
Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

ON LINEAR INTERPOLATION IN THE LATENT SPACE
OF DEEP GENERATIVE MODELS

Mike Yan Michelis
Department of Computer Science
Technical University of Munich, Germany
mike.michelis@tum.de

Quentin Becker
Geometric Computing Laboratory
École Polytechnique Fédérale de Lausanne, Switzerland
quentin.becker@epfl.ch

ABSTRACT

The underlying geometrical structure of the latent space in deep generative mod-
els is in most cases not Euclidean, which may lead to biases when comparing
interpolation capabilities of two models. Smoothness and plausibility of linear
interpolations in latent space are associated with the quality of the underlying
generative model. In this paper, we show that not all such interpolations are
comparable as they can deviate arbitrarily from the shortest interpolation curve
given by the geodesic. This deviation is revealed by computing curve lengths
with the pull-back metric of the generative model, finding shorter curves than
the straight line between endpoints, and measuring a non-zero relative length im-
provement on this straight line. This leads to a strategy to compare linear inter-
polations across two generative models. We also show the effect and importance
of choosing an appropriate output space for computing shorter curves. For this
computation we derive an extension of the pull-back metric. Code available at:
https://github.com/mmichelis/GenerativeLatentSpace

1 INTRODUCTION

Generative models trained in frameworks such as Generative Adversarial Networks (GAN) (Good-
fellow et al., 2014) or Variational Autoencoder (VAE) (Kingma & Welling, 2014) have achieved
exciting results in computer vision (Karras et al., 2020). In its simplest form, the trained generative
model g maps a latent space Z to some output space X . Vectors populating Z are sampled accord-
ing to an arbitrary and fixed latent distribution: z ∼ PZ , often chosen to be Gaussian. Training, in
generative modeling, consists of approximating a target distribution PT with the output distribution
g(z) ∼ PG.

PZ is distorted by the generator in order to fit the modal characteristics of PT , creating a highly
nonlinear mapping as a result. Hence, navigating in latent space may incur very dissimilar trans-
formations to the output depending on the starting point and the direction picked. Understanding
this latent space has been attempted in the form of e.g., finding “meaningful directions” (Voynov &
Babenko, 2020; Shen et al., 2020).

Following Arvanitidis et al. (2018), we know that this latent space cannot be regarded as Euclidean
without further investigation. Instead, it is equipped with a Riemannian induced metric M = JT J,
also called “pull-back metric” (Daouda et al., 2020; Gallot et al., 1993), where J = ∂g

∂z is the
Jacobian of the generator. The choice of the output space greatly affects the induced metric (Laine,
2018), a choice that we explore in Section 2.2.

We intend to use the previously defined Jacobian to evaluate the average quality of linear interpo-
lations over the whole latent space in the following manner: First, we define the Riemannian curve
length, then we sample many shorter curves in latent space and compute the relative length im-
provement of each quasi-geodesic over the corresponding straight line. The average and standard
deviation of these relative improvements are then used as evidence for supporting the discrepancy
in linear interpolation quality. Based on these observations, we propose a strategy for comparing
interpolations across generative models.

1

ar
X

iv
:2

10
5.

03
66

3v
1 

 [
cs

.L
G

] 
 8

 M
ay

 2
02

1

https://github.com/mmichelis/GenerativeLatentSpace


Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

2 METHOD

2.1 SHORTER CURVE

As the generator is highly nonlinear, its associated pull-back metric isn’t constant and equal to
the identity over the latent space. Hence a straight line is unlikely to be a geodesic, and we can
find curves with shorter length that connect two points in latent space. This, in turn, enables a
better evaluation of the distance between points. To find shorter curves/geodesics in the Riemannian
manifold given by the pull-back metric, we first define the length of a curve γ(t) =: γt (defined for
t ∈ [0, 1] and using shorthand notation Jγ := J(γ(t))):

Len(γ) =
∫ 1

0

‖ġ(γt)‖dt =
∫ 1

0

‖Jγ γ̇t‖dt =
∫ 1

0

√
γ̇Tt JTγ Jγ γ̇tdt (1)

Next we choose a method of representing/implementing the curve. Existing methods include e.g.,
Arvanitidis et al. (2019) using Gaussian Processes, Yang et al. (2018) using quadratic functions,
or Laine (2018) using a discrete array of points. We opted for a continuous curve with analytical
derivatives, where control points only change behavior locally: B-splines. As we need at most
second order derivatives, we chose cubic B-splines (see implementation details in Appendix A).

With this curve implementation, we can either directly minimize Len(γ) via optimization, or solve
the geodesic Ordinary Differential Equation (ODE) defined and derived in Arvanitidis et al. (2018)
for finding the minimizer γ of Equation 1. The ODE requires a second derivative i.e., the Hessian,
which is computationally much more expensive, and furthermore did not consistently find shorter
curves than the direct length minimization approach in our experiment. The ODE approach does,
however, provide a measure of convergence, i.e. how close the solution is to the geodesic. In the end,
we chose not to use the ODE, and instead minimize Equation 1 for finding shorter curves in latent
space by optimizing the control points of the cubic B-spline using gradient descent. To improve the
convexity of Len(γ) and have a better behaved optimization, we instead minimize

∫ 1

0
‖ġ(γt)‖2dt

i.e., the Path Energy, which does not change the minimizer of the former functional.

We initialize the cubic B-spline with a straight line with fixed start and end points plus two variable
control points in between. Whenever the curve length plateaus, we add a new control point and
resume optimization. Termination criteria are maximal node count and number of optimization
steps. The drawback of this method is that we cannot claim that the result is a geodesic, it is simply
a shorter curve than the straight line. Consequently, its length provides a more accurate “distance”
between points than measuring the straight line’s Riemannian length.

2.2 JACOBIAN

The pull-back metric depends solely on the Jacobian of the generator, which requires special care
when being computed. For a deterministic generator, it is enough to backpropagate the derivatives
from the output of the generator to the inputs. In the case of a stochastic generator/decoder as in
VAE, we use the expected value of the induced metric, combining the Jacobian for the mean and
standard deviation of the outputs (Arvanitidis et al., 2018):

Mz := Mz = (Jµz )
T Jµz + (Jσz )

T Jσz (2)

An open question is whether the output space X of the generator (which is often an image) is
meaningful for the metric computation, hence it is worth investigating what the effect is of “feature
mappings” f : X → F on top of the generator. Two options we implemented were the logistic
regression output and activations of a VGG-19 network. For the former, a clear and intuitive effect
can be observed when tested for MNIST digits: geodesics pass through as few digit clusters as
possible in latent space (see Appendix B). VGG activations are assumed to structure the latent space
in a perceptually meaningful way: Laine (2018) investigates this claim qualitatively, while Moor
et al. (2020) does so quantitatively.

For further (deterministic) mappings on top of a deterministic generator, we simply multiply the
Jacobians to compute the overall induced metric:

MFZ := JTXZMFXJXZ (3)

2



Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

Here JXZ stands for the Jacobian of the generator g : Z → X , and JFX would be for the feature
mapping f : X → F , with MFX := JTFXJFX . In the case of a stochastic generator (under
assumption of diagonal covariances):

MFZ := MFZ = (JµXZ)
T MFXJµXZ + (JσXZ)

T M̂FXJσXZ (4)

Here M̂FX keeps just the diagonal entries of MFX , i.e., all off-diagonals are set to 0. We only need
the diagonals for variance as we assume diagonal covariances for the normal distribution in output
space (e.g. VAE). The exact derivation of this result can be found in Appendix E.

2.3 EVALUATION OF LINEAR-TO-GEODESIC DEVIATION

To quantify how much the linear interpolations deviate from the geodesics on average, we define
and measure the expected worst-case relative improvement of the Riemannian length between pairs
of points by sampling over the whole latent space. We can sample a starting point from the latent
distribution PZ , and move in the direction of the eigenvector with the largest eigenvalue of the pull-
back metric at that point; a direction we call maximal eigenvector for short. For a given step-size,
we now have a start and end point, and can compute the relative improvement of a shorter curve
compared to the Riemannian length of the straight line connecting both points. Lastly, we take
an average of this value over all the samples in latent space. The process can be described as in
Algorithm 1 in Appendix C.

The result on a VAE can also be found in Appendix C. We follow the maximal eigenvectors at a given
point in the latent space1 to induce maximal change in output, which computes the “worst-case” and
enables us to obtain an upper bound on how much the worst straight lines can be improved. We
found that the metric is highly anisotropic (see the large condition numbers in Figure 1), and while
Wang & Ponce (2021) observed that the maximal eigenvectors are similar at different positions in
the latent space, we remark that for our experiments they were not homogeneous, but varied in
direction throughout latent space (see Figure 1).

Figure 1: The latent space of this VAE is 2D. In the background the logarithmic condition number
i.e., ratio of largest to smallest eigenvalue is plotted, together with clusters of encoded MNIST test
data (digits 2,4,5,7). In the foreground we see streamlines following the minimal eigenvectors i.e.,
eigenvectors of smallest eigenvalue of pull-back metric at every point on the left, and maximal
eigenvectors on the right. We used the improved VAE variance estimate of Arvanitidis et al. (2018).

1We aligned the maximal eigenvectors such that it always points towards the origin, this prevents the end
point to lie in regions where the generator was not trained for

3



Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

3 DISCUSSION

Visually smooth linear interpolations are often interpreted as a marker of the generative model’s
performance. Yet this criterion greatly depends on the place where the linear interpolation is per-
formed in latent space, as it can be arbitrarily far off the geodesic (see Figure 2). As a result, we
believe considering the whole latent space (e.g. through Monte Carlo sampling) was more statisti-
cally meaningful than evaluating several hand-picked interpolations.

From Figure 2 we observe that the “expected worst-case relative improvement” (in this case 10.20%)
is non-zero, which shows that the deviation of the straight line from the geodesic is significant
enough to take into consideration. Additionally, the standard deviation of the histogram shows how
we should be careful in choosing interpolations, as the relative improvement could be vastly different
at different locations in latent space.

We present an example strategy of choosing latent linear interpolations in order to compare the
interpolation quality of two generative models. We start by randomly sampling pairs of input data
points from the test dataset, which we then encode into both latent spaces. In case no encoder is
available for the generative model, one can search for closest matching latent points that generate the
input samples, as shown in (Lei et al., 2019) for instance. By finding a shorter curve connecting the
pairs of points, we can compute relative length improvements for each of the two generators. Then,
we choose the pair of points that has the most similar relative improvement, which can be seen as
them being located in a similar metric neighborhood (see results in Appendix D). This choice rules
out the comparisons between the best linear interpolation of one model to the worst of the other.

Figure 2: The latent space of this VAE is 2D. Left: In the background log
√
detMz is plotted in

color, together with clusters of encoded MNIST test data (digits 2,4,5,7). In the foreground we see
straight lines connecting sampled pairs of points as described by Algorithm 1, where the brightness
indicates how much the curve length can be shortened (0.14 indicates that the shorter curve is 14%
shorter than the straight line Riemannian length). Right: Histogram of the distribution of relative
length improvements using 1000 samples. A larger version can be found in Appendix C.

4 CONCLUSION

Accounting for the non-Euclidean nature of the latent space of generative models, we present a
geometry-aware method for indicating the comparability of latent linear interpolations. Through
random sampling, an average measure can be obtained over the whole latent space. A limitation of
our current implementation is that we do not find global length minimizers/geodesics. Our compu-
tation for shorter curves could also be improved (as in Arvanitidis et al. (2019)), mainly due to the
expensive computation of the Jacobian. We showed that the latent space geometry cannot be disre-
garded while evaluating generative models, and we believe geometry may further help us understand
deep learning in the future.

4



Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

REFERENCES

Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. Latent space oddity: on the curva-
ture of deep generative models. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018.

Georgios Arvanitidis, Søren Hauberg, Philipp Hennig, and Michael Schober. Fast and robust shortest
paths on manifolds learned from data. In Kamalika Chaudhuri and Masashi Sugiyama (eds.),
The 22nd International Conference on Artificial Intelligence and Statistics, AISTATS 2019, 16-18
April 2019, Naha, Okinawa, Japan, volume 89 of Proceedings of Machine Learning Research,
pp. 1506–1515. PMLR, 2019.

Tariq Daouda, Reda Chhaibi, Prudencio Tossou, and Alexandra-Chloé Villani. Geodesics in fibered
latent spaces: A geometric approach to learning correspondences between conditions. arXiv e-
prints, art. arXiv:2005.07852, May 2020.

Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine. Riemannian geometry. Springer-Verl.,
1993.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27:2672–2680, 2014.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 8110–8119, 2020.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and Yann
LeCun (eds.), 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

Samuli Laine. Feature-based metrics for exploring the latent space of generative models. In 6th In-
ternational Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Workshop Track Proceedings. OpenReview.net, 2018.

Q Lei, A Jalal, S Dhillon, and AG Dimakis. Inverting deep generative models, one layer at a time.
Advances in neural information processing systems, 32, 2019.

Michael Moor, Max Horn, Karsten Borgwardt, and Bastian Rieck. Challenging euclidean topolog-
ical autoencoders. In NeurIPS 2020 Workshop on Topological Data Analysis and Beyond, 2020.
URL https://openreview.net/forum?id=P3dZuOUnyEY.

Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the latent space of gans for
semantic face editing. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9243–9252, 2020.

Andrey Voynov and Artem Babenko. Unsupervised discovery of interpretable directions in the gan
latent space. ICML 2020, arXiv preprint arXiv:2002.03754, 2020.

Binxu Wang and Carlos R Ponce. A geometric analysis of deep generative image models and its
applications. In International Conference on Learning Representations, 2021.

Tao Yang, Georgios Arvanitidis, Dongmei Fu, Xiaogang Li, and Søren Hauberg. Geodesic clustering
in deep generative models. CoRR, abs/1809.04747, 2018.

5

https://openreview.net/forum?id=P3dZuOUnyEY


Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

A CUBIC B-SPLINE

The implementation of the cubic B-spline is as follows:

Ni,1(t) =

{
1 for ti ≤ t < ti+1

0 otherwise

Ni,k(t) =
t− ti

ti+k−1 − ti
Ni,k−1(t) +

ti+k − t
ti+k − ti+1

Ni+1,k−1(t)

C(t) =

n∑
i=0

Ni,4(t)Pi

T = (0, 0, 0, 0︸ ︷︷ ︸
4

, knots(]0, 1[)︸ ︷︷ ︸
n+1−4

, 1, 1, 1, 1︸ ︷︷ ︸
4

)

Here Ni,k are the basis functions, Pi are the control points and T is the knot vector. We want end-
point interpolation, hence we have the knot multiplicities above for start and end point. This b-spline
has n+ 1 control points and order 4. Accordingly the first derivative is defined as:

∂C(t)

∂t
= 3

n−1∑
i=0

Ni+1,3(t)
Pi+1 − Pi
Ti+4 − Ti+1

The knot vector consists of a middle part with n − 3 elements, which is adjusted everytime a new
control point is added. We wish to add new control points in such a way that the old curve geometry
is preserved. The implementation (choosing where to put new knots first) is as follows: we find the
largest knot interval, and place a new knot in the exact middle of it. Knowing the new knot, we insert
a new control point accordingly by adjusting 2 old ones (i ∈ [j − 2, j] where j is the knot index of
the new knot) such that curve geometry is kept the same:

P new
i ←−(1− ai)P old

i−1 + aiP
old
i

ai =
tnew − ti
ti+k−1 − ti

We update from largest i to smaller ones, so we always use the old values and do all operations in-
place. ti are the knots. The point P new

j is not updated in the old control point list, but will instead
be our new control point that we insert at position j in the list.

B EFFECT OF LOGISTIC REGRESSION FEATURE MAPPING

As the logistic regression maps an image to probabilities of every class, finding a geodesic in such a
pull-back metric is equivalent to travelling fastest between classes, i.e. traversing as few classes as
possible. The effect can be observed in Figure 3, where the middle sequence is without any feature
mapping, and the bottom one has the logistic regression, skipping over several digits in between.

Figure 3: Interpolating between two fixed points in latent space of a VAE trained on MNIST digits.
Top sequence is along the straight line, middle is shorter distance as defined by the pull-back metric
of the generator, and bottom is according to metric with a logistic regression feature mapping on top
of generator.

6



Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

C MONTE CARLO RELATIVE IMPROVEMENTS

The algorithm described in Section 2.3 can be formalized as:

Algorithm 1: Expected worst-case relative improvement
Input: Step size α
Result: Mean of relative length improvements

L← empty list;
while maximal samples not reached do

xA ← sample latent vector;
vmax ← eigenvector of metric with largest eigenvalue at xA;
xB ← xA + αvmax;

ds ← compute Riemannian length of straight line;
dc ← find shorter length;
relative improvement← ds−dc

ds
;

Append relative improvement to L;
end

return mean of L;

For a concrete example, we ran it on a trained VAE for MNIST digits. After acquiring a list of
relative improvements, we plot the frequency of occurrence in certain intervals, to get a good idea
of how much the relative improvement varies in magnitude, see Figure 4.

Figure 4: Histogram of the distribution of relative length improvements for a VAE latent space using
1000 samples according to Algorithm 1.

7



Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

D COMPARABILITY OF LATENT LINEAR INTERPOLATIONS: EXAMPLE
STRATEGY

In the following we trained two VAEs with different architecture (both 2D latent space) on MNIST
digits 2,4,5 and 7, and compared their interpolation capability as described in Section 3. VAE1 has
16 times more trainable parameters than VAE2. We random sampled 20 pairs of start and end points
in input space, which can be seen in Figure 5. We then found the relative improvements that are
possible for each pair using both models, which can be seen in Figure 6.

Figure 5: Start and end points of 20 input space samples.

Figure 6: Bar plot of relative improvements for 20 random sampled latent linear interpolation for
two VAEs.

We observe that the relative improvements of both models can be vastly different, mainly due to
their latent spaces being shaped differently (see Figure 7). Therefore interpolations in similar metric
neighborhoods should be compared, and from the above samples we could, for instance, choose
lines 1, 6, 19 to represent a fair comparison (a fixed threshold should be chosen). One of those
interpolations can be seen in Figure 8.

8



Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

Figure 7: VAE1 can be seen on the left, VAE2 on the right. Both use the improved variance estimate
of Arvanitidis et al. (2018). The colored lines are the 20 interpolation samples, same colors are used
in both figures.

Figure 8: Interpolation sequence 19. The original images for start and end point are displayed in the
middle row.

E FEATURE MAPPING TO NEW OUTPUT SPACE: INDUCED METRIC

Next we derive the effect that chaining a function on a VAE has on the resulting Jacobian/induced
metric. We define the decoder of our VAE as:

φ(z) = µ(z) + σ(z) · ε

Where we have z ∈ Rd, φ : Rd 7→ RD and ε ∈ N (0, ID) (zero-centered multivariate normal
distribution with identity matrix covariance).

The result of the decoder of the VAE (with same dimension as input space X) then is mapped
through some function h : RD 7→ RK into the new output space. In total we apply the function f
on latent input z, with Jacobian:

f(z) = h(µ(z) + σ(z) · ε)

JFz :=
∂f(z)

∂z
=
∂h(φ)

∂φ

∂φ(z)

∂z
=: JFxJxz

Dimensions: JFz ∈ RK×d, JFx ∈ RK×D, Jxz ∈ RD×d. Note: the functions until now should be
defined in such a way that the Jacobians are nonsingular.

9



Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

We follow the proof by Arvanitidis et al. (2018) on the factor Jxz by rewriting it as (using element-
wise notation of tensors, no einstein summation):

(Jxz)ij =
∂fi
∂zj

=
∂µi
∂zj

+ εi
∂σi
∂zj

= (Jµ)ij + εi (Jσ)ij

As a result we can split the jacobian Jxz := A + B.

As mentioned by Arvanitidis et al. (2018), the resulting “random” metric would be Mz = JTFzJFz ,
still depending on the normal-distributed variable ε. We construct our final metric tensor by taking
the expected value of all these “random” metric tensors:

Eε
[
JTFzJFz

]
= Eε

[
(JFxJxz)

T
(JFxJxz)

]
= Eε

[
JTxzJTFxJFxJxz

]
= Eε

[
JTxzMFxJxz

]
= Eε

[
(A + B)TMFx(A + B)

]
= Eε

[
ATMFxA + ATMFxB + BTMFxA + BTMFxB

]
= Eε

[
ATMFxA

]
+ Eε

[
ATMFxB

]
+ Eε

[
BTMFxA

]
+ Eε

[
BTMFxB

]
= ATMFxA + ATMFxEε [B] + Eε

[
BT
]

MFxA + Eε
[
BTMFxB

]
In the second to last line we used the linearity of expectation property, and in the last line we
used the property that out of all the matrices only B depends on ε. Additionally, we know that
Eε [Bij ] = Eε

[
εi
∂σi

∂zj

]
= Eε [εi] ∂σi

∂zj
= 0 as the ε is zero-centered. Hence two terms already

evaluate to 0 in the expected metric tensor. The last term can be evaluated as follows:

(
Eε
[
BTMFxB

])
ij
= Eε

[
D∑
k=1

D∑
l=1

BTikM
(Fx)
kl Blj

]

=

D∑
k=1

D∑
l=1

Eε
[
BkiM

(Fx)
kl Blj

]
=

D∑
k=1

D∑
l=1

Eε
[
εk
∂σk
∂zi

M
(Fx)
kl εl

∂σl
∂zj

]

=

D∑
k=1

D∑
l=1

Eε
[
∂σk
∂zi

M
(Fx)
kl

∂σl
∂zj

εkεl

]

=

D∑
k=1

D∑
l=1

M
(Fx)
kl

∂σk
∂zi

∂σl
∂zj

Eε [εkεl]

Here we got rid of all the terms that are independent of ε out of the expected value. What remains is
Eε [εkεl], which we can evaluate from the definition of ε, where we know Cov [ε] = ID:

(Cov [ε])kl = E [εkεl]− E [εk]E [εl]

= E [εkεl]

:= δkl

10



Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

Using Kronecker delta δkl. We once again know that ε is zero-centered, hence has expected value
0. Continuing the computation from above:

(
Eε
[
BTMFxB

])
ij
=

D∑
k=1

D∑
l=1

M
(Fx)
kl

∂σk
∂zi

∂σl
∂zj

Eε [εkεl]

=

D∑
k=1

D∑
l=1

M
(Fx)
kl

∂σk
∂zi

∂σl
∂zj

δkl

=

D∑
k=1

M
(Fx)
kk

∂σk
∂zi

∂σk
∂zj

=
(

JTσ M̂FxJσ
)
ij

As we can see, we only require the diagonal elements of MFx, we denote this diagonal matrix as
M̂Fx.

Going back to our original equation, we get:

Eε
[
JTFzJFz

]
= ATMFxA + Eε

[
BTMFxB

]
= JTµMFxJµ + JTσ M̂FxJσ
=: MFz

Hence when adding mappings on top of the decoder mapping of the VAE, this is how we compute
the total induced metric tensor.

11


	1 Introduction
	2 Method
	2.1 Shorter Curve
	2.2 Jacobian
	2.3 Evaluation of Linear-to-Geodesic Deviation

	3 Discussion
	4 Conclusion
	A Cubic B-Spline
	B Effect of logistic regression feature mapping
	C Monte Carlo Relative Improvements
	D Comparability of Latent Linear Interpolations: Example Strategy
	E Feature Mapping to new Output Space: Induced Metric

