confining stress σo(z)
increases linearly with depth proportional to the solid weight γs = ρsg multiplied by
a dimensionless lateral Earth pressure coefficient α. Accounting for the downward
orientation of the gravitational vector in the chosen coordinate system (see figure 1), the
vertical gradient for σo(z) is linear over the entire medium:

dσo(z)/dz = −αρsg → ∇σo = αρsg. (2.2)

Fluid flow within the thin deforming fracture is governed by lubrication theory (Batchelor
1967). Neglecting any fluid exchange between the rock and the fracture (a reasonable
assumption for tight formations and high-viscosity fluids), the width-averaged continuity
equation for an incompressible fluid reduces to

∂w(x, z, t)
∂t

+ ∇ · (
w(x, z, t) vf (x, z, t)

) = δ(x) δ(z) Qo(t), (2.3)

where vf (x, z) is the width-averaged fluid velocity, and Qo is the volumetric flow rate at the
point source located at the origin (x, z) = (0, 0). Additionally, the assumption of no fluid
exchange with the surrounding medium dictates that the total volume of the fracture is
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Figure 1. Schematic of a buoyancy-driven hydraulic fracture (red for head, green for tail, grey for source
region). The tail length is reduced for illustration, indicated by dashed lines and a shaded area. The fracture
propagates in the x–z plane with a gravity vector g oriented in the −z direction. The fracture front C(t), fracture
surface A(t) (dark grey area), opening w(x, z, t), net pressure p(x, z, t), and local normal velocity of the fracture
vc(xc, zc) with (xc, zc) ∈ C(t) characterize fracture growth under a constant release rate Qo in a medium with a
linear confining stress with depth σo(z). Here, 	head(t) and bhead(t) denote the length and breadth of the head,
	(t) is the total fracture length, and b(z, t) is the local breadth of the fracture.

equal to the total volume released. Assuming a constant release rate Qo, the global volume
conservation is

V(t) =
∫
A(t)

w(x, z) dx dz = Qot. (2.4)

Assuming laminar flow and a Newtonian rheology, the fluid flux q(x, z, t) = w(x, z, t)
vf (x, z, t) reduces to Poiseuille’s law accounting for buoyancy forces:

q(x, z, t) = w(x, z, t) vf (x, z, t) = −w(x, z, t)3

μ′
(∇pf (x, z, t) − ρf g

)
, (2.5)

where μ′ = 12μf is the equivalent parallel plates fluid viscosity, μf is the fluid viscosity,
and ρf is the fluid density. Introducing the net pressure p(x, z, t) = pf (x, z, t) − σo(z) and
using (2.2), (2.5) is rewritten as

q(x, z, t) = −w(x, z, t)3

μ′

(
∇p(x, z, t) + Δγ

g
|g|

)
, (2.6)

where Δγ = Δρ g = (αρs − ρf )g is the effective buoyancy contrast of the system. For
α = 1, it equals the buoyancy contrast between the solid and the fluid. Values of the lateral
Earth pressure coefficient α different from 1 have no influence other than affecting the
value of the effective buoyancy contrast Δγ of the system. We consider HFs at depth such
that the confining stress is assumed to be sufficiently large for the presence of a fluid lag
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to be negligible (see discussion in Garagash & Detournay 2000; Lecampion & Detournay
2007; Detournay 2016). In this limit, the boundary conditions at the fracture front reduce to
a zero fluid flux normal to the front (q(xc, zc) = 0) and zero fracture width (w(xc, zc) = 0)
(see Detournay & Peirce (2014) for a detailed discussion).

Finally, the fracture is assumed to propagate in quasi-static equilibrium under the
assumption of LEFM. For a pure opening mode fracture, the propagation criterion reduces
to

(KI(xc, zc) − KIc) vc(xc, zc) = 0, vc(xc, zc) ≥ 0, KI(xc, zc) ≤ KIc, (2.7)

for all (xc, zc) ∈ C(t). In this equation, KI is the stress intensity factor, KIc is the
material fracture toughness, and vc(xc, zc) is the local fracture velocity normal to the
front (see figure 1). When the fracture is propagating at a point (xc, zc), the velocity
is positive, and the stress intensity factor equals the material toughness (vc(xc, zc) > 0,
KI(xc, zc) = KIc).

2.2. Numerical solver
For the numerical solution of the moving boundary problem presented in § 2.1, we use
the open-source 3-D-planar HF solver PyFrac (Zia & Lecampion 2020). This solver
is based on the implicit level set algorithm (ILSA) developed originally by Peirce &
Detournay (2008) for 3-D planar HFs (see also Dontsov & Peirce (2017) for more
details). The numerical scheme combines the discretization of a finite domain with the
steadily moving plane-strain HF asymptotic solution (Garagash, Detournay & Adachi
2011) near the fracture front. Even with a coarse discretization of the finite domain,
the coupling between these two scales allows for an accurate estimation of the fracture
front velocity vc(xc, zc). We use the improvement of Peruzzo, Lecampion & Zia (2021),
which imposes strict continuity of the fracture front during its reconstruction from the
level set values at the cell centre. The discretization of the elasticity equation (2.1)
is performed using piecewise constant rectangular displacement discontinuity elements,
while an implicit finite volume scheme is used for elastohydrodynamic lubrication flow.
In various implementations, this numerical scheme has proved to be both accurate and
robust when tested against known HF growth solutions (Peirce 2015, 2016; Zia, Lecampion
& Zhang 2018; Moukhtari, Lecampion & Zia 2020; Zia & Lecampion 2020; Möri &
Lecampion 2021).

We use a minimal initial discretization of 61 × 61 elements, and add elements as the
fracture elongates for all simulations presented herein. Our simulations need to run over
several orders of magnitude in time and space to capture the transition and the late-time
buoyant propagation stage. We thus adopt two different remeshing techniques to ensure
that the smaller spatial dimension (horizontal in our case) always satisfies a minimum
discretization of 61 elements. A second condition of the discretization is that the original
element aspect ratio is ensured during the entire simulation, even when the aspect ratio
of the mesh domain is changing. This discretization constrains the maximum relative
error on the fracture radius to 2–3 % for radial fractures (Zia & Lecampion 2020; Möri
& Lecampion 2021). The fracture is initialized as a radial HF in the viscosity-dominated
regime (Savitski & Detournay 2002), which corresponds to the early-time solution of this
type of fracture. We use this technique to ensure that we capture consistently the entire
propagation in all the different regimes.
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2.3. Scaling analysis
In the configuration studied herein, the HF initially propagates radially outwards from a
point source. It remains radial as long as the fracture is sufficiently small that buoyancy
forces remain negligible. At late time, the fracture elongates in the direction of the buoyant
force. A head and tail structure similar to the plane-strain (2-D) case is expected to develop.
This head–tail structure has either a horizontal breadth that stabilizes in space at late times,
or an ever-growing one (Lister 1990b; Garagash & Germanovich 2014). We capture the
evolution of the fracture shape by introducing 	(t) as the vertical extent (to which we will
alternatively refer as the fracture length) and b(z, t) as the horizontal breadth (see figure 1).
We recognize that the horizontal breadth may not be uniform in space and will thus refer to
b(t) as the maximum horizontal breadth of the fracture. We scale these fracture dimensions
as

	(t) = 	∗(t) γ (Pi), b(t) = b∗(t) β(Pi), (2.8a,b)

where 	∗(t) and b∗(t) are a characteristic fracture length and (maximum) breadth,
respectively, and γ and β are the corresponding dimensionless extents. Following the
notation of previous work (Detournay 2004), we scale the fracture width and net pressure
as

w(x, z, t) = w∗(t)Ω(x/b∗, z/	∗,Pi), p(x, z, t) = p∗(t)Π(x/b∗, z/	∗,Pi), (2.9a,b)

with w∗(t) and p∗(t) the characteristic width and net pressure scales, Ω and Π the
dimensionless width and pressure. In the previous expressions, we recognized that the
characteristic scales may depend on time and that the dimensionless solution is a function
of a finite set of dimensionless numbers Pi.

Introducing such a scaling into the governing equations provides a set of dimensionless
groups denoted by G. In particular, the scaling of the elasticity equation (2.1) provides,
besides the characteristic aspect ratio of the fracture,

Gs = b∗/	∗, (2.10)

a dimensionless group defined as the ratio between the characteristic elastic pressure
w∗E′/b∗ and the characteristic net pressure p∗:

Ge = w∗E′

p∗b∗
. (2.11)

Elasticity is always of first order for a fracture problem (i.e. Ge = 1), such that this equation
yields a direct relation between the characteristic net pressure, fracture opening, and a
fracture dimension. Scaling wise, the global volume conservation (2.4) provides a ratio
between the released volume Qot and the characteristic fracture volume w∗b∗	∗:

Gv = Qot
w∗b∗	∗

. (2.12)

A dimensionless fracture toughness Gk emerges from the linear fracture propagation
criterion KI = KIc as a ratio between the characteristic LEFM pressure for the material
KIc/

√
b∗ and the characteristic net pressure p∗:

Gk = KIc

p∗
√

b∗
. (2.13)

Poiseuille’s viscous drop (2.6) inside the fracture provides a dimensionless group akin to
a dimensionless viscosity defined as the ratio between the characteristic viscous pressure
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μ′Qo/w3∗ and the characteristic pressure p∗:

Gm = μ′Qo

w3∗p∗
. (2.14)

Finally, a last dimensionless group relates the characteristic buoyancy pressure Δγ 	∗ to
the characteristic pressure p∗:

Gb = Δγ 	∗
p∗

. (2.15)

Using these dimensionless groups to emphasize the relative importance of the underlying
physical mechanism, one obtains different scalings associated with different propagation
regimes.

3. Onset of the buoyant regime

The contribution of buoyant forces is negligible for a small enough fracture: from (2.15),
Gb 	 1. In the absence of buoyancy, the HF propagates with a radial penny-shaped
geometry. In an impermeable medium, Savitski & Detournay (2002) have shown
that the HF transitions from a viscosity-dominated regime at early time towards a
toughness-dominated regime at late time. The increase in fracture energy dissipation is
related directly to the increase of the fracture perimeter. Self-similar solutions have been
obtained in both the M (viscous) scaling and the K (toughness) scaling. Following Savitski
& Detournay (2002), the characteristic scales are denoted with a subscript m for the M
(viscous) scaling, and k for the K (toughness) scaling (see table 3 in the Appendix). The
transition from the early-time viscosity-dominated to the toughness-dominated regime is
captured entirely by a dimensionless toughness Km increasing with time as (Savitski &
Detournay 2002)

Km = KIc
t1/9

E′13/18Q1/6
o μ′5/18

. (3.1)

This dimensionless toughness (defined in the M scaling) is directly related to a
dimensionless viscosity defined in the K scaling:

Mk = K−18/5
m = (tmk/t)2/5 . (3.2)

In the absence of buoyancy, the toughness-dominated regime is reached when
Km ∼ Mk ∼ 1 (Savitski & Detournay 2002) (note our use of the fracture toughness KIc
instead of the reduced fracture toughness used in some previous work, K′ = √

32/π KIc),
or alternatively for times greater than a characteristic time tmk defined as the time when
Km = Mk = 1:

tmk = E′13/2μ′5/2Q3/2
o

K9
Ic

. (3.3)

The corresponding characteristic fracture radius at this time of transition between viscous
and toughness growth is, according to Savitski & Detournay (2002),

	mk = E′3Qoμ
′

K4
Ic

. (3.4)

To estimate when the buoyancy forces will start to play a role, still assuming that b∗ ∼ 	∗
– a hypothesis valid at the onset of the buoyant regime – it is worth computing the

950 A12-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

80
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.800


A. Möri and B. Lecampion

dimensionless buoyancy Gb from (2.15):

Bm = Δγ
Q1/3

o t7/9

E′5/9μ′4/9 , Bk = Δγ
E′3/5Q3/5

o t3/5

K8/5
Ic

(3.5a,b)

in the viscous (subscript m) and toughness (subscript k) scaling, respectively. As expected,
the effect of buoyancy increases with time as the fracture grows. For each limiting regime,
we deduce a transition time scale where buoyancy becomes dominant as the time when
Bm (respectively Bk) equals 1:

tmm̂ = E′5/7μ′4/7

Δγ 9/7 Q3/7
o

, tkk̂ = K8/3
Ic

E′Qo Δγ 5/3 . (3.6a,b)

In the following, we use ·̂ to highlight scalings where buoyancy plays a dominant role.
Similarly to the previous viscosity to toughness transition, it is practical to obtain the
corresponding transition length scales (see table 4 in the Appendix for details):

	mm̂ = E′3/7Q1/7
o μ′1/7

Δγ 4/7 , 	kk̂ = K2/3
Ic

Δγ 2/3 ≡ 	b. (3.7a,b)

It is worth noting that the toughness–buoyancy length scale 	kk̂ – that we will refer to
alternatively as 	b – can be obtained directly by assuming b∗ ∼ 	∗ and balancing the
toughness pressure KIc/

√
	∗ with the buoyancy pressure Δγ 	∗. Such a buoyancy length

scale 	b is strictly equal to the one obtained in the 2-D plane-strain case (Weertman
1971; Lister 1990a; Lister & Kerr 1991; Heimpel & Olson 1994; Roper & Lister 2007)
as well as for a finger-like 3-D geometry (Garagash & Germanovich 2014). The buoyancy
effect becomes of order one either when the initially radial HF is still propagating in
the viscosity-dominated regime (which implies Km(t = tmm̂) < 1; see (3.1)) or when it
is already in the toughness-dominated regime (for which Mk(t = tkk̂) < 1; see (3.2)). The
interplay between the radial transition from viscosity- to toughness-dominated and the one
from radial to buoyant can thus be captured by either

Km̂ = Km(t = tmm̂) = KIc

E′9/14Q3/14
o Δγ 1/7 μ′3/14

=
(

	mm̂

	mk

)1/4

=
(

tmm̂

tmk

)1/9

(3.8)

or

Mk̂ = Mk(t = tkk̂) = μ′ QoE′3 Δγ 2/3

K14/3
Ic

= 	mk

	kk̂
=

(
tmk

tkk̂

)2/5

. (3.9)

These two dimensionless numbers are related as M−3/14
k̂

= Km̂. In fact, the different

transition time scales (3.6a,b) and (3.3) are related as tmm̂/tmk = (tkk̂/tmk)
27/35. The

transition to buoyancy can therefore be grasped by any ratio of these transition time
scales such that only one of the two parameters of (3.8) and (3.9) is required to define
the transition.

In the following, we choose Mk̂ to quantify the transition from a radial to a buoyant
HF. Physically, Mk̂ quantifies if the fracture is viscosity-dominated (Mk̂ > 1) or
toughness-dominated (Mk̂ < 1) at the onset of the buoyant regimes. Interestingly, Mk̂
is directly the ratio of the characteristic viscous–toughness transition length scale 	mk
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(without buoyancy) with the buoyant toughness transition scale 	b = 	kk̂. This confirms
that Mk̂ in (3.9) captures properly the competition between the transition from viscous to
toughness growth, and the transition to the buoyant regime.

4. Toughness-dominated buoyant fractures (Mk̂ � 1)

We first focus on toughness-dominated buoyant fractures (Mk̂ 	 1), for which the
transition to the buoyant regime occurs when the initially radial fracture is already
propagating in the toughness-dominated regime (tkk̂ � tmk). Figures 2(e–i) show the
complete fracture evolution for a value of Mk̂ ≈ 1.0 × 10−3. The fracture is initially radial
(figure 2e), elongates as buoyancy commences to act (figure 2 f,g), and ends-up being akin
to a finger-like fracture (figure 2h,i). It is worth noting that for t > tkk̂, the breadth is
uniform such that the creation of new fracture surfaces only occurs in the head region.
This buoyant fracture exhibits a head-tail structure qualitatively similar to the plane-strain
2-D case (Lister 1990a; Roper & Lister 2007). In the tail, the breadth is constant, and no
new fracture surfaces are created in the horizontal direction. This can be clearly observed
from figure 2 (footprints i–h and the evolution of the breadth). In other words, the head is
toughness-dominated, while in the tail only a viscous vertical flow is dissipating energy.

4.1. Toughness-dominated head
The characteristic scales of the toughness-dominated head are such that bhead∗ ∼ 	head∗ and
can be obtained assuming that toughness, buoyancy and elasticity are all of first order in
the head. One obtains the head scales

bhead
k̂

= 	head
k̂

= 	b = K2/3
Ic

Δγ 2/3 , whead
k̂

= K4/3
Ic

E′ Δγ 1/3 ,

phead
k̂

= K2/3
Ic Δγ 1/3, Vhead

k̂
= Qotkk̂ = K8/3

Ic

E′ Δγ 5/3 ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.1)

which correspond exactly to the characteristic scales for a radial HF at the transition
to buoyancy t = tkk̂. This scaling is similar (up to numerical factors) to those obtained
previously for 3-D and 2-D buoyant fractures (Lister 1990a; Roper & Lister 2007;
Garagash & Germanovich 2022).

4.2. Viscosity-dominated tail
The tail has a constant breadth equal to the characteristic breadth scale of the head. In the
tail, the viscous flow dissipation in the vertical direction is quantified by the ratio of viscous
pressure μ′vz∗	∗/w2∗ to the characteristic buoyancy pressure Δγ 	∗ (with ∂p/∂z 	 Δγ in
the tail):

Gmz = μ′vz∗
w2∗ Δγ

, (4.2)

which is clearly dominant over any horizontal viscous dissipation. For Gmz = 1, the
characteristic vertical velocity is a function of the characteristic tail opening. The
elongated form of this buoyant fracture is such that its aspect ratio is related directly to
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Figure 2. Toughness-dominated buoyant fracture. Green dashed lines indicate the 3-D K̂ GG (2014) solution.
(a) Opening along the centreline w(0, z, t)/whead

k̂
for a simulation with Mk̂ = 1 × 10−2. (b) Net pressure

along the centreline p(0, z, t)/phead
k̂

for the same simulation. (c) Fracture length 	(t)/	b for three simulations

with large toughness Mk̂ ∈ [10−3, 10−1]. Dash-dotted green lines highlight the late-time linear term of the K̂
solution. (d) Fracture breadth b(t)/	b (continuous) and head breadth bhead(t)/	b (dashed). Grey lines indicate
an error margin of 5 %. (e–i) Evolution of the fracture footprint from radial (e) towards the final finger-like
shape (h,i) for a fracture with Mk̂ = 1 × 10−3. For the fracture shape in (i), the vertical extent is cropped
between 	(t)/	b = 6 and 	(t)/	b = 30. Thick red dashed lines indicate the head shape according to the 3-D K̂
GG (2014) solution. Note that the final stage (i) has not reached the constant terminal velocity (see c).
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3-D buoyant hydraulic fractures: constant release

the ratio of characteristic horizontal vx∗ to vertical vz∗ fluid velocities,

b∗
	∗

∼ vx∗
vz∗

, (4.3)

and the characteristic vertical fracture velocity is of the same order of magnitude as the
vertical fluid velocity

∂	

∂t
∼ 	∗

t
= vz∗. (4.4)

Assuming a viscosity-dominated tail of constant breadth b∗ = 	b set by buoyancy
(Gmz = 1), global volume conservation, elasticity (Gv = Ge = 1) and (4.3)–(4.4) provides
the following characteristic tail scales:

	k̂ = Q2/3
o Δγ 7/9 t

K4/9
Ic μ′1/3

, bk̂ = 	b,

wk̂ = Q1/3
o μ′1/3

K2/9
Ic Δγ 1/9

= M1/3
k̂

whead
k̂

, pk̂ = E′ Δγ 5/9 Q1/3
o μ′1/3

K8/9
Ic

= M1/3
k̂

phead
k̂

.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.5)

The corresponding horizontal characteristic fluid velocity decreases in inverse proportion
to time as vx∗ = 	b/t.

4.3. Large-time buoyant regime
The head and tail structure of such a fracture with uniform breadth can be leveraged
further to obtain an approximate solution at late time (t � tkk̂) when assuming a state
of plane strain for each horizontal cross-section. Such an approximate 3-D solution was
obtained by Garagash & Germanovich (2014) (see details in Garagash & Germanovich
2022), imposing a toughness-dominated head and a viscosity-dominated tail (in which
∂p/∂z 	 Δγ ). In that solution, which we will refer to as the 3-D K̂ GG (2014) solution,
the head is constant and the upward growth is governed by the extension of the viscous
tail. We compare numerical simulations with this late-time solution (this approximate
solution in the scaling used here is recalled in the supplementary material available at
https://doi.org/10.1017/jfm.2022.800). We perform a series of simulations for Mk̂ = 10−3,
10−2 and 10−1. A typical evolution of the fracture opening and net pressure along the
centreline (x = 0) of a buoyant toughness fracture (Mk̂ = 10−2) is reported in figures
2(a,b), respectively. The time evolutions of length and breadth are illustrated in figures
2(c,d). We can observe that both fracture length and breadth compare well with the 3-D K̂
GG (2014) solution at late time, especially for Mk̂ = 10−3, 10−2.

We further compare various characteristic quantities from our simulations with the
3-D K̂ GG (2014) late-time solution of Garagash & Germanovich (2014) in table 1.
Our numerical evolution of the head length 	head(t)/	b shows a marked variability
but converges for the cases Mk̂ = 1 × 10−3 and Mk̂ = 1 × 10−2 to their solution
	head(t)/	b ∼ 1.77 at late time. The explanation for the variability lies within our
automatic evaluation of the head length from our numerical results. Before an inflexion
point forms in the opening along the centreline, we estimate the head length as the
maximum distance between the source point and the front. Once an inflexion point forms
(see figure 3a), we use either this inflexion point or a local pressure minimum between the
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Mk̂ 10−3 10−2 10−1

t/tkk̂ 1.0 2.0 2.5 3.0 1.0 2.5 5.0 6.0 1.0 2.5 5.0 10.0
	head(t)/	b 1.85 1.84 1.85 1.84 2.07 1.92 1.92 1.92 1.66 2.06 2.07 2.07
Mismatch with GG (%) 4.52 4.30 4.44 3.79 17.3 8.59 8.76 8.52 6.24 16.7 17.2 17.3
bhead(t)/	b 0.68 0.68 0.68 0.68 0.72 0.72 0.72 0.72 0.78 0.84 0.84 0.84
Mismatch with GG (%) 0.52 0.60 0.56 0.54 5.19 5.32 5.29 5.36 13.9 23.1 23.3 23.3
Vhead(t)/Vhead

k̂
0.76 0.76 0.76 0.76 0.91 0.90 0.90 0.90 0.96 1.35 1.35 1.35

Mismatch with GG (%) 8.36 8.21 8.25 8.15 29.3 28.7 28.7 28.6 37.0 92.3 93.1 93.2
	tail(t)/	b 3.60 17.5 24.4 31.3 0.89 10.2 25.7 31.9 0.271 3.43 9.86 22.8
Mismatch with GG (%) 12.3 2.40 1.57 1.10 54.4 11.2 6.58 5.93 69.5 36.0 22.7 17.4

Table 1. Comparison between characteristic head and tail lengths, head breadth and head volume for
toughness-dominated fractures Mk̂ ∈ [10−3, 10−1] at various dimensionless times t/tkk̂. The mismatch is
calculated as the relative difference between our numerical results and the approximate 3-D K̂ GG (2014)
solution (GG in the table).

opening inflexion and the maximum pressure in the head (see figure 3b). These changes in
criteria are more visible for the less toughness-dominated simulation Mk̂ = 1 × 10−1.
Nonetheless, they do not affect the estimation of 	head(t) for lower values of Mk̂.
Overall, the length of the head stabilizes once it is evaluated via the pressure minima.
The reason is because Garagash & Germanovich (2014) similarly define the length of
the head as the point where the minimum pressure is reached (see figure 3). The relative
difference of ∼4 % for the simulation with Mk̂ = 1 × 10−3 is within the precision of
our post-processing method. The increased mismatch of ∼8.5 % for Mk̂ = 1 × 10−2 is
caused by a deviation from the strictly zero viscosity case and the uncertainties of our
evaluation method. Finally, the simulation with Mk̂ = 1 × 10−1 has a relative difference
∼17 %, which clearly reflects a significant deviation from the approximate 3-D K̂ GG
(2014) solution.

Defining the head breadth bhead = b(z = zhead = ztip − 	head) with ztip = max{zc} (see
figures 1 and 2i), figure 2(d) shows that the maximum breadth b(t) (continuous lines)
is equivalent to the head breadth bhead (dashed lines) for Mk̂ ≤ 1 × 10−2. Combining
these observations with figures 2(h,i), we conclude that this breadth corresponds to
the stabilized breadth of the finger-like fracture. From figure 2(d), we observe that the
breadth in simulations Mk̂ = 1 × 10−3 and 1 × 10−2 is fully established for t/tkk̂ � 1,
corresponding to the moment where the head is entirely formed. This is supported by the
values displayed in table 1 that are stable for the corresponding simulations. We validate
the semi-analytical 3-D K̂ GG (2014) solution b ≈ π−1/3	b (green dotted line in figure 2d)
within our numerical precision. The mismatch lies below 1 % for Mk̂ = 1 × 10−3, and
is around 5 % for Mk̂ = 1 × 10−2. For the simulation with Mk̂ = 1 × 10−1, the breadth
remains stable but shows a relative mismatch of about 25 %, indicating the limit of validity
of the 3-D K̂ GG (2014) solution.

To ensure that the head is effectively constant in time, we additionally estimate
its volume. Generally, our estimated head volumes are larger than the semi-analytical
solution: Vhead ≈ 0.701Vhead

k̂
. This phenomenon is not surprising as we overestimate

the head length with the post-processing of our numerical results. We can confirm the
emergence of a constant head volume and verify the order of magnitude derived by
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Figure 3. Tip-based scaled opening (a) and pressure (b) of three toughness-dominated buoyant simulations
with Mk̂ ∈ [10−3, 10−1]. Continuous lines correspond to the PyFrac simulations (Zia & Lecampion 2020),
with dots indicating the discretization (the number of elements in the head is >50), and dashed lines a 2-D
plane-strain steadily moving solution. The vertical green dashed line indicates the head length, and green
continuous lines the 3-D K̂ solutions. Here, ‘RL (2007)’ means Roper & Lister (2007).

Garagash & Germanovich (2014) for small values of Mk̂ (see (3.9)). In conclusion, our
numerical evaluation indicates that the head of a buoyancy-driven HF is constant, and that
the semi-analytical 3-D K̂ GG (2014) solution of Garagash & Germanovich (2022) is valid
as long as Mk̂ ≤ 1 × 10−2.

It is interesting to compare the fully 3-D results reported here with the 2-D plane-strain
solutions reported previously in the literature (Lister 1990a; Lister & Kerr 1991; Roper
& Lister 2007). At late time, assuming that we are far enough from the source region
and neglecting any 3-D curvature, one can approximate the fracture as semi-infinite,
propagating at a constant velocity. Notably, such a 2-D solution has been presented by
Roper & Lister (2007) for large toughnesses. Their scaling can be retrieved from ours (4.1)
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by replacing the 2-D injection rate with Q2D ∼ ∂	k̂/∂twk̂. We construct a 2-D numerical
solver for a semi-infinite HF combining a Gauss–Chebyshev quadrature for elasticity and
finite difference for lubrication flow similar to the one used in Moukhtari & Lecampion
(2018). This 2-D solver verifies exactly the large fracture toughness limit of Roper & Lister
(2007), and we use it to compare with this contribution hereafter (we report details of
this 2-D solver in the supplementary material available at https://doi.org/10.1017/jfm.2022.
800).

In figure 3, we plot the opening and pressure along the centreline (x = 0) as a function
of the tip-based coordinate ẑ(t) = ztip(t) − z, such that ẑ(t) ∈ [0, 	(t)] marks the interior
of the fracture. Even for very small dimensionless viscosities (Mk̂ 	 1), the pressure
gradient in the head from the 3-D numerical simulations is not entirely linear and presents
a gentler slope than the limiting 3-D K̂ GG (2014) solution (green dashed line; Garagash
& Germanovich (2014)). Only for the simulation with Mk̂ = 1 × 10−3 is the viscous flow
small enough to allow for a truly linear pressure gradient in the head. The shape of the
opening is qualitatively similar between two and three dimensions (see Mk̂ = 1 × 10−3),
but the 2-D ones shrink in the direction of the buoyant force. The difference with the 2-D
solution is directly related to 3-D effects associated with the curvature of the head.

The 3-D Garagash & Germanovich (2014) and 2-D Roper & Lister (2007) solutions
predict a negative net pressure at the end of the head. Our 3-D simulations do not show
such a feature, and exhibit a smaller ‘neck’ than the one described by Roper & Lister
(2007) in two dimensions. The ‘neck’ defines the region at the end of the head, where
fracture opening is reduced compared to its stable value in the tail. This location is a pinch
point leading to the influx of the fluid from the tail into the head. Nevertheless, figure 3
shows that the minimum pressure in the neck decreases with decreasing Mk̂. We expect
that a negative net pressure should appear for smaller values of Mk̂. These observations
influence directly the opening distribution (figure 3a). We observe only a limited reduction
of the opening between the tail and the head in the fully 3-D simulations. Nonetheless, such
a neck is present, and an inflexion point can be identified (black circles in figure 3a). In the
limit of zero fluid viscosity, the opening in the tail would become 0. This would be when
the neck fully pinches and a finite volume pulse forms.

4.4. Transient towards the late buoyant regime
In figure 2(c), an acceleration phase associated with the transition to buoyancy can be
observed. Such an acceleration is related directly to the fact that when radial, the fracture
velocity decreases with time as 	k ∝ t2/5 and ultimately, once in the fully buoyant regime,
reaches a constant velocity. The intensity of such acceleration can be related directly to the
dimensionless number Mk̂ by comparing this terminal velocity with the radial velocity at
the onset of buoyancy t = tkk̂ (see (3.6a,b)):

vk̂/vk(tkk̂) = M−1/3
k̂

. (4.6)

The fracture needs to ‘catch up’ from a length 	k(tkk̂) ∼ 	b to the buoyant late-time
solution (	k̂(tkk̂) ∼ M−1/3

k̂
	b) and thus accelerates. According to figure 2(c), the

acceleration starts approximately when t/tkk̂ ≈ 0.5. Correlating this with the observations
of figure 2(a), this corresponds approximately to the time when the bulk of the head starts
to leave the source region. The acceleration is thus driven by the pressure difference
between the head and tail visible in figure 2(b). Figure 2(c) further shows that around
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3-D buoyant hydraulic fractures: constant release

t/tkk̂ ≈ 3, the fracture starts to decelerate and approaches the complete 3-D K̂ solution
(green dashed lines). The simulation then presents a good match until the end of the
simulation (around t/tkk̂ ≈ 6.5). A convergence towards the linear, dominant term (green
dash-dotted lines) is observed only once a simulation reaches about t/tkk̂ ≈ 10 (see the
simulation with Mk̂ = 1 × 10−1 in figure 2c). This is consistent with the approximate
3-D K̂ GG (2014) solution, which predicts that linear velocity is reached within 5 % in
relative terms when t/tkk̂ ≈ 14 (see the supplementary material available at https://doi.
org/10.1017/jfm.2022.800 for details).

In the limiting case of zero fluid viscosity (μ′ = 0 → Mk̂ = 0), the acceleration
is infinite, and we cannot hope to capture such a sharp transition numerically. The
strictly Mk̂ = 0 limit corresponds to a 3-D Weertman pulse (Weertman 1971) associated
with a zero-width tail. For very small but non-zero values of μ′ |Mk̂, overcoming
the transition phase is numerically challenging but possible. Defining the end of the
transient via the 5 % deviation level from the 3-D approximate solution (t/tkk̂ ≈ 14), we
obtain a corresponding fracture length 	(t) ∼ 19M−1/3

k̂
	b. Expressing this limit as the

aspect ratio 	(t)/b(t), assuming that the breadth follows the Garagash & Germanovich
(2014) solution (b(t) ≈ π−1/3	b), the required aspect ratio is 	(t)/b(t) ≈ 28M−1/3

k̂
. The

numerical example with Mk̂ = 1 × 10−2 (largest value of Mk̂ validating the 3-D K̂
solution) leads to a aspect ratio of 	(t)/b(t) ∼ 132 with a corresponding fracture length
of 	(t) ∼ 90	b. Such fracture lengths require a significant number of discretization cells.
Numerically, the discretization is bounded mainly by two parameters: the distance of the
source point to the fracture front, and the number of elements discretizing the head where a
strong gradient of opening and pressure takes place. In the toughness-dominated case, the
first parameter is more restrictive and requires discretizations of about 44 elements per 	b.
The total number of degrees of freedom thus quickly exceeds the current computational
capacities of PyFrac (Zia & Lecampion 2020) and ultimately explains why we do not
report simulations for values of Mk̂ lower than 10−3.

5. Viscosity-dominated buoyant fractures (Mk̂ � 1)

We now turn to the viscosity-dominated limit for which the transition to buoyancy occurs
prior to the transition to the radial toughness-dominated regime: tmm̂ 	 tmk, i.e. Mk̂ � 1.
We focus on the limiting case of a strictly zero-fracture toughness (Mk̂ = ∞), which
we will also refer to as the M̂ limit (at late time). The evolution of such a fracture can be
grasped from the numerical results reported in figures 4(e–i). Similar to the toughness case
(figure 2), the fracture is initially radial (figure 4e) and elongates (figures 4 f –i) as soon
as buoyancy plays a role (t ∼ tmm̂). The overall footprint is strikingly different from the
toughness limit. Notably, the fracture breadth is not uniform along the vertical direction
and grows continuously horizontally due to the lack of any resistance to fracture. The
shape of the fracture at late time is akin to an inverted cudgel with a distinct source and
head regions.

5.1. Late-time zero-toughness limit
It is enlightening to compare this simulation for Mk̂ = ∞ with the scaling derived
originally by Lister (1990b) for this problem (and his near-source solution). We first recall
briefly the argument of such a scaling. Contrary to the toughness limit, the breadth is not
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Figure 4. Viscosity-dominated buoyant fracture. (a) Opening along the centreline w(x = 0, z, t)/wmm̂ for a
simulation with Mk̂ = ∞. (b) Net pressure along the centreline p(x = 0, z, t)/pmm̂ for the same simulation.
(c) Fracture length 	(t)/	mm̂ for six simulations with large viscosity Mk̂ ∈ [5 × 102, ∞]. (d) Fracture breadth
b(t)/	mm̂ for the same simulations. (e–i) Evolution of the fracture footprint from radial (e) towards the final
elongated inverse cudgel shape (h,i) for the same simulation as in (a) and (b).

950 A12-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

80
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.800


3-D buoyant hydraulic fractures: constant release

constant, but the aspect ratio of the fracture remains related to the ratio of the characteristic
horizontal vx∗ and vertical vz∗ fluid velocities:

b∗
	∗

∼ vx∗
vz∗

. (5.1)

The horizontal and vertical extents are linked to their corresponding velocities as b∗ =
vx∗t, 	∗ = vz∗t. Viscous fluid dissipation for viscous fractures occurs as much in the
vertical as it does in the horizontal direction. Vertically, the net pressure gradient ∂p/∂z
is negligible compared to Δγ such that, similarly to the viscosity-dominated tail in the K̂
limit, the dimensionless ratio

Gmz = μ′vz∗
w2∗ Δγ

(5.2)

is of order 1. Horizontally, in the absence of gravitational forces, the magnitude of viscous
flow is quantified by the ratio of the horizontal viscous pressure μ′vx∗b∗/w2∗ to the
characteristic net pressure p∗,

Gmx = μ′vx∗b∗
w2∗p∗

, (5.3)

which is also of order one. Combined with elasticity (Ge = 1) and global volume balance
(Gv = 1), solving for the lengths, width and pressure scales, we recover the scaling of
Lister (1990b):

	m̂ = Δγ 1/2 Q1/2
o

E′1/6μ′1/3 t5/6, bm̂ = E′1/4Q1/4
o

Δγ 1/4 t1/4,

wm̂ = Q1/4
o μ′1/3

Δγ 1/4 E′1/12 t−1/12, pm̂ = E′2/3
μ′1/3

t1/3 .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.4)

Interestingly, in that scaling, the dimensionless toughness (Gk ≡ Km̂) associated with
horizontal growth (defined with b∗ as the characteristic fracture length) increases with
time. From (2.13), we obtain the ‘horizontal’ (subscript x) dimensionless toughness

Km̂,x(t) = KIc
Δγ 1/8 t5/24

E′19/24Q1/8
o μ′1/3

= M−3/14
k̂

(
t

tmm̂

)5/24

. (5.5)

As a result, for the case of finite fracture toughness, one expects the horizontal growth to
stop (and thus the breadth to stabilize) when Km̂,x(t) reaches order 1.

The time evolution of fracture length and breadth obtained numerically (figures 4c,d)
exhibit a transition from the radial viscosity regime to this late buoyant viscous scaling.
The power-law evolution with time of length and breadth matches (5.4) precisely at late
time for the Mk̂ = ∞ simulation. Contrary to the toughness case, where the horizontal
growth stops abruptly, we observe a smoother horizontal deceleration accompanied by
vertical acceleration, which is less abrupt than in the toughness case.

In this zero-toughness limit, at late time, the growth of the fracture is self-similar and
will not stop (either horizontally or vertically) as long as the volume release continues. To
confirm the overall self-similarity of such a viscous, buoyant late-time regime, we rescaled
our numerical results at different times and plot scaled footprints, centreline width and net
pressure, as well as the volume of each horizontal cross-section in figure 5. The z-axis is
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Figure 5. Scaled evolution of characteristic values of a buoyancy-driven viscosity-dominated fracture.
Fracture footprint (a), cross-sectional volume, i.e. integral of the opening over the breadth (b), opening (c),
and pressure (d) at various dimensionless times t/tmm̂ . Blue dashed lines represent the pseudo-3-D near-source
solution of Lister (1990b). A shifted coordinate system z̃ is used such that the lowest point of the fracture marks
z̃ = 0.

shifted such that the lowest point of the fracture coincides with z̃ = 0. A nice collapse of
the scaled footprint is observed for t/tmm̂ � 100. A similar collapse appears for centreline
sections of width, pressure and cross-section volume. We recognize that the head region
shrinks with time and eventually reduces to a boundary layer. Before discussing the head
region, we observe that the source region solution derived in Lister (1990b) matches our
numerical results, albeit in a relatively narrow zone close to the injection point only. The
Lister (1990b) solution is based on a pseudo-3-D approximation assuming only horizontal
growth with an unspecified upper ‘head’ part. In this approximate solution, the breadth
increases monotonically with the scaled coordinate z/	m̂(t) without any possibility of
reduction at large z/	m̂(t) to model the fracture ‘head’. For the Lister (1990b) solution,
the distance within which this source solution is applicable depends on the material, fluid
and release properties. This distance is equivalent to the transition length scale of a fracture
without buoyancy 	mk, which for the zero-toughness case becomes infinite. This solution,
however, appears as the correct inner solution in the near-source region (but not up to
z ∼ 	mk). Further comparison of the width profiles at different cross-sections between our
numerical solution and this approximation is reported in figure 6.

5.1.1. Head region
From both the footprints with width contours displayed in figure 4 and the scaled profiles
in figure 5, we observe that, contrary to the toughness case, the head region shrinks with
time. Self-similarity of the overall fracture growth actually becomes evident when the
volumes of the head and the source region are negligible compared to the volume in
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Mk̂ 104 105 ∞
t/tmm̂ 10 100 200 350 10 100 200 350 10 50 100 125

	head(t)/	head
m̂ (t) 2.39 2.33 2.29 2.33 2.39 2.37 2.31 2.21 2.63 2.86 2.79 2.77

Vhead(t)/Vhead
m̂ (t) 4.66 5.34 5.38 5.58 4.66 5.34 5.29 5.08 5.07 5.78 5.63 5.56

whead
max (t)/whead

m̂ (t) 1.35 1.70 1.71 1.73 1.34 1.62 1.65 1.65 1.27 1.30 1.30 1.30

Table 2. Comparison between characteristic head length, head volume and maximum opening in the head
(whead

max = maxx,z{w(x, z ∈ [ztip − 	head(t), ztip], t)}) for viscosity-dominated fractures Mk̂ ∈ [1 × 104, ∞] at
various dimensionless times t/tmm̂.

the tail, i.e. for times greater than ∼100tmm̂. The depletion of the head can be explored
by the following scaling argument. In a viscous head (bhead∗ ∼ 	head∗ ), the horizontal and
vertical fluid velocities are of the same order, elasticity (Ge = 1) and buoyancy (Gb = 1),
and viscous dissipation dominates (Gmz = 1), but its volume is a priori unknown. In
addition, we assume that the characteristic fluid velocity in the head is given by the
vertical characteristic velocity vzm̂ ∼ 	m̂/t from (5.4). In other words, the volumetric flow
rate between the head and the tail is Q∗ = whead∗ bhead∗ vzm̂. Under those assumptions, the
corresponding characteristic viscous head scales are

	head
m̂ = bhead

m̂ = E′11/24Q1/8
o μ′1/6

Δγ 5/8 t1/24 , whead
m̂ = Q1/4

o μ′1/3

E′1/12 Δγ 1/4 t1/12 ,

phead
m̂ = E′11/24Q1/8

o μ′1/6 Δγ 3/8

t1/24 , Vhead
m̂ = E′5/6Q1/2

o μ′2/3

Δγ 3/2 t1/6 .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.6)

These characteristic scales are consistent with the shrinking/depleting viscous head
observed numerically. The numerical validation is presented in table 2, where we observe
the evolution of the head length, the head volume, and the maximum opening in the
head. Even thoughwe do not have an analytical or semi-analytical solution to compare to,
stabilization, when normalized with the depleting scales (5.6), is observed in table 2 within
the precision of our automatic evaluation of the head length. It is interesting to note that
at the onset of buoyancy, for t ≈ tmm̂ (defined in (3.6a,b)), these scales are strictly equal to
the radial viscosity-dominated scales (e.g. 	head

m̂ (tmm̂) = 	m(tmm̂), Vhead
m̂ (tmm̂) = Qotmm̂).

This confirms the mechanism of a viscous head that detaches from the source region and
slowly depletes as it moves upward.

5.1.2. Comparison with the semi-infinite plane-strain solution
Such a 3-D viscous head can be compared to the existing 2-D plane-strain solution for
a viscosity-dominated steadily moving buoyant fracture (Lister 1990a). The 2-D scales of
Lister (1990a) are based on a constant fracture velocity. For the 3-D case, the characteristic
fracture velocity vzm̂ decreases as

vzm̂ = 	m̂

t
= Δγ 1/2 Q1/2

o

E′1/6μ′1/3t1/6 , (5.7)
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Figure 7. Tip-based opening (a) and pressure (b) of a viscosity-dominated buoyant simulation with Mk̂ = ∞
as a function of the scaled tip coordinate. Continuous lines correspond to the simulations with PyFrac (Zia &
Lecampion 2020), with dots marking the locations of discrete evaluations. The dash-dotted line shows the 2-D
plane-strain steadily moving solution (see details in the supplementary material available at https://doi.org/10.
1017/jfm.2022.800).

which can be translated into a reducing 2-D release rate by multiplication with the
characteristic tail opening

Q2D ∼ vzm̂wm̂ ∼ Q3/4
o Δγ 1/4

E′1/4t1/4 . (5.8)

Replacing this injection rate into the scales of Lister (1990a), we retrieve exactly the
scaling of (5.6). Rescaled 3-D numerical results are shown along with the zero-toughness
solution of Lister (1990a) using a tip-based coordinate system (ẑ(t) = ztip(t) − z) in
figure 7. The 3-D and 2-D solutions practically coincide (relative error ∼ 5 %) for times
t � 50tmm̂. In the viscosity-dominated case, the shrinking of the head indeed reduces the
effect of the 3-D curvature at large time (see also the scaled footprint in figure 5) and thus
renders the elastic state of plane-strain more valid.

In conclusion, the buoyant viscosity-dominated fracture exhibits a viscous source region
following the Lister (1990b) solution, combined with a depleting head according to the
scaling (5.6) at the propagating edge for late times (t � tmm̂). The depleting head follows
the solution of a 2-D semi-infinite plane-strain fracture along the centreline. It may be
possible to construct a complete pseudo-3-D approximation matching these asymptotes in
the source and head region, a task we leave open for further studies.
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Figure 8. Comparison of maximum breadth for buoyant fractures as a function of the dimensionless viscosity
Mk̂ ∈ [10−3, 5 × 103]. Black dots are used for fractures with a uniform breadth, and red stars are used
otherwise. The dashed green lines represent the limits of the 3-D K̂ GG (2014) solution (b ∼ π−1/3	b for the
breadth limit (horizontal line) and Mk̂ ≈ 0.92 for the stabilization criterion (vertical line)). The grey dashed

line emphasizes the scaling relation maxz,t{b(z, t)} ∼ M2/5
k̂

	b.

6. Intermediate/finite Mk̂ cases

In the toughness-dominated case, we have seen that the K̂ limit is captured by the
Garagash & Germanovich (2014) finger-like solution for Mk̂ � 1 × 10−2. On the other
end, for zero-toughness (Mk̂ = ∞), horizontal growth continues as ∼ t1/4 at late times
(t � 100tmm̂). Numerical results for large but finite values of Mk̂ (see figures 4c,d) show
that, as anticipated (Lister 1990b; Garagash & Germanovich 2022), horizontal growth
arrests after some time. The vertical velocity thus increases to a constant terminal velocity
due to volume balance. This is confirmed by the Mk̂ = 500, 103 simulations displayed
in figures 4(c,d) (and to a lesser extent for Mk̂ = 104 where the horizontal arrest was
not reached completely). The characteristic time scale for such a horizontal arrest can be
estimated as the time at which the horizontal dimensionless toughness Km̂,x of (5.5) in the
viscous tail scaling reaches order 1. We obtain

Km̂,x

(
tx
m̂k̂

)
= 1 → tx

m̂k̂
= E′19/5Q3/5

o μ′8/5

K24/5
Ic Δγ 3/5

= M36/35
k̂

tmm̂, (6.1)

and the corresponding maximum breadth and length scales are

bm̂

(
tx
m̂k̂

)
= M2/5

k̂
	b, 	m̂

(
tx
m̂k̂

)
= 	mk. (6.2a,b)

From our previous discussion, the zero-toughness (Mk̂ = ∞) self-similar growth is
established for t � 100tmm̂. For large values of Mk̂, such a zero-toughness solution is thus
expected to be realized at intermediate times after the transition to buoyancy but prior to
the characteristic time of horizontal arrest, i.e. for t ∈ [100tmm̂, tx

m̂k̂
]. Using (6.1), we thus

expect to see a period of lateral growth for dimensionless viscosities at least larger than
M36/35

k̂
∼ Mk̂ = 100.

We performed a series of simulations spanning a wide range of values of Mk̂ from
10−3 to 103 for which the simulations were run long enough to observe a cessation of
horizontal growth. We report in figure 8 the evolution of the maximum breadth of the
buoyant fracture with Mk̂. As expected, in the toughness-dominated limit Mk̂ < 1, the
fracture breadth remains close to the K̂ limit. The maximum breadth then increases with
Mk̂, from the Garagash & Germanovich (2014) b ∼ π−1/3	b solution for Mk̂ < 10−2, up
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Figure 9. Evolution of fracture breadth and length for intermediate fractures without a uniform breadth
Mk̂ ∈ [102, 2 × 103] (the simulation with Mk̂ = ∞ is used as a reference). Dashed lines show fracture
breadth, continuous lines fracture height, and horizontal dash-dotted lines the expected time where lateral
growth stops. The emerging power laws are indicated.

to b ∼ 5	b for Mk̂ = 100. For values up to Mk̂ ∼ 100, we always observe a uniform
breadth along the fracture footprint, and no horizontal growth is observed after the
transition to buoyancy. These fractures have a clear finger-like shape. It is worth noting that
from their approximate 3-D toughness solution, Garagash & Germanovich (2014) obtain
a lower value (Mk̂ ≈ 0.92) as a criterion for no further horizontal growth. Accounting
for fully 3-D effects, the domain of ‘finger-like’ fracture shapes is seen to extend up
to Mk̂ = 100.

For values Mk̂ > 100, the fractures have a distinctly different late-time shape akin to
an inverted cudgel (non-uniform horizontal breadth) with an ultimately fixed maximum
horizontal breadth. We recover the predicted evolution of the maximum breadth (6.2a,b)
as M2/5

k̂
	b (red stars in figure 8). A fit of our numerical results actually provides

maxz,t{b(z, t)} ≈ 0.6858M2/5
k̂

	b for Mk̂ ∈ [102, 2 × 103]. Using this fitted pre-factor on
the breadth evolution, assuming b ∼ bm̂(t) before stabilization, we estimate the time for
breadth stabilization to be ∼0.22tx

m̂k̂
. We show graphically in figure 9 that this estimation

agrees fairly well with the numerical results. For the reported simulations, the fracture
length ultimately evolves linearly in time (indicated by a 1 : 1 slope in figure 9) as
	(t)/	mm̂ ∼ M−6/35

k̂
(t/tmm̂).

We also performed simulations for Mk̂ > 103, which, however, did not reach the arrest
of horizontal growth within a reasonable computational time limit. It is worth pointing
out that from these numerical results, the self-similar viscous (Mk̂ = ∞) evolution is
actually visible at intermediate times only for dimensionless viscosities larger than 104 (see
figures 4c,d).

7. Discussion

7.1. Orders of magnitude
In nature, buoyant HFs are suggested to be a major contributor to the transport of
magma through the lithosphere (Rivalta et al. 2015). For such cases, data collection
is difficult and often restricted to the investigation of outcrops from dykes. A broad
range of rarely well-constrained parameters is possible. We thus only briefly illustrate
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Figure 10. (a) Comparison of the experiments of Heimpel & Olson (1994) with our simulations. The
experiment takes place within the transient, and the initiation already favours the buoyant propagation.
(b) Comparison of estimated and observed breadth for two experimental studies.

the emergence of dykes using the following parameters (Möri & Lecampion 2021):
E′ ∼ 10 GPa, KIc ∼ 1.5 MPa m1/2, μf = 100 Pa s, Δρ ∼ 250 kg m−3, and a low value of
the release rate Qo ∼ 1 m3 s−1. For this set of parameters, the dyke intrusion is strongly
viscosity-dominated with Mk̂ ≈ 3.29 × 106, and has a maximum lateral extent of tens of
kilometres. The use of a higher release rate would linearly increase the value of Mk̂ and
thus only render the growth more viscosity-dominated. The corresponding fracture height
easily exceeds the thickness of the lithosphere, as already pointed out by Lister (1990b).
As a result, such large extents will necessarily clash with the length scales of stress and
material heterogeneities. It also indicates the very strong effect of buoyancy on upward
growth.

7.2. Comparison with experiments
Various experiments on buoyant fractures have been performed in the laboratory (Heimpel
& Olson 1994; Ito & Martel 2002; Rivalta, Böttinger & Dahm 2005; Taisne & Tait
2009; Taisne, Tait & Jaupart 2011). Most of these experiments consist of a finite (not
continuous) release, and aim at investigating various mechanisms (arrest due to material
heterogeneities among other things). In figure 10(a), we evaluate the evolution of the
fracture velocity with time for the experiments performed by Heimpel & Olson (1994).
The data in their figure 2 are transformed to correspond to our scaled velocity and time.
All experimental parameters except the release rate Qo are taken from Heimpel & Olson
(1994). The good match of figure 10(a) was obtained using an estimate of the release
rate Qo ∼ 10−8 m3 s−1. The corresponding dimensionless viscosities are in the range
Mk̂ ∈ [8.8 × 10−8, 2.3 × 10−3] (see details in the supplementary material available at
https://doi.org/10.1017/jfm.2022.800). When superimposing their velocity evolution onto
our numerical results for Mk̂ ∈ [10−3, 10−1], we observe that their experiments start in
the transition between the radial and buoyant regimes. In other words, their experiments
are situated within the accelerating phase, and their velocities tend to stabilize only towards
the very end of the experiment. Some experiments show a deceleration but do not quite
reach a constant velocity as the time to overcome the transient (t/tkk̂ ≈ 14) is reached
in none of the experiments. This is a direct consequence of the limited sample size,
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which is insufficient in all experiments to reach the end of the transient regime (see
details in the supplementary material available at https://doi.org/10.1017/jfm.2022.800).
We thus conclude that these experiments are strongly influenced by their initial conditions
(a too-large initial notch) and the finiteness of the specimens, which prevents them from
reaching the constant terminal velocity.

As described in § 4.2, in that range of such low dimensionless viscosities, we can
nevertheless compare the fracture breadth in the transient phase. We could extract
information on the fracture breadth from two contributions, albeit with uncertainties
on some reported parameters. We assume that for such toughness-dominated buoyant
fractures, the K̂ solution of Garagash & Germanovich (2022) is also valid in the case
of a finite volume release, which allows us to use the data from Taisne & Tait (2009). In
figure 10(b), we report the measured breadth bexp and compare it to the limiting 3-D K̂ GG
(2014) solution π−1/3	b. The breadth is generally underestimated for both contributions.
In most cases, the extension of the fracture in these experiments clashes with the finite
size of the sample, and the initial notch size might be inadequate. These boundary and
initiation effects may also modify the linear gradient of the background stress and thus
render the evaluation of Δγ erroneous.

7.3. Possibility of approximate solutions
The computational cost of the reported simulations is considerable and tests the limits
of the numerical solver used herein (see § 2.2 for details). For example, the simulations
presented in figures 2 and 4 took between two and two and a half weeks on a multithreaded
Linux desktop system with twelve Intel� Core i7-8700 CPUs, and used at most 30 GB of
RAM. Such requirements are common for the simulations presented in this paper.

Interestingly, our results point to the possible development of reduced-order pseudo-3-D
models (Adachi & Peirce 2008; Adachi, Detournay & Peirce 2010) that would inevitably
be much more efficient computationally. For example, the 3-D K̂ GG (2014) solution of
Garagash & Germanovich (2022) is based on a finger-like fracture approximation for the
tail while keeping a complete description of the elasticity in the head region. We could
demonstrate the validity of this assumption as discussed in § 4. Employing the knowledge
gained from our results, the development of accurate and computationally efficient models
similar to the ones presented in Dontsov & Peirce (2015) may be possible. The solution
derived in Lister (1990b) is based on a similar approach for the zero-toughness case. We
could show that this approach works fairly well within the source region but fails to capture
the transition to the head region, which has not been prescribed in the work of Lister
(1990b). The insights gained from our simulations (see § 5.1) could be used to develop
further an enhanced pseudo-3-D model for the viscous case. Such a model could then
possibly bridge the source region solution of Lister (1990b) with a viscous head.

8. Conclusions

For a homogeneous linear elastic solid subjected to a linear background confining
stress and a Newtonian fluid, using numerical simulations and scaling analysis, we
have shown that under a constant release rate, the growth of 3-D buoyant fractures is
governed by a single dimensionless number Mk̂ (see (3.9)). It is worth emphasizing
the very large computational cost of the simulations reported here, which span more
than ten, respectively twenty, orders of magnitude in space and time. They reach the
computational limit of our current implementation of the ILSA. Nonetheless, from this
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Figure 11. Propagation diagram for 3-D buoyant fractures under a continuous fluid release. Radial growth is
initially viscosity-dominated (M). Transition to buoyancy occurs either before (Mk̂ � 1) or after (Mk̂ 	 1)
the transition to radial toughness-dominated growth. At late times, a family of buoyancy-driven solutions as a
function of Mk̂ (see (3.9)) emerges. The large toughness limit (§ 4) is reached for values Mk̂ � 10−2, whereas
the zero-toughness solution (§ 5) appears at intermediate times t ∈ [100tmm̂, tx

m̂k̂
] for Mk̂ � 104.

series of simulations, we have shown that a family of buoyant hydraulic fractures (HFs)
emerges at late times as a function of Mk̂. The solution phase space can be summarized
in the diagram displayed in figure 11. At early time, all fractures start with a radial
shape and are initially dominated by viscous dissipation (M), and remain radial for times
lower than the buoyancy transition time scales (3.6a,b). Depending on the ratio between
the radial viscosity to toughness transition time scale tmk (without buoyancy) and the
viscous buoyancy transition time scale tmm̂ (or tkk̂), encapsulated in the definition of
the dimensionless viscosity Mk̂ in (3.9), a family of solutions exists at late time when
buoyancy dominates. If the transition to buoyancy occurs when the HF is already in the
toughness-dominated regime (Mk̂ � 10−2), then the late time growth is well captured by
the K̂ approximate solution of Garagash & Germanovich (2014). In this limit of large
toughness, the buoyant HF has a distinct toughness-dominated head with a constant
volume and shape, and a viscosity-dominated tail that governs its upward growth. For
an intermediate range Mk̂ ∈ [10−2, 102], the fracture remains finger-like with a uniform
breadth for each cross-section, albeit with an increasing breadth with Mk̂. Above Mk̂ >

100, the HFs exhibit an inverted cudgel shape at late time (the breadth is no longer
spatially uniform in the tail), and the maximum horizontal breadth increases as M2/5

k̂
	b

as horizontal growth occurs until a given time tx
m̂k̂

(see (6.1)). For values Mk̂ � 104,

a zero-toughness self-similar M̂ limit (§ 5) can be observed at intermediate times. This
self-similar M̂ viscosity-dominated limit exhibits an ever-increasing breadth in association
with thezero-toughness assumption. The scaling of the M̂, regime originally presented in
Lister (1990b), is confirmed by our numerical results. In that limit, the viscous head is
slowly depleting with time with a centreline evolution akin to the known 2-D plane-strain
near-tip asymptotic solution at late time. It might be possible to develop an approximate
solution for that viscous limit along similar lines as in the toughness-dominated

950 A12-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

80
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.800


3-D buoyant hydraulic fractures: constant release

Radial Elongated

M K M̂ (tail) M̂ (head) K̂ (tail) K̂ (head)

	∗
E′1/9Q1/3

o t4/9

μ′1/9
E′2/5Q2/5

o t2/5

K2/5
Ic

Q1/2
o Δγ 1/2 t5/6

E′1/6μ′1/3
E′11/24Q1/8

o μ′1/6

Δγ 5/8 t1/24
Q2/3

o Δγ 7/9 t

K4/6
Ic μ′1/3

	b

b∗ 	∗ 	∗
E′1/4Q1/4

o t1/4

Δγ 1/4 	∗ 	b = K2/3
Ic

Δγ 2/3 	∗

w∗
Q1/3

o μ′2/9t1/9

E′2/9

K4/5
Ic Q1/5

o t1/5

E′4/5
Q1/4

o μ′1/3

E′1/12 Δγ 1/4 t1/12 wtail∗
Q1/3

o μ′1/3

K2/9
Ic Δγ 1/9

wkk̂

V∗ Qot Qot Qot − Vhead∗
E′5/6Q1/2

o μ′2/3

Δγ 3/2 t1/6 Qot − Vhead∗
K8/3

Ic

E′ Δγ 5/3

p∗
E′2/3μ′1/3

t1/3

K6/5
Ic

E′1/5Q1/5
o t1/5

E′2/3μ′1/3

t1/3
E′11/24Q1/8

o Δγ 3/8 μ′1/6

t1/24
E′ Δγ 5/9 Q1/3

o μ′1/3

K8/9
Ic

pkk̂

Ps Km = (t/tmk)
1/9 Mk = (t/tmk)

−2/5 Km̂,x = M−3/14
k̂

(t/tmm̂)5/24 Mk̂ = μ′ QoE′3 Δγ 2/3

K14/3
Ic

Bm = (t/tmm̂)7/9 Bk = (t/tkk̂)
3/5

Table 3. Characteristic scales (and governing dimensionless parameters Ps) in the different scalings.

case when combining the source solution and the near-tip viscous head. A finite
toughness always ensures an ultimate arrest of horizontal growth at a characteristic
time tx

m̂k̂
= M36/35

k̂
tmm̂ for which the horizontal dimensionless toughness becomes of

order 1. Besides their final shapes, another important difference between buoyant
toughness-dominated HFs and viscous ones lies in the transition to the buoyant regime.
For toughness-dominated fractures, a significant vertical acceleration (∝ M−1/3

k̂
) is

observed, whereas viscosity-dominated fractures have a smoother vertical acceleration
thanks to horizontal growth.

Natural magmatic buoyant fractures are likely always viscosity-dominated, while on the
other hand, all laboratory experiments have been performed under toughness-dominated
conditions. It appears that even in the toughness regime, precise experiments are still
lacking quantitative comparison with the theoretical predictions reported here for buoyant
fractures. Orders of magnitude for magmatic dykes also indicate that their horizontal
and vertical extents will necessarily clash with length scales of stress and material
heterogeneities at late times. These heterogeneities, as well as the possibility of fluid
exchange with the surrounding rock and thermal effects, may play a critical role in the
growth and potential arrest of buoyant HFs on their way towards the surface. The interplay
of these effects on linear HF mechanics growth remains to be investigated. Finally, most
fluid releases are of a finite volume rather than having an ever-ongoing release at a constant
injection rate. This particular problem is part of ongoing research and is essentially based
on the findings presented in this paper.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.800.
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t 	∗ = b∗ w∗ p∗

M → K tmk = E′13/2Q3/2
o μ′5/2

K9
Ic

	mk = E′3Qoμ
′

K4
Ic

wmk = E′1/2Q1/2
o μ′1/2

KIc
pmk = K3

Ic

E′3/2Q1/2
o μ′1/2

M → M̂ tmm̂ = E′5/7μ′4/7

Q3/7
o Δγ 9/7

	mm̂ = E′3/7Q1/7
o μ′1/7

Δγ 4/7 wmm̂ = Q2/7
o μ′2/7

E′1/7 Δγ 1/7 pmm̂ = E′3/7Q1/7
o μ′1/7 Δγ 3/7

K → K̂ tkk̂ = K8/3
Ic

E′Qo Δγ 5/3 	kk̂ = 	b = K2/3
Ic

Δγ 2/3 wkk̂ = K4/3
Ic

E′ Δγ 1/3 pkk̂ = K2/3
Ic Δγ 1/3

Table 4. Transition scales between regimes. The toughness head scales in table 3 correspond to the transition
scales K → K̂.
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Appendix. Recapitulating tables of scales

For completeness, we list all the scales used within this paper in tables 3 and 4. A Wolfram
Mathematica notebook containing their derivation and the different scalings is further
provided in the supplementary material available at https://doi.org/10.1017/jfm.2022.800.
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