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• Chapter 2 is mostly based on [1], with part of the development of section 2.4 being
also taken from [3]. Its final section 2.5 is based on [2],

• Chapter 3 is based on the second half of [3],

• Chapter 4 is based on the first half of [3].

• Finally, the conclusion is a summary of results and a discussion of some possible
extensions of this work, including some research other authors based on [1, 2].
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Abstract
Conformal Field Theories (CFTs) are crucial for our understanding of Quantum Field
Theory (QFT). Because of their powerful symmetry properties, they play the role of
signposts in the space of QFTs. Any method that gives us information about their
structure, and lets us compute their observables, is therefore of great interest. In this
thesis we explore the large quantum number sector of CFTs, by describing a semiclassical
expansion approach. The idea is to describe the theory in terms of fluctuations around a
classical background, which corresponds to a superfluid state of finite charge density. We
detail the implementation of the method in the case of U(1)-invariant lagrangian CFTs
defined in the epsilon-expansion. After introducing the method for generic correlators,
we illustrate it by performing the computation of several observables.
First, we compute the scaling dimension of the lowest operator having a given large
charge n under the U(1) symmetry. We demonstrate how the semiclassical result in this
case bridges the gap between the naive diagrammatic computation (which fails at too
large n) and the general large-charge expansion of CFTs (which is only valid for n large
enough).
Second, we apply the method to the computation of 3- and 4-point functions involving
the same operator. This lets us derive some of the OPE (Operator Product Expansion)
coefficients.
Finally, we consider the rest of the spectrum of charge-n operators, and propose a way
to classify them by studying their free-theory equivalent. In the free theory, we construct
the complete set of primary operators with number of derivatives bounded by the charge.
We also find a mapping between the excited states of the superfluid and the vacuum
states of standard quantization, which is valid when the spin of said states is bounded by
the square root of the charge.

Keywords: large charge, epsilon-expansion, conformal field theories, semiclassical expan-
sion, effective field theory, superfluid, Feynman diagrams, primary operators, vortices.
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Résumé
Les théories de champs conformes (Conformal Field Theories, CFTs) sont cruciales
pour notre compréhension de la théorie quantique des champs (Quantum Field Theory,
QFT). En raison de leurs puissantes propriétés de symétrie, elles jouent le rôle de repères
d’orientation dans l’espace des QFTs. Toute méthode qui nous donne des informations
sur leur structure, et nous permet de calculer leurs observables, est donc d’un grand
intérêt. Dans cette thèse, nous explorons le secteur à grands nombres quantiques des
CFTs, en décrivant une approche par expansion semiclassique. L’idée est de décrire la
théorie en termes de fluctuations autour d’un fond classique, qui correspond à un état
superfluide de densité de charge finie. Nous détaillons l’implémentation de la méthode
dans le cas de CFTs lagrangiennes U(1)-invariantes définies dans l’expansion en epsilon.
Après avoir présenté la méthode pour des corrélateurs génériques, nous l’illustrons en
effectuant le calcul de plusieurs observables.
Tout d’abord, nous calculons la dimension d’échelle de l’opérateur le plus bas ayant une
grande charge n donnée pour la symétrie U(1). Nous démontrons comment le résultat
semiclassique dans ce cas comble le fossé entre le calcul diagrammatique naïf (qui échoue
pour une trop grande charge n) et l’expansion à grande charge générale des CFTs (qui
n’est valable que pour une charge n suffisamment grande).
Deuxièmement, nous appliquons la méthode au calcul des fonctions à 3 et 4 points
impliquant le même opérateur. Ceci nous permet de dériver certains des coefficients de
l’OPE (Operator Product Expansion, expansion de produit d’opérateurs).
Enfin, nous considérons le reste du spectre des opérateurs de charge n, et proposons un
moyen de les classifier en étudiant leur équivalent en théorie libre. Dans la théorie libre,
nous construisons la totalité de l’ensemble des opérateurs primaires dont le nombre de
dérivées est borné par la charge. Nous trouvons également une correspondance entre les
états excités du superfluide et les états du vide de la quantification standard, qui est
valide lorsque le spin de ces états est borné par la racine carrée de la charge.
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Introduction

The mathematical framework of Quantum Field Theory (QFT) is ubiquitous in con-
temporary theoretical physics. It was developed throughout the 20th century, the first
instance of a QFT being Quantum Electrodynamics (QED), devised to describe processes
involving light and electrons. In the modern point of view, it is understood as the logical
consequence of the union of the fundamental principles of special relativity (Lorentz
invariance) and of quantum mechanics. One of the features of this language is that it
naturally depicts the observed phenomenon of particle creation and annihilation, while
quantum mechanics alone can only account for a fixed number of particles. Therefore,
it is obviously the appropriate framework to understand particle physics, in particular
experiments consisting of colliding particles at relativistic speeds. However, over the
decades this methodology has proven to be capable of building very accurate models in
various areas of theoretical physics.

One prominent example of a QFT is the Standard Model of particle physics (SM),
the current most fundamental theory of Nature. Let us cite one of its many great
successes by mentioning the hypothesizing of the Higgs field and its associated scalar
boson [4, 5, 6, 7, 8, 9, 10, 11, 12], whose existence was confirmed little more than ten
years ago [13, 14]. This model has been tested with an enormous amount of experimental
data, showing a very high accuracy [15]. On the other hand, the contradictions between
this model and the experiment are what drives the theoretical research of possible physics
Beyond the Standard Model (BSM). Many of those models are phrased as QFTs as well.
This includes, to name a few, the composite Higgs [16], supersymmetry (SUSY) [17],
extra dimensions [18, 19, 20, 21], and many proposals for the identity of Dark Matter
[22, 23].

Another domain that makes extensive use of quantum field theory is cosmology, for the
description of phenomena in the early universe such as inflation [24] and baryogenesis
[25, 26]. One further example of a discipline that heavily relies on QFT as a tool (often
in its non-relativistic version, NRQFT) is condensed matter physics [27]. The remarkable
fact about these examples is that they cover a wide range of energy scales (or equivalently,
length scales, since the two notions are inversely proportional because of the uncertainty
principle).

1



Introduction

Renormalization and scale invariance

However, QFT did not immediately impose itself as a universally accepted paradigm. One
of the obstacles it had to face was that its perturbative computations had an apparently
meaningless infinite result. The cause is that quantum field theory describes systems of
infinitely many interacting quantum degrees of freedom.

The solution to this problem, called renormalization actually turned out as an important
physical feature of QFT [28, 29, 30]. First, one has to artificially modify the theory by
introducing a parameter which regularizes the divergences (for example a modification of
the dimension of spacetime as d = 4− ε). Then, the predictions of the modified theory
can be compared to a fixed value given at energy scale M . Adjusting the parameters of
the theory (couplings) for a few of these predictions to be correct, one indeed obtains a
theory capable of predicting other finite observables accurately as the regularization is
removed (ε→ 0).

The choice of a renormalization scale M , which was made arbitrarily, should not affect
the physical predictions of the theory. Therefore, choosing a different scale M ′ can
only imply different values for the renormalized couplings of the theory in such a way
that the final predictions for all observables are unaffected. We say that the variants of
the theory renormalized at different scales are related by a renormalization group (RG)
transformation.

The invariance of the physical observables under the RG transformations is a powerful
set of constraints that lead to the Callan-Symanzik equations [31, 32]. These inform us
about the real dependence of the observables on the positions or momenta they take as
input. In other words, the Callan-Symanzik equations describe the modifications of the
dynamics of the system if we “zoom” in or out to a different scale.

One key component of the Callan-Symanzik equations are the β-functions, which describe
the rate of change of the couplings under a change of renormalization scale M . Their
solution can be expressed by defining a notion of running coupling, which depends on
the scale of momenta at play. For example, this explains the observed phenomenon that
in QED, the electron charge appears to be higher in experiments at high-energy such as
collisions, than it is in low-energy, large-distance experiments.

More than its relevance to physically correct predictions, the RG has a huge influence
on our current understanding of quantum field theory as a whole. The running of the
couplings at varying scales can be seen as a trajectory inside the space of all quantum
field theories. The action of the renormalization group can then be expressed as a flow
within this space, naturally called Renormalization Group flow. Thus, the RG flow
provides a way to explore this space of theories, and study some general properties they
have. In particular, some theories share a similar low-energy limit, when one considers
observables computed at momenta far below any characteristic scale of the theory (such

2
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as masses of particles, for example). This can be seen by noticing that their RG flow in
the IR all converge towards the same theory. We say these theories belong to the same
universality class.

The convergence point is a fixed point of the renormalization group. This means a theory
for which the couplings values are such that the beta functions vanish. Physically, it
means that this theory is invariant under scaling transformations. For this reason, scaling-
invariant theories are of great interest since they are the fixed points of different RG
flows. One application of that is the study of continuous phase transitions in statistical
mechanics and of quantum critical points of condensed matter systems. Indeed, at their
critical conditions, these systems have an infinite correlation length, meaning they have
no characteristic length scale – they become scale invariant. Thus they can be studied
by scale-invariant QFTs, and the corresponding RG flows.

Conformal Field Theories

It is generically the case that scaling-invariant QFTs actually possess a larger spacetime
symmetry group, called the conformal group [33, 34, 35, 36]1. It is formed by comple-
menting the Poincaré group (made of translations, rotations and boosts) with scaling and
with the special conformal transformations. In general, conformal transformations can
be defined as the spacetime transformations that locally modify length scales without
affecting the angles. In d = 2 dimensions the conformal group is larger, in fact infinite-
dimensional, since any holomorphic transformation is conformal. We call QFTs equipped
with this enhanced symmetry Conformal Field Theories (CFTs).

Besides the insight they offer into the RG and into continuous phase transitions, CFTs
have many other important applications. They are one of the basic tools of String
Theory, where Polyakov’s world-sheet quantum field theory reduces to a CFT once gauge-
fixed [47]. They are one of the two sides of the AdS/CFT correspondence, which is a
duality between string theories in Anti-de Sitter (d+ 1)-dimensional spacetime (AdS) and
Conformal Field Theories defined on the d-dimensional boundary of AdS [48, 49, 50]. This
equivalence is one of the most powerful tools at our disposal to study string theory, which
is currently our best candidate for a theory of quantum gravity. The great advantage
is that it provides a non-perturbative way to define string theory in an asymptotically
AdS spacetime, by looking at it from the CFT side of the correspondence, which is
more under control. As an even more recent application, let us cite the development of
the formalism of Celestial Amplitudes, a holographic equivalence between gravitational
scattering amplitudes in asymptotically flat (d+ 2)-dimensional spacetime and a CFT

1This has been proven to be always true in d = 2 dimensions under some technical assumptions
[37, 38] and proven perturbatively in d = 4 [39, 40], with good progress towards a non-perturbative
proof [41, 42, 43]. There is currently no known proof in other dimensions. Notice that there are known
examples of physically meaningful scale-invariant but non-conformal theories, for which some of the
assumptions are broken [44, 45]. We point the interested reader to the review [46] for precise statements.
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living on the d-dimensional celestial sphere [51, 52, 53, 54].

Thankfully, CFTs are among the best-understood of all quantum field theories. Indeed,
the consequence of their extended spacetime symmetries is some very stringent constraints
on the form of correlators. The functional form of 2- and 3-point functions is completely
fixed, up to some normalization constants. 4- and higher-point functions can be reduced
to 3-point functions using the Operator Product Expansions (OPE). In other words, all
n-point functions can be deduced from the knowledge of the spectrum of operator scaling
dimensions and OPE coefficients. We call CFT data this set of numbers which completely
characterises a conformal field theory. In d = 2 dimensions, the infinite-dimensional
algebra leads to some models being completely solvable. An other useful consequence of
scale invariance is the existence of radial quantization, and the fact that it provides a
correspondence between quantum states and local operators.

Before discussing in more detail the techniques used to study Conformal Field Theories
specifically, let us review the computational techniques and limitations that exist in
general QFTs, and more precisely the distinction between weakly coupled and strongly
coupled observables.

Weakly coupled versus strongly coupled observables

Despite its many successes, performing Quantum Field Theory computations is by no
means a trivial task, and in some cases, there is currently no known analytical method
to derive the answer.

One major simplifying property is when the theory at hand is weakly coupled. To
best explain what that means, we refer to the Path Integral (PI) formulation of QFT
[55, 56, 57], which is a generalization of the PI formalism introduced by Feynman in
quantum mechanics [58, 59]. Consider a single scalar field φ(t, ~x) in a d-dimensional
spacetime (t ∈ R, ~x ∈ Rd−1), then its dynamics is described by an action functional
S[φ]. In a classical field theory, the physically valid field evolutions are those which are
stationary points (also called saddles) of the action functional. A unique, deterministic
evolution is then selected once we fix boundary conditions for the field at initial and
final times, φ(ti, ~x) and φ(tf , ~x). On the other hand in the quantum case, a path
integral describes the probability amplitude of evolution from an inital field configuration
φi(~x) = φ(ti, ~x) to a final one φf (~x) = φ(tf , ~x) as

〈
φf
∣∣∣e−iH(tf−ti)

∣∣∣φi〉 =
∫ φf

φi

Dφ eiS[φ] . (1)

This can be interpreted as a weighted average over all arbitrary field evolutions with
boundary conditions φi and φf . More general observables are obtained by inserting local
operators into this path integral.

4
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We say a path integral is weakly coupled if it can be approximated by a systematic
expansion around some leading classical field evolution φcl.(t, ~x). In that case the main
contribution to the PI Icl. is given by simply evaluating the action on φcl.. Then, quantum
corrections Iqu. can be computed by quantizing the fluctuations around φcl.. We call
this a semiclassical expansion. Note that finite solutions to the equations of motion
differ largely from the trivial vacuum solution. Thus they can be considered as being
made of a large number of quanta. In cases where such an expansion is not possible, or
useless since all terms have the same order of magnitude, the PI is called strongly coupled.
Notice that the property of being weakly or strongly coupled is defined for a particular
path integral within a QFT that can involve different sectors and regimes. Indeed, a
given QFT can have some PI that are weakly coupled and some other that are strongly
coupled, depending on the operators inserted into those path integrals and the boundary
conditions. For example, Quantum Chromodynamics (QCD), the QFT that describes
strong interaction, is strongly coupled at energy scale E ∼ GeV. However, to describe
long distance physics, it is possible to integrate out the degrees of freedom with large
quantum fluctuations, and be left with a weakly coupled Effective Field Theory (EFT),
which corresponds to the low-energy excitations of the pions.

Interestingly, the path integral point of view brings an explanation to the emergence of
a classical behaviour in a quantum mechanical system. Indeed, in the weakly coupled
case, we can distinguish observables for which the quantum part is a small correction
to the classical part Iqu. � Icl., and call them classical observables. On the other
hand, observables for which these two parts are comparable, or the quantum component
dominates, are called quantum observables. In the strongly coupled case, since there is
no semiclassical expansion, all observable are of the quantum mechanical type.

Let us consider an example. In the simplest case of a free scalar theory, where the
action is quadratic, all path integrals can be computed exactly since they are gaussian.
The result always corresponds to a semiclassical expansion; all PIs are weakly coupled.
When the boundary states are the vacuum (or made of a few excitations of it), the
semiclassical saddle around which the expansion is performed is the trivial vacuum
solution φcl. ≡ 0. As a consequence, the classical part of those path integrals is zero,
thus these observables are quantum mechanical. However, it is also possible to choose
boundary states (analogous to the coherent states of the harmonic oscillator) for which
the expansion is around a non-trivial saddle φcl. 6= 0, and has a leading classical result.

Perturbation theory

Many interacting QFTs fall into the strongly coupled regime for all their observables.
When that is the case, the only way to obtain the physical predictions of the theory is to
resort to numerical techniques, like simulation on a lattice. Hamiltonian truncation is an
other numerical, non-perturbative framework which currently receives a lot of attention.
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The only situation where a weak coupling expansion is generally available, is for systems
that are well approximated by a free theory. There, observables which involve a small
number of excitations of the vacuum are given at leading order by the free theory quantum
prediction, corrected by some subleading terms stemming from the interactions, and that
are suppressed by a small parameter λ. Consider for example the free scalar perturbed
by a λφ4 interaction term in 4 dimensions

S[φ] =
∫

d4x

(1
2∂µφ∂

µφ− 1
2m

2φ2 − λ

4!φ
4
)
. (2)

Then, for example the 2-to-2 scattering (S-matrix element) can be computed (in either
path integral formulation or canonical quantization) from

lim
(tf−ti)→∞

〈
~pC , ~pD

∣∣∣e−iH(tf−ti)
∣∣∣ ~pA, ~pB〉

=4EAEB(2π)6
(
δ(3)(~pA − ~pC)δ(3)(~pB − ~pD) + δ(3)(~pA − ~pD)δ(3)(~pB − ~pC)

)
− iλ(2π)4δ(3)(~pC + ~pD − ~pB − ~pB) + O(λ2) ,

(3)

where the state |~pA, ~pB〉 ,|~pC , ~pD〉 are asymptotic 2-particle states. The first line of the
result is the leading, quantum contribution (since we are expanding around the vacuum
φcl. ≡ 0) while the second line is the leading quantum correction (tree level). The O(λ2)
stands for higher-order corrections (loops) in the small-λ expansion.

Again, let us stress that this expansion around the vacuum solution is not a valid way to
compute all path integrals of the theory. For example, consider as initial state a single,
virtual particle with energy nm in its rest frame, that decays into a large number n of
real bosons at rest in that frame. This 1-to-n process can be represented by the diagram
of figure 1.

Figure 1: Tree-level diagram for the decay of one very off-shell particle into n real
particles.

The amplitude for this decay at tree-level is given as [60, 61, 62, 63]

Atree(1∗ → n) = n!
(

λ

2(4!)m2

)n−1
2

(4)

where the factor n! comes from the combinatorics of this diagram with many legs. Loop
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corrections can also be computed, and assuming n� 1, the leading term at loop level k
is proportional to λkn2k. Neglecting the subleading terms at each loop level, one gets

Aleading loops(1∗ → n) = Atree(1∗ → n)
(

1 +Bdλn
2 + 1

2B
2
dλ

2n4 + · · ·+ 1
k! (Bdλn

2)k + . . .

)
(5)

where Bd is a constant that depends on the dimension. Taking this result at face value,
it seems to indicate that this observable is strongly coupled if λn2 & 1, since quantum
corrections then become important. However, the precise form of the coefficients means
the leading term of all loop levels can be resummed, and the amplitude can be rewritten
as

Aleading loops(1∗ → n) = n!
(

λ

2(4!)m2

)n−1
2
eBdλn

2

≈ 1
λ

√
2π
( 1

2(4!)m2

)n−1
2
e

1
λ

(λn ln(λn)−λn+Bdλ2n2)+ 1
2 ln(λn) .

(6)

This new form is symptomatic of a semiclassical expansion, that can be performed in the
double scaling limit

λ→ 0, n→∞, λn = fixed. (7)

The system remains weakly coupled in that regime, even if λn� 1, albeit in a non-trivial
way. The difficult problem of finding a suitable classical solution φcl. in order to perform
the semiclassical expansion has been studied in [64] (see [65] for a more recent review;
notice that some technical difficulties remain to be clarified [66, 67]). Pushing this
expansion to further orders should restore the terms we neglected above at each loop
level.

Semiclassical methods represent one of the main tools to investigate non-perturbative
phenomena in QFT. Besides multiparticle production, we can also cite vacuum decay
[68, 69], instantons [70], and topological defects [71, 72, 73] as a partial list of the different
declinations of this methodology.

Symmetries and spontaneous symmetry breaking

It is generally the case that finding a suitable saddle over which to build the semiclassical
expansion is hard. However, like many things in QFT, it can be considerably simplified
by exploiting the symmetries of the theory. The states and operators of the theory
are classified according to representations of the symmetry group, and the way they
transform is specified by their quantum numbers (also called charges). While the vacuum
is generally invariant under those transformations, non-trivial solutions to the classical
equations of motion are transformed into different solutions. Indeed as we noted, they are
associated with states composed by many quanta, which in general have large quantum
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numbers. Thus the search for semiclassical saddles is guided by the symmetries of the
theory, and the quantum numbers of the observable of interest. The symmetries for which
the observable has vanishing quantum numbers will also leave invariant the associated
saddle.

On the other hand, the fact that the saddle has some non-vanishing quantum number
implies that the semiclassical expansion around it spontaneously breaks part of the
symmetry. An important general consequence of spontaneous symmetry breaking is
Goldstone’s theorem, which states that for each broken continuous symmetry in the
semiclassical expansion (each symmetry which is no longer manifest), there will be one
ungaped bosonic degree of freedom. Moreover, when the non-vanishing quantum numbers
are large, the energy gaps of the other degrees of freedom become large as well. This
indicates that, for energies which are not far above the saddle energy compared to those
gaps, an effective description may be available for the Goldstone modes, in which the
gaped degrees of freedom are integrated out.

In fact, one can expect that most observables with large quantum numbers, being associ-
ated with states made of many quanta, have a weakly coupled semiclassical expansion
for their path integral, around a non-trivial saddle with the same quantum numbers.
Even in cases where we do not succeed in finding a good saddle in the complete theory,
for example when we don’t have a lagrangian description for the theory, the symmetry
breaking pattern can guide us towards a useful effective description for the Goldstone
modes.

Recently, this general expectation has been realized in the context of Conformal Field
Theories [74, 75, 76], in an approach called the Large Charge Expansion. This is a
simplifying limit for correlators involving two operators with large quantum numbers,
which can be placed at the origin and at infinity modulo conformal transformations.
Conformal symmetry is advantageous in this context because of the state-operator
correspondence deriving from radial quantization, which is not present in a generic
QFT. Thanks to this correspondence, the operators with large quantum numbers can
be translated to states used as the endpoints of the path integrals, more precisely the
lowest-energy states sharing the same quantum numbers as the operators. In this limit,
the boundary states can be traded for the simplest possible states with the correct
quantum numbers, for which the other symmetries are unbroken. This means a simple
saddle can be found which respects the unbroken symmetries. In particular, in the
usual conformal mapping of the theory to the cylinder, one can assume the saddle to
have a homogeneous charge density. This simple classical solution can be interpreted
as a superfluid state, making a nice connection with condensed matter physics, whose
intuition will prove useful in this analysis.

To motivate the interest of this method, let us now come back to the subject of Conformal
Field Theories, and present the existing computational techniques in that domain.
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Computation techniques in CFT

Like any quantum field theory, some CFTs can be studied in perturbation theory. In
particular, weakly coupled CFTs that are the IR fixed point of a renormalization group
flow. In that case as we mentioned earlier, thanks to the universality property, any QFT
flowing to that fixed point can be equivalently used.

On the other hand, many interesting CFTs are strongly coupled. As for generic QFT,
a lattice simulation or hamiltonian truncation can be a good way to make progress in
that case. Except there are CFTs which don’t even have a lagrangian description, being
defined solely by their CFT data, and therefore are out of reach of these methods.

However, thanks to the properties of CFTs, some powerful methods are available to
investigate them. The AdS/CFT duality can be used, since subject to some additional
constraints the dual to a strongly coupled CFT is a weakly coupled theory in AdS.
However, not all CFTs possess such a holographic dual, hence this method is not very
general. We also have at our disposal a very powerful non-perturbative method called
the Conformal Bootstrap [77, 78, 34, 36, 79]. The idea is to use the general properties
of CFTs (unitarity, associativity of the operator product expansion, and existence of a
traceless stress-energy tensor) to impose constraints on the spectrum of the theory and
the values of OPE coefficients. This turns out to be sufficient to numerically compute
the CFT data of some theories with a huge precision.

Any new means of investigation of CFTs is in our interest, especially if non-perturbative.
For example, the early applications of the conformal bootstrap focused on operators of
the lowest scaling dimensions in conformal theories. Hence, they are well complemented
by methods focusing on large scaling dimensions. The large charge expansion framework
falls into that category, since operators with large quantum numbers also have large
scaling dimensions.

Structure of the thesis

This thesis reports a study that was performed with the goal of investigating the large-
charge sector of Conformal Field Theories in some particular cases where a perturbative
expansion is available. More precisely, our research focused on the scalar U(1) model
in 4 − ε or 3 − ε dimensions at the Wilson-Fisher fixed point. The advantage of this
theory is that it is a UV-complete lagrangian description of a CFT. In the ε� 1 limit,
observables can be calculated using perturbation theory.

The first quantity of which we present the calculation is the scaling dimension of the
lowest-dimensional operator with charge n under the U(1) symmetry, which we denote
φn. Very much like in the case of multiparticle amplitudes described above, a naive
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computation, performed in the usual way of quantizing the theory around the trivial
vacuum, does not lead to a meaningful perturbative expansion when operators with large
U(1) charge n are involved. This is a consequence of the combinatorics of Feynman
diagrams at play. Indeed, one notices in this case that the leading large-n parts of
the coefficients of the perturbative powers series in ε scale like εknk+1, rendering the
expansion not reliable if the product εn is not small.

However, it is possible to organize the computation as a semiclassical expansion, by
considering the double scaling limit

ε→ 0, n→∞, εn = fixed. (8)

This means that the leading contribution to large-n observables is given by evaluating
them classically, using a non-trivial solution to the classical equations of motion (saddle)
as input. One can interpret this classical solution as representing the collective effect of
many quanta being excited to reach that high quantum number. We will see that in this
case, the classical solution corresponds to a superfluid state.

Subleading contributions can then be systematically computed by quantizing the theory
around the semiclassical background, describing the fields as a quantum fluctuation
added to the semiclassical solution. This results in a perturbative expansion where the
quantum corrections can be represented and computed as Feynman diagrams for the
fluctuations. The result takes the form of a power series in ε, where εn appears as a
finite parameter.

Thanks to this technique, observables involving operators with large quantum numbers
can be computed systematically, and here in a more direct way than what can be done
for generic Conformal Field Theories, where the large charge expansion relies on the
effective field theory of Goldstone bosons. Thus, this study offers more insight into
the properties of this expansion, and demonstrates explicitly how it takes into account
the gaped degrees of freedom when the computation is performed in the UV-complete
picture. Our results can be expanded in the small εn limit where they match the standard
perturbative computation, as well as in the large εn limit, where they match with the
large charge EFT results. Thus they furnish the correct interpolation between those two
regimes of the theory.

This thesis is outlined as follows. In the first chapter, we will introduce the subject
of the large charge sector of CFTs, reviewing the recent literature and focusing on
the EFT approach. The other chapters present original research projects. Chapter 2
describes the use of the semiclassical method when applied to the ε-expansion of U(1)
Wilson-Fisher fixed point to compute the anomalous dimension of the φn operator. This
was performed both in the φ4 theory in 4 − ε dimensions [1], and in the φ6 theory in
3− ε dimensions [2]. We comment on some applications of our results, including boosting

10



Introduction

perturbative Feynman diagram computations up to five loops, and comparison with
Montecarlo simulations at ε = 1. Chapter 3 focuses on the d = 4− ε theory with quartic
interaction, and presents the computation of three- and four-point functions of scalar
operators. We explain how OPE coefficients can be derived from the conformal block
decomposition of the latter [3]. In chapter 4, we present an investigation of the spectrum
of fluctuations around the semiclassical vacuum, which is also presented in [3]. In free
theory and quantization around the trivial vacuum, we classified the spectrum in terms
of primary and descendent operators, providing a full basis of all primaries which have a
total number of derivatives lower than the charge. We also described a mapping between
trivial vacuum excitations and fluctuations around the semiclassical saddle, and discussed
the limit of validity of this mapping at large spins. Finally, we conclude the dissertation
by summarizing the results and proposing future work directions. Appendices provide
some technical precisions and detailed derivations.
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1 Conformal Field Theories at large
charge

In this chapter, we review the basics of the semiclassical large charge expansion in CFTs.
This idea was proposed in [74, 76, 75], and the discussion in this chapter is also based on
[80, 81]. This study was motivated by the previous observation of simplifying limits in
the large quantum sector of different CFTs [82, 83, 84, 85]. Furthermore, some results of
the conformal bootstrap at large spin indicated that might be a general property of the
structures of CFTs [86, 87].

As is the case in the rest of this thesis, we discuss the case of operators charged under an
abelian U(1) internal symmetry group. It can be generalized to larger internal groups
and to operators with large spin. We also focus on the problem of computing the scaling
dimension ∆n of the lowest scalar operator On with given charge n under the U(1)
symmetry. The method can also be used to compute more observables of the CFT, for
example the OPE coefficients of On. On the other hand, we consider a general dimension
d, since the next chapters will consider theories in different number of dimensions.

This approach is based on two key ideas:

1. The operator-state correspondence, which is a feature of radial quantization of
conformal field theories, and

2. The description of the sector of states with large charge n by the effective field
theory of a generalized superfluid.

1.1 Leading behaviour: dimensional analysis

The leading contribution to the scaling dimension ∆n can be estimated directly by a simple
dimensional argument, which is the following. In a CFT defined on the d-dimensional
euclidean plane Rd, one can apply radial quantization and use Weyl invariance to map
the theory to the cylinder R× Sd−1. Parametrizing Rd by polar coordinates (r, θ), where
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Chapter 1. Conformal Field Theories at large charge

θ collectively denotes the coordinates on Sd−1, and R× Sd−1 by (τ, θ), the mapping is
simply given by

r = Reτ/R (1.1)

with R the sphere radius. The volume of the sphere is then

Rd−1Ωd−1 = Rd−1 2πd/2
Γ(d/2) . (1.2)

where Ωd−1 is the volume of the unit sphere.

In radial quantization, the state-operator correspondence associates to any local operator
acting on the vacuum, a state in the Hilbert space, such that the energy of the state is
proportional to the scaling dimension of the operator. We denote |n〉 the state created
by operator On. It has the same quantum numbers as On, and is thus the lowest-energy
charge-n state, with energy

En = ∆n

R
. (1.3)

At large charge n, we can assume that the state |n〉 has an important semi-classical part,
corresponding to a condensed matter state with homogeneous charge density ρn up to
the characteristic energy scale

ρn = n

Rd−1Ωd−1
=⇒ (ρn)

1
d−1 ∼ n

1
d−1

R
.

This scale is parametrically larger than the scale associated to the sphere 1
R . Thus the

same scale should1 be associated to the energy density En, which yields

ρn = n

Rd−1Ωd−1
=⇒ (ρn)

1
d−1 ∼ n

1
d−1

R

En = ∆n

RdΩd−1
=⇒ (En)

1
d ∼ (∆n) 1

d

R

(ρn)
1
d−1 ∼ (En)

1
d =⇒ ∆n ∼ Q

d
d−1 . (1.4)

This power law is the leading contribution to the dimension at large charge n.

1.2 Corrections: superfluid EFT for Goldstone bosons

To estimate the behaviour of corrections to (1.4), it is necessary to analyse the semiclassical
expansion of path integrals in the theory. Note that some of the steps will be illuminated
in section 2.4 when we describe the analog computation in the ε-expansion in which all

1There are exceptions to this rule, in which case the leading scaling turns out to be different from
(1.4). This happens in supersymmetric theories that have a manifold of exactly flat directions [74].

14



1.2 Corrections: superfluid EFT for Goldstone bosons

the steps are fully explicit.

All observables of the CFT can be related to correlators. Therefore, our goal is to
understand (N + 2)-point functions of the form

〈O−n(τf , θf ) ON (τN , θN ) . . .O1(τ1, θ1) On(τi, θi)〉, (1.5)

where O−n is the hermitian conjugate operator to On, with opposite charge, and the
other Oi are any operators with finite quantum numbers. Using the conformal symmetry,
we can move the point xi → 0, equivalently τi → −∞ and then the point xf → ∞,
so τf → +∞, and the state-operator correspondence will then translate the operators
On,O−n into states

lim
τi→−∞

On(τi, θi)|0〉 = e∆nτi/R|n〉 ≡ |n, τi〉 (1.6)

lim
τf→∞

〈0|O−n(τf , θf ) = 〈n|e−∆nτf/R ≡ 〈n, τf | (1.7)

In fact, since |n〉 is the state with lowest energy with charge n, we can make use of any
(non-orthogonal) charge-n state |ψn〉, since they have the same asymptotic behaviour

lim
τi→−∞

eHτi |ψn〉 = e∆nτi〈n|ψn〉 |n〉 (1.8)

lim
τf→∞

〈ψn|e−Hτf = e−∆nτf 〈ψn|n〉 〈n|. (1.9)

This means the computation of (1.5) is equivalent to computing

〈ψn|ON (τN , θN ) . . .O1(τ1, θ1)|ψn〉. (1.10)

In particular, the desired scaling dimension is given by

〈ψn|e−H(τf−τi)|ψn〉 = N e−∆n(τf−τi)/R, (1.11)

where N is a normalization constant that does not depend on the τ ’s.

This is where the assumption of the superfluid effective description comes in. For large n,
we expect that the correlator (1.5) can be approximated by a semiclassical path integral,
whose lagrangian we can construct by an Effective Field Theory argument, following
constraints dictated by the pattern of symmetry breaking. In this case, in line with
the picture of section 1.1 we expect a homogeneous state on the sphere, such that the
rotation group SO(d) is preserved. Clearly the two insertion points at τf,i → ±∞ break
translations and special conformal transformations, and the charge density breaks the
internal U(1) symmetry, but a combination of time translation and charge Q is preserved
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Chapter 1. Conformal Field Theories at large charge

H̄ ≡ H + µR Q, (1.12)

which means the symmetry breaking pattern is

SO(d+ 1, 1)× U(1)→ SO(d)× H̄. (1.13)

This is the simplest2 and most natural symmetry breaking pattern, and it is known
to correspond to the EFT of a superfluid [88, 89, 90]. The constant µ is the chemical
potential.

This symmetry breaking pattern, with one broken internal symmetry generator, indicates
the presence of exactly one Goldstone boson, all other degrees of freedom having a finite
gap3. If we consider excitations with low enough energy, we can therefore assume that
these degrees of freedom are integrated out, and only the scalar Goldstone, which we
denote χ(τ, θ) is relevant. The remaining symmetry (1.12) suggests an expansion of the
form χ(τ, θ) = −iµτ + π(τ, θ), where the action of the U(1) symmetry is a constant shift
in the field χ. Once the effective lagrangian for the field χ is built, Noether’s theorem
can be used to derive the relation between µ and n.

The shift symmetry means that the EFT lagrangian must be constructed as a function
of ∂µχ. The effective action for the Goldstone mode can be systematically constructed,
taking into account all constraints from symmetries, using the Callan-Coleman-Wess-
Zumino (CCWZ) construction [92, 93, 94, 75], yielding

S[χ] = − c1

∫
dτ dd−1θ

√
g(∂χ)d

+ c2

∫
dτ dd−1θ

√
g(∂χ)d

[
R

(∂χ)2 + (d− 1)(d− 2) [∇µ(∂χ)]2
(∂χ)4

]

− c3

∫
dτ dd−1θ

√
g(∂χ)d

Rµν ∂µχ∂νχ(∂χ)4 + (d− 1)(d− 2) [∂µχ∇µ(∂χ)]2
(∂χ)6

+ (d− 2)∇µ
[
∂µχ∂νχ

(∂χ)2

] ∇ν(∂χ)
(∂χ)3

+O

(
(∂χ)d ∇

4

(∂χ)4

)
,

(1.14)

where (∂χ) = (−gµν∂µχ∂νχ)1/2, and ∇µ is the standard covariant derivative, Rµν is the
Ricci tensor and R the Ricci scalar deriving from the cylinder metric gµν . Note also
that we discarded total derivatives as well as terms vanishing under the leading order

2In theories with large internal symmetry groups, there exist symmetry breaking patterns with
homogeneous states which are not a superfluid, for instance it could be a Fermi liquid. In those cases,
the construction of the EFT does not follow the same rules as with superfluids, and it is less understood
how to proceed [75].

3Assuming there is no other symmetry, such as supersymmetry, to prevent it [91].
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1.2 Corrections: superfluid EFT for Goldstone bosons

equations of motion (given by the first line only) [95]. The ci’s are Wilson coefficients,
which are not determined by the EFT but depend on the specific underlying theory.

We are now fully armed to compute the path integral (1.11). The choice of the boundary
state |ψn〉 decides what boundary conditions are set for the path integral with action
(1.14). As we said, we make the choice which corresponds to a homogeneous field value,
obtaining the path integral

〈ψn|e−H(τf−τi)|ψn〉 =
∫
Dχ exp

(
−S[χ]− i

∫ τf

τi

dτ
∫

dd−1θ
√
g

n

Rd−1Ωd−1
χ̇

)
(1.15)

where the second term comes from the boundary conditions. This path integral can now
be semiclassically expanded. The first step is searching for a saddle of the equations of
motion, and as expected it is given by χ = −iµτ + π0. Variating the action with respect
to the boundary values, one gets the condition that fixes the relation between µ and the
charge, as

n

Rd−1Ωd−1
= i

∂L
∂χ̇

= c1dµ
d−1 − c2(d− 2)µd−3R+O(µd−5), (1.16)

which at large n can be solved perturbatively to find

Rµ =
(

n

c1dΩd−1

) 1
d−1

[
1 + c2(d− 2)2

c1d

(
n

c1dΩd−1

)− 2
d−1

+O

((
n

c1dΩd−1

)− 4
d−1
)]

.

(1.17)
The leading order contribution to the dimension ∆n is now given by evaluating the action
in (1.15) on the solution χ = −iµτ + π0, yielding

∆(0)
n = α1 n

d
d−1 + α2 n

d−2
d−1 +O

(
n
d−4
d−1

)
, (1.18)

where the α’s are constants depending on the Wilson coefficients as

α1 = c1(d− 1)Ωd−1

(c1dΩd−1)
d
d−1

, α2 = c2(d− 1)(d− 2)Ωd−1

(c1dΩd−1)
d−2
d−1

. (1.19)

We retrieve the leading order result (1.4).

The NLO correction in the semiclassical expansion is obtained by considering fluctuations
π(τ, θ) around the semiclassical saddle χ = −iµτ + π(τ, θ). Plugging this into the action
(1.14), we can expand in a series in inverse powers of µ, since µ is large at large n (1.17),
yielding at quadratic order

S[π] = d(d− 1)
2 c1µ

d−2
∫

dτ dd−1θ
√
g

(
π̇2 + 1

d− 1g
ij∂iπ∂jπ +O

(
∇4

µ2

))
. (1.20)

This action describes a phonon with speed of sound cs = 1√
d−1 . This quadratic action

17



Chapter 1. Conformal Field Theories at large charge

has for spectrum

ω` = J`√
d− 1

+O

(
J3
`R

2

n
2
d−1

)
, (1.21)

where
J2
` = `(`+ d− 2)

R2 (1.22)

is the `th eigenvalue of the laplacian on the sphere ∆Sd−1 . This eigenvalue has multiplicity

n`,d = (2`+ d− 2)Γ(`+ d− 2)
Γ(`+ 1)Γ(d− 1) . (1.23)

The leading quantum correction to the scaling dimension ∆n is given by the fluctuation
determinant arising from the gaussian path integral of action (1.20)

∆(1)
n = R

2(τf − τi)
log det

[
−∂2

τ −
1

d− 1∆Sd−1 +O

(
∇4

µ2

)]

= R

2
∑
`

n`,dω`

= β0 + β1n
− 2
d−1 + . . . (1.24)

where the β’s are functions of the dimension and Wilson coefficient, similarly to (1.19).
Note however that the dispersion relation at leading order (1.21) depends only on the
dimension, being in fact a consequence of conformal invariance, thus β0 is also a function
of the dimension only. We will not detail the computation here, the interested reader
can consult ref. [81]. Note however that it is very close in philosophy to the computation
we are going to do in full detail in the next chapter (section 2.4.5).

The contributions of the result sum to

∆n = ∆(0)
n + ∆(1)

n + . . .

= n
d
d−1

[
α1 + α2 n

− 2
d−1 + . . .

]
+ n0

[
β0 + β1n

− 2
d−2 + . . .

]
+ . . . (1.25)

following this pattern, the two-loop term ∆(2)
n would scale like n−

d
d−1 (up to logarithms

of n).

Let us give the explicit result in the most common dimensions. For d = 3

∆n

∣∣∣
d=3

= α1n
3
2 + α2n

1
2 − 0.0937255 + α3n

− 1
2 + β1n

−1 + . . . (1.26)

We can see that there is a single contribution to the n0 term, coming from β0n
0 =

0.0937255. This is always the case when d is odd. As said above, this coefficient does
not depend on the Wilson coefficients, but only on the dimension d, thus it is a truly
universal prediction of the methodology. This property will be checked by the explicit
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1.2 Corrections: superfluid EFT for Goldstone bosons

computation in the ε-expansion. Note also that α1, α2, α3, β1 depend only on 3 Wilson
coefficients c1, c2, c3, thus there is a nontrivial universal relationship between these four
α, β coefficients.

On the other hand for d = 4, we have that the β0 term contribution mixes with that of
α3 (same for β1 with α4). In fact, it is possible to show that β0,1 have simple poles in
the limit d→ 4. This divergent contribution, coming from a quantum loop, can be taken
care of by renormalizing the Wilson coefficients. After this process, it yields a logarithm
of the UV cutoff scale µ. The final result takes the form

∆n

∣∣∣
d=4

= α1n
4
3 + α2n

2
3 − 1

48
√

3
logn+ α3 +O(n−

2
3 , n−

2
3 logn). (1.27)

There is again a universal component, the logn term.

In the following chapters of the thesis, we are going to work in the ε-expansion, specifically
in dimension either d = 4 − ε or d = 3 − ε. In both cases the large charge limit will
match with the general result (1.25).

A very similar approach can be used to compute correlators with insertions (1.5). Again,
we will not detail this further, but the method is equivalent to what we will do in chapter
3 in ε-expansion.
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2 The ε-expansion meets semiclas-
sics: dimension of φn

2.1 Introduction

In this thesis, we would like to present a different approach to explore the large charge
sector of conformal field theories. While the previous chapter investigated the information
provided about this class of observables by the EFT formalism, we now demonstrate
it in the context of the ε-expansion [1, 2] (also see [96, 97] for related works). The
construction will parallel that of chapter 1, with the difference that one does not need to
construct an effective field theory. In this case, one way to retrieve the Wilson coefficients
of the corresponding EFT is by matching the results of this chapter with the general
prediction (1.25). More specifically, throughout the next three chapters we shall consider
two variants of U(1)-invariant CFTs defined by a lagrangian in ε-expansion, which are
weakly coupled at small ε� 1.

1. the complex massless scalar with a quartic interaction in 4− ε euclidean dimensions
given by lagrangian

L = ∂φ̄∂φ+ λ0
4
(
φ̄φ
)2
. (2.1)

where λ0 is the bare coupling. We will first consider general coupling, but we
shall later derive more specific results by focusing on the Wilson-Fisher fixed point.
Renormalized field and coupling are defined according to

φ = Zφ[φ], λ0 = M ελZλ, (2.2)

where M is the sliding scale. Throughout the thesis we will adopt the minimal
subtraction scheme, where Zφ and Zλ are expressed as an ascending series of pure
poles. In particular we have

logZλ =
∑
k

zk(λ)
εk

= c11λ+ c12λ
2 + . . .

ε
+ c22λ

2 + . . .

ε2 + . . . , (2.3)
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Chapter 2. The ε-expansion meets semiclassics: dimension of φn

where [98]

z1(λ) = 5 λ

(4π)2 −
15
2

λ2

(4π)4 +O

(
λ3

(4π)6

)
. (2.4)

Notice moreover that Zφ = 1 up to two-loop corrections

Zφ = 1− λ2

(16π2)28ε +O(λ3). (2.5)

Using (2.2) one can easily show that the β-function equals

∂λ

∂ logM ≡ β(λ) = −ελ+ β4(λ), (2.6)

with
β4(λ) = λ2∂z1

∂λ
= 5 λ2

(4π)2 − 15 λ3

(4π)4 +O

(
λ4

(4π)6

)
. (2.7)

At the Wilson-Fisher fixed point, defined by λ = λ∗ such that β(λ∗) = 0, the
theory is invariant under conformal transformations. The fixed point coupling λ∗
is non-trivially determined by the space-time dimensionality

λ∗
(4π)2 = ε

5 + 3
25ε

2 +O(ε3). (2.8)

2. the complex massless scalar with a sextic interaction in 3− ε euclidean dimensions
given by lagrangian

L = ∂φ̄∂φ+ λ2
0

36
(
φ̄φ
)3

. (2.9)

The renormalization of the fields and coupling is also introduced with (2.2), but of
course the renormalization constants Zφ, Zλ are different. In this theory the fields
renormalization Zφ = 1 up to 4 loops. The β-function is given by [99]

∂λ

∂ logM ≡ β(λ) = λ

[
−ε+ 7λ2

48π2 +O

(
λ4

(4π)4

)]
. (2.10)

For ε� 1, this implies the existence of an IR-stable fixed point at

λ2
∗

(4π)2 = 3
7ε+O

(
ε2
)
. (2.11)

The goal of this chapter is to introduce the semiclassical saddle expansion for comput-
ing correlators involving operators with large charge n in these weakly-coupled CFTs.
Although we will formulate the method in general terms in section 2.4, the concrete
computations of this chapter focus on a simple example, plausibly the simplest one in
the reach of this method, namely the scaling dimension ∆φn of the operator φn. This
quantity is derived from the asymptotic behaviour of the 2-point function

〈
φ̄n(xf )φn(xi)

〉
.
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2.1 Introduction

Example of computations of higher-point functions are discussed in the next chapter.

The main conceptual result of this dissertation is that the CFT data (scaling dimensions
and OPE coefficients), for operators charged with a large quantum number n under the
U(1) internal symmetry, can be computed through a systematic expansion around a
non-trivial trajectory, when considered in the double scaling limit

λ ∼ ε→ 0
n→∞

λn = fixed. (2.12)

For instance, in this chapter we shall study the scaling dimension of the lowest-dimensional
operator of charge n, φn. This will yield a result of the form

∆φn = 1
λ∗

∆−1(λ∗n) + ∆0(λ∗n) + λ∗∆1(λ∗n) + . . . (2.13)

with λ∗ the fixed point coupling (either (2.8) or (2.11) depending in which theory we work),
and with ∆k−1 representing the k-th loop contribution in the semiclassical expansion.
This result will be made concrete through the explicit computation of the leading and
subleading terms, ∆−1 and ∆0, in the two theories listed above.

The equation (2.13) shows that in the double scaling limit, ε (or equivalently λ∗) remains
the loop expansion parameter, while the effects of large n are controlled by the classical
parameter λ∗n. Our system, when weakly coupled around the vacuum, thus remains
weakly coupled also at large n. However our result applies equally well to large and to
small λ∗n, where one can also compute using Feynman diagrams. On the one hand this
illustrates that the poor behaviour of standard perturbation theory as λ∗n is increased
is simply tied to a poor choice of the path integral trajectory around which to expand.
On the other hand it allows to compare our semiclassical computation to the results
obtained using Feynman diagrams.

The simplicity of this approach, we believe, illuminates previous literature in related
but different contexts. As concerns multilegged scattering amplitude discussed in the
introduction, the structure of our computation is precisely the same, and precisely
identical in the emergence of a double scaling limit, λ→ 0 with λn fixed. This indicates a
sort of universality in the structure of multilegged observables, with λn acting like a sort
of ’t Hooft coupling. On the CFT side, our result directly connects to preceding work on
the general properties of large charge operators [74, 75, 100]. In that context, it shows
more concretely how the superfluid configuration of the leading trajectory emerges and
it offers a concrete “UV” complete realization of the effective field theory describing the
superfluid. In particular the parameter λn controls the occurrence of the pure superfluid
regime: at small λn the leading trajectory corresponds to a superfluid interacting with a
light radial excitation, while at large λn the latter decouples. In our amusingly simple
scenario, the parameter λn thus seems to play a role similar to the ’t Hooft coupling in
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Chapter 2. The ε-expansion meets semiclassics: dimension of φn

AdS/CFT, where it controls the gap between stringy and supergravity modes.

A comment is in order regarding the claim that we compute the dimension of operator
φn. Indeed, in an interacting theory, it is not trivial to make sense of a field expression
such as φn, and even in perturbation theory the interpretation may depend on the chosen
renormalization procedure. However, the scaling dimensions are well-defined physical
quantities in a Conformal Field Theory, which is precisely the case that we want to
consider. For small λn, when diagrammatic perturbation theory holds, φn is the operator
of lowest dimension with U(1) charge n (indeed, any other operator with charge n,
e.g. φn−2(x)(∂φ(x))2, clearly possesses a larger scaling dimension in the free limit, and
for small enough λn the ordering is not affected). Therefore it does not mix in MS
renormalization, and the perturbatively renormalized operator with a well-defined scaling
dimension is indeed [φn]. Throughout this thesis, we conventionally extend this idea to
generic λn, defining the operator φn to be the lowest dimension charge n operator. Level
crossing may in principle occur at finite λn, but that would unavoidably be associated
with a non-analyticity in the dependence on λn of the minimal dimension at fixed charge.
The result we shall obtain with our semiclassical method is however analytic at positive
λn and matches the dimension of φn at small λn. That however does not imply that
the field expression for the lowest dimension charge n operator remains φn for all values
of λn, but it tells us that φn is indeed the “equivalent” of that operator in the small
λn limit1. It should however become clear from our discussion that the precise form of
the lowest dimension operator is a separate issue and does not affect the semiclassical
computation of its scaling dimension2.

This chapter is organised as follows. We begin by focusing on the complex scalar with
quartic interaction described by the lagrangian (2.1) in 4− ε euclidean dimensions. In
a first approach we do not tune the coupling to the Wilson-Fisher fixed point, to see
what can be said of the semiclassical expansion for non-conformal theory. We start in
section 2.2 by reviewing the computation of ∆φn in the usual regime of finite n and
λ� 1, where perturbation theory is valid. We detail the diagrammatic computation at
two-loop, and we present a diagrammatic analysis of the higher-loop contributions, which
shows perturbation theory is limited to small λn, and gives hints that a semiclassical
expansion exists beyond. In section 2.3 we derive the existence of the semiclassical
expansion from general arguments, and argue the expansion takes the form (2.13). We
perform said expansion but only for the leading term ∆−1 and in the perturbative regime
(λn� 1). This approach is not tractable outside of this regime, thus does not provide
any improvement over the direct diagrammatic computation.

Starting from section 2.4, we specialize to the Wilson-Fisher fixed point (2.8), and use

1We will use the same idea of free-theory representent to classify charge-n operators in chapter 4.
2It matters for the computation of the normalization of the correlator, and thus for the computation

of higher point functions. Notice we do not compute this effect in chapter 3, assuming we work with
canonically normalized operators. It remains an open question for future work.
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2.2 Perturbation theory around the vacuum

the additional properties of the conformal theory to simplify the computation. The key
features of CFTs that are exploited here are radial quantization and the associated state-
operator correspondence. The conformal mapping to the cylinder also helps simplifying
the discussion, and reveals that the semiclassical saddle can be seen as a superfluid state.
We perform the explicit calculation of the first two leading terms in (2.13) for arbitrary
values of λ∗n. Some direct applications of the results are analyzed in section 2.4.6. We
not only find perfect agreement with the diagrammatical result in the limit λn� 1, but
are also able to combine our result with finite order calculations and predict expansion
coefficients that are beyond the order reached by each method when taken individually.
The results also match with the large charge EFT results in the limit λn � 1. Our
systematic expansion in d = 4− ε also invites a comparison with the results of Monte
Carlo simulations in d = 3. While we are aware that taking ε = 1 is a significant stunt,
we nonetheless find the comparison encouraging already with the first two orders we
computed. This warrants computation of the next order, ∆1.

Finally, in section 2.5, we generalize these results to the complex scalar with sextic
interaction in 3− ε dimensions. Further generalisations to non-abelian symmetry groups
and different theories will be discussed in the conclusion of the thesis.

2.2 Perturbation theory around the vacuum

2.2.1 Renormalization of operators

In this chapter (except section 2.5) we will consider the massless U(1) symmetric theory
with quartic interaction in d = 4− ε dimensional euclidean space with bare lagrangian
given in (2.1). We will first consider general coupling, but we shall later derive more
specific results by focusing on the Wilson-Fisher fixed point (2.8). The common procedure
to compute scaling dimensions of operators is to work in renormalized perturbation
theory and to perform the renormalization of the operators of interest [56, 101]. In all
computations of this thesis we work in the minimal subtraction (MS) scheme defined by
(2.2 – 2.8). Similarly to φ, all renormalized operators are denoted with square brackets

O(x) = ZO [O](x), (2.14)

where the renormalization constant ZO is also an ascending series of pure poles in ε. For
ε� 1 the theory is weakly coupled. As we will show in the next subsection, this does not
prevent perturbation theory around the vacuum to break down for specific observables.
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Chapter 2. The ε-expansion meets semiclassics: dimension of φn

2.2.2 Diagrammatic computation of the anomalous dimension

We will study the scaling dimension of the simplest operator with U(1) charge3 n (-n),
denoted by [φn] ([φ̄n]) and related to the bare field by

(φ(x))n = Zφn [φn](x) . (2.15)

where Zφn is the renormalization factor in MS scheme. The anomalous dimension is then
given by

γφn = ∂ logZφn
∂λ

[−ελ+ β4(λ)] , (2.16)

and is finite as the poles cancel to the relevant order in λ. For arbitrary λ, γφn is
scheme dependent, and thus unphysical, beyond leading order. That can easily be seen
by changing the scheme according to [φn]→ f(λ)[φn] and Zφn → Zφn/f(λ), with f(λ)
a power series with finite coefficients. In the new scheme the anomalous dimension is
modified according to γφn → γφn − β(∂λ ln f). On the other hand β(λ∗) = 0, so that
γφn is scheme independent and physical at the fixed point. Indeed, a straightforward
solution of the Callan-Symanzik equation for 〈[φ̄n][φn]〉 shows that the operator’s physical
dimension at the fixed point is

∆φn = n(d/2− 1) + γφn(λ∗) . (2.17)

We now perform this computation explicitly at 2-loops. We shall need this in order
to compare to the results of the more powerful method we shall develop in the next
sections. For simplicity, we work in momentum space and we consider an insertion of the
operator φn within n equal incoming momenta p. We want to compute, according to the
definitions (2.2),(2.15):

〈φnφ̄(p)φ̄(p) . . . φ̄(p)〉 = ZφnZ
n
φ 〈[φn] [φ̄](p) [φ̄](p) . . . [φ̄](p)〉 (2.18)

and find the right renormalization constant Zφn such that 〈[φn] [φ̄](p) [φ̄](p) . . . [φ̄](p)〉 is
finite in the MS scheme.

The Feynman rules of renormalized perturbation theory are:

p
= 1

p2 = −λ = −δλ (2.19)

where δλ = 5λ2

16π2ε is the coupling counterterm at one-loop in MS [98]. The φn operator
will be represented by a crossed vertex and normalized to

= 1. (2.20)

3In our conventions, φ, φ̄ have charge, respectively, 1 and −1.
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2.2 Perturbation theory around the vacuum

All diagrams to two-loop are displayed in figure 2.1. To lighten the notation, we don’t
draw the incoming lines if they are directly connected to the φn operator, only those
connected to other vertices are shown.

k + 2p
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p

p

(a)

k + l + p

l

k
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p
p

(b)
k + 2p
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(d)
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p
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p
k + l + pp

l

k

(f)
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k

p

p

(g)

Figure 2.1: Feynman diagrams that contribute at two-loop.

The one-loop diagram is:

(a) = n(n− 1)
2

1
2(−λ)

∫ ddk
(2π)d

1
k2

1
(k + 2p)2

= − λ

16π2
n(n− 1)

4

(
2
ε

+ 2− γ + log
(
πM2

p2

))
+O(ε)

(2.21)

where in the first line, the first factor n(n−1)
2 indicates the number of ways the external

momenta can be connected to form this diagram: one has to chose 2 momenta among n.
The next factor 1

2 is the usual symmetry factor, then comes the vertex, and finally the
loop integral. In the result, M is the scale introduced in (2.2).

Six diagrams have to be computed at two-loop level. We need only the divergent piece of
these diagrams. The procedure to compute the first two diagrams is described in [56].
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Chapter 2. The ε-expansion meets semiclassics: dimension of φn

The last diagram includes the one-loop counterterm δλ.

(b) = n(n− 1)(n− 2)
2

1
2(−λ)2

∫ ddk
(2π)d

∫ ddl
(2π)d

1
k2

1
(k − 2p)2

1
l2

1
(k + l + p)2

= λ2

(16π2)2
n(n− 1)(n− 2)

4

 2
ε2 +

5− 2γ + 2 log
(
πM2

p2

)
ε

+O(ε0) (2.22)

(c) = n(n− 1)
2 (−λ)2

∫ ddk
(2π)d

∫ ddl
(2π)d

1
k2

1
(k + 2p)2

1
l2

1
(k + l + p)2

= λ2

(16π2)2
n(n− 1)

2

 2
ε2 +

5− 2γ + 2 log
(
πM2

p2

)
ε

+O(ε0) (2.23)

(d) = n(n− 1)(n− 2)(n− 3)
8

1
4(−λ)2

(∫ ddk
(2π)d

1
k2

1
(k + 2p)2

)2

= λ2

(16π2)2
n(n− 1)(n− 2)(n− 3)

8

 1
ε2 +

2− γ + log
(
πM2

p2

)
ε

+O(ε0) (2.24)

(e) = n(n− 1)
2

1
4(−λ)2

(∫ ddk
(2π)d

1
k2

1
(k + 2p)2

)2

= λ2

(16π2)2
n(n− 1)

2

 1
ε2 +

2− γ + log
(
πM2

p2

)
ε

+O(ε0) (2.25)

(f) = n
1
2(−λ)2 1

p2

∫ ddk
(2π)d

∫ ddl
(2π)d

1
k2

1
l2

1
(k + l + p)2

= − λ2

(16π2)2
n

4ε +O(ε0) (2.26)

(g) = n(n− 1)
2

1
2(−δλ)

∫ ddk
(2π)d

1
k2

1
(k + 2p)2

= − λ2

(16π2)2
5n(n− 1)

4

 2
ε2 +

2− γ + log
(
πM2

p2

)
ε

+O(ε0) (2.27)
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2.2 Perturbation theory around the vacuum

Summing all contributions we get:

(2.20)+(2.21) + (2.22) + (2.23) + (2.24) + (2.25) + (2.26) + (2.27)

=
(

1− λn(n− 1)
(16π2)2ε + λ2

(16π2)2

(
n4 − 2n3 − 9n2 + 10n

8ε2 + n3 − n2 − n
4ε

))

×

1−
λn(n− 1)

(
2− γ + log

(
πM2

p2

))
4(16π2)

+O(ε, λ2ε0)

(2.28)

where the result, following (2.18), has been factored as ZφnZnφ , which contains only poles
according to MS prescription, times the finite value of 〈[φn] [φ̄](p) [φ̄](p) . . . [φ̄](p)〉. This
lets us compute the renormalization factor Zφn using (2.5):

Zφn = 1− λn(n− 1)
(16π2)2ε + λ2

(16π2)2

(
n4 − 2n3 − 9n2 + 10n

8ε2 + 2n3 − 2n2 − n
8ε

)
. (2.29)

The anomalous dimension γφn is computed using (2.16) and yields

γφn = n

[
λ

16π2
(n− 1)

2 −
(

λ

16π2

)2 2n2 − 2n− 1
4

]
. (2.30)

When the theory is considered at the fixed point (2.8) this implies

∆φn = n

[(
d

2 − 1
)

+ ε

10 (n− 1)− ε2

100(2n2 − 8n+ 5)
]
. (2.31)

2.2.3 Anomalous dimension of large charge operators

The result of the previous subsection is valid as long as n ≥ 4 because of the four
connections in diagram (2.1d). Notice this diagram has a leading contribution at n� 1
scaling like λ2n4. On the other hand, in (2.30) the leading contribution at two loops
scales like λ2n3, indicating there is some kind of cancellation happening when one takes
the logarithm in (2.16).

We now focus on n � 1, the regime of large charge or many legs, and proceed to a
diagrammatic analysis of the growth of the multiplicity factors with n, see figure 2.2.
Considering any loop order k � n, one finds that the leading contributions to Zφn
scale like λkn2k, and come from the daisy diagrams in the leftmost column of figure 2.2.
Similarly, all contributions scaling from λkn2k down to λknk+2 come from “disconnected”
diagrams that are combinations of lower-loop connected diagrams, see for example the
diagram in the center of the figure. This is because the largest contribution from a
fully-connected diagram comes from the type of diagrams in the top row for which the
number of legs picked from the φn equals k + 1, and scale as λknk+1. In fact, a more
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(a) ∼ λn2

(b) ∼ λ2n4

(c) ∼ λ3n6

(d) ∼ λ2n3

(e) ∼ λ3n5

(f) ∼ λ3n4

...

...

...

· · ·

Figure 2.2: Some characteristic Feynman diagrams that appear with the φn operator.

detailed analysis shows that at any given loop order k, the terms with powers of n
between k + 2 and 2k simply exponentiate from lower loop terms4. As a consequence, in
the expansion of lnZφn , and thus of γφn , those highest powers cancel, and the leading
remaining contribution at order k scales like the connected diagram, λknk+1. That is

γφn = n
∑
k=1

λkPk(n) , (2.32)

with Pk a polynomial of degree k. Note that the leading λknk+1 term is not only derived
from the fully-connected diagram, but also receives contributions from disconnected ones.
Thus while this exponentiation explains how higher terms cancel, it does not allow to
skip the computation of disconnected diagrams for remaining terms.

In truth we have explicitly checked (2.32) only up to four loops, but in the next section
we shall give a general argument bypassing the diagrammatic analysis. The above
result shows that, no matter how weakly coupled the theory is, for sufficiently large λn,
perturbation theory breaks down. The series in eq. (2.32) can also be organized in terms
of leading and subleading n-powers, in close analogy with leading and subleading logs in
the RG resummation

γφn = n
∑
κ=0

λκFκ(λn) . (2.33)

Very much like for the RG, this alternative rewriting of the series suggests an alternative

4As an illustration, it is simple to check that the sum over daisy diagrams exponentiate the λn2

contribution from the single petal diagram (a).
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2.3 Semiclassical approach in non-conformal theory

loop expansion, performed after resumming (or straight out computing) all powers of λn.
Again, the physics underlying this alternative interpretation will be made manifest in the
next sections. Notice in passing, and consistently with the results in the next section, that
the leading-n contribution F0(λn) is unaffected by changes in the subtraction scheme,
like for instance λ → λ + aλ2 or Zφn → Zφn(1 + bn2λ), the latter corresponding to a
simple reshuffling of the finite terms in the daisy diagram (a).

2.3 Semiclassical approach in non-conformal theory

2.3.1 Semiclassical expansion of the path integral

We now consider a first semiclassical method with which it is straightforward to come up
using the intuition of the path integral. In this section we still consider a general weak
coupling λ, not set at the Wilson-Fisher fixed point.

The scaling dimension of [φn] can also be directly computed by considering the two-point
function

〈φ̄n(xf )φn(xi)〉 ≡
∫
DφDφ̄ φ̄n(xf )φn(xi) exp [−

∫
L]∫

DφDφ̄ exp [−
∫
L]

≡ Z2
φn〈[φ̄n](xf )[φn](xi)〉 . (2.34)

The above integral can be cast in a form which exhibits its semiclassical nature in the
small λ regime independently of the size of n. First it is convenient to rescale the field
φ→ φ/

√
λ0 to exhibit λ0 as the loop counting parameter∫

L → 1
λ0

∫ [
∂φ̄∂φ+ 1

4
(
φ̄φ
)2
]
≡ S

λ0
. (2.35)

Secondly φ̄n(xf )φn(xi) can be brought up in the exponent, obtaining

Z2
φnλ

n
0 〈[φ̄n](xf )[φn](xi)〉 =

∫
DφDφ̄ e

− 1
λ0

[∫
∂φ̄∂φ+ 1

4(φ̄φ)2−λ0n(ln φ̄(xf )+lnφ(xi))
]

∫
DφDφ̄ e

− 1
λ0

[∫
∂φ̄∂φ+ 1

4(φ̄φ)2
] . (2.36)

The dependence on λ0 and n, shows that we can perform the path integral using a
saddle point expansion in the limit of small λ0, while keeping λ0n fixed. This limit thus
encompasses the case where λ0n is (arbitrarily) large5. Independently of the detailed
form of the field configuration furnishing the steepest descent, the right hand side of
eq. (2.36) will then take the form

λ
−1/2
0 e

1
λ0

Γ−1(λ0n,xfi)+Γ0(λ0n,xfi)+λ0Γ1(λ0n,xfi)+... , xfi = xf − xi. (2.37)

5Of course we are making here a formal statement by using the bare coupling, which is a power series
in the renormalized coupling. In terms of renormalized quantities the limit is thus λ(M) small with
λ(M)n fixed.
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Chapter 2. The ε-expansion meets semiclassics: dimension of φn

The factor λ−1/2
0 is understood as follows. The path integral in the denominator is

computed through a saddle-point expansion around the trivial point φ = φ̄ = 0, while
the action of the path integral in the numerator is stationary on a continuous family of
nontrivial configurations with φ, φ̄ 6= 0 and parametrized by the zero mode associated to
the corresponding spontaneous breaking of the U(1) symmetry. As the integral over the
zero mode is clearly independent of the value of the action, this results in a mismatch of
the powers of λ1/2

0 in between the numerator and the denominator, leading to (2.37) 6.

Now, notice that by using Stirling’s formula the expression λn+1/2
0 n! can be written in

the same form as the exponential factor in eq. (2.37). It is then convenient to redefine
the Γk’s so as to factor out a λn+1/2

0 n! in the the exponential factor in eq. (2.37) and
rewrite that equation as

Z2
φnλ

n
0 〈[φ̄n](xf )[φn](xi)〉 = λn0n! e

1
λ0

Γ−1(λ0n,xfi)+Γ0(λ0n,xfi)+λ0Γ1(λ0n,xfi)+... (2.38)

Comparing to eq. (2.34), we deduce that the exponential factor in eq. (2.38) coincides at
weak coupling and finite n with the loop expansion we discussed in the previous section.
In particular, given

D(x) = 1
Ωd−1(d− 2)(x2)d/2−1 = 〈φ̄(x)φ(0)〉free , Ωd−1 = 2πd/2

Γ(d/2) (2.39)

one has
lim
λ0→0

e
1
λ0

Γ−1(λ0n,xfi)+Γ0(λ0n,xfi)+λ0Γ1(λ0n,xfi)+... = D(xfi)n . (2.40)

Moreover one has that the λκ0Γκ’s must possess a power series expansion in λ0 with fixed
n. Renormalization is simply performed by separating out the UV divergent part in each
term in the exponent

λκ0Γκ(λ0n, xfi) = λκΓdivκ (λn, λ) + λκΓrenκ (λn, λ, xfi,M) (2.41)

where of course λ ≡ λ(M) and where the resulting λκΓ̄κ behave like power series at

6The situation is fully analogous to the following example involving two dimensional integrals:

I(λ, n) =
∫
C
dzdz̄(zz̄)n exp

{
− 1
λ

[
zz̄ + 1

4 (zz̄)2]}∫
C
dzdz̄ exp

{
− 1
λ

[
zz̄ + 1

4 (zz̄)2
]} =

∫
C
dzdz̄ exp

{
− 1
λ

[
zz̄ + 1

4 (zz̄)2 − λn log(zz̄)
]}∫

C
dzdz̄ exp

{
− 1
λ

[
zz̄ + 1

4 (zz̄)2
]} .

The integral in the denominator is performed in an expansion around z = z̄ = 0 and is thus proportional
to λ due to the gaussian integration on the two directions of the plane. The exponent in the numerator
is instead stationary on the whole circle defined by zz̄ =

√
1 + 2λn− 1; in this case, while the integral

over the radial direction produces a factor of
√
λ, angular integration gives an overall factor of 2π. The

full result, for arbitrary λn, is thus proportional to λ−1/2:

I(λ, n) =
√

2π
λ

e−
λn+
√

1+2λn−1
2λ

(√
1 + 2λn− 1

)n+ 1
2

(1 + 2λn)1/4 [1 +O (λ)] .
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2.3 Semiclassical approach in non-conformal theory

λ = 0. From eqs. (2.36,2.38) we can then write

Z2
φn = e

∑
κ=−1 λ

κΓdivκ (λn,λ) ≡ e
∑

κ=−1 λ
κΓ̄divκ (λn) (2.42)

and

〈[φ̄n](xf )[φn](xi)〉 = n! e
∑

κ=−1 λ
κΓrenκ (λn,λ,xfi,M) ≡ n! e

∑
κ=−1 λ

κΓ̄renκ (λn,xfi,M)
. (2.43)

where, in the rightmost expressions, we rearranged the expansion in λ using the (asymp-
totic) power series expansion of the λκΓκ. Eq. (2.42) provides a formal proof of
eqs. (2.32,2.33). In the above expression the Γ̄κ represents the (κ + 1)-loop correc-
tion to the saddle point approximation. In particular Γ̄div−1 (λn) and Γ̄ren−1 , represent the
leading semiclassical contribution, the exponent at the saddle point7. However, they
fully determine the leading-n contribution F0(λn) in eq. (2.33), thus resumming at once
the largest powers of n up to arbitarily high-loop orders in the stardard diagrammatic
approach! The remarkable result highlighted by our formal derivation and by eq. (2.33),
is that the result is organized as a ’t Hooft expansion in which λn is the fixed ’t Hooft
coupling while λ� 1 and n� 1.

The rest of the chapter is devoted to explicitly deriving these expressions, at leading (LO)
and next-to-leading (NLO) order in the λ expansion with λn fixed. In the next subsection
we will perform a warm up computation by working at small but fixed λn. In the later
sections we shall develop the case of arbitrary λn by focussing on the Wilson-Fisher fixed
point, where conformal invariance permits to tackle some technical difficulties in the
computation.

2.3.2 Semiclassics at small fixed λn

At small λn ordinary perturbation theory works. In this case the path integral eq. (2.34)
can be computed by expanding around the trivial background φ = φ̄ = 0. In that case the
insertions of φn and φ̄n, are not included in the exponent (as the exponent of eq. (2.36) is
singular at φ = φ̄ = 0) and are purely determined by the quantum fluctuation δφ around
the trivial solution, i.e. φ ≡ 0 + δφ. The loop expansion is purely generated by the small
quartic term λφ4. For instance, working at order λ one finds

〈φ̄n(xf )φn(xi)〉 =
n!
[
1− λn(n−1)

2(4π)2

(
2
ε + log x2

fi + 1 + γ + log π
)

+O
(

λ2

(4π)4

)]
[Ωd−1(d− 2)]n (x2

fi)
n( d2−1) . (2.44)

compatibly with the one-loop contribution to γφn derived in section 2.

7As we shall illustrate in a moment and, as it must be according to our derivation, the divergent part
appears from purely classical properties of the saddle point solution.
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Chapter 2. The ε-expansion meets semiclassics: dimension of φn

As λn grows, the fluctuations of φ̄n(xf )φn(xi) become significant, and for sufficiently
large λn they cannot be captured by perturbation theory. However eq. (2.36) invites us
to perform the computation around the stationary points of

Seff ≡
∫
ddx

[
∂φ̄∂φ+ 1

4
(
φ̄φ
)2
]
− nλ0

(
log φ̄(xf ) + log φ(xi)

)
. (2.45)

The equations of motion defining the stationary configuration include the operator
insertions as a source

∂2φ(x)− 1
2φ

2(x)φ̄(x) = − λ0n

φ̄(xf )
δ(d)(x− xf ),

∂2φ̄(x)− 1
2φ(x)φ̄2(x) = − λ0n

φ(xi)
δ(d)(x− xi). (2.46)

Before discussing the details of the general computation, it is instructive to discuss the
solution of (2.46) for small λn. Namely, we compute the function Γ−1(λn) in (2.38) to
order O

(
λ2n2/(4π)4) and we check that the result agrees with (2.44). As we work at

first order in the coupling, in what follows we will take λ0 = λ. Now, for small λn the
equations (2.46) can be solved perturbatively; to this aim, it is convenient to expand the
fields as

φ = (λn)1/2
[
φ(0) + φ(1) + . . .

]
, φ̄ = (λn)1/2

[
φ̄(0) + φ̄(1) + . . .

]
, (2.47)

where φ(k), φ̄(k) = O
(
λknk

)
. At the zeroth order, the equations of motion read

∂2φ(0)(x) = − 1
φ̄(0)(xf )

δ(d)(x− xf ),

∂2φ̄(0)(x) = − 1
φ(0)(xi)

δ(d)(x− xi), (2.48)

whose solution is uniquely defined up to one free parameter and has the form

φ(0)(x) = c0
Ωd−1(d− 2)

1
|x− xf |d−2 ,

φ̄(0)(x) = c̄0
Ωd−1(d− 2)

1
|x− xi|d−2 ; (2.49)

with the parameters c0 and c̄0 related by

c0c̄0 = Ωd−1(d− 2)|xf − xi|d−2. (2.50)

Notice that on the saddle-point, i.e. on the solution of (2.48), the fields φ and φ̄ are
analytically continued away from the original integration contour, since they are not
related by complex conjugation. As a consequence, the fields appearing in the source
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2.3 Semiclassical approach in non-conformal theory

terms in the right hand side of (2.48) have a finite value and no regularization procedure
is needed to find the solution (2.49). Finally, the arbitrariness in the solution is related to
the symmetry (φ, φ̄)→ (αφ, α−1φ̄) of the action (2.45) analytically continued to arbitrary
values of the fields. The one free parameter in the solution precisely corresponds to the
presence of the one zero mode we mentioned before.

The next to leading contribution is determined by

∂2φ(1)(x) = λn

2
[
φ(0)(x)

]2
φ̄(0)(x) + φ̄(1)(xf )[

φ̄(0)(xf )
]2 δ(d)(x− xf ),

∂2φ̄(1)(x) = λn

2
[
φ̄(0)(x)

]2
φ(0)(x) + φ(1)(xi)[

φ(0)(xi)
]2 δ(d)(x− xi). (2.51)

The solution reads

φ(1)(x) = −λn2

∫
ddyD(x− y)

[
φ(0)(y)

]2
φ̄(0)(y)−D(x− xf ) φ̄(1)(xf )[

φ̄(0)(xf )
]2 ,

φ̄(1)(x) = −λn2

∫
ddyD(x− y)

[
φ̄(0)(y)

]2
φ(0)(y)−D(x− xi)

φ(1)(xi)[
φ(0)(xi)

]2 , (2.52)

where φ(1)(xi) and φ̄(1)(xf ) satisfy

φ(1)(xi)
c0

+ φ̄(1)(xf )
c̄0

= −λn2

∫
ddyD2(xi − y)D2(xf − y). (2.53)

There is a one parameter arbitrariness in the solution due to the aforementioned symmetry.
The integrals are formally divergent in d = 4 and thus are performed via standard
dimensional regularization techniques. Plugging the solution in the action (2.45), we find

Seff = λn− λn log
[

λn

Ωd−1(d− 2)
1

(x2
fi)d/2−1

]

+ λ2n2
( 1

16π2ε
+ 1 + γ + log π

32π2

)
+ λ2n2

32π2 log x2
fi . (2.54)

e−Seff/λ must represent the leading term

λnn!e
Γ−1
λ (2.55)

in eq. (2.38) with Γ−1 expanded up to O(λ2n2). It is easy to see it does. In particular,
logn! ≈ n logn− n ensures that Γ−1 has a well defined power series in λn as expected.
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The correlator, according to eqs. (2.34,2.36), then reads

〈φ̄n(xf )φn(xi)〉 =
nne−n exp

[
−λn2

(
1

16π2ε + 1+γ+log π
32π2

)]
[Ωd−1(d− 2)]n (x2

fi)
n( d2−1)+ λn2

32π2
. (2.56)

This expression8 reproduces the result of the standard perturbative computation (2.44)
up to subleading terms at large n. Remarkably, the O(λn2) correction to the scaling
dimension results in (2.44) from a genuine one-loop computation, while it results in
(2.56) from the classical solution of the saddle point equations (2.46). According to our
discussion, the subleading O(λn) contribution to γφn in eq. (2.44), would instead arise
from the first quantum correction around the saddle, i.e. from Γ0 in eq. (2.38). Our
alternative semiclassical computation shows that the O(λn2) contribution to γφn is a
genuinely classical contribution, while the O(λn) is intrinsically quantum. The emergence
of classical physics in the presence of large quantum numbers, n in this case, is a crucial
fact of physics. Our case here is closely analogous to the relation between the classical
approximation to the squared angular momentum, `2, and the exact quantum result,
`(`+ 1) (see ref. [75] for an illustration).

2.3.3 Semiclassics at finite λn

Finding the solution of (2.46) is in general a technically challenging task, but symmetries
can help tackle the difficulties. In the case at hand the relevant ones are U(1) symmetry,
rotational invariance and dilations. The latter is lacking in our theory away from the
Wilson-Fisher fixed point, and we can now explain how this is a problem. Starting with
U(1), the conservation of the associated Noether current

jµ = φ̄∂µφ− φ∂µφ̄. (2.57)

provides powerful insight. The field insertions in (2.45) act as a source for the current
(2.57). Indeed, from the equations of motion (2.46) we get

∂µj
µ = nδ(d)(x− xi)− nδ(d)(x− xf ). (2.58)

We can then use Gauss law to determine the flux of the current through a sphere centered
at xi with radius r: ∮

xi

dΩd−1 r
d−1jµ(x)nµ(x) = n θ (|xf − xi| − r) , (2.59)

8This expression was recently derived also in [96], where the authors considered the correlator in the
λ → 0 limit with λn2 fixed, clearly corresponding to small λn. This is just a particular limit of the
general formula (2.43), as our approach makes clear.
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2.4 Finite λn in the conformal theory

where nµ(x) is the unit vector orthogonal to the sphere at point x. Sufficiently close
to the point xi, i.e. for |x − xi| � |xf − xi|, we expect the solution of (2.46) to be
approximately spherically symmetric. In this regime, we then conclude from eq. (2.59)
that the current is given by

jµ(x) = n

Ωd−1

(x− xi)µ
|x− xi|d

[
1 +O

(
|x− xi|
|xf − xi|

)]
. (2.60)

This equation provides a simple constraint involving both φ and φ̄. Unfortunately it is not
enough to fix their coordinate dependence. In fact, even in the regime |x−xi| � |xf −xi|,
where spherical symmetry is expected, the radial dependence of the solution is non-
trivial, as one can convince oneself by making eq. (2.52) explicit. The origin of such a
complicated dependence is the lack of dilation invariance of generic λφ4 in d-dimension.
Notice, instead that in the free case, where dilations are a symmetry, the solution displays
a simple scaling behaviour [102]. Working in strictly d = 4, where φ4 is scale invariant
is also not an option, because of the need for regulation9. We thus conclude that the
only way forward in order to more easily derive the solution is to work directly at the
Wilson-Fisher fixed point, where we can profit from the bonus of scale invariance. That
also matches well, and not unrelatedly, the fact that only at the fixed point is the
anomalous dimension a fully physical quantity.

2.4 Finite λn in the conformal theory

We now consider the theory at its Wilson-Fisher fixed point, where the spacetime
symmetry is enhanced to the conformal group. We exploit the consequences of conformal
symmetry, especially the possibility to use radial quantization and the state-operator
correspondence, to simplify the problem. Relatedly, conformal invariance allows to map
our theory from the plane to the cylinder

Rd → R× Sd−1 , (2.61)

in such a way that the dilations on the plane are mapped to time translations on
the cylinder. Correspondingly, the spectrum of operator dimensions on the plane, the
eigenvalues of the dilation charge D, are mapped to the energy spectrum on the cylinder,
the eigenvalues of Hcyl. Our goal of computing the dimension of [φn] is thus mapped into
the computation of the energy of the corresponding state on the cylinder. The advantage
offered by this viewpoint is that time translations on the cylinder, unlike dilations on the
plane, are a symmetry also away from the fixed point. When mapping our semiclassical
computation to the cylinder, we will thus have an additional symmetry controlling the
classical solution, even away from criticality. In other words, while in the approach of

9If we contented ourselves with the leading semiclassical approximation we could work in d = 4 and
regulate φn by point splitting.
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Chapter 2. The ε-expansion meets semiclassics: dimension of φn

the previous section, a simple scaling ansatz for the radial dependence of the solution is
inconsistent, given the lack of scale invariance in the regulated theory, on the cylinder it
is possible to consistently look for a solution that is stationary in time. That enormously
simplifies our task. Of course, we must stress that this very non trivial simplification
only works at the fixed point.

2.4.1 Weyl map to the cylinder

The idea of mapping the theory to the cylinder was introduced in section 1.1. One can
also denote the position on the sphere by a unit vector ~n ∈ Rd, such that the mapping is
summed up as

xµ = Reτ/R nµ(θ), τ = R ln
( |x|
R

)
, |n| = 1. (2.62)

The cylinder metric is then related to the flat one by a Weyl rescaling

ds2
cyl = dτ2 +R2dΩ2

d−1 = R2

r2 ds
2
flat . (2.63)

The fields are also rescaled by a Weyl factor. A primary operator O on the plane with
scaling dimension ∆O has a counterpart denoted Ô on the cylinder given by

Ô(τ,Ωd−1) = r∆OO(x). (2.64)

The bare fields appearing in the action are rescaled with their engineering dimension

φ̂(τ,Ωd−1) = r
d−2

2 φ(x) (2.65)

such that the bare action of the theory on the cylinder reads10

Scyl =
∫
ddx
√
g

[
gµν∂µφ̄∂νφ+m2φ̄φ+ λ0

4
(
φ̄φ
)2
]
, (2.66)

where the mass term m2 =
(
d−2
2R

)2
arises from the R(g)φ̄φ coupling to the Ricci scalar

which is enforced by conformal invariance11 [103]. Weyl invariance12 at the fixed point
ensures that the flat space theory (2.1) is equivalent13 to the one on the cylinder described
by (2.66).

10From this point forward we will be working with canonically normalized fields, which is to say

〈0|[O](x)[O](y)|0〉 = (x− y)−2∆O .

11Hence, at the fixed point, m2 is not renormalized by loop effects.
12The Weyl anomaly does not affect correlation functions of local operators [34].
13Note that we dropped a factor of r in front of the interaction term in (2.66) compared to what is

dictated by Weyl invariance. This however does not affect the conclusion that both theories are equivalent
at their fixed point, which is the IR-fixed point of both RG flows.

38



2.4 Finite λn in the conformal theory

A particularly simple application of this mapping is the two-point function of a scalar
primary operator O of scaling dimension ∆O and its conjugate

〈Ô†(xf )Ô(xi)〉 = |xf |∆O |xi|∆O〈O†(xf )O(xi)〉 ≡
|xf |∆O |xi|∆O
|xf − xi|2∆O

. (2.67)

Now, the limit xi → 0 on the plane translates to τi → −∞ on the cylinder and the above
equation becomes

〈O†(xf )O(xi)〉cyl
τi→−∞= e−EO(τf−τi), EO = ∆O/R . (2.68)

More precisely one can check that the rate of approach to the above limiting result is
controlled by eτi/R. So that the above equation holds with exponential precision for
|τi/R| � 1. By eq. (2.68) the action of O(xi) at τi → −∞ simply creates a state on the
cylinder with energy ∆O/R and carrying all the global quantum numbers of O. This is
an instance of the operator state correspondence, which greatly illuminates many aspects
of conformal field theory when viewed on the cylinder. The same result can be obtained
by sending the point xf to infinity (τf → +∞).

In the following, we shall consider O = φn, and O† = φ̄n. By the same argument as
just above, the two-point function 〈φ̄n(xf )φn(xi)〉, with τf,i = ±T/2, for T →∞ directly
yields the scaling dimension ∆φn

〈φ̄n(xf )φn(xi)〉
T→∞= N e−EφnT , Eφn = ∆φn/R, (2.69)

where the (divergent) coefficient N is independent of T .

To compute the two point function we can then proceed with the methodology discussed
in section 2.3.1. The result will have the structure of eq. (2.38). Upon separating out
the divergent and finite part of the λκ0Γκ’s, we will have a T independent divergent piece
determining the normalization factor N , while the T dependent part will be finite when
written in terms of λ(M) and linear in T for T � R. The linearity in T will follow
provided the solution is stationary in time, which it will be, thanks to time translation
invariance of the action regardless of the theory being at the fixed point. Similarly to
eq. (2.43) we shall thus have

∆φn = REφn = 1
λ0
e−1(λ0n, d) + e0(λ0n, d) + λ0e1(λ0n, d) + . . .

= 1
λ
ē−1(λn,RM, d) + ē0(λn,RM, d) + λē1(λn,RM, d) + . . . ,(2.70)

where λ ≡ λ(M) and ēk is defined from the ek’s analogolously to Γ̄k in eq. (2.42). By
choosing λ = λ∗ the dependence on RM will have to drop by scale invariance giving a
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result of the form

∆φn = 1
λ∗

∆−1(λ∗n) + ∆0(λ∗n) + λ∗∆1(λ∗n) + . . . . (2.71)

2.4.2 Semiclassical Saddle

We now proceed to the explicit implementation of the semiclassical method. We do this
in a slightly more general case, considering (N + 2)-point correlators of the form14

〈φ̄n(xf )ON (xN ) . . .O1(x1)φn(xi)〉, (2.72)

where the Oi are operators with no large quantum numbers. The trick is then to use
conformal invariance to send the insertion of φn (φ̄n) to the origin xi → 0 (to infinity
xf →∞), which on the cylinder translates to infinite past and future times τi,f → ±∞.
In terms of the variables on the cylinder the correlator (2.72) has the form

〈 ˆ̄φn(τf )ÔN (τN ) . . . Ô1(τ1)φ̂n(τi)〉e−∆φnτf e−∆N τN . . . e−∆1τ1e−∆φnτi , (2.73)

where for simplicity we did not indicate the dependence of the operators on the angular
coordinates. ∆i denotes the scaling dimension of operator Oi. Using the operator-state
correspondence (see section 4.2.2 for more details) we define the normalized15 charge-n
state associated to the φn operator

|n〉 = (4π)n/2√
n!

φn(0)|0〉 = (4π)n/2√
n!

lim
τ→−∞

e−∆φnτi φ̂n(τi)|0〉 , (2.74)

and its conjugate

〈n| = (4π)n/2√
n!

lim
τf→∞

〈0|e∆φnτf ˆ̄φn(τf ) . (2.75)

Eq. (2.72) is thus related to cylinder correlators according to

lim
xf→∞

(4π)n
n! x

2∆φn

f 〈φ̄n(xf )ON (xN ) . . .O1(x1)φn(0)〉 = 〈n|ÔN (τN ) . . . Ô1(τ1)|n〉
N∏
j=1

e−∆jτj .

(2.76)

The state |n〉, corresponding to operator φn, is the state of charge n with the lowest

14More precisely, we compute the correlator of renormalized operators. We drop the square brackets in
the remainder of this chapter for readability.

15We define the renormalized [φn] to be normalized in such a way that the state |n〉 has unit norm.
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energy. Then, for any charge-n state |ψn〉 with non-zero overlap with |n〉, we have

lim
τi→−∞

eHτi |ψn〉 = lim
τi→−∞

e∆φnτi |n〉〈n|ψn〉 (2.77)

lim
τf→∞

〈ψn|e−Hτf = lim
τf→∞

e−∆φnτf 〈ψn|n〉〈n|, (2.78)

where H is the Hamiltonian on the cylinder.

Therefore we can also write

〈n|ÔN (τN ) . . . Ô1(τ1)|n〉 = lim
τf→∞
τi→−∞

〈ψn|e−Hτf ÔN (τN ) . . . Ô1(τ1)eHτi |ψn〉
〈ψn|e−H(τf−τi)|ψn〉

. (2.79)

The right hand side can be represented by a path integral. For that purpose, it is useful
to introduce polar coordinates for the fields

φ̂ = ρ√
2
eiχ, ˆ̄φ = ρ√

2
e−iχ , (2.80)

and single out their zero modes on the sphere

χ = χ0 + χ⊥,

∫
χ(~n)dΩd−1 = χ0Ωd−1,

∫
χ⊥(~n)dΩd−1 = 0 , (2.81)

ρ = ρ0 + ρ⊥,

∫
ρ(~n)dΩd−1 = ρ0Ωd−1,

∫
ρ⊥(~n)dΩd−1 = 0 . (2.82)

with dΩd−1 = dd−1θ
√
g the volume element of Sd−1. A convenient choice for the

state |ψn〉 is then
〈ρ, χ|ψn〉 = δ(ρ0 − f)δ(ρ⊥)δ(χ⊥)einχ0 , (2.83)

with f a constant whose value will be suitably decided below. This represents a state of
homogeneous charge density. As a result eq. (2.79) can be recast as

〈n|ÔN . . . Ô1|n〉 =
τf→∞
τi→−∞

Z−1
∫
dχidχfe

−
in(χf−χi)

Ωd−1

∫ ρ(τf )=f
χ(τf )=χf
ρ(τi)=f
χ(τi)=χi

DρDχ ÔN . . . Ô1 e
−S[ρ,χ],

(2.84)
with

Z =
∫
dχidχfe

−
in(χf−χi)

Ωd−1

∫ ρ(τf )=f
χ(τf )=χf
ρ(τi)=f
χ(τi)=χi

DρDχ e−S[ρ,χ] . (2.85)

and where the action is given by

S[ρ, χ] =
∫
dτdΩd−1

[1
2(∂ρ)2 + 1

2ρ
2(∂χ)2 + 1

2m
2ρ2 + Vint(ρ)

]
(2.86)

with m = d
2 − 1 and

Vint(ρ) = λ

16ρ
4 . (2.87)
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The saddle point is fixed by two conditions, corresponding to the variation of the action
with respect to φ in the bulk and on the boundary. The latter, in view of eq. (2.83),
reduces to variation with respect to the zero modes of χ, χi and χf . From the bulk we
have

∂µ
(√

ggµνρ2∂νχ
)

= 0, (2.88)

−∂2ρ+ ρ
[
(∂χ)2 +m2

]
+ ∂ρVint(ρ) = 0 (2.89)

with gµν the metric on the cylinder. The first equation, corresponding to variation with
respect to χ, coincides with U(1) current conservation. The variation at the boundaries
gives instead

(ρ2χ̇)(τi) = (ρ2χ̇)(τf ) = − in

Ωd−1
, (2.90)

which fixes the charge to be n and spatially homogeneous at the boundaries. Equations
(2.88), (2.89), (2.90) along with the constraint (2.83) have the simple solution

ρS(τ) = f, χS(τ) = −iµ(τ − τi) + χi, (2.91)

with µ and f satisfying

µ2 −m2 = 1
f

∂Vint(f)
∂f

= λ

4 f
2 , (2.92)

f2µ = n

Ωd−1
. (2.93)

A few comments are in order. The last two equations determine the “suitable” value
of f , we alluded to below its definition in (2.83). It is only for this specific choice of
f in (2.83) that the saddle point equations have a solution with a simple linear time
dependence. Other choices would give solutions with a more complicated behaviour near
the boundaries, but for (τf − τi)→∞ the result for (2.84) would be the same.

Given the constraint f2 ≥ 0, imposed by the boundary condition ρi = ρf = f ∈ R, these
equations admit a unique solution for f2 and µ. On this profile χ is analytically continued
to the complex plane (see the comments below (2.49)). Notice that the condition f2 ≥ 0
implies that the solution for µ is discontinuous at λ0n = 0. This can be seen easily
substituting (2.93) into (2.92)

µ(µ2 −m2) = λ0n

4Rd−1Ωd−1
with n/µ ≥ 0, (2.94)
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where the last inequality follows from the reality condition on f . Its solution is

µ = µ4(λn, d) = (d− 2)
2

31/3 +
[

9λnΓ(d/2)
2πd/2(d−2)3 −

√(
9λnΓ(d/2)

2πd/2(d−2)3

)2
− 3

]2/3


32/3

[
9λnΓ(d/2)

2πd/2(d−2)3 −
√(

9λnΓ(d/2)
2πd/2(d−2)3

)2
− 3

]1/3 (2.95)

where we have defined a function denoted µ4 (4 as in quartic) to distinguish from
the different formula µ6 which is obtained in the case of the sextic interaction (see
section 2.5). It is then obvious that the, otherwise analytical, solution of (2.94) satisfies
µ(λ0n) = −µ(−λ0n), implying the existence of a discontinuity for λ0n → 0, where
µ ' sgn(n) [m+O (λ0n)]. As a consequence of the latter, also the scaling dimension ∆φn

will be non-analytic at λn = 0. This reflects the physical fact that the scaling dimension
of φn and the operator with opposite charge, φ̄n, are the same; as the expansion (2.32)
contains odd powers of n, the physical scaling dimension cannot be continous at n = 0.
In the following, we implicitly consider only n > 0.

Notice also that the solution (2.91) is invariant under the combination H − µQ of time
translations and U(1) charge rotations, which means it describes a superfluid phase
[88, 89], with homogeneous charge density j0 = µf2 and chemical potential given by µ.
Finally notice that, while χf − χi = −iµ(τf − τi) is fixed by (2.91), the zero mode χi is
not: integrating over it guarantees that correlators respect charge conservation.

Expanding around the saddle we can systematically compute any observable as a power
series in λ with coefficients that are themselves functions of λn. For instance, given

lim
τf→∞
τi→−∞

〈ψn|e−H(τf−τi)|ψn〉 = e−∆φn (τf−τi)|〈n|ψn〉|2, (2.96)

and its path integral representation (2.85), the evaluation of the action on the saddle
point immediately gives the scaling dimension of φn at leading order shown in (2.70).
Same goes for the Ôi insertions, which are local functions of ρ and χ. At the leading
order the correlator (2.72) is then simply given by the product of the Ôi computed on the
saddle. The computation of higher order terms require to consider fluctuations around
the semiclassical background.

2.4.3 Fluctuations

Expanding the fields in (2.84) around the saddle

ρ = ρS + r, χ = χS + π

f
. (2.97)
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we can now write

〈n|ÔN . . . Ô1|n〉 =

∫
dχi

∫
DrDπ ÔN . . . Ô1e

−Ŝ[r,π]

2π
∫
DrDπ e−Ŝ[r,π]

, (2.98)

where the action for the fluctuations is given by

Ŝ[r, π] =
∫
dτdΩd−1 (L2 + Lint) , (2.99)

with
L2 = 1

2(∂r)2 + 1
2(∂π)2 − 2iµrπ̇ + 1

2
[
V
′′
int(f)− (µ2 −m2)

]
r2, (2.100)

and

Lint = 1
f

[
r(∂π)2 − iµr2π̇

]
+r2(∂π)2

2f2 +
[
Vint(f + r)−

(
Vint(f) + V

′
int(f)r + 1

2V
′′
int(f)r2

)]
.

(2.101)

The canonically conjugated momenta16 forming pairs (r, P ) and (π,Π) are

P = iṙ, Π = iπ̇

(
1 + r

f

)2
+ 2µr

(
1 + r

2f

)
. (2.102)

These variables can be expanded in harmonic modes as(
r(τ, ~n)
π(τ, ~n)

)
=
∞∑
`=0

∑
~m

(
r`~m(τ)
π`~m(τ)

)
Y`~m(~n) ,

(
P (τ, ~n)
Π(τ, ~n)

)
=
∞∑
`=0

∑
~m

(
P`~m(τ)
Π`~m(τ)

)
Y ∗`~m(~n) ,

(2.103)
where Y`~m(~n) are the spherical harmonics in d− 1 dimensions17 satisfying

∆Sd−1Y`~m(~n) = −J2
` Y`~m(~n), (2.105)

where ∆Sd−1 is the Laplacian on the sphere Sd−1 and where J2
` is the eigenvalue of the

SO(d) casimir
J2
` = `(`+ d− 2), (2.106)

The Y`~m(~n) also satisfy the normalization and completeness conditions∫
Y`~m(~n)Y ∗`′ ~m′(~n)dΩd−1 = δ``′δ~m~m′ , (2.107)

16The presence of “i” in front of time derivatives is because we work in Euclidean time.
17 ~m is a multi-index taking

N`,d = (2`+ d− 2) (`+ d− 3)!
(d− 2)!`! (2.104)

different values.
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and ∞∑
`=0

∑
~m

Y`~m(~n)Y ∗`~m(~n′) = δ(Sd−1)(~n− ~n′). (2.108)

Notice in particular that Y0~0 = 1/
√

Ωd−1. The harmonic modes are canonical variables
satisfying equal-time commutation relations

[r(τ, ~n), P (τ, ~n′)] = iδ(~n− ~n′)⇔ [r`~m(τ), P`′ ~m′(τ)] = iδ``′δ~m~m′ ,

[π(τ, ~n),Π(τ, ~n′)] = iδ(~n− ~n′)⇔ [π`~m(τ),Π`′ ~m′(τ)] = iδ``′δ~m~m′ ,
(2.109)

with the other commutators vanishing.

Linearized fluctuations

In section 4.3.1 we will need the modes evolving according to the full lagrangian. To
set the basis of the semiclassical expansion we must however consider the modes of the
quadratic Lagrangian (2.100)

L2 = 1
2(∂r)2 + 1

2(∂π)2 − 2iµrπ̇ + 1
2M

2r2, (2.110)

with
M2 = V

′′
int(f)− f−1V ′int(f) = V

′′
int(f)− (µ2 −m2) . (2.111)

At this order the canonical momenta are

P̃ = iṙ, Π̃ = iπ̇ + 2µr. (2.112)

The quantized fields (and the spectrum) are obtained by considering the linearized
equations of motion(

∂2
τ + ∆Sd−1 −M2 2iµ∂τ
−2iµ∂τ ∂2

τ + ∆Sd−1

)(
r

π

)
= 0, (2.113)

and by finding the complete set of harmonic mode solutions of the form(
r`~m(τ)
π`~m(τ)

)
Y`~m(~n) =

(
C1
C2

)
e−ωτY`~m(~n) . (2.114)

For ` 6= 0 the following is a solution for arbitrary coefficients CA(`, ~m) and CB(`, ~m) (we
impose reality condition r(τ)† = r(−τ) and π(τ)† = π(−τ))(
r

π

)
`~m

= CA(`, ~m)
(
J2
` − ω2

A(`)
2iµωA(`)

)
e−ωA(`)τY`~m + C∗A(`, ~m)

(
J2
` − ω2

A(`)
−2iµωA(`)

)
eωA(`)τY ∗`~m

+CB(`, ~m)
(
ω2
B(`)− J2

`

−2iµωB(`)

)
e−ωB(`)τY`~m + C∗B(`, ~m)

(
ω2
B(`)− J2

`

2iµωB(`)

)
eωB(`)τY ∗`~m,
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while for ` = 0 we get a solution for arbitrary r0 and π̂(
r

π

)
0,~0

=
(

r0

π̂ − iM2r0
2µ τ

)
Y0,~0

+CB(0,~0)
(

ω2
B(0)

−2iµωB(0)

)
e−ωB(0)τY0,~0 + C∗B(0,~0)

(
ω2
B(0)

2iµωB(0)

)
eωB(0)τY0,~0.

Computing also the corresponding momenta(
P

Π

)
=
(

ṙ

π̇ + 2µr

)
, (2.115)

and imposing canonical commutation relations (2.109) we get

(
r

π

)
=


2µ

ω2
B(0) pπ

π̂ − ipπτ
(

1− 4µ2

ω2
B(0)

)
Y0~0 (2.116)

+
∞∑
`=1

∑
~m

√
ωA(`)

2
[
ω2
B(`)− ω2

A(`)
]


√

J2
`

ω2
A(`) − 1

i

√
ω2

+(`)
J2
`

− 1

A`~mY`~me−ωA(`)τ + h.c.



+
∞∑
`=0

∑
~m

√
ωB(`)

2
[
ω2
B(`)− ω2

A(`)
]



√
1− J2

`

ω2
B(`)

−i
√

1− ω2
A(`)
J2
`

B`~mY`~me−ωB(`)τ + h.c.

 ,

where operators (A`~m, A†`~m), (B`~m, B†`~m) and (π̂, pπ) are canonically conjugated pairs:

[A`~m, A†`′ ~m′ ] = δ``′δ~m~m′ , [B`~m, B†`′ ~m′ ] = δ``′δ~m~m′ , [π̂, pπ] = i, (2.117)

with all other commutators vanishing. Notice that the A`~m are defined for ` ≥ 1 and
have frequency ωA(`), while the B`~m are defined for ` ≥ 0 and have frequency ωB(`).
The role of the ` = 0 mode in the A sector is played by π̂. The frequencies are given by

ω2
A(`) = J2

` + V
′′
int(f) + 3µ2 +m2

2 −

√√√√(V ′′int(f) + 3µ2 +m2

2

)2

+ 4µ2J2
` ,

ω2
B(`) = J2

` + V
′′
int(f) + 3µ2 +m2

2 +

√√√√(V ′′int(f) + 3µ2 +m2

2

)2

+ 4µ2J2
` .

(2.118)
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Note that in the last sum’s ` = 0 term of (2.117), one has to use the limit

lim
`→0

ω2
A(`)
J2
`

= 1− 4µ2

ω2
B(0) . (2.119)

The ω2
A,B(`) determine the energy spectrum of fluctuations around the semiclassical

saddle. We will see in chapter 4 that these excitations correspond to higher-energy
charge-n states, or equivalently higher-dimensional charge-n operators.

Several features of (2.118) are worth remarking. The first is

ωA(0) = 0 . (2.120)

This is the manifestation of a Goldstone boson associated with U(1) symmetry breaking
around the saddle. The U(1) acts as a constant shift of π, while ρ is invariant. Therefore
A`~m and B`~m are all neutral while π̂ transforms by a constant shift. Notice that the
conjugated momentum pπ precisely generates these transformations. Indeed, applying
Noether’s theorem to the quadratic Lagrangian (2.99) and comparing the result to the
generator Q of χ shifts in (2.86), we find

pπ = (Q− n)
Y0~0
f
. (2.121)

Up to a factor, the zero mode π̂ is the phase χi that exactly parametrizes the family of
solutions at the full non-linear level. It therefore makes sense to treat this mode fully
non-linearly, singling it out when expressing φ in terms of the harmonic modes

π(τ, ~n) = π̂Y0~0 + π̃(τ, ~n), (2.122)

and factoring it out from φ18

φ̂(τ, ~n) = f + r√
2
eµτe

i
π̂Y00
f e

i π̃
f ' f + r√

2
eµτe

i
π̂Y0~0
f (1 + i

π̃

f
). (2.123)

As dictated by the commutation relations and by the definition of the modes, the
factor ei

π̂Y00
f has charge 1 while the fields r, π̃ are neutral, which is consistent with the

transformation property of φ̂. Thus π̂ is a cyclic coordinate with periodicity 2πf/Y0~0 and
the canonical pair (π̂, pπ) does not correspond to a harmonic oscillator with an associated
Fock space. The Hamiltonian for this pair is

Hπ̂ = p2
π

2

1−
(

4µ2

ω2
B(0)

)2
 . (2.124)

18Here we have also absorbed the iµτi in (2.91) into π̂/f or equivalently set τi = 0.
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The second important feature is that the B-mode is gapped

ω2
B(`) ≥ ω2

B(0) = V
′′
int(f) + 3µ2 +m2 > 0 . (2.125)

For large µ, or equivalently large λn (see (2.95)), we could then integrate this mode out
and derive an effective field theory description for the Goldstone mode [74, 75], which
consists of the A`~m and π̂.

The third property is that, for the classically scale invariant case, (φ̄φ)2 in d = 4 exactly,
we have

ωA(1) = 1. (2.126)

Meaning the excitation created by A†1, ~m corresponds to a descendent operator. We
will come back to the question of operators corresponding to this spectrum, and the
classification into primaries and descendants, in chapter 4. There, we will see that this is
associated with the fact that A1~m and A†1~m are respectively the K~m and P~m generators
(see for instance (4.111)). As such they have scaling dimension −1 and 1. Acting with
A†1~m on a state therefore produces a descendant. Finally, we have that in the free limit,
λ = 0, the two modes become

ωA(`) = `, ωB(`) = `+ d− 2, (2.127)

and at finite coupling their asymptotic behavior is given by

ωA(`) =
`→∞

ωB(`) =
`→∞

`. (2.128)

The formalism being fully set up, we can finally turn to the computation of the scaling
dimension ∆φn .

2.4.4 Leading order: ∆−1

As explained above, the action (2.86) evaluated on the semiclassical configuration (2.91)
provides the leading order value for the energy (2.70):

1
λ0

e−1(λ0n, d)
R

= Seff/T = n

2

(
3
2µ+ 1

2
m2

µ

)
. (2.129)

Had we chosen ρi, ρf 6= f , ρ(τ) would have approached exponentially fast the value ρ = f

away from the boundaries. As a result, in the T →∞ limit the contribution of the action
growing linearly in time is independent of the precise value of the boundary conditions
for ρ.

To obtain the leading order ∆−1 in (2.71), we consider the classical value for the chemical
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potential obtained from (2.95) setting λ0 = λ∗ and d = 4 everywhere else:

Rµ∗ =
31/3 +

[
9 λ∗n

(4π)2 −
√

81 (λ∗n)2

(4π)4 − 3
]2/3

32/3

[
9 λ∗n

(4π)2 −
√

81 (λ∗n)2

(4π)4 − 3
]1/3 . (2.130)

Plugging in (2.129) and taking m = 1/R we conclude that the classical contribution to
the scaling dimension is

1
λ∗

∆−1 = nF0 (λ∗n) , (2.131)

where the function F0 reads:

F0(16π2x) =
3
[
9x−

√
81x2 − 3

]1/3
+ 32/3

[
9x−

√
81x2 − 3

]
[(

9x−
√

81x2 − 3
)2/3

+ 31/3
]2

+
9× 31/3x

[
9x−

√
81x2 − 3

]2/3
2
[(

9x−
√

81x2 − 3
)2/3

+ 31/3
]2 . (2.132)

Though not obvious, for x > 0 this is a real and positive function, which grows monoton-
ically with x. Remarkably, eq. (2.131) explicitly resums the contribution of infinitely
many Feynman diagrams.

The form of the result becomes particularly simple (and interesting) in the two extreme
regimes, λ∗n� (4π)2 and λ∗n� (4π)2, where eq. (2.131) reads

∆−1
λ∗

=



n

[
1 + 1

2

(
λ∗n

16π2

)
− 1

2

(
λ∗n

16π2

)2
+O

(
(λ∗n)3

(4π)6

)]
, for λ∗n� (4π)2,

8π2

λ∗

[
3
4

(
λ∗n

8π2

)4/3
+ 1

2

(
λ∗n

8π2

)2/3
+O (1)

]
, for λ∗n� (4π)2.

(2.133)
The first line of (2.133) reproduces the result (2.30) up to higher orders and thus provides
a non trivial check of our approach. Notice that the agreement is independent of the
precise value of λ∗, since at tree-level the Lagrangian (2.1) is Weyl invariant for every
value of the coupling and the theory can be safely mapped to the cylinder through
a change of coordinates and a field redefinition. In the opposite regime, the result is
organized as an expansion in powers of (λ∗n)2/3, in agreement with the predictions of
the large charge expansion in CFT [74, 75].

The parameter which marks the difference between the two regimes is the chemical
potential µ∗, since, as we have seen explicitly in section 2.4.3, the latter controls the gap
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of the radial mode. For small λ∗n the chemical potential, is of order of R−1, while in the
opposite regime its value is proportional to j1/3

0 � R−1 ∼ (λn)1/3/R. Henceforth, in this
regime we can integrate out this mode and the lightest states at charge n are described
by an effective theory for the Goldstone mode only. The form of the effective theory was
used in [74, 75] to study the spectrum at large charge in a generic U(1) invariant CFT
and derive the form of the expansion in the second line of (2.133), The power law of the
first term following just from dimensional analysis. In this regime, the squared sound
speed of the Goldstone mode, given by(

dω2
A

dJ2
`

)
`=0

= µ2 −m2

3µ2 −m2 , (2.134)

approaches the value 1/3 dictated by scale invariance in a fluid.

2.4.5 One-loop correction: ∆0

Let us now compute the first subleading correction ∆0. We consider the one-loop
expression for the path-integral (2.79):

〈ψn|e−HT |ψn〉 = e
− e−1(λ0n,d)T

λ0R

∫
DrDπ exp

[
−S(2)

]
∫
DφDφ̄ exp

[
−
∫ T/2
−T/2

(
∂φ∂φ̄+m2φφ̄

)]
= Ñ exp

{
−
[ 1
λ0
e−1(λ0n, d) + e0(λ0n, d)

]
T

R

}
, (2.135)

where the normalization factor Ñ is T -independent. The latter contains a factor λ−1/2
0

coming form the integration over the zero mode (see the comments below (2.37)). Since
this factor does not scale with T , it does not contribute to the scaling dimension. The
denominator in the first line of (2.135) arises from the normalization factor (2.85). In
the second line, the correction to the energy arises from the fluctuation determinant
of the Gaussian integrals in the numerator and the denominator. It can be written
explicitly in terms of the expressions (2.118) and the formula for the free dispersion
relation ω2

0(`) = J2
` +m2 =

(
`+ d−2

2

)2
/R2:

T
e0
R

= log
√

detS(2)

det (−∂2
τ −∆Sd−1 +m2) = T

2

∞∑
`=0

n`

∫
dω

2π log
[
ω2 + ω2

A(`)
] [
ω2 + ω2

B(`)
][

ω2 + ω2
0(`)

]2
= T

2

∞∑
`=0

n` [ωB(`) + ωA(`)− 2ω0(`)] , (2.136)

where n` is the multiplicity of the Laplacian on the (d− 1)-dimensional sphere:

n` = (2`+ d− 2)Γ(`+ d− 2)
Γ(`+ 1)Γ(d− 1) . (2.137)
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In d = 4 the multiplicity is n` = (1 + `)2. In dimensional regularization, we can use the
following identities which hold for sufficiently negative d

∞∑
`=0

n` =
∞∑
`=0

n` ` = 0 =⇒
∞∑
`=0

n` ω0(`) = 0. (2.138)

Finally we formally find the second term in the expansion (2.70) as a sum of zero point
energies, as it could have been intuitively expected:

e0(λ0n, d) = R

2

∞∑
`=0

n` [ωB(`) + ωA(`)] . (2.139)

We can now compute the leading correction to the scaling dimension (2.71). The details
of the calculation are given in the appendix A. The result is formally written in terms of
the classical value of the chemical potential (2.130) and a convergent infinite sum:

∆0 = −15µ4
∗R

4 + 6µ2
∗R

2 − 5
16 + 1

2

∞∑
`=1

σ(`) +
√

3µ2
∗R

2 − 1√
2

, (2.140)

where σ(`) is obtained by subtracting the divergent piece from the summand in (2.139)

σ(`) = (1 + `)2R [ω∗B(`) + ω∗A(`)]− 2`3 − 6`2 −
(
2µ2
∗R

2 + 4
)
`− 2R2µ2

∗ + 5
(
µ2
∗R

2 − 1
)2

4` .

(2.141)
As in equation (2.130), the star stresses that all quantities are evaluated setting λ0 = λ∗
and d = 4 everywhere else. The infinite sum in (2.140), albeit convergent, cannot be
performed analytically. However, it is possible to compute it numerically for any given
λ∗n at arbitrary precision.

In the small λ∗n limit, we can expand the summand and compute the sum in (2.140)
analytically and we find

∆0 = − 3λ∗n
(4π)2 + λ2

∗n
2

2(4π)4 +O

(
λ3
∗n

3

(4π)6

)
. (2.142)

Summing this to the leading order result (2.133) and recalling the relation between the
coupling and the number of space dimensions (2.8), we determine ∆φn as:

∆φn = n

(
d

2 − 1
)

+ ε

10 n(n− 1)− ε2

50n(n2 − 4n) +O
(
ε2n, ε3n4

)
. (2.143)

This is in perfect agreement with the diagrammatic calculation in eq. (2.31). This
agreement has since been checked further, up to 5-loops [104, 105].

In the large λ∗n limit the result (2.140) develops a contribution proportional to log(λ∗n),
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which arises from the divergent tail of the sum in (2.139). As in (2.133), the result can
be expanded in powers of (λ∗n)2/3 and reads:

∆0 =
[
α+ 5

24 log
(
λ∗n

8π2

)](
λ∗n

8π2

)4/3
+
[
β − 5

36 log
(
λ∗n

8π2

)](
λ∗n

8π2

)2/3
+O(1), (2.144)

where the coefficients α and β are

α = −0.5753315(3), β = −0.93715(9). (2.145)

The logarithmic terms are computed analytically, while the coefficients α and β follow
from a numerical fit. Details of the calculation are given in the appendix A.2. The
structure of the result (2.144) is in agreement with the expected form of the large charge
expansion in d dimensions. This is evident summing (2.144) to the leading order in
(2.133) and writing the result in the form

∆φn = 1
ε

(2
5εn

) 4−ε
3−ε

[15
8 + ε

(
α+ 3

8

)
+O

(
ε2
)]

+ 1
ε

(2
5εn

) 2−ε
3−ε

[5
4 + ε

(
β − 1

4

)
+O

(
ε2
)]

+O
(
(εn)0

)
. (2.146)

The change in the exponents of the (εn) terms with respect to the leading order (2.133)
account for the logarithms in (2.144). Recalling that d = 4− ε, eq. (2.146) is clearly in
agreement with the structure predicted in [74, 75], which is:

∆n = n
d
d−1

[
c0(d) + c1(d)n−

2
d−1 + c2(d)n−

4
d−1 + . . .

]
+ n0

[
b0(d) + b1(d)n−

2
d−1 + . . .

]
.

(2.147)
From the point of view of the large charge EFT, the first term is a purely classical
contribution, while the second term is the one-loop Casimir energy of the Goldstone
mode. In non-even dimensions, the latter term is independent of the Wilson coefficients
of the EFT and is hence universal [74]; the numerical value b0(3) ' −0.937 will be
checked in the next section. We have checked that the coefficients of the logarithms
multiplied by subleading powers of (λ∗n) ensure the agreement between our result and the
predicted structure (2.147) also in the subleading orders in n. The large λ∗n expansion
of the classical result determines the coefficients ci(d) at leading order, while eq. (2.146)
determines c0(d) and c1(d) to order O (ε). Even though we computed also the coefficient
of the (λ∗n)0 term in (2.144) (see eq. (A.16)), in the expansion of (2.147) for d = 4− ε
to first order, we cannot disentangle the first correction in ε to c2(d) and the leading
order value of b0(d) (which is zero at tree-level).
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2.4 Finite λn in the conformal theory

2.4.6 Comments on the result

Large order behavior

Expanding all functions ∆` in a power series in λ∗n

∆` =
∑
k

f`,k(λ∗n)k, (2.148)

it naively seems that the anomalous dimension (2.71) has, at fixed order in the semiclassical
expansion, contributions from arbitrarily large powers of n. This, however, does not
match the diagrammatic computation which is valid for small λ∗n but virtually large
n. Indeed, beyond order bn/2c in the ordinary loop expansion the operator φn does not
have enough free legs to form “daisy” diagrams and provide terms with higher and higher
powers of n.

To understand what happens from the semiclassical perspective, we can compare contri-
butions to the anomalous dimension that are of the same order in λ∗ but which come
from different orders in the semiclassical expansion. For instance we can consider ∆`

and ∆`+1. The contributions of the same order in λ∗ are controlled by λ`+k∗ f`,kn
k and

λ`+k∗ f`+1,k−1n
k−1 respectively. Therefore, if

f`+1,k−1
f`,k

∼ k, (2.149)

there can be a potential cancellation at order k ∼ n, thus resulting in the correct behavior
of the anomalous dimensions for k beyond roughly bn/2c. The authors of [106], based
on resurgence arguments, have argued that (2.149) is incorrect for ∆0 and ∆−1. Indeed,
based on their remarks, we checked that what happens for f−1,k and f0,k−1 is more
accurately described by

f0,k−1
f−1,k

∼ k5/4. (2.150)

Hence, it may be the case that the small-λn expansion of the semiclassical result does
not match the Feynman diagrams computation at orders larger that bn/2c.

Boosting diagrammatic loop calculations

At the Wilson-Fisher fixed point, the expansion in (2.32) for the anomalous dimension of
φn, valid for small εn, is written as

γφn = n
∑
`=1

ε`P`(n), (2.151)

Hence, at any fixed order ` in (2.151) there are ` independent coefficients to be determined.
We can thus take advantage of existing results in the literature, as well as of the small
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Chapter 2. The ε-expansion meets semiclassics: dimension of φn

λ∗n expansion of our results (2.131) and (2.140), to fix some or all of them. The
anomalous dimensions of φ, φ2 and φ4 are known to order ε5 with analytical coefficients
[98, 107], while the anomalous dimension of φ3 is known to the same order with numerical
coefficients [108]. These results then provide four constraints on each of the first five
orders in (2.151) and are enough to fix all the cofficients in P1(n), P2(n) and P3(n).
Furthermore, expanding the results (2.131) and (2.140) derived in this chapter to order
O(ε5n5), we have a total of six constraints on each of the first five orders in (2.151). This
clearly fully fixes the form of the five polynomials P1(n), P2(n), . . . , P5(n). The form of
the first two was given in (2.30), while the others read

P3(n) = n3

125 + n2 [16ζ(3)− 29]
500 + n [599− 672ζ(3)]

5000 + [1024ζ(3)− 603]
10000 , (2.152)

P4(n) =− 21n4

5000 + n3 [214− 77ζ(3)− 80ζ(5)]
5000 + n2 [66336ζ(3) + 160π4 − 89491

]
600000

+ n
[
41073− 45864ζ(3) + 46720ζ(5)− 224π4]

200000 (2.153)

+ 75888ζ(3)− 130560ζ(5) + 512π4 − 53717
600000 ,

P5(n) = n58
3125 + n4 [476ζ(3) + 480ζ(5) + 448ζ(7)− 1683]

50000
+ 0.00093n3 − 0.01067n2 − 0.2460n+ 0.2680. (2.154)

We checked that P3(n) agrees both with the previous literature and our results, providing
another non trivial check of our approach. The polynomial P4(n) was determined
using our results and those in the literature for φ, φ2 and φ4; we checked that it agrees
numerically within 10% level with the coefficient reported in [108] for φ3. We do not
know if this discrepancy is due to the numerical uncertainty of this result, as the latter
is not reported in [108]. For the same reason, we cannot quote the error on the last four
coefficients of P5(n).

Comparison with Monte-Carlo results at large charge

We can compare our result in the large (λ∗n) limit, given by (2.146) in the first two
leading orders, with the recent results of Monte-Carlo lattice simulations of the three-
dimensional O(2) model [109]. There, the authors computed the scaling dimensions of
the lightest charge n operator for various values of n and compared their result with the
predicted form (2.147), which in d = 3 reads:

∆n ' c3/2n
3/2 + c1/2n

1/2 − 0.0937 + c−1/2n
−1/2 +O

(
n−1

)
. (2.155)

The authors there determined the coefficients c3/2 and c1/2 fitting the result of the lattice
computation.
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2.5 Sextic interaction in d = 3− ε

c3/2 c1/2

Monte-Carlo [109] 0.337(3) 0.27(4)
ε-expansion: LO 0.47 0.79
ε-expansion: NLO 0.42 0.04

Table 2.1: Comparison of the Monte-Carlo result in [109] with the ε-expansion; we display
both the leading order (LO) result as well as the next to leading order (NLO).

We compared the coefficients they obtained with those which follow from (2.146) putting
ε = 1. The results are displayed in the table 2.1. Using the next to leading order
contribution as an estimate of the error, the result for c3/2 is roughly within two standard
deviations from the Monte-Carlo result, while for c1/2 the error is as big as the leading
order, making a quantitative analysis impossible. It is however interesting to notice that
for both coefficients the next to leading order values are closer than the leading order
ones to the results obtained by the Monte-Carlo. It would be interesting to compute the
two-loop order result to explore the convergence properties of the expansion.

2.5 Sextic interaction in d = 3− ε

In this section we apply the same methodology to compute the scaling dimension of φn
in the theory (2.9) at its conformally invariant point in 3− ε dimensions. Within this
convention for the Lagrangian, one can easily realize that λ0 is again the loop counting
parameter by rescaling φ→ φ/

√
λ0 similarly as in (2.35). The β-function was given in

(2.10) and its Wilson-Fisher fixed point in (2.11). Notice that the β-function starts at
two-loop order at ε = 0. Hence the model is conformally invariant up to O(λ) in exactly
d = 3 for any value of λ. This observation will be important for what follows. The
field wave-function renormalization starts at four loops and does not contribute to the
following.

In complete analogy with the (φφ̄)2 case discussed in section 2.2.2, the diagrammatic
calculation for the anomalous dimension takes the form

γφn = n
∑
`=1

λ`P`(n), (2.156)

where P` is a polynomial of degree ` for ` ≤ n, and of degree n for ` > n. Thus, the
loop order ` contribution grows as λ`n`+1 for ` ≤ n, implying that the diagrammatic
expansion breaks down for sufficiently large λn. Re-organizing the series in (2.156), the
scaling dimension can also be expanded as

∆φn = n

(
d

2 − 1
)

+ γφn =
∑
κ=−1

λκ∆κ(λn). (2.157)
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Chapter 2. The ε-expansion meets semiclassics: dimension of φn

Figure 2.3: Two-loop diagram contributing to the φn anomalous dimension. The crossed
circle denotes the φn insertion.

As in the previous case the scaling dimension (2.157) is a physical (scheme-independent)
quantity only at the fixed-point (2.11). However, in light of the observation above,
working at order O(λ) we can take ε→ 0 without affecting the conformal invariance of
the theory19. The leading order term ∆−1(λn) and the one-loop correction ∆0(λn) are
hence scheme-independent for generic λ.

Working at fixed n, at leading order in λ, the anomalous dimension of φn(x) is determined
by the diagram in Fig. 2.3 and it is given by

γφn = λ2n(n− 1)(n− 2)
36(4π)2 +O

(
λ4n5

(4π)4

)
. (2.158)

2.5.1 Semiclassical computation

To compute the scaling dimension ∆φn for arbitrary λn we proceed as previously in
section 2.4. Most of the steps are exactly the same, hence we only report the differences
due to the different interaction term. The lagrangian on the cylinder is given by

Lcyl = ∂φ̄∂φ+m2φ̄φ+ λ2

36
(
φ̄φ
)3

, (2.159)

where m2 =
(
d−2
2R

)2 d=3= 1
4R2 again is the R(g)φ̄φ coupling to the Ricci scalar which is

enforced by conformal invariance. Working at O(λ), we neglect the difference between
bare and renormalized coupling, as that arises at O(λ2). We define the polar field
coordinates as in (2.80), obtaining the same action (2.86), but this time with potential

Vint(ρ) = λ2

288ρ
6. (2.160)

The derivation of the saddle goes through in the same way, giving in particular instead
of (2.92)

µ2 −m2 = 1
f

∂Vint(f)
∂f

= λ2

48f
4 . (2.161)

19Dimensional regularization is still used in the intermediate steps.
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2.5 Sextic interaction in d = 3− ε

Given the constraint f2 ≥ 0, the equations admit a unique solution. In particular for
n > 0, µ reads:

µ = µ6(λn, d) = (d− 2)
2R

√
1 +

√
1 + λ2n2Γ(d/2)2

3πd(d−2)4

√
2

. (2.162)

Plugging the solution into the classical action we extract the leading order contribution
to the scaling dimension:

Seff/T = n

3

(
2µ+ m2

µ

)
d=3= 1

R

∆−1(λn)
λ

. (2.163)

Explicitly, the result reads

∆−1(λn) = λnF−1

(
λ2n2

12π2

)
, (2.164)

where
F−1(x) = 1 +

√
1 + x+ x/3√

2 (1 +
√

1 + x)3/2 . (2.165)

As previously the one-loop correction ∆0 is determined by the fluctuation determinant
around the leading trajectory (2.136). The expression for the spectrum (2.118) is also
modified with the potential (2.160). The infinite sum is regularized as previously; the final
result is finite in the limit d→ 3, consistently with the coupling not being renormalized
at one-loop. Eventually, ∆0 can be written in terms of an infinite convergent sum as

∆0(λn) = 1
4 − 3(Rµ)2 +

√
8R2µ2 − 1

2 + 1
2

∞∑
`=1

σ(`) , (2.166)

where σ(`) is obtained from the summand in (2.136) by subtracting the divergent piece:

σ(`) = (1 + 2`)R [ωB(`) + ωA(`)]− 4` (`+ 1)−
(

6R2µ2 − 1
2

)
. (2.167)

In (2.166) all quantities are evaluated in d = 3, hence µ is given by

µ = µ6(λn, 3) = 1
R

√
1 +

√
1 + λ2n2

12π2

2
√

2
(2.168)

and m = 1
2R .
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Chapter 2. The ε-expansion meets semiclassics: dimension of φn

2.5.2 Comments on the result

Equations (2.164) and (2.166) provide the first two terms of the expansion (2.157) for
the scaling dimension of the operator φn, ∆φn . The result holds for arbitrary values of
λn. The result follows the same pattern observed in the previous section.

Let us consider first the small λn regime. From eq. (2.162) it follows that the chemical
potential, and consequently all the functions ∆κ, can be expanded in powers of λ2n2.
Explicitly neglecting terms of order O

(
λ6n7

(4π)6

)
, we get:

∆φn = n

2 + λ2

(4π)2

[
n3 − 3n2

36 +O (n)
]
− λ4

(4π)4

[
n5

144 −
n4(64− 9π2)

1152 +O
(
n3
)]

+ . . . .

(2.169)
In this regime we can compare eq. (2.169) with the diagrammatic result (2.158), finding
perfect agreement. This check was extended to 6-loop level in [110].

Besides confirming the generality of the method, the main interest of (φ̄φ)3 in d = 3− ε
lies in the possibility of non-trivially comparing to the universal predictions of the large
charge EFT of 3D CFT [74]. Indeed since the β-function arises only at 2-loops, at the
1-loop level the theory is conformally invariant at d = 3 for any value of λ. Thus the
anomalous dimension is expected in this regime to take the form

∆φn = t3/2
[
c3/2 + c1/2t

−1 + c−1/2t
−2 + . . .

]
+

[
d0 + d−1t

−1 + . . .
]
, (2.170)

Again, computing the one-loop contribution (2.166) at large λn can be achieved by
evaluating numerically for large µ ∼ (λn)1/2 and then fitting20 to the functional form
(2.170). When doing this we also verified that the coefficients of terms which might
modify the form of the expansion, such as a term linear in λn, are compatible with zero
within the numerical uncertainty. We get the following numerical coefficients

c3/2 =
√

3π
6λ − 0.0653 +O

(
λ√
3π

)
,

c1/2 =
√

3π
2λ + 0.2088 +O

(
λ√
3π

)
,

c−1/2 = −
√

3π
4λ − 0.2627 +O

(
λ√
3π

)
, (2.171)

d0 = −0.0937255(3) ,

d−1 = 0.096(1) +O

(
λ√
3π

)
.

20We computed ∆0 numerically for Rµ = 10, 11, . . . 210 to perform the fit; the final results are obtained
using six fitting parameters in the expansion (2.170).
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2.5 Sextic interaction in d = 3− ε

The parentheses show the numerical error on the last digit, when the latter is not
negligible at the reported precision.

This result nicely matches the universal predictions of the large charge EFT. Within the
general EFT construction the ck’s are model dependent Wilson coefficients, but the d’s
are universally calculable effects associated to the 1-loop Casimir energy. Our result thus
matches the general theory. In particular we find

d0 = −0.0937255(3) (2.172)

in agreement with [75] to almost seven digit accuracy.

59





3 Computation of 3- and 4-point
functions

In this chapter, we further explore the semiclassical methodology described in section 2.4.
Focusing on the Wilson-Fisher fixed point in 4−ε dimensions, corresponding to the theory
in eq. (2.1), we will derive new results by studying 3- and 4-point functions involving
two operators with large charge n at next to leading order in ε (or equivalently in n−1)
[3, 111]. More precisely, we will compute correlators of the class presented in Eq. (2.72)
involving one or two additional operators Oi, i.e. N equals 1 or 2. For simplicity we will
focus on insertions of just one specific type of neutral operators

O(x) = (φ̄φ)k(x). (3.1)

These computations are performed at next-to-leading order in the 1/n expansion. From
these correlators, we are able to derive more elements of the CFT data of the theory,
namely coefficients of the O × φn operator product expansion (OPE), also at next-to-
leading order in the 1/n expansion. In this chapter and the next, we will ignore the
powers of R, the radius of the cylinder, in all computations; in other words we set R = 1.

We start with the 3-point function of φ̄φ, which, up to the normalization, is fully
determined by the scaling dimensions and a single fusion coefficient. The scaling dimension
of φn is given by (2.71, 2.131, 2.140), while that of φ̄φ can be easily computed using
standard perturbation theory through Feynman diagrams as we will see shortly. As a
result the only parameter to compute is the fusion coefficient λφ̄φ, which appears in the
3-pt function of canonically (re-)normalized operators [Oi] as

〈
[φ̄n](xf )[φ̄φ](x)[φn](xi)

〉
=

λφ̄φ

(xf − xi)2∆φn−∆O(x− xi)∆O(xf − x)∆O
. (3.2)

On the cylinder, using (2.79), one can more simply write

λφ̄φ = lim
τf→∞
τi→−∞

〈0|[̂̄φn](τf , ~nf )[ ̂̄φφ](τ, ~n)[φ̂n](τi, ~ni)|0〉
〈0|[̂̄φn](τf , ~nf )[φ̂n](τi, ~ni)|0〉

≡ 〈n|[ ̂̄φφ](τ, ~n)|n〉. (3.3)
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Chapter 3. Computation of 3- and 4-point functions

For the theory and the operators at hand, renormalization is multiplicative, so that
canonically normalized and bare operators are related by [Oi] = Oi/Zi, with Zi generally
UV divergent. For instance, the 2-point function of φ̄φ is given by

〈(φ̄φ)(x)(φ̄φ)(y)〉 =
Z2
φ̄φ

(x− y)2∆φ̄φ
, (3.4)

where at one-loop order, i.e. just the diagram in Fig. 3.1,

Zφ̄φ = Ω−1
d−1(d− 2)−1

[
1− λ

8π2
1

4− d

] [
1− λ

16π2 (1 + γ + log π)
]
, (3.5)

which implies the scaling dimension is

∆φ̄φ ≡ (d− 2) + γφ̄φ = (d− 2) + λ

8π2 . (3.6)

Figure 3.1: One-loop renormalization of φ̄φ.

3.1 3-pt function

For large n, (3.3) can be computed semiclassically by expanding around the saddle point
(2.91). Equation (2.98) yields in this case

λφ̄φ = Z−1
φ̄φ

∫
DrDπ ( ̂̄φφ)(τ, ~n)e−Ŝ[r,π]∫

DrDπ e−Ŝ[r,π]
, (3.7)

where the path integrals have the boundary conditions specified by (2.84) and the action
for the r, π fields is (2.99).

Leading order: the computation boils down to evaluating the integrands on the saddle,
leading to

λφ̄φ = f2Ω3 = n

µ∗
, (3.8)

where we used (2.93) and the leading order result Z−1
φ̄φ

= 2Ω3. For small λn we have
µ∗ = 1, see (2.95), and the result, λφ̄φ = n, coincides with the tree level computation
using Feynman diagrams. In this chapter the symbol µ refers to µ4(λn, d) while µ∗ refers
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3.1 3-pt function

+ +

Figure 3.2: Topology of diagrams entering 〈n|(φ̄φ)|n〉 at NLO

to µ4(λ∗n, 4). Notice this is the chemical potential of the 4D theory evaluated at the
critical coupling of the theory in d = 4− ε, given in (2.8).

Next to leading order. The result is independent of the choice of (τ, ~n) in (3.7),
therefore, we make the convenient choice (τ, ~n) = (0, ~nd), with

~nd = (0, 0, . . . , 0, 1︸ ︷︷ ︸
d

). (3.9)

By expanding around the saddle (2.97), the expectation value of the bare operator is
then 〈

n|
(
φ̄φ
)

(0, ~nd)|n
〉

= 1
2
〈
n|f2 + 2fr(0, ~nd) + r2(0, ~nd)|n

〉
, (3.10)

which at NLO, i.e. 1-loop, gives

〈
n|
(
φ̄φ
)

(0, ~nd)|n
〉

= f2

2 −
〈
r(0, ~nd)

∫
dτdΩd−1

[
r(∂π)2 − iµr2π̇ + λf2r3

4

]〉
+1

2
〈
r2(0, ~nd)

〉
,

(3.11)
where we inserted interaction terms from (2.101) within the 〈. . . 〉 and the fields r, π are
free fields (2.116) propagating according to the quadratic action expanded around the
background (2.100). The resulting Feynman diagrams are depicted in Fig. 3.2. The first
step is to find the propagator of (r, π). In matrix form this can be written as

D(τ − τ ′, ~n · ~n′) =
∑
`

F (`)(τ − τ ′)C(d/2−1)
` (~n · ~n′), (3.12)

where C(d/2−1)
` (cos θ) are Gegenbauer polynomials and F (`)(τ) is a 2× 2 matrix whose

exact expression is given in appendix B.1.

The details of the computation can be found in appendix B.2. The result is

λφ̄φ = n

µ∗
+ 2(3µ2

∗ + 1)
[2(3µ2

∗ − 1)]3/2
− 3− 2µ2

∗ + 3µ4
∗

2(3µ2
∗ − 1) +

∞∑
`=1

[
S`(µ∗)− c−1(µ∗)`− c0(µ∗)−

c1(µ∗)
`

]
,

(3.13)
with

S`(µ) ≡ S`(µ, 1, 4), (3.14)
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Chapter 3. Computation of 3- and 4-point functions

where

S`(µ,m, d) = 2`+ d− 2
ω2
B(0)

ωB(`)ωA(`)(3µ2 +m2)− J2
` (µ2 −m2)

ωB(`)ωA(`) [ωB(`) + ωA(`)] C
(d/2−1)
` (1), (3.15)

while the coefficients c−1,0,1(µ) are defined by the asymptotic behavior of the summand

S`(µ) ≡
`→∞

c−1(µ)`+ c0(µ) + c1(µ)
`

+ . . . , (3.16)

so as to render the sum in (3.13) finite. Their exact values are

c−1(µ) = c0(µ) = µ2 + 1
3µ2 − 1 , c1(µ) = −µ

4 + 2µ2 − 3
2(3µ2 − 1) . (3.17)

As discussed in the appendix, the transcendental terms proportional to the Euler constant
γ, and to ln π, which normally appear in 1-loop expressions, cancel out as expected once
we fix λ = λ∗.

As usual the result can be expanded in both regimes of large or small λ∗n. For small
λ∗n, expanding µ∗ in a power series in λ∗n

µ∗ = 1 + λ∗n

16π2 −
3
2

(
λ∗n

16π2

)2
+O(λ3

∗n
3), (3.18)

we get

λφ̄φ =
λ∗n→0

n

[
1− λ∗n

16π2 + 5
2

(
λ∗n

16π2

)2
+O(λ∗n)3

]
+
[
6ζ2(3)− 13

2

](
λ∗n

16π2

)2
+O(λ∗n)3+O(n−1).

(3.19)
While for large λ∗n, and therefore µ∗ � 1, the sum in (3.13) approximately satisfies

∞∑
`=1

[
S`(µ∗, 1, 4)− c−1(µ∗)`− c0(µ∗)−

c1(µ∗)
`

]
=

µ→∞
1
6µ

2
∗ logµ∗. (3.20)

Combining that with the leading contribution n/µ∗ and using the relation µ3
∗ = λ∗n/4Ω3,

which applies in the large λ∗n regime, we get

λφ̄φ =
λn→∞

8π2

λ∗

(
λ∗n

8π2

)2/3 (
1 + λ∗

144π2 log λ∗n8π2

)

' 8π2

λ∗

(
λ∗n

8π2

) 2
3 + λ∗

144π2
= 5

2ε

(2εn
5

) 2
3 + ε

45
∼ n

∆
φ̄φ

d−1 , (3.21)

where ∆φ̄φ is given by eq. (3.6) with λ→ λ∗. The scaling with n is once more precisely
as predicted by the large charge EFT description [75].
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3.2 4-pt function

3.2 4-pt function

We will now study, by the same methodology, the four point function with two insertions
of (φ̄φ).

Let us recall that a general 4-point correlator in a CFT can be written using s- and
t-channel representations

〈O4(x4)O3(x3)O2(x2)O1(x1)〉 = g12,34(z, z̄)
x∆1+∆2

12 x∆3+∆4
34

(
x24
x14

)∆1−∆2 (x14
x13

)∆3−∆4

(3.22)

= g32,14(1− z, 1− z̄)
x∆3+∆2

32 x∆1+∆4
14

(
x24
x34

)∆3−∆2 (x34
x13

)∆1−∆4

(3.23)

where z and z̄ are defined by the conformal ratios according to

u = z̄z = x2
12x

2
34

x2
13x

2
24
, v = (1− z)(1− z̄) = x2

14x
2
23

x2
13x

2
24
. (3.24)

Modulo the kinematic factors, fixed by conformal symmetry, the relevant information is
encapsulated in the gij,kl(z, z̄).

For Euclidean signature, the two variables z ≡ eτ+iθ and z̄ ≡ eτ−iθ are related by complex
conjugation. Using conformal transformations to map x1 → 0, x4 →∞ and

x3 = ~n ≡ (0, 0, . . . , 0, 1) x2 = ~n(θ)eτ ≡ (0, 0, . . . , sin θ, cos θ)eτ , (3.25)

we can rewrite

gs(z, z̄) ≡ g12,34(z, z̄) = |z|∆1〈O4|Ô3(0, ~n)Ô2(τ, ~n(θ))|O1〉, (3.26)

gt(z, z̄) ≡ g32,14(1− z, 1− z̄) = |1− z|
∆2+∆3

|z|∆2
〈O4|Ô3(0, ~n)Ô2(τ, ~n(θ))|O1〉.(3.27)

The gij,kl(z, z̄) can be decomposed as a sum over the primary operators that appear in
both the operator product expansions (OPEs) of Oi ×Oj and Ok ×Ol

gij,kl(z, z̄) =
∑
α

λijαλ̄klαg
∆ji,∆kl

∆α,`α
(z, z̄), ∆ij = ∆i −∆j , (3.28)

where α labels the primaries while ∆α, `α and λijα respectively represent their dimensions,
spins and fusion coefficients. The conformal blocks g∆ji,∆kl

∆,` (z, z̄) are completely fixed
functions: their functional form is fixed by the conformal group and their normalization
by (3.28). Their explicit expressions in d = 2, 4 can be found in [112]. What matters
for our discussion is that in any dimension they admit a power series expansion in |z|
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[112, 113]

g∆21,∆34
∆,` (z, z̄) = |z|∆

∞∑
k=0
|z|k

`+k∑
j=j0(`,k)

A∆21,∆34
k,j (∆, `)C(d/2−1)

j (cos θ), z = |z|eiθ (3.29)

with j0(`, k) = max (`− k, k − ` mod 2), where the term proportional to |z|kCj(cos θ)
corresponds to the level k descendant with spin j. The dimension and spin of the
intermediate primaries is directly read from this expansion. The A∆21,∆34

k,j (∆, `) are
calculable coefficients, in particular A∆21,∆34

0,0 (∆, 0) = 1.

We will here study the specific correlator〈
[φ̄n](x4)[φ̄φ](x3)[φ̄φ](x2)[φn](x1)

〉
, (3.30)

so that equations (3.26) and (3.27) reduce to

gs(z, z̄) ≡ gφn,φ̄φ;φ̄φ,φ̄n(z, z̄) = Z−2
φ̄φ
|z|∆φn

〈n|( ̂̄φφ)(0, ~n)( ̂̄φφ)(τ, ~n(θ))|n〉
〈n|n〉

, (3.31)

gt(z, z̄) ≡ gφ̄φ,φ̄φ;φn,φ̄n(1− z, 1− z̄) = Z−2
φ̄φ

|1− z|2∆φ̄φ

|z|∆φ̄φ

〈n|( ̂̄φφ)(0, ~n)( ̂̄φφ)(τ, ~n(θ))|n〉
〈n|n〉

.

(3.32)

In the regime ∆φn � ∆φ̄φ, the s-channel is controlled by the “Heavy-Light” OPE, while
the t-channel is controlled by the “Heavy-Heavy” and the “Light-Light” OPEs.

3.2.1 Leading order

As before, the leading order contribution corresponds to evaluating the path integral on
the saddle and gives

〈n|( ˆ̄φφ̂)(0, ~nd)( ˆ̄φφ̂)(τ, ~n)|n〉
〈n|n〉

= f4

4 . (3.33)

The implications of this result, when considering the s- and t-channels are as follows.

s-channel. From (3.31) and (3.5) we obtain

gs(z, z̄) =
(
f2Ω3

)2
|z|∆φn . (3.34)

Therefore, the only operator appearing in the φn × φ̄φ OPE is φn(x) itself with the
fusion coefficient (3.8). Moreover, we see that at this order the descendants of φn do not
contribute. This is to be expected, because the contribution of descendants is suppressed
by powers of the ratio ∆φ̄φ

∆φn
, and thus by an inverse power of n, just as a consequence
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3.2 4-pt function

of conformal symmetry (see also [114]). For instance, the first descendant term in the
conformal block has coefficient

A∆21,∆34
1,1 (∆, 0) = (∆21 + ∆)(∆34 + ∆)

4∆ , (3.35)

which, for the case at hand, equals
∆2
φ̄φ

4∆φn
, (3.36)

and is suppressed in the limit n� 1.

t-channel. From eqs. (3.32,3.33) we obtain

gt(y, ȳ) =
(
n

µ

)2 |y|2∆φ̄φ

|1− y|∆φ̄φ
. (3.37)

Expanding in powers of y

gt(y, ȳ) =
(
n

µ

)2
|y|4

[
1 + |y|C(1)

1 (cos θ) + |y|2C(1)
2 (cos θ) + |y|3C(1)

3 (cos θ) + . . .
]
,(3.38)

and comparing with the expansion in conformal blocks, (3.28), we deduce that in this
channel there appears a tower of primary operators labelled by their spin ` and by an
integer k, with dimension

∆(k,`) = 4 + 2k + 2`, `, k = 0, 1, 2, . . . , (3.39)

and with fusion coefficients satisfying

λn,n(k,`)λ̄
φ̄φ,φ̄φ
(k,`) = f4

4 (−1)k (k!)2(k + 2`)!(k + 2`+ 1)!
(2k)!(2k + 4`+ 1)! . (3.40)

Determining whose operators those are the dimensions will be the subject of the last
chapter of the thesis. For the moment, let us just note that at weak coupling these
operators are

O(k,`)(x) =
(
φ̄φ ∂2k∂{µ1 . . . ∂µ2`}φ̄φ

)
(x), (3.41)

where {} indicates the traceless symmetric component.
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+ +

+ + +

Figure 3.3: Topology of diagrams entering 〈n|(φ̄φ)(φ̄φ)|n〉

3.2.2 NLO

At next to leading order we must consider, in full analogy with (3.10),

〈n|(φ̄φ)(0, ~n)(φ̄φ)(τ, ~n(θ))|n〉 = 〈n|
[
f2

2 + fr(0, ~n) + r2(0, ~n)
2

] [
f2

2 + fr(τ, ~n(θ)) + r2(τ, ~n(θ))
2

]
|n〉 ,

(3.42)
from which both connected and disconnected diagrams arise at NLO, see Fig. 3.3.

Disconnected diagrams just correspond to factorized 3-point functions, which we computed
before. Therefore, what is left to compute is the “one-phonon” exchange connected
diagram, which leads to

Z−2
φ̄φ

〈n|( ˆ̄φφ̂)(0, ~nd)( ˆ̄φφ̂)(τ, ~n)|n〉
〈n|n〉

= λ2
φ̄φ

[
1 + 4µΩ3

n
Drr(z, z̄)

]
, (3.43)

with λφ̄φ the fusion coefficient in (3.13) and with the propagator for the radial mode
given by (see appendix B.1)

Drr(z, z̄) =
∞∑
`=0

`+ 1
Ω3

(
|z|ωA(`) J

2
` − ω2

A(`)
2ωA(`) + |z|ωB(`) ω

2
B(`)− J2

`

2ωB(`)

)
C

(1)
` (cos θ)

ω2
B(`)− ω2

A(`) .

(3.44)
Having secured the four-point function at NLO, we can now turn our attention to the
spectrum of operators appearing in the different channels.

s-channel.The analysis is straightforward. Indeed using (3.31) and (3.44) we see that
the four-point function

gs(z, z̄) = λ2
φ̄φ
|z|∆φn

[
1 + 4µ

n

∞∑
`=0

(
|z|ωA(`) J

2
` − ω2

A(`)
2ωA(`) + |z|ωB(`) ω

2
B(`)− J2

`

2ωB(`)

)
(`+ 1)C(1)

` (cos θ)
ω2
B(`)− ω2

A(`)

]
(3.45)
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is already in the form (3.29). Therefore, we can identify the primary operators by simply
looking at the powers of |z| in the expansion. These are in one-to one correspondence
with the A- and B-type single phonon states found in section (2.4.3) and result in two
separated towers of primaries with dimension

∆A = ∆φn + ωA(`), ` ≥ 2 ∆B = ∆φn + ωB(`), ` ≥ 0 . (3.46)

Notice that the tower of A-type primaries starts at ` = 2. Indeed, the ` = 1 A-phonon does
appear in (3.45) but it corresponds to the descendant ∂µφn. Instead ` = 0 corresponds
to the “Goldstone mode", which controls the global fluctuations of the phase of φ and, as
such, is not excited by neutral operators like φ̄φ. The corresponding fusion coefficients
can be read off from the coefficients in front of |z|∆

λ`
φ̄φ,A

= λφ̄φ

√
4µ
n

(`+ 1)J
2
` − ω2

A(`)
2ωA(`) , ` ≥ 1,

λ`
φ̄φ,B

= λφ̄φ

√
4µ
n

(`+ 1)ω
2
B(`)− J2

`

2ωB(`) , ` ≥ 0.
(3.47)

We see that these are n suppressed by ∼
√
µ/n with respect to λφ̄φ. It should also be

noted that these operators enter the OPE without their descendants, similarly to φn at
leading order.

t-channel.The analysis is somewhat more complicated. The reason is that the corre-
sponding expression of the four-point function

gt(1− z, 1− z̄) = λ2
φ̄φ

|1− z|2∆φ̄φ

|z|∆φ̄φ
(3.48)[

1 + 4µ
n

∞∑
`=0

(
|z|ωA(`) J

2
` − ω2

A(`)
2ωA(`) + |z|ωB(`) ω

2
B(`)− J2

`

2ωB(`)

)
(`+ 1)C(1)

` (cos θ)
ω2
B(`)− ω2

A(`)

]

is written as a power series in |z|, and not in |1− z|. In order to get the latter, we have
to analytically continue the four-point function to the region z = 1. That would allow to
analyze the spectrum of operators appearing in the t-channel at next to leading order.

Unfortunately, we do not know how to perform the analytic continuation in closed form1,
and instead, we will illustrate the principle with an example. For that, let us consider a
simplified situation, z = z̄ ∈ R, in other words θ = 0. Introducing the following notation
for the summand in (3.48)

G(z; `) = 2
(
zωA(`) J

2
` − ω2

A(`)
2ωA(`) + zωB(`) ω

2
B(`)− J2

`

2ωB(`)

)
(`+ 1)C(1)

` (1)
ω2
B(`)− ω2

A(`) , (3.49)

1In other words, we do not possess the propagator in closed form for z ∼ z̄ ∼ 1.
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and using its asymptotic behavior (see also (2.128))

G(z; `) =
`→∞
z→1

z`
(
`+ 1− 3

2
µ2 − 1
`
− (1− z)`+ . . .

)
(3.50)

we can find leading asymptotic of the four point function for z → 1

gt(1−z, 1−z) =
z→1

λ2
φ̄φ

(1−z)2∆φ̄φ

{
1 + 2µ

n

[
1

(1− z)2 +
∆φ̄φ − 1

1− z + 3
2(µ2 − 1) log(1− z)

]
+R(z)

}
(3.51)

with the remainder

R(z) = 2µ
n
G(z; 0) + 2µ

n

∞∑
`=1

[
G(z; `)− z`

(
`+ 1− 3

2
µ2 − 1
`

)]
=
z→1

O((1− z) log(1− z))

(3.52)
a less singular function.

Singular terms in (3.51) correspond to different operators. The term proportional to
(1− z)−2 corresponds to an operator with scaling dimension ∆ = 2, which is nothing else
but φ̄φ (its anomalous dimension is invisible at this order).2 The second term corresponds
to its descendant, whose coefficient is fixed by the conformal symmetry (compare with
(3.35)). Lastly, the term with log(1 − z) can be exponentiated, leading to a modified
prefactor

gt(1− z, 1− z) ⊃
z→1

λ2
φ̄φ

(1− z)2∆φ̄φ (1− z)
3µ
n

(µ2−1). (3.54)

The resulting exponent should correspond to the scaling dimension of ∆(φ̄φ)2 at NLO
(which we already computed as the k = ` = 0 case of (3.39) and (3.41)). Indeed, using
(2.92), (2.93), and (3.6) we can write

∆(φ̄φ)2 = 2∆φ̄φ + 3µ
n

(µ2 − 1) = 4 +O(ε2), (3.55)

which coincides with the computation using Feynman diagrams, see appendix C. The
last result can also be directly derived using the general relation (see e.g. [115])

∆(φ̄φ)2 = d+ β′(λ∗) (3.56)

between the dimension of the interaction term (φ̄φ)2 and β′ ≡ ∂λβ. Using (2.8) and (2.6)
immediately gives ∆(φ̄φ)2 = 4 +O(ε2).

2In general we expect not only φ̄φ but its spin-` analogues of the form

φ̄∂µ1 . . . ∂µ`φ, (3.53)

to appear in the φ̄φ× φ̄φ OPE.
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3.2 4-pt function

The relation (3.56) can also be derived from the requirement that

∂

∂λ
〈[φ](x1) . . . [φ](xN )[φ̄](y1) . . . [φ̄](yN )〉 (3.57)

is free of UV-divergence. Using the relation between bare and renormalized coupling
λ0 = µελZλ, and the path integral picture, one can show [101] the above is equal to

1
4
εµελ0
β(λ) Z(φ̄φ)2

∫
ddx 〈[φ](x1) . . . [φ̄](yN )[(φ̄φ)2](x)〉 + . . . (3.58)

where the dots stand for other terms related to the mixing with lower-dimensional
operators, which can be ignored in this discussion of divergences (moreover knowing
that ultimately the mixing cancels at the critical coupling because (φ̄φ)2 is a primary
operator). The term we kept is a zero-momentum insertion of the renormalized operator
into a renormalized correlator, hence is free of UV-divergence3. Thus its coefficient must
be finite as well. Note that for this purpose one must consider the inverse of the beta
function 1

β(λ) = 1
−ελ+ β4(λ)

as expanded in a series of poles in ε. Since the renormalization factor Z(φ̄φ)2 must also
have the form of (1+ a series of poles), we conclude the coefficient is finite if

Z(φ̄φ)2 = −β(λ)µε
ελ0

, (3.59)

from which we derive

∆(φ̄φ)2 = 4
(
d− 2

2

)
+

d logZ(φ̄φ)2

d logµ

∣∣∣∣∣
λ=λ∗

= 2d− 4 + β′(λ∗) + ε = d+ β′(λ∗) = 4 +O(ε2) .

(3.60)

3.2.3 Comments

We conclude this section with two comments. First, it is straightforward to extend the
computation presented above to the case when the two ‘light’ operators are (φ̄φ)k. (3.51)
is just minimally modified to 4

gt(1−z, 1−z) =
z→1

λ2
(φ̄φ)k(1−z)2∆(φ̄φ)k

{
1 + 2µk2

n

[
1

(1− z)2 +
∆(φ̄φ)k − 1

1− z + 3
2(µ2 − 1) log(1− z)

]
+ . . .

}
,

(3.61)
which implies that the two leading contributions are associated to (φ̄φ)2k and (φ̄φ)2k−1.
Moreover, by exponentiating the term with log(1− z) we obtain, at 1-loop accuracy, a

3The integral is IR-divergent, but that can be regulated by introducing a regulator mass which does
not affect the derivation of the anomalous dimension.

4The fusion coefficient λ(φ̄φ)k can be computed by repeating the steps of section 3.1.
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relation between scaling dimensions

∆(φ̄φ)2k − 2∆(φ̄φ)k = k2
(
∆(φ̄φ)2 − 2∆(φ̄φ)

)
, (3.62)

which can be checked perturbatively using the results of appendix C. This provides an
additional cross-check.

The second comment concerns the computation of similar correlators in a general CFT
using the universal EFT superfluid description, as done in [74, 75]. Even though the EFT
description can be trusted only for sufficiently large separations between the two ‘light’
operators, we can try and use the results of [75] for the 4-point function to formally analyze
what operators appear in t-channel. Repeating almost verbatim (albeit unjustifiably)
the computation leading to (3.39) we conclude that the spectrum of operators in this
case is given by

∆ = δ1 + δ2 + 2k + `, (3.63)

which for large `� 1 coincides with the predictions of the analytic bootstrap [84, 83].
This fact indicates there should be a way to frame the statement, which is purely within
the reach of EFT. But we do not know how.
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4 Identifying large charge operators

4.1 Introduction

4.1.1 Motivation and goals

In this chapter, we turn to a question which was raised by some of the results of the
previous chapter. Indeed, in section 3.2.2, we identified by their scaling dimension a
tower of primary operators appearing in the s-channel conformal block decomposition,
but this approach did not furnish any direct information about the identity of these
operators. Otherwise stated, the semiclassical approach delivers the operator spectrum,
but it does so somewhat formally, without telling concretely what these operators look
like. It is the goal of this chapter to investigate this issue, as we now explain in more
detail.

Generally, the large charge expansion of CFT correlators relies on a universal description in
terms of a finite density superfluid state, described by an effective field theory EFT for the
excitations of the superfluid (which for convenience we will call “hydrodynamic excitations”
in this chapter). In particular that implies that there exists a non trivial correspondence
between large charge operators and the hydrodynamic excitations in a superfluid. That
motivated exploring large charge operators using instead the conformal bootstrap [114].
Perfect agreement was found, thus remarkably showing that the superfluid phase dynamics
is somewhat encapsulated in the bootstrap constraints at large charge n.

As we have seen in chapter 2, for specific CFTs that admit a definition within perturbation
theory, through the ε-expansion, the semiclassical approach is also very powerful. There,
the superfluid description was elucidated by considering the properties of the simplest
charge n operator φn. CFT correlators (or any observable for that matter, see for example
chapter 3) involving this large charge operator, could be computed in a double scaling
limit

n� 1, λ� 1, λn = fixed, (4.1)
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by finding a saddle explicitly and expanding around it. Computations were simplified
due to the enhanced symmetry of the problem. Given the coupling λ, it was found it is
the combination λn that controls the convergence of the standard Fenynman diagram
approach: only for λn� 1 is perturbation theory applicable. Amusingly the parameter
λn shares some features with the ’t Hooft coupling in AdS/CFT [48]. In particular,
λn� 1 corresponds to the regime where all the modes beside the hydrodynamic ones
are gapped and can be integrated out, very much like in AdS/CFT the large ’t Hooft
coupling allows to integrate out the string modes to obtain the supergravity limit. It is
in this regime that the semiclassical result matches the general EFT treatment of the
large charge sector of CFTs.

This clearly invites to see how the hydrodynamic Fock space structure emerges in our
ε-expansion models based on the elementary fields and their derivatives. Indeed, an
interesting aspect of Wilson-Fisher models is that, at least for λn � 1, the operator
spectrum can be explicitly constructed both in terms of fields and derivatives and in
terms of hydrodynamic modes around the semiclassical saddle.

4.1.2 Spectrum of superfluid excitations

Let us review the information we have on the spectrum of superfluid excitations from
our semiclassical expansion. As we have seen, the operator-state correspondence allows
to map the theory on the cylinder. For instance, the scaling dimension of φn, which is
the lightest operator in the sector of charge n, was given by the energy of the charge-n
ground state |n〉 (2.74). To simplify the computation, we introduced the state |ψn〉
which is the superfluid with homogeneous charge density (2.83). It spontaneously breaks
time translation invariance and the U(1) group. The two states are related, since the
ground-state |n〉 is the least-suppressed component of any overlapping charge-n state at
the infinite past on the cylinder (for |ψn〉 see (2.77)).

Similarly, we found in section (2.4.3) that the excitations of the superfluid are given
by phonons of spin ` and energies (2.118). The excited states of the superfluid are
obtained by acting on the ground state |n〉 with the associated creation operators
A†`,~m, B

†
`,~m introduced in (2.116), thus generating a Fock space. The Fock space of

phonon excitations corresponds to the space of operators with charge n, whose spectrum
of scaling dimensions at next to leading order (NLO) is then given by 1

∆
(
{kA}, {kB}

)
= ∆φn +

∞∑
`=1

kA` ωA(`) +
∞∑
`′=0

kB`′ωB(`′), (4.2)

with kA` and kB` non-negative integers. The above result applies for states with a finite
1As ∆φn is O(n) and the ωA,B(`) are O(1), the tree level frequencies are sufficient to compute the

dimension ∆
(
{kA}, {kB}

)
at NLO. On the other hand, in order to compute the splittings at NLO, one

would need to perform a full 1-loop computation.
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number of phonons and finite spin as n→∞. For large enough total spin, one expects a
non-homogeneous configuration to dominate the path integral (see for instance [116]).

We call A- and B-type the phonons with energy ωA and ωB respectively. Notice that
primary operators correspond to states with kA1 = 0, and that descendants are obtained
by adding spin-1 A-type phonons. Compatibly with that, and with the accuracy of (4.2),
one indeed has

ωA(1) = 1 +O(ε) . (4.3)

The approach outlined above provides the spectrum of the operators but it does not
say anything about their explicit form in terms of elementary fields and derivatives.
Establishing such form is one of the goals of this chapter. Notice though that the
explicit form of composite operators depends on the renormalization procedure and that,
moreover, for large enough λn we do not possess such a procedure. We will thus content
ourselves with the construction of the operators in the free field theory limit λ→ 0 and
with their correspondence to superfluid excitations.

4.1.3 Why free theory ?

As we shall see, the tree-level result is already structurally informative. Indeed, the
properties of the operator spectrum vary continuously with λ (in truth with ε): by varying
λ we obtain operator families O(n,`,α)

λ (x), with α a discrete label characterizing the phonon
composition (the kA and kB mentioned in the previous section). As qualitatively depicted
in Fig. 4.1, the dimensions ∆, and OPE coefficients, of the O(n,`,α)

λ (x) are continuous
functions of λ. Our tree level construction will thus correspond to the starting point
at λ = 0 of each trajectory. Such endpoints, however, fully characterize the families
non-perturbatively, even if indirectly2.

Therefore, in this chapter we are going to work in free theory λ = 0, which corresponds to
the Wilson-Fisher fixed point at ε = 0, hence in an exactly integer number of dimensions.
For simplicity we work in three dimensions, thus in the free limit of theory (2.9), but the
conclusions of this chapter can be generalized to higher dimensions as well.

This chapter is organized as follows. In section 4.2, we discuss the classification of
operators with charge n in 3D free field theory quantized around φ = 0. We explain how
to explicitly use the state-operator correspondence to identify primary operators, and
provide a systematic construction for a sub-class of them. Section 4.3 constructs the
mapping between superfluid Fock states and operators. We also discuss the identification
of primary operators in this picture. In section 4.4, we discuss the breakdown of the

2The identification of these trajectories is ambiguous in case of level crossing at some value of λ. Since
the publication of [3], a more cautious study of the spectrum (4.2) has revealed that there is indeed
level-crossing. Thus the identification of operators proposed in this chapter is actually only valid at weak
coupling, and we still lack a procedure to extend it to large λn.
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Figure 4.1: Scaling dimension of families of operators as a function of λ. Each family
can be labeled with the corresponding “seed” operator in free theory (at λ = 0).

homogeneous superfluid description as the spin gets large.

4.2 Operators corresponding to vacuum fluctuations in free
theory

Our goal is to classify the families of large charge operators by focusing on their repre-
sentatives in the free limit, as sketched in figure 4.1. As explained in section 4.1.3, the
first step is the classification of the operators of free field theory in terms of conformal
multiplets. This amounts to identifying the conformal primaries.

In a CFT every local operator corresponds to a state and vice versa (operator-state
correspondence). In particular primary states, i.e. those annihilated by the special
conformal generators, correspond to primary operators. The goal of this section is to set
up the methodology for identifying these states. To make things explicit we will fully
construct a subclass of the operators.

Working in radial quantization we will now, in turn, construct the Fock space of vacuum
fluctuations, derive the state-operator correspondence and write the conformal group
generators. We will then write down in closed form a subset of primary states, also
showing by a combinatoric argument that it forms a complete basis of the subspace of
primary operators with a number of derivatives smaller than the charge.

4.2.1 Fock space of vacuum fluctuations

Let us consider a free complex scalar field in d = 3 Euclidean dimensions

L = ∂φ̄∂φ. (4.4)
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4.2 Operators corresponding to vacuum fluctuations in free theory

As usual it is beneficial to put the theory (4.4) on the cylinder R× S2 by redefining the
coordinates

xµ = rnµ, r = eτ , ~n = (sin θ cosϕ, sin θ sinϕ, cos θ) (4.5)

and the field having scaling dimension ∆φ = d−2
2 = 1

2

φ̂(τ, θ, ϕ) = eτ/2φ(x). (4.6)

As a result we have the following action on the cylinder

S =
∫
dτdΩ2

[
gµν∂µ

ˆ̄φ∂ν φ̂+ 1
4

ˆ̄φφ̂
]
, gµν = diag(1, 1, sin2 θ). (4.7)

Time translations on the cylinder are generated by the corresponding Hamiltonian H in
the following way

φ̂(τ, θ, φ) = eHτ φ̂(0, θ, φ)e−Hτ , (4.8)

and are related to dilatations on the plane, which are generated by D

eDλφ(x)e−Dλ = eλ/2φ(eλx). (4.9)

This implies
H = D, (4.10)

so that operator dimensions are in one to one correspondence with energy levels on the
cylinder.

Hermitian conjugation in radial quantization of the parent Euclidean field theory implies
ˆ̄φ(0, θ, ϕ) = φ̂(0, θ, ϕ)†, which at arbitary τ on the cylinder and arbitrary x on the plane
implies respectively

ˆ̄φ(τ, θ, ϕ) = φ̂(−τ, θ, ϕ)† and φ̄(x) = |x|−1φ(x−1)† . (4.11)

Quantization proceeds by expanding the fields in spherical harmonics Y`m, to solve the
quadratic equations of motion. The process is similar to what was done in section 2.4.3,
but made much simpler by the absence of mixing of the fields, yielding

φ̂(τ, θ, ϕ) =
∞∑
`=0

∑̀
m=−`

1√
2ω0(`)

[
a†`me

ω0(`)τY ∗`m(θ, ϕ) + b`me
−ω0(`)τY`m(θ, ϕ)

]
, (4.12)

and3

ˆ̄φ(τ, θ, ϕ) =
∞∑
`=0

∑̀
m=−`

1√
2ω0(`)

[
b†`me

ω0(`)τY ∗`m(θ, ϕ) + a`me
−ω0(`)τY`m(θ, ϕ)

]
, (4.13)

3Notice ˆ̄φ(τ, θ, ϕ) = φ̂(−τ, θ, ϕ)† in accordance with (4.11).
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with energies (using the same convention as in (2.136))

ω0(`) = `+ 1
2 . (4.14)

The corresponding canonically conjugated momenta are given by4

pφ̂(τ, θ, ϕ) = i∂τ
ˆ̄φ = i

∞∑
`=0

∑̀
m=−`

√
ω0(`)

2
[
b†`me

ω0(`)τY ∗`m(θ, ϕ)− a`me−ω0(`)τY`m(θ, ϕ)
]
,

(4.15)
and

p ˆ̄φ(τ, θ, ϕ) = i∂τ φ̂ = i
∞∑
`=0

∑̀
m=−`

√
ω0(`)

2
[
a†`me

ω0(`)τY ∗`m(θ, ϕ)− b`me−ω0(`)τY`m(θ, ϕ)
]
.

(4.16)
Creation and annihilation operators, satisfying the usual commutation relations

[a`m, a†`′m′ ] = [b`m, b†`′m′ ] = δ``′δmm′ , (4.17)

allow us to build the Hilbert space. Defining the vacuum state |0〉 as

a`m|0〉 = b`m|0〉 = 0, ∀ `,m (4.18)

states featuring a string of creation operators acting on the vacuum

na∏
i=1

a†`imi

nb∏
j=1

b†`′jm
′
j
|0〉 (4.19)

provide a basis of the Hilbert space, and give it the standard Fock space structure. The
U(1) charge of these states is determined by the charge operator

Q =
∞∑
`=0

∑̀
m=−`

(
a†`ma`m − b

†
`mb`m

)
. (4.20)

4.2.2 Operator-state correspondence

Combining (4.12) with (4.16) and using the orthonormality of the Y`m (2.107) we get

a†`m = e−ω0(`)τ√
2ω0(`)

∫
dΩ2 Y`m

(
∂τ φ̂(τ) + ω0(`)φ̂(τ)

)
, (4.21)

which is valid at any finite τ . Remembering the change of coordinates (4.5) and the
relation between fields on the plane and on the cylinder (4.6), this expression can be

4There appears an “i” in front of the time derivatives because we work in Euclidean time.
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rewritten as

a†`m = r−`√
2ω0(`)

∫
dΩ2 Y`m

(
xµ∂µφ(x) + (`+ 1)φ(x)

)
, (4.22)

where the integral is over the unit sphere and xµ = rnµ.

Acting on the vacuum and Taylor expanding around the origin5 we get

φ(x)|0〉 =
∞∑
`′=0

1
`′!x

{µ1 · · ·xµ`′}∂µ1 · · · ∂µ`′φ(0)|0〉 , (4.23)

where by {. . .} we indicate the traceless symmetric combination, which arises because of
the equation of motion ∂2φ(x) = 0. Noting that∫

dΩ2 Y`mx
{µ1 · · ·xµ`′} = 0, `′ 6= `, (4.24)

the expansion results in

a†`m|0〉 =
√

2`+ 1
`!

∫
dΩ2 Y`mn

µ1 · · ·nµ`∂µ1 · · · ∂µ`φ(0)|0〉. (4.25)

This can be explicitly computed, and is most easily performed in a different basis for the
coordinates

x± = x1 ± ix2√
2

, x0 = x3. and n± = n1 ± in2√
2

, n0 = n3, (4.26)

in which the spherical harmonics have polynomial expressions

Y`m = [−sign(m)]m
√

(2`+ 1)(`+m)!(`−m)!
2|m| 4π

∑
α++α−+α0=`
α+−α−−=m

n
α+
+ nα0

0 n
α−
−

(−2)min(α+,α−)α+!α0!α−!
(4.27)

= [−sign(m)]m
√

(2`+ 1)(`+m)!(`−m)!
2|m| 4π

`−|m|∑
k step 2

n
`+m−k

2
+ nk0n

`−m−k
2

−

(−2)
`−|m|−k

2
(
`+m−k

2

)
!k!
(
`−m−k

2

)
!
,

where the sum over k is taken in steps of 2, starting form `− |m| mod 2.

The integral in (4.25) yields

a†`m|0〉 = Yµ1...µ`
`m ∂µ1 · · · ∂µ`φ(0)|0〉, (4.28)

5As can be seen in (4.12), the field is singular at the origin, r → 0 or τ → −∞ due to negative-frequency
b`m modes. However, in φ(x)|0〉 the singular terms drop and Taylor expansion is legitimate.
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where we denote
Yµ1...µ`
`m =

√
2`+ 1
`!

∫
dΩ2 Y`mn

µ1 · · ·nµ` . (4.29)

given explicitly as

Y

α+︷ ︸︸ ︷
+ . . .+

α0︷ ︸︸ ︷
0 . . . 0

α−︷ ︸︸ ︷
− . . .−

`m = δα++α0+α−,`δα−−α+,m
[−sign(m)]m

√
π (2`+ 1)

√
(`+m)!(`−m)!

`!

×
`−|m|∑
k step 2

(−1)
`−k−|m|

2

2 3
2 `−k−

α0
2

Γ
(
k+α0+1

2

)
Γ
(
`+ 3

2

)
(
`− k+α0

2

)
!(

`+m−k
2

)
!k!
(
`−m−k

2

)
!
.

(4.30)

In particular, we obtain as a simple example

Yµ1...µ`
`` = (−1)`2 `

2 +1√π√
(2`)!

δµ1
− · · · δ

µ`
− , (4.31)

a†``|0〉 = (−1)`2 `
2 +1√π√

(2`)!

(
∂−
)`
φ(0)|0〉. (4.32)

Repeating the same steps starting with (4.13) and (4.15), we get similarly

b†`m|0〉 = Yµ1...µ`
`m ∂µ1 · · · ∂µ` φ̄(0)|0〉. (4.33)

This generalizes to multi-particle Fock states (4.19). For example6,

a†`1m1
b†`2m2

|0〉 = Yµ1...µ`1
`1m1

Yν1...ν`2
`2m2

: ∂µ1 · · · ∂µ`1φ(0) ∂ν1 · · · ∂ν`2φ̄(0) : |0〉. (4.34)

Finally, note that hermitian conjugation of (4.25), together with (4.11), implies

〈0|a`m =
√

2`+ 1
`!

∫
dΩ2 Y

∗
`mn

µ1 · · ·nµ` lim
x→∞
〈0|∂(1/x)

µ1 · · · ∂(1/x)
µ`

(
|x|φ̄(x)

)
, (4.35)

where we defined
∂(1/x)
µ =

(
x2δµν − 2xµxν

)
∂(x)
ν . (4.36)

Notice, this time the field is evaluated at infinity, because hermitian conjugation in radial
quantization involves a space inversion.

6In field products acting on the vacum the singular terms at the origin are eliminated by normal-
ordering. In the rest of the chapter, normal ordering will always be intended and we will drop the “:”
symbol.
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4.2.3 Conformal generators

In order to proceed with the classification and construction of the operators we first need
the explicit expression of the conformal group generators in terms of the ladder operators.
We provide them in this section.

In d = 3, defining
Ji = 1

2εijkJjk, J± = J1 ± iJ2 (4.37)

and

P± = 1√
2

(P1 ± iP2) , K± = 1√
2

(K1 ± iK2) , P0 ≡ P3, K0 = K3, (4.38)

such that
P †± = K∓, P †0 = K0, (4.39)

the commutation relations of the conformal algebra take the form (with X• = P•,K•)

[J3, J±] = ±J±, [J+, J−] = 2J3,

[J3, X±] = ±X±, [J3, X0] = 0,
[J+, X+] = 0, [J+, X0] = −

√
2X+, [J+, X−] =

√
2X0, (4.40)

[J−, X+] = −
√

2X0, [J−, X0] =
√

2X−, [J−, X−] = 0
[D,Ki] = −Ki, [D,Pi] = Pi,

[K−, P+] = 2 (D + J3) , [K+, P−] = 2 (D − J3) , [K0, P0] = 2D
[K0, P+] = −

√
2J+, [K+, P0] =

√
2J+, [K−, P0] = −

√
2J−, [K0, P−] =

√
2J−,

and all generators (Pi,Ki, Ji, D) commute with the charge generator Q (4.20).

The generators, as computed from the Noether currents of the theory, read

D =
∞∑
`=0

∑̀
m=−`

ω0(`)
(
a†`ma`m + b†`mb`m

)
, (4.41)

J3 =
∞∑
`=0

∑̀
m=−`

m
(
a†`ma`m + b†`mb`m

)
, (4.42)

P0 =
∞∑
`=0

∑̀
m=−`

√
(`+ 1)2 −m2

(
a†`+1,ma`m + b†`+1,mb`m

)
, (4.43)

K0 =
∞∑
`=0

∑̀
m=−`

√
(`+ 1)2 −m2

(
a†`ma`+1,m + b†`mb`+1,m

)
, (4.44)
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J+ =
∞∑
`=0

∑̀
m=−`

√
`(`+ 1)−m(m+ 1)

(
a†`,m+1a`m + b†`,m+1b`m

)
, (4.45)

=
∞∑
`=0

∑̀
m=−`

√
`(`+ 1)−m(m− 1)

(
a†`ma`,m−1 + b†`mb`,m−1

)
,

J− =
∞∑
`=0

∑̀
m=−`

√
`(`+ 1)−m(m+ 1)

(
a†`ma`,m+1 + b†`mb`,m+1

)
(4.46)

=
∞∑
`=0

∑̀
m=−`

√
`(`+ 1)−m(m− 1)

(
a†`,m−1a`m + b†`,m−1b`m

)
,

P+ = −
∞∑
`=0

∑̀
m=−`

√
(`+m+ 1)(`+m+ 2)

2
(
a†`+1,m+1a`m + b†`+1,m+1b`m

)
,(4.47)

K− = −
∞∑
`=0

∑̀
m=−`

√
(`+m+ 1)(`+m+ 2)

2
(
a†`ma`+1,m+1 + b†`mb`+1,m+1

)
,(4.48)

P− =
∞∑
`=0

∑̀
m=−`

√
(`−m+ 1)(`−m+ 2)

2
(
a†`+1,m−1a`m + b†`+1,m−1b`m

)
, (4.49)

K+ =
∞∑
`=0

∑̀
m=−`

√
(`−m+ 1)(`−m+ 2)

2
(
a†`ma`+1,m−1 + b†`mb`+1,m−1

)
. (4.50)

4.2.4 Primary states and operators

Besides the quantum numbers associated with the conformal group, states can be
characterized by their charge and by their parity. Charge is quickly dealt with. Any
state of the form (4.19) is an eigenstate of the charge operator Q.

Consider now parity. At fixed charge n and spin `, states divide into two polarity classes:
polar states with parity (−1)` and axial states with parity (−1)`+1. The two classes can
schematically be written as

polar P = (−1)` ⇒ ∂`+2kφna φ̄nbδk k ≥ 0 (4.51)
axial P = (−1)`+1 ⇒ ∂`+2k+1φna φ̄nbεδk k ≥ 0 (4.52)

where ∂, δ and ε represent respectively a spacetime derivative ∂i, the Kronecker delta
δij and the Levi-Civita tensor εijk. The δ’s and the ε are all contracted with a pair of
derivatives, while the remaining ` indices are symmetrized and trace-subtracted.

As the U(1) charge Q commutes with the conformal group, the conformal multiplets have
definite charge. On the other hand, by considering that ∂ → −∂ under parity and the
standard rule for adding angular momenta, one is easily convinced that the descendants
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4.2 Operators corresponding to vacuum fluctuations in free theory

of an operator with given polarity (polar or axial) can have either polarity. One can
nonetheless label a conformal multiplet by the polarity of its primary state.

In this chapter, we will provide a systematic construction of all primaries whose number of
derivatives is bounded by the charge n (see [117, 118, 119] for a different but less explicit
procedure to construct primaries of given spin and charge). In a first time we describe
this construction, before proving via a combinatorics argument that our procedure indeed
generates all such primaries. This will enable us to concretely illustrate the emergence of
the superfluid Fock space structure within the operator spectrum at large charge.

Construction of primaries

States of the form
a†`1,m1

. . . a†`na ,mna b
†
j1,m1

. . . b†jnb ,mnb
|0〉, (4.53)

can be decomposed into irreducible representations of SO(3)

`1 ⊗ · · · ⊗ `na ⊗ j1 · · · ⊗ jnb = (`1 + · · ·+ `na + j1 · · ·+ jnb)⊕ . . . (4.54)

Let us first consider the states with the highest total spin ` = `1 + · · ·+ jnb in the tensor
product (4.54), indicating them by

|n; `,m〉 (4.55)

where n = na − nb and m are respectively the Q and J3 eigenvalues. The highest weight
state from which all the multiplet is constructed by repeatedly acting with J− is

|n; `, `〉 = a†`1,`1 . . . a
†
`na ,`na

b†j1,j1 . . . b
†
jnb ,jnb

|0〉. (4.56)

By eqs. (4.28), (4.33) and by the discussion at the beginning of this section, the corre-
sponding operators are polar and have the schematic form φna φ̄nb∂`. In the basis (4.26),
the operator corresponding to (4.56) involves only ∂− derivatives, as is made clear by
(4.32). We can now search for combinations of states of the form (4.56) that correspond
to primaries.

Let us first consider states involving creation operators of only one sort, say a†. A first
obvious example is the state of charge n with lowest dimension, which is given by

|n〉 = 1√
n!

(a†00)n|0〉 = (4π)n/2√
n!

φn(0)|0〉 (4.57)

This state has spin 0 and is a primary as it is annihilated by the Ki’s.
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Chapter 4. Identifying large charge operators

To find a spin-` primary we start with the ansatz

|n; `, `〉(0)
A = (a†00)n−1a†``|0〉. (4.58)

Acting on it with K− we get7

K−|n; `, `〉(0)
A = −

√
2`(2`− 1)

2 (a†00)n−1a†`−1,`−1|0〉, ` 6= 1. (4.60)

In order to cancel this contribution we modify the vector

|n; `, `〉(1)
A = (a†00)n−1a†``|0〉 −

√
2`(2`− 1)

2 (a†00)n−2a†`−1,`−1a
†
1,1|0〉. (4.61)

Acting with K− on the new state we find

K−|n; `, `〉(1)
A =

√
2`(2`− 1)

2

√
(2`− 2)(2`− 3)

2 (a†00)n−2a†`−2,`−2a
†
1,1|0〉 . (4.62)

Again, to cancel this contribution we add an extra term to (4.61) and we continue further
until we finally arrive at an exact primary

|n; `, `〉A = α0
∑̀
k=0

γk,`(a†00)n−k−1(a†1,1)ka†`−k,`−k|0〉, (4.63)

with

γk,` = (−1)k
k!

√
(2`)!

2k(2`− 2k)! , (4.64)

with the overall coefficient α0 fixed by the normalization condition ‖ |n; `, `〉A ‖2= 1

α2
0

[
`−2∑
k=0

γ2
k,`(n− k − 1)!k! + (γ`−1,` + γ`,`)2 (n− `)!`!

]
= 1. (4.65)

As can be verified, this construction works if 1 < ` ≤ n. Explicit constructions of these
states and of the corresponding operators for ` = 0, 1, 2, 3 can be found in appendix D.1.
By using (4.41) one can also check that the energy of this state, or equivalently the
dimension of the corresponding operator, is given by

∆A(n, `) = n

2 + `, (4.66)

7As can be derived from (4.44), (4.50), [K0, a
†
``] = [K+, a

†
``] = 0 for all `, so the state is annihilated

by both K0 and K+. Moreover (4.48) yields

[K−, a†``] = −

√
(2`)(2`− 1)

2 a†`−1,`−1. (4.59)
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as expected in free theory.

Similarly we can consider states that involve one creation operator b†. Repeating the
construction it is straightforward to construct, for ` ≤ n+ 1, a primary

|n; `, `〉B = β0
∑̀
k=0

γk,`(a†00)n−k+1(a†1,1)kb†`−k,`−k|0〉, (4.67)

with

β2
0
∑̀
k=0

γ2
k,`(n− k − 1)!k! = 1. (4.68)

These special cases can be combined to generate more primaries. Indeed, one can define
spin ` multiplets of operators

{
A†`,m

}
,
{
B†`,m

}
with m = −`, . . . , ` whose highest weight

elements are

A†`,` =
∑̀
k=0

γk,`(a†00)`−k−1(a†1,1)ka†`−k,`−k, ` ≥ 2 (4.69)

B†`,` =
∑̀
k=0

γk,`(a†00)`−k+1(a†1,1)kb†`−k,`−k, ` ≥ 0. (4.70)

A†`,m and B†`,m are polar primaries, because they commute with all Ki, and they have
charge `. Notice, that A0,0 is not defined and A1,m = 0, while B†0,0 = a†00b

†
00. The primary

states we constructed are then given by

|n; `, `〉A = α0(a†00)n−`A†`,`|0〉, (4.71)

|n; `, `〉B = β0(a†00)n−`B†`,`|0〉. (4.72)

Since the A†`,m’s, B
†
`,m’s, as well as a

†
00, are all primaries, any product of them is a primary

as well. This lets us generate primaries of various spins and charges by acting on the
vacuum with these operators

(
a†00

)n−∑
α
`α−
∑

β
˜̀
β∏
α

A†`α,mα
∏
β

B†˜̀
β ,m̃β
|0〉, (4.73)

where the number of derivatives of the corresponding operator is P ≡ ∑α `α +∑
β

˜̀
β.

Notice this state is an eigenstate of J2 only for maximal spin states (mα = `α, m̃β = ˜̀
β

or mα = −`α, m̃β = −˜̀
β). Otherwise, one must take linear combinations of these terms

to build spin multiplets. By inspecting their definition, one can be convinced that A†`,`
and B†`,` (and hence the corresponding spin multiplets) can not be written as products
of A†’s and B†’s with lower-spin – they are in a sense “irreducible”. Thus the above
representation of a primary is unique.
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Indeed, as it turns out, the above representation generates all the primaries with number
of derivatives bounded by n. In the next section we will offer a combinatoric proof of
that. Before moving to that, and to ease the counting, it is convenient to note that the
dimensionality of the space generated by (4.73) is the same as that of space generated by
(4.19) barring the spin 1 ladder operators a†1,m. This can be seen by picking only the
k = 0 terms in the series (4.69) for the A’s and B’s. This remark will be used in the next
section to prove that (4.73) provide a complete basis for primaries.

Combinatorics: counting primaries

As a warmup, we will first consider different subclasses of operators for which we can
provide explicit expressions for the number of primaries. After having done that, we will
prove that the set (4.73) is indeed a complete basis for the primaries.

No φ̄, spin ` ≤ n, number of derivatives equal to `

Consider the polar operators with k = 0 and no φ̄ fields in eq. (4.51). They correspond
to symmetric traceless tensors with schematic form ∂`φn. Using coordinates (4.26), the
highest weight elements of the corresponding SO(3) multiplets have the schematic form
∂`−φ

n. The counting is now straightforward: there are as many operators as there are
inequivalent ways of distributing ` derivatives ∂− among n fields φ. That is given by the
number of partitions of ` into at most n integers, which we denote by p(`, n). In the case
` ≤ n, the partition cannot contain more than n elements, and so p(`, n) reduces to the
number p(`) of unconstrained partitions of `.

For example, for ` = 5 we get the following partitions.

5 : (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1), (4.74)

Thus, there are
p(5, n) = 7 (4.75)

operators with spin ` = 5 and charge n ≥ 5, while for charge n = 3 there are only

p(5, 3) = 5 (4.76)

operators in total, counted by the first five partitions in (4.74).

We can now count primary operators. Obviously, at spin `, primaries will be in one to
one correspondence with operators that cannot be obtained by acting with derivatives
on all operators with spin `− 1. Therefore the number of primaries is given by

Prim(`, n) ≡ p(`, n)− p(`− 1, n). (4.77)
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4.2 Operators corresponding to vacuum fluctuations in free theory

For ` ≤ n this number has a simple interpretation. Namely, it corresponds to the number
of partitions of `, except those that can be obtained from partitions of `− 1 by adding 1,
in other words partitions of ` containing 1 should be eliminated 8. As an example, for
` = 5 and ` = 4 we have respectively

5 : (5) (4, 1) (3, 2) (3, 1, 1) (2, 2, 1) (2, 1, 1, 1) (1, 1, 1, 1, 1)
4 : (4) (3, 1) (2, 2) (2, 1, 1) (1, 1, 1, 1). (4.78)

Clearly, the ` = 5 primaries are counted by the partitions without 1, so that for n ≥ 5

Prim(5, n) = 2 . (4.79)

In the previous subsection we found that any string (a†00)n−`ΠαA†`α`α forms a primary
with total spin ` = ∑

α `α ≤ n. Since there is no A1,1, it is clear that these primary states
correspond to partitions of ` without 1’s. Our counting argument then shows these are
all the primaries of our class (polar with k = 0 and no φ̄’s).

No φ̄, arbitrary spin `, number of derivatives equal to `

For arbitrary `, the number of primaries (4.77) is given by the number of partitions of `
with each part bigger than 1 and not larger than n, i.e. by the number of solutions of
the equation ∑

i

`i = `, 1 < `i ≤ n. (4.80)

That can be proven as follows. Every partition t can be associated with a Young tableau.
For instance, the partition t = (4, 3, 2) of 9 corresponds to

t = (4.81)

A conjugated Young tableau t∗ is defined by interchanging columns and rows, meaning
that for the example above t∗ = (3, 3, 2, 1)

t∗ = (4.82)

This map obviously establishes an equality between the number p(`, n) of partitions of `
into at most n parts – i.e. the number of Young tableaux with at most n rows – and
the number of partitions p∗(`, n) with parts bounded by n – i.e. the number of Young

8That is because when acting with a derivative on an operator involving less than n derivatives, among
many terms, there will always arise one involving a single derivative on φ.
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Chapter 4. Identifying large charge operators

tableaux with at most n columns. Therefore, the number of primaries can also be written
as

Prim(`, n) = p(`, n)− p(`− 1, n) = p∗(`, n)− p∗(`− 1, n). (4.83)

As before, we observe that every tableau counted by p∗(`− 1, n) can be promoted to a
tableau counted by p∗(`, n) by adding a row with just one box,

→ (4.84)

therefore, as claimed the number of primaries is given by the number p∗(`, n, 2) of Young
tableaux with each row bounded by 2 ≤ `i ≤ n (see appendix D.2 for examples). Clearly,
this is equal to the number of products of operators A†`α,`α defined in (4.69) such that
2 ≤ `α ≤ n and ∑α `α = `. Notice that, while the counting is still valid, the construction
does not work for ` > n, since the A†`,` operators have charge equal to spin, and thus
cannot be used to generate operators with spin higher than the charge.

φ and φ̄, arbitrary spin `, number of derivatives equal to `

Consider now polar operators with k = 0 but involving φ̄ fields. In this case the highest
weight elements have the schematic form ∂`−φ

na φ̄nb . To count the number of such
operators, one can first distribute the derivatives as ∂`−`′− φna × ∂`′−φ̄nb , and compute the
total number of operators as

∑̀
`′=0

p(`− `′, na)p(`′, nb). (4.85)

This implies the number of primaries is given by

Prim(`, na, nb) =
∑̀
`′=0

p(`− `′, na)p(`′, nb)−
`−1∑
`′=0

p(`− 1− `′, na)p(`′, nb)

=
`−1∑
`′=0

p∗(`− `′, na, 2)p∗(`′, nb), (4.86)

where we have used the equalities deduced above from Young tableaux. This number is
easy to interpret as the number of products of the form

(a†00)n−`
∏
α

A†`α,`α
∏
β

B†˜̀
β ,˜̀β

(4.87)

with 2 ≤ `α ≤ n, 0 ≤ ˜̀
β ≤ n and ∑α `α +∑

β
˜̀
β = `. Thus, these products of operators

are all the highest-weight polar primaries with k = 0 and ` ≤ n. Again, the counting
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4.2 Operators corresponding to vacuum fluctuations in free theory

(4.86) is valid for ` > n, but the explicit construction does not apply in this regime.

All operators with number of derivatives bounded by n

We finally consider operators made of both φ and φ̄ fields and a number of derivatives
P ≤ n, with eventually contracted indices. We will not provide an explicit formula for the
number of primaries in the general case, but will show that primaries are in one-to-one
correspondence with operators of the form (4.73). The following argument is valid in any
dimension.

A basis of the linear space of charge-n operators is obtained by considering the set
of monomials of the schematic form ∂µ1 . . . ∂µP φ

na φ̄nb with na − nb = n and with the
P derivatives distributed on the fields in all possible ways (removing the operators
which are made redundant by the equations of motion ∂2φ = ∂2φ̄ = 0). We focus on a
finite-dimensional subspace Hna,nb,P of fixed na, nb and P . The counting argument that
we will provide works for each of those subspaces individually, and thus extends to the
full space of operators. For each subspace, we construct a different basis, in which part
of the elements are manifestly descendant states. The remaining elements of the basis
span a subspace of same dimensionality as the subspace of explicitly known primary
operators. This means that we have successfully identified complete basis of primaries
and descendants.

The construction is the following. Monomials in the basis can be organized by factoring
out all powers of φ carrying either 0 or 1 derivative

Bna,nb,P =
{
φq(∂µ1φ)(∂µ2φ) · · · (∂µpφ)O(P−p)

na−p−q,nb , p ≤ P
}
, (4.88)

with O(p)
n,m any monomial involving n φ’s, m φ̄’s and p derivatives, such that each φ is

derived at least twice. Notice that all ∂µi factors commute with each other, hence without
loss of generality we can assume they are ordered µ1 ≤ µ2 ≤ · · · ≤ µp. For any p ≤ P we
will also consider the sub-basis of operators where p φ’s have a single derivative

Bpna,nb,P =
{
φq(∂µ1φ)(∂µ2φ) · · · (∂µpφ)O(P−p)

na−p−q,nb

}
. (4.89)

Now, for p ≥ 1, we can rewrite the elements of Bpna,nb,P as (for simplicity we write O
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Chapter 4. Identifying large charge operators

instead of O(P−p)
na−p−q,nb)

φq(∂µ1φ)(∂µ2φ) · · · (∂µpφ)O

= 1
q + 1

∂µ1

(
φq+1(∂µ2φ) · · · (∂µpφ)O

)

−
p∑

k=2
φq+1(∂µ2φ) · · · (∂µk−1φ)(∂µk+1φ) · · · (∂µpφ)∂µ1∂µkφO

− φq+1(∂µ2φ) · · · (∂µpφ)∂µ1O

.

(4.90)

The term in the first line of the right-hand side is obviously a descendant operator, while
the two other lines contain monomials belonging to Bp−2

na,nb,P
and Bp−1

na,nb,P
. This process

can be repeated, rewriting the operators of the two last lines in the same way, as linear
combinations of descendants and members of the lower sub-bases. The process can be
iterated until the right hand side is written as a linear combination of descendants and
monomials in B0

na,nb,P
. The latter involve no single-derivative φ fields and cannot be

further rewritten. Our result implies that the subspace generated by Bpna,nb,P has the
same primary content as the subspace generated by B0

na,nb,P
. Indeed, as this holds for

any p, the very space generated by Bna,nb,P has the same primary content as the subspace
generated by B0

na,nb,P
. We therefore conclude that the subspace of primaries within

Hna,nb,P is ≤ than the number of elements in B0
na,nb,P

.

Our proof can now be completed by comparing the elements in B0
na,nb,P

to the linearly
independent primary states provided in (4.73). The latter, as we already remarked, are
in a one-to-one correspondence with the set (4.19), barring states involving a†`=1,m. By
the operator-state correspondence the traceless symmetric derivatives ∂µ1 . . . ∂µrφ and
∂µ1 . . . ∂µs φ̄ match respectively a†r,mr and b†s,ms . It is then manifest that the elements in
B0
na,nb,P

and in (4.19) are in a one-to-one correspondence. In particular the exclusion of
∂iφ factors in B0

na,nb,P
crucially matches the exclusion of a†1,m in (4.19), which is mandated

in turn to match the building blocks (4.73). As the cardinality of the basis B0
na,nb,P

sets
an upper bound to then dimension of the sub-space of primaries, it must be that the
states (4.73) with the same na, nb and P are a complete basis for the corresponding space
of primaries.

4.3 Fock space of superfluid excitations

Free field theory can be successfully studied around both the trivial φ = 0 and the non-
trivial superfluid (2.91) saddles. The latter is the basis of the semiclassical description,
which applies for sufficiently large charge, and was presented in detail in section 2.4.
The development includes the definition of the fluctuations around the non-trivial saddle
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4.3 Fock space of superfluid excitations

(2.97) and their quantization (2.116), with spectrum (2.118). These formulas were derived
in the interacting theory, but they can be safely taken in the free theory limit of λ = 0 and
λn = 0 and in d = 3 dimensions. In particular, the spectrum takes a simple expression
in this limit (2.127).

Excitations around the charge n ground state |n〉 are obtained by acting with the neutral
creation operators A†`~m and B†`~m

(A†`1m1
)nA1 . . . (B†j1k1

)nB1 . . . |n〉. (4.91)

These states all have charge n, so that their Fock space is the charge-n subspace of the
full Hilbert space. As explained below equation (2.120), the zero-mode described by
the canonical pair π̂, pπ does not belong to that Fock space. Instead ei

π̂Y00
f and e−i

π̂Y00
f

respectively raise and decrease the charge by one unit, thus mapping to the corresponding
fixed-charge Fock spaces. The energy of the states (4.91), equivalently the dimensions of
corresponding operators, are given by (4.2) using the free-theory spectrum (2.127). This
indicates that states involving at least one A†1~m are descendants at leading order, since
these creation operators increment the dimension exactly by 1 at that order. This is also
consistent with the counting established in section 4.2.4.

The goal of the present section is to find explicitly the mapping between these two Fock
spaces, the vacuum Fock space (4.19) and the hydrodynamic one (4.91). Using the
results of the previous section, that allows to associate operators to excitations around
the superfluid state. Finally we will be able to identify primaries among them, and verify
they are the states that do not contain A†1,m creation operators.

4.3.1 Relation between different Fock spaces in free theory

The map between the two spaces corresponds to a canonical transformation resulting
from equations (4.15), (2.80), (2.97) and (2.102)

(φ̂, pφ̂) , ( ˆ̄φ, p ˆ̄φ) ⇒ (r, P ) , (π,Π). (4.92)

We use the decomposition of the fields in harmonic components (2.103). In three
dimensions m ∈ {−`,−`+ 1, . . . , `} is a simple index. The fields clearly satisfy

r`m(τ) = (−1)m
(
r`,−m(−τ)

)†
, π`m(τ) = (−1)m

(
π`,−m(−τ)

)†
,

P`m(τ) = (−1)m
(
P`,−m(−τ)

)†
, Π`m(τ) = (−1)m

(
Π`,−m(−τ)

)†
.

(4.93)

These components are written in terms of the zero mode and creation and annihilation
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operators yielding

r00(τ) = pπ + 1√
2

(
B00(τ) +B†00(−τ)

)
,

π00(τ) = π̂ + i√
2

(
B†00(−τ)−B00(τ)

)
,

P00(τ) = i√
2

(
B†00(−τ)−B00(τ)

)
,

Π00(τ) = pπ,

(4.94)

and (for ` > 0)

r`m(τ) = 1
2
√
ω0(`)

[
A`m(τ) + (−1)mA†`,−m(−τ) +B`m(τ) + (−1)mB†`,−m(−τ)

]
,

π`m(τ) = i

2
√
ω0(`)

[
A`m(τ)− (−1)mA†`,−m(−τ)−B`m(τ) + (−1)mB†`,−m(−τ)

]
,

P`m(τ) = i

2
√
ω0(`)

[
−(−1)m`A`,−m(τ) + `A†`,m(−τ)− (−1)m(`+ 1)B`,−m(τ) + (`+ 1)B†`,m(−τ)

]
,

Π`m(τ) = 1
2
√
ω0(`)

[
(−1)m(`+ 1)A`,−m(τ) + (`+ 1)A†`,m(−τ)− (−1)m`B`,−m(τ)− `B†`,m(−τ)

]
.

(4.95)

Here we do not consider fields evolved only with the quadratic Hamiltonian for fluctuations
around the saddle (2.100) but take into account the exact solutions of the full action
(2.99). Thus operators A`m(τ), B`m(τ) have complicated time dependence, not just a
simple phase rotation. However, they satisfy the commutation relations (2.109), (2.117)
and hermiticity (4.93) at all τ . At τ = 0 they coincide with the τ -independent creation-
annihilation operators introduced in section 2.4.3 for quadratic fluctuations. Getting the
full time dependence is a consequence of the fact that we are mapping from the vacuum
quantization, where the time dependence was simple (4.12).

Our goal is to express these operators in terms of the ladder operators of vacuum
fluctuations. The form of (2.80) makes the mapping non-linear, which makes it difficult
to find a closed form solution. However at large n the solution can be reliably expressed
as a systematic expansion in inverse powers of n.

We will be studying fluctuations around the lowest energy state with charge n, for which
〈a†00a00〉 ∼ n. The large charge expansion can then be organized by assigning to operators
a scaling with n

a00 ∼ O(
√
n), a`6=0,m ∼ b`m ∼ O(1). (4.96)

For instance, by singling out a†00a00 in the expression for Q (4.20) we can write

a†00a00 = n

1 + 1
n

Q− n+ b†00b00 −
∞∑
`=1

∑̀
m=−`

(
a†`ma`m − b

†
`mb`m

) , (4.97)
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where the term in square brackets represents an O(n0) perturbation. In what follows
we treat the fields as classical variables, disregarding issues of ordering. Expressions for
quantum operators can be restored, in principle, by finding an appropriate ordering such
that the commutation relations are satisfied.

Our goal can be achieved through the following steps:

1. Remembering that for free theory in d = 3 we have

µ3(0, 3) = 1
2 , f =

√
n

2π , ω0(`) = `+ 1
2 , (4.98)

and combining equations (4.12), (2.80), (2.91) and (2.97) we can write

f + r√
2
e
iπ
f =

∞∑
`=0

∑̀
m=−`

1√
2ω0(`)

(
a†`me

`τY ∗`m(~n) + b`me
−(`+1)τY`m(~n)

)
≡ h(τ, ~n) .

(4.99)
It is also convenient to write

r(τ, ~n) =
√

2h(τ, ~n)h(−τ, ~n)† − f, (4.100)

e
iπ(τ,~n)
f = h(τ, ~n)√

h(τ, ~n)h(−τ, ~n)†
. (4.101)

Notice that, here and later, we formally treat a0,0 and a†0,0 as invertible as we are
working in a subspace with large charge. For example, we can write

1√
h(τ, ~n)h(−τ, ~n)†

= 1√
n
2π + s(τ, ~n)

≈
√

2π
n
−

√
2π3

n3 s(τ, ~n)+3

√
π5

2n5 (s(τ, ~n))2+. . .

(4.102)
where we used a†00a00 = n+ . . . and parametrized all subleading effects by s(τ, ~n).

2. Using the orthonormality of spherical harmonics (2.107), we extract the harmonic
components r`m, π`m, P`m,Π`m from (2.103).

3. We finally solve (4.94) and (4.95), for A`m, B`m, π̂ and pπ.

Leading order

At leading order in the n−1 expansion, we get

pπ = 0, exp
[
i
π̂√
2n

]
= a†00√

n
, B`m(τ) = a00b`m√

n
e−(`+1)τ , A`m(τ) = a†00a`m√

n
e−`τ .

(4.103)
As explained, the zero-mode π̂ is kept in the exponential. This also ensures that the
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expressions are polynomial (monomial at this order) in the vacuum ladder operators. One
further justification of the exponential notation was given at the end of the computation
of the propagator in appendix B.1.

The commutation relations have the form[
A`m, A

†
`′m′

]
= 1

n

(
a†00a00 δ``′δmm′ − a`ma†`′m′

)
= δ``′δmm′ +O

(
n−1

)
, (4.104)[

B`m, B
†
`′m′

]
= 1

n

(
a00a

†
00 δ``′δmm′ + b`mb

†
`′m′

)
= δ``′δmm′ +O

(
n−1

)
, (4.105)

which are canonical at the required accuracy (see (2.117)).

Next to leading order

We find that exp
[
i π̂√

2n

]
is still given by (4.103) while pπ is given by its exact result

(2.121). For A`m we find

A`m = a†00a`m√
n

+ 1
4(1 + 2`)n3/2

(
(1 + 4`)

(
nb00 − b†00(a†00)2

)
a`m − 2nb†00b`m

+ (−1)m
(
(−1 + 2`)nb†00 + (1 + 2`)b00a

2
00

)
a†`,−m

− (−1)m
(
2(1 + `)nb00 + 2`b†00(a†00)2

)
b†`,−m

)

+
∑

`1,`2>0
all m1,m2

(−1)m
√
πC`,`1,`2−m,m1,m2

8
√

2ω0(`)ω0(`1)ω0(`2)n3/2

(
− (2 + 3`+ `1 + `2)(a†00)2a`1,m1a`2,m2

+ 2(1 + `− `1 + 3`2)nb`1,m1a`2,m2

+ (`− `1 − `2)a2
00b`1,m1b`2,m2

+ 2(−1)m2(2 + `+ 3`1 + `2)na`1,m1a
†
`2,−m2

− 2(−1)m1(1 + 3`− `1 + `2)(a†00)2b†`1,−m1
a`2,m2

+ 2(−1)m2(1 + `− `1 + `2)a2
00b`1,m1a

†
`2,−m2

− 2(−1)m2(2− `+ `1 + 3`2)nb`1,m1b
†
`2,−m2

+ (−1)m1+m2(2 + `+ `1 + `2)a2
00a
†
`1,−m1

a†`2,−m2

− 2(−1)m1+m2(1− `+ 3`1 − `2)nb†`1,−m1
a†`2,−m2

− (−1)m1+m2(3`− `1 − `2)(a†00)2b†`1,−m1
b†`2,−m2

)
.

(4.106)
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For B`,m we have to treat separately the cases ` = 0:

B00 = a00b00√
n

+ 6nb00b
†
00 − 3a2

00b
2
00 + (a†00)2(b†00)2

8n3/2

+
∑
`>0

all m

1
8(1 + 2`)n3/2

(
(−1)m4n(1 + `)a`mb`,−m − (−1)m(3 + 2`)a2

00b`mb`,−m

− (−1)m(1 + 2`)(a†00)2a`ma`,−m − (1 + 4`)2na`ma†`,m
− 4a2

00b`ma
†
`m + (−1)m(−1 + 2`)a2

00a
†
`ma

†
`,−m

− (−1)m4n`a†`mb
†
`,−m + 2n(3 + 4`)b`mb†`m

+ (−1)m(1 + 2`)(a†00)2b†`mb
†
`,−m

)
(4.107)

and ` > 0:

B`m = a00b`m√
n

+ 1
4(1 + 2`)n3/2

(
(3 + 4`)

(
nb†00 − b00a

2
00

)
b`m + 2nb00a`m

+ (−1)m
(
(3 + 2`)nb00 + (1 + 2`)b†00(a†00)2

)
b†`,−m

− (−1)m
(
2`nb†00 + 2(1 + `)b00a

2
00

)
a†`,−m

)

+
∑

`1,`2>0
all m1,m2

(−1)m
√
πC`,`1,`2−m,m1,m2

8
√

2ω0(`)ω0(`1)ω0(`2)n3/2

(
− (3 + 3`+ `1 + `2)a2

00b`1,m1b`2,m2

+ 2(2 + `+ 3`1 − `2)nb`1,m1a`2,m2

+ 2(−1)m2(3 + `+ 3`1 + `2)nb`1,m1b
†
`2,−m2

− (1− `+ `1 + `2)(a†00)2a`1,m1a`2,m2

+ 2(−1)m1(`+ `1 − `2)(a†00)2b†`1,−m1
a`2,m2

+ (−1)m1+m2(1 + `+ `1 + `2)(a†00)2b†`1,−m1
b†`2,−m2

− 2(−1)m2(2 + 3`+ `1 − `2)a2
00b`1,m1a

†
`2,−m2

− 2(−1)m2(1− `+ `1 + 3`2)na`1,m1a
†
`2,−m2

+ 2(−1)m1+m2(`+ `1 − 3`2)nb†`1,−m1
a†`2,−m2

− (−1)m1+m2(1 + 3`− `1 − `2)a2
00a
†
`1,−m1

a†`2,−m2

)
.

(4.108)

Here we introduced the Gaunt coefficients

C`1 `2 `3
m1m2m3 =

∫
Y`1m1Y`2m2Y`3m3dΩ2

=

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
0 0 0

)(
`1 `2 `3
m1 m2 m3

)
,

(4.109)
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given in terms of Wigner 3j symbols. These coefficients vanish unless the spins satisfy
the triangle inequality

|`1 − `2| ≤ `3 ≤ `1 + `2, (4.110)

meaning each spin has to be in the tensor product of the other two. Moreover Gaunt
coefficients vanish unless m1 +m2 +m3 = 0 and `1 + `2 + `3 is even.

Some remarks on (4.106 – 4.108) are in order. First, notice that the NLO corrections
have relative size n−1/2. Higher orders behave similarly, resulting in an expansion in
powers of n−1/2. However, when computing observables, the NLO terms do not interfere
with the leading order terms, resulting in an expansion in powers of 1/n, as expected in
the semiclassical framework. This will be exemplified in section 4.4.2.

When considering even higher orders, A`m will contain sums over 4, 6, . . . spins with
coefficients that, like (4.109), are integrals of products of respectively 5, 7, . . . spherical
harmonics. As these coefficients go like powers of ` one would expect the parameter
controlling the convergence of the expansion to go like `κ

n for some κ. We will discuss
this in detail in section 4.4.

Finally, notice that some of the NLO terms don’t annihilate the state |n〉, so that
A`m|n〉 6= 0 . The reason is that |n〉 is the lowest energy state of charge n for the full
hamiltonian (the one associated with (2.99)), while A`m and B`m are the ladder operators
for the quadratic hamiltonian (associated with (2.100)). The vacuum |Ω〉, which is
annihilated by A`m and B`m, coincides with |n〉 only at leading order, hence our result.

4.3.2 Mapping superfluid excitations to operators

With the tools presented in the previous sections, we are now ready to identify operators
and map them to superfluid excitations. The latter, as defined in (4.91), can be expressed
as a power series in n−1/2 of polynomials of a`m, a†`m, b`m, b

†
`m acting on the free Fock

vacuum |0〉. These, by the operator state correspondence, can in turn be written in terms
of operators involving φ̄, φ and their derivatives.

To identify primary states, we must express the special conformal generators in terms
of A`m, B`m and A†`m, B

†
`m. This is done by inverting (4.106) and the other formulae

relating ladder operators in the two frames, plugging the result in (4.44), (4.48), and
(4.50). For instance, at leading order, using (4.103), we get

K0 =
√
nA1,0, K− = −

√
nA1,−1, K+ =

√
nA1,1. (4.111)

Thus, as was already discussed, at leading order only strings of creation operators not
containing A†1,m are primaries. There is a clear parallel with the conclusion of section
4.2.4. This is due to the fact that, at leading order, states generated by creation operators
A†`m, B

†
`m correspond to the states generated by A†`,m,B

†
`,m.
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4.4 How large is “large spin” ?

As a result, due to the following identities

A†`m|n〉 = a00a
†
`m√
n

(a†00)n√
n!
|0〉 = a†`m(a†00)n−1√

(n− 1)!
|0〉 = (4π)n−1

2√
(n− 1)!

Yµ1...µ`
`m φn−1∂µ1 · · · ∂µ`φ|0〉,

(4.112)
the state A†`m|n〉 corresponds at leading order to an operator with ` derivatives all acting
on the same field

φn−1∂µ1...µ`φ. (4.113)

4.4 How large is “large spin” ?

Quantization around the saddle offers a systematic computation of observables for states
with charge n as a power series in n−1. Clearly, as n→∞ the procedure works for states
with finite spin `, for the ground state |n〉 in particular. In this section we will study the
convergence of the expansion when both ` and n become large.

4.4.1 Matrix elements for excited states

On general grounds we expect the expansion to be controlled by the ratio `κ/n for some
κ. One way to find out what κ is, would be to perform NLO computations around the
non-trivial saddle. However, we’ll make use of the fact that we know a class of primary
states in free theory in exact form and not just as an expansion in inverse powers of the
charge. That will give us full control of the computation, allowing to successfully trace
any transition between different regimes (see section 4.4.3).

Intuitively we expect the radial component of φ to be a good parameter to control the
validity of the semiclassical approximation. The smallness of the size of its quantum
fluctuation relative to its expectation value is a necessary condition for the semi-classicality
of a state 9. Fluctuations comparable to the expectation value, and thus consistent
with the vanishing of φ (at least somewhere), signal the breakdown of the semiclassical
approximantion.

We will thus study the large n behavior of the following matrix elements

Φ(θ; `, n, p) = A〈n; `, `| : ∂pτ
ˆ̄φ(τ, ~n)∂pτ φ̂(τ, ~n) : |n; `, `〉A. (4.114)

for arbitrary integer p, where |n, `, `〉A is the primary state found in (4.63).

9For an illustrative example based on the spinning top see [75].
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Chapter 4. Identifying large charge operators

Rewriting the fields in terms of ladder operators (4.12) and (4.13) yields10

Φ(τ ; `, n, p) = α2
0
∑̀
k,k′=0

〈ψk|
∑
`′,m′

`′′,m′′

(−1)pωp`′ω
p
`′′a
†
`′,m′a`′′,m′′Y

∗
`′,m′Y`′′,m′′

e(ω`′−ω`′′ )τ
√

4ω`′ω`′′
|ψk′〉,

(4.115)
where we introduced the following notation

|ψk〉 = γk,`(a†00)n−k−1(a†1,1)ka†`−k,`−k|0〉. (4.116)

Using that for k, k′ 6= `− 1, ` we have

〈0|an−k−1
00 ak11a`−k,`−ka

†
`′,m′a`′′,m′′(a

†
00)n−k′−1(a†11)k′a†`−k′,`−k′ |0〉

= (n− k − 1)!k!
[
(n− k − 1)δ`′0 + kδ`′1 + δ`′,`−k

]
δ`′`′′δ`′m′δ`′m′′δkk′ , (4.117)

and neglecting the terms with k, k′ = `− 1, `, which are subleading, we get

Φ(τ ; `, n, p) = (−1)pα2
0

`−2∑
k=0

(2`)!(n− k − 1)!
2k+1k!(2`− 2k)!

[
(n− k − 1)|Y00|2ω2p−1

0 + k|Y11|2ω2p−1
1 + |Y`−k,`−k|2ω2p−1

`−k

]
.

(4.118)
We then use

|Y``(ϕ, θ)| =
1

2``!

√
(2`+ 1)!

4π sin` θ , (4.119)

which means |Y`−k,`−k|2 is maximal at θ = π/2. Approximating factorials by Stirling’s
formula, we finally find

Φ(π/2; `, n, p) = n

4p+1π

Q0(`, p) + Q1(`, p)
n

+ Q2(`, p)
n2 + . . .

+ `ξ

n

(
P0(`, p) + P1(`, p)

n
+ P2(`, p)

n2 + . . .

), (4.120)

where Pk(`) and Qk(`) are n-independent functions which at large ` scale as `k, and
ξ = 2p− 1

2 .

It can be concluded that for the case at hand κ = 1. In other words, the semiclassical
expansion can be trusted as long as `� n. We expect that for a wide class of observables,
even for theories with interaction, computations around the non-trivial saddle can be
organized in a systematic series in powers of `/n. We now examine another instance.

10To lighten the notation, in this chapter we denote ω` ≡ ω0(`).
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4.4 How large is “large spin” ?

4.4.2 Norm of an excited state

To furnish one more example of the perturbative expansion of quantities involving spinning
charged states discussed in 4.4.1, we now consider the computation of 〈n|A``A†``|n〉. This
is equivalent to the norm of the state A†``|n〉. Writing the state as a power series in n−1/2

A†``|n〉 = |Ψ0〉+ 1√
n
|Ψ1〉+ 1

n
|Ψ2〉+ . . . (4.121)

we have from (4.106)

|Ψ0〉 = a00a
†
``√
n
|n〉

|Ψ1〉 =

(1 + 4`)b†00a
†
``

4(1 + 2`) +
∑

`1,`2>0
all m1,m2

(−1)m
√
πC`,`1,`2`,m1,m2

8√2ω`ω`1ω`2n

(
− (2 + 3`+ `1 + `2)a2

00a
†
`1,−m1

a†`2,−m2

+ 2(1 + `− `1 + 3`2)nb†`1,−m1
a†`2,−m2

+ (`− `1 − `2)(a†00)2b†`1,−m1
b†`2,−m2

)|n〉
(4.122)

since many terms vanish when applied to |n〉. We have not computed |Ψ2〉 as this would
require the NNLO expression for A†``. It is easy to see that 〈Ψ0|Ψ0〉 = 1 and 〈Ψ0|Ψ1〉 = 0.
Thus order n−1 correction to the norm is given by

||A†``|n〉||
2 = 1 + 1

n

(
〈Ψ1|Ψ1〉+ 〈Ψ0|Ψ2〉+ 〈Ψ2|Ψ0〉

)
. (4.123)

We cannot directly evaluate the last two terms, but we can analyze the term 〈Ψ1|Ψ1〉.
This will be given by an infinite sum over spins such as `1, `2, which we have no reason
to expect will converge. Hence 〈Ψ0|Ψ2〉 has to be an infinite sum as well, such that its
divergent part cancels with that of 〈Ψ1|Ψ1〉. The order of magnitude of the spins for
which the cancellation starts taking effect can only be the only characteristic spin of
the problem : `. We can thus estimate that the tails of both sums will cancel when
summed spins are greater than `. In other words, the behavior of both sums can be
approximated, barring some unexpected cancellations, by estimating the behavior of the
sum in 〈Ψ1|Ψ1〉 with a cutoff of order `. We observe all terms of |Ψ1〉 in (4.122) are
orthogonal to each other, so we must estimate the norm of these individual terms in the
limit of large summed spins `1, `2.

First, we consider `1 ∼ `2 ∼ `. We estimate the contribution of such terms to the norm
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as ∑
`1∼`2∼`
m1,m2

∣∣∣C`,`1,`2`,m1,m2

∣∣∣2
ω`ω`1ω`2

(`2) ∼
∑

`1∼`2∼`

(
`−7/4

)2
(`2) ∼ `2 × `−3/2 ∼ `1/2, (4.124)

Let us briefly explain this estimation. We start with a single sum because of the
orthogonality of terms in (4.122), and the summand is the square of the coefficient in
that equation. Then, as observed in the appendix D.3, in this regime there is only one
choice of m1,m2 which give a non-suppressed term (D.24). Finally, the double sum over
`1, `2 yields an additional `2 factor.

Secondly, we consider the case `1 − ` ∼ `2 ∼ 1. Again, there is only one choice of
m1,m2 that yields the dominant term (D.27). Neglecting other terms, we estimate the
contribution to the norm as

∑
`1∼`,`2∼1
m1,m2

∣∣∣C`,`1,`2`,m1,m2

∣∣∣2
``1`2

(`2) ∼
∑

`1∼`,`2∼1

(
`−1

)2
(`2) ∼ `× 1 ∼ `, (4.125)

where in the second estimation the sum yields a single ` factor since only `1 is summed
up to order `. We notice this contribution is dominating that of (4.124). Evidently the
case `2 − ` ∼ `1 ∼ 1 gives an equal contribution.

Therefore, the series expansion of the norm is estimated schematically as

||A†``|n〉||
2 ∼ 1 + `+ . . .

n
+O(n−2). (4.126)

where the dots represent terms which are subdominant at large `.

We see the result is again expressed as a series in `
n . However, not all quantities have

this type of expansion as we now discuss.

4.4.3 Primary states

Let us consider 1/n corrections to the operator whose leading term is given by (4.113)
and whose associated state is given in exact form by (4.63) 11. By the notation (4.116)
we can write the state succinctly as

|n; `, `〉A = α0
∑̀
k=0
|ψk〉 . (4.127)

11The spin ` is bounded by 2 ≤ ` < n.

100



4.4 How large is “large spin” ?

The vectors |ψk〉 are mutually orthogonal, but they are not normalized. Comparing their
relative norms we find

〈ψk|ψk〉
〈ψk−1|ψk−1〉

= (`− k + 1)(2`− 2k + 1)
(n− k)k ∼ `2

nk
, (4.128)

where in the last equation we used k ≤ ` � n. This equation implies the norms
〈ψk|ψk〉 ∝ (`2/n)k/k! approximate the coefficients in the expansion of the exponential
exp(`2/n). We then have two regimes depending on whether `2/n � 1 or `2/n & 1.
In the first case the succession 〈ψk|ψk〉 is peaked at k = 0. Instead, for `2/n & 1 the
succession is peaked at

kmax = 2`2
n
, (4.129)

and has a width of order
√
kmax = `/

√
n (see Figure 4.2). Thus, the primary state (4.63)

is dominated by the sum of |ψk〉 roughly in the range kmax−
√
kmax . k . kmax−

√
kmax.

100 200 300 400 500
�
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0.6

0.8
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Figure 4.2: Normalized 〈ψk|ψk〉 as function of k for n = 103 and ` = 500.

This result seems to suggest that, for primary states, the 1/n expansion (4.63), or
equivalently (4.127), breaks down at ` ∼

√
n. However, the expressions for (primary)

operators are coordinate dependent. What we have shown here is that, when expressed
in terms of creation-annihilation operators a`,m, a†`,m, primary operators are written as
power series in `/

√
n. There may exist other coordinates that partially resum the series

leading to a manifest expansion in powers of `/n. The mere fact that the expectation
value (4.114), which is coordinate-independent, is presented as a power series in `/n,
speaks in favor of that possibility.

Unfortunately, those coordinates are certainly not the creation-annihilation operators
corresponding to phonons A`,m, A†`,m. Indeed, rewriting the first two terms in (4.63)
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using the leading order relation (4.103), gives

|n, `, `〉A =
`�1

α0

√
(n− 1)!

(
A†`` −

√
2`√
n
A†`−1,`−1A

†
1,1

)
|n〉. (4.130)

One may hope that the second term in parenthesis is cancelled by NLO corrections
(4.106), however, it is straightforward to show that it is not the case. We can show using
(D.27) that the only potentially relevant term in (4.106)

(−1)`−1√πC`,`1,`2−`,m1,m2

8√2ω`ω`1ω`2n
(2 + 3`+ `1 + `2)A†`1,m1

A†`2,m2
, (4.131)

scales as O(`0)/
√
n, for `1 = m1 = ` − 1, `2 = m2 = 1, so it cannot cancel the term

scaling as `/
√
n.

Our conclusion of this section and chapter is that the semiclassical expansion can be
trusted for spins as large as the U(1) charge, ` ∼ n, as long as we are dealing with
coordinate-independent quantities. On the other hand, if we want to identify primary
states, using creation-annihilation operators corresponding to phonons, perturbative
expansion breaks down much earlier, for ` ∼

√
n. We expect that for spins in the window√

n < `� n there should exist different semiclassical backgrounds, expanding around
which would allow to describe primary states perturbatively12.

12Expanding the summand in (4.65) for large ` and n and computing the sum via saddle-point
approximation leads to

∞∑
k=0

1
k!

(
2`2

n

)k
exp
(
−k

2

`

)
= exp

{
2`2

n

[
1− 2`

n
+O

(
`2

n2

)]}
, (4.132)

which suggests that this result can be obtained perturbatively in a double scaling limit n� 1, `� 1,
`/n = fixed.
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Conclusion
To conclude this thesis, we provide a summary of the original results that were presented,
and of the avenues they open for future research. This includes applications of our
methodology, or exploration of related ideas, that have been performed by other authors
following the publication of [1, 2].

Summary of this work

Quantum Field Theories represent a challenge when it comes to computing their strongly
coupled observables. There is no all-powerful method able to handle every situation, and
we have to take advantage of any feature that can give us more control. Recently, such a
technique has been developed for correlators of operators with large quantum numbers
in Conformal Field Theories. This general method exploits the fact that the theory can
be approximated by an Effective Field Theory in terms of fluctuations around a classical
background, which corresponds to a superfluid state of finite charge density.

In this thesis, we investigated a special case of a CFT, the Wilson-Fisher fixed point
scalar field theories in the ε-expansion in euclidean space. The advantage of using such a
UV-complete theory is that all steps of the semiclassical method are completely explicit.
The methodology was described in detail in section 2.4, where it was applied to the
computation of correlators involving two large-charge operators (φn and φ̄n) and N

arbitrary operators with small quantum numbers. The steps were illustrated with one
precise model in mind, the U(1)-invariant complex scalar with λ(φ̄φ)2 interaction in
4− ε dimensions, but are easily generalised to other theories (see the next section for
examples). For example in subsection 2.5 it was readily adapted to the model with
λ2(φ̄φ)3 interaction in 3− ε dimensions.

The thesis presented several computations made possible with our technique. Chapter 2
presented the computation of the scaling dimension of the operator φn. We demonstrated
the semiclassical expansion to the next-to-leading order in the coupling λ, and for
arbitrary values of λn (2.13). This was performed in both theories mentioned above: with
either quartic (see (2.131) and (2.140)) or sextic interaction (see (2.164) and (2.166)).
In both cases, our results nicely interpolate between the small λn regime ((2.143) and
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(2.169)), where it agrees with diagrammatic calculations, and the large λn regime ((2.146)
and (2.170)), where it agrees with the expectation for the universal conformal superfluid
phase of CFTs at large charge (2.147). In fact, the parameter λn controls the size of the
gap of the radial mode, which grows with large-λn, in which limit this mode can thus
be integrated out, leaving us with the universal effective theory of the Goldstone mode.
Thus in this particular example, it is possible to explicitly compute the Wilson coefficients
of the EFT explicitly in terms of the microscopic parameters. Moreover, in the case of
an odd number of dimensions, a component of the next-to-leading order contribution
is completely universal and does not depend on the Wilson coefficients. When using
our method in 3− ε dimensions, we have been able to compute this component (2.172)
and verify the matching with the universal prediction to seven digits of accuracy. This
remarkable agreement provides a nontrivial check of the validity of our methodology.
Our results have other interesting consequences, which were discussed in section 2.4.6.
Especially, we were able to combine the small-εn limit of our NLO result to preexisting
5-loop results for n = 1, 2, 3, 4, allowing us to get the low-εn answer at N4LO.

In section 3, we showed a second application of the semiclassical expansion by computing
some 3- and 4-point correlators, from which we extracted some of the OPE coefficients
of φn × φ̄φ (e.g. (3.19), (3.21), (3.40), (3.47)).

Scaling dimensions and OPE coefficients are in principle all that is needed to completely
characterize a conformal theory. Using the constraints from conformal symmetry, all
observables can be expressed using this “CFT data”. Thus our method is quite powerful,
but so far we have only applied it in cases where φn and φ̄n are the large-charge operators.
What about the data concerning other large-charge operators ? Chapter 4 aimed at
making a first step in this direction, by discussing how one can interpret these operators
in the first place. Indeed, although the spectrum of dimensions of those operators is
given by our method (at leading order in their splitting), at large λn there is no known
way to associate them with local expressions combining the elementary fields and their
derivatives. In that chapter, we discussed how operators can indirectly by labeled by
their free-theory equivalents, and how those can be classified into conformal multiplets
(section 4.2). One interesting byproduct is a complete classification of the free theory
primaries with number of derivatives smaller that the charge in vacuum quantization
(section 4.2.4). We also compared the two Fock spaces corresponding to either the trivial
quantization of the theory or the quantization around the large-charge saddle, described
the mapping between them, and how to find primary operators (section 4.3).

Extensions and outlook

The most obvious possible extension is the application of our methodology to different
models. Here we give some examples, in a non-exhaustive list, of works which consider
a larger, non-abelian internal symmetry group. That allows to study the patterns of
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symmetry breaking induced by the choice of the Cartan charges, again illuminating the
more general, but abstract, work in [75, 120, 121].

• the quartic O(N) model in 4− ε dimensions [104, 122],

• the sextic O(N) model in 3− ε dimensions [110],

• the cubic O(N) model in 6−ε dimensions, where the result has provided a nontrivial
check of the conjectured duality [123, 124] between that theory and the UV fixed
point of the quartic O(N) model [125, 126],

• the U(N) × U(N) matrix models in 4 − ε dimensions [127, 128], and similarly
U(N)× U(M) [129],

• Boundary Conformal Field Theories, including the U(1) model in a 4−ε dimensions
half-space [130],

• the quartic U(1) or O(N) model in 4+ε dimension, the difference with the previous
case being that the theory has been proved to be non-unitary in the UV, and to flow
to a complex CFT as a fixed point, where scaling dimensions have an imaginary
part [131, 132].

It has also been applied to supersymmetric (SUSY) theories, for example the N = 2
SUSY Wess-Zumino model with a cubic superpotential in d = 3 [133].

A cousin of the ε-expansion is found in the large-N expansion, where 1/N is also a small
parameter, playing the same role as ε, in the sense that observables with charge n are
computed in the double scaling limit n,N → ∞, n/N = fixed. This has been applied
to the CPN−1 model in 2 + 1 dimensions [134], the O(2N) Landau-Ginzburg model in
2 + 1 dimensions [135], and theories with fermions, gauge fields and Yukawa interaction
at the Veneziano limit [136, 137].

An other application our results have found is in the analysis of the resurgence properties
of the large charge expansion. Such an analysis was first performed in this context in an
example of large-N expansion [138], and since has also been done for ε-expansion O(N)
models [106].

Our results also turned out to be useful by providing nontrivial checks to a recently
proposed reformulation of the Weak Gravity Conjecture in the context of the AdS/CFT
correspondence, where instead of a bound on the mass-to-charge ratio of particles in a
gravity theory, the conjecture translates to a convexity constraint on the dimension ∆(n)
of the lowest charge-n operator in a CFT [139]. This constraint was checked to work in
many ε-expansion models cited above [139, 140].

Besides further potential applications in line with the above, let us briefly mention a
few other possible directions for future research which could profit from the ε-expansion
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point of view. First, the large charge expansion has already been applied to investigate
the AdS/CFT correspondence, studying numerically boson star solutions in an AdS
model that are dual to a superfluid in the CFT, with an operator dimension verifying
the expected behaviour [141]. In the reverse sense, it could be interesting to study the
holographic dual of a weakly coupled CFT, either a large-N or an ε-expansion model.

An other pending question which warrants further study is the convergence properties of
the ε-expansion. Indeed, as discussed in section 2.4.6, we tried comparing the results of
the d = 4− ε dimensional computation evaluated at ε = 1 to a numerical Monte-Carlo
computation in d = 3. The large uncertainty made it difficult to jusge if the result
is converging towards the numerical result or not. In that regard, it would be very
interesting to see the result of the NNLO computation, of the ∆1 contribution in (2.13).
The building blocks for that computation are already present: what is needed is to
compute vacuum bubble diagrams of the superfluid fluctuations action (2.99), using
interaction vertices (2.101) and the propagators (B.3). Thus the computation should
not pose any conceptual difficulty, but can be rather involve and necessitate the use of
numerics. The NNLO result would also yield more information for the study of resurgence
properties of the ε-expansion at large charge [106].

In the introduction of this thesis, we motivated the study of the φn operator, by noting a
similarity with the breakdown of perturbation theory when computing amplitudes with
a large number of particles. Even if there is no conformal symmetry in that case, and we
would have to work in Lorentzian spacetime, these results motivate further investigations
into the more difficult problem of particle production, to see if some features of our
method can be transposed there.

Let us finally come back to the question of operators with large charge and non-zero spin,
which we studied in chapter 4. As we said, the main result of that section is the mapping
between the vacuum quantization Fock space and the superfluid excitations Fock space,
detailed in section 4.3. A second remarkable result that was derived in this chapter
is a complete characterization of free theory primary operators that have a number of
derivatives lower that their charge, described in section 4.2.4. This result complements
other approaches to the problem of counting and writing down primaries using Hilbert
Series [117, 118, 119].

In section 4.4, we discussed the limitation of the semiclassical method when it comes
to describing states with spin ` and charge n. We explained, based on a few example
computations, that the primary states we identified were well-described by a single-
phonon state only in the limit `�

√
n, beyond which many-phonon states components

take over. However, the computation of observables with these states, staying in the
vacuum quantization picture, remains valid and reliable up to `� n. We believe this
is an indication that the semiclassical expansion breaks down at `�

√
n, and that the

physically-relevant states are not well approximated anymore beyond this limit. There
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might however exist a workaround for this breakdown, and the intuition behind it again
comes from the superfluid picture. Indeed, it is known both experimentally and from the
EFT of superfluids, that giving a low spin to a superfluid only excites a few phonons,
but above a given spin threshold the superfluid start forming vortices [116, 142].

Therefore, we conjecture that there exists a different solution to the equations of motion,
with large charge and large spin ` ≥

√
n, which can serve as a valid saddle for the

semiclassical expansion in this regime. The correct way to reliably characterize states
of higher spins would then be by expanding around that saddle. We have started
investigating this issue, and numerically found solutions of the equations of motion for
spins given by integer multiples of the charge ` = n, 2n, 3n, . . . . In the large λn limit the
` = n solution describes a pair of vortex-antivortex living at the poles of the sphere, as
expected from the EFT [142]. However, the interesting question is the existence and
behaviour of solutions with ` < n. The EFT indicates a pair of vortex-antivortex closer
to the equator, looking for these solutions will be the next step in our investigation of
the large charge and large spin regime of conformal field theories.
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A Details of the one-loop computa-
tion of ∆φn on the cylinder

A.1 Next to leading order corrections for generic λn

Here we discuss the derivation of (2.140) from (2.129). To this aim, we first compute ē0
expanding the first line in (2.70) from the expression of the bare coupling (2.4):

ē0(λn,RM, d) = e0(λn, d) +
{5

8(µ2R2 − 1)2
[1
ε
− log(MR̃)

]
+ 1

16(µ2R2 + 3)(µ2R2 − 1) +O(ε)
}
λ0=λ

, (A.1)

where we defined R̃ ≡
√
πeγ/2R and we used the equations of motion (2.92) to expand

the leading order in the coupling:

∂

∂λ0

[
e−1(λ0n, d)

λ0R

]
= Rd−1Ωd−1f

4

16 . (A.2)

To compute ∆0 in (2.71), we need to evaluate (A.1) in d = 4 and add the expansion of
the leading order ē−1/λ to first order in ε (at fixed coupling)

∆0 =
{
ē0(λn,RM, 4) + ∂

∂ε

[ 1
λ
ē−1(λn,RM, 4− ε)

]
ε=0

}
λ=λ∗

=
{

lim
ε→0

[
R

2

∞∑
`=0

n` [ωB(`) + ωA(`)] + 5
8ε(µ2R2 − 1)2

]}
λ0=λ∗

(A.3)

where the limit ε→ 0 is taken at λ0 fixed, we used eq. (2.8) and

1
λ
ē−1(λn,RM, 4− ε) = 1

λM ε
e−1(λnM ε, 4− ε). (A.4)

As anticipated, at the fixed point the dependence on the sliding scale drops.

To proceed, we need to isolate the divergent contribution in the sum in eq. (A.3). We
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Appendix A. Details of the one-loop computation of ∆φn on the cylinder

use the `→∞ expansion of the summand

n` [ωB(`) + ωA(`)] ∼
∞∑
n=1

cn`
d−n. (A.5)

The first five terms provide a divergent contribution in d = 4. The expansion in 4− ε
dimensions of the coefficients is

c1 = 2
R

+O (ε) , c2 = 6
R

+O (ε) , c3 = 2µ2R+ 4
R

+O (ε) , c4 = 2µ2R+O (ε) ,

c5 = −5
(
µ2R2 − 1

)2
4R + ε

[
−225µ4R4 + 50µ2R2 + 150γ

(
µ2R2 − 1

)2 + 113
]

120R +O
(
ε2
)
.

(A.6)
We can now rewrite the sum isolating explicitly the divergent contribution as

1
2

∞∑
`=0

n` [ωB(`) + ωA(`)] = 1
2

5∑
n=1

cn

∞∑
`=1

`d−n + 1
2

∞∑
`=1

σ̄(`) + 1
2ωB(0), (A.7)

where σ̄(`) is defined subtracting the first five terms in (A.5) from the original summand,

σ̄(`) = n` [ωB(`) + ωA(`)]−
5∑

n=1
cn`

d−n, (A.8)

and we used that ωA(0) = 0. From (A.5) we see that the sum over σ̄(`) is convergent
and can be evaluated directly in d = 4. The first terms provide a divergent contribution
which can be computed using ∑∞`=1 `

x = ζ(−x) and recalling ζ(1− ε) ∼ −1/ε:

1
2

5∑
n=1

cn

∞∑
`=1

`d−n = −5
(
µ2R2 − 1

)2
8Rε − 15µ4R4 − 6µ2R2 + 7

16R . (A.9)

Using equations (A.7) and (A.9) in (A.3), we obtain the result in the main text (2.140).

A.2 Next to leading order corrections for large λn

Here we explain the calculation of the result (2.144). To this aim, it is convenient to
start from eq. (A.3), derived in the previous appendix. We denote the summand in
(2.139) with the bare coupling replaced by the renormalized one as

s(`, d) ≡ n`R [ωB(`) + ωA(`)]λ0=λ . (A.10)
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A.2 Next to leading order corrections for large λn

We then separate the sum over s(`, d) into two terms introducing a cutoff ARµ, where
A & 1 is an arbitrary number such that ARµ∗ is an integer:

1
2

∞∑
`=0

s(`, d) = 1
2

ARµ∑
`=0

s(`, d) + 1
2

∞∑
ARµ+1

s(`, d). (A.11)

We can approximate the second sum using the Euler-Maclaurin formula:

∞∑
ARµ+1

s(`, d) '
∫ ∞
ARµ

d`s(`, d)− s(ARµ, 4)
2 −

N1∑
k=1

B2k
(2k)!s

(2k+1)(ARµ, 4) +O(ε), (A.12)

where B2k are the Bernoulli numbers and N1 is an integer. As s(k)(ARµ) ∼ (ARµ)1−k

and B2k
(2k)! approaches zero exponentially fast as k grows, the error we make in (A.12)

can be made arbitrarily small incresing N1. The integral in (A.12) is approximately
evaluated using the expansion (A.5) truncated after N2 terms, giving

1
2

∫ ∞
ARµ

d`s(`, d) ' 1
2(ARµ)d

N2∑
n=1

Rcn
(ARµ)n−1(n− 1− d)

≡ −5
(
µ2R2 − 1

)2
8 ε + 5

8
(
R2µ2 − 1

)2
log(ARµ) + fN2,A(Rµ) +O(ε),

(A.13)

where f is a regular function of Rµ. As before, increasing N2 we can improve at will the
precision of our calculation for A & 1. Using (A.3) we then conclude

∆0 = 5
8
(
R2µ2

∗ − 1
)2

log(Rµ∗) + F (Rµ∗), (A.14)

where the function F (Rµ∗) can be computed from

F (Rµ∗) ' fN2,A(Rµ∗)−
s(ARµ∗)

2 +

1
2

ARµ∗∑
`=0

s(`, 4)−
N1∑
k=1

B2k
(2k)!s

(2k+1)(ARµ∗)


µ=µ∗

.

(A.15)

The function F (Rµ∗) can now be evaluated numerically and then fitted to the expected
functional form, estimating the error from the first subleading terms neglected in the
sums in (A.12) and (A.13). Using N1 = 4, N2 = 10 and A = 10, we evaluated (A.15) for
Rµ∗ = 11, 12, . . . 210. The result was fitted with an expansion in (Rµ∗)−2, starting from
(Rµ∗)4, with four parameters1. The first three terms read:

F (Rµ∗) = −2.01444683(3)(Rµ∗)4 +2.49986(9)(Rµ∗)2−0.55(4)+O
(
(Rµ∗)−2

)
. (A.16)

We have also verfied that the coefficients of (Rµ∗), (Rµ∗)3, (Rµ∗)4 log(Rµ∗) and (Rµ∗)2 log(Rµ∗)

1A fit with three parameter produces the same results with smaller standard errors.
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are compatible with zero if included, individually or in combination, in the fit of the
function in (A.15). Notice that the functional form (A.16) agrees with (2.147) for d = 4
after expansing Rµ∗ in terms of (λ∗n)2/3.

The expansion of the first term in (A.14) produces logarithms of λ∗n:

5
8
(
R2µ2

∗ − 1
)2

log(Rµ∗) =5
(

(λ∗n)4/3

384π8/3 −
(λ∗n)2/3

144π4/3 + 1
72

)
log

(
λ∗n

8π2

)

+ 5
288

(
3(λ∗n)2/3

π4/3 − 10
)

+O

((
λ∗n

16π2

)−2/3)
.

(A.17)

As explained in the main text, the coefficients of the logarithms ensure that the one-loop
result takes the form predicted by the large charge CFT predictions. Assuming that
F (Rµ∗) contains only powers of Rµ∗ (as we checked in (A.16)), one can verify that this
is true for all the subleading orders in (λ∗n) as well. Summing (A.16) and (A.17) and
expanding (Rµ∗)2 in powers of (λ∗n)2/3, we obtain the result stated in the main text.
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B Quantum corrections on the cylin-
der

In this chapter we provide details regarding computations of correlators in the semiclassical
expansion, which are the subject of chapter 3. To perform those, we need to quantize
the field theory of fluctuations (r, π) around the semiclassical saddle.

B.1 Propagator on the cylinder

In this section we show how to construct propagators corresponding to fluctuations
of fields r, π in (2.116). From time translation and rotation symmetry we know the
propagator can be written as

〈x(τ1, ~n1)y(τ2, ~n2)〉 = Dxy(τ1 − τ2, ~n1 · ~n2), (B.1)

where x, y ∈ {r, π} are fields and 〈. . .〉 is the τ -ordered Wick contraction. The quadratic
Lagrangian yields a matrix equation similar to (2.113) for the propagator (note that it is
not diagonal due to mixing between π̇ and r)

−
(
∂2
τ + ∆Sd−1 −M2 2iµ∂τ
−2iµ∂τ ∂2

τ + ∆Sd−1

)(
Drr Drπ

Dπr Dππ

)
= δ(τ1 − τ2)δ(Sd−1)(~n1 · ~n2).

(B.2)
Expanding in spherical harmonics (in this case only with ~m = ~0, which corresponds to
Gegenbauer polynomials)

D(τ, ~n1 · ~n2) =
∑
`

F (`)(τ)C(d/2−1)
` (cos(~n1 · ~n2)), (B.3)

we obtain

−N`Ωd−2

(
∂2
τ − J2

` −M2 2iµ∂τ
−2iµ∂τ ∂2

τ − J2
`

)(
F

(`)
rr F

(`)
rπ

F
(`)
πr F

(`)
ππ

)
= C

(d/2−1)
` (1)δ(τ), (B.4)
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where the normalization factor of Gegenbauer polynomials is given by

N`

∫ 1

−1
C

(d/2−1)
` (x)C(d/2−1)

` (x)(1− x2)
d−3

2 dx = 24−d π Γ(`+ d− 2)
(2`+ d− 2) `! Γ2

(
d
2 − 1

) . (B.5)

We can look for solutions of this equations for τ < 0 and τ > 0, which will be given by
expressions similar to (2.116), and then find the propagator by matching this solutions at
τ = 0 with a specific discontinuity of derivatives. Alternatively, we can Fourier transform
(B.4) and use (see [143], table 18.6.1)

C
(d/2−1)
` (1) = Γ(`+ d− 2)

`! Γ(d− 2) , (B.6)

to obtain

F (`)(τ) = 2`+ d− 2
(d− 2)Ωd−1

∫
dω

2π e
−iωτ M (`)(ω)

(ω2 + ω2
B(`))(ω2 + ω2

A(`)) , (B.7)

with
M (`)(ω) =

(
ω2 + J2

` 2µω
−2µω ω2 + J2

` +M2

)
. (B.8)

For ` 6= 0 integration in (B.7) can be easily done using Cauchy’s theorem, resulting in

F (`)(τ) = 2`+ d− 2
(d− 2)Ωd−1

(
M (`)(−iωA(`))e−ωA(`)τ

2ωA(`) − M (`)(−iωB(`))e−ωB(`)τ

2ωB(`)

)
1

ω2
B(`)− ω2

A(`)
(B.9)

for τ > 0, and

F (`)(τ) = 2`+ d− 2
(d− 2)Ωd−1

(
M (`)(iωA(`))eωA(`)τ

2ωA(`) − M (`)(iωB(`))eωB(`)τ

2ωB(`)

)
1

ω2
B(`)− ω2

A(`)
(B.10)

for τ < 0. The same result can obviously be obtained directly from (2.116). Indeed, say
for τ1 < τ2 computing non-zero spin contribution to time ordered correlator we get

〈n|r(τ2)r(τ1)|n〉` =
(
J2
` − ωA(`)2

2ωA(`) e−ωA(`)|τ2−τ1| + ωB(`)2 − J2
`

2ωB(`) e−ωB(`)|τ2−τ1|
)

1
ω2
B(`)− ω2

A(`)
∑
~m

Y`~mY
∗
`~m,

(B.11)
which upon using (B.6) and (see [144])

∑
~m

Y`~m(~n1)Y ∗`~m(~n2) = 2`+ d− 2
(d− 2)Ωd−1

C
(d/2−1)
` (~n1 · ~n2) (B.12)

reproduces (B.9). Similarly, we can compute rπ and ππ components of the propagator.

Dealing with ` = 0 modes is somewhat more subtle. The difficulty is that apart from the
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B.2 3-pt function computation

gapped mode corresponding to (B0~0, B
†
0~0) there is also the gapless mode π̂, pπ, for which

pπ|n〉 = 0, (B.13)

and which does not have the Fock space structure. It does not present a problem for
〈rr〉, indeed using (2.116) we get

〈n|r(τ2)r(τ1)|n〉0 = 1
2ωB(0)Ωd−1

e−ωB(0)|τ2−τ1|, (B.14)

which is consistent with (B.9) and (B.10). On the other hand considering correlators
linear in π is problematic. However, that is not an issue, for in all instances the field π
appears only in the exponent1, hence, we need only to worry about correlators involving
eiπ(τ)/f . For instance, using Baker-Campbell-Hausdorff formula we obtain (for τ < 0)

〈e−iπ(0)/feiπ(τ)/f 〉0 = exp

−1− 4µ2

ω2
B(0)

2Ωd−1f2 τ

 exp
[

1
f2

4µ2

ω2
B(0)

eωB(0)τ − 1
2ωB(0)Ωd−1

]
. (B.16)

Comparing with the naive expectation

〈e−iπ(0)/feiπ(τ)/f 〉0 = 1 + D
(0)
ππ (|τ |)−D(0)

ππ (0)
f2 +O(f−4), (B.17)

it is consistent to define (compare with (B.9) and (B.10))

F (0)
ππ (τ) = −

1− 4µ2

ω2
B(0)

2Ωd−1
|τ |+ 4µ2

ω2
B(0)

e−ωB(0)|τ |

2ωB(0)Ωd−1
+ const. (B.18)

Similarly, computing 〈e−iπ(0)/fr(0)eiπ(τ)〉0 allows to define

F (0)
rπ (τ) = sign(τ) iµ

ω2
B(0)

e−ωB(0)|τ |

Ωd−1
+ const. (B.19)

B.2 3-pt function computation

We now detail the computation of the next-to-leading order contribution to the 3-point
function (3.10), which means evaluating (3.11) using Wick contractions. Here as in

1Bear in mind that π̂ is defined on a compact space (circle), since charge is quantized. As such, the
corresponding canonical momentum pπ is defined only on the space of periodic functions. Otherwise pπ
is not Hermitian. Indeed, the following relation holds∫ 2π

0
dπ̂ψ∗2(π̂) [−i∂π̂ψ1(π̂)] =

∫ 2π

0
dπ̂(π̂) [−i∂π̂ψ2]∗ ψ1(π̂), (B.15)

only if ψ2(π̂)ψ1(π̂)
∣∣∣2π
0

= 0, i.e. for periodic functions ψi(π̂).
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section 3.1, the symbol µ refers to µ4(λn, d). One must keep in mind that m, f , J`,
ωA,B(`) are functions of d, µ and n. The symbol µ∗ will refer to µ4(λ∗n, 4). Using the
propagator (B.3) we compute contractions for terms without spatial derivatives

∫
〈r1r

3
2〉 → 3Ωd−1

[∫
dτF (0)

rr (τ)
] [ ∞∑

`=0
F (`)
rr (0)C(d/2−1)

` (1)
]
, (B.20)

∫
〈r1π̇2r

2
2〉 → 2Ωd−1

[∫
dτF (0)

rr (τ)
] [ ∞∑

`=0
Ḟ (`)
πr (0)C(d/2−1)

` (1)
]

+Ωd−1

[∫
dτḞ (0)

πr (τ)
] [ ∞∑

`=0
F (`)
rr (0)C(d/2−1)

` (1)
]
, (B.21)

∫
〈r1π̇

2
2r2〉 → 2Ωd−1

[∫
dτḞ (0)

πr (τ)
] [ ∞∑

`=0
Ḟ (`)
πr (0)C(d/2−1)

` (1)
]

−Ωd−1

[∫
dτF (0)

rr (τ)
] [ ∞∑

`=0
F̈ (`)
ππ (0)C(d/2−1)

` (1)
]
, (B.22)

∫
〈r2〉 →

[ ∞∑
`=0

F (`)
rr (0)C(d/2−1)

` (1)
]
, (B.23)

where indices indicate evaluation point, for example r1 = r(τ1, ~n1). For the remaining
term ∫

gij2 〈r1∂iπ2∂jπ2r2〉 (B.24)

in order to find contraction of two fields at the same point it is necessary to introduce
a splitting, compute derivative(s) and then consider the limit. For example one of the
Wick contractions yields

〈r2∂iπ2〉 = lim
~n′2→~n2

∂′iDπr(0, ~n′2 · ~n2) = 0, (B.25)

which vanishes since ~n′2 · ~n2 is maximal for ~n′2 = ~n2. Similarly, using the chain rule and
the same argument we show

〈∂iπ2∂jπ2〉 = lim
~n′2→~n2

∂′i∂jDππ(0, ~n′2 · ~n2) = d

dx
Dππ(0, x)

∣∣∣∣
x=1

(∂i~n2) · (∂j~n2) (B.26)

and one can show, for example by choosing specific coordinates on the sphere, that

gij2 (∂i~n2) · (∂j~n2) = d− 1. (B.27)

Using (see [143], eq. (18.9.19))

d

dx
C(λ)
n (x) = 2λC(λ+1)

n−1 (x), (B.28)
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and (see (B.6))

C
(d/2)
`−1 (1) = C

(d/2−1)
` (1) J2

`

(d− 1)(d− 2) , (B.29)

we obtain∫
gij2 〈r1∂iπ2∂jπ2r2〉 → Ωd−1J

2
`

[∫
dτF (0)

rr (τ)
] [ ∞∑

`=0
F (`)
ππ (0)C(d/2−1)

` (1)
]
. (B.30)

For what follows we will need explicit expressions

F (0)
rr (τ) = e−ωB(0)|τ |

2Ωd−1 ωB(0) , (B.31)

Ḟ (0)
πr (τ) = iµ e−ωB(0)|τ |

Ωd−1 ωB(0) , (B.32)

F (0)
rr (0) = 1

2Ωd−1 ωB(0) , (B.33)

F (`)
rr (0) = 2`+ d− 2

Ωd−1(d− 2)
ωB(`)ωA(`) + J2

`

2ωB(`)ωA(`) [ωB(`) + ωA(`)] , ` 6= 0, (B.34)

F (`)
ππ (0) = 2`+ d− 2

Ωd−1(d− 2)
ωB(`)ωA(`) + J2

` + 2(µ2 −m2)
2ωB(`)ωA(`) [ωB(`) + ωA(`)] , ` 6= 0, (B.35)

Ḟ (0)
πr (0) = iµ

Ωd−1 ωB(0) , (B.36)

Ḟ (`)
πr (0) = 2`+ d− 2

Ωd−1(d− 2)
iµ

ωB(`) + ωA(`) , ` 6= 0, (B.37)

F̈ (0)
ππ (0) = 2µ2

Ωd−1 ωB(0) , (B.38)

F̈ (`)
ππ (0) = 2`+ d− 2

Ωd−1(d− 2)
ω2

+(`) + ω2
A(`) + ωB(`)ωA(`)− J2

` − 2(µ2 −m2)
2 [ωB(`) + ωA(`)] , ` 6= 0,(B.39)

and integrals ∫
dτF (0)

rr (τ) = 1
Ωd−1 ω

2
B(0) , (B.40)∫

dτḞ (0)
πr (τ) = 2iµ

Ωd−1 ω
2
B(0) . (B.41)

We obtain
〈
n|φ̄φ(0, ~nd)|n

〉
= n

2µΩd−1
− 2(µ2 −m2)

ω2
B(0)

∞∑
`=0

F (`)
rr (0)C(d/2−1)

` (1)− 2iµ
ω2
B(0)

∞∑
`=0

Ḟ (`)
πr (0)C(d/2−1)

` (1)

+ 1
ω2
B(0)

∞∑
`=0

[
F̈ (`)
ππ (0)− J2

` F
(`)
ππ (0)

]
C

(d/2−1)
` (1). (B.42)
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Which can be further simplified with

ω2
B(`)ω2

A(`) = J4
` + 2J2

` (µ2 −m2), ω2
B(`) + ω2

A(`) = 2(J2
` + 3µ2 −m2) (B.43)

leading to

〈
n|(φ̄φ)(0, ~nd)|n

〉
= n

2µΩd−1
+
∞∑
`=0

1
ω2
B(0)

2`+ d− 2
Ωd−1(d− 2)C

(d/2−1)
` (1)ωB(`)ωA(`)(3µ2 +m2)− J2

` (µ2 −m2)
ωB(`)ωA(`) [ωB(`) + ωA(`)] .

(B.44)
Denoting the summand in (B.44) by

S`(µ,m, d)
(d− 2)Ωd−1

(B.45)

and considering its asymptotics at `→∞

S`(µ,m, d) ≡
`→∞

c−1(µ,m, d)`d−3 + c0(µ,m, d)`d−4 + c1(µ,m, d)`d−5 + . . . , (B.46)

we get〈
n|(φ̄φ)(0, ~nd)|n

〉
= n

2Ωd−1µ4((λ∗ + δλ)n, d) (B.47)

+ 1
(d− 2)Ωd−1

S0(µ,m, d) +
∞∑
`=1

[
S`(µ,m, d)− c−1(µ,m, d)`d−3

− c0(µ,m, d)`d−4 − c1(µ,m, d)`d−5
]

+ c−1(µ,m, d)ζ(3− d) + c0(µ,m, d)ζ(4− d) + c1(µ,m, d)ζ(5− d)


λ∗

where we put explicit dependence of µ4 on the 1-loop coupling counterterm, with

δλ = 5(λ∗)2

16π2
1

4− d, (B.48)

and 1-loop terms don’t need any counterterm corrections at this order. The renormalized
coupling is denoted by λ∗ which at this stage is considered as independent of the dimension.
Expanding the first term in λ and other terms in 4− d, keeping only O(1) terms (these
are the only ones that are needed at this order), leads to

〈
n|(φ̄φ)(0, ~nd)|n

〉
=

 n

2Ωd−1µ
− 5λ2

16π2
1

4− d
n

2Ωd−1µ2
∂µ

∂λ
(B.49)

+ 1
(d− 2)Ωd−1

R(µ∗) + c1P (µ,m)
4− d + c1F (µ∗, 1)


λ∗
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where we introduced

R(µ) = S0(µ, 1, 4) +
∞∑
`=1

[
S`(µ, 1, 4)− c−1(µ, 1, 4)`− c0(µ, 1, 4)− c1(µ, 1, 4)

`

]
+ c−1(µ, 1, 4)ζ(−1) + c0(µ, 1, 4)ζ(0), (B.50)

and
c1(µ,m, d)ζ(5− d) =

d→4

c1P (µ,m)
4− d + c1F (µ,m), (B.51)

with

c1P (µ,m) = m2 + 2m4 + µ2 − 3m2µ2 − µ4

2(3µ2 −m2) , (B.52)

c1F (µ,m) = 12m4 − 5µ2 − 6µ4 −m2(18µ2 + 5)
12(3µ2 −m2) . (B.53)

In the theory at hand, equation (2.94) takes the form

µ2 −m2 = nλ

4µΩd−1
. (B.54)

This implies
∂µ

∂λ
= n

4Ωd−1(3µ2 −m2) , (B.55)

which yields

〈
n|(φ̄φ)(0, ~nd)|n

〉
=

 n

2µΩd−1
− 5

16π2
1

4− d
λ2n2

8Ω2
d−1µ

2(3µ2 −m2) (B.56)

+ 1
(d− 2)Ωd−1

R(µ∗) + c1P (µ,m)
4− d + c1F (µ∗, 1)


λ∗

.

Taking into account normalization (3.5) and expanding in λ we get

λφ̄φ = Z−1
φ̄φ

〈
n|(φ̄φ)(0, ~nd)|n

〉
(B.57)

=

n(d− 2)
2µ + λn(d− 2)

16π2µ(4− d) + λn(d− 2)
32π2µ

(1 + γ + log π)

− 5
16π2

1
4− d

λ2n2

8Ω2
d−1µ

2(3µ2 −m2) +R(µ∗) + c1P (µ,m)
4− d + c1F (µ∗, 1)


λ∗

.

Using (B.54) to substitute λn, we can gather the three order 1
4−d terms, then expand µ,
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Appendix B. Quantum corrections on the cylinder

m and Ωd−1 in 4− d to show cancellation of divergences and get a finite part

1
4− d

(
(d− 2)Ωd−1(µ2 −m2)

4π2 − 5Ωd−1(d− 2)(µ2 −m2)2

8π2(3µ2 −m2) + c1P (µ,m)
)

d→4−→ 2(µ2
∗ + 1)− (γ + log π)(µ4

∗ + 2µ2
∗ − 3)

4(3µ2
∗ − 1) . (B.58)

Some γ + log π appeared from

1
Ω3

∂Ωd−1
∂d

∣∣∣∣
d=4

= 1
2 (γ + log π − 1) . (B.59)

We can as well substitute λn in the term

λn(d− 2)
32π2µ

(1 + γ + log π) d→4−→ µ2
∗ − 1
2 (1 + γ + log π). (B.60)

We see there is not yet full cancellation of γ + log π terms. The reason is that the leading
order term (3.8), which is enhanced by n, contains µ(λ∗n, d) which we still have to
expand in 4− d, bringing n(4− d) contributions at NLO. To this end, we can express
the derivative of µ with respect to d from (2.95)

∂µ

∂d

∣∣∣∣
d=4

= µ

3µ2 − 1

[
1− 1

Ω3
(µ2 − 1)∂Ωd−1

∂d

]∣∣∣∣
d=4

(B.61)

and use (B.59). This yields

n(d− 2)
2µ = n

µ∗
− (4− d)n

(
µ2
∗ − 1

)
(2 + γ + log π)

2µ∗ (3µ2
∗ − 1) . (B.62)

Now that 1
4−d poles have cancelled and everything has been expanded to relevant order

in 4 − d, we can take the theory at the fixed point (2.8). This yields for the previous
equation

n(d− 2)
2µ = n

µ∗
− 5

(
µ2
∗ − 1

)2 (2 + γ + log π)
4(3µ2

∗ − 1) . (B.63)

Putting everything together, we notice all γ + log π terms cancel, and we get the final
result

λφ̄φ = n

µ∗
− 2µ4

∗ − 7µ2
∗ + 3

2(3µ2
∗ − 1) +R(µ∗) + c1F (µ∗, 1). (B.64)

Plugging explicit expressions from (B.50) and (B.53) results in

λφ̄φ = n

µ∗
+ 2(3µ2

∗ + 1)
[2(3µ2

∗ − 1)]3/2
− 3µ4

∗ − 2µ2
∗ + 3

2(3µ2
∗ − 1) +

∞∑
`=1

[
S`(µ∗)− c−1(µ∗)`− c0(µ∗)−

c1(µ∗)
`

]
,

(B.65)
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B.2 3-pt function computation

where we noted
S`(µ) = S`(µ, 1, 4), ci(µ) = ci(µ, 1, 4). (B.66)
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C Feynman diagram computation of
∆(φ̄φ)k

We compute diagrammatically the one-loop anomalous dimension of (φ̄φ)k in theory
(2.1) in d = 4− ε. As always we consider the MS renormalization of operators, in the
following momentum-space correlator1:

〈(φ̄φ)kφ̄(p) · · ·φ(p) · · · 〉 = Z(φ̄φ)kZ
2k
φ 〈
[
(φ̄φ)k

]
[φ̄](p) · · · [φ](p) · · · 〉 , (C.1)

where there are k insertions of field φ(p) and φ̄(p). The field renormalization factor Zφ
has no one-loop contribution so we consider it equal to 1. The bare (φ̄φ)k operator is
normalized :

= 1 . (C.2)

We do not draw exterior lines in the diagrams.

There are three diagrams at one-loop level, of which we compute the divergent part:

= = k(k − 1)
4 (−λ) 1

8π2ε
+O(ε0) = k2(−λ) 1

8π2ε
+O(ε0) .

(C.3)
Summing all diagrams yields

〈(φ̄φ)kφ̄(p) · · ·φ(p) · · · 〉 = 1− k(3k − 1)λ
16π2ε

+O(λε0, λ2) , (C.4)

from which we get
Z(φ̄φ)k = 1− k(3k − 1)λ

16π2ε
+O(λ2) . (C.5)

1To be more precise, the operator (φ̄φ)k mixes with other operators [101]. However, since this operator
is a primary of the critical theory, the mixing cancels in that case. This means we can neglect the mixing
when diagramatically computing the anomalous dimension off-criticality.
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The one-loop anomalous dimension is then given by

γ(φ̄φ)k = −λε
∂ logZ(φ̄φ)2

∂λ
= k(3k − 1)λ

16π2 +O(λ2) . (C.6)

At the Wilson-Fisher fixed point (2.8) the dimension is

∆(φ̄φ)k = 2k
(
d

2 − 1
)

+ γ(φ̄φ)k = 2k + 3k(k − 2)
5 ε+O(ε2) . (C.7)
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D Free Theory construction and
counting of primaries

D.1 Explicit expressions for spin 2 and 3 primaries

In this appendix we give explicit expression for spin-` primary operators associated to the
primary states (4.63) using operator-state correspondence (4.25). As discussed in section
4.2.2, it is assumed products of (derivatives of) φ are normal-ordered and evaluated at
the origin.

The counting of primaries given in (4.77) indicates there is one primary of spin ` = 0, 2, 3
but none of spin 1.

Spin 0is trivial, for we have only one state given by (4.57).

Spin 1Explicitly, we have three states(
a†00

)n−1
a†1,m|0〉, (D.1)

which correspond to (
a†00

)n−1
a†1,1|0〉 = −(4π)n/2φn−1∂−φ|0〉, (D.2)(

a†00

)n−1
a†1,0|0〉 = (4π)n/2φn−1∂0φ|0〉, (D.3)(

a†00

)n−1
a†1,−1|0〉 = (4π)n/2φn−1∂+φ|0〉. (D.4)

It is straightforward to show using (4.44), (4.48) and (4.50) that those states, hence
operators, are descendants, as we would expect since these operators can be written as
derivatives of φn.
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Appendix D. Free Theory construction and counting of primaries

Spin 2We can write two spin-2 operators by combining n fields φ and two derivatives in
a traceless and symmetric way

O(2,1)
µν = φn−1

(
∂µ∂νφ−

δµν
3 ∂2φ

)
, O(2,2)

µν = φn−2
(
∂µφ∂νφ−

δµν
3 (∂φ)2

)
. (D.5)

One linear combination of these is the spin-two primary.

To give examples of primary states with non-maximal J3 eigenvalue, let us repeat the
method of section 4.2.4 in this simple case. We consider a state

|n; 2, 0〉A = α1
(
a†00

)n−1
a†2,0|0〉+ α2

(
a†00

)n−2 (
a†1,0

)2
|0〉+ β2

(
a†00

)n−2
a†1,−1a

†
1,1|0〉.

(D.6)
Acting with K± and K0 we see that this state is primary provided α2 = β2 = −α1. It
follows from (4.25) that

|n; 2, 0〉A = (4π)n/2α1

[1
3φ

n−1
(
∂2

0φ− ∂+∂−φ
)
− φn−2 (∂0φ∂0φ− ∂+φ∂−φ)

]
|0〉(D.7)

= (4π)n/2α1
2

[1
3φ

n−1
(
3∂2

0φ− ∂2φ
)
− φn−2

(
3∂0φ∂0φ− (∂φ)2

)]
|0〉 (D.8)

= (4π)n/2 3α1
2

[1
3φ

n−1
(
∂2

0φ−
1
3∂

2φ

)
− φn−2

(
∂0φ∂0φ−

1
3(∂φ)2

)]
|0〉(D.9)

= (4π)n/2 3α1
2

(1
3O

(2,1)
00 −O(2,2)

00

)
|0〉. (D.10)

Hence, we conclude the operator O(2,1)
µν − 3O(2,2)

µν is primary.

Spin 3In this case we have an ansatz

|n; 3, 0〉A = α1
(
a†00

)n−1
a†3,0|0〉 (D.11)

+ α2
(
a†00

)n−2
a†2,0a

†
1,0|0〉+ β2

(
a†00

)n−2
a†2,1a

†
1,−1|0〉+ γ2

(
a†00

)n−2
a†2,−1a

†
1,1|0〉

+ α3
(
a†00

)n−3 (
a†1,0

)3
|0〉+ β3

(
a†00

)n−3
a†1,−1a

†
1,1a

†
1,0|0〉.

As before, acting with K and imposing that the state be primary we get

|n; 3, 0〉A = (4π)n/2α1

[(
a†00

)n−1
a†3,0 (D.12)

− 3
(
a†00

)n−2
a†2,0a

†
1,0 −

√
2
(
a†00

)n−2
a†2,1a

†
1,−1 −

√
2
(
a†00

)n−2
a†2,−1a

†
1,1

+ 2
(
a†00

)n−3 (
a†1,0

)3
+ 6

(
a†00

)n−3
a†1,−1a

†
1,1a

†
1,0

]
|0〉,
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which corresponds to

|n; 3, 0〉A = (4π)n/2α1

(1
6O

(3,1)
000 −

5
6O

(3,2)
000 + 5O(3,3)

000

)
|0〉 = (4π)n/2α1

6
(
O

(3,1)
000 − 5O(3,2)

000 + 30O(3,3)
000

)
|0〉,

(D.13)
with

O
(3,1)
µνλ = φn−1∂µ∂ν∂λφ−

1
5 (δµν∂λ + δµλ∂ν + δλν∂µ) ∂2φ, (D.14)

O
(3,2)
µνλ = φn−2∂µ∂νφ∂λφ+ φn−2∂µφ∂ν∂λφ+ φn−2∂νφ∂µ∂λφ (D.15)

−δµν5
(
∂λφ∂

2φ+ ∂λ(∂φ)2
)
− δµλ

5
(
∂νφ∂

2φ+ ∂ν(∂φ)2
)
− δλν

5
(
∂µφ∂

2φ+ ∂µ(∂φ)2
)
,

O
(3,3)
µνλ = φn−3∂µφ∂νφ∂λφ−

1
5 (δµν∂λφ+ δµλ∂νφ+ δλν∂µφ) (∂φ)2. (D.16)

the three spin-3 operators. We conclude operator O(3,1)
µνλ − 5O(3,2)

µνλ + 30O(3,3)
µνλ is primary.

D.2 Counting primaries with ` > n

Here we give several examples of the formula (4.77) presented in main text.

First, let us consider the case of charge 2. We detail the partitions mentioned in the
argument of the main text. We do this for the examples of spin 4 and 5:

• Prim(4, 2) = 1

p(4, 2) p(3, 2) p∗(4, 2) p∗(3, 2) Prim(4, 2)
(4) (3) (1, 1, 1, 1) (1, 1, 1) ×
(3, 1) (2, 1) (2, 1, 1) (2, 1) ×
(2, 2) (2,2) X

(D.17)

• Prim(5, 2) = 0

p(5, 2) p(4, 2) p∗(5, 2) p∗(4, 2) Prim(5, 2)
(5) (4) (1, 1, 1, 1, 1) (1, 1, 1, 1) ×
(4, 1) (3, 1) (2, 1, 1, 1) (2, 1, 1) ×
(3, 2) (2, 2) (2, 2, 1) (2, 2) ×

(D.18)

In general, we find there is one primary operator for even spins and none for odd spins.

Let us now give a more involved example with charge 3 and spin 8, resulting in

127



Appendix D. Free Theory construction and counting of primaries

Prim(8, 3) = 2.

p(8, 3) p(7, 3) p∗(8, 3) p∗(7, 3) Prim(8, 3)
(8) (7) (1, 1, 1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1, 1) ×
(7, 1) (6, 1) (2, 1, 1, 1, 1, 1, 1) (2, 1, 1, 1, 1, 1) ×
(6, 2) (5, 2) (2, 2, 1, 1, 1, 1) (2, 2, 1, 1, 1) ×
(6, 1, 1) (5, 1, 1) (3, 1, 1, 1, 1, 1) (3, 1, 1, 1, 1) ×
(5, 3) (4, 3) (2, 2, 2, 1, 1) (2, 2, 2, 1) ×
(5, 2, 1) (4, 2, 1) (3, 2, 1, 1, 1) (3, 2, 1, 1) ×
(4, 4) (2,2,2,2) X
(4, 3, 1) (3, 3, 1) (3, 2, 2, 1) (3, 2, 2) ×
(4, 2, 2) (3, 2, 2) (3, 3, 1, 1) (3, 3, 1) ×
(3, 3, 2) (3,3,2) X

(D.19)

For arbitrary spin and charge n = 3 an explicit expression is given by

Prim(`, 3) =


⌊
`
6

⌋
, if ` = 6p+ 1 for some p ∈ N,⌊

`
6

⌋
+ 1, if ` 6= 6p+ 1 for all p ∈ N.

(D.20)

In general, the number of primaries can be found from

∞∑
`=0

Prim(`, n)x` =
n∏
k=2

1
(1− xk) . (D.21)

D.3 Some asymptotics of Gaunt coefficients

In the main text we are interested in the expansion at large ` of A†``. Thus we provide
here some formulas for the asymptotics of relevant Gaunt coefficients. We use special
cases of 3j symbols [145]

(
` `1 `2
0 0 0

)
=


0 L odd,

(−1)L2
√

(L−2`)!(L−2`1)!(L−2`2)!
(L+1)!

(L2 )!

(L−2`
2 )!

(
L−2`1

2

)
!
(
L−2`2

2

)
!

L even,
(D.22)

(
` `1 `2
` −`−m2 m2

)
= (−1)`−`1−m2

√
(2`)!(L− 2`)!(`+ `1 +m2)!(`2 −m2)!

(L+ 1)!(L− 2`1)!(L− 2`2)!(−`+ `1 −m2)!(`2 +m2)! ,

(D.23)
where L = `+ `1 + `2. We can use Stirling formula to estimate these at large spin. If we
consider ` to be large, due to triangle inequality (4.110), at least one of `1, `2 has to be
of order `.
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If we assume `1 ∼ `2 ∼ `, we have

C`,`1,`2`,−`−m2,m2√
ω`ω`1ω`2

`1∼`2∼`
`→∞−→ g1

(
`1
`
,
`2
`
,
m2
`

)`/2
h1

(
`1
`
,
`2
`
,
m2
`

)(
`−7/4 +O(`−11/4)

)
, (D.24)

where

g1(x, y, z) = 4(−1)1−x+y−2z(x+ y − 1)x+y−1(x+ z + 1)x+z+1(y − z)y−z
(x− y + 1)x−y+1(y − x+ 1)y−x+1(x+ y + 1)x+y+1(x− z − 1)x−z−1(y + z)y+z ,

(D.25)
whose absolute value is bounded by 1 and for each pair x, y there is one unique z such
that |g1(x, y, z)| = 1, namely z = x2−y2−1

2 , and

h1(x, y, z) = 2
π5/4

(y − z)1/4(1 + x+ z)1/4

(x− y + 1)1/2(y − x+ 1)1/2(x+ y + 1)(x− z − 1)1/4(y + z)1/4 .

(D.26)
Hence, for each `1, `2 there is only onem1,m2 for which the coefficient is not exponentially
suppressed, and for that choice (D.24) is of order `−7/4.

On the other hand if we assume (`1 − `) ∼ `2 ∼ 1 (the case `2 ∼ `, `1 ∼ 1 will of course
give similar result)

C`,`1,`2`,−`−m2,m2√
ω`ω`1ω`2

`1∼`
`→∞−→ (−1)`h2(`1 − `, `2,m2) `

`−`1+m2
2

(
`−1 +O(`−2)

)
, (D.27)

with

h2(x, y, z) = (−1)
x+y−2z

2 2
x−2y+z−1

2 (y − x)!
√

(y − z)!
√
π
(
x+y

2

)
!
(
y−x

2

)
!
√

(y + z)!(−x− z)!
. (D.28)

Hence (D.27) is least suppressed in case m2 = `1 − ` which is its maximum allowed value
since |m1| = | − `−m2| ≤ `1, and in that case (D.27) is of order `−1.
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