Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Computational Design of Deployable Auxetic Shells
 
conference paper

Computational Design of Deployable Auxetic Shells

Konaković-Luković, Mina
•
Konaković, Pavle
•
Pauly, Mark  
2018
Advances in Architectural Geometry 2018
Advances in Architectural Geometry 2018 (AAG 2018)

We propose an interactive computational design method for deployable auxetic shells. We realize deployable auxetics as triangular linkages that can be actuated with simple expansive mechanisms to assume a desired freeform target shape. The core feature of these structures is that the target shape is directly and uniquely encoded in the 2D linkage layout. As a consequence, the structure can be fabricated and assembled in the plane and automatically deployed to its 3D target configuration without the need for any scaffold, formwork, or other temporary support structure. We focus on automatic deployment via inflation or gravitational loading for which a rigorous theoretical analysis has been given in prior work. Our paper builds upon these results and presents optimization-based direct manipulation tools to edit and adapt an auxetic linkage structure to effectively explore design alternatives. In addition, our solution enables simulation-based form-finding, where the desired target surface is interactively constructed using the deployment mechanism as a form-finding force. We present several design case studies that demonstrate the effectiveness of our approach and highlight potential applications in architecture.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

paper.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

copyright

Size

28.43 MB

Format

Adobe PDF

Checksum (MD5)

42fce1d82fe05d94f141cc5551723247

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés