
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Bridging the gap between model-driven and data-
driven methods in the era of Big Data

Gael LEDERREY

Thèse n° 9112

2022

Présentée le 4 novembre 2022

Prof. A. Vassilopoulos, président du jury
Prof. M. Bierlaire, Dr T. M. Hillel, directeurs de thèse
Prof. B. Farooq, rapporteur
Prof. F. Rodrigues, rapporteur
Prof. A. Alahi, rapporteur

Faculté de l’environnement naturel, architectural et construit
Laboratoire transport et mobilité
Programme doctoral en génie civil et environnement

Acknowledgements

The PhD is often seen as the ultimate goal in a student’s career. Indeed, there are no additional

degrees after the PhD (except a second one, maybe). However, students have many different

views about it:

• Some do not even consider it and are waiting to start a career in the industry.

• Some see it as an exciting opportunity to continue to live as a student (while being paid).

• Some consider it a mandatory step in a fulfilling academic career.

During all my studies, I belonged to the first category. I remember saying many times to my

friend, “I will never do a PhD”. However, here I am, a few years later, writing the acknowledg-

ments for my PhD thesis. So, before thanking the many people who deserve it, I would like to

share a little bit of my story:

“The story of a Master’s student who never considered becoming

a PhD student and happens to write these words today.”

Everything leading to this day started many years ago, during my Master’s studies. Indeed, I

had to undertake multiple projects during my studies. I always thought of these projects as

the best way to learn about specific topics, and I always enjoy them a lot. However, I often

received the same comment from the people supervising me: “You should trust your work

more” or “You should learn how to work alone”. I knew this was my weakness. And it was

the first time I thought to myself that a PhD could help me. Indeed, I knew I would have to

overcome this issue to succeed in a PhD. However, I was still not interested in doing research.

To be honest, I did not know what “research” means.

Then came the time to undertake the Master’s thesis. Following an incredible course on Data

Science (Thanks, Michele!), I had the pleasure of meeting Prof. Bob West, who recently became

a professor at EPFL. He trusted me to become a student in his lab and gave me a fascinating

project: studying two datasets about beer reviews (yes, you read that right!). This project

taught me that academic research could be exciting and fun. I was convinced! The PhD will

teach me how to work alone while being stimulating! Thus, I applied for a PhD with Bob.

However, I was not accepted by the Computer Science school. Usually, it’s at that moment

that we give up. Yet, here I am today. Indeed, in life, there are always moments or people who

shape your path. In my case, it was when Prof. Michel Bierlaire offered me a PhD position

i

Acknowledgements

after this failure. Indeed, none of this would have been possible without Michel. I owe him

many thanks for giving me this opportunity.

My journey as a PhD student was a roller coaster of emotions and motivation. It is well-known

that PhD studies are tough on mental health. But I never thought it would be such an ordeal.

Fortunately, I had a lot of support in these last five years, and I would have never been able to

write these words without the help of some incredible people! The first year of my PhD was

challenging but thrilling. I went to my first conference with Bob (I even wrote a blog post about

it: http://go.epfl.ch/WWW2018). I spent a lot of time supervising students and preparing

courses with Virginie (now Prof. Lurkin). All the while, Nicholas (now Dr. Molyneaux), best

friend and officemate then, was always listening to me complain and giving me advice (that I

still follow nowadays). The mix of research, student supervision, and course organization were

thrilling. But I would have never survived this time without these two! Sadly, not everything is

sunshine and rainbows. After the first year, the “highway to hell” started.

The well-known unbounded motivation hole called the second and third years of PhD (look it

up on Internet, it is true) became my curse. Indeed, these two years were the most difficult in

terms of motivation (Github can prove it!) and mental health. And it ended (and ended me)

with the quarantine during the Covid-19 outbreak. A mix of issues in my personal life and in

my work put a complete stop to my progress. Yet, it’s at that moment that it also became a

blessing. Indeed, I got the help and support that I needed from marvelous people:

• Dr. Charpentier, my psychiatrist, made me realize many things about myself and was

able to help me despite the urgency of the situation.

• Marion, my roommate, with whom I shared everything about my feelings and was

always here to support me.

• Jacques and Sandrine, my parents, never gave up on me despite all the troubles I gave

them and always gave me the best possible advice!

• Marija, my girlfriend (and temporary officemate), was always by my side, especially

in the worst moments, and always encouraged me to take the best option for my well-

being.

Without these people, I would have never been able to push through this nightmare called

burnout. It was also at that moment that I started to learn to trust my work and myself. That

was when I could fully enjoy the personal experience that is the PhD. So, while writing these

words, I can finally say that this path was worth it! I grew and learned a lot about myself. And

it would have never been possible if it wasn’t for the people cited above.

There are many more people that I need to thank. And I might forget some names. So,

please, forgive me. However, I cannot forget my supervisors who contributed to my success:

Prof. Michel Bierlaire and Dr. Tim Hillel. First, I would like to thank Michel for offering me

this position and believing in me during the more difficult times. I enjoyed the insightful

discussions we had over the years, and the multiple beers shared at conferences. Then, I’d like

to thank Tim, who became my supervisor while I was already struggling for my PhD. I know

ii

http://go.epfl.ch/WWW2018

Acknowledgements

I haven’t been the perfect student, and I’m sorry for the harsh emails I (may have) sent. But

your resilience, the advice you gave me, the long personal and professional discussions we

had, and the beers and laughs shared all contributed significantly to this success. Besides my

supervisors, I would like to thank the jury members who provided priceless feedback:

• Prof. Bilal Farooq and Prof. Filipe Rodrigues, the external jury members, with whom

I shared a fascinating discussion during my private defense. They also gave insightful

comments to improve my manuscript.

• Prof. Alexandre Alahi always liked to challenge me during all these years, often on the

same subject, and with whom I shared some fantastic moments at conferences.

• Prof. Anastasios Vassilopoulos presided over the jury and made this stressing process

much more bearable.

I would also like to thank all the previous and current members of the TRANSP-OR lab that I

have met:

• The previous generation, aka the golden age of the lob. I want to especially thank Flurin,

a great supervisor (and an inspiration to me).

• My generation with whom I spent most of my PhD years. I must admit it: Nicholas, you

were the best officemate ever, even though we never agreed on the temperature in the

office!

• The new generation of the lab. I’m sure you will take good care of the lab.

I also met many people during my studies, PhD, and life:

• The friends from High School, especially François and Nicholas! They have endured my

craziness (and sometimes stupidities) for more than 15 years!

• The trio of students I helped during my third year of High School, specifically Kevin,

who’s always been an inspiration to me!

• The Physicists I met during my Bachelor’s. I will never forget the “TP” and the crazy

nights we had!

• The Mathematicians and CQFD. I don’t think I would have enjoyed my Master’s as much

as I did without you!

• The friends with whom I drank way too much at Sat, Zelig, and No Name.

• The friends from Nez Rouge with whom I spent many cold nights in December playing

cards!

• The friends/colleagues from dlab, LUTS, and VITA with whom I shared many discussions

about life and work (and also many beers).

iii

Acknowledgements

• The many students who trusted me to be their advisor.

• All the current and previous members of PolyDoc, and the ones who attended all our

aperos. Annie, Margaux, Nick, Lucas, and Yujin, you helped me a lot during the more

difficult times, and I will be forever grateful to you!

• My Serbian crew that is kind of a second family to me.

• My smoking buddies, especially Claudia and Yazan! (We can share a lot with a small

cigarette break!)

• My previous and current roommates who had to deal with my ever-changing mood.

• All the virtual friends I made while spending my time on Internet, Discord, and playing

games.

• The team at SWISS-SDI who believes in me for the next chapter of my life.

• And all the other friends I met during my life! (Yes, it’s an easy way to make sure

everybody has been thanked.)

Of course, I will be forever grateful to my parents, Jacques and Sandrine, who pushed me

in the right direction when I was taking the wrong path. I wasn’t always the easiest child or

teenager, but they always coped with my eccentricity and helped me achieve my goals. And

I will always admire my brother Yann. We have very different characters (I sometimes envy

him), and I know I wasn’t always the best big brother. But I’ve always been incredibly proud of

his achievement! Finally, last but not least, I would like to thank Marija, my amazing girlfriend.

These past two years have been life-saving with you by my side. I can only hope it will continue

like this for a very long time (and I’m sure it will). Volim Te!

To conclude these lengthy acknowledgments (sorry about that), I would like to give final advice

to whoever dared to stick with me until now: “Take care of your mental health!” We should

only care about this. Money, fame, ambition, etc., come and go. We have only one life, and it

is too precious to let it go to waste. So, go and seek help if you need it. But never let yourself

wither out!

Cheseaux-sur-Lausanne, October 15, 2022 Gael Lederrey

iv

Abstract

Data-driven and model-driven methodologies can be regarded as competitive fields since

they tackle similar problems such as prediction. However, these two fields can learn from each

other to improve themselves. Indeed, data-driven methodologies have been developed to use

advanced methodologies based on Big Data technologies. On the other hand, model-driven

methodologies concentrate on developing mathematical models based on theory and expert

knowledge to allow for interpretability and control. Through three main contributions, this

thesis aims to bridge the gap between these two fields by using their strengths and applying

them to its counterpart.

Discrete Choice Models (DCMs) have shown tremendous success in many fields, such as

transportation. However, they have not evolved to tackle the growing amount of available data.

On the other hand, Machine Learning (ML) researchers have developed optimization algo-

rithms to efficiently estimate complex models on large datasets. Similarly, faster estimation

of DCMs on larger datasets would improve the efficiency of modelers as well as enable new

research axes. Thus, we take inspiration from the large body of existing research in efficient

parameter estimation with extensive data and large numbers of parameters in deep learning

and apply it to DCMs. The first chapter of this thesis introduces the HAMABS algorithm,

which combines three fundamental principles to enable faster parameter estimation of DCMs

(20x speedup compared to standard estimation) without compromising the precision of the

parameter estimates.

Collecting large amounts of data can be cumbersome and costly, even in the era of Big Data.

For example, ML researchers in Computer Vision have been developing generative deep learn-

ing models to augment datasets. DCM researchers face similar issues with tabular data, e.g.

travel surveys. In addition, if the collection process is not performed correctly, these datasets

can contain bias, lack consistency, or be unrepresentative of the actual population. The sec-

ond chapter of this thesis introduces the DATGAN, a Generative Adversarial Network (GAN)

integrating expert knowledge to control the generation process. This new architecture allows

modelers to generate controlled and representative synthetic data, outperforming similar

state-of-the-art generative models.

Finally, researchers are increasingly developing fully disaggregate agent-based simulation

v

Abstract

models, which use detailed synthetic populations to generate aggregate passenger flows. How-

ever, detailed disaggregate socioeconomic data is usually expensive to collect and heavily

restricted in terms of access and usage. As such, synthetic populations are typically either

drawn randomly from aggregate level control totals, limiting their quality, or tightly controlled,

limiting their application and usefulness. To combat this, the third chapter extends the DAT-

GAN methodology to generate highly detailed and consistent synthetic populations from

small sample data. First, ciDATGAN learns to generate the variables in a low-sample highly

detailed dataset, e.g. household travel survey. It then completes a high-sample dataset with

few variables, e.g. microdata census, by generating the previously learned variables. The re-

sults show that this methodology can correct for bias and may enable the transfer of synthetic

populations to new areas/contexts.

Keywords Discrete Choice Model, Stochastic Optimization, Deep Learning, Expert Knowl-

edge, Generative Adversarial Network, Synthetic Tabular Data, Synthetic Population

vi

Résumé

Les méthodologies axées sur les données et celles axées sur les modèles peuvent être considé-

rées comme des domaines concurrentiels puisqu’elles s’attaquent à des problèmes similaires

tels que la prédiction. Cependant, ces deux domaines peuvent apprendre l’un de l’autre pour

s’améliorer. En effet, les méthodologies orientées données ont été développées pour utiliser

des méthodologies avancées basées sur les technologies Big Data. D’autre part, celles guidées

par les modèles se concentrent sur le développement de modèles mathématiques basés sur

la théorie et les connaissances des experts pour permettre l’interprétabilité et le contrôle.

À travers trois contributions principales, cette thèse vise à combler le fossé entre ces deux

domaines en utilisant leurs forces et en les appliquant à son homologue.

Les Modèles de Choix Discrets (MCD) ont connu un succès considérable dans de nombreux

domaines, tels que le transport. Cependant, ils n’ont pas évolué pour faire face à la quantité

croissante de données disponibles. D’autre part, les chercheurs en apprentissage automa-

tique ont développé des algorithmes d’optimisation pour estimer efficacement des modèles

complexes sur de grands ensembles de données. De même, une estimation plus rapide des

MCD sur de plus grands ensembles de données améliorerait l’efficacité des modélisateurs et

permettrait de nouveaux axes de recherche. Ainsi, nous nous inspirons du grand nombre de

recherches existantes sur l’estimation efficace des modèles complexes d’apprentissage pro-

fond utilisant de large jeux de données et nous les appliquons aux MCD. Le premier chapitre

de cette thèse présente l’algorithme HAMABS, qui combine trois principes fondamentaux

pour permettre une estimation plus rapide des paramètres des MCD (20x plus rapide que

l’estimation standard) sans compromettre la précision des paramètres.

La collecte de grandes quantités de données peut être fastidieuse et coûteuse, même à l’ère du

Big Data. Par exemple, les chercheurs en vision par ordinateur ont développé des modèles

d’apprentissage profond génératifs pour augmenter les ensembles de données. Les chercheurs

en MCD sont confrontés à des problèmes similaires avec les données tabulaires, par exemple

les enquêtes sur les voyages. En outre, si le processus de collecte n’est pas effectué correcte-

ment, ces ensembles de données peuvent contenir des biais, manquer de cohérence ou ne

pas être représentatifs de la population réelle. Le deuxième chapitre de cette thèse présente

le DATGAN, un réseau adversarial génératif (GAN) intégrant de l’expertise humaine pour

contrôler le processus de génération. Cette nouvelle architecture permet aux modélisateurs

vii

Résumé

de générer des données synthétiques contrôlées et représentatives, surpassant les modèles

génératifs de l’état de l’art.

Enfin, les chercheurs développent de plus en plus de modèles de simulation entièrement

désagrégés, à base d’agents, qui utilisent des populations synthétiques détaillées pour générer

des flux de passagers agrégés. Cependant, les données socio-économiques détaillées et désa-

grégées sont généralement coûteuses à collecter et fortement limitées en termes d’accès et

d’utilisation. En conséquence, les populations synthétiques sont, généralement, soit tirées au

hasard à partir de totaux de contrôle de niveau agrégé, ce qui en limite la qualité, soit étroite-

ment contrôlées, ce qui en limite l’application et l’utilité. Pour lutter contre ce problème, le

troisième chapitre étend la méthodologie DATGAN pour générer des populations synthétiques

détaillées et cohérentes à partir de petits échantillons de données. Tout d’abord, ciDATGAN

apprend à générer les variables d’un ensemble de données très détaillées à faible échantillon,

par exemple une enquête sur les déplacements des ménages. Il complète ensuite un ensemble

de données à fort échantillonnage avec peu de variables, par exemple des microdonnées de

recensement, en générant les variables apprises précédemment. Les résultats montrent que

cette méthodologie permet de corriger les biais et peut permettre le transfert de populations

synthétiques à de nouvelles zones/contextes.

Mots-clef Modèle de Choix Discrets, Optimisation Stochastique, Apprentissage Profond,

Expertise Humaine, Réseau Adversarial Génératif, Données Tabulaires Synthétiques, Popula-

tion Synthétique

viii

Contents
Acknowledgements i

Abstract (English/Français) v

Contents ix

List of Figures xiii

List of Tables xv

Acronyms xvii

1 Introduction 1

1.1 Context and motivation . 1

1.2 Summary of contributions . 3

1.3 Outline . 5

2 Efficient estimation of complex choice models on large datasets 7

2.1 Introduction . 7

2.2 Literature review . 9

2.2.1 Overview of existing studies . 10

2.2.2 Gaps in knowledge and contributions . 13

2.3 Methodology . 15

2.3.1 Line search methods . 15

2.3.2 Trust-region methods . 16

2.3.3 Hybrid stochastic algorithms with adaptive batch size 17

2.3.4 Summary of algorithms . 21

2.4 Results . 22

2.4.1 Experimental design . 22

2.4.2 Implementation details . 23

2.4.3 Performance analysis . 24

2.4.4 Comparison with Biogeme . 29

2.4.5 Sensitivity analysis . 32

2.5 Summary . 42

ix

Contents

3 Generating synthetic data from deep learning with expert knowledge 45

3.1 Introduction . 45

3.2 Literature review . 47

3.2.1 Existing approaches for synthetic tabular data generation 47

3.2.2 Research axes . 51

3.2.3 State-of-the-art models . 54

3.2.4 Model evaluation . 56

3.2.5 Opportunities and limitations . 57

3.3 Methodology . 58

3.3.1 Generator . 60

3.3.2 Discriminator . 68

3.3.3 Loss function . 69

3.3.4 Data processing . 71

3.3.5 Result assessments . 78

3.3.6 Implementation notes . 81

3.4 Case studies . 82

3.4.1 Datasets . 82

3.4.2 Training process . 83

3.5 Results . 83

3.5.1 Comparison of DATGAN versions . 84

3.5.2 Comparison with state-of-the-art models 86

3.5.3 Sensitivity analysis of the DAG . 88

3.6 Summary . 92

4 Generation of detailed synthetic populations using deep learning 95

4.1 Introduction . 95

4.2 Literature review . 96

4.2.1 Conditional GANs . 96

4.2.2 Image completion GANs . 97

4.2.3 Tabular GANs . 97

4.3 Methodology . 98

4.3.1 ciDATGAN . 99

4.4 Results . 103

4.4.1 ciDATGAN vs DATGAN . 103

4.4.2 Population synthesis . 106

4.5 Summary . 113

5 Conclusion 115

5.1 Main findings . 115

5.2 Future research directions . 117

5.3 Final remarks . 119

x

Contents

Appendix 121

A Table of notations (Chapters 2) . 121

B Table of notations (Chapters 3 and 4) . 123

C Case studies (Chapter 3) . 130

C.1 CMAP . 130

C.2 LPMC . 132

C.3 ADULT . 134

D Case studies (Chapter 4) . 135

D.1 LPMC . 135

D.2 LTDS . 137

E Table of results (Chapter 2) . 138

E.1 Estimation time . 138

E.2 Number of epochs . 140

F Table of results (Chapter 3) . 143

F.1 Comparison of DATGAN versions . 143

F.2 Comparison with state-of-the-art models 165

F.3 Sensitivity anaylsis of the DAG . 171

Bibliography 177

Curriculum Vitae 191

xi

List of Figures
1.1 Innovation matrix defined by Satell (2017). 1

2.1 Performance profiles on the execution time for all the models and algorithms. . 26

2.2 Performance profiles on the execution time splitted by type of algorithm. 28

2.3 Performance profiles on the epochs for all the models and algorithms. 29

2.4 Performance profiles on the epochs splitted by type of algorithm. 30

2.5 Sensitivity analysis for the parameter W . 34

2.6 Sensitivity analysis for the parameter ∆. 35

2.7 Sensitivity analysis for the parameter C . 36

2.8 Sensitivity analysis for the parameter τ. 38

2.9 Sensitivity analysis for the parameter ∆H . 39

2.10 Sensitivity analysis for the parameter ε. 40

2.11 Sensitivity analysis for the parameter N ′
init. 41

3.1 Representation of the standard GAN structure. 50

3.2 Global schematic representation of DATGAN. 59

3.3 Example of tabular data structure. 61

3.4 Main components of a LSTM cell. 64

3.5 Representation of the LSTM cells used in DATGAN. 66

3.6 Age distributions for different DAGs. 91

4.1 Representation of dataset completion in tabular data. 99

4.2 Schema of the training process of ciDATGAN. 100

4.3 Schematic representation of the variables in the generator. 102

4.4 Schema of the sampling process of ciDATGAN. 102

4.5 Statistical assessment between DATGAN and ciDATGAN. 104

4.6 ML efficacy assessment between DATGAN and ciDATGAN. 105

4.7 Statistical assessment between DATGAN and ciDATGAN on biased data. 105

4.8 ML efficacy assessment between DATGAN and ciDATGAN on biased data. . . . 106

4.9 Comparison of aggregated synthetic data against nomis data. 108

4.10 Distributions of the individuals’ ethnicity for each borough. 109

4.11 Distributions of the number of cars/vans per household for each borough. . . . 109

4.12 Comparison of aggregated synthetic data against nomis data on biased data. . 110

4.13 Pearson’s correlation matrix of the LTDS dataset. 111

xiii

List of Figures

4.14 Distributions of the number of individuals per household for each borough. . . 112

C.1 DAG for the CMAP dataset used in Chapter 3. 131

C.2 DAG of the LPMC dataset used in Chapter 3. 132

C.3 DAG of the ADULT dataset used in Chapter 3. 134

D.1 DAG of the LPMC dataset used in Chapter 4. 136

D.2 DAG of the LTDS dataset used in Chapter 4. 137

xiv

List of Tables
2.2 Stochastic optimization algorithms included in the literature review 10

2.3 Overview of all algorithms used for the optimization of DCMs. 22

2.4 Summary of the models used for the performance analysis. 24

2.5 Comparison of the optimization time between HAMABS and Biogeme. 31

2.6 Comparison of the epochs between HAMABS and Biogeme. 32

2.7 Parameter values of the HAMABS algorithm used for the sensitivity analysis. . . . 33

3.1 Synthetic tabular data generation methodologies 48

3.2 State-of-the-art generative models to compare against DATGAN. 54

3.3 Summary of all the DATGAN versions. 77

3.4 Summary of the datasets used in the case studies. 82

3.5 Average rankings for the best DATGAN models on CMAP. 84

3.6 Average rankings for the best DATGAN models on LPMC. 85

3.7 Average rankings for the best DATGAN models on LPMC_half. 86

3.8 Average rankings of the state-of-the-art models against DATGAN. 87

3.9 Average rankings of the DAGs on CMAP. 89

3.10 Average rankings of the DAGs on LPMC. 90

3.11 Average rankings of the DAGs on LPMC_half. 90

A.1 Notations used in the methodology of Chapter 2. 121

B.1 Notations used in the methodology of Chapters 3 and 4. 123

C.1 Details of the variables in the CMAP dataset used in Chapter 3. 131

C.2 Details of the variables in the LPMC dataset used in Chapter 3. 133

C.3 Details of the variables in the ADULT dataset used in Chapter 3. 135

D.1 Details of the variables in the LPMC dataset used in Chapter 4. 136

D.2 Details of the variables in the LTDS dataset used in Chapter 4. 138

E.1 Time in seconds used for the estimation of the models LPMC_DC. 138

E.2 Time in seconds used for the estimation of the models LPMC_RR. 139

E.3 Time in seconds used for the estimation of the models LPMC_Full and MTMC. . 140

E.4 Number of epochs used for the estimation of the models LPMC_DC. 141

E.5 Number of epochs used for the estimation of the models LPMC_RR. 141

E.6 Number of epochs used for the estimation of the models LPMC_Full and MTMC. 142

F.1 Statistics on the first aggregation level (all columns) for CMAP. 143

xv

List of Tables

F.2 Statistics on the first aggregation level (continuous) for CMAP. 144

F.3 Statistics on the first aggregation level (categorical) for CMAP. 146

F.4 Statistics on the second aggregation level for CMAP. 147

F.5 Statistics on the third aggregation level for CMAP. 148

F.6 ML efficacy for CMAP. 149

F.7 Statistics on the first aggregation level (all columns) for LPMC. 150

F.8 Statistics on the first aggregation level (continuous) for LPMC. 151

F.9 Statistics on the first aggregation level (categorical) for LPMC. 153

F.10 Statistics on the second aggregation level for LPMC. 154

F.11 Statistics on the third aggregation level for LPMC. 155

F.12 ML efficacy for LPMC. 156

F.13 Statistics on the first aggregation level (all columns) for LPMC_half. 157

F.14 Statistics on the first aggregation level (continuous) for LPMC_half. 159

F.15 Statistics on the first aggregation level (categorical) for LPMC_half. 160

F.16 Statistics on the second aggregation level for LPMC_half. 161

F.17 Statistics on the third aggregation level for LPMC_half. 162

F.18 ML efficacy for LPMC_half. 164

F.19 Statistical assessments between DATGAN and state-of-the-art models for CMAP. 165

F.20 ML efficacy between DATGAN and state-of-the-art models for CMAP. 166

F.21 Statistical assessments between DATGAN and state-of-the-art models for LPMC. 166

F.22 ML efficacy between DATGAN and state-of-the-art models for LPMC. 167

F.23 Statistical results between DATGAN and state-of-the-art models for LPMC_half. 168

F.24 ML efficacy between DATGAN and state-of-the-art models for LPMC_half. . . . 169

F.25 Statistical assessments between DATGAN and state-of-the-art models for ADULT. 169

F.26 ML efficacy between DATGAN and state-of-the-art models for ADULT. 170

F.27 Statistical assessments of the DAGs for CMAP. 171

F.28 ML efficacy of the DAGs for CMAP. 172

F.29 Statistical assessments of the DAGs for LPMC. 172

F.30 ML efficacy of the DAGs for LPMC. 173

F.31 Statistical assessments of the DAGs for LPMC_half. 174

F.32 ML efficacy of the DAGs for LPMC_half. 175

xvi

Acronyms

AMABS Adaptive Moving Average Batch Size.

AUS Assisted Utility Specification.

BFGS Broyden-Fletcher-Goldfarb-Shanno.

ciDATGAN conditional inputs DATGAN.

CMAP Chicago Metropolitan Agency for Planning.

CNN Convolutional Neural Network.

CTAB-GAN Conditional TABular GAN.

CTGAN Conditional Tabular GAN.

DAG Directed Acyclic Graph.

DATGAN Directed Acyclic Tabular GAN.

DCM Discrete Choice Model.

ELBO Evidence Lower-BOund.

ERGM Exponential Random Graph Model.

FCNN Fully Connected Neural Network.

FFNN Feed-Forward Neural Network.

GAN Generative Adversarial Network.

GDPR General Data Protection Regulation.

GNN Graph Neural Network.

HAMABS Hybrid Adaptive Moving Average Batch Size.

IPF Iterative Proportional Fitting.

JS Jensen-Shannon.

xvii

Acronyms

KL Kullback-Leibler.

LPMC London Passenger Mode Choice.

LSTM Long Short-Term Memory.

LTDS London Travel Diary Survey.

MAE Mean Absolute Error.

MCMC Markov Chain Monte Carlo.

MEV Multivariate Extreme Value.

ML Machine Learning.

MTMC Mobility and Transport MicroCensus.

RMSE Root Mean Squared Error.

SGD Stochastic Gradient Descent.

SNM Stochastic Newton Method.

SRMSE Standardized Root Mean Squared Error.

STR Stochastic Trust-Region.

TGAN Tabular GAN.

TVAE Tabular VAE.

VAE Variational AutoEncoder.

VGM Variational Gaussian Mixture.

VNS Variable Neighborhood Search.

VoT Value of Time.

WGAN Wasserstein GAN.

WMA Window Moving Average.

xviii

1 Introduction

1.1 Context and motivation

Innovation is often regarded as a concept defined on a single axis between scientists revolu-

tionalizing the world with new theories and business professionals delivering new tools or

business models to existing markets. However, Satell (2017) instead defines innovation on a

2D scale depending on the domain definition and the problem definition.

Basic
Research

Disruptive
Innovation

Breakthrough
Innovation

Sustaining
Innovation

not well defined well defined

n
o

tw
el

ld
efi

n
ed

w
el

ld
efi

n
ed

Domain Definition

P
ro

b
le

m
D

efi
n

it
io

n

Figure 1.1: Innovation matrix defined by Satell (2017).

He proposes to classify innovation into four quadrants. Sustaining innovations are linked to

business-related innovations since low risks are involved. The opposite of sustaining innova-

tions is basic research. This type of innovation is about developing new technologies for future

applications, generally linked to academic researchers. However, the most exciting innovations

generally occur either when new technologies are applied to existing applications (disrup-

tive innovations) or when existing technologies are applied to new markets (breakthrough

1

Chapter 1. Introduction

innovations). This thesis aims to achieve both by bridging the gap between data-driven and

model-driven approaches. The main difference, in academia, compared to the analysis of

Satell (2017) is that researchers are not necessarily aiming to bring these innovations to new

markets. Instead, the goal is to provide researchers with new tools to expand research in

existing or new domains.

Model-driven methodologies use theory and expert knowledge to build a tailored mathemati-

cal model to understand a certain phenomenon. Discrete Choice Models (DCMs) (Ben-Akiva

and Lerman, 1985) are a prime example of model-driven methodologies. The goal of such

models is to understand the choice of individuals amongst a finite set of alternatives. These

probabilistic models have two main use-cases: understanding the choice of individuals and

forecasting future choices. On the other hand, data-driven methodologies, including Ma-

chine Learning (ML) and related fields, use general purpose models fed with specific data

for the application. The common rule about ML is: more data leads to better results, as long

as the quality remains the same. Since data plays a preponderant role in this field, expert

knowledge is not necessarily required. However, this lack of knowledge about the data or the

application can lead to severe limitations, e.g. overfitting or loss of predictive power. Thus, the

combination of domain knowledge with ML methodologies, such as physics-informed ML,

has become a popular research topic to overcome these limitations. Similarly, this thesis aims

at combining ML methodologies and modeling techniques to overcome these limitations.

The gap between these two fields can be bridged in two directions. The first direction is to use

the extensive data knowledge of ML methods and apply it to choice modeling. For example,

DCMs are estimated using standard optimization algorithms, thus, limiting the usage of large

datasets since these algorithms are not suited for large models with extensive datasets. On

the other hand, in ML, researchers have developed efficient stochastic algorithms to train

deep neural networks containing millions of parameters on enormous datasets. Faster DCMs

estimation would make the modeling process faster and create new research axes. For example,

DCMs require the modeler to define the utility specification for their model. This process

can be cumbersome and repetitive since there are constraints on the variables that need to

be fulfilled. Researchers build many models iteratively and estimate them before choosing

the most suitable one. Therefore, if researchers can estimate the DCMs more efficiently, they

could use external techniques to help them build the model. Ortelli et al. (2021) developed an

assisted specification framework for DCMs using optimization techniques. This methodology

showed encouraging results. However, more advanced data-driven methodologies could

improve assisted specification. While this research axis is out of the scope of this thesis, it

shows that applying data-driven methodologies to choice modeling can lead to exciting new

research directions.

The second direction uses expert knowledge from modeling practices and integrates it into

data-driven methodologies. Indeed, ML algorithms are specialized in the use of data. However,

they generally lack interpretability and control. For example, complex ML models, such as

deep neural networks, are considered “black-box” models with some inputs and outputs. ML

2

1.2 Summary of contributions

users are working on providing the best possible data to the model through data wrangling

and feature engineering. However, ultimately, only the final output matters and little control

is used during the training process. Thus, adding expert knowledge to ML models, as it is

done in choice modeling, could add more control over these models and make them more

interpretable. Furthermore, the control brought by expert knowledge with the processing

power of data-driven methodologies could lead to significant improvements depending on the

application. For example, in the case of synthetic population generation, both data processing

and control are required. Indeed, individuals are characterized by many attributes. Thus,

a model capable of handling such complexity in the data is required. On the other hand,

control over the model allows the modeler to test multiple hypotheses by generating multiple

synthetic populations.

1.2 Summary of contributions

This thesis aims to bring new algorithm frameworks for modelers so they can use the new

technologies that arose during this Big Data era. Thus, the contributions proposed in this

thesis have been defined around this idea while using knowledge from model-driven and

data-driven methodologies. The first contribution is about the estimation of choice models.

1. Efficient estimation of complex choice models on large datasets (Chapter 2): As stated

in the previous section, choice models software are currently using standard non-linear

optimization methods to estimate the models. It significantly limits the models’ size

and the datasets that can be used. In this era of Big Data, data is ever more available.

Thus, this bottleneck prevents modelers from taking advantage of this era fully. On the

other hand, ML researchers have been developing very efficient stochastic optimization

algorithms to tackle this issue with even more complex models such as deep neural

networks. Therefore, this contribution is inspired by the latter while ensuring that

the choice model’s constraints are met. Indeed, contrary to ML models, DCMs require

absolute precision on the parameters since they are used to analyze individuals’ behavior.

Therefore, this thesis presents the Hybrid Adaptive Moving Average Batch Size (HAMABS)

optimization algorithm combining three distinct principles: (i) the use of second-order

stochastic methods, (ii) the adjustment of the batch size when the algorithm is stalling,

and (iii) the hybridization between algorithms. This new method enables much faster

parameter estimation without compromising the precision of the parameter estimates.

It thus allows researchers to train many more models in the same amount of time

compared to the standard methodologies. Projects such as Assisted Utility Specification

(AUS) (Ortelli et al., 2021) considerably benefit from such improvements.

This first contribution allows modelers to estimate DCMs on large datasets in a significantly

shorter time, allowing them to use much larger datasets for their model. Indeed, the collection

of datasets has been more accessible in recent years thanks to the technologies developed

3

Chapter 1. Introduction

during this Big Data era. However, this does not apply to every type of dataset. For example,

household travel surveys are collected by contacting the desired population. It is a long, cum-

bersome and costly process. Thus, synthetic data can augment existing surveys and faciliate

the acquisition of more data. The second contribution focuses on providing easily accessible

and sharable data for modelers using data-driven technologies and expert knowledge.

2. Generating synthetic data from deep learning with expert knowledge (Chapter 3):

This chapter focuses on developing a new generative model based on data-driven

methodologies tailored for modelers. Indeed, deep learning models, such as Generative

Adversarial Networks (GANs), have shown impressive results when generating synthetic

data. However, there are two main issues with these ML models: (i) users do not have

any control on the generation process; (ii) models are generic, i.e. they are independent

of the data and the application. Users only have to feed an original dataset to the

model, train it, and obtain generated synthetic data. This contribution integrates expert

knowledge by modeling the causal links between the variables in the original dataset

in deep learning generative models. It allows modelers to use their data knowledge to

generate more representative synthetic data. In addition, modelers want to test multiple

hypotheses on given data. Therefore, controlling the generation process provides cheap

and easily accessible alternatives to the original dataset. The Directed Acyclic Tabular

GAN (DATGAN), presented in this chapter, generates more representative synthetic data

compared to state-of-the-art generative models found in the literature. In addition, the

expert knowledge added to this model allows users to generate hypothetical datasets

that cannot be collected.

In addition to being less expensive, synthetic data have many other use cases, such as bias cor-

rection or privacy preservation. Indeed, microdata, such as population census, are challenging

to obtain due to privacy issues restricted by the General Data Protection Regulation (GDPR).

Thus, synthetic populations are used instead of the original data. For example, agent-based

simulation makes extensive use of synthetic population. However, these populations are

typically either drawn randomly from aggregate level control totals, limiting their quality,

or tightly controlled, limiting their application and usefulness. Thus, the third contribution

provides an accessible and efficient framework for generating synthetic populations.

3. Generation of detailed synthetic populations using deep learning (Chapter 4): The first

step for generating a synthetic population is to ensure that the generated population

is representative of the current population it is reproducing. Thus, a generative model

tailored for generating representative synthetic data will perform well. DATGAN is the

perfect initial step for this contribution. However, generating a synthetic population

requires precise control over the data. For example, one might want to correct the age

bias if the original census was not collected appropriately. Therefore, the conditional in-

puts DATGAN (ciDATGAN) integrates the use of microdata during the sampling process.

4

1.3 Outline

The idea is to train ciDATGAN on a highly detailed low-sample dataset, such as a travel

survey. Then, the user provides a low detailed high-sample dataset during the sampling

phase to control the aggregate totals. This new model uses data-driven methodologies

while providing much control to the user. Indeed, the second dataset can correct the

bias in the first dataset or generate specific populations that do not exist. In addition,

the time efficiency of this model means that modelers can create multiple hypothetical

and highly tailored synthetic populations to test different scenarios in their research.

In combination, the three contributions raise the capabilities of existing methodologies to

gain insights from large datasets and lower the barriers of entry for highly detailed modeling

in data and computing resources. In turn, this opens up several exciting avenues for future

applications and investigations of both data-driven and model-driven approaches.

In addition, the implementation details for each of the three main methodological contri-

butions are either already openly available on Github and Pipy, or will be made available on

publication of the associated paper.

1.3 Outline

The structure of this thesis is described in the following paragraphs and aims to emphasize the

contributions presented above. The core of this thesis is composed of three chapters, followed

by the concluding chapter.

Chapter 2 discusses the estimation of DCMs using standard deterministic optimization meth-

ods and new methods inspired by the optimization of ML. First, we look at the gaps in the

literature for the optimization of DCMs. Then, we introduce the concepts of adaptive batch

size and hybridization and test them against more conventional methods. A total of fifteen

different optimization methods are tested against each other on ten different models with a

different number of parameters and observations. Finally, the best algorithm is tested against

the current method used in a state-of-the-art DCM estimation package.

This chapter is based upon the following publication:

Lederrey, Gael, Lurkin, Virginie, Hillel, Tim and Bierlaire, Michel. Estimation

of discrete choice models with hybrid stochastic adaptive batch size algorithms.

Journal of Choice Modelling, 38:100226, March 2021. ISSN 1755-5345. doi 10.1016/

j.jocm.2020.100226. https://www.sciencedirect.com/science/article/pii/S17555

34520300257.

Chapter 3 presents a new GAN architecture for generating synthetic tabular data. The DATGAN

integrates expert knowledge via a Directed Acyclic Graph (DAG) that represents the causal

links between the variables in the training dataset. Each node in the DAG is associated with

5

https://www.sciencedirect.com/science/article/pii/S1755534520300257
https://www.sciencedirect.com/science/article/pii/S1755534520300257

Chapter 1. Introduction

a Long Short-Term Memory (LSTM) cell that retains information from the previous cells in

the graph. We test this new model against multiple state-of-the-art generative models for

generating synthetic tabular data on both statistical and ML efficacy metrics. Results show

that DATGAN outperforms all these models on both metrics, allowing for more flexibility when

generating synthetic data.

This chapter is based upon the following preprint that has been submitted to the Journal of

Transportation Research Part C: Emerging Technologies:

Lederrey, Gael, Hillel, Tim and Bierlaire, Michel. DATGAN: Integrating expert

knowledge into deep learning for synthetic tabular data. arXiv:2203.03489 [cs],

March 2022. https://arxiv.org/abs/2203.03489. arXiv: 2203.03489.

Chapter 4 improves on the DATGAN model presented in the previous chapter to generate

synthetic populations. The model has been upgraded to include conditionality, i.e. conditional

values can be fed to the generator to influence the sampling process. We show that the

ciDATGAN can learn from highly detailed datasets with few samples and complete a large

dataset with low details. The model can control some variables and effectively remove bias

from existing datasets. Finally, we show that ciDATGAN can generate previously unseen

individuals without loss of representativity compared to DATGAN.

This chapter is based upon the following technical report:

Lederrey, Gael, Hillel, Tim and Bierlaire, Michel. ciDATGAN: Conditional Inputs for

Tabular GANs. arXiv:2210.02404 [cs], October 2022. https://arxiv.org/abs/2210.02404.

arXiv: 2210.02404.

Chapter 5 concludes this thesis by summarizing the contributions and discussing potential

ideas for future research.

6

https://arxiv.org/abs/2203.03489
https://arxiv.org/abs/2210.02404

2 Efficient estimation of complex choice
models on large datasets

This chapter is based upon the following publication:

Lederrey, Gael, Lurkin, Virginie, Hillel, Tim, Bierlaire, Michel. Estima-

tion of discrete choice models with hybrid stochastic adaptive batch size

algorithms. Journal of Choice Modelling, 38:100226, March 2021. ISSN

1755-5345. doi 10.1016/j.jocm.2020.100226. https://www.sciencedirect.

com/science/article/pii/S1755534520300257.

2.1 Introduction

The availability of more and more data for choice analysis is both a blessing and a curse. On

the one hand, this data provides analysts with a great wealth of behavioral information. On

the other hand, processing the increasingly large and complex datasets to estimate Discrete

Choice Models (DCMs) presents new computational challenges. Nevertheless, the Machine

Learning (ML) community has been thriving while dealing with vast amounts of data. It,

therefore, seems natural to investigate ML optimization algorithms to estimate DCMs.

The predominant approach of these algorithms is the stochastic gradient. It approximates

the gradient of the log likelihood function (or any goodness of fit measure) using only a small

subset of the dataset. The gradient is said to be stochastic because the subset of data used

to calculate it is drawn randomly from the entire dataset. A version of the steepest descent

algorithm using this stochastic gradient is then applied to maximize the log likelihood function.

Many variants have been proposed around this primary principle.

To illustrate the stochastic gradient, we consider applying stochastic gradient descent to a

DCM with J alternatives, and a dataset of N observations, each of them containing the vector

of explanatory variables xn and the observed choice i .

7

https://www.sciencedirect.com/science/article/pii/S1755534520300257
https://www.sciencedirect.com/science/article/pii/S1755534520300257

Chapter 2. Efficient estimation of complex choice models on large datasets

Pn(i |xn ;θ) (2.1)

provides the probability that individual n chooses alternative i in the context specified by

xn , where θ ∈RK is a vector of K unknown parameters, to be estimated from data. Typically,

this is done using maximum likelihood estimation, where the log likelihood function L (θ) is

maximized:

max
θ∈RK

L (θ) = max
θ∈RK

N∑
n=1

lnPn(i |xn ;θ). (2.2)

In the optimization literature, it is custom to define the algorithms for minimization problems.

We follow the same convention, and consider the equivalent minimization problem:

min
θ∈RK

−L (θ) (2.3)

The gradient of the log likelihood function is

∇L (θ) =
N∑

n=1
∇ lnPn(i |xn ;θ). (2.4)

To obtain its stochastic version, we draw randomly, without replacement, a subset of N ′

observations from the data that we call a batch, and calculate:

∇N ′L (θ) = ∑
n∈N ′

∇ lnPn(i |xn ;θ). (2.5)

As shown in the above analysis, the variants of the stochastic gradient methods that are suc-

cessful in ML can be used to estimate the parameters of DCMs. They can decrease the time

and computational cost of estimating DCMs on large datasets. However, three critical differ-

ences between the two contexts must be considered. Firstly, the parameters in DCMs are a

substantial output and are used to estimate behavioral indicators such as Values of Time (VoT)

and elasticities for the population. Conversely, parameters in ML models typically have no

behavioral interpretation, and only the model predictions are treated as a modeling output. It

is, therefore, typical to allow choice model parameter estimates to converge during estimation

to obtain the highest accuracy and precision of each parameter estimate. Conversely, in ML, it

is typical to restrict the model from converging fully on the training data to prevent overfitting

due to the overparametrization of ML models. This can be achieved by using early stopping,

e.g. we stop the optimization process when the model achieves the highest performance on

an out-of-sample validation set.

Secondly, DCMs tend to have fewer parameters than ML models. Complex DCMs have

hundreds of parameters, while the neural networks used in deep learning can involve millions

of unknown parameters. Recent efforts have been made to reduce the number of parameters

in ML models. For example, Wu (2019) investigates simplifying Convolutional Neural Networks

(CNNs). The author can reduce the number of parameters using matrix decompositions from

8

2.2 Literature review

three million to just above three thousand, with only a small loss of precision. Nonetheless,

these models are still complex and exceed the usual number of parameters used in DCMs.

Finally, choice data is typically collected using specific sampling strategies and designs of

experiments. The objective is to obtain a representative sample while avoiding redundancies.

Furthermore, the analyst wants to test specific hypotheses when designing the data collection.

In contrast, ML techniques are often applied to datasets collected automatically or initially

collected for other purposes, e.g. trip records from contactless payment cards, to detect

patterns that have not previously been considered. It is, therefore, common to have a great

deal of redundancy in ML data.

Therefore, we introduce a new algorithmic framework for estimating DCMs, which addresses

the key differences between the DCM and ML contexts. Our framework includes three primary

contributions:

• the use of a stochastic Hessian (that is, second derivative matrix), which is possible

thanks to the relatively low number of unknown parameters in discrete DCMs,

• the possible modification of the batch size from iteration to iteration, which is used to

allow the high accuracy and precision in individual parameter estimates required in

DCMs,

• a change of optimization algorithm depending on the batch size, aiming to find the best

trade-off between accuracy and efficiency.

The rest of the chapter is laid out as follows. In the next section, we describe optimization

algorithms used both for estimating DCMs and in ML. Then, in Section 2.3, we present in

detail the three ideas mentioned above and propose a catalog of optimization algorithms

for estimating DCMs. In Section 2.4, we evaluate the performance of various algorithms

on various DCMs with large datasets. Finally, in Section 2.5, we conclude this chapter and

mention some further ideas that can be investigated in the future.

2.2 Literature review

To the best of our knowledge, the maximum likelihood estimation of the parameters of DCMs

exclusively relies on deterministic algorithms that are variants of the line search and trust-

region methods. In particular, the main estimation packages written in Python (Pandas

Biogeme (Bierlaire, 2003, 2018), PyLogit (Brathwaite et al., 2017), and Larch (Newman et al.,

2018)) all use the minimize function from the package Scipy (Jones et al., 2014). This makes

use of the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. While this

performs well for estimating small-to-medium-sized models, it struggles with larger, more

complex models. With the availability of larger and larger datasets, the performance of these

standard methods is completely dominated by the time it takes to calculate the log likelihood

9

Chapter 2. Efficient estimation of complex choice models on large datasets

function, its gradient, and its possible second derivative matrix. For example, Hillel (2019)

shows that fitting a Feed-Forward Neural Network (FFNN) in the Tensorflow Python library is

up to 200 times faster than estimating a Nested Logit model in Pandas Biogeme on the same

dataset containing 81’086 observations, despite the former having far more parameters.

To understand how we may be able to estimate DCMs more quickly on large datasets, we

can look for inspiration from ML. Datasets used in ML, particularly in Computer Vision, can

contain millions of observations. For example, ImageNet, a collection of images labeled by

hand, contains around fifteen million images. The sheer size of the whole dataset (≈150GB)

prevents it from being stored in memory. As such, analyzing the dataset is a significant

computational challenge. As the entire dataset cannot be stored in memory, the data must be

batch processed. It explains the importance of the stochastic approach for ML, i.e. calculate

the gradient on a batch of data at each iteration. To better understand the existing approaches

used to estimate DCMs and ML models, we conduct a literature review of existing stochastic

algorithms in Section 2.2.1. Then, in Section 2.2.2, we identify and discuss the literature gaps

for optimizing DCMs. We also link them to the three primary contributions presented in

Section 2.1.

2.2.1 Overview of existing studies

In this section, we identify and review twenty-six studies that propose stochastic optimization

algorithms, see Table 2.2. The selected studies, while not exhaustive, are believed by the

authors to represent a broad overview of the existing optimization algorithms. For each of

these algorithms, we analyze four aspects:

• the mathematical order, i.e. if it uses a gradient-based (first-order), a quasi-Newton-

based (1.5-th order), or a Newton-based step (second-order),

• if it uses an adaptive batch size technique or if the batch size is constant,

• if an experimental (numerical) assessment of the algorithm is conducted,

• a summary of the numerical applications of the algorithm.

Table 2.2: Stochastic optimization algorithms included in the literature review in chronological
order. “ABS” stands for Adaptive Batch Size and “Exp.” for experimental assessments.

Reference Name Order ABS Exp. Application

Robbins and

Monro (1951)
SGD 1st Regression functions

Continues on next page...

10

2.2 Literature review

Table 2.2 – continued from previous page

Reference Name Order ABS Exp. Application

Polyak (1964) Momentum 1st Classical optimization

Nesterov (1983) NAG 1st Convex optimization

Polyak and Ju-

ditsky (1992)
Averaging 1st Classical optimization

Bordes et al.

(2010)
SGDQN 1.5th ✓

Dense and sparse large datasets

(PASCAL Large Scale challenge)

Martens (2010) HF 2nd ✓
Image classification via Deep

Learning models

Duchi et al.

(2011)
Adagrad 1st ✓

Image, text, and handwritten

digit classification

Zeiler (2012) Adadelta 1st ✓ Handwritten digit classification

Tieleman and

Hinton (2012)
RMSProp 1st None, first shown in a lecture

Schmidt et al.

(2013)
SAG 1st ✓ Binary classification

Kiros (2013)
Stochastic

HF
2nd ✓

Classification and deep autoen-

coder tasks

Defazio et al.

(2014)
SAGA 1st ✓

Handwritten digit, binary, and

multivariate classification

Kingma and Ba

(2014)

Adam &

AdaMax
1st ✓

Logistic Regression, Neural Net-

works, and Convolutional Neu-

ral Networks

Wang et al.

(2014)

SQN &

RSQN
1.5th ✓

Convex and non-convex opti-

mization problems

Mokhtari and

Ribeiro (2014)
RES 1.5th ✓

Well- and ill-conditioned prob-

lems with large scale datasets

You and Xu

(2014)
SHF 2nd ✓ Speech recognition

Dozat (2016) Nadam 1st ✓ Handwritten digit classification

Balles et al.

(2016)
CABS 1st ✓ ✓ Convolutional Neural Networks

Continues on next page...

11

Chapter 2. Efficient estimation of complex choice models on large datasets

Table 2.2 – continued from previous page

Reference Name Order ABS Exp. Application

Keskar and Be-

rahas (2016)
adaQN 1.5th ✓ Recurrent Neural Networks

Agarwal et al.

(2016)
LiSSA 2nd ✓

Handwritten digit and multi-

variate classification

Mutny (2016) ISSA 2nd ✓ Least square estimators

Devarakonda

et al. (2017)
AdaBatch 1st ✓ ✓

Multiple Neural Networks archi-

tecture

Ye and Zhang

(2017)
AccRegSN 2nd ✓ Least square regressions

Gower et al.

(2018)
hBFGS 1.5th ✓ Matrix Inversion problems

Bollapragada

et al. (2018)
PBQN 1.5th ✓ ✓

Logistic Regressions and Neural

Networks

Reddi et al.

(2018)

AMSGrad &

AdamNc
1st ✓

Logistic Regression and Neural

Networks

Of the twenty-six algorithms considered in this review, fourteen are first-order, six are quasi-

Newton (1.5th order), and six are second order. We refer the reader to the article of Ruder (2016)

for a precise overview of the first-order methods. While this review focuses on quasi-Newton

and second-order algorithms, the literature focuses predominantly on first-order approaches.

We believe this focus is due to the speed of first-order algorithms for optimizing large, complex

neural networks.

Three of the six second-order algorithms use the Hessian-Free (truncated Newton) optimiza-

tion technique. This technique approximates the problem using the second Taylor expansion

and then solves it using a conjugate gradient. The computation of the Hessian is approxi-

mated with a directional derivative and finite differences. The remaining three second-order

stochastic methods use a subsampling method of the Hessian to avoid its heavy computation

at each step.

Most algorithms use a fixed batch size, with only three out of the twenty-six algorithms using

an adaptive batch size technique. All three articles that use an adaptive batch size are recent

(2016-2018). None of the second-order methods and only one of the quasi-Newton algorithms

use adaptive batch size.

In terms of the analysis within the study, only five references do not provide numerical as-

sessments of their algorithms. The first four references, which do not include a numerical

12

2.2 Literature review

application, are the oldest considered (1951-1992). The fifth reference, the algorithm RM-

SProp (Tieleman and Hinton, 2012), does not provide any theoretical or numerical results

since it was only presented in a lecture. As per standard practice in most of the literature, we

present numerical measures in the form of quantitative results for each algorithm. Finally,

we can see that the algorithms in the study have been applied in multiple domains, but none

explicitly for choice modeling. The earliest algorithms (4/26) were first applied to classical

optimization problems. Then, the remainder of the algorithms is applied to ML problems,

with the majority (13/26) applied to neural networks. This shows the predominant focus on

optimizing neural networks in the literature.

2.2.2 Gaps in knowledge and contributions

As shown by the results of the literature review, the predominant focus of existing optimization

research has been the optimization of neural networks, with none of the algorithms explicitly

designed for the optimization of DCMs. As discussed, there are substantial differences be-

tween the optimization of neural networks and DCMs. In this section, we, therefore, assess

the limitations of the existing algorithms in terms of optimizing DCMs. Furthermore, we iden-

tify three gaps in knowledge in the existing research, which may enable higher-performing

optimization algorithms for DCMs.

Stochastic second order approaches

ML researchers have predominantly focused on first-order stochastic algorithms due to their

speed when estimating parameters in large models. Lederrey et al. (2018a) show that first-

order stochastic methods cannot achieve convergence on a logit model with ten parameters.

The authors compare a gradient descent algorithm, a mini-batch SGD, Adagrad (Duchi et al.,

2011), and SAGA (Defazio et al., 2014). They note that normalizing the parameters leads to

more accurate results. However, they do not reach a sufficiently high precision in a reasonable

time. This failure is mainly due to the required precision for convergence. As stated earlier, the

parameter values are a key output of DCMs. These parameters are used to compute behavioral

indicators such as the VoT and elasticities. Therefore, it is critical to achieve convergence with

high precision.

Of the six second-order stochastic algorithms reviewed, none calculate the exact Hessian,

with all using an approximation instead. However, the smaller number of parameters used in

DCMs compared to ML models means computing the full Hessian for a batch of data is less

computationally complex. Therefore, there is a need to investigate second-order stochastic

approaches that compute the exact Hessian. The computation of the full Hessian could be

used for DCMs to obtain parameter estimates with the necessary precision for convergence.

13

Chapter 2. Efficient estimation of complex choice models on large datasets

Adaptive batch size

None of the second-order methods found in the literature use an adaptive batch size. Further-

more, among the three algorithms proposing adaptive batch size methods, they all couple

the batch size with the learning rate, a parameter specified in ML estimation. While Goyal

et al. (2018) shows that these two parameters are related, this coupling specifically targets

ML models, where the learning rate is often set to a fixed value or slightly decreases at each

iteration.

The learning rate in ML is similar to the step size used in classical optimization problems.

Typically, in classical optimization, the step size is computed using more advanced techniques

such as line search or trust-region methods. However, since a high degree of precision is

required for DCMs, especially at the later stage of the optimization process, the step size

should be separated from the batch size. Indeed, close to the optimum value, the optimization

algorithm should use a small step and as many data points as possible to achieve the highest

precision.

While line search and trust-region methods have already been applied to ML, as demonstrated

by Rafati et al. (2018), they have not yet been used in combination with adaptive batch size.

Also, Lederrey et al. (2018a); Lederrey et al. (2018b) have demonstrated that the use of a com-

plete batch of data is required at the end of the optimization process to achieve the appropriate

precision for DCMs. Therefore, it is required to develop an adaptive batch size technique with

a second-order approach that does not interfere with the step size and eventually reaches the

whole dataset, as needed to achieve the required precision for DCMs (Lederrey et al., 2018b).

Combined first and second order approaches

All the algorithms presented in the review use the same algorithm throughout the optimization

process. However, this can hinder the performance of the optimization since the requirements

change during the process. Indeed, an optimization can be faster and less precise at the

beginning of the optimization and then become more precise, and slower, close to the optimal

solution. This can be partially achieved by using an adaptive batch size technique. However,

this could be further addressed by switching the optimization algorithm at the right time to

cope with the increased complexity due to larger batch size. There is, therefore, a need to

investigate hybrid algorithms, switching between first and second-order approaches at the

appropriate point in the optimization process.

Contributions

While researchers have already investigated solutions for some of the aforementioned lim-

itations individually, we could not find any research investigating their combination in a

systematic approach. We thus aim to combine the three primary contributions stated in

the introduction, Section 2.1, in a new algorithm for optimizing DCMs. Thus, our algorithm

14

2.3 Methodology

incorporates the following concepts:

• the use of a second-order stochastic approach computing the Hessian for each batch,

• the use of adaptive batch size for second-order approaches which do not couple the

batch size to the learning rate,

• the use of a hybrid approach that combines first and second-order algorithms and

switches between them at the appropriate time.

2.3 Methodology

This section introduces our novel algorithmic framework for estimating DCMs. First, Sec-

tions 2.3.1 and 2.3.2 provide a reminder of the two standard optimization techniques: line

search and trust regions. Then, Section 2.3.3 shows how we construct the new hybrid stochastic

algorithms with adaptive batch size and Section 2.3.4 summarizes the algorithms presented in

the methodology. Table A.1, in the appendix, provides a summary of the notations used in this

methodology.

2.3.1 Line search methods

Line search optimization methods combine a descent direction with a line search. The iterates

are θk+1 = θk +αk dk , where dk is a descent direction obtained by preconditioning the gradient

of L and αk is the step size. dk is defined as:

dk =−Dk∇L (θk) (2.6)

where Dk is a positive definite matrix.

There are typically three ways to select Dk :

• Steepest descent methods define Dk as the identity matrix. In that case, the descent

direction is the opposite of the gradient.

• Newton’s method assumes that Dk is the inverse of the second derivative matrix (possi-

bly perturbed to make it definite positive).

• Quasi-Newton methods assume that Dk is a secant approximation of (the inverse of) the

second derivative matrix, updated at each iteration. Among the many secant methods,

we consider the BFGS algorithm for which, according to Fletcher (1987), the approxima-

tion is given by:

Bk = Bk−1 +
yk yT

k

yT
k sk

− Bk−1sk sT
k B T

k−1

sT
k Bk−1, sk

, (2.7)

15

Chapter 2. Efficient estimation of complex choice models on large datasets

with sk = θk −θk−1 and yk =∇L (θk)−∇L (θk−1).

A slightly different version of BFGS consists in approximating the inverse of the Hessian.

In that case, the name BFGS−1 is used and the approximation is given by:

B−1
k = B−1

k−1 +
(
sT

k yk + yT
k B−1

k−1 yk
)(

sk sT
k

)
(
sT

k yk
)2 − B−1

k−1 yk sT
k + sk yT

k B−1
k−1

sT
k yk

. (2.8)

The step size αk is calculated with an inexact line search method, such that it verifies the two

Wolfe conditions (Wolfe, 1969, 1971). The first condition guarantees that the step gives a suffi-

cient decrease in the objective function, while the second one makes sure that unacceptably

small steps are ruled out. Both Wolfe conditions are given in Equation 2.9.

Wolfe 1: L (θk +αk dk) ≤L (θk)+β1αk d T
k ∇L (θk)

Wolfe 2:
∇L (θk +αk dk)T dk

∇L (θk)T dk
≤β2

(2.9)

with 0 <β1 <β2 < 1.

2.3.2 Trust-region methods

Trust-region methods define a region around the current search point, where a quadratic

approximation of the function value is "trusted" to be correct, and steps are chosen to optimize

the function model within this region. There exist multiple ways to compute the quadratic

approximation of the function value. The most common choice is a quadratic function of the

type:

mk (θk +dk) =L (θk)+∇L (θk)T dk +
1

2
d T

k Bk dk (2.10)

where Bk is either the Hessian ∇2L (θk) or an approximation of it. If the Hessian is chosen, the

name trust-region algorithm is used. If an approximation of the Hessian is used it is referred

to as a quasi-Newton trust-region.

The size of the trust region is modified during the search, based on how well the quadratic

model agrees with the actual objective function value. Following Conn et al. (2000), the

region is modified conditional to the ratio ρk of the actual function reduction to the reduction

predicted by the quadratic model:

ρk = L (θk)−L (θk +dk)

mk (θk)−mk (θk +dk)
. (2.11)

16

2.3 Methodology

Given the ratio ρk , the decision to change the trust region is based on the following rules:

∆k =


γ1∆k if ρk ≥ η2,

∆k if ρk ∈ [η1,η2),

γ2∆k if ρk < η1,

(2.12)

where γ1,γ2,η1 and η2 are all a priori defined parameters.

Intuitively, when the quadratic model is a good predictor of the function value, the ratio ρk is

close to 1, and the region is not modified. In contrast, when the quadratic model is no longer a

good predictor, the ratio is too small or too large, and the region is reduced or extended.

2.3.3 Hybrid stochastic algorithms with adaptive batch size

We present our new algorithmic framework for optimization of DCMs by discussing its three

main contributions:

• the use of a stochastic hessian,

• the possible modification of the batch size from iteration to iteration,

• the change of optimization algorithm depending on the size of the batch.

Stochastic Hessian

Inspired by the technique of stochastic gradient, our algorithmic framework includes a stochas-

tic Hessian, defined as:

∇2
N ′L (θ) = ∑

n∈N ′
∇2 lnPn(i |xn ;θ), (2.13)

where N ′ is a subset of observations, drawn randomly, without replacement, from the full

dataset.

A stochastic Hessian can be included in non linear optimization algorithms to create a Stochas-

tic Newton Method (SNM), as in Lederrey et al. (2018b), or a Stochastic Trust-Region (STR)

algorithm.

Adaptive Batch Size

Intuitively, this technique increases the batch size when the algorithm can no longer improve

the value of the objective function. This generally happens for two reasons. First, either a

local optimum in the current neighborhood has been reached, or the stochastic nature of the

gradient and Hessian precludes the algorithm from making further progress.

We propose to modify the batch size as the algorithm proceeds with a Window Moving Average

17

Chapter 2. Efficient estimation of complex choice models on large datasets

(WMA) technique. WMA averages the values of a time series across a window of W consecutive

observations, thereby generating a series of averages. More importance is given to the most

recent iterations to capture change in the data better. The WMA at the k-th iteration is given

by:

WMAk,W =



∑W −1
i=0 (W − i)L (θk−i)∑W

i=1 i
if k ≥W,∑k−1

i=0 (k − i)L (θk−i)∑k
i=1 i

otherwise.

(2.14)

Note that for all first W iterations, the window size is reduced to the iteration number, i.e.

W = k.

The decision to increase the batch size is then based on a successive lack of progress in the

past iterations. The progress at the k-th iteration is defined as:

Ik = WMAk−1,W −WMAk,W

WMAk−1,W
. (2.15)

We consider that there is a lack of progress when Ik is less than a threshold Ik < ∆. After C

iterations with a lack of progress, the batch size is increased by a factor τ.

The AMABS algorithm, given in Algorithm 2.1, describes the adaptive batch size process.

Therefore, it has to be coupled with a stochastic optimization algorithm. For example, using

the principle of stochastic Hessian, an AMABS Newton’s method or an AMABS Trust-Region

method can be defined. One potential drawback of this method is that the stopping criterion

of the optimization algorithm may be met before the algorithm has observed the full dataset.

This could result in a loss of precision in the parameter value estimates. To counter this

unwanted behavior, we add a condition on the stopping criterion, which requires that the

batch size N ′
k at iteration k has the same value as the dataset size N . As an example, this

condition is also given for the Hybrid algorithms in Algorithm 2.3, line 7.

Hybridization

Using the AMABS technique naturally allows using different optimization algorithms based

on the batch size. Indeed, when small batch size is used at the beginning of the optimization

process, it makes sense to use the exact second derivative matrix, as it is relatively cheap to

calculate. However, when the batch size becomes large, the calculation time for the exact

Hessian is prohibitive, and methods relying on quasi-Newton approximation are preferred. It

makes sense to switch to a less precise but faster algorithm. Our hybrid algorithm determines

the algorithm to use based on the percentage of data used in a batch. The pseudocode is

shown in Algorithm 2.3.

The usual initial parameter value θ0 is an array of zeros. The last two parameters introduced in

Algorithm 2.3,∆H and ε, are further discussed in Section 2.4.5. The stopping criterion∇r el L (θ)

18

2.3 Methodology

Algorithm 2.1 Adaptive Moving Average Batch Size (AMABS)

Inputs:

- Current iteration index: k,

- Function value at iteration k: L (θk),

- Current batch size: N ′
k ,

- Size of the full dataset: N ,

- Size of the window: W (default: 10),

- Threshold for successfull iterations: ∆ (default: 1%),

- Maximum number of unsuccessful iterations: C (default: 2),

- Expansion factor for the batch size: τ (default: 2),
Output: New batch size: N ′

k+1
1: Set the counter at 0 (c = 0) at the initialization of the algorithm
2: function AMABS
3: Compute WMAk,W , as in Equation 2.14.
4: if k > 0 then ▷ At least two iterations required
5: Compute Ik as in Equation 2.15 using WMAk,W and WMAk−1,W

6: if Ik <∆ then ▷ Count the consecutive steps under threshold.
7: c = c +1
8: else
9: c = 0

10: if c ==C then ▷ Update the batch size
11: c = 0
12: N ′

k+1 = min(τ ·N ′, N)
13: else
14: N ′

k+1 = N ′
k

15: return N ′
k+1

is discussed at the end of this section. The functions generateCandidateFirstOrder (line

4) and generateCandidateSecondOrder (line 7) return the parameter values for the next

iteration. The generic pseudocode for these methods is given in Algorithm 2.2. The function

generateCandidateFirstOrder uses the function generateCandidate with a first-order

or a quasi-Newton method and thus does not use the Hessian (∇2L (θ)). The function gener-
ateCandidateSecondOrder uses the function generateCandidate with the Hessian.

Stopping Criterion

Both line search and trust-region methods require a stopping criterion to determine when to

stop iterating. A relative gradient-based stopping criterion ensures that the algorithm stops

when the norm of the relative gradient is below some threshold, ε:

||∇r el L (θ)|| ≤ ε, (2.16)

19

Chapter 2. Efficient estimation of complex choice models on large datasets

Algorithm 2.2 Pseudocode for the function generateCandidate
Inputs:

- Parameter value at iteration k: θk

- Log likelihood function: L (θ),

- Gradient of the log likelihood: ∇L (θ),

- Possibly, Hessian of the log likelihood: ∇2L (θ)
Output: Next parameter value: θk+1

1: function generateCandidate
2: Compute direction dk using ∇L (θk) and/or ∇2L (θk) as in Equation 2.6.
3: Compute step size αk using either a line search or a trust-region method.
4: Compute θk+1 = θk +αk dk

Algorithm 2.3 Hybrid algorithm with AMABS method

Inputs:

- Log likelihood function: L (θ),

- Gradient of the log likelihood: ∇L (θ),

- Hessian of the log likelihood: ∇2L (θ),

- Initial parameter value: θ0,

- Algorithm generating a candidate for the next iteration using only the gradient (first-
order or quasi-Newton method): generateCandidateFirstOrder(θ,∇L (θ)),

- Algorithm generating a candidate for the next iteration using the gradi-
ent and the Hessian (second-order method): generateCandidateSecon-
dOrder(θ,∇L (θ),∇2L (θ)),

- Parameters specific to the algorithm:

* Initial batch size: N ′
0 (default: 1000),

* Size of the full dataset: N ,

* Size of the window: W (default: 10),

* Threshold for successfull iterations: ∆ (default: 1%),

* Maximum number of unsuccessfull iterations with the same batch size: C (de-
fault: 2),

* Expansion factor for the batch size: τ (default: 2),

* Threshold for hybridization: ∆H (default: 30%),

* Threshold for stopping criterion: ε (default: 10−6)

Output: Optimized parameters: θ∗

1: function ITERATION

2: if N ′
k /N >∆H then

3: θk+1 = generateCandidateFirstOrder(θk ,L (θ),∇L (θ))
4: else
5: θk+1 = generateCandidateSecondOrder(θk ,L (θ),∇L (θ),∇2L (θ))

6: N ′
k+1 = AMABS(k,L (θk), N ′

k , N ,W,∆,C ,τ)
7: Stop the optimization if ∇relL (θk+1) < ε and N ′

k == N .

20

2.3 Methodology

where the relative gradient is defined by

(∇r el L (θ))i =
(∇L (θ))i θi

L (θ)
. (2.17)

A sufficiently small value is chosen for ε, typically in the range [10−6,10−8]. For this work, we

used ε= 10−6. A more detailed discussion of the stopping criterion can be found in Dennis and

Schnabel (1996) (see Chapter 7.2, page 159). In addition, we restrict the maximal number of

epochs of the algorithms. An epoch corresponds to one complete presentation of the dataset.

Therefore, to compute the relation between epoch and iteration, we have to calculate it using

recursion. We thus define the epoch at iteration 0 being e0 = 0. Then, we can update the

number of epochs at each iteration using the following formula:

ek+1 = ek +
N ′

k

N
(2.18)

where N ′
k corresponds to the current batch size and N to the size of the dataset. We therefore

see that if we use the full dataset, an epoch corresponds to an iteration.

2.3.4 Summary of algorithms

As depicted in Table 2.3, the new algorithmic framework presented in Section 2.3.3 allows us

to compare the performance of our proposed Hybrid Adaptive Moving Average Batch Size

(HAMABS) algorithm against 14 standard benchmarks1. These algorithms can be split into

three categories:

• standard non-stochastic algorithms (first 6 algorithms) – deterministic algorithms which

are commonly used in the DCM community and are therefore considered as bench-

marks. For example, the current version of Biogeme uses the Python package Scipy (Jones

et al., 2014) with the BFGS−1 implementation. We start by comparing the performance of

these standard algorithms before moving to the comparison with stochastic approaches.

• stochastic algorithms (next 6 algorithms) – algorithms based on the AMABS method

presented in Section 2.3.3. These methods are used to show the improvement in terms

of estimation time over their non-stochastic counterparts. The algorithms NM-ABS and

TR-ABS also make use of the stochastic Hessian, as presented in Section 2.3.3. The

added value of using stochastic Hessian will therefore also be discussed.

• hybrid stochastic methods (last 3 algorithms) – algorithms which combine two separate

optimization algorithms with adaptive batch size. Three types of hybridization are in-

vestigated and discussed: (i) Newton’s method and BFGS, (ii) Trust-Region method and

BFGS, and (iii) Newton’s method and BFGS−1. The first algorithm always corresponds to

1We do not include standard stochastic methods in our benchmarks as these methods were tested in a previous
work (Lederrey et al. (2018b)) but were not able to converge to a stable solution.

21

Chapter 2. Efficient estimation of complex choice models on large datasets

the function generateCandidateSecondOrder and the second to the function gener-
ateCandidateFirstOrder in Algorithm 2.3.

Table 2.3: Overview of all algorithms used for the optimization of DCMs. A small description
of the algorithms is provided as well as their order and if it includes the adaptive batch size
method.

Name Order AMABS Description

GD 1st Steepest descent algorithm.

BFGS 1.5th BFGS algorithm using Eq. 2.7.

BFGS−1 1.5th BFGS−1 algorithm using Eq. 2.8.

TR-BFGS 1.5th quasi-Newton trust-region method with BFGS (Eq. 2.7).

NM 2nd Newton’s method.

TR 2nd Trust-region method.

GD-ABS 1st ✓ Stochastic steepest descent with AMABS.

BFGS-ABS 1.5th ✓ BFGS algorithm (Eq. 2.7) with AMABS.

BFGS−1-ABS 1.5th ✓ BFGS−1 algorithm (Eq. 2.8) with AMABS.

TR-BFGS-ABS 1.5th ✓ Trust-Region with BFGS (Eq. 2.7) and AMABS.

NM-ABS 2nd ✓ Newton with AMABS.

TR-ABS 2nd ✓ Trust-region with AMABS.

H-NM-ABS Hybrid ✓ Hybridization: Newton + BFGS (Eq. 2.7).

H-TR-ABS Hybrid ✓ Hybridization: trust-region + BFGS (Eq. 2.7).

HAMABS Hybrid ✓ Hybridization: Newton + BFGS−1 (Eq. 2.8).

2.4 Results

This section presents the results of our experiments. Before showing the numerical results,

we start by explaining our experimental design, i.e., the algorithms and datasets used in our

experiments, and the implementation details.

2.4.1 Experimental design

We collect empirical evidence of the behavior of the 15 algorithms, in Table 2.3, by observing

their performance on ten different choice models presented in Table 2.4. Two different data

sources are used. The first nine choice models are estimated on data obtained from the

London Passenger Mode Choice (LPMC) dataset. This dataset, collected by Hillel et al. (2018),

contains mode choices on an urban multi-modal transport network from April 2012 to March

2015. In addition, three sub-datasets have been created to study the impact of the size of the

dataset on the performance of the different algorithms:

22

2.4 Results

• a small dataset (S), that contains observations from year 2012 (27’478 observations),

• a medium dataset (M), that contains observations from years 2012 to 2013 (54’766

observations),

• a large dataset (L), that contains all observations, from year 2012 to 2015 (81’766 obser-

vations).

In order to analyze the impact of the number of parameters on the estimation time, we

compare three logit models from Hillel (2019):

• the LPMC_DC model that contains 13 parameters to be estimated,

• the LPMC_RR model that contains 54 parameters to be estimated,

• the LPMC_Full model that contains 100 parameters to be estimated.

Finally, a tenth choice model was estimated on the Mobility and Transport MicroCensus

(MTMC) dataset, a statistical survey of the travel behavior of the Swiss population. The model

has been designed by Danalet and Mathys (2018) using the data collected by the Swiss Federal

Statistical Office (FSO) and the Swiss Federal Office for Spatial Development (ARE)2. The

authors also provide more details about the MTMC dataset. We use the most recent version

of the survey, collected in 2015. This model provides an exciting opportunity to study the

efficiency of all algorithms presented in Table 2.3 for estimating a rather large choice model

(almost 250 parameters) on a medium-size dataset (56’915 observations).

2.4.2 Implementation details

All models are estimated on a single node in a supercomputer (18 Cores Skylake Proces-

sor@2.30 GHz, 192GB) for each algorithm. We include a stopping criterion on the maximum

number of epochs (1,000 epochs). This is done to avoid extremely long computation time

for algorithms that would struggle in achieving convergence for certain models. Also, since

some of these algorithms are stochastic, convergence speed may differ on the same opti-

mization task. Thus, each stochastic algorithm is used to optimize each model 20 times. We

impose an upper limit on the execution time for the 20 estimation process: 12 hours for

the models LPMC_DC, 24 hours for the models LPMC_RR, 36 hours for the models LPMC_Full,

and 48 hours for the model MTMC. Finally, since we want to compare our algorithms’ effi-

ciency with state-of-the-art DCM software, we also optimize all the models in Table 2.4 with

Biogeme and Scipy within the same rules. All the results are presented and discussed in

Section 2.4.3. The code implementing all the algorithms in Table 2.3 can be found on Github

at https://github.com/glederrey/HAMABS.

2Contact mobilita2015@bfs.admin.ch for accessing the data.

23

https://github.com/glederrey/HAMABS
mailto:mobilita2015@bfs.admin.ch

Chapter 2. Efficient estimation of complex choice models on large datasets

Table 2.4: Summary of the models used for the performance analysis. The number of parame-
ters is provided as well as the dataset and the number of observations used in the model. All
the models are logit models.

Names #Parameters Data #Observations

LPMC_DC_S 13 LPMC 27’478

LPMC_DC_M 13 LPMC 54’766

LPMC_DC_L 13 LPMC 81’086

LPMC_RR_S 54 LPMC 27’478

LPMC_RR_M 54 LPMC 54’766

LPMC_RR_L 54 LPMC 81’086

LPMC_Full_S 100 LPMC 27’478

LPMC_Full_M 100 LPMC 54’766

LPMC_Full_L 100 LPMC 81’086

MTMC 247 MTMC 56’915

2.4.3 Performance analysis

In this section, we analyze the performance of the fifteen algorithms reported in Table 2.3. For

ease of comparison, we use a graphical approach named performance profiles to benchmark

these algorithms. As stated by Beiranvand et al. (2017), performance profiles are a great

tool to analyze algorithms in terms of efficiency, robustness, and probability of successfully

performing a required task. The concept of performance profile is presented in the next

section and the results are analyzed in the following section.

Performance profiles

Performance profiles were first introduced by Dolan and Moré (2002) and are now a recurring

tool used to compare the performance of optimization algorithms. They are used to compare

the performance of a set of optimization algorithms, A , on a set of optimization problems, P .

For each pair (p, a) ∈P ×A , they define a performance measure tp,a > 0 whose large value

indicates poor performance. Classical measures of performance are the execution time or the

number of epochs.

In addition, a convergence test Cp,a states if algorithm a was able to optimize problem p. For

each optimization problem p and optimization algorithm a, the performance ratio is defined

as

rp,a =


tp,a

mina∈A tp,a
if Cp,a passed,

∞ if Cp,a failed.
(2.19)

24

2.4 Results

This leads to rp,a = 1 for the best algorithm and rp,a =∞ for all algorithms a unable to solve

problem p. The performance profile of an algorithm a is finally defined as

ρa(π) =
∣∣p ∈P : rp,a ≤π∣∣

|P | (2.20)

where |P | is the cardinality of the set P . ρa(π) represents the proportion of problems for

which the performance ratio rp,a for algorithm a ∈ A is within a factor π ∈ R of the best

possible performance ratio.

Generally, π ∈N+ is used to avoid showing too many data points. Furthermore, any upper

bound on π can be used. However, if R = maxp∈P ,a∈A rp,a , ∀rp,a < ∞, the performance

profiles will remain the same for any π≥R. Therefore, R is used as the upper bound on π.

It is interesting to note that ρa(1) corresponds to the percentage of problems for which

algorithm a has the best performance. Also, ρa(R) represents the percentage of problems

that algorithm a was able to solve under the condition of the convergence test C . Therefore,

algorithms with high values of ρa(π) are of interest.

As stated above, a performance profile has the values of π on the x-axis ranging from 1 to R,

the maximum of all ratios. The proportion ρa(π) is situated on the y-axis. There are three

specific elements to analyze to interpret these profiles:

• the proportion for each algorithm a at the value π = 1, i.e. at the leftmost side of the

graph. Indeed, the proportion ρa(1) indicates the percentage of problems for which an

algorithm a is the best, based on the performance test tp,a .

• the proportion for each algorithm a at the value π=R, i.e. at the rightmost side of the

graph. This proportion indicates the percentage of problems that algorithm a was able

to solve within the convergence criterion Cp,a .

• how quickly the algorithm a reaches a proportion of 100%, i.e. the line reaches the top

of the graph. The value of π for which algorithm a reaches 100% indicates its worse

relative performance than all other algorithms.

Thus, the ideal performance profile starts at 100% and finishes at 100%. This algorithm a is

the best for the performance measure tp,a . However, these kinds of results are rare. Therefore,

comparing the algorithms by looking at the three points cited above is important to determine

which algorithm performs the best.

Results

In our case, the set of problems P contains the ten models in Table 2.4 and the set of opti-

mization algorithms A include the fifteen algorithms in Table 2.3. The convergence test Cp,a

25

Chapter 2. Efficient estimation of complex choice models on large datasets

tells us whether the algorithm was able to converge with the required precision ε in less than

1000 epochs. We selected two performance measures: the execution time and the number of

epochs.

Figure 2.1 shows the results for the execution time. While analyzing the lines in Figure 2.1,

it is recommended to have a look at the reported execution times in Tables E.1, E.2, and E.3,

provided in the appendix. We also provide the maximum ratio, R = 114, for the execution

time.

0

0.2

0.4

0.6

0.8

1

1 2 5 10 20 50 114

π

P
r
(r p

,α
≤
π
)

GD
BFGS
BFGS−1

TR-BFGS
NM
TR
GD-ABS
BFGS-ABS
BFGS−1-ABS
TR-BFGS-ABS
NM-ABS
TR-ABS
H-NM-ABS
H-TR-ABS
HAMABS

Figure 2.1: Performance profiles on the execution time for all models in Table 2.4 and all
algorithms in Table 2.3. The standard non-stochastic algorithms are shown in orange lines,
the stochastic algorithms in blue lines, and the hybrid algorithms in black.

As an example, we analyze in detail the line corresponding to the algorithm HAMABS in Fig-

ure 2.1 based on the three elements cited in Section 2.4.3:

• it reaches a proportion of 70% at π = 1. It, therefore, means that this algorithm is

the fastest for 7 out of the 10 optimized models. Tables E.1, E.2, and E.3, provided in

the appendix, report the average time and the standard deviation to optimize each

model with each algorithm. As seen in these tables, the HAMABS is effectively the fastest

algorithm on seven out of ten models.

• it can solve all problems. Indeed, it reaches a proportion of 100% for π=R. We can also

verify that it is effectively the case in Tables E.1, E.2, and E.3.

• it reaches a proportion of 100% at π= 5. Thus, this algorithm has, at worst, a relative

performance of 5 compared to the fastest algorithm on all the models.

Based on the analysis above and by comparing the HAMABS algorithms with the other algo-

26

2.4 Results

rithms, we can conclude that this algorithm is the fastest and the most robust in general.

Indeed, it is the fastest on the majority of the models. Besides, the only models on which this

algorithm is not the fastest are the LPMC_DC models, the smallest models in terms of parame-

ters. Also, we see that this algorithm is the fastest to reach 100% proportion. This thus shows

that it is the most robust algorithm across all models. Since there are many algorithms to

analyze, we discuss them further by types of algorithms. Figure 2.2 split the lines in Figure 2.1

by the three types of algorithms shown in Table 2.3.

Standard non-stochastic algorithms Figure 2.2a shows the performance profile for all stan-

dard non-stochastic algorithms. We observe that these standard algorithms are strug-

gling to optimize the models. Trust-Region and Newton’s methods are the fastest and

the most robust among the standard ones and reach the 100% proportion with a relative

performance of up to 15 times the fastest algorithm. The two BFGS methods are slower

than the first two methods. Besides, they also fail to optimize some models. We also see

that the algorithm TR-BFGS struggles to optimize the models, indicating that the hybrid

algorithm H-TR-ABS might also struggle. The worst method is the gradient descent

algorithm since it does not converge for any model in less than 1000 epochs.

Stochastic algorithms Figure 2.2b shows the results for the algorithms using the AMABS

technique. The behavior of these methods does not differ much as the slow standard

methods stay slow with the AMABS method. For example, the fastest and most robust

algorithms are both the NM-ABS and the TR-ABS. The algorithm GD-ABS cannot optimize

any model within the required number of epochs. Tables E.1, E.2, and E.3 also show

that, except for the TR-ABS, all AMABS methods are faster than the standard ones. It

thus shows that the AMABS algorithm can generally speed up the standard algorithms.

Hybrid stochastic algorithms Figure 2.2c shows the results for the three algorithms using

hybridization and the AMABS method. These three methods are the fastest algorithms

on larger models. While we already discussed the case of the HAMABS algorithm, the

other two methods are never the fastest for any models. However, they are slightly more

robust than the other algorithms. Indeed, the H-NM-ABS algorithm is almost as good as

the HAMABS. However, looking at the times, we still see quite a difference between these

two algorithms. Indeed, there is generally a 20% difference in execution time between

these two algorithms. The H-TR-ABS seems to perform quite well. However, looking at

the times, we see that both the TR and the TR-ABS algorithms are faster. This is most

likely due to the use of the Trust-Region method with the BFGS approximation being

exceptionally slow.

As seen in Figures 2.1 and 2.2, the HAMABS algorithm is the fastest to optimize most of the

models. The HAMABS algorithm has two stages. In the first stage, the exact Hessian is calculated

on a small sample. In the second stage, the Hessian is approximated on larger batch size. Each

of these stages balances the trade-off between computational cost and precision: calculating

27

Chapter 2. Efficient estimation of complex choice models on large datasets

0

0.2

0.4

0.6

0.8

1

1 2 5 10 20 50 114

π

P
r
(r p

,α
≤
π
) GD

BFGS
BFGS−1

TR-BFGS
NM
TR

(a) Standard non-stochastic algorithms

0

0.2

0.4

0.6

0.8

1

1 2 5 10 20 50 114

π

P
r
(r p

,α
≤
π
) GD-ABS

BFGS-ABS
BFGS−1-ABS
TR-BFGS-ABS
NM-ABS
TR-ABS

(b) Stochastic AMABS algorithms

0

0.2

0.4

0.6

0.8

1

1 2 5 10 20 50 114

π

P
r
(r p

,α
≤
π
)

H-NM-ABS
H-TR-ABS
HAMABS

(c) Hybrid stochastic algorithms

Figure 2.2: Performance profiles on the execution time for all models in Table 2.4 splitted into
different groups of algorithms.

the exact Hessian is more computationally expensive and more precise than approximating

the Hessian. Using a smaller batch is less computationally expensive but accordingly less

precise. By counteracting these effects in each optimization stage, the HAMABS algorithm

achieves the fastest overall performance. Figure 2.3 shows the performance profile on the

epochs for all algorithms. Since the HAMABS algorithm is the second more robust algorithm

after the TR algorithm, it confirms the given interpretation.

28

2.4 Results

0

0.2

0.4

0.6

0.8

1

1 2 5 10 20 50 129

π

P
r
(r p

,α
≤
π
)

GD
BFGS
BFGS−1

TR-BFGS
NM
TR
GD-ABS
BFGS-ABS
BFGS−1-ABS
TR-BFGS-ABS
NM-ABS
TR-ABS
H-NM-ABS
H-TR-ABS
HAMABS

Figure 2.3: Performance profiles on epochs for the all models in Table 2.4 and all algorithms in
Table 2.3. The standard non-stochastic algorithms are shown in orange lines, the stochastic
algorithms in blue lines, and the hybrid algorithms in black.

Figure 2.4 splits Figure 2.3 based on the different groups of algorithms. Comparing the different

algorithms shows that second-order methods tend to use fewer epochs to achieve convergence.

Indeed, we can see in both Figure 2.4a and Figure 2.4b that the methods based on Newton’s

method (NM/NM-ABS) and Trust-Region method (TR/TR-ABS) are more robust than the other

algorithms. This is expected because these methods use the information on the curvature.

They thus require fewer steps to complete the estimation process. We also see that second-

order methods using the full size dataset, NM and TR, are using less epochs than the stochastic

methods, NM-ABS and TR-ABS. This is also expected since the stochastic algorithms use less

information per step. They thus need to perform many more steps, often leading to more

epochs, to gain the same knowledge. On the other hand, they spend less time on each step,

leading to a consequent speedup. It is interesting to note that the HAMABS algorithm is amongst

the algorithms using the least number of epochs. Indeed, it reaches a proportion of 100% with

a relative performance of 4. It, therefore, explains why this algorithm is that fast compared

to the AMABS algorithms. Also, we see that the H-NM-ABS tends to use more epochs than the

HAMABS algorithm. This could explain why HAMABS is the fastest algorithm. Tables E.4, E.5, and

E.6, in the appendix, provide the numerical results consists of the average number of epochs

with the standard deviation used by each algorithm to optimize each model.

2.4.4 Comparison with Biogeme

We now compare the performance of our best algorithm, the HAMABS algorithm, to Pandas Bio-

geme (Bierlaire, 2018), a state-of-the-art choice modeling software. Biogeme uses the Python

29

Chapter 2. Efficient estimation of complex choice models on large datasets

0

0.2

0.4

0.6

0.8

1

1 2 5 10 20 50 114

π

P
r
(r p

,α
≤
π
) GD

BFGS
BFGS−1

TR-BFGS
NM
TR

(a) Standard non-stochastic algorithms

0

0.2

0.4

0.6

0.8

1

1 2 5 10 20 50 114

π

P
r
(r p

,α
≤
π
) GD-ABS

BFGS-ABS
BFGS−1-ABS
TR-BFGS-ABS
NM-ABS
TR-ABS

(b) Stochastic AMABS algorithms

0

0.2

0.4

0.6

0.8

1

1 2 5 10 20 50 114

π

P
r
(r p

,α
≤
π
)

H-NM-ABS
H-TR-ABS
HAMABS

(c) Hybrid stochastic algorithms

Figure 2.4: Performance profiles on epochs for all models in Table 2.4 splitted into different
groups of algorithms.

package Scipy to optimize the models. This package’s default algorithm for minimization is

the BFGS−1. Table 2.5 reports the average time to optimize each model for both Biogeme and

the HAMABS algorithm. Besides, the last column shows the speedup gained using the HAMABS
algorithm instead of Scipy. If the HAMABS algorithm is faster than the benchmark, the speedup

is greater than 1 and shows the ratio between the optimization time. On the other hand, if the

speedup is less than 1, the HAMABS algorithm is slower than the benchmark.

30

2.4 Results

Table 2.5: Comparison of the optimization time for all models in Table 2.4 between the HAMABS
algorithm and Biogeme. The time are reported in seconds. The speedup corresponds to a
ratio between the two compared values.

Models
Time [s]

Speedup
HAMABS Biogeme/Scipy

LPMC_DC_S 1.86±0.12 1.62±0.01 0.87

LPMC_DC_M 3.11±0.20 2.79±0.02 0.90

LPMC_DC_L 4.59±0.32 4.07±0.04 0.89

LPMC_RR_S 11.98±1.23 65.17±0.09 5.44

LPMC_RR_M 18.46±1.06 127.67±0.30 6.91

LPMC_RR_L 18.14±1.06 177.09±0.29 9.76

LPMC_Full_S 257.02±42.85 1462.51±14.41 5.69

LPMC_Full_M 405.43±43.77 2480.06±18.27 6.12

LPMC_Full_L 486.31±63.38 4758.28±45.22 9.78

MTMC 1243.95±56.21 28008.10±528.33 22.52

Results presented in Table 2.5 show that the algorithm HAMABS is generally faster than the

Scipy package. On the models LPMC_DC, that have few parameters, the HAMABS algorithm is

slower with a ratio around 1.15. However, the HAMABS becomes faster than the Scipy package

on the models LPMC_RR and LPMC_Full that include more parameters. This implies that a

model that previously took minutes, or hours to converge, is now optimized in only a few

seconds or minutes, respectively. The most important gain is in optimizing the largest model,

the MTMC model, with a speedup ratio exceeding 22. While Biogeme takes around seven and a

half hours to converge, our HAMABS algorithm converges in less than 20 minutes.

Table 2.6 compares the two algorithms based on the number of epochs used for optimization.

Results show that the computational gains achieved by our HAMABS algorithm are even more

important in terms of the number of epochs. For Biogeme and the Scipy package, the number

of epochs is directly correlated to the number of parameters. As a result, the number of

epochs highly depends on the model’s size. For example, the MTMC models uses hundred times

more epochs to be optimized than the LPMC_DC models. For our HAMABS algorithm, on the

other hand, the number of epochs used is more stable across the different models. Indeed,

the average number of epochs doubles between the smallest and the largest models. On

the MTMC model, the speedup ratio in number of epochs between Biogeme and our HAMABS
algorithm exceeds 600. The stopping criterion is the reason behind these discrepancies in the

number of epochs. The Scipy package uses the standard, yet incorrect, gradient value as the

stopping criterion. If the objective function and its derivatives are not correctly normalized,

this criterion can either stop the algorithm too early or too late. Therefore, using an appropriate

stopping criterion makes an important difference in terms of epochs while keeping sufficient

precision, as seen in the last column of Table 2.6. Indeed, we see that the relative difference in

31

Chapter 2. Efficient estimation of complex choice models on large datasets

log likelihood between the two methods is never larger than 2×10−4 %.

Table 2.6: Comparison of the epochs used in the optimization process for all models in
Table 2.4 between the HAMABS algorithm and Biogeme. The speedup corresponds to a ratio
between the two compared values. The last column corresponds to the relative difference in
percentage between the log likelihood returned by Biogeme and by the HAMABS algorithm.

Models
Epochs

Speedup ∆L [%]
HAMABS Biogeme/Scipy

LPMC_DC_S 13.79±1.70 122 8.85 3.20×10−6

LPMC_DC_M 13.50±2.05 114 8.44 3.13×10−6

LPMC_DC_L 12.57±1.93 123 9.78 5.43×10−6

LPMC_RR_S 15.31±2.53 787 51.40 5.00×10−5

LPMC_RR_M 13.95±1.67 809 57.97 3.28×10−5

LPMC_RR_L 9.55±0.56 772 80.84 2.87×10−4

LPMC_Full_S 24.98±2.16 1786 71.50 1.45×10−4

LPMC_Full_M 20.42±1.84 1531 74.96 2.13×10−4

LPMC_Full_L 21.36±2.05 1996 93.44 8.02×10−5

MTMC 18.63±1.58 11920 639.88 2.01×10−4

The similar ratios between the models LPMC_RR and LPMC_Full, can be due to the added

complexity on the LPMC_Full models. Indeed, in these models, multiple parameters are

computed on small populations. This leads to an increase in complexity, and the stochasticity

might not be that helpful. The algorithm has to perform more steps at full size to find the

parameter values for these small groups. We thus lose some time at the end of the optimization

process compared to LPMC_RR models.

In definitive, our results showed that the HAMABS algorithm is not only the fastest among the

15 algorithms in Table 2.3, but it is also much faster than the current implementation of the

state-of-the-art choice modeling software Biogeme.

2.4.5 Sensitivity analysis

We want now to test the sensitivity of the HAMABS algorithm’s parameters to make sure we

validate the choice of the default parameters given in Algorithm 2.3. We selected the three

following models to perform the sensitivity study: LPMC_DC_L, LPMC_RR_L, and LPMC_Full_L.

The sensitivity analysis was performed on the estimation time of these models by the HAMABS
algorithm. Each model was trained 20 times for all the test valuesin Table 2.7.

All results are reported using graphs indicating the relative performance on the vertical axis.

In addition, all performances are normalized to the execution time obtained with the default

parameter values (base value of 1) to ease the comparison of results across the models.

32

2.4 Results

Table 2.7: Parameter values of the HAMABS algorithm used for the sensitivity analysis. We refer
the reader to Algorithm 2.3 for a detailed explanation of the parameters.

Parameter Default Test values

W 10 [1, 2, 3, · · · , 18, 19, 20]

∆ 1% [0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100]

C 2 [1, 2, 3, · · · , 13, 14, 15]

τ 2 [1.1, 1.2, 1.3, 1.4, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10]

∆H 30% [0, 5, 10, · · · , 90, 95, 100]

ε 10−6 [10−9, 10−8, · · · , 10−1, 100]

N ′
init 1.23% (1000) [1, 1.23, 2, 5, 10, 20, 50, 100]

Figure 2.5 shows the analysis for the parameter W ; the window size. The results are similar

across all models. Indeed, small values of W lead to an increase in the execution time. It can

be explained by the fact that the average is noisy if the window is too small. Therefore, the

computation of the improvement of the log likelihood is not precise. It thus increases the

batch size too soon or too late. This thus leads to an increase in the total execution time. Large

values for W do not affect the optimization process as much as small values. We see a small

increase in the execution time in Figure 2.5b when W is large. Indeed, if we use large values of

W , the average is less influenced by the new data points. Thus, algorithms using AMABS show

a slower reaction. Therefore, a good value for W has to be in the middle. We thus propose to

use W = 10.

Figure 2.6 shows the analysis for the parameter ∆; the threshold for successful iterations. This

parameter represents a trade-off between using a small batch size for too long on models that

are easy to optimize and switching too soon to a large batch size on models that are difficult

to optimize. From Figure 2.6, we select 1% as the value for this parameter as it is the turning

point on the curve (where it begins to plateau) and so represents a good balance between

these effects.

Figure 2.7 shows the analysis for the parameter C ; the maximum number of unsuccessful

iterations with the same batch size. It is interesting to note that the relationship between the

execution time and this parameter value is linear for the three models. Therefore, it is evident

that using a value of 1 for C is faster. However, the advantage is reduced with the model’s

size, as we can see when comparing Figure 2.7a and Figure 2.7c. Besides, if the count is set

to 1, it could trigger a false positive. Indeed, if the value of the window, W , is too small, an

exceptionally lousy batch of data may increase the batch size while the log likelihood can

still be improved. It is thus preferable to slightly slow the execution time but increase the

algorithm’s robustness. That is the reason we propose to use C = 2.

33

Chapter 2. Efficient estimation of complex choice models on large datasets

0 2 4 6 8 10 12 14 16 18 20

1

2

3

4

W

R
el

at
iv

e
p

er
fo

rm
an

ce Proposed value
Other values

(a) LPMC_DC_L

0 2 4 6 8 10 12 14 16 18 20

1

2

3

4

W

R
el

at
iv

e
p

er
fo

rm
an

ce Proposed value
Other values

(b) LPMC_RR_L

0 2 4 6 8 10 12 14 16 18 20

1

2

3

4

W

R
el

at
iv

e
p

er
fo

rm
an

ce Proposed value
Other values

(c) LPMC_Full_L

Figure 2.5: Sensitivity analysis for the parameter W for the three LPMC models using the large
dataset. The black error bars correspond to the tested values and the red to the proposed value.
The gray line correspond to the benchmark with the proposed parameters for the relative
performance. The horizontal axis corresponds to the candidate parameter values and the
vertical axis to the relative performance measured as time to convergence.

34

2.4 Results

10−1 100 101 102
0

2

4

6

8

10

∆ [%]

R
el

at
iv

e
p

er
fo

rm
an

ce Proposed value
Other values

(a) LPMC_DC_L

10−1 100 101 102
0

2

4

6

8

10

∆ [%]

R
el

at
iv

e
p

er
fo

rm
an

ce Proposed value
Other values

(b) LPMC_RR_L

10−1 100 101 102
0

2

4

6

8

10

∆ [%]

R
el

at
iv

e
p

er
fo

rm
an

ce Proposed value
Other values

(c) LPMC_Full_L

Figure 2.6: Sensitivity analysis for the parameter ∆ for the three LPMC models using the large
dataset. The black error bars correspond to the tested values and the red to the proposed value.
The gray line correspond to the benchmark with the proposed parameters for the relative
performance. The horizontal axis corresponds to the candidate parameter values and the
vertical axis to the relative performance measured as time to convergence.

35

Chapter 2. Efficient estimation of complex choice models on large datasets

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

C

R
el

at
iv

e
p

er
fo

rm
an

ce Proposed value
Other values

(a) LPMC_DC_L

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

C

R
el

at
iv

e
p

er
fo

rm
an

ce Proposed value
Other values

(b) LPMC_RR_L

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

C

R
el

at
iv

e
p

er
fo

rm
an

ce Proposed value
Other values

(c) LPMC_Full_L

Figure 2.7: Sensitivity analysis for the parameter C for the three LPMC models using the large
dataset. The black error bars correspond to the tested values and the red to the proposed value.
The gray line correspond to the benchmark with the proposed parameters for the relative
performance. The horizontal axis corresponds to the candidate parameter values and the
vertical axis to the relative performance measured as time to convergence.

36

2.4 Results

Figure 2.8 shows the analysis for the parameter τ; the expansion factor for the batch size.

This parameter is crucial since it decides how fast the algorithm uses the full dataset for its

iterations. As expected, a small value for τ leads to a longer execution time for all three models.

However, a larger value for τ is more efficient for the smaller models. Indeed, for both the

LPMC_DC_L and the LPMC_RR_L, using larger values lead to around 20% decrease in execution

time. Since these models are quite small in the number of parameters, they already profit

greatly from the starting batch size. It is more favorable to switch the optimization algorithm

and use more data. However, it seems that for the model LPMC_Full_L, switching too soon

leads to more variance in the execution time. Therefore, staying more robust and using a

smaller value for τ is better. We thus propose to use τ= 2.

Figure 2.9 shows the analysis for the parameter ∆H ; the threshold for hybridization. Inter-

estingly, this parameter does not influence the execution time for the smallest model, the

LPMC_DC_L. As discussed in Section 2.4.3, the HAMABS algorithm is not the fastest algorithm

for the LPMC_DC models. Also, the execution is so small that the difference between Newton’s

method and BFGS is small. In addition, we see in Table E.1, that Newton’s method is faster

than BFGS−1 on this particular model. Therefore, it is better to switch as late as possible.

For the slightly larger model, LPMC_RR_L, high thresholds increase the execution time. As

shown in Table E.1, the BFGS methods are faster to optimize the models LPMC_RR. Therefore,

switching to BFGS too late is expected to increase the execution time. However, it seems that

switching as quickly as possible to BFGS is the most efficient for this model. This is most likely

thanks to the help of the Hessian computation at the first step. Indeed, the BFGS algorithm

generally starts with an Identity matrix. However, if we first perform a Newton step with the

computation of the Hessian, it gives a good approximation as the starting point. Therefore, a

smaller threshold for hybridization is recommended for the medium models. However, since

the goal is to optimize large models as soon as possible, it is more important to use parameters

specifically proposed for these models. As seen in Figure 2.9c, the best switch appears at

around 30% of the data. It is slower to switch too soon since BFGS still takes more time than

Newton’s method to perform the early steps. Furthermore, it is also slower to switch later since

Newton’s method takes too much time to compute the Hessian. Therefore, the proposed value

is ∆H = 30%.

Figure 2.10 shows the analysis for the parameter ε; the threshold for the stopping criterion.

As shown in Figure 2.10, using a stopping criterion that is too high is faster. However, it also

leads to incorrect results. Indeed, the algorithm stops too soon, and the optimization has

not yet converged to the optimal point. This means that we lose accuracy on the parameter

values. We also see that using a too small stopping criterion leads to a significant increase in

execution time. In this case, this level of required precision is unreasonable. Therefore, a good

value is a compromise between precision and speed. As shown in all these figures, a value for

the stopping criterion between 10−8 and 10−5 is acceptable. We propose to use 10−6 even if

other values can be used.

37

Chapter 2. Efficient estimation of complex choice models on large datasets

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

τ

R
el

at
iv

e
p

er
fo

rm
an

ce Proposed value
Other values

(a) LPMC_DC_L

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

τ

R
el

at
iv

e
p

er
fo

rm
an

ce Proposed value
Other values

(b) LPMC_RR_L

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

τ

R
el

at
iv

e
p

er
fo

rm
an

ce Proposed value
Other values

(c) LPMC_Full_L

Figure 2.8: Sensitivity analysis for the parameter τ for the three LPMC models using the large
dataset. The black error bars correspond to the tested values and the red to the proposed value.
The gray line correspond to the benchmark with the proposed parameters for the relative
performance. The horizontal axis corresponds to the candidate parameter values and the
vertical axis to the relative performance measured as time to convergence.

38

2.4 Results

0 10 20 30 40 50 60 70 80 90 100

1

2

3

∆H [%]

R
el

at
iv

e
p

er
fo

rm
an

ce Proposed value
Other values

(a) LPMC_DC_L

0 10 20 30 40 50 60 70 80 90 100

1

2

3

∆H [%]

R
el

at
iv

e
p

er
fo

rm
an

ce Proposed value
Other values

(b) LPMC_RR_L

0 10 20 30 40 50 60 70 80 90 100

1

2

3

∆H [%]

R
el

at
iv

e
p

er
fo

rm
an

ce Proposed value
Other values

(c) LPMC_Full_L

Figure 2.9: Sensitivity analysis for the parameter∆H for the three LPMC models using the large
dataset. The black error bars correspond to the tested values and the red to the proposed value.
The gray line correspond to the benchmark with the proposed parameters for the relative
performance. The horizontal axis corresponds to the candidate parameter values and the
vertical axis to the relative performance measured as time to convergence.

39

Chapter 2. Efficient estimation of complex choice models on large datasets

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100
0

2

4

6

8

10

ε

R
el

at
iv

e
p

er
fo

rm
an

ce Proposed value
Other values
Did not converge

(a) LPMC_DC_L

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100
0

2

4

6

8

10

ε

R
el

at
iv

e
p

er
fo

rm
an

ce Proposed value
Other values
Did not converge

(b) LPMC_RR_L

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100
0

2

4

6

8

10

ε

R
el

at
iv

e
p

er
fo

rm
an

ce Proposed value
Other values
Did not converge

(c) LPMC_Full_L

Figure 2.10: Sensitivity analysis for the parameter ε for the three LPMC models using the
large dataset. The black error bars correspond to the tested values, the red to the proposed
value, and the gray to optimization that were stopped too early and thus did not fully converge.
The gray line correspond to the benchmark with the proposed parameters for the relative
performance. The horizontal axis corresponds to the candidate parameter values and the
vertical axis to the relative performance measured as time to convergence.

40

2.4 Results

100 101 102
0

5

10

N ′
init [%]

R
el

at
iv

e
p

er
fo

rm
an

ce Proposed value
Other values

(a) LPMC_DC_L

100 101 102
0

5

10

N ′
init [%]

R
el

at
iv

e
p

er
fo

rm
an

ce Proposed value
Other values
Did not converge

(b) LPMC_RR_L

100 101 102
0

5

10

N ′
init [%]

R
el

at
iv

e
p

er
fo

rm
an

ce Proposed value
Other values

(c) LPMC_Full_L

Figure 2.11: Sensitivity analysis for the parameter N ′
init for the three LPMC models using the

large dataset. The black error bars correspond to the tested values, the red to the proposed
value, and the gray to optimization that were stopped too early. The gray line correspond to the
benchmark with the proposed parameters for the relative performance. The horizontal axis
corresponds to the candidate parameter values and the vertical axis to the relative performance
measured as time to convergence.

41

Chapter 2. Efficient estimation of complex choice models on large datasets

Finally, Figure 2.11 shows the analysis for the parameter N ′
init; the initial batch size. For the

small model, Figure 2.11a, the initial batch size does not impact the final optimization time.

This behavior is expected as the optimization of this model using the HAMABS algorithm is

relatively slow compared to standard methods, e.g. BFGS. Indeed, the fastest estimation time

of the model corresponds to a batch size of 100%, which is equivalent to the BFGS−1 method.

For the remaining two models, any initial batch size between 1% and 10% of the dataset

reached the same performance. Values above 10% slow down the algorithm.

As the algorithm can easily and quickly increase the batch size if it gets stuck, it is recom-

mended to use the smallest possible batch size when optimizing with stochastic methods. We,

thus, decided to use an initial batch size of 1’000 observations, 1.23% for this dataset.

The sensitivity analysis shows that the parameters might depend on the model’s size. However,

the goal of this article is to speed up the optimization process of large choice models. Therefore,

we selected parameters that lead to an improvement on these large models. Besides, half the

execution time of a small model would only result in a gain of a few seconds. On the other

hand, the same speedup would lead to minutes or even hours on larger models. It is, therefore,

more rewarding to speed up the larger models.

2.5 Summary

In this chapter, we present three primary contributions to estimate DCMs: usage of stochastic

hessian, an adaptive batch size method, and the hybridization between optimization algo-

rithms. We test 15 different algorithms, from standard to stochastic hybrid adaptive batch

size algorithms. We show that using an adaptive batch size technique is beneficial for the

optimization time. Besides, since the AMABS method can be used with different optimization

algorithms, we created three hybrid AMABS algorithms. We have shown that the fastest algo-

rithm is the HAMABS algorithm. It speeds up the optimization by a factor of up to 23 on larger

DCMs. Therefore, using faster algorithms opens the research to new possibilities for the future

of choice modeling. As a concrete example, faster optimization time allows researchers to

test many more specifications in the same amount of time. This can thus be used to develop

Assisted Utility Specification (AUS) techniques to speed up the modelization of DCMs.

In the future, we would like to work on two different improvements. The first one concerns

hybridization. The current way of doing it depends on the starting batch size. Indeed, due

to the geometrical rule to increase the batch size in AMABS, it would be possible to miss the

30% mark to switch the optimization algorithm. Therefore, we would like to work on a better

switch for hybridization. One possible direction is to compare the improvement made by

each algorithm in one step over the time it takes to do it. We would then have a metric in the

percentage of improvement over seconds, and we could easily decide to switch the algorithm

when BFGS leads to more improvements per second. The second improvement can be made

on the rule for updating the batch size in AMABS. Indeed, the geometrical rule seems to work

well. However, it is possible that combining multiple rules could lead to faster optimization

42

2.5 Summary

time. The final improvement is to integrate algorithms dealing with bounds. Indeed, nested

logit and Multivariate Extreme Value (MEV) models require bounds for some parameters. It is

thus essential to integrate them into future optimization algorithms. Finally, we hope to see

the HAMABS algorithm integrated in Pandas Biogeme to help all users estimate DCMs more

efficiently.

43

3 Generating synthetic data from deep
learning with expert knowledge

This chapter is based upon the following preprint that has been submitted to the

Journal of Transportation Research Part C: Emerging Technologies:

Lederrey, Gael, Hillel, Tim and Bierlaire, Michel. DATGAN: Integrat-

ing expert knowledge into deep learning for synthetic tabular data.

arXiv:2203.03489 [cs], March 2022. https://arxiv.org/abs/2203.03489. arXiv:

2203.03489.

3.1 Introduction

A massive increase in data availability has created tremendous opportunities for targeted

modeling and a greater understanding of systems, particularly those involving human be-

havior. However, reliance on data creates a division based on data. For example, leading

international cities in developed nations produce rich data about population movements and

interactions with infrastructures. On the other hand, undeveloped nations have much lower

data availability. The collection of such data, particularly socio-economic, can be prohibitively

expensive. It can, thus, prevent non-data-rich areas from modeling. Furthermore, data can

be controlled by certain groups (companies, government, or public agencies), who may be

unwilling or unable to make complete data publicly available. In addition, sharing detailed

disaggregated socio-economic data has become increasingly complex with the current focus

on data privacy via the General Data Protection Regulation (GDPR). Thus, synthetic data

generation, i.e. the creation of synthetic data samples consistent with the true population, has

the opportunity to address many of these limitations.

There are multiple use cases for synthetic tabular data: (i) The most common use case is dataset

augmentation. It can allow researchers and modelers to approximate a large population from

a smaller sample, thus reducing the cost of data collection. (ii) Secondly, synthetic data can

be used for privacy preservation. It can, then, enable the sharing of detailed disaggregate

45

https://arxiv.org/abs/2203.03489

Chapter 3. Generating synthetic data from deep learning with expert knowledge

populations without contravening GDPR and other data privacy laws. (iii) Another use case

is bias correction. Synthetic data can correct bias in existing samples, allowing for reliable

modeling of marginal, minority groups, and behavior. (iv) Finally, synthetic data generation

models can be used as transfer learning methods. They can thus be used to transfer data from

one city or context to a new context, allowing for detailed modeling where existing high-quality

data is not available. In this chapter, we focus on synthetic data generation in the context

of synthetic population. Such populations are generally used for simulation in agent-based

models, particularly for activity-based transport models. However, the techniques proposed

and reviewed in this chapter can be used in any context where there is a need for detailed

tabular datasets.

Many methods have been developed to generate such synthetic populations in existing studies.

The two main approaches are statistical techniques such as Iterative Proportional Fitting

(IPF) (Deming and Stephan, 1940) or simulation using Gibbs sampling (Geman and Geman,

1984), and machine learning techniques. While the first approaches have been well studied

within the transportation community, the latter comes from the Machine Learning community

and generally focuses on general synthetic data. These deep learning methods, such as

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), have already been tested

against standard statistical techniques and outperform them while generating correlations in

synthetic datasets. However, these methods are data-driven. They, therefore, lack control over

the generation process. Without controlling the latter, it is impossible to know how well the

deep learning models have understood the original sample, i.e. which correlations between

the variables in the original dataset the models have learned. It can, thus, lead to spurious

correlations or propagation of existing bias in the sample. In addition, there is generally no

focus on the representativity of the output, which is crucial for the accurate understanding of

socio-economic characteristics.

This chapter, thus, proposes a novel model that controls the generation process of such

synthetic tabular data. We propose to let the researcher or modeler design a network to

represent the interactions between the variables with a Directed Acyclic Graph (DAG). This

DAG is then used to model the network structure that will generate the synthetic data. Allowing

researchers to control the process has three main advantages: they can tinker with the data

generation process, create hypothetical datasets, and control the dependencies for forecasting.

In this chapter, we thus present our new GAN model named Directed Acyclic Tabular GAN

(DATGAN). We show that it outperforms state-of-the-art synthetic data generators on multiple

metrics. These metrics have been created to allow for systematic testing using formal statistical

analysis and supervised learning-based approaches. We also provide a sensitivity analysis on

the DAG to show its effect on the data generation process. Finally, we show how the DAG can

create hypothetical situations and generate a synthetic dataset based on the new rules.

The rest of this chapter is laid as follows. In the next section, we present the literature review.

We first introduce the existing approaches for population synthesis and then discuss the

different research axes. Finally, we conclude the literature review with the opportunities and

46

3.2 Literature review

limitations of existing research. In Section 3.3, we present the whole methodology for the

DATGAN. We discuss how to preprocess the data, what models are used for the generator

and the discriminator, and how to use the DAG to create the generator’s structure using Long

Short-Term Memory (LSTM) cells. Section 3.4 presents the case studies and Section 3.5 shows

the results. We conclude this chapter in Section 3.6 and give ideas for future work.

3.2 Literature review

There are five main research axes for synthetic tabular data generation: simulation/activity-

based modeling, Machine Learning (ML) efficacy, bias correction, privacy preservation, and

transfer learning. These research axes are discussed in detail in Section 3.2.2. The literature

review first focuses on population synthesis with older methods such as IPF and Gibbs sam-

pling. Then, we look at more general ML techniques for synthetic tabular data generation.

Then, in Section 3.2.3, we discuss in more detail some state-of-the-art models that we selected

to compare to the model presented in this article. Next, Section 3.2.4 is dedicated to model

evaluation and shows how the transportation and ML communities are evaluating generated

synthetic datasets. Finally, in Section 3.2.5, we discuss the opportunities and limitations of

these techniques linked to the five research axes.

3.2.1 Existing approaches for synthetic tabular data generation

One of the primary uses of synthetic tabular data has been for the creation of synthetic

populations, in particular for transportation research. As a result, many research contributions

focus specifically on this topic, using different techniques. Table 3.1 summarizes all the

methodologies seen in the literature used to generate synthetic tabular data or synthetic

populations. In this section, we provide a detailed discussion of all these methods.

Resampling and simulation-based approaches are the two main methods to generate syn-

thetic populations within the transportation community. The first one is based on IPF meth-

ods (Deming and Stephan, 1940). It consists of adjusting a matrix proportionally to produce a

new table so that the specified marginals are individually conserved. Beckman et al. (1996),

first, use this methodology to create a synthetic population based on the SF3 (San Francisco

area) census data. Auld et al. (2009) and Barthelemy and Toint (2013) both propose to improve

the IPF methodology using a multi-step procedures. While IPF methods are simple to imple-

ment, this technique has multiple significant limitations in generating highly detailed and

realistic synthetic tabular data. Firstly, there is no interaction between the variables with the

basic algorithm. It is possible to add these interactions by adding more dimensions to the

table. However, for each level of interaction, one more dimension has to be added to the table.

It, thus, quickly becomes a computationally expensive algorithm. In addition, IPF cannot

differentiate between structural and sampling zeros. Multiple methods have been suggested

to avoid sampling zero issues in the literature, such as Auld et al. (2009). Finally, IPF cannot

differentiate between the different data types (categorical and continuous). Thus, researchers

47

Chapter 3. Generating synthetic data from deep learning with expert knowledge

Tab
le

3.1:M
ain

m
eth

od
s

for
syn

th
etic

tab
u

lar
d

ata
gen

eration
fou

n
d

in
th

e
tran

sp
ortation

literatu
re

an
d

in
th

e
M

ach
in

e
Learn

in
g

com
m

u
n

ity.

M
eth

o
d

s
D

escrip
tio

n
R

eferen
ces

A
d

van
tages

D
isad

van
tages

IP
F

M
eth

o
d

u
sin

g
a

startin
g

syn
th

etic
tab

le
an

d
iteratively

u
p

d
ate

it
to

m
atch

th
e

m
argin

als
o

fan
o

rigin
altab

le.

A
u

ld
etal.(2009);

B
arth

elem
y

an
d

To
in

t(2013);R
ich

(2018)

•
E

ffi
cien

tin
its

b
asic

fo
rm

•
Sim

p
le

to
im

p
lem

en
t

•
N

o
in

teractio
n

s
b

etw
een

variab
les

•
C

o
m

p
u

tatio
n

ally
exp

en
sive

ifm
o

re
co

m
p

lexity
ad

d
ed

•
P

ro
n

e
to

sam
p

lin
g

zero
issu

e

•
N

o
d

ifferen
ces

b
etw

een
d

ata
typ

es

G
ib

b
s

sam
p

lin
g

G
ib

b
s

sam
p

ler
train

ed
u

n
tilreach

in
g

sta-
tio

n
ary

state
o

n
p

rep
ared

co
n

d
itio

n
als.

Faro
o

q
etal.

(2013);C
asatietal.

(2015);K
im

an
d

Lee
(2016)

•
Learn

fro
m

m
argin

als

•
O

u
tp

erfo
rm

s
IP

F

•
C

an
b

e
lin

ked
to

o
th

er
m

eth
o

d
s

•
N

o
in

teractio
n

s
b

etw
een

variab
les

•
C

o
m

p
u

tatio
n

ally
exp

en
sive

•
P

ro
b

ab
ility

d
istrib

u
tio

n
s

are
an

assu
m

p
tio

n

B
ayesian

n
etw

o
rks

P
ro

b
ab

ilistic
grap

h
ical

m
o

d
el

u
sed

to
d

eterm
in

e
p

ro
b

ab
ilistic

in
feren

ces
b

e-
tw

een
th

e
variab

les.

Su
n

an
d

E
rath

(2015);Z
h

an
g

etal.
(2019a)

•
D

ep
en

d
en

cies
o

fvariab
les

d
efi

n
ed

p
rio

r
to

train
in

g

•
P

ro
b

ab
ilistic

m
o

d
el

•
R

eq
u

ires
p

rio
r

in
fo

rm
atio

n
o

n
th

e
d

ataset

•
C

o
m

p
u

tatio
n

ally
exp

en
sive

w
h

en
d

ealin
g

w
ith

large
an

d
sp

arse
d

atasets

V
A

E

Pair
o

fn
eu

raln
etw

o
rks

co
m

p
o

sed
o

fan
en

cod
er

an
d

a
d

ecod
er.Tran

sform
s

d
ata

in
a

laten
tsp

ace
to

red
u

ce
its

d
im

en
sion

-
ality.

T
h

e
en

co
d

in
g-d

eco
d

in
g

sch
em

e
h

as
to

b
e

learn
ed

.

G
arrid

o
etal.

(2019);X
u

etal.
(2019)

•
A

im
s

to
learn

a
laten

trep
resen

tatio
n

o
fth

e
variab

les

•
Laten

tsp
ace

is
su

itab
le

fo
r

in
feren

ce
an

d
co

m
p

letio
n

o
fd

ata

•
M

igh
tn

o
tb

e
ab

le
to

learn
th

e
tru

e
p

o
sterio

r
d

istrib
u

tio
n

•
O

u
tp

erfo
rm

ed
b

y
G

A
N

s

G
A

N

P
air

o
f

n
eu

ral
n

etw
o

rks
co

m
p

o
sed

o
f

a
gen

erato
r

an
d

a
d

iscrim
in

ato
r.T

h
e

gen
-

erator
is

train
ed

to
foolth

e
d

iscrim
in

ator.
L

earn
in

g
p

ro
cess

is
a

tw
o

p
layers

m
in

i-
m

ax
gam

e.

G
o

o
d

fellow
etal.

(2014);X
u

an
d

Veeram
ach

an
en

i
(2018);X

u
etal.

(2019);Z
h

ao
etal.

(2021)

•
G

en
erato

r
n

ever
sees

tru
e

d
ata

(p
rivacy

en
su

red
)

•
A

rch
itectu

res
o

fb
o

th
n

eu
raln

etw
o

rks
are

fl
exib

le

•
C

u
rren

tstate-o
f-th

e-artgen
erative

m
o

d
el

•
E

q
u

ilib
riu

m
b

etw
een

b
o

th
n

eu
ral

n
etw

o
rks

d
iffi

cu
ltto

ach
ieve

•
D

ep
en

d
en

cies
o

fvariab
les

can
n

o
tb

e
co

n
tro

lled

48

3.2 Literature review

have developed new techniques to generate synthetic populations, such as Markov Chain

Monte Carlo (MCMC) simulation.

Farooq et al. (2013) proposes to use a MCMC simulation using Gibbs sampling to generate

synthetic populations. The idea is to draw from an (unknown) multi-dimensional random

variable characterizing the distribution of individuals in the population using a Gibbs sampler.

The marginals and conditional distributions used by the Gibbs sampler are generated from

real data. Since the full-conditionals are rarely available for all the attributes in the original

data, the authors use a parametric model to construct the missing conditional distributions.

The authors show that this simulation technique outperforms IPF methods using multiple

statistical metrics such as R2 and Standardized Root Mean Squared Error (SRMSE) (Müller and

Axhausen, 2010). Multiple improvements have been made on the original method (Casati et al.,

2015; Kim and Lee, 2016; Philips et al., 2017). However, while simulation-based techniques

outperform IPF techniques, these methods still have limitations in the context of synthetic

population generation. The main issue is that the models are working with conditionals only.

This can be an advantage if only this information is available. However, since MCMC methods

must assume the type of probability distributions the variables follow, wrong assumptions

can lead to fundamentally incorrect distributions.

While these statistical methods have been widely used in the transportation community, they

are outdated compared to ML techniques. For example, Borysov et al. (2019) show that their

ML-based approaches outperform MCMC-based approaches on multiple criteria. Indeed,

recent advances in Machine Learning and data generation techniques have enabled new

approaches for generating synthetic data. We identify three primary ML-based approaches

that have been used for this purpose: Bayesian networks, VAE, and GANs.

Sun and Erath (2015) use Bayesian networks to generate such populations. Bayesian networks

are graphical models that encode probability distributions for a set of variables. They use

a DAG to represent the dependencies between the variables and a set of local probability

distributions for each variable in the original table and given conditional probabilities. The

authors show that their model outperforms both IPF and Gibbs sampling. Zhang et al. (2019a)

extended this concept further by using a three-step procedure to generate a population and its

social network. They use a Bayesian network to create a synthetic population of households, an

integer problem with Langrangian relaxation for the assignment problem, and an Exponential

Random Graph Model (ERGM) for the social network simulation.

VAEs (Kingma and Welling, 2014) aim to reduce the dimensionality of the data into an encoded

vector in the latent space. Data can then be generated more easily in this latent space since it

is smaller in dimensionality. For example, Borysov et al. (2019) have used a VAE to generate

a synthetic population. They demonstrated that their VAE model outperforms both IPF and

Gibbs sampling for generating complex data. However, this type of method has quickly been

outperformed by the current state-of-the-art method for generating synthetic data: GANs.

GANs (Goodfellow et al., 2014) are considered the state-of-the-art methodology to generate

49

Chapter 3. Generating synthetic data from deep learning with expert knowledge

synthetic data. It consists of a two-player game between two neural networks, the generator

and the discriminator. Both neural networks compete against each other on independent,

unsupervised tasks. The generator processes random noise to produce synthetic data. Its goal

is to generate synthetic data that cannot be distinguished from original data to fool the dis-

criminator. On the other hand, the discriminator (or critic) evaluates the synthetic data against

original data to provide a classification or continuous score on each data point on whether the

data is original or synthetic. The generator is then trained through backpropagation. Since the

generator and the discriminator can always improve, no specific methodology exists to stop

this game. Thus, one stops it when the sampled data are considered good enough. Figure 3.1

shows the schematic representation of a GAN. The interactive visualization GAN Lab (Kahng

et al., 2019) provides an interesting tool to visualize and understand how GANs operate at

https://poloclub.github.io/ganlab/.

Noise Generator Discriminator

Synthetic
dataset

Tsynth

Original
dataset

T

inputoutput

input

input backpropagation

Figure 3.1: Schematic representation of the standard GAN structure.

GANs have quickly evolved to become more specialized. For example, Arjovsky et al. (2017)

demonstrate that using a discrete loss function results in issues such as vanishing gradients.

They thus propose an alternative continuous loss function based on the Wasserstein distance.

This GAN is therefore named Wasserstein GAN (WGAN). Further key developments in GAN

research include the introduction of a penalty on the gradient during model training (Gulrajani

et al., 2017) or the addition of conditionality (Mirza and Osindero, 2014). While the primary

application of GANs has been the generation of image data, with a particular focus on human

faces (Alqahtani et al., 2021), researchers have also developed specific architectures for tabular

50

https://poloclub.github.io/ganlab/

3.2 Literature review

data. It, thus, allowed transportation researchers to switch their focus to more general synthetic

tabular data generation rather than synthetic population generation.

TableGAN (Park et al., 2018) and Tabular GAN (TGAN) (Xu and Veeramachaneni, 2018) are two

specific GAN models for tabular data. TableGAN has been developed with privacy-preservation

techniques in mind. This model is based on Deep Convolutional GAN (DCGAN) (Radford et al.,

2016). On the other hand, TGAN has been developed to reproduce tabular data as realistically

as possible using LSTM cells for the generator (Hochreiter and Schmidhuber, 1997). The

authors demonstrated that TGAN outperforms tableGAN. Researchers have also developed

their GAN structures to generate synthetic populations in the transportation community.

For example, Garrido et al. (2019) develop their own GAN structure based on WGAN to use

tabular data. They show that this new model was statistically better than IPF techniques,

Gibbs sampling, and the VAE of Borysov et al. (2019). Finally, Badu-Marfo et al. (2020) created

a new GAN named Composite Travel GAN (CTGAN). Their GAN is based on Coupled GAN

(CoGAN) (Liu and Tuzel, 2016) and is used to generate the table of attributes for the population

and the sequence of Origin-Destination segments. They show that CTGAN outperforms VAE

statistically. While these models are showing outstanding performances compared to previous

methods, the switch to data-driven methods has hindered the control of the researchers or

modelers on the generation process. The lack of control during this process can hinder the

final results depending on the research axis. Thus, in the next section, we discuss multiple

axes found in the literature, some requiring high control of the generated synthetic data.

3.2.2 Research axes

The primary focus of existing population synthesis in transportation has been for direct use

in simulation models. On the other hand, the deep learning community motivates their

research by stating that using more data improves the efficacy of ML models. For example,

Jha et al. (2019) show that a larger and more complete dataset leads to better validation

and fewer uncertainties. Other examples discussing the dataset size can be found in the

literature (Barbedo, 2018; Linjordet and Balog, 2019). However, this is not the only synthetic

tabular data generation research axis. In the remainder of this section, we present and discuss

five different research axes for synthetic generation in the literature.

Simulation and agent-based modeling

Agent-based models (Bonabeau, 2002) are used to simulate the actions and interactions

of autonomous agents in order to understand the behavior of a system. These models are

extensively used in the transportation community (Kagho et al., 2020) and require a large

amount of data to be adequately trained. Synthetic data are, thus, often used to replace scarce

and expensive original data.

In the transportation community, the predominant focus for the population synthesis papers

51

Chapter 3. Generating synthetic data from deep learning with expert knowledge

introduced in Section 3.2.1 is for direct use in simulation. For example, Beckman et al. (1996),

Barthelemy and Toint (2013), Farooq et al. (2013), Borysov et al. (2019), and Garrido et al. (2019)

all motivate their work by discussing the generation of synthetic population for (agent-based)

simulation models.

Privacy preservation

Privacy preservation techniques ensure that private information is not disclosed using data or

ML models. Synthetic data can, thus, replace highly sensitive original data when privacy is of

concern. Methods using only the conditionals, such as IPF or Gibbs sampling, are especially

effective since the methods never use the original data to generate the synthetic data.

For example, Barthelemy and Toint (2013) motivate their model (a three-step procedure

based on simulation techniques) to improve the privacy preservation of the standard IPF

methods. They state that the standard method tends to repeat observations, and thus it is

possible to retrieve information from the original dataset. More recently, tableGAN (Park

et al., 2018) has been specifically designed to preserve the original datasets’ privacy. Multiple

GAN models have been created in computer vision, with privacy preservation as the core

motivation. For example, Liu et al. (2019) created the Privacy Preserving GAN (PPGAN). This

GAN uses differential privacy by adding specifically designed noise to the gradient during the

learning procedure. Yin and Yang (2018), on the other hand, directly generated protected data

within the generator of their GAN by removing some sensible information and encoding them

in the generated data. They tested their synthetic data against attack models to show that their

GAN could generate more complex data to be deciphered. More recently, Zhao et al. (2021)

motivate and test their model on privacy preservation.

Machine Learning efficacy

The generation of synthetic populations also enables the augmentation of existing real-world

datasets with synthetic individuals, increasing the dataset’s size and variability. Several studies

have investigated the estimation of ML techniques on augmented or fully synthetic data. This

concept is already widely used on images (Shorten and Khoshgoftaar, 2019). While simple

techniques such as rotating or scaling images can be used in Computer Vision, applying such

simple tricks to tabular data is impossible. Thus, researchers have been developing models

aiming at augmenting tabular data.

For example, Xu and Veeramachaneni (2018) motivate the development of TGAN because

organizations are using ML on relational tabular data to augment process workflows carried

out by humans. Furthermore, they state that these synthetic datasets can either be used as an

augmentation for the existing datasets or as a means to preserve privacy. On the other hand,

Xu et al. (2019) do not provide a clear motivation for using synthetic datasets. However, they

test their models on ML efficacy by replacing the training data with the generated synthetic

52

3.2 Literature review

data. More recently, both Wen et al. (2021) and Zhao et al. (2021) motivate their models using

ML efficacy as the core method to assess their generated synthetic datasets.

Bias correction

Synthetic data can also correct bias in existing datasets by controlling the data generation

process. It builds on standard resampling methods (Rubin, 1973) to rebalance the dataset,

which reduces the signal-to-noise ratio of the existing data (by removing oversampled data

or resampling undersampled data). Indeed, data generation techniques can also be used to

augment and rebalance an existing dataset.

For example, Conditional GANs (Mirza and Osindero, 2014) have been created to tackle such

imbalance issues. The idea of such GANs is to generate synthetic data using prior information.

They, thus, increase the probability of generating synthetic data with the given information.

Xu et al. (2019) have adapted this methodology to tabular data with Conditional Tabular GAN

(CTGAN). They show that the conditionality is truly efficient for ML models when the data

is highly imbalanced. They create synthetic datasets addressing the imbalance and trained

ML models on this synthetic and the original dataset. The models trained on the synthetic

datasets perform better than those trained on the original dataset. Previously, Farooq et al.

(2013) motivate their research on population synthesis with Gibbs sampling using the fact

that it can complete datasets. However, the authors have not formally evaluated this use of

synthetic data.

Transfer learning

The use of Conditional GANs and other conditional data generation approaches enables the

possibility for transfer learning, where knowledge from one context with large data availability

can be transferred to another context with lower data availability.

For example, Noguchi and Harada (2019) propose a new method using BigGAN to transfer

the knowledge learned on large datasets and apply this knowledge to a dataset with only 25

images. They show that they can add a new class to a pre-trained generator without disturbing

the performance of the original domain. Wang et al. (2020) propose to use a miner network

that identifies which distribution of multiple pre-trained GANs is the most beneficial for a

specific target. This mining pushed the sampling towards more suitable regions in the latent

space. Therefore, MineGAN can transfer the knowledge of multiple GANs such as BigGAN

and Progressive GAN to a domain with fewer images. Other relevant methods for transfer

knowledge can be found in the articles of Jeon et al. (2020) and Frégier and Gouray (2020).

While this research axis has already been explored in the computer vision community, it has

not been explored in population synthesis. Indeed, while transferring knowledge between two

tabular datasets might not make sense, it could be used for tabular data of populations. For

example, census data are often collected regularly, e.g. every two to five years. We could, thus,

53

Chapter 3. Generating synthetic data from deep learning with expert knowledge

imagine using GANs trained on data from previous years to transfer their knowledge to the

most recent years.

3.2.3 State-of-the-art models

We present a detailed overview of four approaches demonstrated to achieve the best per-

formance when generating synthetic tabular data. As such, these approaches represent the

state-of-the-art in this field. The four approaches, which all make use of deep learning al-

gorithms, are introduced across three key articles: Xu and Veeramachaneni (2018), Xu et al.

(2019), and Zhao et al. (2021). A summary of the models is given in Table 3.2.

Table 3.2: Summary of the state-of-the-art models selected for comparison with DATGAN.

Model Article Information

TGAN

Xu and
Veera-

macha-
neni

(2018)

• Generator: LSTM cells in linear arrangement

• Discriminator: Fully-connected neural network

• Data preprocessing: Continuous vs categorical

• Loss function: Cross-entropy loss

• Conditionality: None

CTGAN
Xu et al.
(2019)

• Generator: Fully-connected neural network

• Discriminator: Fully-connected neural network

• Data preprocessing: Continuous vs categorical

• Loss function: Wasserstein loss with gradient-penalty

• Conditionality: On categorical variables

TVAE
Xu et al.
(2019)

• Encoder: Updated structure for preprocessed data

• Decoder: Similar to conventional VAE

• Data preprocessing: Continuous vs categorical

• Loss function: ELBO loss

• Conditionality: None

CTAB-GAN
Zhao et al.

(2021)

• Generator: Convolutional neural network

• Discriminator: Convolutional neural network

• Classifier: Multi-layer perceptron

• Data preprocessing: Continuous vs categorical vs mixed

• Loss function: Cross-entropy, information and
classification losses

• Conditionality: On categorical variables

While some GANs have been developed for privacy preservation, TGAN (Xu and Veeramacha-

neni, 2018) focuses on learning the marginal distributions using recurrent neural networks.

Since our focus is on creating representative synthetic data, we thus selected TGAN as the first

54

3.2 Literature review

model to be compared. It uses LSTM cells (Hochreiter and Schmidhuber, 1997) to generate

each variable in the table. The LSTM cells are arranged linearly, following the order of the

variables in the dataset. The authors make the difference between categorical and continuous

variables. Both variable types are encoded differently: (i) continuous variables are encoded

using Gaussian mixtures; (ii) categorical variables are one-hot encoded. Finally, TGAN is

trained using the standard minimax loss function (Goodfellow et al., 2014), and it is compared

to other data synthesizers such as Gaussian Copula and Bayesian Networks. The authors show

that TGAN outperforms all these methods.

CTGAN (Xu et al., 2019) uses a fully-connected neural network for both the generator and

the critic. Like TGAN, the variables are differentiated between categorical and continuous

variables. CTGAN uses the same encoding procedure for both variable types with a slight

difference for continuous variables: a Variational Gaussian Mixture (VGM) is used instead of

standard Gaussian mixtures. The VGM uses a Dirichlet process to determine the number of

modes in the distribution, while it is predefined for the standard Gaussian mixture. In addition,

this model uses conditionality by adding a conditional vector on categorical variables. Finally,

CTGAN is trained using the Wasserstein loss with gradient-penalty (Gulrajani et al., 2017).

TVAE (Xu et al., 2019) is an adaptation of a standard VAE by modifying the loss function and

preprocessing the data. The variables are encoded using the same procedure as in CTGAN.

TVAE uses the ELBO loss (Kingma and Welling, 2014). While the encoder is slightly updated

compared to conventional VAEs, the decoder keeps a usual structure. The authors have

compared TVAE, CTGAN, and other methods for synthesizing tabular data such as tableGAN.

They show that both TVAE and CTGAN outperform other methods. On multiple metrics, TVAE

performs better than CTGAN. However, as stated by the authors, CTGAN achieves differential

privacy (Jordon et al., 2018) easier than TVAE since the generator never sees the original data.

Finally, the particularity of CTAB-GAN (Zhao et al., 2021) compared to the previous models

is that it aims at fixing issues with skewed continuous distributions. Indeed, continuous

distributions can take many forms, such as long-tailed, exponential, or mixed distributions.

Therefore, this model implements multiple data preprocessing methods for different dis-

tributions. CTAB-GAN comprises three neural networks: a generator, a discriminator, and

an additional classifier. The latter is used to learn the semantic integrity (data type) of the

original data and predict the synthetic data classes. This helps produce more accurate labeled

synthetic data. The generator and discriminator are convolutional neural networks, while the

classifier is a multi-layer perceptron. In addition, CTAB-GAN uses conditionality to counter

the imbalance in the training dataset to improve the learning process. Finally, CTAB-GAN is

trained using the standard cross-entropy loss function with the addition of an information loss

and a classification loss. The authors have tested their model against other state-of-the-art

models such as tableGAN and CTGAN. They have shown that their model outperforms all the

other models using ML efficacy and statistical similarity metrics.

55

Chapter 3. Generating synthetic data from deep learning with expert knowledge

3.2.4 Model evaluation

Model evaluation is intrinsically linked to the research axis for which a model was developed.

Indeed, a generator developed to correct bias should not be tested on the same characteristics

as a model developed for privacy preservation. Thus, researchers have devised different

methods for assessing generated synthetic datasets. In this section, we discuss two types of

methods that are primarily used to assess the representativity of a synthetic dataset compared

to its original counterpart: statistical methods and ML methods.

Statistical assessments

Multiple statistical tests can be used to compare two distributions, such as the χ2 test or

the Student’s t-test. While these tests can provide good information when comparing the

distributions of each variable separately, it does not consider the correlation between the

variables. Since this aspect is essential for creating representative synthetic populations,

researchers in the transportation community have been developing new statistical tests to

address this issue. The SRMSE (Müller and Axhausen, 2010) is used in most transportation

articles working on population synthesis to assess the generated datasets. The test consists

in selecting one or multiple variables in a dataset and creating a frequency list based on the

appearance of each unique value. We can, then, apply SRMSE (see Equation 3.41) formulation

on this frequency list. While this technique has been shown to work well compared to other

statistical methods, it has two main flaws: (i) the frequency lists are computed by counting the

unique values (or combinations of unique values). Therefore, it is preferably used on discrete

values. (ii) The choice of variables (or combination of variables) is up to the researcher or

modeler. Thus, articles using this methodology tend only to test a couple of combinations. In

order to address the first flaws, we can transform the continuous values into discrete values

by assigning them to specific buckets. This is a relatively simple fix, but if the discretization

is done correctly, SRMSE should still provide valid results. However, the second flaw is more

problematic. Indeed, when generating a synthetic dataset, we want to ensure that all the

correlations are correctly generated. Therefore, it is required to update the methodology of

SRMSE to do systematic testing on all the variables and their possible combinations.

ML assessments

In ML, many datasets are considered classification datasets. Thus, they are used with a ML

model to predict future instances of a unique variable. Therefore, researchers developing

generators to improve the efficacy of such models only test the synthetic datasets using

the predictive power of ML models on a single variable. While this technique works well

in this specific case, it does not provide enough information if one is trying to assess the

representativity of a synthetic dataset compared to an original one. Indeed, there might

be missing correlations between the other variables in the dataset that the ML models will

overlook. It is, thus, possible to update this technique such that a ML model is used to predict

56

3.2 Literature review

each variable in the dataset instead of a single one. If there are issues with correlations between

the variables, the efficacy of the ML models will drop while predicting the other variables, thus

providing more information.

3.2.5 Opportunities and limitations

The role of the generator in a GAN is to produce batches of synthetic data, taking only noise

as an input. As such, the structure of the generator network should be closely matched to

the underlying structure of the data being replicated. For instance, in images, each variable

represents a pixel whose meaning is image-specific and only defined relative to other pixels

in the image. In other words, the meaning of a pixel in an image is dependent on its relative

position and value, not its absolute position and value. In addition, the meaning of a single

pixel in one image is (largely) independent of the meaning of the corresponding pixel in

another image in the same dataset. Therefore, it is typical for generators used in image

generation to use Convolutional Neural Networks (CNNs) (Radford et al., 2016; Isola et al.,

2017; Zhu et al., 2017), which model the relative definitions of the pixel values learned over

thousands or millions of images in a dataset.

Unlike images, the variables in tabular data typically have a specific meaning and can be

understood by their absolute positions and values (within a single dataset). For example,

a column representing an individual’s age in socio-economic data defines the age of every

instance (row) in the table. Furthermore, the age value of each row can be understood without

needing to know the values of the other variables. While the variables in a dataset have a fixed

position-specific meaning, their values depend on the other variables in the dataset. As such,

the generator must capture the interdependencies between these variables.

There are several different approaches to this in the literature. The first approach mimics what

is done with images. Indeed, several models are built using Fully Connected Neural Networks

(FCNNs) (Xu et al., 2019) or CNNs (Park et al., 2018; Zhao et al., 2021). The generator has to

learn the structure from the data during the learning process using backpropagation. This

can be rather cumbersome for the generator since it never has access to the original data.

Therefore, another approach is to fix the structure of the data. For example, TGAN (Xu and

Veeramachaneni, 2018) uses a sequential order based on columns’ order. The structure is

implicitly learned using attention vectors used with each dataset’s variable.

In both approaches, the generator learns the relationships between the variables from the

available data via backpropagation of the discriminator loss. However, there are two primary

limitations of this approach. Firstly, the generator, which needs to be highly flexible, can

overfit the noise in the data and generalize to relationships between the columns which do

not actually exist in unseen data. Secondly, the generator has to use the limited signal in the

data to learn the core structure of the data, which is often already known to some degree by

the modeler. Both can cause issues when the signal-to-noise ratio is high, as is often the case

with socio-economic datasets of limited size.

57

Chapter 3. Generating synthetic data from deep learning with expert knowledge

Therefore, there is an opportunity to develop techniques that address these flaws and use the

learning power of GANs. Indeed, by defining the relationships between the variables before-

hand using expert knowledge, we can force the generator only to learn specific correlations.

In addition, if the researcher or modeler provides these relationships, the model starts its

learning process with more information than a fully connected network that has to learn all

these connections. Therefore, we can overcome the issues with GANs while keeping their

strengths.

3.3 Methodology

Following several previous literature works, our synthetic tabular data generation approach

uses a GAN (Goodfellow et al., 2014) to generate synthetic data. Our primary contribution is to

closely match the generator structure to the underlying structure of the data through a DAG

specified by the modeler. According to their prior expert knowledge of the data structure, the

DAG allows the modeler to define the structure of the correlations between variables in the

dataset as a series of directed links between nodes in a graph. Each link in the DAG represents

a causal link that the generator can capture. If no links (either direct or indirect) exist between

two variables, then the generator treats those variables independently. This has two primary

advantages over the existing approaches within the context of the limitations identified in the

literature review. Firstly, by restricting the set of permissible links between the variables in the

datasets, the DAG represents an expert regularisation of the model and restricts the ability of

the GAN to overfit noise in the training sample. Secondly, giving the generator a headstart in

knowing the underlying structure of the data allows the GAN to make more efficient use of

the training sample when learning to generate data. These benefits could enable DATGAN

to use limited available original data more efficiently when learning to produce realistic and

representative synthetic data samples.

Figure 3.2 provides a high-level overview of DATGAN data generation process. As is typical

with GANs, the generator in DATGAN (described in Section 3.3.1) never sees the original data.

It generates data purely from a random noise input. The generator’s structure is determined

according to a DAG which specifies the structural relationships between the variables in the

data, i.e. the expert knowledge. The DAG and the process linking it to the generator structure

are presented in Section 3.3.1. At the same time, the discriminator (described in Section 3.3.2)

is trained to classify/critique the original and synthetic data. Therefore, it can be considered a

competitive game between two adversaries (the generator and the discriminator). The loss

functions used to optimize both models are presented in Section 3.3.3. Since tabular data

can contain attributes of different types (e.g. continuous, nominal, and ordinal), original

and synthetic data must be processed before being used. We, thus, introduce several new

data processing steps specific to DATGAN in Section 3.3.4. At the end of this section, we

present the result assessment methods used to compare the synthetic datasets in Section 3.3.5.

We conclude the methodology by providing some implementation notes in Section 3.3.6.

Table B.1, in the appendix, provides a summary of the notations used in this methodology.

58

3.3 Methodology

Standard GAN structure (see Figure 3.1)

DAG

Expert
knowledge

Noise Generator Discriminator

Encoding

Original
dataset

T

Sampling

Synthetic
dataset

Tsynth

T̂synth

T̂

output input

inputstructure

input backpropagation

Figure 3.2: Global schematic representation of DATGAN. The different element in this figure are
presented in the following sections: the Generator and the DAG are presented in Section 3.3.1,
the Discriminator in Section 3.3.2, the Encoding and the Sampling processes in Section 3.3.4.

Formally, we consider a table T containing NV columns. Each column in the table T is

represented by vt for t = 1, . . . , NV . We, thus, have T = {
v1:NV

}
. These columns have been

drawn from an unknown joint distribution of random variables Vt , i.e. the values in T are

drawn from P
(
V1:NV

)
. We, thus, usally refer to the variables in T using Vt . We represent the

rows of T by
{

v1:NV ,i
}

for i = 1, . . . , Nrows where Nrows corresponds to the number of rows in

T. We assume that each row of T is sampled independently, i.e. it is cross-sectional and does

not contain panel or sequential data. Our goal is to learn a generative model G(z), where z

is a tensor of random noise, such that the samples generated from G create a synthetic table

59

Chapter 3. Generating synthetic data from deep learning with expert knowledge

Tsynth. For neural networks, we work in standardized space consisting of values between -1

and 1. We, thus, denote processed datasets with the character ·̂, as shown in Figure 3.2. In

the meantime, the discriminator D is trained to differentiate between original data T̂ and

synthetic data T̂synth.

3.3.1 Generator

The role of the generator is to produce batches of synthetic data, taking only noise as an

input. Within DATGAN, the generator structure is defined using a DAG, which specifies the

interdependencies between each variable Vt in the original dataset T. We first present the

DAG, including how the modeler should construct it. We then demonstrate how the DAG

is used to automatically create the generator network through the use of LSTM cells (Gers

et al., 2000). This includes defining a new multi-input LSTM cell required to capture complex

correlations specified in the DAG.

Directed Acyclic Graph (DAG)

The DAG G is specified by the modeler to define the correlations between the variables in the

data. However, a DAG must represent causal links between variables similarly to Bayesian

networks. Indeed, correlations do not have a direction, while causal links do. The main reason

to use a directed graph instead of an undirected one is due to the nature of the representation

of the variables in the generator. Each variable vt in T is represented by a single LSTM cell.

These cells communicate with each other in a directed manner, i.e. the previous cell sends

information to the next one. Therefore, to better reflect this behavior, a directed graph is

required.

The mathematical definition of a DAG is given by:

• The graph G must be directed, i.e. each edge in the graph has only direction.

• The graph G must not contain any cycle, i.e. the starting vertex of any given path cannot

be the same as the ending vertex.

These two properties ensure that the DAG is a topological sorting. It means that we can extract

a linear ordering of the vertices such that for every directed edge vt1 → vt2 from vertex vt1 to

vertex vt2 , vt1 comes before vt2 in the ordering.

With these rules in mind, the modeler can define the DAG for DATGAN. It is possible to get

inspiration from Bayesian networks and how their respective DAG is created manually (Lucas

et al., 2004). However, there are some slight differences between the two DAGs. Therefore, we

provide some insights into the components of our DAG:

• Each variable vt in the table T must be associated with a node in the graph G .

60

3.3 Methodology

• A directed edge between two vertices, i.e. vt1 → vt2 , means that the generation of the

first variable vt1 will influence the generation of the second variable vt2 . The direction

of the edge is a matter of judgement and should not influence the final result.

• The absence of a link between two variables means that their correlation is not directly

learned by the generator. However, it is possible to obtain some correlation in the

final synthetic dataset if these two variables have a common ancestor in the graph G .

Therefore, two variables will not show any correlations in the synthetic dataset if they

do not have any common ancestors or links in the DAG.

• The graph G can be composed of multiple DAGs as long as the first rule is respected.

By creating multiple DAGs, the modeler ensures that the different parts of the dataset

are not correlated. While this approach is not common, it could be used in a dataset

containing variables about multiple unrelated topics.

age driving
license

trip
purpose

type of
survey

nbr cars
household

mode
choice

continuous boolean nominal nominal ordinal nominal

0-100 True
False

Work
Leisure

...

Internet
Phone

...

0
1
2
...

Driving
Soft Modes

...

(a) Example of a mock dataset

nbr cars
household

age

driving
license

trip
purpose

mode
choice

type of
survey

(b) Example of a DAG used to represent the structure of the variables

Figure 3.3: Example of tabular data structure. Figure 3.3a shows the structure of a table with six
variables. Figure 3.3b shows one possible DAG used to represent the variables in Figure 3.3a.

As for Bayesian networks, there is no unique way to create a DAG for a given dataset. We

present different possibilities using the example shown in Figure 3.3. The first one consists of

following the variables’ order in the datasets. This creates a simple ordered list of the variables.

61

Chapter 3. Generating synthetic data from deep learning with expert knowledge

For example, TGAN (Xu and Veeramachaneni, 2018) uses this specific list to link each of its

LSTM cells. The advantage of such a DAG is its simplicity since no prior knowledge of the

data is required. However, this DAG defines causal links based on an arbitrary order. Thus, it

does not use expert knowledge and results in poorer results. Another possibility is to create

a DAG centered around predicting a given variable. For example, in the case of Table 3.3a,

one could want to predict the variable mode choice. Therefore, a possible structure for the

DAG is to link all the other nodes in the table to a single sink node representing the variable

we want to predict. However, while this DAG would capture all possible correlations between

each variable and the one that needs to be predicted, it will not capture other correlations.

Therefore, a dataset generated using this DAG would fail basic correlation tests.

While the two possibilities presented above allow creating a DAG without prior knowledge

of the data, they will fail to deliver a synthetic dataset that correctly models the correlations

between the variables in a table T. We recommend building a DAG containing as many links as

possible. It is always possible to perform a transitive reduction of G , i.e. removing paths such

that for all vertices vt1 and vt2 there exists only a unique path that goes from vt1 to vt2 , after

its definition. There are no strict rules on whether one should add a causal link between two

variables. It is a matter of judgment, and multiple trials and errors will be needed. However,

we provide a set of instructions that can help the modeler define such a DAG:

• If the dataset is used to predict one variable, define this variable as a sink node in G . For

example, in Figure 3.3, the dataset can be used to predict the variable mode choice. It

is, thus, the sink node of the graph. It is also possible to define multiple sink nodes.

• Datasets contain different categories of variables. For example, a travel survey dataset

might contain trips, individuals, and household variables. It is, thus, generally easier to

define the causal links between variables belonging to similar semantic groups.

• The next step consists in defining the source nodes. However, there are no specific rules

for this. It is entirely up to the modeler.

• Finally, the modeler has to choose the direction of the causal links. Again, there are no

rules for this. In the example of Figure 3.3b, one could decide that the variables driving
license and age have an inverted causal link. This would slightly change the DAG but

should not fundamentally change the results.

As shown in Figure 3.3, we present a mock dataset (see Figure 3.3a) and one possible DAG

(see Figure 3.3b) representing the causal links between the variables. This dataset is a travel

survey dataset. We thus define the mode choice as the sink node. We can define the following

category of variables: (i) trip-related variables: mode choice and trip purpose; (ii) indi-

vidual-related variables: age and driving license; (iii) household-related variables: nbr
cars household; (iv) survey-related variables: type of survey. For each of these categories,

we want to make sure that the variables are linked together. Since mode choice is the sink

62

3.3 Methodology

node, we can create an edge from trip purpose to mode choice. For the individual-related

variables, the direction of the causal link can be either direction. For the source nodes, we set

the variables age and nbr cars household as the source nodes. Finally, we can add some

more links to complete the DAG. We decided, on purpose, to let the variable type of survey
out of the DAG not to influence the data generation. One could argue that it could be linked

to age since older individuals are less familiar with internet technologies. However, as stated

earlier, the modeler has to make choices while constructing the DAG, requiring trials and

errors.

Once the DAG G has been created, we can define several valuable sets. These sets are used

later when representing the structure of the DAG in the generator.

• A (Vt): the set of ancestors of the variable Vt .

• P (Vt): the set of predecessors of the variable Vt .

• S (Vt): the set of sources nodes leading to the variable Vt .

• E (Vt): the set of in-edges of the variable Vt .

If we use the variable mode choice from Figure 3.3b as an example, we can define these

different sets:

• A (mode choice) = {
nbr cars households; age; driving license; trip purpose

}
• P (mode choice) = {

driving license; trip purpose
}

• S (mode choice) = {
nbr cars households; age

}
• E (mode choice) = {

driving license→ mode choice; trip purpose→ mode choice
}

Representation of the DAG

As explained in this section’s introduction, the DAG represents the causal links between the

variables. Thus, we want to develop an architecture for the generator similar to the specified

DAG. Tabular data cannot be considered sequential since the order of the variables in a

dataset is random. However, the DAG allows us to have a sequence of variables with a specific

order. Thus, we can use Neural Networks models that work well with this type of data. More

specifically, we use LSTM cells (Hochreiter and Schmidhuber, 1997), a type of recurrent neural

network, to generate synthetic values for each variable Vt . We denote the LSTM cell associated

to the variable Vt by LSTMt. The advantage of using recurrent neural networks is that the

previous output affects the current state of the neural network. Using the sequence defined by

the DAG G , we can, thus, use previous outputs, i.e. synthetic values of previous variables, to

influence the generation process of a given variable Vt .

63

Chapter 3. Generating synthetic data from deep learning with expert knowledge

Ct−1 Ct

it

ht−1

xt

ht

×

×

+

×

σ σ tanh σ

tanh

cell state

forget gate input gate output gate

Figure 3.4: Main components of a LSTM cell following Gers et al. (2000). The blue hexagons
represent variables, the red rectangles neural network layers, and the orange circles math-
ematical operations. The different gates used to transform the input and the cell state are
shown in dark gray.

The key elements of an LSTM cell are the cell state and the multiple gates used to protect and

control the cell state, as shown in Figure 3.4. For conciseness, we do not present a detailed

overview of the mathematical operations of an LSTM cell. For a full description, we direct the

reader to Gers et al. (2000). In Figure 3.4, the input cell state is characterized by Ct−1 and the

output cell state by Ct . The cell will receive an input that is the concatenation between the

output of the previous cell (ht−1) and an input vector (xt). It is thus given by:

it = ht−1 ⊕xt (3.1)

This input vector will pass through three different gates to transform the cell state as it is

necessary:

1. the forget gate is used to decide which old information is forgotten in the cell state.

2. the input gate is used to decide which new information is stored kept in the new cell

state

3. the output gate is used to decide the output of the cell using information from both the

input it and the new cell state Ct .

The modeler has to define the size of the hidden layers Nh in the LSTM cell and the batch

size Nb . The first defines the size of the output vector ht as well as the cell state Ct . The latter

corresponds to the number of data points fed into the network. Therefore, we define the

output ht and cell state Ct as tensors of size Nh ×Nb . The input xt takes a different size and is

64

3.3 Methodology

thus characterized by a tensor of size Nx ×Nb (the batch size has to remain the same between

all the tensors).

In the case of DATGAN, we have to modify the inputs and outputs of the LSTM cell according

to the principles of GANs. Figure 3.5 provides a schema of the LSTM structure in DATGAN.

The insides of the LSTM cell LSTMt are the same as the one shown in Figure 3.4. The first

main modification concerns the inputs. Indeed, the generator in a GAN takes random noise as

an input instead of an input vector such as xt . In addition, we add an attention vector to the

input tensor it . The idea behind the attention vector is to keep information from intermediate

encoders and pass it to a new encoder. This mimics cognitive attention and, thus, helps with

the long-term memory of the LSTM cells. Therefore, the input tensor it corresponds to the

concatenation of three tensors:

• zt is a tensor of Gaussian noise with dimension Nz ×Nb . For each source node in the

DAG G , we randomly draw values from N (0,1). For all the other variables Vt , the noise

vector is a concatenation of the noise from the source nodes passed through a fully

connected layer without any activation function, i.e.

zt = FC

(⊕
k∈S (Vt)

zk , Nz

)
(3.2)

If two different variables Vt1 and Vt2 have the same source nodes, i.e. S (Vt1) =S (Vt2),

the noise tensor is the same for both variables, i.e. zt1 = zt2 . There are two reasons to

apply such a rule: (i) it removes pointless computation by creating new variables; (ii) if

two variables have a unique source node, they will receive the same noise as an input.

We must, therefore, follow this rule if there is more than one source node.

• ft−1 can be compared to the previous output tensor ht−1 in Figure 3.4. However, one of

the differences between DATGAN and a usual LSTM network is that we do not directly

use the output tensor of the LSTM ht . Indeed, as shown in Figure 3.5, we transform it

into the encoded synthetic variable v̂ synth
t . Since v̂ synth

t do not have a standard size, we

thus need to transform it in order to obtain the usable tensor ft of dimension Nh ×Nb .

We can thus say that ft corresponds to the transformed output of the LSTM cell LSTMt.

If the variable Vt is a source node, this tensor is randomly initialized and learned during

the optimization process.

• at is an attention tensor that allows the cell to learn which previous outputs are relevant

to the input. It is defined as a weighted average over all the LSTM outputs. If the current

variable Vt has at least one ancestor, we learn an attention weight vector αt ∈ R|A (t)|.
The context vector is thus computed as:

at =
∑

k∈A (t)\P (t)

expα(k)
t∑

j expα(j)
t

fk (3.3)

65

Chapter 3. Generating synthetic data from deep learning with expert knowledge

LSTMtCt−1

it

⊕

Ct

ht

at

ft−1

zt

output
transformer

input
transformer

ft

v̂ synth
t

Sampling

v synth
t

Discriminator

Label
smoothing

v̂t

Label
smoothing

Encoding

vt

Outside of the generator

Figure 3.5: Schematic representation of how the LSTM cells are used within DATGAN to

generate the synthetic variable v̂ synth
t . In Section 3.3.1, we mainly discuss the left part of the

diagram. The right part shows how the new generated variable is passed to the discriminator
and sampled. These different elements are presented in the following sections: the Discrimi-
nator is presented in Section 3.3.2 and the Encoding, the Label smoothing, and the Sampling
in Section 3.3.4.

66

3.3 Methodology

This context tensor has a dimension Nh ×Nb . If variable Vt is a source node, we define

at as a zero-vector of dimension Nh ×Nb .

LSTM cells are initially designed to work in sequence, i.e. each cell is linked to a unique follow-

ing cell. However, as shown in the DAG in Figure 3.3b, some variables can have multiple direct

ancestors. For example, the variable mode choice has two ancestors: driving license and

trip purpose. We, thus, need a way to connect multiple LSTM cells. If one cell has multiple

outputs, we send the output of the cell to the next cells, e.g. the inputs of the cells for the

variables driving license and trip purpose coming from the variable age are the same.

The main issue lies in having multiple cell inputs. The attention tensor at and the noise tensor

zt are defined based on all the ancestors of the current variable. Therefore, we do not have

to change these definitions. On the other, the previous cell state Ct−1 and the transformed

output ft−1 are defined to work in sequence. Therefore, we define the multi-input cell state

and multi-input transformed output by concatenating the cell states and transformed outputs

from the direct ancestors and passing them through a fully connected layer to resize them:

Ct−1 = FC

(⊕
k∈P (Vt)

Ck , Nh

)
(3.4)

ft−1 = FC

(⊕
k∈P (Vt)

fk , Nh

)
(3.5)

During the training process, the two layers’ weights must be learned. We can, thus, feed the

LSTM cell with homogeneous inputs.

One final issue remains in constructing the structure of the generator. Indeed, we know how

to generate each variable separately and connect them using the DAG and the multi-input

LSTM cells. However, while building the generator’s structure, we cannot start with any

random variable in the DAG. Indeed, as per the definition of the inputs of the LSTM cell, the

ancestors A (Vt) must have already been built first. For example, the attention tensor uses the

outputs of all the ancestors’ cells. Therefore, we need an algorithm that creates an ordered

list based on the provided DAG G . This algorithm is given in Algorithm 3.1. The goal of this

algorithm is to take the DAG G and return an ordered list of the variables Vt such that all the

ancestors of a given variable have a smaller index in the list, i.e. they appear first in the list.

The algorithm is built recursively. The idea is to define two lists, one with untreated nodes

untreated, containing all the nodes at the beginning of the algorithm, and one with treated

nodes treated, empty at the beginning. We, then, start by selecting all source nodes and

adding them to a list named to_treat. Then, while the list of untreated nodes is not empty,

i.e. while there are still nodes to be added to the final list, we start by assigning all nodes in

the list to_treat in the treated list. Then, we check each edge in the DAG G and check if all

the ancestors of the out-vertex have been treated. If it is the case, we can add this node to the

to_treat list and assign it later to the final list. The algorithm stops when all the nodes have

been added to the treated list.

67

Chapter 3. Generating synthetic data from deep learning with expert knowledge

Algorithm 3.1 Ordering of the variables using a DAG

Inputs: DAG: G

Output: ordered list of variables: treated
1: Compute a dictionary in_edges with Vt as the key and E (Vt) as the value for all t =

1, . . . , NV .
2: Initialize untreated as a set with all the variables names and treated an empty list
3: Initialize to_treat as a list containing all the variables with 0 in-edges
4: while |untreated| > 0 do
5: for all n ∈ to_treat do
6: Remove n from untreated and add it to treated
7: Set to_treat as an empty list
8: for all e ∈G .E do ▷ e is an edge and it is a tuple with 2 values: the out-vertex and the

in-vertex
9: Initialize boolean all_ancestors_treated to True

10: for all ℓ ∈ in_edges[e[1]] do
11: if ℓ ∉ treated then
12: Set all_ancestors_treated to False

13: if e[0] ∈ treated and all_ancestors_treated is True and e[1] ∉ treated and
e[1] ∉ to_treat then

14: Add e[1] to the list to_treat
15: return treated

Now that every component has been defined for the generator, we can build it following the

ordered list provided by Algorithm 3.1. Each time that we create a LSTM cell for the variable

Vt , as in Figure 3.5, we check the predecessors P (Vt). We apply the multi-input technique to

the LSTM cell if there is more than one direct ancestor. The generator is finished once one

LSTM cell has been created for each variable in the ordered list.

3.3.2 Discriminator

As seen in Figure 3.2, the generator is used to create the synthetic dataset T̂synth. The role of

the discriminator is to compare this dataset with the encoded original dataset T̂. We, thus,

want to train the discriminator to be able to identify original and synthetic data. The generator

must, then, produce better synthetic data to fool the discriminator.

Following Xu and Veeramachaneni (2018), we use a fully connected neural network with

NL-layers for the discriminator, where the internal layers, for i = 1, . . . , NL , are given by:

l̂i = FC (li−1, Nl) (3.6)

li = LeakyReLU
(
BN

(
l̂i ⊕div

(
l̂i

)))
(3.7)

where (i) div(·) represents the mini-batch discrimination vector presented by Salimans et al.

(2016); (ii) BN(·) corresponds to the batch normalization; (iii) LeakyReLU(·) is the leaky reflect

68

3.3 Methodology

linear activation function. The output of the discriminator is computed using a fully connected

layer with a size of 1 to return an unbounded scalar:

lD = FC
(
lNL ,1

)
(3.8)

The input vector l0 of the discriminator is different depending on the data it is using:

• For the original dataset, l0corresponds to the concatenation of all the column vectors{
v̂1:NV

}
after an encoding step, as shown in Figure 3.2.

• For the synthetic dataset, l0 corresponds to the concatenation of all the usable outputs{
v̂ synth

1:NV

}
given by the generator, as shown in Figure 3.5.

However, as seen in Figure 3.5, a label smoothing step has to be performed before feeding

these matrices to the discriminator. This step is discussed in Section 3.3.4.

3.3.3 Loss function

The loss function sets up the game between the discriminator and the generator. The discrim-

inator D aims to maximize the loss function when comparing the synthetic data produced

by the generator against the original data. Meanwhile, the generator G aims to minimize the

same loss function by generating synthetic data, fooling the discriminator. The generator thus

learns from the discriminator by backpropagating the discriminator loss.

Since the loss function drives the optimization process to obtain the best possible model, we

argue that our model does not have to be characterized by a single loss function. Therefore,

we systematically test three different loss functions. The first one is the standard cross-entropy

loss defined by Goodfellow et al. (2014), the second one is the Wasserstein or Earth-Mover

distance defined by Arjovsky et al. (2017), and the third one is the Wasserstein distance with

Gradient-Penalty defined by Gulrajani et al. (2017).

Standard loss: The first loss function is the standard loss function used in the original GAN

by Goodfellow et al. (2014). We name it L SGAN with SGAN standing for Standard GAN. It is

given by:

min
G

max
D

L SGAN(D,G) = E{
v̂1:NV

}∼P(T̂)
logD

(
v̂1:NV

)+ E
z∼N (0,1)

log(1−D(G(z))) (3.9)

This loss function requires the discriminator to produce a probability for each data point to be

either original or synthetic. However, as defined in Section 3.3.2, the discriminator outputs

an unbounded scalar, not a probability. In order to use this discriminator with this loss

function, we thus pass the output through an additional sigmoid layer to produce bounded

[0,1] probabilities.

69

Chapter 3. Generating synthetic data from deep learning with expert knowledge

As explained by Goodfellow et al. (2014), log(1−D(G(z))) tends to saturate during the training

process. Therefore, instead of training G to minimize the full loss function, we can instead train

it to maximize logD(G(z)). We can thus define the loss function for both networks separately.

The goal is to minimize both losses simultaneously during the training process. They are given

by:

L SGAN
G =− E

z∼N (0,1)
logD(G(z)) (3.10)

L SGAN
D =− E{

v̂1:NV

}∼P(T̂)
logD

(
v̂1:NV

)+ E
z∼N (0,1)

logD(G(z)) (3.11)

As suggested by the authors, we train our models using the Adam optimizer (Kingma and Ba,

2014).

Wasserstein loss: The second loss function has been implemented in WGAN by Arjovsky

et al. (2017). It is defined using the Earth-Mover distance:

min
G

max
D

L WGAN(D,G) = E{
v̂1:NV

}∼P(T̂)
D

(
v̂1:NV

)− E
z∼N (0,1)

D(G(z)) (3.12)

There are multiple advantages to use this loss function instead of the standard loss: (i) the

main advantage is the fact that the discriminator becomes a critic since it does not need to

produce a 0-1 output anymore. Indeed, we can use the output of the discriminator lD as it

is defined. It thus results in less vanishing gradients and an easier learning process for the

generator G ; (ii) the loss function correlates with the quality of the sample, contrary to the

SGAN loss. It is, thus, possible to determine when the GAN has converged.

We can, now, define the separate loss functions for both networks as:

L WGAN
G =− E

z∼N (0,1)
D(G(z)) (3.13)

L WGAN
D =− E{

v̂1:NV

}∼P(T̂)
D

(
v̂1:NV

)+ E
z∼N (0,1)

D(G(z)) (3.14)

As suggested by the authors, we train our models using RMSProp (Tieleman and Hinton, 2012).

Wasserstein loss with gradient penalty: The loss for the WGAN-GP is the same as the Wasser-

stein loss with the addition of a gradient penalty (Gulrajani et al., 2017). It is given by:

min
G

max
D

L WGGP(D,G) = E{
v̂1:NV

}∼P(T̂)
D

(
v̂1:NV

)− E
z∼N (0,1)

D(G(z))+λ E
v̂∼P(T̂,G(z))

(∥∇ṽ D(ṽ)∥2 −1
)2

(3.15)

where λ is a parameter defined by the modeler. The main issue with WGAN is that it needs

to enforce the Lipschitz constraint on the critic. It does that by clipping the weights of the

critic. Gulrajani et al. (2017) show that it leads undesired behaviour in the generator samples.

We can, thus, fix this issue by adding a gradient penalty on the critic. In Equation 3.15, the

mid-value ṽ is sampled uniformely along straight lines between pair of points sampled from

70

3.3 Methodology

the original dataset T (v̂) and generated data G(z) (v̂synth).

The separate loss functions for each networks are, therefore, defined as:

L WGGP
G =− E

z∼N (0,1)
D(G(z)) (3.16)

L WGGP
D =− E{

v̂1:NV

}∼P(T̂)
D

(
v̂1:NV

)+ E
z∼N (0,1)

D(G(z))+λ E
v̂∼P(T̂,G(z))

(∥∇v̂ D(v̂)∥2 −1
)2 (3.17)

Finally, following Gulrajani et al. (2017), we replace the batch normalization in the discrimina-

tor with a layer normalization (Ba et al., 2016), we set λ= 10, and we train both models using

the Adam optimizer (Kingma and Ba, 2014).

Following Xu and Veeramachaneni (2018), we include a Kullback-Leibler (KL) divergence term

to all the generator losses. For two discrete probability distributions P and Q defined on the

same probability space X , the KL divergence is given by:

KL(P,Q) =
∑

x∈X

P (x) log

(
P (x)

Q(x)

)
(3.18)

Therefore, we can use this divergence for any discrete probability distributions in the original

and synthetic datasets. The use of this divergence has two main consequences: (i) it gives a

boost when starting the training of the generator since it is trying to make discrete probability

distributions as close as possible; (ii) it makes the model more stable under training. We

discuss which variables are concerned by this divergence in Section 3.3.4.

3.3.4 Data processing

Tabular data are generally composed of multiple data types, as seen in Figure 3.3a. In the

context of this chapter, we consider two different variable types:

Continuous data corresponds to a random variable following a continuous distribution (e.g.

the distance to travel to a destination). The variable can then be rounded to obtain

discrete values, e.g. individuals’ age.

Categorical data corresponds to all other types of data such as:

• binary random variables, e.g. whether someone is retired or not.

• nominal random variables, i.e. discrete random variable with three or more possible

values, where there is no order nor notion of distance between the values (e.g. a color).

• ordinal random variables, i.e. discrete random variables with three or more possible

values with a defined order (and possibly also distance) between each possible value

(e.g. education level). Contrary to nominal data, we can define an order (and possibly a

distance) between the different categories.

71

Chapter 3. Generating synthetic data from deep learning with expert knowledge

In ML, neural networks typically work with data ranging from -1 to 1 or 0 to 1. However, these

four data types are not designed in such a way. We thus need to encode the original dataset

T in a dataset T̂, as shown in Figure 3.2, that transforms the different data types into more

homogeneous types.

The table T contains NC continuous random variables
{
C1, . . . ,CNC

}
and ND categorical ran-

dom variables
{
D1, . . . ,DND

}
such that NC +ND = NV . We can thus define the table T using

vectors of continuous and categorical variables, i.e. T = {
c1:NC ,d1:ND

}
. Similarly, the synthetic

dataset is defined as Tsynth =
{

c synth
1:NC

,d synth
1:ND

}
.

Since we are considering two different data types in the table T, we cannot process them the

same way. Thus, next section explains how the encoding is done for each type. Then, we

explain how these types of data are generated. Thirdly, we discuss how the synthetic and

original data are passed to the discriminator. Finally, we show how the data is sampled from

the generator’s output to create the final synthetic dataset.

Encoding

DATGAN only takes as input [−1,1] or [0,1] bounded vectors. Therefore, we need to encode

unbounded continuous and categorical variables to be processed by the GAN. Continuous

data tend to follow multimodal distributions. We thus build on the previous methodology of

Xu et al. (2019) who apply a VGM model (Bishop, 2006) to cluster continuous values into a

discrete number of Gaussian mixtures. In this work, we develop this further by automatically

determining the number of components from the data.

For each continuous variable Ct in the dataset, we first train a VGM on a random subset

of the data with a high number of components (Nm,t = 10). We then determine how many

components are needed to capture the distribution by comparing the component weights

against a threshold and the number of predicted components Npred with the original number

of components Nm,t . We repeat this process until convergence. Finally, we retrain the model

on the entire column vector ct using only the number of significant components. From this

trained model, we extract the means ηt and standard deviations σt from the VGM. We can

then normalize the values ct , j using the following formula:

w (k)
t , j =

ct , j −η(k)
t

δσ(k)
t

for k = 1, . . . , Nm,t , (3.19)

where δ is a parameter specified by the modeller. Following Xu and Veeramachaneni (2018),

we use a value of δ = 2 and clip the values of w (k)
t , j between -0.99 and 0.99. At the same

time, we compute the posterior probability vectors pt , j that the value ct , j belongs to each of

the Nm,t mixtures. Thus, each value ct , j in ct are represented by the vector of probabilities

pt , j ∈ [0,1]Nm,t and the vector of values wt , j ∈ [−0.99,0.99]Nm,t . Algorithm 3.2 shows a summary

of the procedure used to preprocess continuous variables.

72

3.3 Methodology

Algorithm 3.2 Continuous variables preprocessing

Inputs: List of float values (ct)
Output: Matrix of probabilities (pt) and values (wt)

1: Set the initial number of modes Nm,t = 10
2: while True do
3: Sample st from ct and fit the BayesianGaussianMixture to st with Nm,t modes
4: Predict the class on st and compute Npred the number of unique classes predicted by

the VGM
5: Define Nweights, the number of weights of the model above a threshold εw = 0.01
6: if Npred < Nm,t or Nweights < Nm,t then
7: Nm,t = min

(
Npred, Nweights

)
8: else
9: break

10: Fit the BayesianGaussianMixture to ct with Nm,t modes.
11: Means and standard deviations of the Nm,t Gaussian mixtures are given by

ηt =
(
η(1)

t , . . . ,η
(Nm,t)
t

)
and σt =

(
σ(1)

t , . . . ,σ
(Nm,i)
t

)
12: Compute the posterior probability of ct , j coming from each of the Nm,t mixtures as a

vector pt , j =
(
p(1)

t , j , . . . , p
(Nm,t)
t , j

)
. It corresponds to a normalized probability distributions

over the nm,i Gaussian distributions.
13: Normalize ct , j for each Gaussian mixture using Equation 3.19.

14: Clip each value w (k)
t , j between -0.99 and 0.99 and set wt , j =

(
w (1)

t , j , . . . , w
(Nm,t)
t , j

)
.

15: return pt and wt

For categorical variables1, we transform them using one-hot encoding. We consider dt the

realizations of the random variable D t . dt is transformed using |D t |-dimensional one-hot

vector ot where |D t | corresponds to the number of unique categories in D t .

We can thus convert the initial table T into an intermediate table T̂ = {
w1, p1, . . . , wNC , pNC ,

o1, . . . ,oND

}
. As a simplification, we write T̂ = {

w1:NC , p1:NC ,o1:ND

}
. The dimension of this new

table is given by
∑NC

t=1 2Nm,t +∑ND
t=1 |D t |. While this new encoded table is larger than the original

table, we can now use define the KL divergence on multiple variables. Indeed, the vector pt , j

corresponds to a discrete probability distribution for a given row. We can, thus, apply the KL

divergence on this term. In addition, the one-hot encoded vector ot , j also corresponds to a

discrete probability distributions. The only difference is that this distribution is composed of

only 1s and 0s. Nevertheless, the KL divergence is also applicable on this variable.

Generator output

In Figure 3.5, we show how the LSTM cell LSTMt produces an output ht before it is trans-

formed into the encoded synthetic variable v̂ synth
t . However, in Section 3.3.4, we show that

1The same treatment is applied to categorical and boolean variables due to the label smoothing.

73

Chapter 3. Generating synthetic data from deep learning with expert knowledge

we distinguish between two variable types. Thus, the output transformer in Figure 3.5 differs

depending on if we are working with a continuous or a categorical variable. Nevertheless, the

first step for the output transformer is similar in both cases. Indeed, the goal is to use some

semblance of convolution on the LSTM output ht to improve the results. We, thus, transform

this output through a hidden layer:

h′
t = tanh (ht , Nconv) (3.20)

The final transformation into the synthetic encoded variable depends on the variable type.

For continuous variables, we thus pass the reduced output h′
t through two different fully con-

nected layers to extract both the vector of probabilities psynth
t and the vector of corresponding

values w synth
t :

w synth
t = tanh(h′

t , Nm,t) (3.21)

psynth
t = softmax(h′

t , Nm,t) (3.22)

For the categorical variables, we pass the reduced output h′
t through a single fully connected

layer to extract the output probabilities osynth
t belonging to each class:

osynth
t = softmax(h′

t , |D t |) (3.23)

Both matrices of discrete probabilities psynth
t and osynth

t are using a softmax activation function

in order to ensure that the sum along the rows is equal to one. This ensures that the rows

of these matrices correspond to discrete probability vectors. The matrix w synth
t uses a tanh

activation function since we allow this matrix to take values between -1 and 1.

Since these encoded synthetic variables do not have homogeneous sizes, we cannot use them

directly as the input of the next LSTM cell. This, thus, explains why we are passing the encoded

synthetic values v̂ synth
t through an input transformer. The goal of this transformer is to take

v̂ synth
t and transform it back to the same tensor for all the different variables Vt . Therefore, we

have to distinguish between continuous and categorical variables again. For the continuous

variables, we concatenate the transformed synthetic variables together and pass them through

a fully connected layer to obtain ft :

ft = FC(w synth
t ⊕psynth

t , Nh) (3.24)

For the categorical variables, we just pass osynth
t through a fully connected layer:

ft = FC(osynth
t , Nh) (3.25)

Finally, the tensors w synth
t , psynth

t , and osynth
t are combined to form the encoded synthetic

table T̂synth =
{

w synth
1:nC

, psynth
1:nC

,osynth
1:nD

}
. This synthetic table is passed to the discriminator as an

74

3.3 Methodology

input for the optimization process. We thus directly compare it to the encoded table T̂.

Discriminator input

As explained in Section 3.3.2, the input tensor l0 corresponds to the concatenation of all the

variables in T̂ for the original data or T̂synth for the synthetic data.

For categorical variables, where the original data are one-hot encoded, it would be trivial for

a discriminator to differentiate between the original and synthetic values (as the generator

produces probabilities over each class, which will not be {0,1} vectors). In addition, as ex-

plained by Goodfellow (2017), deep networks tend to produce overconfident results when

adversarially constructed. The author thus suggests using one-sided label smoothing for the

standard loss function, as defined in Section 3.3.3. It means that we perturb the {0,1} vectors

with additive uniform noise and rescale them to produce [0,1] bounded vectors. Formally,

label smoothing is defined as follows:

õ(k)
t , j = o(k)

t , j +U[0,γ], k = 0, . . . , |D t |
õt = õt /||õt || (3.26)

where γ is a parameter defined by the modeler. õt now corresponds to a noisy version of the

original one-hot encoded vector ot .

An issue with applying label smoothing is that the generator output tries to match the distorted

representation of the data, and so the generator probability outputs will be biased towards

low proability values. To address this, we propose here to apply equivalent smoothing to the

generator output before passing it to the discriminator:

õsynth,(k)
t , j = osynth,(k)

t , j +U[0,γ], k = 0, . . . , |D t |
õsynth

t = õsynth
t /||õsynth

t || (3.27)

Where γ should match the parameter used for the input smoothing. It removes the bias in the

generator output and, thus, it is effectively trying to learn the original [0,1] representations.

Therefore, it produces unbiased probabilities. We refer to this as two-sided label smoothing.

To investigate the benefits of label smoothing, we systematically investigate three possible

strategies for categorical variables:

no label smoothing: l NO
0 =

w1:NC ⊕p1:NC ⊕o1:ND for original data

w synth
1:NC

⊕psynth
1:NC

⊕osynth
1:ND

for synthetic data
(3.28)

one-sided label smoothing: l OS
0 =

w1:NC ⊕p1:NC ⊕ õ1:ND for original data

w synth
1:NC

⊕psynth
1:NC

⊕osynth
1:ND

for synthetic data
(3.29)

75

Chapter 3. Generating synthetic data from deep learning with expert knowledge

two-sided label smoothing: l TS
0 =

w1:NC ⊕p1:NC ⊕ õ1:ND for original data

w synth
1:NC

⊕psynth
1:NC

⊕ õsynth
1:ND

for synthetic data
(3.30)

Sampling

Once the generator has been trained against the discriminator, we need to be able to generate

the final synthetic dataset Tsynth. However, the dataset created by the generator T̂synth cor-

responds to the encoded dataset T̂. Therefore, we need to decode T̂synth to obtain the final

synthetic dataset.

In previous works (Xu and Veeramachaneni, 2018; Xu et al., 2019), the synthetic value is sam-

pled from the probability distribution by simply assigning the value to the highest probability

class (i.e. argmax assignment). However, this approach does not result in representative mode

shares. Instead, as is typical in choice modeling scenarios (Ben-Akiva and Lerman, 1985), we

propose to sample the synthetic value through simulation, i.e. drawing according to the output

probability values (without any label smoothing applied). Thus, for categorical variables, we

have two different ways to obtain the final value:

d synth,argmax
t , j = argmaxosynth

t , j (3.31)

d synth,simul
t , j = simulation

[
osynth

t , j

]
(3.32)

Similary, by inverting Equation 3.19, we have for continuous variables:

csynth,argmax
t , j = δw synth,(k)

t , j σ(k)
t +η(k)

t where k = argmax psynth
t , j (3.33)

csynth,simul
t , j = δw synth,(k)

t , j σ(k)
t +η(k)

t where k = simulation
[

psynth
t , j

]
(3.34)

where δ corresponds to the same values used to encode the continuous variables ct .

In order to test the impacts of simulation versus maximum probability assignment for the

categorical and continuous variables, we systematically test four different sampling strategies:

argmax for cont. and cat.: TAA
synth =

{
c synth,argmax

1:NC
,d synth,argmax

1:ND

}
(3.35)

simulation for cont. and argmax for cat.: TSA
synth =

{
c synth,simul

1:NC
,d synth,argmax

1:ND

}
(3.36)

argmax for cont. and simulation for cat.: TAS
synth =

{
c synth,argmax

1:NC
,d synth,simul

1:ND

}
(3.37)

simulation for cont. and cat.: TSS
synth =

{
c synth,simul

1:NC
,d synth,simul

1:ND

}
(3.38)

As a side note, we would like to add that the sampling process is entirely independent of the

optimization process of both the generator and the discriminator. It is, therefore, possible to

train a single model and test the different sampling methods afterward.

76

3.3 Methodology

Summary

Table 3.3 provides a summary of the possible DATGAN versions using the proposed loss

functions, label smoothing strategies, and sampling strategies. In Section 3.5, we compare

these versions against each other to select the best-performing.

Table 3.3: Summary of all the DATGAN versions.

Name Loss function Label smoothing Sampling

SGAN_NO_AA

SGAN
(Eq. 3.9)

none

argmax for Ct and Dt

SGAN_NO_SA simulation for Ct , argmax for Dt

SGAN_NO_AS argmax for Ct , simulation for Dt

SGAN_NO_SS simulation for Ct and Dt

SGAN_OS_AA

one-sided

argmax for Ct and Dt

SGAN_OS_SA simulation for Ct , argmax for Dt

SGAN_OS_AS argmax for Ct , simulation for Dt

SGAN_OS_SS simulation for Ct and Dt

SGAN_TS_AA

two-sided

argmax for Ct and Dt

SGAN_TS_SA simulation for Ct , argmax for Dt

SGAN_TS_AS argmax for Ct , simulation for Dt

SGAN_TS_SS simulation for Ct and Dt

WGAN_NO_AA

WGAN
(Eq. 3.12)

none

argmax for Ct and Dt

WGAN_NO_SA simulation for Ct , argmax for Dt

WGAN_NO_AS argmax for Ct , simulation for Dt

WGAN_NO_SS simulation for Ct and Dt

WGAN_OS_AA

one-sided

argmax for Ct and Dt

WGAN_OS_SA simulation for Ct , argmax for Dt

WGAN_OS_AS argmax for Ct , simulation for Dt

WGAN_OS_SS simulation for Ct and Dt

WGAN_TS_AA

two-sided

argmax for Ct and Dt

WGAN_TS_SA simulation for Ct , argmax for Dt

WGAN_TS_AS argmax for Ct , simulation for Dt

WGAN_TS_SS simulation for Ct and Dt

WGGP_NO_AA

WGGP
(Eq. 3.15)

none

argmax for Ct and Dt

WGGP_NO_SA simulation for Ct , argmax for Dt

WGGP_NO_AS argmax for Ct , simulation for Dt

WGGP_NO_SS simulation for Ct and Dt

WGGP_OS_AA

one-sided

argmax for Ct and Dt

WGGP_OS_SA simulation for Ct , argmax for Dt

WGGP_OS_AS argmax for Ct , simulation for Dt

WGGP_OS_SS simulation for Ct and Dt

WGGP_TS_AA

two-sided

argmax for Ct and Dt

WGGP_TS_SA simulation for Ct , argmax for Dt

WGGP_TS_AS argmax for Ct , simulation for Dt

WGGP_TS_SS simulation for Ct and Dt

77

Chapter 3. Generating synthetic data from deep learning with expert knowledge

3.3.5 Result assessments

For assessing the quality of synthetic datasets compared to the original datasets, we use two

main methods: (i) a statistical method; (ii) a ML-based method. The goal of the first method is

to verify that the synthetic datasets display the same statistical properties compared to the

original dataset. In order to do this, we compare the distributions of each column individually

between the synthetic and original datasets. We then test combinations of multiple columns

to study if the models can grasp more complex correlations between the variables. The second

method is closer to a real-world problem one can face. Indeed, the goal is to study if the

synthetic datasets can be used in the classification/regression context of ML.

Statistical tests

For the statistical tests, we build on existing approaches in the transportation literature (Gar-

rido et al., 2019; Borysov et al., 2019; Badu-Marfo et al., 2020). The idea is to compute frequency

lists, i.e. frequency count of each unique value, for each column on both the original dataset

π and the synthetic dataset πsynth. In the literature, authors typically only calculate the fre-

quency lists for single columns, i.e. marginal distributions, for a few relevant variables and test

them against each other. In this chapter, we build on this in two ways:(i) calculating joint fre-

quency lists for n columns simultaneously (therefore assessing joint distributions of order n)

and (ii) systematically testing all possible combinations of columns at each aggregation level.

If we only compute the frequency lists for single variables, we will only assess the marginal

distribution of each variable independently. Indeed, it verifies whether each column of the

synthetic data matches the distribution of the corresponding column in the original data.

However, it does not provide any information on the correlations between the columns in

either the synthetic or original data, i.e. it assesses each column independently of all other

columns. Therefore, to assess whether relationships between variables in the synthetic data

match that of the original data, it is necessary to investigate the joint distributions of multiple

columns simultaneously. To address this, we simultaneously calculate the joint frequency lists

for multiple columns. Furthermore, at each aggregation level (i.e. number of columns), we

calculate the frequency lists for all possible combinations of columns.

Since the number of possible combinations at each aggregation level increases factorially, we

limit the level of aggregation to one, two, or three columns as follows:

First order: Columns are compared to each other, giving NV different aggregated lists.

Second order: Columns are aggregated two-by-two, giving
(NV

2

)
different aggregated lists.

Third order: Columns are aggregated three-by-three, giving
(NV

3

)
different aggregated lists.

Note that continuous variables must be binned to calculate frequency lists. We arbitrarily set

the number of bins for each continuous column to 10, such that the second and third order

78

3.3 Methodology

frequency lists of continuous columns will have 100 and 1000 unique values, respectively.

Once these frequency lists have been computed, we can compare them using standard statistic

metrics defined in the literature. We select five different metrics:

• Mean Absolute Error (MAE):

MAE
(
πsynth,π

)
=

∑Ncnt

i=1 |πsynth
i −πi |

Npi
(3.39)

where Nπ corresponds to the size of the frequency list π.

• Root Mean Squared Error (RMSE):

RMSE
(
πsynth,π

)
=

∑Ncnt

i=1

(
π

synth
i −πi

)2

Ncnt


1/2

(3.40)

• SRMSE (Müller and Axhausen, 2011):

SRMSE
(
πsynth,π

)
= RMSE

(
πsynth,π

)
π

(3.41)

where π corresponds to the average value of π.

• Coefficient of determination:

R2
(
πsynth,π

)
= 1−

∑Ncnt

i=1

(
π

synth
i −πi

)2

∑Ncnt

i=1

(
πi −πi

)2 (3.42)

• Pearson’s correlation:

ρPearson

(
πsynth,π

)
= cov

(
πsynth,π

)
σπσπsynth

(3.43)

where cov(·, ·) corresponds to the covariance matrix and σX the standard deviation of a

given vector X .

Finally, the results can be averaged over all combinations to obtain a single number per

synthetic dataset, statistic, and aggregation level.

Supervised learning-based validation

We propose a new supervised learning-based validation method for synthetic data that uses

supervised classification and regression models to approximate the complete conditional

79

Chapter 3. Generating synthetic data from deep learning with expert knowledge

distributions of each variable, given all other variables in the dataset. The general approach is

to estimate two regression or classification models for each variable vt . The first model (mt) is

estimated on a training portion of the original data, and the second (msynth
t) is estimated on a

corresponding training portion of the synthetic data. In each case, the model tries to predict

the values in the corresponding column conditional on all other columns in the dataset.

Each model is then validated on the same test portion of the original data, providing two loss

scores. The expected value of the loss of the model estimated on the synthetic data (which

approximates the conditionals in the synthetic dataset) should be greater than or equal to

the expected loss of the model estimated on the original data (which approximates the true

conditionals in the original data). The closer the loss scores of the models estimated on the

synthetic and original data, the more closely the synthetic data has captured the conditional

distributions of the original data. The approach is detailed in Algorithm 3.3.

Algorithm 3.3 Supervised learning-based validation

Inputs: Original data T, synthetic data Tsynth

Output: Similarity score for each variable vt ∈ T
1: for all vt ∈ T do
2: yt = vt

3: X t = T \ vt

4: Divide yt and X t into training set (yt ,train, X t ,train) and test set (yt ,test, X t ,test)

5: y synth
t = v synth

t

6: X synth
t = Tsynth \ v synth

t

7: Sample training set (y synth
t ,train, X synth

t ,train) from y synth
t and X synth

t , with the same dimensions
as (yt ,train, X t ,train).

8: if vt ∈ c1:NC then
9: Estimate regression model mt ,reg on (yt ,train, X t ,train)

10: Estimate regression model msynth
t ,reg on (y synth

t ,train, X synth
t ,train)

11: g reg
t =LMSE(yt ,test,msynth

t ,reg (X t ,test))/LMSE(y synth
t ,test ,mt ,reg(X synth

t ,test))

12: return g reg
t

13: else
14: Estimate probabilistic classification model mt ,class on (yt ,train, X t ,train)

15: Estimate probabilistic classification model msynth
t ,class on (y synth

t ,train, X synth
t ,train)

16: g class
t =Llog-loss(yt ,test,msynth

t ,class(X t ,test))−Llog-loss(y synth
t ,test ,mt ,class(X synth

t ,test))

17: return g class
t

We make use of gradient boosting ensembles of decision trees for both mreg,t and mclass,t as

(i) they can be easily applied to both regression and probabilistic classification problems;

(ii) are computationally efficient to estimate; (iii) have been shown to have high predictive

performance on a wide variety of supervised learning tasks; (iv) can determine appropriate

regularisation automatically using early stopping. We specifically make use of the LightGBM

library (Ke et al., 2017) which inherently handles categorical input features, thus avoiding the

need for one-hot encoding of categorical variables.

80

3.3 Methodology

For continuous variables, the score g reg
t is the ratio of the mean squared error of the model

estimated on the synthetic dataset to the mean squared error of the model estimated on the

original dataset, with a score of 1 indicating a perfect match, and a higher score representing

a worse fit. For categorical variables, the score g class
t is the absolute difference between the

normalized log-loss of the model estimated on the synthetic dataset and the normalized log-

loss of the model estimated on the original dataset, with a score of 0 indicating a perfect match,

and a higher score representing a worse fit. The scores can be summed over all columns to

give aggregate scores for all continuous and categorical variables.

While Algorithm 3.3 describes a single train-test split, the same algorithm can be used with

k-fold cross-validation to obtain more accurate estimates of the model losses. We use 5-fold

cross-validation and stratified sampling to select training folds for the categorical data.

3.3.6 Implementation notes

The code for DATGAN has been implemented using Python 3.9. We use the library tensorflow
(v2.8) (Abadi et al., 2016) for the main components of the neural networks. In addition, we

use the library networkx (v2.5) (Hagberg et al., 2008) for specifying the DAG G discussed in

Section 3.3.1. This library already has built-in functions to verify that a user-specified graph is

a DAG.

For the optimization process using the different loss functions presented in Section 3.3.3, we

follow the authors’ instructions of the different articles for the hyperparameters. During the

initial tests, we investigated different values of the learning rate and decided on the following

learning rates for each loss, which appeared to work best in these initial tests:

Standard loss learning rate of 1 ·10−3

Wasserstein loss learning rate of 2 ·10−4

Wasserstein loss with gradient-penalty learning rate of 1 ·10−4

We do not provide any specific results for this hyperparameter since it is not the main focus of

this work.

The complete code for this project, including the different versions of DATGAN, the case

studies, and the results, can be found on Github at https://github.com/glederrey/SynthPop.

In addition, a Python library has been created for the DATGAN model on Pypi, available

at https://pypi.org/project/datgan/. The code for the library is available on Github at

https://github.com/glederrey/DATGAN.

81

https://github.com/glederrey/SynthPop
https://pypi.org/project/datgan/
https://github.com/glederrey/DATGAN

Chapter 3. Generating synthetic data from deep learning with expert knowledge

3.4 Case studies

In this section, we present the case studies for this chapter. First, we introduce the datasets

in Section 3.4.1. We provide a short description of each dataset. Then, Section 3.4.2 gives a

detailed overview of the training method used with all the models to bring as much fairness as

possible in comparing the models.

3.4.1 Datasets

The first dataset is a household travel survey of the Chicago metropolitan area, conducted

from January 2007 to February 2008. It is named after the agency that collected it: the Chicago

Metropolitan Agency for Planning (CMAP) dataset. The trips are given as one and two-day

travel diaries, provided by all the members of the households. The data is therefore hierarchical.

The dataset has first been cleaned to remove incomplete entries. Then, we selected one unique

trip per individual per household for the final dataset to remove data leakage. It thus contains

a total of 8’929 trips with 15 columns. The appendix gives a complete description of this

dataset in Table C.1. The DAG used for DATGAN with this dataset can also be found in the

appendix; see Figure C.1.

The second dataset is the London Passenger Mode Choice (LPMC) dataset (Hillel et al., 2018).

It combines the London Travel Diary Survey (LTDS) records with matched trip trajectories

and corresponding mode alternatives. The LTDS was conducted between April 2012 and

March 2015 and records trips made by individuals residing within Greater London. The trip

trajectories are extrapolated from Google Maps API. The final dataset has been processed to

not lead to data leakage. Similar to the CMAP dataset, we selected only one trip per household.

The final dataset contains a total of 17’616 trips with 27 columns. The appendix gives a

complete description of this dataset in Table C.2. The DAG used for DATGAN with this dataset

can also be found in the appendix; see Figure C.2. In addition, we created a smaller version

of the LPMC dataset by randomly selecting 50% of the rows for testing the DATGAN versions.

This dataset is conveniently named LPMC_half. We mainly use it to understand the effect of

the number of rows on the performance of the models.

Table 3.4: Summary of the datasets used in the case studies. Full description of the datasets
can be found in the Appendix.

Name #columns #continuous #categorical #rows

CMAP 15 3 12 8’929

LPMC 27 13 14 17’616

LPMC_half 27 13 14 8’808

ADULT 14 4 10 45’222

82

3.5 Results

The third and final dataset is the ADULT dataset (Kohavi, 1996), also known as the Census-

Income dataset. This dataset contains socio-economic variables on multiple individuals to

predict if their income is below or above $50k/yr. From the original dataset, we removed all

the rows with unknown values. The appendix gives a complete description of this dataset in

Table C.3. The DAG used for DATGAN with this dataset can also be found in the appendix; see

Figure C.3. Due to its larger size than the other datasets, the ADULT dataset is only used when

comparing DATGAN with state-of-the-art models.

3.4.2 Training process

This chapter aims to propose a new way to generate synthetic data. However, we need to

test all these generative models on a similar playground for fairness toward state-of-the-art

methods in the literature. We, thus, decide to train every model on 1’000 epochs with a batch

size Nb of 500, even if the optimization process could be stopped earlier. In addition, we

decided to keep the original hyperparameters provided in the articles. While optimizing these

parameters would likely lead to better results, most users would use the models as the authors

provide them. In addition, each model is trained five times on each dataset, and each of the

five models generates five synthetic datasets with the same number of rows as the original

dataset. This means that each test is performed on 25 synthetic datasets. Thus, the results

provided in Section 3.5 correspond to the test’s average value.

The training process is slightly different for the DATGAN versions. Indeed, the sampling can be

done independently after the training process. Therefore, we only have to train nine different

models (combinations of loss functions and label smoothing). Each of these models is trained

five times. Then, for each of these 45 models, we use the four different sampling methods to

produce five synthetic datasets for each method. Therefore, we get a total of 900 synthetic

datasets to be compared for each dataset, i.e. 25 synthetic datasets for each of the 36 models

presented in Table 3.3

3.5 Results

In this section, we present the results obtained using the assessment methods presented in

Section 3.3.5 on the different case studies presented in Section 3.4. Section 3.5.1 compares the

36 different versions of the DATGAN model to find the best performing. Then, Section 3.5.2

compares DATGAN against state-of-the-art models presented in Section 3.2.3. Finally, Sec-

tion 3.5.3 performs a sensitivity analysis on the DAG used for DATGAN to understand its effect

on the performance of the model.

83

Chapter 3. Generating synthetic data from deep learning with expert knowledge

3.5.1 Comparison of DATGAN versions

For the CMAP case study, the complete table of results are provided in the appendix, Section F.1.

We see that DATGAN with the WGGP loss provides poorer results compared to DATGAN with

the SGAN or WGAN loss. It is the case with both assessment methods. This is quite unexpected

since the WGGP loss is the most recent loss function available amongst the three. We do not

clearly explain why the model fails with this loss on this particular dataset. Secondly, we see

that all the models using the one-sided label smoothing (OS) tend to perform worse than their

counterparts. This result was expected, especially when using simulation while sampling the

synthetic variables. Indeed, if the model only uses one-sided label smoothing, the generator

will learn the noisy version of the categorical variables. If we use argmax for selecting the

categorical variables, it does not have a large effect since the noise is quite small. However, the

final synthetic probability distribution does not correspond to the original one when using

simulation. Therefore, the model will sample the values wrongly and thus lead to poor results.

When we compare two-sided label smoothing (TS) against no label smoothing (NO), we see

that the results are different for the SGAN and the WGAN loss functions. Indeed, it seems that

it is better to use the two-sided label smoothing with the WGAN loss, and it is better to avoid

label smoothing with the SGAN loss. Table 3.5 shows the ten best models in terms of average

ranking on the two assessment methods. We see that both loss functions are viable. However,

the WGAN loss seems to be slightly better on average. The sampling method seems to have less

influence than the label smoothing and the loss function on the final results.

Table 3.5: Average rankings for the ten best DATGAN models on the CMAP dataset.

Name Avg. rank stats Avg. rank ML rank

WGAN_TS_AS 2.88 8.0 5.44

WGAN_TS_AA 8.24 4.0 6.12

WGAN_TS_SS 4.04 9.5 6.77

SGAN_NO_SA 10.08 3.5 6.79

SGAN_NO_SS 8.56 6.0 7.28

WGAN_TS_SA 6.84 8.0 7.42

SGAN_NO_AS 12.68 4.0 8.34

SGAN_NO_AA 15.96 2.0 8.98

SGAN_TS_AS 8.68 9.5 9.09

SGAN_TS_SA 7.88 10.5 9.19

For the LPMC dataset, we have quite unexpected results compared to the CMAP case study.

Numerical results are provided in the appendix, Section F.6. The conclusions on the label

smoothing remain the same. However, the best loss function to use in this case is the WGGP
loss. This is especially visible when using the ML efficacy method to assess the results. All the

models with the WGGP loss consistently outperforms the models with the other losses. The

84

3.5 Results

WGAN loss performs slightly worse than the SGAN loss. Table 3.6 shows the ten best models in

terms of average on both assessment methods. We see that both models using simulation for

the categorical variables and two-sided label smoothing outperform the other models. It is

interesting to note that, in this case, the sampling method for continuous variables does not

affect much the final results. This result can be explained thanks to the encoding we use for

the continuous variables. Indeed, all the encoded values wt , j are computed such that they all

correspond to the continuous value ct , j once drawn from their respective Gaussian mixture.

Therefore, if the algorithm fails to choose the right mixture, the sampling will return the same

continuous synthetic value.

Table 3.6: Average rankings for the ten best DATGAN models on the LPMC dataset.

Name Avg. rank stats Avg. rank ML rank

WGGP_TS_SS 2.96 4.0 3.48

WGGP_TS_AS 5.16 3.0 4.08

WGGP_NO_AS 9.52 8.0 8.76

WGGP_NO_SS 9.76 8.5 9.13

WGGP_OS_SA 15.60 4.0 9.80

WGGP_OS_AA 18.36 2.5 10.43

WGGP_TS_SA 12.36 9.5 10.93

WGGP_NO_AA 12.72 9.5 11.11

WGGP_TS_AA 14.80 7.5 11.15

WGGP_NO_SA 13.04 10.0 11.52

If we compare the two previous case studies, there are two hypotheses as to why the WGAN loss

works better with the CMAP dataset and the WGGP loss with the LPMC dataset:(i) the number

of data points in the dataset influences the optimization process with a given loss function;

(ii) the ratio of continuous/categorical variables influences the choice of the loss function.

The first hypothesis is easier to test since we can use the LPMC_half case study to compare

with the LPMC case study. The results in the appendix, see Section F.12, show the same

behavior with the smaller LPMC dataset than with the complete one. Indeed, the WGGP loss

leads to significantly better results across both assessments methods compared to the other

loss functions. Table 3.7 shows the ten best models in terms of average on both assessment

methods. Once again, the version with the WGGP loss, two-sided label smoothing, and sampling

using simulation for both continuous and categorical variables appears to be the best model.

However, it is interesting to note that the versions with the WGAN loss function shows the best

statistics when only looking at the first aggregation level on categorical variables. This hints

at the fact that the WGAN loss is the most appropriate loss to use when a dataset contains a

majority of categorical variables.

For further analysis, we settle on one particular version of the DATGAN. As seen across all the

85

Chapter 3. Generating synthetic data from deep learning with expert knowledge

Table 3.7: Average rankings for the ten best DATGAN models on the LPMC_half dataset.

Name Avg. rank stats Avg. rank ML rank

WGGP_TS_SS 3.12 4.5 3.81

WGGP_TS_AS 4.84 4.0 4.42

WGGP_NO_SS 8.20 8.5 8.35

WGGP_OS_SA 14.36 4.0 9.18

WGGP_NO_AS 11.88 7.0 9.44

WGGP_OS_AA 16.00 3.5 9.75

WGGP_OS_SS 18.04 5.5 11.77

WGGP_OS_AS 20.24 5.0 12.62

SGAN_TS_SS 9.52 16.0 12.76

SGAN_NO_AS 10.96 16.0 13.48

case studies, two-sided label smoothing is the best method for the discriminator. In addition,

using simulation on both types of variables for the sampling leads to better results for the two

LPMC case studies. For the CMAP case study, it is amongst the best models. We therefore

choose to use this sampling method to stay consistent across both variable types. Finally, we

can not recommend the same loss function for all the datasets. Indeed, the WGAN loss performs

best when there are more categorical variables than continuous in the dataset. Therefore, we

use the WGAN loss function for the CMAP case study and the WGGP loss function for the LPMC

case studies.

3.5.2 Comparison with state-of-the-art models

At this point of the chapter, we have presented our new model for generating synthetic datasets

and have selected the best version depending on the type of case study. However, we now want

to compare our model against state-of-the-art models presented in the literature. We, thus,

test our DATGAN model against the four models presented in the literature (see Section 3.2.3)

on the four different case studies. We use the same assessment methods as previously to

compare all the models. The detailed results are provided in the appendix, Section F.2. The

summarized results are given in Table 3.8. It shows the average rankings on both assessment

methods for the four different case studies. We see that DATGAN outperforms all the other

models in the first three case studies. For example, it is consistently the best model when

using the ML efficacy method. For the ADULT case study, we decided to test DATGAN with

the WGAN and the WGGP loss functions. Since the ADULT dataset contains more categorical

variables than continuous, we expect the WGAN loss to perform better, as it is shown in Table 3.8.

It performs the best on the statistical assessments. However, it seems to struggle with the

ML efficacy method. While the results are quite close on the continuous variables, the two

86

3.5 Results

Table 3.8: Average rankings of the state-of-the-art models against DATGAN on the four case
studies.

Name Avg. rank stats Avg. rank ML rank

CMAP case study

DATGAN (WGAN) 1.00 1.0 1.00

CTAB-GAN 2.92 2.5 2.71

TGAN 2.60 3.0 2.80

CTGAN 4.24 4.0 4.12

TVAE 4.24 4.5 4.37

LPMC case study

DATGAN (WGGP) 1.00 1.0 1.00

TGAN 2.36 2.5 2.43

CTGAN 3.04 3.0 3.02

CTAB-GAN 4.08 3.5 3.79

TVAE 4.52 5.0 4.76

LPMC_half case study

DATGAN (WGGP) 1.08 1.0 1.04

TGAN 2.60 2.5 2.55

CTAB-GAN 3.04 4.0 3.52

CTGAN 3.64 3.5 3.57

TVAE 4.64 4.0 4.32

ADULT case study

DATGAN (WGAN) 1.08 3.0 2.04

TGAN 1.92 3.5 2.71

DATGAN (WGGP) 3.32 3.5 3.41

TVAE 3.80 3.5 3.65

CTGAN 4.88 3.0 3.94

CTAB-GAN 6.00 4.5 5.25

87

Chapter 3. Generating synthetic data from deep learning with expert knowledge

DATGAN models are the only models that do not fail the test on the categorical variables.

Indeed, it seems that the other models tend not to produce enough of the low probability

categories. Thus, these models tend to oversimplify the generated synthetic data compared

to the DATGAN models. One of the reasons why such a thing happens might come from

the sampling process. Indeed, using simulation to get the final categories allows for more

representation of the low probability values than using the maximum probability estimator.

Since we compared models across multiple articles, it is interesting to look at their conclusions.

For example, Xu et al. (2019) show that their CTGAN model is consistently outperforming

TVAE. We see the same ranking between the two models except for the ADULT case study.

Therefore, we can draw the same conclusion on these two models as the authors. However,

Zhao et al. (2021) claim that CTAB-GAN outperforms CTGAN across all their assessments. In

our case, we see that CTAB-GAN outperforms CTGAN only when the case studies contain a

small number of data points. While we have used both models as intended to be used by their

authors, we only changed the final number of epochs. In their article, Zhao et al. (2021) have

trained both models on 150 epochs. Therefore, CTAB-GAN may be providing a better early

optimization process than CTGAN. However, further work would be required to analyze this

result, and it is out of the scope of this work.

In addition, we have tested both models presented by Garrido et al. (2019): a WGAN and

a VAE. Unfortunately, results are not shown in this chapter because both models failed to

produce adequate continuous variables. Indeed, the encoding of continuous variables is

done such that they are binned based on their original distributions, thus treating them

as categorical variables. This, therefore, lead to especially poor results when comparing

continuous distributions.

3.5.3 Sensitivity analysis of the DAG

In this section, we want to analyze how the DAG can affect the performances of DATGAN

and how it can be used to modify the generation of synthetic datasets. We first perform the

analysis on the DAG using different versions of the latter. Then, we show how we can alter the

DAG to generate hypothetical synthetic datasets.

Structure of the DAG

In the previous section, we have analyzed all the different versions of DATGAN to select the

best one. However, in this section, we want to investigate how the DAG will influence the

results. Thus, we only use the best possible model for each case study. The idea is to start with

the DAG presented in the appendix for each case study and make variations of it to study the

generated datasets. Therefore, we created five different DAGs for each case study:

• full: Complete DAG presented in the appendix for each case study.

88

3.5 Results

• trans. red.: Transitive reduction of the full DAG. The transitive reduction consists

in removing as many edges as possible in a DAG such that there exists only one path

between two vertices in the graph.

• linear: This DAG consists in taking the variables in the order provided by the dataset

and linking them to each other linearly. Thus, there are no multi-inputs within the DAG.

This is similar to the technique used in TGAN (Xu and Veeramachaneni, 2018).

• prediction: This DAG consists of only one sink node. All the other nodes are consid-

ered source nodes linked to the sink node. The source nodes are not linked to each other.

The sink nodes are the choice for the CMAP case study and the travel_mode for the

LPMC case studies.

• no links: This DAG consists of only nodes without any edges. This, thus, cuts all the

links between the variables.

At first glance, we can already predict that the last two DAGs should perform badly since the

connections between them are either badly implemented or absent. Thus, we are mostly

interested in the first three DAGs. Indeed, if the DAG can help the model to generate more

representative synthetic data, the full DAG or the trans. red. DAG should outperform the

linear DAG. As for the previous section, the details of the results are given in the appendix,

Section F.3. Table 3.9 shows the rankings of the DAGs on the CMAP case study. As expected, the

best two DAGs are the two complete ones. It is interesting to note that the full DAG provides

better results on the ML efficacy assessment while the trans. red. provides better results

on the statistical assessments. Since the model with the full DAG contains more edges than

the other DAGs, it is, therefore, larger and more complex to train. Thus, this can hurt the LSTM

cells’ performance when creating the synthetic variables. However, the correlations between

the variables are better with the complete DAG since it always performs best compared to the

other DAGs.

Table 3.9: Average rankings of the different DAGs on the CMAP dataset

Name Avg. rank stats Avg. rank ML rank

trans. red. 1.96 2.0 1.98

full 3.04 1.0 2.02

linear 2.80 3.0 2.90

prediction 3.80 4.0 3.90

no links 3.40 5.0 4.20

The CMAP dataset is relatively small. Therefore, learning the correlations between the variables

can be pretty difficult. The LPMC dataset, on the other hand, is twice as big. It is thus

interesting if the DAG can still provide the same kind of help on a larger dataset. Table 3.10

89

Chapter 3. Generating synthetic data from deep learning with expert knowledge

shows the rankings of the DAG on the LPMC case study. We see that this time, the linear
DAG is the best one, closely followed by the two complete DAGs. While the full DAG has

some issues with the statistical assessments, it remains the best on the ML efficacy method.

Therefore, it seems that if one wants to generate a synthetic dataset with column data as close

as possible to the original dataset, a simpler DAG leads to better results. However, if one wants

to keep as much correlation as possible, one should opt for a complete DAG.

Table 3.10: Average rankings of the different DAGs on the LPMC dataset

Name Avg. rank stats Avg. rank ML rank

linear 2.08 2.0 2.04

full 2.80 1.5 2.15

trans. red. 2.16 2.5 2.33

prediction 4.00 4.0 4.00

no links 3.96 5.0 4.48

Finally, we want to confirm our hypothesis that the completeness of the DAG is less important

with more data points. We, thus, make the same tests on the smaller LPMC case study.

Table 3.11 shows the rankings of the DAG on the LPMC_half case study. Results show that the

linear DAG performs better than the full DAG on both metrics. At first glance, this result

can be quite surprising. However, when we look at the DAG for both the CMAP and the LPMC

case study, we see that the LPMC DAG is much more complex than the CMAP DAG. Indeed,

the CMAP DAG contains a total of 25 edges for 15 nodes for an average of 1.6̄ edges per node.

On the other hand, the LPMC DAG contains a total of 63 edges for 27 nodes for an average

of 2.3̄ edges per node. It is, thus, possible that the model struggles to train correctly with a

more complex DAG. However, we see that the trans. red. version of the LPMC DAG leads

to even worse results than the full DAG. Therefore, it might also be possible that this DAG is

not well constructed for this particular case study. It, thus, requires further investigation to

fully understand how the DAG affects the results of this case study.

Table 3.11: Average rankings of the different DAGs on the LPMC_half dataset

Name Avg. rank stats Avg. rank ML rank

linear 1.84 1.0 1.42

full 2.04 2.0 2.02

trans. red. 3.76 3.0 3.38

prediction 4.08 4.0 4.04

no links 3.28 5.0 4.14

90

3.5 Results

Effect of the DAG on the synthetic dataset

The final section of the results shows what can be achieved with the DAG depending on the

desire of the modeler, i.e. how the modeler can introduce structural zeros in the data. Indeed,

we have shown that using a complete DAG allows generating the best possible synthetic

datasets compared to state-of-the-art models. However, the DAG can also be used to create

0 10 20 30 40 50 60 70 80 90 100

0
0.

05
0.

1
0.

15

P
ro

b
ab

il
it

y

original dataset
complete DAG
altered DAG

(a) Age distribution

0 10 20 30 40 50 60 70 80 90 100

0
0.

05
0.

1
0.

15

P
ro

b
ab

il
it

y

original dataset
complete DAG
altered DAG

(b) Age distribution only if the individual owns a driving license

0 10 20 30 40 50 60 70 80 90 100

0
0.

05
0.

1
0.

15

P
ro

b
ab

il
it

y

original dataset
complete DAG
altered DAG

(c) Age distribution only if the individual does not own a driving license

Figure 3.6: Age distributions for the original CMAP dataset, for a synthetic CMAP dataset with
a complete DAG, and for a synthetic CMAP dataset with an altered DAG.

91

Chapter 3. Generating synthetic data from deep learning with expert knowledge

hypothetical synthetic datasets. Since the DAG controls the causal links between the variables,

removing any relationships between two or more variables is simple. For example, in the CMAP

case study, we could imagine a hypothetical population with no minimum age requirement

to get a driving license. In order to achieve this, we can simply remove the link between

the variables age and license in the DAG presented in Figure C.1. If the modeler wants

to ensure that two variables do not interact, these variables should be defined as source

nodes in the DAG. Figure 3.6 shows the age distributions for the original CMAP dataset, for a

synthetic dataset generated with a complete DAG, and for a synthetic dataset generated with

the altered DAG. Figure 3.6a shows the distribution of the variable age in all of the datasets. As

we can see, the synthetic probability distributions are quite similar to the original probability

distributions. However, if we look at the age distribution when the individual owns a driving

license (Figure 3.6b), we see that the synthetic dataset with the altered DAG still produces

individuals of age lower than 18 owning a driving license. It is also the case with the synthetic

dataset generated from a complete DAG. However, the number of minors with a driving license

is marginally less than the data generated with the altered DAG. The effect of the altered DAG

can be seen even better when looking at the age distribution of individuals not owning a

driving license (Figure 3.6c). Indeed, both the original and synthetic datasets with a complete

DAG show most young individuals who do not own a driving license. However, the altered

DAG produces the same type of distributions compared to the previous two. This, thus, shows

that we eliminated the correlation between age and owning a driving license with the altered

DAG.

The results presented in this last section show that the modeler can easily introduce structural

zeros, i.e forcing correlations between variables to be null. However, the current methodology

cannot generate unexisting correlations in the data. In addition, methodologies focusing on

structural zeros often compete with methodologies focusing on sampling zeros, i.e. unseen

data. Thus, one could think that it is also the case with DATGAN. However, as shown in

Figure 3.6a, the age distribution does not suffer from adding structural zeros. Indeed, since the

DAG is specified beforehand, both processes are not competing against each other. Therefore,

the learning phase of DATGAN only takes care of sampling zeros and produces a robust model.

Additionally, one could use the argmax sampling process to improve structural zeros at the

cost of slightly lower performance on the sampling zeros.

3.6 Summary

This chapter presents a novel GAN architecture, the DATGAN, that integrates expert knowl-

edge to control the causal links between the variables. The methodology shows how a DAG

can model the generator’s structure and how synthetic variables are generated using LSTM

cells. In addition, we provide an efficient way to encode categorical and continuous variables.

While the core mechanics of DATGAN remain the same, we explore different loss functions for

training DATGAN, using label smoothing on categorical variables and multiple sampling meth-

ods. To compare the results as fairly as possible, we provide two new systematic assessment

92

3.6 Summary

methods for comparing synthetic datasets: a statistical method and a ML efficacy method.

We use these two methods to show that two-sided label smoothing and simulation to sample

the final synthetic variables lead to the best performances. The most optimal loss function,

on the other hand, depends on the ratio of continuous and categorical variables. Indeed, if a

dataset contains primarily categorical variables, we recommend using a WGAN loss function.

On the contrary, if the dataset contains more continuous variables than categorical variables,

we recommend using a WGGP loss function. We then show that a complete DAG leads to better

correlations in the final synthetic dataset than a stripped one. The optimal DATGAN models

are then compared against state-of-the-art models. We show that DATGAN outperform all the

other models in all the case studies using both assessment methods. Finally, we show how

DATGAN can create hypothetical synthetic populations.

The DATGAN architecture has been developed to improve the representativity of its generated

synthetic data. Such datasets can then be used in simulations. They might improve the latter’s

results since it has shown better results than other synthetic datasets from state-of-the-art

models found in the literature. However, the DATGAN methodology can be improved on

multiple aspects. The first one consists in removing the directionality aspect in the DAG.

Indeed, due to the linear nature of LSTM cells, DATGAN requires the use of a directed graph.

However, the causality between variables is usually unclear. Thus, an undirected graph would

better represent the correlations between the variables instead of the causality. To achieve this,

the architecture of the generator should be upgraded. For example, Graph Neural Networks

are built based on an undirected graph. Such an architecture would fit well the essence of the

DATGAN methodology. In addition, DATGAN, as every other GAN, can achieve differential

privacy (Jordon et al., 2018) by the addition of Laplacian noise. Therefore, privacy preservation

is generally not a concern for GANs. For the ML efficacy research axis, DATGAN is already

showing improvements thanks to the ML evaluation metric results. However, DATGAN does

not consider bias in the original data. Therefore, it also generates biased data. Thus, improving

the bias correction of DATGAN will also improve the ML efficacy. A simple fix that already exists

in the literature is the use of conditionality on GANs. We could, thus, update DATGAN such

that it can conditionally generate synthetic data to reduce the bias in the data. Furthermore,

one of the difficult tasks with DATGAN is to create a good DAG that does not hinder the

models’ performances. While the relationship between some variables might be easy to find,

it is more subtle for others. Therefore, it would be interesting to add a feature to combine

multiple variables in a cluster such that they all influence each other without having to decide

in which specific order. However, such an improvement might not work with the current

design of DATGAN using LSTM cells since each cell is assigned to a single variable. Therefore, a

complete redesign of DATGAN might be needed to implement such an improvement. Thus far,

we have discussed four of the five research axes in the literature review. The final axis is transfer

learning. Researchers have already been working on this topic with synthetic image generators.

Therefore, one of the future steps for synthetic tabular data generators is to follow this trend

and start implementing models that can transfer knowledge between multiple datasets.

93

4 Generation of detailed synthetic popu-
lations using deep learning

This chapter is based upon the following technical report:

Lederrey, Gael, Hillel, Tim and Bierlaire, Michel. ciDATGAN: Condi-

tional Inputs for Tabular GANs. arXiv:2210.02404 [cs], October 2022.

https://arxiv.org/abs/2210.02404. arXiv: 2210.02404.

4.1 Introduction

Synthetic data presents new opportunities for modeling complex systems with recent advances

in deep generative learning methodologies. Generative Adversarial Networks (GANs) (Good-

fellow et al., 2014) are considered the most advanced state-of-the-art models to generate

such synthetic data. While there is a large body of work on generating synthetic images (Shin,

2022; Hindupur, 2022), there is still a gap in the research for generating tabular data. Multiple

iterations of GANs for tabular data (Xu and Veeramachaneni, 2018; Park et al., 2018; Lederrey

et al., 2022) have been proposed. However, only a few examples of conditional GANs for

tabular data exists (Xu et al., 2019; Zhao et al., 2021), and they lack the advances made for

GANs specialized in images. Conditionality in GANs consists in feeding latent information

about the desired synthetic data to control the generation process. For example, this can be

used when one wants to generate images of a specific subject or generate images matching a

descriptive sentence.

However, the concept of latent information in tabular data is less obvious. For example, for

socio-economic data, much of the information that would be considered latent for an image

(such as the individual’s age, gender, or nationality) is typically included in the data as manifest

variables. In this context, the conditionality of tabular data based on high-level descriptive

details can be considered more similar to tasks such as image completion, where GANs attempt

to recover the masked part of an image using the information from the neighboring pixels. In

this chapter, we propose a new type of conditionality based on "conditional inputs" that is a

95

https://arxiv.org/abs/2210.02404

Chapter 4. Generation of detailed synthetic populations using deep learning

mix between latent conditionality and data completion. The idea is to feed some original data

variables to the generator as conditional inputs and let the GAN learn the correlations with

the other variables during the training process. Then, we can feed it some unknown values for

the conditional inputs for the sampling. This does not break the principle of GANs since the

generator never sees any original data it is trying to generate. This type of conditionality, thus,

has two main use-cases:

1. Removing the bias in a dataset, e.g. correcting a non-representative sample in a survey

data (e.g. older individuals in a web-based survey)

2. Combining information from two datasets, e.g. combining representative aggregate

data (e.g. aggregate control totals from census) with detailed small-sample data (e.g.

household travel surveys) to create representative and fully disaggregate synthetic pop-

ulations.

The conditional inputs methodology is directly implemented in the Directed Acyclic Tabular

GAN (DATGAN) (Lederrey et al., 2022). For ease of comprehension, we name this model

conditional inputs DATGAN (ciDATGAN). The code for the model itself is available on Github

at https://github.com/glederrey/DATGAN. In addition, a PyPI library is also available at

https://pypi.org/project/datgan/. Finally, the code that has been used to generate the results

for this chapter is also available on Github at https://github.com/glederrey/ciDATGAN.

4.2 Literature review

GANs (Goodfellow et al., 2014) are considered the state-of-the-art generative models for creat-

ing synthetic datasets. While the fundamental concepts remain unchanged, many different

approaches have been used depending on the research context and application. For this

literature review, we investigate three types of GANs: conditional GANs (Section 4.2.1), image

completion GANs (Section 4.2.2), and tabular GANs (Section 4.2.3).

4.2.1 Conditional GANs

GANs are built to generate highly representative synthetic data. However, it is usually impossi-

ble to control the generation process once the model has been trained. Therefore, the concept

of conditionality has been introduced to overcome this limitation. It consists in feeding latent

information about the desired synthetic data, such as the label of an image or a description,

to both the generator and the discriminator during the training process. Thus, once the

model has been trained, this information can be fed to the generator to control its sampling

procedure. In the literature, we find four main types of conditionality: (i) Conditionality by

concatenation (Mirza and Osindero, 2014; Reed et al., 2016) which consists of concatenating

a vector of conditionals with the noise input for the generator and with the input values for

the discriminator; (ii) Conditionality using an auxiliary classifier (Odena et al., 2017) which

96

https://github.com/glederrey/DATGAN
https://pypi.org/project/datgan/
https://github.com/glederrey/ciDATGAN

4.2 Literature review

consists of using an auxiliary neural network to classify the synthetic data and add the results

to the loss function; (iii) Conditionality with projection (Miyato and Koyama, 2018) which

consists of including a projection between the conditionality and the features extracted from

the images in the discriminator, thus allowing the discriminator to compute the similarity

between the conditionality and the image; and finally (iv) Conditional Batch Normalization

(CBN) (Dumoulin et al., 2017; de Vries et al., 2017) which consists of using the conditional

vectors to modulate the activation functions in the generator. Zhang et al. (2019b); Brock et al.

(2019) used this idea in recent GAN architecture by replacing the Batch Normalization layers

in the generator with CBN layers.

While all these methods have shown different levels of success until now, they have always been

developed around the generation of synthetic images. The conditionality is defined relative to

either: (i) the subject of the image; (ii) a sentence describing an image; or (iii) another image

in a different style. Thus, conditionality in GANs corresponds to latent conditionality, i.e. it

is not directly part of an image. The complement to latent conditionality in GANs is image

completion.

4.2.2 Image completion GANs

Image completion GANs consist in generating part of an image that has been hidden with

specific or random masks. Yeh et al. (2017) proposed a DCGAN for semantic inpainting (Pathak

et al., 2016). This model aims at inferring large missing parts of an image based on its semantics.

Building on this work, Nazeri et al. (2019) propose the EdgeConnect GAN that uses information

about edges in the image to complete it. Zheng et al. (2019) extended the methodology to

produce multiple possible completion for incomplete images. Chen et al. (2020) proposed

the iGPT model based on the well-known GPT3 (Brown et al., 2020) model for language. Their

model translates the idea of semantics for text to images.

4.2.3 Tabular GANs

Since tabular data fundamentally differs from images, specific GANs have been developed to

generate such data. Multiple architectures have been used for tabular GANs, including those

based on: (i) Long Short-Term Memory (LSTM) cells (Xu and Veeramachaneni, 2018; Lederrey

et al., 2022); (ii) Fully Connected Neural Networks (FCNNs) (Xu et al., 2019); or (iii) Convolu-

tional Neural Networks (CNNs) (Zhao et al., 2021). While these different architectures provide

different strengths for each model, Lederrey et al. (2022) shows that their model, the DATGAN,

outperforms the state-of-the-art models for generating representative synthetic data (without

conditionality).

Conditional Tabular GAN (CTGAN) (Xu et al., 2019) introduces conditionality for tabular GANs

using concatenation. While they show that the conditional vector is critical for imbalanced

datasets, they do not provide specific results on the conditionality. Zhao et al. (2021) also

97

Chapter 4. Generation of detailed synthetic populations using deep learning

implement conditionality in their Conditional TABular GAN (CTAB-GAN). However, they use

conditionality with an auxiliary classifier and, thus, have to restrict the conditionality on a

single variable. Nonetheless, they show that in the context of Machine Learning (ML) classi-

fication, such conditionality improves the performance of resulting models by a significant

margin.

Both methods for conditionality in tabular GANs cited here implement conditionality based

on latent variables, which has been applied in image generation. As such, they either highly

restrict the use of the model (conditionality using an auxiliary classifier) or fail to generate

accurate synthetic data (conditionality by concatenation). Typically for tabular data, the types

of variables that are latent in images are instead included explicitly in a dataset as manifest

variables. For instance, a survey will typically contain the respondent’s age, gender, and socio-

demographic details. As such, we identify a gap in the literature for conditionality of tabular

data generation based on manifest variables, which could be used in applications such as

synthetic populations and data combinations. For example, to create a large and complete

synthetic population, one would need to combine information from multiple datasets, e.g.

census data, activity timelines, and/or travel diaries. In this chapter, we address this gap by

creating a methodology that allows the user to be flexible on its use of conditionality and the

generation process of the model by taking inspiration from image completion methods.

4.3 Methodology

This section describes our proposed methodology for generating synthetic tabular data based

on conditional inputs. First, we introduce the concept of conditional inputs. It takes inspira-

tion from image completion, in contrast to latent conditionality. The overall approach is to

train a model using complete data to generate synthetic observations conditional on one or

more manifest variables. This type of conditionality can, thus, be used for either removing

the bias in a dataset using unbiased variables as conditional inputs or combining information

from two datasets using variables from a second dataset as conditional inputs for the sampling

phase.

For example, datasets may be either high-detail small samples (with many variables and few

rows) or low-detail large samples (with few rows but many variables). For example, in the case

of population synthesis, one could have access to census data covering the whole population

with high-level socio-economic characteristics and a more detailed dataset describing detailed

mobility characteristics for a much smaller population sample. Thus, a model which learns

how to generate the detailed mobility variables conditional on the high-level socio-economic

census variables could be used to enrich the census population with these variables, thus

creating a detailed synthetic dataset covering the whole of the population. We illustrate this

example in Figure 4.1. The dataset with many variables and fewer rows is named the feeder

data (TF), and the dataset with low details but a large number of rows is named the distributor

dataset (TD). As shown in Figure 4.1, this methodology aims to learn part of the feeder dataset

98

4.3 Methodology

and generate synthetic data to complete the distributor dataset. It is done using common

variables between the two datasets that we call conditional inputs.

columns

ro
w

s

gen
erated

Feeder dataset (TF)

Distributor dataset (TD)

Common variables

Tci
F Tc

F

Tci
D Tc,synth

F→D
Tc

D

Figure 4.1: Representation of dataset completion in tabular data.

Formally, the feeder dataset TF contains NF variables (v F
i for i = 1, . . . , NF) and the distributor

dataset TD contains ND columns with NF > ND. To complete the distributor dataset with the

information from the feeder dataset, we ensure that they contain Nc ≤ NF common variables.

We designate these subsets as Tci
F for the feeder dataset and Tci

D for the distributor dataset.

These common variables are the variables used as conditional inputs. The model has to learn

the logic to generate the complementary variables in the feeder dataset Tc
F = TF ∖Tci

F . In the

sampling phase, it can complete the distributor dataset by generating the completementary

variables of the feeder dataset Tc,synth
F→D using the values of the common variables in the distrib-

utor dataset Tci
D as conditional inputs. The final dataset is thus comprised of the distributor

dataset TD and the generated data Tc,synth
F→D .

4.3.1 ciDATGAN

ciDATGAN is a direct extension of DATGAN (Lederrey et al., 2022). The core methodology is

the same for both models. Therefore, we give here a summary. The reader will find all the

details in Chapter 3. Table B.1, in the appendix, provides a summary of the notations used in

this methodology.

ciDATGAN uses LSTM cells (Hochreiter and Schmidhuber, 1997) in the generator to generate

each variable, with a network structure based on a Directed Acyclic Graph (DAG) provided by

the user which specifies the causal links between variables in the feeder dataset. The variables

99

Chapter 4. Generation of detailed synthetic populations using deep learning

in the data are encoded at discriminator input (and generator input for the conditional inputs)

and decoded at generator output, with different encoding/decoding used for continuous and

categorical variables.

Figure 4.2 shows how the different elements are combined to train ciDATGAN. First, the DAG

is modified based on the selected variables in Tci
F . This modified DAG is then used to form the

generator structure in an automated process. As for any GAN, the generator uses Gaussian

noise as input. However, in ciDATGAN, we also include as input the conditional inputs Tci
F .

Ultimately, the complementary variables Tc
F are used to train the discriminator against the

generated data Tc,synth
F . Thus, the training process remains similar to any existing GAN.

DAG

Noise

Generator Discriminator

TF

Tc,synth
F

Tci
F

Tc
F

output input

inputs

design

input

split

backpropagationstructure

Figure 4.2: Schema of the training process of ciDATGAN.

Between DATGAN and ciDATGAN, there are two primary modifications to integrate the con-

ditional inputs. First, the variables selected as conditional inputs must be considered as the

generator’s inputs. We, thus, impose each variable in Tci
F to be a source node in the DAG. This

modified DAG can be obtained through automated modification of an existing DAG.

Secondly, the conditional inputs can not be treated the same way as the generator’s variables

in Tc
F. Indeed, these variables are generated using LSTM cells, similarly to DATGAN. We give

here a summary of how these variables are generated. The details are given in the previous

chapter, Section 3.3.1. The LSTM cells follow an order provided by the linearization of the

DAG. The cell LSTMt is associated with the variable v F
t , in which the indices are ordered based

on the DAG. Each cell takes as input the cell state of the previous variable in the DAG Ct−1 and

the input tensor it . The input tensor is a concatenation of the following tensors:

• zt : a tensor of Gaussian noise

100

4.3 Methodology

• ft−1: the transformed output of the previous LSTM cell in the DAG.

• at : the attention vector used to retain information from previous ancestors that are not

directly linked to the current cell in the DAG. It is defined as:

at =
∑

k∈A (t)\P (t)

expα(t)
k∑|α(t)|

j=1 expα(t)
j

fk (4.1)

where A (t) \ P (t) is the set of ancestors of the variable v F
t in the DAG in which we

removed the direct predecessor(s), α(t) is a learned attention weight vector, and fk is

the final output of the LSTM cell LSTMk.

Each cell outputs two tensors: the new cell state Ct and the output of the cell ht . This output is

then passed through a set of fully connected layers to get the synthetic values v F,synth
t . Finally,

since this synthetic tensor can have different dimensions depending on the encoding of the

original columns v F
t , it is passed through an input transformer to resize it to a common size

between all variables. Figure 4.3 shows the schematic representation of the generation of these

synthetic variables.

We only have access to the values themselves for the variables in Tci
F . However, the generator

needs to have the two following values for each variable: the transformed output ft−1 of the

direct ancestor and the direct output hk of all the ancestors. Therefore, the variables in Tci
F

must be transformed accordingly. First, we use the same type of input transformer to get ft .

However, we cannot get access to the LSTM output ht for the variables in the conditional

inputs Tci
F since we do not use LSTM cells for these variables. Therefore, we transform the

original value vt using a Dense layer. The parameters in this additional dense layer are learned

during the training process. This allows the model to use the conditional inputs in the attention

vector. Figure 4.3 shows how the variables vt are transformed when they are considered as

conditional inputs.

The model needs to receive two inputs for the sampling phase: the Gaussian noise and the

conditional inputs. The conditional inputs can either come from the feeder dataset Tci
F or from

a distributor dataset Tci
D. The generator will, thus, sample the complementary set of variables

Tc,synth
F→D based on the conditional inputs. Finally, it combines the conditional inputs and the

synthetic data to deliver the final dataset. Figure 4.4 shows a schematic representation of the

sampling process.

101

Chapter 4. Generation of detailed synthetic populations using deep learning

Generated variables Conditional inputs variables

LSTMt

Ct−1

it

⊕

Ct

ht

zt

ft−1

at

output
transformer

input
transformer

ft

v F,synth
t v F

t

conditional input
transformer

ft

Figure 4.3: Schematic representation of the variables in the generator. On the left, we show
how the variables in Tc are generated using LSTM cells, as shown in Figure 3.5. On the right,
we show how the variables in Tci are transformed to match the elements on the left.

Tci
D

Generator

Tci
D

Tc,synth
F→D

Noise

copy

inputs output

Figure 4.4: Schema of the sampling process of ciDATGAN.
102

4.4 Results

4.4 Results

In this section, we investigate three questions:

• Does ciDATGAN generate data well?, i.e. are the generated data representative, and do

they correspond to the original data?

• Can ciDATGAN correct bias?, i.e. can the model use unbiased conditional inputs to

correct the bias in the original data?

• Can ciDATGAN be used to generate large synthetic populations?, i.e. can the model

learn from a feeder dataset and efficiently generate a population using a large sample

for the conditional inputs?

The first two questions are answered in Section 4.4.1, the third question in Section 4.4.2.

4.4.1 ciDATGAN vs DATGAN

This section answers the first two questions by comparing DATGAN and ciDATGAN. We first

present the case study and the results assessments in the next section. Then, we answer the

first two questions in order.

Case study and results assessments

To evaluate the performance of ciDATGAN, we use a modified version of the London Passenger

Mode Choice (LPMC) dataset (Hillel et al., 2018) as the feeder dataset. A description of the

variables included in this modified dataset is given in the appendix; see Table D.1. It consists

of 18 variables and 16’904 trips. In the appendix, we also provide the DAG used in ciDATGAN

for this dataset in Figure D.1. The conditional inputs are the variables age, female, and

hh_region. We trained both ciDATGAN and DATGAN on the LPMC dataset five times. Then,

we generated five different synthetic datasets for each of these models, thus giving 25 synthetic

datasets per model. To assess the results, we use the same methodology as Lederrey et al.

(2022), namely:

• We compute frequency lists for each variable in the synthetic dataset and compare it to

similar lists computed on the original dataset.

• We compute and compare frequency lists for each combination of two variables for the

synthetic and original datasets.

• Finally, we train a LightGBM (Ke et al., 2017) model on all but one column and use the

resulting model to predict the corresponding column in the original data. We do this

for each column. We can then compare the results between the models trained on the

synthetic datasets and those trained on the original dataset.

103

Chapter 4. Generation of detailed synthetic populations using deep learning

Details of this methodology are given in the previous chapter, Section 3.3.5. For conciseness,

in this chapter, we present only the results for the Standardized Root Mean Squared Error

(SRMSE) (Müller and Axhausen, 2011). This metric has been used thoroughly while investi-

gating methods to generate synthetic populations. It consists in computing the Root Mean

Squared Error (RMSE) on two frequency lists and dividing the value by the average value of the

frequency list for the original data. Then, for each of the 25 datasets, we compute the average

value for the given metric, and we can use boxplots to show the results over multiple generated

datasets.

Data generation

As shown by Lederrey et al. (2022), DATGAN achieves state-of-the-art performance when

generating synthetic tabular data regarding the generated data’s quality and representativity.

As such, if ciDATGAN can match or better DATGAN’s performance, we demonstrate a positive

answer to the first research question. To test this, we apply the results assessments on all the

generated variables, i.e. we discard the conditional inputs in the assessments since ciDATGAN

uses the original values directly and would have an unfair advantage.

Results for the statistical assessments are given in Figure 4.5. Figure 4.5a shows the results when

comparing each variable independently, and Figure 4.5b shows the results when comparing

each combination of two variables. We can see that, in both cases, ciDATGAN performs better

than DATGAN. This difference comes from two different factors: (i) ciDATGAN has fewer

variables to generate, thus, making it smaller and simpler to train; and (ii) ciDATGAN has

direct access to true values from the datasets, thus, making the learning process easier.

DATGAN ciDATGAN

0.
05

0.
1

0.
15

0.
2

0.
25

0.15
0.12SR

M
SE

(a) Individual variables

DATGAN ciDATGAN

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.38

0.29SR
M

SE

(b) Combinations of two variables

Figure 4.5: Boxplots of SRMSE values for all the generated datasets from DATGAN and ciDAT-
GAN. The white dot corresponds to the average value. Lower is better.

Results for the ML efficacy are given in Figure 4.6. For categorical and continuous variables,

ciDATGAN performs slightly better than DATGAN. This confirms the results obtained on the

statistical metrics. Therefore, we can conclude that ciDATGAN better DATGAN’s performances

on similar datasets.

104

4.4 Results

DATGAN ciDATGAN

0.
08

0.
1

0.
12

0.
14

0.103
0.095

R
el

at
iv

e
lo

g
lo

ss

(a) Categorical variables

DATGAN ciDATGAN

5
10

15

15.1

7.94

R
el

at
iv

e
L2

er
ro

r

(b) Continuous variables

Figure 4.6: Boxplot of the ML efficacy metrics for all the generated datasets from DATGAN and
ciDATGAN. The white dot corresponds to the average value. Lower is better.

Correcting bias

We have shown that ciDATGAN can generate data of equivalent or better quality to that gener-

ated by DATGAN. Thus, adding conditional inputs does not hinder the model’s performance.

This section investigates the use of ciDATGAN to remove bias from datasets using unbiased

conditional inputs. Thus, we use the available LPMC dataset and bias it manually by removing:

(i) 70% of males; (ii) 70% of individuals 20 years old and younger; and (iii) 70% of the house-

holds in the region "Central London". This gives us a biased LPMC dataset of 8’437 individuals.

The goal is to train both DATGAN and ciDATGAN on this biased dataset. Then, we generate

data from these models such that the final dataset has the same size as the unbiased LPMC

dataset. For ciDATGAN, we use the values from the unbiased LPMC dataset as the conditional

inputs for the sampling phase. Finally, we test the generated data against the unbiased LPMC

dataset. The assessments are done on a subset of the LPMC variables with higher correlations

to the age, gender, and household region variables.

DATGAN ciDATGAN unbiased

0.
04

0.
06

0.
08

0.
1

0.
12

0.1

0.08

0.08

SR
M

SE

(a) Individual variables

DATGAN ciDATGAN unbiased

0.
15

0.
2

0.
25

0.
3

0.
35

0.28 0.23 0.24

SR
M

SE

(b) Combinations of two variables

Figure 4.7: Boxplots of SRMSE values for all the generated datasets from DATGAN and ci-
DATGAN. The two models on the left have been trained on the biased LPMC dataset. The
model on the right has been trained on the unbiased LPMC dataset. The black dashed line
corresponds to the comparison between the biased and the unbiased LPMC datasets. The
white dot corresponds to the average value. Lower is better.

Results for the statistical assessments are given in Figure 4.7. On average, we see that the data

105

Chapter 4. Generation of detailed synthetic populations using deep learning

generated by ciDATGAN is equivalent to that generated by DATGAN trained on the unbiased

LPMC dataset. Both models outperform DATGAN trained on the biased LPMC dataset as the

latter cannot correct for the bias introduced in the dataset.

Results for the ML efficacy are given in Figure 4.8. For the categorical variables, we observed

that ciDATGAN and DATGAN trained on the unbiased LPMC dataset are performing well

(Figure 4.8a). However, this is not the case for the continuous variables (Figure 4.8b). This

result is explained because it is more difficult to generate representative continuous variables.

DATGAN ciDATGAN unbiased

0.
2

0.
22

0.
24

0.
26

0.257 0.235

0.217

R
el

at
iv

e
lo

g
lo

ss

(a) Categorical variables

DATGAN ciDATGAN unbiased

90
95

10
0

10
5

98.9
96.1

115.1

R
el

at
iv

e
L2

er
ro

r

(b) Continuous variables

Figure 4.8: Boxplot of the ML efficacy metrics for all the generated datasets from DATGAN and
ciDATGAN. The two models on the left have been trained on the biased LPMC dataset. The
model on the right has been trained on the unbiased LPMC dataset. The black dashed line
corresponds to the comparison between the biased and the unbiased LPMC datasets. The
white dot corresponds to the average value. Lower is better.

4.4.2 Population synthesis

We need to compare the generated synthetic data with real data to answer the final question:

Can ciDATGAN be used to generate large synthetic populations? However, getting access to real

micro-data is difficult due to privacy issues. Thus, we use aggregated data from the UK Census

2011, available on the nomis website1 as the ground truth. Nomis is a service provided by the

Office for National Statistics (ONS), UK’s largest independent producer of official statistics. The

feeder dataset is a modified version of the London Travel Diary Survey (LTDS) dataset (Hillel

et al., 2018) that only consists of variables for the individuals and their households. We selected

a total of 10 (out of the 33) boroughs such that it gives a good representation of the London

population. The feeder dataset, thus, consists of 8 variables and 29’158 individuals. The

complete description of the dataset is given in Table D.2 in the appendix. In addition, the DAG

used for this dataset is provided in Figure D.2, in the appendix.

The distributor data has been created by drawing samples from the aggregate breakdowns

of age and gender at the level of London boroughs from the nomis data. It contains a total

of 2.7 million individuals for ten boroughs. Once the final synthetic dataset is generated, we

aggregate the results and compare them against four overlapping variables, contained in both

1https://www.nomisweb.co.uk/census/2011/data_finder

106

https://www.nomisweb.co.uk/census/2011/data_finder

4.4 Results

the LTDS and nomis control totals at the borough level: family composition, number of people

per household, number of cars/vans per household, and ethnicity.

Both the feeder and distributor datasets are defined on an individual level, i.e. each row of the

dataset corresponds to an individual. However, three of the four selected control totals are at

the household level. Thus, directly comparing the synthetic population with the aggregated

distributions is impossible. In the generated population, each individual is generated with a

corresponding household size and several household level statistics, e.g. number of vehicles

in the household. To obtain unbiased aggregate household level statistics, we divide the

household values by the number of household members. For example, to calculate the total

number of vehicles in a borough, we would divide the number of vehicles in the household for

each individual by the corresponding household size and sum over all individuals.

To validate the results, we compare ciDATGAN with DATGAN and an oversampled version

of the LTDS datase. The latter is generated by oversampling the original LTDS dataset. For

each selected borough, we oversample with replacement individuals from the same borough

in the LTDS until the sample size is equal to the borough population, as recorded in the

nomis data. We do not recommend doing this to augment the data since it introduces much

redundancy. However, it will help understand if the synthetic data is on the same level of

details and representativity as the original data in the feeder dataset. DATGAN is trained on

the same feeder dataset as ciDATGAN. During the sampling phase, we randomly generate

individuals until the sample size equals the borough population found in the nomis dataset.

In the end, it gives us a total of three synthetic populations generated using three different

methodologies such that each population reflects the nomis population for each borough.

We proposed systematic methods based on statistical assessments and ML efficacy methods

to compare synthetic data in the previous chapter. However, we compare generated tabular

data with aggregate data in this section. Thus, it is not possible to use the same assessment

methods. However, all the overlapping variables are categorical, see Table D.2. Thus, the

aggregate distributions are all discrete, and we can use the Jensen-Shannon (JS) distance (Lin,

1991) to measure the distance between these aggregate distributions. We define the JS distance,

the square root of the JS divergence, between two probability arrays P and Q by:

JS(P,Q) =
√

K L(P, M)+K L(Q, M)

2
(4.2)

where M is the pointwise mean of P and Q, and K L(·, ·) is the Kullback-Leibler (KL) divergence

defined in Equation 3.18. The results are given in Figure 4.9.

Figure 4.9 show that the three methodologies generate roughly equivalent synthetic popu-

lations compared to the aggregate control totals in the nomis data. Thus, it shows that the

addition of the conditional inputs in ciDATGAN does not hinder its performance compared

to DATGAN. However, it is interesting to note that the oversampled LTDS dataset generates

slightly more representative data for the family composition and ethnicity.

107

Chapter 4. Generation of detailed synthetic populations using deep learning

DATGAN ciDATGAN oversampled

0.
02

0.
06

0.
1

0.
14

0.
18

5.94 ·10−2 6.38 ·10−2 6.21 ·10−2

JS
d

is
ta

n
ce

(a) Number of individuals per household

DATGAN ciDATGAN oversampled

0.
05

0.
15

0.
25

0.
35

0.12
0.14

0.11JS
d

is
ta

n
ce

(b) Number of cars/vans per household

DATGAN ciDATGAN oversampled

0.
05

0.
1

0.
15

0.
2

6.89 ·10−2 8.54 ·10−2
5.94 ·10−2

JS
d

is
ta

n
ce

(c) Family composition per household

DATGAN ciDATGAN oversampled

0.
05

0.
1

0.
15

0.
2

0.
25

0.12 0.11 6.05 ·10−2JS
d

is
ta

n
ce

(d) Ethnicity

Figure 4.9: Boxplot of the JS distance comparing the three synthetic data methodologies
against the nomis data on the four selected variables. The white dot corresponds to the
average value. Lower is better.

This behavior is not surprising due to the collection process of the LTDS dataset. Indeed, it is

intended to use as representative a sample as possible. Thus, LTDS is a good sample of the

true population, as it is given in the nomis data. In addition, since the feeder dataset does

not contain any bias, the distributor dataset follows the same distributions. Thus, it does

not improve the final synthetic population generated by ciDATGAN. We show this similarity

between the aggregated nomis data and the LTDS data in Figures 4.10 and 4.11.

Figure 4.10 shows the ethnicity distribution for these two datasets on an aggregated level for

each selected borough. The same trends are found in both datasets. For example, we can see

that Brent has fewer White people and more Asian people than the other boroughs in both

datasets. Figure 4.11 shows similar distributions for the number of cars/vans per household.

We see that, in both datasets, the boroughs close to the center of London (Camden and

Westminster) have fewer cars in their household than the others. However, we can see that the

LTDS data tends to have more households with one vehicle and fewer without vehicles. This

will skew the results of the synthetic data since the models tend to generate more households

with one vehicle instead of zero. However, since we are comparing the generated data against

the LTDS data, both data should suffer equally from this. However, DATGAN has already

shown its capabilities of generating representative synthetic data. Thus, we want to investigate

how the conditionality of ciDATGAN can improve the generation process when the model is

dealing with poorly designed data.

108

4.4 Results

White Asian Black Mixed Other

0
0.

2
0.

4
0.

6
0.

8
1

P
ro

b
ab

il
it

y

Barnet Brent Bromley Camden Enfield

Greenwich Havering Hillingdon Kingston Westminster

(a) Nomis data

White Asian Black Mixed Other

0
0.

2
0.

4
0.

6
0.

8
1

P
ro

b
ab

il
it

y

(b) LTDS data

Figure 4.10: Distributions of the individuals’ ethnicity for each borough.

0 1 2 3 4+

0
0.

2
0.

4
0.

6
0.

8

P
ro

b
ab

il
it

y

Barnet Brent Bromley Camden Enfield

Greenwich Havering Hillingdon Kingston Westminster

(a) Nomis data

0 1 2 3 4+

0
0.

2
0.

4
0.

6
0.

8

P
ro

b
ab

il
it

y

(b) LTDS data

Figure 4.11: Distributions of the number of cars/vans per household for each borough.

109

Chapter 4. Generation of detailed synthetic populations using deep learning

In Section 4.4.1, we have shown that ciDATGAN outperforms DATGAN when correcting for bias.

Thus, we investigate if ciDATGAN provides similar results on a larger synthetic population.

First, we need to bias the LTDS dataset. However, since we compare the synthetic population

aggregated at the borough level, we do not bias the sample by boroughs alone. In addition,

gender has a low correlation with the other variables, as shown in Figure 4.13. Thus, we bias

the dataset on age. For each borough, we randomly select one of the three age categories:

young (below 25 y.o.), middle (between 25 and 55 y.o.), and old (above 55 y.o.). We remove 95%

of the individuals from the other age categories. The final biased LTDS dataset contains a total

of 10’009 individuals. Similar to the previous experiment, we train DATGAN and ciDATGAN

on this biased dataset without changing the DAG in Figure D.2 in the appendix. ciDATGAN

is generating the new synthetic population using the previously defined distributor dataset,

while the other two methodologies use the same sampling process. Results are given in

Figure 4.12.

DATGAN ciDATGAN oversampled

0
0.

05
0.

1
0.

15
0.

2
0.

25

0.12
5.22 ·10−2

0.17

JS
d

is
ta

n
ce

(a) Number of individuals per household

DATGAN ciDATGAN oversampled

0.
05

0.
1

0.
15

0.
2

0.
25

0.
3

0.13

0.1
0.1JS

d
is

ta
n

ce

(b) Number of car/van per household

DATGAN ciDATGAN oversampled

0.
05

0.
1

0.
15

0.
2

0.12

8.15 ·10−2

0.12

JS
d

is
ta

n
ce

(c) Family composition per household

DATGAN ciDATGAN oversampled

0.
05

0.
1

0.
15

0.
2

0.
25

0.11 0.11

7.47 ·10−2

JS
d

is
ta

n
ce

(d) Ethnicity

Figure 4.12: Boxplot of the JS distance comparing the three synthetic data methodologies,
using the biased LTDS dataset, against the nomis data on the four selected variables. The
white dot corresponds to the average value. Lower is better.

Results show that the synthetic population generated using ciDATGAN is generally more repre-

sentative than the one generated using DATGAN. For the number of individuals per household

and the household composition, ciDATGAN performs the best. This can be explained by the

correlation between the individual’s age and these two variables. Indeed, Figure 4.13 shows a

high negative correlation between age and the number of individuals per household. Thus,

ciDATGAN learns this stronger correlation. Then, when we use the actual age distribution

110

4.4 Results

for the sampling phase, ciDATGAN can generate more representative individuals. For the

other two variables, ciDATGAN performs similarly to the other two methodologies. Ethnicity

is not linked to age in the DAG. Thus, correcting for the age, in this case, does not influence

the ethnicity. Therefore, it explains that the results for the ethnicity did not improve between

DATGAN and ciDATGAN. This link has been omitted deliberately as a control correlation to

study the effect of the DAG in this process. Indeed, as shown in Figure 4.13, there is a positive

correlation between age and ethnicity. It makes sense since migrant populations are more

likely to be of working age. Thus, adding this link in the DAG, in Figure D.2, should improve

the results as shown with the other variables. Finally, we cannot see any improvements in

the number of cars/vans per household. It is expected since the correlation between age and

the number of cars/vans per household is weak. It has, thus, been omitted in the DAG. Since

the oversampled LTDS synthetic population shows similar results, adding this link would not

improve the results of ciDATGAN.

gender age

ethnicity

hh_borough

hh_people

hh_income

hh_carvan

hh_comp

gender

age

ethnicity

hh_borough

hh_people

hh_income

hh_carvan

hh_comp

1 −0.02 0.01 0 0.02 0.03 0.04 −0.03

−0.02 1 0.16 0.03 −0.46 −0.06 −0.04 0.19

0.01 0.16 1 0.14 −0.24 0.04 0.06 0.01

0 0.03 0.14 1 −0.09 0.04 0 0.01

0.02 −0.46 −0.24 −0.09 1 0.09 0.29 −0.43

0.03 −0.06 0.04 0.04 0.09 1 0.25 −0.21

0.04 −0.04 0.06 0 0.29 0.25 1 −0.32

−0.03 0.19 0.01 0.01 −0.43 −0.21 −0.32 1

Figure 4.13: Pearson’s correlation matrix of the LTDS dataset.

Lastly, we examine some distributions in more detail. Figure 4.14 shows the distribution

of individuals per household for each dataset. We see that the LTDS data (Figure 4.14b)

shows similar trends to the nomis data (Figure 4.14a). This similarity was already shown in

Figures 4.10 and 4.11. On the other hand, the biased LTDS data (Figure 4.14c) shows different

distributions with fewer households with a single individual. DATGAN can correct some

boroughs as shown in Figure 4.14d. However, depending on the borough, it mainly assigns

one or two individuals per household. Finally, Figure 4.14e shows that ciDATGAN is the best

111

Chapter 4. Generation of detailed synthetic populations using deep learning

1 2 3 4 5 6 7 8+

0
0.

25
0.

5

P
ro

b
ab

il
it

y

Barnet Brent Bromley Camden Enfield

Greenwich Havering Hillingdon Kingston Westminster

(a) Nomis data

1 2 3 4 5 6 7 8+

0
0.

25
0.

5

P
ro

b
ab

il
it

y

(b) LTDS data

1 2 3 4 5 6 7 8+

0
0.

25
0.

5

P
ro

b
ab

il
it

y

(c) biased LTDS data

1 2 3 4 5 6 7 8+

0
0.

25
0.

5

P
ro

b
ab

il
it

y

(d) DATGAN, trained on biased LTDS data

1 2 3 4 5 6 7 8+

0
0.

25
0.

5

P
ro

b
ab

il
it

y

(e) ciDATGAN, trained on biased LTDS data

Figure 4.14: Distributions of the number of individuals per household for each borough.

112

4.5 Summary

model for correcting the bias. Despite these results, we see that ciDATGAN cannot retrieve

some of the trends, e.g. boroughs near the center of London (Camden and Westminster) have

more households with a single individual. This shows one of the limitations of ciDATGAN, i.e.

the model can only learn the logic in the original data. Thus, it will not be able to generate

data that was never seen. Nonetheless, these results indicate that ciDATGAN has been able to

address some of the bias in the LTDS dataset by using aggregate borough level control totals

from the UK census.

This final section shows that both DATGAN and ciDATGAN can generate large disaggregate

synthetic populations. On an RTX 2080, both models were trained on the original LTDS dataset

in around 25 minutes (1’000 epochs), and the sampling process took less than 10 minutes.

This means that these models can generate a sizeable synthetic population in a short time. As

shown in Figure 4.14, ciDATGAN can correct for possible biases in the feeder dataset using an

unbiased distributor dataset. As the census data is fully aggregated at the borough level, there

is no direct one-to-one correspondence between any individual in the synthetic population

and the actual London population, maintaining privacy. However, the synthetic population,

on an aggregate level, is representative of the London population.

Creating synthetic populations for agent-based simulations can be laborious and imprecise,

limiting their practical applications. However, ciDATGAN shows that one can create closely

tailored and representative populations with limited human input in a short time.

4.5 Summary

This chapter presents the ciDATGAN model, an evolution of DATGAN that uses a novel type

of conditionality for tabular data inspired by image completion. It consists of completing

a large dataset with few variables (distributor dataset) using synthetic data learned from a

smaller dataset with more variables (feeder dataset). We test this model on a trip-based dataset

against DATGAN. First, we show that ciDATGAN provides equal or better quality data than the

state-of-the-art DATGAN model. Then, we show that ciDATGAN, trained on a highly biased

dataset, can perform as well as DATGAN trained on an unbiased dataset. It, thus, shows

that ciDATGAN can be used to unbias a dataset if one has access to unbiased values for the

conditional inputs. Finally, we show that ciDATGAN can learn the logic of the feeder dataset

and can, therefore, be used to generate a large, detailed, and representative dataset using an

external distributor dataset.

While ciDATGAN can generate unbiased and unknown datasets if good conditional inputs

are provided, many research directions are still available. For example, ciDATGAN can only

be used to generate independent rows, i.e. cross-sectional data. A natural progression is,

therefore, to allow for hierarchical data structures as in Aemmer and MacKenzie (2022), such as

several individuals with correlated individual level attributes belonging to a single household

with matching household level attributes. Complementary to generating hierarchical data,

ciDATGAN could be upgraded to generate sequential data, such as activity patterns. However,

113

Chapter 4. Generation of detailed synthetic populations using deep learning

the current architecture of the model cannot generate such data. Thus, one could combine

ciDATGAN with another GAN designed to generate sequential data. For example, Badu-Marfo

et al. (2020) developed a composite GAN that is composed of two different models: the first

GAN generates the socioeconomic characteristics of the individuals and the second one

generates sequential mobility data. However, in this case, the challenge is combining the

methodology using the DAG with a new architecture that generates activity patterns.

114

5 Conclusion

This thesis’ introduction promised disruptive and breakthrough innovations, mixing data-

driven and model-driven methodologies in the era of Big Data. Thus, the three previous

chapters provided such innovations: efficient estimation of complex Discrete Choice Models

(DCMs) on large datasets, an efficient generative model for synthetic tabular data, and a

new framework allowing for much control for the generation of synthetic population. These

methodologies allow modelers to be more efficient while using Big Data technologies. In

addition, they provide tools that deliver more accurate results compared to state-of-the-art

methodologies. Thus, it paves the way for new and exciting research axes combining the

strengths of both data-driven and model-driven methodologies.

The remainder of this conclusion, first, outlines the main findings in Section 5.1. Then, it

discusses future research directions in Section 5.2. Two different topics have been selected,

showing potential applications using the frameworks developed in this thesis. Finally, this

thesis is concluded in Section 5.3 with some final remarks.

5.1 Main findings

The work presented in this thesis aims at bridging the gap between model-driven and data-

driven methodologies in the era of Big Data. Thus, this section summarizes the obtained

results in each chapter of this thesis. In addition, a small discussion is provided to discuss how

each chapter contributes to bridging this gap.

Efficient estimation of complex choice models on large datasets (Chapter 2): This chapter

proposes a novel algorithmic framework for efficiently estimating DCMs. Multiple algorithms,

ranging from standard non-linear optimization methods to stochastic methods with adaptive

batch size, have been examined in multiple use cases. The most efficient algorithm is the

Hybrid Adaptive Moving Average Batch Size (HAMABS) algorithm. It consists of three distinct

principles: (i) the use of second-order stochastic algorithms, (ii) the modification of the

batch size when the algorithm is not improving enough, and (iii) the hybridization between

115

Chapter 5. Conclusion

algorithms during the optimization process. Results show that the HAMABS algorithm can

be up to 23 times faster compared to the current state-of-the-art software Biogeme when

estimating complex DCMs on large datasets. This algorithm, thus, outperforms Biogeme

manifolds without compromising the precision of the parameter values.

This chapter aims to bridge the gap between Machine Learning (ML) and choice modeling

by using ML-inspired optimization method in choice modeling. The main challenge is that

DCMs require high precision since the parameter values are used to understand individuals’

behavior. In addition, the objective function of DCMs tends to be flat around the optimum

as shown by Lederrey et al. (2018b). Thus, standard stochastic optimization algorithms used

in ML fail to estimate DCMs to convergence. However, this chapter shows that data-driven

methodologies can be adapted to the field’s requirements, i.e. high precision on the parameter

values for choice modeling.

Generating synthetic data from deep learning with expert knowledge (Chapter 3): This

chapter presents a new Generative Adversarial Network (GAN) architecture integrating expert

knowledge to generate synthetic tabular data. GANs have initially been developed to augment

datasets comprised of images. However, they have quickly evolved to generate more data

types. This work concentrates on tabular data since it is the most common dataset type

in transportation research, e.g. travel survey or census microdata. In addition, the Directed

Acyclic Tabular GAN (DATGAN) uses a Directed Acyclic Graph (DAG) that defines that structure

of the generator. This DAG defines the causal links between the variables in the original dataset

and is provided by the user. Thus, the user has to use his knowledge to define the generator’s

structure. DATGAN has been tested against multiple state-of-the-art synthetic tabular data

generators in multiple case studies. Results show that DATGAN generates more representative

synthetic data than the other selected models. In addition, using the DAG allows modelers

to generate hypothetical synthetic data that would not exist in the real world to test their

hypotheses.

This work is a prime example of combining the strength of data-driven and model-driven

methodologies. Indeed, GANs are the current state-of-the-art deep learning methodologies to

generate synthetic data. These methods have been shown to outperform standard statistical

techniques, e.g. Iterative Proportional Fitting (IPF) or Gibbs sampling, when generating

synthetic data. Indeed, they are both faster and provide more representative data. However,

the main issue with deep learning methodologies is their “black-box” aspect. Usually, users

only have to provide the input data to the model, and it will do the rest, removing the control

over the generation process. On the other hand, this control is the strength of the statistical

generative methods, as explained by Kukić and Bierlaire (2022). Thus, by allowing the user to

define the causal links between the variables directly, DATGAN gives back some control to the

user while preserving the strengths of GANs.

Generation of detailed synthetic populations using deep learning (Chapter 4): This last

chapter extends the DATGAN methodology to provide more controls during the sampling

phase of the generative model. Indeed, GANs are trained on an original dataset and then

sample the new synthetic data. Conditionality is the common methodology to add such

116

5.2 Future research directions

control during the sampling phase. There are multiple ways to achieve conditionality in

GANs. However, they use latent information in the data, e.g. label of an image, rather than

explicit one, e.g. the dataset’s variables. Thus, the conditional inputs DATGAN (ciDATGAN)

takes inspiration from image completion GANs and translate it to tabular data. The idea is

to train the model on a low sample, highly detailed feeder dataset. Then, the user provides

a second dataset with high sample and low details, named distributor, to ciDATGAN during

the sampling phase. ciDATGAN completes the distributor dataset with synthetic variables

learned from the feeder dataset. This methodology only works if both datasets contain a set

of common variables, named conditional inputs in this case. Results show that ciDATGAN

performs similarly to DATGAN when generating representative synthetic data. However, the

strength of this new architecture is to use the distributor dataset to correct for possible bias in

the feeder dataset, as demonstrated in the results. Thus, ciDATGAN learn correlations in the

feeder dataset and can generate any population based on the distributor dataset.

This final project offers a highly efficient tool for modelers to generate synthetic populations.

Indeed, a complex synthetic population composed of millions of individuals can be generated

in minutes, including the training time of ciDATGAN. This model is especially effective at

generating synthetic population since the modeler can provide any distributor dataset. For

example, one could train ciDATGAN on a given feeder dataset and create multiple synthetic

populations with different distributor datasets. It allows modelers to generate representative

synthetic populations with a high degree of control over the final results. Both model-driven

and data-driven approaches are required to achieve this result. Indeed, the processing power

of GANs efficiently trains the model on a large dataset. At the same time, modeling is used both

to improve the representativity of the synthetic data, as done with DATGAN, and to control

the sampling process.

To summarize, this thesis provides three algorithmic frameworks that combine model-driven

and data-driven approaches. The different chapters show that combining both approaches

leads to increased performances as long as the application requirements are respected, e.g.

precision of the parameter values in the estimation of DCMs. Ultimately, it provides new tools

to modelers, leading to new and exciting opportunities for unexplored research directions.

5.2 Future research directions

This section provides potential future research directions based on the innovations presented

in this thesis. The aim is to show that the frameworks developed in this thesis can be used in

different contexts and provide exciting new opportunities for researchers. This section focuses

on two possible applications: assisted specification for DCMs with deep learning and transfer

knowledge for synthetic populations.

Assisted Utility Specification (AUS) with deep learning consists in helping the modeler to

build the utility specification of DCMs. As stated in the introduction, Ortelli et al. (2021) trans-

formed this process into a multi-objective combinatorial optimization problem. In addition,

117

Chapter 5. Conclusion

the authors use a Variable Neighborhood Search (VNS) algorithm to generate promising sets of

model specifications. This methodology requires repeatedly training a different choice model

on the same dataset before converging to a suitable utility specification. A more efficient

DCMs estimation would naturally benefit such work. However, this kind of methodology is

limited by the sets of model specifications by the VNS algorithm. Data-driven approaches,

such as deep learning, have shown great results when learning correlations in a dataset. Thus,

data-driven approaches might be more efficient for AUS by generating more accurate spec-

ifications. Indeed, a suitable deep learning architecture would not have to be limited by a

neighboring search space. It could analyze the current specification and the dataset to provide

the best possible addition. In addition, it might even be able to provide a starting model with

multiple parameters instead of a generic utility specification. However, the main issue with

deep learning methodologies is their tendency to overfit. Indeed, feeding it with the same

data over and over would result in a specific model only tailored for the given data. However,

in choice modeling, the modelers build specific models to understand individuals’ behavior

while staying as generic as possible. Indeed, the goal is to understand the main trends. One

can use synthetic data to train the DCMs to avoid this issue. For example, DATGAN could be

used to generate representative synthetic data parallel to the AUS process. This way, the deep

learning model would always receive unseen data at each iteration, reducing its tendency to

overfit. Using data-driven methodologies for AUS would help modelers to define generic yet

realistic choice models. For more specific applications, modelers can always use the generated

choice model and improve it based on their particular needs. However, the main hurdle with

this methodology is controlling that the generated utility function follows behavioral realism.

Indeed, modelers follow specific rules to define the utility of DCMs. Thus, the AUS method-

ology has to follow the same rules. It would require additional control in the deep learning

methodology, based on expert knowledge, to ensure that the generated utility functions are

consistent with the theory.

Transfer knowledge for synthetic populations can be separated into two different method-

ologies: temporal and spatial. Temporal transfer consists in generating future populations

using currently available data. This type of transfer has already been discussed in the literature.

However, spatial transfer for synthetic populations can lead to new and exciting research. It

consists of transferring knowledge from one population and applying it to another, e.g. in

poorer regions of the world. Indeed, developed countries have easier access to data about their

population. On the other hand, underdeveloped countries do not allocate many resources

to collect such data. Thus, research is mainly done on data originating from these richer

countries. The idea is to train a model on available data and transfer the model’s knowledge

to generate synthetic populations for these poorer countries. For example, one could train

ciDATGAN on a travel survey dataset from the UK and complete a dataset from a poorer

country to obtain such a synthetic population. However, this would lead to poor results since

ciDATGAN would learn how UK citizens travel. For instance, wealthier countries tend to

have a more developed public transportation infrastructure compared to poorer countries.

Therefore, ciDATGAN would not be able to determine this from the provided data. One pos-

118

5.3 Final remarks

sible workaround would be integrating user-specified rules during the training process of

ciDATGAN to enforce these differences, as done with Gibbs sampling. Another possibility

is to use inspiration from the ML community. Indeed, this research problem is known as

transfer learning. For example, Karimpanal and Bouffanais (2019) have developed a multi-task

reinforcement learning agent to learn new tasks based on previously seen ones. This method-

ology has shown promising results on similar types of tasks. Thus, a reinforcement learning

or a meta-learning version of ciDATGAN could use datasets from wealthier countries as the

primary training material. Then, it could finalize its training process using modeling rules and

smaller datasets from poorer countries. In the end, the generated synthetic population should

represent the final dataset since it uses cumulative rewards. Similar approaches have already

been applied to synthetic data in the field of medicine (Gu and Duan, 2022). Thus, transfer

learning applied to synthetic populations is a promising and exciting research direction.

5.3 Final remarks

The thesis promised to deliver disruptive and breakthrough innovations through its different

chapters. The HAMABS methodology can be considered a disruptive innovation since it is

a new hybrid stochastic method used in a known environment, i.e. choice modeling. This

innovation helps modelers become more efficient since it allows them to estimate DCMs in

a shorter amount of time. However, its main benefit is to open the path for new research

directions where one would need to estimate a large number of DCMs, as explained in the

previous section. On the other hand, transfer learning for synthetic populations can be consid-

ered a breakthrough innovation. Indeed, by taking inspiration from both the methodologies

presented in this thesis and transfer learning methodologies, one could make a scientific

breakthrough in generating synthetic populations, leaning towards accessible and open data

worldwide. DATGAN and ciDATGAN are the first steps in this direction using the strengths

of both data-driven approaches, with the deep learning architecture, and model-driven ap-

proaches, with the addition of expert knowledge and control of the sampling process. Indeed,

these new architectures for GAN have been developed to help modelers generate synthetic

data and populations in an accessible and efficient manner.

In addition, the codebase developed in this thesis is openly available as ready-to-use tools,

e.g. a Pypi library is available for DATGAN and ciDATGAN. It is hoped that this will enable

researchers to explore new and exciting directions, such as assisted utility specification or

transfer learning for synthetic populations.

119

Appendix

A Table of notations (Chapters 2)

Table A.1: Notations used in the methodology of Chapter 2.

Notation Name Description

Maximum likelihood estimation

xn Explanatory variables Vector of explanatory variables for a DCM.

θ Model parameters Vector of model parameter to be estimated. (Size: K)

Pn(i |xn ;θ) Probability of choice
Probability that individual n chooses alternative i

specified by xn and θ.

L log likelihood
Objective function for DCMs, defined in Equa-

tion 2.3.

maxL (θ)
Maximum likelihood

estimation

Objective function used to estimate θ, the parame-

ters of the model.

∇L
Gradient of the log

likelihood

Gradient of the log likelihood function, defined in

Equation 2.4.

∇2L
Hessian of the log

likelihood

Hessian of the log likelihood function, sothcastic ver-

sion defined in Equation 2.13.

Line search methods

θk
Iterate k of the

parameters
Iteration k of the parameters of the DCM.

αk Step size Step size for the current iteration.

dk Descent direction Descent direction obtained by preconditioning ∇L .

Dk
Preconditioning

matrix
Positive definite matrix used to precondition ∇L .

Continues on next page...

121

Appendix

Table A.1 – continued from previous page

Notation Name Description

Bk
Approximation of the

Hessian

Approximation of the Hessian ∇2L using the BFGS

algorithm.

Trust-region methods

mk
Quadratic

approximation
Quadratic approximation of the objective function.

ρk Function reduction
Function reduction ratio used to update the trust

region.

∆k trust region Size of the trust region, changed in function of ρk .

HAMABS

WMAk,W WMA
WMA computed at the k-th iteration with a window

size of W .

Ik Progress
Progress of the optimization method computed us-

ing WMA.

∇r el L (θ) Relative gradient
Relative gradient used to compute the stopping cri-

terion of HAMABS.

HAMABS parameters

W Window size Size of the window for the WMA.

∆
Threshold for

successful iterations

Threshold value to update the batch size when the

algorithm is stalling.

C Count
Maximum number of unsuccessful iterations with

the same batch size.

τ Expansion factor Expansion factor when updating the batch size.

∆H
Threshold for

hybridization

Threshold value deciding when hybridization has to

happen.

ε Stopping criterion Threshold value for the stopping criterion.

N ′
init Initial batch size Initial batch size value.

Performance profile

A Algorithms Set of optimization algorithms.

P Problems Set of optimization problems.

Continues on next page...

122

B Table of notations (Chapters 3 and 4)

Table A.1 – continued from previous page

Notation Name Description

tp,a Performance measure
Performance measure (time or epochs) for algorithm

a on problem p.

Cp,a Convergence test Test of convergence for algorithm a on problem p.

rp,a Performance ratio
Performance ratio defined using Cp,a for algorithm

a on problem p.

ρa(π) Performance profile
Performance profile of algorithm a based on the fac-

tor π of the best performance ratio.

R Ratio’s upper bound
Upper bound of the ratio rp,a , used to constrain the

performance profile values.

B Table of notations (Chapters 3 and 4)

Table B.1: Notations used in the methodology of Chapters 3 and 4.

Notation Name Description

Main elements

D Discriminator
Neural network model used to discriminate/critic

the original and synthetic data.

G Generator
Neural network model used to generate synthetic

data from random noise.

T Original dataset
Original dataset provided by the modeler. (size:

NV ×Nrows)

P(T) Distributions
Unknown joint distribution that the random vari-

ables Vt follow.

Tsynth Synthetic dataset

Final synthetic dataset after the sampling procedure;

it corresponds to the final output of the generator

(size: NV ×Nrows).

T̂
Encoded original

dataset

Original dataset that has been encoded. (size:(∑NC
t=1 2Nm,t +∑ND

t=1 |D t |
)
×Nrows)

Continues on next page...

123

Appendix

Table B.1 – continued from previous page

Notation Name Description

T̂synth
Encoded synthetic

dataset

Synthetic dataset that is directly returned by

the generator before the sampling step. (size:(∑NC
t=1 2Nm,t +∑ND

t=1 |D t |
)
×Nrows)

Main variables

Vt Random variable t-th random variable.

vt Column data in T
Column-vectors of data that define the table T. (size:

Nrows)

vt , j Single value in T Scalar value in a column-vector.

z Noise
Random noise tensor used as an input for the Gen-

erator G . (size: NV ×Nrows ×Nsources)

v synth
t Column data in Tsynth

Column-vectors of data that define the table Tsynth.

(size: Nrows)

vsynth
t , j Single value in Tsynth Scalar value in a column-vector.

v̂t
Encoded column data

in T
Encoded version of vt .

v̂t , j
Encoded single value

in T
Encoded version of vt , j .

v̂ synth
t

Encoded column data

in Tsynth
Encoded version of v synth

t .

v̂synth
t , j

Encoded single value

in Tsynth
Encoded version of vsynth

t , j .

Directed Acyclic Graph (DAG)

G DAG
DAG used to represent the interdependencies be-

tween the variables.

A (Vt) Ancestors
Set of all the ancestors of the variable Vt in the DAG

G .

D(Vt) Direct ancestors
Set of all the direct ancestors of the variable Vt in

the DAG G .

S (Vt) Source nodes
Set of all the source nodes leading to variable Vt in

the DAG G .

Continues on next page...

124

B Table of notations (Chapters 3 and 4)

Table B.1 – continued from previous page

Notation Name Description

E (Vt) In-edges Set of all in-edges of the variable Vt in the DAG G .

LSTM cells

LSTMt LSTM cell
LSTM cell used to generate synthetic values for the

variable Vt .

Ct Cell state
Output cell state of the LSTM cell LSTMt. (size: Nh×
Nb)

ht Output
Output tensor of the LSTM cell LSTMt. (size: Nh ×
Nb)

xt Generic input Generic input tensor for a LSTM cell. (size: Nx ×Nb)

it Input
Input tensor of the LSTM cell LSTMt. (generic size:

(Nh +Nx)×Nb ; DATGAN size: (2Nh +Nz)×Nb)

zt Noise
Random noise tensor used as an input for the LSTM

cell LSTMt. (size: Nz ×Nb)

ft Transformed output
Transformed output of the variable v̂ synth

t to resize

it according to the LSTM cell. (size: Nh ×Nb)

at Attention
Attention tensor used in the input of the LSTM cell

LSTMt. (size: Nh ×Nb)

αt Attention weights
Attention weight vector used to compute at . (size:

|A (V (t))|)

h′
t Reduced output

Reduced output tensor of the LSTM cell LSTMt after

using a convolutional layer. (size: Nconv ×Nb)

Discriminator

li Internal layer
Internal layer used in the discriminator. (undefined

size)

l̂i
Standardized internal

layer

Internal layer after passing it through a fully con-

nected layer to resize it (size: NL ×Nb)

lD Discriminator output
Final unbounded scalar result used as an output of

the discriminator.

l0 Discriminator input Input layer used for the discriminator.

Loss function

Continues on next page...

125

Appendix

Table B.1 – continued from previous page

Notation Name Description

L (D,G) Loss function

Generic loss function. The generator is trying to

minimize it while the discriminator is trying to max-

imize it at the same time.

LG
Generator loss

function

Loss function applying only to the generator, which

is trying to minimize it.

LD
Discriminator loss

function

Loss function applying only to the discriminator,

which is trying to minimize it.

K L KL divergence KL divergence defined in Equation 3.18.

Data processing

ct
Continuous column

data in T

Column-vectors of continuous data that define the

table T. (size: Nrows)

dt
Categorical column

data in T

Column-vectors of continuous data that define the

table T. (size: Nrows)

c synth
t

Continuous column

data in Tsynth

Column-vectors of continuous data that define the

table Tsynth. (size: Nrows)

d synth
t

Categorical column

data in Tsynth

Column-vectors of continuous data that define the

table Tsynth. (size: Nrows)

ηt Means of VGM
Vector containing the mean of each component in

the VGM for the continuous variable Ct . (size: Nm,t)

σt Variances of VGM

Vector containing the variance of each component

in the VGM for the continuous variable Ct . (size:

Nm,t)

wt
Values of encoded

continuous variable

Matrix containing the values of the encoded variable

ct . (size: Nm,t ×Nrows)

pt

Probabilities of

encoded continuous

variable

Matrix containing the probabilities of the encoded

variable ct . (size: Nm,t ×Nrows)

ot
One-hot encoding of

categorical variable

Matrix containing the one-hot encoding of the cate-

gorical variable dt . (size: |D t |×Nrows)

w synth
t

Generated matrix

similar to wt

Output of the generator for the values of the en-

coded continuous variables. (size: Nm,t ×Nrows)

Continues on next page...

126

B Table of notations (Chapters 3 and 4)

Table B.1 – continued from previous page

Notation Name Description

psynth
t

Generated matrix

similar to pt

Output of the generator for the probabilities of the

encoded continuous variables. (size: Nm,t ×Nrows)

osynth
t

Generated matrix

similar to ot

Output of the generator for the one-hot encoded

categorical variables. (size: |D t |×Nrows)

õt Noisy version of ot
Corresponds to ot after adding uniform noise for

the label smoothing. (size: |D t |×Nrows)

õsynth
t

Noisy version of

osynth
t

Corresponds to osynth
t after adding uniform noise

for the label smoothing. (size: |D t |×Nrows)

Results assessments

π
Frequencies of

original data
Frequency list computed on the original dataset T.

πsynth Frequencies of

synthetic data

Frequency list computed on the synthetic dataset

Tsynth.

MAE Mean Absolute Error
Mean Absolute Error computed between frequen-

cies lists on original and synthetic datasets.

RMSE
Root Mean Square

Error

Root Mean Square Error computed between fre-

quencies lists on original and synthetic datasets.

SRMSE
Standardized Root

Mean Square Error

Standardized Root Mean Square Error computed

between frequencies lists on original and synthetic

datasets.

R2 Coefficient of

determination

Coefficient of determination computed between fre-

quencies lists on original and synthetic datasets.

ρPearson Pearson’s correlation
Pearson’s correlation computed between frequen-

cies lists on original and synthetic datasets.

LMSE Mean Square Error
Mean Square error loss used in the supervised learn-

ing validation on continuous variables.

Llog-loss Log loss error
Log loss error used in the supervised learning vali-

dation on categorical variables.

mt LightGBM model

LightGBM model trained on variable vt . It corre-

sponds to a classification model (mclass,t) for cate-

gorical variables, and to a regression model (mreg,t)

for continuous variables.

Continues on next page...

127

Appendix

Table B.1 – continued from previous page

Notation Name Description

g reg
t

Score for the

continuous variables

Final score of the supervised learning-based valida-

tion for continuous variables based on a regression

model.

g class
t

Score for the

categorical variables

Final score of the supervised learning-based valida-

tion for categorical variables based on a classifica-

tion model.

DATGAN versions

SGAN SGAN loss function
Standard two-player minimax loss function is used

while optimising the DATGAN, see Equation 3.9.

WGAN WGAN loss function
Wasserstein loss function is used while optimising

the DATGAN, see Equation 3.12.

WGGP WGGP loss function

Wasserstein loss function with a gradient penalty

is used while optimising the DATGAN, see Equa-

tion 3.15.

NO No label smoothing
No label smoothing applied for the discriminator

input, see Equation 3.28.

OS
One-sided label

smoothing

One-sided smoothing applied on the original data

for the discriminator input, see Equation 3.29.

TS
Two-sided label

smoothing

Two-sided smoothing applied on the original and

synthetic data for the discriminator input, see Equa-

tion 3.30.

AA
argmax sampling for

continuous and

categorical

Maxmimum probability assignment used to sam-

ple both final continuous and categorical synthetic

column data.

SA

simulation
sampling for

continuous and

argmax sampling for

categorical

Probability assignment for continuous synthetic col-

umn data and maximum probability assignment for

categorical synthetic column data.

Continues on next page...

128

B Table of notations (Chapters 3 and 4)

Table B.1 – continued from previous page

Notation Name Description

AS

argmax sampling for

continuous and

simulation
sampling for

categorical

Maximum probability assignment for continuous

synthetic column data and probability assignment

for categorical synthetic column data.

SS

simulation
sampling for

continuous and

categorical

Probability assignement used to sample both con-

tinuous and categorical final synthetic column data.

Sizes

NV #variables
Number of random variables in the original dataset

T.

Nrows #rows Number of rows in the original dataset T.

Nsources #sources Number of source nodes in the DAG G .

Nh Size of hidden layer
Size of the hidden layers used in the LSTM cells.

(Nh = 100)

Nx Size of input Size of the generic input of the LSTM cell.

Nz Size of noise tensor Number of elements in the noise vector. (Nz = 200)

Nb Batch size Batch size. (Nb = 500)

NL
#layers in

discriminator
Number of layers used in the discriminator. (NL = 1)

Nl Size of discriminator
Size of the hidden layers inside the discriminator.

(Nl = 100)

NC #continuous variables
Number of continuous variables in the original

dataset T.

ND #categorical variables
Number of categorical variables in the original

dataset T.

Nm,t #modes
Number of modes used to encode the continuous

variable Ct with a VGM.

|D t | #categories
Number of unique categories in the categorical vari-

able D t .

Continues on next page...

129

Appendix

Table B.1 – continued from previous page

Notation Name Description

Nconv
Size of convolutional

layer

Size of the layer used in the output transformer

to act as a convolution. Ideally, we want to have

Nconv < Nh . (Nconv = 50)

Layers in Neural Networks

FC Fully Connected
Fully connected layer without any activation func-

tion.

LeakyReLU LeakyReLU Layer with a leaky reflect linear activation function.

BN Batch Normalization Batch Normalization.

LN Layer Normalization Layer Normalization as described by Ba et al. (2016).

div
Mini-batch

discrimination

Mini-batch discriminator vector as described by Sal-

imans et al. (2016).

tanh tanh FC
Fully connected layer FC with a tanh activation func-

tion.

softmax softmax FC
Fully connected layer FC with a softmax activation

function.

C Case studies (Chapter 3)

In this section, we present the case studies used in Chapter 3. For each case study, we provide

a summary of the dataset, the list of variables with a description as well as the DAG used with

the DATGAN model.

C.1 CMAP

The Chicago Metropolitan Agency for Planning (CMAP) dataset is a household travel survey

of the Chicago metropolitan area. It was conducted between January 2007 and February

2008. The trips are given as one and two-day travel diaries, provided by all the members

of the households. The original dataset has been cleaned. Then, it has been processed to

contain a single trip per individual per household to remove data leakage. Thus, it contains

a total of 8’929 trips with 15 variables. This dataset can be downloaded on Github at https:

//github.com/glederrey/DATGAN/blob/master/example/data/CMAP.csv. It is used as an

example for DATGAN. The description of the variables is given in Table C.1 and the associated

DAG is given in Figure C.1.

130

https://github.com/glederrey/DATGAN/blob/master/example/data/CMAP.csv
https://github.com/glederrey/DATGAN/blob/master/example/data/CMAP.csv

C Case studies (Chapter 3)

age

license

education_level

gender

work_status

hh_size

hh_vehicles travel_dow

hh_descr

hh_income

trip_purpose

departure_timedistance

hh_bikes

choice

Figure C.1: DAG for the CMAP dataset. Colors correspond to the category of variables: blue for
households, orange for individuals, and red for trips.

Table C.1: Details of the variables in the CMAP dataset. Colors correspond to the category of
variables (in order): blue for households, orange for individuals, and red for trips.

Variables Type Description

hh_income Categorical Income of the household (7 categories)

hh_descr Categorical Household type (3 values)

hh_bikes Categorical Number of bikes in the household (8 regions)

hh_vehicles Categorical Number of vehicles in the household (9 values)

hh_size Categorical Number of individuals in the household (8 values)

age Continuous Age of individual in years

gender Categorical Gender of the individual (0=female, 1=male)

license Categorical Whether the traveller has a driving licence (0=no, 1=yes)

work_status Categorical Working status (8 categories)

education_level Categorical Highest level of education achieved (6 categories)

departure_time Continuous Departure time of trip (in decimal hours)

Continues on next page...

131

Appendix

Table C.1 – continued from previous page

Variables Type Description

travel_dow Categorical Day of the week of travel (7 days)

distance Continuous Straight line trip distance

trip_purpose Categorical Journey purpose for trip (7 categories)

choice Categorical Mode of travel chosen (5 categories)

C.2 LPMC

The London Passenger Mode Choice (LPMC) (Hillel et al., 2018) dataset combines the London

Travel Diary Survey (LTDS) records with matched trip trajectories and corresponding mode

alternatives. The survey way conducted between April 2012 and March 2015 and records trips

made by individuals residing and traveling within Greater London. The trip trajectories are

extrapolated from Google Maps API. Similarly to the CMAP dataset, we selected a single trip

per individual per household to avoid data leakage. The final dataset contains a total of 17’616

trips with 27 variables. The reader can contact the authors of (Hillel et al., 2018) to get access

to this dataset. The description of the variables is given in Table C.2 and the associated DAG is

given in Figure C.2.

distance

pt_change

cost_fuel

dur_driving

dur_walking

dur_cycling

dur_pt_access

dur_pt_rail

dur_pt_bus

dur_pt_int

traffic_percent

congestion_charge

cost_transit

start_time

travel_mode

fare_type

bus_scale

purpose

age

day_of_week

female

travel_date

travel_month

travel_year

driving_license

fuel_type

car_ownership

Figure C.2: DAG of the LPMC dataset. Colors correspond to the category of variables: blue for
households, orange for individuals, gray for alternatives, red for trips, and yellow for survey.

132

C Case studies (Chapter 3)

Table C.2: Details of the variables in the LPMC dataset. Colors correspond to the category of
variables (in order): blue for households, orange for individuals, gray for alternatives, red for
trips, and yellow for survey. More details about these variables are given in Hillel et al. (2018).

Variables Type Description

fueltype Categorical Fuel type of passenger’s vehicle (6 categories)

car_ownership Categorical Car ownership of household (3 categories)

age Continuous Age of individual in years

female Categorical Gender of the individual (0=male, 1=female)

driving_license Categorical Driving license ownership (0=no, 1=yes)

fare_type Categorical Public transport fare type of individual (5 categories)

bus_scale Categorical Percentage of the full bus fare paid (3 values)

dur_walking Continuous Duration of walking route

dur_cycling Continuous Duration of cycling route

dur_driving Continuous Duration of driving route

dur_pt_access Continuous Walking duration to/from first/last stop on PT route

dur_pt_bus Continuous Duration spent on bus services on PT route

dur_pt_rail Continuous Duration spent on rail services on PT route

dur_pt_int Continuous Total duration of public transport interchanges

pt_change Categorical Number of public transport interchanges (5 values)

cost_transit Continuous Cost of public transport route

cost_fuel Continuous Vehicle operation costs of driving route

congestion_charge Categorical Congestion charge for driving route (2 values)

traffic_percent Continuous Traffic variability in percentage

start_time Continuous Start time of trip (in decimal hours)

day_of_week Categorical Day of the week of travel (7 days)

distance Continuous Straight line trip distance

purpose Categorical Journey purpose for trip (5 categories)

travel_mode Categorical Mode of travel chosen by LTDS trip (4 categories)

Continues on next page...

133

Appendix

Table C.2 – continued from previous page

Variables Type Description

travel_date Categorical Day of month of travel (31 values)

travel_month Categorical Month of travel (12 values)

travel_year Categorical Year of travel (4 values)

C.3 ADULT

The ADULT dataset (Kohavi, 1996), also known as the Census-Income dataset, is a well-known

dataset in the Machine Learning (ML) community. It contains socio-economic variables on

multiple individuals to predict if their income is below or above $50k/yr. The original dataset

can be downloaded on the UCI archives at https://archive.ics.uci.edu/ml/datasets/adult. We

removed all the rows with unknown values in the original dataset to obtain a total of 45’222

individuals with 14 variables. The description of the variables is given in Table C.3 and the

associated DAG is given in Figure C.3.

capital-loss

hours-per-week

income

capital-gain

workclass

education-num

education

occupation

race

marital-status

relationship

native-country

age

sex

Figure C.3: DAG of the ADULT dataset. Colors correspond to the category of variables: orange
for individuals and gray for occupation.

134

https://archive.ics.uci.edu/ml/datasets/adult

D Case studies (Chapter 4)

Table C.3: Details of the variables in the ADULT dataset. Colors correspond to the category of
variables (in order): orange for individuals and gray for occupation.

Variables Type Description

age Continuous Age of individual in years

gender Categorical Gender of the individual (0=male, 1=female)

race Categorical Race of the individual (5 categories)

native-country Categorical Native country of the individual (41 categories)

education Categorical Education of the individual (16 categories)

education-num Categorical Numerical value for education (16 categories)

marital-status Categorical Marital status of the individual (7 categories)

relationship Categorical Relationship with a partner (6 categories)

occupation Categorical Occupation of the individual (14 categories)

workclass Categorical Work status of the individual (9 categories)

hours-per-week Categorical Hours worked per week (96 categories)

capital-gain Continuous Capital gains

capital-loss Continuous Capital losses

income Categorical Income greater or equal to 50k per year (2 categories)

D Case studies (Chapter 4)

In this section, we present the case studies used in Chapter 4. For each case study, we provide

a summary of the dataset, the list of variables with a description as well as the DAG used with

the conditional inputs DATGAN (ciDATGAN) model.

D.1 LPMC

The LPMC (Hillel et al., 2018) dataset used for this chapter is the same as the one presented in

Section C.2 with less variables. Similarly, we selected a single trip per individual per household.

Households located outside of Greater London have been removed from the dataset. It

contains a total of 16’904 trips and 18 variables. The reader can contact the authors of (Hillel

et al., 2018) to get access to the original LPMC dataset. The description of the variables is given

in Table D.1 and the associated DAG is given in Figure D.1.

135

Appendix

distance

traffic_percent

dur_driving

dur_walking

dur_cycling

dur_pt

hh_region

day_of_week

start_time

travel_mode

hh_vehicles

hh_income

driving_license

hh_people

purpose

fare_type

age

female

Figure D.1: DAG used for the LPMC case study. Colors correspond to the category of variables:
blue for households, orange for individuals, gray for alternatives, and red for trips. The
conditional inputs are the variables age, gender, and hh_region.

Table D.1: Details of the variables in the LPMC dataset. Colors correspond to the category of
variables (in order): blue for households, orange for individuals, gray for alternatives, and red
for trips. More details about these variables are given in Hillel et al. (2018).

Variables Type Description

hh_income Categorical Income of the household (10 categories)

hh_people Categorical Number of people in the household (11 values)

hh_region Categorical London region associated to the household (5 regions)

hh_vehicles Categorical Number of vehicles in the household (9 values)

age Continuous Age of individual in years

female Categorical Gender of the individual (0=male, 1=female)

driving_license Categorical Whether the traveller has a driving licence (0=no, 1=yes)

fare_type Categorical Public transport fare type of individual (5 categories)

dur_walking Continuous Duration of walking route

dur_cycling Continuous Duration of cycling route

Continues on next page...

136

D Case studies (Chapter 4)

Table D.1 – continued from previous page

Variables Type Description

dur_pt Continuous Duration of public transport route

dur_driving Continuous Duration of driving route

traffic_percent Continuous Traffic variability

start_time Continuous Start time of trip (in decimal hours)

day_of_week Categorical Day of the week of travel (7 days)

distance Continuous Straight line trip distance

purpose Categorical Journey purpose for trip (5 categories)

travel_mode Categorical Mode of travel chosen by LTDS trip (4 categories)

D.2 LTDS

The LTDS dataset contains unprocessed variables from the LPMC dataset presented in Sec-

tion C.2. We only selected variables related to individuals and households. Some variables are

available in the original LPMC dataset while other have been added from the collected surveys.

The final dataset contains a total of 29’158 individuals and 8 variables. The description of the

variables is given in Table D.2 and the associated DAG is given in Figure D.2.

age gender

hh_borough hh_comp

hh_income hh_people

hh_carvan ethnicity

Figure D.2: DAG used for the LTDS case study. Colors correspond to the category of variables:
blue for households and orange for individuals. The conditional inputs are the variables age,
gender, and hh_borough.

137

Appendix

Table D.2: Details of the variables in the LTDS dataset. Colors correspond to the category of
variables (in order): blue for households and orange for individuals.

Variables Type Description

hh_income Categorical Income of the household (10 categories)

hh_people Categorical Number of people in the household (11 values)

hh_borough Categorical London borough associated to the household (10 boroughs)

hh_carvan Categorical Number of cars/vans in the household (8 values)

hh_comp Categorical Family composition in the household (4 categories)

age Continuous Age of individual in years

gender Categorical Gender of the individual (Male or Female)

ethnicity Categorical Ethnicity of the individual (5 categories)

E Table of results (Chapter 2)

In this section, we present the tables used for the performance profiles in Chapter 2. Section E.1

provides the tables with estimation time and Section E.2 the tables with the number of epochs.

E.1 Estimation time

The estimation time are provided in seconds. Table E.1 compares the estimation of the model

LPMC_DC with the three size of datasets on all the optimization methods presented in Table 2.3.

Table E.2 provides the same results for the model LPMC_RR and Table E.3 for the models

LPMC_Full and MTMC.

Table E.1: Time in seconds used for the estimation of the models LPMC_DC by all the algorithms
presented in Table 2.3. The values in light gray mean that the algorithms was not able to
converge in the required number of epochs. The values in bold, in a gray cell, correspond to
the the fastest optimization time.

Algorithms LPMC_DC_S LPMC_DC_M LPMC_DC_L

GD 52.16±0.24 95.07±0.45 140.95±0.49

BFGS 6.78±0.03 13.11±0.06 17.96±0.06

BFGS−1 7.20±0.02 12.96±0.10 19.61±0.12

TR-BFGS 5.40±0.04 11.05±0.11 17.17±0.07

Continues on next page...

138

E Table of results (Chapter 2)

Table E.1 – continued from previous page

Algorithms LPMC_DC_S LPMC_DC_M LPMC_DC_L

NM 0.65±0.01 1.23±0.01 1.95±0.02

TR 0.40±0.01 0.74±0.01 1.03±0.01

GD-ABS 50.53±0.32 92.80±0.51 138.20±0.52

BFGS-ABS 6.46±0.29 10.80±0.37 15.27±0.63

BFGS−1-ABS 6.85±0.10 11.13±0.14 15.62±0.16

TR-BFGS-ABS 6.90±0.37 12.49±0.76 21.56±1.04

NM-ABS 7.64±18.97 36.79±52.75 116.95±74.20

TR-ABS 3.20±0.06 6.43±0.15 11.50±0.13

H-NM-ABS 2.83±0.15 4.77±0.25 6.97±0.39

H-TR-ABS 2.16±0.14 3.82±0.20 6.88±0.38

HAMABS 1.86±0.12 3.11±0.20 4.59±0.32

Table E.2: Time in seconds used for the estimation of the models LPMC_RR by all the algorithms
presented in Table 2.3. The values in light gray mean that the algorithms was not able to
converge in the required number of epochs. The values in bold, in a gray cell, correspond to
the the fastest optimization time.

Algorithms LPMC_RR_S LPMC_RR_M LPMC_RR_L

GD 303.21±0.25 567.61±0.45 820.38±1.46

BFGS 183.83±0.50 337.25±0.30 492.90±0.39

BFGS−1 177.66±0.25 332.93±0.40 473.32±0.98

TR-BFGS 227.83±0.51 405.82±0.60 627.43±0.67

NM 36.05±0.98 70.28±1.50 126.85±2.18

TR 23.63±0.49 46.16±0.66 67.13±1.02

GD-ABS 310.59±1.21 568.12±1.74 824.15±2.54

BFGS-ABS 169.83±1.58 314.56±3.83 474.42±5.53

BFGS−1-ABS 169.36±0.62 312.78±2.79 460.49±1.92

TR-BFGS-ABS 194.49±8.57 387.56±12.13 590.62±18.80

NM-ABS 29.72±2.41 53.28±3.10 76.44±5.78

TR-ABS 50.64±2.10 97.66±4.82 175.75±5.21

H-NM-ABS 29.80±1.38 48.46±2.50 20.78±1.96

H-TR-ABS 34.97±6.11 60.87±13.06 157.69±10.85

Continues on next page...

139

Appendix

Table E.2 – continued from previous page

Algorithms LPMC_RR_S LPMC_RR_M LPMC_RR_L

HAMABS 11.98±1.23 18.46±1.06 18.14±1.06

Table E.3: Time in seconds used for the estimation of the models LPMC_Full and MTMC by
all the algorithms presented in Table 2.3. The values in light gray mean that the algorithms
was not able to converge in the required number of epochs. The values in bold, in a gray cell,
correspond to the the fastest optimization time.

Algorithms LPMC_Full_S LPMC_Full_M LPMC_Full_L MTMC

GD 2785.66±28.12 5344.42±33.60 8031.02±49.62 7842.92±53.75

BFGS 3173.86±22.37 6289.47±34.27 9333.66±63.08 10308.49±61.36

BFGS−1 3129.08±10.83 5929.40±27.85 8812.09±66.60 10090.74±56.43

TR-BFGS 2043.68±16.10 4014.60±24.31 5861.06±39.09 5568.99±38.86

NM 1398.81±52.16 3230.83±69.75 3984.04±91.00 17199.76±190.18

TR 540.07±24.73 1021.88±38.01 1501.90±53.11 10613.62±152.59

GD-ABS 2782.30±23.46 5508.52±27.21 7989.58±64.22 7984.13±65.41

BFGS-ABS 3163.19±57.56 6119.99±109.08 8944.95±130.30 10225.68±59.41

BFGS−1-ABS 3021.65±28.72 5814.22±47.75 8721.32±92.05 10083.01±58.33

TR-BFGS-ABS 2035.42±17.94 4001.22±29.88 5796.55±47.00 5586.36±39.60

NM-ABS 4359.60±14019.82 1982.06±229.38 2721.13±270.25 14535.94±501.67

TR-ABS 1203.69±84.31 2240.94±99.74 4089.42±134.02 13695.15±757.32

H-NM-ABS 522.65±47.01 939.05±85.38 1376.32±93.92 2749.46±103.71

H-TR-ABS 591.33±80.36 1085.78±137.27 2209.45±160.07 7633.65±386.77

HAMABS 257.02±42.85 405.43±43.77 486.31±63.38 1243.95±56.21

E.2 Number of epochs

Table E.4 compares the number of epochs used to estimate the model LPMC_DC with the three

size of datasets on all the optimization methods presented in Table 2.3. Table E.5 provides the

same results for the model LPMC_RR and Table E.6 for the models LPMC_Full and MTMC.

140

E Table of results (Chapter 2)

Table E.4: Number of epochs used for the estimation of the models LPMC_DC by all the algo-
rithms presented in Table 2.3. The values in light gray mean that the algorithms was not able
to converge in the required number of epochs. The values in bold, in a gray cell, correspond to
the the fastest optimization time.

Algorithms LPMC_DC_S LPMC_DC_M LPMC_DC_L

GD 1000 1000 1000

BFGS 108 109 99

BFGS−1 111 112 111

TR-BFGS 132 148 151

NM 9 10 11

TR 8 8 8

GD-ABS 1000.71±0.09 1000.53±0.04 1000.28±0.02

BFGS-ABS 85.05±5.75 81.91±3.91 78.88±4.63

BFGS−1-ABS 90.02±0.97 87.79±1.55 85.64±1.21

TR-BFGS-ABS 101.91±12.76 104.98±11.82 109.02±11.43

NM-ABS 106.97±297.92 304.96±455.35 702.37±455.05

TR-ABS 15.62±0.34 15.91±0.33 20.41±0.18

H-NM-ABS 30.68±2.86 30.26±2.39 28.07±2.40

H-TR-ABS 37.53±3.55 37.54±2.78 47.26±3.90

HAMABS 13.79±1.70 13.50±2.05 12.57±1.93

Table E.5: Number of epochs used for the estimation of the models LPMC_RR by all the algo-
rithms presented in Table 2.3. The values in light gray mean that the algorithms was not able
to converge in the required number of epochs. The values in bold, in a gray cell, correspond to
the the fastest optimization time.

Algorithms LPMC_RR_S LPMC_RR_M LPMC_RR_L

GD 1000 1000 1000

BFGS 480 461 478

BFGS−1 468 464 462

TR-BFGS 989 935 1000

NM 12 12 15

TR 8 8 8

GD-ABS 1000.62±0.26 1000.57±0.16 1000.29±0.11

Continues on next page...

141

Appendix

Table E.5 – continued from previous page

Algorithms LPMC_RR_S LPMC_RR_M LPMC_RR_L

BFGS-ABS 445.97±4.61 442.97±6.35 441.12±5.45

BFGS−1-ABS 445.21±1.64 439.54±3.81 437.46±1.80

TR-BFGS-ABS 838.64±38.49 880.85±28.64 937.42±31.23

NM-ABS 10.13±0.78 9.28±0.60 9.11±0.75

TR-ABS 16.77±0.35 16.71±0.59 20.54±0.42

H-NM-ABS 67.84±4.32 60.45±4.39 11.96±1.15

H-TR-ABS 147.98±30.61 144.95±36.72 218.49±21.42

HAMABS 15.31±2.53 13.95±1.67 9.55±0.56

Table E.6: Number of epochs used for the estimation of the models LPMC_Full and MTMC by
all the algorithms presented in Table 2.3. The values in light gray mean that the algorithms
was not able to converge in the required number of epochs. The values in bold, in a gray cell,
correspond to the the fastest optimization time.

Algorithms LPMC_Full_S LPMC_Full_M LPMC_Full_L MTMC

GD 1000 1000 1000 1000

BFGS 872 901 885 1000

BFGS−1 878 859 868 1000

TR-BFGS 1000 1000 1000 1000

NM 20 24 20 23

TR 7 7 7 14

GD-ABS 1000.71±0.15 1000.54±0.05 1000.29±0.03 1000.30±0.03

BFGS-ABS 877.97±16.90 870.00±13.58 867.96±11.58 1000.32±0.05

BFGS−1-ABS 856.91±4.67 841.77±6.28 843.83±3.78 1000.37±0.06

TR-BFGS-ABS 1000.67±0.07 1000.28±0.04 1000.79±0.37 1000.74±0.30

NM-ABS 65.91±214.46 15.21±1.62 14.11±1.20 20.12±0.60

TR-ABS 17.41±1.06 17.10±0.50 21.34±0.39 18.40±1.03

H-NM-ABS 98.20±4.60 94.75±5.36 99.43±4.52 145.89±8.99

H-TR-ABS 219.83±37.59 216.80±34.95 344.72±27.79 564.62±81.41

HAMABS 24.98±2.16 20.42±1.84 21.36±2.05 18.63±1.58

142

F Table of results (Chapter 3)

F Table of results (Chapter 3)

In this section, we present the tables used to rank the models in Chapter 3. Section F.1 provides

the results to compare the DATGAN versions, Section F.2 the results to compare DATGAN with

state-of-the-art generative models, and Section F.3 the results to study the effect of the DAG

on DATGAN.

F.1 Comparison of DATGAN versions

The comparison of DATGAN versions is performed on three case studies: CMAP, LPMC, and

LPMC_half. For each case study, we provide six tables:

1. Statistical assessment on the first aggregation level on all the columns

2. Statistical assessment on the first aggregation level on the continuous columns

3. Statistical assessment on the first aggregation level on the categorical columns

4. Statistical assessment on the second aggregation level

5. Statistical assessment on the third aggregation level

6. ML efficacy metrics

CMAP case study

Table F.1: Results of the statistics on the first aggregation level (all columns) for the CMAP
dataset. Lighter grey tone corresponds to better results compared to darker ones.

Name MAE RMSE R2 SRMSE ρPearson rank

SGAN_NO_AA 12 7.52e−3 12 9.31e−3 17 9.80e−1 15 6.63e−2 24 9.92e−1 16.0

SGAN_NO_AS 06 6.50e−3 06 8.19e−3 15 9.82e−1 09 6.19e−2 23 9.92e−1 11.8

SGAN_NO_SA 07 6.70e−3 07 8.55e−3 09 9.85e−1 07 6.15e−2 17 9.94e−1 9.4

SGAN_NO_SS 04 6.13e−3 05 7.80e−3 11 9.85e−1 05 5.76e−2 13 9.94e−1 7.6

SGAN_OS_AA 24 9.80e−3 24 1.22e−2 20 9.73e−1 24 8.31e−2 21 9.93e−1 22.6

SGAN_OS_AS 34 3.36e−2 33 4.06e−2 27 8.75e−1 34 2.70e−1 22 9.93e−1 30.0

SGAN_OS_SA 23 9.70e−3 23 1.21e−2 19 9.74e−1 23 8.28e−2 16 9.94e−1 20.8

SGAN_OS_SS 32 3.32e−2 31 4.04e−2 25 8.78e−1 33 2.68e−1 10 9.94e−1 26.2

SGAN_TS_AA 11 7.19e−3 11 8.92e−3 06 9.86e−1 12 6.32e−2 08 9.95e−1 9.6

SGAN_TS_AS 09 6.94e−3 08 8.59e−3 03 9.87e−1 06 6.08e−2 07 9.95e−1 6.6

SGAN_TS_SA 08 6.94e−3 09 8.72e−3 04 9.87e−1 10 6.22e−2 06 9.95e−1 7.4

Continues on next page...

143

Appendix

Table F.1 – continued from previous page

Name MAE RMSE R2 SRMSE ρPearson rank

SGAN_TS_SS 10 7.02e−3 10 8.79e−3 05 9.87e−1 08 6.17e−2 05 9.95e−1 7.6

WGAN_NO_AA 22 9.56e−3 22 1.18e−2 18 9.80e−1 18 7.90e−2 20 9.93e−1 20.0

WGAN_NO_AS 01 5.53e−3 01 7.07e−3 12 9.85e−1 04 5.36e−2 19 9.93e−1 7.4

WGAN_NO_SA 21 9.55e−3 21 1.17e−2 16 9.81e−1 17 7.87e−2 15 9.94e−1 18.0

WGAN_NO_SS 02 5.65e−3 02 7.09e−3 07 9.85e−1 02 5.29e−2 14 9.94e−1 5.4

WGAN_OS_AA 13 7.58e−3 14 9.48e−3 14 9.83e−1 14 6.58e−2 12 9.94e−1 13.4

WGAN_OS_AS 31 3.32e−2 32 4.04e−2 26 8.75e−1 31 2.66e−1 18 9.93e−1 27.6

WGAN_OS_SA 15 7.64e−3 15 9.51e−3 13 9.83e−1 16 6.67e−2 09 9.94e−1 13.6

WGAN_OS_SS 33 3.35e−2 34 4.07e−2 28 8.75e−1 32 2.67e−1 11 9.94e−1 27.6

WGAN_TS_AA 16 7.75e−3 16 9.58e−3 10 9.85e−1 13 6.41e−2 04 9.96e−1 11.8

WGAN_TS_AS 03 6.11e−3 03 7.58e−3 02 9.87e−1 01 5.23e−2 02 9.96e−1 2.2

WGAN_TS_SA 14 7.63e−3 13 9.34e−3 08 9.85e−1 11 6.23e−2 01 9.96e−1 9.4

WGAN_TS_SS 05 6.33e−3 04 7.76e−3 01 9.88e−1 03 5.32e−2 03 9.96e−1 3.2

WGGP_NO_AA 20 8.76e−3 20 1.10e−2 23 9.65e−1 22 8.26e−2 28 9.86e−1 22.6

WGGP_NO_AS 18 8.28e−3 18 1.06e−2 21 9.66e−1 20 8.06e−2 25 9.87e−1 20.4

WGGP_NO_SA 19 8.65e−3 19 1.08e−2 22 9.66e−1 21 8.14e−2 27 9.86e−1 21.6

WGGP_NO_SS 17 8.26e−3 17 1.05e−2 24 9.65e−1 19 7.96e−2 26 9.87e−1 20.6

WGGP_OS_AA 30 2.65e−2 30 3.45e−2 34 6.03e−1 30 2.52e−1 36 9.61e−1 32.0

WGGP_OS_AS 36 3.85e−2 36 4.84e−2 36 5.85e−1 36 3.49e−1 35 9.63e−1 35.8

WGGP_OS_SA 29 2.49e−2 29 3.17e−2 29 7.79e−1 29 2.25e−1 34 9.68e−1 30.0

WGGP_OS_SS 35 3.72e−2 35 4.59e−2 30 7.58e−1 35 3.24e−1 33 9.71e−1 33.6

WGGP_TS_AA 28 1.71e−2 28 2.05e−2 35 5.97e−1 28 1.35e−1 31 9.79e−1 30.0

WGGP_TS_AS 26 1.54e−2 26 1.89e−2 33 6.16e−1 27 1.26e−1 32 9.79e−1 28.8

WGGP_TS_SA 27 1.62e−2 27 1.95e−2 32 6.20e−1 26 1.25e−1 29 9.81e−1 28.2

WGGP_TS_SS 25 1.47e−2 25 1.78e−2 31 6.34e−1 25 1.15e−1 30 9.80e−1 27.2

Table F.2: Results of the statistics on the first aggregation level (continuous columns) for the
CMAP dataset. Lighter grey tone corresponds to better results compared to darker ones.

Name MAE RMSE R2 SRMSE ρPearson rank

SGAN_NO_AA 24 1.23e−2 24 1.61e−2 24 9.31e−1 24 1.61e−1 24 9.67e−1 24.0

SGAN_NO_AS 23 1.21e−2 23 1.61e−2 23 9.31e−1 23 1.61e−1 23 9.67e−1 23.0

SGAN_NO_SA 17 1.02e−2 17 1.43e−2 14 9.47e−1 17 1.43e−1 18 9.75e−1 16.6

SGAN_NO_SS 18 1.03e−2 18 1.43e−2 15 9.47e−1 18 1.43e−1 16 9.76e−1 17.0

SGAN_OS_AA 21 1.16e−2 21 1.51e−2 21 9.37e−1 21 1.51e−1 15 9.76e−1 19.8

Continues on next page...

144

F Table of results (Chapter 3)

Table F.2 – continued from previous page

Name MAE RMSE R2 SRMSE ρPearson rank

SGAN_OS_AS 22 1.18e−2 22 1.55e−2 22 9.36e−1 22 1.55e−1 19 9.75e−1 21.4

SGAN_OS_SA 20 1.09e−2 20 1.47e−2 18 9.45e−1 20 1.47e−1 08 9.83e−1 17.2

SGAN_OS_SS 19 1.07e−2 19 1.45e−2 16 9.47e−1 19 1.45e−1 07 9.83e−1 16.0

SGAN_TS_AA 12 9.59e−3 07 1.25e−2 08 9.60e−1 07 1.25e−1 10 9.82e−1 8.8

SGAN_TS_AS 09 9.44e−3 05 1.24e−2 07 9.61e−1 05 1.24e−1 09 9.82e−1 7.0

SGAN_TS_SA 08 9.42e−3 08 1.27e−2 06 9.61e−1 08 1.27e−1 06 9.83e−1 7.2

SGAN_TS_SS 07 9.24e−3 06 1.24e−2 05 9.62e−1 06 1.24e−1 05 9.84e−1 5.8

WGAN_NO_AA 13 9.86e−3 16 1.37e−2 20 9.39e−1 16 1.37e−1 22 9.70e−1 17.4

WGAN_NO_AS 14 9.91e−3 15 1.37e−2 19 9.40e−1 15 1.37e−1 21 9.70e−1 16.8

WGAN_NO_SA 15 9.93e−3 13 1.34e−2 13 9.47e−1 13 1.34e−1 17 9.75e−1 14.2

WGAN_NO_SS 16 1.00e−2 14 1.36e−2 17 9.46e−1 14 1.36e−1 20 9.75e−1 16.2

WGAN_OS_AA 06 8.91e−3 09 1.27e−2 11 9.56e−1 09 1.27e−1 13 9.79e−1 9.6

WGAN_OS_AS 05 8.89e−3 10 1.28e−2 12 9.55e−1 10 1.28e−1 14 9.79e−1 10.2

WGAN_OS_SA 11 9.46e−3 12 1.30e−2 10 9.58e−1 12 1.30e−1 12 9.82e−1 11.4

WGAN_OS_SS 10 9.44e−3 11 1.29e−2 09 9.59e−1 11 1.29e−1 11 9.82e−1 10.4

WGAN_TS_AA 02 7.58e−3 03 1.05e−2 04 9.69e−1 03 1.05e−1 04 9.85e−1 3.2

WGAN_TS_AS 01 7.48e−3 01 1.04e−2 01 9.71e−1 01 1.04e−1 02 9.86e−1 1.2

WGAN_TS_SA 03 7.85e−3 02 1.04e−2 02 9.71e−1 02 1.04e−1 01 9.86e−1 2.0

WGAN_TS_SS 04 7.98e−3 04 1.05e−2 03 9.70e−1 04 1.05e−1 03 9.86e−1 3.6

WGGP_NO_AA 28 1.64e−2 28 2.21e−2 28 8.58e−1 28 2.21e−1 28 9.39e−1 28.0

WGGP_NO_AS 27 1.63e−2 27 2.21e−2 25 8.61e−1 27 2.21e−1 26 9.40e−1 26.4

WGGP_NO_SA 26 1.61e−2 26 2.14e−2 26 8.59e−1 26 2.14e−1 25 9.40e−1 25.8

WGGP_NO_SS 25 1.61e−2 25 2.13e−2 27 8.58e−1 25 2.13e−1 27 9.40e−1 25.8

WGGP_OS_AA 36 3.67e−2 36 5.46e−2 36 −5.05e−
1

36 5.46e−1 36 8.31e−1 36.0

WGGP_OS_AS 35 3.67e−2 35 5.45e−2 35 −5.01e−
1

35 5.45e−1 35 8.32e−1 35.0

WGGP_OS_SA 34 3.01e−2 34 4.18e−2 34 3.68e−1 34 4.18e−1 34 8.70e−1 34.0

WGGP_OS_SS 33 2.99e−2 33 4.15e−2 33 3.74e−1 33 4.15e−1 33 8.72e−1 33.0

WGGP_TS_AA 32 2.40e−2 32 3.32e−2 31 7.38e−1 32 3.32e−1 31 9.12e−1 31.6

WGGP_TS_AS 31 2.39e−2 31 3.31e−2 32 7.37e−1 31 3.31e−1 32 9.12e−1 31.4

WGGP_TS_SA 30 2.02e−2 30 2.81e−2 30 8.12e−1 30 2.81e−1 29 9.22e−1 29.8

WGGP_TS_SS 29 2.02e−2 29 2.80e−2 29 8.12e−1 29 2.80e−1 30 9.22e−1 29.2

145

Appendix

Table F.3: Results of the statistics on the first aggregation level (categorical columns) for the
CMAP dataset. Lighter grey tone corresponds to better results compared to darker ones.

Name MAE RMSE R2 SRMSE ρPearson rank

SGAN_NO_AA 12 6.33e−3 08 7.60e−3 11 9.92e−1 08 4.25e−2 11 9.98e−1 10.0

SGAN_NO_AS 03 5.09e−3 04 6.23e−3 04 9.95e−1 04 3.73e−2 05 9.99e−1 4.0

SGAN_NO_SA 06 5.83e−3 07 7.12e−3 03 9.95e−1 07 4.12e−2 07 9.99e−1 6.0

SGAN_NO_SS 04 5.10e−3 03 6.17e−3 05 9.94e−1 03 3.62e−2 04 9.99e−1 3.8

SGAN_OS_AA 21 9.36e−3 23 1.15e−2 23 9.82e−1 23 6.63e−2 26 9.97e−1 23.2

SGAN_OS_AS 33 3.90e−2 33 4.69e−2 28 8.60e−1 32 2.99e−1 24 9.97e−1 30.0

SGAN_OS_SA 22 9.40e−3 24 1.15e−2 24 9.82e−1 24 6.68e−2 28 9.97e−1 24.4

SGAN_OS_SS 31 3.89e−2 31 4.69e−2 27 8.61e−1 31 2.98e−1 25 9.97e−1 29.0

SGAN_TS_AA 14 6.59e−3 14 8.03e−3 09 9.93e−1 14 4.78e−2 20 9.98e−1 14.2

SGAN_TS_AS 10 6.32e−3 09 7.65e−3 06 9.94e−1 09 4.50e−2 14 9.98e−1 9.6

SGAN_TS_SA 11 6.32e−3 10 7.73e−3 07 9.93e−1 11 4.60e−2 18 9.98e−1 11.4

SGAN_TS_SS 13 6.47e−3 13 7.88e−3 08 9.93e−1 12 4.60e−2 17 9.98e−1 12.6

WGAN_NO_AA 24 9.48e−3 21 1.13e−2 18 9.90e−1 21 6.46e−2 03 9.99e−1 17.4

WGAN_NO_AS 01 4.43e−3 01 5.42e−3 01 9.96e−1 02 3.28e−2 02 9.99e−1 1.4

WGAN_NO_SA 23 9.45e−3 22 1.13e−2 20 9.89e−1 22 6.49e−2 06 9.99e−1 18.6

WGAN_NO_SS 02 4.56e−3 02 5.46e−3 02 9.95e−1 01 3.22e−2 01 9.99e−1 1.6

WGAN_OS_AA 18 7.25e−3 18 8.67e−3 17 9.90e−1 17 5.04e−2 21 9.98e−1 18.2

WGAN_OS_AS 35 3.93e−2 35 4.74e−2 30 8.56e−1 33 3.00e−1 27 9.97e−1 32.0

WGAN_OS_SA 17 7.19e−3 17 8.64e−3 19 9.90e−1 18 5.08e−2 22 9.98e−1 18.6

WGAN_OS_SS 36 3.95e−2 36 4.76e−2 32 8.54e−1 36 3.02e−1 23 9.97e−1 32.6

WGAN_TS_AA 20 7.79e−3 20 9.34e−3 21 9.89e−1 20 5.37e−2 12 9.98e−1 18.6

WGAN_TS_AS 05 5.77e−3 05 6.89e−3 16 9.91e−1 05 3.95e−2 09 9.98e−1 8.0

WGAN_TS_SA 19 7.57e−3 19 9.08e−3 22 9.89e−1 19 5.19e−2 10 9.98e−1 17.8

WGAN_TS_SS 07 5.92e−3 06 7.06e−3 13 9.92e−1 06 4.01e−2 08 9.98e−1 8.0

WGGP_NO_AA 16 6.84e−3 15 8.19e−3 14 9.92e−1 15 4.80e−2 16 9.98e−1 15.2

WGGP_NO_AS 08 6.27e−3 11 7.74e−3 10 9.92e−1 10 4.55e−2 13 9.98e−1 10.4

WGGP_NO_SA 15 6.78e−3 16 8.19e−3 12 9.92e−1 16 4.84e−2 19 9.98e−1 15.6

WGGP_NO_SS 09 6.31e−3 12 7.81e−3 15 9.91e−1 13 4.61e−2 15 9.98e−1 12.8

WGGP_OS_AA 30 2.39e−2 30 2.95e−2 26 8.81e−1 30 1.79e−1 36 9.93e−1 30.4

WGGP_OS_AS 32 3.89e−2 32 4.69e−2 29 8.57e−1 34 3.00e−1 29 9.96e−1 31.2

WGGP_OS_SA 29 2.37e−2 29 2.91e−2 25 8.81e−1 29 1.77e−1 35 9.93e−1 29.4

WGGP_OS_SS 34 3.90e−2 34 4.70e−2 31 8.54e−1 35 3.01e−1 30 9.96e−1 32.8

WGGP_TS_AA 28 1.53e−2 28 1.74e−2 36 5.62e−1 27 8.60e−2 31 9.95e−1 30.0

WGGP_TS_AS 25 1.33e−2 26 1.53e−2 34 5.85e−1 26 7.45e−2 34 9.95e−1 29.0

Continues on next page...

146

F Table of results (Chapter 3)

Table F.3 – continued from previous page

Name MAE RMSE R2 SRMSE ρPearson rank

WGGP_TS_SA 27 1.52e−2 27 1.73e−2 35 5.72e−1 28 8.61e−2 32 9.95e−1 29.8

WGGP_TS_SS 26 1.33e−2 25 1.52e−2 33 5.89e−1 25 7.34e−2 33 9.95e−1 28.4

Table F.4: Results of the statistics on the second aggregation level for the CMAP dataset. Lighter
grey tone corresponds to better results compared to darker ones.

Name MAE RMSE R2 SRMSE ρPearson rank

SGAN_NO_AA 14 3.19e−3 14 4.95e−3 16 9.72e−1 15 1.86e−1 19 9.87e−1 15.6

SGAN_NO_AS 07 3.09e−3 08 4.77e−3 15 9.73e−1 13 1.82e−1 17 9.87e−1 12.0

SGAN_NO_SA 05 3.00e−3 06 4.66e−3 12 9.76e−1 09 1.75e−1 12 9.89e−1 8.8

SGAN_NO_SS 03 2.96e−3 03 4.54e−3 11 9.77e−1 05 1.71e−1 11 9.89e−1 6.6

SGAN_OS_AA 24 3.87e−3 24 6.08e−3 20 9.66e−1 24 2.17e−1 20 9.86e−1 22.4

SGAN_OS_AS 34 1.18e−2 34 1.80e−2 32 8.16e−1 33 6.25e−1 30 9.63e−1 32.6

SGAN_OS_SA 23 3.83e−3 23 6.01e−3 19 9.68e−1 23 2.13e−1 14 9.88e−1 20.4

SGAN_OS_SS 33 1.18e−2 33 1.79e−2 31 8.19e−1 32 6.21e−1 28 9.65e−1 31.4

SGAN_TS_AA 12 3.17e−3 13 4.83e−3 10 9.77e−1 11 1.77e−1 10 9.89e−1 11.2

SGAN_TS_AS 10 3.15e−3 11 4.81e−3 07 9.78e−1 12 1.78e−1 08 9.90e−1 9.6

SGAN_TS_SA 08 3.09e−3 07 4.73e−3 05 9.78e−1 06 1.74e−1 05 9.90e−1 6.2

SGAN_TS_SS 11 3.16e−3 12 4.82e−3 06 9.78e−1 10 1.77e−1 06 9.90e−1 9.0

WGAN_NO_AA 22 3.68e−3 22 5.69e−3 18 9.70e−1 19 2.03e−1 16 9.87e−1 19.4

WGAN_NO_AS 15 3.28e−3 16 5.02e−3 14 9.73e−1 16 1.86e−1 18 9.87e−1 15.8

WGAN_NO_SA 21 3.66e−3 21 5.65e−3 17 9.72e−1 18 2.02e−1 13 9.88e−1 18.0

WGAN_NO_SS 16 3.31e−3 15 5.02e−3 13 9.74e−1 14 1.85e−1 15 9.88e−1 14.6

WGAN_OS_AA 09 3.12e−3 09 4.77e−3 09 9.78e−1 07 1.74e−1 09 9.89e−1 8.6

WGAN_OS_AS 31 1.16e−2 31 1.77e−2 29 8.23e−1 30 6.15e−1 25 9.69e−1 29.2

WGAN_OS_SA 13 3.18e−3 10 4.80e−3 08 9.78e−1 08 1.75e−1 07 9.90e−1 9.2

WGAN_OS_SS 32 1.16e−2 32 1.78e−2 30 8.22e−1 31 6.17e−1 26 9.69e−1 30.2

WGAN_TS_AA 06 3.01e−3 05 4.63e−3 04 9.81e−1 04 1.64e−1 03 9.92e−1 4.4

WGAN_TS_AS 01 2.78e−3 01 4.21e−3 01 9.83e−1 01 1.53e−1 02 9.92e−1 1.2

WGAN_TS_SA 04 2.98e−3 04 4.54e−3 03 9.82e−1 03 1.61e−1 01 9.92e−1 3.0

WGAN_TS_SS 02 2.83e−3 02 4.27e−3 02 9.83e−1 02 1.56e−1 04 9.92e−1 2.4

WGGP_NO_AA 20 3.52e−3 20 5.33e−3 24 9.57e−1 21 2.03e−1 24 9.81e−1 21.8

WGGP_NO_AS 17 3.42e−3 18 5.30e−3 21 9.58e−1 20 2.03e−1 21 9.81e−1 19.4

WGGP_NO_SA 19 3.48e−3 17 5.27e−3 22 9.57e−1 17 2.02e−1 22 9.81e−1 19.4

WGGP_NO_SS 18 3.42e−3 19 5.31e−3 23 9.57e−1 22 2.04e−1 23 9.81e−1 21.0

Continues on next page...

147

Appendix

Table F.4 – continued from previous page

Name MAE RMSE R2 SRMSE ρPearson rank

WGGP_OS_AA 30 9.46e−3 30 1.69e−2 36 4.37e−1 34 6.40e−1 34 9.31e−1 32.8

WGGP_OS_AS 36 1.35e−2 36 2.13e−2 35 5.23e−1 36 7.78e−1 36 9.18e−1 35.8

WGGP_OS_SA 29 8.87e−3 29 1.53e−2 33 7.06e−1 29 5.61e−1 33 9.44e−1 30.6

WGGP_OS_SS 35 1.29e−2 35 2.00e−2 34 7.05e−1 35 7.20e−1 35 9.31e−1 34.8

WGGP_TS_AA 28 6.30e−3 28 9.80e−3 28 8.91e−1 28 3.31e−1 31 9.62e−1 28.6

WGGP_TS_AS 27 6.08e−3 27 9.39e−3 27 8.97e−1 27 3.19e−1 32 9.61e−1 28.0

WGGP_TS_SA 26 6.04e−3 26 9.29e−3 26 9.07e−1 26 3.10e−1 27 9.65e−1 26.2

WGGP_TS_SS 25 5.80e−3 25 8.88e−3 25 9.12e−1 25 2.99e−1 29 9.64e−1 25.8

Table F.5: Results of the statistics on the third aggregation level for the CMAP dataset. Lighter
grey tone corresponds to better results compared to darker ones.

Name MAE RMSE R2 SRMSE ρPearson rank

SGAN_NO_AA 13 1.19e−3 14 2.19e−3 14 9.51e−1 14 3.75e−1 16 9.77e−1 14.2

SGAN_NO_AS 10 1.19e−3 12 2.14e−3 13 9.53e−1 13 3.70e−1 15 9.77e−1 12.6

SGAN_NO_SA 06 1.15e−3 08 2.09e−3 12 9.57e−1 10 3.58e−1 12 9.80e−1 9.6

SGAN_NO_SS 05 1.15e−3 05 2.06e−3 10 9.58e−1 08 3.53e−1 11 9.80e−1 7.8

SGAN_OS_AA 24 1.37e−3 24 2.58e−3 20 9.42e−1 24 4.16e−1 18 9.76e−1 22.0

SGAN_OS_AS 34 3.30e−3 33 6.42e−3 32 7.42e−1 33 1.14 32 9.27e−1 32.8

SGAN_OS_SA 23 1.36e−3 23 2.53e−3 19 9.46e−1 23 4.06e−1 14 9.78e−1 20.4

SGAN_OS_SS 33 3.30e−3 32 6.39e−3 31 7.45e−1 32 1.14 31 9.28e−1 31.8

SGAN_TS_AA 14 1.20e−3 13 2.15e−3 11 9.57e−1 09 3.58e−1 10 9.80e−1 11.4

SGAN_TS_AS 12 1.19e−3 11 2.13e−3 09 9.58e−1 12 3.66e−1 09 9.80e−1 10.6

SGAN_TS_SA 08 1.18e−3 09 2.10e−3 07 9.59e−1 07 3.50e−1 05 9.81e−1 7.2

SGAN_TS_SS 09 1.18e−3 10 2.11e−3 08 9.59e−1 11 3.62e−1 07 9.81e−1 9.0

WGAN_NO_AA 21 1.32e−3 22 2.39e−3 17 9.50e−1 18 3.90e−1 17 9.77e−1 19.0

WGAN_NO_AS 20 1.31e−3 20 2.36e−3 18 9.49e−1 22 4.03e−1 20 9.75e−1 20.0

WGAN_NO_SA 19 1.31e−3 21 2.38e−3 15 9.51e−1 17 3.89e−1 13 9.78e−1 17.0

WGAN_NO_SS 22 1.32e−3 19 2.35e−3 16 9.50e−1 21 4.01e−1 19 9.76e−1 19.4

WGAN_OS_AA 07 1.17e−3 06 2.07e−3 06 9.60e−1 05 3.48e−1 08 9.80e−1 6.4

WGAN_OS_AS 31 3.21e−3 30 6.26e−3 29 7.52e−1 30 1.13 29 9.37e−1 29.8

WGAN_OS_SA 11 1.19e−3 07 2.08e−3 05 9.60e−1 06 3.48e−1 06 9.81e−1 7.0

WGAN_OS_SS 32 3.23e−3 31 6.28e−3 30 7.51e−1 31 1.13 30 9.36e−1 30.8

WGAN_TS_AA 04 1.11e−3 04 1.97e−3 04 9.65e−1 02 3.26e−1 02 9.84e−1 3.2

WGAN_TS_AS 01 1.08e−3 01 1.90e−3 01 9.66e−1 03 3.27e−1 03 9.83e−1 1.8

Continues on next page...

148

F Table of results (Chapter 3)

Table F.5 – continued from previous page

Name MAE RMSE R2 SRMSE ρPearson rank

WGAN_TS_SA 03 1.10e−3 03 1.95e−3 02 9.66e−1 01 3.22e−1 01 9.84e−1 2.0

WGAN_TS_SS 02 1.09e−3 02 1.92e−3 03 9.65e−1 04 3.31e−1 04 9.83e−1 3.0

WGGP_NO_AA 18 1.30e−3 18 2.29e−3 24 9.37e−1 16 3.84e−1 24 9.70e−1 20.0

WGGP_NO_AS 16 1.26e−3 17 2.27e−3 21 9.39e−1 19 3.92e−1 21 9.71e−1 18.8

WGGP_NO_SA 17 1.28e−3 15 2.26e−3 23 9.38e−1 15 3.83e−1 22 9.71e−1 18.4

WGGP_NO_SS 15 1.25e−3 16 2.27e−3 22 9.38e−1 20 3.96e−1 23 9.70e−1 19.2

WGGP_OS_AA 30 2.92e−3 34 7.01e−3 36 9.66e−2 34 1.19 34 8.97e−1 33.6

WGGP_OS_AS 36 3.79e−3 36 7.52e−3 35 4.50e−1 36 1.36 36 8.67e−1 35.8

WGGP_OS_SA 29 2.71e−3 29 6.18e−3 34 5.38e−1 29 1.03 33 9.15e−1 30.8

WGGP_OS_SS 35 3.60e−3 35 7.04e−3 33 6.35e−1 35 1.27 35 8.84e−1 34.6

WGGP_TS_AA 28 2.06e−3 28 3.93e−3 28 8.57e−1 28 5.92e−1 27 9.44e−1 27.8

WGGP_TS_AS 27 1.97e−3 27 3.71e−3 27 8.70e−1 27 5.85e−1 28 9.43e−1 27.2

WGGP_TS_SA 26 1.97e−3 26 3.70e−3 26 8.77e−1 26 5.66e−1 25 9.48e−1 25.8

WGGP_TS_SS 25 1.88e−3 25 3.51e−3 25 8.85e−1 25 5.65e−1 26 9.46e−1 25.2

Table F.6: Results of the ML efficacy for the CMAP dataset. Lighter grey tone corresponds to
better results compared to darker ones.

Name Continuous Categorical rank

SGAN_NO_AA 02 3.04 02 6.23e−1 2.0

SGAN_NO_AS 04 3.05 04 6.51e−1 4.0

SGAN_NO_SA 06 3.06 01 6.15e−1 3.5

SGAN_NO_SS 09 3.06 03 6.38e−1 6.0

SGAN_OS_AA 13 3.07 27 1.61e2 20.0

SGAN_OS_AS 27 3.38 23 2.95 25.0

SGAN_OS_SA 17 3.13 28 4.01e2 22.5

SGAN_OS_SS 28 3.43 24 2.97 26.0

SGAN_TS_AA 10 3.06 11 7.25e−1 10.5

SGAN_TS_AS 07 3.06 12 7.34e−1 9.5

SGAN_TS_SA 12 3.07 09 7.02e−1 10.5

SGAN_TS_SS 14 3.08 10 7.22e−1 12.0

WGAN_NO_AA 21 3.16 32 7.04e3 26.5

WGAN_NO_AS 19 3.14 17 1.18 18.0

WGAN_NO_SA 23 3.17 31 6.64e3 27.0

WGAN_NO_SS 22 3.17 18 1.19 20.0

Continues on next page...

149

Appendix

Table F.6 – continued from previous page

Name Continuous Categorical rank

WGAN_OS_AA 11 3.07 15 8.78e−1 13.0

WGAN_OS_AS 25 3.32 21 2.80 23.0

WGAN_OS_SA 15 3.08 16 8.92e−1 15.5

WGAN_OS_SS 26 3.34 22 2.82 24.0

WGAN_TS_AA 01 3.04 07 6.78e−1 4.0

WGAN_TS_AS 03 3.04 13 7.47e−1 8.0

WGAN_TS_SA 08 3.06 08 6.87e−1 8.0

WGAN_TS_SS 05 3.05 14 7.56e−1 9.5

WGGP_NO_AA 20 3.15 35 1.13e4 27.5

WGGP_NO_AS 16 3.12 06 6.72e−1 11.0

WGGP_NO_SA 24 3.18 36 1.23e4 30.0

WGGP_NO_SS 18 3.13 05 6.71e−1 11.5

WGGP_OS_AA 30 3.89 30 4.48e3 30.0

WGGP_OS_AS 36 4.50 25 3.10 30.5

WGGP_OS_SA 29 3.87 29 4.08e3 29.0

WGGP_OS_SS 35 4.25 26 3.30 30.5

WGGP_TS_AA 33 4.10 33 8.00e3 33.0

WGGP_TS_AS 34 4.15 20 1.28 27.0

WGGP_TS_SA 32 3.94 34 8.80e3 33.0

WGGP_TS_SS 31 3.91 19 1.20 25.0

LPMC case study

Table F.7: Results of the statistics on the first aggregation level (all columns) for the LPMC
dataset. Lighter grey tone corresponds to better results compared to darker ones.

Name MAE RMSE R2 SRMSE ρPearson rank

SGAN_NO_AA 22 1.26e−2 22 1.74e−2 24 8.72e−1 22 1.36e−1 24 9.69e−1 22.8

SGAN_NO_AS 16 9.78e−3 16 1.40e−2 16 9.06e−1 18 1.22e−1 22 9.73e−1 17.6

SGAN_NO_SA 20 1.22e−2 20 1.65e−2 21 8.86e−1 19 1.27e−1 20 9.74e−1 20.0

SGAN_NO_SS 13 9.40e−3 14 1.32e−2 14 9.17e−1 14 1.13e−1 21 9.73e−1 15.2

SGAN_OS_AA 24 1.41e−2 24 1.84e−2 30 3.91e−1 23 1.43e−1 36 9.36e−1 27.4

SGAN_OS_AS 34 2.34e−2 33 2.89e−2 22 8.85e−1 33 1.81e−1 32 9.62e−1 30.8

SGAN_OS_SA 23 1.31e−2 21 1.68e−2 29 4.07e−1 20 1.27e−1 35 9.40e−1 25.6

SGAN_OS_SS 31 2.24e−2 31 2.74e−2 17 8.95e−1 29 1.66e−1 29 9.65e−1 27.4

SGAN_TS_AA 15 9.71e−3 13 1.28e−2 15 9.13e−1 09 1.00e−1 18 9.74e−1 14.0

Continues on next page...

150

F Table of results (Chapter 3)

Table F.7 – continued from previous page

Name MAE RMSE R2 SRMSE ρPearson rank

SGAN_TS_AS 05 8.22e−3 05 1.10e−2 09 9.27e−1 04 9.24e−2 14 9.76e−1 7.4

SGAN_TS_SA 14 9.41e−3 11 1.25e−2 13 9.17e−1 06 9.75e−2 13 9.76e−1 11.4

SGAN_TS_SS 02 7.94e−3 02 1.07e−2 08 9.29e−1 03 8.99e−2 12 9.77e−1 5.4

WGAN_NO_AA 36 2.42e−2 36 3.25e−2 26 8.01e−1 36 2.30e−1 17 9.75e−1 30.2

WGAN_NO_AS 18 1.17e−2 23 1.77e−2 12 9.20e−1 28 1.65e−1 15 9.76e−1 19.2

WGAN_NO_SA 32 2.25e−2 34 2.93e−2 25 8.22e−1 35 1.98e−1 06 9.80e−1 26.4

WGAN_NO_SS 17 9.98e−3 17 1.45e−2 05 9.41e−1 21 1.33e−1 05 9.81e−1 13.0

WGAN_OS_AA 26 1.61e−2 26 2.12e−2 32 2.09e−1 27 1.63e−1 26 9.67e−1 27.4

WGAN_OS_AS 35 2.40e−2 35 2.98e−2 23 8.76e−1 34 1.89e−1 33 9.60e−1 32.0

WGAN_OS_SA 25 1.52e−2 25 1.97e−2 31 2.21e−1 24 1.48e−1 31 9.63e−1 27.2

WGAN_OS_SS 33 2.29e−2 32 2.81e−2 18 8.92e−1 30 1.72e−1 25 9.68e−1 27.6

WGAN_TS_AA 28 1.71e−2 28 2.26e−2 36 −7.22e−
1

32 1.79e−1 16 9.75e−1 28.0

WGAN_TS_AS 11 9.03e−3 15 1.32e−2 04 9.49e−1 16 1.18e−1 03 9.85e−1 9.8

WGAN_TS_SA 27 1.70e−2 27 2.21e−2 35 −7.16e−
1

31 1.74e−1 10 9.79e−1 26.0

WGAN_TS_SS 10 8.98e−3 12 1.27e−2 02 9.59e−1 13 1.12e−1 01 9.88e−1 7.6

WGGP_NO_AA 09 8.80e−3 09 1.18e−2 10 9.22e−1 10 1.00e−1 08 9.79e−1 9.2

WGGP_NO_AS 04 8.09e−3 06 1.11e−2 06 9.37e−1 05 9.53e−2 11 9.78e−1 6.4

WGGP_NO_SA 12 9.11e−3 10 1.23e−2 11 9.22e−1 12 1.05e−1 07 9.80e−1 10.4

WGGP_NO_SS 07 8.48e−3 08 1.17e−2 07 9.36e−1 08 1.00e−1 09 9.79e−1 7.8

WGGP_OS_AA 21 1.25e−2 19 1.59e−2 28 5.81e−1 17 1.20e−1 34 9.56e−1 23.8

WGGP_OS_AS 30 2.20e−2 30 2.68e−2 20 8.87e−1 26 1.62e−1 28 9.65e−1 26.8

WGGP_OS_SA 19 1.21e−2 18 1.55e−2 27 5.89e−1 15 1.15e−1 27 9.65e−1 21.2

WGGP_OS_SS 29 2.17e−2 29 2.64e−2 19 8.90e−1 25 1.58e−1 30 9.63e−1 26.4

WGGP_TS_AA 08 8.59e−3 07 1.14e−2 33 2.03e−1 11 1.04e−1 23 9.72e−1 16.4

WGGP_TS_AS 06 8.26e−3 04 1.09e−2 03 9.56e−1 02 8.77e−2 04 9.82e−1 3.8

WGGP_TS_SA 03 8.04e−3 03 1.07e−2 34 2.01e−1 07 9.77e−2 19 9.74e−1 13.2

WGGP_TS_SS 01 7.64e−3 01 1.02e−2 01 9.63e−1 01 8.13e−2 02 9.85e−1 1.2

Table F.8: Results of the statistics on the first aggregation level (continuous columns) for the
LPMC dataset. Lighter grey tone corresponds to better results compared to darker ones.

Name MAE RMSE R2 SRMSE ρPearson rank

SGAN_NO_AA 30 1.39e−2 30 2.16e−2 33 8.87e−1 30 2.16e−1 33 9.67e−1 31.2

SGAN_NO_AS 31 1.39e−2 29 2.16e−2 34 8.86e−1 29 2.16e−1 34 9.67e−1 31.4

Continues on next page...

151

Appendix

Table F.8 – continued from previous page

Name MAE RMSE R2 SRMSE ρPearson rank

SGAN_NO_SA 23 1.28e−2 23 1.96e−2 31 9.18e−1 23 1.96e−1 27 9.75e−1 25.4

SGAN_NO_SS 24 1.29e−2 24 1.97e−2 32 9.17e−1 24 1.97e−1 28 9.75e−1 26.4

SGAN_OS_AA 22 1.28e−2 22 1.91e−2 21 9.36e−1 22 1.91e−1 23 9.76e−1 22.0

SGAN_OS_AS 21 1.28e−2 21 1.90e−2 23 9.36e−1 21 1.90e−1 24 9.76e−1 22.0

SGAN_OS_SA 14 1.07e−2 14 1.58e−2 11 9.56e−1 14 1.58e−1 08 9.84e−1 12.2

SGAN_OS_SS 13 1.07e−2 13 1.58e−2 12 9.56e−1 13 1.58e−1 07 9.84e−1 11.6

SGAN_TS_AA 12 1.05e−2 11 1.51e−2 18 9.47e−1 11 1.51e−1 16 9.80e−1 13.6

SGAN_TS_AS 11 1.05e−2 12 1.52e−2 17 9.47e−1 12 1.52e−1 15 9.80e−1 13.4

SGAN_TS_SA 07 9.97e−3 07 1.46e−2 13 9.54e−1 07 1.46e−1 10 9.83e−1 8.8

SGAN_TS_SS 08 9.97e−3 08 1.47e−2 14 9.54e−1 08 1.47e−1 09 9.83e−1 9.4

WGAN_NO_AA 36 1.99e−2 36 3.18e−2 35 8.75e−1 36 3.18e−1 35 9.64e−1 35.6

WGAN_NO_AS 35 1.99e−2 35 3.17e−2 36 8.75e−1 35 3.17e−1 36 9.64e−1 35.4

WGAN_NO_SA 34 1.65e−2 34 2.51e−2 30 9.25e−1 34 2.51e−1 25 9.76e−1 31.4

WGAN_NO_SS 33 1.64e−2 33 2.50e−2 29 9.25e−1 33 2.50e−1 26 9.76e−1 30.8

WGAN_OS_AA 26 1.35e−2 26 2.04e−2 24 9.36e−1 26 2.04e−1 20 9.79e−1 24.4

WGAN_OS_AS 25 1.35e−2 25 2.03e−2 22 9.36e−1 25 2.03e−1 19 9.79e−1 23.2

WGAN_OS_SA 18 1.15e−2 18 1.72e−2 04 9.63e−1 18 1.72e−1 04 9.87e−1 12.4

WGAN_OS_SS 15 1.13e−2 17 1.69e−2 03 9.63e−1 17 1.69e−1 03 9.88e−1 11.0

WGAN_TS_AA 29 1.38e−2 31 2.17e−2 19 9.39e−1 31 2.17e−1 11 9.82e−1 24.2

WGAN_TS_AS 32 1.40e−2 32 2.18e−2 20 9.38e−1 32 2.18e−1 14 9.82e−1 26.0

WGAN_TS_SA 28 1.37e−2 28 2.06e−2 08 9.59e−1 28 2.06e−1 01 9.89e−1 18.6

WGAN_TS_SS 27 1.37e−2 27 2.06e−2 07 9.59e−1 27 2.06e−1 02 9.89e−1 18.0

WGGP_NO_AA 17 1.14e−2 15 1.67e−2 27 9.29e−1 15 1.67e−1 31 9.72e−1 21.0

WGGP_NO_AS 16 1.14e−2 16 1.67e−2 28 9.28e−1 16 1.67e−1 32 9.72e−1 21.6

WGGP_NO_SA 19 1.19e−2 19 1.76e−2 25 9.30e−1 19 1.76e−1 29 9.73e−1 22.2

WGGP_NO_SS 20 1.19e−2 20 1.77e−2 26 9.30e−1 20 1.77e−1 30 9.73e−1 23.2

WGGP_OS_AA 10 1.03e−2 10 1.50e−2 16 9.52e−1 10 1.50e−1 22 9.77e−1 13.6

WGGP_OS_AS 09 1.03e−2 09 1.50e−2 15 9.53e−1 09 1.50e−1 21 9.77e−1 12.6

WGGP_OS_SA 03 9.49e−3 03 1.40e−2 10 9.56e−1 03 1.40e−1 17 9.79e−1 7.2

WGGP_OS_SS 04 9.49e−3 04 1.40e−2 09 9.56e−1 04 1.40e−1 18 9.79e−1 7.8

WGGP_TS_AA 06 9.84e−3 06 1.43e−2 06 9.61e−1 06 1.43e−1 12 9.82e−1 7.2

WGGP_TS_AS 05 9.82e−3 05 1.42e−2 05 9.61e−1 05 1.42e−1 13 9.82e−1 6.6

WGGP_TS_SA 01 8.91e−3 01 1.31e−2 02 9.69e−1 01 1.31e−1 06 9.86e−1 2.2

WGGP_TS_SS 02 8.93e−3 02 1.31e−2 01 9.69e−1 02 1.31e−1 05 9.86e−1 2.4

152

F Table of results (Chapter 3)

Table F.9: Results of the statistics on the first aggregation level (categorical columns) for the
LPMC dataset. Lighter grey tone corresponds to better results compared to darker ones.

Name MAE RMSE R2 SRMSE ρPearson rank

SGAN_NO_AA 19 1.13e−2 19 1.34e−2 17 8.58e−1 17 6.17e−2 19 9.70e−1 18.2

SGAN_NO_AS 07 5.93e−3 07 6.93e−3 09 9.23e−1 07 3.43e−2 13 9.79e−1 8.6

SGAN_NO_SA 20 1.15e−2 20 1.37e−2 18 8.56e−1 18 6.24e−2 16 9.72e−1 18.4

SGAN_NO_SS 10 6.18e−3 10 7.17e−3 11 9.16e−1 09 3.54e−2 17 9.72e−1 11.4

SGAN_OS_AA 24 1.53e−2 24 1.78e−2 30 −1.14e−
1

24 9.85e−2 36 8.99e−1 27.6

SGAN_OS_AS 34 3.33e−2 34 3.82e−2 20 8.38e−1 33 1.73e−1 29 9.49e−1 30.0

SGAN_OS_SA 23 1.52e−2 23 1.77e−2 29 −1.03e−
1

23 9.79e−2 35 9.00e−1 26.6

SGAN_OS_SS 33 3.33e−2 33 3.81e−2 19 8.39e−1 34 1.74e−1 31 9.47e−1 30.0

SGAN_TS_AA 18 8.98e−3 18 1.06e−2 16 8.81e−1 16 5.26e−2 22 9.69e−1 18.0

SGAN_TS_AS 09 6.13e−3 09 7.08e−3 13 9.08e−1 12 3.75e−2 14 9.72e−1 11.4

SGAN_TS_SA 17 8.90e−3 17 1.05e−2 15 8.83e−1 15 5.20e−2 18 9.70e−1 16.4

SGAN_TS_SS 08 6.06e−3 08 6.99e−3 14 9.05e−1 11 3.71e−2 15 9.72e−1 11.2

WGAN_NO_AA 29 2.81e−2 29 3.32e−2 25 7.32e−1 29 1.49e−1 07 9.85e−1 23.8

WGAN_NO_AS 02 4.04e−3 02 4.75e−3 01 9.62e−1 02 2.45e−2 03 9.87e−1 2.0

WGAN_NO_SA 30 2.81e−2 30 3.32e−2 26 7.27e−1 30 1.50e−1 10 9.84e−1 25.2

WGAN_NO_SS 01 3.98e−3 01 4.67e−3 05 9.56e−1 01 2.42e−2 04 9.86e−1 2.4

WGAN_OS_AA 25 1.86e−2 25 2.20e−2 31 −4.65e−
1

25 1.26e−1 25 9.56e−1 26.2

WGAN_OS_AS 36 3.39e−2 36 3.87e−2 24 8.20e−1 36 1.75e−1 32 9.42e−1 32.8

WGAN_OS_SA 26 1.87e−2 26 2.21e−2 32 −4.68e−
1

26 1.26e−1 33 9.40e−1 28.6

WGAN_OS_SS 35 3.37e−2 35 3.85e−2 23 8.25e−1 35 1.74e−1 28 9.50e−1 31.2

WGAN_TS_AA 28 2.00e−2 28 2.35e−2 35 −2.26 27 1.44e−1 20 9.69e−1 27.6

WGAN_TS_AS 03 4.45e−3 03 5.21e−3 02 9.59e−1 03 2.48e−2 02 9.87e−1 2.6

WGAN_TS_SA 27 2.00e−2 27 2.35e−2 36 −2.27 28 1.44e−1 21 9.69e−1 27.8

WGAN_TS_SS 04 4.61e−3 04 5.38e−3 03 9.59e−1 04 2.50e−2 01 9.88e−1 3.2

WGGP_NO_AA 11 6.36e−3 11 7.25e−3 10 9.16e−1 13 3.77e−2 05 9.86e−1 10.0

WGGP_NO_AS 05 5.01e−3 05 5.79e−3 07 9.45e−1 05 2.83e−2 11 9.83e−1 6.6

WGGP_NO_SA 13 6.48e−3 12 7.39e−3 12 9.14e−1 14 3.77e−2 06 9.85e−1 11.4

WGGP_NO_SS 06 5.26e−3 06 6.05e−3 08 9.42e−1 06 2.86e−2 08 9.84e−1 6.8

WGGP_OS_AA 21 1.45e−2 21 1.68e−2 28 2.37e−1 21 9.11e−2 34 9.36e−1 25.0

WGGP_OS_AS 31 3.30e−2 31 3.77e−2 22 8.26e−1 31 1.72e−1 26 9.53e−1 28.2

WGGP_OS_SA 22 1.45e−2 22 1.68e−2 27 2.49e−1 22 9.13e−2 27 9.52e−1 24.0

Continues on next page...

153

Appendix

Table F.9 – continued from previous page

Name MAE RMSE R2 SRMSE ρPearson rank

WGGP_OS_SS 32 3.30e−2 32 3.79e−2 21 8.29e−1 32 1.73e−1 30 9.48e−1 29.4

WGGP_TS_AA 16 7.43e−3 16 8.74e−3 33 −5.01e−
1

20 6.80e−2 23 9.63e−1 21.6

WGGP_TS_AS 14 6.82e−3 14 7.88e−3 06 9.51e−1 10 3.70e−2 12 9.82e−1 11.2

WGGP_TS_SA 15 7.23e−3 15 8.49e−3 34 −5.12e−
1

19 6.70e−2 24 9.62e−1 21.4

WGGP_TS_SS 12 6.44e−3 13 7.47e−3 04 9.56e−1 08 3.52e−2 09 9.84e−1 9.2

Table F.10: Results of the statistics on the second aggregation level for the LPMC dataset.
Lighter grey tone corresponds to better results compared to darker ones.

Name MAE RMSE R2 SRMSE ρPearson rank

SGAN_NO_AA 21 5.21e−3 21 9.27e−3 21 8.90e−1 21 3.50e−1 26 9.62e−1 22.0

SGAN_NO_AS 17 4.89e−3 16 8.70e−3 18 9.02e−1 18 3.37e−1 22 9.64e−1 18.2

SGAN_NO_SA 18 5.07e−3 19 8.96e−3 17 9.08e−1 19 3.38e−1 14 9.67e−1 17.4

SGAN_NO_SS 15 4.79e−3 15 8.47e−3 11 9.18e−1 15 3.27e−1 13 9.69e−1 13.8

SGAN_OS_AA 22 5.50e−3 22 9.34e−3 30 8.15e−1 22 3.69e−1 36 9.49e−1 26.4

SGAN_OS_AS 34 8.75e−3 32 1.38e−2 22 8.90e−1 32 4.51e−1 30 9.60e−1 30.0

SGAN_OS_SA 20 5.21e−3 18 8.80e−3 28 8.32e−1 20 3.48e−1 35 9.55e−1 24.2

SGAN_OS_SS 32 8.50e−3 31 1.34e−2 19 9.01e−1 28 4.35e−1 20 9.65e−1 26.0

SGAN_TS_AA 12 4.34e−3 12 7.38e−3 10 9.23e−1 11 2.85e−1 12 9.70e−1 11.4

SGAN_TS_AS 08 4.19e−3 08 7.15e−3 06 9.30e−1 08 2.79e−1 11 9.71e−1 8.2

SGAN_TS_SA 09 4.24e−3 09 7.30e−3 08 9.28e−1 09 2.82e−1 09 9.72e−1 8.8

SGAN_TS_SS 07 4.13e−3 07 7.10e−3 04 9.34e−1 07 2.78e−1 06 9.73e−1 6.2

WGAN_NO_AA 33 8.53e−3 36 1.58e−2 29 8.28e−1 36 5.49e−1 33 9.59e−1 33.4

WGAN_NO_AS 26 6.19e−3 27 1.14e−2 24 8.88e−1 29 4.41e−1 29 9.60e−1 27.0

WGAN_NO_SA 31 8.26e−3 35 1.46e−2 27 8.59e−1 35 4.99e−1 21 9.65e−1 29.8

WGAN_NO_SS 23 5.92e−3 23 1.04e−2 13 9.16e−1 25 3.98e−1 17 9.66e−1 20.2

WGAN_OS_AA 25 6.14e−3 25 1.09e−2 32 7.97e−1 27 4.11e−1 27 9.62e−1 27.2

WGAN_OS_AS 36 8.99e−3 34 1.42e−2 23 8.88e−1 34 4.61e−1 32 9.60e−1 31.8

WGAN_OS_SA 24 6.14e−3 24 1.06e−2 31 8.12e−1 26 4.03e−1 18 9.66e−1 24.6

WGAN_OS_SS 35 8.94e−3 33 1.41e−2 20 9.01e−1 33 4.59e−1 23 9.64e−1 28.8

WGAN_TS_AA 27 6.27e−3 26 1.14e−2 36 6.26e−1 30 4.46e−1 34 9.57e−1 30.6

WGAN_TS_AS 16 4.89e−3 17 8.80e−3 05 9.34e−1 16 3.28e−1 04 9.75e−1 11.6

WGAN_TS_SA 28 6.49e−3 28 1.14e−2 35 6.38e−1 31 4.47e−1 31 9.60e−1 30.6

Continues on next page...

154

F Table of results (Chapter 3)

Table F.10 – continued from previous page

Name MAE RMSE R2 SRMSE ρPearson rank

WGAN_TS_SS 19 5.14e−3 20 8.97e−3 03 9.44e−1 17 3.33e−1 02 9.77e−1 12.2

WGGP_NO_AA 11 4.29e−3 10 7.32e−3 14 9.15e−1 10 2.85e−1 10 9.71e−1 11.0

WGGP_NO_AS 06 4.04e−3 05 7.00e−3 09 9.28e−1 04 2.75e−1 08 9.72e−1 6.4

WGGP_NO_SA 10 4.27e−3 11 7.32e−3 12 9.17e−1 12 2.86e−1 07 9.72e−1 10.4

WGGP_NO_SS 05 4.02e−3 06 7.01e−3 07 9.29e−1 05 2.77e−1 05 9.73e−1 5.6

WGGP_OS_AA 14 4.70e−3 14 7.79e−3 26 8.70e−1 14 2.97e−1 24 9.64e−1 18.4

WGGP_OS_AS 30 7.81e−3 30 1.22e−2 16 9.08e−1 24 3.91e−1 16 9.66e−1 23.2

WGGP_OS_SA 13 4.64e−3 13 7.67e−3 25 8.77e−1 13 2.88e−1 19 9.65e−1 16.6

WGGP_OS_SS 29 7.78e−3 29 1.22e−2 15 9.10e−1 23 3.90e−1 15 9.67e−1 22.2

WGGP_TS_AA 04 3.85e−3 04 6.39e−3 34 7.89e−1 06 2.77e−1 28 9.62e−1 15.2

WGGP_TS_AS 02 3.70e−3 02 6.16e−3 02 9.47e−1 02 2.35e−1 03 9.75e−1 2.2

WGGP_TS_SA 03 3.71e−3 03 6.23e−3 33 7.91e−1 03 2.71e−1 25 9.64e−1 13.4

WGGP_TS_SS 01 3.52e−3 01 5.91e−3 01 9.51e−1 01 2.26e−1 01 9.78e−1 1.0

Table F.11: Results of the statistics on the third aggregation level for the LPMC dataset. Lighter
grey tone corresponds to better results compared to darker ones.

Name MAE RMSE R2 SRMSE ρPearson rank

SGAN_NO_AA 20 1.87e−3 21 4.21e−3 23 8.64e−1 20 6.48e−1 24 9.49e−1 21.6

SGAN_NO_AS 18 1.84e−3 18 4.09e−3 20 8.75e−1 18 6.37e−1 20 9.51e−1 18.8

SGAN_NO_SA 16 1.81e−3 17 4.02e−3 18 8.86e−1 17 6.33e−1 18 9.55e−1 17.2

SGAN_NO_SS 15 1.80e−3 16 3.98e−3 15 8.94e−1 16 6.32e−1 15 9.56e−1 15.4

SGAN_OS_AA 21 1.97e−3 20 4.20e−3 33 8.25e−1 22 6.96e−1 36 9.35e−1 26.4

SGAN_OS_AS 34 2.79e−3 32 5.75e−3 24 8.57e−1 32 8.38e−1 29 9.44e−1 30.2

SGAN_OS_SA 19 1.86e−3 15 3.94e−3 27 8.54e−1 21 6.64e−1 30 9.44e−1 22.4

SGAN_OS_SS 32 2.71e−3 31 5.60e−3 21 8.72e−1 31 8.34e−1 23 9.50e−1 27.6

SGAN_TS_AA 13 1.62e−3 13 3.49e−3 10 8.99e−1 14 5.62e−1 12 9.58e−1 12.4

SGAN_TS_AS 10 1.59e−3 11 3.44e−3 09 9.06e−1 12 5.60e−1 10 9.59e−1 10.4

SGAN_TS_SA 09 1.58e−3 10 3.40e−3 06 9.08e−1 11 5.55e−1 07 9.61e−1 8.6

SGAN_TS_SS 07 1.56e−3 09 3.39e−3 04 9.13e−1 13 5.60e−1 05 9.62e−1 7.6

WGAN_NO_AA 33 2.73e−3 36 6.71e−3 34 7.81e−1 36 9.66e−1 32 9.43e−1 34.2

WGAN_NO_AS 27 2.27e−3 30 5.22e−3 30 8.48e−1 29 8.08e−1 31 9.44e−1 29.4

WGAN_NO_SA 31 2.71e−3 35 6.20e−3 32 8.25e−1 34 8.89e−1 27 9.47e−1 31.8

WGAN_NO_SS 28 2.28e−3 29 5.00e−3 19 8.79e−1 27 7.73e−1 26 9.48e−1 25.8

WGAN_OS_AA 23 2.05e−3 24 4.75e−3 31 8.34e−1 26 7.47e−1 22 9.50e−1 25.2

Continues on next page...

155

Appendix

Table F.11 – continued from previous page

Name MAE RMSE R2 SRMSE ρPearson rank

WGAN_OS_AS 35 2.86e−3 33 5.86e−3 25 8.57e−1 33 8.59e−1 34 9.43e−1 32.0

WGAN_OS_SA 25 2.11e−3 23 4.65e−3 26 8.55e−1 25 7.42e−1 19 9.53e−1 23.6

WGAN_OS_SS 36 2.92e−3 34 6.00e−3 22 8.65e−1 35 9.06e−1 28 9.46e−1 31.0

WGAN_TS_AA 24 2.08e−3 28 4.98e−3 36 7.47e−1 30 8.09e−1 35 9.41e−1 30.6

WGAN_TS_AS 17 1.83e−3 19 4.14e−3 08 9.06e−1 15 6.22e−1 04 9.62e−1 12.6

WGAN_TS_SA 26 2.21e−3 26 4.95e−3 35 7.66e−1 28 8.02e−1 33 9.43e−1 29.6

WGAN_TS_SS 22 1.99e−3 22 4.30e−3 03 9.14e−1 19 6.47e−1 03 9.63e−1 13.8

WGGP_NO_AA 14 1.64e−3 14 3.51e−3 14 8.96e−1 09 5.49e−1 11 9.58e−1 12.4

WGGP_NO_AS 06 1.54e−3 08 3.35e−3 07 9.08e−1 04 5.36e−1 08 9.60e−1 6.6

WGGP_NO_SA 12 1.61e−3 12 3.48e−3 11 8.99e−1 10 5.50e−1 09 9.59e−1 10.8

WGGP_NO_SS 05 1.52e−3 06 3.33e−3 05 9.10e−1 05 5.37e−1 06 9.61e−1 5.4

WGGP_OS_AA 11 1.60e−3 07 3.33e−3 13 8.97e−1 08 5.44e−1 16 9.56e−1 11.0

WGGP_OS_AS 30 2.43e−3 27 4.95e−3 17 8.89e−1 24 7.31e−1 17 9.56e−1 23.0

WGGP_OS_SA 08 1.57e−3 05 3.29e−3 12 8.98e−1 07 5.42e−1 13 9.57e−1 9.0

WGGP_OS_SS 29 2.40e−3 25 4.91e−3 16 8.90e−1 23 7.31e−1 14 9.56e−1 21.4

WGGP_TS_AA 04 1.45e−3 04 3.03e−3 29 8.48e−1 06 5.39e−1 25 9.48e−1 13.6

WGGP_TS_AS 02 1.39e−3 02 2.90e−3 02 9.31e−1 02 4.61e−1 02 9.66e−1 2.0

WGGP_TS_SA 03 1.40e−3 03 2.96e−3 28 8.51e−1 03 5.33e−1 21 9.50e−1 11.6

WGGP_TS_SS 01 1.32e−3 01 2.79e−3 01 9.35e−1 01 4.50e−1 01 9.69e−1 1.0

Table F.12: Results of the ML efficacy for the LPMC dataset. Lighter grey tone corresponds to
better results compared to darker ones.

Name Continuous Categorical rank

SGAN_NO_AA 15 2.81e1 32 5.98 23.5

SGAN_NO_AS 16 2.94e1 19 3.89 17.5

SGAN_NO_SA 29 4.59e1 23 4.55 26.0

SGAN_NO_SS 30 4.74e1 18 3.77 24.0

SGAN_OS_AA 17 3.08e1 25 4.61 21.0

SGAN_OS_AS 20 3.37e1 27 4.73 23.5

SGAN_OS_SA 27 4.16e1 21 4.18 24.0

SGAN_OS_SS 28 4.44e1 24 4.55 26.0

SGAN_TS_AA 13 2.78e1 26 4.67 19.5

SGAN_TS_AS 14 2.80e1 16 3.71 15.0

SGAN_TS_SA 18 3.21e1 17 3.73 17.5

Continues on next page...

156

F Table of results (Chapter 3)

Table F.12 – continued from previous page

Name Continuous Categorical rank

SGAN_TS_SS 19 3.31e1 14 3.48 16.5

WGAN_NO_AA 24 3.93e1 35 1.49e4 29.5

WGAN_NO_AS 26 4.14e1 29 5.00 27.5

WGAN_NO_SA 35 6.60e1 36 1.62e4 35.5

WGAN_NO_SS 36 6.87e1 28 4.94 32.0

WGAN_OS_AA 21 3.55e1 13 3.45 17.0

WGAN_OS_AS 22 3.90e1 30 5.30 26.0

WGAN_OS_SA 31 5.87e1 15 3.49 23.0

WGAN_OS_SS 33 6.15e1 31 5.40 32.0

WGAN_TS_AA 23 3.91e1 33 7.28e3 28.0

WGAN_TS_AS 25 4.05e1 20 4.14 22.5

WGAN_TS_SA 32 6.15e1 34 7.68e3 33.0

WGAN_TS_SS 34 6.34e1 22 4.31 28.0

WGGP_NO_AA 09 2.31e1 10 3.09 9.5

WGGP_NO_AS 10 2.32e1 06 2.65 8.0

WGGP_NO_SA 11 2.57e1 09 3.04 10.0

WGGP_NO_SS 12 2.60e1 05 2.61 8.5

WGGP_OS_AA 01 1.96e1 04 2.56 2.5

WGGP_OS_AS 02 2.03e1 07 2.94 4.5

WGGP_OS_SA 05 2.09e1 03 2.50 4.0

WGGP_OS_SS 06 2.16e1 08 2.94 7.0

WGGP_TS_AA 03 2.03e1 12 3.19 7.5

WGGP_TS_AS 04 2.03e1 02 2.21 3.0

WGGP_TS_SA 08 2.21e1 11 3.14 9.5

WGGP_TS_SS 07 2.20e1 01 2.19 4.0

LPMC_half case study

Table F.13: Results of the statistics on the first aggregation level (all columns) for the LPMC_half
dataset. Lighter grey tone corresponds to better results compared to darker ones.

Name MAE RMSE R2 SRMSE ρPearson rank

SGAN_NO_AA 22 1.59e−2 23 2.18e−2 19 8.15e−1 21 1.62e−1 10 9.63e−1 19.0

SGAN_NO_AS 10 1.12e−2 11 1.60e−2 05 9.04e−1 12 1.38e−1 04 9.71e−1 8.4

SGAN_NO_SA 19 1.55e−2 21 2.09e−2 17 8.28e−1 17 1.55e−1 05 9.67e−1 15.8

Continues on next page...

157

Appendix

Table F.13 – continued from previous page

Name MAE RMSE R2 SRMSE ρPearson rank

SGAN_NO_SS 07 1.09e−2 08 1.53e−2 02 9.17e−1 06 1.31e−1 02 9.74e−1 5.0

SGAN_OS_AA 21 1.57e−2 22 2.12e−2 26 1.56e−1 22 1.72e−1 36 9.20e−1 25.4

SGAN_OS_AS 32 2.56e−2 31 3.23e−2 20 8.08e−1 28 2.10e−1 32 9.37e−1 28.6

SGAN_OS_SA 18 1.48e−2 18 1.97e−2 25 1.94e−1 19 1.57e−1 34 9.27e−1 22.8

SGAN_OS_SS 30 2.45e−2 29 3.06e−2 14 8.43e−1 26 1.94e−1 26 9.50e−1 25.0

SGAN_TS_AA 16 1.34e−2 16 1.85e−2 18 8.18e−1 16 1.50e−1 19 9.55e−1 17.0

SGAN_TS_AS 11 1.12e−2 10 1.58e−2 15 8.39e−1 11 1.38e−1 18 9.55e−1 13.0

SGAN_TS_SA 14 1.26e−2 14 1.70e−2 16 8.37e−1 09 1.34e−1 16 9.57e−1 13.8

SGAN_TS_SS 03 1.01e−2 03 1.41e−2 11 8.67e−1 03 1.21e−1 11 9.62e−1 6.2

WGAN_NO_AA 36 4.92e−2 36 6.44e−2 32 −3.48e−
1

36 4.37e−1 35 9.21e−1 35.0

WGAN_NO_AS 24 2.01e−2 30 3.09e−2 22 6.11e−1 34 2.94e−1 33 9.30e−1 28.6

WGAN_NO_SA 35 4.28e−2 35 5.33e−2 29 −8.45e−
2

35 3.26e−1 21 9.52e−1 31.0

WGAN_NO_SS 17 1.37e−2 19 1.99e−2 08 8.78e−1 25 1.84e−1 12 9.62e−1 16.2

WGAN_OS_AA 31 2.51e−2 33 3.37e−2 28 2.59e−2 32 2.53e−1 30 9.46e−1 30.8

WGAN_OS_AS 34 2.79e−2 34 3.63e−2 21 7.77e−1 33 2.55e−1 31 9.39e−1 30.6

WGAN_OS_SA 27 2.27e−2 27 2.94e−2 27 1.13e−1 29 2.11e−1 13 9.59e−1 24.6

WGAN_OS_SS 33 2.57e−2 32 3.24e−2 13 8.60e−1 30 2.14e−1 22 9.52e−1 26.0

WGAN_TS_AA 26 2.23e−2 26 2.93e−2 36 −1.09 31 2.23e−1 15 9.57e−1 26.8

WGAN_TS_AS 12 1.13e−2 12 1.65e−2 06 8.92e−1 14 1.47e−1 06 9.67e−1 10.0

WGAN_TS_SA 25 2.14e−2 24 2.73e−2 35 −1.04 27 2.05e−1 07 9.66e−1 23.6

WGAN_TS_SS 04 1.07e−2 06 1.48e−2 01 9.26e−1 05 1.30e−1 01 9.75e−1 3.4

WGGP_NO_AA 15 1.29e−2 15 1.74e−2 34 −5.08e−
1

20 1.60e−1 28 9.47e−1 22.4

WGGP_NO_AS 09 1.12e−2 09 1.54e−2 10 8.68e−1 08 1.33e−1 14 9.57e−1 10.0

WGGP_NO_SA 13 1.25e−2 13 1.69e−2 33 −4.74e−
1

18 1.55e−1 20 9.54e−1 19.4

WGGP_NO_SS 05 1.08e−2 07 1.49e−2 07 8.86e−1 04 1.27e−1 09 9.63e−1 6.4

WGGP_OS_AA 23 1.63e−2 20 2.04e−2 24 4.53e−1 15 1.49e−1 24 9.50e−1 21.2

WGGP_OS_AS 29 2.45e−2 28 2.97e−2 12 8.65e−1 24 1.82e−1 27 9.48e−1 24.0

WGGP_OS_SA 20 1.57e−2 17 1.96e−2 23 4.59e−1 13 1.42e−1 29 9.47e−1 20.4

WGGP_OS_SS 28 2.39e−2 25 2.89e−2 09 8.72e−1 23 1.75e−1 23 9.50e−1 21.6

WGGP_TS_AA 08 1.11e−2 05 1.44e−2 30 −2.19e−
1

10 1.35e−1 25 9.50e−1 15.6

WGGP_TS_AS 02 9.61e−3 02 1.28e−2 04 9.09e−1 02 1.05e−1 08 9.64e−1 3.6

Continues on next page...

158

F Table of results (Chapter 3)

Table F.13 – continued from previous page

Name MAE RMSE R2 SRMSE ρPearson rank

WGGP_TS_SA 06 1.08e−2 04 1.41e−2 31 −2.20e−
1

07 1.33e−1 17 9.57e−1 13.0

WGGP_TS_SS 01 9.32e−3 01 1.25e−2 03 9.11e−1 01 1.03e−1 03 9.73e−1 1.8

Table F.14: Results of the statistics on the first aggregation level (continuous columns) for the
LPMC_half dataset. Lighter grey tone corresponds to better results compared to darker ones.

Name MAE RMSE R2 SRMSE ρPearson rank

SGAN_NO_AA 20 1.57e−2 25 2.43e−2 15 8.97e−1 25 2.43e−1 15 9.69e−1 20.0

SGAN_NO_AS 21 1.57e−2 26 2.45e−2 16 8.96e−1 26 2.45e−1 16 9.69e−1 21.0

SGAN_NO_SA 15 1.51e−2 15 2.29e−2 09 9.31e−1 15 2.29e−1 01 9.78e−1 11.0

SGAN_NO_SS 16 1.51e−2 16 2.30e−2 10 9.31e−1 16 2.30e−1 02 9.78e−1 12.0

SGAN_OS_AA 22 1.58e−2 24 2.43e−2 30 8.30e−1 24 2.43e−1 20 9.66e−1 24.0

SGAN_OS_AS 19 1.56e−2 23 2.41e−2 29 8.33e−1 23 2.41e−1 19 9.67e−1 22.6

SGAN_OS_SA 12 1.38e−2 12 2.11e−2 17 8.95e−1 12 2.11e−1 08 9.73e−1 12.2

SGAN_OS_SS 11 1.37e−2 11 2.09e−2 18 8.94e−1 11 2.09e−1 09 9.73e−1 12.0

SGAN_TS_AA 17 1.55e−2 21 2.40e−2 31 8.27e−1 21 2.40e−1 21 9.65e−1 22.2

SGAN_TS_AS 18 1.56e−2 22 2.40e−2 32 8.26e−1 22 2.40e−1 22 9.65e−1 23.2

SGAN_TS_SA 10 1.37e−2 10 2.06e−2 22 8.69e−1 10 2.06e−1 14 9.71e−1 13.2

SGAN_TS_SS 09 1.36e−2 09 2.05e−2 21 8.70e−1 09 2.05e−1 12 9.72e−1 12.0

WGAN_NO_AA 36 3.61e−2 36 5.76e−2 35 2.86e−1 36 5.76e−1 36 8.80e−1 35.8

WGAN_NO_AS 35 3.60e−2 35 5.75e−2 36 2.85e−1 35 5.75e−1 35 8.80e−1 35.2

WGAN_NO_SA 34 2.27e−2 34 3.47e−2 28 8.34e−1 34 3.47e−1 30 9.47e−1 32.0

WGAN_NO_SS 33 2.27e−2 33 3.47e−2 27 8.35e−1 33 3.47e−1 29 9.47e−1 31.0

WGAN_OS_AA 32 2.17e−2 31 3.41e−2 33 7.35e−1 31 3.41e−1 32 9.46e−1 31.8

WGAN_OS_AS 31 2.17e−2 32 3.41e−2 34 7.33e−1 32 3.41e−1 31 9.46e−1 32.0

WGAN_OS_SA 27 1.68e−2 27 2.53e−2 13 9.16e−1 27 2.53e−1 11 9.72e−1 21.0

WGAN_OS_SS 28 1.69e−2 28 2.54e−2 14 9.15e−1 28 2.54e−1 13 9.71e−1 22.2

WGAN_TS_AA 30 1.74e−2 30 2.71e−2 26 8.47e−1 30 2.71e−1 26 9.54e−1 28.4

WGAN_TS_AS 29 1.73e−2 29 2.71e−2 25 8.49e−1 29 2.71e−1 25 9.54e−1 27.4

WGAN_TS_SA 23 1.58e−2 17 2.33e−2 11 9.30e−1 17 2.33e−1 05 9.74e−1 14.6

WGAN_TS_SS 26 1.59e−2 18 2.35e−2 12 9.30e−1 18 2.35e−1 07 9.73e−1 16.2

WGGP_NO_AA 25 1.59e−2 19 2.36e−2 24 8.53e−1 19 2.36e−1 34 9.40e−1 24.2

WGGP_NO_AS 24 1.59e−2 20 2.36e−2 23 8.53e−1 20 2.36e−1 33 9.40e−1 24.0

WGGP_NO_SA 14 1.48e−2 14 2.23e−2 20 8.83e−1 14 2.23e−1 28 9.51e−1 18.0

Continues on next page...

159

Appendix

Table F.14 – continued from previous page

Name MAE RMSE R2 SRMSE ρPearson rank

WGGP_NO_SS 13 1.47e−2 13 2.21e−2 19 8.84e−1 13 2.21e−1 27 9.51e−1 17.0

WGGP_OS_AA 08 1.30e−2 08 1.85e−2 08 9.31e−1 08 1.85e−1 24 9.64e−1 11.2

WGGP_OS_AS 07 1.29e−2 07 1.83e−2 07 9.32e−1 07 1.83e−1 23 9.64e−1 10.2

WGGP_OS_SA 06 1.20e−2 06 1.71e−2 05 9.37e−1 06 1.71e−1 17 9.67e−1 8.0

WGGP_OS_SS 05 1.20e−2 03 1.69e−2 06 9.36e−1 03 1.69e−1 18 9.67e−1 7.0

WGGP_TS_AA 04 1.18e−2 05 1.71e−2 04 9.43e−1 05 1.71e−1 10 9.73e−1 5.6

WGGP_TS_AS 03 1.17e−2 04 1.70e−2 03 9.45e−1 04 1.70e−1 06 9.74e−1 4.0

WGGP_TS_SA 02 1.13e−2 02 1.66e−2 01 9.48e−1 02 1.66e−1 03 9.75e−1 2.0

WGGP_TS_SS 01 1.12e−2 01 1.65e−2 02 9.47e−1 01 1.65e−1 04 9.75e−1 1.8

Table F.15: Results of the statistics on the first aggregation level (categorical columns) for the
LPMC_half dataset. Lighter grey tone corresponds to better results compared to darker ones.

Name MAE RMSE R2 SRMSE ρPearson rank

SGAN_NO_AA 22 1.62e−2 22 1.94e−2 21 7.40e−1 16 8.70e−2 14 9.57e−1 19.0

SGAN_NO_AS 06 6.97e−3 07 8.10e−3 05 9.11e−1 07 3.93e−2 07 9.73e−1 6.4

SGAN_NO_SA 21 1.59e−2 21 1.91e−2 22 7.32e−1 15 8.63e−2 15 9.56e−1 18.8

SGAN_NO_SS 08 7.02e−3 08 8.14e−3 06 9.04e−1 08 3.97e−2 09 9.71e−1 7.8

SGAN_OS_AA 20 1.57e−2 20 1.84e−2 26 −4.69e−
1

22 1.07e−1 36 8.77e−1 24.8

SGAN_OS_AS 32 3.48e−2 32 3.99e−2 20 7.86e−1 32 1.80e−1 34 9.10e−1 30.0

SGAN_OS_SA 19 1.57e−2 19 1.83e−2 25 −4.56e−
1

21 1.07e−1 35 8.84e−1 23.8

SGAN_OS_SS 31 3.46e−2 31 3.96e−2 19 7.96e−1 30 1.79e−1 32 9.28e−1 28.6

SGAN_TS_AA 17 1.13e−2 17 1.33e−2 15 8.10e−1 13 6.68e−2 23 9.45e−1 17.0

SGAN_TS_AS 10 7.15e−3 10 8.20e−3 12 8.51e−1 10 4.29e−2 21 9.47e−1 12.6

SGAN_TS_SA 18 1.17e−2 18 1.37e−2 17 8.08e−1 14 6.77e−2 24 9.44e−1 18.2

SGAN_TS_SS 07 6.97e−3 06 8.05e−3 11 8.63e−1 09 4.23e−2 18 9.54e−1 10.2

WGAN_NO_AA 36 6.15e−2 36 7.07e−2 29 −9.35e−
1

36 3.07e−1 12 9.59e−1 29.8

WGAN_NO_AS 01 5.26e−3 02 6.17e−3 04 9.14e−1 03 3.23e−2 03 9.76e−1 2.6

WGAN_NO_SA 35 6.14e−2 35 7.05e−2 30 −9.37e−
1

35 3.07e−1 13 9.58e−1 29.6

WGAN_NO_SS 02 5.29e−3 01 6.15e−3 03 9.19e−1 01 3.20e−2 04 9.76e−1 2.2

WGAN_OS_AA 28 2.82e−2 28 3.33e−2 27 −6.32e−
1

26 1.72e−1 22 9.46e−1 26.2

WGAN_OS_AS 29 3.36e−2 29 3.84e−2 13 8.18e−1 27 1.74e−1 29 9.32e−1 25.4

Continues on next page...

160

F Table of results (Chapter 3)

Table F.15 – continued from previous page

Name MAE RMSE R2 SRMSE ρPearson rank

WGAN_OS_SA 27 2.81e−2 27 3.33e−2 28 −6.34e−
1

25 1.72e−1 20 9.47e−1 25.4

WGAN_OS_SS 30 3.39e−2 30 3.88e−2 16 8.09e−1 28 1.76e−1 27 9.35e−1 26.2

WGAN_TS_AA 26 2.69e−2 26 3.13e−2 36 −2.89 31 1.79e−1 10 9.61e−1 25.8

WGAN_TS_AS 03 5.71e−3 03 6.60e−3 01 9.31e−1 02 3.20e−2 01 9.79e−1 2.0

WGAN_TS_SA 25 2.67e−2 25 3.10e−2 35 −2.87 29 1.78e−1 11 9.60e−1 25.0

WGAN_TS_SS 04 5.79e−3 04 6.72e−3 02 9.23e−1 04 3.23e−2 02 9.77e−1 3.2

WGGP_NO_AA 13 1.02e−2 13 1.16e−2 34 −1.77 17 9.02e−2 19 9.53e−1 19.2

WGGP_NO_AS 05 6.78e−3 05 7.74e−3 08 8.82e−1 05 3.80e−2 06 9.73e−1 5.8

WGGP_NO_SA 15 1.04e−2 14 1.19e−2 33 −1.73 18 9.15e−2 16 9.56e−1 19.2

WGGP_NO_SS 09 7.12e−3 09 8.14e−3 07 8.88e−1 06 3.90e−2 05 9.75e−1 7.2

WGGP_OS_AA 24 1.95e−2 24 2.23e−2 24 9.64e−3 24 1.16e−1 26 9.37e−1 24.4

WGGP_OS_AS 34 3.53e−2 34 4.03e−2 18 8.03e−1 34 1.81e−1 30 9.32e−1 30.0

WGGP_OS_SA 23 1.92e−2 23 2.19e−2 23 1.54e−2 23 1.15e−1 33 9.28e−1 25.0

WGGP_OS_SS 33 3.49e−2 33 4.00e−2 14 8.12e−1 33 1.81e−1 28 9.34e−1 28.2

WGGP_TS_AA 16 1.04e−2 16 1.19e−2 31 −1.30 19 1.02e−1 31 9.29e−1 22.6

WGGP_TS_AS 12 7.64e−3 12 8.90e−3 10 8.75e−1 12 4.59e−2 17 9.55e−1 12.6

WGGP_TS_SA 14 1.03e−2 15 1.19e−2 32 −1.31 20 1.02e−1 25 9.40e−1 21.2

WGGP_TS_SS 11 7.56e−3 11 8.80e−3 09 8.78e−1 11 4.57e−2 08 9.71e−1 10.0

Table F.16: Results of the statistics on the second aggregation level for the LPMC_half dataset.
Lighter grey tone corresponds to better results compared to darker ones.

Name MAE RMSE R2 SRMSE ρPearson rank

SGAN_NO_AA 21 6.14e−3 21 1.09e−2 13 8.69e−1 17 4.03e−1 09 9.58e−1 16.2

SGAN_NO_AS 09 5.40e−3 11 9.56e−3 06 8.94e−1 11 3.72e−1 06 9.62e−1 8.6

SGAN_NO_SA 19 5.99e−3 18 1.05e−2 07 8.92e−1 14 3.85e−1 05 9.64e−1 12.6

SGAN_NO_SS 08 5.33e−3 09 9.32e−3 04 9.15e−1 05 3.59e−1 03 9.68e−1 5.8

SGAN_OS_AA 22 6.37e−3 22 1.13e−2 26 7.08e−1 24 4.58e−1 30 9.35e−1 24.8

SGAN_OS_AS 31 9.39e−3 30 1.51e−2 20 8.30e−1 26 5.14e−1 25 9.45e−1 26.4

SGAN_OS_SA 20 6.03e−3 20 1.05e−2 24 7.50e−1 20 4.21e−1 26 9.42e−1 22.0

SGAN_OS_SS 30 9.09e−3 29 1.45e−2 15 8.62e−1 25 4.83e−1 15 9.52e−1 22.8

SGAN_TS_AA 17 5.82e−3 19 1.05e−2 22 8.27e−1 19 4.18e−1 20 9.50e−1 19.4

SGAN_TS_AS 11 5.45e−3 15 9.75e−3 18 8.44e−1 16 4.00e−1 16 9.52e−1 15.2

SGAN_TS_SA 12 5.51e−3 13 9.67e−3 16 8.54e−1 13 3.81e−1 11 9.55e−1 13.0

Continues on next page...

161

Appendix

Table F.16 – continued from previous page

Name MAE RMSE R2 SRMSE ρPearson rank

SGAN_TS_SS 06 5.11e−3 07 8.94e−3 12 8.72e−1 07 3.63e−1 07 9.58e−1 7.8

WGAN_NO_AA 36 1.63e−2 36 3.13e−2 36 1.27e−1 36 1.09 36 8.76e−1 36.0

WGAN_NO_AS 32 9.52e−3 34 1.86e−2 34 5.18e−1 34 7.77e−1 35 8.95e−1 33.8

WGAN_NO_SA 35 1.43e−2 35 2.52e−2 33 5.22e−1 35 8.02e−1 34 9.20e−1 34.4

WGAN_NO_SS 23 7.42e−3 24 1.33e−2 17 8.51e−1 29 5.19e−1 27 9.42e−1 24.0

WGAN_OS_AA 29 8.92e−3 32 1.65e−2 29 6.29e−1 33 6.13e−1 32 9.33e−1 31.0

WGAN_OS_AS 34 1.03e−2 33 1.70e−2 23 7.77e−1 32 5.94e−1 33 9.31e−1 31.0

WGAN_OS_SA 26 8.29e−3 28 1.44e−2 25 7.41e−1 28 5.18e−1 19 9.50e−1 25.2

WGAN_OS_SS 33 9.82e−3 31 1.56e−2 14 8.67e−1 30 5.26e−1 21 9.49e−1 25.8

WGAN_TS_AA 25 7.99e−3 27 1.42e−2 35 4.90e−1 31 5.49e−1 29 9.37e−1 29.4

WGAN_TS_AS 15 5.70e−3 17 1.02e−2 11 8.80e−1 15 3.94e−1 12 9.55e−1 14.0

WGAN_TS_SA 24 7.92e−3 26 1.35e−2 32 5.43e−1 27 5.17e−1 23 9.47e−1 26.4

WGAN_TS_SS 16 5.70e−3 16 9.88e−3 03 9.20e−1 12 3.75e−1 04 9.66e−1 10.2

WGGP_NO_AA 13 5.65e−3 14 9.71e−3 31 5.90e−1 22 4.29e−1 31 9.35e−1 22.2

WGGP_NO_AS 07 5.12e−3 06 8.93e−3 10 8.82e−1 09 3.63e−1 17 9.51e−1 9.8

WGGP_NO_SA 10 5.42e−3 10 9.39e−3 30 6.07e−1 18 4.15e−1 28 9.41e−1 19.2

WGGP_NO_SS 04 4.87e−3 05 8.54e−3 05 8.98e−1 03 3.45e−1 08 9.58e−1 5.0

WGGP_OS_AA 18 5.86e−3 12 9.58e−3 21 8.30e−1 06 3.61e−1 18 9.51e−1 15.0

WGGP_OS_AS 28 8.58e−3 25 1.34e−2 09 8.88e−1 23 4.37e−1 13 9.55e−1 19.6

WGGP_OS_SA 14 5.69e−3 08 9.30e−3 19 8.34e−1 04 3.52e−1 14 9.53e−1 11.8

WGGP_OS_SS 27 8.41e−3 23 1.31e−2 08 8.91e−1 21 4.28e−1 10 9.57e−1 17.8

WGGP_TS_AA 05 4.91e−3 04 8.18e−3 28 6.55e−1 10 3.67e−1 24 9.46e−1 14.2

WGGP_TS_AS 02 4.31e−3 02 7.24e−3 02 9.29e−1 02 2.82e−1 02 9.69e−1 2.0

WGGP_TS_SA 03 4.76e−3 03 8.02e−3 27 6.55e−1 08 3.63e−1 22 9.48e−1 12.6

WGGP_TS_SS 01 4.19e−3 01 7.12e−3 01 9.30e−1 01 2.79e−1 01 9.70e−1 1.0

Table F.17: Results of the statistics on the third aggregation level for the LPMC_half dataset.
Lighter grey tone corresponds to better results compared to darker ones.

Name MAE RMSE R2 SRMSE ρPearson rank

SGAN_NO_AA 18 2.16e−3 20 4.84e−3 15 8.30e−1 16 7.36e−1 11 9.41e−1 16.0

SGAN_NO_AS 13 2.06e−3 12 4.46e−3 11 8.55e−1 08 6.92e−1 08 9.45e−1 10.4

SGAN_NO_SA 16 2.11e−3 15 4.57e−3 07 8.66e−1 10 6.94e−1 04 9.50e−1 10.4

SGAN_NO_SS 11 2.04e−3 11 4.36e−3 04 8.84e−1 06 6.72e−1 03 9.53e−1 7.0

SGAN_OS_AA 22 2.31e−3 22 5.22e−3 29 7.10e−1 24 8.67e−1 31 9.14e−1 25.6

Continues on next page...

162

F Table of results (Chapter 3)

Table F.17 – continued from previous page

Name MAE RMSE R2 SRMSE ρPearson rank

SGAN_OS_AS 31 3.03e−3 30 6.29e−3 21 7.93e−1 28 9.40e−1 26 9.24e−1 27.2

SGAN_OS_SA 19 2.18e−3 19 4.77e−3 23 7.71e−1 19 7.91e−1 24 9.26e−1 20.8

SGAN_OS_SS 30 2.93e−3 26 6.00e−3 16 8.29e−1 25 9.00e−1 17 9.33e−1 22.8

SGAN_TS_AA 20 2.19e−3 21 4.99e−3 24 7.70e−1 22 8.04e−1 23 9.27e−1 22.0

SGAN_TS_AS 14 2.09e−3 16 4.67e−3 20 7.95e−1 17 7.75e−1 19 9.30e−1 17.2

SGAN_TS_SA 12 2.05e−3 14 4.53e−3 18 8.13e−1 15 7.33e−1 16 9.36e−1 15.0

SGAN_TS_SS 09 1.96e−3 09 4.28e−3 14 8.35e−1 12 7.10e−1 13 9.40e−1 11.4

WGAN_NO_AA 36 5.00e−3 36 1.38e−2 36 −1.01e−
1

36 1.98 36 8.33e−1 36.0

WGAN_NO_AS 34 3.41e−3 34 8.55e−3 35 3.75e−1 34 1.41 35 8.58e−1 34.4

WGAN_NO_SA 35 4.42e−3 35 1.06e−2 34 5.02e−1 35 1.42 34 8.85e−1 34.6

WGAN_NO_SS 28 2.82e−3 29 6.29e−3 19 7.97e−1 30 9.81e−1 30 9.14e−1 27.2

WGAN_OS_AA 29 2.89e−3 33 7.10e−3 32 6.27e−1 33 1.08 32 9.10e−1 31.8

WGAN_OS_AS 33 3.31e−3 32 6.97e−3 27 7.36e−1 32 1.05 33 9.04e−1 31.4

WGAN_OS_SA 27 2.76e−3 27 6.10e−3 22 7.75e−1 26 9.10e−1 18 9.32e−1 24.0

WGAN_OS_SS 32 3.22e−3 31 6.58e−3 17 8.25e−1 31 9.88e−1 22 9.27e−1 26.6

WGAN_TS_AA 24 2.62e−3 28 6.14e−3 33 6.18e−1 29 9.80e−1 28 9.16e−1 28.4

WGAN_TS_AS 17 2.13e−3 18 4.73e−3 13 8.45e−1 14 7.29e−1 14 9.40e−1 15.2

WGAN_TS_SA 26 2.66e−3 25 5.78e−3 31 6.91e−1 27 9.14e−1 25 9.25e−1 26.8

WGAN_TS_SS 21 2.21e−3 17 4.72e−3 03 8.86e−1 13 7.19e−1 05 9.49e−1 11.8

WGGP_NO_AA 15 2.09e−3 13 4.51e−3 30 7.03e−1 23 8.05e−1 29 9.16e−1 22.0

WGGP_NO_AS 07 1.91e−3 08 4.15e−3 12 8.55e−1 07 6.89e−1 15 9.38e−1 9.8

WGGP_NO_SA 10 1.99e−3 10 4.33e−3 28 7.21e−1 18 7.80e−1 27 9.23e−1 18.6

WGGP_NO_SS 04 1.81e−3 06 3.94e−3 05 8.72e−1 05 6.56e−1 07 9.46e−1 5.4

WGGP_OS_AA 08 1.95e−3 07 4.02e−3 10 8.62e−1 04 6.55e−1 12 9.40e−1 8.2

WGGP_OS_AS 25 2.65e−3 24 5.38e−3 08 8.66e−1 21 8.03e−1 09 9.44e−1 17.4

WGGP_OS_SA 06 1.90e−3 05 3.93e−3 09 8.65e−1 03 6.47e−1 10 9.42e−1 6.6

WGGP_OS_SS 23 2.60e−3 23 5.27e−3 06 8.69e−1 20 7.92e−1 06 9.46e−1 15.6

WGGP_TS_AA 05 1.83e−3 04 3.84e−3 26 7.44e−1 11 7.00e−1 21 9.28e−1 13.4

WGGP_TS_AS 02 1.62e−3 02 3.37e−3 02 9.09e−1 02 5.37e−1 02 9.59e−1 2.0

WGGP_TS_SA 03 1.77e−3 03 3.76e−3 25 7.46e−1 09 6.94e−1 20 9.30e−1 12.0

WGGP_TS_SS 01 1.57e−3 01 3.32e−3 01 9.11e−1 01 5.34e−1 01 9.60e−1 1.0

163

Appendix

Table F.18: Results of the ML efficacy for the LPMC_half dataset. Lighter grey tone corresponds
to better results compared to darker ones.

Name Continuous Categorical rank

SGAN_NO_AA 18 4.04e1 24 5.66 21.0

SGAN_NO_AS 20 4.27e1 12 4.34 16.0

SGAN_NO_SA 29 6.41e1 17 4.94 23.0

SGAN_NO_SS 30 6.55e1 10 4.07 20.0

SGAN_OS_AA 11 3.41e1 19 5.10 15.0

SGAN_OS_AS 16 3.78e1 20 5.11 18.0

SGAN_OS_SA 24 4.66e1 21 5.12 22.5

SGAN_OS_SS 26 4.85e1 18 4.96 22.0

SGAN_TS_AA 12 3.60e1 16 4.70 14.0

SGAN_TS_AS 15 3.73e1 11 4.16 13.0

SGAN_TS_SA 22 4.50e1 15 4.64 18.5

SGAN_TS_SS 23 4.57e1 09 4.01 16.0

WGAN_NO_AA 27 5.88e1 36 4.79e4 31.5

WGAN_NO_AS 28 6.08e1 22 5.59 25.0

WGAN_NO_SA 35 1.01e2 35 4.74e4 35.0

WGAN_NO_SS 36 1.03e2 23 5.62 29.5

WGAN_OS_AA 21 4.42e1 32 6.48e3 26.5

WGAN_OS_AS 25 4.80e1 26 5.79 25.5

WGAN_OS_SA 33 8.27e1 31 6.40e3 32.0

WGAN_OS_SS 34 8.64e1 25 5.77 29.5

WGAN_TS_AA 17 3.84e1 33 1.93e4 25.0

WGAN_TS_AS 19 4.13e1 13 4.59 16.0

WGAN_TS_SA 31 6.74e1 34 1.95e4 32.5

WGAN_TS_SS 32 6.76e1 14 4.59 23.0

WGGP_NO_AA 09 3.39e1 30 5.60e3 19.5

WGGP_NO_AS 10 3.39e1 04 2.60 7.0

WGGP_NO_SA 13 3.61e1 29 3.20e3 21.0

WGGP_NO_SS 14 3.63e1 03 2.57 8.5

WGGP_OS_AA 01 2.36e1 06 2.70 3.5

WGGP_OS_AS 02 2.43e1 08 3.10 5.0

WGGP_OS_SA 03 2.52e1 05 2.68 4.0

WGGP_OS_SS 04 2.59e1 07 3.10 5.5

WGGP_TS_AA 05 2.59e1 27 1.36e3 16.0

WGGP_TS_AS 06 2.62e1 02 2.54 4.0

Continues on next page...

164

F Table of results (Chapter 3)

Table F.18 – continued from previous page

Name Continuous Categorical rank

WGGP_TS_SA 07 2.88e1 28 3.04e3 17.5

WGGP_TS_SS 08 2.90e1 01 2.54 4.5

F.2 Comparison with state-of-the-art models

The comparison between DATGAN and the state-of-the-art generative models is performed on

the four case studies: CMAP, LPMC, LPMC_half, and ADULT. For each case study, we provide

two tables:

1. Statistical assessments

2. ML efficacy metrics

CMAP case study

Table F.19: Results of the statistical assessments between the best DATGAN version and the
state-of-the-art models for the CMAP dataset. Lighter grey tone corresponds to better results
compared to darker ones.

Name MAE RMSE R2 SRMSE ρPearson rank

First aggregation level - all columns

CTABGAN 03 2.55e−2 03 3.18e−2 03 8.17e−1 03 1.97e−1 04 9.30e−1 3.2

CTGAN 05 3.59e−2 05 4.31e−2 04 6.37e−1 04 2.59e−1 05 8.54e−1 4.6

DATGAN (WGAN) 01 6.33e−3 01 7.76e−3 01 9.88e−1 01 5.32e−2 01 9.96e−1 1.0

TGAN 02 1.16e−2 02 1.50e−2 02 9.49e−1 02 1.14e−1 02 9.81e−1 2.0

TVAE 04 3.33e−2 04 4.21e−2 05 5.59e−1 05 2.72e−1 03 9.37e−1 4.2

First aggregation level - continuous columns

CTABGAN 02 1.23e−2 02 1.71e−2 02 9.37e−1 02 1.71e−1 03 9.73e−1 2.2

CTGAN 04 2.10e−2 04 2.87e−2 04 8.27e−1 04 2.87e−1 04 9.24e−1 4.0

DATGAN (WGAN) 01 7.98e−3 01 1.05e−2 01 9.70e−1 01 1.05e−1 01 9.86e−1 1.0

TGAN 05 2.21e−2 05 3.07e−2 05 7.98e−1 05 3.07e−1 05 9.18e−1 5.0

TVAE 03 1.32e−2 03 1.72e−2 03 9.32e−1 03 1.72e−1 02 9.80e−1 2.8

First aggregation level - categorical columns

CTABGAN 03 2.88e−2 03 3.54e−2 03 7.87e−1 03 2.03e−1 04 9.19e−1 3.2

CTGAN 05 3.97e−2 04 4.67e−2 04 5.90e−1 04 2.52e−1 05 8.36e−1 4.4

DATGAN (WGAN) 01 5.92e−3 01 7.06e−3 01 9.92e−1 01 4.01e−2 01 9.98e−1 1.0

Continues on next page...

165

Appendix

Table F.19 – continued from previous page

Name MAE RMSE R2 SRMSE ρPearson rank

TGAN 02 9.01e−3 02 1.10e−2 02 9.87e−1 02 6.63e−2 02 9.96e−1 2.0

TVAE 04 3.83e−2 05 4.84e−2 05 4.66e−1 05 2.97e−1 03 9.27e−1 4.4

Second aggregation level

CTABGAN 03 8.17e−3 03 1.32e−2 03 8.61e−1 03 4.39e−1 03 9.43e−1 3.0

CTGAN 04 1.04e−2 04 1.68e−2 04 7.79e−1 04 5.53e−1 05 9.03e−1 4.2

DATGAN (WGAN) 01 2.83e−3 01 4.27e−3 01 9.83e−1 01 1.56e−1 01 9.92e−1 1.0

TGAN 02 4.73e−3 02 7.66e−3 02 9.29e−1 02 2.92e−1 02 9.71e−1 2.0

TVAE 05 1.15e−2 05 1.96e−2 05 5.92e−1 05 6.64e−1 04 9.13e−1 4.8

Third aggregation level

CTABGAN 03 2.36e−3 03 4.74e−3 03 8.30e−1 03 7.47e−1 03 9.26e−1 3.0

CTGAN 04 2.86e−3 04 5.81e−3 04 7.51e−1 04 9.15e−1 04 8.85e−1 4.0

DATGAN (WGAN) 01 1.09e−3 01 1.92e−3 01 9.65e−1 01 3.31e−1 01 9.83e−1 1.0

TGAN 02 1.63e−3 02 3.24e−3 02 8.93e−1 02 5.43e−1 02 9.57e−1 2.0

TVAE 05 3.47e−3 05 7.79e−3 05 4.60e−1 05 1.18 05 8.80e−1 5.0

Table F.20: Results of the ML efficacy between the best DATGAN version and the state-of-the-
art models for the CMAP dataset. Lighter grey tone corresponds to better results compared to
darker ones.

Name Continuous Categorical rank

CTABGAN 03 3.33 02 1.43 2.5

CTGAN 05 3.45 03 1.49 4.0

DATGAN (WGAN) 01 3.05 01 7.56e−1 1.0

TGAN 02 3.24 04 8.10e1 3.0

TVAE 04 3.36 05 8.04e2 4.5

LPMC case study

Table F.21: Results of the statistical assessments between the best DATGAN version and the
state-of-the-art models for the LPMC dataset. Lighter grey tone corresponds to better results
compared to darker ones.

Name MAE RMSE R2 SRMSE ρPearson rank

First aggregation level - all columns

CTABGAN 04 2.72e−2 04 3.47e−2 05 −3.97 04 2.60e−1 05 8.22e−1 4.4

Continues on next page...

166

F Table of results (Chapter 3)

Table F.21 – continued from previous page

Name MAE RMSE R2 SRMSE ρPearson rank

CTGAN 03 2.62e−2 03 3.28e−2 04 −2.92 03 2.27e−1 04 8.71e−1 3.4

DATGAN (WGGP) 01 7.64e−3 01 1.02e−2 01 9.63e−1 01 8.13e−2 01 9.85e−1 1.0

TGAN 02 1.19e−2 02 1.62e−2 02 5.88e−1 02 1.48e−1 02 9.45e−1 2.0

TVAE 05 2.79e−2 05 3.71e−2 03 −2.24 05 2.76e−1 03 8.96e−1 4.2

First aggregation level - continuous columns

CTABGAN 04 1.68e−2 04 2.60e−2 02 9.44e−1 04 2.60e−1 02 9.80e−1 3.2

CTGAN 02 1.57e−2 02 2.35e−2 03 9.25e−1 02 2.35e−1 03 9.70e−1 2.4

DATGAN (WGGP) 01 8.93e−3 01 1.31e−2 01 9.69e−1 01 1.31e−1 01 9.86e−1 1.0

TGAN 03 1.68e−2 03 2.46e−2 05 8.72e−1 03 2.46e−1 05 9.50e−1 3.8

TVAE 05 1.72e−2 05 2.79e−2 04 8.98e−1 05 2.79e−1 04 9.58e−1 4.6

First aggregation level - categorical columns

CTABGAN 04 3.68e−2 04 4.28e−2 05 −8.54 04 2.59e−1 05 6.76e−1 4.4

CTGAN 03 3.60e−2 03 4.14e−2 04 −6.48 03 2.18e−1 04 7.79e−1 3.4

DATGAN (WGGP) 01 6.44e−3 01 7.47e−3 01 9.56e−1 01 3.52e−2 01 9.84e−1 1.0

TGAN 02 7.39e−3 02 8.45e−3 02 3.24e−1 02 5.69e−2 02 9.40e−1 2.0

TVAE 05 3.79e−2 05 4.56e−2 03 −5.16 05 2.74e−1 03 8.39e−1 4.2

Second aggregation level

CTABGAN 04 8.63e−3 04 1.50e−2 05 3.11e−2 04 6.13e−1 05 8.93e−1 4.4

CTGAN 03 8.30e−3 03 1.42e−2 03 4.28e−1 03 5.39e−1 03 9.07e−1 3.0

DATGAN (WGGP) 01 3.52e−3 01 5.91e−3 01 9.51e−1 01 2.26e−1 01 9.78e−1 1.0

TGAN 02 4.83e−3 02 8.48e−3 02 8.19e−1 02 3.74e−1 02 9.47e−1 2.0

TVAE 05 9.77e−3 05 1.77e−2 04 1.34e−1 05 6.82e−1 04 8.95e−1 4.6

Third aggregation level

CTABGAN 04 2.52e−3 04 5.82e−3 04 5.09e−1 04 1.10 04 8.75e−1 4.0

CTGAN 03 2.44e−3 03 5.54e−3 03 7.07e−1 03 9.67e−1 03 8.99e−1 3.0

DATGAN (WGGP) 01 1.32e−3 01 2.79e−3 01 9.35e−1 01 4.50e−1 01 9.69e−1 1.0

TGAN 02 1.71e−3 02 3.76e−3 02 8.30e−1 02 6.89e−1 02 9.34e−1 2.0

TVAE 05 3.15e−3 05 7.54e−3 05 4.07e−1 05 1.21 05 8.70e−1 5.0

Table F.22: Results of the ML efficacy between the best DATGAN version and the state-of-the-
art models for the LPMC dataset. Lighter grey tone corresponds to better results compared to
darker ones.

Name Continuous Categorical rank

CTABGAN 03 3.49e1 04 5.48 3.5

CTGAN 04 4.33e1 02 2.89 3.0

Continues on next page...

167

Appendix

Table F.22 – continued from previous page

Name Continuous Categorical rank

DATGAN (WGGP) 01 2.20e1 01 2.19 1.0

TGAN 02 2.82e1 03 2.91 2.5

TVAE 05 4.91e1 05 4.88e2 5.0

LPMC_half case study

Table F.23: Results of the statistical assessments between the best DATGAN version and the
state-of-the-art models for the LPMC_half dataset. Lighter grey tone corresponds to better
results compared to darker ones.

Name MAE RMSE R2 SRMSE ρPearson rank

First aggregation level - all columns

CTABGAN 03 2.21e−2 03 2.79e−2 04 −2.46 03 2.06e−1 04 8.54e−1 3.4

CTGAN 04 2.44e−2 04 3.00e−2 03 −1.58 04 2.06e−1 05 8.24e−1 4.0

DATGAN (WGGP) 01 9.32e−3 01 1.25e−2 01 9.11e−1 01 1.03e−1 01 9.73e−1 1.0

TGAN 02 1.40e−2 02 1.88e−2 02 4.04e−1 02 1.65e−1 02 9.39e−1 2.0

TVAE 05 2.97e−2 05 3.83e−2 05 −2.69 05 2.68e−1 03 8.71e−1 4.6

First aggregation level - continuous columns

CTABGAN 02 1.43e−2 03 2.21e−2 01 9.61e−1 03 2.21e−1 01 9.86e−1 2.0

CTGAN 03 1.51e−2 02 2.19e−2 03 9.15e−1 02 2.19e−1 03 9.66e−1 2.6

DATGAN (WGGP) 01 1.12e−2 01 1.65e−2 02 9.47e−1 01 1.65e−1 02 9.75e−1 1.4

TGAN 05 1.81e−2 05 2.64e−2 05 8.46e−1 05 2.64e−1 05 9.36e−1 5.0

TVAE 04 1.62e−2 04 2.57e−2 04 9.11e−1 04 2.57e−1 04 9.60e−1 4.0

First aggregation level - categorical columns

CTABGAN 03 2.93e−2 03 3.33e−2 04 −5.63 03 1.92e−1 04 7.31e−1 3.4

CTGAN 04 3.30e−2 04 3.76e−2 03 −3.89 04 1.94e−1 05 6.92e−1 4.0

DATGAN (WGGP) 01 7.56e−3 01 8.80e−3 01 8.78e−1 01 4.57e−2 01 9.71e−1 1.0

TGAN 02 1.03e−2 02 1.19e−2 02 −5.40e−3 02 7.36e−2 02 9.42e−1 2.0

TVAE 05 4.22e−2 05 5.01e−2 05 −6.04 05 2.78e−1 03 7.89e−1 4.6

Second aggregation level

CTABGAN 03 7.16e−3 03 1.24e−2 04 4.22e−1 03 5.06e−1 03 9.18e−1 3.2

CTGAN 04 8.05e−3 04 1.36e−2 03 5.59e−1 04 5.08e−1 04 9.09e−1 3.8

DATGAN (WGGP) 01 4.19e−3 01 7.12e−3 01 9.30e−1 01 2.79e−1 01 9.70e−1 1.0

TGAN 02 5.48e−3 02 9.52e−3 02 7.64e−1 02 4.13e−1 02 9.36e−1 2.0

TVAE 05 1.01e−2 05 1.81e−2 05 1.54e−1 05 6.54e−1 05 8.94e−1 5.0

Third aggregation level

Continues on next page...

168

F Table of results (Chapter 3)

Table F.23 – continued from previous page

Name MAE RMSE R2 SRMSE ρPearson rank

CTABGAN 03 2.21e−3 03 4.98e−3 04 6.85e−1 03 9.24e−1 03 9.04e−1 3.2

CTGAN 04 2.49e−3 04 5.52e−3 03 7.34e−1 04 9.24e−1 04 8.99e−1 3.8

DATGAN (WGGP) 01 1.57e−3 01 3.32e−3 01 9.11e−1 01 5.34e−1 01 9.60e−1 1.0

TGAN 02 1.94e−3 02 4.20e−3 02 7.85e−1 02 7.53e−1 02 9.20e−1 2.0

TVAE 05 3.24e−3 05 7.66e−3 05 4.22e−1 05 1.16 05 8.69e−1 5.0

Table F.24: Results of the ML efficacy between the best DATGAN version and the state-of-
the-art models for the LPMC_half dataset. Lighter grey tone corresponds to better results
compared to darker ones.

Name Continuous Categorical rank

CTABGAN 04 4.25e1 04 4.14 4.0

CTGAN 05 5.13e1 02 3.09 3.5

DATGAN (WGGP) 01 2.90e1 01 2.54 1.0

TGAN 02 3.05e1 03 3.34 2.5

TVAE 03 4.24e1 05 3.93e3 4.0

ADULT case study

Table F.25: Results of the statistical assessments between the best DATGAN version and the
state-of-the-art models for the ADULT dataset. Lighter grey tone corresponds to better results
compared to darker ones.

Name MAE RMSE R2 SRMSE ρPearson rank

First aggregation level - all columns

CTABGAN 06 2.31e−2 06 3.04e−2 06 8.64e−1 06 2.79e−1 06 9.60e−1 6.0

CTGAN 05 1.98e−2 05 2.56e−2 05 9.40e−1 05 2.45e−1 05 9.79e−1 5.0

DATGAN (WGAN) 01 3.83e−3 01 4.99e−3 01 9.98e−1 01 4.12e−2 01 9.99e−1 1.0

DATGAN (WGGP) 03 1.01e−2 03 1.34e−2 03 9.81e−1 03 1.11e−1 03 9.96e−1 3.0

TGAN 02 5.01e−3 02 6.89e−3 02 9.94e−1 02 7.48e−2 02 9.98e−1 2.0

TVAE 04 1.06e−2 04 1.36e−2 04 9.64e−1 04 1.18e−1 04 9.84e−1 4.0

First aggregation level - continuous columns

CTABGAN 06 1.56e−2 06 2.45e−2 06 9.26e−1 06 2.31e−1 06 9.77e−1 6.0

CTGAN 04 1.14e−2 04 1.70e−2 05 9.63e−1 04 1.66e−1 05 9.84e−1 4.4

DATGAN (WGAN) 01 5.88e−3 01 8.10e−3 01 9.96e−1 01 7.13e−2 01 9.98e−1 1.0

Continues on next page...

169

Appendix

Table F.25 – continued from previous page

Name MAE RMSE R2 SRMSE ρPearson rank

DATGAN (WGGP) 05 1.29e−2 05 2.03e−2 04 9.66e−1 05 1.85e−1 04 9.92e−1 4.6

TGAN 02 6.73e−3 02 1.00e−2 02 9.88e−1 02 9.62e−2 02 9.95e−1 2.0

TVAE 03 7.61e−3 03 1.09e−2 03 9.87e−1 03 1.04e−1 03 9.94e−1 3.0

First aggregation level - categorical columns

CTABGAN 06 2.61e−2 06 3.28e−2 06 8.40e−1 06 2.99e−1 06 9.54e−1 6.0

CTGAN 05 2.32e−2 05 2.91e−2 05 9.31e−1 05 2.77e−1 05 9.78e−1 5.0

DATGAN (WGAN) 01 3.01e−3 01 3.74e−3 01 9.99e−1 01 2.91e−2 01 1.00 1.0

DATGAN (WGGP) 03 8.93e−3 03 1.07e−2 03 9.87e−1 03 8.13e−2 03 9.98e−1 3.0

TGAN 02 4.32e−3 02 5.65e−3 02 9.97e−1 02 6.62e−2 02 9.99e−1 2.0

TVAE 04 1.18e−2 04 1.46e−2 04 9.55e−1 04 1.24e−1 04 9.80e−1 4.0

Second aggregation level

CTABGAN 06 7.18e−3 06 1.47e−2 06 8.42e−1 06 9.00e−1 06 9.39e−1 6.0

CTGAN 05 5.94e−3 05 1.21e−2 05 9.25e−1 05 7.44e−1 05 9.70e−1 5.0

DATGAN (WGAN) 02 1.82e−3 01 3.23e−3 01 9.95e−1 01 1.69e−1 01 9.98e−1 1.2

DATGAN (WGGP) 03 3.22e−3 03 6.45e−3 03 9.78e−1 03 3.45e−1 03 9.93e−1 3.0

TGAN 01 1.76e−3 02 3.54e−3 02 9.91e−1 02 2.31e−1 02 9.96e−1 1.8

TVAE 04 3.46e−3 04 6.78e−3 04 9.60e−1 04 3.78e−1 04 9.81e−1 4.0

Third aggregation level

CTABGAN 06 2.06e−3 06 6.43e−3 06 7.82e−1 06 1.82 06 9.12e−1 6.0

CTGAN 05 1.70e−3 05 5.26e−3 05 8.96e−1 05 1.46 05 9.56e−1 5.0

DATGAN (WGAN) 02 6.16e−4 01 1.57e−3 01 9.90e−1 01 4.18e−1 01 9.96e−1 1.2

DATGAN (WGGP) 03 9.61e−4 03 2.79e−3 03 9.68e−1 03 7.11e−1 03 9.89e−1 3.0

TGAN 01 5.90e−4 02 1.66e−3 02 9.87e−1 02 4.55e−1 02 9.94e−1 1.8

TVAE 04 1.09e−3 04 3.13e−3 04 9.45e−1 04 7.70e−1 04 9.73e−1 4.0

Table F.26: Results of the ML efficacy between the best DATGAN version and the state-of-the-
art models for the ADULT dataset. Lighter grey tone corresponds to better results compared to
darker ones.

Name Continuous Categorical rank

CTABGAN 05 4.73 04 8.56e3 4.5

CTGAN 03 4.32 03 1.04e3 3.0

DATGAN (WGAN) 04 4.41 02 1.91 3.0

DATGAN (WGGP) 06 4.81 01 1.09 3.5

TGAN 01 4.13 06 1.00e4 3.5

TVAE 02 4.31 05 8.64e3 3.5

170

F Table of results (Chapter 3)

F.3 Sensitivity anaylsis of the DAG

The sensitivity analysis of the DAG is performed on three case studies: CMAP, LPMC, and

LPMC_half. For each case study, we provide two tables:

1. Statistical assessments

2. ML efficacy metrics

CMAP case study

Table F.27: Results of the statistical assessments with the different DAGs for the CMAP dataset.
Lighter grey tone corresponds to better results compared to darker ones.

Name MAE RMSE R2 SRMSE ρPearson rank

First aggregation level - all columns

full 05 7.31e−3 05 9.45e−3 03 9.85e−1 05 6.49e−2 03 9.95e−1 4.2

trans. red. 03 6.70e−3 04 8.68e−3 01 9.88e−1 03 6.19e−2 01 9.95e−1 2.4

linear 04 6.71e−3 03 8.48e−3 02 9.86e−1 02 6.00e−2 02 9.95e−1 2.6

prediction 02 6.49e−3 02 8.01e−3 05 9.72e−1 04 6.25e−2 05 9.88e−1 3.6

no links 01 6.11e−3 01 7.57e−3 04 9.78e−1 01 5.90e−2 04 9.90e−1 2.2

First aggregation level - continuous columns

full 01 8.75e−3 01 1.26e−2 02 9.61e−1 01 1.26e−1 03 9.81e−1 1.6

trans. red. 02 9.34e−3 03 1.35e−2 01 9.63e−1 03 1.35e−1 01 9.83e−1 2.0

linear 03 9.61e−3 02 1.32e−2 03 9.61e−1 02 1.32e−1 02 9.83e−1 2.4

prediction 05 1.56e−2 05 1.96e−2 05 8.82e−1 05 1.96e−1 05 9.42e−1 5.0

no links 04 1.39e−2 04 1.77e−2 04 9.06e−1 04 1.77e−1 04 9.54e−1 4.0

First aggregation level - categorical columns

full 05 6.94e−3 05 8.65e−3 05 9.91e−1 05 4.95e−2 04 9.98e−1 4.8

trans. red. 04 6.04e−3 04 7.47e−3 02 9.94e−1 04 4.36e−2 03 9.98e−1 3.4

linear 03 5.99e−3 03 7.30e−3 04 9.93e−1 03 4.20e−2 05 9.98e−1 3.6

prediction 02 4.20e−3 02 5.10e−3 03 9.94e−1 01 2.91e−2 01 9.99e−1 1.8

no links 01 4.16e−3 01 5.03e−3 01 9.96e−1 02 2.94e−2 02 9.99e−1 1.4

Second aggregation level

full 03 3.22e−3 03 5.08e−3 02 9.77e−1 03 1.85e−1 02 9.89e−1 2.6

trans. red. 01 3.13e−3 01 4.93e−3 01 9.78e−1 01 1.81e−1 01 9.90e−1 1.0

linear 02 3.21e−3 02 4.95e−3 03 9.76e−1 02 1.84e−1 03 9.89e−1 2.4

Continues on next page...

171

Appendix

Table F.27 – continued from previous page

Name MAE RMSE R2 SRMSE ρPearson rank

prediction 04 5.87e−3 04 9.27e−3 05 9.14e−1 05 3.48e−1 05 9.56e−1 4.6

no links 05 6.03e−3 05 9.49e−3 04 9.16e−1 04 3.48e−1 04 9.57e−1 4.4

Third aggregation level

full 02 1.19e−3 02 2.20e−3 02 9.57e−1 02 3.80e−1 02 9.79e−1 2.0

trans. red. 01 1.19e−3 01 2.19e−3 01 9.58e−1 01 3.76e−1 01 9.80e−1 1.0

linear 03 1.23e−3 03 2.24e−3 03 9.54e−1 03 3.90e−1 03 9.78e−1 3.0

prediction 04 2.36e−3 04 4.55e−3 04 8.31e−1 04 7.85e−1 04 9.11e−1 4.0

no links 05 2.45e−3 05 4.70e−3 05 8.31e−1 05 7.91e−1 05 9.11e−1 5.0

Table F.28: Results of the ML efficacy with the different DAGs for the CMAP dataset. Lighter
grey tone corresponds to better results compared to darker ones.

Name Continuous Categorical rank

full 01 3.13 01 8.69e−1 1.0

trans. red. 02 3.13 02 9.17e−1 2.0

linear 03 3.20 03 1.11 3.0

prediction 04 6.08 04 3.62 4.0

no links 05 6.22 05 3.95 5.0

LPMC case study

Table F.29: Results of the statistical assessments with the different DAGs for the LPMC dataset.
Lighter grey tone corresponds to better results compared to darker ones.

Name MAE RMSE R2 SRMSE ρPearson rank

First aggregation level - all columns

full 02 7.74e−3 03 1.03e−2 02 9.54e−1 03 8.29e−2 02 9.83e−1 2.4

trans. red. 01 7.04e−3 01 9.50e−3 01 9.55e−1 02 7.73e−2 01 9.83e−1 1.2

linear 03 7.99e−3 02 1.03e−2 03 9.20e−1 01 7.60e−2 03 9.72e−1 2.4

prediction 04 1.59e−2 04 2.21e−2 05 8.71e−1 04 2.06e−1 05 9.37e−1 4.4

no links 05 1.60e−2 05 2.27e−2 04 8.79e−1 05 2.12e−1 04 9.49e−1 4.6

First aggregation level - continuous columns

full 03 9.34e−3 03 1.35e−2 02 9.55e−1 03 1.35e−1 03 9.80e−1 2.8

trans. red. 02 8.46e−3 02 1.26e−2 03 9.53e−1 02 1.26e−1 02 9.81e−1 2.2

linear 01 7.92e−3 01 1.15e−2 01 9.75e−1 01 1.15e−1 01 9.88e−1 1.0

Continues on next page...

172

F Table of results (Chapter 3)

Table F.29 – continued from previous page

Name MAE RMSE R2 SRMSE ρPearson rank

prediction 04 2.79e−2 04 4.01e−2 05 7.84e−1 04 4.01e−1 05 8.93e−1 4.4

no links 05 2.80e−2 05 4.14e−2 04 7.92e−1 05 4.14e−1 04 9.06e−1 4.6

First aggregation level - categorical columns

full 04 6.27e−3 04 7.34e−3 03 9.53e−1 04 3.41e−2 03 9.86e−1 3.6

trans. red. 03 5.72e−3 03 6.61e−3 02 9.57e−1 03 3.20e−2 02 9.86e−1 2.6

linear 05 8.05e−3 05 9.10e−3 05 8.69e−1 05 3.94e−2 05 9.57e−1 5.0

prediction 01 4.70e−3 02 5.39e−3 04 9.52e−1 02 2.57e−2 04 9.77e−1 2.6

no links 02 4.74e−3 01 5.37e−3 01 9.59e−1 01 2.47e−2 01 9.88e−1 1.2

Second aggregation level

full 03 3.53e−3 03 5.94e−3 02 9.52e−1 03 2.28e−1 02 9.78e−1 2.6

trans. red. 02 3.36e−3 02 5.75e−3 03 9.51e−1 02 2.23e−1 03 9.78e−1 2.4

linear 01 2.95e−3 01 4.90e−3 01 9.60e−1 01 1.87e−1 01 9.83e−1 1.0

prediction 04 9.08e−3 04 1.58e−2 04 8.16e−1 04 6.64e−1 05 9.06e−1 4.2

no links 05 9.18e−3 05 1.63e−2 05 8.14e−1 05 6.74e−1 04 9.11e−1 4.8

Third aggregation level

full 03 1.33e−3 03 2.78e−3 02 9.37e−1 03 4.47e−1 02 9.70e−1 2.6

trans. red. 02 1.29e−3 02 2.76e−3 03 9.36e−1 02 4.43e−1 03 9.70e−1 2.4

linear 01 1.06e−3 01 2.14e−3 01 9.55e−1 01 3.53e−1 01 9.79e−1 1.0

prediction 04 3.39e−3 04 7.64e−3 04 7.39e−1 05 1.38 05 8.64e−1 4.4

no links 05 3.45e−3 05 7.92e−3 05 7.29e−1 04 1.37 04 8.66e−1 4.6

Table F.30: Results of the ML efficacy with the different DAGs for the LPMC dataset. Lighter
grey tone corresponds to better results compared to darker ones.

Name Continuous Categorical rank

full 01 2.14e1 02 2.06 1.5

trans. red. 02 2.16e1 03 2.09 2.5

linear 03 2.18e1 01 1.96 2.0

prediction 04 4.94e2 04 6.14 4.0

no links 05 5.06e2 05 6.45 5.0

LPMC_half case study

173

Appendix

Table F.31: Results of the statistical assessments with the different DAGs for the LPMC_half
dataset. Lighter grey tone corresponds to better results compared to darker ones.

Name MAE RMSE R2 SRMSE ρPearson rank

First aggregation level - all columns

full 01 9.29e−3 01 1.22e−2 01 9.24e−1 02 9.85e−2 02 9.67e−1 1.4

trans. red. 03 1.38e−2 05 1.98e−2 05 7.75e−1 03 1.71e−1 04 9.45e−1 4.0

linear 02 9.74e−3 02 1.26e−2 02 8.85e−1 01 9.79e−2 01 9.72e−1 1.6

prediction 05 1.47e−2 04 1.97e−2 04 8.60e−1 05 1.78e−1 05 9.41e−1 4.6

no links 04 1.42e−2 03 1.90e−2 03 8.62e−1 04 1.72e−1 03 9.45e−1 3.4

First aggregation level - continuous columns

full 02 1.10e−2 02 1.60e−2 02 9.45e−1 02 1.60e−1 02 9.73e−1 2.0

trans. red. 03 1.90e−2 03 2.97e−2 05 7.12e−1 03 2.97e−1 03 9.29e−1 3.4

linear 01 1.06e−2 01 1.53e−2 01 9.47e−1 01 1.53e−1 01 9.79e−1 1.0

prediction 05 2.39e−2 05 3.34e−2 04 7.67e−1 05 3.34e−1 05 8.96e−1 4.8

no links 04 2.34e−2 04 3.25e−2 03 7.69e−1 04 3.25e−1 04 9.02e−1 3.8

First aggregation level - categorical columns

full 03 7.66e−3 03 8.69e−3 03 9.06e−1 03 4.11e−2 04 9.61e−1 3.2

trans. red. 04 8.91e−3 05 1.06e−2 04 8.34e−1 05 5.43e−2 05 9.61e−1 4.6

linear 05 8.92e−3 04 1.01e−2 05 8.26e−1 04 4.70e−2 03 9.66e−1 4.2

prediction 02 6.07e−3 02 7.00e−3 02 9.45e−1 02 3.20e−2 02 9.83e−1 2.0

no links 01 5.65e−3 01 6.46e−3 01 9.48e−1 01 2.93e−2 01 9.86e−1 1.0

Second aggregation level

full 02 4.16e−3 02 6.98e−3 01 9.37e−1 02 2.69e−1 02 9.71e−1 1.8

trans. red. 03 5.90e−3 03 1.11e−2 05 7.68e−1 03 4.58e−1 03 9.36e−1 3.4

linear 01 3.88e−3 01 6.51e−3 02 9.29e−1 01 2.54e−1 01 9.73e−1 1.2

prediction 05 8.40e−3 05 1.46e−2 03 8.17e−1 05 6.10e−1 05 9.10e−1 4.6

no links 04 8.38e−3 04 1.45e−2 04 8.17e−1 04 6.03e−1 04 9.12e−1 4.0

Third aggregation level

full 02 1.52e−3 02 3.21e−3 01 9.22e−1 02 5.19e−1 02 9.63e−1 1.8

trans. red. 03 2.05e−3 03 5.03e−3 05 6.95e−1 03 8.69e−1 03 9.19e−1 3.4

linear 01 1.38e−3 01 2.90e−3 02 9.18e−1 01 4.87e−1 01 9.65e−1 1.2

prediction 04 3.26e−3 05 7.36e−3 03 7.44e−1 05 1.28 05 8.69e−1 4.4

no links 05 3.27e−3 04 7.35e−3 04 7.43e−1 04 1.28 04 8.70e−1 4.2

174

F Table of results (Chapter 3)

Table F.32: Results of the ML efficacy with the different DAGs for the LPMC_half dataset.
Lighter grey tone corresponds to better results compared to darker ones.

Name Continuous Categorical rank

full 02 2.86e1 02 2.55 2.0

trans. red. 03 3.67e1 03 2.68 3.0

linear 01 2.81e1 01 2.44 1.0

prediction 04 4.90e2 04 6.07 4.0

no links 05 4.99e2 05 6.45 5.0

175

Bibliography

Abadi, Martín, Agarwal, Ashish, Barham, Paul, Brevdo, Eugene, Chen, Zhifeng, Citro, Craig, Cor-

rado, Greg S., Davis, Andy, Dean, Jeffrey, Devin, Matthieu, Ghemawat, Sanjay, Goodfellow,

Ian, Harp, Andrew, Irving, Geoffrey, Isard, Michael, Jia, Yangqing, Jozefowicz, Rafal, Kaiser,

Lukasz, Kudlur, Manjunath, Levenberg, Josh, Mane, Dan, Monga, Rajat, Moore, Sherry,

Murray, Derek, Olah, Chris, Schuster, Mike, Shlens, Jonathon, Steiner, Benoit, Sutskever,

Ilya, Talwar, Kunal, Tucker, Paul, Vanhoucke, Vincent, Vasudevan, Vijay, Viegas, Fernanda,

Vinyals, Oriol, Warden, Pete, Wattenberg, Martin, Wicke, Martin, Yu, Yuan, and Zheng, Xiao-

qiang. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.

arXiv:1603.04467 [cs], March 2016. URL http://arxiv.org/abs/1603.04467. arXiv: 1603.04467.

Aemmer, Zack and MacKenzie, Don. Generative population synthesis for joint household

and individual characteristics. Computers, Environment and Urban Systems, 96:101852,

September 2022. ISSN 0198-9715. doi: 10.1016/j.compenvurbsys.2022.101852. URL

https://www.sciencedirect.com/science/article/pii/S0198971522000965.

Agarwal, Naman, Bullins, Brian, and Hazan, Elad. Second-Order Stochastic Optimization

for Machine Learning in Linear Time. arXiv:1602.03943 [cs, stat], February 2016. URL

http://arxiv.org/abs/1602.03943. arXiv: 1602.03943.

Alqahtani, Hamed, Kavakli-Thorne, Manolya, and Kumar, Gulshan. Applications of Generative

Adversarial Networks (GANs): An Updated Review. Archives of Computational Methods in

Engineering, 28(2):525–552, March 2021. ISSN 1886-1784. doi: 10.1007/s11831-019-09388-y.

URL https://doi.org/10.1007/s11831-019-09388-y.

Arjovsky, Martin, Chintala, Soumith, and Bottou, Léon. Wasserstein GAN. arXiv:1701.07875

[cs, stat], December 2017. URL http://arxiv.org/abs/1701.07875. arXiv: 1701.07875.

Auld, Joshua A., Mohammadian, Abolfazl (Kouros), and Wies, Kermit. Population Synthesis

with Subregion-Level Control Variable Aggregation. Journal of Transportation Engineering,

135(9):632–639, September 2009. ISSN 0733-947X. doi: 10.1061/(ASCE)TE.1943-5436.0000

040. URL https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29TE.1943-5436.0000040.

Publisher: American Society of Civil Engineers.

Ba, Jimmy Lei, Kiros, Jamie Ryan, and Hinton, Geoffrey E. Layer Normalization.

177

http://arxiv.org/abs/1603.04467
https://www.sciencedirect.com/science/article/pii/S0198971522000965
http://arxiv.org/abs/1602.03943
https://doi.org/10.1007/s11831-019-09388-y
http://arxiv.org/abs/1701.07875
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29TE.1943-5436.0000040

Appendix

arXiv:1607.06450 [cs, stat], July 2016. URL http://arxiv.org/abs/1607.06450. arXiv:

1607.06450.

Badu-Marfo, Godwin, Farooq, Bilal, and Paterson, Zachary. Composite Travel Generative

Adversarial Networks for Tabular and Sequential Population Synthesis. arXiv:2004.06838

[cs, stat], April 2020. URL http://arxiv.org/abs/2004.06838. arXiv: 2004.06838.

Balles, Lukas, Romero, Javier, and Hennig, Philipp. Coupling Adaptive Batch Sizes with

Learning Rates. arXiv:1612.05086 [cs, stat], December 2016. URL http://arxiv.org/abs/1612

.05086. arXiv: 1612.05086.

Barbedo, Jayme Garcia Arnal. Impact of dataset size and variety on the effectiveness of deep

learning and transfer learning for plant disease classification. Computers and Electronics in

Agriculture, 153:46–53, October 2018. ISSN 0168-1699. doi: 10.1016/j.compag.2018.08.013.

URL https://www.sciencedirect.com/science/article/pii/S0168169918304617.

Barthelemy, Johan and Toint, Philippe L. Synthetic Population Generation Without a Sample.

Transportation Science, 47(2):266–279, 2013. ISSN 0041-1655. URL https://www.jstor.org/st

able/43666649. Publisher: INFORMS.

Beckman, Richard J., Baggerly, Keith A., and McKay, Michael D. Creating synthetic baseline

populations. Transportation Research Part A: Policy and Practice, 30(6):415–429, November

1996. ISSN 0965-8564. doi: 10.1016/0965-8564(96)00004-3. URL http://www.sciencedirect.

com/science/article/pii/0965856496000043.

Beiranvand, Vahid, Hare, Warren, and Lucet, Yves. Best practices for comparing optimization

algorithms. Optimization and Engineering, 18(4):815–848, December 2017. ISSN 1573-2924.

doi: 10.1007/s11081-017-9366-1. URL https://doi.org/10.1007/s11081-017-9366-1.

Ben-Akiva, Moshe E. and Lerman, Steven R. Discrete Choice Analysis: Theory and Application

to Travel Demand. MIT Press, 1985. ISBN 978-0-262-02217-0. URL https://mitpress.mit.e

du/books/discrete-choice-analysis. Google-Books-ID: oLC6ZYPs9UoC.

Bierlaire, Michel. BIOGEME: a free package for the estimation of discrete choice models. Swiss

Transport Research Conference 2003, March 2003. URL https://infoscience.epfl.ch/record/

117133.

Bierlaire, Michel. PandasBiogeme: a short introduction. Technical Report TRANSP-OR 181219,

Transport and Mobility Laboratory, EPFL, 2018. URL https://transp-or.epfl.ch/documents

/technicalReports/Bier18.pdf.

Bishop, Christopher M. Pattern Recognition and Machine Learning. Springer: New York, 2006.

URL https://link.springer.com/book/9780387310732.

Bollapragada, Raghu, Mudigere, Dheevatsa, Nocedal, Jorge, Shi, Hao-Jun Michael, and

Tang, Ping Tak Peter. A Progressive Batching L-BFGS Method for Machine Learning.

arXiv:1802.05374 [cs, math, stat], February 2018. URL http://arxiv.org/abs/1802.05374.

arXiv: 1802.05374.

178

http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/2004.06838
http://arxiv.org/abs/1612.05086
http://arxiv.org/abs/1612.05086
https://www.sciencedirect.com/science/article/pii/S0168169918304617
https://www.jstor.org/stable/43666649
https://www.jstor.org/stable/43666649
http://www.sciencedirect.com/science/article/pii/0965856496000043
http://www.sciencedirect.com/science/article/pii/0965856496000043
https://doi.org/10.1007/s11081-017-9366-1
https://mitpress.mit.edu/books/discrete-choice-analysis
https://mitpress.mit.edu/books/discrete-choice-analysis
https://infoscience.epfl.ch/record/117133
https://infoscience.epfl.ch/record/117133
https://transp-or.epfl.ch/documents/technicalReports/Bier18.pdf
https://transp-or.epfl.ch/documents/technicalReports/Bier18.pdf
https://link.springer.com/book/9780387310732
http://arxiv.org/abs/1802.05374

Bibliography

Bonabeau, Eric. Agent-based modeling: Methods and techniques for simulating human

systems. Proceedings of the National Academy of Sciences, 99(suppl 3):7280–7287, May 2002.

ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.082080899. URL https://www.pnas.org/c

ontent/99/suppl_3/7280. Publisher: National Academy of Sciences Section: Colloquium

Paper.

Bordes, Antoine, Bottou, Léon, Gallinari, Patrick, Chang, Jonathan, and Smith, S. Alex. Erratum:

SGDQN is Less Careful than Expected. Journal of Machine Learning Research, 11(Aug):2229–

2240, 2010. ISSN ISSN 1533-7928. URL http://www.jmlr.org/papers/v11/bordes10a.html.

Borysov, Stanislav S., Rich, Jeppe, and Pereira, Francisco C. How to generate micro-agents? A

deep generative modeling approach to population synthesis. Transportation Research Part

C: Emerging Technologies, 106:73–97, September 2019. ISSN 0968-090X. doi: 10.1016/j.trc.

2019.07.006. URL http://www.sciencedirect.com/science/article/pii/S0968090X1831180X.

Brathwaite, Timothy, Vij, Akshay, and Walker, Joan L. Machine Learning Meets Microeco-

nomics: The Case of Decision Trees and Discrete Choice. arXiv:1711.04826 [stat], November

2017. URL http://arxiv.org/abs/1711.04826. arXiv: 1711.04826.

Brock, Andrew, Donahue, Jeff, and Simonyan, Karen. Large Scale GAN Training for High

Fidelity Natural Image Synthesis. arXiv:1809.11096 [cs, stat], February 2019. URL http:

//arxiv.org/abs/1809.11096. arXiv: 1809.11096.

Brown, Tom B., Mann, Benjamin, Ryder, Nick, Subbiah, Melanie, Kaplan, Jared, Dhariwal,

Prafulla, Neelakantan, Arvind, Shyam, Pranav, Sastry, Girish, Askell, Amanda, Agarwal,

Sandhini, Herbert-Voss, Ariel, Krueger, Gretchen, Henighan, Tom, Child, Rewon, Ramesh,

Aditya, Ziegler, Daniel M., Wu, Jeffrey, Winter, Clemens, Hesse, Christopher, Chen, Mark,

Sigler, Eric, Litwin, Mateusz, Gray, Scott, Chess, Benjamin, Clark, Jack, Berner, Christopher,

McCandlish, Sam, Radford, Alec, Sutskever, Ilya, and Amodei, Dario. Language Models are

Few-Shot Learners. arXiv:2005.14165 [cs], July 2020. URL http://arxiv.org/abs/2005.14165.

arXiv: 2005.14165.

Casati, Daniele, Müller, Kirill, Fourie, Pieter J., Erath, Alexander, and Axhausen, Kay W.

Synthetic Population Generation by Combining a Hierarchical, Simulation-Based Ap-

proach with Reweighting by Generalized Raking. Transportation Research Record: Jour-

nal of the Transportation Research Board, (2493), 2015. ISSN 0361-1981. URL https:

//trid.trb.org/view.aspx?id=1339142. ISBN: 9780309369633 Number: 15-5284.

Chen, Mark, Radford, Alec, Child, Rewon, Wu, Jeffrey, Jun, Heewoo, Luan, David, and Sutskever,

Ilya. Generative Pretraining From Pixels. In Proceedings of the 37th International Conference

on Machine Learning, pages 1691–1703. PMLR, November 2020. URL https://proceedings.

mlr.press/v119/chen20s.html. ISSN: 2640-3498.

Conn, A., Gould, N., and Toint, P. Trust Region Methods. MOS-SIAM Series on Optimization.

Society for Industrial and Applied Mathematics, January 2000. ISBN 978-0-89871-460-9.

179

https://www.pnas.org/content/99/suppl_3/7280
https://www.pnas.org/content/99/suppl_3/7280
http://www.jmlr.org/papers/v11/bordes10a.html
http://www.sciencedirect.com/science/article/pii/S0968090X1831180X
http://arxiv.org/abs/1711.04826
http://arxiv.org/abs/1809.11096
http://arxiv.org/abs/1809.11096
http://arxiv.org/abs/2005.14165
https://trid.trb.org/view.aspx?id=1339142
https://trid.trb.org/view.aspx?id=1339142
https://proceedings.mlr.press/v119/chen20s.html
https://proceedings.mlr.press/v119/chen20s.html

Appendix

doi: 10.1137/1.9780898719857. URL https://epubs.siam.org/doi/book/10.1137/1.97808987

19857.

Danalet, Antonin and Mathys, Nicole. Mobility Resources in Switzerland in 2015. In Pro-

ceedings of the 18th Swiss Transport Research Conference, Ascona, Switzerland, 2018. URL

http://www.strc.ch/2018/Danalet_Mathys.pdf.

de Vries, Harm, Strub, Florian, Mary, Jérémie, Larochelle, Hugo, Pietquin, Olivier, and Courville,

Aaron. Modulating early visual processing by language. arXiv:1707.00683 [cs], December

2017. URL http://arxiv.org/abs/1707.00683. arXiv: 1707.00683.

Defazio, Aaron, Bach, Francis, and Lacoste-Julien, Simon. SAGA: A Fast Incremental Gradient

Method With Support for Non-Strongly Convex Composite Objectives. In Ghahramani, Z.,

Welling, M., Cortes, C., Lawrence, N. D., and Weinberger, K. Q., editors, Advances in Neural

Information Processing Systems 27, pages 1646–1654. Curran Associates, Inc., 2014. URL

https://proceedings.neurips.cc/paper/2014/file/ede7e2b6d13a41ddf9f4bdef84fdc737-P

aper.pdf.

Deming, W. Edwards and Stephan, Frederick F. On a Least Squares Adjustment of a Sampled

Frequency Table When the Expected Marginal Totals are Known. Annals of Mathematical

Statistics, 11(4):427–444, December 1940. ISSN 0003-4851, 2168-8990. doi: 10.1214/aoms/1

177731829. URL https://projecteuclid.org/euclid.aoms/1177731829. Publisher: Institute of

Mathematical Statistics.

Dennis, J. and Schnabel, R. Numerical Methods for Unconstrained Optimization and Nonlinear

Equations. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics,

January 1996. ISBN 978-0-89871-364-0. doi: 10.1137/1.9781611971200. URL https:

//epubs.siam.org/doi/book/10.1137/1.9781611971200.

Devarakonda, Aditya, Naumov, Maxim, and Garland, Michael. AdaBatch: Adaptive Batch

Sizes for Training Deep Neural Networks. arXiv:1712.02029 [cs, stat], December 2017. URL

http://arxiv.org/abs/1712.02029. arXiv: 1712.02029.

Dolan, Elizabeth D. and Moré, Jorge J. Benchmarking optimization software with performance

profiles. Mathematical Programming, 91(2):201–213, January 2002. ISSN 1436-4646. doi:

10.1007/s101070100263. URL https://doi.org/10.1007/s101070100263.

Dozat, Timothy. Incorporating Nesterov Momentum into Adam. February 2016. URL https:

//openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ.

Duchi, John, Hazan, Elad, and Singer, Yoram. Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization. Journal of Machine Learning Research, 12(Jul):

2121–2159, 2011. ISSN ISSN 1533-7928. URL http://jmlr.org/papers/v12/duchi11a.html.

Dumoulin, Vincent, Shlens, Jonathon, and Kudlur, Manjunath. A Learned Representation For

Artistic Style. arXiv:1610.07629 [cs], February 2017. URL http://arxiv.org/abs/1610.07629.

arXiv: 1610.07629.

180

https://epubs.siam.org/doi/book/10.1137/1.9780898719857
https://epubs.siam.org/doi/book/10.1137/1.9780898719857
http://www.strc.ch/2018/Danalet_Mathys.pdf
http://arxiv.org/abs/1707.00683
https://proceedings.neurips.cc/paper/2014/file/ede7e2b6d13a41ddf9f4bdef84fdc737-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/ede7e2b6d13a41ddf9f4bdef84fdc737-Paper.pdf
https://projecteuclid.org/euclid.aoms/1177731829
https://epubs.siam.org/doi/book/10.1137/1.9781611971200
https://epubs.siam.org/doi/book/10.1137/1.9781611971200
http://arxiv.org/abs/1712.02029
https://doi.org/10.1007/s101070100263
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
http://jmlr.org/papers/v12/duchi11a.html
http://arxiv.org/abs/1610.07629

Bibliography

Farooq, Bilal, Bierlaire, Michel, Hurtubia, Ricardo, and Flötteröd, Gunnar. Simulation

based population synthesis. Transportation Research Part B: Methodological, 58:243–

263, December 2013. ISSN 0191-2615. doi: 10.1016/j.trb.2013.09.012. URL http:

//www.sciencedirect.com/science/article/pii/S0191261513001720.

Fletcher, R. Practical Methods of Optimization; (2nd Ed.). Wiley-Interscience, New York, NY,

USA, 1987. ISBN 978-0-471-91547-8. URL https://www.wiley.com/en-us/Practical+Method

s+of+Optimization%2C+2nd+Edition-p-9780471494638.

Frégier, Yaël and Gouray, Jean-Baptiste. Mind2Mind : transfer learning for GANs.

arXiv:1906.11613 [cs, stat], October 2020. URL http://arxiv.org/abs/1906.11613. arXiv:

1906.11613.

Garrido, Sergio, Borysov, Stanislav S., Pereira, Francisco C., and Rich, Jeppe. Prediction of rare

feature combinations in population synthesis: Application of deep generative modelling.

arXiv:1909.07689 [cs, stat], September 2019. URL http://arxiv.org/abs/1909.07689. arXiv:

1909.07689.

Geman, Stuart and Geman, Donald. Stochastic Relaxation, Gibbs Distributions, and the

Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, PAMI-6(6):721–741, November 1984. ISSN 1939-3539. doi: 10.1109/TPAMI.1984

.4767596. URL https://ieeexplore.ieee.org/document/4767596. Conference Name: IEEE

Transactions on Pattern Analysis and Machine Intelligence.

Gers, Felix A., Schmidhuber, Jürgen, and Cummins, Fred. Learning to Forget: Continual

Prediction with LSTM. Neural Computation, 12(10):2451–2471, October 2000. ISSN 0899-

7667. doi: 10.1162/089976600300015015. URL https://ieeexplore.ieee.org/document/81804

1. Conference Name: Neural Computation.

Goodfellow, Ian. NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv:1701.00160 [cs],

April 2017. URL http://arxiv.org/abs/1701.00160. arXiv: 1701.00160.

Goodfellow, Ian J., Pouget-Abadie, Jean, Mirza, Mehdi, Xu, Bing, Warde-Farley, David,

Ozair, Sherjil, Courville, Aaron, and Bengio, Yoshua. Generative Adversarial Networks.

arXiv:1406.2661 [cs, stat], June 2014. URL http://arxiv.org/abs/1406.2661. arXiv: 1406.2661.

Gower, Robert M., Hanzely, Filip, Richtárik, Peter, and Stich, Sebastian. Accelerated Stochastic

Matrix Inversion: General Theory and Speeding up BFGS Rules for Faster Second-Order

Optimization. arXiv:1802.04079 [cs, math], February 2018. URL http://arxiv.org/abs/1802.0

4079. arXiv: 1802.04079.

Goyal, Priya, Dollár, Piotr, Girshick, Ross, Noordhuis, Pieter, Wesolowski, Lukasz, Kyrola, Aapo,

Tulloch, Andrew, Jia, Yangqing, and He, Kaiming. Accurate, Large Minibatch SGD: Training

ImageNet in 1 Hour. arXiv:1706.02677 [cs], April 2018. URL http://arxiv.org/abs/1706.02677.

arXiv: 1706.02677.

181

http://www.sciencedirect.com/science/article/pii/S0191261513001720
http://www.sciencedirect.com/science/article/pii/S0191261513001720
https://www.wiley.com/en-us/Practical+Methods+of+Optimization%2C+2nd+Edition-p-9780471494638
https://www.wiley.com/en-us/Practical+Methods+of+Optimization%2C+2nd+Edition-p-9780471494638
http://arxiv.org/abs/1906.11613
http://arxiv.org/abs/1909.07689
https://ieeexplore.ieee.org/document/4767596
https://ieeexplore.ieee.org/document/818041
https://ieeexplore.ieee.org/document/818041
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1802.04079
http://arxiv.org/abs/1802.04079
http://arxiv.org/abs/1706.02677

Appendix

Gu, Tian and Duan, Rui. SynTL: A synthetic-data-based transfer learning approach for multi-

center risk prediction, March 2022. URL https://www.medrxiv.org/content/10.1101/2022.0

3.23.22272834v1. Pages: 2022.03.23.22272834.

Gulrajani, Ishaan, Ahmed, Faruk, Arjovsky, Martin, Dumoulin, Vincent, and Courville, Aaron.

Improved Training of Wasserstein GANs. arXiv:1704.00028 [cs, stat], December 2017. URL

http://arxiv.org/abs/1704.00028. arXiv: 1704.00028.

Hagberg, Aric, Swart, Pieter, and Schult, Daniel. Exploring Network Structure, Dynamics, and

Function Using NetworkX. In Proceedings of the 7th Python in Science Conference, United

States, January 2008. URL https://www.researchgate.net/publication/236407765_Exploring

_Network_Structure_Dynamics_and_Function_Using_NetworkX.

Hillel, Tim. Understanding travel mode choice: A new approach for city scale simulation. PhD

thesis, University of Cambridge, Cambridge, January 2019. URL https://www.repository.c

am.ac.uk/handle/1810/293576.

Hillel, Tim, Elshafie, Mohammed Z E B, and Jin, Ying. Recreating passenger mode choice-sets

for transport simulation: A case study of London, UK. Proceedings of the Institution of Civil

Engineers - Smart Infrastructure and Construction, 171(1):29–42, March 2018. doi: 10.1680/

jsmic.17.00018. URL https://www.icevirtuallibrary.com/doi/full/10.1680/jsmic.17.00018.

Hindupur, Avinash. The GAN Zoo, May 2022. URL https://github.com/hindupuravinash/the

-gan-zoo. original-date: 2017-04-14T16:45:24Z.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long Short-Term Memory. Neural Computation,

9(8):1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL

https://ieeexplore.ieee.org/abstract/document/6795963. Conference Name: Neural

Computation.

Isola, Phillip, Zhu, Jun-Yan, Zhou, Tinghui, and Efros, Alexei A. Image-To-Image Translation

With Conditional Adversarial Networks. pages 1125–1134, 2017. URL https://openaccess.t

hecvf.com/content_cvpr_2017/html/Isola_Image-To-Image_Translation_With_CVPR_2

017_paper.html.

Jeon, Hyeonseong, Bang, Youngoh, Kim, Junyaup, and Woo, Simon S. T-GD: Transferable

GAN-generated Images Detection Framework. arXiv:2008.04115 [cs], August 2020. URL

http://arxiv.org/abs/2008.04115. arXiv: 2008.04115.

Jha, Anurag, Chandrasekaran, Anand, Kim, Chiho, and Ramprasad, Rampi. Impact of dataset

uncertainties on machine learning model predictions: the example of polymer glass tran-

sition temperatures. Modelling and Simulation in Materials Science and Engineering,

27(2):024002, January 2019. ISSN 0965-0393. doi: 10.1088/1361-651X/aaf8ca. URL

https://doi.org/10.1088/1361-651x/aaf8ca. Publisher: IOP Publishing.

Jones, Eric, Oliphant, Travis, and Peterson, Pearu. SciPy: open source scientific tools for

Python. 2014. URL https://scipy.org/.

182

https://www.medrxiv.org/content/10.1101/2022.03.23.22272834v1
https://www.medrxiv.org/content/10.1101/2022.03.23.22272834v1
http://arxiv.org/abs/1704.00028
https://www.researchgate.net/publication/236407765_Exploring_Network_Structure_Dynamics_and_Function_Using_NetworkX
https://www.researchgate.net/publication/236407765_Exploring_Network_Structure_Dynamics_and_Function_Using_NetworkX
https://www.repository.cam.ac.uk/handle/1810/293576
https://www.repository.cam.ac.uk/handle/1810/293576
https://www.icevirtuallibrary.com/doi/full/10.1680/jsmic.17.00018
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
https://ieeexplore.ieee.org/abstract/document/6795963
https://openaccess.thecvf.com/content_cvpr_2017/html/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.html
http://arxiv.org/abs/2008.04115
https://doi.org/10.1088/1361-651x/aaf8ca
https://scipy.org/

Bibliography

Jordon, James, Yoon, Jinsung, and Schaar, Mihaela van der. PATE-GAN: Generating Synthetic

Data with Differential Privacy Guarantees. September 2018. URL https://openreview.net/f

orum?id=S1zk9iRqF7.

Kagho, Grace O., Balac, Milos, and Axhausen, Kay W. Agent-Based Models in Transport

Planning: Current State, Issues, and Expectations. Procedia Computer Science, 170:726–

732, January 2020. ISSN 1877-0509. doi: 10.1016/j.procs.2020.03.164. URL https:

//www.sciencedirect.com/science/article/pii/S187705092030627X.

Kahng, Minsuk, Thorat, Nikhil, Chau, Duen Horng, Viégas, Fernanda B., and Wattenberg,

Martin. GAN Lab: Understanding Complex Deep Generative Models using Interactive

Visual Experimentation. IEEE Transactions on Visualization and Computer Graphics, 25

(1):310–320, January 2019. ISSN 1941-0506. doi: 10.1109/TVCG.2018.2864500. URL

https://ieeexplore.ieee.org/document/8440049. Conference Name: IEEE Transactions on

Visualization and Computer Graphics.

Karimpanal, Thommen George and Bouffanais, Roland. Self-Organizing Maps for Storage

and Transfer of Knowledge in Reinforcement Learning. Adaptive Behavior, 27(2):111–

126, April 2019. ISSN 1059-7123, 1741-2633. doi: 10.1177/1059712318818568. URL

http://arxiv.org/abs/1811.08318. arXiv:1811.08318 [cs].

Ke, Guolin, Meng, Qi, Finley, Thomas, Wang, Taifeng, Chen, Wei, Ma, Weidong, Ye, Qiwei, and

Liu, Tie-Yan. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Advances

in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL

https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76f

a-Abstract.html.

Keskar, Nitish Shirish and Berahas, Albert S. adaQN: An Adaptive Quasi-Newton Algorithm for

Training RNNs. In Machine Learning and Knowledge Discovery in Databases, Lecture Notes

in Computer Science, pages 1–16. Springer, Cham, September 2016. ISBN 978-3-319-46127-

4 978-3-319-46128-1. doi: 10.1007/978-3-319-46128-1_1. URL https://link.springer.com/

chapter/10.1007/978-3-319-46128-1_1.

Kim, Jooyoung and Lee, Seungjae. A simulated annealing algorithm for the creation of syn-

thetic population in activity-based travel demand model. KSCE Journal of Civil Engineering,

20(6):2513–2523, September 2016. ISSN 1976-3808. doi: 10.1007/s12205-015-0691-7. URL

https://doi.org/10.1007/s12205-015-0691-7.

Kingma, Diederik P. and Ba, Jimmy. Adam: A Method for Stochastic Optimization.

arXiv:1412.6980 [cs], December 2014. URL http://arxiv.org/abs/1412.6980. arXiv: 1412.6980.

Kingma, Diederik P. and Welling, Max. Auto-Encoding Variational Bayes. arXiv:1312.6114 [cs,

stat], May 2014. URL http://arxiv.org/abs/1312.6114. arXiv: 1312.6114.

Kiros, Ryan. Training Neural Networks with Stochastic Hessian-Free Optimization.

arXiv:1301.3641 [cs, stat], January 2013. URL http://arxiv.org/abs/1301.3641. arXiv:

1301.3641.

183

https://openreview.net/forum?id=S1zk9iRqF7
https://openreview.net/forum?id=S1zk9iRqF7
https://www.sciencedirect.com/science/article/pii/S187705092030627X
https://www.sciencedirect.com/science/article/pii/S187705092030627X
https://ieeexplore.ieee.org/document/8440049
http://arxiv.org/abs/1811.08318
https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://link.springer.com/chapter/10.1007/978-3-319-46128-1_1
https://link.springer.com/chapter/10.1007/978-3-319-46128-1_1
https://doi.org/10.1007/s12205-015-0691-7
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1301.3641

Appendix

Kohavi, Ron. Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree hybrid.

In Proceedings of the Second International Conference on Knowledge Discovery and Data

Mining, KDD’96, pages 202–207, Portland, Oregon, August 1996. AAAI Press. URL https:

//www.aaai.org/Papers/KDD/1996/KDD96-033.pdf.

Kukić, Marija and Bierlaire, Michel. One-step simulator for synthetic households generation.

May 2022. URL http://www.strc.ch/2022/Kukic_Bierlaire.pdf.

Lederrey, Gael, Lurkin, Virginie, and Bierlaire, Michel. Optimization of Discrete Choice Models

using first-order methods. In Proceedings of the 7th Symposium of the European Association

for Research in Transportation, Athens, Greece, 2018a. URL https://transp-or.epfl.ch/heart

/2018/abstracts/5489.pdf.

Lederrey, Gael, Lurkin, Virginie, and Bierlaire, Michel. SNM: Stochastic Newton Methodfor

Optimization of Discrete Choice Models. In 2018 21st International Conference on Intelligent

Transportation Systems (ITSC), pages 3199–3204, November 2018b. doi: 10.1109/ITSC.2018.

8569539. URL https://ieeexplore.ieee.org/document/8569539. ISSN: 2153-0017.

Lederrey, Gael, Hillel, Tim, and Bierlaire, Michel. DATGAN: Integrating expert knowledge

into deep learning for synthetic tabular data. arXiv:2203.03489 [cs], March 2022. URL

http://arxiv.org/abs/2203.03489. arXiv: 2203.03489.

Lin, J. Divergence measures based on the Shannon entropy. IEEE Transactions on Information

Theory, 37(1):145–151, January 1991. ISSN 1557-9654. doi: 10.1109/18.61115. URL https:

//ieeexplore.ieee.org/abstract/document/61115. Conference Name: IEEE Transactions on

Information Theory.

Linjordet, Trond and Balog, Krisztian. Impact of Training Dataset Size on Neural Answer

Selection Models. In Azzopardi, Leif, Stein, Benno, Fuhr, Norbert, Mayr, Philipp, Hauff,

Claudia, and Hiemstra, Djoerd, editors, Advances in Information Retrieval, Lecture Notes in

Computer Science, pages 828–835, Cham, 2019. Springer International Publishing. ISBN

978-3-030-15712-8. doi: 10.1007/978-3-030-15712-8_59. URL https://link.springer.com/ch

apter/10.1007/978-3-030-15712-8_59.

Liu, Ming-Yu and Tuzel, Oncel. Coupled Generative Adversarial Networks. arXiv:1606.07536

[cs], September 2016. URL http://arxiv.org/abs/1606.07536. arXiv: 1606.07536.

Liu, Yi, Peng, Jialiang, Yu, James J. Q., and Wu, Yi. PPGAN: Privacy-preserving Generative

Adversarial Network. 2019 IEEE 25th International Conference on Parallel and Distributed

Systems (ICPADS), pages 985–989, December 2019. doi: 10.1109/ICPADS47876.2019.00150.

URL http://arxiv.org/abs/1910.02007. arXiv: 1910.02007.

Lucas, Peter J., Gaag, Linda C., and Abu-Hanna, Ameen. Bayesian Networks in biomedicine

and health-care. Artificial Intelligence in Medicine, 30:201–214, April 2004. doi: 10.1016/j.ar

tmed.2003.11.001. URL https://www.researchgate.net/publication/224818117_Bayesian_

Networks_in_biomedicine_and_health-care.

184

https://www.aaai.org/Papers/KDD/1996/KDD96-033.pdf
https://www.aaai.org/Papers/KDD/1996/KDD96-033.pdf
http://www.strc.ch/2022/Kukic_Bierlaire.pdf
https://transp-or.epfl.ch/heart/2018/abstracts/5489.pdf
https://transp-or.epfl.ch/heart/2018/abstracts/5489.pdf
https://ieeexplore.ieee.org/document/8569539
http://arxiv.org/abs/2203.03489
https://ieeexplore.ieee.org/abstract/document/61115
https://ieeexplore.ieee.org/abstract/document/61115
https://link.springer.com/chapter/10.1007/978-3-030-15712-8_59
https://link.springer.com/chapter/10.1007/978-3-030-15712-8_59
http://arxiv.org/abs/1606.07536
http://arxiv.org/abs/1910.02007
https://www.researchgate.net/publication/224818117_Bayesian_Networks_in_biomedicine_and_health-care
https://www.researchgate.net/publication/224818117_Bayesian_Networks_in_biomedicine_and_health-care

Bibliography

Martens, James. Deep learning via Hessian-free optimization. ICML, 27:735–742, 2010. URL

https://www.cs.toronto.edu/~jmartens/docs/Deep_HessianFree.pdf.

Mirza, Mehdi and Osindero, Simon. Conditional Generative Adversarial Nets. arXiv:1411.1784

[cs, stat], November 2014. URL http://arxiv.org/abs/1411.1784. arXiv: 1411.1784.

Miyato, Takeru and Koyama, Masanori. cGANs with Projection Discriminator.

arXiv:1802.05637 [cs, stat], August 2018. URL http://arxiv.org/abs/1802.05637. arXiv:

1802.05637.

Müller, Kirill and Axhausen, Kay W. Population synthesis for microsimulation: State of the art.

Arbeitsberichte Verkehrs- und Raumplanung, 638, August 2010. doi: 10.3929/ethz-a-00612

7782. URL https://www.research-collection.ethz.ch/handle/20.500.11850/30298. Accepted:

2017-08-22T09:43:21Z Publisher: IVT, ETH Zurich.

Müller, Kirill and Axhausen, Kay W. Hierarchical IPF: Generating a synthetic population

for Switzerland. Technical Report ersa11p305, European Regional Science Association,

September 2011. URL https://ideas.repec.org/p/wiw/wiwrsa/ersa11p305.html. Publication

Title: ERSA conference papers.

Mokhtari, A. and Ribeiro, A. RES: Regularized Stochastic BFGS Algorithm. IEEE Transactions

on Signal Processing, 62(23):6089–6104, December 2014. ISSN 1053-587X. doi: 10.1109/TSP.

2014.2357775. URL https://arxiv.org/abs/1401.7625.

Mutny, Mojmir. Stochastic Second-Order Optimization via von Neumann Series.

arXiv:1612.04694 [cs, math], December 2016. URL http://arxiv.org/abs/1612.04694.

arXiv: 1612.04694.

Nazeri, Kamyar, Ng, Eric, Joseph, Tony, Qureshi, Faisal Z., and Ebrahimi, Mehran. EdgeConnect:

Generative Image Inpainting with Adversarial Edge Learning. arXiv:1901.00212 [cs], January

2019. URL http://arxiv.org/abs/1901.00212. arXiv: 1901.00212.

Nesterov, Yurii E. A method for solving the convex programming problem with convergence

rate O (1/k^ 2). In Dokl. Akad. Nauk SSSR, volume 269, pages 543–547, 1983. URL https:

//vsokolov.org/courses/750/2018/files/nesterov.pdf.

Newman, Jeffrey P., Lurkin, Virginie, and Garrow, Laurie A. Computational methods for estimat-

ing multinomial, nested, and cross-nested logit models that account for semi-aggregate data.

Journal of Choice Modelling, 26:28–40, March 2018. ISSN 1755-5345. doi: 10.1016/j.jocm.2

017.11.001. URL http://www.sciencedirect.com/science/article/pii/S1755534517300179.

Noguchi, Atsuhiro and Harada, Tatsuya. Image Generation From Small Datasets via Batch

Statistics Adaptation. arXiv:1904.01774 [cs], October 2019. URL http://arxiv.org/abs/1904.0

1774. arXiv: 1904.01774.

Odena, Augustus, Olah, Christopher, and Shlens, Jonathon. Conditional Image Synthesis With

Auxiliary Classifier GANs. arXiv:1610.09585 [cs, stat], July 2017. URL http://arxiv.org/abs/16

10.09585. arXiv: 1610.09585.

185

https://www.cs.toronto.edu/~jmartens/docs/Deep_HessianFree.pdf
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1802.05637
https://www.research-collection.ethz.ch/handle/20.500.11850/30298
https://ideas.repec.org/p/wiw/wiwrsa/ersa11p305.html
https://arxiv.org/abs/1401.7625
http://arxiv.org/abs/1612.04694
http://arxiv.org/abs/1901.00212
https://vsokolov.org/courses/750/2018/files/nesterov.pdf
https://vsokolov.org/courses/750/2018/files/nesterov.pdf
http://www.sciencedirect.com/science/article/pii/S1755534517300179
http://arxiv.org/abs/1904.01774
http://arxiv.org/abs/1904.01774
http://arxiv.org/abs/1610.09585
http://arxiv.org/abs/1610.09585

Appendix

Ortelli, Nicola, Hillel, Tim, Pereira, Francisco C., de Lapparent, Matthieu, and Bierlaire, Michel.

Assisted specification of discrete choice models. Journal of Choice Modelling, 39:100285,

June 2021. ISSN 1755-5345. doi: 10.1016/j.jocm.2021.100285. URL https://www.sciencedir

ect.com/science/article/pii/S175553452100018X.

Park, Noseong, Mohammadi, Mahmoud, Gorde, Kshitij, Jajodia, Sushil, Park, Hongkyu, and

Kim, Youngmin. Data Synthesis based on Generative Adversarial Networks. Proceedings of

the VLDB Endowment, 11(10):1071–1083, June 2018. ISSN 21508097. doi: 10.14778/3231751

.3231757. URL http://arxiv.org/abs/1806.03384. arXiv: 1806.03384.

Pathak, Deepak, Krahenbuhl, Philipp, Donahue, Jeff, Darrell, Trevor, and Efros, Alexei A.

Context Encoders: Feature Learning by Inpainting. arXiv:1604.07379 [cs], November 2016.

URL http://arxiv.org/abs/1604.07379. arXiv: 1604.07379.

Philips, Ian, Clarke, Graham, and Watling, David. A Fine Grained Hybrid Spatial Microsimula-

tion Technique for Generating Detailed Synthetic Individuals from Multiple Data Sources:

An Application To Walking And Cycling. International Journal of Microsimulation, 10(1):

167–200, 2017. URL https://ideas.repec.org/a/ijm/journl/v10y2017i1p167-200.html.

Publisher: International Microsimulation Association.

Polyak, B. and Juditsky, A. Acceleration of Stochastic Approximation by Averaging. SIAM

Journal on Control and Optimization, 30(4):838–855, July 1992. ISSN 0363-0129. doi:

10.1137/0330046. URL https://epubs.siam.org/doi/abs/10.1137/0330046.

Polyak, Boris T. Some methods of speeding up the convergence of iteration methods. USSR

Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964. URL https://www.

sciencedirect.com/science/article/pii/0041555364901375.

Radford, Alec, Metz, Luke, and Chintala, Soumith. Unsupervised Representation Learning

with Deep Convolutional Generative Adversarial Networks. arXiv:1511.06434 [cs], January

2016. URL http://arxiv.org/abs/1511.06434. arXiv: 1511.06434.

Rafati, Jacob, DeGuchy, Omar, and Marcia, Roummel F. Trust-Region Minimization Algorithm

for Training Responses (TRMinATR): The Rise of Machine Learning Techniques. In 2018 26th

European Signal Processing Conference (EUSIPCO), pages 2015–2019, September 2018. doi:

10.23919/EUSIPCO.2018.8553243. URL https://ieeexplore.ieee.org/document/8553243.

ISSN: 2076-1465, 2219-5491.

Reddi, Sashank J., Kale, Satyen, and Kumar, Sanjiv. On the Convergence of Adam and Beyond.

February 2018. URL https://openreview.net/forum?id=ryQu7f-RZ.

Reed, Scott, Akata, Zeynep, Yan, Xinchen, Logeswaran, Lajanugen, Schiele, Bernt, and Lee,

Honglak. Generative Adversarial Text to Image Synthesis. arXiv:1605.05396 [cs], June 2016.

URL http://arxiv.org/abs/1605.05396. arXiv: 1605.05396.

186

https://www.sciencedirect.com/science/article/pii/S175553452100018X
https://www.sciencedirect.com/science/article/pii/S175553452100018X
http://arxiv.org/abs/1806.03384
http://arxiv.org/abs/1604.07379
https://ideas.repec.org/a/ijm/journl/v10y2017i1p167-200.html
https://epubs.siam.org/doi/abs/10.1137/0330046
https://www.sciencedirect.com/science/article/pii/0041555364901375
https://www.sciencedirect.com/science/article/pii/0041555364901375
http://arxiv.org/abs/1511.06434
https://ieeexplore.ieee.org/document/8553243
https://openreview.net/forum?id=ryQu7f-RZ
http://arxiv.org/abs/1605.05396

Bibliography

Rich, Jeppe. Large-scale spatial population synthesis for Denmark. European Transport

Research Review, 10(2):63, December 2018. ISSN 1866-8887. doi: 10.1186/s12544-018-033

6-2. URL https://doi.org/10.1186/s12544-018-0336-2.

Robbins, Herbert and Monro, Sutton. A Stochastic Approximation Method. The Annals of

Mathematical Statistics, 22(3):400–407, 1951. ISSN 0003-4851. URL https://www.jstor.org/

stable/2236626.

Rubin, Donald B. The Use of Matched Sampling and Regression Adjustment to Remove

Bias in Observational Studies. Biometrics, 29(1):185–203, 1973. ISSN 0006-341X. doi:

10.2307/2529685. URL https://www.jstor.org/stable/2529685. Publisher: [Wiley,

International Biometric Society].

Ruder, Sebastian. An overview of gradient descent optimization algorithms. arXiv:1609.04747

[cs], September 2016. URL http://arxiv.org/abs/1609.04747. arXiv: 1609.04747.

Salimans, Tim, Goodfellow, Ian, Zaremba, Wojciech, Cheung, Vicki, Radford, Alec, and Chen,

Xi. Improved Techniques for Training GANs. arXiv:1606.03498 [cs], June 2016. URL http:

//arxiv.org/abs/1606.03498. arXiv: 1606.03498.

Satell, Greg. Mapping Innovation: A Playbook for Navigating a Disruptive Age. McGraw Hill,

New York, 1st edition edition, May 2017. ISBN 978-1-259-86225-0. URL https://gregsatell.c

om/read-the-book/.

Schmidt, Mark, Roux, Nicolas Le, and Bach, Francis. Minimizing Finite Sums with the

Stochastic Average Gradient. arXiv:1309.2388 [cs, math, stat], September 2013. URL

http://arxiv.org/abs/1309.2388. arXiv: 1309.2388.

Shin, Minchul Craig. gans-awesome-applications, May 2022. URL https://github.com/nasho

ry/gans-awesome-applications. original-date: 2017-10-12T03:19:02Z.

Shorten, Connor and Khoshgoftaar, Taghi M. A survey on Image Data Augmentation for Deep

Learning. Journal of Big Data, 6(1):60, July 2019. ISSN 2196-1115. doi: 10.1186/s40537-019

-0197-0. URL https://doi.org/10.1186/s40537-019-0197-0.

Sun, Lijun and Erath, Alexander. A Bayesian network approach for population synthesis.

Transportation Research Part C: Emerging Technologies, 61:49–62, December 2015. ISSN

0968-090X. doi: 10.1016/j.trc.2015.10.010. URL http://www.sciencedirect.com/science/arti

cle/pii/S0968090X15003599.

Tieleman, Tijmen and Hinton, Geoffrey. Lecture 6.5-rmsprop: Divide the gradient by a running

average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):

26–31, 2012. URL https://www.youtube.com/watch?v=SJ48OZ_qlrc.

Wang, Xiao, Ma, Shiqian, and Liu, Wei. Stochastic Quasi-Newton Methods for Nonconvex

Stochastic Optimization. arXiv:1412.1196 [math], December 2014. URL http://arxiv.org/ab

s/1412.1196. arXiv: 1412.1196.

187

https://doi.org/10.1186/s12544-018-0336-2
https://www.jstor.org/stable/2236626
https://www.jstor.org/stable/2236626
https://www.jstor.org/stable/2529685
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1606.03498
http://arxiv.org/abs/1606.03498
https://gregsatell.com/read-the-book/
https://gregsatell.com/read-the-book/
http://arxiv.org/abs/1309.2388
https://github.com/nashory/gans-awesome-applications
https://github.com/nashory/gans-awesome-applications
https://doi.org/10.1186/s40537-019-0197-0
http://www.sciencedirect.com/science/article/pii/S0968090X15003599
http://www.sciencedirect.com/science/article/pii/S0968090X15003599
https://www.youtube.com/watch?v=SJ48OZ_qlrc
http://arxiv.org/abs/1412.1196
http://arxiv.org/abs/1412.1196

Appendix

Wang, Yaxing, Gonzalez-Garcia, Abel, Berga, David, Herranz, Luis, Khan, Fahad Shahbaz, and

van de Weijer, Joost. MineGAN: effective knowledge transfer from GANs to target domains

with few images. arXiv:1912.05270 [cs], April 2020. URL http://arxiv.org/abs/1912.05270.

arXiv: 1912.05270.

Wen, Bingyang, Colon, Luis Oliveros, Subbalakshmi, K. P., and Chandramouli, R. Causal-TGAN:

Generating Tabular Data Using Causal Generative Adversarial Networks. arXiv:2104.10680

[cs], April 2021. URL http://arxiv.org/abs/2104.10680. arXiv: 2104.10680.

Wolfe, P. Convergence Conditions for Ascent Methods. SIAM Review, 11(2):226–235, April 1969.

ISSN 0036-1445. doi: 10.1137/1011036. URL https://epubs.siam.org/doi/abs/10.1137/101

1036.

Wolfe, Philip. Convergence Conditions for Ascent Methods. II: Some Corrections. SIAM Review,

13(2):185–188, 1971. ISSN 0036-1445. URL https://www.jstor.org/stable/2028821.

Wu, Chai Wah. ProdSumNet: reducing model parameters in deep neural networks via product-

of-sums matrix decompositions. arXiv:1809.02209 [cs, stat], May 2019. URL http://arxiv.or

g/abs/1809.02209. arXiv: 1809.02209.

Xu, Lei and Veeramachaneni, Kalyan. Synthesizing Tabular Data using Generative Adversarial

Networks. arXiv:1811.11264 [cs, stat], November 2018. URL http://arxiv.org/abs/1811.11264.

arXiv: 1811.11264.

Xu, Lei, Skoularidou, Maria, Cuesta-Infante, Alfredo, and Veeramachaneni, Kalyan. Modeling

Tabular data using Conditional GAN. In Wallach, H., Larochelle, H., Beygelzimer, A., Alché-

Buc, F. d\textquotesingle, Fox, E., and Garnett, R., editors, Advances in Neural Information

Processing Systems 32, pages 7335–7345. Curran Associates, Inc., 2019. URL http://papers.n

ips.cc/paper/8953-modeling-tabular-data-using-conditional-gan.pdf.

Ye, Haishan and Zhang, Zhihua. Nestrov’s Acceleration For Second Order Method.

arXiv:1705.07171 [cs], May 2017. URL http://arxiv.org/abs/1705.07171. arXiv: 1705.07171.

Yeh, Raymond A., Chen, Chen, Lim, Teck Yian, Schwing, Alexander G., Hasegawa-Johnson,

Mark, and Do, Minh N. Semantic Image Inpainting with Deep Generative Models.

arXiv:1607.07539 [cs], July 2017. URL http://arxiv.org/abs/1607.07539. arXiv: 1607.07539.

Yin, Dan and Yang, Qing. GANs Based Density Distribution Privacy-Preservation on Mobility

Data. Security and Communication Networks, 2018:e9203076, December 2018. ISSN 1939-

0114. doi: 10.1155/2018/9203076. URL https://www.hindawi.com/journals/scn/2018/9203

076/. Publisher: Hindawi.

You, Z. and Xu, B. Investigation of stochastic Hessian-Free optimization in Deep neural

networks for speech recognition. In The 9th International Symposium on Chinese Spoken

Language Processing, pages 450–453, September 2014. doi: 10.1109/ISCSLP.2014.6936597.

URL https://ieeexplore.ieee.org/document/6936597/.

188

http://arxiv.org/abs/1912.05270
http://arxiv.org/abs/2104.10680
https://epubs.siam.org/doi/abs/10.1137/1011036
https://epubs.siam.org/doi/abs/10.1137/1011036
https://www.jstor.org/stable/2028821
http://arxiv.org/abs/1809.02209
http://arxiv.org/abs/1809.02209
http://arxiv.org/abs/1811.11264
http://papers.nips.cc/paper/8953-modeling-tabular-data-using-conditional-gan.pdf
http://papers.nips.cc/paper/8953-modeling-tabular-data-using-conditional-gan.pdf
http://arxiv.org/abs/1705.07171
http://arxiv.org/abs/1607.07539
https://www.hindawi.com/journals/scn/2018/9203076/
https://www.hindawi.com/journals/scn/2018/9203076/
https://ieeexplore.ieee.org/document/6936597/

Bibliography

Zeiler, Matthew D. ADADELTA: An Adaptive Learning Rate Method. arXiv:1212.5701 [cs],

December 2012. URL http://arxiv.org/abs/1212.5701. arXiv: 1212.5701.

Zhang, Danqing, Cao, Junyu, Feygin, Sid, Tang, Dounan, Shen, Zuo-Jun(Max), and Pozd-

noukhov, Alexei. Connected population synthesis for transportation simulation. Trans-

portation Research Part C: Emerging Technologies, 103:1–16, June 2019a. ISSN 0968-090X.

doi: 10.1016/j.trc.2018.12.014. URL http://www.sciencedirect.com/science/article/pii/S0

968090X18318515.

Zhang, Han, Goodfellow, Ian, Metaxas, Dimitris, and Odena, Augustus. Self-Attention

Generative Adversarial Networks. arXiv:1805.08318 [cs, stat], June 2019b. URL http:

//arxiv.org/abs/1805.08318. arXiv: 1805.08318.

Zhao, Zilong, Kunar, Aditya, Van der Scheer, Hiek, Birke, Robert, and Chen, Lydia Y. CTAB-GAN:

Effective Table Data Synthesizing. arXiv:2102.08369 [cs], May 2021. URL http://arxiv.org/ab

s/2102.08369. arXiv: 2102.08369.

Zheng, Chuanxia, Cham, Tat-Jen, and Cai, Jianfei. Pluralistic Image Completion.

arXiv:1903.04227 [cs], April 2019. URL http://arxiv.org/abs/1903.04227. arXiv: 1903.04227.

Zhu, Jun-Yan, Park, Taesung, Isola, Phillip, and Efros, Alexei A. Unpaired Image-To-Image

Translation Using Cycle-Consistent Adversarial Networks. pages 2223–2232, 2017. URL

https://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired_Image-To-Ima

ge_Translation_ICCV_2017_paper.html.

189

http://arxiv.org/abs/1212.5701
http://www.sciencedirect.com/science/article/pii/S0968090X18318515
http://www.sciencedirect.com/science/article/pii/S0968090X18318515
http://arxiv.org/abs/1805.08318
http://arxiv.org/abs/1805.08318
http://arxiv.org/abs/2102.08369
http://arxiv.org/abs/2102.08369
http://arxiv.org/abs/1903.04227
https://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.html

Gael Lederrey
PH.D. STUDENT IN MACHINE LEARNING AND DATA SCIENCE
 gael.lederrey@epfl.ch |  glederrey |  gael-lederrey |  Gael Lederrey

Strengths
DuringmyPh.D., I specialized inMachine Learning andDataSciencemethodologies combinedwithmodelization
techniques. During my Bachelor’s and Master’s studies, I explored multiple engineering fields such as Biology,
Mechanics, and Physics. My mathematics and engineering background compliments my Ph.D. since it allows me to
apply out-of-the-box solutions to practical problems.

Education
Ph.D. in Machine Learning and Data Science 2017 - 2022

(TRANSP-OR LABORATORY) · (ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE) Lausanne, Switzerland
Title: “Bridging the gap betweenmodel-driven and data-driven methods in the era of Big Data”

MSc in Computational Science and Engineering (CSE) 2014 - 2017
(ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE) Lausanne, Switzerland

Propaedeutic year in Mathematics and BSc in Physics 2010 - 2014
(ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE) Lausanne, Switzerland

Experiences

Ph.D. in Machine Learning and Data Science Sep. 2017 - Sep. 2022
(TRANSP-OR LABORATORY) · (ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE) Lausanne, Switzerland

• This thesis aims to use the strengths of both data-driven andmodel-drivenmethods to improve its counterparts.
The first part of the thesis used knowledge from Machine Learning to optimize large models and applied it to
Discrete ChoiceModels. The second part combined the strengths ofmodelization andDeep Learning to develop
a newmethodology for generating synthetic data. This research is comprised of three distinct projects:

1. Developmentof stochastic algorithms to improve theoptimizationperformanceof discrete choicemodels.
2. Development of a newarchitecture for Generative Adversarial Networks (GANs) based on themodelization

of causal links in the data.
3. Generation of a large, detailed, and representative synthetic population of Greater London while safe-

guarding the privacy of individuals.
• Other activities include 7 talks in conferences, 5 conference proceedings, and the supervision of 11 semester
projects and 2 MSc thesis.

Internship - Data scientist/Researcher Jul. 2017 - Aug. 2017
(DATA SCIENCE LAB) · (ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE) Lausanne, Switzerland

• Developed a scraper in Python to download data about beer reviews data fromwebsites, including cleaning and
analysis.

• Preparation of a conference proceeding following the results of the Master thesis.

Master thesis in Data Science (CSE degree) Feb. 2017- Jul. 2017
(DATA SCIENCE LAB) · (ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE) Lausanne, Switzerland

• Title: “Who likes this beer? Me or the community? A matched observational study of beer review from two aligned
communities”

• The workload included cleaning the data, matching the elements between the communities, and studying the
data using statistics and Machine Learning to compare both communities and the impact of the rating scales on
the final reviews.

191

Junior Backend Engineer Feb. 2016 - Aug. 2016
(NVISO SA) Lausanne, Switzerland

• Continuation of the internship at 50% during the semester (Feb. to Jun.) and 100% during the summer.

Internship - Backend Engineer Jul. 2015 - Jan. 2016
(NVISO SA) Lausanne, Switzerland

• Development of the backend of a test product based on emotion-recognition technologies; Prototype was de-
veloped using Swagger; Final product was built in collaboration with a foreign team of developers; Worked on
several other internal projects.

Teaching assistant Sep. 2012 - Sep. 2022
(ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE) Lausanne, Switzerland

• Sep. 2017 - Sep. 2022: TA in Optimization and Machine Learning.
• Jan. 2017 - Aug. 2017: Main assistant on a MOOC on Matlab and Octave.
• Sep. 2016 - Dec. 2016: Scrummaster for a Neuroscience C++ project for a team of students; TA in C++ for begin-
ners.

• Feb. 2015 - Jun. 2015: TA in Numerical Analysis.
• Sep. 2012 - Dec. 2014: TA in Physics.

Extracurricular Activity
Ph.D. Student representative Sep. 2018 - Aug. 2020

(ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE) Lausanne, Switzerland
• Ensure the link between Ph.D. students and the various EPFL bodies.
• Organisation of social events and working with the EDCE Ph.D. school.

Communication and Treasury Dec. 2017 - Dec. 2021
(POLYDOC - ASSOCIATION OF PH.D. STUDENTS) Lausanne, Switzerland

• Creation of the association; Communication for two years and Treasurer for two years.
• Built a new system for the treasury; Creation of an exchange platform for Ph.D. representatives; Organisation of
social events.

Voluntary driver Dec. 2015 - present
(ASSOCIATION NEZ ROUGE) Lausanne, Switzerland

• Drive people during the cold nights of the winter holidays.

Member and President Sep. 2015 - Aug. 2017
(CQFD - ASSOCIATION OF MATH STUDENTS) Lausanne, Switzerland

• Link between the association and the administration of the Mathematic section; Organisation of social events.

Skills

General

• Strong mathematical background: statistics, linear algebra, calculus, and numerical methods.
• Knowledge in various engineering fields: Physics, Mechanics, Neurobiology, Chemistry, etc.
• Main language: Python; Knowledge in Javascript, Bash, C++ (OpenMP and MPI), Java, and Matlab.
• Software Engineering: extensive use of GIT and knowledge of Scrum.
• Main OS: Linux; Knowledge in Windows.

Data Science
• Scraping the web (with or without APIs) and cleaning/wrangling data.
• Interactive visualization in JavaScript.
• Analysis of the data using statistical and Machine Learning methodologies.
• Main focus on tabular data; knowledge in NLP, time series, and images.

Machine Learning
• Building Machine Learning models or using them with sklearn.
• Evaluation and optimization of Machine Learning models.
• Knowledge in Tensorflow and Pytorch.
• Cloud computing using slurm.

Languages French (Native), English (C1-C2) & German (A2-B1)

192

	Acknowledgements
	Abstract (English/Français)
	Contents
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Context and motivation
	Summary of contributions
	Outline

	Efficient estimation of complex choice models on large datasets
	Introduction
	Literature review
	Overview of existing studies
	Gaps in knowledge and contributions

	Methodology
	Line search methods
	Trust-region methods
	Hybrid stochastic algorithms with adaptive batch size
	Summary of algorithms

	Results
	Experimental design
	Implementation details
	Performance analysis
	Comparison with Biogeme
	Sensitivity analysis

	Summary

	Generating synthetic data from deep learning with expert knowledge
	Introduction
	Literature review
	Existing approaches for synthetic tabular data generation
	Research axes
	State-of-the-art models
	Model evaluation
	Opportunities and limitations

	Methodology
	Generator
	Discriminator
	Loss function
	Data processing
	Result assessments
	Implementation notes

	Case studies
	Datasets
	Training process

	Results
	Comparison of DATGAN versions
	Comparison with state-of-the-art models
	Sensitivity analysis of the DAG

	Summary

	Generation of detailed synthetic populations using deep learning
	Introduction
	Literature review
	Conditional GANs
	Image completion GANs
	Tabular GANs

	Methodology
	ciDATGAN

	Results
	ciDATGAN vs DATGAN
	Population synthesis

	Summary

	Conclusion
	Main findings
	Future research directions
	Final remarks

	Appendix
	Table of notations (Chapters 2)
	Table of notations (Chapters 3 and 4)
	Case studies (Chapter 3)
	CMAP
	LPMC
	ADULT

	Case studies (Chapter 4)
	LPMC
	LTDS

	Table of results (Chapter 2)
	Estimation time
	Number of epochs

	Table of results (Chapter 3)
	Comparison of DATGAN versions
	Comparison with state-of-the-art models
	Sensitivity anaylsis of the DAG

	Bibliography
	Curriculum Vitae

