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Abstract: A new approach is presented to obtain a convex set of robust D−stabilizing fixed
structure controllers, relying on Cauchy’s argument principle. A convex set of D−stabilizing
controllers around an initial D−stabilizing controller for a multi-model set is represented by an
infinite set of Linear Matrix Inequalities (LMIs). By appropriate sampling of the D−stability
boundary, a Semi-Definite Programming (SDP) is proposed that can be integrated in other
synthesis approaches to ensure D−stability along other design specifications. To showcase utility
of the proposed approach, two different examples are given: a boost converter with multi-model
uncertainty and a laser-beam system modeled by an identified finite impulse response.
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1. INTRODUCTION

Poles of Linear Time-Invariant (LTI) systems can be
directly linked to their stability and transient dynamics
(Ackermann et al., 1993). Time-domain performance, such
as damping or overshoot corresponds for many systems to
a domain in the complex plane where the poles are located.
Guaranteeing such specifications on a closed-loop system
is commonly referred as pole clustering or D−stability,
where D is the desired closed-loop pole region.

The H2 and H∞ full-order controller synthesis problem
can be formulated using linear matrix inequalities (LMIs)
(Gahinet and Apkarian, 1994; Scherer et al., 1997), and
can be augmented with D−stability constraints (Chilali
and Gahinet, 1996; Chilali et al., 1999). This requires the
region D to be described as intersections of LMI regions,
where regions such as half-planes, disks, cones and parabo-
las can be readily described (Henrion et al., 2001). Any
convex region symmetric w.r.t. the real axis can be approx-
imated arbitrary well using intersection of the previously
mentioned LMI regions, at the cost of using possibly a
large number of LMI regions. Non-convex regions can be
approximated by computing a convex inner approximation
(e.g. Rosinová and Holič, 2014; Wisniewski et al., 2019)
at the cost of additional conservatism. Finding the cor-
rect LMI regions is a challenging task, and requires the
existence of a single shared Lyapunov matrix between the
different LMI regions, which adds again some conservatism
(Chilali et al., 1999). For non-LMI approaches, such as the
one in Doyle et al. (1988), where a controller is obtained
by solving algebraic Riccati equations, only limited pole
clustering techniques are available. The algebraic Riccati
equations used to derive the optimal controller can be
modified (Furuta and Kim, 1987; Haddad and Bernstein,
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1992; Garcia and Bernussou, 1995; Hench et al., 1998) to
ensure D−stability, but often accommodating only a single
LMI region.

Recently, a methods to solve the H2 or H∞ control
problem using only the frequency response data of a
multi-variable system have been proposed in Karimi and
Kammer (2017). In this method, an inner-approximation
of the performance criterion is derived around a given
initial stabilizing controller, and the optimal controller is
obtained by solving iteratively a sequence of convex opti-
mization problems. Since the method is based only on the
frequency response data, the stability of the closed-loop
system is guaranteed via the Nyquist stability criterion.
A semi-infinite programming is proposed that guarantees
the number of encirclement of the Nyquist plot around the
critical point is equal to the number of unstable poles of
the open-loop transfer function.

The main contribution of this paper is to extend the
results of Karimi and Kammer (2017) to the design of ro-
bust D−stabilizing controllers for multiple-input multiple-
output (MIMO) systems where the domain D is not nec-
essarily a convex region. A second contribution is the
mitigation of numerical problems arising when sampling
the stability boundary in the single-input single-output
(SISO) case. The results are given for the case that the
transfer function of the system is known as well as in a
data-driven setting when only a set of data is available. All
the developments are given in this paper for discrete-time
systems, but can be applied to continuous-time systems
with only minor modifications.

This paper is organized as follows: preliminaries and
notions are given in Section 2. Theoretical developments
are presented in Section 3. Implementation issues are
discussed in Section 4. Simulation and experimental results
are given in Section 5 and conclusions in Section 6.



2. PRELIMINARIES

Notation: The imaginary unit is denoted j. The real
and the imaginary parts of a complex valued matrix
are denoted ℜ{·} and ℑ{·}, respectively. The Hermitian
transpose is shown by (·)∗. The argument of a complex
scalar is ∠{·}. A simply connected set in complex plane
is denoted by D, and ∂D is its boundary. The function
composition f(g) is denoted f ◦g. The positive definiteness
of a symmetric matrix A is shown by A ≻ 0.

Cauchy’s argument principle and winding number: A
fundamental result in complex analysis is Cauchy’s argu-
ment principle (Howie, 2003) that relates the number of
poles and zeros of a meromorphic function f to a contour
integral. If P and Z denotes the number of poles and zeros
inside D respectively, then the argument principle states:

1

2πj

∮
B

f ′(z)

f(z)
dz = Z − P (1)

where B is a counterclockwise (CCW) parametrization of
∂D, and f ′/f the logarithmic derivative of f . It is assumed
that f has no poles or zeros on ∂D. Similarly, define the
winding number around the origin of a closed curve C in
the complex plane not passing through the origin as:

wno{C} =
1

2πj

∮
C

dz

z
(2)

If C is the image of f evaluated on B, then the CCW
winding number of C can be directly related to the number
of zeros and poles of f inside D :

wno {C} = wno {f ◦ B} = Z − P (3)

Two properties of the winding number function are:

wno{(f · g) ◦ B} = wno{f ◦ B}+wno{g ◦ B} (4)

wno{g∗ ◦ B} = −wno{g ◦ B} (5)

where f and g are non-zero meromorphic functions and
B is a closed curve not passing through poles or zeros of
both functions.

Nyquist stability criterion: The Cauchy’s argument prin-
ciple has direct application in control theory via the
Nyquist stability criterion (Skogestad and Postlethwaite,
2001). The Nyquist stability criterion is a graphical test
which can be used to check the stability of a closed-loop
system by counting the winding number of a specific curve.
Although usually framed as counting the number of unsta-
ble poles of the closed-loop, we will present it as counting
the number of stable poles. The Nyquist contour, denoted
BN , is defined for discrete-time systems as the CCW
oriented boundary of the unit disk N = {z ∈ C | |z| < 1}.
Let G be a proper MIMO system with ny outputs and
nu inputs, K a proper controller with nu outputs and ny

inputs, and define L = GK as the loop transfer function
and assume that it has no unstable hidden modes. If some
poles of L lies exactly on the unit circle, the contour must
be locally deformed with small detours to avoid these
poles. Under these conditions, the closed-loop stability is
given by the following theorem:

Theorem 1. (Nyquist stability criterion) The closed-loop
system with loop transfer function L and negative unity

feedback is stable if and only if the plot of det(I + L) ◦ BN
does not pass through the origin and makes Pu CCW
winding around the origin, where Pu is the number of
unstable poles of L.

Proof. The poles of the closed-loop are the zeros of
det(I + L). The Nyquist contour is the CCW oriented
boundary of the unit circle. Since BN is a simply-
connected curve and det(I + L) meromorphic, then the
Cauchy’s argument principle can be directly applied :

wno{det(I + L) ◦ BN } = Z − P (6)

where Z and P are, respectively, the number of stable zeros
and poles of det(I + L). If we define ηL as the number of
zeros (stable and unstable) of det(I+L), then Pu = ηL−P .
Therefore wno{det(I + L) ◦ BN } = Z + Pu − ηL and the
closed-loop system is stable if and only if Z = ηL that
leads to wno{det(I + L) ◦ BN } = Pu. ■

D−stability: The simply-connected open set of desired
pole location will be denoted hereafter D, and B a CCW
oriented parametrization of its boundary ∂D. All the
results are presented for the discrete-time case, but it is
directly applicable to continuous-time systems simply by
changing the set D. For example, for the discrete-time
systems, poles with magnitude less than 0.925 are given
by the set D = {z ∈ C | |z| < 0.925}.

3. DEVELOPMENTS

The Nyquist stability criterion requires knowledge of the
unstable poles from the loop transfer function. If a dy-
namic controller K = K(z) is used, Pu = PG

u + PK
u

includes both unstable poles of the controller PK
u and

unstable poles of the system PG
u . Assume the controller

can be expressed as a matrix transfer function K(z) =
X(z)Y −1(z), where X(z) and Y (z) are polynomial matri-
ces in the z-transform variable. The loop transfer function
is L = GXY −1 and the closed-loop poles are the zeros of
I+GXY −1 = (Y +GX)Y −1. Let L̃(z), linear in controller
parameters, be defined as:

L̃(z) = Y (z) +G(z)X(z) (7)

We propose a modified version of the Nyquist stability
criterion based only on the linearly parameterized function
L̃ and without any information about the number of
unstable poles of K. Denote η the number of zeros (order)
of det(Y ), then wno{det(Y ) ◦BN } = η−PK

u corresponds
to the number of stable zeros of det(Y ). Applying the
Cauchy’s argument principle to det(I + L) results in:

wno{det(I + L) ◦ BN } =wno{det(I +GXY −1) ◦ BN }
=wno{det(Y +GX) ◦ BN }
− wno{det(Y ) ◦ BN }

=wno{det(L̃) ◦ BN } − (η − PK
u )

Therefore, taking into account Pu = PG
u + PK

u , if

wno{det(L̃) ◦ BN } = η + PG
u (8)

holds, the closed-loop system is stable.

The stability criterion in (8) does not require any infor-
mation about the number of unstable poles of controller
PK
u but it depends on η, the order of the controller. The

Nyquist stability criterion can be generalized to check



for D−stability by replacing BN with any other CCW
oriented contour B.

Let Kc = XcY
−1
c be a known D−stabilizing controller,

with the same order as K, and L̃c defined as

L̃c(z) = Yc(z) +G(z)Xc(z) (9)

Then the following theorem represents a convex set of
D−stabilizing controllers around Kc.

Theorem 2. Given a discrete-time LTI system G(z) and a
D−stabilizing controller Kc(z), then following set of LMIs

L̃(z) L̃∗
c(z) + L̃c(z) L̃

∗(z) ≻ 0 ∀z ∈ ∂D (10)

represents a convex set of D−stabilizing controllers if the
following two assumptions hold:

(A1) det(Y ) and det(Yc) have the same order,
(A2) ∂D does not pass through any poles of G and K.

Proof. If (10) holds, then L̃(z)L̃∗
c(z) is a non-Hermitian

positive definite matrix in the sense that

ℜ{v∗L̃(z)L̃∗
c(z)v} > 0 ∀v ̸= 0 ∈ Cny

As a result, all eigenvalues λi(z), i = 1, . . . , ny of L̃(z)L̃
∗
c(z)

have positive real part for all z ∈ ∂D. The determinant of
a matrix is the product of its eigenvalues, and the winding
number of det(L̃(z)L̃∗

c(z)) when evaluated on B is :

wno{det(L̃L̃∗
c) ◦ B} =

ny∑
i=1

wno {λi ◦ B} (11)

As every λi ◦ B has positive real part, it resides entirely
in the open-right half plane and cannot wind around the
origin. Therefore

wno {λi ◦ B} = 0 (12)

must hold. The determinant in (11) is distributive over

the matrix multiplication, and det(L̃∗
c) = det(L̃c)

∗. Using
this in combination with the mentioned winding number
properties and (12) results ultimately in:

wno(det(L̃) ◦ B) = wno(det(L̃c) ◦ B) (13)

On the other hand, Kc is assumed to be a D−stabilizing
controller, therefore we have wno(det(L̃c) ◦ B) = η + PG

u ,
where η is the order of det(Yc) and PG

u the number of poles
of G outside D. By assumption (A1), the order of det(Y )
is also equal to η and wno{det(Y ) ◦ B} = η − PK

u , where
PK
u is the number of zeros of det(Y ) outside D. Therefore,

the winding number of det(I + L) ◦ B is given by:

wno{det(I + L) ◦ B} = wno{det(L̃) ◦ B}
− wno{det(Y ) ◦ B} (14)

= η + PG
u − (η − PK

u ) = Pu

where Pu = PG
u + PK

u is the number of poles of L outside
D. As a result the closed-loop system is D−stable. ■

The following remarks are in order:

Remark 1: One of the main assumptions of the Nyquist
stability criterion is that there are no unstable pole-zero
cancellations in L. Note that the controllers leading to
unstable pole-zero cancellation in L do not belong to the
interior of the convex set represented by (10). Because by
a small variation of the controller parameters the number
of unstable poles of L changes. The only possible case is
pole-zero cancellation on the stability boundary, which is
avoided by Assumption (A2).

Remark 2: Appropriate indentations in ∂D must be made
if G has poles on the boundary to satisfy (A2). Note that
(10) must be evaluated on these indentations as well.

Remark 3: Appropriate indentations in ∂D must be made
if det(Y ) has zeros on the boundary to satisfy (A2).
However it is not necessary to evaluate (10) on these

additional indentations because the variation of L̃ = Y +
GX around the zeros of Y is negligible.

If multiple models G ∈ {G1, . . . , Gq} are given and simul-
taneous D−stabilization must be achieved, the constraint
(10) should be added for every different model considered:

L̃i(z) L̃i
∗
c(z) + L̃i

∗
(z) L̃ic(z) ≻ 0 ∀z ∈ ∂D

for all i = 1, . . . , q, where L̃i = Y +GiX, and L̃ic = Yc +
GiXc. A feasible solution always exists if an appropriate
Kc is given, namely K = Kc.

4. PRACTICAL CONSIDERATIONS

Gridding the D−stability boundary: The number of con-
straints in (10) is infinity due to the continuum of z ∈ ∂D,
and cannot be implemented nor solved using numeri-
cal optimization software packages. A common approach
to handle such constraints is to pick a large collection
Z = {z1, . . . , zM} ⊂ ∂D and solve (10) only at z ∈ Z using
off-the-shelf convex numerical solvers. The gridding should
be dense around poles close to the boundary. Using a high-
order controller will require more points than a low-order
controller for the same system, as there are possibly more
poles near the boundary. The SIP is solved at only a finite
number of points, and it should be verified that (10) holds
between points. If this is not the case, additional points
are added where (10) does not hold.

For systems with real coefficients and symmetrical con-
tours w.r.t. the real axis, only the positive imaginary part
of the boundary must be constrained.

Improved conditions for SISO systems: The previously
presented SIP is valid for MIMO systems. For SISO
systems, better guarantees can be given in the sampled
contour case, when sampling ∂D at only a finite number
of points Z . One can define two polygonal chains L̃ and L̃c.
A polygonal chain is defined as a series of line segments,
connected end to end. Given M samples zm ∈ Z , each
segment of the polygonal chains are defined as:

L̃m(δ) = (1− δ)L̃(zm) + δL̃(zm+1) m = 1, . . . ,M

L̃m
c (δ) = (1− δ)L̃c(zm) + δL̃c(zm+1) m = 1, . . . ,M

where δ ∈ [0, 1]. Both chains are closed and therefore
zM+1 = z1. It is assumed that the boundary is sampled
such that the polygonal chain approximates ∂D. Moreover,
it is assumed that both polygonal chains do not intersect
the origin, as otherwise the winding number is not defined.
If one can find a complex scalar rm such that

ℜ{L̃m(δ)rm} > 0 ∀δ ∈ [0, 1] (15)

ℜ{L̃m
c (δ)rm} > 0 ∀δ ∈ [0, 1] (16)

for every segment m, then both polygonal chains have the
same winding number. Because if (15) and (16) holds,



given any 0 ≤ δ ≤ 1, the angle between L̃
m
(δ) and L̃m

c (δ)
can be upper bounded by π:

∠
{
L̃m

(
L̃m
c

)∗}
= ∠

{(
L̃mrm

)(
L̃m
c rm

)∗}
= ∠

{
L̃mrm

}
− ∠

{
L̃m
c rm

}
≤

∣∣∣∠{
L̃mrm

}∣∣∣+ ∣∣∣∠{
L̃m
c rm

}∣∣∣
<

π

2
+

π

2
= π.

Since the angle of L̃m(L̃m
c )∗ is always less than π, L̃(L̃c)

∗

cannot wind around the origin and therefore L̃ and L̃c

must have the same winding number.

A possible choice for rm is the closest point of L̃m
c (δ) to

the origin:

rm = argmin
pm∈L̃m

c (δ)

|pm| (17)

With this choice, (16) is by construction always satisfied,
and only (15) must be considered. It is also sufficient to
constraint only the end-points of each segment, resulting
in

ℜ{L̃(zm)rm} > 0 ∀m = 1, . . . ,M

ℜ{L̃(zm+1)rm} > 0 ∀m = 1, . . . ,M
(18)

This ensures both polygonal chains have the same winding
number. Note (18) does not guarantee D−stability, as
the polygonal chain assumes a straight line between two
consecutive samples, but this is a good approximation if
∂D is sampled appropriately. The approximation error
decreases asymptotically with the square of the number
of sampled points: when sampled sufficiently densely, L̃
is well approximated by an arc between two consecutive
samples, and the corresponding segment of L̃ corresponds
to the chord of this arc. When doubling the number
of points, and choosing the new points such that the
mid-point of every arc is sampled, the maximal distance
between the chord and the arc is reduced by a factor 4.
Thus only using a moderate number of samples is usually
sufficient to ensure the poles of the closed-loop are within
a small distance of the stability region.

Initial controller: An initial D−stabilizing controller Kc

is needed to derive (10). We argue that such controller is,
in many cases, easy to obtain using exact pole placement,
as long as the chosen poles reside inside D. If a reduced
order controller is desired, an initial controller can be
obtained using the procedure proposed in Apkarian and
Noll (2006), solving a non-linear program, or any other
techniques resulting in a D−stabilizing controller.

It is also important to note that the choice of initial
controller will have an impact on the convex set of
D−stabilizing controllers. Assume J(K) corresponds to
a closed-loop cost function to be minimized under the
D−stability constraint. It is clear that if the initial con-
troller satisfies the D−stability constraint, the optimal
controller Ko, satisfies J(Ko) ≤ J(Kc). Then the optimal
controller can be used as a new starting point for another
optimization. This iterative optimization procedure leads
to a monotonically decreasing J(K) that converges to a
local minimum or a saddle point.

5. NUMERICAL EXAMPLES

Theorem 2 gives a convex set of D−stabilizing controllers
and it should be combined with other design requirements.
The scope of this paper is not to dwell into the selection of
those requirements, but the focus of the following examples
is on the D−stability property of the closed-loop system.

5.1 Application to a boost-converter

This example is taken fromWisniewski et al. (2019), where
a controller is designed to regulate a boost-converter. A
second order state-space model is derived with multimodel
uncertainty. It is assumed the internal states are available,
and therefore the system has two outputs. Eight models,
G1, . . . , G8, can be obtained from the aforementioned
paper. The controller is X = K = [k1, k2], Y = I, and
k1, k2 are optimization variables. The closed-loop poles
must have a damping factor 0 < ζ ≤ 1, resulting in a non-
convex carotid-shaped domain. To obtain an overshoot less
than 10%, ζ = 0.5912 is chosen. An additional constraint
is added to obtain an upper bound on the settling time
that corresponds to a disk centered at the origin with
radius 0.852. The desired D−stability set describing the
pole location is given by

D =

{
z ∈ C | z = r(θ)ejθ,

0 ≤ r(θ) < min

(
e

−ζ|θ|√
1−ζ2 , 0.852

)
, θ ∈ (−π, π]

}
(19)

and shown in Fig. 1. The proposed approach in Wisniewski
et al. (2019) results in the following robust D−stabilizing
controller: Kc = [−0.01707, 0.00493], which can be used
as the initial controller in our approach. The two-norm of
the controller gains is minimized while preserving robust
D−stability. This objective is chosen as it is easy to
visualize: given the feasible set in the control parameter
space, the optimal solution is the closest point to the
origin. Since D is symmetrical w.r.t the real axis, only
one side of ∂D must be constrained. To implement the
synthesis method, ∂D is sampled at 501 different points,
with equidistant angle between two consecutive points.

The full optimization problem to solve is:

argmin
K

∥K∥2 (20)

subject to:

L̃i(zm)L̃i
∗
c(zm) + L̃i(zm)L̃i

∗
c(zm))∗ ⪰ I · 10−5

∀m = 1, . . . , 501, ∀i = 1, . . . , 8
(21)

where L̃i = I+GiK and L̃ic = I+GiKc. A small amount
of additional conservatism is added in (21), with intent

to ensure positive-definiteness of L̃i(z)L̃ic(z) between two
sampled points of the contour. As the convex set of
D−stabilizing controllers depends on Kc, the optimisation
problem is solved multiple times. The optimal controller
from the previous optimization problem is used as Kc in
the next iteration until convergence to a final controller.
After 64 iterations, the final controller gains are:

K = [−0.0076, 0.0075]

The norm of the controller gains is approximately 40%
lower than that of the initial one while still preserving the
D−stability. The closed-loop poles using K and Kc are
shown in Fig. 1.



Initial closed-loop poles
Final closed-loop poles

Fig. 1. Closed-loop poles of boost-converters using K and
Kc. ∂D is indicated using the dot-dashed line.

Since the controller has only two variables, the feasible
sets corresponding to the D−stability can be drawn in the
controller parameter space. The set of all D−stabilizing
controller is found using a grid search, and corresponds to
the yellow shape shown in Fig. 2. For this example, the
complete set of D−stabilizing controller is a non-convex
set resembling a triangle, where the bottom edge curves
slightly inwards. The global optimal solution corresponds
to the rightmost vertex of the triangle. The feasible sets
described by LMIs in (21) are shown for the five first
iterations in the same figure. Different colors indicate the
sets at different iterations, where the initial feasible set is
the left-most red set, and subsequent sets each move more
towards the global optimum.

The controllers gains K = [k1, k2] are plotted for each of
the 64 iterations, and correspond to the black dots. Note
that the controller ultimately does not converge to the
global optimum but to a point close to it, as conservatism
in (21) was added. This conservatism can be reduced when
increasing the number of sampled points on the boundary.

5.2 Application to finite impulse response systems

For the second example, a laser-beam system from
Quanser is used. The set-up consists of a laser-diode, a
mirror actuated by a voice-coil reflecting the laser, and a
position sensing device (PSD). The objective is to track
a reference position of the laser beam on the PSD. A
second order controller is used to improve the tracking
performance and disturbance rejection. The step response
is obtained by applying a unit step-change in the input and
measuring the output yk. Therefore, the impulse response
of the system is given by

G(z) =
∑
k≥0

(yk − yk−1)z
−k

with y−1 := 0. After 60 samples, the transient is indistin-
guishable from noise, and therefore the impulse response
is truncated to 60 samples. This finite impulse response is

Fig. 2. D−stabilizing sets plotted in the controller
K = [k1, k2] parameters space. x-axis corresponds to
k1, and the y-axis to k2.

used as model for the system dynamics and is shown in
Fig. 4.

An initial second order stabilizing controller Kc = Xc/Yc

is found by solving a non-linear optimization problem
which minimizes the spectral radius of the closed-loop
poles, resulting in closed-loop poles with magnitude |z| <
0.925. The stability set D and is chosen the same as
presented in Sec. 2.

The control objective is formulated as minimizing the two-
norm of the tracking error given a step reference, and
corresponds to minimizing the following system norm:

min

∥∥∥∥W1(z)
1

1 +G(z)K(z)

∥∥∥∥2
2

where W1(z) = 1
z−1 is the z-transform of a step signal.

To solve the H2 problem, it is proposed in Karimi and
Kammer (2017) to minimize an upper-bound of the H2

norm, resulting in:

argmin
X,Y

∫ 2π

0

µ(ω)dω (22)

subject to:(
W1(e

jω)Y (ejω)
)∗ (

W1(e
jω)Y (ejω)

)
≤ µ(ω)Φ(ejω)

µ(ω) ≥ 0
(23)

for all ω ∈ [0, 2π], where

Φ(ejω) = 2ℜ{L̃(ejω)L̃∗
c(e

jω)} − L̃c(e
jω)L̃∗

c(e
jω)

and L̃, L̃c as defined in (7) and (9), respectively. This is a
semi-infinite but convex optimization program, depending
on a continuous variable ω. It is proposed to solve the
sampled-frequency problem by choosing discrete values of
ω = {ω1, . . . , ωN}, and approximate the integral (22) with
a Riemann sum. The controller is obtained by solving (22)-
(23) at 1000 linearly spaced point ωn ∈ [10−2, 2π − 10−2],
with the added polygonal winding number constraint (18)
implemented using M = 1001 equidistant points on the
boundary zm ∈ {0.925, 0.925ejπ/1000, . . . , 0.925ejπ}, and
rm computed using (17). As D is symmetrical w.r.t the
real axis, only one side must be constrained.



The full problem to be solved is

argmin
X,Y

ω1µ1 +

1000∑
n=2

(ωn − ωn−1)µn

subject to:(
W1(e

jωn)Y (ejωn)
)∗ (

W1(e
jωn)Y (ejωn)

)
≤ µnΦn(e

jωn)

µn ≥ 0, ℜ{L̃(zm)rm} > 0, ℜ{L̃(zm+1)rm} > 0
∀n = 1, . . . , 1000, ∀m = 1, . . . , 1001

The optimisation problem is solved multiple times, at
each iteration using Kc as the optimal controller from the
previous optimization problem, until convergence to a final
controller. The final closed-loop poles are shown in Fig. 3.
The tracking performance of the final controller is shown
in Fig. 4 along with the the step reference.

Initial closed-loop poles
Final closed-loop poles

Fig. 3. Closed-loop poles marked as red dots. Stability
boundary indicated using the dot-dashed line.
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Fig. 4. Measurements from the laser-beam system.

6. CONCLUSION

We have presented a new approach to obtain a semi-
infinite convex in the controller parameters constraint for
robust D−stabilizing controllers. This constraint can be
used in conjunction with other synthesis approaches to
guarantee a robust D−stable closed-loop while minimizing
a desired objective or maintaining other design require-
ments. This approach has been showcased on two control-
relevant examples.

Future research directions include 1) better stability guar-
antees in the sampled contour case: derive improved sta-
bility MIMO conditions, similar to the polygonal chain in
the SISO case or 2) extension to controllers parametrized
using a state-space formulation.
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