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Frequency-domain data-driven
position-dependent controller synthesis for

Cartesian Robots
Philippe Schuchert, Alireza Karimi, Member, IEEE

Abstract— Cartesian robots have position-dependent
dynamics that must be taken into account for high-
performance applications. Traditional methods design Lin-
ear Time-Invariant (LTI) controllers that are robustly stable
with respect to position variations, but result in reduced
performance. Advanced methods require Linear Parameter
Varying (LPV) models and LPV controller design meth-
ods that are not well-established in the industry. On the
other hand, the classical model-based gain-scheduled tech-
nique involves parametric identification, high-performance
controller design for each position, interpolation of the
controller parameters, and real-time controller validation,
making it time-consuming and costly. Our approach uses
frequency response at different operating points to design
an LPV controller using a convex optimization algorithm
based on second-order cone programming. The approach
is applied to an industrial 3-axis Cartesian robot, show-
ing significant improvements over state-of-the-art control
design strategies. Data acquisition and controller design
can be performed automatically, reducing significantly the
engineering costs for controller synthesis.

Index Terms— Positioning systems, LPV control, Fre-
quency domain synthesis, data-driven control, H2 − H∞
control

I. INTRODUCTION

CARTESIAN robots have found a broad range of applica-
tions in the manufacturing process, e.g., pick-and-place,

material handling, coordinate measuring, or CNC milling.
Each axis of the robot can move in an orthogonal direction
to the other axes and can be controlled using multiple single-
input single-output (SISO) controllers. When the robot moves
in the operating space, beam lengths and mass distributions
are changing, resulting in a series of varying resonant modes.
This makes the control design a challenging task, especially
when a bandwidth above the first resonant mode is required
[1]. The classical approach is to use a simple controller (e.g.,
PID with filters, or more recent approaches such as H∞ or µ-
synthesis, see [2], [3], [4]) such that the whole operating space
is simultaneously stabilized. This approach will result in an
inherent trade-off in performance [5]. A single linear control
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Mechanical Engineering, École Polytechnique Fédérale de Lausanne,
1015 Lausanne, Switzerland (e-mail: philippe.schuchert@epfl.ch;
alireza.karimi@epfl.ch).

law can only achieve sup-optimal performance locally. The
same controller must stabilize the dynamics at the different
operating points, resulting in a robustness-performance trade-
off.

In applications such as wafer inspection and coordinate
measuring, high precision and large closed-loop bandwidth
are required to obtain a competitive advantage. Ever-increasing
demands for faster and more accurate robots are pushing tradi-
tional control strategies to their limits, sometimes resulting in
impossible to meet design requirements. In many applications,
control design schemes incorporating position-dependent gains
[6] have been used to overcome this issue [7]. In Divide-and-
conquer gain-scheduling, controllers are tuned around differ-
ent operating points, and later blended into a single non-linear
control law, e.g., in [8], [9], [10], [11]. Tuning and blending
numerous controllers to achieve the desired performance is
a time-consuming task and requires expertise from a skilled
engineer. The effort scales with the number of operating points
considered, as around each operating point, a model must first
be identified, then validated, and finally an appropriate local
controller designed. For Cartesian robots, the whole process
must be repeated for each axis. This interpolated control law
can have suboptimal performance when fitting a polynomial
on the controller coefficients, and excessive computation time
when interpolating directly on a real-time target.

LPV controller synthesis approach overcomes this issue
by designing tractable, position-dependent controllers. This
approach results in improved performance over traditional LTI
controllers, with advantageous guarantees over gain schedul-
ing. To achieve at the same time robustness and performance,
an accurate LPV model is paramount to a good control design.
Obtaining such a model is difficult and expensive [12]. If a
machine is subject to any change during its life, e.g., wear and
tear (aging of the machine), changing the end effector tool, or
replacing parts of the mechanical assembly or power stage, the
costly LPV modeling and identification phase must be done
again.

Frequency response functions (FRFs) have been proven
to be an effective way of representing mechanical systems
with many resonant modes [13]. It can be obtained directly
from input-output data, is well understood, and is extensively
used in industry. Frequency-based approaches remove the
costly parametric identification phases (structure identification,
parameter estimation, and model validation). For position-
dependent systems, obtaining the FRF at different operating
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points can be used as an accurate representation of the
system’s local dynamics. Different FRF-based controller syn-
thesis approaches have been extended to position-dependent
or LPV systems [14], [15], [16], [17]. They offer a natural
way of handling frequency-based design specifications but
are limited in flexibility. Notably, none of the aforementioned
approaches can handle simultaneously H2 and H∞ synthesis
requirements.

The approach in [18] addresses mixed-objective design
requirements using only the frequency response of an LTI
system, resulting in a Semi-Infinite Programming (SIP) prob-
lem that is convex in the controller parameters and solved
using a series of Linear Matrix Inequalities (LMIs). This paper
extends the results of [18] to parameter-dependent controller
design, improving the formulation for SISO controllers using
Second-Order Conic Programming (SOCP) and addressing
practical issues related to frequency gridding for a more
reliable synthesis.

The main contributions of this paper are summarized as
follows:

1) Extension to position-dependent systems. The original
problem is reformulated using second-order conic con-
straints, making it tractable to consider for a larger set of
models and controller order as well as denser frequency
gridding. This formulation enables the design of high-
order position-dependent controllers involving tens to
hundreds of thousands of second-order conic constraints
using conventional personal computers.

2) Application to an industrial 3D positioning system. The
proposed approach has been applied to an industrial
Cartesian robot with three orthogonal axes.

This paper presents only the discrete-time SISO controller
synthesis, as the positioning system used is identified from
input/output data obtained at discrete time steps. It is di-
rectly applicable to continuous-time systems by changing
the Nyquist contour and the controller parametrization if a
continuous-time controller is sought.

This paper is organized as follows. Section II addresses the
notation used throughout this paper and gives a short overview
of a related work. Section III deals with the problem statement
and the description of the system. Section IV presents the de-
velopment of a frequency-based position-dependent controller
synthesis method and discusses mixed-sensitivity H2/H∞
hard and soft requirements. Section V addresses some practical
issues and proposes mitigation steps. Section VI shows the
experimental results for an industrial positioning system.

II. PRELIMINARIES

A. Notations

Throughout this paper, the imaginary unit is denoted by j =√
−1. The principal argument of a complex-valued scalar z is

represented by Arg {z} ∈ (−π, π]. The Hermitian transpose of
a complex-valued vector F is denoted by F ∗ and its Euclidean
norm by |F | =

√
F ∗F . The H2 and H∞ norm of an LTI

system are expressed as ∥ · ∥2 and ∥ · ∥∞, respectively.

B. Related work
In [18], the problem of mixed-sensitivity synthesis using

only the frequency-domain data is considered. Given the
frequency response of a plant model G(ejω) and a controller
with fixed structure K = XY −1 for some polynomial matrices
X(z) and Y (z), the design objective is to minimize the norm
of the mixed-sensitivity problem. We will take as an illustrative
example the H∞ norm case:

min
K

∥∥∥∥[ W1 S
W2 U

]∥∥∥∥
∞

(1)

where W1, W2 are weighting filters, S = (I + GK)−1 the
sensitivity, and U = KS the input sensitivity function [19].
Unlike traditional methods, only the FRF of the plant G
is required, along with a known initial stabilizing controller
Kc = XcY

−1
c . The problem is reformulated as the minimiza-

tion of an upper-bound of the mixed-sensitivity norm:

min
X,Y

γ

subject to P ∗Pc + P ∗
c P − P ∗

c Pc (W1Y )∗ (W2X)∗

W1Y γI 0
W2X 0 γI

 ≻ 0

∀ω ∈ Ω
(2)

where Ω = (−π/Ts , π/Ts] with Ts the sampling period and

P = Y +GX, Pc = Yc +GXc.

Minimizing the upper-bound γ subject to (2) also ensures
that the closed-loop system remains stable. The main stability
theorem states:

Theorem 1: Given a plant model G, an initial stabilizing
controller Kc = XcY

−1
c with det(Yc) ̸= 0, ∀ω ∈ Ω, and

feasible solutions X and Y to the following LMI:

P ∗Pc + P ∗
c P ≻ 0 ∀ω ∈ Ω, (3)

then the controller K = XY −1 stabilizes the closed-loop
system if

(1) det(Y ) ̸= 0, ∀ω ∈ Ω.
(2) The initial controller Kc and the final controller K share

the same poles on the stability boundary.
(3) The order of det(Y ) is equal to the order of det(Yc).

Proof See [18]. ■
The stability constraint (3) is always enforced in (2) as the

first minor of the matrix must also be positive. The LMI in
(2) is a function of ω and must be satisfied for the whole set
Ω but, in practice, is checked only on a finite set of sampled
frequency points. In the case of multimodel uncertainty, i.e.
G ∈ {G1, ..., GN}, then (2) must be satisfied for each model,
which results in a large number of LMI constraints, making
the solution potentially computationally expensive.

III. DESCRIPTION OF THE SYSTEM

A schematic representation1 of a 3D Cartesian robot is
shown in Fig. 1. Each axis can move in an orthogonal direction

1Due to confidentiality agreements, pictures of the machine used in Sec.
VI for the experimental results cannot be shown.
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Fig. 1: Schematic representation of a 3D Cartesian robot. x-
axis in green, y-axis in red, z-axis in blue. Each axis can move
in an orthogonal direction to the other axes. The operating
point, corresponding to the black and white sphere, is located
at the bottom of the z-axis. The operating space is indicated
using the transparent box.

rt
Kp Km Axis−

motor angular position

−

axis position

yt

Gp(e
jω)

Fig. 2: Block diagram of individual axis loop.

to the other axes. The (x, y, z) position of the end-effector is
denoted p, and restricted to some operating space P:

p ∈ P ⊂ R3. (4)

Depending on the operating point, the mass distribution and
beam lengths of the axes can vary significantly, leading to
position-dependent dynamics. Such effects are often explicitly
ignored but must be accounted for when a large closed-loop
bandwidth is required.

For the 3D positioning robot considered in Sec. VI, each
axis consists of a DC motor with a reduction stage and a belt
pulley transmission, linking the motor to its corresponding
axis. Encoders are available to precisely measure the axis
position and motor angular position. The controlled inputs are
the voltages applied to the DC motors. In industry, a common
control scheme for such systems is cascaded control loops,
where Km, the inner controller, is regulating the motor angular
position, and Kp, the outer-loop controller, the axis position.
We will adopt the same control architecture and assume the
inner loops have already been tuned. Satisfactory performance
for the inner loops can often be obtained without the need
for position-dependent controllers, and thus their tuning is
not discussed here. The model of each axis with the closed
inner-loop is denoted Gp. A block diagram representing this
interconnection can be found in Fig. 2.

This paper focuses only on tuning Kp for the SISO model
Gp, where the flexible-body and position-dependent dynamics
are most prevalent. For brevity, only the x-axis tuning process
is discussed in detail. The two other axes have less pronounced
position-dependent dynamics and follow the same tuning
approach, and thus only discussed briefly.

Around every operating point, each axis can be modeled
using an LTI model. This motivates the use of Linear Param-
eter Varying (LPV) models for position-dependent dynamics.
A discrete-time LPV model is defined as:

ζt+1 = Apζt +Bput

yt = Cpζt +Dput
(5)

where Ap, Bp, Cp, Dp are the state-space matrices depending
on the operating point, ζt the internal states, ut the input,
and yt measurement at sample t. As the state-space matrices
depend on the robot’s states, this sort of model is called a
quasi-LPV model [20]. Obtaining the state-space description
is often a cumbersome and time-consuming task, especially
with systems exhibiting many resonant modes.

Assumption 1: The frozen dynamics representation at each
operating point remains a valid description of the system.
Remark: Assumption 1 may seem very restrictive, as the
dynamics are a function of the operating points. For the
positioning system considered, the dynamics vary significantly
only over large distances in the operating space. Physical
limitations will put a limit at which the operating space can be
traversed, in turn limiting the rate of change of the dynamics.
A closed-loop bandwidth much larger than this rate of change
makes Assumption 1 justifiable. For the system considered in
Sec. VI, experimental results justify this assumption as well.

Under Assumption 1, at every operating point, a unique
frequency response function Gp exists, which can be used to
model the (frozen) dynamics [20]:

Gp(e
jω) = Cp

(
ejωI −Ap

)−1
Bp +Dp, (6)

with ω ∈ Ω := (−π, π]. To protect the commercial interests
of our industrial partner, the frequency range is normalized
such that the Nyquist frequency corresponds to ω = π.
The pragmatic approach to obtain (6) is to identify the FRF
around different operating points using a local input/output
data set, avoiding the need to explicitly find the state-space
representation. The FRF can be obtained using a wealth of
existing and well-understood techniques [21], [13], or more
recent approaches focusing on LPV FRF identification [22],
[23].

Multiple local data sets are collected for each axis. Each
data set consists of T = 8000 input and output measurements.
The input r is a sum-of-sines signal with random phase given
by:

rt =

T/2∑
k=1

(
α+

β

k

)
sin(2πk(t− τk)/T )

where τk is a random integer in {0, . . . , T − 1}. The constant
α is chosen sufficiently large to excite well all frequencies,
but not too large to saturate the input of the DC motor. The
constant β is chosen to add additional excitation in low fre-
quencies. For every axis, the local FRF Gp(e

jω) is computed
using spectral analysis [21]. The local input-output data is first
converted to the frequency domain, then averaged to obtain an
estimate at 350 logarithmically spaced frequencies.

For each axis, a different number of models is required
to describe well the change in dynamics w.r.t. the operating
points. For the x-axis, 5×5×4 = 100 models are obtained on a
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regular grid in the operating space: the x position is sampled at
5 equidistant points, the y position at 5 equidistant points, and
the z position at 4 equidistant points. For the y-axis dynamics,
there is only a negligible dependency on the x position: the
y-axis is mounted on top of the x-axis as illustrated in Fig. 1,
and the position of the x-axis will not have a significant impact
on the y-axis dynamics. This has been confirmed empirically.
Therefore, a reduced number of models for the y-axis can be
chosen: a total of 1× 8× 8 = 64 models on a regular grid in
the y-z plane, obtained at a fixed x position. Similarly, the z-
axis is mounted on top of the y-axis, and its dynamics do not
depend on the two previous axes. Therefore, it has been noted
to be sufficient to use 1×1×8 = 8 different models, obtained
at equidistant heights z, to describe well the dynamics in the
whole operating space.

The identified spectra for the different axes are shown in
Fig. 3−5. the level of green, red, or blue color depends on
the (x, y, z) coordinates of the operating point. The changing
color highlights the position dependency in the dynamics: a
change in the level of green indicates a change w.r.t the x
position, a change in the level of red indicates a change w.r.t
the y position, and a change in the level of blue indicates a
change w.r.t the z position. For the x-axis (Fig. 3), the color of
the first resonance mode shifts from cyan (blue and green) to
blue, highlighting a strong dependency of this resonant mode
with the x position. The color of the second resonance mode
shifts from magenta (blue and red) to blue, indicating a strong
dependency on the y position. For the y-axis (Fig. 4), the cyan-
to-blue color transition indicates a strong dependency in the
dynamics on the y position.

These varying resonant modes depend on the mechanical
structure of the machine, the inner-loop controllers, and many
other difficult-to-model interactions. Such varying modes can
drastically limit the performance of traditional control ap-
proaches and are especially difficult to model using parametric
approaches.

IV. POSITION-DEPENDENT CONTROLLER SYNTHESIS

A. Control structure and performance
To achieve the desired performance, the axis controller Kp

will be dependent on the operating point:

Kp =
Xp

Yp
=

Xvar(z,p)
Yvar(z,p)

FX(z,p)
FY (z,p)

, (7)

where z is the z-transform variable, and FX and FY are fixed
parts in the controller. Xvar(z,p) and Yvar(z,p) are the variable
parts in the controller, defined as:

Xvar(z,p) = Xa(p)za +Xa−1(p)za−1 + . . .+X0(p),

Yvar(z,p) = zb + Yb−1(p)zb−1 + . . .+ Y0(p).
(8)

The variable parts have order a and b respectively, such that
Kp is proper. Yvar should not have any zeros on the unit circle,
and therefore FY must at least include all the controller’s poles
on the unit circle. Xi(p) and Yi(p) are affine combinations of
a pre-defined scheduling vector θ(p) of length nθ:

Xi(p) =
nθ∑
k=0

xikθk(p), Yi(p) =
nθ∑
k=0

yikθk(p). (9)

Fig. 3: x-axis. Identified FRF of the position-dependent
dynamics around different operating points (x, y, z). The
FRF is color-coded at each frozen operating point as
green, red, or blue based on the position of the operating
point. A change in resonance mode can be observed near
frequencies 0.2 and 0.6.

Fig. 4: y-axis. Identified FRF of the position-dependent
model around different frozen operating points. A
change in resonance mode can be observed shortly after
frequency 0.1.

xik, yik are scalar optimizations variables, and the scheduling
vector θ(p) = [θ0(p), . . . , θnθ

(p)] is a (possibly non-linear)
function of the operating point p.

The control synthesis problem is formulated as a mixed-
sensitivity problem with soft and hard requirements:

min
Kp

γ

subject to
∥Rsoft(Gp,Kp)∥2,∞ < γ, ∥Rhard(Gp,Kp)∥2,∞ < 1.

(10)

Rsoft corresponds to soft requirements, i.e., the objective(s) to
be minimized. Rhard corresponds to hard requirements, i.e.,
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Fig. 5: z-axis. Identified FRFs show the dynamics at
different frozen operating points. Unlike the other two
axes, the dynamics for this axis have little position
dependency and can be controlled effectively with con-
ventional control techniques.

the constraints that must be satisfied irrespectively of the
norm achieved by the soft requirements, and given by design
specifications (e.g., modulus margin, attenuation of the control
input in a certain frequency range, etc.).

B. Second-order cone constraints
We consider the synthesis approach for the control per-

formance as described in (10), where every requirement can
be formulated as the weighted norm of the closed-loop sen-
sitivity functions. It is shown in this section that the H2

and H∞ mixed-sensitivity framework can be reformulated
as constraints in the frequency-domain with the following
structure:

|F |2 < γP ∗P, γ > 0, (11)

where F ∈ Cn and P ∈ C are linear in the optimization
variables. This type of constraint is not convex but can be
convexified around an arbitrary Pc ∈ C using the following
inequality:

P ∗P ≥ P ∗Pc + P ∗
c P − P ∗

c Pc, (12)

which can be shown by developing the inequality
(P − Pc)

∗(P − Pc) ≥ 0. An inner approximation of (11) can
be obtained using (12):

|F |2 < γ (P ∗Pc + P ∗
c P − P ∗

c Pc) . (13)

To keep the notation short, we will use

Φ = P ∗Pc + P ∗
c P − P ∗

c Pc. (14)

Note that (13) has a solution if and only if Φ > 0, as by
assumption γ > 0. Equation (13) can be implemented using
SOCP, contrasting with semi-definite programming (SDP)
required for the more general LMI formulation used in the
MIMO case. The second-order rotated cone Cr is defined

as Cr =
{
(F, γ,Φ) | |F |2 < γΦ, γ, Φ > 0

}
and can be em-

bedded in the cone of positive semi-definite matrices:{
|F |2 < γΦ
γ, Φ > 0

⇐⇒
[

Φ F⊤

F γI

]
≻ 0. (15)

Although SOCP can be solved using generic SDP solvers, the
primal-dual interior-point algorithms tailored specifically for
SOCP will outperform SDP solvers. Due to a large number
of constraints and design variables considered, the SOCP
formulation results in a significant reduction in optimization
time, often an order of magnitude faster, and offers better
numerical conditioning. The constraint (13) corresponds to a
second-order cone constraint with complex-valued coefficients

in F , but can be replaced with F̃ =

[
ℜ(F )
ℑ(F )

]
, where ℜ(F )

and ℑ(F ) are the real and imaginary parts of F .

C. Soft H∞ requirements

In this section, performance defined as the infinity-norm of
the weighted sensitivity functions is considered:

min
Kp

γ

subject to∥∥∥∥∥∥
 W1Sp

W2Up
W3Tp

∥∥∥∥∥∥
2

∞

< γ ∀p ∈ P
(16)

where γ is an upper-bound on the mixed-sensitivity problem
and W1,W2,W3 are (not necessarily continuous) weighting
functions. Using the parametrization of Kp given in (7), the
different closed-loop sensitivity functions are defined as:

Sp = (1 +GpKp)
−1 = Yp(Yp +GpXp)

−1

Up = Kp(1 +GpKp)
−1 = Xp(Yp +GpXp)

−1

Tp = GpKp(1 +GpKp)
−1 = GpXp(Yp +GpXp)

−1

We will use the shorthand notation

Pp = Yp +GpXp (17)

for the common denominator of the sensitivity functions.
The H∞ norm corresponds to the supremum of the singular

value of the vector of weighted sensitivity functions over
ω ∈ Ω. Therefore, (16) can be reformulated to an optimization
problem as follows:

min
Kp

γ

subject to∣∣∣∣∣∣
 W1(ω)Sp(e

jω)
W2(ω)Up(e

jω)
W3(ω)Tp(e

jω)

∣∣∣∣∣∣
2

< γ ∀ω ∈ Ω,∀p ∈ P
(18)

For conciseness, the dependency on ω is omitted in further
equations. The above inequality can be multiplied on both
sides by P ∗

p Pp:∣∣∣∣∣∣
 W1Yp

W2Xp
W3GpXp

∣∣∣∣∣∣
2

< γP ∗
p Pp ∀ω ∈ Ω,∀p ∈ P . (19)
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The inequality in (19) can be convexified around an arbitrary
Pc using (12), and a convex approximation of (16) is then
given by:

min
Xp,Yp

γ

subject to∣∣∣∣∣∣
 W1Yp

W2Xp
W3GpXp

∣∣∣∣∣∣
2

< γΦp ∀ω ∈ Ω,∀p ∈ P

γ,Φp > 0 ∀ω ∈ Ω,∀p ∈ P

, (20)

where

Φp = P ∗
p Pc + P ∗

c Pp − P ∗
c Pc. (21)

This is a semi-infinite programming problem and can be
implemented by second-order conic constraints.

D. Soft H2 requirements

In this section, the performance defined as the two-norm of
the weighted sensitivity functions is considered:

min
Kp

γ

subject to∥∥∥∥∥∥
 W1Sp

W2Up
W3Tp

∥∥∥∥∥∥
2

2

< γ ∀p ∈ P.
(22)

Similar to the H∞ case, (22) can be reformulated to an
optimization problem on the spectral norm as follows:

min
Kp

γ

subject to∣∣∣∣∣∣
 W1(ω)Sp(e

jω)
W2(ω)Up(e

jω)
W3(ω)Tp(e

jω)

∣∣∣∣∣∣
2

< µ(ω,p) ∀ω ∈ Ω,∀p ∈ P

π∫
−π

µ(ω,p)dω < γ ∀p ∈ P,

(23)

where µ(ω,p) is an upper bound on the Euclidean norm of the
vector of weighted sensitivity functions at ω. The dependency
on ω is again omitted in further equations when possible. The
inequality in (23) can be rewritten substituting Kp with (7),
and multiplying both sides by P ∗

p Pp, where Pp is defined in
(17):∣∣∣∣∣∣

 W1Yp
W2Xp

W3GpXp

∣∣∣∣∣∣
2

< µ(ω,p)P ∗
p Pp ∀ω ∈ Ω,∀p ∈ P

π∫
−π

µ(ω,p)dω < γ ∀p ∈ P.

(24)

The first inequality in (24) can be convexified around an
arbitrary Pc using (12), and a convex approximation of (22)

is given by:

min
Xp,Yp

γ

subject to∣∣∣∣∣∣
 W1Yp

W2Xp
W3GpXp

∣∣∣∣∣∣
2

< µ(ω,p)Φp ∀ω ∈ Ω,∀p ∈ P

µ(ω,p),Φp > 0 ∀ω ∈ Ω,∀p ∈ P
π∫

−π

µ(ω,p)dω < γ ∀p ∈ P,

(25)

where Φp is defined in (21).

E. Hard requirements
For many applications, a set of hard requirements may

be given in the design specifications. Common examples
include a modulus margin and disturbance attenuation in some
frequency bands. These hard requirements must be satisfied
irrespectively of the objective value attained to ensure the
good functioning of the machine during routine operations.
Such requirements formulated as constraints on the weighted
norms of the different closed-loop transfer functions can be
enforced using convex constraints. In this section, we consider
constraints to shape the different closed-loop transfer functions
individually. For the H∞ case, this corresponds to:∥∥W1Sp

∥∥
∞ < 1

∥∥W2Up
∥∥
∞ < 1

∥∥W3Tp
∥∥
∞ < 1

∀ω ∈ Ω,∀p ∈ P.
(26)

Following the same steps as in Sec. IV-C, a second-order
rotated cone constraint can be obtained:∣∣W1Yp

∣∣2 < Φp
∣∣W2Xp

∣∣2 < Φp
∣∣W3GpXp

∣∣2 < Φp (27)

for all ω ∈ Ω and for all p ∈ P.
For the H2 case, considering only a weighted norm on the

sensitivity transfer function for brevity:∥∥W1Sp
∥∥2
2
< 1, ∀p ∈ P, (28)

the same approach as in Section IV-D can be followed to derive
the following convex constraints:∣∣W1Yp

∣∣2 < µ(ω,p)Φp ∀ω ∈ Ω,∀p ∈ P
µ(ω,p),Φp > 0 ∀ω ∈ Ω,∀p ∈ P
π∫

−π

µ(ω,p)dω < 1 ∀p ∈ P.
(29)

F. Closed-loop stability
Given an initial stabilizing (possibly LPV) controller with

the same fixed parts as in (7):

Kc =
Np

Dp
=

N(z,p)
D(z,p)

FX(z,p)
FY (z,p)

, (30)

and defining

Pc = Dp +GpNp (31)

the closed-loop stability can be guaranteed under Assumption
1, using Theorem 1. According to this theorem, the following
conditions must hold:
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(a) Pp(e
jω) and Pc(e

jω) have the same winding number
(wno) around the origin when ω traverses the Nyquist
contour :

wno(Pp) = wno(Pc) (32)

(b) The initial controller Kc and the final controller Kp have
the same poles with the same multiplicity on the unit
circle,

(c) The order of Yp is equal to the order of Dp.
Note that none of these conditions are particularly restrictive.
Condition (a) is satisfied when convexifying P ∗

p Pp around
Pc, as Φp > 0 enforces P ∗

p Pc + P ∗
c Pp > 0 which guarantees

wno(Pp) = wno(Pc) (see Proposition 1 below).
If Kp and Kc have the same structure, FY should contain

all of Kp and Kc poles on the unit circle. It is sufficient to
verify that

Yvar(e
jω,p) ̸= 0 ∀ω ∈ Ω,∀p ∈ P (33)

to obtain condition (b). If the weighting function W1 has
any poles on the unit circle, the fixed part in the controller
numerator FY should be chosen such as these poles are
canceled. It is then unlikely to have an additional pole exactly
on the unit circle, and (33) is almost always satisfied. This does
not prohibit controllers with unstable poles (but stabilizing the
closed loop). It is possible to add a constraint to enforce that
Kp and Kc have the same number of stable poles by enforcing:

wno(Yvar) = wno(D), (34)

assuming D only has stable poles. A sufficient condition for
(34) can be implemented using the following constraint:

Y ∗
varD + YvarD

∗ > 0, ∀ω ∈ Ω,∀p ∈ P, (35)

which also guarantees that (33) is satisfied. If the initial
controller Kc is stable, this ensures that Kp is also stable.

Condition (c) can be obtained by padding Kc: multiplying
both the numerator and denominator of Kc by powers of z to
obtain the correct order.

V. IMPLEMENTATION CONSIDERATIONS

A. Gridding

The optimization problems in this paper are formu-
lated as semi-infinite programming and contain an infi-
nite number of constraints. A common approach to han-
dle this type of problem is to choose a large set of fre-
quency ΩM = {ω1, . . . , ωM} ⊂ Ω and operating points
PN = {p1, . . . , pN} ⊂ P, and then solve the SIP constraints
at the chosen frequencies and operating points. The frequency
range and the number of operating points should be taken
dense enough such that all dynamics are properly captured.

When the H2 constraints are evaluated on a finite set
of frequencies and operating points, a numerical integration
scheme can be used to approximate the integral

π∫
−π

µ(ω,pn)dω ≈ 1

2

M∑
m=2

(µm,n + µm−1,n) (ωm − ωm−1)

and µm,n > 0 a scalar optimization variable representing the
value of µ(ωm,pn).

The closed-loop stability and controller poles are only
guaranteed when (32)-(34) are met for the continuum of
frequencies and operating points. In the sampled case, the final
winding number can be incorrect due to coarse gridding. This
is prone to happen when the controller’s poles are close to the
unit circle, which is often the case for high-order controllers.

We propose to add additional constraints to ensure the
winding number condition in (32) is met for at least the closed
polygonal chain Pp with vertices {Pp(e

jωm)}, m = 1, . . . , M
and ωm ∈ ΩM . For the chain to be closed, the last segment
must connect Pp(e

jωM ) to Pp(e
jω1).

Assume that the polygonal chain does not intersect the
origin. Given a second closed polygonal chain Pc with the
correct winding number, the aim is to build a series of convex
constraints to guarantee wno(Pp) = wno(Pc).

Let

Pp(ω) = (1− λ)Pp(e
jωm) + λPp(e

jωm+1)

λ =
ωm+1 − ω

ωm+1 − ωm
, ωm ≤ ω ≤ ωm+1

(36)

be a continuous parametrization of the polygonal chain Pp,
and similarly Pc(ω) a continuous parametrization of Pc.

Proposition 1: If

Arg
{
Pp(ω)Pc

∗
(ω)

}
̸= π ∀ω ∈ Ω (37)

holds, then the two closed polygonal chains Pp and Pc have
the same winding number.
Inequality (37) can be explained using the analogy of two
clock hands. If one hand rotates faster than the other and both
return to their starting position after an hour, at some point
during the hour, the hands will be facing opposite directions,
which is not allowed. Thus, they must rotate at nearly the same
angular velocity.

The condition in (37) is not convex in the controller param-
eters as the principal argument is a non-linear operator, and
depends on the continuum Ω. Suppose that nm is the closest
point to the origin on the line segment Pc(ω) when ωm ≤
ω ≤ ωm+1. Therefore, after a rotation by α = Arg {n∗

m},
the line segment ejαPc(ω) lies on the right half-plane and
equivalently ℜ{Pc(ω)n∗

m} > 0, when ωm ≤ ω ≤ ωm+1. Thus,
by construction ∣∣Arg

{
Pc(ω)n∗

m

}∣∣ < π

2
(38)

always holds. Additionally, if

ℜ{Pp(e
jωm)n∗m} > 0

ℜ{Pp(e
jωm+1)n∗m} > 0

m = 1, . . . , M

(39)

holds, then Pp and Pc have the same winding number. Because
each segment ωm ≤ ω ≤ ωm+1 satisfies∣∣∣Arg

{
Pp(ω)

(
Pc(ω)

)∗}∣∣∣ ≤∣∣Arg
{
Pp(ω)n∗

m

}∣∣+ ∣∣Arg
{
Pc(ω)n∗

m

}∣∣ < π
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and by virtue of Proposition 1, both chains Pp(ω) and Pc(ω)
have the same winding number.

Rearranging the indices in (39) results in two additional
constraints at every frequency:

ℜ{Pp(e
jωm)n∗m} > 0

ℜ{Pp(e
jωm)n∗m−1} > 0

(40)

where n0 = nM . This is a tractable condition that should be
implemented to guarantee both polygonal chains have the same
winding number. This constraint also conserves the property
that any starting controller Kc is still a (possibly suboptimal)
solution of the optimization problem (10), ensuring the optimal
controller cannot achieve worse performance than Kc.

The same reasoning can also be used to constrain the
location of the poles in the controller Kp, by enforcing the
correct winding number of the polygonal chains formed by
the variable part of the controller:

wno(Y var) = wno(D). (41)

Following the same derivation as for the improved closed-
loop stability constraint, the following constraints can be added
at each frequency (and operating point) to ensure the correct
pole location:

ℜ{Yvar(e
jωm ,p)ñ∗m} > 0

ℜ{Yvar(e
jωm ,p)ñ∗m−1} > 0

(42)

where ñm is the closest point of the segment with edges
{D(ejωm ,p), D(ejωm+1 ,p)} to the origin.

All inequalities for the negative frequencies range [−π, 0]
will be automatically satisfied if they are met for the positive
range [0, π]. It is therefore sufficient to only implement any
of the inequalities at the positive frequency range.

B. Iterative algorithm and initial controller

To solve the optimization problem, an initial stabilizing
controller Kc satisfying the hard requirements is needed with
the appropriate structure as described in (30). The optimal
controller found by convex optimization will depend on this
initial controller as an inner approximation of (16) or (22) is
solved. This controller may be far from the global optimum.
To improve the results, we propose to use an iterative approach
that solves the optimization problem multiple times, using the
final controller from one iteration as the initial controller for
the next iteration. This procedure is initialized with a stabi-
lizing controller Kc. The objective from the soft requirements
will be non-increasing: the optimal solution at one iteration is
a (possibly suboptimal) solution of the next iteration satisfying
the constraints. The algorithm converges to a local optimum
or a saddle point of the original non-convex problem [24].

If the initial controller does not satisfy the hard require-
ments, the optimization problem cannot be guaranteed to
have a feasible solution. It is recommended to first solve a
sub-problem, with as objective to find a controller satisfying
the hard requirements, and seed the iterative algorithm with
this new controller. This controller can be found by solving

(possibly iteratively) the following sub-problem:

min
Kp

ε

subject to∥∥ Rhard(Gp,Kp)
∥∥
p
< 1 + ε,

ε ≥ 0

(43)

where p is the type of norm used in the original problem. If
(43) converges to any ε ̸= 0, then the hard requirements are
not achievable from the starting point Kc and a different set of
requirements should be chosen (or a different initial controller,
or controller order). If the controller converges to ε = 0, the
final controller should be used as starting point for the original
synthesis problem.

VI. EXPERIMENTAL RESULTS

The proposed method has been applied on a real 3D
Cartesian robot, which was described in Sec. III and whose
FRFs at different operating points are shown in Fig. 3−5. The
operating space corresponds to the unit cube with one m3

volume:
p ∈ [0, 1]× [0, 1]× [0, 1].

The sampled normalized frequency grid ΩM is chosen as
350 logarithmically spaced points, ranging from 10−2 to
π (included). The operating space is sampled at a discrete
number of points PN . For each axis, the control design focus
is to minimize the L2 norm of the tracking error given a ramp
reference signal:

min
Kp

∥e(t)∥L2 (44)

By Parseval’s theorem, minimizing the L2 norm in the
time domain is equivalent to minimizing the H2 norm in
the frequency domain. The z-transform is applied on (44):
the z-transform of a ramp is 1

z2−2z+1 and the corresponding

objective to minimize is
∥∥∥Sp

z2

z2−2z+1

∥∥∥
2
. Thus, the following

weighting functions for the soft requirements are chosen:

W1 =
z2

z2 − 2z + 1
, W2 = W3 = 0. (45)

Hard requirements are specified through upper bounds on
the norm of different closed-loop sensitivity functions and
must be satisfied irrespectively of the value attained in (44).
W1 is chosen such that a modulus margin of 2 is guaranteed.
For the x and y-axis, W2 is chosen such that the maximal
gain of the input sensitivity is 80dB, with a large attenuation
near the Nyquist frequency to reduce noise effects and avoid
saturation of the actuators. For the z-axis, this filter is chosen
as

W2(ω) =

{
0 0 ≤ ω ≤ 0.5

−60dB 0.5 < ω ≤ π
.

For this machine, it is required that high-frequency oscil-
lations are attenuated during closed-loop reference tracking.
Therefore, W3 is chosen such that the complementary sensi-
tivity has a maximal gain of 2 at low frequencies and roll-off
with a slope of −20dB per decade, starting around ω = 0.3.
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For each axis, the problem to solve is:

min
Kp

γ

subject to∥∥ Rsoft(Gp,Kp)
∥∥
2
< γ,

∥∥ Rhard(Gp,Kp)
∥∥
∞ < 1
p ∈ P,

(46)

where Rsoft and Rhard are defined in (22) and (26) using
the weights described above. This problem is implemented
at the sampled ΩM and PN using (25) and (27). The stability
constraint (40) is added to conserve the polygonal winding
number throughout iterations. To prevent the design of unsta-
ble but stabilizing controllers, the constraint (42) is added to
the optimization problem. Without these two last constraints,
reducing the number of frequency points, or increasing the
controller order, leads to destabilizing controllers.

To account for the many resonant peaks of the Cartesian
robot, a final controller of order 16 is desired for each axis.
This order is chosen because increasing the order over 16 leads
only to marginally better performance, and overall complexity
should remain low. A simple initial controller with a double
integrator and a zero very close to 1 is tested on the system
and known to be stabilizing:

K0 = 100 · z − 0.99

z2 − 2z + 1
.

Note that this controller stabilizes all three axes, as they all
have, by design, similar low-frequency dynamics. This initial
controller is far from resulting in satisfactory performance, the
hard requirements are not satisfied, and the controller does
not have the correct order to start the iterative algorithm.
Nevertheless, it has the correct structure: a double integrator
is required to cancel the two poles present in W1. To obtain
the proper order, the controller numerator and denominator are
multiplied by z14:

K0 = 100 · z
14

z14
z − 0.99

z2 − 2z + 1
= 100 · z

15 − 0.99z14

z14
· 1

FY
(47)

The double integrator present in the controller has poles on
the unit circle and is added to the fixed part FY . Using this
controller, the hard requirements are not satisfied, but a valid
controller Kc can be obtained after solving (43) once, which
is then used as a new starting point when solving (46).

A. x-axis tuning

To obtain improved performance over traditional control
approaches, an LPV controller is considered. The scheduling
vector should reflect the dependency of the dynamics (6) w.r.t.
the operating points. A first guess is a quadratic form in the
operating points, and the scheduling vector for the controller
is chosen accordingly:

θx = [1, x, y, z, xy, xy, yz, x2, y2, z2].

Fig. 6: FRF of the (frozen) x-axis LPV controller
obtained after solving (46). The same color code for
the FRF as the x-axis dynamics, shown in Fig. 3, is
used.

To reduce the number of scheduling parameters, (46) is first
solved with additional L1 regularization [25]:

min
Kp

γ +
nθ∑
k=0

(
λ1

a∑
i=0

|xik|+ λ2

b∑
i=0

|yik|
)

subject to (40), (42),∥∥ Rsoft(Gp,Kp)
∥∥
2
< γ,

∥∥ Rhard(Gp,Kp)
∥∥
∞ < 1

ω ∈ Ω,p ∈ P.
(48)

With the appropriate choice of λ1 > 0 and λ2 > 0, solving
(48) can help identify coefficients contributing little to the
overall solutions. Scheduling the controller coefficient with
xz, yz or z2 has been noted to have only a marginal impact on
the final value of γ. The scheduling vector is therefore chosen
as:

θx = [1, x, y, z, xy, x2, y2]. (49)

The discussed iterative procedure in Sec. V-B is applied, un-
til convergence to a final controller, whose frequency response
is shown in Fig. 6. It can be seen from the color change that
the first resonant mode of the controller’s FRF mostly changes
with the x-position, and the second resonant mode mostly with
the y-axis position, similar to the model dynamics shown in
Fig. 3. This highlights that the LPV controller can correctly
deal with the changing resonant modes of the system. The
closed-loop sensitivity functions are shown in Fig. 7 along
with the inverse of the W1,W2 and W3 functions. The hard
requirements are satisfied, and can be seen by the different
sensitivity functions lying under of the inverse of the weighting
functions. This controller is stabilizing everywhere, including
all trajectories that have been tested.

For comparison, (46) is solved using no position depen-
dency in the controller (θx = 1), which corresponds to
designing a robust controller with multimodel uncertainty.
The controller can be computed much faster, but results in
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a final H2 norm over twice as large. The robustness and
performance is a direct trade-off due to the large variance in
the model dynamics. When performance is required, using a
position-dependent controller shows clear benefits: a greater
bandwidth can be achieved, without sacrificing robustness
specified through the hard requirements. The cost to pay is
a larger complexity in the controller and longer computation
times.

To compare both controllers, a ramp from x = 0 to x = 1
with intermediate stops is used as reference xd. The tracking
error with this reference using the robust or the LPV controller
can be found in Fig. 8. To fit in the plots, the reference xd is
scaled and centered. The axes y and z are moving such that
different operating points are visited during the tracking of this
reference. The RMS (root mean squared) value of the error
using the non-LPV controller K is 30.48µm, whereas using
the LPV controller Kp is 14.51µm. The maximal tracking
error is two times smaller using the LPV controller. Small
oscillations can be seen during steady-state and are explained
by system nonlinearities and the vibrations caused by the
movements of the two other axes.

B. SDP vs. SOCP
When sampling the operating space at 100 different points

as for the x-axis and the frequency spectrum at 350 different
points, the resulting problem has 1.4×105 second-order conic
constraints, as many linear constraints, combined with 217 op-
timization variables from the controller parameters (119 in the
numerator, 98 in the denominator) and 3.5×104 optimizations
variables µk,j used to approximate the H2 objective.

To showcase the decreased solve time using the proposed
formulation, the sampled version of (46) is solved using both
the SOCP and SDP formulation. The SDP formulation is
obtained by substituting the second-order conic constraints
with (15). The problem is solved using a MacBook Pro 2019
with a quad-core Intel i7 2.3GHz CPU. The problem is set up
with Yalmip [26] and solved using Mosek2. Mosek implements
both SOCP and SDP solvers and serves as a fair comparison
solver between both formulations.

Solving the sampled version of (46) once takes on aver-
age 100 seconds per iteration using the SOCP formulation,
whereas the SDP formulation takes 9 times more time to
obtain the same result: on average 900 seconds. The iterative
algorithm requires solving (46) multiple times, each time using
the last optimal controller as the new initial controller, the
second-order conic formulation makes it possible to find an
optimal solution in a meaningful time frame.

C. y-axis tuning
The same procedure is applied to the y-axis. The synthesis

is very similar to that of the x-axis and thus only discussed
briefly. The same optimization problem is to be solved, using
the same stabilizing controller and the same constraints. The
only differences are the models Gp and the used scheduling
vector. The L1 regression is applied using quadratic forms in

2http://www.mosek.com

(a) Sensitivity Sp and W1
−1

(b) Input sensitivity Up and W2
−1

(c) Complementary sensitivity Tp and W3
−1

Fig. 7: x-axis closed-loop sensitivities using the LPV con-
troller. The same color code as Fig. 3 is used. The inverse of
weighting filters (shown using the black solid lines) from the
H∞ hard requirements correspond to the upper bound on the
magnitude of the corresponding sensitivity function.

y and z and leads to the following scheduling vector for the
y-axis:

θy = [1, y, y2, z].

This scheduling vector does not depend on the x-axis position;
because the y-axis is mounted on top of the x-axis, and its
dynamics do not significantly depend on the x position. Using
this scheduling vector, a controller is synthesized, and the
final closed-loop sensitivity functions are shown in Fig. 9.
Using a robust controller, the performance criterion is ≈ 50%
higher, indicating again an LPV controller can notably improve
performance.

D. z-axis tuning

The same tuning process is carried out a 3rd time for the
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p

(a) Tracking error using the different controller

p

(b) Zoom on the tracking error

Fig. 8: Tracking error using the LPV and robust controller.
The reference xd, scaled to fit on the plots, is shown using
the solid gray line. Rapid acceleration and deceleration result
in large peaks in the tracking error. The closed-loop using
the LPV controller achieves a tracking error twice as small
as the one using the robust controller. In-between acceleration
and deceleration phases, the double-integrator present in both
controllers can reject the constant-velocity reference, and only
small disturbances (< 5 µm) can be seen.

final axis. The z-axis dynamics have a negligible dependency
on any of the other axes, and the L1 regression indicates that
adding an LPV dependency to the controller results in only
marginal improvements. Therefore, a robust controller with
θz = 1 is used for this axis. The final closed-loop sensitivity
functions using the tuned controller are shown in Fig. 10.

E. Tracking of a helicoidal reference

All three controllers are used to track a helicoidal reference
in the operating space. The reference positions are given by

r(t) =

 xd(t)
yd(t)
zd(t)

 =

 0.575− 0.425 cos(ϕ(t))
0.575− 0.425 cos(ϕ(t− 1))

0.9− 0.8ϕ(t)
20π

 ,

(50)

where

ϕ(t) =

 0 t < 0
πt
2 0 ≤ t < 40

20π t ≥ 40
.

The reference for the z-axis is a ramp, which the double
integrator in the controller of the corresponding axis can
perfectly reject. This slow-moving ramp is used to compare

(a) Sensitivity Sp and W1
−1

(b) Input sensitivity Up and W2
−1

(c) Complementary sensitivity Tp and W3
−1

Fig. 9: y-axis closed-loop sensitivities using LPV controller.
The same color code as Fig. 4 is used. This axis has less
pronounced LPV dynamics (w.r.t. the x-axis), but due to
the first resonance peak occurring at ω = 0.1, a similar
improvement in the soft constraints can be obtained.

only the axes where LPV dynamics are noticeable, while
still moving in the operating space. This trajectory has a
much greater velocity profile as would be seen during routine
operation. Thus, it is expected that if the closed-loop is stable
for this reference, all other normal closed-loop trajectories are
stable too.

The tracking root-mean-square error (RMSE) is shown
in Fig. 11, along with the tracking RMSE from the same
trajectory when using a robust controller for all axes. As can
be seen, this system benefits significantly from using an LPV
controller: as the RMSE is twice as small for this trajectory.
The operating space is covered in 4 seconds, but the closed-
loop bandwidth is still large enough to maintain stability,
so the assumption that the dynamics are frozen is justified.
The closed-loop system remains stable at all visited operating
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(a) Sensitivity Sp and W1
−1

(b) Input sensitivity Up and W2
−1 (where defined)

(c) Complementary sensitivity Tp and W3
−1

Fig. 10: z-axis closed-loop sensitivities using a robust con-
troller. The same color code as Fig. 5 is used. For this axis,
the lack of significant position dependency does not justify the
use of an LPV controller.

points.

VII. CONCLUSION

A new method to tune LPV controllers has been proposed.
Mixed-sensitivity objectives and constraints can be imposed
on the different closed-loop sensitivity functions, with user-
defined controller order. The main advantage is both H2 and
H∞ LPV synthesis is possible using only the FRF of the
system at different operating points. This avoids the costly
parametric modeling phase. The main drawback is that no the-
oretical stability guarantees are given for non-frozen dynamics
or in-between operating points when solving the sampled
version of the mixed-sensitivity problem, but experimental
results show good stability and performance for our Cartesian
robot.
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Fig. 11: End effector RMSE when tracking the helicoidal
reference (50), using either the LPV or the robust controller.
The LPV controller achieves a lower RMSE compared to the
robust controller.

This approach lends itself particularly well to many indus-
trial applications, where the FRF remains a common model for
the dynamics of complex mechatronic systems. This approach
has been applied to an industrial high precision industrial
robot, showing a significant improvement over traditional con-
trol design. Moreover, the engineering costs are significantly
reduced w.r.t. the classical gain-scheduled controller design.
For this application, designing a gain-scheduled controller that
includes the parametric identification of 100 models, designing
as many model-based controllers, their interpolation, and real-
time validation was estimated to be at least one week for a con-
trol engineer by our industrial partner. The proposed approach
could reduce the total design time (automatic data acquisition
and LPV controller design) to less than 4 hours, which reduces
significantly the engineering costs of the project.

Future research directions include extending the proposed
stability conditions to the whole spectrum of the FRF (and
not only the polygonal chain) by integrating data-driven iden-
tification with control, e.g., accounting for inter-frequency un-
certainty in the estimated FRF and improving the formulation
for MIMO systems.
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[17] Tom Bloemers, Roland Tóth, and Tom Oomen. Towards data-driven
LPV controller synthesis based on frequency response functions. Pro-
ceedings of the IEEE Conference on Decision and Control, 2019-
December:5680–5685, 12 2019.

[18] Alireza Karimi and Christoph Kammer. A data-driven approach to robust
control of multivariable systems by convex optimization. Automatica,
85:227–233, 11 2017.

[19] Sigurd Skogestad and Ian Postlethwaite. Multivariable feedback control:
analysis and design, volume 2. Wiley New York, 2007.
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