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Abstract

Spectroscopic surveys aim to map large fractions of the Universe to study the Large Scale

Structures (LSS). LSS evolution traces the distribution of matter as a result of the tension

between the expansion of the Universe and the gravitational forces, which means that LSS can

be used to test cosmological and gravity model, in particular the standard model of cosmology

(ΛCDM) with General Relativity (GR). One usual way to study those LSS is to quantify the

clustering of the galaxies with the 2-point correlation function (2PCF). The Baryon Acoustic

Oscillations (BAO) signature is characterised as a peak in the 2PCF, whose position is related

to the Hubble parameter. Moreover, Redshift Space Distortions (RSD) are imprinted in the

2PCF and are used to measure the growth rate of structure of the Universe.

In this thesis I measured the growth rate of structure of the emission line galaxy (ELG) sample

of the extended Baryon Oscillation Spectroscopic Survey (eBOSS) from RSD in configuration

space. I was able along with the Sloan Digital Sky Survey (SDSS) collaboration to participate to

the final cosmological implication of the past 20 years of SDSS. By a combination of probes,

the current cosmological parameters were then constrained with a high precision, outpassing

the expected constraints for Stage-III dark energy experiment.

Moreover I performed a BAO analysis with voids, tracing the underdensities in the quasars

(QSO) sample of eBOSS. While the method was shown to bring great improvement on other

tracers, it reveals itself more difficult to deal with quasars due to their low density. I was

nevertheless able to detect a BAO signal and to provide forecast for a QSO sample from a

DESI-like (Dark Energy Spectroscopic Instrument) experiment.

Key words: cosmology – spectroscopic surveys – dark energy – large-scale structures – redshifts
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Résumé

L’accélération de l’expansion de l’Univers est l’un des plus grands mystères non résolus en

cosmologie. Les physiciens expliquent ce phénomène par la présence d’une énergie répulsive

d’origine inconnue, dominante dans l’Univers, appelée "énergie sombre". Les structures à

grande échelle sont le résultat d’une tension entre l’expansion de l’Univers et la force gravita-

tionnelle de la distribution de matière. Pour les étudier, de grandes fractions de l’Univers sont

cartographiées par les relevés spectroscopiques. Comme l’évolution de ces structures résulte

d’un équilibre de forces, elles peuvent être utilisées pour tester les modèles cosmologiques et

gravitationnels, en particulier la relativité générale et le modèle cosmologique standardΛCDM.

Une méthode pour étudier ces structures est de quantifier leur répartition dans l’espace d’une

manière statistique avec leur fonction de corrélation. On observe dans cette courbe un excès

de galaxies séparées par une certaine distance. Cette distance correspond à une échelle parti-

culière gravée dans le jeune Univers par des ondes acoustiques (BAO). Cette distance est liée à

l’expansion de l’Univers et donc au paramètre de Hubble. De plus, des distorsions spatiales

dues au décalage vers le rouge des spectres à cause du mouvement des galaxies (RSD) sont

imprimées dans la fonction de corrélation. Cet effet permet de mesurer le taux de croissance

des structures dans l’Univers.

Dans cette thèse, j’ai mesuré le taux de croissance des structures de l’échantillon de galaxies à

raies d’émission du relevé eBOSS (extended Baryon Oscillation Spectroscopic Survey). J’ai pu

avec la collaboration SDSS (Sloan Digital Sky Survey) participer à l’implication cosmologique

finale des 20 dernières années de SDSS. Grâce à une combinaison de sondes cosmologiques,

on a pu contraindre les paramètres du modèle standard avec une grande précision, dépassant

les attentes pour une expérience de stade III.

De plus, j’ai effectué une analyse BAO avec des vides, permettant de détecter les sousdensités

dans l’échantillon des quasars de eBOSS. Alors que la méthode s’est avérée fructueuse avec

d’autres types d’objets astronomiques, elle se révèle plus difficile à traiter avec les quasars

en raison de leur faible densité. J’ai néanmoins pu détecter un signal BAO et fournir des

prévisions pour un échantillon de quasars à partir d’une expérience comme DESI (Dark

Energy Spectroscopic Instrument).

Mots clefs : cosmologie – relevés spectroscopiques – énergie sombre – strucures à grande

échelle – décalage vers le rouge
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1 Introduction

About one hundred years ago, Albert Einstein introduced his famous formulation of General

Relativity theory describing the law of Gravity in our Universe with a curved space-time. A few

years later, his achievement provided a theoretical framework for modern cosmology with the

discovery of an expanding Universe (Hubble, 1929).

At the end of the last century, two independent groups (Riess et al., 1998, Perlmutter et al.,

1999) discovered that the expansion of the Universe was in fact accelerating, shaking the

scientific community. This phenomenon means either a validity limitation of the laws, or the

evidence of the existence of an unknown energy, called dark energy, acting against gravity.

To discriminate between those two hypothesis or to understand the nature of dark energy,

very precise expansion history of the Universe is required. To this goal, Large Scale Structures

(LSS) are a very powerful tool as they can help constraining the expansion measurements.

Spectroscopic surveys aim to map large portions of the Universe to study the LSS. They are of

crucial importance to analyse the growth of structure or clustering of LSS, that constrain the

cosmological model and unveil the nature of dark energy.

In this thesis I will use data from spectroscopic surveys and simulations to try to bring a

contribution in this exciting field. In this first chapter, I will present the theoretical context

(Chapter 1). The second chapter will be dedicated to the analysis I performed within the

eBOSS collaboration for the RSD analysis of ELGs (Chapter 2). In the third chapter I will

present a BAO analysis on voids correlated with the quasars of eBOSS (Chapter 3). Last chapter

will be a short conclusion, summarizing the work of this thesis (Chapter 4).

1.1 A few notions of Modern Cosmology

Cosmology is a branch of astrophysics that aims at studying the Universe as a whole and its

evolution. This might be very ambitious, or pretentious, to claim to summarize the Universe

in equations. This is why in this first chapter I will restrict myself to introduce the standard

model of cosmology, ΛCDM, with briefly presenting the grounding equations that describe
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Chapter 1 Introduction

our current understanding of the Universe related to the essence of this thesis.

Here a non exhaustive list of my guiding references: Carroll, 1997, Mortonson et al., 2013,

Langlois, 2010, Ryden, 2016, Peacock, 1999, Dodelson, 2003 and the EPFL master lectures on

Relativity and Cosmology of Pr. Mikhail Shaposhnikov.

1.1.1 A brief look into General Relativity

As already mentioned, the framework used for cosmology is the General Relativity (GR). Indeed

it allowed to consider gravity not as an instantaneous attractive force but rather an interaction

manifesting itself as a curvature in space-time. In this context the Universe and its content are

related geometrically through a growing space-time.

Metric

A metric is used to describe the geometry of any space in order to measure distances within this

space. In classical physics the separation of two points in space is invariant. In 1905 Einstein

introduced the concept of space-time in the context of Special Relativity (SR) (Einstein, 1905).

In SR or GR, the separation between two points is not anymore space- or time-invariant. In-

stead there is a space-time-invariance, i.e. a combination d s of the time and space separations,

related by a metric tensor gµν describing space-time:

d s2 = gµνd xµd xν, (1.1)

where x⃗ is the space time position. The space coordinates are x1,2,3 and the time coordinate is

encoded in x0 = ct with c the speed of light in vacuum considered independent of the choice

of reference frame in SR and GR. We note that the tensor gµν is defined as the inverse of the

metric: gµνgνα = δαµ .

The choice of the metric is very important as it encodes the geometry of space-time. In SR a

Minkowski space-time, a 3D space without curvature (so in GR without mass and therefore

without gravitation), is used with the metric gµν = ηµν and using the (+−−−) convention from

now on:

ηµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (1.2)

Geodesics

In a curved space-time the shortest path between two points, called a geodesic, is not neces-

sarily a straight line as in a flat space. Those curves can be complex and follow the geometry

2
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of the space-time. In GR, in absence of external forces, a free falling particle will follow a

geodesic in the space-time curved by gravity. Using the Equivalence Principle (stating that the

gravitational and inertial masses are the same), the geodesic equation is:

d 2xµ

dλ2 +Γ
µ

αβ

d xα

dλ

d xβ

dλ
= 0 (1.3)

with λ the proper time usually written as τ, i.e. the time experienced by the object in its own

rest frame so that the space coordinates are constant, in this frame:

dτ =
p

g00d x0. (1.4)

In the case of a mass-less particle like photons, the proper time cannot parametrize the

equation. Indeed there exists no reference frame exists where photons are at rest, as ∆s2 =

c∆t 2 − c∆t 2 = 0. Instead the parameter λ is chosen to be an affine parameter.

In the geodesic equation, Γµ
αβ

are the Christoffel symbols given by the metric derivatives

∂µ ≡ ∂/∂xµ:

Γ
µ

αβ
=

1

2
gµρ(∂αgρβ+∂βgρα−∂ρgαβ). (1.5)

They are determined by the metric thus encrypt the curvature. In the absence of gravity, Γ is

zero.

Einstein’s equation

Einstein proposed a new perspective that he developed during 10 years after SR: the gravi-

tational interactions are embodied within the space-time geometry. The gravitational field

is directly included into the metric. In 1915, Einstein related with his Field Equation the

energy content of the Universe, encrypted in the energy-momentum-stress tensor Tµν, to the

Einstein’s tensor Gµν which describes the Universe’s geometry:

Gµν ≡ Rµν− 1

2
gµνR =

8πG

c4 Tµν+Λgµν, (1.6)

where G is the Newton’s constant of gravitation, R ≡ gµνRµν is the Ricci scalar and Rµν is the

Ricci tensor depending on Christoffel symbols Γµ
αβ

and their derivatives, so from the metric:

Rµν = ∂αΓ
α
µν−∂νΓ

α
αµ+ΓαµνΓ

β

αβ
−Γ

β
ναΓ

α
βµ. (1.7)

The Λ term, known as the cosmological constant, on the right hand size of 1.6 was introduced

by Einstein in 1917 to have a static Universe (Einstein, 1917). While his reasons to add Λ were

incorrectI, this term is kept in the current model. Indeed we will see below that Hubble’s

IWe understand today that a static Universe would not have been possible, as it would be gravitationally
unstable.
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discovery of an expanding Universe proved the incorrectness. The term will later be kept due

to the accelerated expansion. This more general formulation allows to counterbalance gravity

if Λ is positive, acting as a repulsive term.

Solutions of Einstein’s equation are the metric tensor components which in turn can be used

to infer the geodesics. Therefore inertial trajectories of objects follow geodesics in the curved

space distorted by massive objects.

1.1.2 An expanding Universe

Cosmological principle

At the heart of our description of the Universe resides the cosmological principle assumption:

the Universe is isotropic and homogeneous on large scales, 100Mpc or more.

Homogeneity of the Universe means that the properties observed are the same at any location

in the Universe, so they are invariant under a translation.

The isotropy assumption states that the physics observed is the same independently of the

direction, so this is rotation-invariant.

One notes that isotropy can be tested using observational data. Spatial homogeneity is more

difficult to probe as observations are performed through a light-cone and not a time-constant

hyper-surface. A method uses the Copernican Principle, i.e. we do not occupy a privileged

location in the Universe, to infer a statistical homogeneity based on isotropy (Goodman, 1995;

Maartens, 2011; Clarkson, 2012). Indeed a 2D isotropy measurement could be extended to

homogeneity through translation invariance. It is therefore possible to measure a scale beyond

which the Universe is homogeneous using for example spectroscopic surveys (Ntelis et al.,

2017) or the cosmic microwave background (Camacho-Quevedo and Gaztañaga, 2022). This

scale is usually measured between 100-200h−1Mpc.

Redshifts

The first mention of receding galaxy was proposed by Vesto Slipher. In 1912 he discovered

a large shift of the spectrum of a galaxy, suggesting a high velocity, interpreted as a Doppler

effect (Slipher, 1913). The same year of the completion of GR, Slipher presented the radial

velocity of 25 nebulae, where many of them showed a spectral shift toward the red: those

nebulae were moving away from Earth (Slipher, 1917).

These shifts in the spectrum are a key concept leading to the discovery of the Universe’s

expansion. The so-called redshift z is defined as the ratio between the observed and emitted
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Figure 1.1: Illustration to understand the redshift. On top spectral shift toward the blue from
the light of an object moving in the Earth direction. In the middle the spectrum observed of
an object as observed in its rest frame. On the bottom spectral shift toward the red from the
light of an object moving away from Earth, it corresponds to the shift that the expansion of the
Universe would cause.

light, where the energetic photon has a wavelength λ and a frequency ν:

1+ z =
λobserved

λemitted
=
νemitted

νobserved
. (1.8)

Photons from a galaxy moving away (toward) from Earth will undergo an increase (decrease)

in their observed frequency and the spectral lines of the galaxy will be red (blue) shifted. This

effect is illustrated on Figure 1.1.

There are three main effects causing redshift. The first one, due to a relativistic Doppler effect

is induced by the relative peculiar motion of the emitting object v . In flat space it results as

1+ zDoppler = γ(1+ v/c), where γ =
(p

1− v2/c2
)−1

is the Lorentz factor.

The gravitational redshift comes from time dilation due to a strong gravitational well, using the

GR definitions: 1+ z =
√

g00,observed/g00,emitted, where g00 is the metric for the time coordinate.

Cosmological redshift is due to the expansion of the Universe. Indeed the expansion of space

itself will cause a shift toward the red. This is illustrated on Figure 1.2 as a wavelength drawn

over the surface of an expanding balloon. This is the dominant component of the total redshift

of the observed galaxies composing the Universe.
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Figure 1.2: Illustration of the increased wavelength of a wave due to the Universe expansion
with the balloon analogy. (Credits of the figure: James N. Imamura, University of Oregon).

Hubble’s law

In the 1920’s, Alexander Friedmann used Einstein’s equation to argue that the Universe was

expanding (Friedmann, 1922). A few years later, Georges Lemaître confirmed independently

Friedmann’s conclusions (Lemaıtre, 1927).

This is at the end of the decade, in 1929, that the expansion is experimentally observed by

Edwin Hubble (Hubble, 1929). He used the redshifts of a sample of 46 extragalactic nebulae

at z ≪ 1 to measure their velocities (at low redshift z ≃ v/c). He established a linear relation

between the distance d and the recession velocity v of a galaxy, known as the Hubble’s law:

v = H0d . (1.9)

The constant of proportionality H0 is called the Hubble constant. This law means that the

further are the galaxies, the faster they are moving away. His measurements are shown in

Figure 1.3 with his regression line. Hubble obtained a value around H0 = 500km/s/Mpc, which

is about 5 times higher than the current measured values.

Figure 1.3: Hubble diagram from Hubble, 1929. It shows his measurements of the recession
velocities as a function of the distances of the nebulae.

Nowadays the Hubble constant is interpreted as the expansion rate of the Universe as observed

today. A current standard notation is the following:

H0 = 100hkm/s/Mpc, (1.10)

6



Introduction Chapter 1

where h is the dimensionless Hubble constant. One can note that it is possible to obtain

an estimate of the age of the Universe from H0 as t0 = 1/H0F = 9.78×109F yr/h where F is a

function depending on content densities in the Universe, F is close to 1.

1.1.3 Geometry and Dynamics

Friedmann-Lemaitre-Robertson-Walker metric

To describe the Universe and its expansion using GR, we need first to define a metric. Under the

cosmological principle assumption, the metric depends on a curvature parameter κ describing

the shape of the Universe which is the same everywhere to conserve isotropy property:
κ> 0 closed Universe

κ = 0 flat Universe

κ< 0 open Universe

(1.11)

The different options are illustrated on Figure 1.4. In particular for a null curvature, i.e. κ = 0,

we have an Euclidean geometry and the sum of the angles formed by three points in space is

180◦. For κ> 0, R(t ) is the radius of curvature of the Universe and R0 is the value today at t0.

Figure 1.4: Different Universe geometry. From left to right: closed, open, flat Universes
corresponding to elliptic, hyperbolic or flat hyper-surfaces, respectively. Relation of the
density Ω0 with the curvature parameter κ is made explicit later in Equation 1.32. (Credits of
the figure: (modified from) NASA / WMAP Science Team).

Moreover to describe the expansion we introduce the dimensionless parameter a(t ) = R(t )/R0,

called the scale factor describing the relative size of the Universe and function of time only

to preserve homogeneity. It means that the proper distance d(t) at epoch t is related to the

reference distance d0 at t0, chosen to be today and setting a(t0) = 1, by:

d(t ) = a(t )d0. (1.12)
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The scale factor is related to the redshift z byII:

a(t ) =
1

1+ z
. (1.13)

The derivative of the scale factor with respect to time ȧ indicates if the Universe is in expansion,

i.e. ȧ > 0, static, ȧ = 0, or in contraction, i.e. ȧ < 0.

To take into account the Universe’s expansion for a set of spherical coordinates (r ′, θ, φ), we

thus consider the change of coordinate: r = r ′/a(t ). The most generic metric with those two

parameters describing the dynamic space is then the Friedmann-Lemaitre-Robertson-Walker,

the FLRW metric for which the space-time separation for spherical coordinates is (Robertson,

1935, Walker, 1937) still with the convention (+−−−):

d s2 = c2d t 2 −a2(t )

(
dr 2

1−κr 2 + r 2(dθ2 + si n2θdφ2)

)
. (1.14)

The FLRW metric can be written:

gµν =


1 0 0 0

0 − a2(t )
1−κr 2 0 0

0 0 −a2(t )r 2 0

0 0 0 −a2(t )r 2si n2θ

 . (1.15)

The Ricci scalar and Ricci tensor derived from Equation 1.7 in the case of the FLRW metric

areIII:

R = −6

(
ä

a

1

c2 + ȧ2

a2

1

c2 + κ

a2

)
, R00 = − 3

c2

ä

a
, Ri j = −

(
ä

a

1

c2 +2
ȧ2

a2

1

c2 +2
κ

a2

)
gi j . (1.16)

Universe’s energetic composition

As already mentioned in Section 1.1.1, in GR the Universe’s energy content is encrypted in the

energy-momentum-stress tensor Tµν. Considering the matter as a perfect fluid, the tensor

Tµν is written as:

T µν = (
p

c2 +ρ)uµuν−pgµν, (1.17)

where uµ is the four-vector velocity, p the pressure and ρ the density. If the fluid reference

frame is chosen at restIV, i.e. uµ = (c,0,0,0), then T 00 = c2ρ and T i j = −pg i j . We note that

Tµν = Tαβgαµgβν, and thus in the rest frame T00 = T 00 and Ti j = −pgi j .

IIIn fact, this is the cosmological redshift which is related to the scale factor. The Doppler and gravitational
redshifts are in general much smaller for any objects at cosmological distances (see also Section 1.3.3).

IIIWe note that ȧ ≡ d a/d t so that d a/d x0 = ȧ/c and Rtt = −3 ä
a .

IVThe four-velocity vecor is defined as u⃗ ≡ du⃗/dλ, where λ is the proper time related to the time t with t = γλ,
with the lorentz factor γ = (1− v2/c2), v = d xi /d t the spatial velocity.
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Due to the conservation of Tµν, i.e. ∇µT µν = 0, and using the FLRW metric, it gives the

continuity equation:

ρ̇+ 3ȧ

a
(

p

c2 +ρ) = 0

(
⇐⇒ ∂

∂t
(ρa3)+ p

c2

∂

∂t
a3 = 0

)
. (1.18)

The second form in parenthesis is equivalent to the first law of thermodynamics, dE +pdV = 0.

Friedmann equations

Under the assumption of the FLRW metric from Equation 1.14 with Equation 1.16, and inject-

ing the energy-momentum-stress tensor Tµν at rest defined above in the time-components of

Einstein’s field equation, i.e. µ,ν = 0,0 in Equation 1.6, it gives the first Friedmann equation:

ȧ2

a2 + κc2

a2 =
8πG

3
ρ+ Λc2

3
. (1.19)

In the same way for the spatial coordinates on the diagonal of the metric, i.e. µ,ν = i , i , as all

the other components are zero, we can write:

2
ä

a
+ ȧ2

a2 + κc2

a2 = −8πG

c2 p +Λc2. (1.20)

The second Friedmann equation is obtained by taking the difference between Equations 1.19

and 1.20:

ä

a
= −4πG

3
(ρ+ 3p

c2 )+ Λc2

3
. (1.21)

The set of Friedmann equations is very important in cosmology as they describe the Universe’s

expansion. With a combination of the Friedmann’s equations we recover Equation 1.18, so

the first law of thermodynamics which is equivalent to have an Universe with an adiabatic

expansion. The second Friedmann equation describes the deceleration of the expansion

due to the energy density and the pressure while the cosmological constant Λ causes an

acceleration.

The Friedmann’s set of equations is frequently written with respect to the expansion rate of

the Universe or Hubble parameter H , defined as:

H(t ) =
ȧ(t )

a(t )
. (1.22)

Simple expanding Universe solutions

Lets consider a flat non-static Universe, i.e. κ = 0 and ȧ ̸= 0, dominated by non-relativistic

matter, i.e. p ≃ 0, and assuming no cosmological constant Λ = 0. We thus have the following

9
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solution to the Friedmann’s Equations 1.19 and 1.20:

ȧ2

a2 =
8πG

3
ρ,

2ä

a
+ ȧ2

a2 ≃ 0. (1.23)

The second equation is equivalent to d
d t (2lnȧ + lna) = 0 and from there we can get:

a(t ) = a0
t

t0

2/3
. (1.24)

It means that the scale factor a grows with time: the Universe is in expansion. This toy case

corresponds to a matter dominated Universe. Injecting in the first Friedmann Equation 1.19,

we get ρ(t ) = (6πGt 2)−1, where the density diverges when t goes to 0.

In a radiation dominated Universe, i.e. κ =Λ = 0 and ρ = 3p, following a similar procedure, we

have:

a(t ) = a0
t

t0

1/2
, ρ(t ) =

3

32πGt 2 . (1.25)

Lastly for a cosmological constant domination assuming ρ = p = κ = 0, it gives:

a(t ) = a0 exp

√
Λ

3
t . (1.26)

We will see later that the Universe underwent three phases, one dominated by radiation, one

by matter and finally by the dark energy.

Density parameters

Any Universe can be described by Friedmann’s Equations 1.19 and 1.21 and therefore has an

evolution driven by the dynamics of its content: the matter, the curvature, the radiation and

the cosmological constant.

If those three components are considered as perfect fluids, their equation of state relating

their density ρ and pressure p linearly with a constant w is:

p = wρc2. (1.27)

This can be injected in the continuity Equation 1.18 (which is also a combination of Fried-

mann’s equations), where the analytical solution is the time evolution of the density:

ρ(t ) = ρ(t0)a(t )−3(w+1). (1.28)

Let’s now have a look at the different behaviour of the Universe’s content:
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- For non-relativistic matter, the pressure is negligible compared to density as it has a mass

much more important than its temperature. The linear parameter is then w = 0 and thus it

implies ρm ∝ a−3.

- For radiation or relativistic matter, we have w = 1
3 and thus ργ∝ a−4.

- We can interpret the cosmological constant as a fluid with negative pressure and constant

density. In this case w = −1 and it entails ρΛ(t ) = ρΛ(t0).

Introducing the critical density as the density for which the space is flat in an Universe without

cosmological constant in the first Equation of Friedmann 1.19, using the Hubble parameter H

from Equation 1.22:

ρcrit =
3H 2

8πG
, (1.29)

it allows to define the density parameters for different species:

Ωm,γ,Λ =
ρm,γ,Λ

ρcrit
. (1.30)

From Friedmann’s equation divided by ρcrit and using the previous definitions, the spatial

curvature density Ωκ, also noted Ωk , is determined such that:

1−Ωκ ≡ 1+ κc2

a2H 2 =Ωm +Ωγ+ΩΛ ≡Ωtot. (1.31)

Therefore all the density parameters sum to one and the total density parameter Ωtot gives

constraints on the geometry of the Universe:
Ωtot > 1 ←→ κ> 0 (closed)

Ωtot = 1 ←→ κ = 0 (flat)

Ωtot < 1 ←→ κ< 0 (open)

(1.32)

The first Friedmann’s equation 1.19 is often arranged in terms of the density parameters

as measured today, i.e. at redshift z = 0 or a(t0) = 1, Ωi ,0 ≡Ωi (t0). Under the perfect fluid

assumption and using the parameters defined above:

H 2(t )

H 2
0

=Ωγ,0a(t )−4 +Ωm,0a(t )−3 +Ωκ,0a(t )−2 +ΩΛ,0 ≡ E(a)2. (1.33)

The Universe’s content determines fully the expansion behaviour. We thus have the following

time evolution of the density parameters determined by their values at present time:

Ωγ(z) =
Ωγ,0(1+ z)4

E(z)2 , Ωm(z) =
Ωm,0(1+ z)3

E(z)2 , Ωκ(z) =
Ωκ,0(1+ z)2

E(z)2 , ΩΛ(z) =
ΩΛ,0

E(z)2 .

(1.34)
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1.1.4 Big Bang Theory and Evolution of the Universe

As seen in the precedent section, the Universe’s evolution behaviour is determined by its

content following Friedmann’s equations. However there is a common feature observed for a

matter or radiation dominated Universe as was studied in the subsection 1.1.3: the density

diverges when the time goes to zero. This singularity is referred to as the Big-Bang.

Figure 1.5 illustrates the Universe expansion through the different epochs that I will describe

in this section.

Figure 1.5: Explicating scheme views of the Universe’s space expansion through the different
epochs it undergoes. (Credits of the figure: NASA/WMAP Science Team).

Big Bang

The concept was brought by George Gamov in 1948 (Alpher et al., 1948; Gamow, 1948). He was

the first to use the non-static solutions of Einstein’s equations established by Friedmann and

Lemaître. His idea was that at the beginning of time t = 0 a “primordial explosion” occurred

called the Big Bang. He developed the primordial nucleosynthesis model, called Big Bang

nucleosynthesis (BBN), and participated along with other scientists to predict the existence of

the Cosmic Microwave Background radiation (CMB; Alpher and Herman, 1948).

The Big Bang model explains the Universe’s expansion from an initial state very dense and

hot. Its main success was its ability to predict different observed phenomena from the earliest

observable probes to the structures observed today. Among others it described the expansion

of the Universe, the CMB existence or the light elements abundances formed during BBN.
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The Big Bang event is considered as the beginning of our Universe or the point from which the

Universe follows our interpretation of the laws of physics. It happened 13.8 billion years ago.

Very early Universe

As stated, the Universe was first extremely dense with an infinitely small distance between

elements. The description of the Universe’s first instants after the singularity requires de-

velopments in the quantum field as the particle concept is not well defined at this epoch.

The current hypothesis are that all the forces, namely electromagnetic, weak, strong and

gravitational, were unified as one. At the end of Planck epoch, i.e. 10−43 s, the Universe was at

a temperature of 1032 K with a Hubble horizonV length of 1.6×10−35 m, that corresponds to

Planck length. As the temperature drops, the gravitation force separates from the others.

From approximately 10−36 s to 10−32 s after the Big Bang the Universe enters a new phase,

called the inflation during which the space grows exponentially by a factor of at least 1026

and the Universe cools from 1027 K down to 1022 K. During that period the strong interaction

separates from the electromagnetic and weak forces.

Cosmic inflation was proposed by Alan Guth in 1981 (Guth, 1981). The simplest realisation of

this model relies on a free scalar fieldVI, so associating an intensity at each point in space with-

out direction, with chaotic initial conditions filling the Universe. This leads to an exponential

expansion in a very short period of time.

Even though the scalar field responsible for inflation or its associated particle, namely the

inflaton (field), has not yet been discovered, another relativistic scalar field was detected in

2012, the Higgs field which explains the mass of the particles, leaving open the possibilities.

While still theoretical, inflation resolves two major issues. Indeed without very fine tuning of

initial conditions at the Big Bang, a Universe that expanded in radiation and matter dominated

areas would rise different problems: the horizons and flatness problems. Horizon problem

arises due to causally disconnected regions in space which should have the same set of initial

conditions to explain homogeneity and isotropy. Regarding the flatness problem, the Universe

should have been created in an extreme flatness to observe an almost flat Universe today.

Those two concerns are avoided with inflation making our observed Universe more likely.

VHubble horizon is defined through Hubble’s law with a recession velocity equal to the speed of light. It is the
boundary between faster and slower than light particles for an observer at a certain time. The particle horizon
limits the observable and non-observable Universe as it characterizes the maximum length light particle could
have traveled to the observer. Finally the event horizon is the boundary distance from which light can ever reach
an observer. See Davis and Lineweaver, 2004 for a discussion on horizons.

VIThe action of this field in its simplest realisation, i.e. a free massive scalar field φ with chaotic intial conditions,

is: S =
∫ p

(− g )d4x
(

1
2 gµν∂µφ∂νφ−V (φ)

)
, where V (φ) is the potential. And the dynamics of the field can thus be

described with the movement equation and Einstein equations: φ̈+3Hφ̇+V ′(φ) = 0 and H2 = 8πG
3 ( 1

2 φ̇
2 +V (φ)).

Such a movement is characterized by two regimes. The first when the friction is dominant so that the scalar field is
overdamped, so it slowly rolls down. The second when there are quick oscillations of the scalar field around the
minimum potential, the energy of φ is therefore transferred to radiation.
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Cosmological epochs

Following cosmological inflation, the Universe continues to grow but at a slower rate. From

Friedmann’s Equation 1.33 with current density parameters in a flat Universe, the redshift

evolution of densities presents different relative contributions at different epochs displayed in

Figure 1.6.

Figure 1.6: Universe’s content parameters for a flat cosmology, with Ωm = 0.31, Ωγ = 0.0001,
h = 0.7. The vertical dashed lines are the redshifts z = 1100 (drag epoch) and z = 0 (now). The
blue area corresponds to the radiation domination period, the orange the matter area and the
green the dark energy.

Until redshift 3600, i.e. 42 kyr after the Big Bang, there is a radiation-domination period.

The space extends at a rate proportional to a(t) ∝ t 1/2, filled with very light or massless

components moving at relativistic velocities in thermal equilibrium. During this period the

forces enter their low-temperature regime. They are well separated and are carried by their

respective particles created by interactions. The cooling of the plasma formed by quarks,

leptons and their anti-particles, allowed then the quarks to bind in order to form hadrons,

including protons and neutrons. As the temperature continues to decrease, hadrons ceased

to be produced and therefore the tiny excess of quarks not annihilated by their anti-matter

led to a baryon’s excess over anti-baryons causing the so-called baryon asymmetry. The same

happened for electron and positrons. The neutrons which are not stable particles decayed

into protons creating an excess of 1:6 neutron:proton ratio. Protons, neutrons and electrons

are now no longer relativistic.

At about 1 s, the neutrinos stopped interacting with the baryonic matter and decoupled. From
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10 s to 1000 s the temperature is roughly 108 K, it is cold enough for the BBN process to start,

allowing the formation of light elements such as deuterium, helium and lithium. The Universe

is at this stage a hot plasma dominated energetically by photon radiation and too high in

temperature to bind electrons to nuclei. Once the temperature reaches around 4000 K, neutral

atoms start to form. Photons are not anymore in thermal equilibrium with the matter and

they decoupled, releasing a relic radiation, known as the CMB. This period from redshift 6000

to about 1100 (from 18 kyr to 370 kyr after the Big Bang) is called the recombination, i.e. the

epoch when protons and electrons bound together.

Matter-domination epoch took place from redshift 3600 to around 0.4 (47 kyr to 9.8 Gyr

after the Big Bang). During this period the Universe’s dynamic is set by the matter and its

expansion follows a(t ) ∝ t 2/3. The Universe continues to decrease in density and temperature

until reaching 4 K. This period is marked by the creation of structures observed today in the

Universe. The Dark Age lasted during the major part of matter-domination area: the only

sources of photons were the CMB or photons released by the change in energy of neutral

hydrogen (21 cm line). The first generation of stars were formed causing progressively the

end of the Dark Age and the creation of galaxies. Formation of these first astronomical objects

emits a radiation which reionizes the Universe.

The current domination established around redshift ∼0.5 up to now is the Dark Energy area.

One interpretation of the Λ term is that the vacuum density energy causes the expansion

to accelerate, a(t) ∝ exp
p
Λ/3t . This interpretation is not known to be true, other models

suggest for example a dynamical description as introduced in Section 1.1.6.

Future fate

Solving Friedmann’s Equations 1.19 permits to describe the behaviour of the expansion with

respect to time. Different scenarios for the future of the Universe are possible and depends on

the content density parameters. Therefore it is really important to have precise measurements

to be able to discriminate between the possible fates of our Universe.

Figure 1.7 represents scenarios of the evolution of the Universe for multiple sets of parameters.

The geometry of the Universe plays a very important role for future evolution. Without the

dark energy existence, i.e. ΩΛ = 0, and in the case of a closed Universe (from Equation 1.32

the matter density is larger than the critical density), the Universe will reach a maximum size,

then the gravity will stop its expansion and the Universe will start to contract until collapsing

to a singularity called the Big Crunch. This is the red curve in the Figure 1.7.

In opposition, for an open Universe it will continue to grow. In the presence of Dark Energy

this expansion accelerates and there are two main popular scenarios: the Big Rip and the

Big Freeze. This latter relies on the asymptotic drop in temperature to absolute zero going

along the expansion. It will cause any structures to decompose into particles reaching a

thermodynamics equilibrium, and unable to continue processes that increase entropy. The
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Figure 1.7: Different Universe’s evolution scenarios. The curvature density parameter is fixed
by the sum rule without radiation. Dashed lines show where we are currently, so now. The
crossing points of the curves (on the negative time side) with a = 0 are the respective ages of
the Universe now for the different models.

Big Rip would happen if due to the acceleration of the expansion of space, all objects, even

atomic particles will be torn apart. Energy and acceleration rate of the Universe will become

infinite creating a singularity.

For an Einstein-de Sitter Universe, i.e. flat and filled with matter only Ωm = 1 (Einstein and

de Sitter, 1932), the expansion will continue forever with a rate approaching asymptotically

zero. This is the green curve on the graph. With dark energy (the blue line), a flat Universe will

continue to grow after an initial slow down, in an accelerate way. The future fates would be

therefore similar to the ones for an open Universe. This latest case, i.e. flat Universe with dark

energy, corresponds to our current most likely scenario according to our measurements.

The different scenarios depends on the nature of dark energy. While here I presented Universe’s

fate with a cosmological constant, this is not necessarily the intrinsic description of the

Universe. As mentioned above, other models describe dark energy with a dynamic prescription

(see also Section 1.1.6). Precise measurements are thus needed to understand the dynamics of

the Universe’s expansion.
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1.1.5 Distances Measurements

In this section I will summarize the different distances definitions used in cosmology. I will rely

on the definitions from Hogg, 1999. While in a flat geometry the distances are straightforward,

in a curved space the distance between two points depends on the growing space geometry

and thus on cosmological parameters of the Universe.

Comoving and proper distances

Comoving distance between two nearby objects moving with the Hubble flow, i.e. the expan-

sion of the Universe, will be constant over time. Using the FLRW metric (Equation 1.14), the

line-of-sight or radial comoving distance DC (sometimes written also χ) is evaluated along a

path followed by the photons emitted at time tem, or redshift zem, and observed at t0 (here we

take t0 such that z(t0) = 0):

DC = c
∫ t0

tem

d t ′

a(t ′)
= DH

∫ zem

0

d z ′

E(z ′)
, (1.35)

where E (z) is defined in Equation 1.33, and DH is the Hubble distance defined with the Hubble

constant H0 and the speed of light c:

DH =
c

H0
= 3000Mpc/h = 9.26×1025m/h. (1.36)

It can be generalized to DH (z) = c/H(z).

The proper or physical distance is the distance as measured at the time it is observed. This

distance changes due to the expansion of the Universe. The proper distance d(t ) is related to

the comoving distance by the scale factor:

d(t ) = a(t )DC . (1.37)

When measured at the current Universe’s age, these two definitions are equal. Figures in 1.8

illustrate both concepts to understand them better.

Transverse comoving distance and angular diameter distance

At the same redshift, the radial comoving distance of two objects measured by us would be the

same value. However the observed separation between those two objects will depend on the

Universe’s curvature. We can define the transverse comoving distance DM as a function of the
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Figure 1.8: Illustrations to understand comoving and proper distances. Space is represented at
three different times, t2, t1 and t0 which is present time. Orange point is our location in space.

radial comoving distance of these events DC :

DM =


DH

1p
−Ωκ

sin(
√

−ΩκDC /DH ) if Ωκ < 0

DC if Ωκ = 0

DH
1p
Ωκ

sinh(
√
ΩκDC /DH ) if Ωκ > 0

(1.38)

Therefore the comoving distance between two points at the same redshift separated by an

observed angle δθ is DMδθ.

Angular diameter distance D A is the ratio between the physical (proper) size of an object

l which depends on the Universe expansion so on its redshift z, and its observed angular

size δθ: D A = l/δθ. As for a fixed comoving size, δθ = lC /DM we have in proper coordinates

δθ = l (1+ z)/DM and therefore D A can be written:

D A =
DM

1+ z
. (1.39)

Figure 1.9 depicts the relation between angular diameter δθ, angular diameter distance D A

and the proper size of the object l .

Luminosity distance

The information we get from an astronomical object is the emitted light. For a source radiating

in all directions at a given power, called luminosity, the observed flux is the source luminosity
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Figure 1.9: Scheme with angular diameter δθ, angular diameter distance D A and the transverse
proper size l .

passing through the surface of a sphere area determined by the distance DL to the emitted

object:

F =
L

4πD2
L

. (1.40)

The luminosity distance DL is therefore the distance determined from the flux of the observed

object. It is related to the comoving transverse distance by:

DL = (1+ z)DM . (1.41)

The luminosity distance can also be determined in terms of relations for the absolute and

apparent magnitudes M and m, respectively:

M = m −5log10
DL

10pc
. (1.42)

The apparent magnitude in a spectral band x is defined as: mx = −2.5log(Fx /Fx,0), where

Fx,0 is the reference flux in this band. The absolute magnitude is the apparent magnitude as

observed at a distance of 10 pc.

Cosmic distance ladder

Within a thousand of parsec to us, distances can be measured directly. However for more

distant objects indirect techniques have to be exploit to determine their distances. In order to

calibrate the relative distance of an astronomical object as defined in the precedent sections,

we can work with ladders. In particular cosmic distance ladders can be used to measure the

expansion rate of the Universe, see Figure 1.10.

For example standard rulers are reference objects for which the proper size is known. It is thus

possible to compare the angular size to be able to get the angular diameter distance and thus

studying the Universe expansion from a series of distance measurements. I will present later

in more details the physical scale imprinted in the baryon acoustic oscillations (BAO).
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Another important ladder is the category of standard candles for which the luminosity is

known. This is the technique that was used to discover the acceleration of the expansion of

the Universe.

Standard sirens is an event for which it is possible to predict theoretically the intensity of the

emitted waves, in order to measure the distance, such as gravitational wavesVII.

Figure 1.10: Explaining scheme for standard candles on the left for which a reference luminos-
ity is known and standard rulers on the right for which a physical scale is known. (Credits of
the figure: NASA/PL-Caltech/R. Hurt (SSC)).

Discovery of the late-time acceleration

In 1998 two independent groups (Riess et al., 1998; Perlmutter et al., 1999) established a

luminosity-redshift relationship by studying samples of type Ia Supernovae (SNe Ia), resulting

from an end-of-life star implosion in a binary system containing at least a white dwarf. As the

critical mass at which the white dwarf would explode is constant, the intrinsic brightness will

be the same for all of supernovae, making them a good standard candle.

Figure 1.11 displays the distance modulus obtained with Equation 1.42, of the Supernovae as a

function of their redshift from Riess et al., 1998. From these curves it yields that a non-zero ΩΛ
is favoured as can be seen on the left plot of Figure 1.11. Moreover the deceleration parameter

q = −äa/ȧ2 favors an accelerating expansion (q < 0). This was the first observational evidence

that the Universe was undergoing an acceleration of its expansion. The unknown nature of

this acceleration was then given a name: the dark energy.

VIIFirst GW detection by LIGO in 2017 (Collaboration, 2016), for a future roadmap of physics with GW which were
shown to be powerful to constrain cosmological parameters see e.g. Bailes et al., 2021.
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Figure 1.11: Right: Hubble diagram from Riess et al., 1998 for SNe Ia. Left: Confidence intervals
in the Ωm ,ΩΛ plane from Riess et al., 1998 (on the plot q ≡ −äa/ȧ2 is the deceleration
parameter that can be parametrized when the radiation is neglected, i.e. Ωγ,0 ≪Ωm,0, as
q0 =Ωm,0/2−ΩΛ,0).

1.1.6 The Standard Model of Cosmology

The standard model of cosmology, also called ΛCDM, is currently the simplest descriptive

model we have of our Universe characterizing a Big Bang cosmology.

It relies on different assumptions that I presented earlier: space and gravity are correctly

described by GR and the cosmological principle (see 1.1.2). From those it results the FLRW

metric (see 1.1.3) and thus the Friedmann equations (see Equation 1.33). In its standard form

the model describes the late time acceleration with a cosmological constant Λ associated with

dark energy.

ΛCDM model assumes the Universe to be filled with: baryonic matter, Cold Dark Matter

(CDM), relativistic particles and dark energy. From current measurements, the actual division

content of the Universe is shown on Figure 1.12. Dark energy and dark matter represent about

95% of the total content: most of the Universe is from an unknown nature.

Dark matter

Baryonic matter is the matter which surrounds us. However in ΛCDM it constitutes only

about 5% of the total content of the Universe. Most of the matter interacting gravitationally

in the Universe has not yet been discovered. This hypothetical matter is named dark matter,

as it does not emit radiation so it is obscure (for some overviews on the subject here a few

references: Bergström, 2000, Bertone and Hooper, 2018, Green et al., 2022, Drlica-Wagner
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Figure 1.12: Composition content of the Universe as measured today. (Credits of the figure:
Spergel, 2015).

et al., 2022).

While it has never been detected directly, they are multiple observational evidence suggesting

the existence of dark matter, such as galaxy rotation curves, velocity dispersions, galaxy clusters

or gravitational lensing. Dark matter would also be responsible for most of the Universe’s

structures bound by gravitation observed today.

In 1933, Fritz Zwicky (Zwicky, 1933) was the first to detect indirectly dark matter. He studied

the Coma galaxy cluster and found an anomaly: the galaxies rotational velocities exceeded

the expected value determined using the Virial theorem with the mass computed from its

luminosity. From his calculations the mass should have been around 400 times larger, suggest-

ing the existence of a large amount of obscured matter. In 1970, Vera Rubin and Kent Ford

(Rubin and Ford, 1970) confirmed this gravitational anomaly by observing the rotational curve

of spiral galaxies. Figure 1.13 represents a similar rotational curve. The observed orbiting

velocities of stars do not match the theoretical predictions for a disk and gas. Data present a

flat curve instead of decreasing velocities with the distance to the center. The velocity curve of

a massive surrounding dark halo around the galaxy should be added in order to match the

observations. This halo is interpreted to be made of dark matter.

There are now other pieces of evidence for dark matter. BBN data set a bound on the maximum

baryon density in the Universe, which only corresponds approximately to a fifth of the total

matter content of the Universe (e.g. Copi et al., 1995).

Gravitational lensing for example can also give important insight on dark matter. Indeed

light deflection has been described by Einstein’s theory of GR: light rays propagating through

a gravitational field are bended leading to deformation of astronomical bodies (Lynds and

Petrosian, 1986; Soucail et al., 1987) or multiple images of the same object (Walsh et al., 1979).

It can therefore be used to infer the underlying matter density field and thus give constraints

on dark matter (Tyson et al., 1990).
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Figure 1.13: Rotation curve of NGC 6503 from Begeman et al., 1991. It shows the data with
points, the theoretical predictions from the disk, from gas and from a dark matter halo. The
solid line is the total of the three contributions.

Cold dark matter and alternative models

The most popular model is the Cold Dark Matter (CDM) made of weakly interacting and

cold, i.e. non-relativistic, particles (Peebles, 1982) in a ΛCDM model. After the Big Bang,

as Universe cooled, dark matter decoupled from the expansion, collapsed and bounded

gravitationally in halos, creating higher density areas. This will lead, after recombination, to a

hierarchical clustering of matter and gas seeded around those areas; gravitational attraction

of CDM particles will form cosmic structures (Blumenthal et al., 1984, Dodelson et al., 1996),

with CDM clumping on all scales, where smaller structures merge into larger structures.

Promising candidates are the Weakly Interacting Massive Particles (WIMPs, Steigman and

Turner, 1985). These hypothetical particles would have weak force interactions with a mass

range of approximately 100 GeV. To this day, they have never been detected. Other suitable

sources of CDM are Axions which are light elementary particles (Peccei and Quinn, 1977) or

Massive compact halo objects (MACHOs) such as neutron stars or blackholes.

While CDM has great success to explain the structure formation on large scales in the Universe,

on smaller scales the model encounters a few issues where observations and predictions

differ. The first debating issue lies in the rotation curves; they are better fitted, in the dark

matter distribution, by constant density cores while models lead to a cuspy dark matter halos

(Moore, 1994; Navarro et al., 1997). Secondly, halos simulations with ΛCDM model predict an

abundance of substructures of mass greater that 108 M⊙ within the Local Group of about 2

times larger than the number of satellite dwarf galaxies of the Milky Way that was observed
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(Klypin et al., 1999, Moore et al., 1999), this is referred to as the “missing satellite” and “too

big to fail” (as predictions give halos massive enough to host visible matter Boylan-Kolchin

et al., 2011) problems. Indeed, it would mean that the substructures overmerged in galactic

halos but not in clusters, for which the abundance is in agreement with observations (Springel

et al., 2001) implying a one to one mapping of dark to luminous matter substructures. More

recent observations found a certain amount of fainter dwarf elliptical galaxies in different

systems such as in the neighbourhood of M81 (Chiboucas et al., 2013), M101 (Danieli et al.,

2017; Merritt et al., 2014), M94 (Smercina et al., 2018), Centaurus A (Crnojević et al., 2019) or

around the Milky Way (Carlsten et al., 2022).

Alternative models of dark matter exists, each of them having their strength and weakness.

Warm Dark Matter (WDM) model consists of cooled hot dark matter particles, i.e. particles

with significant non-relativistic velocities in the early Universe. It differs from CDM since

they have a thermal motion which allows them to free out of the primordial potential well,

suppressing the small-scale structure of matter. WDM particles are assumed to be around a

few keV mass (Haiman et al., 2001). WDM outperforms CDM on different aspect: simulations

with WDM found a halo mass function suppressed as expected (Bode et al., 2001, J. Wang and

White, 2007) and which matched the observed number of satellites (Polisensky and Ricotti,

2011). Strong candidates for WDM particles are the sterile neutrino (Asaka and Shaposhnikov,

2005, Boyarsky et al., 2009) or gravitino (Baltz and Murayama, 2003). As seen on Section

1.2.3, a strong way to constrain mass of WDM is Lyman-α power spectrum (Viel et al., 2005,

Palanque-Delabrouille et al., 2020). Mixture combinations of different DM particles are also

considered (e.g. Boyarsky et al., 2009).

Hot Dark Matter (HDM) is composed of very light particles with ultra-relativistic velocities

at redshift 106 with a very low interaction rate. The neutrinos are candidates for this dark

matter description (Primack and Gross, 2001). The scenario of pure HDM is now excluded by

observations (see also Section 1.2.3). Indeed the existence of high-redshifted quasars already

contradicts this scenario.

Instead of considering those gravitational anomalies as an indication for the existence of a new

matter, they are models proposing modifications of the Newtonian laws of gravity, Modified

Newtonian dynamics (MOND, Milgrom, 1983).

Dark energy

The Universe’s expansion is accelerating as seen in he Section 1.1.4. This was explained

by adding dark energy, an energy from an unknown nature acting against gravitation and

dominating the late Universe (see Section 1.1.4). In the ΛCDM paradigm dark energy is

described with the cosmological constant Λ which manifests itself as a constant in Einstein’s

Equation 1.6. Such a dark energy can be interpreted as the vacuum energy, so that the empty

space has an attributed mass.
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Another form of dark energy proposed is a scalar field, similarly to the inflaton which drives

inflation but at a much lower scale of energy (see its description in Section 1.1.4). It leads

therefore to a dynamical description of dark energy. In this context, one popular scalar field

φ is the quintessence dominated by a potential energy V (φ) (Fujii, 1982; Ratra and Peebles,

1988; Caldwell et al., 1998). Quintessence has the following equation of state:

wφ =
pφ
ρφ

=
1
2 φ̇

2 −V (φ)
1
2 φ̇

2 +V (φ)
. (1.43)

It exists many different ways to describe the relation between V and φ (see different examples

in Sahni, 2002). We also note that the scalar field can vary over time and space. A parametriza-

tion for its time-evolution is the following (Chevallier and Polarski, 2001):

w(z) = w0 + z

1+ z
wa , (1.44)

where w0 is the value now, at z = 0VIII. We note that when evaluated at another redshift,

defining a pivot redshift zp or pivot scale factor ap , the parametrization becomes:

w(a) = wp + (ap −a)wa , (1.45)

Injecting this w(z) in the time-evolution density of Equation 1.28, allows to describe Dark

Energy within this model with three parameters. We often refer to this extended ΛCDM

cosmological model with quintessence as wCDM.

Special cases of quintessence is wφ = −1 and in this case as seen previously, we have a cos-

mological constant. Phantom energy is the particular case when wφ <−1, it will lead to a Big

Rip.

Current parameter values

The current simplest ΛCDM model possesses six parameters for a flat Universe: the baryon

density Ωb , the cold dark matter density Ωc , the age of the Universe tH , the spectral index

ns , the amplitude of the primordial fluctuations As and the optical depth to reionization τ.

The reionization optical depth is a measurement of the line-of-sight opacity of electrons to

radiation. The other parameters are described in this first Chapter (I described the three first

parameters in this Section and I will described the two left parameters in the next Section

1.2). We note that the matter density Ωm is related to the baryon and dark matter densities as:

Ωm =Ωb +Ωc .

Very precise measurements of these parameters, gathered in Table 1.1, are from Planck col-

laboration (Planck Collaboration et al., 2020) which relies on CMB data taken with the Planck

satellite, combined with other probes. They are used as reference. In this case, under the

VIIICommun fiducial values are w0 = −1 and wa = 0.
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model assumptions some parameters are fixed: the total density is equal to 1, w = −1, the effec-

tive number of neutrino species to Neff = 3.046 and the sum of neutrinos masses is
∑

mν = 0.06

eV/c2.

Parameters name Symbol Value

Baryon density Ωbh2 0.02242±0.00014
Dark matter density Ωc h2 0.11933±0.00091
Age of the Universe tH 13.787±0.020 Gyr
Reionization optical depth τ 0.0561±0.0071
Amplitude of curvature fluctuations at k = 0.05 Mpc−1 ln

(
1010 As

)
3.047±0.014

Spectral index ns 0.9665±0.0038

Table 1.1: List of the 6 parameters for a flat ΛCDM model with values of Planck Collaboration
et al., 2020 (last column of Table 2) with their 68% intervals.

Other parameters can be derived from this set such as the Hubble parameter H0, the matter

fluctuation in a sphere of 8h−1Mpc radius σ8 or the various density parameters.

ΛCDM parameter set can be extended from a few parameters. We have seen that the dark

energy equation of state can be let free and in this case we refer to a wCDM model. When

leaving the curvature as a free parameter, we often referred to a oΛCDM model. It is also

possible to leave the sum of the neutrino masses free or density parameter of the relativistic

particles. We note that measurements of Ωγ gives Ωγ ∼ 10−4.

Limitations

The ΛCDM standard model in its simplest formIX is very successful in describing the LSS and

the cosmic content abundances. However while it has powerful predictions which were con-

firmed observationally, ΛCDM suffers from some theoretical issues or discrepancies between

observational probes (for a review see e.g. Bull et al., 2016, Perivolaropoulos and Skara, 2022).

Indeed there is a lack of physical description of some key model ingredients, such as inflation,

dark energy and dark matter. I already mentioned the fine tuning problem for which inflation

is seen as a solution. Another fortuitous observation is the cosmic coincidence problem (Huey

and Wandelt, 2006, Velten et al., 2014), that questions the fact that the matter and dark energy

densities are of the same order, making the current period a special time. We have also seen

above the limitations of the CDM description of dark matter such as the cusp or missing

satellites issues (Del Popolo and Le Delliou, 2017).

Those last years tensions in cosmological parameters measured by different probes have been

observed, namely in σ8 and H0. In the Ωm-σ8 planeX there is indeed an observed tension of

2σ between Planck measurements and galaxy clusters or weak lensing measurements (Asgari

IXIn literature, it is sometimes referred to as the “Vanilla” form of ΛCDM model.
XEquivalently it is common to define the parameter S8 ≡σ8

√
Ωm /3.
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et al., 2021, T. Abbott et al., 2016, Heymans et al., 2013, Hildebrandt et al., 2017). Left panel of

Figure 1.14 illustrates this tension, showing the contours in the Ωm-σ8 plane, as measured by

Planck or different weak gravitational lensing probes.

Figure 1.14: Contours in the σ8 and Ωm planes for different lensing probes and Planck CMB
measurements. It illustrates the ∼ 2σ tension seen between those probes. (Credits of the
figure: Heymans et al., 2021).

Another significant tension in H0 is called the Hubble tension (Verde et al., 2019, Di Valentino et

al., 2021 for an overview). A 5σ discrepancy is observed between the late-time measurements

in the local Universe, such as SN, Cepheids or time delays techniques, and the early Universe

with CMB or LSS for example. Latest value of Planck is H0 = 67.36±0.54 km s−1 Mpc−1 (Planck

Collaboration et al., 2020), consistent values were find from LSS or WMAP (Alam et al., 2017,

Alam, Aubert, et al., 2021, Hinshaw et al., 2013). Direct measurements in the local Universe

gives higher values around 73 km s−1 Mpc−1 (Riess et al., 2019, B. A. Reid and White, 2011,

Bonvin et al., 2017), creating an unexplained 5σ tension between the two sets of measurements.

This tension is even more general across more experiments than mentioned here as illustrated

on the right of Figure 1.15.

While solutions to these tensions could be for example from non-treated systematics, other

explanations can arise by changing the model. Some tentative have been made, such as

modified gravity models, dynamic dark energy models (G.-B. Zhao et al., 2017) or interacting

dark energy with dark matter (von Marttens et al., 2019).
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Figure 1.15: H0 measurements by different probes of the late and early Universe, exacerbating
the H0 tension. (Credits of the figure: Abdalla et al., 2022).

1.2 Large-Scale Structures in the Universe

On large scales, galaxies in the Universe display a web-like distribution. Galaxies gather in

clusters or groups at the intersection of filamentary structures, as in the Figure 1.16. Between

those regions lie voids, which are large empty regions containing little or no galaxies. The study

of these Large Scale Structures (LSS) can provide valuable insights about cosmic evolution

history. LSS trace the matter distribution in the Universe. Their evolution results from a

balance between gravitational forces and the Universe expansion, under the assumption of

a GR+ΛCDM cosmology. Thus LSS can help constraining cosmological parameters, such as

the matter density Ωm , the Dark Energy density parameters, ΩΛ the equation of state of dark

energy w or the Hubble constant H0.
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In this Section, I will introduce those LSS and their formation to understand their value in

cosmological analysis. I will follow belong others the summary works of H. Mo et al., 2010,

Coles, 2001, Bernardeau et al., 2002, Peebles, 1993, Peacock, 2003, Weinberg et al., 2013 and

lectures of Jaiyul Yoo (UZH) on Advanced Topics of Theoretical Cosmology. I will mainly limit

myself to linear theory. Non-linear approach can be reached with simulations that resolve the

equations numerically.

Figure 1.16: Large scale structures formed by galaxies as observed by the Sloan Digital Sky
Survey in the early 2000’s. (Credits of the figure: Park et al., 2005).

1.2.1 Formation

Emergence within primordial Universe

Birth of large scale structures observed today took place in the very early Universe, described

briefly in Section 1.1.4. The Universe was at that moment highly homogeneous, but presenting

some small density fluctuations over the space. With the rapid expansion, these primordial

fluctuations became the seeds of LSS that grew during matter domination epoch.

Matter formations evolved therefore from the growth of those initial fluctuations as a result of

the gravity acting against Universe’s expansion and pressure. The most prevalent scenario is a

bottom-up formation for LSS and galaxies, favoured in ΛCDM model. It relies on a hierarchical

structure formation: smaller scale structures such as galaxies, first collapse gravitationally

to successively merge into larger structures (Peebles, 1965). Structure formation in a ΛCDM

Universe is shown on Figure 1.17.

Other scenario is a top-bottom formationXI in which the initial fluctuations would first grow

into dense LSS that will fragment into smaller structures down to galaxies (Zel’dovich, 1970).

XIIt would correspond to the scenario for a HDM.
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Figure 1.17: Simulation at different redshifts, from back to front z = 6,2,0, within a box of 100
h−1Mpc length. (Credits of the figure: Volker Springel, MPI).

Universe as a fluid

Before recombination, the Universe is a plasma with its particles tightly coupled. After recom-

bination, baryons can be described as an ideal gas as their mean free path is small compared

to the scales of interest and dark matter is assumed to behave as a collision-less fluid. It results

that the matter distribution can be represented as a fluid.

A fluid time evolution is governed by three main equations. The continuity equation (Equation

1.46a) describing the density transport as a function of time. Euler equations or the equations

of motion (the three Equations 1.46b) give the fluid velocity with respect to gravity and pressure

interactions. The Poisson equation (Equation 1.46c) relates the potential to the density field:

∂ρ

∂t
+∇r ·

(
ρu⃗

)
= 0, (1.46a)

∂u⃗

∂t
+ (

u⃗ ·∇r
)

u⃗ = −∇rφ− 1

ρ
∇r P, (1.46b)

∇2
rφ = 4πGρ, (1.46c)

where ρ(x⃗, t ) is the fluid density at space position x⃗ and time t , u⃗(x⃗, t ) its velocity, P (x⃗, t ) the

pressure and Φ(x⃗, t ) the gravitational potential. We note that one equation is missing in order

to have the 6 unknown parameters fully described. Therefore a supplementary equation has

to be added to specify the pressure: the equation of state (see below the Section 1.2.1).

Now, let’s adapt those equations for an expanding Universe. Assuming a FLRW metric (see

1.1.3), the comoving positions x⃗ are related to the proper positions r⃗ with Equation 1.37,
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therefore we have the following relations for their derivatives in comoving coordinates:

r⃗ = a(t )x⃗, (1.47a)

u⃗(x⃗, t ) = ȧx⃗ +a ˙⃗x ≡ ȧx⃗ + v⃗, (1.47b)

∇r → 1

a
∇x , (1.47c)

∂

∂t

∣∣
r →

∂

∂t

∣∣
x −

ȧ

a
x⃗ ·∇x . (1.47d)

Using Friedmann’s Equation 1.21 without pressure, we define the gravitational potential

Φ = φ+ X such that ∇2
x X /a2 = −4πGρ in order to have the gravity sourced only from the

contrast ρ−ρ, where ρ is the mean background density:

Φ≡φ+ 1

2
äax⃗2. (1.48)

Consequently the fluid Equations 1.46 conformed for a Universe in expansion areXII:

∂ρ

∂t
+3

ȧ

a
ρ+ 1

a
∇x ·

(
ρv⃗

)
= 0, (1.49a)

∂av⃗

∂t
+ (

v⃗ ·∇x
)

v⃗ = −∇xΦ− 1

ρ
∇x P, (1.49b)

∇2
xΦ = 4πGa2 (

ρ−ρ)
. (1.49c)

We note that the continuity expression was already expressed previously with Friedmann

equations, see Equation 1.18.

Gravitational instabilities

The primordial fluctuations in the Universe density are sources of gravitational instabilities,

that can be treated as small perturbations in the cosmological fluid described above.

Let’s define the density contrast δ that describes the overdensity field from the density ρ and

the mean density ρ:

δ(x, t ) =
ρ(x, t )−ρ(t )

ρ(t )
. (1.50)

Considering infinitesimal perturbations in the different quantities around the background

XIIWe use the divergence: ∇· x⃗ = 3.
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values such as:

ρ(x, t ) = ρ(t )+δρ(x, t ),

v(x, t ) = v(t )+δv(x, t ),

P (x, t ) = P (t )+δP (x, t ),

Φ(x, t ) =Φ(t )+δΦ(x, t ).

(1.51)

In the linear regime, the fluid Equations 1.49 become for a non-relativistic fluidXIII with respect

to the density contrast, dropping the higher order terms such as v2, δ2 or vδ:

∂δ

∂t
+ 1

a
∇x · v = 0, (1.52a)

∂v

∂t
+ ȧ

a
v = − 1

a
∇xδΦ− 1

aρ
∇xδP, (1.52b)

∇2
xδΦ = 4πGa2ρδ. (1.52c)

Differentiating as a function of time the continuity Equation 1.52a and injecting inside

the Euler Equations 1.52b and Poisson Equation 1.52c (reinjecting as well the continuity

Equation 1.52a), we have a description in the linear approximation of the evolution of density

fluctuations for small perturbations, so with δ≪ 1:

δ̈+2
ȧ

a
δ̇ = 4πGρδ+ 1

a2ρ
∇2

xδP. (1.53)

Equation of state

For an ideal fluid we can assume to have an equation of state depending on the temperature

T or the entropy S:

P = P (ρ,S) or P = P (ρ,T ). (1.54)

The equation of state can be used to expand the pression gradient in Equation 1.53:

∇x T

ρ
=

1

ρ

(
∂P

∂ρ

∣∣∣∣
S
∇xρ+ ∂P

∂S

∣∣∣∣
ρ

∇x S

)
. (1.55)

Using the sound speed definition:

c2
s =

∂P

∂ρ

∣∣∣∣
S

, (1.56)

XIIIWe use ρ∝ a−3 for a non-relativistic fluid of Equation 1.28 to get the continuity Equation 1.49a as a function

of the density contrast: ∂δ
∂t

+ 1
a ∇x · ((1+δ) v⃗

)
= 0.
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and considering the adiabatic case, i.e. dS
d t = 0, the linearized fluid Equation 1.53 becomes:

δ̈+2
ȧ

a
δ̇ = 4πGρδ+ c2

s

a2 ∇2
xδ+

1

a2

∂P

∂S
∇2

x S. (1.57)

It governs the non-relativistic time evolution of small perturbations inside the expanding

Universe. On the left-hand side, the second term is the Hubble drag describing the suppression

of the perturbation growth due to the Universe’s expansion. On the right-hand size, the Poisson

term expresses the effect of gravity which helps the perturbations to grow, and the two last

terms encode the pressure effects with the spatial gradient of the density and the entropy.

1.2.2 Cosmic Density Field

Statistical description

A cosmic field can be characterized by its density field δ(x⃗) that I defined in Equation 1.50,

which specifies the density contrast at every space point x⃗. The density contrast is assumed to

be the realisation of a random process in the very early Universe due to quantum variations in

the inflaton field (see Section 1.1.4). Therefore it makes sense to have a statistical description

of the random process which generates the density field. Figure 1.18 represents such a dark

matter density field.

Figure 1.18: Dark matter density contrast at redshift 1.48 from a simulation box used for
EZmocks (introduced after in Chapters 2 and 3). Here a slice of 1000x1000x50 h−1Mpc is
drawn.

Writing the probability distribution function P generating random perturbation fields δi ≡
δ(x⃗i ) that can be seen as n infinitesimal cell divisions of the Universe centered at x⃗i with
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i = 1,2, · · · ,n:

P (δ1,δ2, · · · ,δn)dδ1dδ2 · · ·dδn , (1.58)

the moments of P are, with integers pi ≥ 0:

〈δp1

1 δ
p2

2 · · ·δpn
n 〉 =

∫
δ

p1

1 δ
p2

2 · · ·δpn
n P (δ1,δ2, · · · ,δn)dδ1dδ2 · · ·dδn . (1.59)

The cosmological principle enunciated in Section 1.1.2 requires that the cosmic density field is

statistically homogeneous and isotropic, implying that the probability distribution function or

its moments are invariant under spatial translations and rotations. In addition by presuming

that our Universe is one stochastic realisation of the random generating density process, even

without evidence of the existence of other realisations, we are also able to assume ergodicity.

Ergodicity states that a large enough set of random realisations of a stochastic process is

equivalent statistically than taking a single sample in its whole. It means for example that the

volume average density ρ is equivalent to averaging different realisations 〈ρ〉.

Therefore it implies that the mean of the density perturbation field, i.e. the first moment, and

its variance are independent of the position:

〈δ(x⃗)〉 = 0, 〈δ2(x⃗)〉 =σ2. (1.60)

Two-point correlation function

A very important moment from Equation 1.59 when characterising the LSS is the two-point

correlation function ξ(r ):

ξ(r ) = 〈δ(x⃗1)δ(x⃗2)〉 (1.61)

where r = |x⃗2− x⃗1| is the norm separation between the two vector positions x⃗1 and x⃗2. The two-

point correlation function expresses the excess probability of finding two elements separated

by a distance r . This function is used to quantify the clustering of the matter. This is illustrated

in Figure 1.19 for a discretization of the density field: the correlation function is the normalized

count of elements separated by a radius between r and r +dr .

It can be extended to higher statistics:

ξn(x⃗1, x⃗2, · · · x⃗n) = 〈δ(x⃗1)δ(x⃗2 · · ·δ(x⃗n)〉 (1.62)

However in these cases the n-point correlation functions are not anymore characterised by a

single distance and depend on the separation of every pairs belonging to the n pointsXIV.

XIVThe Fourier transform of the three-point correlation function is named the bispectrum.
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Figure 1.19: Illustration to understand the two-point correlation function.

Power spectrum

It is often more convenient to work in Fourier space as fields can be seen as a superposition

of modes, i.e. plane waves with wave number (or spatial frequency) k, and are then easier to

build.

The Fourier transformation of the density perturbation field δ(k⃗) is defined from its configura-

tion space version δ(x⃗), and inversely with the following adopted convention:

δ(k⃗) =
∫

d 3x⃗e−i k⃗·x⃗δ(x⃗), δ(x⃗) =
1

(2π)3

∫
d 3k⃗e i k⃗·x⃗δ(x⃗). (1.63)

The power spectrum P (k) is thus defined as the second moment of the Fourier transform of

the probability distribution Pk :

〈δ(k⃗1)δ(k⃗2)〉 = (2π)3δ3
D (k⃗1 + k⃗2)P (k), (1.64)

where k is the norm of k⃗1 and δD is the Dirac function, that reflects translation invariance.

The power spectrum is related to the two-point correlation function as:

P (k) =
∫

d 3x⃗e−i k⃗·x⃗ξ(x), ξ(r ) =
1

(2π)3

∫
d 3k⃗e i k⃗·r⃗ P (k). (1.65)

Similarly, performing the integration over the k⃗ · r⃗ angle we get the formXV:

P (k) = 4π
∫

d xx2 sinkx

kx
ξ(x), ξ(r ) =

1

2π2

∫
dkk2 si nkr

kr
P (k). (1.66)

XVAs k⃗ · r⃗ = kr cos(θ) where θ ≡ k̂ ·x, we can choose coordinates such that d3k⃗ = k2si nθdθdφdk. Moreover using

the change of coordinate X ≡ cosθ the integral becomes (2π)−3 ∫ 2π
0 dφ

∫
dkk2P (k)

∫ cos(π)
cos(0) −d X exp i kr X , solving

the angles integrals and using si nx = (ei x −e−i x )/2i , we get the new formulation.
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As mentioned earlier, the two-point correlation expresses the probability of finding two den-

sity perturbations separated by a certain distance. Therefore the power spectrum splits the

probability in different modes k = 2π/x, where x is the perturbation scale and the power

spectrum amplitude characterises the contribution of the mode to the overall probability.

The unit of the power spectrum is a volume unit, this is sometimes easier to work with the

dimensionless quantity ∆:

∆2(k) ≡ 1

(2π)3 4πk3P (k) =
dσ2

d lnk
, (1.67)

where σ2 = 〈δ2〉 defined in Equation 1.60.

Gaussian random fields

As detailed previously, cosmic density fields are portrayed as the result from a stochastic

process. A random process that describes well the primordial Universe density field is a

n-variate Gaussian distribution:

P (δ1,δ2, · · · ,δn) =
1

(2π)n/2 |C |1/2
exp

(
−1

2

∑
i , j
δi Ci jδ j

)
, (1.68)

with C the covariance matrix.

The strength of Gaussian process lies in the Wick’s theorem: any moments can be written as

a product of the pairs moments. Its application means that even moments of P can be fully

determined by its covariance, i.e. the two-point correlation function or the power spectrum.

Due to its first moment, odd moments are thus zero (Equation 1.60).

We can then approximate δ(k⃗) as a Gaussian random field in Fourier space with the following

gaussian distribution, with no correlation between the modes:

P
(
δ(k⃗)

)
=

1p
2πP (k)

exp

(
− δ(k⃗)2

2P (k)

)
. (1.69)

We note that however that the density perturbation field is no longer Gaussian today because

of non-linearities that arise during the gravitational collapse.

Primordial power spectrum

The initial power spectrum describing fluctuations in the early Universe, after inflation, is

assumed to be a power law to avoid to have any preferred length scale in the spectrum. The

power index would then adjust the large and small scales. This assumption results from

inflation (see Section 1.1.4) that predicts scale-invariant perturbations.
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Let’s consider instead of perturbations in the density field ρ, perturbations in the gravitational

potential φ(x⃗) ≡φ(x⃗)+Φ(x⃗), where φ is the background field and Φ is the small perturbation.

The gravitational power spectrum is defined by:

〈Φ(k⃗1)Φ(k⃗2)〉 = (2π)3δ3
D (k⃗1 + k⃗2)PΦ(k). (1.70)

The post-inflation power spectrum of the perturbations Φ for the gravitational potential is a

power law with scalar amplitude As and the spectral index ns ≡ d ln∆2
Φ

/d lnk:

PΦ(k) = Ask−3+(ns−1),

∆2
Φ(k) =

1

2π2 k3PΦ(k) ∝ kns−1.
(1.71)

In particular, if ns = 4, then we have no correlations between neighbouring points 〈Φ(k⃗1)Φ(k⃗2)〉∝
δ3

D (k⃗1 + k⃗2), this is a white noise Φ. The correlation increases as ns decreases. For ns = 1 this is

the Harrison-Zel’dovich power spectrum (Harrison, 1970, Zeldovich, 1972), the power spec-

trum ∆Φ is constant: we have a scale invariant power spectrum.

Using the Fourier transform of the Poisson Equation 1.52cXVI:

−k2δΦ(k⃗) = 4πGa2ρδ(k⃗), (1.72)

the primordial density power spectrum is related to the gravitational power spectrum as

PΦ(k) ∝ k−4P (k), and we thus have:

P (k) = Askns ,

∆2(k) =
1

2π2 Ask3+ns .
(1.73)

Due to the power law form of the power spectrum, the two-point correlation function would

take a form: ξ(r ) ∝ 1/r ns+3. It gives a lower boundary on ns with respect to the cosmological

principle. Indeed, for ns <−3 the two-point correlation would go to infinity when r tends to

infinity meaning that on large scale the Universe gets more inhomogeneous.

Amplitude of the fluctuations

For LSS studies, the normalization of the power spectrum is fixed using the parameter σ8

which is the variance of the density in a sphere of 8h−1Mpc, instead of As . We note that this

amplitude is fixed using observations as there are no predictive models.

XVIFourier transform F , ˆf (n)(k), of the derivative of a function f (x) is: ˆf (n)(k) = F ( d n

d xn f (x)) = (i k)n f̂ (k).
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The variance of a sample distribution of spheres with radius R randomly placed is:

σ2(R) =
1

2π2

∫
P (k)Ŵ 2

R (k)k2dk, (1.74)

where Ŵ 2
R (k) is the Fourier transform of the top-hat function WR (r ):

Ŵ 2
R (k) =

3

(kR)2 (si n(kR)−kRcos(kR)) , (1.75)

with the top-hat function WR (r ):

WR (r ) =

 3
4πR3 → if r ≤ R

0 → if r > R.
(1.76)

We chose to normalize the linear matter power spectrum P (k) at R = 8h−1Mpc such that

σ(R) = 1 at this radius. We thus define for a redshift evolution of the matter power spectrum

P (k, z), σ8(z) ≡σm(R = 8).

1.2.3 Growth of Structures

In Section 1.2.1 I presented a description of the evolution of the small perturbations in the

density of the Universe and in Section 1.2.2 a statistical approach to describe them. Here we

are interested in the growth of the fluctuations which will produce LSS.

Jeans criterion

Starting from the time evolution of the density fluctuations of Equation 1.57 in Fourier space

for the adiabatic Newtonian, i.e. non-relativistic, case:

d 2δ(k⃗)

d t 2 +2
ȧ

a

dδ(k⃗)

d t
= 4πGρδ(k⃗)− c2

s

a2 k2δ(k⃗)− 1

a2

∂P

∂S
k2S(k⃗). (1.77)

Considering only isentropic perturbations in a static Universe, i.e. no entropy perturbations

so that the Fourier transform of S(k⃗) is δS = 0, there are only density fluctuations and ȧ = 0. We

can write the following wave equation:

d 2δ(k⃗)

d t 2 = −w2δ(k⃗), w2 ≡−4πGρ+ c2
s

a2 k2. (1.78)

The Jeans mode k J or Jeans proper length λJ related to its comoving value λcomoving
J , is the
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particular case when w = 0:

k J =
2
√
πGρa

cs
, λJ = aλcomoving

J = a
2π

k J
=

p
πcs√
Gρ

. (1.79)

This characteristic scale allows to have a criterion on the perturbation propagation, known

as the Jeans criterion (Jeans, 1902), determining an equilibrium threshold depending on the

pressure and gravity of the instability: λ<λJ → sound wave

λ>λJ → static mode
(1.80)

The sound wave will make the perturbation propagates in the medium creating an oscillation

due to the pressure and gravity interaction. In the static mode case, the amplitude of the

perturbation will exponentially increase, in growing mode, or decrease, in decaying mode, as

the gravity is no longer balanced with the pressure.

In an expanding Universe (Lifshitz, 1946), the acoustic wave would be damped by the expan-

sion in the λ<λJ case and if λ>λJ the growth will be slowed down and will instead follow a

power law. Moreover we note that for a non-relativistic fluid, the Jeans length is smaller than

the horizon which is the largest comoving distance that light could have traveled, defining a

causal limit. Sub-horizon perturbations, i.e. λJ smaller than the horizon, can then be distin-

guished from super-horizon perturbations, i.e. λJ larger than the horizon. We note that on

very large scales we would deal with super-horizon perturbations that should be treated with

relativistic perturbation theory.

Linear growth in matter domination

During matter domination epoch, the baryonic matter can be described as a pressure-less

fluid. Therefore the speed of sound is cs = 0 and the time-evolution of a matter density ρm

isentropic (δ(S⃗) = 0) perturbation is (Peebles and Yu, 1970):

d 2δ(k⃗)

d t 2 +2
ȧ

a

dδ(k⃗)

d t
= 4πGρmδ(k⃗). (1.81)

The Friedmann Equation 1.21 for the Hubble parameter defined in Equation 1.22XVII, with

p = 0 and Λ = 0 yields:

d H

d t
+H 2 = −4πG

3
ρm . (1.82)

XVIIIt can easily be shown that ä
a = Ḣ +H2.
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Differentiating this equation with respect to time using ρm ∝ a−3 (see Section 1.1.3), we have:

d 2H

d t 2 +2
ȧ

a

d H

d t
=

4πG

3
ρm H . (1.83)

Both the Hubble parameter and the density follow the same equation. As those describe a

time evolution, without changing the spatial evolution of the perturbation, we can write a

general solution for the density fluctuations of the following form in configuration space:

δ(x⃗, t ) = D−(t )δ(x⃗)+D+(t )δ(x⃗). (1.84)

According to Equation 1.33 the Hubble parameter is a decreasing function with time, so we

can associate H(t ) with the decaying mode solution D−(t ):

D−(t ) ∝ H(t ). (1.85)

The second solution D+(t ) which is the growing mode solution, is the growth function leading

to structure formation:

D+(t ) ∝ H(t )
∫

d t ′

a(t )2H(t ′)2 . (1.86)

Growth rate parameter

Taking the Fourier transform of the continuity Equation 1.52a and injecting the growing

solution D+ of Equation 1.81 inside, we get the velocity:

v⃗(k⃗) =
i ak⃗

|k|2
dδ(k⃗, t )

d t
=

i k⃗

|k|2 aHδ(k⃗, t ) f (z), (1.87)

where f (z) is the linear growth rate of structures:

f (z) ≡ d lnD+(a)

d ln(a)
= −d lnD+(z)

d ln(1+ z)
. (1.88)

Peebles, 1980 showed that the growth rate f can be related to the matter density of the

Universe through approximately the following parametrization (see also Carroll et al., 1992 for

a parametrization of D+) for a flat Universe:

f (Ωm) ≈Ω
γ
m , (1.89)

and the growth index γ can be related to the dark energy equation of state w (Linder and Cahn,

2007):

γ =
3(1−w)

5−6w
. (1.90)
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For a flat ΛCDM cosmology under GR, the index is 0.55. The lower the matter density is, the

slower the structures grow. In an observational point of view, it means that precise measure-

ments on the growth rate can give precious insight to constrain cosmological parameters and

thus dark energy, but also test deviations from GR.

Figures 1.20 show the linear growth function and growth rate. For an Eistein-de Sitter Universe

the linear perturbations grow faster than in Universes with a non-zero cosmological constant

or an open curvature. This is due to the larger expansion rate in these latest cosmologies

which reduces the growth.

Figure 1.20: Linear growth function normalized with D+(z = 0) (on the left) and growth rate (on
the right) as function of the redshift for different cosmological parameters. Growth function is
computed from Equation 1.86, and the growth rate from Equation 1.88. Dashed lines on the
right plot are the growth rate from the approximation for flat cosmologies from Equation 1.89.

Transfer function

In the linear regime, the primordial power spectrum and the matter power spectrum at

later time are related through the growth function and the linear transfer function. The

growth function D+ was described previously for a post-recombination Universe based on the

growth of initial perturbations. The transfer function establishes a relation between the initial

conditions and the amplitudes of the different modes after inflation.

The linear matter power spectrum at redshift z can be written:

P (k, z) = P (k)T 2(k)D2
+(z), (1.91)

where P (k) is the primordial spectrum of Equation 1.73 and T (k) is the transfer function. Some

linear power spectra and correlation functions redshift evolution are illustrated on Figure 1.21

for a ΛCDM cosmology.

Moreover some examples of linear power spectra at redshift 0 for different cosmological

parameters are displayed on Figures 1.22.
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Figure 1.21: Redshift evolution of the linear power spectrum (right) and correlation function
(left) as predicted by a ΛCDM cosmology with Planck values of the parameters (Planck Collab-
oration et al., 2020).

Figure 1.22: Linear power spectra at redshift 0 for a ΛCDM model. From left to right: variations
of Ωb , with Ωm = 0.31 and Ωk = 0; variations of Ωm , with Ωb = 0.05 and Ωk = 0; variations of
Ωk , with Ωb = 0.05 and Ωm = 0.31.

When the linear evolution of the perturbations were presented previously, we treated the

growth in a matter dominated Universe with negligible pressure and very small perturbations.

However the form of the matter and different physical laws can suppress the growth on certain

length scales.

In radiation domination epoch the Jeans length given by Equation 1.79 is approximately

equal to the horizon, i.e. λJ ≈ c/H . According to the criterion (Equation 1.80) it means

that perturbations that entered the horizon will not grow. Let’s consider the time when the

perturbations with corresponding comoving mode k⃗ enters the horizon. At matter-radiation

equality teq, occuring around redshift zeq = 3400 (scale factor aeq), the perturbations that

have just entered the horizon have the mode keq. For long wavelength k < keq, they enter
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the horizon in the matter domination epoch and their growth slows down at this moment

from δ∝ a2 to δ∝ a. Therefore a perturbation with k < keq that starts to grow at time ti will

evolve until now at time t0 as δ(k⃗, t0) =
(

aeq

ai

)2 a0
aeq
δ(k⃗, ti ). They are therefore mode-independent.

The wavelength k > keq enters the horizon during the radiation era, their growth amplitude

will be suppressed by photon-matter interactions following a logarithmic law until teq when

its growth will resume as δ∝ a. By assuming the suppressing of the growth to be constant

(instead of logarithmic), a perturbation with k > keq entering the horizon at aenter will then

have the following grow: δ(k⃗, t0) =
(

aenter
ai

)2 a0
aeq
δ(k⃗, ti ) =

(
aenter

aeq

)(
aeq

ai

)2 a0
aeq
δ(k⃗, ti ).

So with the simplified precedent considerations and as in radiation area a ∼ k−1, we have the

following post recombination transfer function for non-relativistic matter:

T (k) ∝
 1, if k < keq

k2
eq

k2 , if k > keq

(1.92)

Every form of matter will have its own transfer function.

Role of dark matter

Dark matter nature plays an important role in structures formation. As dark matter interacts

with ordinary matter only by gravitational interactions, it would then frame the general

structure of LSS that would therefore attract baryonic matter which falls into the gravitational

well.

CDM model, described in Section 1.1.6, was shown to follow a hierarchical formation following

the bottom-up scenario. Smaller structures would first collapse and then gather by gravitation

to form larger structures.

For WDM or HDM models the collapsing phenomenon would occur later in time. Indeed even

if they are collision-less, their relativistic particles would cause to suppress the perturbation

growth as they would move rapidly causing a free streaming that damp the perturbations. As

a result, this would lead to less clumpy substructures on the Universe smaller scales. This

difference is illustrated on Figure 1.23 with simulations. While the models present similar

overall structures, CDM has more small substructures.

Therefore the dark matter nature would also impact their transfer function and thus their

resulting matter power spectrum. Left figure 1.24 illustrates the difference between the three

nature of dark matter in their late time power spectrum. The smallest structures that can form

in WDM are much larger than in the CDM paradigm. This results in a different cutoff of the

power spectrum that can be observed on small scales (so large k) of the Figure. The measured

power spectrum at small scales can therefore be used to constrain the dark matter nature. In

particular, Lyman-αmeasurements have a strong constraining power. A lower limit in the dark

matter particle mass can thus be fixed, excluding pure HDM scenario and setting constraints
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Figure 1.23: Large scale structures simulations from Macciò et al., 2012 for different dark
matter models at redshift 0. Size shown is of a length of 40 Mpc. From left to right: CDM, and
two WDM models with differences in their initial thermal velocities with warmer candidate on
the right.

for an eventual WDM or mixtures of models (Viel et al., 2013, Garzilli et al., 2021). Right panel

of Figure 1.24 displays the power spectrum now as measured by different probes.

Figure 1.24: On the left: Illustrated power spectrum from Frenk and White, 2012 for three
natures of dark matter: cold in black, warm in red, hot in green. On the right: figure from
Tegmark et al., 2004 showing the matter power spectrum normalized at redshift 0 from different
probes (they are not measured at z = 0). Solid line represents a flat ΛCDM prediction.

1.2.4 Non-linear Approach

To get the presented evolution of density perturbations of Equation 1.57 we considered only

linear scale. However below approximately 50 h−1Mpc some non-linear effects arise.

Let’s go back to the full set of Equations 1.49 for our fluid description in an expanding Universe

as function of the density contrast δ. As before we differentiate with respect to time the

continuity Equation 1.46a and we inject inside the gradient ∇x ((1+δ)v̇ + δ̇v), the sum of (1+δ)
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times the continuity Equation 1.49a and v times Euler’s Equations 1.49b. We get an equivalent

form of the Equation 1.57 but without linearization:

δ̈+2
ȧ

a
δ̇ =

1

ρa2 ∇2
x P + 1

a2 ∇x · ((1+δ)∇xΦ)+ 1

a2 ∇2
x

(
(1+δ)v2) . (1.93)

In Fourier space, in absence of pressure for simplicity, using Poisson equation, this latest

equation and Euler equations become respectivelyXVIII:

δ̈k +2
ȧ

a
δ̇k =4πGρδk +2πGρ

∑
k ′ ̸=0,k

(
k⃗ · k⃗ ′

k ′2 + k⃗ · (k⃗ − k⃗ ′)
|k⃗ − k⃗ ′|2

)
δk ′δk−k ′ −

∫
d 3x⃗(1+δ) ·

(
k⃗ · v⃗

a

)2

e i k⃗·x⃗ ,

(1.94a)

˙⃗vk +
ȧ

a
v⃗k =4πGaρδk

i k⃗

k2 − i

a

∑
k ′

(k⃗ ′ · v⃗k−k ′)v⃗k ′ . (1.94b)

From those we can see that Fourier modes are coupled, leading to non-linear evolution of the

perturbations. This is not the case in the linear regime where all the modes are independent.

Those equations are difficult to solve. While below 10h−1 Mpc the general behaviour is highly

non-linear, between 20 to 50-60 h−1 Mpc it is a quasi-linear regime where it is possible to

use perturbation theory (PT) up to higher order. Indeed at these scales the fluctuations are

small enough to be treated by a PT approach. The density contrast and the velocity field are

expanded in a series as follows:

δ(x⃗, t ) =
∑
n
δ(n)(x⃗, t ),

∇· v⃗ ≡ θ(x⃗, t ) =
∑
n
θ(n)(x⃗, t ),

(1.95)

where δ(n), θ(n) are the n-order contribution. The first order corresponds to the linear approx-

imation. Those high-order corrections can be treated as loops and added to the linear solution.

These two expansion are thus solution of the general continuity Equation (see footnote XIII)

and the gradient of Euler equations XIX in Fourier space (without pressure)XX:

δ̇k (k⃗)+θk (k⃗) = −
∫

d 3k⃗1d 3k⃗2δD (k⃗ − (k⃗1 + k⃗2))α(k⃗1, k⃗2)θk (k⃗1)δk (k⃗2),

θ̇k (k⃗)+Hθk (k⃗)+ 3

2
Ωm H 2δk (k⃗) = −

∫
d 3k⃗1d 3k⃗2δD (k⃗ − (k⃗1 + k⃗2))β(k⃗1, k⃗2)θk (k⃗1)θk (k⃗2).

(1.96)

where k⃗2 = k⃗ − k⃗1 and α(k⃗1, k⃗2) ≡ (k⃗1+k⃗2)·k⃗1

k2
1

, β(k⃗1, k⃗2) ≡ (k⃗1+k⃗2)2(k⃗1·k⃗2)
2k2

1 k2
2

.

Different methods treating those non-linearities have been proposed such as using a halo

XVIIIWe use the fact that the Fourier transform of a product is the convolution of the two functions (as F ( f ∗ g ) =
F ( f )F (g ) and ( f ∗g )(x) =

∫
f (x−y)g (y)d y) and the Fourier definition as defined in Equation 1.64. Moreover we use

that ( f ∗g )(x) =
∫

f (x − y)g (y)d y =
∫

f (x)g (x − y)d y and therefore ( f ∗g )(x) = 1
2

∫
( f (x − y)g (y)+ f (y)g (x − y))d y .

XIXθ̇+ Hθ+∇(u · θ) = −∇2θ = 4πGa2ρδ = 3/2Ωm H2δ, where for the last equality we used Λ = κ = 0 in Fried-
man’sequation.

XXsee footnote XVIII)
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model (Cooray and Sheth, 2002, HALOFIT (Smith et al., 2003; Takahashi et al., 2012)), standard

PT (SPT, Bernardeau et al., 2002; Jeong and Komatsu, 2006; Scoccimarro and Frieman, 1996),

renormalized PT (RPT, Crocce and Scoccimarro, 2006), regularized PT (RegTP, Taruya et al.,

2012), closure theory (Taruya and Hiramatsu, 2008) or time renormalization (Pietroni, 2008).

Broadly, standard PT treats the power spectrum as an infinite expansion of terms (correspond-

ing to the loop corrections) truncated at a certain order:

P (k) = P (0)(k)+P (1)(k)+P (2)(k)+ ... (1.97)

The 0th order is the linear power spectrum P (0) = Plin, the first loop is P (1) = 2P13 +P22, where

the term Pi j corresponds to 〈δ(i )(k⃗)δ( j )(k⃗ ′)〉 = (2π)3δD ((k⃗)+ (k⃗ ′))Pi j (k).

RPT perform a reorganisation of the PT terms, resuming some of the terms in a factor, called

propagator N , outside of the series:

P (k) = (Plin(k)+P22(k)+P33(k)+ ...)N 2
i . (1.98)

Carlson et al., 2009 and Gil-Marin et al., 2012 proposed a comparison between models using

N-body simulations as references. Overall linear PT remains valid on large scales below k ∼ 0.1

h/Mpc. Passing to a two-loop corrections improves the power spectrum accuracy without

a high computational gain. Moreover 2-loop STP or RPT models reach a 1% precision up to

k ∼ 0.1 h/Mpc at redshift 0 and k ∼ 0.2 h/Mpc at redshift 1.

We note that effective field theory (EFT; Carrasco et al., 2012, Vlah et al., 2016, Porto et al., 2014)

is a method to incorporate non-pertubative effects into PT through various free parameters

included by additional terms, to describe the non-linear effects better. It can extract informa-

tion considering the Universe as a fluid at a relevant scale length, improving the small-scale

description.

1.2.5 Halo Model

Complementary to PT, a halo model is an analytical description of the dark matter density

field as an assembly of halos, under the assumption that dark matter is split into distinct halos

(Seljak, 2000, Peacock and Smith, 2000, Cooray and Sheth, 2002). It helps to provide a statistical

description beyond linearityXXI, in particular the non-linear clustering, by combining halo

mass function and density profile.

XXIThat can also be obtain by N-body simulations, that resolve the equations numerically with a partitioned CDM
density field for which each particles are of a certain mass (typically ∼ 1010 M⊙).
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Spherical collapse

Let’s first describe the units of the halo models, i.e. the halos. We assume that objects are

formed from an initial top-hat density perturbation that undergoes spherical collapse (first

proposed by Gunn and Gott, 1972).

Let’s consider an initial perturbation in an Einstein-de Sitter Universe, i.e. filled only with mat-

ter Ωm = 1. The region of this perturbation is described within a radius R with an overdensity

δ. The mass M within R is M = 4
3πR3ρ(1+δ), where ρ is the comoving background density.

We can apply Birkhoff’s theoremXXII to get the time evolution of its size:

R̈ =
GM

R2 → Ṙ

2
− GM

R
= E , (1.99)

where the second equality comes from the integration of the equation of motionXXIII with E

the total energy of the perturbation.

A solution to this equation in the case of a negative energy, i.e. E < 0 (that corresponds to a

bounded system which in turn implies that the initial perturbation will eventually collapse)

yields:

R = Rm (1−cosθ)

t = tm (θ− sinθ) ,
(1.100)

where Rm and tm are specified from initial conditions, so at θ≪ 1, as the parameter θ is a

rescaling of the conformal time.. It yields Rm = −GM/(2E) and tm =
√

GMR3
m .

First, when t < πtm , the perturbation grows linearly as described in 1.1.3 for the case with

matter only. The density will grow as δ∝ D(a) ∝ a ∝ t
2
3 .

At turnaround, i.e. θ = π, the radius reaches its maximum R = 2Rm (before collapsing) cor-

responding to time t = πtm which corresponds to the point when the maximum expansion

is obtained. The linear density using a expansion perturbation at first order is δ(tm) = 1.06

(H. Mo et al., 2010).

Then the perturbation will shrink to R = 0 when θ = 2π. The collapse happens at t = 2πtm

and the density is predicted to be infinite. Using the linear expansion at first order, the so-

called critical density is δc (tm) = 1.686 (H. Mo et al., 2010). The exact value of δc depends on

Universe’s cosmology. The critical value is the required density for the collapse.

XXIIIt states that a solution to Einstein’s equation in a spherically symmetric problem is static and asymptotically
flat. So the solution would be the Schwarzschild’s solution. Intuitively it means that the solution represents an
isolated object, so that there is no force from outside exerted on the sphere and the sphere exerts no force on the
outside. It means that the expanding background is not disturbed by the perturbation. In our case, it means that
the perturbation can be treated as a closed Universe.

XXIIIWe multiply each sides with Ṙ and the integration becomes obvious as ṘR̈ = 1
2 d(Ṙ2)/d t and −GMṘ/R2 =

GMd(R−1)/d t .
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The density does not really attain infinite but rather reach an equilibrium value due to dis-

sipative effects and shell-crossing. This equilibrium is given by the Virial theorem when the

absolute potential energy U is twice the kinetic one Ekin, 2Ekin +U = 0. It means that the total

energy is E = Ekin +U = U (Rvir)/2, implying that the radius of the virialized object is half the

maximum radius, i.e. Rvir = Rm as E = U (Rturnaround). The corresponding overdensity of the

perturbation reaches δvir ∼ 177. The remaining virialized object is identified as a halo. This

dark matter halo, bounded gravitationally, forms therefore when the corresponding density

perturbation becomes denser than the density background of about 150-200 timesXXIV.

Density profile

After virialization we end up with a halo whose mass distribution can be described using

different profiles. A common universal form of the density profile ρ(r ) is the following:

ρ(r ) =
ρs

(r /Rs)γ (1+ (r /Rs)α)(β−γ)α
. (1.101)

Rs is the radius of the core that has a density ρs . Navarro-Frenk-White profile is given by (γ, α,

β) = (1, 1, 3) (NFW; Navarro et al., 1997) and Hernquist profile by (γ, α, β) = (1, 1, 4) (Hernquist,

1990). Defining the concentration c ≡ Rvir/Rs (higher c means halo center denser), the profile

can be fully characterize by its concentration c and the halo mass M (got from the integration

of ρ(r )).

Halo mass function

The halo mass function n(M) can be written as:

n(M)d M ≡ dn

d M
d M =

ρ

M
f (ν)dν. (1.102)

It expresses the halos number density with respect to the mass. The function f (ν) relies on

the parameter ν which characterises the peak height, ν≡ (δc /σ(R(M)))2, with σ(R(M)) the

linear density fluctuations variance in a sphere defined in Equation 1.74. So the abundance is

described as a function of the heights of the density peaks of the density contrast.

The first ones to express analytically f (ν) were Press and Schechter, 1974. For this they

assumed that the probability of having a density contained in a sphere of radius R(M) larger

than the critical density δc is the half of the mass fraction in a halo with a mass larger than M ,

i.e. 2P (δM > δc ) = F (> M). A generic function yieldsXXV:

ν f (ν) ∝
(
1+ 1

(aν)p

)
(aν)

1
2 e−aν/2, with

∫
dν f (ν) = 1, (1.103)

XXIVThis is why we often refer to the radius R200.
XXVIntegral is one as the matter is assumed to be fully contained in the halos.
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where (a, p) = (1,0) for PS (Press and Schechter, 1974) mass function, that was shown to have

some limitations for low mass halos (Bond et al., 1991).

ST mass function uses (a, p) = (0.707,0.3) based on N-body simulations (Sheth and Tormen,

1999). They also provided a formulation of the halo bias compared to the underlying dark

matter density (the bias is discussed more in next Section 1.2.6):

b(ν) = 1+ aν−1

δc
+ 2p

δc (1+ (aν)p )
. (1.104)

Dark matter clustering

As seen above, we describe the dark matter distribution as residing in halos. Therefore we

have that on small scales the matter distribution is within halos, whose density profile can be

described as done previously. On large scales the distribution is driven by the spatial positions

of halos of different masses.

So writing the density profile of a halo as M y(x|M) where y is normalizedXXVI, the occupation

number Ni ∈ {0,1} of the ith small volume partitioning the space ∆Vi and Mi the mass of a

halo located in ∆Vi , the dark matter density field is:

ρ(x) =
∑

i
Ni Mi y(x −xi |Mi ). (1.105)

The density field correlation function can be written as:

〈ρ(x1)ρ(x2)〉 =
∑
i , j

〈Ni Mi N j M j y(x1 −xi |Mi )y(x2 −x j |M j )〉, (1.106)

and we note that 〈Ni Mi y(x − xi |Mi )〉 =
∫

d Mn(M)M∆Vi y(x − xi |M). Separating the con-

tribution i = j , that corresponds to correlations within a halo, from the i ̸= j which is the

contribution between halos, we get that the two-point correlation function is divided into two

terms, the 1-halo (i = j ) and 2-halo (i ̸= j ) terms:

ξ(r ) = 〈δ(x1)δ(x2)〉 = ξ1h(r )+ξ2h(r ), with r = |x1 −x2|, (1.107)

where (H. Mo et al., 2010):

ξ1h(r ) =
1

ρ2

∫
d M M 2n(M)

∫
d 3x y(x −x1|M)y(x −x2|M)

ξ2h(r ) =
1

ρ2

∫
d M1M1n(M1)

·
∫

d M2M2n(M2)
∫

d 3x y(x1 −x|M)
∫

d 3x ′y(x2 −x ′|M)ξhh(x −x ′|M1, M2).

(1.108)

XXVISo
∫

d3x y(x|M) = 1.
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with ξhh(x −x ′|M1, M2) the correlation between halos with mass M1 and mass M2. The 2-halo

term is a convolution, which is more convenient to treat in Fourier space.

In Fourier space we thus have, as in configuration space, the non-linear power spectrum of

dark matter P (k) split into two terms:

P (k) = P1h(k)+P2h(k), (1.109)

where

P1h(k) =
1

ρ2

∫
d M M 2n(M)y(k, M)2,

P2h(k) =
1

ρ2

∫
d M1M1n(M1)y(k, M1)

∫
d M2M2n(M2)y(k, M2)Phh(k, M1, M2).

(1.110)

The 1-halo term P1h accounts for the correlation inside a halo and the 2-halo term P2h ac-

counts for the correlation between two halos. The function y(k, M) is the Fourier transform of

the halo density profile: y(k, M) = 4π
M

∫
dr r 2ρ(r, M) si n(kr )

kr .

On scales large enough, larger than the individual halos sizes, the 2-halo term is dominant

and y(k, M) (y(x|M)) can be replaced by one (by a delta function). Therefore we have that

Phh(k|M1, M2) = bh(M1)bh(M2)Plin(k) (ξhh(r |M1, M2) = b(M1)b(M2)ξlin(r )), where Plin is the

linear matter power spectrum. This remains valid only on large scales as Plin is not accurate

on very small scales and furthermore there are halo exclusion effects. Using Equation 1.102

they can thus be expressed as (Seljak, 2000):

P1h(k) =
∫

dν f (ν)
M(ν)

ρ
y(k, M(ν))2,

P2h(k) = Plin(k)

(∫
dν f (ν)b(ν)y(k, M(ν))

)2

.

(1.111)

1.2.6 Galaxy-Halo Connection

Galaxy bias

All the above description for the matter density field growth is considered to model the dark

matter perturbations as it seeds the overall gravitational wells of the Universe creating an

underlying layer of matter. Galaxies, or other discrete astronomical objects, are made of

ordinary matter and create a point-like sampling distribution of the density field that biases

its estimate. This dark matter density field to galaxies connection through a discretisation is

illustrated in Figure 1.25.

Therefore for an underlying dark matter field ρm with contrast δm , the galaxy density field n is
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treated as a point-like distribution:

n(x⃗) =
∑
x ′
δD (x⃗ − x⃗ ′), (1.112)

where δD is the Dirac function.

On linear regime, i.e. on large scales, we assume a proportionality relation between n and δm

with a linear bias parameter b that is scale independent (Peebles, 1973, Kaiser, 1984):

δn(x⃗)

n
= b

δρm(x⃗)

ρm
= bδm(x⃗). (1.113)

For this bias prescription, we have a relation between the power spectrum of a biased tracer,

subscript t , and the power spectrum of the matter with a time dependent bias:

Ptt(k, z) = b2(z)Pm(k), ξtt(r, z) = b(z)2ξm(r ). (1.114)

The value of b is usually measured directly on the data.

By smoothing the tracer density δ̂g and the underlying field δ̂m over a scale R around the same

position, we get the local Eulerian bias model:

δ̂t (x⃗) = F [δ̂m(x⃗)], f̂ ≡
∫
|x ′|<R

d 3x⃗ ′ f (x⃗ − x⃗ ′)W (x⃗ ′), (1.115)

where W is window function that filters the function (so the density). For small δ̂g , i.e. large R ,

the bias function F can be expanded into a Taylor series:

δ̂t (x⃗) =
∞∑

n=0

bn

n!
δ̂n

m(x⃗). (1.116)

The first order term b1 corresponds to the linear approximation.

There is a large variety of bias modelling that exists. The simplest is the one described here

with a mapping between galaxies and dark matter. Other models consider the formation of

dark matter halos first, and then distribute the galaxies inside the halos.

In practice, the bias is typically made to agree with N-body simulations (quantified generally

on scales larger than 10 Mpc/h) and considered to evolve with redshift while scale independent

(typically in redshift surveys it assumed that b(z)D(z) = C , with C a constant that depends on

the tracer selected under different criteria).

Relation with halo model

I present here the relation of the halo model formalism presented above in Section 1.2.5 to

the galaxy clustering. Let N be the number of galaxies inside a halo of mass M , 〈N〉 the mean
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Figure 1.25: Dark matter density distribution on the left and corresponding galaxy distribution
on the right populated following an abundance matching algorithm. (Credits of the figure:
Wechsler and Tinker, 2018).

occupation number and n the mean total galaxy density, we have for galaxies:∫ 〈N〉
M

dν f (ν) =
n

ρ
. (1.117)

The 1- and 2- halo terms of Equation 1.111 become, assuming that galaxies follow the profile

of dark matter (Seljak, 2000):

Pt ,1h(k) =
ρ2

n2

∫
dν f (ν)

M(ν)

ρ

〈N (N −1)〉
M(ν)2 y(k, M(ν))2,

Pt ,2h(k) = Plin(k)

(
ρ

n

∫
dν f (ν)b(ν)

〈N〉
M

y(k, M(ν))

)p

.

(1.118)

The 2-halo term Pt ,2h(k), i.e. between two halos, on large scales follows:

Pt ,2h(k) = 〈b〉Plin(k), where 〈b〉 =
∫

dν f (ν)b(ν)
〈N〉
M

. (1.119)

On small scales Pt ,2h(k) is much smaller than Pt ,1h(k). The 1-halo term depends on the

exponent p which is 2 when 〈N (N −1)〉 > 1 (satellite galaxies dominated) and 1 otherwise

(only pairs composed of a central and satellite galaxy). We note that satellite and central

galaxies have usually different behaviour so shouldn’t be treated in the same way. Satellite

galaxies reside in the center of sub-halos (i.e. distinct density peaks within the radius range of

a dark matter halo) orbiting around larger host halos. Central galaxies reside at the center of

dark matter host halos.

PT approach including the bias prescription can be obtained for the power spectrum, e.g.

described in McDonald and Roy, 2009.
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Empirical models

To predict the power spectrum, we thus need an estimate of the probability of finding galaxies

within a halo. This requires semi-analytical models (e.g. GALFORM; Cole et al., 2000, LGALAX-

IES; Springel et al., 2001), or prescriptions such as halo occupation model (HOD) or abundance

matching that populate halos with galaxies. These different prescriptions help understanding

the galaxy-halo connection. We note that galaxy-halo connection can also be studied using

hydrodynamical simulations that relies on the resolution of physical descriptions (and not

empirical).

Semi-analytical models are complex models with simplifications that relies on different pa-

rameters that have to be tuned on data, such as the data clustering. S. Contreras et al., 2013

provide a comparison between different semi-analytical models.

Abundance matching assume a monotonic relationship between a host halo property, such as

the mass or circular velocity, and a galaxy property, such as the stellar mass or luminosity, to

populate halos with galaxies. The algorithm will then assign one galaxy (pulled for example

from the luminosity function) per halo (e.g. in a high resolution simulation) in a ranked

manner according to the chosen properties, until the chosen number density is reached (Colin

et al., 1999; Trujillo-Gomez et al., 2011, for an overview e.g. Wechsler and Tinker, 2018). This

prescription was extended to sub-halos, Sub-Halo Abundance Matching (SHAM) (Behroozi

et al., 2010; Conroy et al., 2006; Q. Guo et al., 2010; Kravtsov et al., 2004; Vale and Ostriker,

2004), that was shown to be successful at reproducing observational sample properties (e.g.

Moster et al., 2010).

HOD is another category to describe the galaxy-halo relationship. HOD specifies the prob-

ability distribution function P (N |M), which describes the probability that N galaxies corre-

sponding to a certain set of criteria are contained in a dark matter halo of mass M (Berlind

and Weinberg, 2002; Peacock and Smith, 2000; Seljak, 2000). The PDF P (N |M) is usually split

into two contributions, one for central galaxies and one for satellite galaxies (for an overview

e.g. Wechsler and Tinker, 2018), see Figure 1.26. Under the assumption that central galaxies

follow for example a Bernoulli law and satellite galaxies a Poisson law (e.g. Kravtsov et al.,

2004; Zheng et al., 2005), P (N |M) can be fully characterized by the mean 〈N |M〉.

HOD are usually constrained either by fits onto semi-analytical models or onto galaxy clus-

tering. Small scale galaxy clustering below ∼ 1 Mpc/h, which corresponds to the transition

scale from 2-halo to 1-halo terms, is sensitive to the fraction of satellite galaxies (Zehavi et al.,

2004; Zehavi et al., 2005). Indeed the number of pairs in a halo is proportional to the square of

the number of satellite galaxies. On large scales galaxy clustering can be quantified using a

bias by comparing to the dark matter clustering, so is sensitive to the halo mass and scatter,

and the properties used for galaxy selection. Standard HOD models assume a large scale

environmental independence of halos of a certain mass on their galaxy content. However

it was shown that secondary properties (other than mass), such as e.g. formation time or

concentration, can have an influence on the halo clustering. This effect is called halo assembly
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Figure 1.26: Satellite (Ns) and central (Nc ) galaxies first moment of the HOD as function of
the halo mass. Central galaxies can be described by a step function and satellite galaxies
HOD is a power law with Poisson scattering. The different behaviours suggest a separated
parametrization. (Credits of the figure: Kravtsov et al., 2004).

bias. There is also a galaxy assembly bias that affect galaxy properties due to halos secondary

properties (Gao et al., 2005; Y.-Y. Mao et al., 2018; Wechsler et al., 2002).

Peak-background split

The high-peak bias concept relies on the following assumption: peaks in the initial density

field are the location where galaxies or astronomical objects would form (Kaiser, 1984, Bardeen

et al., 1986). It can be generalized to various objects that form in high density regions that

have already collapsed (Cole and Kaiser, 1989, H. J. Mo and White, 1996).

The peak-background split model decomposes the density δ into two components, a long and

a short wavelengths. Then collapsing of object would happen for density peak of δ above a

threshold δc , the critical density. In an Eistein-de Sitter Universe, this value is δc = 1.686 for

spherical collapse. This is illustrated on Figure 1.27.

1.2.7 Lagrangian Dynamics

Until now we worked in an Eulerian framework, i.e. the different quantities were expressed

with respect to their comoving coordinates x⃗. The observer position was therefore staying at

the same position over time, and the fluid flows around the perturbations at fixed positions.

In Lagrangian framework the observer moves with the fluid particle. In analogy with a river,
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Figure 1.27: Illustration of the peak-background assumption. (Credits of the figure: Peacock,
2003).

an Eulerian reference frame would be on the river bank while Lagrangian on a boat.

Equation of motion

The Lagrangian point of view deals with the initial positions q⃗ . The final comoving coordinate

can be written as:

x⃗(q⃗, t ) = q⃗ +Ψ(q⃗, t ), (1.120)

where Ψ is the displacement field. As the mass is conserved under the change of coordinates,

it requires:

ρd 3x⃗ = ρ
(
1+δ(x⃗)

)
d 3x⃗ = ρd 3q⃗, (1.121)

and the Jacobian of the transformation is:

J (q⃗, t ) = |d x⃗

d q⃗
| = Det

(
δK

i j +
∂Ψi

∂q j

)
→ 1+δ(x⃗) =

1

J (q⃗, t )
, (1.122)

with δK the Kronecker delta function.

In this context we can write the Lagrangian equations of motion. Let’s use the velocity previ-

ously for comoving coordinates, v⃗ = aẋ from Equation 1.47b. As q is fixed with time we have

the peculiar velocity v⃗ = aΨ̇. In Lagrangian framework we travel along with the fluid particle:

d

d t
|Lagrangian → ∂

∂t
|Eulerian +

1

a
v⃗ ·∇, (1.123)

which relates to the left-hand-side of Euler Equations 1.49b for pressure-less fluid in La-
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grangian description as:

d v⃗

d t
+ ȧ

a
v⃗ = − 1

a
∇xΦ → d av⃗

d t
= −∇xΦ, (1.124)

where Φ comes from Equation 1.48. Replacing now in the Euler equations the form of the

velocity, i.e. v⃗ = aΨ̇, we get the equation of motion:

Ψ̈+2
ȧ

a
Ψ̇ = −∇xΦ. (1.125)

The Poisson Equation 1.49c becomes by replacing the density contrast by the inverse Jacobian

(see Equation 1.122):

∇2
xΦ = −4πGa2ρ

(
J−1 −1

)
. (1.126)

Zel’dovich approximation

Taking the divergence of the Equation of motion 1.125 and inserting the Lagrangian Poisson

equation, we get:

∇q ·
(
Ψ̈+2

ȧ

a
Ψ̇

)
= 4πGa2ρ

(
1− J−1) . (1.127)

In the linear approximation from a perturbation approach it was shown that the Equation of

motion 1.127 in a Lagrangian framework has two solutions of similar form than the growth of

perturbations of Equation 1.81. The growing mode solution in the linear regime corresponds

to the Zel’dovich approximation (ZA, Zel’dovich, 1970):

∇q ·Ψ = −D+(t )δ(q⃗), (1.128)

where D+ is the growth function as defined in Equation 1.86 and δ(q⃗) is the density contrast

from the initial conditions q⃗ . The ZA is a local description of the evolution of the fluid particles.

They are independent from the rest of the fluid.

The ZA once inserted into the Jacobian allows to write the density in the following form:

1+δ(x⃗, t ) =
1

(1−λ1D+(t )) (1−λ2D+(t )) (1−λ3D+(t ))
, (1.129)

where λi are the eigenvalues of the tensor ∂Ψi

∂q j
that describes the deformation. The ZA helps

thus to discriminate between the different structure collapsing mechanisms. Indeed there is

gravitational collapse when λi D+ → 1 for at least one of the eigenvalue. We can outline three

main cases that depend on the relative values ofλi (Hahn, Porciani, et al., 2007, Forero-Romero

et al., 2009):
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- λ1 > 0 and λ2,3 < 0: planar collapse (walls, also referred to as pancakes)

- λ1,2 > 0 and λ3 < 0: filament collapse (filaments)

- λ1,2,3 > 0: spherical collapse (knots)

- λ1,2,3 < 0: under-dense regions (voids)

In general Lagrangian PT (LPT) presents good results on large scales for high redshifts. How-

ever on lower scales, shell crossing is dominant and LPT is no longer a good description. We

note that the second order Lagrangian PT (2LPT) of Ψ is now more common, as it significantly

improves, compared to ZA, the density and velocity fields properties. 3LPT was shown to bring

little improvement compared to 2LPT (Buchert et al., 1994, Melott et al., 1995).

Lagrangian bias

Assuming the bias to be in a local Lagrangian space, which is not equivalent to a local Eulerian

bias, we can write the Lagrangian bias function FL :

1+δt (q⃗) = FL[δ̂m(q⃗)], (1.130)

where δ̂m(q⃗) is the smooth density field (defined in Equation 1.115) at the initial conditions q⃗ .

The Lagrangian biases can be described using the formalism of Matsubara, 2008 as the nth

derivatives of F (δ):

〈F (n)〉 =
1

2πσR

∫
dδe−δ

2/2σ2
R

d nFL

dδn , (1.131)

where σ2
R is the variance 〈δ̂2

m〉.

Explicit formulations of the two first biases can be found using a Sheth-Tormen mass function

(Matsubara, 2008):

F ′ =
1

δc

[
aν2 −1+

2p

1+ (aν2)p

]
,

F ′′ =
1

δ2
c

[
a2ν4 −3aν2 +

2p(2aν2 +2p −1)

1+ (aν2)p

]
,

(1.132)

where a = 0.707, p = 0.3 correspond to the Sheth-Tormen mass function (Sheth and Tormen,

1999) and δc = 1.686 is the critical density from collapse. Under the peak-background splitting

assumption, the two bias parameters are related via the ν parameter (note that ν as defined

here is the square root of the one defined in the halo model Section 1.2.5).

Moreover, following the Eulerian description of Equation 1.116, the biased density contrast in
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Lagrangian quantities is:

δ̂L,t (q⃗) =
∞∑

n=0

F (n)

n!
δ̂n

L,m(q⃗). (1.133)

Using the mass conservation Equation 1.121 that can be extended to the tracers as their the

total number is conserved ρt d 3x⃗ = ρL,t d 3q⃗ , and using the Jacobian of Equation 1.122, we have:

(δ̂t ) = (δ̂m)(δ̂L,t ). (1.134)

We can thus have relations between the Eulerian and Lagrangian biases. The first two biases

are related through (e.g. Sheth et al., 2013, Desjacques et al., 2018):

b1 = F ′+1, b2 = F ′′+ 8

21
F ′, b3 = F (3) − 13

7
F ′′− 796

1323
F ′. (1.135)

1.3 Measuring the Expansion with Spectroscopic Surveys

As mentioned in the previous Section 1.2, LSS in the Universe are a very powerful probe to

study cosmology and unravel the nature of dark energy. Their observations are made possible

due to spectroscopic surveys which aim to map effectively large fractions of the Universe to

study them.

One of the key objectives of the massive spectroscopic surveys is to measure the expansion

history of the Universe using the Baryon Acoustic Oscillations (BAO) imprinted in the clus-

tering of the galaxies. To this goal they gather spectra based on a target selection at different

overall redshifts. Each redshift range has their specificity and complexities , so for consistency

spectroscopic surveys use different biased tracers for their selection of specific targets over a

defined redshift range. Besides BAO measurements, LSS from a galaxy survey contain extra

information, such as the bias which is the link between the galaxies and the dark matter field,

and Redshift Space Distortions (RSD).

In this Section, I will start by presenting these different features in the matter clustering of the

LSS, and then present some of the spectroscopic surveys used for cosmology up to now.

1.3.1 Cosmic Microwave Background

The Cosmic Microwave Background (CMB) introduced in Section 1.1.4, is a very powerful

probe to study the Universe at a redshift of around 1100 when it was only 380’000 years old. It

was discovered by Penzias and Wilson, 1965.

The CMB photons are considered as the relic radiation following the recombination of protons

and electrons. Indeed the Universe became transparent at recombination to photons and
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photons decoupled. They were then able to travel freely in the Universe at the light velocity,

keeping the density variations from their emission time. As in the early Universe, photons were

emitted and absorbed in the dense and ionized plasma with a large spectrum of energies in

all directions, CMB photons kept those black-body properties. Due to the finite light velocity,

the last scattering surface defines the boundary of our observable Universe (in practice) as a

spherical surface.

Cosmic Background Explorer (COBE) a satellite launched by NASA in 1989, was the first

experiment to successfully measure the anisotropies (beyond the dipole) in the CMB radiation

(Smoot et al., 1992). They showed that the CMB spectrum is following precisely the black-

body emission of a plasma at 2.725 K. CMB also displays temperature fluctuations that was

shown later to be of the order ∆T/T ∼ 10−5. Those anisotropies led to the growth of the LSS

observed today. Different other experiments were launched, among others the Wilkinson

Microwave Anisotropy Probe (WMAP) satellite (Bennett et al., 2003) which provided very

detailed temperature and polarization maps.

The most precise measurement to date have been measured by Planck satellite with high

precision, leading to tight constraints on the cosmological parameters (Planck Collaboration

et al., 2020). The temperature fluctuations taken by Planck are shown on Figure 1.28. We note

that Planck also measured CMB polarization, that separates into E and B modes. E modes

are mainly generated by scalar perturbations in the density of the early Universe. B modes

are tensor generated by gravitational waves, they would allow to prove inflation. Planck then

produces different power spectra TT (temperature-temperature), TE (temperature-E modes)

and EE (E modes-E modes).

Figure 1.28: CMB map of temperatures anisotropies measured by Planck satellite. (Credits of
the figure: ESA and the Planck Collaboration).

The temperature fluctuations can be quantified by a decomposition onto the spherical har-

monic basis Yl m , convenient due to their spherical surface, for angular coordinates θ, φ:
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∆T

T
(θ,φ) =

∑
l ,m

al ,mYl ,m(θ,φ), (1.136)

where al m are measured harmonic coefficients. The multipole moments are defined as:

〈|al ,m |2〉Yl ,m(θ,φ)Cl =
1

2l +1

∑
m
〈|al ,m |2〉. (1.137)

Figure 1.29 shows the CMB power spectrum. Different physical effects responsible for tem-

perature anisotropies can be observed at different modes of the power spectrum on the plot.

The Sachs-Wolf (SW) effect causes a plateau in the power spectrum observed at large scale

fluctuations due to gravitational potentials on CMB (Sachs and Wolfe, 1967). The effect caused

a redshift of the photons when they were escaping the potential wells formed by baryonic

matter. The ordinary SW effect occurs at the last scattering surface while the integrated SW

(iSW) effect happens between the surface and the observation. Assuming the last scattering

surface was already during matter domination epoch the correlation function of the amplitude

modes can be related to the gravitational power spectrum PΦ(k) through:

Cl = 〈|al ,m |2〉∝
∫

d f k2PΦ(k) j 2
l (kr ), (1.138)

where jl are the spherical Bessel functions. For a Harrison-Zel’dovich spectrum Cl ≈ (l (l+1))−1.

The angular separation length above which two perturbations are in super-horizon zone

is roughly above 1◦. It means that above this limit the perturbations are dominate by SW

effectXXVII.

On smaller scales (so large l ), we can see that the oscillations are damped. This is due to the

Silk damping (Silk, 1968) that describes the damping of oscillations on small scales at the end

of recombination due to photon diffusion of baryons.

These large oscillations on the Figure 1.29 are due to acoustic waves that will be discussed

below in the next Section 1.3.2.

While primary anisotropies and polarization give insight on the primordial Universe, sec-

ondary anisotropies of CMB encode other effects such as the Sunyaev-Zeldovich effects

(thermal (tSZ) and kinetic (kSZ) Sunyaev and Zeldovich, 1980) or gravitational lensing (Lewis

and Challinor, 2006). In particular, CMB weak lensing arises because of the gravitational

deflection of the paths from CMB photons by the matter. As this effect is imprinted on the

observed CMB, it means that CMB lensing can trace the matter density field and therefore

the LSS. Measures with a high signal-to-noise of this effect were obtained, e.g. by the Planck

XXVIIPhotons of the last scattering surface have nearly same temperatures with anisotropies of the order of 10−5

even for super-horizons scales, i.e. on scales which are supposed to be not in causal contact. This problem is
referred to as the horizon problem.
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Figure 1.29: Amplitude of the CMB power spectrum Dl l ≡ l (l +1)Cl /(2π) from Planck Collabo-
ration et al., 2020.

collaboration and the Atacama Cosmology Telescope (ACT, Sherwin et al., 2017), and in the

future CMB-S4 (Abazajian et al., 2019).

1.3.2 Baryon Accoustic Oscillations

Accoustic waves

In the early Universe between redshift 1100 and 3400, the space was filled by the baryon-

photon plasma in thermal equilibrium, with the matter already dominant at this epoch. Due

to the tight coupling of baryons, electrons and CMB photons, their mean free paths were

shorter than the horizon. Therefore the perturbations oscillate as acoustic waves propagating

into the plasma as the radiation pressure engendered exceeds the perturbation gravitational

attraction. Those oscillations are called the baryonic acoustic oscillations (BAO, Peebles and

Yu, 1970, Sunyaev and Zeldovich, 1970).

The wave propagation has a relativistic sound speed determined mainly by the photons of

cs ≈ c/
p

3. As a consequence the Jeans length for baryons is larger than for dark matter, both

kind of matter behave therefore in different manner. Dark matter which is treated collision-less

has already decoupled from photons and its perturbations are growing during this period.

At redshift zd ≈ 1100 baryons decouple, this is the drag epochXXVIII. Mean free path of photons

have increased, leaving baryon perturbations exposed to gravitation as generated by dark mat-

XXVIIIThe drag epoch is defined at the redshift when optical depth of baryons is one. This happens at a later time
than for photons as photons stop noticing baryons before.
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ter. The acoustic waves are frozen after having travelled a characteristic distance predictable

theoretically:

rs(zd ) =
∫ inf

zd

cs(z)

H(z)
d z ≈ 150 Mpc. (1.139)

This distance rs is called the sound horizon (Eisenstein and Hu, 1998). We note moreover that

at this redshift dark matter already started its growth of the perturbations initiating structure

formation. It then seeds the Universe with gravitational wells in which baryonic matter will

fall after decoupling.

Figure 1.30 illustrates the process for one perturbation evolution in the linear manner dis-

cussed above. All the different species start first around the density peak. The neutrinos are

decoupled, so they leave. Photons and baryonic matter are tightly coupled creating a high

pressure that produces oscillations of the perturbations and propagates as an acoustic wave,

while the collision-less dark matter perturbation grow seeding the gravitational environment

in the primordial Universe. When photons decouple, baryonic matter is then subject mainly to

gravitational interactions. Dark matter and baryons slowly balance by gravitation and initiate

structure formation.

BAO as a feature of the matter density

As those acoustic waves stopped propagating after recombination, they have left an excess

fluctuation still observable at later epoch. Indeed as we have seen above, the dark matter

and baryons balance gravitationally, falling into the potential wells created by the baryons

overdensities produced by the waves around the initial perturbations seeded by dark matter.

Thus BAO manifests itself in the clustering of LSS as a peak around 100 h−1Mpc in the matter

correlation function or as wiggles in the power spectrum.

Eisenstein et al., 2005 and Cole et al., 2005 were the first studies to report BAO detection

with galaxies in configuration space with SDSS (York et al., 2000) data and Fourier space with

2dFGRS (Colless et al., 2001), data, respectively. Figure 1.31 displays the correlation function

as measured by Eisenstein et al., 2005 for the sample of LRG of SDSS.

The radius that BAO travelled, which scales to the sound horizon rs , became a characteristic

comoving length that can be used as a standard ruler for cosmology (Seo and Eisenstein, 2005).

Measuring its size at different cosmic time enlightens on the evolution history of the Universe

and thus dark energy. In particular it was shown (Tegmark, 1997, Eisenstein and Hu, 1998,

Goldberg and Strauss, 1998) that combining CMB and BAO measurements from LSS can break

the degeneracy between the cosmological parameters such as Ωm and H0, that arises in CMB

alone fitting measurements (Efstathiou and Bond, 1999).

Many other BAO measurements have now be evaluated with data coming from different

surveys and tracers. In particular some measures have now been made also on voids (Kitaura
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Figure 1.30: Linear evolution of one perturbation mass profile in the early Universe from
Eisenstein, Seo, and White, 2007. Dark matter is in black, gas (so baryonic matter) in blue,
photons in red, neutrinos in green.

et al., 2016), QSO (Ata et al., 2018) or Lyman-α forest (Busca et al., 2013), reaching the 1% level

precision with LRG of BOSS (Alam et al., 2017).

Alcock-Paczynski effect

The coordinates of the observational data as measured by spectroscopic surveys are the

redshifts and the angular positions. However to compute the clustering of the targets, the
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Figure 1.31: Two-point correlation function from Eisenstein et al., 2005 of the LRG SDSS sample.
It is the first measured BAO detection in the configuration space clustering of observed galaxies.
BAO manifests itself as an excess probability of finding two galaxies separated by about 100
h−1Mpc.

positions used are comoving distances. By consequence, we convert the observed positions

into comoving distances to measure the separations, assuming a fiducial cosmology. So if this

fiducial cosmology used is not the true one, intrinsic to the Universe, it will bring anisotropies

in the clustering, i.e. the correlation between the targets will be distorted accordingly to the

direction. This is the Alcock-Paczynski effect (AP, Alcock and Paczynski, 1979).

The angular and radial separations, dθ and d z, can be related to their comoving counterparts

dr⊥ and dr∥ for two objects separated by a distance r :

dr⊥ = D A(z)dθ, dr∥ =
c

H(z)
d z. (1.140)

This is illustrated on Figure 1.32.

In practice, BAO analysis measure the deviation from an assumed fiducial cosmology, with

subscript ’fid’, by fitting the AP parameters to the data using the sound horizon rs (Equation

1.139) in the line-of-sight and transverse directions:

α∥ =
H fid(z)r fid

s

H(z)rs
, α⊥ =

D A(z)r fid
s

Dfid
A (z)rs

d z. (1.141)
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For an isotropic fit, we measure the component of the AP parameter corresponding to an

isotropic shift of the BAO peak position:

αiso =α1/3
∥ α2/3

⊥ =
DV (z)r fid

s

Dfid
V (z)rs

d z, (1.142)

where the volume average distance DV is a combination of D A and H :

DV (z) =

(
cz

D A(z)2(1+ z)2

H(z)

)1/3

. (1.143)

When measured in the two directions, BAO allow then to break the degeneracy between H(z)

and D A(z)XXIX, and therefore help constraining Ωm and ΩΛ.

Figure 1.32: Alcock-Paczynski effect and separation projection schemes (radial and angular
separations).

The method to obtain H0 from BAO is called inverse distance ladder: the distance used for

calibration is measured at high redshift and is in turn used to infer the value at redshift 0 by

extrapolation. However as seen above, the constraint values depend on rs . Usually CMB is

XXIXIndeed while the BAO peak position constrain the combination (D2
A H−1)1/3/rs , the relative dilation, i.e. due

to AP effect, constrain α∥/α⊥ ≈ HD A .
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used to calibrate rs and thus BAO. Indeed rs depends onlyXXX on Ωbh2 and Ωc h2 that can be

constrain by CMB.

BAO reconstruction

While on BAO scales the behaviour is dominantly linear, non-linearities still affect the BAO

peak. It would impact the separation of two dark matter halos at redshift 0 by a total of about

∼10 h−1Mpc (Eisenstein, Seo, and White, 2007). At BAO scale, these small deviations from

150 Mpc broaden the peak, or damp the oscillations in Fourier space. While the BAO is not

significantly biased by the broadening, it reduces the measurement precision.

Figure 1.33: Explaining scheme from Padmanabhan et al., 2012 for BAO reconstruction.

A common method to correct for this effect is the reconstruction (Eisenstein, Seo, Sirko, et

al., 2007). From the density field measured from the data, the idea is to move the particles

backward to their originate position using their displacement field, this method is called

reconstruction. The most simple reconstruction models use the Zel’dovich approximation,

see Section 1.2.7. We note that on tracers with low number density such as quasars, the

reconstruction procedure is usually not applied. Indeed reconstruction requires an estimation

of the density field from the tracer distribution. If the number density is not high enough the

shot noise contamination in the density field is too significant that the reconstructed results

can be biased in addition it will increase the noise.

The explanatory illustration taken from Padmanabhan et al., 2012 for the BAO reconstruction

is shown on Figure 1.33. It shows the density field around an initial overdensity (central blue

point) with the acoustic ring feature of 150 Mpc (black circle). The inset plots represent the

XXXUnder assumption of a smooth expansion, a CMB mean temperature well measured and standard prerecombi-
nation physics.
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radial distribution of the black positions to the blue. The top left panel displays the smooth

density field in the early Universe, which is then degraded due to non-linear evolution, in

the top right panel. Large-scale velocities caused a broadening of the acoustic peak as the

black positions are spread out. The smoothed Lagrangian displacement field is shown on the

bottom left panel. Bottom right plot displays the density field where positions are moved back

using the displacement field.

1.3.3 Redshift Space

The line-of-sight observable distance is the redshift. However individual galaxies have peculiar

velocities induced by their gravitational environment. These velocities affect the redshift

measurement by moving slightly the observed position of the galaxy. This distorted space

which is the observed one is called redshift space in opposition to the real space. It can be

used to measure to growth rate of structure f and therefore Ωm .

Right panel of Figure 1.34 compares the correlation function in real and redshift spaces in

simulations. The clustering is compressed into a multipole expansion using a projection on

the Legendre basis (see Chapter 2). While in the real space all the information is contained in

the radial correlation, in redshift space peculiar velocities and non-linearities informations

bring an anisotropic signal. The higher order even Legendre multipoles (2,4) are thus non-

zeroXXXI. A redshift evolution of the clustering in redshift space is shown on the left of Figure

1.34.

Peculiar velocities

The total proper velocity of an astronomical object is the time derivative of its proper distance

d so from Equation 1.37:

v(t ) =
d d(t )

d t
= ȧχ+aχ̇≡ vcos + vpec, (1.144)

where vcos = H(t)d(t) is the velocity induced by the Hubble flow, i.e. the expansion of the

Universe, and vpec is the peculiar velocity caused by the gravitational field surrounding the

object.

The observed redshift depends then on these two velocity componentsXXXII:

zobs = (1+ zcos)(1+ zpec). (1.145)

XXXIDue to the symmetry on the line-of-sight, the odd multipoles cancel out (see for an extension on wide angles
in Fourier space e.g. Raccanelli et al., 2014, Castorina and White, 2018, Beutler et al., 2019). Moroever in linear
theory, the expanded sum goes only up to the hexadecapole (Hamilton, 1998). We note that the quadrupole can
help breaking degeneracies (Yamamoto et al., 2006).

XXXIIThis results from the redshift definition: zobs = λobs
λem

= λi
λem

λobs
λ1

, where λi is the wavelength as measured by an
observer located at the same proper distance than the object from the final observer.
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Figure 1.34: Left: real (r-space) and redsfhit (z-space) space multipoles of the Indra simulations
(B. Falck et al., 2021) at redshift 0. As the clustering is isotropic in real space, the quadrupole
(and higher order multipoles) which contains angular information is null. Moreover we note
that resulting observed overdensities are larger in redshift space due to the infall velocities.
Indeed in redshift space overdensity regions are more grouped on the radial direction. This
results in a higher clustering correlation below the BAO scale. Right: redshift evolution of the
multipoles in redshift space. The BAO peak is dumped as it tends to redshift zero. This is due
to non-linearities that increase with time (as z goes to 0).

This shift in redshift affects the line-of-sight, or radial, component of observed position. The

mapping between redshift space position s⃗ and the real position r⃗ isXXXIII:

s⃗ = r⃗ + vpec(r⃗ )

aH
êz ≡ r⃗ +uz (r⃗ ), (1.146)

where uz is the comoving peculiar velocity in the line-of-sight direction. We note that in

simulations the radial direction êz is usually considered fixed for all observations under the

plane-parallel assumption.

On linear regime, we described previously the peculiar velocity induced by gravitational

growth of perturbation in Equation 1.87. In particular on scales above approximately 60-80

h−1Mpc, we can thus established a relation between the peculiar velocity field divergence and

the density contrast asXXXIV:

θ ≡∇r · vpec(r⃗, z) = −a(z)H(z) f δ(r⃗, z). (1.147)

XXXIIIIt comes from: s⃗ = r⃗ +∆t vpecêz , with ∆t =χ/vcos =χ/(H aχ).
XXXIVFourier transform of Equation 1.87 is: v = −aH f ∇−1δ.
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Real-to-redshift space mapping

Every element in the real space should correspond to an element in redshift, we thus have

conservation of the number of particles in volume elements:

ns(s⃗)d 3 s⃗ = n(x⃗)d 3r⃗ → (1+δs(s⃗, t ))d 3 s⃗ = (1+δ(r⃗, t ))d 3r⃗. (1.148)

With s and r the radial components of the vector positions in redshift and real spaces respec-

tively, and using the inverse of the Jacobian d 3s
d 3r

XXXV, we have:

1+δs(s⃗, t ) =
(
1+δ(r⃗, t )

)(
1+ uz

r

)−2
(
1+ duz

dr

)−1

. (1.149)

We use a perturbation approach in the linear approximation, i.e. δ≪ 1 and ∇u(r⃗ ) ≪ 1, and we

assume that uz ≪ r :

δs(s⃗, t ) = δ(r⃗, t )− 2uz

r
− duz

dr
+O(2), (1.150)

where O(2) indicates second order and higher terms. We further assume the distant-observer

approximation, i.e very large r , so that the second term can be neglected on the right hand

side.

From Equation 1.147, we can write the comoving peculiar velocity u⃗ asXXXVI:

u⃗ ≡ u(r⃗ ) = − f ∇−1
r δ(r⃗ ) → uz =

∂

∂r
∇−1

r u⃗ = − f
∂

∂r
∇−2

r δ, (1.151)

The line-of-sight derivative of uz is then:

duz

dr
= − f

∂2

∂r 2 ∇−2
r δ =

∂2

∂r 2

∇
∇2 u⃗ =

1

aH

∂2

∂r 2 ∇−2θ ≡ ∂2

∂r 2 ∇−2θ̂, with θ̂ = f δ. (1.152)

In Fourier space the density contrast in redshift space becomes, using Equation 1.152:

δs(k⃗, t ) = δ(k⃗, t )+µ2
k θ̂k , where µk ≡ êz · k⃗

k⃗
. (1.153)

Parameter µk is the cosine of the angle between the line-of-sight and the mode. The power

spectrum in redshift space of the biased matter, subscript t is for tracer, is (Scoccimarro, 2004):

P s
t (k, t ) ≡ 〈|δs |2〉 = 〈|δ|2〉+2µ2

k〈δθ̂〉+µ4
k〈|θ̂|2〉 ≡ Pδδ,t +2µ2

k Pδθ,t +µ4
k Pθθ,t . (1.154)

The power spectra Pδδ,t , Pδθ,t and Pθθ,t are respectively the density, density-velocity and

XXXVThe Jacobian is: d 3 s⃗
d 3 r⃗

= 3s2

3r 2
d s
dr = (r+uz )2

r 2 (1+ duz
dr ) = (1+ uz

r )2(1+ duz
dr ).

XXXVIWe note that ∇r = d/dr⃗
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velocity power spectra.

Under linear approximation, we have seen above that the matter density and velocity fields are

linearly related from Equation 1.147. We assumed a linear bias b(k) = b such that δt = bδm If we

further assume that central galaxies are at rest in the dark matter halo and that satellite galaxies

distribution follows the mass distribution we have no velocity bias, i.e. θt = θm . Moreover

we recall that we have a linear coupling of θ̂ and δ through the growth rate parameter f

(see Equation 1.152). We thus find the Kaiser relation (Kaiser, 1987) with the matter power

spectrum in real space Pm :

P s
t (k, t ) = b2 (

1+2βµ2
k +β2µ4

k

)
Pm(k, t ) = b2 (

1+βµ2
k

)2
Pm(k, t ), (1.155)

where β≡ f /b. We note from this expression that the bias and the growth rate are degenerate

with σ8 (which normalized Pm). Therefore in practice we measure bσ8(z) and f σ8(z).

Expanding the power spectrum P s(k) into harmonics of µk , using the Legendre polynomials

of order ℓ, Lℓ:

P s(k⃗) =
∑
ℓ

Lℓ(µk )P s
ℓ

(k), with P s
ℓ

(k) =
2ℓ+1

2

∫ 1

−1
P s(k⃗)Lℓ(µk )dµk . (1.156)

In the linear approximation with the Kaiser formula we get as non-zero multipoles, with P (k)

the linear real space matter power spectrum:

P s
0(k) =

(
1+ 2

3
β+ 1

5
β2

)
P (k), P s

2(k) =

(
4

3
β+ 4

7
β2

)
P (k), P s

4(k) =
8

35
β2P (k). (1.157)

From those we understand that the redshift space power spectrum is enhanced by a factor

depending only on β. Indeed the infall peculiar velocities are proportional to β (in the linear

approximation) which produces this enhancement of the density contrast in redshift space.

We notice furthermore that ratios between harmonics allow us the obtain the parameter β.

Non-linear redshift-space approach

Equivalently the Fourier density can be written as a Fourier transform of the configuration

space density (using the definitions of Equation 1.65):

δs(k⃗) =
∫

d 3r⃗

(
δ(r⃗ )− duz (r⃗ )

dr
)

)
e−i (k⃗·r⃗+kµk uz ). (1.158)

Defining x⃗ ≡ r⃗ − r⃗ ′ and ∆uz ≡ uz (r⃗ )−uz (r⃗ ′), the density power spectrum in redshift space can

thus be expressed as:

P s(k⃗) =
∫

d 3x⃗e−i (k⃗·x⃗〈e−i (kµk∆uz )
(
δ(r⃗ )− duz (r⃗ )

dr
)

)(
δ(r⃗ ′)− duz (r⃗ ′)

dr
)

)
〉. (1.159)
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Another notation is sometimes used, where the comoving velocity u⃗ is scaled with the growth

rate such as û ≡ −v⃗/( f (a)H(a)a) and thus the line-of-sight derivative becomes duz /d t =

− f dûz /d t . In this case the growth rate dependency is clearer and we understand better the

enhancement of the density contrast produced by RSD (see next Section 1.3.3) on the line-

of-sight. On smaller scales (more clustered), there is a damping causing a power suppression

controlled by the exponential factor.

Using perturbation theory, the linear approximation expressed above can thus be extended

to non-linear regime. A very used model is the one of Taruya et al., 2010 (TNS) relying on

one-loop standard PT. Two extra terms are added to Equation 1.154 and writing the growth

rate dependency explicitly:

P s
t (k, t ) = b(k)2Pδδ,t +2b(k)µ2

k f Pδθ,t + f ′2µ4
k Pθθ,t + A(k,µk ,b)+B(k,µk ,b). (1.160)

The two terms A and B come from linear and non-linear coupling arising from the interactions

between the damping and enhancement terms in Equation 1.159. TNS model can be extended

with two-loop corrections.

TNS model reaches an accuracy of 1% at k ≤ 0.15 h/Mpc at redshifts below approximately 1

(Gil-Marin et al., 2012).

While PT approach in the clustering modelling in redshift space is quite fast to compute, it

breaks down on small scales and fails to reproduce the non-perturbative features (as the FoG

effect described below). To model the clustering on quasi- and non-linear scales, i.e. small

scales, in redshift space, another approach exist that was introduced in Section 1.2.6 based

on empirical prescriptions. Indeed HOD semi-analytical models could be used to capture

the redshift space clustering on small scales. Those models require parameter calibration on

N-body simulations (Tinker et al., 2006, Tinker, 2007, Zu and Weinberg, 2013). Measurements

on small scale clustering have been done using HOD based models tuned on simulations to

provide measurements on data.( B. A. Reid et al., 2014, Chapman et al., 2022, H. Guo et al.,

2015, Hikage, 2014). Approach relying on a mixture of PT and N-body simulations with a

halo model has also been explored reaching a modeling up to k < 0.4 (Hand et al., 2017).

The challenges of such HOD approaches are computational as individual simulations are

expensive and the parameter space if often more limited.

Redshift-space correlation function

The correlation function in redshift space ξs becomes:

ξs(s⃗) = 〈δs(r⃗ )δs(s⃗ + r⃗ )〉, where δs(s⃗) = δ(x⃗)− duz (x⃗)

dr
. (1.161)
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In linear theory ξs(s⃗) ≡ ξs(s∥, s⊥) = ξ(s,µ), with s⊥ is the angular separation in redshift space

and s∥ ≡µs the radial (s2 = s2
⊥+ s2

∥), is fully specified:

ξs(s,µ) = ξs
0(s)L0(µ)+ξs

2(s)L2(µ)+ξs
4(s)L4(µ), (1.162)

where the multipoles ξs
ℓ

(s) ≡ 2ℓ+1
2

∫ 1
−1 ξ

s(s,µ)Lℓ(µ)dµ are:

ξs
0(s) =

(
1+ 2

3
β+ 1

5
β2

)
ξ(s), ξs

2(s) =

(
4

3
β+ 4

7
β2

)(
ξ(s)− 3J3(s)

s3

)
,

ξs
4(s) =

8

35
β2

(
ξ(s)+ 15J3(s)

2s3 − 35J5(s)

2s5

)
.

(1.163)

The function Jℓ is Jℓ =
∫ x

0 ξ(y)yℓ−1d y . Again we see that ratios between monopole and

quadrupole help us infer β.

Streaming model

In configuration space, models of the clustering in redshift space can be derived from the

Fourier transform of the power spectrum models. A second class of models also directly works

in configuration space. The redshift space correlation is expressed as a convolution of the

correlation in real space ξ(r ) with the line-of-sight velocity probability distribution F (v).

We can write the excess probability of finding a pair at positions (s⃗1, s⃗2) separated by (s∥, s⊥) as

dP = n2d 3 s⃗1d 3 s⃗2
(
1+ξs(s∥, s⊥)

)
with n the galaxy mean density. Then the so-called streaming

model will assume that dP = n2d 3 s⃗1d 3 s⃗2 (1+ξ(r ))F (v)δD (r⊥− y − y
r v12(r )− v)d vd y , where

r 2 = r 2
∥ + y2 is the separation in real space and v12(r ) is the mean relative peculiar velocity

of the two galaxies, i.e. the infall pairwise velocity. Integrating over y and v (which are

unobserved quantities) gives the streaming model (Peebles, 1980, Peebles, 1993): ξs(s∥, s⊥) =∫
d yξ(r )F (r⊥− y − y

r v12(r )). We now generalize to allow density-velocity couplings, note that

we change the notation by replacing y by r∥ (Fisher, 1995; Scoccimarro, 2004):

1+ξs(s∥, s⊥) =
∫

d r
∥ (1+ξ(r ))P (r∥− s∥, v12,σ12). (1.164)

This probability distribution function P can be approximated by a scale-dependent Gaussian

centered on µv12 (B. A. Reid and White, 2011):

P (r∥− s∥, v12,σ12) =
1√

2πσ2
12(r,µ)

e
(s∥−r∥−µv12(r ))2

2σ2
12(r,µ) , (1.165)

where µ = r∥/r , σ12(r ) is the pairwise dispersion velocity and µv12(r ) is the projection of
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v12(r )r̂ on the line-of-sight, with r̂ the direction vector of the real space separation r⃗ :

v12(r )r̂ = 〈v⃗12(r⃗ )〉 = 〈(v(x⃗ + r⃗ )− v(x⃗))(1+δ(x⃗))(1+δ(x⃗ + r⃗ ))〉,
σ12(r,µ) = 〈(v(x⃗ + r⃗ )− v(x⃗))2(1+δ(x⃗))(1+δ(x⃗ + r⃗ ))〉.

(1.166)

Linear predictions for those quantities are provided in Fisher, 1995 or B. A. Reid and White,

2011. On quasi- or non-linear scales, more complex expressions have to be obtained for ξ(r ),

v12(r ) and σ12(r,µ). Originally those scale dependent function were computed from SPT,

mentioned in Section 1.2.4 for the real space clustering. L. Wang et al., 2014 extended the

Gaussian streaming (GS) formalism using predictions from Convolution Lagrangian Pertur-

bation Theory (CLPT) that was developed by Carlson et al., 2013 to improve the work from

Matsubara, 2008 in Fourier space. This model, i.e. GS+CLPT, is introduced in Chapter 2. The

GS+CLPT model works well for scales above 20 h−1Mpc/h.

White et al., 2015 compared different redshift space models in configuration space, and

concluded that most models fitted well the monopole and quadrupole in 40 < s < 80 Mpc. GS

model provides unbiased measurements above 25 Mpc.

However we note that Gaussian approximation for the velocity PDF has some limits. Indeed

the real velocity distribution cannot be described by one single PDF but rather multiple ones

each corresponding to different scales and angles (Scoccimarro, 2004, de la Torre and Guzzo,

2012, Kuruvilla and Porciani, 2018). Moreover it was shown that the PDF is non-Gaussian,

being rather complex with scale dependent skewness and kurtosis (see also Bianchi et al.,

2016 that added skewness and kurtosis to the Gaussian). Tinker, 2007 showed that the PDF

is determined by the halo local densities of the pair. For a fixed density the PDF is closer to

a Gaussian. To overcome these issues a solution would be to pull information from N-body

simulations and inject them in the model (see e.g. Pellejero Ibañez et al., 2022 for a N-body

simulation based model).

Redshift space distortions

This space modification brings anisotropies in particular in the two-dimensional clustering,

ξ(s∥, s⊥), where isotropy and homogeneity are not anymore observed. The velocity field will

deviate the observed density field, accordingly to its direction and strength.

Figure 1.35 illustrates the consequence in the observation that produces the peculiar velocities

around spherical overdensities. In the linear regime, over 60 h−1Mpc scales, we observe a

squashing effect in the redshift space due to the radial component of the peculiar velocities,

as on these scales the peculiar velocity is much smaller than the Hubble flow. We refer to

this this effect as the Redshift Space Distortions (RSD). At the turnaround radius around the

overdensity, i.e. largest radius for which we have no expansion from the center, line-of-sight

peculiar velocity and Hubble flow cancel out.

At smaller scales, below 10-20 h−1Mpc, velocity dispersion inside a dark matter halo produces
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Figure 1.35: Redshift space distortions.

the Finger-of-God, FoG, effect, that causes an elongated distortion on the radial direction

(Jackson, 1972)XXXVII. This effect can be treated phenomenologically by adding a damping

factor on small scales DFoG on the power spectrum of Equation 1.155:

P s(k, z) = DFoG(k,µ,σFoG)P s
t (k, z), (1.167)

whereσFoG is the velocity dispersion on line-of-sight and DFoG can be modeled as a noise with

different prescriptions (e.g. Peacock and West, 1992):

DFoG(k,µ,σFoG) =

 e−k2µ2σ2
FoG , for a Gaussian prescription(

1+ 1
2 k2µ2σ2

FoG

)−1
, for a Lorentzian prescription.

(1.168)

Figure 1.36 shows the two-dimension correlation function of the ELG sample of eBOSS. RSD are

well visible. A clear squashing effect can be observed. FoG are not completely distinguishable

but we can guess them at the very center of the plot for small separations, where a small

elongated pattern on the r∥ direction can be seen. Moreover BAO is also detectable. It

manifests itself as the excess density ring around 100 h−1Mpc from the center.

XXXVIIWe note that FoG effect causes a suppression of ξs (s,µ) on small scales, while RSD enhance the clustering on
large scales.
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Figure 1.36: Two-dimensional clustering of the ELG sample of eBOSS used for the RSD analysis
in configuration space. An excess ring density is seen around s ≈ 100 h−1Mpc that corresponds
to the BAO feature. Moreover we can see an overall squashing effect on large scales due to RSD.
On small scales (about s⊥ < 2 h−1Mpc) an elongated effect in the radial direction is observed
that is called FoG. (Credits of the figure: Jiamin Hou, MPE, and Tamone et al., 2020.)

1.3.4 Spectroscopic Surveys

BAO or RSD measurements on clustering of galaxies allow to constrain cosmological mea-

surements with high precision. However one limiting factor in the measurement precision is

statistical. To reduce the statistical errors, i.e. suppress cosmic variance, large volume fractions

of the Universe are required. To reduce shot noise contamination a sufficiently large number

density is also required. We note moreover that systematics errors can also limit the final

accuracy of the measurements.

By observing the redshifts of galaxies, spectroscopic surveys aim at creating three-dimensional

maps of the Universe, allowing precise clustering measurements to obtain RSD and BAO

parameters in order to constrain the cosmological models.

Brief overview vocabulary

Here a small guideline/timeline of how a spectroscopic surveys is conducted to introduce

some of the vocabulary (Percival, 2013).

In order to use LSS for cosmology a very large amount of data over a very wide range is needed.
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This is the goal of spectroscopic surveys which aim to collect a large amount of spectra from

a selection of targets covering a large area over a certain redshift range. First step is thus to

perform a target selection using a photometric surveys that provides imaging in different bands.

Each different type of target (e.g. different types of galaxies, quasars) is selected according to

different criteria, such as color magnitude cuts, to obtain a complete and abundant sample

within a redshift range estimated from photometry, i.e. photometric redshifts. Then those

targets are observed through spectroscopy to get their spectra. Comparing them with known

and expected position of their spectral lines, we obtain their corresponding redshifts. Finally

assuming a fiducial cosmology their redshifts and angular positions are converted to get their

3D positions and gathered in a catalog of positions. Observations from the survey delimit a

certain window of the Universe (not only where are the observed galaxies). This window is

defined by an angular survey mask from the observed area, i.e. from the survey footprint, and

a radial distribution.

We want afterward to estimate the observed density from those 3D maps. To correct for

non-cosmological fluctuations different weights are applied to each galaxy (such as fiber

collisions (physical size of fibers), redshift failures, angular photometric systematics (e.g.

galaxy extinction, stellar density, depth)). A weight is also usually assumed to optimize the

clustering amplitude, by balancing the shot noise and cosmic varianceXXXVIII (i.e. minimize

the cosmic error, (Bernardeau et al., 2002)). There are different effects causing cosmic error

(which arises as the real density is not exactly equal to the averaged observed one): cosmic

variance produced as a consequence of the fact that we have access to a finite volumeXXXIX,

edge effects partially corrected by assigning a smaller weights to galaxies closer to the edges,

effects due to the fact that the observed tracer is discreteXL. We note that the effective volume

defined for example in B. Reid et al., 2016 is smaller than the actual survey volume.

To evaluate the clustering from the catalogs, a random catalog, with number density nr (x⃗),

is needed. Galaxies from this random catalog are sampled following a Poisson distribution

capturing the survey radial function and with the same angular mask as the survey, i.e. it

accounts for the selection function of the survey W (r⃗ ), containing α times the number of

object compared to the data catalog that has number density ng (x⃗). The true selection

function is however difficult to evaluate and therefore the mean density n is computed from

the observed data, i.e. a finite volume. This means that the integral of the density over the

survey area is artificially set to 0 to ensure δ(0) = 0. This leads to a (global) integral constraint

(Peacock and Nicholson, 1991, Wilson et al., 2017, Beutler et al., 2017 ,de Mattia and Ruhlmann-

XXXVIIIFor a tracer from survey with number density n and power spectrum at a fixed scale P0, i.e. bias dependent,
if the quantity nP0 ≪ 1, it indicates that the sample is shot noise (i.e. Poisson noise that can be modelled by a
Poisson law, see footnote XL) dominated. If the quantity nP0 ≫ 1, it indicates that the sample is dominated by
cosmic variance.

XXXIXFor a survey of size L, finite volume effects roughly scale with the correlation average ξ(L). Larger volume
usually means better constraints but not only as seen in footnote XXXVIII.

XLUnder the assumption that the discrete distribution follows a Poisson law, discreteness effects are proportional
to 1/Ng , where Ng is the number of galaxies in the catalog (see Bernardeau et al., 2002 for more details). Moreover

we note that the expectation number of galaxies in a volume v with an average density ng is N g = ng v .
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Kleider, 2019).

The power spectrum can be obtained by defining the overdensity field F (x⃗) = ng (x⃗)−nr (x⃗)/α,

we have (Feldman et al., 1994):

〈|F (k⃗)|2〉 =
∫

d 3k ′

(2π)3

(
P (k⃗ ′)−P (0)δD (k⃗)

) |W (k⃗ − k⃗ ′)|2 + (1+ 1

α
)
∫

d 3xn(x⃗), (1.169)

where the last term on the left corresponds to the shot noise PSN (see footnote XL) and

W (k⃗) is the Fourier transform of the window function: W (k⃗) =
∫

d 3xn(x⃗)e i k⃗ x⃗ . The term

P (k⃗ ′)−P (0)δD (k⃗) is to ensure that the observed power spectrum is zero at k = 0, i.e. Pobs(0) = 0

(Peacock and Nicholson, 1991, Wilson et al., 2017). Therefore the multipoles of the observed

power spectrum can be estimated from F (k⃗) (Yamamoto et al., 2006).

To obtain the correlation function, we use estimators relying on the pair counts in the different

catalogs, such as DD(r ), RR(r ), DR(r ) which are respectively the normalized (over the total

number of pairs) data-data, random-random, data-random pair counts within a bin centered

in r . An estimate of ξ(r ) is:

ξ(r ) =
DD(r )

RR(r )
−1. (1.170)

Other estimators exist such as the very used Landy-Szalay estimate (Landy and Szalay, 1993).

We note that they are still affected by the integral constraint. Legendre multipoles are obtained

by integrating over µ and weighting with Legendre polynomials. Wedges are obtained by

weighting with µ top-hat windows (Kazin et al., 2012).

Timeline of dark energy experiments

In 2006, the Dark Energy Task Force, DETF, (Albrecht et al., 2006) defined a categorization of

the different experiments dedicated to the discovery of the dark energy nature. They described

the surveys and the research associated into four stages focusing on Supernovae projects, BAO,

weak lensing and galaxy clusters.

Stage I regroups all projects related to dark energy completed by the time of DETF, so prior

2005. Stage-II were the on-going projects in 2005 so lasted until about 2008. Together it

includes the data used for first BAO detection from Sloan Digital Sky Survey, SDSS-I and

SDSS-II data (Eisenstein et al., 2005, Percival et al., 2010) or the 2 degree Field Galaxy Redshift

Survey (2dFGRS, Cole et al., 2005). Weak lensing or supernovae analysis were led for example

within Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) programs (Conley et al.,

2011, Haiman et al., 2001), or Hubble Space Telesopce (HST, Riess et al., 2007). Overall results

over this period from different probes combined, including with WMAP (Bennett et al., 2003,

Hinshaw et al., 2013) CMB data, are consistent with a flat Universe, ΩΛ ∼ 0.75 and w ∼±0.1

with a precision of 1-2 sigma.
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Stage III is currently coming to an end, with most the projects completed or close to an end.

For BAO and RSD, up to now the completed spectroscopic survey with the largest amount

of observations is the Baryon Oscillation Spectroscopic Survey (BOSS, Dawson et al., 2013)

part of SDSS-III, extended a few years later in SDSS-IV (Blanton et al., 2017) by the extended

Baryon Oscillation Spectroscopic Survey (eBOSS, Dawson et al., 2016) which observed targets

at higher redshifts. The Dark Energy Survey (DES) is a phomotetric survey that ran from 2013 to

2019 (Omori et al., 2019, DES Collaboration et al., 2022). Belong others there are also WiggleZ

(Blake, Davis, et al., 2011), Subaru (Okumura et al., 2016), 6dFGRS (Beutler et al., 2012), KIDs

(Kuijken et al., 2019), or GAMA (Driver et al., 2009). This period had for CMB the measures

of Planck satellite which presents the tightest constraints to date (Planck Collaboration et al.,

2020). In particular, I will present in more detail in Chapter 2 the final cosmological results of

SDSS for clustering analysis and combined with different other probes.

We are now in the Stage IV for which the results are not yet ready or published. It includes all

new generation surveys which has just started. The Dark Energy Spectroscopic Instrument

(DESI, DESI Collaboration and et al., 2016, DESI Collaboration et al., 2016) at the 4m-Mayall

telescope, has started taking data a bit more than one year ago. It plans to observe more

than 35 million objects up to redshift 3.5, allowing sub-percent level measurements. The

James Webb Space Telescope (Gardner et al., 2006) was launched a few months ago. The Large

Synoptic Survey Telescope (LSST) will observe its first light very soon (Ivezić et al., 2019). The

ESO 4-metre Multi-Object Spectroscopic Telescope (4MOST, de Jong et al., 2012) will start to

take data in the very near future. Euclid space mission (Laureijs et al., 2011) is planned to be

launched in 2023, designed in particular for weak lensing.

It can now be extended to stage V and VI (Karkare et al., 2022) with future experiments in

the medium-future or longer term projects (see also for overviews of dark energy status and

future optics e.g. Annis et al., 2022, Flaugher et al., 2022, Ferraro et al., 2022), such as CMB-

S4 (Abazajian et al., 2019), the LIGO Voyager or Explorer (Collaboration, 2016), a possible

extension of DESI-II (D. J. Schlegel et al., 2022), MegaMapper (D. Schlegel et al., 2019, D. J.

Schlegel et al., 2022) or the Square Kilometre Array (SKA, Huynh and Lazio, 2013).

SDSS Instrument

A telescope located at the Apache Point Observatory (AOP) in New Mexico USA at an altitude

of 2800m was build by the SDSS collaboration, ready to collect data in 1998 (York et al., 2000).

The telescope has an aperture of 2.5m with a wide field of view of 3◦ with a focal ratio of

f /5XLI (Gunn et al., 2006). It was also designed to be able to take imaging and spectroscopic

observations by a replacement of the mounted imaging camera by a fiber plate, as the spec-

trographs were already in place. It is a Ritchey-Chrétien telescope with a primary mirror of

2.5m diameter, a focal ratio of f /2.25 and a central opening of 1.17m diameter in the primary

mirror. The secondary mirror located at 3.6m from the primary one has a diameter of 1.08m.

XLIThe focal ratio is the focal length divided by the aperture diameter.
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Figure 1.37 displays a schematic view of the SDSS telescope.

Figure 1.37: SDSS telescope scheme. (Credits of the figures: Smee et al., 2013.)

The imaging camera used for photometric survey of SDSS is composed of an array of CCDsXLII

of 5 rows and 6 columns, with each rows assigned to one filter ordered as r , i , u, z, g with

effective wavelengths of 3590Å, 4810Å, 6230Å, 7640Å and 9060Å, respectively (Gunn et al.,

1998).

After SDSS-I and II, spectrographs were redesigned to meet BOSS requirements (Smee et al.,

2013). The BOSS instrument is formed of two-arms spectrographs that orient the light toward

two cameras, a red and a blue one. In total the spectrographs are composed of 1000 optical

fibers with a size of 120µm, i.e. ∼2” on the sky, collecting the light in the focal plane. The

fibers are maintained by mobile cartridges: the fibers extremity are hand-plugged inside an

aluminium plate drilled with the target positions to observe, which in turn is attached to the

spectrographs.

eBOSS and tracers

The extended Baryon Oscillation Spectroscopic Survey, eBOSS, is one of the three experiments

of SDSS-IV (Blanton et al., 2017), namely APOGEE-2 (Majewski et al., 2017), eBOSS (Dawson

XLIICharged Coupled Device: microchip made of a grid of pixels that collect light and release electrons that are
afterward counted.
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et al., 2016) and MANGA (Bundy et al., 2015). It was thought as an extension of BOSS, observing

data in an unexplored redshift range at the time, with a total redshift range from 0.6 to 3.5, to

obtain a more complete expansion history with BAO measurements. Started in 2015, eBOSS

collaboration completed its observations in 2019 on the SDSS telescope and released the final

cosmological implications gathering the data results from the past 20 years of SDSS in July

2020.

eBOSS three-dimensional map along with the previsous BOSS and SDSS-I and II data are

shown on Figure 1.38XLIII. eBOSS targeted four different tracers: emission line galaxies (ELG),

luminous red galaxies (LRG), quasars (QSO), and quasars for Lyman-α forest. On the plot

the different tracers have different colors, making clearer the different target redshift ranges.

Figure 1.39 shows one example optical spectrum for each tracer of eBOSS.

Figure 1.38: LSS map of the observable Universe as observed by SDSS, bounded by the CMB.
We are at the center of the map. Each point represents an observation of a galaxy or QSO of
SDSS, where each tracer is characterized by a different colour along with the BAO signal in
their correlation function. (Credits of the figure: Anand Raichoor, Ashley Ross and the SDSS
Collaboration.)

Below I briefly describe the different tracer types, in particular in the context of eBOSS whose

statistics are summarized in Table 1.2 (along with BOSS galaxies):

- Luminous Red Galaxy: An environmental dependence was shown to exist for the galaxy prop-

erties such as mass, morphology or stellar formation (Postman and Geller, 1984, Kauffmann

et al., 2004). Indeed red massive elliptical galaxies reside mainly in massive dark matter halos

and they tend to cluster more. Moreover the brightest galaxies in galaxy clusters occupy a

XLIIISee also the videos from the 2020 eBOSS press release: https://www.youtube.com/watch?v=KJJXbcf8kxA&t=
190s, https://www.youtube.com/watch?v=UTlYUxucEZA.
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narrow range of color and intrinsic luminosity (Postman and Lauer, 1995). In addition to have

a strong clustering, LRGs also have a relatively high bias that increase the power spectrum

amplitude and enhance the BAO signal. These properties make this selected kind of galaxies,

namely the LRG, a very good tracer for galaxy clustering.

Target selection of LRG from eBOSS was effectuated by Prakash et al., 2016, using the photo-

metric data of SDSS. eBOSS LRG were selected by color with their magnitude in the z and i

bands, within a redshift range of 0.6 < z < 1.0. We note that at these redshifts the identifiable

spectral absorption feature of LRG at 4000Å overlaps with the one from starsXLIV. The final

data release of eBOSS, DR16, presented a catalog of 377’458 LRGs (Ross et al., 2020) over an

area of 9493 deg2. The clustering measurements and BAO and RSD analysis were done in

Fourier and configuration space by Gil-Marın et al., 2020 and Bautista et al., 2021, combining

also with the high redshifts LRG BOSS sample (Alam et al., 2017).

Figure 1.39: Different eBOSS spectra for each of the tracers. (Credits of the figure: Blanton
et al., 2017).

- Emission Line Galaxy: ELG are star-forming galaxies, bluer and fainter than LRG, character-

ized by strong emission lines, in particular the OI I doublet associated with star formation with

wavelengths 3723Å and 3729Å or Hα at 6563Å, observable in visible or infrared ranges due to

the expansion. These emission lines are very convenient to measure the galaxy spectroscopic

redshift requiring a limited amount of exposure time, as in this case the continuum is not

necessary. Because of their high star formation density, ELG are abundant in the redshift range

of 0.5 < z < 2.0 (Madau et al., 1998, Lilly et al., 1996, Madau and Dickinson, 2014) and they

present a different favoured environment than LRG. Indeed different physical processes (e.g

Gunn and Gott, 1972) could quench the star-formation in massive halos (Kauffmann et al.,

2004, Dekel and Birnboim, 2006), moreover it was shown that their distributions in cosmic

web is different as LRG are more present in nodes than ELGXLV (Q. Guo et al., 2013, Kraljic et al.,

XLIVThe redshifts of eBOSS LRG and ELG samples were measured with the algorithm REDROCK.
XLVWe also note that while high mass LRG are almost all central galaxies, this is absolutely not the case for ELG
that shows a much larger satellite fraction (Gonzalez-Perez et al., 2018).
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2018, Malavasi et al., 2017, Gonzalez-Perez et al., 2018). As a disadvantage it results in a lower

amplitude in the ELG clustering than LRG, and thus lower bias, requiring therefore a larger

number density to minimize the shot noise, while their low-density environment protect them

more from non-linearities (Drinkwater et al., 2010). Nevertheless their observational spectral

features and their abundance make them a very good tracer choice. WiggleZ (Blake, Davis,

et al., 2011, Blake, Brough, et al., 2011, C. Contreras et al., 2013) was the first survey to make

massive ELG observations, followed by eBOSS. Next survey generation will focus on this tracer,

as DESI (DESI Collaboration et al., 2016), 4MOST (de Jong et al., 2019) or Euclid (Laureijs et al.,

2011).

ELG sample from eBOSS is composed of 173’736 galaxies between redshift 0.6 < z < 1.1 within

a covering area of 1170 deg2, selected on the g r z-bands (Raichoor et al., 2017) of the DECaLS

survey, i.e. the imaging survey of DESI (Dey et al., 2019), allowing a target selection at higher

redshift. The clustering results and measurements are presented in Raichoor et al., 2021,

Tamone et al., 2020 and de Mattia et al., 2021 in Fourier space.

- Quasars: Quasi-stellar objects, also known as quasars are events discovered in the 1950s as

very energetic and luminous radio sources but with a small optical size that can be compared

to a star. The first quasar spectrum was observed by Schmidt, 1963 that measured the high

redshifts of these objects, surprising with their far distance and thus high luminosity. Theoreti-

cal explanation emerged later, by associating the quasars as an extremely luminous subclass

of Active Galactic Nuclei (AGN, Lynden-Bell, 1969, Salpeter, 1964). An AGN is a region very

compact at the center of a galaxy with a very high non stellar luminosity produced by matter

accretion of a supermassive black hole (SMBH). Indeed the black hole is surrounded by a

matter accretion disk in which the particles are accelerated. Some relativistic particles are

then redirected by the magnetic field forming jets located at the black hole poles. Due to their

very high brightness, observation of quasars allow us to reach high redshift ranges.

QSO catalog for the quasar clustering analysis gathered 343’708 objects on a covering area of

4808 deg2 and redshift of 0.8 < z < 2.2 (Ross et al., 2020), with BAO and RSD measurements

made by Neveux et al., 2020 and Hou et al., 2021.

- Lyman-α forest: During its journey to the observer, the light emitted by a quasarXLVI will

be absorbed by matter on the line-of-sight. As most of the encountered gas cloud from the

intergalactic medium are composed mainly of hydrogen, below the wavelength (1+zQSO)λLyα

corresponding to the observed Lyα from the quasar, we will observe many spectral absorption

lines corresponding to Lyα absorption of photons by hydrogenXLVII (Gunn and Peterson, 1965).

This series of absorption lines is the Lyman-α forest and can be used to infer the neutral

hydrogen density along the line of sight, that can in turn be used for clustering (McDonald,

2003, McDonald and Eisenstein, 2007). We note that Lyman-α absorbers used as a tracer has a

negative bias.

XLVIThis is true with any object, however it is more convenient with quasars due to their high observable redshifts,
so high distance. The spectral lines are then in the observable spectrum.

XLVIIAs hydrogen Lyα transition has the highest cross-section. We note that a Lyα absorption make the hydrogen
particles pass from ground base n = 1 to its first excited state n = 2.

82



Introduction Chapter 1

du Mas des Bourboux et al., 2020 analysed the BAO signal of the Lyα forest of eBOSS with

210’005 quasars used for the Lyα absorptions with redshifts higher than 2.1 They also per-

formed a cross-correlation analysis with 341’468 QSO at redshift z > 1.77.

LRG ELG QSO QSO (Lyα) BOSS (LOWZ) BOSS (CMASS)
Redshift range 0.6-1.0 0.6-1.1 0.8-2.2 >2.1 0.2-0.5 0.4-0.6
Nz 377’458 173’736 343’708 210’005 604’001 686’370

Table 1.2: Redshift ranges and total numbers of good redshifts for the different tracers of
eBOSS. From Table 3 of Alam, Aubert, et al., 2021.

DESI

Located at Kitt Peak in Arizona USA, DESI has started taking data for its five years main survey

in May 2021, on the Mayall 4m telescope (see the picture on the left of Figure 1.40). The

instrument has a field of view of 7.5 deg2. Instead of the aluminium plate supporting the

fibers from SDSS telescope, DESI telescope is provided with 5000 robotic fiber positioners,

developed belong others in EPFL that was involved in their constructionXLVIII, related to the

spectrographs were some are shown on the right of Figure 1.40 (DESI Collaboration et al.,

2016). The spectrographs have a resolution λ/∆λ between 2000 and 5500 depending on λ,

and are thus able to resolve the OI I doublet, facilitating ELG redshift measurements.

Figure 1.40: DESI instrument and fiber positioners. (Credits of the figures: DESI collaboration.)

DESI survey targets bright galaxies (Bright Galaxy Survey, BGS), LRG, ELG, QSO and QSO for

Lyα forest, covering an area of 14’000 deg2. Table 1.3 summarizes the goal statistics of the

DESI tracers. Comparing with the eBOSS statistics of Table 1.2, DESI will then observed 100

times more ELG than the ELG eBOSS sample and about 3 times LRG more than the total SDSS

sample.

The prime goal of DESI is to perform BAO and RSD analysis to constrain the nature of dark

energy. Defining the DETF figure of merit Albrecht et al., 2006 that quantifies the measurement

XLVIIIhttps://actu.epfl.ch/news/5000-eyes-will-track-the-expansion-of-the-univer-2/
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BGS LRG ELG QSO QSO (Lyα)
Redshift range 0.05-0.4 0.4-1.0 0.6-1.6 <2.1 >2.1
Nz [·106] 9.8 4.0 17.1 1.7 0.7

Table 1.3: Redshift ranges and expected total number of good redsfhits for the different tracers
of DESI. From Table 3.1 of DESI Collaboration and et al., 2016.

precision on the parameters of the equation of state of dark energy (see Equation 1.45):

FoMDETF ∝ 1

σ(wp )σ(wa)
. (1.171)

DESI forecast constraints on dark energy of state are gathered in Table 1.4 for DESI galaxies and

Lymann-α forest and adding (or not) the broadband power spectrum. Adding the broadband,

i.e. performing a full-shape fit, up to k allows AP and RSD measurements instead of just the

isotropic shape.

FoMDETF ap σwp

BAO from galaxy 133 0.67 0.023
BAO from galaxy + Lyα 169 0.71 0.022
BAO + broadband up to k < 0.1 hMpc−1 332 0.74 0.015
BAO + broadband up to k < 0.2 hMpc−1 704 0.73 0.011

Table 1.4: Forecasts of DESI figure of merit FoMDETF. The error σwp on wp is evaluated at ap

the pivot scale factor which gives the smallest errors. From Table 2.9 of DESI Collaboration
and et al., 2016.

DETF figure of merit expected Stage-IV (Stage-III) experiment to improve Stage-II by a factor

of 10 (3). Sullivan et al., 2011 combined different Stage-II probes and found a FoMDETF of

11. This means that already from galaxy BAO alone the requirements are met, and in the best

scenario FoMDETF is outpassed by a factor of 7.

While observational systematics treatment in full-shape analysis will be a limiting factor as they

will be required to be well understood, the encouraging forecasts promise a very optimistic

future.
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2 RSD analysis of the ELG sample of
eBOSS

A lot of this thesis work was part of the data release 16 (DR16) of eBOSS. I was in charge of the

RSD analysis of the ELG sample in configuration space. In this context we performed a test

of the fitting RSD models we used in Fourier and configuration spaces that we adopted for

ELG analysis by participating to a mock challenge. We were then able to provide a systematic

error budget coming from the model, assessed with N-body simulations with different Halo

Occupation Distribution (HOD) models suited for ELGs. We presented the mock challenge

results in Alam, de Mattia, et al., 2021 and Avila et al., 2020.

The ELG sample from eBOSS suffered from strong observational systematics that we were

not able to correct, described in Raichoor et al., 2021. In Fourier space those systematics

were mitigated using a pixelisation scheme to null the angular modes within each pixel. In

configuration space we used a modified correlation function to aim at the same effect. We

further used this modified clustering estimator for a multi-tracer analysis of eBOSS LRG and

ELG samples, whose results are presented in Y. Wang et al., 2020.

The Fourier space RSD and BAO analysis was presented in de Mattia et al., 2021 and the ELG

catalog along with the isotropic BAO measurements in configuration space in Raichoor et al.,

2021. We also provided a consensus measurements from the two spaces growth rate and AP

parameters. These consensus values were then used along with other tracers constraints for a

global cosmological analysis summarizing the last 20 years of SDSS (Alam, Aubert, et al., 2021).

In this chapter I will summarize the cosmological results from eBOSS (Alam, Aubert, et al.,

2021) that includes the ELG study. Subsection 2.3 is the ELG RSD analysis paper that I led

(Tamone et al., 2020) and that was published in the Monthly Notices of the Royal Astronomical

Society (MNRAS) journal in December 2020.

2.1 Cosmological Implications of SDSS

I will summarize here some results as presented by the eBOSS collaboration (Alam, Aubert, et

al., 2021). The global cosmological analysis considered 8 SDSS samples: the ones presented in
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Table 1.2 and Section 1.3.4I, plus the Main Galaxy Sample (MGS) from SDSS-I and II (Ross et al.,

2015). They are combined with external datasets such as: CMB temperature, polarisation or

lensing measurements from Planck (Planck Collaboration et al., 2020), Pantheon SNIa (Scolnic

et al., 2018) and DES Year 1 results from clustering and weak lensing (T. M. C. Abbott et al.,

2018)II.

The eBOSS BAO measurements (with the AP parameters of Equations 1.142 and 1.141) of

radial and transverse distance DH (z), D A(z) (equivalent to DM (z)) defined in Equations 1.35

and 1.39 (1.38), and the growth rate f σ8(z)III measured from RSD by eBOSS (see Equation

1.88), are shown on Figure 2.1. They present a good agreement with Planck bestfit predictions.

In the following different extended cosmological models will be tested and mentioned, namely:

a flat Universe with cosmological constant ΛCDM (baseline), a free curvature model oΛCDM

(open Universe), a model with free equation of state for a flat Universe wΛCDM or open

owΛCDM, a model with its dark energy equation of state parametrized with Equation 1.44

in a flat Universe w0waΛCDM or open ow0waΛCDM. We note that all the values presented

below are at redshift 0.

2.1.1 Constraints from BAO

Using only the information coming from the BAO expansion history of SDSS dataIV combined

with SN and CMB without lensing, we can have strong constraints on the curvature and the

dark energy equation of state. We note that BAO data can constrain the matter density Ωm , the

curvature parameter Ωk and a combination of the sound horizon and the Hubble parameter

rd H0/c. Over a wide redshift range BAO data alone are thus able to constrain these three

parameters independently by breaking degeneracies.

Let’s first analyse the constraints in an oΛCDM model. CMB measurements alone favor

a negative value of the curvature parameter Ωk , so a closed Universe, while SN and BAO

strongly refute this result. Combining the CMB with BAO yields Ωk = −0.0001±0.0018, which

is consistent with a flat geometry. This can be observed in the left panel of Figure 2.2. Middle

panel of Figure 2.2 shows the constraints on the dark energy and matter density parameters

still in an oΛCDM model. The CMB ΩΛ is strongly degenerate with Ωm , and it can be seen

that SN and BAO can help remove this degeneracy once combined.

Relieving the constraint for a cosmological constraint with a wΛCDM model, CMB mea-

surements are degenerate in the w-Ωm plane with a significant shift in the central values

INote that the Lyα has two samples, the one for their auto-correlation and the one for the cross-correlation
with quasars.

IIWe note that lensing measurements give access to growth of structure information, so for BAO constraints only
they are not used.

IIIAs both parameters are degenerate they are usually measured together.
IVWe note that in SDSS BAO measurements QSO and Lyα values are included. They are tracers at those redshifts

of the matter domination period.
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Figure 2.1: Measurements of the expansion history and growth by SDSS collaboration as
function of the redsfhit. Solid lines are Planck predictions for a flat ΛCDM model (Planck
Collaboration et al., 2020). The cyan points indicate the contribution of this thesis. (Credits of
the figure: Alam, Aubert, et al., 2021).

compared to the oΛCDM model, as can be seen in the right plot of Figure 2.2. CMB value of w

favours a phantom energy. While BAO do not show strong degeneracies, SN degeneracies are

orthogonal to CMB contour. Combining the three probes together yields a tight constraint

w = −1.026±0.033 consistent with a cosmological constant.

Figure 2.2: 95% and 68% contours for the different probes, relative to the expansion history.
From left to right: Ωk -Ωm plane in an oΛCDM model, ΩΛ-Ωm plane in an oΛCDM model
and w-Ωm plane in an wΛCDM model. The lines are the ΛCDM parameters values. (Credits
of the figures: Alam, Aubert, et al., 2021).
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Figure 2.3: Contours in ΛCDM in the H0-rs and H0-Ωm planes. Distance Ladder corresponds
to measurements from Riess et al., 2019, that uses Cepheids to calibrate the SN luminosity
distance. (Credits of the figure: Eva Mueller and SDSS Collaboration).

As we have seen in Section 1.3.2, to measure the Hubble parameter H0 using BAO as an inverse

distance ladder extra information from another probe has to be assumed to calibrate the

sound horizon rs . There are two main options to do it: either using CMB, or to use BBN

information (Big Bang nucleosynthesis, see Section 1.1.4) which allows to set constraints on

ωb ≡Ωbh2 V. Figure 2.3 displays the contours in the H0-rs , noted rd in the plot, and H0-Ωm

planes. As expected BAO alone has H0 completely degenerate with rs , however breaking the

degeneracy with BBN or CMB gives similar central values for a ΛCDM Universe. The resulting

H0 from BAO is then insensitive to CMB systematics. Moreover we note that BAO can help

breaking the CMB strong degeneracy between H0 and Ωm . In particular when BAO, SN and

CMB are combined together within the very free model ow0waΛCDM, we have a very precise

measurement on H0 = 67.61± 0.44 km/s/Mpc, while CMB alone in this model gives poor

constraints. As for CMB alone, this value is still in tension with late-time probes, presenting

a 5σ tension that therefore cannot be explained by Planck systematic errors nor the strict

ΛCDM assumption.

We note that CMB combined with BAO or SN measurements can also help constraining the

neutrino masses when leaving free the sum of the neutrinos
∑

mν
VI, a νΛCDM model. Indeed

lighter neutrinos are relativistic at recombination and can thus affect the observations of CMB

as it can modify the late-time expansion and DM (rrec), i.e. the angular diameter distance

at recombination. The sum
∑

mν is then degenerate for example with Ωm or H0 and this

degeneracy can be broken by bringing later-time measurements as BAO.

VIn Alam, Aubert, et al., 2021 they used information from Cooke et al., 2018 and Adelberger et al., 2011 to set
ωb = 0.02235±0.00037, Ωc and H0 are then let free.

VITo include neutrinos, the mass density becomes Ωm =Ωc +Ωb +Ων, where Ων is the neutrino density and

Ων =
∑

mν

93h2eV
(Lesgourgues and Pastor, 2006 (eq. 12), Font-Ribera et al., 2014, see also Dolgov, 2002 (eq. 66)).

Sometimes the ratio fν = Ων

Ωm
can be used.
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2.1.2 Constraints from RSD

Here different measurements from growth are considered, from RSD, from weak lensing (WL)

and from CMB lensing.

As previously with the expansion history, we look at growth constraints on curvature within a

oΛCDM model. Combined result from growth with CMB measurements of temperature and

polarization favors a value consistent with no curvature as can be seen on the top left panel of

Figure 2.4 where the combined contour meets the line indicating a flat Universe. The results

are mainly driven by WL.

In a wΛCDM model, adding CMB lensing to CMB constraints does not change the preference

of Planck toward a phantom energyVII. While WL does not change CMB contours significantly,

RSD has a very strong constraining power as the redshift range from 0.2 to 1.1 of SDSS lays

constraints on the f σ8 curve shape. The combined contours, with adding RSD, are consistent

with a cosmological constant, see top right panel of Figure 2.4.

Similarly to the ΛCDM consistency test of H0 for expansion history, growth of structure mea-

surements alone can be used to constrain σ8 as a test for this baseline model, by comparing to

CMB measurements without lensing. Bottom left plot of Figure 2.4 shows the σ8-Ωm plane.

All the different probes present a general consistency.

Within ΛCDM, growth of structure measurements are a powerful tool to test GR. Let’s consider

the metric FLRW, defined in Equation 1.14, with a scalar perturbation and choosing a Newto-

nian gauge with a diagonal scalar part of the metric. The perturbed metric is (Bardeen, 1980):

d s2 = a2(τ)
(
(1+2Ψ)dτ2 − (1−2Φ)γi j d xi d x j

)
, (2.1)

where τ is the conformal time and adτ = d t , and γi j is the spatial part of FLRW as can be

defined from Equation 1.14. The time perturbation Ψ and space perturbation Φ are the

Bardeen potentials. The Poisson Equation 1.52c in Fourier space for the perturbed metric can

be written, introducing the parameters µ(a) and Σ(a):

k2Ψ = −4πGa2(1+µ(a))ρδ,

k2 (Ψ+Φ) = −8πGa2(1+Σ(a))ρδ.
(2.2)

We use the following parametrization for the time dependence of µ(a) and Σ(a), establishing

a relation with their values at redshift 0 (T. M. C. Abbott et al., 2019):

µ(a) =µ0
ΩΛ(a)

ΩΛ,0

, Σ(a) =Σ0
ΩΛ(a)

ΩΛ,0

. (2.3)

In the framework of GR those two potentials are identical, i.e. Ψ =Φ, and thus µ0 =Σ0 = 0. In

VIIMore negative values of w means an increasing slower growth on lower redshifts.
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Figure 2.4: Contours relative to the growth constraints from different probes: ΩΛ-Ωm , w-Ωm ,
σ8-Ωm and µ0-σ0 planes. (Credits of the figures: Alam, Aubert, et al., 2021).

the case of a modified gravity (MG) model this is not necessarily true.

Bottom right plot of Figure 2.4 shows the contours on these two parameters. RSD is sensitive

to µ0 only, as the matter growth depends on the space deviation Ψ. Lensing constrains mainly

Σ0, as lensing probes the light deviations that depend on Ψ+Φ. A combination of both probes

is then necessary for degeneracy breaking. The combined results yield µ0 = −0.04±0.25 and

Σ0 = −0.024±0.054. This is consistent with GR.

2.1.3 Global Constraints

From above, we have seen that BAO main constraining power resides in the one parameter

extension model oΛCDM by constraining the curvature, and wΛCDM model for SN. The

growth strength is its ability to observe deviation from GR in a ΛCDM cosmology. We now

look at the combination using full-shape fits from SDSS, CMB with lensing, SN and DES WL,

shear and clustering. Table 2.1 summarizes the derived cosmological values for the global

combination for different cosmological model extensionsVIII.

VIIIFor ns andωb , priors of Planck are used: ns = 0.96±0.02 andωb = 0.0222±0.0005, that mainly help constraining
rs .
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ΩΛ H0 σ8 Ωk w0 wa

ΛCDM 0.6959±0.0047 68.19±0.36 0.8073±0.0056 - - -
oΛCDM 0.6958±0.0048 68.21±0.55 0.8076±0.0065 0.0001±0.0017 - -
wCDM 0.6992±0.0066 68.64±0.73 0.8128±0.0092 - -1.020±0.027 -
owCDM 0.6997±0.0069 68.59±0.73 0.8127±0.0091 -0.0004±0.0019 -1.020±0.027 -
w0waCDM 0.6971±0.0069 68.47±0.74 0.8139±0.0093 - -0.939±0.073 −0.31+0.28

−0.24
ow0waCDM 0.6988±0.0072 68.20±0.81 0.8140±0.0093 -0.0023±0.0022 -0.912±0.081 −0.48+0.36

−0.30

Table 2.1: Central values and 68% confidence intervals on cosmological parameters for various
extensions of the standard cosmological model, from the combination of SDSS data, DES,
Planck and Pantheon SN.

While adding growth constraints to the SDSS expansion history only decreases the errors by

6% within oΛCDM, in wCDM the improvement is of 22% as RSD has more constraining power

on w .

Overall the central values of the different cosmological parameters within different models as-

sumptions are all consistent withΛCDM values. The largest deviation from the standard model

is of 0.8% for σ8 within the extended model with three more free parameters, ow0waCDM.

The increase in uncertainties within ow0waCDM compared to ΛCDM represents a factor 1.5

for ΩΛ and 2.3 for H0.

We note that no improvement is observed passing from a one (wCDM) to two parameters

(w0waCDM) equation of state with consistent constraints together and withΛCDM. It suggests

that no critical information is encoded in the additional parameter. In addition letting the

curvature free in a ow0waCDM model, does not increase the uncertainties in w0, wa compared

to a flat Universe. Moreover the error on Ωk increases by only 30% compared to a oΛCDM

model. Within ow0waCDM the combination of all data is consistent with a ΛCDM model at

1.1σ for w0, 1.3σ for wa and within 1σ for Ωk .

To quantify the global contribution of SDSS in the dark energy research, let’s have a look at

the DETF figure of merit as defined in Equation 1.171. We choose a scale factor in order to

have wp and wa uncorrelated (wp is defined in Equation 1.45). It yields the pivot redshift

zp = 0.34 and for the combined data wp = −1.018±0.028 and wa = −0.31+0.28
−0.24, constraining

the dark energy of state at an earlier epoch. The time variation parametrization generates

minimal changes compared to redshift 0. We can therefore have the figure of merit which

is of FoMDETF = 38.4 within w0waCDM model for SDSS and Planck combined. Adding SN

and DES increases this number by 3.5, yielding FoMDETF = 134 within w0waCDM model, and

FoMDETF = 93 within ow0waCDM model for SDSS+Planck+SN+DES. This result is above the

threshold for Stage-III experiments.
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Figure 2.5: Cosmological parameters values for Stage-II and Stage-III experiments with and
without SDSS, within a owCDM model with free

∑
mν. (Credits of the figure: Alam, Aubert,

et al., 2021).

Figure 2.5 displays the constraints improvement in the cosmological parameters from Stage-II

experiments to Stage-III including SDSS data. The central values are again all compatible. The

improvement on the errors is at least from 2.5. In particular it is of 4.5 for the Ωk and 7.0 for

σ8. The LSS role is of great importance and its influence will even increase in the future.

2.2 EZmocks

During this thesis I extensively rely on the so-called EZmocks to test the various analysis and

compute covariances. In this Section I briefly introduce them by completing the description

given in Tamone et al., 2022 (see Chapter 3).

EZmocks are fast approximated mocks relying on the Zel’dovich approximation (ZA; Zel’dovich,

1970). The displacement field of the ZA is generated from a Gaussian random field in a 5

h−1Gpc box using a grid size of 10243 with a given initial linear power spectrum. The dark

matter density at the wanted redshift is then obtained by moving the dark matter particles di-

rectly to their final positions. Thereafter the simulation box is populated with targets (galaxies

or quasars) using an effective galaxy bias model calibrated onto the data clustering measure-

ments (Chuang et al., 2015; C. Zhao et al., 2021). It describes the relationship between the

dark matter density field ρm and the tracer density field ρt. This bias model (Baumgarten and

Chuang, 2018; Chuang et al., 2015; C. Zhao et al., 2021) requires a critical density ρc to form

dark matter haloes (Percival, 2005), an exponential cut-off ρexp (Neyrinck et al., 2014) and a

density saturation ρsat for the stochastic generation of haloes:

ρt = Bsθ(ρm −ρc)ρsat[1−exp− ρm

ρexp
],

where Bs =

1+Xλ, if Xλ ≥ 0

exp Xλ, if Xλ < 0
and θ(x) =

1, if x ≥ 0

0, if x < 0
,

(2.4)

with Xλ a number generated from a gaussian distribution N (0,λ) centered at 0 with a standard

92



RSD analysis of the ELG sample of eBOSS Chapter 2

deviation λ. Due to degeneracies with the other parameters, λ and ρsat are both fixed to 10.

The mocks are then populated following a probability distribution function (PDF) P (nt) = Abnt ,

nt being the number of tracers per grid cell, b is a free parameter, and the parameter A is

constrained with the number density of QSOs in the box. Moreover the random motions

are accounted for using a vector Xν generated from a 3D gaussian distribution N (0,ν), the

peculiar velocity becomes: ut = uZA +Xν, where uZA is the linear peculiar velocity in the ZA

Bernardeau et al., 2002. In total there are 4 free parameters, namely ρc, ρexp, b and ν, that

were calibrated to the data.

2.3 Preprint version: “The completed SDSS-IV extended baryon os-

cillation spectroscopic survey: growth rate of structure mea-

surement from anisotropic clustering analysis in configuration

space between redshift 0.6 and 1.1 for the emission-line galaxy

sample”
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ABSTRACT
We present the anisotropic clustering of emission line galaxies (ELGs) from the Sloan Digital
Sky Survey IV (SDSS-IV) extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data
Release 16 (DR16). Our sample is composed of 173,736 ELGs covering an area of 1170 deg2

over the redshift range 0.6 ≤ z ≤ 1.1. We use the Convolution Lagrangian Perturbation The-
ory in addition to the Gaussian Streaming Redshift-Space Distortions to model the Legendre
multipoles of the anisotropic correlation function. We show that the eBOSS ELG correlation
function measurement is affected by the contribution of a radial integral constraint that needs
to be modelled to avoid biased results. To mitigate the effect from unknown angular system-
atics, we adopt a modified correlation function estimator that cancels out the angular modes
from the clustering. At the effective redshift, zeff = 0.85, including statistical and systemat-
ical uncertainties, we measure the linear growth rate of structure fσ8(zeff) = 0.35 ± 0.10,
the Hubble distance DH (zeff)/rdrag = 19.1+1.9

−2.1 and the comoving angular diameter distance
DM (zeff)/rdrag = 19.9 ± 1.0. These results are in agreement with the Fourier space analysis,
leading to consensus values of: fσ8(zeff) = 0.315 ± 0.095, DH (zeff)/rdrag = 19.6+2.2

−2.1 and
DM (zeff)/rdrag = 19.5 ± 1.0, consistent with ΛCDM model predictions with Planck parame-
ters.
Key words: cosmology : observations – cosmology : dark energy – cosmology : distance
scale – cosmology : large-scale structure of Universe – galaxies : distances and redshifts
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1 INTRODUCTION

For the last 20 years, physicists have known that the expansion of
the Universe is accelerating (Riess et al. 1998; Perlmutter et al.
1999), but not why this is happening, although the mechanism
has been given a name: dark energy. In the simplest mathemati-
cal model, the acceleration is driven by a cosmological constant
Λ, inside Einstein’s field equations of General Relativity (GR), and
this model is referred to as the standard model of cosmology or the
ΛCDM model. Precise measurements of the Cosmic Microwave
Background (Planck Collaboration et al. 2016), combined with the
imprint of the Baryon Acoustic Oscillations (BAO) in the cluster-
ing of galaxies (Eisenstein et al. 2005; Cole et al. 2005), in par-
ticular for those from the Baryon Oscillation Spectroscopic Survey
(BOSS), (Alam et al. 2017) indicate that dark energy contributes
69% of the total content of the Universe, while dark and baryonic
matter only contribute 26% and 5% respectively.

Measurements of BAO are only one component of the infor-
mation available from a galaxy survey. The observed large-scale
distribution of galaxies depends on the distribution of matter (which
includes the BAO signal), the link between galaxies and the mass
known as the bias, geometrical effects that project galaxy positions
into observed redshifts and angles, and Redshift-Space Distortions
(RSD).

RSD arise because the measured redshift of a galaxy is af-
fected by its own peculiar velocity, a component that arises from
the growth of cosmological structure. These peculiar velocities lead
to an anisotropic clustering, as first described in the linear regime
by Kaiser (1987). In linear theory, the growth rate of structure f is
often parameterised using:

f (a) = d ln D(a)
d ln a

(1)

where D(a) is the linear growth function of density perturbations
and a is the scale factor. In practice, RSD provide measurements
of the growth rate via the quantity f (z)σ8(z), where σ8(z) is the
amplitude of the matter power spectrum at 8 h−1Mpc (Song & Per-
cival 2009). In the framework of General Relativity, the growth rate
f is related to the total matter content of the Universe Ωm through
the generalized approximation (Peebles 1980):

f (z) ' Ωm(z)γ (2)

where the exponent γ depends on the considered theory of grav-
ity and is predicted to be γ ' 0.55 in GR (Linder & Cahn 2007).
Therefore by measuring the growth rate of structure in the distri-
bution of galaxies as function of redshift, we can put constrains on
gravity, and test if dark energy could be due to deviations from GR
(Guzzo et al. 2008).

BAO and RSD measurements are highly complementary, as
they allow both geometrical and dynamical cosmological con-
straints from the same observations. In addition, BAO measure-
ments break a critical degeneracy affecting RSD measurements:
clustering anisotropy arises both due to RSD and also if one as-
sumes a wrong cosmology to transform redshifts to comoving dis-
tances. The latter is known as the Alcock-Paczynski (AP) effect
(Alcock & Paczynski 1979) and generates distortions both in the
angular and radial components of the clustering signal. The AP ef-
fect shifts the BAO peak, while leaving the RSD signal unaffected,
and hence anisotropic BAO measurements break the AP-RSD de-
generacy and enhance RSD measurements.

Using BAO and RSD measurements, spectroscopic surveys of
galaxies are now amongst the most powerful tools to test our cos-
mological models and in particular to probe the nature of dark en-

ergy. Up until now, the most powerful survey has been BOSS (Daw-
son et al. 2013), which made two ∼1% precision measurements
of the BAO position at z = 0.32, and z = 0.57 (Alam et al.
2017), coupled with two ∼ 8% precision measurements of fσ8
from the RSD signal. The extended Baryon Oscillation Spectro-
scopic Survey (eBOSS; Dawson et al. 2016) program is the follow-
up for BOSS in the fourth generation of the Sloan Digital Sky
Survey (SDSS; Blanton et al. 2017). With respect to BOSS, it ex-
plores large-scale structure at higher redshifts, covering the range
0.6 < z < 2.2 using four main tracers: Luminous Red Galaxies
(LRGs), Emission Line Galaxies (ELGs), quasars used as direct
tracers of the density field, and quasars from whose spectra we can
measure the Lyα forest. In this paper we present RSD measure-
ments obtained from ELGs in the final sample of eBOSS observa-
tions: Data Release 16 (DR16). Using the first two years of data
released as DR14 (Abolfathi et al. 2018), BAO and RSD measure-
ments have been made using the LRGs (Bautista et al. 2018; Icaza-
Lizaola et al. 2019) and quasars (Ata et al. 2018; Gil-Marín et al.
2018; Zarrouk et al. 2018), but not the ELG sample, which was not
complete for that data release.

The eBOSS ELG sample, covering 0.6 < z < 1.1, is fully de-
scribed in Raichoor et al. (2020). As well as allowing high redshift
measurements, this sample is important because it is a pathfinder
sample for future experiments as DESI (DESI Collaboration et al.
2016a,b), Euclid (Laureijs et al. 2011), PFS (Sugai et al. 2012;
Takada et al. 2014), or WFIRST (Doré et al. 2018) which will also
focus on ELGs. We analyse the first three even Legendre multipoles
of the anisotropic correlation function to measure RSD and present
a RSD+BAO joined measurement. A companion paper describes
the BAO & RSD measurements made in Fourier-space (de Mattia
et al. 2020), while BAO measurements in configuration space are
included in Raichoor et al. (2020). A critical component for inter-
preting our measurements is the analysis of fast mocks catalogues
(Lin et al. 2020; Zhao et al. 2020a). We also use mocks based on N-
body simulations to understand the systematic errors (Alam et al.
2020; Avila et al. 2020).

The eBOSS ELG sample suffers from significant angular fluc-
tuations because it was selected from imaging data with anisotropic
properties, which imprint angular patterns (Raichoor et al. 2020)
such that we cannot reliably use angular modes to measure cos-
mological clustering. Traditionally, when the modes affected are
known they are removed from the measurement either by assigning
weights to correct for observed fluctuations (Ross et al. 2011), or
by nullifying those modes (Rybicki & Press 1992). In fact, these
approaches are mathematically equivalent (Kalus et al. 2016). In
the extreme case that we do not know the contaminant modes, one
can consider nulling all angular modes. This can be achieved by
matching the angular distributions of the galaxies and mask - an
extreme form of weighting (Burden et al. 2017; Pinol et al. 2017)
or, in the procedure we adopt, by using a modified statistic designed
to be insensitive to angular modes.

The ELG studies described above are part of a coordinated
release of the final eBOSS measurements of BAO and RSD in all
samples including the LRGs over 0.6 < z < 1.0 (Bautista et al.
2020; Gil-Marin et al. 2020) and quasars over 0.8 < z < 2.2
(Hou et al. 2020; Neveux et al. 2020). For these samples, the con-
struction of data catalogs is presented in Ross et al. (2020); Lyke
et al. (2020), and N-body simulations for assessing systematic er-
rors (Rossi et al. 2020; Smith et al. 2020). At the highest red-
shifts (z > 2.1), our release includes measurements of BAO in the
Lyman-α forest (du Mas des Bourboux et al. 2020). The cosmologi-
cal interpretation of all of our results together with those from other
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zmin zmax NGC SGC ALL

Effective area [deg2] - - 369.5 357.5 727.0
Reliable redshifts 0.6 1.1 83,769 89,967 173,736

0.7 1.1 79,106 84,542 163,648
Effective redshift 0.6 1.1 0.849 0.841 0.845

0.7 1.1 0.860 0.853 0.857

Table 1. Effective area and number of reliable redshifts per Galactic cap
and in the combined ELG sample.

cosmological experiments is found in Collaboration et al. (2020).
A SDSS BAO and RSD summary of all tracers measurements and
their full cosmological interpretation can be found on the SDSS
website1.

We summarise the ELG data used in Section 2, and the mock
catalogues in Section 3. The analysis method that nulls angular
modes, designed to reduce systematic errors is described in Sec-
tion 4. The model fitted to the data is presented in Section 5. Sec-
tion 6 validates with the mock catalogues our chosen modelling
and the analysis method to reduce angular contamination. Finally,
we present our results in Section 7, and conclusions in Section 8.

2 DATA

In this Section, we summarise the eBOSS ELG large-scale struc-
ture catalogues which are studied in this paper and refer the reader
to Raichoor et al. (2020) for a complete description. The eBOSS
ELG sample was selected on the grz-bands photometry of inter-
mediate releases (DR3, DR5) of the DECam Legacy Survey imag-
ing (DECaLS), a component of the DESI Imaging Legacy Surveys
(Dey et al. 2019). This photometry is more than one magnitude
deeper than the SDSS photometry. The target selection is slightly
different in the two caps, as the DECaLS photometry is deeper in
the SGC than in the NGC. The selected targets were then spectro-
scopically observed during approximately one hour with the BOSS
spectrograph (Smee et al. 2013) at the 2.5-meter aperture Sloan
Foundation Telescope at Apache Point Observatory in New Mex-
ico (Gunn et al. 2006). We refer the reader to Raichoor et al. (2017)
for a detailed description of the target selection and spectroscopic
observations.

The catalogues used contain 173,736 ELGs with a reliable
spectroscopic redshift, zspec, between 0.6 and 1.1, within a foot-
print split in two caps, the North Galactic Cap (NGC) and South
Galactic Cap (SGC). For the spectroscopic observations, each cap
is split into two ’chunks’, which are approximately rectangular re-
gions where the tiling completeness is optimized. Table 1 presents
the number of used zspec and the effective area, i.e. the unmasked
area weighted by tiling completeness, for each cap and for the com-
bined sample; it also reports redshift information if one restricts to
0.7 < zspec < 1.1, as this range is used in the RSD analysis (see
Section 7).

Different weights and angular veto masks are applied to data,
to correct for variations of the survey selection function, as de-
scribed in more details in Raichoor et al. (2020). In particular,

1 https://www.sdss.org/science/final-bao-and-rsd-
measurements/.
https://www.sdss.org/science/cosmology-results-
from-eboss/
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Figure 1. Redshift density of the eBOSS ELG sample per Galactic cap and
for the combined sample.

weights are introduced to correct for fluctuations of the ELG den-
sity with imaging quality (systematic weight wsys), to account for
fibre collisions (close-pair weight wcp) and to correct for redshift
failures (wnoz weight). Figure 1 shows the redshift density (n(z))
of the ELG sample for the two Galactic caps and the combined
sample. The more numerous zspec < 0.8 ELGs in the SGC is
a consequence of the target selection choice to explore a larger
box in the g − r vs. r − z colour-colour diagram, enabled by the
deeper photometry there (Raichoor et al. 2017). As in previous
BOSS/eBOSS analyses (e.g. Anderson et al. 2014), we also define
inverse-variance wFKP weights, wFKP = 1/(1+ n(z) · P0) (Feldman
et al. 1994), with P0 = 4000 h−3 Mpc3.

Consistently with the other eBOSS analyses, we define the
effective redshift (zeff) of the ELG sample as the weighted mean
spectrscopic redshift of galaxy pairs (zi, zj ):

zeff =

∑
i, j wtot,iwtot,j(zi + zj )/2∑

i, j wtot,iwtot,j
, (3)

where wtot = wsys · wcp · wnoz · wFKP and the sum is performed
over all galaxy pairs between 25 h−1 Mpc and 120 h−1 Mpc. We
report in Table 1 the different zeff values for the NGC, SGC, and
combined sample for 0.6 < zspec < 1.1 and 0.7 < zspec < 1.1.

A random catalogue of approximately 40 times the data den-
sity is created to account for the survey selection function of the
weighted data. Angular coordinates of random objects are uni-
formly distributed and those objects outside the footprint and masks
are rejected. Random objects are assigned data redshifts, accord-
ing to the shuffled scheme introduced in Ross et al. (2012). As de-
scribed in Raichoor et al. (2020), this was done per chunk, in sepa-
rate sub-regions of approximately constant imaging depth, in order
to account for the fact that targets selected in regions of shallower
imaging have lower redshifts on average.

As shown in de Mattia & Ruhlmann-Kleider (2019) and de
Mattia et al. (2020), using the shuffled-z scheme leads to the sup-
pression of radial modes and impacts the multipoles of the mea-
sured correlation function. This effect has to be modelled, a point
we develop in Section 5.2.

MNRAS 000, 1–20 (2020)
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Despite the different corrections, the eBOSS ELG sample still
suffers from significant angular systematics (see Section 4.1), likely
due to unidentified systematics in the imaging data used to select
ELG targets, a point further discussed in de Mattia et al. (2020).
This triggered our using of the modified correlation function de-
scribed in Section 4.2 to cancel the angular modes.

3 MOCKS

In this Section, we briefly describe the mock catalogues used in
the analysis. Those mock catalogues are of two types: approximate
mocks to estimate the covariance matrix and validate the pipeline
analysis and precise N-body mocks to validate the model.

3.1 EZmocks

A thousand EZmock catalogues for each Galactic cap are used to
estimate the covariance matrices for parameter inference. These
mocks rely on the Zel’dovich approximation (Zel’dovich 1970)
to generate the dark matter density field, with 10243 grids in a
53 h−3 Gpc3 comoving box. ELGs are then populated using an ef-
fective galaxy bias model, which is directly calibrated to the 2- and
3-point clustering measurements of the eBOSS DR16 ELG sample
(Chuang et al. 2015; Zhao et al. 2020a). The cosmology used to
generate the EZmocks is a flat ΛCDM model with:

h = 0.6777, Ωm = 0.307115, Ωb = 0.048206,
σ8 = 0.8225, ns = 0.9611

(4)

To account for the redshift evolution of ELG clustering,
the EZmock simulations are generated with seven redshift snap-
shots. These snapshots are converted to redshift space, to construct
slices with the redshift ranges of (0.6, 0.7), (0.7, 0.75), (0.75, 0.8),
(0.8, 0.85), (0.85, 0.9), (0.9, 1.0), and (1.0, 1.1). The slices are then
combined, and the survey footprint and veto masks are applied to
construct light-cone mocks that reproduce the geometry of the data.

Depending on how the radial and angular distributions of the
eBOSS data are migrated to the light-cone mocks, two sets of EZ-
mocks – without systematics and with systematics – are generated.
For the mocks without systematics, only the radial selection is ap-
plied, to mimic the redshift evolution of the eBOSS ELG number
density. Moreover, the radial selections are applied separately for
different chunks, since their spectroscopic properties are different
(Raichoor et al. 2020). Thus, the only observational effect applied
on the angular distribution of the EZmocks without systematics is
the footprint geometry and veto masks.

The EZmocks with systematics, however, encode observa-
tional systematic effects, namely angular photometric systematics,
fibre collisions, and redshift failures. For example, a smoothed an-
gular map of galaxy positions is extracted directly from the data,
and applied to the mocks. The photometric and spectroscopic ef-
fects are then corrected by the exact same weighting procedure as
in data (see de Mattia et al. 2020; Zhao et al. 2020a, for details). In
particular, mock data redshifts are randomly assigned to mock ran-
dom catalogues with the ’shuffled-z’ scheme in chunks of homo-
geneous imaging depth (using the depth map of the eBOSS data).
Moreover, a smoothed angular map of galaxy positions is extracted
directly from the data, and applied to the mocks. The photomet-
ric and spectroscopic effects are then corrected by the exact same
weighting procedure as in data (see de Mattia et al. 2020; Zhao
et al. 2020a, for details).

In this study, we further use two variants of the EZmocks with

systematics, which differ in their random catalogues. The redshift
distribution of the random objects should reflect the radial survey
selection function of the corresponding galaxy catalogue. This can
be achieved in two ways, either by sampling the random redshifts
based on the true radial selection function n(z) of data, or by taking
directly the shuffled redshifts from the galaxy catalogue. We dub
these two schemes ‘sampled-z’ and ‘shuffled-z’, respectively. For
the EZmocks with systematics only the ‘shuffled-z’ randoms are
used.

3.2 N-body mocks

The eBOSS ELG sample significantly differs from the other
eBOSS tracers from a galaxy formation point-of-view. These
galaxies are sites of active star formation with various astro-
physical processes at play, such as the consumption of gas or
the effect of the local environment. This means the kinematical
properties of eBOSS ELGs could be different from those of the
underlying dark matter haloes. One must thus test the robustness
of any cosmological inference against galaxy formation physics.
To do so, we tested our model against a wide variety of eBOSS
ELG mock catalogues which include accurate non-linear evolution
of dark matter and various deviations in galaxy kinematics from
the underlying dark matter distribution. These tests are described
in detailed in a companion paper Alam et al. (2020). Briefly,
we employ two different N-body simulations, the MULTI DARK

PLANCK (MDPL2; Klypin et al. 2016) and the OUTER RIM (OR;
Heitmann et al. 2019).

The MDPL2 simulation provides a halo catalogue produced
with the Rockstar halo finder (Behroozi et al. 2013) in a cubic box
of 1 h−1Gpc using a flat ΛCDM cosmology with parameters:

h = 0.6777, Ωm = 0.307115, Ωb = 0.048206,
σ8 = 0.8228, ns = 0.9611

(5)

The OR simulation provides a halo catalogue produced with the
Friends of Friends halo finder of Davis et al. (1985) in a cubic box
of 3 h−1Gpc using a flat ΛCDM cosmology with parameters:

h = 0.71, ΩCDMh2 = 0.1109, Ωbh2 = 0.02258,
σ8 = 0.8, ns = 0.963

(6)

Three different parametrisations for the shape of the mean HOD
(Halo Occupation Distribution) of central galaxies are used. The
first parametrisation called SHOD is the standard HOD model
where at least one central galaxy of a given type is found in mas-
sive enough dark matter haloes. Although this model is more ap-
propriate for modelling magnitude or stellar mass selected samples
(Zheng et al. 2005; White et al. 2011), it can be modified to account
for the incompletness in mass of a sample such as the ELG one. The
second parametrisation is called HMQ which essentially quenches
galaxies at the centre of massive haloes and suppresses the presence
of ELGs in the center of haloes, as suggested by observations and
models of galaxy formation, and hence should provide more real-
istic realisation of star-forming ELGs (Alam et al. 2019). The third
parametrisation, called SFHOD, accounts for the incompletness of
the ELG sample by modelling central galaxies with an asymmet-
ric Gaussian (Avila et al. 2020). Such a shape is based on the re-
sults from the galaxy formation and evolution model presented in
Gonzalez-Perez et al. (2018). In each of these models, besides the
shape of the mean HOD, other aspects have been varied to mimic
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different possible baryonic effects over the ELGs distribution such
as the satellite distribution, infalling velocities, the off-centring of
central galaxies and the existence of assembly bias.

In total 22 MDPL2 mocks were available, with 11 types of
mocks for each of the SHOD and HMQ models. OR mocks en-
compassed 6 out of the 11 same types for each model, and five
SFHOD models with assumptions that enhance the parameter space
explored by the SHOD and HMQ ones are selected.

As the MDPL2 cosmology is close to our fiducial BOSS cos-
mology (Equation 7), we use the latter to analyse the MDPL2
mocks. We analyse the OR mocks with their own cosmology
(Equation 6). For the covariance matrix, we use an analytical co-
variance as defined in Grieb et al. (2016).

4 METHOD

4.1 The two-point correlation function

To compute galaxy pair separations of data and EZmocks, observed
redshifts need first to be converted into comoving distances. To do
so, we use the same flat ΛCDM fiducial cosmology as in BOSS
DR12 analysis (Alam et al. 2017):

h = 0.676, Ωm = 0.31, ΩΛ = 0.69, Ωbh2 = 0.022,

σ8 = 0.8, ns = 0.97,
∑

mν = 0.06 eV
(7)

Afterwards, in order to quantify the anisotropic galaxy clus-
tering in configuration space, one usually resorts to the two-point
correlation function ξ (2PCF), which is defined as the excess prob-
ability of finding a pair of galaxies separated by a certain vector
distance s with respect to a random uniform distribution. In the
next Sections, we refer to that 2PCF as the ’standard 2PCF’.

An unbiased estimate ξ̂ of the correlation function ξ can be
computed for a line of sight separation s‖ and transverse separation
s⊥, using the Landy & Szalay (1993, LS) estimator:

ξ̂(s⊥, s‖) =
DD(s⊥, s‖) − 2DR(s⊥, s‖) + RR(s⊥, s‖)

RR(s⊥, s‖)
, (8)

where DD, DR, and RR are the normalised galaxy-galaxy, galaxy-
random, and random-random pair counts, respectively. The pair
separation can also be written in terms of s and µ = s‖/s = cos(θ),
where θ is the angle between the pair separation vector s and the
line of sight.

Projecting on the basis of Legendre polynomials, the two-
dimensional correlation function is compressed into multipole mo-
ments of order l (Hamilton 1992):

ξ`(s) ≡
2` + 1

2

∫ 1

−1
dµξ(s, µ)Pl(µ)

=
2` + 1

2

∫ π

0
dθ

√
1 − µ2ξ(s⊥, s‖)P`(µ)

(9)

where P`(µ) is the Legendre polynomial of order `.
Equations 9 are integrated over a spherical shell of radius s,

while measurements of ξ̂(s⊥, s‖) are performed in bins of width ∆s
in s⊥, s‖ . Converting the last integral in Equation 9 to sums over
bins leads to the following definition of the estimated multipoles of
the correlation function (Chuang & Wang 2013):

ξ̂`(s) ≡
(2` + 1)

2
π

n

n∑
i=1

√
1 − µ2

i
ξ̂(si⊥, si‖)P`(µi) (10)

where the sum extends over n bins in s⊥, s‖ obeying:

s − ∆s
2
<

√
s2
‖ + s2⊥ < s +

∆s
2

We use the public code CUTE (Alonso 2012) to evaluate the
LS estimator of the correlation function from the data and FCFC
code (fast correlation function calculator; Zhao et al. 2020b) for
the mocks: both codes provide consistent measurements. For both
mocks and data, we then compute the first even multipoles, ξ̂0, ξ̂2
and ξ̂4, in bins of width ∆s = 8 h−1Mpc for each cap separately.
The combined multipoles over both caps, referred as ALL, are
computed by averaging the NGC and SGC multipoles, weigthed
by their respective effective areas, ANGC and ASGC:

ξ̂ALL
` (s⊥, s‖) =

ξ̂NGC
`
(s⊥, s‖)ANGC + ξ̂

SGC
`
(s⊥, s‖)ASGC

ANGC + ASGC
(11)

The top and middle left panels of Figure 2 show the standard
2PCF of the data and mean of the 1000 ’shuffled-z’ EZmocks with
systematics, respectively. The squashing effect due to RSD can be
observed for both data and EZmocks; the BAO signal is clearly
visible in the EZmocks, but not in data, because of the overall low
statistics, as seen in Raichoor et al. (2020). For the mocks, and for
data to a lesser extent, we see a negative clustering at s‖ ∼ 0: this
is due to the ’shuffled-z’ scheme adopted to assign redshifts to ran-
dom objects, which creates an excess of DR and RR pairs at those
values. The bottom left panel of Figure 2 displays the difference
between the mean of the 1000 ’shuffled-z’ EZmocks without and
with systematics: the systematics show up mostly at small s⊥ (ra-
dial, due to spectroscopic observations) and large s‖ (angular, due
to the imaging systematics).

Figure 3 shows the standard 2PCF multipoles for the data
and for the ’shuffled-z’ EZmocks with or without systematics,
separately for the NGC and the SGC. Adding systematics to the
EZmocks improves the agreement with data, especially for the
monopole in the SGC and for the quadrupole in both caps. The
overall agreement is satisfactory. However, there are remaining
discrepancies between the data and the EZmocks with system-
atics, the most significant ones being at intermediate scales, ∼
40−80 h−1Mpc , in the NGC for the monopole and the quadrupole.
As detailed in the next Section, those are likely due to remaining
angular systematics in the data.

4.2 Modified 2PCF

In order to mitigate those systematics in our RSD analysis, we use
a modified 2PCF built on the standard ξ(s⊥, s‖) for the model and
ξ̂(s⊥, s‖) for data and mocks. Actually, as will be shown in Section
6.3 with the EZmocks, fitting the standard 2PCF multipoles ξ̂`(s)
does not allow us to to recover unbiased cosmological parameters
when data-like systematics are included in the mocks – and cor-
rected as in data. The principle of the modified 2PCF is thus to null
the angular modes from the clustering.

Our approach builds on the method presented in Burden et al.
(2017) designed for the DESI survey, in which they proposed
a modification of the correlation function that nulls the angular
modes from the clustering. Burden et al. (2017) introduce the shuf-
fled 2PCF which is a modification of the LS estimator from Equa-
tion 8:

ξ̂shuff(s⊥, s‖) =
DD(s⊥, s‖) − 2DS(s⊥, s‖) + SS(s⊥, s‖)

RR(s⊥, s‖)
, (12)
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Figure 2. Two-dimensional correlation function in the directions perpendicular and parallel to the line-of-sight. Panels from left to right are for: standard
2PCF (Equation 8), shuffled 2PCF (Equation 12), modified 2PCF with no cut (Equation 13) and modified 2PCF with a cut (Equation 14). The top row displays
the measurement from the eBOSS ELG data sample, the middle row displays the mean of the 1000 ’shuffled-z’ EZmocks with systematics (100 mocks for the
shuffled 2PCF), and the bottom row shows the difference between the mean of the 1000 ’shuffled-z’ EZmocks with and without systematics (100 mocks for
the shuffled 2PCF). For the modified 2PCF, all parameters are taken at their fiducial values (see text). The black circles illustrate our fiducial fitting range in s

for the multipoles.

where S stands for a random catalog built with random picks of the
data angular positions and with a radial distribution following the
data one (according to the ’shuffled-z’ scheme in our case). Using
such a random S catalog, with the same angular clustering as that in
the galaxy catalog, implies that angular modes are removed in the
shuffled 2PCF, at the cost of an overall loss of information. Second
column of Figure 2 shows the two-dimensional shuffled 2PCF of
data (first row) and the mean (second row) of 100 EZmocks with
systematics: angular signal at small s⊥ and large s‖ are removed.
On the bottom row of the second column of Figure 2, we present the
difference between the mean of EZmocks with and without system-
atics. As most systematics are removed compared to the standard
2PCF, this suggests that the nature of the uncorrected systematics
mostly comes from angular signal and that the shuffled 2PCF re-
moves them.

A model for the shuffled 2PCF was also presented in Burden
et al. (2017) and shown to provide an unbiased isotropic BAO mea-
surement. However, a more advanced modelling is required for a
RSD analysis, as we are measuring anisotropic information from
the monopole, quadrupole and hexadecapole. The model of Bur-
den et al. (2017) involves subtracting terms integrated over the line
of sight which thus include scales for which the RSD model may
be invalid (see Section 5). Such small scales will be discarded from
our fits. For that reason, we do not use the shuffled 2PCF for our

measurements on data and mocks, but rely on a modified 2PCF
where we can control the boundaries of integration for both data
and model. The modified 2PCF we adopt is based on:

ξmod(s⊥, s‖) = ξ(s⊥, s‖) (13a)

− 2
∫ smax

‖

−smax
‖

ξ(s⊥, s′‖)n̄(χmod + s′‖/2)ds′‖ (13b)

+

∫ ∞
0

n̄2(χ)dχ
∫ smax

‖

−smax
‖

ξ(s⊥, s′‖)ds′‖, (13c)

where n̄(χ) is the normalized data radial density as a function
of the comoving line-of-sight distance χ and χmod is the comov-
ing line-of-sight distance at a given redshift zmod, defined here-
after. smax

‖ is the maximum parallel scale included in the correc-
tion. Equation 13b corresponds to the cross-correlation between the
three-dimensional overdensity and the projected angular overden-
sity and Equation 13c corresponds to the angular correlation func-
tion. We provide more details about Equation 13 in Appendix A.
The third column of Figure 2 illustrates the modified 2PCF defined
in Equation 13: it clearly shows its efficiency to remove the angular
clustering in the data (top row) and in the mocks (middle row), with
as a consequence a significant removal of the angular systematics.
This can also be seen on the third bottom panel, where the system-
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Figure 3. Multipoles of the standard 2PCF as measured from the eBOSS
ELG data sample in each cap and from the mean of the shuffled-z EZmocks
with and without systematics. The bands represent the one sigma disper-
sion around the mean of the mocks. Errors on data points come from one
sigma dispersion of mocks with systematics. Vertical dashed lines define
the baseline fitting range.

atics included are almost completely cancelled. We note that the
modified 2PCF and the shuffled 2PCF are very similar.

In our implementation, we use smax
‖ = 190 h−1Mpc and

zmod = 0.83 as baseline parameters. Both quantities are treated as
parameters and chosen to minimise the systematics. One can note
in Equations 13b and 13c that the integration does not depend on
the value of s =

√
s2⊥ + s′2‖ . However, since the CLPT-GS model

is not valid on small scales, our RSD analysis will be performed
only for scales above a minimum value smin, namely s > smin
(smin = 32 h−1Mpc in our baseline settings, see Section 5). In-
troducing this selection in Equations 13b and 13c, and noting for
clarity A(s′‖) = n̄(χmod + s′‖/2) and B =

∫ ∞
0 n̄2(χ)dχ, we end up

with the following modified 2PCF:

ξmod
cut (s⊥, s‖) = ξ(s⊥, s‖) (14a)

+

∫
smin
‖ (s⊥)< |s′‖ |<smax

‖
(−2A(s′‖) + B) · ξ(s⊥, s′‖)ds′‖,

(14b)

where smin
‖ (s⊥) is defined as smin

‖ (s⊥) =
√
(scut

min)2 − s2⊥ with scut
min

the minimum value of s used in the correction. Except stated other-
wise, scut

min is fixed at smin, i.e. the minimum scale used in the RSD
analysis. The right-column panels of Figure 2 shows the modified
2PCF defined in Equation 14: though cutting out scales smaller
than smin in the integration removes less of the clustering ampli-
tude for s⊥ < smin for both data and EZmocks (top and bottom),
one can see that the efficiency to reduce angular systematics (the
two right panels in last row of Figure 2) is of the same order as that
of Equation 13, where no cut is imposed in the integration.

Equation 14 is the modified 2PCF we use in this paper for
the RSD analysis for both measurements (on data and mocks) and
modelling. We can then define Legendre multipoles ξmod

cut,` using
Equations 9 or 10. Multipoles of the modified 2PCF with a cut
scut
min = 32 h−1Mpc as measured from the eBOSS ELG sample in

separate caps and from EZmocks with and without systematics are
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Figure 4. Multipoles of the modified 2PCF as measured from the eBOSS
ELG data sample in each cap and from the mean of the shuffled-z EZmocks
with and without systematics. The bands represent the one sigma dispersion
around the mean of the mocks. We note that EZmocks with and without sys-
tematics mostly overlap, as a result of angular systematics being removed
by the modified 2PCF. Errors on data points come from one sigma disper-
sion of mocks with systematics. Vertical dashed lines define the baseline
fitting range.

shown in Figure 4 using zmod = 0.83 and smax
‖ = 190 h−1Mpc.

EZmocks and data are more in agreement than in the case of the
standard 2PCF multipoles, shown in Figure 3. It thus suggests that
removing some of the angular modes allowed us to partially remove
systematics.

We emphasize that the modified 2PCF introduced in Equation
13 does not aim at providing a model for the shuffled 2PCF defined
in Equation 12. It is a 2PCF estimator that acts similarly to the
shuffled 2PCF and removes angular modes significantly. Our need
to discard small scales in the integration over s′‖ in Equations 13b
and 13c, because of model inaccuracies, led us to adopt Equation
14 as a final 2PCF estimator, for both measurements and modelling.

4.3 Reconstruction

For the isotropic BAO part of the combined RSD+BAO measure-
ments, we use the reconstructed galaxy field to improve our mea-
surements (Eisenstein et al. 2007). Indeed applying reconstruction
aims at correcting large-scale velocity flow effects, sharpening the
BAO peak.

The reconstruction method used in this study follows the
works of Burden et al. (2015) and Bautista et al. (2018) which de-
scribe a procedure to remove RSD effects. We apply three iterations
and assume for the eBOSS ELG sample a linear bias b = 1.4 and
a growth rate f = 0.82. The smoothing scale is set at 15 h−1Mpc.
Vargas-Magaña et al. (2018) showed that the choice of parameter
values and cosmology used for reconstruction induces no bias in
BAO measurements.

RSD measurements rely on the pre-reconstruction multi-
poles and those are then used jointly with the post-reconstruction
monopole for the combined RSD+isotropic BAO fit.
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4.4 Covariance matrix

We estimate the multipole covariance matrix from the 1000 EZ-
mocks as:

C``
′

i j =
1

N − 1

N∑
n=1

[
ξn` (si) − ξ̄`(si)

] [
ξn`′(sj ) − ξ̄`′(sj )

]
(15)

where N is the number of EZmocks, (`, `′) are multipole orders,
(i, j) run over the separation bins and ξ̄`(si) is the average value
over mocks for multipole ` in bin si :

ξ̄`(si) =
1
N

N∑
n=1

ξn` (si) (16)

In the case of RSD fitting, we use the first three even Legendre pre-
reconstruction multipoles, ` = 0, 2, 4. The procedure is the same
whether we use the standard 2PCF or the modified one of Section
4.2. In the case of RSD+BAO fitting, we also consider the post-
reconstruction monopole, so ` = 0, 2, 4, 0rec, where 0rec stands for
the latter.

We then follow the procedure described in Hartlap et al.
(2007) to obtain an unbiased estimator of the inverse covariance
matrix, and multiply the inverse covariance matrix from the mocks
by a correction factor (1 − (Nd + 1)/(Nm − 1)) where Nm is the
number of mocks and Nd the number of bins used in the analysis.
To account for the uncertainty in the covariance matrix estimate,
we rescale the fitted parameter errors as proposed in Percival et al.
(2014).

Figure 5 shows the correlation matrices computed from the
1000 EZmocks, using the definition Ci j/

√
CiiC j j for the 4 mul-

tipoles and their cross-correlations, that are used for the base-
line RSD+BAO analysis.We can notice the differences between
the modified and standard 2PCF multipoles, anti-correlations be-
ing stronger for the modified 2PCF than for the standard one. On
the other hand, the pre- and post-reconstruction monopoles are less
strongly correlated when the modified 2PCF is used.

5 MODEL

5.1 RSD : CLPT-GS model

Galaxy redshift measurements are a combination of the Hubble rate
of expansion and the peculiar velocity of galaxies along the line-
of-sight. Therefore what we are effectively measuring is a combi-
nation of both the matter density field and the velocity field. The
galaxy correlation function is thus affected by multiple sources of
non-linearities that are theoretically challenging to model. Kaiser
(1987) was the first to derive the linear theory formalism in redshift
space, to describe the effect of the peculiar motion of galaxies caus-
ing an apparent contraction of the structures along the line-of-sight.
Hamilton (1992) then extended the formalism to real space. How-
ever the formalism is valid only on scales larger than ∼ 80 h−1Mpc,
where we assume a linear coupling between the matter and velocity
fields:

∇ · v = − f δm, (17)

where f is the growth rate of structure, v the velocity field and
δm the underlying matter density field. On smaller scales, the
non-linear coupling between the velocity and the matter density
fields becomes non-negligible and we need therefore to extend
the above formalism beyond linear theory to account for the
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Figure 5. The complete RSD+BAO correlation matrices from 1000 EZ-
mocks computed in 8h−1Mpc bins from 0 to 200h−1Mpc for the combined
NGC+SGC sample, using the standard (top) and modified (bottom) RSD
2PCF. The latter is computed with scut

min = 32h−1Mpc, zmod = 0.83, smax
‖ =

190h−1Mpc as in the baseline analysis. The post-reconstruction monopole
for BAO is always computed from the standard 2PCF. On both axes we
show the fiducial range of the RSD analysis, from 36 to 156h−1Mpc in
central bin values.

small-scales non-linearities.

In this work, we adopt the same perturbative approach that was
previously used in other publications from BOSS (Alam et al. 2015;
Satpathy et al. 2017) and eBOSS (Zarrouk et al. 2018; Bautista
et al. 2020) to model RSD on quasi-linear scales (∼ 30 − 80
h−1Mpc ), by combining the Lagrangian Perturbation Theory with
Gaussian Streaming model.

5.1.1 CLPT

The Convolution Lagrangian Perturbation Theory (CLPT) was in-
troduced by Carlson et al. (2013) to give accurate predictions for
correlation functions in real and redshift spaces for biased tracers.
In this framework, we perform a perturbative expansion of the dis-
placement field Ψ(q, t). With this approach, Ψ traces the trajectory
of a mass element starting from an initial position q in Lagrangian
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coordinates to a final position x in Eulerian coordinates through:

x(q, t) = q + Ψ(q, t), (18)

where the first order solution of this expansion corresponds to the
Zel’dovich approximation (Zel’dovich 1970; White 2014). Under
the assumption that the matter is locally biased, the tracer density
field, δX (x), can be written in terms of the Lagrangian bias function
F of a linear dark matter field δm(x):
1 + δX (x) = F[δm(x)] (19)

The CLPT model from Carlson et al. (2013) uses contributions up
to second order bias, F1 and F2 whose explicit expression can be
found in Matsubara (2008). The first Lagrangian bias F1 is related
to Eulerian bias on large scale through b = 1 + F1.

According to N-body simulations (Carlson et al. 2013), the
CLPT model performs very well for the real space correlation func-
tion down to very small scales (10 h−1Mpc ). It also shows a good
accuracy for the monopole of the correlation function in redshift
space down to ∼ 20 h−1Mpc . However, it suffers from some inac-
curacies on quasi-linear scales (30-80 h−1Mpc ) for the quadrupole
in redshift space. To overcome this, Wang et al. (2014) proposed
to extend the above formalism by combining it with the Gaussian
Streaming Model (GS) proposed by Reid & White (2011). The
method considers the real space correlation function ξ(r), the pair-
wise infall velocity v12(r) and the velocity dispersion σ12(r) com-
puted from CLPT as inputs to the GS model, as will be described in
the next Section. The expressions for these functions in the CLPT
model are given below (see Wang et al. 2014 for more details):

1 + ξ(r) =
∫

d3qM0(r, q) (20)

v12(r) = [1 + ξ(r)]−1
∫

d3qM1,n(r, q) (21)

σ2
12,nm(r) = [1 + ξ(r)]−1

∫
d3qM2,nm(r, q) (22)

σ2
‖ (r) =

∑
nm

σ2
12,nmr̂nr̂m (23)

σ2⊥(r) =
∑
nm

(
σ2

12,nmδ
K
nm − σ2

‖
)
/2 (24)

Here M0(r, q), M1,n(r, q) and M2,nm(r, q) are convolution ker-
nels that depend on a linear matter power spectrum Plin(k) and the
first two Lagrangian bias parameters, as the bias expansion is up to
second order. The vectors r̂n, r̂m are unit vectors along the direction
of the pair separation, σ2

12,nm is the pairwise velocity dispersion

tensor and δK
nm is the Kronecker delta. The code2 used in this paper

to perform the CLPT calculations was developed by Wang et al.
(2014). We use the software CAMB (Lewis et al. 2000) to compute
the linear power spectrum Plin(k) for the fiducial cosmology used
for the fitting, namely the BOSS cosmology (Equation 7), except
for the OR mocks.

5.1.2 The Gaussian Streaming model

In the GS model, the redshift space correlation function ξs(s⊥, s‖)
is modelled as:

1 + ξs(s⊥, s‖) =
∫

dr‖ [1 + ξ(r)] P(r‖) (25)

2 https://github.com/wll745881210/CLPT_GSRSD

where

P(y) = 1
√

2πσ12(r, µ)
exp


−

[
s‖ − r‖ − µv12(r)

]2

2σ2
12(r, µ)


 (26)

and

σ2
12(r, µ) = µ2σ2

‖ (r) + (1 − µ2)σ2⊥(r) + σ2
FoG

r‖ corresponds to the line-of-sight separation in real space,
while s‖ is the line-of-sight separation in redshift space and s⊥
is the transverse separation both in redshift and real spaces. The
quantity r =

√
r2
‖ + s2⊥ gives the pair separation in real space, and

µ = r‖/r corresponds to the cosine of the angle between the pair
separation vector r and the line of sight separation in real space
r‖ . The parameter σFoG accounts for the proper motion of galaxies
on small scales (Jackson 1972; Reid & White 2011), causing an
elongation of the distribution of galaxies along the line of sight,
an effect known as the Finger of God. In practice, σFoG is an
isotropic velocity dispersion whose role is to account for the scale-
dependence of the quadrupole on small scales.

5.2 Radial Integral Constraint

In this Section, we discuss the impact of the shuffled scheme used
for redshift assignment in the random catalogues on the 2PCF mea-
surement and modelling.

The LS estimator from Equation 8 effectively estimates the
observed galaxy correlation function by comparing the observed
(weighted) distribution of galaxies to the 3-dimensional survey se-
lection function as sampled by the random catalogue. In princi-
ple, the normalisation of the LS estimator makes it insensitive to
the survey selection function, if the random catalogue indeed sam-
ples the ensemble average of the galaxy density. With the shuffled-z
scheme, the data radial selection function is directly imprinted on
the random catalogue and the density fluctuations are forced to be
zero along the line-of-sight: radial modes are suppressed, which
effectively modifies clustering measurements on large scales. This
so-called radial integral constraint effect is not suppressed by the
normalisation of the LS estimator and must be included in the 2PCF
modelling. Note that in the case of the eBOSS ELG sample, the im-
pact of the radial selection function is even increased by the divi-
sion of the survey footprint into smaller chunks accounting for the
variations of the radial selection function with imaging depth.

In de Mattia & Ruhlmann-Kleider (2019), modelling correc-
tions due to the radial integral constraint were derived for the power
spectrum analysis. These results are hereafter extended to the cor-
relation function. The impact of the window function (superscript
c) and radial integral constraint (superscript ic) on the correla-
tion function multipoles were modelled in de Mattia & Ruhlmann-
Kleider (2019) with the following equation:

ξcic
` (s) = ξc

` (s) − ICδ,ic
`
(s) − ICic,δ

`
(s) + ICic,ic

`
(s) (27)

where ξc
`
(s) are multipoles of the product of the correlation

function ξ by the window function (see Equation 2.10 in de
Mattia & Ruhlmann-Kleider (2019)) and, for each (i, j) ∈
{(δ, ic), (ic, δ), (δ, δ)}:

ICi, j
`
(s) =

∫
d∆∆2

∑
p

4π
2p + 1

ξp(∆)Wi, j
`p
(s,∆). (28)

Wi, j
`p

are the window function multipoles, as given in equa-
tions 2.16 and 2.19 in de Mattia & Ruhlmann-Kleider (2019). How-
ever, the LS estimator (Equation 8) removes the window function
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effect with the RR(s, µ) term in the denominator. Hence, calling
Wδ,δ

q the window function multipoles (e.g. Equation 2.11 in de
Mattia & Ruhlmann-Kleider (2019)), we build the ratios:

Wi, j
`p,new(s,∆) =

2` + 1
2

∫ 1

−1
dµ

∑qmax
q=0 W

i, j
qp(s,∆)Lq(µ)∑qmax

q=0 W
δ,δ
q (s)Lq(µ)

L`(µ)

(29)

to be used instead of theWi, j
`p

in Equation 28. In practice, we use
qmax = 6. In addition, a shot noise contribution to the integral con-
straint corrections must be accounted for, as given by terms SN i j

`
(s)

of Equations 3.6 and 3.7 in de Mattia & Ruhlmann-Kleider (2019).
We proceed similarly to account for the removal of the window
function effect in the LS estimator, i.e. instead of the SN i j

`
(s) we

use:

SN i, j
`,new(s) =

2` + 1
2

∫ 1

−1
dµ

∑qmax
q=0 SN i, j

q (s)Lq(µ)∑qmax
q=0 W

δ,δ
q (s)Lq(µ)

L`(µ). (30)

In practice, to include the radial integral constraint into our
model, we correct the multipoles of the correlation function from
the CLPT-GS model, ξs (as given by Equation 25) according to
Equation 27.

5.3 RSD parameter space

We account for the AP effect by introducing two dilation parame-
ters, α⊥ and α‖ , that rescale the observed separations, s⊥, s‖ , into
the true ones, s′⊥, s′‖ . Hence, the standard 2PCF model at the true
separation is:

ξs(s′⊥, s′‖) = ξs(α⊥s⊥, α‖ s‖) (31)

In our baseline analysis, this ξs(α⊥s⊥, α‖ s‖) is used to compute the
radial integral constraint correction (Equation 27) and the modified
2PCF (Equation 14).

The above dilation parameters relate true values of the Hub-
ble distance DH(zeff) and comoving angular diameter distance
DM(zeff) at the effective redshift to their fiducial values:

a‖ =
DH(zeff) rfid

drag

Dfid
H (zeff) rdrag

(32)

a⊥ =
DM(zeff) rfid

drag

Dfid
M (zeff) rdrag

(33)

where the superscript fid stands for values in the fiducial cosmology
and rdrag is the comoving sound horizon at the redshift at which the
baryon-drag optical depth equals unity (Hu & Sugiyama 1996).

The growth rate of structure f (z) defined in Equation 1 is
taken into account in the correlation function model via v12(r) and
σ12(r), as those are proportional to f (z) and f 2(z), respectively.
The two Lagrangian biases F1 and F2 as described by Equation
19 are free parameters of the model. The second Lagrangian bias
F2 impacts mainly the small scales (Wang et al. 2014) and thus is
mostly degenerate with σFoG and not well constrained by the data.
Due to its small impact on the scales of interest, we chose to fix
F2 = F2(F1) using the peak background splitting assumption (Cole
& Kaiser 1989) with a Sheth-Tormen mass function (Sheth & Tor-
men 1999).

Altogether, we thus explore a five dimensional parameter
space p =

{
α‖, α⊥, f (z), F1, σFoG

}
in our RSD analysis. The

growth rate and biases being degenerate with σ8, we hereafter re-
port values of fσ8 and b1σ8, where b1 = 1 + F1. As explained
in Gil-Marin et al. (2020), to remove the h dependency of σ8,
we rescale σ8 by taking the amplitude of the power spectrum at
8 × αiso h−1Mpc where αiso is defined hereafter.

5.4 Isotropic BAO

An alternative way to parametrize the AP effect is to decompose
the distortion into an isotropic and anisotropic shifts. The isotropic
component αiso is related to parallel and transverse shifts, α‖ and
α⊥, via:

αiso = α
1/3
‖ α

2/3
⊥ (34)

It corresponds to the isotropic shift of the BAO peak position in
the monopole of the correlation function; the anisotropic shift ε is
defined as 1 + ε = α‖α

−1/3
⊥ .

BAO measurements from the eBOSS ELG sample in config-
uration space are presented in Raichoor et al. (2020). We hereafter
fit the post-reconstruction BAO using the same BAO model as in
Raichoor et al. (2020):

ξBAO(s, αiso) = Bξtemp(αiso · s) + A0 + A1/s + A2/s2 (35)

where B is the post-reconstruction bias, the Ai’s are broadband pa-
rameters with i = 0, 1, 2. The template ξtemp is the Fourier trans-
form of the following power spectrum:

P(k, µ) = 1 + µ2βe−k2Σ2
r /2

1 + k2µ2Σ2
s/2

(
Plin − Pnw

ek
2((1−µ2)Σ2

⊥+µ2Σ2
‖ )/2
+ Pnw

)
(36)

where Plin is a linear power spectrum taken from CAMB and Pnw
is a ’no-wiggle’ power spectrum computed with the formula from
Eisenstein & Hu (1998). We use the same smoothing scales as in
Raichoor et al. (2020), i.e. Σr = 15 h−1Mpc, Σs = 3 h−1Mpc, Σ⊥ =
3 h−1Mpc, Σ‖=5 h−1Mpc and we set β=0.593 (see also Ross et al.
2016; Seo et al. 2016).

For the modelling of the post-reconstruction BAO signal, we
do not include a radial integral constraint correction as the effect
on the post-reconstruction monopole is absorbed by the broadband
parameters.

5.5 Parameter estimation

In this paper, we perform RSD measurements and a joint fit of RSD
and isotropic BAO. For both RSD and combined RSD+BAO fits,
we use a nested sampling algorithm called MULTINEST (Feroz
et al. 2009) to infer the posterior distributions of the set of cos-
mological parameters p. MULTINEST is a Monte Carlo method
that efficiently computes the Bayesian evidence, but also accurately
produces posterior inferences as a by-product. Our analysis makes
use of the publicly available python version3 of MULTINEST. For
the frequentist fits of our analysis, we use the MINUIT algorithm4

(James & Roos 1975) which is specifically used to get the best fits
of data and single mocks. The likelihood L is computed from the
χ2 assuming a Gaussian distribution:

L ∝ exp

(
− χ

2(p)
2

)
(37)

3 https://johannesbuchner.github.io/PyMultiNest/
4 https://github.com/scikit-hep/iminuit
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Parameter Min value Max value

α‖ , α⊥ 0.6 1.4
f (z) 0 1.5
F1 -0.2 2
σFoG 0 10

αiso 0.8 1.2
B Gaussian

Table 2. Flat priors on the RSD model parameters used in the cosmological
analysis of this paper.

where the χ2 is constructed from the correlation function multi-
poles measured from data catalogs, ξd

`
, and predicted by the model,

ξm
`

, as follows:

χ2(p) =
`,`′∑
i, j

[
ξd` (si) − ξm` (si, p)

]
C``

′
i j

[
ξd`′(sj ) − ξm`′ (sj, p)

]
(38)

Here indexes (i, j) run over the separation bins and C``
′

i j is the in-
verse covariance matrix computed from the 1000 EZmocks (see
Section 4.4). Indexes (`,`′) run over the multipoles of the correla-
tion function, where ` = 0, 2, 4 if RSD only and ` = 0, 2, 4, 0rec
if a combined RSD+BAO fit is performed. We recall that ξd

`
and

ξm
`

can be computed from a standard 2PCF or a modified one. The
priors on the parameters of the RSD model are flat priors given
in Table 2. Performing the joined fit RSD+BAO by combining the
likelihoods allows the Gaussian assumption required to combine
RSD and BAO posteriors as in Bautista et al. (2020) to be relaxed.

For the RSD+BAO fit, the BAO isotropic shift, αiso is related
to the two anisotropic AP parameters through Equation 34. How-
ever we add an additional prior constraint by adding a flat prior on
αiso from 0.8 to 1.2. Due to reconstruction, the B bias can be dif-
ferent than b1, therefore B is not fixed at 1+ F1 but is kept as a free
parameter. As in Raichoor et al. (2020), we use a Gaussian prior on
B of 0.4 width, centred around the B value obtained from the first
bin of the fitting range when setting Ai to zero.

When fitting onto the combined data sample, we chose to have
only one set of biases for the whole sample, neglecting the differ-
ence between caps.

Unless otherwise specified, we fit the RSD multipoles over a
range in separation from 32 to 160 h−1Mpc and from 50 to 150
h−1Mpc for the post-reconstruction monopole, using in both cases
8 h−1Mpc bins and the BOSS cosmology (Equation 7) at the effec-
tive redshifts quoted in Table 1.

6 TESTS ON MOCKS

In this Section, we present tests on mocks in order to validate
our analysis. We first demonstrate the robustness of our CLPT-GS
model with accurate N-body mocks; we then validate our anal-
ysis choices with the approximate EZmocks for both RSD and
RSD+BAO fits. Results from the latter tests are presented in Ta-
ble 3.

6.1 CLPT-GS model validation

We quantify here the ability of the CLPT-GS model to recover
the cosmological parameters from accurate mocks made from the

OUTER RIM N-body simulation. We present a summary of the re-
sults, and refer the reader to Alam et al. (2020), where those are
presented in details.

First, the non-blind mocks described in Section 3.2 were anal-
ysed. The statistical uncertainty on the recovered parameter values
in these accurate mocks are 0.5-0.6%, 0.3-0.5% and 1-2% in α‖ ,
α⊥ and fσ8, respectively. No statistically significant bias in the pa-
rameter values was observed, despite the wide range of ELG HOD
models used.

A set of blind mocks was then analysed, to test for possible
biases, primarily in fσ8, that could arise due to theoretical approx-
imations in the model. To create these mocks, the peculiar veloc-
ities of the galaxies were scaled by an undisclosed factor leading
to a change in the expected value of f and thus fσ8. The other
cosmological parameters were unaffected.The mean deviations of
the fitted cosmological parameters with respect to expectations are
0.9%, 0.7% and 1.6% in α‖ , α⊥ and fσ8, showing that the CLPT-
GS model describes the blind mock catalogues remarkably well.

These tests on N-body mocks demonstrate that the CLPT-GS
model provides unbiased RSD measurements, within the statistical
error of the mocks. Following Alam et al. (2020), we adopt as our
modelling systematic errors: 1.8%, 1.4% and 3.2% for α‖ , α⊥ and
fσ8 respectively. We note that these errors are an order of mag-
nitude smaller than the statistical error of the eBOSS ELG sample
(see Section 7), and will marginally affect the precision of our mea-
surements.

6.2 Radial integral constraint modelling

In Section 5.2 we justified the use of the ’shuffled-z’ scheme to
assign redshifts to random objects, for both data and mocks, in
order to reproduce the radial selection function of the survey.
This scheme has a significant impact on the multipole measure-
ments in the eBOSS ELG sample, as illustrated in Figure 6 with
the EZmocks (dashed lines with shaded regions), using either the
’sampled-z’ scheme (blue) or the ’shuffled-z’ one (green). At large
scales, the increase in the quadrupole and decrease in the hexade-
capole are noticeable. We account for this radial integral constraint
effect in our modelling with the formalism presented in Section 5.2,
and we test hereafter the impact of that correction on the estimated
cosmological parameters. Results are presented in the upper part of
Table 3.

The baseline for this test is provided by fits on the ’sampled-
z’ EZmocks, using a standard 2PCF model based on CLPT-GS at
the data effective redshift. When compared to the values expected
for our fiducial cosmology, the results show deviations of 2.4%,
0.2%, and 0.9% for a‖ , a⊥, and fσ8, respectively. Those small de-
viations may come from the fact that EZmocks are approximate
mocks meant to determine the covariance matrix to be used in the
measurements. The linear scales around the BAO are well repro-
duced but the small scales and hence the full shape fits are not
accurate enough for model validation. In this sense, we note that
the corresponding value of the isotropic BAO scale αiso = 1.007 is
consistent with the value measured in Raichoor et al. (2020) from
the post-reconstruction monopole.

Performing a similar fit, i.e. without RIC correction, using the
’shuffled-z’ scheme instead of the ’sampled-z’ one, the previous
cosmological parameter estimations are shifted by 4.0%, 5.3% and
4.2% for a‖ , a⊥ and fσ8. Those shifts are large, and explained by
the significant differences in the multipoles between the ’sampled-
z’ and the ’shuffled-z’ schemes due to the radial integral constraint
effect (Figure 6). It justifies that we correct our modelling for this
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Figure 6. Multipoles of the standard 2PCF as measured in EZmocks with-
out systematics, using the ’sampled-z’ (blue) or the ’shuffled-z’ (green)
scheme. Left panels are for the NGC, right panels for the SGC. The dot-
ted lines and the shaded area represent the mean of the mocks and the dis-
persion at 1σ around the mean, respectively. Blue solid and dashed green
lines are the CLPT-GS model prediction without and with the radial inte-
gral constraint correction, respectively. Cosmological parameters used for
the model are: (α‖ , α⊥, f , F1, σFoG) = (1.0,1.0,0.84,0.4,2.0).

effect. Including the correction as described in Section 5.2, the de-
viations are significantly reduced to 2.1%, 1.2%, and 0.2% for a‖ ,
a⊥, and fσ8, respectively. The growth rate is almost perfectly re-
covered and the remaining biases in α‖ and α⊥ are reasonable. The
observed shifts are taken as systematic errors due to the radial in-
tegral constraint (RIC) modelling in our final error budget (see Ta-
ble 5).

6.3 Mitigating unknown angular systematics in RSD fits

As already mentioned, the eBOSS ELG sample suffers from un-
known angular systematics that are not corrected by the photomet-
ric weights. These systematic effects bias our cosmological results
(see below). In this Section, we show that the modified 2PCF (Sec-
tion 4.2) is efficient at reducing those biases.

Here, our reference consists in fitting a RIC-corrected model
onto ’shuffled-z’ EZmocks without systematics using the standard
2PCF (see Standard 2PCF, ’no systematics’ row in Table 3). Per-
forming a similar fit on the ’shuffled-z’ EZmocks with systematics,
shifts those reference values by 0.3%, 2.2% and 9.6% for a‖ , a⊥,
and fσ8, respectively. The shift in fσ8 is significant and justifies
our use of the modified 2PCF defined by Equation 14 in Section 4.2
to cancel the angular modes.

The free parameters zmod and smax
‖ of the modified 2PCF are

chosen by minimising the following quantity:

χ2
mod(zmod, s

max
‖ ) = ∆ (Cmod

cut )−1 ∆T, (39)

where ∆ = ξmod
cut,syst(zmod, smax

‖ ) − ξmod
cut (zmod, smax

‖ ) is the vec-
tor of differences between the multipoles of the modified 2PCF
(` = 0, 2, 4) measured from the mean of the EZmocks with and
without systematics and restricted to our fiducial fitting range in s,
and Cmod

cut is the covariance matrix built from the 1000 EZmocks
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Figure 7. χ2
mod measuring the difference between multipoles of the modi-

fied 2PCF obtained on ’shuffled-z’ EZmocks with and without systematics
(Equation 39), as a function of the modified 2PCF free parameters, zmod
and smax

‖ . The dashed line encompasses the 8 neighbouring pixels around
the minimum, marked with a white cross. Black crosses indicate pixels with
χ2

mod < 0.1. We note that the standard 2PCF would provide χ2 ∼ 3.

without systematics, using the modified 2PCF. The minimisation
yields zmod = 0.83 and smax

‖ = 190 h−1Mpc. In the following we
will choose those two parameters as our baseline choice. The 2D
variations of χ2

mod with respect to both parameters are represented
in Figure 7, which shows a valley around our minimum (repre-
sented by the darker blue pixels). The minimum is well defined
at the center of this valley. Moreover, the minimum χ2

mod reaches
a value below 0.1 that indicates that the modified 2PCF success-
fully mitigates the systematic effects introduced in the mocks. Us-
ing the covariance matrix with systematics or using the modified
2PCF with no cut in s (see Equation 13) result in the same minima.

To quantify the systematic error related to the modified 2PCF,
we compare in Table 3 fit results to the modified and standard
2PCF multipoles from the mean of the mocks for the ’no system-
atics’ case (we recall that we use ’shuffled-z’ EZmocks and a RIC-
corrected model as baseline). We find deviations of 0.3%, 0.04%,
1.4% in α‖ , α⊥ and fσ8, respectively. Then, we vary zmod and
smax
‖ around their nominal values and take as a systematic error the

largest of the observed deviations for each parameter. For zmod, we
obtain 0.3%, 0.2% and 1.8% for α‖ , α⊥ and fσ8, respectively. For
smax
‖ , the equivalent numbers are 0.2%, 0.3% and 1.5%. The error

we assign to using the modified 2PCF in the absence of systematics
is taken conservatively as the sum in quadrature of the three effects
previously described, which amounts to 0.5%, 0.4%, 2.7% for α‖ ,
α⊥ and fσ8, respectively. We also show that taking more extreme
values for the parameters (smax

‖ = 200 h−1Mpc , zmod = 0.87 and

smax
‖ = 100 h−1Mpc , zmod = 0.84) implies deviations that are

at same level. This shows the robustness of the modified 2PCF to
recover the correct values of the cosmological parameters in the ab-
sence of systematic effects in the mocks. We note that larger biases
are observed when the parameter smin

‖ of the modified 2PCF is set
to 0 in Equation 14 (see ’no cut’ label in Table 3). This especially
the case for fσ8, which is expected since using the model for very
small scales, where it is invalid, distributes model inaccuracies over
all scales.

We now study the response of the modified 2PCF in the case
of shuffled-z EZmocks with ’all systematics’ (and a RIC-corrected
model). Deviations with respect to results from the modified 2PCF
and mocks without systematics are 0.3%, 0.9% and 1.7% for α‖ ,
α⊥ and fσ8 respectively, showing a significant reduction with re-
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spect to the corresponding results from the standard 2PCF reported
at the beginning of the Section. This demonstrates that the modi-
fied 2PCF is key for this analysis as it reduces the bias on fσ8 by
a factor of nearly 6. When compared to results from the standard
2PCF and mocks without systematics, the deviations in cosmolog-
ical parameters are small (0.7%, 0.9% and 0.4% for α‖ , α⊥ and
fσ8), nevertheless, there is a mild increase of the dispersion of
about 10% for α‖ , 15% for α⊥, and 15% for fσ8.

We also evaluate the impact of changes of zmod and smax
‖

around their nominal values by considering the 8 neighbouring pix-
els around the minimum defined in Figure 7, which correspond to
changes of ∆zmod ∈ {0,±0.01} and ∆smax

‖ ∈ {0,±10} h−1Mpc.

First, we consider the shifts induced by a small increase in χ2
mod,

i.e. pixels marked by black crosses in Figure 7 which have χ2
mod <

0.1. The largest deviations with respect to mocks without system-
atics and the modified 2PCF with baseline parameters are obtained
for smax

‖ = 200 h−1Mpc and zmod = 0.84: 0.3%, 0.9% and 2.1%
for α‖ , α⊥ and fσ8 respectively. These numbers become 0.6%,
0.8% and 0.7% when the comparison is made w.r.t. the standard
2PCF. The deviations are only marginally larger than those previ-
ously quoted, as expected since we are close to the minimum. Con-
sidering all neighbouring pixels, the largest biases are obtained for
smax
‖ = 180 h−1Mpc and zmod = 0.84, which is the neighbouring

pixel with the largest χ2
mod value. With respect to mocks without

systematics and the modified 2PCF with baseline parameters, we
observe deviations of 0.4%, 1.3% and 3.6% for α‖ , α⊥ and fσ8.
These numbers become 0.7%, 1.2% and 2.3% when comparing to
the standard 2PCF case. In the case of fσ8, this is about twice
the deviation observed for our baseline parameters when using the
modified 2PCF and six times with the standard 2PCF. While the
cosmological parameters are still better recovered with the mod-
ified 2PCF than with the standard one, the above results under-
line that the mitigation efficiency of the modified 2PCF strongly
depends on the values of its two free paremeters. For complete-
ness, we observe that settings smax

‖ or zmod to more extreme values

(100 h−1Mpc and 0.87, respectively) degrades significantly the ef-
ficiency of mitigation: this is understood since the systematics are
no longer corrected as efficiently as with the baseline parameters.

Results of fits to EZmocks with systematics using the modified
2PCF (with (smax

‖ , zmod) at their baseline values) and the standard
one are compared in Figures 8 and 9. Both the standard and mod-
ified 2PCFs provide similar χ2 distributions, but due to systemat-
ics, the standard 2PCF fits are driven by extra-correlations in the
quadrupole at intermediate scales (see middle panels of Figure 3)
which results in clearly biased values for α⊥ and fσ8. Figure 9
shows that on average, the modified 2PCF brings a significant im-
provement for these two parameters.

6.4 Joined RSD+BAO fit

As in de Mattia et al. (2020), we perform a joined fit of RSD and
isotropic BAO. We take into account the cross-correlation between
the pre-reconstruction multipoles and the post-reconstruction
monopole, and combine their likelihoods, as explained in Section
5.5.

When fitting the ’shuffled-z’ EZmocks without systematics us-
ing the standard 2PCF, combining with isotropic BAO has a small
effect on the median best-fit parameter values of individual mocks.
We indeed observe shifts of 0.2%, 0.2% and 0.9% for α‖ , α⊥ and
fσ8, respectively (see second part of Table 3). The same is ob-
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Figure 8. χ2 distributions for RSD fits to multipoles of the standard (step
line in blue) and modified 2PCF (filled in red) (using a cut in s at 32
h−1Mpc for the latter) in 1000 EZmocks with systematics. Dashed blue
and solid red vertical lines are the χ2 for the eBOSS ELG data sample for
the standard and modified 2PCF, respectively.

served when using the modified 2PCF with the baseline parameters
in the RSD part of the fit: shifts are of 0.3%, 0.2% and 0.2% for α‖ ,
α⊥ and fσ8 compared to pure RSD fits with the modified 2PCF.

As already observed for pure RSD fits, adding systematics bi-
ases a lot the results compared to fits on EZmocks without system-
atics; for RSD+BAO fits with the standard 2PCF, all parameters are
biased low, by 2.6% for α‖ , 4.2% for α⊥ and 8.8% for fσ8. For the
AP parameters, these deviations are larger than in the RSD fits.

It again motivates the use of the modified 2PCF to mitigate
the systematics. As compared to RSD+BAO fits on mocks with-
out systematics using the modified (standard) 2PCF, RSD+BAO
fits with the modified 2PCF on mocks with systematics deviate by
only 0.1% (0.9%) for α‖ , 0.6% (0.8%) for α⊥ and 1.9% (1.1%) for
fσ8, which are comparable to those in the pure RSD case. This
suggests that with the standard 2PCF, RSD+BAO fits are driven by
systematics in pre- and post-reconstruction multipoles that can be
correlated and highlights again the need for the modified 2PCF.

7 RESULTS

In this Section we present the results and tests made on the eBOSS
ELG data sample. We perform RSD and combined RSD+isotropic
BAO measurements. All results are reported in Table 4.

Following de Mattia et al. (2020), we decided to limit the red-
shift range for the RSD fit to 0.7 < z < 1.1 due to the higher varia-
tions of the radial selection function with depth in the 0.6 < z < 0.7
interval. The posteriors become also more stable with this restricted
redshift range. Limiting the RSD fit to 0.7 < z < 1.1 moves the ef-
fective redshift of the combined sample from 0.845 to 0.857 (Table
1). As we still keep the full range for the BAO part of the joined
fit, we chose to fix the effective redshift to zeff = 0.85 for the com-
bined RSD+BAO measurements. Indeed, as argued in de Mattia
et al. (2020), changing the effective redshift from 0.845 to 0.857 in-
duces shifts in the cosmological parameter measurements of 0.3%
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Figure 9. Comparison of parameter best-fit values for RSD fits based on the standard 2PCF (x-axis) and the modified one (y-axis) obtained for the 1000
EZmocks with systematics. Cyan dotted lines correspond to the mean of the fits on EZmocks without systematics using the standard 2PCF, which is the
reference case here. Solid lines indicate the mean values of the parameters for the modified (red horizontal) and standard (blue vertical) 2PCF. The solid gray
line is the identity.

for fσ8, 0.7% for DH/rdrag and 1.1% for DM/rdrag, which are
small compared to the statistical uncertainty.

Results of RSD+BAO fits to the combined data sample are
presented in Figure 10, which compares data and best-fit model
predictions for the post-reconstruction monopole and the pre-
reconstructed 2PCF multipoles. The right panel corresponds to re-
sults obtained with the standard 2PCF. While both monopole best-
fits provide reasonable BAO peak positions, the quadrupole best-fit
displays an unphysical ’BAO peak’ at s ∼ 90 h−1Mpc, driven by
a bump in the data, likely due to remaining angular systematics,
which as a consequence biases the AP parameters. The degener-
acy between the AP parameters and the growth rate observed in
the posteriors, presented in Figure 11 (blue contours), can explain
the low value measured for fσ8. The fact that the model provides
a good fit to all multipoles, including the quadrupole, explains the
low χ2 obtained with the standard 2PCF, see Figure 8.

Pure RSD fits on the eBOSS ELG sample with the standard
2PCF give results far away from what is expected from EZmocks,
for the combined sample and separate caps. Compared to values
measured in data (’baseline’ of RSD Standard 2PCF), RSD fits
to EZmocks with systematics using the standard 2PCF provide a
larger value of α‖ in 33/1000 cases and the same fraction provides
a smaller value of α⊥. However we observe no mock with a value
of fσ8 smaller than that in data and only a few mocks with a value
around 35% larger. We interpret those unlikely results as due to the
remaining angular systematics present in the data and to the low
significance BAO detection in the eBOSS ELG sample presented
in Raichoor et al. (2020). Changing the redshift range to zmin = 0.6
gives even more extreme results, with 14/1000 and 13/1000 mocks
showing larger values of α‖ and lower values of α⊥ than in data,
respectively. Adding the isotropic BAO to the fit (’baseline’ of
RSD+BAO Standard 2PCF) brings only slight changes to the previ-
ous results: 25/1000 mocks have a larger value than that measured
for α‖ , 132/1000 have a smaller value for α⊥ and 2/1000 mocks
have a smaller value for fσ8. The data measurements are still far
from expected in the mocks.

To mitigate the remaining angular systematics in the data sam-
ple, we fit the modified 2PCF from Equation 14 with the same base-
line parameter values as for the EZmocks, i.e. zmod = 0.83 and

smax
‖ = 190 h−1Mpc, for which we observed that the systematic

effects injected in the mocks were optimally reduced.

Cosmological parameter measurements for pure RSD fits with
the modified 2PCF (’baseline’ of RSD Modified 2PCF) are signifi-
cantly different from those with the standard 2PCF: the value of α‖
decreases by 17.8% and those of α⊥ and fσ8 increase by 12.6%
and 146.5%, respectively. Now 293/1000 mocks have a smaller
value of α‖ , 283/1000 a smaller value of α⊥ and there are 135/1000
mocks with a smaller value of fσ8. Overall the new measurements
are all within one sigma from the median of the fits to ’shuffled-z’
EZmocks with systematics using the modified 2PCF. Larger differ-
ences between fits to data with the standard and modified 2PCFs
are observed in 36/1000 and 80/1000 mocks for α‖ and α⊥. How-
ever no fit on mocks exhibits a difference as large as that in data for
fσ8.

Adding the post-reconstruction monopole of the standard
2PCF to the pre-reconstruction multipoles of the modifed 2PCF for
a joined RSD+BAO fit (’baseline’ of RSD+BAO Modified 2PCF)
changes the previous results of pure RSD fits, increasing the value
of α‖ by 8.2%, that of α⊥ by 2.3% and decreasing the value of
fσ8 by 8.9%. There are 285/1000 mocks with a higher value of α‖ ,
388/1000 with a lower value of α⊥ and 61/1000 mocks with a lower
value of fσ8. In terms of the BAO isotropic shift derived from
RSD fits using the modified 2PCF, adding the post-reconstruction
monopole increases the value of αiso from 0.949 (’baseline’ of
RSD Modified 2PCF) to 0.995 (’baseline’ of RSD+BAO Modi-
fied 2PCF) which is more consistent with the value measured by
Raichoor et al. (2020). Compared with the results from BAO+RSD
fits using the standard 2PCF, the value of α‖ decreases by 10.4%,
while those of α⊥ and fσ8 increase by 9.4% and 103.5%, respec-
tively (’baseline’ of RSD+BAO Modified vs Standard 2PCF). The
differences in measured parameter values between fits using the
standard or modified 2PCF are more frequent on RSD+BAO fits to
EZmocks with systematics than for pure RSD fits: 154/1000 mocks
have a larger shift than the observed one for α‖ and 139/1000 for
α⊥ instead of 36/1000 and 80/1000, respectively, for pure RSD fits
as stated above. For fσ8 there is still no mock for which such a
difference is observed. We conclude that, as already observed on
mocks, the modified 2PCF, being less prone to systematics, pro-
vides a more reliable estimator to derive cosmological measure-
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α‖ α⊥ fσ8

RSD

Standard 2PCF

no systematics & sampled-z, no IC corrections 1.024+0.069
−0.071 0.998+0.053

−0.054 0.454+0.057
−0.058

no systematics, no IC corrections 0.983+0.065
−0.068 1.051+0.057

−0.059 0.435+0.055
−0.055

no systematics 1.003+0.067
−0.067 1.010+0.053

−0.055 0.455+0.057
−0.055

all systematics 1.006+0.075
−0.073 0.988+0.058

−0.056 0.415+0.056
−0.057

Modified 2PCF

no systematics, baseline (smax
‖ = 190h−1Mpc , zmod = 0.83) 0.999+0.067

−0.070 1.011+0.053
−0.056 0.462+0.066

−0.067
no systematics, smax

‖ = 100h−1Mpc , zmod = 0.84 0.996+0.070
−0.064 1.011+0.054

−0.048 0.462+0.060
−0.056

no systematics, smax
‖ = 180h−1Mpc , zmod = 0.83 1.004+0.066

−0.070 1.015+0.054
−0.058 0.461+0.062

−0.055
no systematics, smax

‖ = 190h−1Mpc , zmod = 0.82 0.999+0.067
−0.070 1.012+0.054

−0.055 0.464+0.071
−0.073

no systematics, smax
‖ = 190h−1Mpc , zmod = 0.84 1.001+0.066

−0.067 1.011+0.054
−0.054 0.460+0.065

−0.061
no systematics, smax

‖ = 200h−1Mpc , zmod = 0.83 1.001+0.063
−0.069 1.013+0.056

−0.055 0.462+0.068
−0.069

no systematics, smax
‖ = 200h−1Mpc , zmod = 0.87 1.002+0.066

−0.071 1.012+0.053
−0.055 0.459+0.057

−0.057
no systematics, no cut 1.020+0.088

−0.082 1.012+0.055
−0.063 0.435+0.112

−0.110

all systematics, baseline (smax
‖ = 190h−1Mpc , zmod = 0.83) 0.996+0.075

−0.075 1.001+0.063
−0.062 0.454+0.066

−0.065
all systematics, smax

‖ = 100h−1Mpc , zmod = 0.84 0.995+0.073
−0.070 0.986+0.063

−0.056 0.422+0.057
−0.059

all systematics, smax
‖ = 180h−1Mpc , zmod = 0.82 1.001+0.072

−0.072 1.006+0.062
−0.060 0.454+0.068

−0.067
all systematics, smax

‖ = 180h−1Mpc , zmod = 0.83 0.999+0.073
−0.076 1.001+0.063

−0.068 0.449+0.065
−0.066

all systematics, smax
‖ = 180h−1Mpc , zmod = 0.84 0.995+0.073

−0.072 0.998+0.063
−0.065 0.445+0.059

−0.061
all systematics, smax

‖ = 190h−1Mpc , zmod = 0.82 1.002+0.071
−0.073 1.007+0.066

−0.057 0.455+0.068
−0.066

all systematics, smax
‖ = 190h−1Mpc , zmod = 0.84 1.000+0.072

−0.073 1.001+0.062
−0.063 0.447+0.065

−0.069
all systematics, smax

‖ = 200h−1Mpc , zmod = 0.82 1.003+0.069
−0.072 1.009+0.062

−0.056 0.457+0.079
−0.074

all systematics, smax
‖ = 200h−1Mpc , zmod = 0.83 1.003+0.069

−0.071 1.008+0.061
−0.056 0.453+0.071

−0.071
all systematics, smax

‖ = 200h−1Mpc , zmod = 0.84 0.996+0.073
−0.063 1.002+0.061

−0.062 0.452+0.066
−0.065

all systematics, smax
‖ = 200h−1Mpc , zmod = 0.87 0.997+0.071

−0.069 0.996+0.062
−0.062 0.438+0.056

−0.058
all systematics, no cut 1.018+0.086

−0.082 1.011+0.060
−0.061 0.436+0.110

−0.109
all systematics, +1/2bins 1.002+0.069

−0.070 1.008+0.064
−0.071 0.459+0.068

−0.073

RSD+BAO

Standard 2PCF

no systematics 1.005+0.072
−0.073 1.012+0.050

−0.052 0.459+0.061
−0.059

all systematics 0.979+0.080
−0.083 0.969+0.062

−0.065 0.418+0.062
−0.058

Modified 2PCF

no systematics 0.996+0.067
−0.069 1.009+0.046

−0.045 0.462+0.064
−0.065

all systematics 0.997+0.068
−0.069 1.003+0.052

−0.053 0.455+0.066
−0.065

all systematics, +1/2bins 0.997+0.070
−0.068 1.004+0.054

−0.052 0.460+0.071
−0.073

Table 3. Results of RSD and BAO+RSD fits on 1000 EZmocks. We present the median and the 0.16 and 0.84 quantiles of the distribution of the best-fit
values. Except for the first measurement, we use ’shuffled-z’ EZmocks.

ments from data and that adding BAO regularizes the measure-
ments.

The left panel of Figure 10 shows the pre-reconstruction mul-
tipoles and the post-reconstruction monopole of the modified 2PCF
used for the RSD+BAO fits along with predictions from the best-fit
model. The agreement between the best-fit model and the measured
multipoles is good and the excess of clustering in the quadrupole at
intermediate scale is significantly reduced in data, no longer driv-
ing the fit. On the right panel we show the predictions from the
standard 2PCF model using best-fit values from the RSD+BAO fit

with the modified 2PCF (in red on the graph). The model agrees
quite well with the measured standard 2PCF multipoles, except at
intermediate scales for the quadrupole, which are contaminated by
systematics; we also note a better agreement for the lower s bins
for the monopole. The posteriors of the modified 2PCF RSD+BAO
fit are presented in Figure 11 (red contours). As discussed above,
removing angular modes with the modified 2PCF leads to differ-
ent cosmological parameter estimates than with the standard 2PCF,
though with similar degeneracies. We also note that due to informa-
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tion loss with the modified 2PCF, the posteriors are slightly wider
than in the standard case.

We now test the robustness of the results from the above anal-
ysis with the modified 2PCF. Parameters of the latter were var-
ied, removing the cut in the correction terms (i.e. using Equa-
tion 13), and varying zmod and smax

‖ values, since, as stated in Sec-
tion 6.3, those are the most sensitive parameters. As for EZmocks,
we vary zmod and smax

‖ values in the ranges ∆zmod ∈ {0,±0.01} and

∆smax
‖ ∈ {0,±10} h−1Mpc around their baseline values. We note

that within the explored region, deviations in data measurements
from the baseline results are in agreement with expectations from
the mocks. Indeed staying on the diagonal defined by the crosses
in Figure 7 gives small shifts with respect to baseline measure-
ments and for most of the tested (zmod, smax

‖ ) values, the deviations

increase in accordance with the χ2
mod(zmod, smax

‖ ) value from the
mocks. In agreement with the mocks, the largest deviations are ob-
served for zmod = 0.84 and smax

‖ = 180. Shifts with respect to our
baseline results in the pure RSD case amount to 8.0%, 1.9% and
20.7% in α‖ , α⊥ and fσ8 respectively. Shifts are slightly smaller
in the RSD+BAO case: 4.2%, 1.8% and 17.2%. In the RSD case,
such deviations are consistent with mocks at the 3σ level for a‖
and at the 2σ level for α⊥, but no mock shows a difference as large
as for data for fσ8. As those parameter values are not optimal for
our analysis (see Figure 7) large shifts are not surprising. Moreover,
we know that our data sample suffers from systematic effects that
are more complex than those introduced in the mocks, as observed
when using the standard 2PCF (see Figure 3). Nevertheless, we
adopt a conservative approach and add the above shifts, i.e. 4.2%,
1.8% and 17.2% in α‖ , α⊥ and fσ8, to our systematic budget to ac-
count for residual, uncorrected systematics in data. This error also
includes the uncertainty due to the sensitivity of our results to the
modified 2PCF free parameters.

When moving the s-bin centres by half a bin width (i.e.
4 h−1Mpc), we observe large changes especially in α‖ . The shifts
for RSD+BAO fits are 5.7%, 0.2%, 1.7% in α‖ , α⊥ and fσ8, re-
spectively. Larger shifts are observed in 124/1000, 788/1000 and
766/1000 mocks in α‖ , α⊥ and fσ8 respectively. The observed
shifts in data are therefore compatible with statistical fluctuations.

The measurements are stable when using the covariance
matrix from ’shuffled-z’ EZmocks without systematics: in the
RSD+BAO case, we observe shifts of 0.6%, 0.2%, 1.7% in α‖ , α⊥
and fσ8, compatible with statistical fluctuations. They remain sta-
ble also when we remove the wnoz weights when computing the
correlation function: we observe small shifts of 0.3% in α‖ , 0.4%
in α⊥ and 1.7% in fσ8. We finally checked the impact of changing
the BOSS fiducial cosmology (Equation 7) to the OR one (Equation
6). Compared to our baseline results in the pure RSD case, we see
deviations of 2.1% in α‖ , 0.3% in α⊥ and 2.6% in fσ8. Those de-
viations are compatible with statistical fluctuations and considering
the large systematic uncertainty already included for data instabili-
ties, we do not add an extra systematic error.

Taking into account all systematic uncertainties from Table 5
and adding them in quadrature to statistical errors, we quote our
final measurements from the joined RSD+BAO fit with multipoles
of the modifed 2PCF at the effective redshift zeff = 0.85:

α‖ = 1.034+0.105
−0.111 , α⊥ = 0.976+0.051

−0.051 , fσ8 = 0.348+0.103
−0.104.

(40)

The linear bias of our combined data sample for a σ8 fixed at our
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Figure 10. 2PCF multipoles from eBOSS ELG data compared to CLPT-
GS models. Left: pre-reconstruction mulipoles from the modified 2PCF
of Equation 14 with baseline parameter values, and post-reconstruction
monopole from the standard 2PCF. The modifed 2PCF model (in red) is
that from the RSD+BAO fit to the four multipoles in the left panels. Right:
multipoles of the standard 2PCF compared to the standard 2PCF model with
parameters from the RSD+BAO fit to the multipoles in the right panels (in
blue) and in the left panels (in red). The bands are one sigma dispersions of
the EZmocks for the modified (red) and standard (blue) 2PCF.

fiducial cosmology (Equation 7) is measured to be b1 = 1.52+0.16
−0.14,

where quoted errors are statistical only.
Converting the AP parameters into Hubble and comoving an-

gular distances using Equations 33, we finally have:

DH (zeff)/rdrag = 19.1+1.9
−2.1

DM (zeff)/rdrag = 19.9 ± 1.0

fσ8(zeff) = 0.35 ± 0.10

(41)

Those values are in agreement within less than one sigma with
the values measured in Fourier space as reported in de Mattia et al.
(2020). This allows to combine our two measurements into a con-
sensus one for the eBOSS ELG sample, as presented in de Mattia
et al. (2020):

DH (zeff)/rdrag = 19.6+2.2
−2.1

DM (zeff)/rdrag = 19.5 ± 1.0

fσ8(zeff) = 0.315 ± 0.095

(42)

These results are compatible with a ΛCDM model using a Planck
cosmology.

8 CONCLUSION

We performed a pure RSD analysis and a joined RSD+BAO anal-
ysis in configuration space for the eBOSS DR16 Emission Line
Galaxies sample described in Raichoor et al. (2020). This sample is
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α‖ α⊥ fσ8

RSD

Standard 2PCF

baseline 1.163+0.087
−0.083 (1.159) 0.847+0.071

−0.082 (0.855) 0.155+0.069
−0.060 (0.074)

zmin = 0.6 1.212+0.086
−0.088 (1.188) 0.801+0.096

−0.109 (0.847) 0.100+0.079
−0.069 (0.061)

Modified 2PCF

baseline (smax
‖ = 190h−1Mpc , zmod = 0.83) 0.956+0.125

−0.109 (0.863) 0.954+0.046
−0.050 (0.950) 0.382+0.078

−0.094 (0.424)
no sys. cov 0.983+0.132

−0.141 (0.854) 0.965+0.050
−0.050 (0.954) 0.373+0.083

−0.100 (0.429)
no wnoz 0.949+0.13

−0.107 (0.862) 0.956+0.055
−0.055 (0.951) 0.385+0.081

−0.083 (0.423)
+1/2bins 0.864+0.154

−0.088 (0.813) 0.946+0.057
−0.054 (0.942) 0.394+0.077

−0.095 (0.405)
OR cosmology (rescaled) 0.976+0.113

−0.102 (0.907) 0.951+0.050
−0.045 (0.954) 0.372+0.080

−0.093 (0.401)
zmin = 0.6 1.018+0.121

−0.121 (0.929) 0.935+0.039
−0.045 (0.942) 0.323+0.081

−0.090 (0.366)
smax
‖ = 180h−1Mpc , zmod = 0.82 0.968+0.124

−0.115 (0.862) 0.948+0.050
−0.051 (0.948) 0.368+0.079

−0.088 (0.421)
smax
‖ = 180h−1Mpc , zmod = 0.83 0.993+0.121

−0.131 (0.862) 0.945+0.049
−0.053 (0.935) 0.348+0.084

−0.099 (0.404)
smax
‖ = 180h−1Mpc , zmod = 0.84 1.029+0.104

−0.141 (0.875) 0.938+0.050
−0.051 (0.931) 0.311+0.092

−0.087 (0.382)
smax
‖ = 190h−1Mpc , zmod = 0.82 0.925+0.139

−0.094 (0.855) 0.952+0.055
−0.052 (0.951) 0.404+0.077

−0.088 (0.438)
smax
‖ = 190h−1Mpc , zmod = 0.84 0.988+0.118

−0.125 (0.869) 0.946+0.047
−0.052 (0.943) 0.350+0.085

−0.093 (0.404)
smax
‖ = 200h−1Mpc , zmod = 0.82 0.906+0.138

−0.083 (0.847) 0.970+0.062
−0.053 (0.956) 0.444+0.075

−0.082 (0.458)
smax
‖ = 200h−1Mpc , zmod = 0.83 0.908+0.126

−0.085 (0.852) 0.961+0.051
−0.051 (0.955) 0.424+0.074

−0.081 (0.446)
smax
‖ = 200h−1Mpc , zmod = 0.84 0.934+0.136

−0.093 (0.880) 0.957+0.049
−0.055 (0.953) 0.391+0.079

−0.085 (0.226)
no cut 0.936+0.190

−0.108 (0.84) 0.958+0.061
−0.061 (0.958) 0.405+0.133

−0.196 (0.458)

Separate caps

SGC, standard 2PCF 1.100+0.090
−0.085 (1.100) 0.946+0.077

−0.078 (0.955) 0.236+0.082
−0.087 (0.215)

SGC, modified 2PCF 1.041+0.093
−0.097 (1.032) 1.026+0.118

−0.091 (1.008) 0.378+0.102
−0.116 (0.329)

NGC, standard 2PCF 1.196+0.113
−0.212 (1.400) 0.759+0.085

−0.067 (0.725) 0.147+0.095
−0.059 (0.060)

NGC, modified 2PCF 0.875+0.377
−0.089 (0.822) 0.932+0.371

−0.104 (0.921) 0.463+0.095
−0.108 (0.464)

RSD+BAO

Standard 2PCF

baseline 1.154+0.071
−0.063 (1.153) 0.892+0.040

−0.045 (0.909) 0.171+0.058
−0.059 (0.157)

zmin = 0.6 1.198+0.060
−0.069 (1.183) 0.846+0.046

−0.045 (0.860) 0.109+0.064
−0.059 (0.104)

Modified 2PCF

baseline (smax
‖ = 190h−1Mpc , zmod = 0.83) 1.034+0.091

−0.098 (1.042) 0.976+0.045
−0.045 (0.978) 0.348+0.082

−0.084 (0.316)
no sys. cov 1.040+0.093

−0.112 (1.050) 0.974+0.046
−0.043 (0.978) 0.342+0.086

−0.091 (0.308)
no wnoz 1.037+0.089

−0.097 (1.044) 0.980+0.044
−0.044 (0.981) 0.342+0.088

−0.083 (0.314)
+1/2bins 0.975+0.120

−0.101 (0.904) 0.978+0.055
−0.049 (1.003) 0.354+0.094

−0.110 (0.378)
zmin = 0.6 1.082+0.083

−0.107 (1.098) 0.950+0.035
−0.041 (0.954) 0.299+0.080

−0.076 (0.262)
smax
‖ = 180h−1Mpc , zmod = 0.82 1.047+0.085

−0.106 (1.049) 0.971+0.043
−0.046 (0.972) 0.333+0.085

−0.083 (0.304)
smax
‖ = 180h−1Mpc , zmod = 0.83 1.057+0.082

−0.097 (1.069) 0.966+0.045
−0.043 (0.966) 0.317+0.082

−0.076 (0.281)
smax
‖ = 180h−1Mpc , zmod = 0.84 1.077+0.077

−0.100 (1.087) 0.958+0.042
−0.043 (0.957) 0.288+0.081

−0.073 (0.255)
smax
‖ = 190h−1Mpc , zmod = 0.82 1.027+0.087

−0.103 (0.989) 0.978+0.050
−0.045 (0.987) 0.361+0.084

−0.086 (0.365)
smax
‖ = 190h−1Mpc , zmod = 0.84 1.058+0.082

−0.090 (1.069) 0.968+0.044
−0.045 (0.967) 0.319+0.080

−0.081 (0.282)
smax
‖ = 200h−1Mpc , zmod = 0.82 0.988+0.096

−0.089 (0.946) 0.991+0.051
−0.047 (0.997) 0.398+0.079

−0.087 (0.410)
smax
‖ = 200h−1Mpc , zmod = 0.83 1.009+0.093

−0.097 (0.950) 0.988+0.050
−0.046 (0.995) 0.383+0.079

−0.089 (0.401)
smax
‖ = 200h−1Mpc , zmod = 0.84 1.028+0.088

−0.099 (0.980) 0.979+0.044
−0.045 (0.992) 0.351+0.083

−0.084 (0.368)
no cut 1.036+0.107

−0.131 (0.920) 0.972+0.059
−0.053 (0.997) 0.339+0.145

−0.128 (0.424)

Separate caps

SGC, standard 2PCF 1.074+0.085
−0.084 (1.069) 0.935+0.055

−0.052 (0.938) 0.241+0.085
−0.080 (0.225)

SGC, modified 2PCF 1.025+0.086
−0.093 (1.023) 0.988+0.069

−0.062 (0.979) 0.355+0.104
−0.104 (0.314)

NGC, standard 2PCF 1.229+0.089
−0.097 (1.204) 0.682+0.072

−0.035 (0.874) 0.085+0.048
−0.019 (0.163)

NGC, modified 2PCF 0.872+0.168
−0.078 (0.824) 0.920+0.064

−0.072 (0.906) 0.450+0.090
−0.106 (0.458)

Table 4. RSD and BAO+RSD fits on the eBOSS ELG sample. We present the median and one sigma errors from the posterior distributions (as being the
0.16/0.84 quantiles from the distribution) and, in brackets, the best-fit value.
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α‖ α⊥ fσ8

From Nbody-mocks

CLPT modelling 1.8% 1.4% 3.2%

From EZmocks

modelling RIC 2.1% 1.2% 0.2%
modified 2PCF 0.5% 0.4% 2.7%

From data

uncorrected systematics 4.2% 1.8% 17.2%

Statistical uncertainties +0.091
−0.098

+0.045
−0.045

+0.082
−0.084

Systematics uncertainties 0.052 0.025 0.062
Total +0.105

−0.111
+0.051
−0.051

+0.103
−0.104

Table 5. Systematic error budget. The last row gives statistical and system-
atic errors added in quadrature.
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Figure 11. Posteriors of the RSD+BAO fits to standard (in blue) and mod-
ified (in red) 2PCF multipoles as measured from the eBOSS ELG sample.

composed of 173,736 galaxies with a reliable redshift in the range
0.6 < z < 1.1, covering an effective area of ∼730 deg2 over the two
NGC and SGC regions. The post-reconstruction BAO measurement
in configuration space of this sample is analysed in Raichoor et al.
(2020). The BAO and RSD measurements in Fourier space and a
consensus of our results for the eBOSS ELG sample are presented
in de Mattia et al. (2020).

Our RSD fit is done on the 0.7 < z < 1.1 data multipoles
(` = 0, 2, 4), using the CLPT-GS theoretical model. As part of the
eBOSS ELG mock challenge (Alam et al. 2020), we first demon-
strate the validity of the CLPT-GS model in our fitting range using
realistic ELG mocks. Those are built from accurate N-body sim-
ulations, populated with a broad range of models describing ELG
variety, and split into sets of ’non-blind’ and ’blind’ mocks.

A set of approximate mocks, the EZmocks (Zhao et al. 2020a),
are used to estimate the covariance matrix and also to validate the
analysis pipeline. As for the data, those EZmocks have redshifts

from randoms selected from the parent galaxy catalogue them-
selves, in order to properly reproduce the survey radial selection
function. However this choice leads to radial mode suppression,
which we account for in the correlation function modelling with
a correction based on the formalism developed in de Mattia &
Ruhlmann-Kleider (2019). We validate and quantify the error bud-
get coming from that correction using the EZmocks.

The eBOSS ELG data sample is affected by residual angu-
lar systematics, which need to be corrected for before proceeding
to RSD fits, to avoid biasing our cosmological measurements. To
mitigate these angular systematics, we performed our RSD fits us-
ing a modified 2PCF estimator, which is computed consistently for
the data, the EZmocks and the model, discarding the small scales
where the accuracy of the CLPT-GS model is not demonstrated.
We carefully assessed the validity of that approach with a set of the
EZmocks in which we injected data-like systematics. We demon-
strated the efficiency of our approach to remove angular systemat-
ics.

Once the validity of the RSD analysis and its error budget have
been established, we performed a similar analysis for the isotropic
BAO measurement on the reconstructed monopole (` = 0rec).

Finally, we did a serie of tests on the RSD-only and
RSD+BAO results from the ELG data sample. Due to the non-
gaussianity of our results, the RSD+BAO joined fits are performed
by combining their likelihoods. Taking into account all system-
atic errors from our budget as well as statistical errors, we ob-
tain our final measurements from the joined RSD+BAO fit to the
modified 2PCF multipoles at the effective redshift zeff = 0.85:
a‖ = 1.034+0.105

−0.111, a⊥ = 0.976+0.051
−0.051, and fσ8 = 0.348+0.103

−0.104.
From this joined analysis we obtain DH (zeff)/rdrag = 19.1+1.9

−2.1,
DM (zeff)/rdrag = 19.9 ± 1.0 and fσ8(zeff) = 0.35 ± 0.10.
These results are in agreement within less than 1σ with those
found by de Mattia et al. (2020) with a RSD+BAO analysis per-
formed in Fourier space. We also present a consensus result be-
tween the two analyses, fully described in de Mattia et al. (2020):
DH (zeff)/rdrag = 19.6+2.2

−2.1, DM (zeff)/rdrag = 19.5 ± 1.0 and
fσ8(zeff) = 0.315 ± 0.095, which are in agreement with ΛCDM
predictions based on Planck parameters.

The presence of remaining angular systematics in the eBOSS
ELG data led us to develop a specific analysis tool, the modified
2PCF estimator presented in this paper, that we consistently ap-
plied to the data, mocks and RSD model. Such an approach, along
with other developments based on the eBOSS data (Kong et al.
2020; Mohammad et al. 2020; Rezaie et al. 2020), will pave the
way for the analysis of the RSD and BAO in the next generation of
surveys that massively rely on ELGs, such as DESI, Euclid, PFS or
WFIRST.
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APPENDIX A: MODIFIED CORRELATION - DETAILS

We provide in this appendix more context to the Equation 13. Start-
ing from Equation 3.8 of Burden et al. (2017), the shuffled corre-
lation function can be written for a normalised data density n̄(χ)
as:

ξshuff(r, r ′) =〈δ(r)δ(r ′)〉 − 2
〈
δ(r)

∫
δ(γ, χ′)n̄(χ′)dχ′〉 (A1)

+
〈 ∫

δ(γ, χ′)n̄(χ′)dχ′
∫

δ(γ′, χ′′)n̄(χ′′)dχ′′〉
(A2)

where δ is the density field, and r , r ′ are the comoving positions,
γ, γ′ are the corresponding angular positions and χ stands for line-
of-sight positions.

The first term corresponds to the standard 2PCF. Using the
same approximation as in Burden et al. (2017) (Equation 3.9) and
doing the substitution χ′ to ∆χ = χ′−χ, the second term becomes:

〈
δ(r)

∫
δ(γ, χ′)n̄(χ′)dχ′〉 = ∫

ξ(θ, χ, χ′)n̄(χ′)dχ′ (A3)

=

∫
ξ(θ,∆χ)n̄(χ + ∆χ)d∆χ (A4)

writing θ = γ′ − γ. To be more flexible in the scales introduced in
the correction, we further change n̄(χ + ∆χ) to n̄(χmod + ∆χ/2)
where χmod = (χ + χ′)/2 is fixed (without changing the variable
of integration). As already stated, we emphasize that such approx-
imations have no impact on the validity of our analysis as we use

the modified 2PCF as a new estimator applied consistently on data
and model.

The third term corresponds to the angular correlation function
w(θ). Using the same substitution as previously and the Limber
approximation (Limber 1953), it becomes:

w(θ) =
∫ ∫

ξ(θ,∆χ)n̄(χ)n̄(χ + ∆χ)dχd∆χ (A5)

=

∫
n̄2(χ)dχ

∫
ξ(θ,∆χ)d∆χ (A6)

Gathering all terms together we end up with the adopted modified
2PCF of Equation 13.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 000, 1–20 (2020)





3 Voids BAO analysis with the QSO sam-
ple of eBOSS

Another part of my thesis was dedicated to the BAO analysis of voids. I used the quasar sample

of eBOSS to perform a BAO measurement on the cross-correlation of quasars and the voids

defined by their distribution. This work has been submitted to the Monthly Notices of the

Royal Astronomical Society (MNRAS).

I will first briefly contextualize the cosmic voids and then justify our void definition by showing

their constraining power within the work we performed with ELG and LRG samples of SDSS

(C. Zhao et al., 2022). Section 3.2 is the preprint of the publication on the extended work that

we did on eBOSS quasars (Tamone et al., 2022).

3.1 Cosmic Voids

3.1.1 Definitions and Algorithms

Along with the first evidences of matter structures in the Universe, large empty regions were

discovered (Jõeveer et al., 1978). The first concrete detection of such a devoided area, referred

to as a void, was made by Kirshner et al., 1981 in Bootes. The existence of voids were then

confirmed by de Lapparent et al., 1986 and later within different surveys as 2dF (2 degree Field,

Hoyle and Vogeley, 2004), CfA (Center for Astrophysics, Slezak et al., 1993) or SDSS (Tikhonov,

2007, Pan et al., 2012). With the venue of the massive surveys, visual inspection to find voids is

not an option, and algorithms have to be developed by adopting a void definition.

No consensus for a specific definition exists. Voids could be under-dense regions as well as

completely empty volumes depending on the interpretation. They can be for example inferred

from a smooth density field (Colberg et al., 2005, Shandarin et al., 2006, Platen et al., 2007,

Neyrinck, 2008, Sutter, Lavaux, Hamaus, et al., 2015), defined as expanding regions in a dark

matter field (Hahn, Carollo, et al., 2007, Forero-Romero et al., 2009, Hoffman et al., 2012,

Cautun et al., 2013), regions without shell-crossing (Abel et al., 2012, B. L. Falck et al., 2012,

Shandarin et al., 2012) or empty regions within a discrete distribution (Hoyle and Vogeley,
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2002, Foster and Nelson, 2009).

Concerning the void finder algorithms, they can be classified into different categories depend-

ing on their methodology. A class of void finder applicable to a large range of data kind such as

projected distribution or discrete tracers, is based on a density criterion. From an estimated

density contrast, the voids are defined as the under dense regions below a certain threshold

(Hoyle and Vogeley, 2004, Padilla et al., 2005, Sánchez et al., 2017). They are usually spherically

defined as the largest spheres satisfying the density criterion. A second class of algorithms

delimits voids using geometrical structures, using for example Voronoi tessellation (ZOBOV,

Neyrinck, 2008, VIDE Sutter, Lavaux, Hamaus, et al., 2015, Nadathur et al., 2019), ellipsoids

(Colberg et al., 2005), grid cells (Shandarin et al., 2006) or Delaunay tetrahedral (DIVE, C. Zhao

et al., 2016). Most of them allow non-spherical voids. Finally there are also void finders relying

on a dynamical point of view by tracing the velocity field induced (Hahn, Carollo, et al., 2007,

Lavaux and Wandelt, 2010, Hoffman et al., 2012).

Void properties such as shape , density or size are tracer and model dependent (Colberg et al.,

2008, Cautun et al., 2018). Therefore a careful void definition has to be chosen specifically for

the research purpose.

DIVE

In particular in this thesis I use the Delaunay Triangulation Void finder (DIVE) introduced

by C. Zhao et al., 2016. It relies on a discrete distribution of tracers and defines the voids

geometrically. The algorithm is based on Delaunay Triangulation (DT, Delaunay, 1934). For a

given set of points P in 3D, DT provides the triangulation DT (P ) so that no point position of P

falls inside the circumspheres of any tetrahedron in DT (P ). We note moreover that the DT of

P is the dual graph of its Voronoi tessellation, i.e. the connections of the circumspheres give

the Voronoi diagram of P .

Therefore for a discrete halo or galaxy distribution, the voids are defined as the empty cir-

cumspheres produced by DT algorithm. They are called DTvoids and are associated a size

characterized by the radius of the circumspheres. Their positions are thus the centers of the

spheres. Figure 3.1 shows some voids as detected by DIVE. We note that the voids are not

disjoints as they can overlap. So an empty region is not represented by a single individual

DTvoid but rather by a set of DTvoids.

3.1.2 Void Properties

Sheth and van de Weygaert, 2004 established a formalism to characterise the different voids

evolution according to their environments, that drives the LSS hierarchical formation. The

“void-in-cloud” are voids embedded in high density regions. Those regions are squeezed

until disappearance because of the surrounding matter which collapses. The “void-in-void”

describes under-densities within deeper under-densities. Those voids will merge, faster than
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Figure 3.1: Some of the voids as found by the DIVE algorithm in a discrete distribution of
tracers. Red points are the void centers, blue points the connected points associated to the
voids. Solid lines are the tetrahedral edges. Large box has a length of 80h−1Mpc and voids
shown have a radius between 26 and 27h−1Mpc. Zoomed box is of 12h−1Mpc length and void
have radius smaller than 4 h−1Mpc. (Credits of the figure: C. Zhao et al., 2016).

the Hubble flow.

The evolution of the voids plays thus a role in LSS formation. The matter is expelled on the

outskirt of the voids due to their expansions and their decreases in density that generate

a pressure. The matter is then compressed into walls and filaments surrounding the voids

(Peebles, 1982, Icke and van de Weygaert, 1987, Hahn, Carollo, et al., 2007, Aragón-Calvo et al.,

2010, van de Weygaert and Platen, 2011). We note that voids tend to evolve into spherical

forms along the Universe expansion (Icke, 1984). Therefore the void density profileI has a

low density center and reaches a peak density at its outskirt. This has been further tested in

surveys and simulations (Hamaus et al., 2014).

Figure 3.2 displays the void density profile of DTvoids for different void sizes. While the general

behaviour is as described previously, the smaller voids have a positive contrast even inside the

voids. It means that those voids are “void-in-cloud” and that the two void populations can be

distinguished using their sizes (C. Zhao et al., 2016).

We note therefore that the void abundance, i.e. void size function, depends on the cosmology

and the epoch as it relies on the underlying density field (Sheth and van de Weygaert, 2004,

Betancort-Rijo et al., 2009, Jennings et al., 2013). This void property was exploited to constrain

dark energy equation of state (Pisani et al., 2015, Sutter, Lavaux, Hamaus, et al., 2015, Sutter,

Carlesi, et al., 2015). For DTvoids C. Zhao et al., 2016 found an increase in the average radius

when the tracer number density was decreasing. The small voids population is correlated with

the matter halos while the large voids are anti-correlated. Both present two different bias on

linear scales. Consistent results were found in Hamaus et al., 2014 that presents a study of

spherical voids radius and their bias.

IUsually computed as the cross-correlation between the matter and the voids.
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Figure 3.2: DTvoid density profile for different void sizes for mock catalogs as function of the
distance to the center of the voids, rescaled by the void size. The horizontal line indicates
the total mean density contrast. From top curve (black) to bottom (cyan) curve, void radii
are within: (8,12), (12,16), (16,20), (20,25), > 25 h−1Mpc. (Credits of the figure: C. Zhao et al.,
2016).

3.1.3 Cosmology Measurements

Voids and their properties can be used to constrain cosmology. As seen previously, the number

density of voids can help constraining cosmology by testing deviations from ΛCDM (Nadathur,

2016), constrain dark energy (Pisani et al., 2015) or other cosmological parameters (Betancort-

Rijo et al., 2009).

Similarly to halos, void can present weak lensing as the light would be repulsed from the

center of the voids (Amendola et al., 1999). Lensing measurement from voids was measured by

different groups in large-scale structures data (Melchior et al., 2014, Clampitt and Jain, 2015,

Sánchez et al., 2017). It was further shown that void lensing can help testing deviations from

GR (Cai et al., 2015, Baker et al., 2018). Signatures of void lensing can also be detected on CMB

lensing maps (Cai et al., 2017, Raghunathan et al., 2020, Vielzeuf et al., 2021). In particular iSW

(integrated Sachs-Wolf, see Section 1.3.1) effect can be probed inside voids (Kovács et al., 2017,

Kovács et al., 2019).

AP tests, testing the statistical isotropy, can be performed on (non spherical) voids by measur-

ing for example the ellipticities of the voids. Indeed a shape distortion would be observed if

the cosmology assumed is wrong, allowing parameter measurements such as Ωm (Sutter et al.,

2012, Sutter et al., 2014, Q. Mao et al., 2017). However we note that the constraints inferred

were rather weak as large voids, in particular, are less affected by peculiar velocities.
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Voids can also be used for clustering analysis as it is sensitive to galaxy dynamics. Measure-

ments of the growth rate in the vicinity of voids has been provided from the cross correlations

of voids and galaxies (Paz et al., 2013, Hamaus et al., 2016, Nadathur et al., 2019, Aubert et al.,

2022). Nadathur et al., 2020 showed that voids can break some degeneracies in the standard

RSD and BAO measurements from galaxies.

BAO signal from voids was also detected in their clustering with matter or with themselves.

The first detection was reported with DTvoids from SDSS galaxies (Kitaura et al., 2016). We

note however that standard RSD analysis with voids is very complex to model as the void

number density is not conserved under the change of spaces (Chuang et al., 2017).

BAO with DTvoids

The overlapping of the DTvoids allows to increase considerably the statistics. The number of

voids grows by a factor of ∼ 102. This feature permits to detect a BAO peak in the clustering of

the voids, due to the statistical advantage of this definition. With a method tested on mocks

(Liang et al., 2016), DTvoids were then able to provide a first BAO signal (Kitaura et al., 2016).

Figure 3.3: On the left: volume average distance measured from BAO for different SDSS
samples. The void measurements are indicated in black. We note that the measurements are
rescaled to the expected values from Planck for a ΛCDM model (Planck Collaboration et al.,
2020). On the right: Constraints on different cosmological parameters (Ωm , ΩΛh2, H0) in
a flat ΛCDM model with BBN constraints results. Orange contours (dashed red) are eBOSS
results for anisotropic (isotropic) BAO of LRGs and ELGs. Black contours comes from void
constraints. (Credits of the figures: C. Zhao et al., 2022).

C. Zhao et al., 2020 showed using BOSS LRGs that DTvoids, selected to trace under-densities,
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can be used in combination with galaxy clustering to improve BAO measurements. We further

investigated this property with LRGs and ELGs of eBOSS, results were presented in C. Zhao

et al., 2022. We provided volume average distance measurements (Equation 1.143) from these

different data samples. We weighted the different correlations (galaxies auto-correlation,

galaxy-void cross-correlation and voids auto-correlation) by adding an optimal weight to the

voids in order to minimize the error. The optimal weights are non-zero, i.e. adding voids help

reducing the error compared to galaxies alone. Left panel of figure 3.3 reports the values and

errors obtained from a combination of the voids and galaxy clustering. Uncertainties improve

from 5 to 15 % (with sample variations) compared to the galaxy auto-correlation alone.

Right panel of figure 3.3 shows the contours of the multi-tracer voids constraints on cosmolog-

ical parameters compared to ELGs and LRGs alone. Compared to the isotropic BAO, i.e. 1D

BAO, of galaxies alone, voids significantly improves the uncertainties. For 2D BAO of galaxies,

the multi-tracer void constraints do not necessarily improve but in average similar errors are

found. Indeed in this case 2D BAO of galaxies provide constraints on D A and DH , while voids

only constrain DV .

3.2 Preprint version: “Void BAO measurements on quasars from

eBOSS”

120



MNRAS 000, 1–13 (2022) Preprint 11 August 2022 Compiled using MNRAS LATEX style file v3.0

Void BAO measurements on quasars from eBOSS

Amélie Tamone1,★, Cheng Zhao1, Daniel Forero-Sánchez1, Andrei Variu1, Chia-Hsun Chuang2, Francisco-
Shu Kitaura3,4, Jean-Paul Kneib1,5, Charling Tao6,7

1Institute of Physics, Laboratory of Astrophysics, École Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland
2Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305, USA
3Instituto de Astrofísica de Canarias, s/n, E-38205, La Laguna, Tenerife, Spain
4Departamento de Astrofísica, Universidad de La Laguna, E-38206, La Laguna, Tenerife, Spain
5Aix Marseille Univ, CNRS, CNES, LAM, F13388 Marseille, France
6CPPM, Aix-Marseille Université, CNRS/IN2P3, CPPM UMR 7346, F13288 Marseille, France
7Tsinghua Center for Astrophysics, Department of Astronomy, Tsinghua University, Beijing 100084, P.R. China

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
We present the clustering of voids based on the quasar (QSO) sample of the extended Baryon Oscillation Spectroscopic Survey
Data Release 16 in configuration space. We define voids as overlapping empty circumspheres computed by Delaunay tetrahedra
spanned by quartets of quasars, allowing for an estimate of the depth of underdense regions. To maximise the BAO signal-to-noise
ratio, we consider only voids with radii larger than 36ℎ−1Mpc. Our analysis shows a negative BAO peak in the cross-correlation
of QSOs and voids. The joint BAO measurement of the QSO auto-correlation and the corresponding cross-correlation with
voids shows an improvement in 70% of the QSO mocks with an average improvement of ∼ 5%. However, on the SDSS data,
we find no improvement compatible with cosmic variance. For both mocks and data, adding voids does not introduce any
bias. We find under the flat ΛCDM assumption, a distance joint measurement on data at the effective redshift 𝑧eff = 1.48 of
𝐷𝑉 (𝑧eff) = 26.297 ± 0.547. A forecast of a DESI-like survey with 1000 boxes with a similar effective volume recovers the same
results as for light-cone mocks with an average of 4.8% improvement in 68% of the boxes.

Key words: cosmology : dark energy – cosmology : distance scale – cosmology : large-scale structure of Universe

1 INTRODUCTION

The accelerated expansion of the Universe is one of the greatest
mysteries of current cosmology. It was observationally discovered by
Riess et al. (1998) and Perlmutter et al. (1999) a bit more than 20 years
ago, but still its nature, referred to as dark energy, remains unknown.
In the context of precision cosmology, an accurate determination of
the expansion history of the Universe is required to constrain the
nature of dark energy and thus to test the ΛCDM model.

To this goal, baryon acoustic oscillations (BAO) provide a char-
acteristic length that enables measurement of the expansion rate
(Weinberg et al. 2013). BAO arises in the early Universe due to the
counteracting plasma pressure and gravitation that produced sound
waves. At photon decoupling, those waves stopped propagating, leav-
ing an imprint detectable in the clustering of the galaxies and in the
cosmic microwave background (CMB). The distance the waves trav-
elled before they stopped, known as the sound horizon, can be used
as a standard ruler (Blake & Glazebrook 2003).

The first BAO detections in the clustering of galaxies were made
by Eisenstein et al. (2005) with Sloan Digital Sky Survey (SDSS)
data and Cole et al. (2005) with Two Degree Field Galaxy Redshift
Survey (2dFGRS). Since then, the era of spectroscopic surveys has
risen with BAO as a key measurement. The largest survey to date

★ E-mail: amelie.tamone@epfl.ch

is SDSS with Baryon Oscillation Spectroscopic Survey (Dawson
et al. 2013, BOSS) and at higher redshift with the extended Baryon
Oscillation Spectroscopic Survey (Dawson et al. 2016, eBOSS). BAO
was therefore measured at different redshifts in the clustering of
various tracers such as luminous red galaxies (LRGs; Ross et al. 2016;
Bautista et al. 2021; Gil-Marín et al. 2020), emission-line galaxies
(ELGs; Raichoor et al. 2021), quasars (QSOs; Ata et al. 2018) and
Lyman-𝛼 forests (Busca et al. 2013; du Mas des Bourboux et al.
2020).

Kitaura et al. (2016) measured for the first time a BAO signal in
the clustering of underdense regions, defined as voids. More recently,
Zhao et al. (2022) performed a multi-tracer with voids based on
the analysis of ELG and LRG samples of BOSS and eBOSS. They
showed that adding voids improved the BAO constraints of 5% to
15% for their samples (see also Zhao et al. (2020)). Their studies
relied on a Delaunay Triangulation (DT; Delaunay 1934) definition
of voids (DT-voids), which detects a void as the largest empty sphere
defined by four tracers (Zhao et al. 2016). The voids are allowed
to overlap, resulting in an increase of tracer number, which permits
BAO detection, demarcating itself to other voids definitions used for
redshift space clustering analysis (Nadathur et al. 2020; Aubert et al.
2022).

At the precision level of current and future surveys like the Dark
Energy Spectroscopic Instrument (DESI Collaboration et al. 2016a,b,
DESI), the 4-metre Multi-Object Spectroscopic Telescope (de Jong

© 2022 The Authors
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NGC SGC Total

Effective area [deg2] 2860 1839 4699
NQSO in 0.8 < 𝑧 < 2.2 218’209 125’499 343’708
nQSO [(ℎ−1Mpc)−3] 1.43 × 10−5 1.60 × 10−5 1.53 × 10−5

Effectif redshift - - 1.48

Table 1. Effective areas, effective redshift and number of reliable redshifts
per Galactic cap and in the combined QSO sample in the redshit range 0.8 <
𝑧 < 2.2.

et al. 2019, 4MOST) or Euclid (Laureijs et al. 2011), any reduction
of measurement uncertainties will be crucial.

In this paper, we extend the work of Zhao et al. (2022) by analysing
the QSO sample of eBOSS using DT-voids. We provide a distance
measurement from the joint BAO analysis of QSO auto-correlation
and QSO-voids cross-correlation. The analysis pipeline and the errors
are assessed using fast approximated mocks and N-body simulations.
We also forecast error improvement from voids with a DESI-like
survey for QSOs.

We summarise the QSO sample and the void catalogue used in Sec-
tion 2. Fast mock catalogues and N-body simulations are introduced
in Section 3. Method for void selection and correlation computation
are described in Section 4. The BAO model and the template used
for void fitting are outlined in Section 5. Error assessments are esti-
mated in Section 6 and results in Section 7 with our conclusions in
Section 8.

2 DATA

We present in this section the eBOSS QSO sample used for the BAO
analysis of this paper. We use the same QSO data catalogue as in the
eBOSS DR16 analysis (Hou et al. 2021; Neveux et al. 2020), which
was fully described in Ross et al. (2020).

The extended Baryon Oscillation Spectroscopic Survey (Dawson
et al. 2016, eBOSS) program was part of the fourth generation of
the Sloan Digital Sky Survey (Blanton et al. 2017, SDSS-IV) as an
extension of the Baryon Oscillation Spectroscopic Survey (Dawson
et al. 2013, BOSS). It aimed at observing the large-scale structure at
higher redshifts. Started in 2014 until 2019, eBOSS used the double-
armed spectrographs of BOSS (Smee et al. 2013) at the 2.5-meter
aperture Sloan Telescope at Apache Point Observatory (Gunn et al.
2006).

The eBOSS final release gathered reliable spectroscopic redshifts
of over 340’000 QSOs in total, both in the South Galactic Cap (SGC)
and North Galactic Cap (NGC), in a redshift range between 0.8
and 2.2. The QSOs were selected following the photometric target
selection described in (Myers et al. 2015). The footprints of both cap
samples are presented in Figure 1. Different statistics as the weighted
areas, the number of QSOs and the number densities are gathered in
the Table 1.

We apply weights to each individual QSO to account for obser-
vational and targeting systematics. We summarize here the different
weights and refer to Ross et al. (2020) for a complete description. The
angular systematics due to the imaging quality is mitigated through
the weight 𝑤sys. The weights 𝑤cp and 𝑤noz are respectively the
close-pair and redshift failure corrections. To minimize the cluster-
ing variance, we follow Feldman et al. (1994) and apply the FKP
weight 𝑤FKP = (1 + 𝑛(𝑧) · 𝑃0)−1 where 𝑛(𝑧) is the weighted radial
comoving number densities of QSO and 𝑃0 = 6000ℎ−3Mpc3. The
total weight applied to each QSO is then defined as their combination:
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Figure 1. Footprint of eBOSS DR16 QSO samples in the North (top) and
South (bottom) Galactic Caps.

𝑤tot = 𝑤sys · 𝑤cp · 𝑤noz · 𝑤FKP. (1)

Following the eBOSS analyses, the QSO effective redshift 𝑧eff
is defined as the weighted mean of spectroscopic redshift over all
galaxy pairs (𝑧𝑖 , 𝑧 𝑗 ) in the separation range between 25 and 120 ℎ−1

Mpc:

𝑧eff =

∑
𝑖, 𝑗 𝑤tot,i𝑤tot,j (𝑧𝑖 + 𝑧 𝑗 )/2∑

𝑖, 𝑗 𝑤tot,i𝑤tot,j
. (2)

It gives for eBOSS QSO sample 𝑧eff = 1.48, as presented in
Table 1.

A QSO random catalogue is built with about 50 times the QSO den-
sity. To account for the angular and radial distribution of the survey
selection function, angular positions of random objects are uniformly
drawn within the footprint, and their redshifts are randomly assigned
from the data redshifts (Ross et al. 2020). This radial selection in-
troduces a radial integral constraint (de Mattia & Ruhlmann-Kleider
2019; Tamone et al. 2020, RIC) which can affect the multipoles. It
was shown in Hou et al. (2021) and Neveux et al. (2020) that this
effect was relatively small for QSO.

2.1 Void Catalogue

The void data catalogue is constructed using the Delaunay Triangu-
lation Void finder (Zhao et al. 2016, DIVE1). It identifies the largest
empty spheres formed by four distinct objects relying on the Delau-
nay triangulation (Delaunay 1934) algorithm in comoving space. It
provides the radii and centres of the empty spheres that we define as
voids and take them as tracers. This definition allows the spheres to
overlap, which permits a large number of objects and thus to detect
a BAO peak allowing BAO measurements (Kitaura et al. 2016).

1 https://github.com/cheng-zhao/DIVE
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NGC SGC Total

Ntot
voids in 0.8 < 𝑧 < 2.2 1’304’614 718’966 2’023’580

Nvoids with 36 < 𝑅 < 80 589’549 373’362 962’911
ntot

voids [(ℎ−1Mpc)−3] 8.18 × 10−5 9.55 × 10−5 9.01 × 10−5

Table 2. Void number density and number of reliable redshifts per Galactic
cap and in the combined QSO voids sample in the redshit range 0.8 < 𝑧 < 2.2.
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Figure 2. Radius of voids number density for the eBOSS QSO void sample
and the EZmocks. Vertical line indicates the radius of 36 ℎ−1Mpc.

DIVE is run over the whole NGC and SGC data samples. The
resulting voids are kept if their centre lies within the redshift range
and footprints and outside the veto masks of the survey. The total
number of voids is more than five times larger than the number of
QSOs; see Table 2. The radius range of the voids displayed on Figure
2, spreads up to 80 ℎ−1Mpc with a mean radius around 35 ℎ−1Mpc.
This is about twice the typical values obtained for LRGs and ELGs
analysis with the same void definition (Zhao et al. 2020, 2022). It can
be easily explained due to the lower density of the QSO sample and
the relationship between the number density and the size of the voids
(Forero-Sánchez et al. 2022). Figure 3 show QSOs and big (small)
voids densities of a slice of NGC sample in comoving space. From
them, one can see that the size of the voids is important: large voids
track underdensities, while small voids lie in overdensity regions.
These two populations of voids are respectively voids-in-voids and
void-in-clouds (Sheth & van de Weygaert 2004). A careful choice
of the radius of voids has to be made in order to avoid small voids
contamination and therefore reduce the uncertainty of BAO measured
from underdensities.

The random catalogues for voids are generated according to the
procedure described in Liang et al. (2016). We stack 100 mock
realizations and shuffle the angular positions and (redshift, radius)
pairs within redshifts and radius bins of respectively redshift 0.1
and 2 ℎ−1𝑀𝑝𝑐. We then randomly subsample down to 50 times the
number of voids.

fiducial EZmocks OuterRim

ℎ 0.676 0.6777 0.71
Ω𝑚 0.31 0.307115 0.26479
Ω𝑏ℎ

2 0.022 0.02214 0.02258
𝜎8 0.8 0.8225 0.8
𝑛𝑠 0.97 0.9611 0.963∑
𝑚𝜈 [eV] 0.06 0 0

Table 3. Different Flat-ΛCDM cosmologies used throughout the paper. Fidu-
cial cosmology (Planck Collaboration et al. 2016) is used for the template
power spectrum and distance measurements for EZmocks and data. EZmock
cosmology is the cosmology for EZmock creation. OuterRim cosmoly is the
simulation cosmology and used for the fits to the N-body mocks.

3 MOCKS

We will introduce here different sets of mock catalogues used for
this study. We work with approximate mocks to calibrate the data
analysis pipeline and estimate the covariance matrices. We use N-
body simulations to validate the QSO-only BAO model.

3.1 EZmocks

EZmocks are fast approximated mocks relying on the Zel’dovich
approximation (ZA; Zel’dovich 1970). The displacement field of
the ZA is generated from a Gaussian random field in a 5 ℎ−1Gpc
box using a grid size of 10243 with a given initial linear power
spectrum. The dark matter density at the wanted redshift is then
obtained by moving the dark matter particles directly to their final
positions. Thereafter the simulation box is populated with QSOs
using an effective galaxy bias model calibrated to the eBOSS DR16
QSO clustering measurements (Chuang et al. 2015; Zhao et al. 2021).
It describes the relationship between the dark matter density field 𝜌m
and the tracer density field 𝜌t. This bias model (Chuang et al. 2015;
Baumgarten & Chuang 2018; Zhao et al. 2021) requires a critical
density 𝜌c to form dark matter haloes (Percival 2005), an exponential
cut-off 𝜌exp (Neyrinck et al. 2014) and a density saturation 𝜌sat for
the stochastic generation of haloes. The mocks are then populated
following a probability distribution function (PDF) 𝑃(𝑛t) = 𝐴𝑏𝑛t ,
𝑛t being the number of tracers per grid cell, 𝑏 is a free parameter,
and the parameter 𝐴 is constrained with the number density of QSOs
in the box. Moreover the random motions are accounted for using
a vector 𝑋𝜈 generated from a 3D gaussian distribution N(0, 𝜈), the
peculiar velocity becomes: 𝑢t = 𝑢ZA + 𝑋𝜈 , where 𝑢ZA is the linear
peculiar velocity in the ZA (Bernardeau et al. 2002). In total we have
4 free parameters, namely 𝜌c, 𝜌exp, 𝑏 and 𝜈, that were calibrated to
the data for the QSO eBOSS sample in Zhao et al. (2021).

The Flat-ΛCDM cosmology used for EZmocks is summarized in
Table 3.

For each different EZmocks set, we obtain a void catalogue by
applying the same procedure than for the data.

3.1.1 Cubic mocks

We take directly 1000 EZmocks boxes that were used for the light-
cone generation of the QSO eBOSS EZmocks (Zhao et al. 2021).
They are cubic boxes of 5 ℎ−1Gpc referred to as the EZbox all over
this paper. They have at an effective redshift of 𝑧 = 1.48 and a number
density of 𝑛 = 2.4 · 10−5 (ℎ−1Mpc)−3. We used them to determine
the best radius cut of the QSO voids for this analysis. To this end
we also produce a set of 200 EZbox without BAO at the effective

MNRAS 000, 1–13 (2022)
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Figure 3. Number density of spherical voids for a slice of NGC data sample of size 800×800×50 ℎ−3Mpc3. QSOs are represented as red points. On the left:
large voids, with radii larger than 36 ℎ−1Mpc, center of voids are represented as red points. On the right: small voids, with radii smaller than 36 ℎ−1Mpc, center
of voids are represented as orange points.

redshift of the QSO sample using the same parameters than adopted
in QSO eBOSS analysis2.

The 1000 mocks with BAO included were given as input a linear
matter power spectrum generated with the software camb3 (Lewis
et al. 2000), while for the mocks without BAO, we use a linear
power spectrum without wiggles generated following the model of
Eisenstein & Hu (1998). Both linear power spectra, with and without
wiggles, are produced with the same set of cosmological parameters
gathered as the EZmocks cosmology of Table 3.

3.1.2 Light-cones

We use the same sets of light-cone EZmocks as the eBOSS DR16
analysis described in Zhao et al. (2021) to evaluate the covariance
matrices and to test the data analysis pipeline. They are constituted
of 1000 realizations with systematics included for each cap, NGC
and SGC.

To recreate the clustering evolution, each light-cone mock is built
by combining seven snapshots at different redshifts sharing the same
initial conditions. The survey footprint and veto masks are then ap-
plied to match the data geometry.

Observational systematics effects from QSO data such as fibre
collisions, redshift failure and photometric systematics are encoded
into the EZmocks. Those effects are thereafter corrected by using
some weights in the same way as for data (see Equation 1). A random
catalogue is produced for each EZmock with redshifts of the QSO
catalogue assigned randomly.

3.2 N-body simulations

To assess the bias and tune the BAO model, we work with the N-
body simulations built for the DR16 eBOSS analysis and described in

2 For the creation of the EZbox, we adopt parameters corresponding to
𝑧 = 1.48, the effective redshift of our sample, and with a number density of
𝑛 = 2.4 · 10−5 (ℎ−1Mpc)−3: (𝜌c, 𝜌exp, 𝑏, 𝜈) = (0.4, 0.95, 0.003, 450) .
3 https://camb.info/

Smith et al. (2020). They are produced from the OuterRim simula-
tions (Heitmann et al. 2019) at a single redshift snapshot of 𝑧 = 1.433.

The OuterRim simulations are produced in a cubic box of 3
ℎ−1Gpc length with 10′2403 dark matter particles each with a mass
of 𝑚𝑝 = 1.82 · 109 𝑀⊙ℎ−1 using the WMAP7 cosmology (Komatsu
et al. 2011) given in Table 3. A Friends-of-Friends algorithm is used
to detect dark matter haloes. The mocks are then populated with
QSOs with 20 different halo occupation distribution (HOD) models
and three different redshift smearing prescriptions described in Smith
et al. (2020). Each different set is constituted of 100 realisations. In
this paper, we will measure clustering, and BAO parameters on the
100 realisations of the 20 HOD mocks without smearing.

4 METHOD

This section presents details of the correlation function computation
and the void selection.

4.1 Two-point correlation functions

To quantify the clustering of tracers in configuration space, we com-
pute the two-point correlation function (2PCF) 𝜉 expressing the sur-
plus of pairs separated by a vector distance 𝒔 compared to a random
uniform distribution.

The observed redshifts are first converted into comoving distances
using the same flat-ΛCDM fiducial cosmology as in eBOSS DR16
analysis, summarized in Table 3. We then evaluate the pair counts of
the different catalogues using the Fast Correlation Function Calcula-
tor (FCFC4, Zhao in preparation). We compute for QSOs and voids
the unbiased Landy–Szalay estimator of the isotropic 2PCF (Landy
& Szalay 1993, LS) for a pair separation of 𝑠:

𝜉 (𝑠) = 𝐷𝐷 (𝑠) − 2𝐷𝑅(𝑠, 𝜇) + 𝑅𝑅(𝑠)
𝑅𝑅(𝑠) , (3)

where 𝐷𝐷, 𝐷𝑅 and 𝑅𝑅 are the normalized paircounts with 𝐷 de-
noting the tracer and 𝑅 the random catalogue.

4 https://github.com/cheng-zhao/FCFC
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For the cross-correlation (XCF) between QSOs, subscript q, and
voids, subscript v, we use the following generalized estimator (Sza-
pudi & Szalay 1997):

𝜉x (𝑠) =
𝐷q𝐷v − 𝑅q𝐷v − 𝐷q𝑅v + 𝑅q𝑅v

𝑅q𝑟v
. (4)

The two caps are combined into a single data sample for all the
analysis by combining the paircounts (Zhao et al. 2022):

𝐷𝐷 =
𝑛2

SGC𝐷𝐷SGC + 𝑛2
NGC𝐷𝐷NGC

(𝑛SGC + 𝑛NGC)2 ,

𝐷𝑅 =
𝑛SGC𝑛r,SGC𝐷𝑅SGC + 𝑤𝛼𝑛NGC𝑛r,NGC𝐷𝑅NGC

(𝑛SGC + 𝑛NGC) (𝑛r,SGC + 𝑤𝛼𝑛r,NGC)
,

𝑅𝑅 =
𝑛2

r,SGC𝑅𝑅SGC + 𝑤2
𝛼𝑛

2
r,NGC𝑅𝑅NGC

(𝑛r,SGC + 𝑤𝛼𝑛r,NGC)2 .

(5)

The weight 𝑤𝛼 corrects for the different ratio data-random between
the two sample, i.e.𝑤𝛼 = 𝑛r,SGC𝑛NGC

𝑛SGC𝑛r,NGC
, and 𝑛i, 𝑛r,i stand for the number

of pairs in the data, random catalogues of the cap i, respectively.
In the case of EZbox we use the natural estimator instead of the

LS estimator which does not require a random catalogue:

𝜉 (𝑠) = 𝐷𝐷 (𝑠)
𝑅𝑅(𝑠)𝑎 − 1, (6)

where 𝑅𝑅𝑎 = 4
3𝜋

(
𝑠3

max − 𝑠3
min

)
Δ𝜇/𝐿box is the analytical pair count

for uniform randoms in a periodic box, with 𝐿box the box length and
𝑠max, 𝑠min, Δ𝜇 are the separation bin boundaries.

Figure 4 shows the auto-correlation of eBOSS QSO sample and its
cross-correlation with QSOs large voids with a minimum void radius
of 36ℎ−1Mpc.

4.2 Covariances

A covariance matrix 𝐶 is computed for each sample, i.e. QSOs auto-
correlation and cross-correlation with voids, from the monopoles of
1000 EZmocks:

𝐶𝑖 𝑗 =
1

𝑁 − 1

𝑁∑︁
𝑛=1

(
𝜉0 (𝑠𝑖) −

1
𝑁

𝑁∑︁
𝑛=1

𝜉0 (𝑠𝑖)
) (

𝜉0 (𝑠 𝑗 ) −
1
𝑁

𝑁∑︁
𝑛=1

𝜉0 (𝑠 𝑗 )
)
,

(7)

where 𝑁 is the total number of mocks and the subscripts 𝑖, 𝑗 run over
the separation bins within the range considered. Those matrices are
used to assess the errors of data and EZmocks. When the mean of
the mocks is fitted, the covariance matrix is divided by 𝑁 . For the
multi-tracer covariance of 2PCF and XCF fitted jointly, the sum also
runs over the cross-correlations of the two monopoles.

To obtain an unbiased estimator of the inverse covariance matrix
𝐶−1, we multiply by the correction factor (Hartlap et al. 2007), where
𝑁𝑑 is the number of separation bins used in the fit:

𝐶−1 =

(
1 − 𝑁𝑏 + 1

𝑁 − 1

)
𝐶−1. (8)

Analytical gaussian covariance matrices are computed following
Grieb et al. (2016) when fitting the QSO N-body mocks.

4.3 Voids

As mentioned previously, they are the two main populations of voids.
The voids-in-clouds are tracers of overdensity regions, and voids-in-
voids are tracers of underdense regions. These two types of voids
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Figure 4. Top panel: auto-correlation of voids for the eBOSS QSOs sample
with the standard deviation of EZmocks correlations as error bars. Mean of
1000 EZmocks is in dashed line and their dispersion is in orange shaded area.
Green shaded area indicates the mean of the 20x100 N-body simulations
without smearing, rescaled to match EZmock cosmology (we rescaled with
a factor (𝑟EZ

d ℎEZ)/(𝑟OR
d ℎOR) = 0.944, ’OR’ indicates the OuterRim cos-

mology, and ’EZ’ EZmocks). Bottom panel: same for the cross-correlation of
QSOs with QSOs voids larger than 36ℎ−1Mpc.

can be set apart by their radius (Zhao et al. 2016). Forero-Sánchez
et al. (2022) showed that a constant radius cut gives a near-optimal
signal-to-noise-ratio, SNR and that voids are less sensitive to obser-
vational systematics and therefore incompleteness. We chose to fix
the maximum cut at 𝑅max=80ℎ−1Mpc to avoid contamination due to
geometrical exclusion effects of very large voids, and we investigated
the best minimum radius cut 𝑅min that will be used in the analysis.

4.3.1 Correlation function

Correlation functions for different radius cuts are shown on Figure 5
for QSO eBOSS EZmocks. The auto-correlation of voids (left panel
of Figure 5) presents a very strong exclusion pattern, similar to what
is observed for haloes due to their finite size (Sheth & Lemson 1999;
Baldauf et al. 2013). Indeed even though the DT voids are not distinct
from each other and can overlap, there is still an exclusion effect due
to finite void size geometry (Chan et al. 2014; Zhao et al. 2016). As
the minimum radius cut required to have large enough voids is about
twice the value for LRG, see Zhao et al. (2020) and Zhao et al. (2022),
the exclusion effect due to the spherical definition of the voids is
therefore also shifted to the right. It implies that the exclusion pattern
interferes with the BAO scale. Around 100 ℎ−1Mpc, the correlation
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is noisy, and the BAO excess density is not detectable due to the
strong signal of the void exclusion. This is why we chose in this
paper to leave aside the auto-correlation of voids in the analysis and
concentrate on their cross-correlation with QSOs.

On the right panel of Figure 5 is the cross-correlation of QSOs
with voids cut at different minimum radius 𝑅min for EZmocks. The
exclusion effect is still present, but it mainly affects scales up to twice
the minimum radius 𝑅min. Therefore it has fewer effects on the BAO
scale even though this is not obvious to understand its real effect. We
refer to the next section for analysis of non-wiggles boxes to quantify
this effect.

4.3.2 Selection of optimal radius

To understand the exclusion effect on the cross-correlation of voids
and QSOs at the BAO scale and to find a quantifiable way to select
the optimal radius, we rely on the EZbox produced with and without
BAO.

The top left (right) panel of Figure 6 displays the void auto (cross)-
correlation of EZbox with and without BAO. In the cross-correlation,
a net negative peak around 100ℎ−1Mpc can be seen from the BAO
mocks compared to the ones without BAO wiggles. The bottom
panels of Figure 6 show the difference between the two kinds of
mocks, i.e. 𝜉no BAO − 𝜉BAO, another way to see the BAO excess that
manifests itself as a clear bump. While we understand from the plots
that a BAO peak is detectable from the void auto-correlation as well,
we still chose not to include it in the analysis to avoid contamination
from the exclusion effect in the model. Indeed if the exclusion effect
is not perfectly modelled, the BAO fitting results might be biased.

To select the optimal radius threshold, we determine an SNR dif-
ferent to what was used in previous studies with DT voids (Liang
et al. 2016). We rely on the EZbox for the SNR computation and
compute the area 𝐴 between the two EZbox curves over a selected
separation range 𝑆 around the BAO peak:

𝐴 =
∑︁
𝑠𝑖 ∈𝑆

𝜉no BAO
0 (𝑠𝑖) − 𝜉BAO

0 (𝑠𝑖). (9)

For a radius cut 𝑅min, the signal 𝑆𝐴 is then defined as the mean of 𝐴
and the noise 𝑁𝐴 as the standard deviation of 𝐴 over the 200 EZbox.
The SNR is 𝑆𝐴/𝑁𝐴.

The BAO signal and noise both increase with the minimum radius,
as the underdense regions are better selected, but the total number of
retained voids decreases. We observe a slight shift of the BAO peak
to the larger scale that we understand as remaining exclusion effects
that spread on the BAO scale.

We compute the SNR for different radius cuts over different sep-
aration ranges 𝑆, as shown in Figure 7. The optimal ratio featuring
the higher SNR for all 𝑆 definitions is 31ℎ−1Mpc. It corresponds to
the quantile of the void radius distribution of about 0.55. Reporting
this quantile from EZbox to data and EZmocks gives:

𝑅
optimal
min = 36ℎ−1Mpc. (10)

We chose, therefore, this value as the optimal minimum radius cut
for our analysis of EZmocks and data. The number of voids with this
radius cut is presented in Table 2. There are a bit less than three times
more voids than QSOs.

5 MODEL

Here we present the models for the two-point statistics to extract the
BAO signature for the voids and QSOs.

5.1 Isotropic BAO

The BAO peak in the clustering of the tracers, positive for big voids
and QSOs auto-correlations and negative for their cross-correlation,
is shifted if a wrong cosmology is assumed when transforming red-
shifts to distances. This effect is known as the Alcock-Paczynski (AP)
effect (Alcock & Paczynski 1979). We account for the AP effect with
the isotropic AP dilation parameter 𝛼:

𝛼 =
𝐷𝑉𝑟d,fid
𝐷𝑉,fid𝑟d

. (11)

Subscript ’fid’ stands for fiducial values used in the analysis. Param-
eter 𝑟d is the comoving sound horizon at the baryon drag epoch when
the baryon optical depth is one (Hu & Sugiyama 1996), and 𝐷𝑉 is a
volume-averaged distance defined as:

𝐷𝑉 =

(
𝐷𝑀 (𝑧)2 𝑐𝑧

𝐻 (𝑧)

) 1
3
, (12)

with 𝐷𝑀 the comoving angular diameter distance, 𝐻 (𝑧) the Hubble
parameter at redshift 𝑧, and 𝑐 the speed of light (Eisenstein et al.
2005).

The theoretical BAO model 𝜉m for the correlation that we use is:

𝜉m (𝑠) = 𝐵𝜉temp (𝛼𝑠) + 𝐴0 + 𝐴1/𝑠 + 𝐴2/𝑠2, (13)

where 𝐵 is the tracer bias, controlling the amplitude, and the 𝐴𝑖 with
𝑖 = 0, 1, 2 are broadband parameters treated as nuisance parameters.
The model relies on a 2PCF template 𝜉temp which is the Fourier
transform of the power spectrum 𝑃temp:

𝜉temp (𝑠) = 1
2𝜋2

∫
𝑃temp (𝑘) 𝑗0 (𝑘𝑠)𝑒−𝑘

2𝑎2
𝑘2𝑑𝑘. (14)

The function 𝑗0 is the Bessel function at order 0 of the first kind.
Here, the 𝑎 parameter is damping the high 𝑘 oscillations and is fixed
at 2 ℎ−1Mpc following Variu (2022). Indeed they demonstrate that
BAO measurements are unbiased and more robust against template
noise with 𝑎=2 ℎ−1Mpc compared to smaller values. The template
power spectrum 𝑃temp is (Xu et al. 2012):

𝑃temp (𝑘) =
(
𝑃lin (𝑘) − 𝑃lin,nw (𝑘)) 𝑒−𝑘2Σ2

nl/2 + 𝑃lin,nw (𝑘), (15)

where Σnl is the BAO damping parameter of the tracer, 𝑃lin and
𝑃lin,nw are the linear matter power spectrum and its analogue without
BAO wiggles, respectively, produced in the same way as for EZbox
using the fiducial cosmology of Table 3.

5.2 De-wiggled BAO model

The de-wiggled template BAO model is not accurate for voids cor-
relation functions (Zhao et al. 2020) because of oscillatory patterns
inserted in power spectra due to void exclusion (Chan et al. 2014).
Equation (15) is then modified to try to correct for this effect as:

𝑃t (𝑘) = 𝑃temp (𝑘)
𝑃tracer,nw (𝑘)
𝑃lin,nw (𝑘) . (16)

The term 𝑃tracer,nw (𝑘) is the non-wiggle power spectrum of the
tracer encoding broad-band and geometric effects. Those effects for
DT voids are difficult to model. In a previous analysis study with
voids, a parabolic parametrisation was introduced with an additional
free parameter (Zhao et al. 2020, 2022) to model the non-wiggle ratio.
However, this method does not work well for QSOs voids correlation
as the exclusion effect is much stronger. This is why in this study,
we rely on the second method, which is template-based (Zhao et al.
2022; Variu 2022).
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Figure 5. Correlation functions for different radius cuts of the mean of 1000 EZmocks with standard deviation errors. Radius range is from 𝑅min = 𝑅 to
𝑅max = 80 ℎ−1Mpc. On the left: auto-correlation of QSOs voids. On the right: cross-correlation of QSOs and voids.

100

0

100

200

300

s2
v(s

)

0 25 50 75 100 125 150 175 200
s [h 1Mpc]

50

25

0

25

50

75

100

s2 (
BA

O
v

(s
)

no
BA

O
v

(s
))

R > 28 h 1Mpc
R > 32 h 1Mpc
R > 36 h 1Mpc
R > 40 h 1Mpc

80

60

40

20

0

20

40
s2

×
(s

)

0 25 50 75 100 125 150 175 200
s [h 1Mpc]

40

20

0

20

40

s2 (
no

BA
O

×
(s

)
BA

O
×

(s
))

R > 28 h 1Mpc
R > 32 h 1Mpc
R > 36 h 1Mpc
R > 40 h 1Mpc

Figure 6. On the left, top panel: auto-correlation of QSO voids of the mean of 200 EZbox for a radius range from 𝑅min = 𝑅 to 𝑅max = 80 ℎ−1Mpc, with standard
deviation errors. Solid lines are for EZbox with BAO, dashed lines are for EZbox without BAO. Bottom left panel: mean difference of the auto-correlation of
EZbox without BAO and EZbox with BAO, for different radius cut. On the right figures, same but for the cross-correlation of QSOs and voids.

Developed by Variu (2022) with the Cosmological GAussian Mock
gEnerator (CosmoGAME5), the de-wiggles tracer template is con-
structed with mocks without BAO wiggles. Those are Lagrangian
mocks built on a Gaussian random field generated from 𝑃lin,nw (𝑘),
with a simple galaxy bias selection tuned to match eBOSS QSO EZ-
mocks. Survey geometry and radial selection are then applied to the
mock catalogues.

The template for the cross-correlation of QSOs and voids is ob-
tained by averaging and stacking 2000, 1000, 100 mocks generated
with CosmoGAME over a k-range 𝑘 up to 0.3, 1, 2 ℎMpc−1, re-
spectively. Their power spectra are computed with Powspec6. The
resulting concatenated template is shown in Figure 8, and its com-
parison with the power spectrum from 100 EZmocks is on the right
panel of Figure 8.

5 https://github.com/cheng-zhao/CosmoGAME
6 https://github.com/cheng-zhao/powspec

5.3 Parameter estimation

To obtain BAO constrain we use the algorithm Multinest7 (Feroz
et al. 2009) and its python version pyMultinest8 (Buchner et al.
2014), an efficient Monte-Carlo method that computes Bayesian ev-
idence and produce posteriors. We use the following likelihood as-
suming the gaussianity of the distribution for a given set of parameters
𝑝:

𝐿 ∝ exp
{(
−𝜒2 (𝑝)/2

)}
, (17)

where the chi-scared function 𝜒2 (𝑝) is computed from the data 𝜉𝑑
and the model prediction depending on the parameter set 𝑝, 𝜉temp (𝑝):

𝜒2 (𝑝) = (
𝜉𝑑 − 𝜉temp (𝑝)

)𝑇
𝐶−1 (

𝜉𝑑 − 𝜉temp (𝑝)
)
. (18)

7 https://github.com/farhanferoz/MultiNest
8 https://github.com/JohannesBuchner/PyMultiNest
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Figure 8. Left pannel: De-wiggle template for the cross-correlation of QSOs
and voids for the eBOSS QSO sample, generated with CosmoGAME. Right
pannel: Power spectrum divided by the linear power spectrum 𝑃lin (𝑘) . Blue
crosses is for the mean QSOs auto-power spectrum of 100 EZmocks. Orange
points is the QSOs and voids cross-power spectrum of 100 EZmocks. Solid
green line is the cross-correlation template rescaled roughly to match the
cross-correlation.

The resulting parameter covariances are rescaled to correct for the
covariance matrix uncertainty propagation by Percival et al. (2014):

𝑚1 =
1 + (𝑁d − 𝑁par) · 𝐵

1 + 𝐴 + (1 + 𝑁par) · 𝐵 , (19)

where 𝑁d the total number data bins used in the fit with 𝑁par free
parameters, and 𝐴 and 𝐵 are (𝑁m is the number of mocks used to
estimate the covariance):

𝐴 =
2

(𝑁m − 𝑁d − 1)¤(𝑁m − 𝑁d − 4) , (20)

𝐵 =
𝑁m − 𝑁d − 2

(𝑁m − 𝑁d − 1) · (𝑁m − 𝑁d − 4) . (21)

Distribution variance of multiples best-fits values from mocks used
for the covariance has to be rescaled by:

𝑚2 =

(
1 − 𝑁d + 1

𝑁m − 1

)
𝑚1. (22)

The parameter set for the multi-tracer analysis of the auto-
correlation of QSOs and their cross-correlation with voids is:

𝛼 𝐵q Σnl,q [Mpc/ℎ] 𝐵× Σnl,× [Mpc/ℎ]

Flat 0.8-1.2 0-100 0-100 0-100 0-100
𝜉q 0.8-1.2 1.27-1.40 5.2 (6.7) - -
𝜉mt 0.8-1.2 1.27-1.40 5.2 (6.7) 8.22-9.68 12.9

Table 4. Prior ranges of the BAO bayesian analysis for the three parameters
𝛼, 𝐵, Σnl. Top row is for free parameters. Other rows are our fiducial choices
when fitting the 2PCF or in the multi-tracer case. Value in parenthesis for
Σnl,q is the value used when fitting EZmocks.

𝑝 =
(
𝛼, 𝐵q, 𝐵×, Σnl,q, Σnl,×

)
. In the single tracer analysis, only one

𝐵 and Σnl are used. Fits are performed with the BAO Fitter for muLtI-
Tracers (BAOflit9 code from Zhao et al. (2022). When let free, we
chose very wide priors for each parameter, it corresponds to the first
row of Table 4. Broad-band parameters 𝐴𝑖 of the polynomial term
in Equation 13 are determined by linear regression with the least
squares method.

6 TESTS ON MOCKS

We use eBOSS EZmocks to test the pipeline, calibrate the differ-
ent settings for the analysis of data and assess systematics. N-body
mocks are also used when dealing with QSOs only. We fit the auto-
correlations of QSOs 𝜉q (with Equation 15) and the cross-correlations
with voids 𝜉× (with Equation 16) first separately, and then we perform
a multi-tracer fit where both correlations are fitted simultaneously,
noted 𝜉mt ≡ {𝜉q, 𝜉×}. Voids used are selected by the criterion in
Equation 10.

6.1 Fitting ranges

To choose our fiducial separation fit ranges, we fit the mean of the
1000 EZmocks for the QSO auto-correlation and cross-correlation,
varying the fitting range. We aim to extract the maximum information
and reduce the errors. Covariance matrices are divided by the number
of mocks 𝑁𝑚 used to construct it, i.e. rescaled by 0.001. All the
parameters are let free, i.e. with broad enough priors of Table 4.

Results are shown in Figure 9. Minimum separation 𝑠min of the
fit varies from 40 to 90 ℎ−1Mpc every 5ℎ−1Mpc and maximum
separation 𝑠max from 140 to 180 ℎ−1Mpc. Following Zhao et al.
(2022), we define the bias to the fiducial value 𝛼fid of the fit for the
AP parameter 𝛼 as a function of the median 𝛼med and the 1 sigma
𝜎𝛼 values of the fit posterior:

𝛿𝛼med =
𝛼med − 𝛼fid√

1000𝜎𝛼

. (23)

Fits for the QSO 2PCF are stable for a wide range of possibili-
ties. We chose for consistency to adopt the range used in previous
DR16 eBOSS analysis of Hou et al. (2021), a fitting range for auto-
correlation of QSOs within [50,150] ℎ−1Mpc.

For the cross-correlation of voids and QSOs, the possible fitting
ranges are more limited. Indeed usual minimum range 𝑠min and
lower are strongly affected by the exclusion effects. So to avoid
contamination, we chose a conservative range of [80,170] ℎ−1Mpc
for the XCF, where the bias and errors are reasonable when varying
the minimum and maximum fitting limits by 5ℎ−1Mpc.

For our fiducial range, results for the mean of the EZmocks are in

9 https://github.com/cheng-zhao/BAOflit
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left column and evaluated 1 sigma error 𝜎𝛼 from the posterior distribution
on the right, for fits with different fitting ranges. On the top results for the
QSOs 2PCF of the mean of the EZmocks and on the right results for the XCF
of QSOs and voids for the mean of the EZmocks. Black crosses indicate the
chosen range.

𝛼med 𝛼med − 𝛼fid 𝜎𝛼 max |Δ𝑠𝛼med |
𝜉q 1.0066+0.0365

−0.0361 0.0056 0.0011 0.0003
𝜉× 1.0061+0.0594

−0.0602 0.0051 0.0019 0.0049
𝜉mt 1.0063+0.0348

−0.0352 0.0053 0.0011 0.0011

Table 5. Fitting results of the AP parameter 𝛼 on the mean of EZmocks for
𝑅min = 36 ℎ−1Mpc the fiducial separation range: [50,150] ℎ−1Mpc, [80,170]
ℎ−1Mpc for 2PCF 𝜉qso and XCF 𝜉v, respectively. The multi-tracer results is
noted 𝜉qsox𝜉v. From left to right the columns are the median of the posterior
with 1-sigma errors rescaled by

√
1000, the bias of the median of the fit to the

fiducial value, the 1-sigma error of the distribution, the maximum bias from
the fitted median when varying 𝑠min or 𝑠max by 5ℎ−1Mpc.

Table 5. We also quote the maximum bias from the fitted 𝛼med when
varying 𝑠min or 𝑠max by 5ℎ−1Mpc. Results are not too sensitive to a
small change in the fitted range.

6.2 Prior choice

We now investigate different priors on 𝐵 and Σnl by fitting the EZ-
mocks individually with the fiducial fitting range. Indeed without
tighter priors, the dispersion of the errors on 𝛼 is quite large, and
there is a significant bias on average. Moreover, their dispersion is
not consistent with a normal distribution as in Vargas-Magaña et al.
(2013).

We then test different prior sets to find the optimal choice on our
respective fiducial fitting ranges. AP parameter 𝛼 is kept with wide
flat priors. For the bias parameters 𝐵, we leave flat priors, but we
narrow down the boundaries to 𝑁 times 𝜎 around the median value
given by the fit on the mean of the EZmocks for 2PCF and XCF
separately, where 𝜎 is the 1-sigma dispersion of the posterior on this

parameter for the mean of the EZmocks10. We also test the same kind
of narrower priors on Σnl parameters. Moreover, similarly to what is
done in other BAO studies (Xu et al. 2012; Alam et al. 2017), we
fix Σnl to the median posterior value from the EZmocks mean when
fitting individual EZmocks (Σnl = 6.7 for 2PCF and Σnl = 12.9 for
XCF). When fitting data 2PCF, we will use the median posterior value
from N-body mocks (Σnl = 5.2) as the BAO peak of approximated
mocks as EZmocks is overdamped. It thus results in an overestimated
value of Σnl in the EZmocks.

Different 𝛼 measurements with various priors ranges are presented
in Table 6 for 2PCF and XCF. As the errors for the voids are quite
large, we go down to 𝑁=3 for XCF on the 𝐵 parameter.

We then chose the optimal priors from the average goodness of fit
rescaled by the degree of freedom, ⟨𝜒2⟩/d.o.f., and the pull quantity
(Bautista et al. 2021; Zhao et al. 2022):

𝑔(𝛼𝑖) =
𝛼𝑖 − ⟨𝛼𝑖⟩
𝜎𝛼,𝑖

, (24)

where 𝛼𝑖 is the median value from the posterior distribution of 𝛼 for
the 𝑖th EZmock realization and 𝜎𝛼,𝑖 is its error, ⟨𝛼𝑖⟩ is the average
𝛼 value over all EZmocks. This quantity allows us to test for the
gaussianity of the results. We want to have a distribution of the 𝛼 on
the individual mocks similar to a standard distribution, i.e. a mean
of 0 and a deviation of 1.

The selected priors are in bold in the table: we chose to fix the Σnl
and have narrow constraints on 𝐵qso with 𝑁 = 5 and 𝑁 = 3 for 𝐵v.
While the gaussianity of the pull quantity prefers slightly flat priors
for Σnl in the 2PCF case, the reduced chi-square favours a fixed value.
So for consistency with the previous analysis and with the XCF, we
take fixed Σnl. We note that, except in the completely free case, all
results are consistent with each other. The 𝛼 measurements are not
very sensitive to the priors choices.

For the multi-tracer case, we use results from fits from separated
correlations to fix Σnl, and we test only a few relevant cases.

6.3 Systematic error budget

We refer to mocks to make a systematic error budget summarized
in Table 7. A systematic bias arises from the BAO model itself.
For this, we take the deviation to AP parameter true value from
the EZmocks mean of our fiducial separation range of Table 5. In-
deed mean best-fit values from all individual N-body mocks give:
𝛼N−body = 1.0011 ± 0.0193. The bias error is, therefore, smaller
than the one from EZmocks for 2PCF. This is why we chose to quote
the deviation from EZmocks for the auto-correlation alone to be
conservative and consistent with the rest of the analysis with voids.

We quote a systematic bias for the maximum variation of 𝛼med
when varying the fitting range of 5 ℎ−1Mpc. We take the value in
Table 5 for the mean of the EZmocks.

The last systematic taken into account in the final budget is the
maximum variation of the mean of the individual value of the fit on
the 1000 EZmock realizations when changing the priors on 𝐵 and
Σnl. We take a conservative choice and take as a reference for the
systematic largest flat priors indicated in italic in Table 6.

The three contributions are added in quadrature to obtain the final
systematic error 𝜎syst.

10 Fit on the mean of the EZmocks on the fiducial fitting range gives: (𝐵qso =
1.336 ± 0.013,Σnl,qso = 6.666 ± 0.252) for a fit on QSOs 2PCF, and 𝐵v =
8.949 ± 0.242,Σnl,v = 12.870 ± 0.588) for a fit on XCF.
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𝐵 Priors Σnl Priors ⟨𝛼𝑖 ⟩ 𝜎𝛼𝑖 ⟨𝜎𝛼,𝑖 ⟩ 𝜎𝛼𝑖 −⟨𝜎𝛼,𝑖 ⟩
𝜎𝛼𝑖

⟨𝑔 (𝛼𝑖) ⟩ 𝜎 (𝑔 (𝛼𝑖)) ⟨𝜒2 ⟩/d.o.f.

𝜉q

- - 1.023 0.034 0.111 -2.241 0.037 0.400 0.984
±50𝜎 ±10𝜎 1.007 0.041 0.044 -0.068 -0.002 0.960 1.015
±10𝜎 ±10𝜎 1.007 0.043 0.039 0.086 -0.012 1.031 1.038
±10𝜎 ±5𝜎 1.007 0.043 0.039 0.098 -0.019 1.043 1.052
±5𝜎 ±5𝜎 1.007 0.043 0.039 0.101 -0.013 1.042 1.066

- 6.7 1.006 0.038 0.052 -0.352 0.001 0.874 0.975
±50𝜎 6.7 1.007 0.042 0.045 -0.072 -0.011 0.970 0.975
±10𝜎 6.7 1.007 0.043 0.039 0.097 -0.022 1.053 0.999
±5𝜎 6.7 1.007 0.044 0.039 0.102 -0.026 1.058 1.014

- 5.2 1.006 0.038 0.051 -0.323 -0.017 0.894 0.974
±10𝜎 5.2 1.008 0.044 0.036 0.165 -0.026 1.137 0.994

𝜉×

- - 1.020 0.040 0.100 -1.516 0.055 0.950 0.871
±50𝜎 ±10𝜎 1.008 0.047 0.073 -0.554 0.003 0.859 1.016
±10𝜎 ±10𝜎 1.008 0.049 0.062 -0.253 0.006 0.925 1.026
±10𝜎 ±5𝜎 1.007 0.051 0.061 -0.202 0.003 0.940 1.045
±5𝜎 ±5𝜎 1.008 0.051 0.060 -0.178 -0.004 0.939 1.057

- 12.9 1.007 0.045 0.072 -0.581 -0.003 0.858 0.980
±50𝜎 12.9 1.006 0.046 0.072 -0.571 0.003 0.868 0.980
±10𝜎 12.9 1.007 0.051 0.061 -0.200 -0.007 0.953 0.986
±5𝜎 12.9 1.007 0.051 0.060 -0.181 -0.011 0.950 1.005
±3𝜎 12.9 1.007 0.051 0.060 -0.176 -0.006 0.948 1.019

𝜉mt

±50𝜎 ±10𝜎 1.007 0.042 0.043 -0.014 -0.020 1.043 0.896
±5𝜎 ±5𝜎 1.009 0.040 0.037 0.083 -0.072 1.036 0.937
±10𝜎 6.7, 12.9 1.008 0.040 0.037 0.070 -0.036 1.013 0.882
±5𝜎 6.7, 12.9 1.008 0.039 0.037 0.067 -0.048 1.002 0.897

±5𝜎, ±3𝜎 6.7, 12.9 1.009 0.039 0.037 0.066 -0.057 1.000 0.903

Table 6. Fits on correlation functions of the 1000 individual EZmocks with different parameter priors. Results are rescaled according to Equations 19 and 22.
Columns from left to right: 𝐵 priors, Σnl priors, the median of the individual 𝛼𝑖 values, the standard deviation of the individual 𝛼𝑖 fit values, the median of the
individual 1-sigma errors on 𝛼𝑖 , the relative difference to the mean of the individual errors 𝜎𝛼,𝑖 , mean of the individual 𝑔 (𝛼𝑖) of Equation 24, the standard
deviation of the individual 𝑔 (𝛼𝑖) , mean reduced chi-squared of the individual fits.

𝛼fit − 𝛼fid max |Δ𝑠𝛼med | max |Δprior ⟨𝛼𝑖 ⟩ | 𝜎syst

𝜉q 0.0056 0.0003 0.0001 0.0056
𝜉mt 0.0053 0.0011 0.0009 0.0055

Table 7. Systematic error budget. Different columns are the different constri-
butions to the total error 𝜎syst for QSO 2PCF and the multi-tracer analysis.

6.4 Change in radius cut

We test the template used for the BAO model and analysis robust-
ness by observing the changes induced by a small variation of the
minimum radius cut of the voids. For this, we use the same template
model as for the fiducial analysis with 𝑅min = 36 ℎ−1Mpc and vary
𝑅min of the EZmocks XCF by 2 ℎ−1Mpc.

Table 8 gives the results for the mean of the EZmocks for 𝑅min = 34
ℎ−1Mpc and 𝑅min = 38 ℎ−1Mpc. As mentioned, the template is not
adapted for those radius cuts, so it inserts an expected mild bias
compared to the fiducial measurements of Table 5 for the XCF. For
the multi-tracer approach with XCF and 2PCF, the bias is small: a
small change in the radius cut inserts, therefore a reasonable bias.

6.5 Results on EZmocks

Let us now compare the BAO results of the QSOs auto-correlation
and the multi-tracer joint fit of the 2PCF and the XCF. We consider the
individual 1000 EZmocks realisations in the fiducial case (minimum
radius cut, separation range and priors), i.e. the bold lines in Table 6.

𝛼med 𝜎𝛼 𝛼med − 𝛼36

𝜉×, 𝑅v > 34 1.0164+0.0545
−0.0589 0.0018 0.0103

𝜉×, 𝑅v > 38 0.9960+0.0615
−0.0639 0.0020 -0.0101

𝜉mt, 𝑅v > 34 1.0083+0.0360
−0.0347 0.0011 0.0020

𝜉mt, 𝑅v > 38 1.0052+0.0353
−0.0367 0.0011 -0.0011

Table 8. Fitting results of the AP parameter 𝛼 on the mean of EZmocks for
the fiducial separation range with two different minimum voids radius cut for
the XCF. From left to right, the columns are the median of the posterior with
1-sigma errors rescaled by

√
1000, the bias of the median of the fit to the

fiducial value, the 1-sigma error of the distribution, the bias of the median of
the fit to the value for the fiducial cut of 36 ℎ−1Mpc.

We define the relative difference in errors between the two analy-
ses:

𝛿𝑖 =
𝜎𝛼,𝑖,q − 𝜎𝛼,𝑖,mt

𝜎𝛼,𝑖,q
(25)

where 𝜎𝛼,𝑖,q is the 1-sigma distribution error on 𝛼𝑖 for the 2PCF
case, and 𝜎𝛼,𝑖,mt in the multi-tracer case. This statistic is presented
in Table 9 for the individual EZmocks. Figure 10 compares the errors
from fits of QSO 2PCF only and those from the multi-tracer version.

There is an average of about 5% improvement with the contribution
of voids in the analysis. A smaller error for the multi-tracer case is
observed for around 70% of the EZmocks realisations. Taking only
the improved mocks gives, on average better errors of 11.22%. Fitting
QSO voids jointly with QSOs allows, therefore, a small improvement
for most of the EZmocks on the same sample of data.

MNRAS 000, 1–13 (2022)
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⟨𝛿𝑖 ⟩ (⟨𝛿𝑖 |𝛿𝑖 > 0⟩) #(𝛿𝑖 |𝛿𝑖 > 0)
𝜉mt 5.41% (11.22%) 71.6%

Table 9. Mean relative difference 𝛿𝑖 of Equation 25 for the individual re-
alisations of EZmocks, mean relative difference when 𝛿𝑖 is positive, and
proportion of realisations for which 𝛿𝑖 is positive.
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Figure 10. Errors from the 2PCF fits against the multi-tracer results which
fits jointly the 2PCF and XCF.

In the previous study of Zhao et al. (2022) for eBOSS ELG and
LRG samples, the best results on EZmocks were reported to give
a larger average improvement (∼ 8%). However, we note that in
this case, the void auto-correlation was also jointly fitted and helped
reduce the uncertainties. Closer statistics are found when comparing
the joint fit with the cross-correlation only. Moreover, with QSOs,
some exclusion effects might still play an important role, and this
makes the extraction of the BAO information more difficult.

7 RESULTS

In this Section, we present the results of the eBOSS DR16 QSO data
sample. Table 10 displays the𝛼measurement and its derived value for
our input cosmology, the volume-averaged distance of Equation 12.
Fits are made on the fiducial fitting range with the selected priors for
𝐵 and Σnl. For QSO 2PCF data fit, we fix Σnl to the value given by
N-body mocks. Voids are selected according to their radius with a
hard minimum cut range; see Equation 10.

7.1 eBOSS DR16 QSO sample

For data, we observe very similar results from QSOs only or adding
voids. The reduced chi-squared is slightly better for the multi-tracer
case. However, errors are not improved by the 2PCF joint fit with
XCF compared to 2PCF alone. We note, moreover, that Σnl,× was
estimated from EZmocks that tend to overestimate it. A better deter-
mination of Σnl,× could lead to better results. The best-fitting BAO
models are shown in Figure 11. The data are well fitted on the fitting
range in all cases. Results are consistent with the isotropic measure-
ment of Neveux et al. (2020) on the same QSO eBOSS sample, in
particular we recover similar errors (see also Hou et al. 2021).

𝛼fit 𝜎syst 𝜒2/d.o.f. 𝐷𝑉 (𝑧 = 1.48)/𝑟𝑠
𝜉q 1.0172+0.0207

−0.0201 0.0056 1.49 26.298 ± 0.547
𝜉mt 1.0171+0.0212

−0.0196 0.0055 1.16 26.297 ± 0.547

Table 10. Results on the eBOSS QSO data sample for the standard 2PCF
analysis and with the void contribution multi-tracer with XCF. Median of the
posterior of the fitted 𝛼 parameter and the 16th and 84th percentiles. Total
systematic error. The goodness of fit is rescaled by the degree of freedom.
The volume-averaged distance at the effective redshift.

⟨𝛼𝑖 ⟩ ⟨𝛿𝑖 ⟩ #(𝛿𝑖 |𝛿𝑖 > 0)
𝜉mt 1.016±0.021 2.09% 68.0%

Table 11. Mean 𝛼 measurement and 1-sigma dispersion for the 25 subsam-
pled data, relative difference 𝛿𝑖 of Equation 25 and proportion of realisations
for which 𝛿𝑖 is positive.

EZmocks results suggest that data measurement lies in the 30%
hazard without improvement observed with a joint fit with the cross-
correlation of voids. To recreate the randomness of the sampling of
data, we create 25 subsamples of the eBOSS QSOs by removing
1/25 of the area with equal numbers of QSOs different for each of the
samples. We then fit them in the same way as for the total sample.

Table 11 gathers the measurements for the 25 data subsamples.
The average value is consistent with the data alone. Moreover, we
have an average improvement of about 2% for almost 70% of the
realisations. This result is in total agreement with the EZmocks. It
implies that voids could still bring a small improvement for future
QSOs surveys. Indeed an improvement is expected, but for a specific
data sample, the improvement is not necessarily seen due to cosmic
variance.

7.2 DESI-like volume survey forecasts

We further provide a forecast for a QSO survey with a similar effective
volume to that of DESI for BAO constraints from QSOs. We repeat
the same BAO analysis on 1000 EZbox with BAO.

The effective volume of EZbox is very close to the Year 5 DESI
effective volume for an area of 14’000 deg2 (DESI Collaboration
et al. 2016a) of QSOs. Therefore we directly use the covariance
made from the 1000 EZbox without rescaling.

We perform BAO measurements on the 1000 individual realisa-
tions for the QSOs 2PCF alone and jointly fitted with their cross-
correlation. Following the results of the SNR test of section 4.3.2 for
the EZbox, the void radius cut is chosen to be 31 ℎ−1Mpc. For the
BAO model, we recreate an appropriate template. The clustering of
the boxes is consistent with that of the light-cone mocks and the data.
In this case, it is appropriate to use the Lagrangian mocks generated
for the light-cone mocks, but without radial selection and survey ge-
ometry cut, i.e. in their boxes format. The cross-power spectra are
then computed for the optimal minimum radius cut of 31 ℎ−1Mpc.
Measurements are gathered in Table 12.

We recover the same results as for the EZmocks. About 68% of
the EZbox realisations have an error reduction when fitting the 2PCF
and XCF simultaneously. This improvement is 4.9% on average.
This means that increasing the volume, i.e. decreasing the statistical
errors, does not help to have a general improvement of the BAO error
by adding voids. This might be due to the low density of the QSOs
samples. Therefore we expect the results from actual DESI data to be
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Figure 11. Best-fit models as fitted for the 2PCF or XCF alone or jointly.

⟨𝛼𝑖 ⟩ 𝜎𝛼𝑖 ⟨𝜎𝛼,𝑖 ⟩ ⟨𝛿𝑖 ⟩ #(𝛿𝑖 |𝛿𝑖 > 0)
𝜉mt 1.003 0.008 0.008 4.90% 68.2%

Table 12. Multi-tracer fitting results for the 1000 individual realisations of
EZbox with BAO. Columns from left to right: median of the individual AP
parameter 𝛼𝑖 fitting values, the standard deviation of the individual 𝛼𝑖 fit
values, the median of the individual 1-sigma errors on 𝛼𝑖 , mean relative
difference 𝛿𝑖 of Equation 25 and proportion of realisations for which 𝛿𝑖 is
positive. Σnl of the fits are fixed from the EZbox mean fits, and we use a
±10𝜎 priors on 𝐵.

better, as the density of the QSO boxes is still lower than the expected
QSO density of DESI.

8 CONCLUSIONS

In this paper, we proposed a void analysis of the QSO eBOSS DR16
sample with voids. Due to the low density of the sample, the minimum
size of the void required to mitigate the contamination by voids-in-
clouds is about twice the size for the previous analysis (Zhao et al.
2021, 2022) with the same void definition.

To understand the BAO signal from the void correlations, we pro-
duced EZmocks with and without BAO signature. This allowed us to

choose the optimal radius cut to increase the BAO signal and mini-
mize the noise. We are able to observe a negative BAO peak in the
cross-correlation of QSOs and voids. However, we did not detect any
signal in the auto-correlation of voids as geometric exclusion effects
affect the BAO scale, since we are considering very large voids. We
note that we explored other ways of extending the void catalogue
including voids with smaller radii based on QSO local density argu-
ments to increase the number density and alleviate the void exclusion
effects. However, some biases appeared in this process, which make
such attempts still unreliable. We leave a further investigation on this
for future work.

We presented a multi-tracer fit of the 2PCF and XCF jointly. For
EZmocks, the errors decreased for 70% of the realisations when voids
were jointly fit with QSOs. We report an average of around 5% error
improvement for the EZmocks. While we found less improvement
than for the other tracers as LRGs and ELGs by adding the contri-
bution of voids (Zhao et al. 2022), we argued that it might be caused
by the difficulty of extracting the BAO information due to remaining
void exclusion effects. Moreover, the auto-correlation of voids that
have a non-negligible constraining power was not included.

For eBOSS QSOs sample data, no improvement was measured
including voids. Our analysis showed the same behaviour as for
EZmocks when we downsample the data into 25 subsamples. This
confirmed that the result for the data is caused by cosmic variance.

We finally presented a forecast for the next batch of surveys like
DESI, which will release a large sample of QSOs (DESI Collabo-
ration et al. 2016a,b). Our results demonstrate that voids can still
improve the isotropic BAO AP parameter for those data by almost
5%, a result which remains stable even if the volume is increased.
Better improvement is expected for future QSO surveys with a higher
number density such as J-PAS (Benitez et al. 2014) or WEAVE (Dal-
ton et al. 2016; Pieri et al. 2016). Hence, we conclude, that voids
can be potentially useful to further increase the BAO detection from
forthcoming QSO catalogues.
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4 Conclusion

I dedicated Chapter 1 to a general summary required for the understanding of this manuscript.

The standard cosmological framework was first introduced in the context of general relativity.

Then large scale structures (LSS) were shown to be a powerful probe for cosmology. Their

observation is made possible thanks to spectroscopic surveys. Different features in LSS

clustering can be observed. Baryon acoustic oscillations (BAO) are standard rulers and can

be used to measure distances, and thus the Universe’s expansion history. Redshift space

distortions (RSD) are caused by the peculiar velocities of galaxies. They can be used to probe

the growth of structures in the Universe. Both are important tools to constrain cosmological

parameters.

During this thesis, I completed a full-shape analysis of the RSD from the ELG sample of eBOSS

in configuration space in the redshift range between 0.6 and 1.1. This work is presented in

Chapter 2. I aimed at obtaining a measurement of the growth rate and the AP parameters. The

ELGs were affected by strong observational systematics. These systematics were biasing the

cosmological measurements. To mitigate their effect, we introduced a modified correlation

function estimator that we applied consistently to the data, the EZmocks and the model.

We showed with approximated mocks that it greatly helped recovering the true fiducial cos-

mological values. Moreoever the ELG clustering was also altered by the the so called radial

integral constraint (RIC) due to the shuffled redshift assignment scheme used for randoms

that suppresses radial modes. The RIC impact was very strong on the eBOSS ELG sample. To

correct for this we implemented a theoretical modification to the model.

For the theoretical description of the clustering in redshift space I used Convolution La-

grangian Perturbation Theory (CLPT) with a model of Gaussian Streaming (GS). I was able to

obtain the growth rate and AP parameters constraints while fitting jointly RSD and BAO. The

BAO measurements were done on the post-reconstruction monopole of the ELGs and for the

RSD on the three first even multipoles of the pre-reconstruction clustering.

Joint constraints between the configuration space and the Fourier space measurements were

provided. They were afterward used for the final cosmological analysis of the last 20 years of
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SDSS. SDSS BAO and RSD measurements are consistent with a flat ΛCDM model. Growth

rate values were consistent with CMB predictions from Planck. In a w0waCDM model with

SDSS data and Planck CMB measurements combined a DETF figure of merit of 134 was found,

outpassing the initial expectations from a Stage III experiment.

In a second part of the dissertation introduced in Chapter 3, I performed a BAO analysis on

voids from the quasar sample of eBOSS. The voids were found using the software DIVE that

relies on Delaunay Triangulation. I first participated to the void BAO analysis on ELGs and

LRGs of eBOSS where we showed that an improvement of 5 to 15 % in the uncertainties were

reached in the data. We extended this work to QSOs.

A selection of the QSO voids was first made in order to keep the voids in underdense regions.

For this a large void radius threshold was required due to the low quasar number density. As an

effect of this large radius cut, strong exclusion effects were seen in the clustering. We produced

approximate mocks without BAO to understand it and to select the optimal radius cut to

enhance the BAO signal-to-noise. Although a BAO signal was still detected in the void auto-

correlation (2PCF), we only used the void and QSO cross-correlation (XCF) as the exclusion

effect was interfering in the BAO scale in the void 2PCF.

We performed a joint BAO fit of the XCF and the QSO 2PCF. To model the BAO we made use

of a template to mimic the tracer power spectrum without BAO wiggles. In the EZmocks we

observed an improvement for 70% of the mocks, with a total average improvement of about

5%. For data we didn’t see any improvement due to cosmic variance. We furthemore created 25

subsample sets of data to confirm the cosmic variance results, as we recover an improvement

from data in 70% of the cases. We also provided a forecast for a DESI-like volume survey using

cubic boxes, and we recovered the same statistic results as from the EZmocks.

During this thesis, I was able to bring valuable cosmological measurements on an ELG sample

that allowed to help constraining the standard model of cosmology. Furthermore the QSO

voids study emphasized the strength of voids that have a significant constraining power.

The work effectuated paves the way for future analyses. ELG will massively be observed in

the current and future generations of surveys. As in future surveys the statistical uncertainty

will be small due to the large number of observations, the systematics will be a big concern.

Therefore they will have to be well understood and treated carefully. The ELG analysis I

performed will help the future data treatment and cosmological measurements. Indeed the

careful considerations I took such as RIC and the angular modes mitigation could be needed

in future analyses.

Moreover in the area of precision cosmology any constraints improvement is important. In

particular, precise measurements from QSOs samples are critical due to their high redshifts

that give us insights on the matter domination epoch of the Universe. I showed that voids

could be a great solution to decrease the uncertainties by using the same dataset. Their use

will then be very relevant in the future.
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