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Summary

The discretization of robust quadratic optimal control problems under uncertainty
using the finite element method and the stochastic collocation method leads to large
saddle-point systems, which are fully coupled across the random realizations. Despite
its relevance for numerous engineering problems, the solution of such systems is
notoriously challenging. In this manuscript, we study efficient preconditioners for
all-at-once approaches using both an algebraic and an operator preconditioning
framework. We show in particular that for values of the regularization parameter
not too small, the saddle-point system can be efficiently solved by preconditioning
in parallel all the state and adjoint equations. For small values of the regulariza-
tion parameter, robustness can be recovered by the additional solution of a small
linear system, which however couples all realizations. A mean approximation and
a Chebyshev semi-iterative method are proposed to solve this reduced system. We
consider a random elliptic partial differential equation whose diffusion coefficient
�(x, !) is modeled as an almost surely continuous and positive random field, though
not necessarily uniformly bounded and coercive. We further provide estimates of
the dependence of the spectrum of the preconditioned system matrix on the statisti-
cal properties of the random field and on the discretization of the probability space.
Such estimates involve either the first or second moment of the random variables
1∕minx∈D �(x, !) andmaxx∈D �(x, !), whereD is the spatial domain. The theoret-
ical results are confirmed by numerical experiments, and implementation details are
further addressed.
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fields
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1 INTRODUCTION

Optimal Control Problems (OCPs) constrained by deterministic Partial Differential Equations (PDEs) have been extensively
studied in the last decades since they are essential tools in the design of complex engineering systems, see, e.g., the mono-
graphs1–3. However, the physical system under study is often affected by uncertainties, either due to a lack of knowledge on
some parameters defining the model or due to an intrinsic variability usually characterized in probabilistic terms, thus leading
to random PDEs. To have more reliable results, it is important to account for the ubiquitous uncertainty in nature by constrain-
ing an OCP to such random PDEs, and optimizing statistical measures, often called risk measures4, Chapter 6.3, of a quantity of
interest5, 6. This leads to an OCP Under Uncertainty (OCPUU), and in this work we focus on problems whose structure is

min
u∈U

 [Q(y(!), u)]

s.t. y(!) ∈ V satisfies
a!(y(!), v) = (u, v) ∀v ∈ V , a.e. ! ∈ Ω.

(1)

where u is the unknown deterministic control, y(!) is the state variable which satisfies the random PDE constraint expressed
in a weak form for almost every realization ! of the randomness, Q is the quantity of interest and is a risk measure.
There are two possible paradigms to minimize numerically such functionals involving statistical measures. The first one, called
Stochastic Approximation (SA) method4, Chapter 5.9, includes iterative methods that at each iteration draw new realizations of the
underlying randomness, independent from the previous ones. Examples of such approaches are the stochastic gradient method
and its variants, which have been recently studied for OCPUU7–10.
We adopt here the second approach called Sample Average Approximation (SAA) method4, Chapter 5.1, in which the original
objective functional is replaced by an accurate approximation obtained discretizing once and for all the probability space using
Stochastic Collocation methods (SC), with Monte Carlo, Quasi-Monte Carlo11, or Gaussian quadrature formulae. We do not
consider approximations based onMultilevelMonte Carlo12 and sparse grids formulae13, 14, since theymay not preserve the con-
vexity of the objective functional. After discretization, the optimality conditions become an extremely large (possibly nonlinear)
global system which requires efficient tailored solvers.
The goal of this manuscript is to analyze optimal preconditioners for the linear optimality system obtained from a SC discretiza-
tion of a robust quadratic OCP constrained by a random PDE. Although we restrict to a quadratic OCP, we remark that the
preconditioners developed in this work will also be useful for more complex, non-quadratic, OCPs to precondition the linear
system obtained at each iteration of a nonlinear optimization algorithm (e.g. Newton’s method) see, e.g., Kouri et al.15. We are in
particular interested in studying the dependence of the spectrum of the preconditioned system with respect to the regularization
parameter of the control, the underlying randomness of the system, and the level of discretization in probability.
We stress that the saught control is deterministic, since the properties of the global optimality system depend strongly on whether
the control is stochastic or deterministic. In the first case, one assumes that the realization of the randomness is observable, and
thus an optimal control can be established for each single random realization, leading to a stochastic optimal control u(!).
On the one hand, such problems are easier to solve using SC methods since the global linear system is often decoupled across
all random samples, so that one actually needs to solve a sequence of independent, deterministic OCPs, one for each sample,
for which optimal preconditioners are available16–22. On the other hand, a discretization based on Stochastic Galerkin methods
(SG)23, 24 leads to a fully coupled saddle point system across the random components, evenwhen the optimal control is stochastic.
Optimal preconditioners for an OCP with stochastic control combined with a SG discretization have been analyzed by Benner
et al.25.
Nevertheless, the use of a stochastic control may not be realistic either because the randomness is not observable, as in the case
of subsurface flows (unless one is willing to drill for geotechnical investigation), or because a unique control has to be designed
before the randomness can be observed (e.g. the optimal shape of a building is designed before it is eventually subjected to
random incoming wind conditions). In these cases, that is, the ones we are interested in, one computes a unique deterministic
control valid for all random realizations. This setting is often called robust OCPUU. These problems are harder, since the global
system fully couples all the random samples. For a SC discretization, the global optimality system involves N state equations,
N adjoint equations and a single optimality equation, whereN is the number of collocation points.
Let us now review previous works concerning solution strategies for robust OCPUU. Gradient-based approaches, which permit
to obtain the solution iteratively solving the three sets of equations (state, adjoint, optimality) sequentially at each iteration, have
been combined with a Multilevel Monte Carlo estimators in Van Barel et al.12. Rosseel et al.26 derive optimality conditions
for a general quadratic OCP constrained by a random elliptic PDE. Their control can be either stochastic or deterministic.
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They interestingly remark that a discretization using SC leads to a global system coupling all realizations, unless the control
is fully stochastic, as previously mentioned. Hence, they focus on SG and present numerical results using either a mean-based
preconditioner27 or collective smoothingmultigrid21. AnMG/OPT algorithm based on a hierarchy of sparse grid approximations
of the objective functional has been proposed in Kouri et al.28Another MG/OPT algorithm based on a classical hierarchy of
geometric meshes has been analyzed in Vandewalle et al.29 Other works aimed to reduce the computatational costs based on
trust-region algorithms are Kouri et al.13 and Zahr et al.30.
Despite the remarks of Rosseel et al.26 about the loss of non-intrusivity of SC methods for robust OCPUU, we are interested
in analysing SC for the following reasons. First, SCM maintains its advantages in terms of applicability with respect to general
parameter distributions and ease of implementation31, Chapter 10. Second, one can construct preconditioners whose action can be
fully parallelized across the realizations of the randomness, one example being the preconditioner proposed by Kouri et al.15
That is, while a global system involving all realizations has to be solved, the preconditioner does not couple the realizations,
as it requires to solve approximately (i.e. to precondition) independently each forward and adjoint problem. In this perspective,
this preconditioner has favourable properties in terms of parallelization and memory distribution in a high performance setting.
In this manuscript, we analyse, among others, the performance of the preconditioner proposed in Kouri et al.15, by providing
theoretical estimates for the spectrum of the preconditioned system.
As the regularization parameter on the control, denoted by �, gets smaller, the preconditioner introduced by Kouri et al.15
becomes inefficient. Thus, we introduce a first new preconditioner, named PLR, which still preconditions each state and adjoint
equation in parallel, but requires the additional solution of a small linear system. We partially characterize the spectrum of the
preconditioned system and show numerically its �-robustness. Finally, to derive a provably �-robust preconditioner, we study the
optimality system at the fully-continuous level, and our analysis leads to a second new preconditioner, named POP, for which a
complete theory is available. Both the first and second preconditioner require the inversion of the sum of all inverses of the stiff-
ness matrices. Amean approximation, combined possibly with a Chebyshev semi-iteration, is shown to be sufficient to efficiently
approximate this inverse for quite a wide range of parameters, leading to practical PLRM, PLRC, POPM, POPC preconditioners,
where the subscriptM stands for “mean” and C for Chebyshev.
We remark that the development of robust preconditioners for small values of the regularization parameter is not obvious and
poses some interesting mathematical and computational challenges which, surprisingly, are similar to those encountered in
deterministic OCP when the control acts locally, either on a portion of the domain32, or on a portion of the boundary33.
We further stress that the analysis does not assume that the random bilinear form is uniformly bounded and coercive with respect
to the randomness, which is a frequent simplifying hypothesis in the literature25, 27, 34. Hence, the results will also cover the case
of log-normally distributed random fields, which are common models in engineering applications, and they will cast light on
how the preconditioners’ performance is affected by the variance of the random fields and by the level of discretization in the
probability space.
To develop optimal preconditioners for robust OCPUU, we rely on two different approaches. The first one used to derive the pre-
conditioner PLR is algebraic and has its roots in the seminal work of Murphy et al.35, who proposed an optimal, but expensive,
preconditioner for saddle point matrices which relies on the exact Schur complement. For deterministic OCP, several precon-
ditioners based on approximations of the exact Schur complements have been studied in the last decade16–18, 36–38. This first
approach is suitable for a L2 penalization on the norm of the control. The second approach, used to derive the preconditioner
POP, consists in the so-called “operator preconditioning" paradigm, and is based on identifying the saddle point system as a lin-
ear operator acting between Hilbert spaces, and finding proper weighted-norms such that the continuity constants of the map and
of its inverse are independent of the parameters of interest. We refer the interested reader to works of Malek et al.39, Zulehner19,
Mardal et al.20, Kirby40 and Khan et al.41. While studying this approach, we will discuss the well-posedness of the OCPUU
and the development of robust preconditioners at the continuous level for log-normal fields, without relying on the framework
developed in Gittelson et al.42, 43. This second approach requires aH1 penalization on the norm of the control.
The manuscript is organized as follows. In Section 2 we introduce the notation, while in Section 3 we define the model problem,
provide sufficient conditions for well-posedness and derive the optimality conditions. Section 4 introduces the discretization both
in probability and in physical space. Section 5 deals with algebraic preconditioners for saddle point matrices based on approx-
imations of the Schur complement. Section 6 derives preconditioners using the operator preconditioning approach. Finally,
Section 7 presents numerical experiments validating the theoretical results.
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2 NOTATION

Let D ⊂ ℝd , d ∈ {1, 2, 3}, be a Lipschitz bounded domain and (Ω, ,ℙ) a complete probability space. For every p ∈ [1,∞],
Lp(D) denotes the space of p−Lebesgue integrable functions over D andH1(D) is the Sobolev space

H1(D) ∶=
{

v ∈ L2(D) ∶ )xiv ∈ L
2(D), for i = 1,… , d

}

.

The natural space for the analysis isH1
0 (D), which is the subspace ofH1(D) containing functions that vanish on )D, equipped

with the norm ‖y‖H1
0 (D)

∶= ‖∇y‖L2(D). The topological dual of H1
0 (D) is H−1(D). We denote by CP the Poincaré constant so

that ‖v‖L2(D) ≤ CP‖v‖H1
0 (D)

, ∀v ∈ H1
0 (D). For the sake of brevity, we will denoteH1

0 (D) andH−1(D) by Y and Y ′. Given an
integer N ∈ ℕ and a Hilbert space V , we denote by V ∶=

∏N
i=1 V the Cartesian product of N copies of V . Given a Banach

space U , the duality pairing between U and U ′ is denoted by ⟨⋅, ⋅⟩. The specific choice of U will be clear from the context.
Further, let Lp(Ω, ,ℙ;V ) be the Bochner space44

Lp(Ω, ,ℙ;V ) ∶=
⎧

⎪

⎨

⎪

⎩

v ∶ Ω→ V , v strongly measurable,∫
Ω

‖v(⋅, !)‖pV dℙ(!) < +∞
⎫

⎪

⎬

⎪

⎭

,

henceforth notedLp(Ω, V ), and equipped with the norm ‖v‖Lp(Ω,V ) ∶= (∫Ω ‖v(⋅, !)‖
p
V dℙ(!))

1
p . For a Hilbert space V ,L2(Ω, V )

is a Hilbert space as well, equipped with the scalar product (u, v)L2(Ω,V ) ∶= ∫Ω(u(⋅, !), v(⋅, !))V dℙ(!). To stress better the
dependence of function-valued random variables on an elementary random event !, we will use the notation v! = v(⋅, !) for
almost every (a.e.) ! ∈ Ω. The expectation operator E ∶ L1(Ω)→ ℝ is defined as

E [X] = ∫
Ω

X(!)dℙ(!), ∀X ∈ L1(Ω).

For X ∈ L2(Ω), the variance V ∶ L2(Ω)→ ℝ+ and standard deviation S ∶ L2(Ω)→ ℝ+ are defined as
V [X] ∶= E

[

(X − E [X])2
]

= ∫
Ω

(X − E [X])2dℙ(!), and S [X] ∶=
√

V [X].

We will use repeatedly the Woodbury identity,
(A + UCV )−1 = A−1 − A−1U (C−1 + V A−1U )−1V A−1,

where A ∈ ℝn×n, C ∈ ℝr×r, U ∈ ℝn×r, V ∈ ℝr×n, with A and C invertible. Finally, the spectrum of a matrixH is denoted with
�(H).

3 PROBLEM SETTING

We consider the elliptic random Partial Differential Equation (PDE)
−div(�(x, !)∇y(x, !)) = �(x), x ∈ D, ! ∈ Ω,

y(x, !) = 0, x ∈ )D, ! ∈ Ω,
(2)

where �(x) is a deterministic force term and ! is an elementary random event. Equation (2) is commonly used to describe
subsurface flows and heat diffusion in random media. The random field �(x, !)models the statistical properties of the medium.
For instance, interpreting (2) as a subsurface flow model, �(x, !) represents a random permeability field.
Assumption 1 (On the random diffusion field). The random diffusion field � has almost surely (a.s.) continuous and positive
realizations and the map ! → �(⋅, !) ∈ C0(D) is measurable. Thus, the random variables �min(!) ∶= minx∈D �(x, !) and
�max(!) ∶= maxx∈D �(x, !) are well-defined. Further, there exists a p ∈ [1,∞] such that both �max and 1

�min
are in Lp(Ω).

These assumptions are clearly verified with p = ∞ by a continuous and uniformly bounded random field, i.e. if there exist K1,
K2 ∈ ℝ+ such that

K1 ≤ �(x, !) ≤ K2, ∀x ∈ D, a.e. ! ∈ Ω.
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Another instance is the log-normal random field �(x, !) = exp(g(x, !)), where g(x, !) is a Gaussian field with covariance
function cov[g](x, y) ∶= k(‖x − y‖), and k(⋅) is a Lipschitz function. Both �min and �max are in Lp(Ω) for every p ∈ [1,∞)45.
The log-normal field is commonly used in hydrology applications46, 47 and has been extensively studied42, 43, 45, 48–50.
For a.e. ! ∈ Ω, a!(⋅, ⋅) ∶ Y × Y → ℝ, a!(u, v) ∶= ∫D �(x, !)∇u(x)∇v(x)dx is a symmetric, continuous and coercive bilinear
form, but not necessarily uniformly in ! due to Assumption 1. It holds

�min(!)‖u‖2Y ≤ a!(u, u) ≤ �max(!)‖u‖2Y . (3)
The weak formulation of (2) on Y for a.e. ! ∈ Ω is

find y! ∈ Y s.t. a!(y!, v) = ⟨�, v⟩, for every v ∈ Y , for a.e. ! in Ω. (4)
Due to Assumption 1, the following classical result holds45, 48, 51.
Lemma 1. Problem (4) has a unique solution y! for a.e. ! ∈ Ω. Further,

‖y!‖Y ≤
‖�‖Y ′
�min(!)

, for a.e. ! ∈ Ω,

‖y‖Lp(Ω,Y ) ≤ ‖�‖Y ′
‖

‖

‖

‖

1
�min

‖

‖

‖

‖Lp(Ω)
.

As an alternative to the a.e. formulation (4), a global weak formulation in both physical and probability spaces can be considered.
Defining the bilinear form

a(u, v) ∶= ∫
Ω

∫
D

�(x, !)∇u(x, !)∇v(x, !)dxdℙ(!) = E
[

a!(u!, v!)
]

, (5)

the energy space Y ∶=
{

v ∶ Ω→ Y ∶ ∕(Y )-measurable , ‖v‖2 ∶= a(v, v) <∞
}, and the functional Φ(v) ∶=

∫Ω⟨�, v!⟩dℙ(!) = E
[

⟨�, v!⟩
], the global weak formulation reads

find y ∈ Y s.t. a(y, v) = Φ(v), ∀v ∈ Y . (6)
We further introduce the operators associated with the bilinear forms a!(⋅, ⋅) and a(⋅, ⋅), namely

! ∶ Y → Y ′ ⟨!u, v⟩ ∶= a!(u, v), (7)
 ∶ Y → Y ′

⟨u, v⟩ ∶= a(u, v). (8)
The link between the global weak formulation (6) and the a.e. formulation (4) is provided in the following Lemma.
Lemma 2. The solution of (4), interpreted as the representative element of the equivalence class of functions coinciding ℙ-a.s.
with it, is the unique solution of the linear variational problem (6) and lies in Lp(Ω, Y ).
Proof. Since the energy space Y is a Hilbert space,42, Proposition 3.6, the existence and uniqueness of the solution of (6) follows
from Riesz’s theorem if Φ ∈ Y ′. Due to the specific form of Φ, this is easily verified since for any � ∈ Y ′,

|Φ(v)| =
|

|

|

|

|

|

|

∫
Ω

⟨�, v(⋅, !)⟩dℙ(!)
|

|

|

|

|

|

|

≤ ‖�‖Y ′ ∫
Ω

‖v(⋅, w)‖Y dℙ(!) ≤ ‖�‖Y ′

√

E
[

1
�min(!)

]

‖v‖.

Further, Corollary 3.8 in Gittelson et al.42 shows that the solution of (4) coincides ℙ-a.e with the unique solution of (6). Finally,
using Lemma 1, we obtain the desired regularity.
In this manuscript, we are interested in solving OCPs constrained by the state equation (6), the applications in mind being the
optimal control of heat diffusion processes or inverse problems in subsurface flows. We suppose that the deterministic force
term � can be decomposed in a given deterministic part called f , and a deterministic control ũ. We suppose that ũ lies in the
dual of a Hilbert space U , which will be either L2(D) or Y . In both cases, we use the Riesz operator ΛU ∶ U → U ′ ⊂ Y ′, such
that ũ = ΛUu and ⟨ũ, v⟩ = (u, v)U ,∀v ∈ U . The quantity we aim to compute is the Riesz representative u.
We focus on the quadratic objective functional

J = 1
2
E
[

‖y! − yd‖2L2(D)
]

+

2
‖S

[

y!
]

‖

2
L2(D) +

�
2
‖u‖2U

= 1
2
(

y − yd , y − yd
)

L2(Ω,L2(D)) +

2
(

y − E
[

y!
]

, y − E
[

y!
])

L2(Ω,L2(D)) +
�
2
(u, u)U ,
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where  ≥ 0, � > 0, and yd ∈ L2(D) is a deterministic target state. The optimization of J consists in a trade-off between how
close y is to the target state yd , and how large are the L2 norm of the pointwise standard deviation of y and the energy of the
control u. The relative importance of the latter two terms is measured by  and �. The whole OCP can be formulated as

⎧

⎪

⎨

⎪

⎩

minu∈U J (u) =
1
2
E
[

‖y!(u) − yd‖2L2
]

+ 
2
‖S

[

y!(u)
]

‖

2
L2 +

�
2
‖u‖2U ,

where y!(u) ∈ Y solves
E
[

⟨!y!(u), v!⟩
]

= E
[

⟨f + ΛUu, v!⟩
]

, ∀v ∈ Y .

(9)

We emphasize the dependence of y on the control u through the notation y(u).
Lemma 3 (Well posedness of the OCP). If Assumption 1 holds with p ≥ 2, then the OCP (9) admits a unique solution u∗ ∈ U .
Proof. The proof is standard and it is a straightforward generalization of the classical theory of Lions1, see also the
monographs3, 52. The case p = 2 is detailed in Theorem 3.4 in Martínez-Frutos et al.53
To derive the optimality conditions, we rely on an optimize-then-discretize paradigm and a Lagrangian approach. For the sake of
brevity, we omit the calculations of the directional derivatives evaluated in (y, u, p), where p ∈ L2(Ω, Y ) is the adjoint variable,
along the directions �y, �p, and �u. We refer the interested reader to Van Barel et al.12, Section 4 and Ayoul-Guilmard et al.54 The
optimality system reads

E
[

⟨!p!, v!⟩
]

+ E
[

⟨ΛL2
(

y! + (y! − E
[

y!
]

)
)

, v!⟩
]

= E
[

⟨ΛL2yd , v!⟩
]

, ∀v ∈ Y ,
⟨�ΛUu − ΛUE

[

p!
]

, v⟩ = 0, ∀v ∈ U,
E
[

⟨!y!, v!⟩
]

− E
[

⟨ΛUu, v!⟩
]

= E
[

⟨f, v!⟩
]

, ∀v ∈ Y .
(10)

Notice that we tacitly used the self-adjointness of the state equation (2). The analysis of Section 5 can be naturally extended to
the non-symmetric case, introducing the discretization of the adjoint operator of ! where appropriate, see, e.g., Rees et al.17.
More effort is needed to extend the results of Section 6, as the analysis relies on the choice of a proper norm which is problem
dependent.

4 DISCRETIZATION

4.1 Discretization in probability
To numerically approximate the solution of (9), we rely on a Sample Average Approximation (SAA)4. We replace the exact
expectation operator E [⋅] with a suitable quadrature formula Ê [⋅] with N nodes. Given a random variable X ∈ L2(Ω) we
approximate,

E [X(!)] = ∫
Ω

X(!)dℙ(!) ≈
N
∑

i=1
�iX(!i) =∶ Ê [X(!)] ,

S [X(!)] =
√

E
[

(X(!) − E [X(!)])2
]

≈
√

Ê
[

(X(!) − Ê [X(!)])2
]

=∶ Ŝ [X(!)] ,

where �i and !i are, respectively, the weights and nodes of the quadrature formula with ∑N
j=1 �j = 1. We restrict ourselves

to quadrature formulae with positive weights, such as Monte Carlo, Quasi-Monte Carlo and Gaussian formulae. We exclude
sparse grids and Multilevel Monte Carlo approximations, since the presence of negative weights may compromize the convexity
of the OCP. The construction of Gaussian quadrature formulae requires that the probability space can be parametrized by a
sequence (finite or countable) of independent random variables {�j

}

j , each with distribution �j , and the existence of a complete
basis of tensorized L2�j -orthonormal polynomials. This assumption can be either the consequence of a modelling hypothesis or
mathematically justified as the truncation of a Karhunen-Loève expansion of the diffusion field � or of a transformation of it,
�̃ =  (�) (as, e.g., in the log-normal case with �̃ = log(�))51, Section 7.4. Concerning the quadrature error, we refer to Martin et
al.7 for Monte Carlo, to Guth et al.11 for Quasi Monte Carlo, and to Martin et al.7, Appendix A for SC discretizations.
Once the probability space has been discretized, the vectors

y(x) = (y!1(x),… , y!N (x))
⊤ ∈ Y and p(x) = (p!1(x),… , p!N (x))

⊤ ∈ Y ,
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contain snapshots of the function-valued random variables ! → y(⋅, !) and ! → p(⋅, !) at the N collocation points. We now
introduce the operator ̂ ∶ Y → Y ′, which approximates the bilinear form a(⋅, ⋅) in (5),

⟨̂u, v⟩ =
N
∑

i=1
�i⟨!iu!i , v!i⟩ = Ê

[

⟨!u, v⟩
]

, ∀u = (u!1 ,… , u!N ), v = (v!1 ,… , v!N ) ∈ Y , (11)

the constant extension operator  ∶ Y ′ → Y ′ such that f = (f,… , f )⊤ ∀f ∈ Y ′, and its adjoint ′ ∶ Y → Y as ′v = ∑

i=1 v!i
∀v ∈ Y , so that ⟨f, v⟩Y ′,Y = ⟨f,′v⟩Y ′,Y . Notice that Ê [

y!
]

=
∑N
i=1 �iy!i = ′y, where  = diag(�1,… , �N ) is a

diagonal matrix containing the quadrature weights. Finally, the operator ΛL2 is defined as ΛL2v = (ΛL2v!1 ,… ,ΛL2v!N )
⊤. The

semi-discrete matrix formulation of (10)1, written as an equality in dual spaces, is
⎛

⎜

⎜

⎝

ΛL2
(

(1 + ) − ′
)

0 ̂
0 �ΛU −ΛU′
̂ −ΛU 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

y
u
p

⎞

⎟

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

ΛL2yd
0

f

⎞

⎟

⎟

⎠

. (12)

which corresponds to the set of equations
!ip!i + (1 + )ΛL2y!i − Ê

[

y!
]

= ΛL2yd , i = 1,… , N,

�ΛUu − ΛU Ê
[

p!
]

= 0, (13)
!iy!i − ΛUu = f, i = 1,… , N.

4.2 Discretization in space
Let us denote by {

ℎ
}

ℎ>0 a family of regular triangulations of D. Y ℎ denotes the space of continuous piecewise polynomial
functions of degree r over ℎ that vanish on )D, that is Y ℎ ∶=

{

vℎ ∈ C0(D) ∶ vℎ|K ∈ ℙr(K), ∀K ∈ ℎ, y|)D = 0
}

⊂ Y .
Nℎ is the number of degrees of freedom associated with the space Y ℎ. We consider a finite element discretization of system
(12). The vectors y = (y1,… , yN ) ∈ ℝN ⋅Nℎ and p = (p1,… ,pN ) ∈ ℝN ⋅Nℎ are the discretization of the vector functions y and
p. To discretize the control u, we use the same finite element space Y ℎ 7, Remark 3.1. Further, the matrices A!i ∈ ℝNℎ×Nℎ are the
stiffness matrices corresponding to the elliptic operators !i , and A0 ∶=

∑N
i=1 �iA!i is the empirical mean.Ms ∈ ℝNℎ×Nℎ is

the standard mass matrix. The identity matrices are Is ∈ ℝNℎ×Nℎ and I ∈ ℝN ⋅Nℎ×N ⋅Nℎ . According to the choice of the control
space, that is U = L2(D) or U = Y ′, the representation of the Riesz operator ΛU is either ΛU =Ms or ΛU = K , whereK is the
stiffness matrix associated with the standard scalar product in Y . In the following, we will suppose the control u lies in L2(D),
i.e. U = L2(D).
At the fully discrete level, system (12) reads S x = b,

S =
⎛

⎜

⎜

⎝

M
(

(1 + )Z − Z11⊤Z
)

0 A
0 �Ms −Ms1

⊤Z
A −Z1Ms 0

⎞

⎟

⎟

⎠

, x =
⎛

⎜

⎜

⎝

y
u
p

⎞

⎟

⎟

⎠

, b =
⎛

⎜

⎜

⎝

Z1Msyd
0

Z1f

⎞

⎟

⎟

⎠

, (14)

where A ∈ ℝN ⋅Nℎ×N ⋅Nℎ ,M ∈ ℝN ⋅Nℎ×N ⋅Nℎ , 1 ∈ ℝN ⋅Nℎ×Nℎ are defined as

A ∶=

⎛

⎜

⎜

⎜

⎜

⎝

�1A!1
�2A!2

⋱
�NA!N

⎞

⎟

⎟

⎟

⎟

⎠

, M ∶=

⎛

⎜

⎜

⎜

⎜

⎝

Ms
Ms

⋱
Ms

⎞

⎟

⎟

⎟

⎟

⎠

, 1 ∶=

⎛

⎜

⎜

⎜

⎜

⎝

Is
Is
⋮
Is

⎞

⎟

⎟

⎟

⎟

⎠

,

and Z = diag(�1Is,… , �NIs) ∈ ℝN ⋅Nℎ,N ⋅Nℎ is the discretization of . Since M has constant diagonal blocks the following
equalities hold true and will be extensively used,

M11
⊤ = 1Ms1

⊤ = 11
⊤M and MZ = ZM. (15)

1The same semi-discrete optimality system can be derived using a discrete-then-optimize paradigm in probability, that is by replacing E [⋅] with Ê [⋅] into (9), and
then by calculating the directional derivatives.
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It is convenient to rewrite (14) in a compact form as
S =

(

C B⊤

B 0

)

, (16)
where

C ∶=
(

M 0
0 �Ms

)

withM ∶=M
(

(1 + )Z − Z11⊤Z
)

, and B ∶= (

A −Z1Ms
)

.

The matrixM plays a key role in the following, thus we discuss its properties in the next Lemma.
Lemma 4. The matrixM =M

(

(1 + )Z − Z11⊤Z
) is symmetric and positive definite for any  ≥ 0. Its inverse is equal to

M−1
 =

(

M
(

(1 + )Z − Z11⊤Z
))−1 =

(

1
1 + 

Z−1 +


1 + 
11

⊤
)

M−1.

Proof. A straightforward calculation shows that
(I − 11⊤Z)⊤MZ(I − 11⊤Z) =MZ −MZ11⊤Z +Z11⊤MZ11⊤Z −Z11⊤MZ
=MZ −ZM11

⊤Z +Z1Ms1
⊤Z −Z11⊤MZ =MZ −Z1Ms1

⊤Z,

where we used (15) and 1⊤MZ1 =
∑N
j=1 �jMs =Ms. Hence,M is symmetric since it can be written as

M =MZ + MZ
(

I − 11⊤Z
)

=MZ + (I − 11⊤Z)⊤MZ(I − 11⊤Z).

The positive definiteness follows from the positiveness of the weights of the quadrature formulae. Finally using the Woodbury
identity the claim follows,

(

(1 + )Z − Z11⊤Z
)−1 = 1

1 + 
Z−1 −

(

1
1 + 

)2

1

(

−1

Is +

1
1 + 

1
⊤Z1

)−1

1
⊤ =

= 1
1 + 

Z−1 −
(

1
1 + 

)2

1

(

−1

+ 1
1 + 

)−1

1
⊤ = 1

1 + 
Z−1 +


1 + 

11
⊤.

5 ALGEBRAIC PRECONDITIONERS

In this section we study algebraic preconditioners for the saddle point matrix (16) based on the seminal work by Murphy et al.35,
where the authors showed that a general saddle point matrix

(

C B⊤2
B1 0

)

can be optimally preconditioned by  ∶= diag(C, S),
where S = B1C−1B⊤2 is the Schur complement. However, since inverting S is too expensive, one needs to use suitable approx-
imations. Let us consider the preconditioner ̃ ∶= diag(C, S̃), obtained replacing the exact Schur complement S with a
symmetric positive definite approximation S̃. A characterization of the spectrum of ̃−1S is provided by the following lemma.
Lemma 5 (Spectrum of ̃−1S ). The matrix ̃−1S has eigenvalue 1with multiplicityNℎ. The remaining 2N ⋅Nℎ eigenvalues
are distinct and equal to

�j =
1 +

√

1 + 4�j
2

, �j+N ⋅Nℎ
=
1 −

√

1 + 4�j
2

,

where �j are the eigenvalues of S̃−1S, and j = 1,… , N ⋅Nℎ.
Proof. See, for instance, Section 6.2.1 of Elman et al.55
Lemma 5 reduces the problem of estimating �(̃−1S ) to the problem of estimating �(S̃−1S).
For the simpler deterministic OCP, the exact Schur complement is S = AsM−1

s As +
1
�
Ms, where As is the stiffness matrix,

Ms the mass matrix and � is the control regularization parameter. Rees et al.16, 17 approximate S with AsM−1
s As, and obtain

eigenvalue estimates for the preconditioned system which clearly show a � dependence. An identical approximation in the
context of robust OCPUU has been first proposed in Kouri et al.15, though without a theoretical analysis. In subsection 5.1, we
provide a full characterization of the spectrum of the preconditioned system for the robust OCPUU which highlights both the
dependence on � and on the random field extremal values.
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As the performance of the preconditioner analyzed in Subsection 5.1 deteriorates as � → 0, in subsection 5.2, we propose
a �-robust preconditioner based on a more involved approximation of the Schur complement of (16), inspired by works on
deterministic OCPs16–18, 36–38.

5.1 A Schur complement approximation
The exact Schur complement of the saddle point matrix S in (16) is

S ∶= BC−1B⊤ = AM−1
 A + 1

�
Z1Ms1

⊤Z. (17)
The term AM−1

 A is block diagonal if and only if  = 0, in which case it is the direct generalization of the matrix which appears
in a deterministic OCP, except that the diagonal blocks are multiplied by the weights of quadrature formula. On the other hand,
the term 1

�
Z1Ms1

⊤Z is difficult to handle as it has significantly different properties from the corresponding 1
�
Ms term of

deterministic OCPs. First, 1
�
Z1Ms1

⊤Z is a block-dense matrix, where each block is given by a mass matrix. Second it is a
relatively low-rank term. Its effect is to couple all the equations, increasing the difficulties to construct � robust preconditioners.
We remark that a similar low-rank perturbation appears in deterministic OCPwith a control acting on a subset of the boundary33.
The first approximation S̃, and corresponding preconditioner P̃ , we consider is obtained dropping the �-dependent low-rank
term,

S̃ ∶= AM−1
 A ≈ S, P̃ ∶=

(

C 0
0 S̃

)

. (18)
Computing S̃−1S we obtain

S̃−1S = (AM−1
 A)−1

(

AM−1
 A + 1

�
Z1Ms1

⊤Z
)

= I + 1
�
A−1MA

−1Z1Ms1
⊤Z =∶ I + 1

�
H̃,

that is, S̃−1S is the identity plus a �-dependent low-rank term. Hence, S̃−1S will have at most Nℎ eigenvalues different from
one since rank (11⊤Z)

= Nℎ. To study the spectrum of H̃ , we consider the similar matrix
H ∶= ZH̃Z−1 = ZA−1MA

−1ZM11
⊤ = (1 + )ZA−1MZA−1ZM11

⊤ − ZA−1MZ11⊤ZA−1ZM11
⊤. (19)

A characterization of the spectrum of S̃−1S is provided in the following Lemma.
Lemma 6 (Spectrum of S̃−1S). The spectrum of S̃−1S satisfies �(S̃−1S) = {1}∪

{

1 + 1
�
�j
}Nℎ

j=1
,where �j are the eigenvalues

of Ê [

K2
!

]

+ 
(

Ê
[

K2
!

]

− Ê
[

K!
]2
)

, with K! ∶= A−1! Ms.
Proof. As ZA−1 = diag(A−1!1 , A−1!2 ,… , A−1!N ), direct calculations show that

ZA−1MZA−1ZM11
⊤ =

⎛

⎜

⎜

⎜

⎜

⎝

�1K2
!1

�1K2
!1

⋯ �1K2
!1

�2K2
!2

�2K2
!2

⋯ �2K2
!2

⋮ ⋮ ⋮ ⋮
�NK2

!N
�NK2

!N
⋯ �NK2

!N

⎞

⎟

⎟

⎟

⎟

⎠

,

and

ZA−1MZ11⊤ZA−1ZM11
⊤ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

�1K!1

(

∑N
i=1 �iK!i

)

⋯ �1K!1

(

∑N
i=1 �iK!i

)

�2K!2

(

∑N
i=1 �iK!i

)

⋯ �2K!2

(

∑N
i=1 �iK!i

)

⋮ ⋮ ⋮

�NK!N

(

∑N
i=1 �iK!i

)

⋯ �NK!N

(

∑N
i=1 �iK!i

)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

The matrixH ((19)) is then equal to

H =

⎛

⎜

⎜

⎜

⎜

⎝

H1 … H1
H2 … H2
⋮ ⋮ ⋮
HN … HN

⎞

⎟

⎟

⎟

⎟

⎠

= Ĥ11
⊤,

whereHi ∶= �iK2
!i
+ 

(

�iK2
!i
− �iK!i

(

∑N
j=1 �jK!j

))

, and Ĥ ∶= diag(H1,H2,… ,HN ). Clearly, the rank ofH isNℎ, being
Nℎ the size of K!i , i.e. the number of degrees of freedom in the finite element discretization.
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We then look for an eigenpair (�, v), where v = (v1,… , vN ) ∈ ℝN ⋅Nℎ . Notice that if (�, v) is an eigenpair ofH , then (�,w) with
w ∶=

∑N
j=1 vj = 1

⊤v is an eigenpair of the reduced matrix 1⊤Ĥ1 =
∑N
i=1Hi, since

1
⊤Ĥ1w = 1

⊤Ĥ11
⊤v = �1⊤v = �w.

Thus, we can first compute the eigenpair (�,w) of∑N
i=1Hi, and then recover the eigenpair (�, v) ofH setting v = 1

�
Ĥ1w, since

Hv = Ĥ11
⊤v = 1

�
Ĥ11

⊤Ĥ1w = Ĥ1w = �v.

Calculating explicitly (∑N
i=1Hi) we obtain,

N
∑

i=1
Hi =

N
∑

i=1
�iK

2
!i
+ 

⎡

⎢

⎢

⎣

N
∑

i=1
�iK

2
!i
−

( N
∑

j=1
�jK!j

)2
⎤

⎥

⎥

⎦

= Ê
[

K2
!

]

+ 
(

Ê
[

K2
!

]

− Ê
[

K!
]2
)

,

and the claim follows.
Lemmas 5 and 6 guarantee that the spectrum of ̃−1S is well clustered around 1 and 1±

√

5
2

, except for 2Nℎ eigenvalues which
depend on � and on the spectrum of Ê [

K2
!

]

+ 
(

Ê
[

K2
!

]

− Ê
[

K!
]2
)

. We formalize this statement in the following Theorem.

Theorem 1. The matrix ̃−1S has eigenvalue � = 1 with multiplicity Nℎ, � = 1+
√

5
2

and � = 1−
√

5
2

each with multiplicity
(N − 1) ⋅Nℎ. The remaining 2Nℎ eigenvalues are equal to

�j =
1
2

⎛

⎜

⎜

⎝

1 +

√

5 +
4�j
�

⎞

⎟

⎟

⎠

, �j+Nℎ
= 1
2

⎛

⎜

⎜

⎝

1 −

√

5 +
4�j
�

⎞

⎟

⎟

⎠

,

where �j , j = 1,… , Nℎ are the eigenvalues of Ê
[

K2
!

]

+ 
(

Ê
[

K2
!

]

− Ê
[

K!
]2
)

, with K! = A−1! Ms.
Proof. The claim follows directly using the characterization of the spectrum of S̃−1S (provided by Lemma 6) in Lemma 5.
We now study how the eigenvalues of Ê [

K2
!

]

+
(

Ê
[

K2
!

]

− Ê
[

K!
]2
)

depend on the mesh size ℎ and on the statistical properties
of the random field � under the assumption of a quasi-uniform triangulation ℎ. To do so, we briefly recall some useful results,
namely, an inverse inequality56, Proposition 6.3.2, an equivalence of norms57, Lemma 9.7, and a characterization of the spectra of the
mass matrix57, Theorem 9.8 and stiffness matrix55, Theorem 1.32 concerning the finite element space Yℎ and the associated Lagrangian
basis:

∃CI > 0 ‖∇vℎ‖L2(D) ≤ CIℎ
−1
‖vℎ‖L2(D), ∀vℎ ∈ Yℎ, (20)

∃C1, C2 > 0 C1ℎ
d
|vℎ|2 ≤ ‖vℎ‖

2
L2(D) ≤ C2ℎ

d
|vℎ|2, ∀vℎ ∈ Yℎ, (21)

�(Ms) ⊂ [C1ℎd , C2ℎd] (22)

�(A!) ⊂

[

�min(!)
C1ℎd

C2P
, �max(!)C2IC2ℎ

d−2

]

, (23)

where vℎ is the vector collecting the nodal degrees of freedom of vℎ, | ⋅ | is the vector euclidean norm and d is the spatial
dimension. The constants CI , C1, C2 may depend on the polynomial order r. We first derive an auxiliary result concerning the
matrices L! ∶= A−1! MsA−1! and Ê [

L!
]:

Lemma 7. Defining cL ∶= C1
C4IC

2
2
and CL ∶= C2C4P

C21
, the following inclusions hold:

�
(

L!
)

⊂
[

cLℎ4−d

�2max(!)
, ℎ

−dCL
�2min(!)

]

, for a.e. ! ∈ Ω,
�
(

Ê
[

L!
]

)

⊂
[

cLℎ4−dÊ
[

1
�2max(!)

]

, CLℎ−dÊ
[

1
�2min(!)

]]

Proof. The matrix L! is symmetric and positive definite. Its extremal eigenvalues are characterized by the Raleigh quotients,
�max(L!) = supv∈ℝNℎ

v⊤A−1! MsA−1! v
v⊤v = supw∈ℝNℎ

w⊤Msw
w⊤A2!w

≤ C2ℎdC4P
�2min(!)C

2
1ℎ

2d =
ℎ−d

�2min(!)
C2C4P
C21

,

�min(L!) = infv∈ℝNℎ
v⊤A−1! MsA−1! v

v⊤v = infw∈ℝNℎ
w⊤Msw
w⊤A2!w

≥ C1ℎd

�2max(!)C
4
IC

2
2ℎ

2d−4 =
ℎ4−d

�2max(!)
C1
C4IC

2
2
.

(24)
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Thematrix Ê [

L!
] is positive definite as well, being the convex combination of positive definite matrices. Using (24), its extremal

eigenvalues are bounded by

�max(Ê
[

L!
]

) = sup
v∈ℝNℎ

∑N
i=1 �iv

⊤L!iv
v⊤v

≤
N
∑

i=1
�j sup
v∈ℝNℎ

v⊤L!iv
v⊤v

≤ ℎ−dCLÊ

[

1
�2min(!)

]

,

�min(Ê
[

L!
]

) = inf
v∈ℝNℎ

∑N
i=1 �iv

⊤L!iv
v⊤v

≥
N
∑

i=1
�j inf
v∈ℝNℎ

v⊤L!iv
v⊤v

≥ ℎ4−dcLÊ
[

1
�2max(!)

]

.

Thanks to Lemma 7, we can give bounds on the spectrum of the matrix Ê
[

K2
!

]

+ 
(

Ê
[

K2
!

]

− Ê
[

K!
]2
)

, thus leading to the
final result.
Theorem 2 (Characterization of the spectrum of ̃−1S ). If the triangulation ℎ is quasi-uniform, then the eigenvalues of ̃−1S

satisfy one of
� ∈

{

1,
1 +

√

5
2

,
1 −

√

5
2

}

,

1
2

(

1 +

√

5 +
4dLℎ4

�
Ê
[

1
�2max(!)

]

)

≤� ≤ 1
2

⎛

⎜

⎜

⎝

1 +

√

√

√

√5 +
4DL(1 + )

�
Ê

[

1
�2min(!)

]

⎞

⎟

⎟

⎠

,

or 1
2

⎛

⎜

⎜

⎝

1 −

√

√

√

√5 +
4DL(1 + )

�
Ê

[

1
�2min(!)

]

⎞

⎟

⎟

⎠

≤� ≤ 1
2

(

1 −

√

5 +
4dLℎ4

�
Ê
[

1
�2max(!)

]

)

,

(25)

where dL = cLC1, DL = CLC2 are constants independent ofN, �, , ℎ and on the random set of realizations {!i
}N
i=1.

Proof. Due to Theorem 1, we study the extremal eigenvalues of Ê [

K2
!

]

+ 
(

Ê
[

K2
!

]

− Ê
[

K!
]2
)

. We first suppose  = 0 and
remark that Ê [

K2
!

]

= Ê
[

L!Ms
]

= Ê
[

L!
]

Ms, which is similar toM−1∕2
s Ê

[

L!
]

M−1∕2
s . Using Lemma 7, we have

�max(Ê
[

K2
!

]

) = sup
v∈ℝNℎ

v⊤Ê
[

L!
]

v
v⊤M−1

s v
≤ CLC2Ê

[

1
�2min(!)

]

.

�min(Ê
[

K2
!

]

) = inf
v∈ℝNℎ

v⊤Ê
[

L!
]

v
v⊤M−1

s v
≥ cLC1ℎ

4Ê
[

1
�2max(!)

]

.

Next, we consider the  dependent term and observe that
Ê
[

K2
!

]

− Ê
[

K!
]2 = Ê

[

A−1! MsA
−1
! Ms

]

− Ê
[

A−1! Ms
]

Ê
[

A−1! Ms
]

=
(

Ê
[

A−1! MsA
−1
!

]

− Ê
[

A−1!
]

MsÊ
[

A−1!
]

)

Ms

= Ê

[

(

A−1! M
1
2
s − Ê

[

A−1! M
1
2
s

])(

A−1! M
1
2
s − Ê

[

A−1! M
1
2
s

])⊤
]

Ms.

Thus, Ê [

K2
!

]

− Ê
[

K!
]2 can be written as the product between an expectation of a semi positive definite matrix andMs, hence

its eigenvalues are real and non-negative. Sharp estimates of the eigenvalues of Ê [

K2
!

]

−Ê
[

K!
]2 rely on bounds of the spectrum

of A−1! − Ê
[

A−1!
], which however are not available in terms of �min(!) and �max(!). To obtain an upper bound, we rely on the

following estimates,
�max

(

Ê
[

K2
!

]

+ Ê
[

K2
!

]

− Ê
[

K!
]2
)

≤ CLC2(1 + )Ê
[

1
�2min(!)

]

. (26)
To obtain a lower bound, we simply ignore the -dependent term,

�min
(

Ê
[

K2
!

]

+ 
(

Ê
[

K2
!

]

− Ê
[

K!
]2
))

≥ �min
(

Ê
[

K2
!

]

)

= cLC1ℎ4Ê
[

1
�2max(!)

]

. (27)
Combining (26) and (27) with Theorem 1 concludes the proof.

5.1.1 Comments on the influence of the random field and computational considerations
A few comments are in order about Theorem 2. First, P̃ will not lead to �-robust convergence, as the spectrum clearly spreads
as � → 0. Second, for a given � satisfying Assumption 1 with p ≥ 2, Ê

[

1
�2min(!)

]

and Ê
[

1
�2max(!)

]

converge to the finite continuous
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expectations E
[

1
�2min(!)

]

and E
[

1
�2max(!)

]

as we increase the number N of collocation points. Hence, the preconditioner is robust
with respect to the level of discretization of the probability space. Third, Ê

[

1
�2min(!)

]

and Ê
[

1
�2max(!)

]

represent the dependence of
�(̃−1S ) on the random field. Thus, the spectrum spreads when considering random fields � with smaller values of Ê

[

1
�2min(!)

]

.
Estimates on the moments of �max(!) and 1

�min(!)
are available for the log-normal random field of the form45, 49,

�L(x, !) = eg(x,!) = e
�
∑∞
j=1

√

�jbj (x)Nj (!), (28)
where g(x, !) is amean zeroGaussian fieldwith covariance function Covg(x, y), (bj(x), �2�j) are the eigenpairs of  ∶ L2(D)→
L2(D), ( f )(x) ∶= ∫D Covg(x, y)f (y)dy, and Nj(!) ∼  (0, 1). Assuming that bj(x) are Hölder continuous with exponent
0 < � ≤ 1 ∀j ≥ 1, and that R� ∶= ∑N

j=1 �j‖bj‖C0,�(D) <∞, it holds
‖g‖Lp(Ω,C0,�(D)) ≤ C̃

1
p
√

R��((p − 1)!!)
1
p ,

for every even p, where (p−1)!! is the bi-factorial and C̃ is indipendent on � and p. Further, using Fernique’s Theorem, one can
show45, Proposition 3.10 that

‖

‖

‖

‖

1
�min

‖

‖

‖

‖Lp(Ω)
=

(

E

[

1
�pmin(!)

])
1
p

≤ DeCp�2 =∶ Bp, and ‖�max‖Lp(Ω) =
(

E
[

�pmax(!)
])

1
p ≤ Bp,

where D and C are constants independent of p and �. The exponential dependence over p and �2 is not dramatic, as p can be
chosen equal to 2, and in physical applications �2 is usually small: for instance setting �2 = 1.5, one can already model random
fields which vary up to four orders of magnitude inside the domain, see Section 7.2.
To better understand the behaviour of the Nℎ, �-dependent, eigenvalues of S̃−1S, we consider two different random models
and corresponding OCPs (9). The first one is a log-normal random diffusion field with Covg(x, y) = �2e

−‖x−y‖22
L2 , where L is the

correlation length. WithL2 = 0.5, retaining the firstM = 3 terms in (28) is enough to preserve 99% of the variance. The second
random field is defined as

�B(x, y, �) ∶= 1 + exp(�2(�1 cos(1.1�x) + �2 cos(1.2�x) + �3 sin(1.3�y) + �4 sin(1.4�y))), (29)
where �i(!) ∼  ([−1, 1]), i = 1,… , 4, and independent. We remark that 1 ≤ �B(x, y, �(!)) ≤ 1 + exp(4�2) for all ! ∈ Ω,
thus (29) is a uniformly bounded random field. We discretize the probability space using SC with a tensorized Gauss-Hermite
quadrature, for the log-normal field, and a tensorized Gauss-Legendre quadrature for the bounded random field. The number of
nodes for each component is denoted withm. The total number of collocation points isN = mM , withM = 3 for the log-normal
field andM = 4 for the bounded random field.
Table 1 shows the behaviour of smallest and largest eigenvalues of S̃−1S for different values of �, �2 and m. As Theorem 2
predicts, �(S̃−1S) is well clustered for � large, but it definitely spreads for small values of �. The random field (29) is bounded
from below by one, thus the constant Ê

[

1
�2min(!)

]

does not deteriorate as �2 increases, and this results in a �(S̃−1S) which is
bounded uniformly with respect to �2. The log-normal field shows instead a weak dependence on �2 as Ê

[

1
�2min(!)

]

gets larger
as �2 increases. The third subtable shows that the preconditioner is robust with respect to the number of collocation points, as
expected, since the estimates of Theorem 2 do not involve pointwise quantities such as, e.g.,min! �min(!), but rely on empirical
expectations which converge to finite quantities as m increases.
Finally, we remark that S̃ has favourable properties from the implementational point of view. The major cost when applying S̃−1
is the matrix-vector multiplication between A−1 and a vector v, which is commonly approximated using a spectrally equivalent
preconditioner Â−1. Due to its block diagonal structure, one can compute Â−1v in parallel and in distributed way on a cluster.
Further, the multiplication with the matrixM can be similarly performed in parallel if  = 0, and thus the action of the whole
preconditioner P̃ −1 is fully parallelizable. In contrast, if  ≠ 0, all nodes must communicate once at each application of S̃−1, as
one needs to compute the expectation of Â−1v. However, the major cost of S̃−1, that is the application of Â−1 onto a vector, can
still be performed in parallel.
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TABLE 1 Smallest and largest eigenvalues �min, �max of S̃−1S for several values of �, �2 and m. The number of collocation
points isN = m4 for �B andN = m3 for �L.

� 10−2 10−4 10−6 10−8

�B(x, !) 1 - 1.06 1 - 7.12 1 - 613 1 - 61263
�L(x, !) 1 - 1.46 1 - 47.64 1 - 4.6e3 1 - 4.66e5

Nℎ = 225, m = 3, �2 = 0.5,  = 0.1, L2 = 0.5.
�2 0.1 0.5 1 1.5

�B(x, !) 1 - 1.06 1 - 1.06 1 - 1.05 1 - 1.05
�L(x, !) 1 - 1.28 1 - 1.46 1 - 1.83 1 - 2.44
Nℎ = 225, m = 3, � = 10−2,  = 0.1, L2 = 0.5.
m 2 3 4 5

�B(x, !) 1 - 1.06 1 - 1.06 1 - 1.06 1 - 1.06
�L(x, !) 1 - 1.42 1 - 1.46 1 - 1.47 1 - 1.47
Nℎ = 225, �2 = 0.5, � = 10−2,  = 0.1, L2 = 0.5.

5.2 Matching Schur complement technique
Despite being computationally attractive and presenting a favourable dependence on the random field �, the spectrum of the
preconditioned Schur complement analyzed in Section 5.1 spreads as � → 0 and  → +∞. The second limit is physically less
relevant. Indeed, as  → +∞, the optimal control u tends to −f , since y! = 0 for a.e. ! ∈ Ω is the only solution of the PDE
minimizing the L2-norm of the pointwise variance. In constrast, small values of � are used in practice to find a control such that
the state is as close as possible to the target state, regardless of its cost. To get a clustered spectrum for small values of �, we
consider the matching Schur complement technique which consists in looking for a preconditioner Ŝ of the Schur complement
factorized as

Ŝ = (A + �X̂)M−1
 (A + �X̂

⊤) = AM−1
 A + �2X̂M−1

 X̂⊤ + �X̂M−1
 A + �AM−1

 X̂⊤,

where � ∈ ℝ, X̂ ∈ ℝN ⋅Nℎ×N ⋅Nℎ are chosen such that �2XM−1
 X̂⊤ = 1

�
Z1Ms1

⊤Z. In other words, Ŝ is equal toS, once the cross
terms �X̂M−1

 A and �AM−1
 X̂⊤ are neglected. For some simple deterministic OCPs, it has been proven that this approximation

is sufficient to obtain � robustness18, 38, without essentially increasing the computational cost compared to the approximation
S ≈ AsM−1

s As. Nevertheless, theoretical results are not available for several problems37, 58, even though improved � robustness
has been confirmed by numerical examples. In this subsection, we apply this technique to the model problem and we partially
characterize the spectrum of the preconditioned Schur complement. Finally, we present numerical experiments confirming the
improved � robustness, and discuss the additional computational costs compared to S̃.
Defining � ∶= 1

√

�
and X̂ ∶= Z1Ms1

⊤Z, a direct calculation shows

�2X̂M−1
 X̂⊤ = �2Z1Ms1

⊤Z
(

Z−1

1 + 
+


1 + 

11
⊤
)

M−1Z1Ms1
⊤Z =

�2Z1Ms1
⊤Z

(

Z−1

1 + 
+


1 + 

11
⊤
)

Z11⊤Z = �2Z1Ms

(

1
⊤Z1
1 + 

+
(1⊤Z1)2

1 + 

)

1
⊤Z = 1

�
Z1Ms1

⊤Z,

where we usedM−1Z1Ms1
⊤ = Z11⊤ asM has constant diagonal blocks andM−1Z = ZM−1, and 1⊤Z1 = 1. Note further

that X̂⊤ = X̂. We thus study the Schur complement preconditioner SLR and associated preconditioner PLR,

SLR ∶=
(

A + 1
√

�
Z1Ms1

⊤Z

)

M−1


(

A + 1
√

�
Z1Ms1

⊤Z

)

, PLR ∶=
(

C 0
0 SLR

)

(30)

which is symmetric and positive definite. The subscript LR stands for Low-Rank, as the matrix in parentheses in the expression
for SLR in (30) involves a low-rank perturbation. We partially characterize the spectrum of S−1LRS in the following theorem.
Theorem 3 (Spectrum of S−1LRS). The matrix S−1LRS has the eigenvalue � = 1 with geometric multiplicity equal to (N − 2)Nℎ.
The remaining 2Nℎ eigenvalues are real and greater than 1

2
.
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Proof. To study the spectrum of S−1LRS we consider the generalized eigenvalue problem Sv = �SLRv, and we define the sub-
spaces ∶=

{

v ∈ ℝN ⋅Nℎ ∶ 1⊤Zv =
∑N
j=1 �jvj = 0

}

, and  ∶=
{

v ∈ ℝN ⋅Nℎ ∶ 1⊤Av =
∑N
j=1 �jA!jvj = 0

}

. Both and 
have dimension (N − 1)Nℎ, and their intersection  ∩  has dimension (N − 2)Nℎ. We claim that any v ∈  ∩  satisfies
Sv = 1 ⋅ SLRv and thus it is an eigenvector of S−1LRS associated with � = 1. Indeed,

Sv = (AM−1
 A + 1

�
Z1Ms1

⊤Z)v = (AM−1
 A + 1

�
Z1Ms1

⊤Z + 1
√

�

(

Z11⊤MZM−1
 A + AM−1

 ZM11
⊤Z

)

v

= (AM−1
 A + 1

�
Z1Ms1

⊤Z + 1
√

�

(

Z11⊤A + A11⊤Z
)

v = SLRv,

where we used the equality
1
⊤MZM−1

 A = 1
⊤MZ

(

1
1 + 

Z−1 +


1 + 
11

⊤
)

M−1A = 1
⊤A.

To get the second part of the claim, we define X̃ ∶=M
− 1
2

 A and Ỹ ∶= 1
√

�
M

− 1
2

 Z1Ms1
⊤Z. X̃ is an invertible matrix, while Ỹ

has rankNℎ. Algebraic manipulations show that
S = X̃⊤X̃ + Ỹ ⊤Ỹ and SLR = (X̃ + Ỹ )⊤(X̃ + Ỹ ).

Theorem 1 of Pearson et al.58 guarantees then that the eigenvalues of S−1LRS are real and larger than 1
2
.

Theorem 3 guarantees that S−1LRS has (N − 2)Nℎ eigenvalues equal to 1, but does not provide estimates for the remaining 2Nℎ

eigenvalues. For a deterministic OCP18, X̃ = M
− 1
2

s As and Ỹ = 1
√

�
M

1
2
s , and one can show, using the positive definiteness of

X̃⊤Ỹ + Ỹ ⊤X̃ = 2
√

�
As that the spectrum of the preconditioned Schur complement lies in

[

1
2
, 1
]

. Unfortunately in our case,
similarly to Pearson et al.37, 58, X̃⊤Ỹ + Ỹ ⊤X̃ = 1

√

�

(

Z11⊤A + A11⊤Z
) is indefinite. Numerically, we have observed that S−1LRS

has Nℎ eigenvalues in the interval [ 1
2
, 1] and the remaining Nℎ are larger than 1, but grow very mildly as � → 0. We refer to

Tables 2 for a further discussion.

5.2.1 Mean and Chebyshev semi-iterative approximations
The application of S−1LR requires the inversion of the symmetric and positive definite matrix

(

A + 1
√

�
Z1Ms1

⊤Z
)

, which
consists in a full-rank matrix plus a low-rank perturbation. To do so, we use the Woodbury identity

(

A + 1
√

�
Z1Ms1

⊤Z

)−1

=

(

A +Z1 1
√

�
Ms1

⊤Z

)−1

= A−1
(

I −Z1
[

√

�M−1
s + 1⊤ZA−1Z1

]−1
1
⊤ZA−1

)

= A−1
⎛

⎜

⎜

⎝

I −Z1

[

I + 1
√

�
Ms1

⊤ZA−1Z1

]−1
1
√

�
Ms1

⊤ZA−1
⎞

⎟

⎟

⎠

.

(31)

Unfortunately, (31) is of no practical use as it requires the solution of a linear system with L ∶=
[

I + 1
√

�
Ms1

⊤ZA−1Z1
]

,
which involves 1⊤ZA−1Z1 = ∑N

i=1 �iA
−1
!i
. To make the approach feasible, we propose two different approximations.

The first one is based on the mean approximation ∑N
i=1 �iA

−1
!i
≈ A−10 , that is we replace the weighted average of the inverses

with the inverse of the mean matrix A0 = ∑N
i=1 �iA!i . Then,

(

A + 1
√

�
Z1Ms1

⊤Z

)−1

≈ A−1
⎛

⎜

⎜

⎝

I −Z1

[

I + 1
√

�
MsA

−1
0

]−1
1
√

�
Ms1

⊤ZA−1
⎞

⎟

⎟

⎠

= A−1
⎛

⎜

⎜

⎝

I −Z1A0

[

A0 +
1
√

�
Ms

]−1
1
√

�
Ms1

⊤ZA−1
⎞

⎟

⎟

⎠

.

(32)
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We will denote with SLRM the Schur complement preconditioner (30), where the matrices in the parentheses are approximately
inverted through (32), and the associated preconditioner by

PLRM ∶=
(

C 0
0 SLRM

)

. (33)
As for forward problems27, 59, this approximation is satisfactory for small variances and uniformly bounded random fields, while
it is definitely poor if the variance is large and for random fields with unbounded random variables, e.g. the log-normal field.
As an alternative approximation, it would be tempting to use a Krylov method to approximate the inverse of L. However, any
Krylov method is a non-linear map with respect to the right hand side and the initial vector60. Hence, we instead approximate
the solution ofLv = z usingNit iterations of the damped preconditioned stationary iterative method that, starting from an initial
guess v0, computes

vk = vk−1 + �P −10 (z − Lvk−1), k = 1,… , Nit,
accelerated by the Chebyshev Semi-Iterative method61, Section 10.1.5. We will denote with SLRC the Schur complement precondi-
tioner (30) obtained by approximating the inverse of L in (31) with such iterative procedure, and the associated preconditioner

PLRC ∶=
(

C 0
0 SLRC

)

. (34)
As we will see in Tables 2, PLRC allows us to recover robustness with respect to �, but the cost of each iteration is larger compared
to an iteration of PLRM. In our experiments, we set P −10 = (I + 1

√

�
MsA−10 )

−1 = A0
(

A0 +
1
√

�
Ms

)−1. The Chebyshev Semi-
Iterative method requires two parameters � and � such that −1 < � ≤ �1 ≤ ⋯ ≤ �N ≤ � < 1, where �j are the eigenvalues of
I − �P −10 L60. To estimate the spectrum of (I − �P −10 L), we rely on the following Lemma.
Lemma 8. The spectrum of P −10 L is real and bounded from below by 1.
Proof. Algebraic manipulations lead to

P −10 L = I +

(

M−1
s + 1

√

�
A−10

)−1
1
√

�

(

1
⊤ZA−1Z1 − A−10

)

.

Hence, if ∑N
j=1 �jA

−1
!j
− A−10 is semi-positive definite, then P −10 L has real eigenvalues and �min > 1. To show this, take an

arbitrary 0 ≠ v ∈ ℝNℎ , and consider the map �v ∶ Sn++ → ℝ, where Sn++ is the set of positive definite matrices in ℝn×n, defined
as �v ∶= v⊤A−1v. The map �v is convex62, Lemma 1. Thus due to Jensen’s inequality

v⊤
( N
∑

j=1
�jA

−1
!j

)

v − v⊤
( N
∑

j=1
�jA!j

)−1

v =
N
∑

j=1
�j�v(A!j ) − �v

( N
∑

j=1
�jA!j

)

≥ 0,

hence, due to the arbitrariness of v, 1⊤ZA−1Z1 − A−10 is semi-positive definite.
Let �min and �max be the minimum and maximum eigenvalues of P −10 L. From Lemma 8, it follows that �(I − �P −10 L) ⊂
[1 − ��max, 1 − ��min] as P −10 L has real and positive spectrum. The parameter � is needed to guarantee the convergence of the
stationary method, that is �(I − �P −10 L) < 1. The optimal � which minimizes �(I − �P −10 L) is �opt = 2

�min(P −10 L)+�max(P −10 L)
.

However, �opt leads to a spread spectrum, while the Chebyshev Semi-Iterative method takes advantage of clustered spectra, like
Krylov methods61, Section 10.1.5. We therefore set � ∶= 1

1+�max(P −10 L)
, where �max(P −10 L) is approximated, once and for all, using

few iterations of the power method. This choice guarantees the convergence of the iterative method since � ≤ 2
�max(P −10 L)

. Finally,
in the Chebyshev Semi-Iterative method we take � = 1 − ��max and � = 1 − �.
Table 2 compares the behaviour of the extremal eigenvalues of the Schur complement preconditioned by SLR, SLRM and SLRC
in different regimes. SLR has a very high computational cost and is of no practical use. It is included in Table 2 as a reference,
in order to assess how well the approximated versions SLRM and SLRC perform, compared to SLR. Notice that SLRM and SLRC
have different cost per iteration. We defer to Section 7 a comparison of the two in terms of computational efficiency, and we
focus here only on the clustering of the spectrum of the preconditioned Schur complements.
From the first two tables, we observe thatSLR shows a (very weak) dependence on � and on �2, emphasized in the case of the log-
normal field, but the spectrum still remains sufficiently clustered. Notice that �(S−1LRS) is not contained in the interval [ 12 , 1], asin the deterministic case18. The third table shows that SLR is robust with respect to finer discretizations of the probability space.
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Let us now consider the approximations SLRM and SLRC. On the one hand, SLRM is a valid choice for the uniformly bounded
random field and for values of � not too small. It definitely performs poorly for the log-normal field. On the other hand, S−1LRCmatches the performance of the exact preconditioner SLR, both for the bounded and log-normal fields, with a small number
Nit of Chebyshev semi-iterations. However, to obtain good performances, Nit has to increase as �2 increases, especially for
the log-normal field, due to the poorer performance of P0 as a preconditioner in the inner Chebyshev semi-iterations. From the

TABLE 2 Smallest and largest eigenvalues �min − �max of S−1LRS, S−1LRMS and S−1LRCS. The number of collocation points is
N = m4 for �B andN = m3 for �L.

� 10−2 10−4 10−6 10−8

S−1LRS �B(x, !) 0.68 - 1.00 0.50 - 1.02 0.50 - 1.17 0.50 - 1.30
S−1LRMS �B(x, !) 0.68 - 1.00 0.48 - 1.02 0.13 - 1.07 8.7e-3 - 30.59
S−1LRCS �B(x, !) 0.68 - 1.00 0.50 - 1.02 0.50 - 1.17 0.50 - 1.30
S−1LRS �L(x, !) 0.52 - 1.11 0.50 - 1.74 0.50 - 2.39 0.52 - 2.61
S−1LRMS �L(x, !) 0.45 - 1.12 0.02 - 2.13 1e-4 - 7.73e2 1.3e-5 - 8.98e4
S−1LRCS �L(x, !) 0.52 - 1.11 0.50 -1.74 0.50 - 2.39 0.52 - 2.61

Nℎ = 225, m = 3, �2 = 0.5,  = 0.1, L2 = 0.5.Nit = 2 for �B(x, !) andNit = 4 for �L(x, !).
�2 0.1 0.5 1 1.5

S−1LRS �B(x, !) 0.50 - 1.04 0.50 - 1.30 0.50 - 1.66 0.50 - 1.98
S−1LRMS �B(x, !) 0.49 - 1.01 8.7e-3 - 30.59 3.7e-8 - 1.00e3 4.4e-5 - 1.03e4
S−1LRCS �B(x, !) 0.50 - 1.04 0.50 - 1.30 0.49 - 1.67 0.09 - 1.97
S−1LRS �L(x, !) 0.52 - 1.43 0.52 - 2.61 0.52 - 4.35 0.52 - 6.54
S−1LRMS �L(x, !) 5.9e-4 - 1.52e3 1.3e-5 - 8.98e4 0.23 - 9.82e5 0.70 - 5.87e6
S−1LRCS �L(x, !) 0.52 - 1.43 0.52 - 2.61 0.52 - 4.34 0.51 - 6.54

Nℎ = 225, m = 3, � = 10−8,  = 0.1, L2 = 0.5.Nit is equal to 2 for �B(x, !) and equal to 2, 4, 6, 8 for �2 = 0.1, 0.5, 1, 1.5
respectively for �L(x, !).

m 2 3 4 5
S−1LRS �B(x, !) 0.50 - 1.17 0.50 - 1.17 0.50 - 1.17 0.50 - 1.17
S−1LRMS �B(x, !) 0.13 - 1.07 0.13 - 1.07 0.13 - 1.07 0.13 - 1.07
S−1LRCS �B(x, !) 0.50 - 1.17 0.50 - 1.17 0.50 - 1.17 0.50 - 1.17
S−1LRS �L(x, !) 0.50 - 2.13 0.50 - 2.39 0.50 - 2.43 0.50 - 2.43
S−1LRMS �L(x, !) 0.0025 - 634 1e-4 - 773 1e-4 - 784 2.9e-3 - 785
S−1LRCS �L(x, !) 0.50 - 2.13 0.50 - 2.39 0.5 - 2.43 0.5 - 2.43

Nℎ = 225, �2 = 0.5, � = 10−6,  = 0.1, L2 = 0.5,Nit = 2 for �B andNit = 4 for �L.

computational point of view, both SLRM and SLRC require the inversion of four times (approximately and possibly in parallel)
the matrix A at each outer Krylov iteration, in constrast with S̃ which requires the inversion (possibly, approximately) of A only
twice per iteration. There is further a synchronization step where the reduced size system involving the matrix L, or its mean
approximation, is approximately solved.

6 PRECONDITIONING IN A HILBERT SETTING

Another technique to develop robust preconditioners for parameter-dependent saddle point problems is called “operator precon-
ditioning”, which has its foundation in the analysis of iterative methods in Hilbert spaces20, 39, 40. In our setting, the parameters
will be the couple (�, ). In a nutshell, let T be a self-adjoint operator from  →  ′, and suppose we want to solve the linear
equation T x = f in  ′. As T is a map between two different Hilbert spaces, we may identify an isomorphism  ∶  ′ →  ,
and consider the equivalent problem T x = f in  . To choose an operator , one can define first a scalar product on  ,
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and then set equal the Riesz isomorphism such that ⟨T x, y⟩ = (T x, y) and ‖T x‖ = ‖T x‖ ′ , so that
‖T ‖( ,) = sup

0≠x∈

‖T x‖
‖x‖

= sup
0≠x∈

‖T x‖ ′
‖x‖

= ‖T ‖( , ′),

‖ (T )−1 ‖( ,) = sup
0≠x∈

‖ (T )−1 x‖
‖x‖

=
(

inf
0≠x∈

‖T x‖
‖x‖

)−1

=
(

inf
0≠x∈

‖T x‖ ′
‖x‖

)−1

= ‖T −1
‖( ′,).

(35)

Hence, if one finds an appropriate, e.g., (�, )-dependent, scalar product (⋅, ⋅) (hence, a norm on ), so that ‖T ‖( , ′) ≤ C
and ‖T −1

‖( ′,) ≤ �, with C and � parameter-independent, then considering the Riesz isomorphism associated with (⋅, ⋅) ,
one obtains using (35), �(T ) = ‖T ‖( ,)‖ (T )−1 ‖( ,) ≤ C�, that is, the condition number of the the preconditioned
system T is independent of (�, ).
In this section, we apply the operator preconditioning paradigm to the robust optimal control problem (9), the final goal being
to find the two (�, )-independent constants C and �. To do so, we first consider the continuous optimality system ((38)), and
exploit its structure (Lemma 9 and Theorem 4) to derive an equivalent formulation involving reduced spaces ((43)). Second,
we define (�, )-dependent norms on these reduced spaces ((44)) and prove the well-posedness of the optimality system at the
continuous level in Theorem 5. Finally, we identify the constants C and � ((48) and (49)). Notice that the functional space of
control functions U is now set equal to Y .
Let us consider the optimality conditions in (10). We introduce the space ̂ ∶= Y × U and the bilinear forms

 ∶ Y ′ → Y ′ such that ⟨f, v⟩ ∶= ∫
Ω

⟨f, v(⋅, !)⟩dℙ(!) = E
[

⟨f, v!⟩
]

, ∀v ∈ Y ,

 ∶ ̂ × ̂ → ℝ such that  ((y, u), (w, v)) ∶= E
[

⟨ΛL2((1 + )y! − E
[

y!
]

), w!⟩
]

+ �⟨ΛY u, v⟩, (36)
 ∶ ̂ × Y → ℝ such that  ((y, u), p)) ∶= E

[

⟨!y!, p!⟩ − ⟨ΛY u, p!⟩
]

, (37)
The optimality conditions can be formulated as:

Find (x, p) ∈ ̂ × Y such that (x, r) + (r, p) = ⟨ , r⟩, ∀r = (w, v) ∈ ̂ ,
(x, q) = ⟨, q⟩, ∀q ∈ Y ,

(38)

where  ∈ ̂ ′ ∶ ⟨ , r⟩ = E
[

⟨ΛL2yd , w!⟩
], ∀r = (w, v) ∈ ̂ , and  ∈ Y ′ ∶ ⟨, q⟩ = E

[

⟨f, q!⟩
], ∀q ∈ Y . The bilinear form

(⋅, ⋅) is symmetric, as a direct generalization of Lemma 4 shows.
To obtain (�, )-independent continuity constants � and C , we have to consider a slightly modified formulation of (38). Let
us define the subspace in Y of functions with zero average, G ∶= {v ∈ Y ∶ E [v(⋅, !)] = 0} and its polar space G0 ∶=
{

 ∈ Y ′ ∶  (v) = 0, ∀v ∈ G.
}. We can prove the following Lemma.

Lemma 9 (Isomorphism between Y ′ and G0).  is an isomorphism between Y ′ and G0.
Proof. To prove that  is injective, we show that for any ũ,w̃ ∈ Y ′, ũ = w̃ in Y ′ implies ũ = w̃. A direct calculation leads to

⟨ũ − w̃, v⟩ = E
[

⟨ũ − w̃, v!⟩
]

= 0, ∀v ∈ Y . (39)
Consider now the sets Γn ∶= {

! ∈ Ω ∶ max
{

�max(!), 1∕�min(!)
}

< n
}. The sets Γn are measurable, and |Γn| > 0 for a

sufficiently large n. Taking v(x, !) = 1Γn(!)�(x), where � ∈ Y is arbitrary and n is large enough, we have that v ∈ Y and (39)
implies ũ = w̃ in Y ′.
For the surjectivity, first note that Im ⊂ G0 since

⟨ũ, v⟩ = E
[

⟨ũ, v!⟩
]

= ⟨ũ,E
[

v!
]

⟩ = 0, ∀v ∈ G,

where one can exchange the duality pair between Y and Y ′ and the expectation operator due to the property of the Bochner
integral44, E. 11. We now prove that G0 ⊂ Im. Take any F ∈ G0 ⊂ Y ′. Due to Riesz theorem, there exists a f̃ ∈ Y such that
F (v) = a(f̃ , v), ∀v ∈ Y . Restricting to v ∈ G,

0 = F (v) = a(f̃ , v) = E
[

⟨!f̃!, v!⟩
]

. (40)
Consider now the set Γ∞ ∶= ∪n∈ℕΓn which has full measure, i.e. ℙ(Γ∞) = 1 2 and the restricted sigma algebra  ∶=
{E ∩ Γ∞ ∶ E ∈ } on Γ∞. Let us define v =  (!)�(x) where �(x) ∈ Y , and  (!) = 1E(!) − 1E for an arbitrary E ∈ ,

2If ℙ ((Γ∞)c ) > 0 then either 1
�min(!)

or �max(!) would not lie in L1(Ω), contradicting Assumption 1.
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with 1E ∶= E
[

1E(!)
], so that v ∈ G ⊂ Y . Replacing the expression of v into (40), we obtain

E
[

1E⟨!f̃!, �⟩
]

= E
[

1E⟨!f̃!, �⟩
]

= 1E⟨E
[

!f̃!
]

, �⟩,

and denoting f ∶= E
[

!f̃!
]

we have,

E
[

1E⟨!f̃! − f, �⟩
]

= ∫
E

⟨!f̃! − f, �⟩ = 0, ∀E ∈,∀� ∈ Y . (41)

Due to the arbitrariness ofE and the full measure of Γ∞, (41) implies ⟨!f̃!−f, �⟩ = 0ℙ-a.s., ∀� ∈ Y , hence!f̃! = f ∈ Y ′

ℙ-a.s.
Thus, we conclude

 (v) = a(f̃ , v) = ⟨f, v⟩ = E
[

⟨!f̃!, v!⟩
]

= E
[

⟨f, v!⟩
]

= f (v), ∀v ∈ Y ,

that is, for every  ∈ G0, there exists a f ∈ Y ′ such that  = f.

Considering the state equation, we remark that
a(y, v) = ⟨

(

ΛUu + f
)

, v⟩ = 0 ∀v ∈ G,

that is, if y is a solution to the state equation, then y is a-orthogonal to G, i.e. y ∈ G⟂ ∶= {y ∈ Y ∶ a(y, v) = 0, ∀v ∈ G}. In
other words, whatever control function uwe choose, we cannot obtain a generic state y ∈ Y , but the state solution is constrained
to lie in the subspace G⟂ of Y .
Remark 1. A similar constraint on the state variable has been observed in Elvetun et al.32 for deterministic OCP with a control
function acting only on a subdomain D̃ ⊂ D. The parallelism between a robust OCPUU and a deterministic OCP with local
control lies in the observation that, in both OCPs, one cannot generate the whole dual of the state space using only elements
of the control space. For robust OCPUU one has Im ⊊ Y ′, see Lemma 9, and similarly for a deterministic OCP with local
control one cannot generate (H1(D))′ using only elements of (H1(D̃))′ 32. From the algebraic point of view, this leads to low-
rank perturbed Schur complements, where the rank of the perturbation is equal to the size of the finite element discretization of
the control space (see (17) and Ref. [33]).
To get (�, ) robust continuity constants at the continuous level, it is essential to use these properties of the continuous formulation
of the saddle point system. We thus consider the OCP (9) with the state space equal to G⟂. As the residual of the state equation
y − (ΛY u + f ) ∈ G0 = (G⟂)′, the adjoint variable p belongs to G⟂ as well. Computing the directional derivatives of
the restricted Lagrangian ̂(y, u, p) ∶ G⟂ × Y × G⟂ → ℝ with ̂(y, u, p) ∶= (y, u, p), the optimality system becomes: find
(y, u, p) ∈ G⟂ × Y × G⟂ such that

E
[

⟨!p!, v!⟩
]

+ E
[

⟨ΛL2
(

y! + (y! − E
[

y!
]

)
)

, v!⟩
]

= E
[

⟨ΛL2yd , v!⟩
]

, ∀v ∈ G⟂,
⟨�ΛY u − ΛY E

[

pw
]

, v⟩ = 0, ∀v ∈ Y ,
E
[

⟨!y!, v!⟩
]

− E
[

⟨ΛY u, v!⟩
]

= E
[

⟨f, v!⟩
]

, ∀v ∈ G⟂.
(42)

Defining the space  ∶= G⟂ × Y and using the bilinear and linear forms defined above, the optimality conditions read: Find
(x, p) ∈  × G⟂ such that

(x, v) + (v, p) = ⟨ , v⟩, ∀v ∈  ,
(x, q) = ⟨, q⟩, ∀q ∈ G⟂.

(43)
We now prove an important result stating that G⟂ is homeomorphic to Y . We introduce the operator  ∶ Y → G⟂ defined as
y = −1ΛY y, and its inverse −1 ∶ G⟂ → Y such that −1v = Λ−1Y −1G0v, where −1G0 is the inverse of the map  ∶ Y ′ → G0.
Theorem 4. Let us consider G⟂ equipped with the norm ‖ ⋅ ‖2 ∶= ⟨⋅, ⋅⟩ and Y equipped with the norm ‖ ⋅ ‖Y . The map −1
is a homeomorphism between G⟂ and Y , and further it holds

1
√

E
[

1
�min(!)

]

‖y‖ ≤ ‖−1y‖Y ≤
√

E
[

�max(!)
]

‖y‖.
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Y ΛY Y ′  Y ′

G0

−1 Y

G⟂

FIGURE 1 Graphical representation of the maps between the different functional spaces.

Proof. Observe that for every y ∈ G⟂, −1y is well defined because y ∈ G0 and thus it can be written as y = L̃ for a
unique L̃ ∈ Y ′ due to Lemma 9. Finally the Riesz’s representation isomorphism on Y returns the Riesz representative L, so
that L = −1y. Moreover, on the one hand

‖y‖2 = ⟨y, y⟩ = E
[

⟨−1G0y, y!⟩
]

≤ ‖Λ−1Y −1G0y‖Y E
[

‖y!‖Y
]

≤ ‖−1y‖Y E

[

1
√

�min(!)
‖y!‖!

]

≤ ‖−1y‖Y
(

E
[

1
�min(!)

])
1
2 (

E
[

‖y!‖
2
!

])
1
2 = ‖−1y‖Y

√

E
[

1
�min(!)

]

‖y‖,

which implies ‖y‖ ≤
√

E
[

1
�min(!)

]

‖−1y‖Y . On the other hand,
‖−1y‖2Y = (Λ

−1
Y −1G0y, 

−1y)Y = ⟨−1G0y, 
−1y⟩ = E

[

⟨−1G0y, 
−1y⟩

]

= E
[

⟨!y!, −1y⟩
]

≤ E
[

‖y!‖!
‖−1y‖!

]

≤ ‖−1y‖Y E
[

‖y!‖!

√

�max(!)
]

≤ ‖−1y‖Y ‖y‖
√

E
[

�max(!)
]

.

which implies ‖−1y‖Y ≤
√

E
[

�max(!)
]

‖y‖.
Fig. 1 provides a useful graphical overview of the relations between the spaces Y , Y ′, G0 and G⟂. Due to Theorem (4) we can
parametrize the space G⟂ ⊂ Y , since any y ∈ G⟂ is in a one-to-one correspondence with an element of Y through the operator
 . This property is essential to prove a (�, )-independent inf-sup condition.
Let us now consider the following functional setting,

 ∶=
(

G⟂, (⋅, ⋅)
)

, U =
(

Y , (⋅, ⋅)U
)

,  =
(

 × U, (⋅, ⋅)
)

,  ∶=
(

G⟂, (⋅, ⋅)
)

,

where the scalar products define the weighted-norms
‖y‖2 ∶= (y, y) = E

[

(y!, y!)L2 + 
(

y! − E
[

y!
]

, y! − E
[

y!
])

L2
]

+ �E
[

⟨!y!, y!⟩
]

=

= (y, y)L2, + �(y, y),
‖u‖2U ∶= (u, u)U = �(u, u)Y ,

‖(y, u)‖2 ∶= ((y, u), (y, u)) = (y, y) + (u, u)U ,

‖p‖2 ∶=
1
�
E
[

⟨!p!, p!⟩
]

= 1
�
(p, p).

(44)

For the state variable y we introduce the scalar product (⋅, ⋅)L2, which consists of two parts: the first one is the simple
L2(Ω, L2(D)) norm. The second part proportional to  consists in expectation of the L2(D) norm of the difference between y!
from its mean value.
Remark 2. We remark that the energy norm and the L2(Ω, Y ) norm are not equivalent, unless �(x, !) ∈ L∞(Ω, L∞(D)). In the
latter case, one could show the well-posedness of the saddle point system working exclusively with the energy norm (obtaining,
though, �-dependent constants). In constrast, for a not uniformly bounded �(x, !), one would fail to bound the bilinear form
(⋅, ⋅) with only the energy norm, and thus one would have to rely on the framework of Gittelson et al.42, 43, and introduce an
energy norm with respect to an auxiliary measure to be able to bound theL2(Ω, Y ) norm with the new modified energy norm. In
this manuscript, we are interested to study �-robust preconditioners, which are derived taking a weighted combination of both
the L2(Ω, Y ) norm and the energy norm, see, e.g., Zulehner19, Mardal et al.20, Schöberl et al.63 for deterministic OCP, and thus
we can avoid the framework of Refs.42, 43, since we do not need any relation between the two norms, as the next Theorem shows.
Theorem 5 (Well-posedness of (43)).
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1. The bilinear form  is bounded: (x, v) ≤ ‖x‖‖v‖ , ∀x, v ∈  .

2. The bilinear form  is coercive on the Kernel of : (x, x) ≥ C1‖x‖2 ∀x ∈ Ker, where C1 ∶= min
{

1
2
, 1

2E
[

1
�min(!)

]

}

.

3. The bilinear form  is bounded: sup0≠x∈ (x,q)
‖x‖

≤ C2‖q‖ ∀q ∈  , where C2 = max
{

1,
√

E
[

1
�min(!)

]

}

.

4. The bilinear form  satisfies the inf-sup condition: sup0≠x∈ (x,q)

‖x‖
≥ C3‖q‖ , ∀q ∈  , where C3 = 1

√

E[�max(!)]
.

Further, the solution (x, p) of (43) satisfies the stability estimate
‖x‖ ≤ 1

C1
‖‖ ′ + 2

√

C1C3
‖‖ ′ ,

‖p‖ ≤ 2
√

C1C3
‖‖ ′ + 1

C23
‖‖ ′ .

(45)

Proof. Let us first show the continuity of . Being (⋅, ⋅) symmetric, it is sufficient to show that (x, x) ≤ ‖x‖2X which is
trivially true since, for x = (y, u),

(x, x) = (y, y)L2, + �(u, u)Y ≤ (y, y)L2, + �(y, y) + �(u, u)Y = (x, x) = ‖x‖2 .

Next, we focus on the coercivity of  on Ker. If x = (y, u) ∈ Ker then ⟨y, q⟩ = ⟨ΛY u, q⟩ = E
[

⟨ΛY u, q!⟩
]which, choosing

q = y, implies
(y, y) ≤ ‖u‖Y E

[

1
√

�min(!)
‖y!‖!

]

≤ ‖u‖Y

√

E
[

1
�min(!)

]

‖y‖.

Then,

((y, u), (y, u)) = (y, y)L2, + �(u, u)Y ≥ (y, y)L2, +
�
2
(u, u)Y +

�

2E
[

1
�min(!)

] (y, y) ≥ min
⎧

⎪

⎨

⎪

⎩

1
2
, 1

2E
[

1
�min(!)

]

⎫

⎪

⎬

⎪

⎭

((y, u), (y, u)) .

To show the continuity of , we consider

sup
0≠(y,u)∈

2((y, u), q)
‖(y, u)‖2

= sup
0≠(y,u)∈

(

(y, q) − ⟨ΛY u, q⟩
)2

‖(y, u)‖2
= sup
0≠y∈

(y, q)2
‖y‖2

+ sup
0≠u∈U

(

E
[

(u, q!)Y
])2

‖u‖2U
,

where the last equality follows from Zulehner19, Lemma 2.1. The second term simplifies to

sup
0≠u∈U

(

E
[

(u, q!)
])2

‖u‖2U
= 1
�
sup
0≠u∈Y

(

(u,E
[

q!
]

)Y
)2

‖u‖2Y
= 1
�
‖

‖

‖

E
[

q!
]

‖

‖

‖

2

Y
. (46)

Considering the first term,

sup
0≠y∈

(y, q)2
‖y‖2

= sup
0≠y∈

(y, q)2
(y, y)L2, + �(y, y)

≤ 1
�
sup
0≠y∈

(y, q)2
(y, y)

= 1
�
(q, q). (47)

Putting together (46) and (47), using the Cauchy-Schwarz inequality and equivalence between ‖ ⋅ ‖Y and ‖ ⋅ ‖A! ,

sup
0≠(y,u)∈

2((y, u), q)
‖(y, u)‖2

≤ 1
�
‖

‖

‖

E
[

q!
]

‖

‖

‖

2

Y
+ 1
�
(q, q) ≤ 1

�

(

E
[

1
�min(!)

]

‖q‖2 + ‖q‖2

)

≤ max
{

1,E
[

1
�min(!)

]}

‖q‖2 .

Finally, we deal with the inf-sup condition. Using again Zulehner19, Lemma 2.1 and choosing (y, u) = (0, u) ∈  , we simply obtain
the estimate

sup
0≠(y,u)∈

2(x, q)
‖x‖2

= sup
0≠y∈

(y, q)2
‖y‖2

+ sup
0≠u∈U

(

⟨ΛY u, q⟩
)2

‖u‖2U
≥ 1
�
sup
0≠u∈Y

(

⟨ΛY u, q⟩
)2

‖u‖2Y
.
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As q ∈ G⟂, we set u = −1q = Λ−1Y −1G0q and Theorem 4 guarantees that ‖u‖2Y ≤ E
[

�max(!)
]

‖q‖2, so that

sup
0≠(y,u)∈

2(x, q)
‖x‖2

≥ 1
�
‖q‖4
‖u‖2Y

≥ 1
E
[

�max(!)
]

(

1
�
‖q‖2

)

= 1
E
[

�max(!)
]‖q‖2 .

Finally, the stability estimate follows from classical theory of saddle-point problems64, Theorem 4.2.3.
We have now all ingredients to apply the operator preconditioning framework and identify the two constants C and �. Let us
introduce the space  ∶=  ×  , equipped with norm ‖(x, p)‖ =

√

‖x‖2 + ‖p‖2 , and the operator T ∶  →  ′ defined as
⟨T (x, p), (r, q)⟩ ′, ∶= (x, r) + (r, p) + (x, q).

On the one hand, from the continuity of the bilinear forms  and  (Theorem 5), and using the triangle inequality,
‖ ‖( , ′) = sup

(x,p)∈
sup
(r,q)∈

|

|

(x, r) + (r, p) + (x, q)|
|

‖(x, p)‖‖(r, q)‖
≤ 1 + 2C2 =∶ C. (48)

On the other hand, using the stability estimate of Theorem 5,

‖ −1
‖( ′,) = sup

( ,)∈ ′

‖ −1( ,)‖
‖( ,)‖ ′

=
‖(x, p)‖
‖( ,)‖ ′

≤
√

2max

{
√

1
C1

+ 4
C1C23

,
√

1
C43

+ 4
C1C23

}

=∶ �. (49)

As the two constants C and � are (�, )-independent, we conclude that the condition number �(T ), where  is the Riesz
isomorphism with respect to the scalar product in  , is bounded uniformly with respect to these two parameters. The condition
number still depends on the statistical properties of the random field through the constantsC2, C3 andC4 which, however, involve
only the first moments of 1

�min(!)
, 1
�max(!)

and �max(!).

6.1 Mean and Chebyshev semi-iterative approximations
The optimality system (42) involves the non standard trial and test space G⟂. To implement it efficiently, we can rely on the
isomorphism  between Y and G⟂, so that (42) is equivalent to: find (y, u, p) ∈ Y × Y × Y such that ∀(v,w, r) ∈ Y × Y × Y

E
[

⟨!(p)!, (v)!⟩ + ⟨ΛL2
(

(1 + )(y)! − E
[

(y)!
]

)
)

, (v)!⟩
]

= E
[

⟨ΛL2yd , (v)!⟩
]

,
⟨�ΛY u − ΛY E

[

(p)!
]

, w⟩ = 0,
E
[

⟨!(y)!, (r)!⟩
]

− E
[

⟨ΛY u, (r)!⟩
]

= E
[

⟨f, (r)!⟩
]

.
(50)

A discretization of (50) leads to the discrete system SOPx = E⊤SEx = f , where f = E⊤b, S and b are given by (14) 3, while

E ∶=
⎛

⎜

⎜

⎝

A−1Z1K
Is
A−1Z1K

⎞

⎟

⎟

⎠

, x =
⎛

⎜

⎜

⎝

y
u
p

⎞

⎟

⎟

⎠

∈ ℝ3Nℎ ,

The matrix E is the discretization of the isomorphism  . As a preconditioner we use POP = E⊤RE, where R is the matrix
representing the weighted norms defined in (44),

R ∶=

⎛

⎜

⎜

⎜

⎝

M + �A
�K

1
�
A

⎞

⎟

⎟

⎟

⎠

∈ ℝ(2N+1)⋅Nℎ×(2N+1)⋅Nℎ .

A direct calculation leads to

POP =
⎛

⎜

⎜

⎝

R1
R2

R3

⎞

⎟

⎟

⎠

∶=

⎛

⎜

⎜

⎜

⎝

K1⊤
(

A−1ZMZA−1 + �ZA−1Z
)

1K
�K

1
�
K1⊤ZA−1Z1K.

⎞

⎟

⎟

⎟

⎠

. (51)

Similarly to Section 5.2, we can approximate the inverse of POP using a mean approximation of the blocksR1 andR3. Replacing
formally the matrix A−1 with a matrix of equal size with A−10 on the diagonal, we obtain the mean preconditioner POPM ∶=

3Replacing the L2(D) Riesz operatorMs, with the Y Riesz operator K .
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TABLE 3 Intervals for the eigenvalues of the preconditioned systems. The number of collocation points isN = m4 for �B and
N = m3 for �L.

� 10−2 10−4 10−6 10−8
P −1OPSOP �B(x, !) [-1.12,-0.55] ∪ [0.57,1.55] [-0.75,-0.36] ∪ [0.69,1.51] [-0.37,-0.36] ∪ [0.99,1.37] [-0.37,-0.37] ∪ [1.00,1.37]
P −1OPMSOP �B(x, !) [-1.21,-0.56] ∪ [0.58,1.61] [-0.80,-0.37] ∪ [0.70,1.58] [-0.40,-0.36] ∪ [1.00,1.41] [-0.39,-0.36] ∪ [1.00,1.39]
P −1OPCSOP �B(x, !) [-1.12,-0.54] ∪ [0.57,1.55] [-0.75,-0.36] ∪ [0.69,1.51] [-0.37,-0.36] ∪ [0.99,1.37] [-0.37,-0.36] ∪ [1.00,1.37]
P −1OPSOP �L(x, !) [-1.29,-0.73] ∪ [0.41,1.91] [-0.84,-0.68] ∪ [0.81,1.81] [-0.73,-0.68] ∪ [1.03,1.73] [-0.73,-0.68] ∪ [1.03,1.73]
P −1OPMSOP �L(x, !) [-1.95,-0.97] ∪ [0.54,2.79] [-1.23,-0.88] ∪ [1.57,4.06] [-1.01,-0.88] ∪ [1.88,4.24] [-1.01,-0.88] ∪ [1.88,4.25]
P −1OPCSOP �L(x, !) [-1.30,-0.73] ∪ [0.42,1.92] [-0.83,-0.68] ∪ [0.75,1.80] [-0.73,-0.68] ∪ [0.92,1.73] [-0.73,-0.68] ∪ [0.92,1.73]

Nℎ = 225, m = 3, �2 = 0.5,  = 0.1, L2 = 0.5.Nit = 2 for both �B and �L.
�2 0.1 0.5 1 1.5

P −1OPSOP �B(x, !) [-0.37,-0.37] ∪ [1.00,1.37] [-0.37,-0.36] ∪ [1.00,1.37] [-0.37,-0.34] ∪ [1.00,1.37] [-0.37,-0.32] ∪ [1.00,1.37]
P −1OPMSOP �B(x, !) [-0.37,-0.37] ∪ [1.00,1.37] [-0.39,-0.36] ∪ [1.00,1.39] [-0.48,-0.36] ∪ [1.00,2.57] [-0.72,-0.36] ∪ [1.01,8.49]
P −1OPCSOP �B(x, !) [-0.37,-0.37] ∪ [1.00,1.37] [-0.37,-0.36] ∪ [1.00,1.37] [-0.37,-0.34] ∪ [0.98,1.37] [-0.37,-0.32] ∪ [0.94,1.37]
P −1OPSOP �L(x, !) [-0.64,-0.63] ∪ [1.01,1.64] [-0.73,-0.68] ∪ [1.03,1.73] [-0.86,-0.75] ∪ [1.04,1.86] [-1.00,-0.83] ∪ [1.06,2.00]
P −1OPMSOP �L(x, !) [-0.68,-0.66] ∪ [1.23,1.68] [-1.01,-0.88] ∪ [1.88,4.65] [-1.59,-1.23] ∪ [2.23,16.66] [-2.42,-1.69] ∪ [2.69,59.98]
P −1OPCSOP �L(x, !) [-0.64,-0.63] ∪ [1.00,1.64] [-0.73,-0.68] ∪ [0.99,1.73] [-0.86,-0.75] ∪ [0.94,1.86] [-1.00,-0.83] ∪ [0.81,2.00]

Nℎ = 225, m = 3, � = 10−8,  = 0.1, L2 = 0.5.Nit is equal to 2, 2, 4, 4 for �B(x, !) and equal to 2, 4, 6, 8 for �L(x, !).
m 2 3 4 5

P −1OPSOP �B(x, !) [-0.37,-0.36] ∪ [0.99,1.37] [-0.37,-0.36] ∪ [0.99,1.37] [-0.37,-0.36] ∪ [0.99,1.37] [-0.37,-0.36] ∪ [0.99,1.37]
P −1OPMSOP �B(x, !) [-0.40,-0.36] ∪ [1.00,1.41] [-0.40,-0.36] ∪ [1.00,1.41] [-0.40,-0.36] ∪ [1.00,1.41] [-0.40,-0.36] ∪ [1.00,1.41]
P −1OPCSOP �B(x, !) [-0.37,-0.36] ∪ [0.99,1.37] [-0.37,-0.36] ∪ [0.99,1.37] [-0.37,-0.36] ∪ [0.99,1.37] [-0.37,-0.36] ∪ [0.99,1.37]
P −1OPSOP �L(x, !) [-0.73,-0.68] ∪ [1.02,1.73] [-0.73,-0.68] ∪ [1.03,1.73] [-0.73,-0.68] ∪ [1.03,1.73] [-0.73,-0.68] ∪ [1.03,1.73]
P −1OPMSOP �L(x, !) [-0.99,-0.86] ∪ [1.86,3.68] [-1.01,-0.88] ∪ [1.88,4.24] [-1.01,-0.88] ∪ [1.88,4.31] [-1.01,-0.88] ∪ [1.88,4.32]
P −1OPCSOP �L(x, !) [-0.73,-0.68] ∪ [0.94,1.73] [-0.73,-0.68] ∪ [0.92,1.73] [-0.73,-0.68] ∪ [0.91,1.73] [-0.73,-0.68] ∪ [0.91,1.73]

Nℎ = 225, �2 = 0.5, � = 10−6,  = 0.1, L2 = 0.5,Nit = 2 for both �B(x, !) and �L(x, !).
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If the variance is large, we use R−11,M and R−13,M as preconditioners inside a Chebyshev Semi-Iterative method to invert R1 and
R3. The two Chebyshev Semi-Iterative method can be executed separately and in parallel. To choose the parameters �, � and �,
we rely on the following Lemma, obtained using the same argument of Lemma 8.
Lemma 10. The spectra of R−11,MR1 and of R−13,MR3 are real and bounded from below by 1.
Notice that, on the one hand, the solution of SOPx = f using a Krylov method requires the matrix-vector multiplication between
SOP and a vector, that involves the computation of the action of the inverse of A on four vectors. The action of the inverse of A
must be computed exactly, or up to a very low tolerance. On the other hand,SOP is amatrix of dimension 3Nℎ ⋘ (2N+1)Nℎ, the
latter being the size of S . Thus, a Krylov method is less prone to saturation of memory and instability due to orthogonalization.
According to the software, architecture and problem at hand, the pros could be larger than the cons, or viceversa.
Tables 3 report the negative and positive intervals containing the spectrum of the system preconditioned by POP, POPM or POPC.
All preconditioners exhibits a �-robust spectrum, and in particular the mean preconditioner P −1OPM performs quite better than the
algebraic one SLRM (see Table 2). The dependence of POP on �2 is weak, and similar to that of ̃−1, analysed in Section 5.1, as
Theorem 5 involves the first moments of 1∕�min(!) and �max(!). Finally Table 3 shows that all preconditioners are robust with
respect to the number of collocation points.

7 NUMERICAL EXPERIMENTS

The aim of this section is to further validate the theoretical results presented in Section 5 and 6, and to compare the precondi-
tioners analysed on a model problem. We consider the domainD = (0, 1)2 discretized with a regular mesh of size ℎ, and a finite
element approximation using ℙ1 finite elements. For each preconditioner P̃ , PLRM, PLRC, POPM and POPC, we report the number
of iterations and computational times in seconds to solve the saddle point system using preconditioned MINRES . Although it
is tempting to compare the computational times and number of iterations among all preconditioners, we stress that POPM and
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POPC compute a different optimal control with respect to P̃ , PLRM and PLRC, as the control belongs to Y and acts on the state
equation through the Riesz map of Y (see Elvetun et al.32 for an instance of application arising in electrocardiography). In all
experiments, the matrixA is inverted approximately using the Fortran Algebraic MultiGrid (AMG) library HSL_MI2065, which
is called using the Matlab interface. We specifically used two V-cycles with one iteration of the damped Jacobi smoother with
parameter � = 8

9
and 5 levels. All other parameters are left to default values. The inverse of C is computed approximately,

inverting the mass matrixM with 25 iterations of the Chebyshev semi-iterative method using as preconditioner the diagonal of
M itself. The damping parameters � as well as � and � are estimated once and for all using the mass matrixMs. The application
of A−1 and ofM−1 onto a vector is performed in parallel, using the Matlab Parallel Computing Toolbox. Further, we compute
once for all the LU decomposition of A0 + 1

√

�
Ms, �A0 +Ms and K , which is feasible as their size corresponds to a single PDE

discretization. Clearly, one could further approximate them using AMG, if � is not too small, or using other iterative methods.
Finally, when using POPM and POPC, we compute the exact action of A−1 using eight iterations of the conjugate gradient method
preconditioned by AMG, which are enough to have a (unpreconditioned) residual of approximately 10−11. MINRES is stopped
when the relative (unpreconditioned) residual is smaller than Tol = 10−6. The simulations have been performed on a worksta-
tion equipped with an Intel® Core™ i9-10900X and 32 GB of RAM. For reproducibility, data and codes are available at Nobile
et al.66.

7.1 Bounded random field with Stochastic Collocation
We consider the bounded random field defined in (29) and use a full tensorized Gauss-Legendre quadrature formula with 5
points for each random variable �j(!), j = 1,… , 4, (N = 54 = 625). The mesh size is ℎ = 2−5 and Nℎ = 961. The global
system has approximately 1.2 million degrees of freedom. The target state is yd = sin(�x) sin(�y).
First we consider u ∈ L2(D). The results in Table 4 confirm that P̃ is extremely efficient when � is sufficiently large, but its
performance deteriorates when � → 0 as Theorem 2 predicts. PLRM performs well unless for extremely small values of � (e.g.
� ≈ 10−8), as remarked in Table 2. PLRC recovers robustness, at the price of additional Chebyshev semi-iterations, and leads to
constant numbers of iterations and computational times as � → 0.
Next, we show how the preconditioners behave as �2 increases. We set � = 10−2 for P̃ , while � = 10−6 for PLRM and PLRC, that
is, we set � according to the regime where we would use the preconditioners in practice. P̃ exhibits a very weak dependence on
�2. This is reflected both by the estimates of Theorem 2 and by Table 1. Recall that �B(x, !) ≥ 1 for a.e. !, so that Ê

[

1
�2min(!)

]

is bounded as �2 grows. PLRM becomes inefficient when �2 grows, since the mean matrix A−10 is a crude approximation of
1
⊤ZA−1Z1 that does not take into account the variability of the stiffness matrices27. The addition of the Chebyshev semi-

iteration helps to reduce the computational time and number of iterations, but does not remove completely the dependence over
�2.

TABLE 4 Number of iterations and computational time in seconds to reach a relative residual smaller than 10−6.
� 10−2 10−4 10−6 10−8

P̃ −1S 29 (20.3) 37 (25.0) 109 (72.3) 734 (479.3)
P −1LRMS 31 (42.7) 33 (44.6) 37 (49.7) 169 (221.4)
P −1LRCS 31 (89.5) 33 (94.5) 31 (88.2) 31 (87.8)

�2 = 0.5,  = 10−1,Nit = 2.
Q
Q
QQ

�
�2 0.1 0.5 1 1.5

P̃ −1S 10−2 29 (20.6) 29 (19.4) 31 (20.8) 33 (21.9)
P −1LRMS 10−6 27 (36.8) 37 (48.9) 87 (112.6) 198 (254.5)
P −1LRCS 10−6 27 (76.4) 31 (86.5) 35 (132.9) 39 (148.6)
 = 10−1.Nit = 2 for �2 ∈ {0.1, 0.5} andNit = 4 for �2 ∈ {1, 1.5}.

Next, we consider a control u ∈ H1(D) and the operator preconditioning approach. Table 5 shows that both POPM and POPC are
very robust with respect to �. Interestingly, POPM performs well also for � ≈ 10−8 in contrast with PLRM. POPC still exhibits a
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TABLE 5 Number of iterations and computational time in seconds to reach a relative residual smaller than 10−6.
� 10−2 10−4 10−6 10−8

P −1OPMS 27 (50.8) 43 (76.8) 19 (35.2) 19 (35.4)
P −1OPCS 28 (140.4) 46 (226.8) 28 (139.8) 28 (134.8)

�2 = 0.5,  = 10−1,Nit = 2.
�2 0.1 0.5 1 1.5

P −1OPMS 12 (23.5) 19 (35.2) 37 (65.6) 92 (159.5)
P −1OPCS 27 (134.0) 31 (138.6) 35 (216.9) 39 (236.7)

� = 10−6 and  = 10−1.Nit = 2 for �2 ∈ {0.1, 0.5} andNit = 4 for �2 ∈ {1, 1.5}.

FIGURE 2 The left and center panels show two random realizations of �L(x, !). The right panel shows the optimal control to
reach the target state yd = sin(�y) sin(�x). Parameters: L2 = 0.025, �2 = 0.5, � = 10−2,  = 0.1 andN = 104.

�2 dependence as expected, since the estimates of Theorem 5 involve the first moments of 1
�min(!)

and �max(!). Notice that, even
though POPC is more robust than POPM in terms of number of iterations for increasing �2, the additional cost due to the inner
semi-Chebyshev method leads actually to higher computational times.
To conclude, for the bounded random field considered and for a control in L2(D), P̃ is the most efficient preconditioner for a
large �, and it is also robust again increasing values of �2. PLRM is an efficient alternative if � ≥ 10−6. For either extremely
small values of � (e.g., 10−8) or for large values of �2, POPC is instead to be preferred. Notice that POPC is robust both in terms
of number of iterations and computational times with respect to � (for a fixed �2).
For a control inH1(D), POPM outperforms POPC in all tests in terms of computational times.

7.2 Log-normal field with Monte Carlo sampling
In this subsection, we consider the log-normal field �L(x, !) defined in (28) with covariance function Covg(x, y) =
�2 exp

(

− ‖x−y‖22
L2

)

. We consider a relatively small correlation length, setting L2 = 0.025. Fig. 2 shows two random realizations
of �L(x, !). To keep 99% of the variance, we retainM = 37 components in the Karhunen-Loève expansion (28), so that SCM
on tensor grids is not feasible due to the curse of dimensionality. We thus rely on a standard Monte Carlo withN = 104 samples
The saddle point system involves approximately 19.2 millions degrees of freedom, and we first consider a control u ∈ L2(D).
Table 6 reports the number of iterations and computational times in seconds for different values of � and �2. Notice that the
performance of both P̃ and PLRM deteriorates quickly as � → 0. In constrat, PLRC exhibits a weak dependence on �, but still
remains quite efficient for the broad range of values. The performance of all preconditioners deteriorates when �2 increases. We
remark that �2 = 1.5 is quite a challenging setting: in our experiments we had max1≤i≤N �max(!i)

�min(!i)
= 1.08e4, that is the random

diffusion field can vary up to four order of magnitude inside the domain (the expected variation is Ê
[

�max(!)
�min(!)

]

= 396.39).
Finally, we look for a u ∈ H1(D). Tables 7 further confirm that both POPM and POPC lead to a �−robust convergence. The latter
is again not �2-robust as the theory predicts, but the increase of the number of iterations is modest. Nevertheless, an increasing
number of inner iterations is nedded as the mean approximations R1,M and R3,M lose their efficacy as preconditioners inside
the Chebyshev semi-iterative method, and this results in a significant increase of computational times.
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TABLE 6 Number of iterations and computational time in seconds to reach a relative residual smaller than 10−6.
� 10−2 10−4 10−6 10−8

P̃ −1S 37 (390.0) 55 (564.7) 265 (2699.6) >800 (>8249.9)
P −1LRMS 37 (897.4) 53 (1282.1) 422 (10170.6) >800 (>19583.1)
P −1LRCS 37 (2540.1) 37 (2577.2) 41 (2887.30) 49 (3526.7)

�2 = 0.5,  = 10−1,N = 104,Nit = 4.
Q
Q
QQ

�
�2 0.1 0.5 1 1.5

P̃ −1S 10−2 31 (335.8) 37 (468.4) 43 (550.5) 49 (576.0)
P −1LRMS 10−6 53 (1372.3) 442 (13408.8) 796 (23978.0) 760 (22121.2)
P −1LRCS 10−6 31 (1739.1) 41 (3724.3) 59 (8267.9) 79 (11635.6)
Nit equal to {2, 4, 8, 10} for �2 equal respectively to {0.1, 0.5, 1, 1.5};  = 0.1.

TABLE 7 Number of iterations and computational time in seconds to reach a relative residual smaller than 10−6.
� 10−2 10−4 10−6 10−8

P −1OPMS 39 (1190.8) 44 (1340.1) 31 (961.2) 32 (990.0)
P −1OPCS 37 (4937.6) 38 (5074.6) 29 (3896.6) 31 (4178.0)

�2 = 0.5,  = 10−1,Nit = 4.
�2 0.1 0.5 1 1.5

P −1OPMS 16 (518.2) 31 (980.5) 68 (2103.3) 145 (4534.6)
P −1OPCS 26 (2420.8) 29 (3922.4) 31 (6869.8) 39 (10438.2)

Nit equal to {2, 4, 8, 10} for �2 equal respectively to {0.1, 0.5, 1, 1.5}; � = 10−6 and  = 10−1.

To summarize, for a control in L2(D), P̃ is again the most efficient preconditioner for � large enough. The regime for � small
is more challenging than in subsection 7.1. PLRC is always to be preferred over PLRM except for very small values of �2 (i.e.
�2 = 0.1). Nevertheless, we remark that the computational times of PLRC show a stronger dependence on �2 compared to
subsection 7.1 since the number of semi-Chebyshev iterations grows faster as �2 increases. For a control in H1(D), POPM
outperforms again POPC in all tests.
Notice that, according to the numerical tests, the mean approximation is more effective in the operator preconditioning approach
than in the matching Schur complement approximation. We believe this is due to the persistent (weak) dependence of the exact
matching Schur approximation on � (see Table 2), which seems to amplify the approximation error of 1⊤ZA−1Z1 with A−10 as
� → 0.
The development of improved preconditioners which capture better the effective spectrum of 1⊤ZA−1Z1, are expected to
reduce the number of inner iterations needed, or even to replace directly the mean approximation A0 into (32) and (52), leading
to improved SLRM and POPM, and thus reducing the overall computational time. A possibility would be to subsample A−1! and
to replace the subsamples with cheap approximation using, e.g., sparse approximate inverse method67.

8 CONCLUSION

In this manuscript, we studied preconditioners for the large saddle point systems which arise in the context of quadratic robust
OCPUU. Our theoretical analysis casts light on the dependence of these preconditioners on the regularization parameter �, on
the variance �2 of the random field, and on the level of discretization in the probability space. For large values of �, the coupled
saddle point system can be efficiently solved by preconditioning separately and in parallel all the state and adjoint equations.
For small values of �, robustness can be recovered using two different preconditioners which require the additional solution of
a linear system (whose size is equal to a single PDE discretization) which couples all the equations and involves the sum of the
inverses of the stiffness matrices. We solved such reduced system using a mean approximation or a preconditioned Chebyshev



26

semi-iterativemethod. Our theoretical analysis characterizes the dependence of the preconditioners on the variance of the random
field through either the first or second moment of 1∕�min(!) or �max(!). The weak dependence for physically relevant ranges of
�2 is confirmed by our numerical experiments in terms of number of iterations, but not necessarily in terms of computational
times, as one needs to increase the number of inner Chebyshev semi-iterations for large values of �2. Hence, the combination
of small values of � and large values of �2 is still challenging, and the development of tailored preconditioners for the reduced
system involving the sum of the inverses of the stiffness matrices is expected to close the gap between the theoretical results and
practical implementations.
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