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Safety-compliant Generative Adversarial Networks
for Human Trajectory Forecasting

Parth Kothari and Alexandre Alahi

Abstract—Human trajectory forecasting in crowds presents
the challenges of modelling social interactions and outputting
collision-free multimodal distribution. Following the success of
Social Generative Adversarial Networks (SGAN), recent works
propose various GAN-based designs to better model human
motion in crowds. Despite superior performance in reducing
distance-based metrics, current networks fail to output so-
cially acceptable trajectories, as evidenced by high collisions
in model predictions. To counter this, we introduce SGANv2:
an improved safety-compliant SGAN architecture equipped with
spatio-temporal interaction modelling and a transformer-based
discriminator. The spatio-temporal modelling ability helps to
learn the human social interactions better while the transformer-
based discriminator design improves temporal sequence mod-
elling. Additionally, SGANv2 utilizes the learned discriminator
even at test-time via a collaborative sampling strategy that not
only refines the colliding trajectories but also prevents mode
collapse, a common phenomenon in GAN training. Through
extensive experimentation on multiple real-world and synthetic
datasets, we demonstrate the efficacy of SGANv2 to provide
socially-compliant multimodal trajectories.

Index Terms—Trajectory forecasting, generative adversarial
networks, transformers, multimodality

I. INTRODUCTION

Forecasting the motion of pedestrians in crowds is essential
for autonomous systems like self-driving cars and social robots
that will potentially co-exist with humans. To successfully
predict how humans navigate in crowds, a forecasting model
needs to tackle three crucial challenges:
(1) Modelling social interactions: the model should learn how
the trajectory of one person affects another person;
(2) Physically acceptable outputs: the model predictions
should be physically acceptable, i.e., not undergo collisions;
(3) Multimodality: given the history, the model needs to be
able to output all futures without missing any mode.

The objective of multi-modal trajectory forecasting is to
learn a generative model over future trajectories. Genera-
tive adversarial networks (GANs) [1] are a popular choice
of generative models for trajectory forecasting as they can
effectively capture all possible future modes by mapping
samples from a given noise distribution to samples in real data
distribution. Gupta et al. [2] proposed Social GAN (SGAN),
GANs with social mechanisms, to learn human interactions
and output multimodal trajectories. Following the success of
SGAN, recent works [3]–[6] have proposed improved GAN
architectures to better model human interactions in crowds.
Indeed, these designs have been successful in reducing the
distance-based metrics on real-world datasets [3]. However,
we discover that they fail to model social interactions i.e., the
models output colliding trajectories.

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

Fig. 1: Given the history (solid), a forecasting model needs
to account for social rules of human motion when predicting
collision-free multimodal futures (dash). SGANv2 learns so-
cial interactions using spatio-temporal interaction modelling
and refines unsafe outputs via collaborative sampling strategy.

The failure to output collision-free trajectories can be at-
tributed to the fact that the current discriminator designs
do not fully model human-human interactions; hence they
are incapable of differentiating real trajectory data from fake
data. Only when the discriminator is capable of differenti-
ating real data from fake data, can the supervised signal
from it be meaningful to teach the generator. To tackle this
issue, we propose two architectural changes to the SGAN
design: (1) Spatio-temporal interaction modelling to better
discriminate between real and generated trajectories. (2) A
transformer-based discriminator design to strengthen the se-
quence modelling capability and better guide the generator
training. Equipped with these structural changes, our proposed
architecture SGANv2, learns to better model the underlying
etiquette of human motion as evidenced by reduced collisions.

To further reduce the prediction collisions, SGANv2 lever-
ages the trained discriminator even at test time. In particular,
we perform collaborative sampling [10] between the generator
and discriminator at test-time to guide the unsafe trajectories
sampled from the generator. Additionally, we empirically
demonstrate that collaborative sampling not only helps to
refine trajectories but also has the potential to prevent mode
collapse, a phenomenon where the generator fails to capture
all modes in the output distribution.

We empirically validate the efficacy of SGANv2 in out-
putting socially compliant predictions on both synthetic and
real-world trajectory datasets. First, we shed light on the
shortcomings of the current metric commonly used to mea-
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Method Generative Model
Spatio-temporal

Interaction Modelling
in Generator

Multimodal
Spatio-temporal

Interaction Modelling
in Discriminator

Discriminator
Design

Test-time
Refinement

S-LSTM [7] – X 7 – – 7
DESIRE [8] VAE X X – – X
Trajectron [9] VAE X X – – 7
SGAN [2] GAN 7 X 7 RNN 7
S-BiGAT [3] GAN X X 7 RNN 7
SGANv2 [Ours] GAN X X X Transformer X

TABLE I: High-level comparison of proposed architecture against selected common generative model-based forecasting models.

sure the multimodal performance, namely Top-20 ADE/FDE
[2]. Specifically, we demonstrate that a simple predictor that
outputs uniformly spaced predictions performs at par with the
state-of-the-art methods when evaluated using only Top-20
ADE/FDE. To counter this limitation, we propose an alternate
evaluation scheme to better measure the socially-compliant
multimodal performance of a model. We demonstrate that
SGANv2 outperforms competitive baselines on both synthetic
and real-world trajectory datasets under the new evaluation
scheme. Finally, we demonstrate the ability of collaborative
sampling to prevent mode collapse on the recently released
Forking Paths [11] dataset. Our main contributions are:

1) We propose SGANv2, an improved SGAN architecture
that incorporates spatio-temporal interaction modelling in
both the generator and the discriminator. Moreover, our
transformer-based discriminator better guides the learning
process of the generator.

2) We demonstrate the efficacy of collaborative sampling
between the generator and discriminator at test-time to
reduce prediction collisions and prevent mode collapse
in trajectory forecasting.

II. RELATED WORK

Human trajectory forecasting in crowds has been an active
area of research [7], [12]–[29] for various applications like
autonomous systems [30]–[33] and advanced surveillance [34].
In this section, we review model designs that learn social
interactions and output socially compliant multimodal outputs.
Table I provides a high-level overview of how SGANv2 archi-
tecture differs from selected generative model-based designs.

Spatio-temporal interaction modelling. The seminal work
of Social LSTM [7] proposed to learn spatial interactions
in a data-driven manner with a novel social pooling layer.
Following the success of Social LSTM, various designs of
data-driven interaction modules have been proposed [2], [9],
[15], [16], [18], [20], [28], [35]–[42] to effectively model
interactions in crowds. For a detailed taxonomy on the designs
of interaction modules, one can refer to Kothari et al. [43]. In
this work, we highlight the importance of modelling both the
spatial and temporal nature of social interactions.

Architectures that model dynamics of entities in spatio-
temporal tasks have been well-studied. Structural-RNN [44],
a specialized RNN design, proposed to model dynamics in
spatio-temporal tasks like human-object interaction and driver
maneuver anticipation. Specific to motion forecasting, several

works consider the temporal evolution of spatial human in-
teractions using recurrent mechanisms [14], [42], [45], graph
convolutional networks [15], [46] as well as transformers [18].
However, many recent works advocated performing spatial
interaction modelling only at the end of observation [2], [3],
as this strategy did not impact the distance-based metrics
and saved computational time. In this work, we study the
importance of spatio-temporal interaction modelling from the
perspective of reducing the collisions in model outputs.

Multimodal forecasting. Neural networks trained using 𝐿2
loss are condemned to output the average of all possible
outcomes. To tackle this, one line of work proposes 𝐿2 loss
variants [14], [47]–[49] capable of handling multiple hypothe-
ses. However, these variants fail to penalize low quality pre-
dictions, e.g., samples that are far away from the ground truth
and undergo collisions. Thus, training using these variants can
result in high diversity but low quality predictions.

Another line of work utilizes generative models [2], [3],
[6], [8], [9], [50], with Variational Autoencoders (VAEs)
and Generative Adversarial networks (GANs) being the most
popular, to model future trajectory distribution. VAE models
in trajectory forecasting [8], [9] employ a loss objective
based on different variants of the euclidean distance. Such a
formulation leads to low quality samples especially when the
predictions are uncertain [51]. In contrast, the discriminator of
the GAN framework acts as a learned loss function that nat-
urally penalizes the low quality samples under the adversarial
training objective i.e., penalty is incurred on the generator if
a sample does not look real [1]. Thus, we choose GANs as
our generative model as they can effectively produce diverse
and high-quality modes by transforming samples from a noise
distribution to samples in the real data.

GANs in trajectory forecasting. SGAN [2] used an LSTM
encoder-decoder with social mechanisms within the GAN
framework [52] to perform multimodal forecasting. Follow-
ing the success of SGAN, various GAN-based architectures
have been proposed to better model multimodality in crowds
[3], [6], [53] as well as on roads [54], [55]. Yuke Li [53]
proposed to infer the latent decisions of the agents to model
multimodality. Kosaraju et. al. [3] proposed to introduce two
discriminators: a local discriminator for the local pedestrian
trajectories, similar to [2], [6], and a global discriminator that
accounted for the spatial interactions. All these works exhibit
two common design choices: (1) they do not perform spatio-
temporal interaction modelling within the discriminator, (2)
they utilize a recurrent LSTM-based discriminator.
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Fig. 2: Our proposed SGANv2 model: Our model consists of three main parts: the spatial interaction embedding module (SIM),
the generator (G) and the discriminator (D). At each time-step, for each pedestrian, the SIM outputs the motion embedding
and the spatial interaction embedding. G encodes the input embedding sequence using the encoder LSTM to obtain the latent
representation. The latent representation along with the sampled noise vector 𝑧 is used to generate multimodal predictions using
the decoder LSTM. D inputs the stacked embedding sequence of real (or fake) trajectories, encodes it using the transformer
architecture to obtain the real (or fake) score.

It is crucial to equip the discriminator with the ability
to model spatio-temporal interactions. Therefore, SGANv2
performs spatio-temporal interaction modelling within the
discriminator, along with the generator. Transformers [56]
have been shown to outperform RNNs in almost all sequence
modelling tasks, including trajectory forecasting [17], [57].
Therefore, we design our discriminator using the transformer
and demonstrate that it better guides the generator training.
Giuliari et al. [17] do not take into account social interactions
leading to high collisions in the outputs. The spatio-temporal
transformer design of STAR [18] is most closely related to
the design of our discriminator. However, as discussed above,
their 𝐿2 loss training objective can fail to effectively model
multimodality. Further, in contrast to previous transformer and
GAN-based works, SGANv2 performs test-time refinement
that leads to further collision reduction, discussed next.

Test-time Refinement. This refers to the task of refining
model predictions at test-time. Lee et al. [8] propose an
inverse optimal control based module to refine the predicted
trajectories. Sun et al. [58] refine trajectories using a reciprocal
network that reconstructs input trajectories given the predic-
tions. However, they rely on the strong assumption that both
forward and backward trajectories follow identical rules of
human motion. We propose to refine trajectories by performing
collaborative sampling between the trained generator and dis-
criminator [10]. This technique provides theoretical guarantees
with respect to moving the generator distribution closer to real
distribution.

Mode Collapse. This is the phenomenon where the genera-
tor distribution fails to capture all modes of target distribution.

SGAN collapses to a single mode of behavior. Social Ways
[59] utilizes InfoGAN that overcomes this issue albeit on a toy
dataset. We empirically show that the collaborative sampling
technique in SGANv2 overcomes mode collapse on the more-
diverse Forking Path dataset [11].

III. METHOD

Modelling human trajectories using generative adversarial
networks (GANs) has the potential to learn the underlying
etiquette of human motion and output realistic multimodal
predictions. Indeed, recent GAN-based trajectory forecast-
ing models have been successful in reducing distance-based
metrics, however they suffer from high prediction collisions.
In this section, we present SGANv2, an improvement over
the SGAN architecture to output safety-compliant predictions.
On a high level, we propose three structural changes: (1)
Spatio-temporal interaction modelling within the discriminator
and generator to better understand social interactions, (2)
Transformer-based discriminator to better guide the generator,
(3) Collaborative sampling mechanism between the generator
and discriminator to refine the colliding trajectories at test-
time. Our proposed changes are generic and can be employed
on top of any existing GAN-based architecture.

A. Problem Definition

Given a scene, we receive as input the trajectories of all
people within the scene denoted by X = {𝑋1, 𝑋2, ...𝑋𝑛}, where
𝑛 is the number of people in the scene. The trajectory of a
person 𝑖, is defined as 𝑋𝑖 = (𝑥𝑡

𝑖
, 𝑦𝑡

𝑖
), for time 𝑡 = 1, 2...𝑇𝑜𝑏𝑠

and the future ground-truth trajectory is defined as 𝑌𝑖 = (𝑥𝑡
𝑖
, 𝑦𝑡

𝑖
)
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for time 𝑡 = 𝑇𝑜𝑏𝑠 + 1, ...𝑇𝑝𝑟𝑒𝑑 . The objective is to accurately
and simultaneously forecast the future trajectories of all people
Ŷ = 𝑌1, 𝑌2...𝑌𝑛, where 𝑌𝑖 is used to denote the predicted
trajectory of person 𝑖. The velocity of a pedestrian 𝑖 at time-
step 𝑡 is denoted by 𝑣𝑡

𝑖
.

B. Generative Adversarial Networks

GANs consist of two neural networks, namely the generator
𝐺 and the discriminator 𝐷, which are trained together in
tandem. The objective of 𝐷 is to correctly identify whether
a sample belongs to the real data distribution or is generated
by the generator. The objective of 𝐺 is to produce realistic
samples which can fool the discriminator. 𝐺 takes as input
a noise vector 𝑧 sampled from a given noise distribution 𝑝𝑧
and transforms it into a real looking sample 𝐺 (𝑧). 𝐷 outputs
a probability score indicating whether a sample comes from
the generator distribution 𝑝𝑔 or the real data distribution 𝑝𝑟 .
Training GANs is essentially a minimax game between the
generator and the discriminator:

min
𝐺

max
𝐷
E𝑥∼𝑝𝑟 [log(𝐷 (𝑥))] + E𝑧∼𝑝𝑧 [1 − log(𝐷 (𝐺 (𝑧)))] . (1)

C. Interaction Modelling Designs

Modelling social interactions is the key to outputting safe
and accurate future trajectories. In this work, we argue that
current works do not model interactions between agents suffi-
ciently within both the generator and discriminator leading to
large number of prediction collisions. Here, we differentiate
between the notion of performing spatial interaction modelling
and performing spatio-temporal interactions modelling. On
one hand, an architectural design is said to perform spatial
interaction modelling if it models the interaction between
pedestrians at a single time-step only. For instance, SGAN
performs spatial interaction modelling within the generator as
it encodes the neighbourhood information only once, at the end
of the observation. On the other hand, an architectural design
is said to perform spatio-temporal interaction modelling if
it performs the spatial interaction modelling at every time-
step (from 𝑡 = 1 to 𝑡 = 𝑇𝑝𝑟𝑒𝑑) and the temporal evolution
of the interactions are captured using any sequence encoding
mechanism, e.g., an LSTM or a Transformer. We empirically
demonstrate that spatio-temporal interactions modelling within
both the generator and the discriminator are essential to output
safer trajectories.

D. SGANv2

We now describe our proposed model design in detail (see
Fig. 2). Our architecture consists of three key components: the
Spatial Interaction embedding Module (SIM), the Generator
(G), and the Discriminator (D). SIM is responsible for spatial
interaction modelling while the G and D perform temporal
modelling. Thus, G and D in congregation with SIM perform
spatio-temporal interaction modelling (STIM). In particular,
SIM performs motion embedding and spatial interaction em-
bedding for each pedestrian at each time-step. G encodes
the embedded sequence through time and outputs multimodal

predictions using an LSTM encoder-decoder framework. D,
modelled using a transformer [56], inputs the entire sequence
comprising the observed trajectory X and the future prediction
Ŷ (or ground-truth Y), and classifies it as real/fake.

Spatial Interaction Embedding Module. One important
characteristic that differentiates human motion forecasting
from other sequence prediction tasks is the presence of social
interactions: the trajectory of a person is affected by other
people in their vicinity. SIM performs the task of encoding
human motion and human-human interactions in the spatial
domain at a particular time-step. We embed the velocity 𝑣𝑡

of pedestrian 𝑖 at time 𝑡 using a single layer MLP to get the
motion embedding vector 𝑒𝑡

𝑖
given as:

𝑒𝑡𝑖 = 𝜙(𝑣𝑡𝑖 ;𝑊𝑒𝑚𝑏), (2)

where 𝜙 is the embedding function with weights 𝑊𝑒𝑚𝑏 .
The design of SIM is flexible and it can utilize any spatial

interaction module proposed in literature [3], [43]. It embeds
the spatial configuration of the scene and outputs the inter-
action embedding 𝑝𝑡

𝑖
for pedestrian 𝑖 at time-step 𝑡. We then

concatenate the motion embedding with the spatial interaction
embedding, i.e., 𝑠𝑡

𝑖
= [𝑒𝑡

𝑖
; 𝑝𝑡

𝑖
], and provide the concatenated

embedding 𝑠𝑡
𝑖

to the G (or the D). The input embedding is
constructed using the ground-truth observations from [1, 𝑇𝑜𝑏𝑠],
and generator predictions from [𝑇𝑜𝑏𝑠 + 1, 𝑇𝑝𝑟𝑒𝑑].

Generator. Within the generator, the encoder LSTM en-
codes the input embedding sequence provided by the SIM.
The encoder LSTM helps to model the temporal evolution of
spatial interactions in the form of the following recurrence:

ℎ𝑡𝑖 = 𝐿𝑆𝑇𝑀𝑒𝑛𝑐 (ℎ𝑡−1
𝑖 , 𝑠𝑡𝑖 ;𝑊encoder), (3)

where ℎ𝑡
𝑖

denotes the hidden state of pedestrian 𝑖 at time 𝑡,
𝑊encoder are the weights of encoder LSTM that are learned.

The output of the LSTM encoder for each pedestrian at the
end of the observation period represents his/her observed scene
representation. Similar to SGAN, we utilize this representation
to condition our GAN for prediction. In other words, SGANv2
take as input noise 𝑧 and the observed scene representation to
produce future trajectories that are conditioned on the past
observations. The decoder hidden-state of each pedestrian is
initialized with the final hidden-state of the encoder LSTM.
The input noise 𝑧 is concatenated with the inputs of the
decoder LSTM, resulting in the following recurrence for the
decoder LSTM:

ℎ𝑡𝑖 = 𝐿𝑆𝑇𝑀𝑑𝑒𝑐 (ℎ𝑡−1
𝑖 , [𝑠𝑡𝑖 ; 𝑧𝑖];𝑊decoder), (4)

where 𝑊decoder are the weights of decoder LSTM.
The decoder hidden-state at time-step 𝑡 of pedestrian 𝑖 is

then used to predict the next velocity at time-step 𝑡 + 1.
Similar to Alahi et al. [7], we model the next velocity as
a bivariate Gaussian distribution parametrized by the mean
𝜇𝑡+1 = (𝜇𝑥 , 𝜇𝑦)𝑡+1, standard deviation 𝜎𝑡+1 = (𝜎𝑥 , 𝜎𝑦)𝑡+1 and
correlation coefficient 𝜌𝑡+1:

[𝜇𝑡 , 𝜎𝑡 , 𝜌𝑡 ] = 𝜙𝑑𝑒𝑐 (ℎ𝑡−1
𝑖 ,𝑊norm), (5)

where 𝜙𝑑𝑒𝑐 is an MLP and 𝑊𝑛𝑜𝑟𝑚 is learned.
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Discriminator. The social interactions between humans
evolve with time. Therefore, we design our discriminator
to perform spatio-temporal interaction modelling. Also, in
recent times, transformers [56] have become the de-facto
model for modelling temporal sequences, replacing recurrent
architectures [17], [18]. Therefore, we design the discriminator
as a transformer to perform the temporal sequence modelling
of the output provided by SIM.

The discriminator takes as input Trajreal = [X,Y] or
Trajfake = [X, Ŷ] and classifies them as real/fake. The discrim-
inator has its own SIM, which provides the spatial interaction
embedding 𝑠𝑡

𝑖
for each pedestrian 𝑖 at each time-step 𝑡 in

the input sequence. Instead of passing 𝑠𝑡
𝑖

through an LSTM
(similar to the generator), we stack these embedded vectors
together to form an embedded sequence 𝑆𝑖 for each pedestrian
𝑖 (similar to an embedded sequence obtained after embedding
word tokens in the field of natural language [56]):

𝑆𝑖 = [𝑠1𝑖 ; 𝑠2𝑖 ; . . . 𝑠
𝑇𝑝𝑟𝑒𝑑

𝑖
] . (6)

This sequence 𝑆𝑖 is given as input to the encoder of the
transformer proposed in [56]. The ability of transformers to
capture the temporal correlations within the spatial interaction
embedding lies mainly in its self-attention module. Within
the attention module, each element of the sequence 𝑆𝑖 is
decomposed into query (Q), key (K) and value (V). The matrix
of outputs is computed using the following equation [56]:

Attention(𝑄, 𝐾,𝑉) = softmax
(
𝑄𝐾𝑇

√
𝑑𝑘

)
𝑉, (7)

where 𝑑𝑘 is the dimension of the SIM embedding 𝑠𝑡
𝑖
. The

output of the attention layer is normalized and passed through
a feedforward layer to obtain the latent representation of the
input sequence, denoted by 𝑅𝑖:

𝑅𝑖 = max(0, 𝐴𝑖 ∗𝑊1 + 𝑏1) ∗𝑊2 + 𝑏2, (8)

where the weights 𝑊1,𝑊2, 𝑏1, 𝑏2 are learned, ∗ represents
matrix multiplication and 𝐴𝑖 denotes the normalized repre-
sentation of the output of the attention module. We utilize the
last element of 𝑅𝑖 , as the representation of the input sequence.
This embedding gets scored using an MLP 𝜙𝑑 to determine if
the sequence is real or fake.

E. Training

As mentioned earlier, SGANv2 is a conditional GAN model.
It takes as input noise vector 𝑧, sampled from N(0, 1), and
outputs future trajectories Ŷ conditioned on the past observa-
tions X. We found the least-square training objective [60] to
be effective in training SGANv2:

min
𝐺

L(𝐺) = 1
2
E𝑧∼𝑝𝑧 [(𝐷 (𝑋, 𝐺 (𝑋, 𝑧)) − 1)2], (9)

min
𝐷

L(𝐷) = 1
2
E𝑥∼𝑝𝑟 [(𝐷 (𝑋,𝑌 ) − 1)2] + 1

2
E𝑧∼𝑝𝑧 [(𝐷 (𝑋, 𝐺 (𝑋, 𝑧)))2]. (10)

Additionally, we utilize the variety loss [2] to further
encourage the network to produce diverse samples. For each
scene, we generate 𝑘 output predictions by randomly sampling

G
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D
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cr
im
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at
or

Generator output

Discriminator-refined output

Discriminator 
guided refinement

Fig. 3: Illustration of trajectory refinement using collaborative
sampling. The trained discriminator provides feedback to
improve the generated samples during test-time.

𝑧 and penalize the prediction closest to the ground-truth based
on L2 distance.

L𝑣𝑎𝑟𝑖𝑒𝑡 𝑦 = min
𝑘

‖𝑌 − 𝐺 (𝑋, 𝑧) (𝑘) ‖2
2. (11)

Following the strategy in [43], the generator predicts only
the trajectory of the pedestrian of interest in each scene and
uses the ground-truth future of neighbours during training.
During test time, we predict the trajectories of all the pedes-
trians simultaneously in the scene. All the learnable weights
are shared between all pedestrians in the scene.

F. Collaborative Sampling in GANs

The common practice in GANs is to sample from the gen-
erator and discard the discriminator during test time. However,
our trained discriminator has knowledge regarding the social
etiquette of human motion. We can utilize this knowledge to
refine the bad predictions proposed by the generator. We define
a prediction as bad if the pedestrian of interest undergoes
collision in the model prediction. We propose to refine such
trajectories by performing collaborative sampling [10] between
the generator and discriminator, as demonstrated in Fig. 3.

To summarize collaborative sampling for the case of trajec-
tory forecasting, our goal is to refine the generator prediction
using gradients from the discriminator without updating the
parameters of the generator. We leverage the gradient infor-
mation provided by the discriminator to continuously refine the
generator predictions of the pedestrian of interest 𝑖 through the
following iterative update:

𝑌𝑚+1
𝑖 = 𝑌𝑚

𝑖 − 𝜆∇L𝐺 (𝑌𝑚
𝑖 ), (12)

where 𝑚 is the iteration number, 𝜆 is the stepsize, L𝐺 is
the loss of the generator in Eq. 9. The authors demonstrate
that the above iteration process theoretically, under mild
assumptions, shifts the learned generator distribution towards
the real distribution [10]. The trajectories are updated till either
the discriminator score goes above a defined threshold or the
maximum number of iterations is reached.
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Model ETH HOTEL UNIV ZARA1 ZARA2
Top-3 Top-20 Col Top-3 Top-20 Col Top-3 Top-20 Col Top-3 Top-20 Col Top-3 Top-20 Col

Transformer† [17] 1.0/1.9 0.6/0.9 5.8 0.5/0.9 0.3/0.5 8.2 2.3/4.2 0.8/1.3 10.9 0.5/1.0 0.3/0.4 7.1 0.4/0.8 0.2/0.3 11.3
STGAT† [14] 0.9/1.8 0.7/1.2 1.7 0.7/1.4 0.5/1.0 4.2 0.6/1.2 0.3/0.7 13.9 0.4/0.9 0.2/0.4 3.9 0.4/0.7 0.2/0.4 6.9
Social-STGCNN† [15] 1.0/1.8 0.7/1.2 6.7 0.4/0.8 0.3/0.6 10.4 0.7/1.3 0.5/0.8 25.0 0.5/0.9 0.3/0.5 12.1 0.4/0.8 0.3/0.5 19.4
Uniform Predictor (UP) 1.1/2.2 0.6/0.9 3.3 0.5/0.9 0.2/0.4 5.1 0.6/1.3 0.3/0.6 15.7 0.5/1.0 0.3/0.6 4.7 0.4/0.8 0.2/0.4 7.5

SGANv2 [Ours] 1.0/1.9 0.7/1.2 1.0 0.4/0.7 0.3/0.5 1.2 0.6/1.3 0.5/0.8 8.3 0.4/0.8 0.3/0.6 1.3 0.3/0.7 0.3/0.5 2.2

TABLE II: Quantitative evaluation of various methods on ETH-UCY. Errors reported are Top-K ADE/FDE (in m) and collision
(in %). Only observing the Top-20 metric (as done by previous work) can lead to incorrect conclusions. We show that a high-
entropy uniform predictor is highly competitive with respect to state-of-the-art methods in multimodal forecasting using Top
20 metric. See Table IV for a more informative evaluation.

Fig. 4: 20 uniformly spread predictions (solid) of a handcrafted
predictor conditioned on the last observed velocity (dotted).

IV. EXPERIMENTS

In this section, we highlight the ability of SGANv2 to
output socially-compliant multimodal futures. We evaluate the
performance of our architecture against several state-of-the-
art methods on the ETH/UCY datasets [61], [62] and on the
interaction-centric TrajNet++ benchmark [43]. Additionally,
we highlight the potential of collaborative sampling to prevent
mode collapse on the Forking Paths [11] dataset. We evaluate
two variants of our model against various baselines:

• SGANv2 w/o CS: Our GAN architecture comprising of
a transformer-based discriminator that performs spatio-
temporal interaction modelling.

• SGANv2: Our complete GAN architecture in combina-
tion with collaborative sampling at test-time.

A. Evaluation Metrics

1) Top-K Average Displacement Error (ADE): Average
𝑙2 distance between ground truth and closest prediction
(out of k samples) over all predicted time steps.

2) Top-K Final Displacement Error (FDE): The distance
between the final destination of closest prediction (out of
k samples) and the ground truth final destination at the
end of the prediction period 𝑇𝑝𝑟𝑒𝑑 .

3) Prediction collision (Col) [43]: The percentage of col-
lision between the primary pedestrian and the neighbors
in the forecasted future scene.

B. Limitations of current multimodal evaluation scheme

Current multimodal forecasting works utilize metrics that
measure model performance at the individual level such as the
top-𝑘 ADE/FDE [2], [14]. This metric evaluates the quality of
the predicted distribution per pedestrian; and does not measure
the interaction between different pedestrians. Further, the value

of 𝑘 is very high (k=20 being most common). Almost all
the recent works [2], [3], [14], [17], [24] in human trajectory
forecasting utilize the Top-20 ADE/FDE metric [2] to quantify
multimodal performance. We argue that measuring multimodal
performance based solely on this metric can be misleading.

The Top-20 ADE/FDE metric can be easily cheated by
predicting a high entropy distribution that covers all the
space but is not precise [63]. We empirically validate this
claim by comparing state-of-the-art baselines against a simple
hand-crafted uniform predictor (UP). UP takes as input the
last observed velocity of each pedestrian and outputs 20
uniformly spread trajectories (see Fig 4). UP outputs 20 pre-
dictions using the combination of 5 different relative direction
profiles [0, 25, 50,−25,−50] (in degrees relative to current
direction of motion) and 4 different relative speed profiles
[1, 0.75, 1.25, 0.25] (factors of the current speed).

Table II compares the performance of recent state-of-the-
art methods [14], [15], [17] and UP on ETH-UCY datasets.
It is apparent that by observing the Top-20 metric only, UP
seems to perform better (or at par) against the state-of-the-art
baselines. If we note the prediction collisions, it is apparent
that UP is not a good multimodal predictor. This corroborates
our conjecture that a high entropy distribution can easily cheat
the Top-20 metric leading to incorrect conclusions.

C. Multimodal Evaluation Scheme

To counter the above issues with current multimodal evalu-
ation strategy, we propose to set 𝑘 to a lower value in our
experiments; as a lower 𝑘 is a better proxy for likelihood
estimation for implicit generative models [63]. Specific to our
problem, we will demonstrate that when 𝑘 is low (𝑘 = 3), the
uniform predictor due to a lack of modeling social interactions
performs poorly compared to interaction-based baselines [14],
[15]. Further, to measure the interaction-modelling capability,
we focus on the percentage of collisions between the primary
pedestrian and the neighbors in the forecasted future scene.

D. Synthetic Experiments

We first demonstrate the efficacy of our proposed architec-
tural changes in SGANv2 compared to other generative model
designs in the TrajNet++ synthetic setup. We observe that
SGANv2 greatly improves upon the Top-3 ADE/FDE metric
with a lower collision metric compared to training a model
using only variety loss (see Table III).
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Fig. 5: Illustration of collaborative sampling at test-time to reduce model collisions in both TrajNet++ synthetic and real-world
datasets. Given a generator prediction of the pedestrian of interest (blue) that undergoes collision with the neighbours (red),
our discriminator, equipped with spatio-temporal interaction modelling, provides feedback based on its learned understanding
human-human interactions. Consequently, the resulting refined prediction (green) does not undergo collision and in some cases,
is closer to the ground-truth (black)

Method Top-3 Col

CV* [64] 0.4/1.0 21.1
LSTM* [65] 0.3/0.6 19.0
S-LSTM* [43] 0.2/0.5 2.2
D-LSTM* [43] 0.2/0.5 2.2
CVAE [8] 0.2/0.5 4.6
WTA [48] 0.2/0.4 2.4
SGAN [2] 0.2/0.4 2.8

SGANv2 w/o CS [Ours] 0.2/0.4 1.9
SGANv2 [Ours] 0.2/0.4 0.6

TABLE III: Quantitative evaluation on TrajNet++ synthetic
dataset. Errors reported are Top-3 ADE/FDE (in m) and
collision (in %). SGANv2 with collaborative sampling greatly
reduces the model prediction collisions without compromising
on the distance-based metrics. *Unimodal methods

Next, we utilize collaborative sampling technique to refine
trajectories that undergo collision at test-time. The trained dis-
criminator provides feedback to the colliding samples which
helps to reduce the collisions. For each colliding prediction, we
perform 5 refinement iterations with stepsize 0.01. We observe
that this scheme greatly reduces the collision rate by ∼ 70%.
The first row of Fig 5 illustrates the ability of collaborative
sampling to refine predictions in the synthetic scenario.

E. Real-World Experiments

Next, we evaluate the performance of our SGANv2 archi-
tecture in real-world datasets of ETH/UCY and the TrajNet++
benchmark. For ETH/UCY, we observe the trajectories for
8 times steps (3.2 seconds) and show prediction results for
12 (4.8 seconds) time steps. For TrajNet++, we observe the
trajectories for 9 times steps (3.6 seconds) and show prediction
results for 12 (4.8 seconds) time steps.

Table IV provides the quantitative evaluation of various
baselines and state-of-the-art forecasting methods on the
ETH/UCY dataset. We observe that SGANv2 outputs safer
predictions in comparison to competitive baselines with-
out compromising on the prediction accuracy. Our Top-3
ADE/FDE are on par with (if not better than) state-of-the-
art methods while our collision rate is significantly reduced
thanks to spatio-temporal interaction modelling. It is further
interesting to note that Trajectory Transformer [17] and the
simple uniform predictor (UP) that performed the best on Top-
20 ADE/FDE in Table II are not among the top performing
methods when evaluated on the more-strict Top-3 ADE/FDE.
Next, we benchmark on the TrajNet++ with interaction-centric
scenes with a standardized evaluator that provides a more
objective comparison [43].

Table V compares SGANv2 against other competitive base-
lines on TrajNet++ real-world benchmark. The first part
of Table V reports simple baselines and the top-3 official
submissions on AICrowd made by different works literature
[23], [24], [43]. SGANv2 performs at par with the top-



8

Model ETH HOTEL UNIV ZARA1 ZARA2
Top-3 Col Top-3 Col Top-3 Col Top-3 Col Top-3 Col

CV* [64] 1.1/2.3 5.3 0.4/0.8 7.2 0.6/1.4 20.3 0.4/1.0 6.0 0.3/0.7 9.6
LSTM* [65] 1.0/2.1 5.8 0.5/0.9 6.7 0.6/1.3 20.2 0.5/1.0 5.2 0.4/0.8 9.5
Uniform Predictor 1.1/2.2 3.3 0.5/0.9 5.1 0.6/1.3 15.7 0.5/1.0 4.7 0.4/0.8 7.5
Transformer† [17] 1.0/1.9 5.8 0.5/0.9 8.2 2.3/4.2 10.9 0.5/1.0 7.1 0.4/0.8 11.3
S-LSTM* [7] 1.1/2.1 2.2 0.5/0.9 2.5 0.7/1.5 11.8 0.4/0.9 2.7 0.4/0.8 3.7
CVAE [8] 1.1/2.2 2.8 0.4/0.8 1.5 0.7/1.5 12.6 0.4/0.9 2.6 0.4/0.8 3.5
WTA [48] 1.0/1.9 2.5 0.4/0.7 2.3 0.6/1.3 12.7 0.4/0.8 2.2 0.3/0.7 4.1
SGAN [2] 1.0/2.0 2.2 0.4/0.7 1.7 0.6/1.3 11.8 0.4/0.8 2.3 0.3/0.7 3.2
STGAT† [14] 0.9/1.8 1.7 0.7/1.4 4.2 0.6/1.2 13.9 0.4/0.9 3.9 0.4/0.7 6.9
Social-STGCNN† [15] 1.0/1.8 6.7 0.4/0.8 10.4 0.7/1.3 25.0 0.5/0.9 12.1 0.4/0.8 19.4
S-BiGAT [3] 1.0/1.9 3.3 0.4/0.7 1.7 0.6/1.3 11.5 0.4/0.8 2.2 0.3/0.7 3.3

SGANv2 w/o CS [Ours] 1.0/1.9 1.7 0.4/0.7 1.4 0.6/1.3 11.5 0.4/0.8 2.1 0.3/0.7 3.6
SGANv2 [Ours] 1.0/1.9 1.0 0.4/0.7 1.2 0.6/1.3 8.3 0.4/0.8 1.3 0.3/0.7 2.2

TABLE IV: Quantitative evaluation of our proposed method on ETH/UCY datasets. We observe the trajectories for 8 times
steps (3.2 seconds) and show prediction results for the next 12 time steps (4.8 seconds). Errors reported are Top-3 ADE / FDE
(in m), Col (in %). SGANv2 improves in collision metric without compromising on the distance-based metrics. *Unimodal

Method Top-3 Col

CV* [64] 0.6/1.3 10.9
LSTM* [65] 0.5/1.2 9.3
S-LSTM* [7] 0.5/1.0 4.9
D-LSTM* [43] 0.5/1.1 3.9
CVAE [8] 0.5/1.1 3.9
WTA [48] 0.5/1.0 3.5
SGAN [2] 0.5/1.0 3.5
S-NCE [23] 0.5/1.1 4.0
PECNet [24] 0.4/0.9 10.7
Uniform Predictor 0.6/1.2 8.4
Transformer† [17]. 0.7/1.3 9.4
STGCNN† [15] 0.6/1.1 12.6
STGAT† [14] 0.5/1.1 5.6
S-BiGAT [3] 0.5/1.0 3.3

SGANv2 w/o CS [Ours] 0.5/1.0 3.1
SGANv2 [Ours] 0.5/1.0 2.3

TABLE V: Quantitative evaluation of our proposed method
on TrajNet++ real-world dataset. Errors reported are Top-3
ADE/FDE (in m) and collision (in %). SGANv2 in combi-
nation with collaborative sampling (CS) improves in collision
metric without compromising on the distance-based metrics.
*Unimodal

ranked PECNet [24] on the Top-3 evaluation while having 3x
lower collisions demonstrating that spatio-temporal interaction
modelling is key to outputting safer trajectories 1. Additionally,
we utilize the open-source implementation of three additional
state-of-the-art methods (denoted by †) and evaluate them on
the TrajNet++ benchmark. Compared to these competing base-
lines, SGANv2 improves upon the Top-3 ADE/FDE metric by
∼ 10% and the collision metric by ∼ 40%.

We perform collaborative sampling to refine trajectories that
undergo collision in real world datasets. For each colliding
prediction, we perform 5 refinement iterations with stepsize
0.01. We observe that this procedure reduces the collision rate

1PECNet performs spatial interaction modelling once at end of observation

G𝑃𝑜𝑜𝑙 D𝑃𝑜𝑜𝑙 TrajNet++ Synth TrajNet++ Real
Top-3 Col Top-3 Col

7 7 0.3 / 0.5 18.3 0.5 / 1.1 9.6
X 7 0.2 / 0.4 4.1 0.5 / 1.0 3.9
X X 0.2 / 0.4 2.9 0.5 / 1.0 3.1

TABLE VI: Interaction modules of SGANv2. Errors reported
are Top-3 ADE/FDE (in m) and collision (in %). Modelling
interactions greatly reduces collisions on TrajNet++.

by ∼ 30% on both ETH/UCY and TrajNet++. The trained dis-
criminator understands human social interactions, and provides
feedback to the bad samples, and consequently helps to reduce
collisions. The second row of Fig 5 illustrates a few real-world
scenarios where collaborative sampling demonstrates the abil-
ity to refine generator predictions that undergo collisions.
In conclusion, we observe that SGANv2 beats competitive
baselines in generating socially-compliant trajectories without
compromising on the distance-based metrics.

F. Ablation: Interaction Modelling

In Table VI, we empirically demonstrate that modelling
interactions is the key to reducing prediction collisions. We
consider the performance of different variants of our proposed
SGANv2 architecture based on the interaction modelling
schemes within the generator and discriminator. It is apparent
that modelling interaction within both the generator and dis-
criminator is necessary to output safe multimodal trajectories.

G. Multimodal Analysis

In this final experiment, we demonstrate the potential of
collaborative sampling to prevent mode collapse in trajectory
generation. We utilize the sample scene ‘Zara01’ from the
Forking Paths dataset. We choose this scene as the multimodal
futures of the ‘Zara01’ scene is only affected by social
interactions, and not physical obstacles. It forms the ideal test
ground to check the multimodal performance of forecasting
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(a) Ground Truth (b) Variety Loss (c) SGAN

(d) Social Ways (e) SGANv2 w/o CS (f) SGANv2

Fig. 6: Qualitative illustration of effectiveness of collaborative sampling on Forking Paths [11]. (b) Training models using
variety loss [48] leads to uniform output distribution. (c) Training using SGAN objective [2] leads to mode collapse while (d)
InfoGAN [6] helps to mitigate the mode collapse issue. (e) SGANv2 helps to cover all the modes, and in combination with
(f) collaborative sampling, we can successfully recover all modes with high accuracy.

models. In this experiment, we observe the trajectories for 8
times steps (3.2 seconds) and show prediction results for 13
(5.2 seconds) time steps.

Fig. 6 qualitatively illustrates the performance of a GAN
model trained using variety loss [2], [48] and other GAN
objectives on the chosen scene. As there are 4 dominant
modes in the scene, we chose 𝑘 = 4 for the variety loss. The
model trained using variety loss (Fig. 6b) ends up learning
a uniform distribution, i.e., high diversity and low quality, as
there is no penalty on the bad samples during training. Variety
loss only penalizes the sample closest to the ground-truth.
SGAN training [2] (Fig. 6c) results in mode collapse, i.e., low
diversity and high quality as standard GAN training is highly
unstable. Social Ways [6] proposed infoGAN objective [66] to
mitigate the mode collapse issue. The InfoGAN improves upon
SGAN, however, it still fails to cover all the modes (Fig. 6d).

Empirically, we found that training SGANv2 with the gra-
dient penalty objective (Fig. 6e), proposed in [67], provides a
better mode coverage compared to InfoGAN, but the resulting
distribution is still not accurate. As shown in Fig. 6f, our
proposed collaborative sampling at test-time helps to improve
the accuracy of the SGANv2 predictions, recovering modes
with low coverage. The trained discriminator guides the gen-
erated samples to these modes. Thus, we see that collaborative
sampling is not only effective in refining trajectories at test
time, but also can help to prevent mode collapse.

H. Key attributes

We now analyze the performance of the key SGANv2 de-
sign choices in the TrajNet++ synthetic setup. In the synthetic
setup, we have access to the goals of each agent, allowing us
to calculate Distance-to-Goal (Dist2Goal) [68], defined as the
L2 distance between the predicted final destination and the
goal of the agent.

Rationale behind Distance to Goal: It is possible that
the generator predicts a socially-acceptable mode that does
not correspond to the ground-truth mode (see Fig. 7). If we
calculate the ADE/FDE with respect to the ground-truth for
such a predicted mode (that differs from ground-truth), the
numbers will be high, misleading us to incorrectly conclude
that the generator did not learn the underlying task of trajectory
forecasting. However, if the predicted destination is close to
the goal of the agent, then one can assert that a different
but socially acceptable mode has been predicted. The Col
metric will help to validate that no collisions take place. Thus,
Dist2Goal in combination with the Col metric helps to validate
that a predicted mode is socially plausible.

Table VII quantifies the performance of various GAN archi-
tectures trained without variety loss [48]. SGAN [2] performs
the worst on the Col metric as the discriminator does not
perform any interaction modelling, thereby not possessing the
ability to learn the concept of collision avoidance. Only if the
discriminator learns the collision avoidance property, can we
expect it to teach the generator to output collision-free trajecto-
ries. The global discriminator of S-BiGAT [3] performs spatial
interaction modelling only once, at the end of prediction. Thus,
the global discriminator is able to reason about interactions
spatially but cannot model the temporal evolution of the same.
SGANv2 equipped with spatio-temporal interaction modelling
results in near-zero prediction collision. It is apparent that
spatio-temporal interaction modelling within the discriminator
plays a significant role in teaching the generator the concept
of collision avoidance.

We now justify the design choices of sequence modelling
within the discriminator using the Dist2Goal metric. We
compare an additional design of our proposed SGANv2 archi-
tecture: SGANv2-L, an SGANv2 with an LSTM discriminator.
SGANv2-L trained using LSTM discriminator shows stopping
behavior, indicated by the high Dist2Goal value in the test set.
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Fig. 7: Illustration of difference between Dist2Goal and Final
Displacement Error (FDE). FDE is the distance between
ground-truth position and predicted position at end of pre-
diction period. Dist2Goal is the distance between predicted
position and the final position of agent in the entire dataset.

Model
Spatio-temporal

Interaction Modelling
in Discriminator

Discriminator
Design Col Dist2Goal

Ground-truth – – 0.0 8.6
SGAN [2] 7 LSTM 24.9 8.9
S-BiGAT [3] 7 LSTM 8.4 8.9
SGANv2-L X LSTM 0.8 8.8
SGANv2 X Transformer 0.2 8.6

TABLE VII: Quantitative evaluation of various GAN archi-
tectural designs on TrajNet++ synthetic dataset. Col in % and
Dist2Goal in meters. SGANv2 learns to successfully predict
socially acceptable outputs evidenced by lower collisions and
Dist2Goal.

In other words, SGANv2-L outputs collision-free trajectories
but the predictions fail to move towards the goal of the primary
agent. In comparison, SGANv2 is able to output collision-
free trajectories with a lower Dist2Goal (almost matching
the ground-truth Dist2Goal value of 8.6𝑚). In conclusion,
SGANv2 is able to output socially acceptable trajectories when
compared to other GAN-based designs.

I. Computational Time.

Speed is crucial for a method to be used in a real world
setting like autonomous vehicles where you need accurate
predictions about pedestrian behavior. We provide the com-
putational time at inference for our method against baseline
unimodal LSTMs with and without interaction modelling. All
the run times have been benchmarked on a single NVIDIA
2080 Ti GPU. We provide the run time per scene (averaged
over all the scenes in the TrajNet++ real world benchmark).

The runtimes of D-LSTM and SGANv2 without collabo-
rative sampling are similar as the multiple future predictions
in the latter case can be generated in parallel, albeit at the
cost of additional memory complexity. The relatively higher
computational time of collaborative sampling corresponds to
the sample refinement process based on the gradients from the
discriminator. Nevertheless, the absolute computational time of

LSTM D-LSTM SGANv2 w/o CS SGANv2
Time 10ms 22ms 22ms 77ms

TABLE VIII: Computational time comparison at inference
per scene for various forecasting designs. The additional
computational time for SGANv2 corresponds to the sample
refinement process that occurs for five iterations.

collaborative sampling (77ms per scene) is suitable for real-
time applications like autonomous systems.

J. Implementation details

The generator and the discriminator have their own spatial
interaction embedding modules (SIM). Each pedestrian has
his/her encoder and decoder.

a) Synthetic experiments.: The velocity of each pedes-
trian is embedded into a 16-dimensional vector. The hidden-
state dimension of the encoder LSTM and decoder LSTM of
the generator is 64. The dimension of the interaction vector
of both the generator and discriminator is fixed to 64. We
utilize Directional-Grid [43] interaction module with a grid of
size 12 × 12 and a resolution of 0.6 meters. For the LSTM
discriminator, the hidden-state dimension is set to 64. For
the transformer-based discriminator, we stack N=4 encoder
layers together. The dimension of query vector, key vector and
value vector is fixed to 64. The dimension of the feedforward
hidden layer within each encoder layer is set to 64. We train
using ADAM optimizer [69] with a learning rate of 0.0003 for
the generator and 0.001 for the discriminator for 50 epochs.
The ratio of generator steps to discriminator steps for LSTM
discriminator and transformer-based discriminator is 2:1. For
synthetic data experiment, we have access to the goals of each
pedestrian. The direction to the goal is embedded into a 16-
dimensional vector. The batch size is fixed to 32.

b) Real-world experiments.: The velocity of each pedes-
trian is embedded into a 32-dimensional vector. The hidden-
state dimension of the encoder LSTM and decoder LSTM of
the generator is 128. The dimension of the interaction vector
of both the generator and discriminator is fixed to 256. We
utilize Directional-Grid [43] interaction module with a grid of
size 12 × 12 and a resolution of 0.6 meters. For the LSTM
discriminator, the hidden-state dimension is set to 128. The
ratio of generator steps to discriminator steps is 2:1. For
the transformer-based discriminator, we stack N=2 encoder
layers together (see Fig. 2 of main text). The dimension of
query vector, key vector and value vector is fixed to 128.
The dimension of the feedforward hidden layer within each
encoder layer is set to 1024. We train using ADAM optimizer
[69] with a learning rate of 0.001 for both the generator and
the discriminator for 25 epochs with a learning rate scheduler
of step-size 10. The batch size is fixed to 32. The weight of
variety loss is set to 0.2.

c) Multimodal Analysis.: The velocity of each pedestrian
is embedded into a 16-dimensional vector. The hidden-state
dimension of the encoder LSTM and decoder LSTM of the
generator is 32. We train using ADAM optimizer [69] with
a learning rate of 0.0003 for the generator and 0.001 for the
discriminator.
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V. CONCLUSION

We presented SGANv2, an improved SGAN architecture
equipped with two crucial architectural changes in order to
output safety-compliant trajectories. First, SGANv2 incorpo-
rates spatio-temporal interaction modelling that can help to un-
derstand the subtle nuances of human interactions. Secondly,
the transformer-based discriminator better guides the genera-
tor learning process. Furthermore, the collaborative sampling
strategy helps leverage the trained discriminator during test-
time to identify and refine the socially-unacceptable trajecto-
ries output by the generator. We empirically demonstrated the
strength of SGANv2 to reduce the model collisions without
comprising the distance-based metrics. We additionally high-
lighted the potential of collaborative sampling to overcome
mode collapse in a challenging multimodal scenario.

Our work aims at expanding the current horizon of tra-
jectory forecasting models for real-world applications where
humans’ lives are at risk, such as social robots or autonomous
vehicles. Accuracy, safety, and robustness are all mandatory
keywords. Over the past years, researchers have focused their
evaluation on distance-based metrics. Yet, if we compare the
methods on the safety-critical “collision" metric, we observe a
difference in performance above 50%. Hence, we believe that
one should focus more on this metric and develop methods
that aim for zero collisions.
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