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As you prepare your breakfast, think of others 

   (do not forget the pigeon’s food). 

As you conduct your wars, think of others 

   (do not forget those who seek peace). 

As you pay your water bill, think of others 

   (those who are nursed by clouds). 

As you return home, to your home, think of others 

   (do not forget the people of the camps). 

As you sleep and count the stars, think of others 

   (those who have nowhere to sleep). 

As you liberate yourself in metaphor, think of others 

   (those who have lost the right to speak). 

As you think of others far away, think of yourself 

   (say: “If only I were a candle in the dark”). 

— Mahmoud Darwish, Almond Blossoms and Beyond 
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ABSTRACT 

In the last hundred years, the record for completing a marathon has dropped from 

nearly 3 hours in 1908 to 2 hours and 1 minute in 2018. This monumental improvement 

is due to advances in the understanding of human physiology, biomechanics of 

movement, and the collaboration of physicians, coaches, scientists, and engineers in the 

field of human performance. With advances in microelectronics and computation, the 

devices used to measure physiological signals and analyze motion have evolved from 

large-scale devices in the laboratory to portable devices in the field. Today, wearable 

heart rate monitors are an integral part of runners' training sessions, with heart rate 

data routinely used to assess effort intensity and stress on the body. As athletes trans-

late their physical capacity into performance on the field through their movement, 

biomechanical assessment can provide valuable information that complements physio-

logical assessment. However, the potential of using biomechanical information in the 

evaluation of training sessions and standardized tests in practice remains largely un-

tapped, partly because the assessment devices remain cumbersome to use and often 

require long post-processing, as well as programming skills. The proposed work aims 

to realize this potential by developing field methods for performance and capacity 

evaluation using portable inertial measurement units (IMUs) and Global Navigation 

Satellite System (GNSS) receivers. 

 

Running performance can be characterized by the ability to maintain appropriate run-

ning technique despite fatigue, while keeping the effort intensity prescribed by the 

coach, or planned as a pacing strategy. In this work, a systematic review was conduct-

ed to examine and synthesize the results of fatigue protocols in running, followed by 

continuous measurements during a competition to confirm the trends obtained from 

the review with data from the field and to measure the changes in running technique 

due to fatigue. In addition, models were developed to accurately estimate running 

power using foot-worn IMU over a range of speeds and inclines and validated using 

gold standard methods in the laboratory, to better characterize running intensity.  The 

second part of this work consisted of investigating the ability of IMUs and GNSS to 

improve the evaluation of athletes in standardized tests, referred to as their functional 

capacity. Functional capacity is typically used by coaches to develop appropriate train-

ing loads for athletes. This work presented validated methods to instrument common 

functional tests with wearable sensors to measure the speed, agility, and endurance of 

athletes in the field. In addition, these methods enable the extraction and a deeper 

analysis of relevant biomechanical parameters that contribute to the measured capacity 

and help the sporting staff understand athletes' strengths and weaknesses in detail.  

 

All the research conducted, and methods developed in this thesis are based on various 

combinations of a minimal body-worn sensor setup with foot-worn IMUs and a single 

trunk-worn IMU-GNSS unit. The signal processing algorithms and models developed 
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in this work allow the recorded signals to be translated into easily interpretable and 

actionable information. Based on this information, coaches and physical therapists can 

develop customized training programs that target the relevant parameters. The pro-

posed sensor setups and methods have been used and validated in a variety of situa-

tions, such as pre-season testing of a professional soccer team, training sessions of elite 

sprinters, the Lausanne half-marathon race, etc., highlighting their potential for real-

world application. I believe that this work will help pave the way towards a deeper 

understanding of the biomechanical contributions to performance in running and pro-

vide new tools for the development of personalized training and rehabilitation pro-

grams, with the aim of optimizing positive adaptation to training stimuli, thereby re-

ducing the incidence of injury, and help the return to sport process for injured athletes. 

 

Keywords 

wearable sensors, movement analysis, real-world, sensor fusion, signal processing, 

machine learning, human data collection, running, marathon, sprinting, fatigue, pow-

er, agility, endurance, training 
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RÉSUMÉ 

Au cours des cent dernières années, le record pour terminer un marathon est passé de 

près de 3 heures en 1908 à 2 heures et 1 minute en 2018. Cette amélioration monumen-

tale est due aux progrès dans la compréhension de la physiologie humaine, de la bio-

mécanique du mouvement et à  la collaboration de médecins, d'entraîneurs, de scienti-

fiques et d'ingénieurs dans le domaine de la performance humaine. Avec les progrès 

de la microélectronique et de l'informatique, les appareils utilisés pour mesurer les 

signaux physiologiques et analyser le mouvement sont passés d'appareils à grande 

échelle en laboratoire à des appareils portables sur le terrain. Aujourd'hui, les moni-

teurs portables de fréquence cardiaque font partie intégrante des séances d'entraîne-

ment des coureurs, les données de fréquence cardiaque étant régulièrement utilisées 

pour évaluer l'intensité de l'effort et le stress sur le corps. Puisque les athlètes tradui-

sent leur capacité physique en performances sur le terrain à travers leurs mouvements, 

l'évaluation biomécanique peut fournir des informations précieuses qui complètent 

l'évaluation physiologique. Cependant, le potentiel d'utilisation des informations bio-

mécaniques dans l'évaluation des séances d’entraînement et des tests standardisés 

dans la pratique reste largement inexploité, en partie parce que les dispositifs d'évalua-

tion restent difficiles à utiliser et nécessitent souvent un long post-traitement, ainsi que 

des compétences en programmation. Le travail proposé vise à exploiter ce potentiel en 

développant des méthodes de terrain pour l'évaluation des performances et de la capa-

cité à l'aide d'unités de mesure inertielle portables (IMU) et de récepteurs du système 

mondial de navigation par satellite (GNSS). 

 

La performance de course peut être caractérisée par la capacité à maintenir une tech-

nique de course appropriée malgré la fatigue, tout en gardant l'intensité d'effort pres-

crite par l'entraîneur, ou planifiée selon une stratégie de course. Dans ce travail, une 

revue systématique a été menée pour examiner et synthétiser les résultats des proto-

coles de fatigue dans la course à pied, suivis de mesures en continu lors d'une compéti-

tion pour confirmer les tendances obtenues à partir de la revue avec des données de 

terrain et pour mesurer les changements dans la technique de course à cause de la fa-

tigue. De plus, des modèles ont été développés pour estimer avec précision la puis-

sance de course à l'aide d'IMU portés aux pieds sur une gamme de vitesses et d'incli-

naisons et validés à l'aide de méthodes de référence en laboratoire, afin de mieux carac-

tériser l'intensité de course. La deuxième partie de ce travail a consisté à étudier la ca-

pacité des IMU et du GNSS à améliorer l'évaluation des athlètes dans des tests stan-

dardisés, appelée leur capacité fonctionnelle. La capacité fonctionnelle est générale-

ment utilisée par les entraîneurs pour développer des charges d'entraînement appro-

priées pour les athlètes. Ce travail présente des méthodes validées pour instrumenter 

des tests fonctionnels communs avec des capteurs portables pour mesurer la vitesse, 

l'agilité et l'endurance des athlètes sur le terrain. De plus, ces méthodes permettent 

l'extraction et une analyse plus approfondie des paramètres biomécaniques appro-



 

vi 
 

priés qui contribuent à la capacité mesurée et aident le personnel sportif à comprendre 

en détail les forces et les faiblesses des athlètes. 

 

Toutes les recherches menées et les méthodes développées dans cette thèse sont basées 

sur diverses combinaisons d'une configuration minimale de capteur porté sur le corps 

avec des IMU portés aux pieds et une seule unité IMU-GNSS portée sur le tronc. Les 

algorithmes et les modèles de traitement du signal développés dans ce travail permet-

tent de traduire les signaux enregistrés en informations facilement interprétables et 

exploitables. Sur la base de ces informations, les entraîneurs et les kinésithérapeutes 

peuvent développer des programmes d'entraînement personnalisés qui ciblent les pa-

ramètres appropriés. Cette configuration et ces méthodes ont été utilisées et validées 

dans diverses situations, telles que les tests de pré-saison d'une équipe de football pro-

fessionnelle, les séances d'entraînement de sprinteurs d'élite, le semi-marathon de Lau-

sanne, etc., mettant en évidence leur potentiel pour l’application dans le monde réel. Je 

crois que ce travail contribuera à ouvrir la voie vers une compréhension plus appro-

fondie des contributions biomécaniques à la performance en course à pied et fournira 

de nouveaux outils pour le développement de programmes d'entraînement et de réé-

ducation personnalisés, dans le but d'optimiser l’adaptation positive aux stimuli d'en-

traînement, réduisant ainsi l'incidence des blessures, et aider au processus de retour au 

sport des athlètes blessés. 
 

Mots clés 

capteurs portables, analyse du mouvement, fusion de capteurs, le monde réel, traite-

ment du signal, apprentissage automatique, collecte de données humaines, course à 

pied, marathon, sprint, fatigue, puissance, agilité, endurance, entraînement  



   

vii 
 

Contents 
Acknowledgements ............................................................................................................................................................ i 

Abstract ............................................................................................................................................................................ iii 

Résumé .............................................................................................................................................................................. v 

List of figures .................................................................................................................................................................... xi 

List of tables.................................................................................................................................................................... xiii 

I. Introduction ........................................................................................................................................................... 1 

1 Background and motivation ................................................................................................................................... 3 

1.1 Training paradigm for running ........................................................................................................................... 3 

1.1.1 Role of training ...................................................................................................................................... 3 

1.1.2 Quantification of training ...................................................................................................................... 5 

1.1.3 A typical training framework ................................................................................................................. 6 

1.1.4 Going beyond training load ................................................................................................................... 7 

1.1.5 Potential of biomechanical assessment ................................................................................................ 8 

1.2 Running biomechanics and its assessment ...................................................................................................... 10 

1.2.1 Biomechanics of running gait .............................................................................................................. 10 

1.2.2 Objective assessment of gait biomechanics ........................................................................................ 14 

1.3 Evaluation of functional capacity ..................................................................................................................... 21 

1.3.1 Speed ................................................................................................................................................... 21 

1.3.2 Change-of-direction ability .................................................................................................................. 22 

1.3.3 Endurance ............................................................................................................................................ 23 

1.4 Thesis objectives and outline ........................................................................................................................... 25 

II. Biomechanical  assessment for performance and fatigue analysis ........................................................................ 29 

2 Biomechanical response of lower extremities to acute fatigue ............................................................................. 31 

2.1 Introduction ..................................................................................................................................................... 32 

2.2 Methods ........................................................................................................................................................... 33 

2.2.1 Search strategy and sources ................................................................................................................ 33 

2.2.2 Eligibility criteria .................................................................................................................................. 34 

2.2.3 Study classification and data extraction .............................................................................................. 35 

2.2.4 Parameter definition ........................................................................................................................... 36 

2.2.5 Data synthesis ..................................................................................................................................... 37 



 

viii 
 

2.3 Results ............................................................................................................................................................. 37 

2.3.1 Study selection .................................................................................................................................... 37 

2.3.2 Characteristics of selected literature .................................................................................................. 38 

2.3.3 Parameters for analysis ....................................................................................................................... 41 

2.3.1 Parameter trends ................................................................................................................................ 41 

2.4 Discussion ........................................................................................................................................................ 43 

2.4.1 Response to fatigue ............................................................................................................................ 43 

2.4.2 Role of functional tests ....................................................................................................................... 45 

2.4.3 Influence of protocols ......................................................................................................................... 45 

2.4.4 Recommendations for an IMU-based wearable sensor setup ............................................................ 46 

2.4.5 On study protocols .............................................................................................................................. 48 

2.4.6 Limitations .......................................................................................................................................... 49 

2.5 Conclusion ....................................................................................................................................................... 49 

2.6 Appendix ......................................................................................................................................................... 50 

2.6.1 Eligibility criteria ................................................................................................................................. 50 

2.6.2 Study appraisal .................................................................................................................................... 51 

2.6.3 Parameter definition ........................................................................................................................... 52 

2.6.4 Data synthesis ..................................................................................................................................... 52 

3 Concurrent evolution of biomechanical parameters with perceived fatigue ......................................................... 55 

3.1 Introduction..................................................................................................................................................... 56 

3.2 Materials and equipment ................................................................................................................................ 57 

3.3 Methods .......................................................................................................................................................... 58 

3.3.1 Preprocessing ...................................................................................................................................... 58 

3.3.2 Feature extraction .............................................................................................................................. 59 

3.3.3 Statistical analysis ............................................................................................................................... 61 

3.4 Results ............................................................................................................................................................. 63 

3.4.1 Evolution with race and ROF values .................................................................................................... 63 

3.4.2 Onset of change .................................................................................................................................. 65 

3.4.3 Differences according to performance ............................................................................................... 67 

3.5 Discussion ........................................................................................................................................................ 69 

3.5.1 Gait spatiotemporal parameters and perceived fatigue ..................................................................... 69 

3.5.2 Secondary gait parameters ................................................................................................................. 70 

3.5.3 Progression of the trunk motion ......................................................................................................... 70 

3.5.4 Limitations .......................................................................................................................................... 71 

3.6 Conclusion ....................................................................................................................................................... 72 

4 Estimation of running power with foot-worn IMUs .............................................................................................. 73 

4.1 Introduction..................................................................................................................................................... 74 

4.2 Materials and protocol .................................................................................................................................... 76 

4.3 Methods .......................................................................................................................................................... 77 



ix 
 

4.3.1 Reference power estimation ............................................................................................................... 77 

4.3.2 IMU data processing ............................................................................................................................ 78 

4.3.3 Feature development .......................................................................................................................... 79 

4.3.4 Feature selection ................................................................................................................................. 81 

4.3.5 Model development ............................................................................................................................ 82 

4.4 Results .............................................................................................................................................................. 83 

4.5 Discussion and conclusion ............................................................................................................................... 87 

III. Augmentation of in-field  functional capacity testing ........................................................................................... 91 

5 Sprint velocity estimation using GNSS-IMU sensor fusion ..................................................................................... 93 

5.1 Introduction ..................................................................................................................................................... 94 

5.2 Materials and equipment................................................................................................................................. 95 

5.3 Methods ........................................................................................................................................................... 96 

5.3.1 Velocity and duration estimation algorithm ........................................................................................ 96 

5.3.2 Estimation of profiles – velocity, force, and power ............................................................................. 98 

5.3.3 Validation process ............................................................................................................................... 99 

5.4 Results ............................................................................................................................................................ 100 

5.4.1 Velocity estimation ............................................................................................................................ 100 

5.4.2 Validity of estimated velocity ............................................................................................................ 100 

5.4.3 Validity of exponential fitting ............................................................................................................ 102 

5.5 Discussion ...................................................................................................................................................... 103 

5.5.1 Validity of the proposed method ...................................................................................................... 103 

5.5.2 Exponential fitting and athlete profiles ............................................................................................. 104 

5.5.3 Limitations and future work .............................................................................................................. 105 

5.6 Conclusion ...................................................................................................................................................... 106 

5.7 Appendix ........................................................................................................................................................ 106 

6 Development of an instrumented Change-of-Direction field test ........................................................................ 109 

6.1 Introduction ................................................................................................................................................... 110 

6.2 Materials and equipment............................................................................................................................... 112 

6.3 Methods ......................................................................................................................................................... 113 

6.3.1 Labelling of video data ...................................................................................................................... 113 

6.3.2 Algorithm development .................................................................................................................... 114 

6.3.3 Metrics for performance in COD test ................................................................................................ 118 

6.4 Results ............................................................................................................................................................ 119 

6.4.1 Labelling of video data ...................................................................................................................... 119 

6.4.2 Detection and duration of COD ......................................................................................................... 119 

6.4.3 Performance metrics ......................................................................................................................... 121 

6.5 Discussion ...................................................................................................................................................... 123 

6.5.1 Validity of the proposed method ...................................................................................................... 123 

6.5.2 Performance metrics ......................................................................................................................... 125 



 

x 
 

6.5.3 Limitations and future work.............................................................................................................. 127 

6.6 Conclusion ..................................................................................................................................................... 128 

6.7 Appendix ....................................................................................................................................................... 129 

7 Biomechanical contributions to performance in a Cooper test ........................................................................... 131 

7.1 Introduction................................................................................................................................................... 132 

7.2 Materials and Equipment .............................................................................................................................. 133 

7.2.1 Participants and study design ........................................................................................................... 133 

7.2.2 Laboratory test.................................................................................................................................. 134 

7.2.3 Field test ........................................................................................................................................... 135 

7.3 Methods ........................................................................................................................................................ 135 

7.3.1 Preprocessing and parameter estimation ......................................................................................... 135 

7.3.2 Extraction of metrics ......................................................................................................................... 136 

7.3.3 Selection of metrics .......................................................................................................................... 138 

7.3.4 Distance estimation .......................................................................................................................... 140 

7.4 Results ........................................................................................................................................................... 141 

7.4.1 Distance and speed estimation ......................................................................................................... 142 

7.4.2 Selection of metrics .......................................................................................................................... 142 

7.5 Discussion ...................................................................................................................................................... 145 

7.5.1 Distance and speed estimation ......................................................................................................... 145 

7.5.2 Selection of metrics .......................................................................................................................... 146 

7.5.3 Limitations and recommendations ................................................................................................... 149 

7.6 Conclusion ..................................................................................................................................................... 150 

7.7 APPENDIX: Results for estimation with wrist-worn IMU ............................................................................... 150 

IV. Conclusion and recommendations for future work ............................................................................................ 151 

8 Conclusion and discussion .................................................................................................................................. 153 

8.1 Contributions ................................................................................................................................................. 153 

8.1.1 Part I: Biomechanical assessment for performance and fatigue analysis ......................................... 154 

8.1.2 Part II: Augmentation of in-field functional capacity testing ............................................................ 156 

8.1.3 Potential application to training ....................................................................................................... 157 

8.2 Limitations ..................................................................................................................................................... 159 

8.2.1 Protocol............................................................................................................................................. 159 

8.2.2 Algorithm development and analysis................................................................................................ 160 

8.3 Future development ...................................................................................................................................... 161 

8.3.1 A more inclusive study population .................................................................................................... 161 

8.3.2 Methodological development ........................................................................................................... 162 

8.3.3 Augmenting training prescription ..................................................................................................... 163 

Bibliography .................................................................................................................................................................. 165 

Curriculum Vitae ............................................................................................................................................................ 188 

 



   

xi 
 

LIST OF FIGURES 

 

Figure 1.1 Summary of the different aspects of training in sports ........................................................ 4 

Figure 1.2 Predominant framework for one training session ................................................................ 6 

Figure 1.3 Overtraining and its adverse effects..................................................................................... 7 

Figure 1.4 Extended framework for estimation and monitoring of training load ................................. 8 

Figure 1.5 Gait phases and temporal events of the running gait cycle. .............................................. 11 

Figure 1.6 Relationship between gait parameters .............................................................................. 12 

Figure 1.7 Vertical, anteroposterior (AP), and mediolateral (ML) GRF profiles for runners ................ 13 

Figure 1.8 An example of investigation of foot strike patterns using video footage ........................... 15 

Figure 1.9 Stages of the optoelectronic motion capture process ....................................................... 17 

Figure 1.10 Typical setup and protocol for a 40-m sprint test ............................................................ 21 

Figure 1.11 Typical setup for a T-test to evaluate the change-of-direction capacity .......................... 23 

Figure 1.12 Tests for estimating the maximum oxygen uptake .......................................................... 24 

Figure 1.13 Outline of thesis ............................................................................................................... 27 

Figure 2.1 Study selection and categorization process ....................................................................... 38 

Figure 2.2 Number of studies according to the different aspects of a fatigue protocol ..................... 39 

Figure 2.3 Number of studies per parameters category ..................................................................... 40 

Figure 2.4 Number of studies utilizing wearable and stationary measurement systems.................... 40 

Figure 2.5 Parameters that show a consistent trend in response to acute fatigue and a 

potential wearable sensor setup to measure them in field ................................................................ 48 

Figure 2.6 Flowchart for the extraction of the summary trends for different parameters ................. 53 

Figure 3.1 Sensor configuration used for the measurement............................................................... 58 

Figure 3.2 Flowchart for the overall procedure .................................................................................. 59 

Figure 3.3 Flowchart for the estimation of secondary gait metrics .................................................... 60 

Figure 3.4 Flowchart of the trunk movement characterization process ............................................. 61 

Figure 3.5 Statistical analysis procedure where the biomechanical parameters and the ROF 

values are used as inputs .................................................................................................................... 61 

Figure 3.6 Parameters with a significant change with the race segments (in blue) and/or 

rating of fatigue (in green) .................................................................................................................. 64 

Figure 3.7 Evolution of the secondary gait parameters with race progression ................................... 64 

Figure 3.8 Evolution of stability and smoothness with race progression. ........................................... 65 

Figure 3.9 Change in perceived fatigability (ROF) with race progression ............................................ 67 

Figure 3.10 Results of the LME models for the response of the gait parameters ............................... 67 

Figure 3.11 Evolution of the secondary gait parameters with perceived fatigability. ......................... 68 

Figure 3.12 Evolution of stability and smoothness with perceived fatigability. .................................. 68 

Figure 4.1 Measurement systems and data collection protocol. ........................................................ 76 

Figure 4.2 Estimation of reference power ........................................................................................... 77 

file:///P:/EPFL/Thesis/thesis_draft_final.docx%23_Toc117002774
file:///P:/EPFL/Thesis/thesis_draft_final.docx%23_Toc117002778
file:///P:/EPFL/Thesis/thesis_draft_final.docx%23_Toc117002778


 

xii 
 

Figure 4.3 Flowchart for the proposed power estimation method. .................................................... 79 

Figure 4.4 Relationship between the reference power and the treadmill speed ................................ 84 

Figure 4.5 Cumulative distribution of 𝜖100, 𝜖50, 𝜖0 (%) of the proposed method ............................. 84 

Figure 4.6 Illustration of reference and predicted power for level running ........................................ 84 

Figure 4.7 Bland–Altman analysis for power estimation with maximum noise (𝜖100) ....................... 85 

Figure 4.8 Estimation error (%) for all speeds and slopes.................................................................... 85 

Figure 5.1 Sensor setup and measurement protocol .......................................................................... 96 

Figure 5.2  Flowchart for the sprint velocity estimation algorithm ..................................................... 97 

Figure 5.3 Scenario illustrating the estimated velocity profile .......................................................... 100 

Figure 5.4 Validation of estimated velocity profile ............................................................................ 101 

Figure 5.5 Bland-Altman plots for sprint parameters ........................................................................ 102 

Figure 5.6 Modelling of the sprint velocity profile ............................................................................ 102 

Figure 5.7 Force-velocity and power-velocity profiles ....................................................................... 105 

Figure 5.8 Change in the percentage of RMS error ........................................................................... 107 

Figure 6.1 Conventional T-test for COD performance assessment .................................................... 110 

Figure 6.2 Sensor setup and the nine phases of the Agility T-test ..................................................... 113 

Figure 6.3 Event labels for each COD segment to be used as reference data ................................... 114 

Figure 6.4 Start of motion (dashed green lines) and first step (black line) detection ........................ 115 

Figure 6.5 Segmentation of one test sample using reconstructed AP acceleration signal ................ 116 

Figure 6.6 Segmentation of the T-test based on video labelling for 8 of the 23 athletes .................. 119 

Figure 6.7 Error between video-based duration and photocell duration .......................................... 119 

Figure 6.8 Time of event from video and from algorithm for four T-tests ........................................ 120 

Figure 6.9 Box plot of 𝜀𝑠 and 𝜀𝑒 for COD detection for each micro analysis method ....................... 120 

Figure 6.10 Bland-Altman plot for detected COD start/end events .................................................. 121 

Figure 6.11 Mean (solid line) and S.D. (dashed lines) for the velocity during the T-test. .................. 122 

Figure 6.12 Correlation between total cutting time for each COD and the total completion 

time of the T-test ............................................................................................................................... 123 

Figure 6.13 Comparison between the five best (red) and worst (blue) participants ......................... 123 

Figure 6.14 Velocity profile during the T-test for two fastest and slowest athletes .......................... 129 

Figure 7.1 Protocol and sensor setup for the 12-minute field test .................................................... 134 

Figure 7.2 Flowchart of the overall procedure for selection of metrics ............................................ 136 

Figure 7.3 Procedure for selection of performance metrics for the biomechanical profile .............. 139 

Figure 7.4 Methods for the estimation of distance covered over the 12-minute run ....................... 141 

Figure 7.5 Performance of participants grouped according to Dref and GNSS tracking ..................... 141 

Figure 7.6 Profile for the biomechanical parameters during the Cooper test ................................... 143 

Figure 7.7 Selected metrics and their categories............................................................................... 144 

Figure 8.1 Profile for runners based on the biomechanical parameters ........................................... 158 

 

file:///P:/EPFL/Thesis/thesis_draft_final.docx%23_Toc117002802
file:///P:/EPFL/Thesis/thesis_draft_final.docx%23_Toc117002803
file:///P:/EPFL/Thesis/thesis_draft_final.docx%23_Toc117002805
file:///P:/EPFL/Thesis/thesis_draft_final.docx%23_Toc117002808
file:///P:/EPFL/Thesis/thesis_draft_final.docx%23_Toc117002811


   

xiii 

LIST OF TABLES 

Table 1.1 Non-exhaustive list of biomechanical metrics estimated using body-worn IMUs ............... 20 

Table 2.1 Details of the PiCO strategy used to conceptualize search terms ....................................... 33 

Table 2.2 Parameter trends in response to acute fatigue ................................................................... 41 

Table 2.3 Adapted MINOR scale (Slim et al., 2003b) used for scoring the studies .............................. 52 

Table 3.1 Effect size results for the statistical analysis ........................................................................ 66 

Table 4.1 Statistical features (𝑋𝑠) extracted for each stride ............................................................... 80 

Table 4.2 Bias (median), precision (IQR) and mean absolute error (MAE) of the power 

estimation algorithm ........................................................................................................................... 86 

Table 4.3 Labels and coefficients for the 15 most important features of the EN models ................... 86 

Table 5.1 Median (IQR) values of the RMS error ............................................................................... 101 

Table 5.2 RMS error for the modelled velocity profile. ..................................................................... 103 

Table 6.1 Mean ± S.D. of estimation error and (%) for each displacement phase and COD ............. 120 

Table 6.2 mean ± S.D. for performance metrics across all four COD segments ................................ 122 

Table 7.1 List of biomechanical parameters (units) extracted .......................................................... 137 

Table 7.2 Error rates for the five distance estimation methods ........................................................ 142 

Table 7.3 Biomechanical metrics selected through LASSO regression and statistical testing ........... 144 



   

xiv 



   

1 

I. INTRODUCTION



   

2 



   

3 

1 BACKGROUND AND MOTIVATION 

1.1 TRAINING PARADIGM FOR RUNNING 

1.1.1 Role of training 

Training denotes the process of preparation for a specific task and sports training refers 

more specifically to the preparation of athletes for the highest level of fitness and per-

formance (Kasper, 2019). Training involves the exposure of body to higher than accus-

tomed training stress or stimulus, thereby inducing compensatory improvements in 

performance capacity (Madden et al., 2013). For example, an endurance runner is 

trained to run for a distance longer than their typical running distance or speeds higher 

than their comfortable speed, to improve their endurance.  The amount of stimulus 

should be personalized by acknowledging the individual differences between athletes’ 

adaptation to prior training, which is affected by their unique psychological (motiva-

tion, pain, confidence, etc.), physiological (fitness, training background, injury history, 

age, height, weight, etc.), environmental (lifestyle, nutrition, role within the team, etc.), 

and genetic profile (O’Connor, 2013). The personalized training stimulus should be 

planned systematically i.e., periodized to create an appropriate progression in stress, to  

maintain continued positive adaptation to training. Furthermore, this planning should 

aim at introducing variations in training types (intensity, duration, volume, activity, 

contraction mode, work/rest ratio, etc.) to avoid burnout, injury, soreness, illness and 

ensure optimal physical condition for competitions (Drew & Finch, 2016; Gabbett, 

2020). In general, a training program compromises of different aspects of athlete’s per-

formance (Figure 1.1). For instance, neuromuscular training is typically aimed at 

improving the propioceptive, balance, flexibility, and sensorimotor skills of the athletes 

and reduce the instances of injuries (Emery et al., 2005; Hübscher et al., 2010). 

Neuromuscular training can consist of multi-intervention programs with a 

combination of plyometric, weight, agility, balance, and sport-specific exercises (Enge-

bretsen et al., 2008). This type of training can be particularly beneficial for young 

athletes to develop fundamental motor skills and improve movement biomechanics, 

thereby reducing sports-related injury risk (Myer et al., 2011). 

 

The aim of physical conditioning programs is to improve the athlete’s strength, 

endurance, and ability to exert power. Development of muscular strength and power is 

associated with improved general athletic ability (e.g., jumping, sprinting, and change 

of direction) and force-time characteristics (e.g., speed of force development and exter-

nal mechanical power) (Suchomel et al., 2016). Resistance training of both limbs 

simultaenously, a combination of heavier and lighter loads, and eccentric training are 

generally recommended to produce the highest improvements in  msucular strength 

(Suchomel et al., 2018). Similarly, higher endurance usually leads to an improvement in 

sporting performance, though there are conflicting results for concurrent training for 
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endurance and strength (Leveritt et al., 1999). Various modalities exist for enhancing 

athlete’s endurance, such as training in an hypoxic (low oxygen) environment (artificial 

or at high altitudes) (Sinex & Chapman, 2015), polarized training ( 80% of training 

voulume at anintensity below first ventilatory threshold) (K. S. Seiler & Kjerland, 2006), 

high volume moderate intensity (60 – 70 % peak power output) training, low volume 

high intensity (≥80% peak power output) training, etc. (Flueck & Eilers, 2010). 

Endurance training enhances the important parameters of aerobic fitness, such as 

maximal oxygen uptake ( �̇�𝑂2𝑚𝑎𝑥 ), exercise economy (energy cost for per unit of 

exercise), the lactate/ventilatory threshold and oxygen uptake kinetics (C. M. Jones et 

al., 2017). 

 

 

Figure 1.1 Summary of the different aspects of training in sports 

Along with the neuromuscular and conditioning programs, training in sports also 

encompasses the monitoring of athletes for their mood states, anxiety and stress about 

performance, feeling of fatigue, cognitive abilities, etc (Raglin, 2001). Subjective 

questionnaires such as the profile of mood states (POMS) (Curran et al., 1995), rating-

of-fatigue (ROF) scale (Micklewright et al., 2017), etc. are generally used to assess these 

factors. Based on the these assessment, cognitive, behaviorial, relaxation-based 

interventions can be provided to the athletes (Weinberg & Comar, 1994) with the aim 

of developing arousal regulation skills, volition skills, goal-setting skills, etc. (Birrer & 

Morgan, 2010) and learning interest enhancing strategies to improve motivation 

(Green-Demers et al., 1998). Development of these skills has shown improvement in 

athlete’s performance  and their ability to reach and maintain peak performance 

conditions (Harmison, 2006). In addition to this, such training and assessment can help 

athletes to improve their pyschological readiness for return to sports after a major 

injury or incident (Glazer, 2009). Finally, to develop expert performance for particular 

motor skills, it is pertininent for athletes to devote a susbtantial amount of time for 

practicing the specific movements and responses (Starkes et al., 2014). Examples of 

such movements are the kicking a ball in soccer, serving in tennis, foot placement in 

running, etc. Technique can be defined a specific sequence of movements performance 

to achieve a specific task, and has strong implications not only on the sporting 
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performance, but also on the likelihood of developing chronic injuries (Lees, 2002). 

These movements are typically practised under the supervision of coaches, in an 

environment which is similar to the one for the sporting competition. However, with 

the advent of virtual reality systems which reproduce environments with high fidelity 

and can track body movement, athletes can also train these movements based on 

feedback in a virtual environment (Miles et al., 2012).  

 

Apart from technique, athletes are also trained to improve their visual awareness, 

especially in case on team sports wherein the players need to be aware of the entire 

playing field (Appelbaum & Erickson, 2018). This can be complemented by tactical 

training for team sports, wherein the athletes are trained to improve their decision 

making in response to in-game situations (Rein & Memmert, 2016).  This work mainly 

focuses on training aimed towards improving the athlete’s technique, endurance, 

agility, and speed. Running presents an unique scenario where all three aspects can be 

trained simultaneously, since speed drills have shown to enhance endurance, agility, 

and speed in runners and soccer players (Iaia & Bangsbo, 2010; Lupo et al., 2019). 

Performed under the guidance of a coach, these running drills can be shortened and 

repeated multiple times in order to improve a particular aspect of running technique. 

1.1.2 Quantification of training 

To ensure positive adaptation to training and minimize injury risk, it is essential to 

accurately evaluate sport and non-sport training load (TL), and optimize it based on 

the on-field performance, functional capacity, physical and psychological status of an 

athlete (Soligard et al., 2016). TL is generally quantified as the product of the intensity 

of training (running speed, lifted/pushed weight resistance, etc.) and the volume of 

training (duration/distance of run, number of repetitions and sets, etc.) and classified as 

external and/or internal load, wherein, the former refers to the training stimulus pro-

vided to athletes and is evaluated independently of their personal physiology 

(Borresen & Lambert, 2009; Mujika, 2017). External training load is usually measured 

via training time, training repetitions, power output measurement devices, time mo-

tion analysis through the study of movement pattern and GPS, and neuromuscular 

function testing through jump tests and sprint performance (Halson, 2014). External TL 

has been the basis of the traditional training prescription and load monitoring systems, 

but it does not always reflect the internal load accurately, as individual responses to 

training stimulus differ from one athlete to another. These responses which are both 

physiological and psychological are represented by internal training load.  

 

Typical measures for internal TL include subjective metrics such as rating of perceived 

exertion (RPE) and other inventories, and objectives metrics based on heart rate (HR), 

blood lactate, training impulse, etc. (Borresen & Lambert, 2009). Subjective and objec-

tive metrics can also be used together (HR – RPE ratio) for evaluation of internal load 

(Halson, 2014). Monitoring both, external and internal TL, is crucial in evaluating the 

optimal training stimulus for an individual athlete. Recent advances in wearable tech-

nology have led to the use of portable global navigation satellite system (GNSS) devic-

es and accelerometers in external TL measurement during competitions and training, 

especially in team sports (Aughey, 2011; Camomilla et al., 2018). Portable heart rate 
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monitors have enabled the seamless monitoring of heart rate (HR) and heart rate vari-

ability (HRV) in sports, and resting HRV has been used to monitor the physiological 

response and adaptation of athletes to training stimuli (Kiviniemi et al., 2007). External 

load derived from runs and training evaluated with GPS and accelerometer consistent-

ly show positive associations with metrics of internal load derived from perceived ex-

ertion and heart rate (McLaren et al., 2018). 

1.1.3 A typical training framework 

A typical training framework (Figure 1.2) for runners involves setting the initial exter-

nal training load (TL) based on the functional capacity of the athlete, while subsequent 

loads are based on coaching heuristics and competition schedule. The training plan is 

usually adjusted based on the physical condition of the athlete, especially the presence 

of pain, illness, or injury. Internal TL is generally estimated using subjective metrics 

like RPE. Current practices in sports mainly involve the use of external TL, comple-

mented by HR-RPE based internal TL, for training load monitoring and estimation 

during the season (Halson, 2014). Traditionally, coaches used only the results from 

functional capacity tests to determine the initial TL and its progression throughout the 

season (Figure 1). However, recent ideas such as Acute:Chronic work ratio (ACWR) 

have provided an important heuristic method for determining the sequence of loads 

(Hulin et al., 2016). The goal in such a case is to design TL progression such that the 

ACWR is maintained close to 1, wherein the acute work is the load during 1-week and 

the chronic work is the average chronic load during 4-weeks (Hulin et al., 2016). Prolif-

eration of wearable GPS devices and heart rate monitors has provided an ease of moni-

toring TL objectively in team sports, further spreading the use of above-mentioned 

monitoring methods (Aughey, 2011). 

 

 

Figure 1.2 Predominant framework for one training session, as a part of a prescribed pro-

gram. Results from the functional tests are used to set initial external TL, while subsequent 

loads are based on heuristic ideas such as acute-chronic work ratio (ACWR) (Hulin et al., 

2016), etc. Internal TL is generally estimated using subjective metrics like RPE. 

Though these practices provide ease-of-use, they suffer from some important limita-

tions while personalizing the TL to an individual. Each athlete has their own specific 

physiology and movement technique, and adapts to a training program in a different 

way (Pickering & Kiely, 2019). The design and implementation of TL schemes without 

considering the personalized context of adaptation can lead to the issue of overtraining 

(Lehmann et al., 1997). Overtraining is a major factor leading to muscle injuries, espe-

cially in non-contact and endurance sports (Budgett et al., 2000). Overtraining is typi-
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cally a consequence of inappropriate training load management and results in long-

term performance decrement. Furthermore, overtraining (Figure 1.3) can result in other 

adverse effects such as decreased immunity, increased likelihood of chronic fatigue, 

mood disorders, etc. (Kreher & Schwartz, 2012). 

 

 
Figure 1.3 Overtraining and its adverse effects, based on (Budgett et al., 2000) 

In this context, current TL estimation practices have following limitations: 1) It is diffi-

cult for coaches to observe the athlete movement in training, particularly in the context 

of team sports. External and internal TL do not provide information about the tech-

nique. 2) Functional tests used to assess capacity typically use the overall group trends 

to model participant response. While these representative values can resemble actual 

athlete behaviour to a certain extent, they can be personalized further with instrument-

ing the in-field tests with wearable sensors. Furthermore, the sensor data can provide 

additional metrics to understand the movement better. 3) Internal TL from the exercise 

mainly encapsulates the physiological response and the subjective feeling of exertion 

and does not inform the coach about the technique of the athlete during a training ses-

sion. 

1.1.4 Going beyond training load 

An extended framework (Figure 1.4) for the training of runners, based on the concep-

tual suggestions in (Impellizzeri et al., n.d.; C. M. Jones et al., 2017; Vanrenterghem et 

al., 2017), can overcome the above-mentioned limitations using a personalized physical 

profile of an athlete as a foundation for the customization of training. This physical 

profile contains two main components: i) accurate functional capacity of an athlete 

based on instrumented tests to measure speed, agility, and endurance ii) the training 

history containing the prior external and internal loads experienced, and the perfor-

mance during training sessions. By focusing on both, performance and overall internal 

TL, this physical profile can capture the effects of individual external TL on both phys-

iological and neuromuscular adaptations. Thus, it considers the physical response of 

athletes for each training session and allows the coaching staff to take better-informed 

decisions.  
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Figure 1.4 Extended framework for estimation and monitoring of training load, which con-

siders the physical profile of the athlete to personalize the load. This profile is based on the 

training load (TL), biomechanical performance in training, and the functional capacity of 

the athlete. Based on the physical profile generated from one training program, the load es-

timation model can estimate an optimal set of loads for the subsequent training program. 

The orange blocks are the focus of this thesis and are explained in detail in the following 

sub-sections. 

This physical profile can serve as an input to a load estimation model, which can com-

pute optimal training progression based on the constraints set by the coaching staff like 

a specific ACWR, minimum training performance, etc. Pilot studies of such estimation 

models, based on constrained optimization (Carey et al., 2018) and artificial neural 

networks (Bartlett et al., 2017) approaches, have already shown promising results. 

While these models mainly consider external TL and RPE (internal TL), they could 

serve as templates for models considering the proposed physical profiles. For example, 

in the case of an athlete preparing for a marathon, the physical profile will contain: i) 

functional capacity from speed and endurance tests performed before start of the cur-

rent training program TP(k) and ii) measured external TL, internal TL, and perfor-

mance during the running training sessions. This profile will then serve as an input to 

load estimation model which will predict an optimal training program TP(k+1) to pre-

pare for the next marathon. Thus, this extended framework will enable assessment of 

intra-individual changes after training programs and post-injury rehabilitation, and 

further develop a tailored training program. The thesis targets this extended frame-

work (personalized training program) by investigation of the main components of this 

framework: biomechanical response, performance, and functional capacity. It is, how-

ever, important to note that this extended training framework does not alone provide a 

complete solution to the optimization of training loads. There are multiple factors af-

fecting the relationship of training to performance and injury (Coyne et al., 2018), and 

thus subjective questionnaires and tests about emotional well-being, recovery, and 

physiological status are also necessary to create a holistic monitoring program.  

1.1.5 Potential of biomechanical assessment 

Performance during training can be characterized by the magnitude of a particular 

metric such as speed, cadence (steps per minute), mechanical power, etc., and the ina-

bility to maintain the prescribed intensity can be assessed as a decrease in performance 

(Passfield et al., 2022). Internal factors such as fatigue, stress, hydration, etc., or envi-

ronmental factors such as humidity, temperature, the presence of competitors, etc., 

may influence the perception of internal load and heart rate response (Halson, 2014). 

Because these factors do not directly affect measured running power or speed, they can 



1.1 Training paradigm for running 

9 
 

serve as a useful supplementary measures to monitor training load during exercise 

(Paquette et al., 2020). Running speed and power can also provide complementary in-

formation about performance; for example, a decrease in running power while running 

speed remains constant indicates an reduction in the energy cost for that running 

speed (Cerezuela-Espejo et al., 2018; Taboga et al., 2021).  

 

Running performance depends not only on the maximal capacity and the proportion of 

that capacity that is constantly used, but also on running economy (RE). RE is the vol-

ume of oxygen (VO2) consumed per kilogram of body weight per kilometer; the less 

oxygen consumed, the better RE and the more efficient the run (Folland et al., 2017; 

Foster & Lucia, 2007). In runners with similar endurance capacity, RE can vary by up to 

30% (J. T. Daniels, 1985; Morgan et al., 1989). Running mechanics determine the energy 

absorbed and the propulsive forces generated during ground contact, thus influencing 

RE. Running mechanics, particularly during the propulsion phase, show a strong cor-

relation with RE during treadmill running (Beattie et al., 2014; Moore, 2016; Saunders 

et al., 2004). In addition, an increase in the variability of the temporal parameters of 

gait is associated with an increase in the cost of running, which worsens the RE (Can-

dau et al., 1998).  Measurement of RE in the field requires the use of portable gas ana-

lyzers, which makes measurement during regular training sessions cumbersome and 

expensive. However, running biomechanics, i.e., running technique can be accurately 

and conveniently assessed during training sessions (Willy, 2018).  

 

The biomechanics of running can be altered through specific training and adopting an 

economical running technique can improve RE and thus performance (Moore, 2016; 

Saunders et al., 2004).  For example, in a longitudinal endurance training program, a 

reduction in stride rate variability (for example, achieved through a metronome sound) 

and an improvement RE were reported as outcomes, although there was limited 

change in the oxygen capacity of the participants (Slawinski et al., 2001). In addition to 

its influence on performance, a running technique tailored to the athlete also ensures 

appropriate limb and joint loading, and is thus linked to running related injuries 

(Paquette et al., 2020; Willy, 2018). At a similar running speed, loading forces and mo-

ments are influenced by the body mass index (BMI), length of the steps, foot angle at 

ground contact, running shoes, running surface, etc. (Bertelsen et al., 2017). A conven-

tional training framework (Figure 1.2) does not consider all these factors and can there-

fore benefit from the performance assessment provided by the analysis of running 

biomechanics during training and functional capacity testing.  

 

The assessment of biomechanics in the field is crucial for understanding the strengths 

and weaknesses of athletes and tailoring the training to achieve an appropriate tech-

nique and performance capacity. A single proper or good technique does not necessari-

ly exist, but it varies from one athlete to another, depending on anthropometry, experi-

ence, past injuries, and sometimes it is more the discrepancies between these factors 

and running style that indicates an improper running technique. In the following two 

sections, we will explore in detail the biomechanics of running and the various func-

tional tests, and their evaluation in the laboratory and in the field. The biomechanics of 

running form the basis of the first part of this thesis, which aims to evaluate the athlete 
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in the field by his ability to maintain a better running technique despite increasing fa-

tigue and to reach the prescribed intensity (measured by running power). Augmenta-

tion of field tests by an accurate estimation of the functional capacity and the evalua-

tion of the biomechanical contributions to this capacity form the main objective of the 

second part of the work.  

1.2 RUNNING BIOMECHANICS AND ITS ASSESSMENT 

1.2.1 Biomechanics of running gait 

Endurance running, understood as extended periods of running using aerobic metabo-

lism, is unique to humans among all primates (Bramble & Lieberman, 2004).  While 

nonhuman primates can sprint rapidly, their endurance running capacity is exception-

ally lower than that of humans (Hunt, 1991). When adjusted for body mass and size, 

human running speeds are relatively higher, compared to those for trotting in quadru-

peds (Heglund & Taylor, 1988). Compared to nonhuman primates, human legs have 

long elastic tendons and human feet contain elastic structures in the plantar arch. These 

rocspring-like structures allow up to 50% savings in metabolic costs due to the elastic 

function of the Achilles tendon and up to 17% due to the elastic arch of the foot (Ker et 

al., 1987; Thorpe et al., 1999). It is suggested that endurance running capability played 

an important the evolution of the Homo species, as it helped hominids exploit protein 

rich resources such as a marrow, meat, etc. through scavenging and hunting and these 

food sources, in turn, may have made it possible for our unique combination of large 

bodies, small guts, big brains and small teeth (Aiello & Wheeler, 1995; Semaw et al., 

2003; Wrangham et al., 1999). Running evolved from its role in human evolution to 

becoming an important training activity for competitive athletes in track and field 

clubs, university programs, etc. (Bale, 2004) in the early twentieth century. In the last 

half of 20th century, endurance running has become one of the most popular recrea-

tional sporting activities, and more than 10% of people in the United States, England, 

and the Netherlands, and other European countries report habitually jogging (or run-

ning several kilometers) daily (Dai et al., 2015; Deelen et al., 2019; England, 2019; 

Scheerder et al., 2015). Thus, the biomechanical assessment of running is relevant to a 

large segment of the population, far beyond competitive athletes. 

1.2.1.1 Spatiotemporal parameters of gait 

The basic unit of analysis of running is the gait cycle (Figure 1.5), which describes the 

continuous and repetitive pattern of movement of the body during running (Dugan & 

Bhat, 2005). The duration of a gait cycle is called cycle time), with the stride frequency 

representing the number of strides taken within a second or minute. The cycle begins 

when a foot strikes the ground and ends when the same foot strikes the ground again. 

The phase when the foot contacts the ground is called the stance phase, and its total 

duration is called the contact time (𝑡𝑐). It begins when the foot touches the ground (ini-

tial contact or IC) and continues until the toe leaves the ground (toe-off TO). The stance 

phase is divided into two sub-segments depending on the function: the braking phase, 

in which the leg absorbs landing forces and supports fall in the position of the body's 

center of mass (CoM), and the push-off phase, in which forward acceleration is gener-

ated to propel the body forward (Divert et al., 2005). Depending on the speed, the land-
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ing forces can be 2 to 5 times the body weight and this can cause significant braking 

impulse, unless the athlete has the required muscle strength to repel this force (Wey-

and et al., 2000). The athlete can store these contact forces as elastic energy within the 

leg muscle-tendon complex and use it to propel the body in the push-off phase. Acute 

fatigue can lead to reduction in the ability of muscles to absorb and recycle the impact 

energy (Darch et al., 2022), needing an increase in the duration of 𝑡𝑔 to store and re-

lease the same impulse. The duration of tc is directly correlated to the step frequency, 

and thus, the running speed (Weyand et al., 2000). The ratio of 𝑡𝑐 to the 𝑡𝑔 is known as 

the duty factor (𝑑𝑓). A lower 𝑡𝑐 and 𝑑𝑓 have been linked to a better performance in 

terms of RE (Folland et al., 2017; Moore et al., 2019; Mooses et al., 2021; Nummela et al., 

2007). 

 

 
Figure 1.5 Gait phases and temporal events of the running gait cycle. The relative propor-

tion of the different phases relative to cycle time is indicative of the typical values during 

jogging (Dugan & Bhat, 2005). The events are marked according to the ipsilateral leg, i.e., 

the leg highlighted in color. Adapted from (Magee, 2014) 

The interval of the gait cycle from the toe-off to the next initial contact is referred to as 

the swing phase, and its duration is referred to as swing time (𝑡𝑠). The stance and 

swing phases are also known as terrestrial and aerial phases due to the presence and 

absence of ground contact, respectively (Novacheck, 1998). As the swing phase begins 

for one leg, the other leg approaches the end of its swing phase, resulting in a period 

where neither foot touches the ground, the flight phase. The flight phase begins with 

the final contact of the ipsilateral leg and ends with the initial contact of the contrala-

teral leg. The ipsilateral leg is highlighted in color, while the contralateral leg is shown 

in gray in Figure 1.5. Thus, a swing phase is composed of a flight phase, the stance 

phase of the contralateral leg, and a second flight phase (Novacheck, 1998). The dura-

tion of flight phase is known as flight time (𝑡𝑓) and can be considered for each step sep-

arately. Although 𝑡𝑓  is less correlated with cadence compared to 𝑡𝑐 , their durations 

relative to 𝑡𝑔 have been used to classify runners into terrestrial/aerial (Gindre et al., 

2015). Since the foot is not in contact with the ground during the flight phase, speed 

cannot be increased, and the athlete must move the leg cyclically in preparation for the 

next foot strike.  
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Stance, swing, and flight phases constitute the framework within which other kinetic 

and kinematic features are studied. For these studies, it is therefore imperative to de-

tect and differentiate the different temporal parameters of gait and their relative pro-

portions, accurately and precisely. The most used spatial parameter of gait is the stride 

length (SL), which refers to the distance between the successive foot contacts for the 

same leg. In contrast, step length refers to the distance between the successive foot con-

tacts of the right and left legs.  

 

 
Figure 1.6 Relationship between gait parameters, the stride length (SL) in m, stride frequen-

cy (SF) in Hz, and the running velocity in ms-1. Adapted from (J. Bailey et al., 2017) 

One can estimate the running speed based on the knowledge of the stride length and 

stride frequency (SF) or cadence corresponding to twice stride frequency. Both parame-

ters show a particular association with speed, with stride length increases substantially 

together with the speed at endurance running speeds (Figure 1.6) up to approximately 

6 ms-1. Due to this relationship, an increase in SL at a constant SF can lead to an in-

crease in running speeds. However, too much increase in SL can cause the runners to 

place their foot beyond their CoM position (in sagittal plane), leading to an increased 

loading of the knee joint due to the impact forces (Lenhart et al., 2014). Instead, to in-

crease the speed, the runner can train to maintain an appropriate SL and try to improve 

the SF. Even a 10% increase in step rate can lead to a considerable reduction in loading 

in the knee and hip joints and improvement in the RE due to reduced muscle work 

(Heiderscheit et al., 2011; Quinn et al., 2021).  

1.2.1.2 Kinematics and kinetics of gait 

Running is one of the main modes of bipedal locomotion for humans, alongside walk-

ing and sprinting. Transition from walking to running happens when periods of dou-

ble support (both feet simultaneously maintain contact with ground) are replaced by 

periods of flight (both feet are in air).  Unlike walking, the body maintains a forward 
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lean through the gait cycle during running. To reduce the vertical excursion of the 

CoM caused by the higher impact forces (due to higher velocities) during running, the 

lower extremity joints exhibit a greater range of motion (ROM) during the gait cycle  

(R. A. Mann & Hagy, 1980; Williams, 1985).  During the stance phase, the knee flexes to 

approximately 40° at the initial contact, followed by a flexion up to 60° during the load-

ing phase and back to 40° at the end of the push-off phase. Knee flexion during the 

stance phase allows the leg to act as an elastic element to store and release the impact 

energy (Novacheck, 1998). Similarly, the hip is also flexed to approximately 50° at ini-

tial contact and extends throughout the stance phase, achieving a slight overextension 

at toe-off. The knee and hip reach their maximum flexion angle (approximately 125° for 

the knee and 55° for the hip) during the swing phase (mid-swing), while the ankle joint 

has its maximum plantarflexion angle at the beginning of the swing phase (Novacheck, 

1998). While sagittal motion is the primary basis of the running movement, there is also 

a rotational component, as the joints of the leg lock to support the body on each side 

during the stance phase. During the forward motion of the ipsilateral leg, there is a 

forward motion of the contralateral arm, resulting in a rotation of the rib cage. This 

counter pelvic rotation is modulated by the spine and helps to dissipate the impact 

forces during the braking phase (Pontzer et al., 2009). The coordinated movement from 

the lower limbs to the lumbar-pelvic-hip complex is sometimes referred to as the kin-

ematic chain (larger movement composed of series of joint movements), and its analy-

sis may be crucial to the study of upper limb RRIs (Schache et al., 1999).  

 

The kinematics and kinetics of foot contact play a crucial role in running stride, as all 

the forces and moments are transmitted to the surface through the foot. These contact 

forces experienced by the foot are known as ground reaction forces (GRFs), and the 

shape of the force-time curve for GRF has been studied extensively studied in the liter-

ature as it contains information about the forces experienced by the CoM of the body 

(Hamill et al., 1983; Keller et al., 1996; Munro et al., 1987). The shape of the GRF force 

profiles is related to the running technique, body mass, speed, and foot strike angle, 

and has been linked to the RE (Jewell et al., 2017; Moore et al., 2016). The shape of the 

GRF profile is strongly related to the foot strike angle, with runners with rearfoot strike 

(RFS) exhibiting a characteristic impact peak in the VGRF profile (Figure 1.7).  

 

 
Figure 1.7 Vertical, anteroposterior (AP), and mediolateral (ML) GRF profiles for runners 

with rearfoot (black line) and non-rearfoot (grey line) strike, with a characteristic impact 

peak in the VGRF for rearfoot strikers (RFS). VGRF has been of particular interest in litera-

ture due to its high magnitude and role in support the CoM of the body. Adapted from 

(Gruber et al., 2017) with permission from Elsevier. 

The anteroposterior GRF (Figure 1.7) are linked to the braking and propulsive sub-

segments in the stance phase, where a negative AP GRF impulse slows down the run-
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ner and a positive AP GRF impulse lead to an increase in speed. Although AP GRF has 

not been used to characterize runner populations in the same way as VRGF, it has been 

linked to the production of mechanical power and used for to study the biomechanics 

of sprinting (Rabita et al., 2015; Samozino et al., 2016). Compared to VRGF and APGRF, 

mediolateral GRF is understudied. The loading rate, calculated by dividing the maxi-

mal vertical force by the time to the maximal vertical force and measured in terms of 

defined as bodyweight per second (Bauer et al., 2001), is generally used to characterize 

differences in the weight acceptance phase of VGRF profiles for different athlete popu-

lations (Hamill et al., 1983). For example, due to a reduced loading rate, the time course 

of the impact force is likely to be delayed runners with mid foot strike (MFS) or fore 

foot strike (FFS) compared to those with a rearfoot strike (RFS) (Boyer et al., 2014; 

Gruber et al., 2017). MFS and RFS also result in different forces and moments in the 

lower extremities, with lower loading in the knee joint for MFS and the ankle joint for 

RFS (Knorz et al., 2017). In addition to joint loading, the transition to MFS and FFS is 

easier at higher SF than RFS, thus increasing the likelihood of MFS (or FFS) at higher 

speeds (Huang et al., 2019). Similarly, FFS and MFS result in greater activation of the 

tendon springs during the weight acceptance phase (braking phase), allowing for a 

greater storage of impact energy and improved running efficiency (Alexander, 1991; 

Lieberman et al., 2010). As foot strike angle directly depends on the muscular activa-

tion of the calf muscles, so does the rest of lower limb motion. The common method for 

measuring muscle activation is surface electromyography (sEMG), and the use of 

sEMG in  biomechanical research has led to extensive studies and results (Luca, 1997). 

However, an overview of the muscle activity has not been provided here due to the 

focus of this thesis on the biomechanical assessment in terms of kinematics and kinet-

ics. The following section provides a brief overview of the methods and technologies 

used for biomechanical assessment in the laboratory and in the field. 

1.2.2 Objective assessment of gait biomechanics 

The goal of gait analysis usually depends on the nature of the research question. Lower 

limb kinematics, such as the knee flexion angle and the foot strike angle, especially 

during the stance phase, have been extensively studied in the literature (Dugan & Bhat, 

2005). The nature and magnitude of impact forces and their relationship to running 

speed and injury likelihood are another important area of gait analysis (Darch et al., 

2022; Weyand et al., 2000). Finally, the influence of the running environment, such as 

the use of a treadmill or running track, the speed of the treadmill, the slope of the sur-

face, the type of shoes, the presence of competition, etc., and the condition of the ath-

lete (feeling of fatigue, pain, etc.) also comprise a well-studied field of research (Bon-

temps et al., 2020; Halson, 2014; Hamill et al., 1983; Lieberman et al., 2010). Objective 

instrumented gait analysis using metrological techniques began in nineteen (1872) cen-

tury with innovations of Marey and Carlet, who combined shoes with air chambers to 

record the pressure differential generated by foot impact forces and a pneumatic re-

cording system (Baker, 2007; Carlet, 1892; Marey, 1890).  These pioneering efforts were 

followed few years later by photographic techniques developed independently by 

Muybridge and Demeny (Muybridge, 1882; Pociello, 1999). Braune and Fischer extend-

ed this to 3D analysis of gait kinematics and CoM motion in 1895, which was followed 

by the recording of 3D GRF during walking by an early force plate prototype devel-
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oped by Amar in 1916 (Baker, 2007; Braune & Fischer, 1895). The advent of high-speed 

visible and infrared spectrum still and video cameras, the development of high-

sensitivity sensor technology, and its miniaturization with the MEMS paradigm have 

ushered in the modern era of objective gait analysis. The modality used for gait analy-

sis usually depends on research question, athlete population, and running conditions 

(Higginson, 2009). 

1.2.2.1 Video cameras 

Video cameras are typically set up to record gait biomechanics from one of three ana-

tomical planes of motion: sagittal, frontal, and transverse. The cameras are convenient 

to set up and can provide recordings at a high frame rate (≥ 240 Hz). Because no pre-

processing and special software are needed to view the resulting footage, video camer-

as are also used for subjective observation of gait. They can help physicians, physical 

therapists, and coaches to identify the presence of abnormalities in running technique 

such as overstriding, overpronation during stance phase, improper trunk posture, re-

stricted hip and knee flexion, etc., and develop appropriate training and treatment 

strategies (Souza, 2016). Cameras allow observation of running technique in the form 

of foot strike patterns (Figure 1.8), lower extremity joint angles, stance foot motion, and 

near-objective analysis of lower extremity joint angles (Souza, 2016).  

 

 
Figure 1.8 An example of investigation of foot strike patterns using video footage, where 

front foot (A), mid foot (B), and rear foot (C) strike can be observed. Figure adapted from 

(Souza, 2016) with permission from Elsevier. 

While automated techniques have been developed to detect and classify human gait  

(Goffredo et al., 2010; van Mastrigt et al., 2018), accurately investigating the temporal 

gait parameters using video cameras requires the labelling of different events  of the 

gait cycle (Figure 1.5), such as initial contact (IC) and toe-off (TO). This labelling can be 

done using video analysis software such as Kinovea1 (open source), Adobe Premiere 

Pro2 (proprietary), Dartfish3, etc., with the accuracy of estimate depending on the reso-

lution of the temporal parameters and the frame rate of the cameras. Video cameras 

have also served as reference devices for assessment of motion with other measure-

ment devices in a variety of use-cases, such as running, swimming, and even tracking 

animal behaviors in the wild (Chakravarty et al., 2019; Hamidi Rad et al., 2021; Lee, 

 

1 https://www.kinovea.org/ 
2 https://www.adobe.com/uk/products/premiere.html 
3 https://www.dartfish.com/ 
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Sutter, et al., 2010). Because of their convenience, cameras can also be utilized in the 

field to observe a specific section of the race or a portion of the running tracks. For ex-

ample, video cameras have been used to observe foot strike patterns during marathons 

and other long-distance running competitions (Larson et al., 2011; Peltonen et al., 2012; 

Ruder et al., 2019), and on a 400-m running track (Di Michele & Merni, 2014). Video 

cameras can complement more sophisticated measurement devices such as motion 

tracking cameras, force plates, and wearable sensors during protocols to check for 

causes of abnormalities in the recorded data. 

1.2.2.2 Optical motion tracking 

Optical motion tracking systems use infrared camera systems and stereophotogramme-

try to record the motion of specific markers attached to the body in a 3D volume 

(Guerra-filho, 2005). These systems are typically used as gold standard reference for 3D 

motion quantification during running. Due to the ability of the cameras to record the 

position of the markers with a resolution of 10-3 m, they provide high accuracy and 

precision (Eichelberger et al., 2016). Markers can be passive, reflecting incident infrared 

light, or electrically powered to allow the camera system to record their unique labels. 

Passive markers, which are extremely lightweight and easy to attach, represent the 

majority of motion capture tracking systems used in running analysis (Higginson, 

2009). However, these markers must be attached to specific bony landmarks on the 

body to reconstruct the skeletal motion and limit errors caused by the muscle stretch-

ing/contraction during running motion (Blache et al., 2017). These errors are known as 

soft tissue artefacts and can be of a large magnitude (2.5 to 10 cm and 8° for orienta-

tion) during highly dynamic movements depending on the placement of the marker 

(Barré et al., 2015; Peters et al., 2010). New methods such as OpenPose and PoseNet 

have been proposed to make motion capture ‘markerless’ (Cao et al., 2021; Kendall et 

al., 2015) and avoid the soft tissue artefacts. However, they still need to be improved to 

replace the widespread use of marker-based systems as the gold standard (Nakano et 

al., 2020).  

 

The placement of markers on body segments depends on the objectives of the study. a 

full-body configuration of markers (Figure 1.9a) is typically used to assess both the 

upper and lower limbs during running (Folland et al., 2017), while a specific marker 

configuration on the foot can be used to study the foot strike angle (Falbriard et al., 

2020). Marker locations obtained through the footage (Figure 1.9b) are usually labelled 

to specify the location of the bony landmarks (where the markers are attached) and 

create a 3D representation of the body (Figure 1.9c) using appropriate links between 

the markers (links between markers provide motion constraints). The links are refined 

using a skeletal model of the body to obtain the final 3D representation (Figure 1.9d). 

Predefined configurations for marker attachment have been proposed in literature (R. 

B. Davis et al., 1991) and some of these have been implemented in commercially avail-

able optoelectronic motion capture systems to automatically recognize marker labels 

(positions on the body), such as the plug-in gait4 of Vicon systems. Predefined configu-

 

4 https://docs.vicon.com/display/Nexus213/About+the+Plug-in+Gait+model 
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rations can automate the process of marker labelling, reducing errors and the time re-

quired for the process.  

 

 
Figure 1.9 Stages of the optoelectronic motion capture process with participant fitted with 

markers (a), markers registered on camera (b), body mesh (c), and mesh matched skeleton 

(d). Adapted from (Skurowski & Pawlyta, 2021) 

The configuration of the infrared cameras generally depends on the study environment 

and the volume of motion to be studied, with the cameras usually placed around the 

periphery of the laboratory. Because of the limitations of the captured volume covered 

by the cameras and the need to fix the position and orientation of the cameras during 

and after calibration, running protocols are generally performed on a treadmill (Adams 

et al., 2016; Folland et al., 2017; Hamner et al., 2010; R. Mann et al., 2014; Maurer et al., 

2012; Napier et al., 2019). However, some markers may not be detected or recorded by 

some cameras because limb movement obstructs the cameras’ line of sight. This phe-

nomenon is referred to as occlusion and can affect the accuracy of measurements, 

along with soft tissue artefacts. Despite these problems, motion capture systems are 

widely used to accurately measure joint angles, CoM motion, translational and rota-

tional velocities of body segments, and even temporal parameters of gait based on ac-

celerations of foot markers (Handsaker et al., 2016). The latter can be useful in the ab-

sence of treadmills or running tracks with force plates. 

1.2.2.3 Force plates 

Force plate systems are rigid plates supported by three-dimensional force transducers 

that measure force based on piezoelectric or strain gauge sensors (Wardoyo et al., 

2016). By placing a transducer at each corner of a rigid plate, the system can record the 

reaction forces that the running surface exerts on the runner during the stance phase. 

These systems are the gold standard method for estimating the force-time profile for 

vertical ground reaction forces (VGRF); this profile is used to estimate loading rate, 

understand foot strike pattern, peak force, center of pressure (CoP) trajectory, and 

push-off and braking impulses (R. Cross, 1999; Dugan & Bhat, 2005; Novacheck, 1998). 

By establishing appropriate thresholds for the VGRF force-time profile, the initial con-

tact and toe-off events of the stance phase can be identified, which can then be used to 

estimate the temporal parameters of gait (Falbriard et al., 2018). However, there is no 

consensus on the magnitude of these thresholds, as some studies have used fixed 

thresholds (in N) (J. B. Cronin & Rumpf, 2014; Leitch et al., 2011), whereas others have 
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used threshold dependent on the runner’s body weight and/or the recorded value of 

the peak force (J. B. Cronin & Rumpf, 2014; Falbriard et al., 2018; Williams & Cavanagh, 

1987). Force estimated from the force plates, the limb parameters (mass, length, inertia), 

and the limb kinematics and CoM motion obtained from the motion capture systems, 

can be combined to estimate the net joint moments and forces using an inverse dynam-

ics approach (Alkjaer et al., 2001; Riemer et al., 2008). This approach utilizes the 

knowledge of limb kinematics (motion capture data used as reference) obtained using 

a mathematical gait model to estimate gait kinetics (force plate data used as reference). 

Thus, the motion capture and force plate approaches together provide a deeper insight 

into the joint loading caused by a particular running technique (Oh et al., 2013; Skals et 

al., 2017; Van Hulle et al., 2020).  

 

For gait analysis, the force plate is usually integrated into the track used for running 

protocols. However, the distinct appearance of the force plate may cause runners to 

unconsciously adjust their gait to step precisely on the plate. This problem is referred 

to as ‘targeting’ and is known to lead to biases in the timing and magnitude of the peak 

values in the VGRF force-time profile (Challis, 2001). To overcome this problem, the 

force plates can be camouflaged to visually look like the track, or they can be integrat-

ed into a treadmill. The latter solution allows laboratory measurements to control the 

running speeds and gradients and can be used to study their effects on running biome-

chanics. However, the dynamics of the treadmill (motor vibrations and resonant fre-

quency of the treadmill) can introduce noise into the signals recorded by the force 

plates. This necessitates specific signal processing steps to improve the accuracy of the 

obtained the force-time profile (Garofolini et al., 2019; Lieberman et al., 2010; Weyand 

et al., 2000). The kinematics of running on the treadmill are largely comparable to those 

of running overground. However, some differences have been observed particularly in 

the foot strikes angle in the sagittal plane, leads to caution about ecological validity 

(Van Hooren et al., 2020). In contrast, wearable sensor systems offer the possibility to 

measure the biomechanics of walking in the field, and therefore a brief overview of 

some use cases is provided in the following section. 

1.2.2.4 Wearable systems 

Inertial measurement units (IMUs) and global navigation satellite systems (GNSS, of-

ten incorrectly referred to as GPS systems in common parlance) have been traditionally 

utilized for designing inertial navigation systems in vehicles and projectiles (Groves, 

2015; King, 1998). However, advances in the micro-electro-mechanical systems (MEMS) 

technology have led to miniaturization of the IMU and GNSS receiver and reduction in 

their power consumption and cost, thus enabling their widespread use in commercial 

wearable devices. As a wearable, the GNSS receiver provides a global position of the 

user, which can then be used to track the trajectory and speed of movement by athletes.  

Today, the GNSS sensor is widely used by amateur and professional athletes for winter 

sports, team sports, running, cycling, etc. and forms a the basis of commercial fitness 

trackers along with heart rate monitors (Sperlich et al., 2020). GNSS receiver is mainly 

used outdoor as a feedback tool to manage pacing during competitions, depending on 

the nature of the competition route (Gløersen et al., 2018). During running, the system 

can be used to maintain a specific speed, which has been set as a target according to the 

prescribed external load (Halson, 2014). On training completion, the system can be 
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used to analyze the variation in speed and evaluate the performance of the athlete dur-

ing training. The GNSS receivers, however, cannot provide information about the bio-

mechanics of running, thus limiting its potential for analysis of running technique. 

 

IMUs, with their ability to measure acceleration (using a 3-D accelerometer) and angu-

lar velocity (using a 3-D gyroscope), have the potential to provide information about 

limb dynamics during running when attached to a specific limb. While the use of gyro-

scopes for measurement of spatiotemporal parameters of gait began with their use in 

walking (Aminian et al., 2002), today IMUs are widely used to analyze running biome-

chanics in the laboratory and field (Benson et al., 2022; Moore & Willy, 2019). Foot-

worn have been used to estimate contact time (𝑡𝑐), swing time (𝑡𝑠), flight time (𝑡𝑓), and 

gait cycle time (𝑡𝑔) with an inter-trial median ± IQR bias less than 12 ± 10 ms and a pre-

cision less than 4 ± 3 ms (Falbriard et al., 2018). Furthermore, foot-worn IMUs can also 

provide an accurate estimation of running speed (0.00 ± 0.11 m/s accuracy and 0.11 ± 

0.05 m/s precision), which, in combination with 𝑡𝑔 can be used to assess the step length 

(Falbriard et al., 2021). Inertial sensors, using artificial neural networks, have been used 

to produce an accurate estimate of knee flexion/extension angles (mean root mean 

square error <5°) and vertical ground reaction forces (root mean square error < 0.27 

times the bodyweight) (Wouda et al., 2018). The VRGF profile can subsequently be 

used to estimate the loading rate and peak VRGF force. Wearable IMUs have shown 

potential for analysis of lower limb kinematics, with an accurate assessment of foot 

strike angle, pitch angle at mid-stance, pronation angle before initial contact, heel lift 

during swing phase, and orientation of the shank (Falbriard et al., 2020; Strohrmann et 

al., 2011; Zandbergen et al., 2022).  

 

A large number of studies have used an accelerometer attached to the shank to meas-

ure the tibial loading and an accelerometer on the head to measure shock attenuation 

produced by the body between the tibia and the head (Benson et al., 2022). In addition 

to the spatiotemporal, kinematic, and kinetic parameters of gait, trunk-worn IMU of-

fers an opportunity to measure the movement quality in terms of stability and smooth-

ness (Kiely et al., 2019; Schütte et al., 2018). These metrics characterize proficiency of 

coordinated movements during running and a reduction in their value has implication 

for increased energy cost of running. Moreover, inertial sensors can provide continu-

ous analysis of running biomechanics throughout the training or competition (Meyer et 

al., 2021b). It also enables investigation into variability of the gait cycles and their long-

range correlation (complexity). Measurement of these metrics can be useful for the 

runners due to their relationship to running technique. For example, cycle time varia-

bility and its long-range correlations (complexity) are an indicator of running tech-

nique, and a potential predictor of running related injuries (RRIs) (Gruber et al., 2021; 

Meardon et al., 2011), with trained runners showing lower variability and higher com-

plexity (Nakayama et al., 2010). Furthermore, use of IMUs on both feet simultaneously 

can provide insight into the symmetry running of running gait. Measurement of sym-

metry during running can help evaluate the risk of overuse injury for a particular limb 

and test the athlete’s readiness to resume training after rehabilitation (Zifchock et al., 

2008). Symmetry of gait is also related to the energy cost of running and thus to the RE. 

10% increase in the asymmetry in step time and contact time can lead to increased met-

abolic costs of running, up to 3.5% and 7.8%, respectively (Beck et al., 2018).  
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While foot-worn IMUs cannot provide direct information about the CoM motion and 

the vertical stiffness, temporal parameters of gait and running speed can be used to 

indirectly estimate these parameters. The most common method is through the use of 

the spring-mass model (Blickhan, 1989), which considers the runner as a point mass 

and the supporting leg as a linear spring, with the vertical stiffness characterizing the 

motion of the center of mass (COM) in response to the vertical GRF. By some geometric 

consideration and modeling the VGRF by a sine-wave (Farley & González, 1996; J.-B. 

Morin et al., 2005), this model enables an understanding of the storage and return of 

elastic energy and allows the computation of the vertical stiffness (𝑘𝑣), maximum verti-

cal excursion of the CoM, and the maximum VGRF. Equations 1.1 to 1.3 detail the 

computation, with 𝑔 and 𝑚 being the gravitational acceleration and the runner’s mass 

respectively. Furthermore, to understand the positive and negative work during run-

ning, the duty factor (𝑑𝑓) of the gait (Alexander 1991) can be estimated using equation 

(1.4) and the temporal parameters of gait (𝑡𝑔, 𝑡𝑐, and 𝑡𝑓): 
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Thus, wearable IMUs can provide an accurate description of running gait and the asso-

ciated movement quality. Table 1.1 provides a non-exhaustive list of biomechanical 

metrics estimated using wearable IMUs and validated using reference systems. Details 

into the estimation methods have not provided for the sake of brevity and keeping in 

line with the broad nature of the overview provided in this chapter. Combined with 

their cheap cost, unobtrusive nature, wearable inertial sensors and GNSS receiver pro-

vide an immense opportunity for the analysis of running biomechanics and perfor-

mance during in-field training and competition. However, they can also be used dur-

ing field tests of functional capacity, to improve the capacity estimation and provide 

additional insights into the biomechanical contributions to the said capacity. 

 

Table 1.1 Non-exhaustive list of biomechanical metrics estimated using body-worn IMUs, 

based on literature (Clansey et al., 2012; Falbriard et al., 2018, 2020, 2021; Soltani et al., 2020; 

Strohrmann et al., 2011; S. C. Winter, 2018; Wouda et al., 2018). Metrics shown in italics were 

estimated using IMU on feet and/or trunk 

Spatiotemporal Kinematic Kinetic 

Contact time  Foot strike angle VGRF peaks 

Flight time Pitch angle at mid-stance Vertical stiffness1 

Swing time Pronation angle before IC Loading rate 

Cycle time Knee sagittal angles Tibial acceleration 

Stride length Heel lift Sacral acceleration 

Speed CoM motion  
1Estimated indirectly using the spring-mass model   



1.3 Evaluation of functional capacity 

21 
 

1.3 EVALUATION OF FUNCTIONAL CAPACITY 

This section provides a short overview of the field tests used to determine the func-

tional capacity of athletes, in terms of their speed, ability to rapidly change direction, 

and endurance. The importance of each of these capacities, the most common method 

assessment, and the potential benefits of instrumenting the test with wearable sensors 

are presented briefly.  

1.3.1 Speed 

Speed ability is primarily assessed through straight-line sprints or track-based time 

trials, where the total time taken to cover a specific distance, while running with a max-

imal effort, is assessed (J.-B. Morin et al., 2012; Peserico & Machado, 2014). The runner 

usually starts from a crouched position with both hands (Figure 1.10) and one knee 

touching the ground, while in ‘flying’ sprint the athlete is already sprinting for 30 m 

before the start time is recorded. The former is more commonly used and performance 

in the sprint test is an indication of the ability of the athletes to produce and apply high 

amount contact force with the ground in the horizontal direction (J.-B. Morin et al., 

2011). This ability is important in the context of various sports, due to the need for rap-

id acceleration from a stationary position (Mendiguchia et al., 2014). x 

 
Figure 1.10 Typical setup and protocol for a 40-m sprint test, with a start based on a 

crouched position. Adapted from (Mendiguchia et al., 2014) with permission from Georg 

Thieme Verlag KG 

Velocity profile obtained during the sprint test is used to create the horizontal force-

velocity (F-V) and horizontal power-velocity (P-V) plots for athletes.  The relationship 

between the external horizontal force generation and increasing running velocity can 

be characterized by the F–V relationship. The extrema of the F-V plot can provide in-

formation about the theoretical maximal velocity of the treadmill belt the legs could 

produce under zero load and theoretical maximal horizontal force the legs could pro-

duce over one contact phase at null velocity (J.-B. Morin et al., 2012). The F-V and P-V 

plots characterize the theoretical mechanical limits of the athlete in terms of individual 

muscle strength, neuromuscular control, morphological factors, etc. (Cormie et al., 

2011). These profiles can thus be crucial for understanding factors limiting perfor-

mance and designing personalized training programs and evaluating injury risks (J.-B. 



Background and motivation 

22 
 

Morin & Samozino, 2016). These parameters and the force-power-velocity profiles can 

be ascertained using the velocity profile during sprint. The prominent model of esti-

mating instantaneous sprint velocity (𝑣𝑚𝑑𝑙 (𝑡)) is based on the use of a Doppler radar 

(Furusawa et al., 1927; Samozino et al., 2016) to measure the maximum velocity in 

combination with the equation below:  

𝑣𝑚𝑑𝑙 𝑡 𝑣𝑚𝑎𝑥 𝑒
𝑡
𝜏  (1.5)

where 𝑣𝑚𝑎𝑥  is the maximum horizontal velocity during the sprint and τ is a constant, 

estimated using ensemble experimental data. Obtained velocity profile (𝑣𝑚𝑑𝑙  (𝑡)) is 

differentiated to obtain horizontal acceleration, and subsequently the F-V and P-V pro-

files. Since the Doppler radar requires a skilled operator and can only record one 

sprinter at a time, instrumenting the sprint test with wearable sensors can aid in wid-

ening its application to larger cohorts of runners. While straight line speed is critical for 

sprinters and endurance runners, the ability for a quick change of direction (COD) is 

also critical for practitioners of other sports, such as team sports. Following section 

presents a brief overview of the field test used to evaluate the capacity for COD. 

1.3.2 Change-of-direction ability 

The ability for change of direction (COD) at high speeds is crucial for performance in 

range of terrestrial sports such as soccer, basketball, tennis, etc. and winter sports like 

alpine skiing (Sheppard & Young, 2006). The most important factors affecting the tech-

nical execution of COD are the angle between the approach direction before and after 

the COD and speed with which COD is approached. This approach movement can be a 

combination of forward/backward sprint, shuffle, slalom run, etc. Therefore, these tests 

can take different forms depending on the COD and the approach movement. A "T" 

shape of ten yards has been used in many sports such as soccer, basketball, rugby, etc. 

(Semenick, 1990). A smaller size can be used for combat sports or court games like 

badminton, etc. (Kamuk, 2020; Sekulic et al., 2017), while a cross shape is used in alpine 

skiing performance test (Vogt, 2017). Amongst these, the T-test is one of the most 

commonly used tests for assessing the capacity to quickly change direction (Pauole et 

al., 2000). It involves five sequential movements: i) Sprint forward (A to B) ii) Shuffle 

left (B to C) iii) Shuffle right (C to D) iv) iv) Shuffle left (D to B) v) Sprint backwards (B 

to A), as illustrated in Figure 1.11. The test is scored based on the total completion time, 

typically measured through photocells positioned at the starting line; a lower timing 

indicates better performance and a better capacity of athletes to rapidly change direc-

tion without losing speed and balance. T-test performance can also provide an insight 

into the readiness of athlete to return to sport after an Anterior Cruciate Ligament inju-

ry (Paterno et al., 2010), due to the role of knee loading in the change of direction.  

 

The COD T-test results have shown poor correlation with other tests such as vertical 

jump, straight sprint, leg power and leg speed, or lower limb strength (Chaouachi et 

al., 2009; Pauole et al., 2000; Sassi et al., 2009). It was concluded that a fast COD implied 

not only strength in the legs or speed, but also coordination, technique, balance, or oth-

er physical capabilities that have yet to be defined (Baechle et al., 2008; Young et al., 

2015). The athlete needs to aggressively plant their foot on the ground and quickly ac-

celerate off the ground to achieve shorter COD time. To aid this ability, the athlete re-
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quires high muscle strength, primarily eccentric, in the knee extensors, hip extensors, 

plantar flexors, hip adductors and abductors (Spiteri et al., 2013). Eccentric braking 

capabilities enable the athlete to reduce momentum in current direction of motion, be-

fore the accelerating into the new direction of motion (Delaney et al., 2015). This 

change of momentum makes it crucial to distinguish between the 180° COD (at points 

D and C in Figure 1.11) and 90° COD (at point B in Figure 1.11). 

 

 

Figure 1.11 Typical setup for a T-test to evaluate the change-of-direction capacity 

Evaluation of total completion time does not provide information about these COD, 

and thus force plates and motion capture systems have been used to investigate the 

braking/propulsion dynamics at the COD (Havens & Sigward, 2015; McBurnie et al., 

2021). To extend these methods in the field, wearable IMUs have been used in conjunc-

ture with machine learning methods to estimate the sagittal planes components of the 

ground reaction force, detect different types of COD movements, and assess the sym-

metry of bilateral movement between the injured and healthy limb during COD (Gur-

chiek et al., 2017; McGinnis et al., 2017; Meghji et al., 2019; Stetter et al., 2019). Howev-

er, these recent advances have led to the presence of many metrics to evaluate the COD 

performance. This makes the interpretation of the results challenging for the coaches 

and the athlete, who prefer a system that reduce the total amount of information to the 

most relevant facts (Roos et al., 2013). Thus, instrumenting the T-test to strike a balance 

between the amount and usability of information can be valuable.  

1.3.3 Endurance 

Individual values of physiological variables, especially the endurance capacity, are 

generally used to prescribe training intensities for runners (Cerezuela-Espejo et al., 

2018). Common methods to prescribe exercise intensity use percentage of various  

markers of endurance capacity such as maximal oxygen uptake (V̇O2max) or maximum 

heart rate (HRmax). To enable easier use of V̇O2max for training prescription, it can be 

translated into a parameter easy to use on the field, such as speed (Berthoin et al., 

1994). Consequently, Maximal Aerobic Speed (MAS), i.e., the lowest running speed at 

which maximal oxygen uptake (V̇O2max) occurs (Hill & Rowell, 1996), is commonly used 

to prescribe training intensities (Bellenger et al., 2015; Berthoin et al., 1994). However, 

at the same percentage of V̇O2max, athletes can exhibit different levels of lactate accumu-
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lation (T. Mann et al., 2013). Therefore, it can also be beneficial to prescribe training 

intensity in zones close to ventilatory (VT) or lactate thresholds (LT), as they represent 

sub-maximal individual metabolic response (Vago et al., 1987). Like MAS, the speed at 

the second VT (sVT2) can be used to make it easier to measure threshold-based train-

ing intensity in the field, and speed at first ventilatory threshold (VT1) is a fundamen-

tal to ensure pure aerobic stimulus, especially in the polarized training model (Muñoz 

et al., 2014). Gold standard for MAS and sVT2 estimation remains laboratory treadmill 

test, which involves the measurement of breath composition using a gas analyzer while 

the speed of treadmill is slowly increased (Figure 1.12A) 

 

 
Figure 1.12 Tests for estimating the maximum oxygen uptake A. Change in the oxygen up-

take (V̇O2) during an incremental speed test on a treadmill, the velocity reached at the max-

imum oxygen uptake (V̇O2max) is known as the vV̇O2max or the maximum aerobic speed 

(MAS) B. Typical setup for a 12-minute Cooper test in the field, the distance includes the 

number of laps times 400 m plus the remaining distance on the last lap. Adapted from train-

ing-endurance.co.uk 

The gold standard test, however, requires trained personnel, expensive equipment and 

can only be performed with/for one runner at a time (Bellenger et al., 2015; Paradisis et 

al., 2014). To overcome this problem, field tests have been developed which are simple, 

cost effective, and do not require specialized instrumentation (O’gorman et al., 2000). 

This allows them to be incorporated within routine training programs, with possible 

repetitions through the season. Some important field tests for endurance capacity are 

the Université de Montréal track test, the 20-m shuttle run test, the 12-minute running 

test, and time-trials over a set distance from 1200 and 2200 m, with 2000 m being opti-

mal (Bellenger et al., 2015; Cooper, 1968; L. A. Léger et al., 1988; L. Léger & Boucher, 

1980). First two tests involve audio cues that indicate the athlete to increase speed 

whereas the third assumes maximum effort at self-selected running speed, making it 

easier to implement with a large cohort in parallel. For motivated young runners, the 

12-minute Cooper test provides an accurate estimation of the V̇O2max (Bandyopadhyay, 

2015; Cooper, 1968) using the following equation: 

 

�̇�𝑂22𝑚𝑎𝑥 =  22.351 × 𝑑 − 11.288 (1.6) 

where V̇O2max is measured in ml.kg-1.min-1 and 𝑑 is the distance covered in kilometers 

during the 12 minutes. The V̇O2max values obtained using equation (1.6) provide a good 

prediction of half-marathon finishing times and are correlated well with the race per-

formance (Alvero-Cruz et al., 2019). However, the race performance also depends on 

the RE, which, in turn, is influenced by the running biomechanics (Moore, 2016). 
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Therefore, it can be worthwhile to investigate the biomechanics during the 12-minute 

Cooper test and understand their contributions to endurance performance. 

 

1.4 THESIS OBJECTIVES AND OUTLINE 

Running technique is one of the crucial factors that explain the variance in performance 

and economy between runners of varied skills levels (Folland et al., 2017). Training 

with proper running technique is essential to ensure positive adaptation to training 

stimulus and reduction in the risk of injury (van Mechelen et al., 1993; Vanrenterghem 

et al., 2017). In this context, it would be valuable to assess the proportion of a run per-

formed with optimal technique running technique or the proportion of training for 

which optimal technique could be maintained despite fatigue. Fatigue has been shown 

to introduce changes in running technique, like shifting the landing mechanics from 

front foot to midfoot running (Jewell et al., 2017) in fore foot runner, increase in the 

impact forces, decrease in knee flexion at landing (Mizrahi, Verbitsky, & Isakov, 2000), 

change in contact and aerial times (J. B. Morin, Samozino, et al., 2011), etc. These 

changes in technique seem to be the result of both peripheral and central fatigue (Mil-

let, 2011; E. Ross et al., 2007), which describe the reduction in motor output or muscle 

force and lead to a general feeling of ’exertion’ or ’tiredness’ respectively. Current re-

search shows that stability (Schütte et al., 2018) and smoothness (Kiely et al., 2019) of 

the trunk motion, i.e., the ability to maintain a coordinate motion pattern of the lum-

bar-pelvic-femoral  complex, tend to decrease with increased duration of running, like-

ly due to acute fatigue. Neither internal nor external training load metrics can provide 

information about the influence of fatigue on technique, thus making biomechanical 

assessment a unique independent descriptor of training sessions. Furthermore, this 

assessment is crucial for personalization of training, since there is no single perfect 

running technique, but different techniques are optimal based on the height, weight, 

strength, injury history, experience, etc. of the athlete (Gindre et al., 2015; Lussiana & 

Gindre, 2015). Running power, which is amount of mechanical work 

achieved/performed by the runner per unit time, can provide an insight into the rela-

tive force being produced by the athlete for a give pace (van der Kruk et al., 2018). 

Since increasing the applied force needs additional metabolic energy, outputting more 

power at a lower heart rate can be an indicator of increased running efficiency, when 

performed on the same ground/surface/level. Thus, running power can complement 

the description of running technique for assessing the performance during races or 

training sessions. Therefore, the goals within the first part of this thesis are the identifi-

cation of reliable trends associated with fatigue state/onset on running motion, their 

measurement using wearable sensors, and the estimation of running power using the 

same or simpler sensor setup. 

 

Maximal capacity measured by functional testing is typically used to personalize the 

training program for athletes (Figure 1.4) to ensure appropriate training stimuli and 

optimal positive adaptation. To improve the accuracy of these tests and provide deeper 

analyses of the athlete strengths/weaknesses, the second part of this thesis aims to in-

strument a series of three functional tests using wearable sensors; the selection is based 

on common tests used in a variety of sport contexts. Sprint test: The method described 
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in equation 1.5 to estimate the sprint velocity provides ease of use, it is only valid when 

the athletes can approach or attain 𝑣𝑚𝑎𝑥 , which might not be the case over short dis-

tances such as 30 m or they may not be able to maintain 𝑣𝑚𝑎𝑥  over longer distances 

such as 60 to 100 m, especially during training sessions. In addition, maximal sprinting 

may not always be desirable, especially when resuming training after an injury. Thus, 

the sprint velocity profile for all athletes does may not always show a first-order expo-

nential behavior. Since GNSS sensor alone cannot track the velocity during push-off 

(Nagahara et al., 2017), one goal in the thesis was the instrumentation of the sprint test.  

 

T-test: One disadvantage of the COD T-test is that it does not allow precise isolation of 

the athlete's weaknesses. The cause of limited performance could be a lack of stability, 

power, technique, strength, speed, etc. Therefore, the COD test can be used to show a 

drop in the athlete's performance, but it is very difficult to understand the underlying 

cause. One reason for this is that traditional performance evaluation is based only on 

the total time of the COD test. As a result, quantitative analysis of the duration of each 

phase would be a valuable tool for coaches to identify athletes' weaknesses in a par-

ticular movement sequence or COD type. For example, an athlete might be particularly 

poor at running backward or slower at one of the 180° cuts due to a knee injury. There-

fore, instrumenting the T-test to automatically detect the five different phases test 

would be valuable. 12-minute run test: Running mechanics govern the mechanical pow-

er and propulsion generated for a given energy cost and thus influence the RE (Beattie 

et al., 2014; Moore, 2016; Saunders et al., 2004). Measurement of RE during field run-

ning requires the use of portable gas analyzer, which is expensive and inconvenient, 

while in-field running biomechanics can be assessed accurately and conveniently using 

wearable inertial measurement units (IMUs) (Camomilla et al., 2018). Running me-

chanics are modifiable with training and adopting an economical running technique 

can improve RE and hence performance (Moore, 2016; Saunders et al., 2004). Further-

more, visual classification of running technique according to RE has not proven relia-

ble (Cochrum et al., 2021). Therefore, assessment of running biomechanics during a 

field capacity test could greatly improve the information obtained regarding endur-

ance capacity and help identify the biomechanical factors that contribute to endurance 

performance. 

 

Throughout the following chapters, the pronoun ‘we’ is preferred when referring to a 

study with multiple authors. From these chapters, the algorithm development for the 

T-test was carried out during the supervision of a master thesis at EPFL. Work on the 

sprint test and running power estimation was conducted in collaboration with indus-

trial partner GaitUp S.A. (now Mindmaze S.A.), as a part of the industrial secondment 

for the EPFLInnovators Fellowship. Except for chapter 4, all other protocols and stud-

ies were conducted in real-world conditions. To clarify my contributions to these stud-

ies (Chapter 2 - 7), a note is added at the beginning of each chapter. The figure below 

presents an outline of the thesis, with the two main parts highlighted. 

 

Chapter 1 introduces the concept of training quantification for running, highlighting the 

role of biomechanical assessment in improving the current paradigm of training. It 

provides an overview of the biomechanics of running movement and their assessment 

using a variety of instrumentation. The potential of wearable sensors in improving the 
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assessment of performance during training is introduced. Finally, the concept func-

tional capacity testing in sports is presented using three field tests and a perspective is 

provided on their augmentation using wearable sensors.  

 

 
Figure 1.13 Outline of thesis with the two main parts, biomechanical assessment for fatigue 

and power analysis (chapters 2, 3, and 4) and augmentation of functional capacity tests 

(chapters 5, 6, and 7) 

Chapter 2 presents a systematic review of literature on the influence of fatigue on lower 

extremity biomechanics, with the goal of investigating (i) typical protocols used in re-

search on biomechanical response to running-induced fatigue, (ii) the effect of sport-

induced acute fatigue on the biomechanics of running and functional tests, and (iii) the 

consistency of analyzed parameter trends across different protocols. The review pre-

sented evidence that running-induced acute fatigue influences almost all the included 

biomechanical parameters, with crucial influence from the exercise intensity and the 

testing environment. Results indicated an important gap in literature caused by the 

lack of field studies with continuous measurement during outdoor running activities. 

To address this gap, recommendations for the use of wearable inertial sensors were 

proposed in the chapter. 

 

Chapter 3 introduces a study exploring the evolution of the biomechanical and psycho-

logical facets of acute fatigue during a half-marathon. It provides trends for the chang-

es in the spatiotemporal parameters, symmetry, and variability of gait and the stability 

and smoothness of the trunk motion. Results provided here hint toward a higher sensi-

tivity of perceived fatigue to neuromuscular changes in the running gait.  

 

Chapter 4 proposes and evaluates three different methods to estimate running ‘power’ 

using foot-worn inertial sensors. Each method uses features based on gait spatiotem-

poral parameters, accelerometer and gyroscope signals and is customize for level, up-

hill, and downhill running conditions.  The performance of the methods is validated 

using the reference ‘power’ measured using force plates. The effects of varying signal-

to-noise-ratio (SNR) on the estimation error are explored and a short perspective is 

provided on the usage of these methods in the field. 

Introduction

Biomechanical assessment for fatigue and power analysis

•C2. Review on fatigue

•C3. Half-marathon analysis

•C4. Power estimation

Augmentation of functional capacity tests

•C5. Sprint test

•C6. COD test

•C7. Endurance test

Conclusion
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Chapter 5 suggests a new method to estimate the instantaneous velocity during straight 

line sprinting using a sensor fusion approach, by combining the signals from wearable 

Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) sen-

sors. This method uses a combination of a gradient descent-based orientation filter and 

a simple Kalman filter to estimate the velocity and the sprint duration, respectively. 

Validation of the proposed method using a reference system is provided and the na-

ture of the resultant velocity profile is discussed. 

 

Chapter 7 presents the process of instrumenting the change-of-direction T-test using a 

wearable GNSS-IMU sensor. The methods introduced in this chapter enable the seg-

mentation of the T-test into its individual phases and allow the analysis of the four 

COD maneuvers. The results of the algorithm are validated using a video camera as a 

reference, with the data being collected from an elite soccer team during their presea-

son training camp. 

 

Chapter 8 discusses the relative contribution of running biomechanics to the endurance 

performance during a 12-minute Cooper test. It explores different methods of estimat-

ing the distance covered in the Cooper test using a wearable global navigation satellite 

system (GNSS) receiver. It compares the high/low performance groups using statistical 

tools and extracts the most relevant metrics explaining the contrast in their perfor-

mance.   

 

Chapter 9 provides a general discussion about the contribution of the current thesis, the 

limitations of the proposed methods, and recommendations for future work. It also 

presents Finally, it presents a biomechanical profile representing the running technique 

and its temporal evolution with acute fatigue, identifying different profiles for runners 

with highest and lowest endurance performance. This profile could potentially be used 

in standardized functional capacity measurements to improve personalization of train-

ing and rehabilitation programs for athletes. 
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2 BIOMECHANICAL RESPONSE OF LOWER 

EXTREMITIES TO ACUTE FATIGUE 

The systematic review presented in this chapter was the first step towards iden-

tifying biomechanical parameters that show consistent trends in response to 

acute fatigue and identifying a wearable sensor setup to measure them. Fur-

thermore, the study reviewed typical protocols used in research on biomechani-

cal response to running-induced fatigue, the effect of sport-induced acute fatigue 

on the biomechanics of running and functional tests, and the consistency of ana-

lyzed parameter trends across different protocols. Scopus, Web of Science, Pub-

med, and IEEE databases were searched using terms identified with the Popula-

tion, Interest and Context (PiCo) framework. Studies were screened following the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines and appraised using the methodological index for non-randomized 

studies MINORS scale. Only experimental studies with at least 10 participants, 

which evaluated fatigue during and immediately after the fatiguing run were in-

cluded. Summary trends were computed for each parameter based on the results 

found in individual studies. Of the 68 included studies, most were based on in-

lab (77.9%) protocols, endpoint measurements (75%), stationary measurement 

systems (76.5%), and treadmill environment (54.4%) for running. From the 42 

identified parameters, flight time, contact time, knee flexion angle at initial con-

tact, trunk flexion angle, peak tibial acceleration, CoP velocity during balance 

test showed an increasing behavior and cadence, vertical stiffness, knee exten-

sion force during MVC, maximum vertical ground reaction forces, and CMJ 

height showed a decreasing trend across different fatigue protocols. This work 

presented evidence that running-induced acute fatigue influences almost all the 

included biomechanical parameters, with crucial influence from the exercise in-

tensity and the testing environment. Results indicate an important gap in litera-

ture caused by the lack of field studies with continuous measurement during 

outdoor running activities. To address this gap, recommendations for the use of 

wearable inertial sensors were proposed. 

  

The contents of this chapter have been adapted from the article: 

Apte, S.1, Prigent, G.1, Stöggl, T., Martínez, A., Snyder, C., Gremeaux-Bader, V., & 

Aminian, K. (2021). Biomechanical response of the lower extremity to running-

induced acute fatigue: a systematic review. Frontiers in physiology, 1076. 
1Equal first authorship 

Contributions: Performed the systematic search, information extraction, evidence 

synthesis and conducted the article screening, risk of bias assessment, and study 

selection, for a portion of articles. Contributed to the study design, discussion of the 

obtained data and results, and mainly authored the final article. 
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2.1 INTRODUCTION 

Appropriate management of acute fatigue resulting from a training stimulus and 

aimed at triggering positive adaptation is essential to optimize athletes' adaptation to a 

training program and reduce their risk of injury (Kellmann et al., 2018). Biomechanical 

parameters are altered by acute fatigue and therefore these parameters are of interest to 

re-measure during/after training interventions to investigate how they are affected 

(Paquette et al., 2020). In this context, acute fatigue refers to the onset of fatigue that 

occurs concurrently with the exercise activity, with its influence measured during 

and/or within 30 minutes of the activity. Fatigue is a complex, multifactorial phenome-

non characterized by a decrease in work capacity and the inability to muscularly exert 

the required force to perform simple or more complex tasks (Enoka & Duchateau, 2008; 

J. L. Taylor et al., 2016). Studying the mechanisms of fatigue development is a complex 

task, and surrogate measures of fatigue exist, such as a self-reported score and changes 

in neuromuscular function, biomechanical parameters, and physiological processes 

(K.-L. Taylor et al., 2012; Thorpe et al., 2017). Physiological responses are generally as-

sessed by monitoring heart rate, blood lactate, near-infrared spectroscopy, measure-

ment of gas exchange, etc., while the rating of perceived exertion (RPE) and visual ana-

log scales (VAS) are used to measure the subjective feeling of fatigue (Thorpe et al., 

2017). Neuro-muscular function and maximal force production capacity are usually 

tested with functional tests such as vertical jump tests, balance tests, and maximal vol-

untary contraction tests, using performance measures such as maximal jump height, 

center of pressure movement, and maximal knee flexion moment, respectively (Thorpe 

et al., 2017). Finally, motion capture systems, force plates, and video analysis are gen-

erally used to analyze biomechanical changes (Thorpe et al., 2017). Recently, body-

worn IMUs, GNSS receivers, and pressure sensor-based insoles have been used to 

measure biomechanical changes instead of optical motion capture systems in the labor-

atory because the former allow measurements in the field (Buckley, O’Reilly, Whelan, 

Farrell, et al., 2017; Eskofier et al., 2012; Strohrmann, Harms, Kappeler-Setz, & Troster, 

2012). 

 

In this work, the biomechanical response of the lower extremities was investigated as a 

surrogate measure of sport-induced acute fatigue. Kinematics, kinetics, and muscle 

activity of the leg during running and spatiotemporal gait parameters comprise the 

lower extremity biomechanical response, in addition to the functional tests mentioned 

above. Lower extremity injuries are the most common injuries in sports (Emery et al., 

2005; Nicholl et al., 1995), especially in athletics (Alonso et al., 2010). Because biome-

chanical changes are activity-specific and context-dependent, the selection of relevant 

athletic activities is critical. In track and field, running is an important component of 

competitive activities and training schedules. Training factors such as high accelera-

tions and large absolute training loads leading to repeated acute fatigue states are an 

important risk factor for overuse injuries, especially in endurance running (Clansey et 

al., 2012; Francis et al., 2019; Mizrahi, Verbitsky, & Isakov, 2000, p. 200; Warden et al., 

2014). Therefore, the focus of this research is limited to running activities, e.g., short- 

and long-distance runs, and fatigue protocols on the track and treadmill, using running 

and/or functional tests as assessment tasks. Examples of such running activities include 

races such as marathons, half marathons, trail running, etc., and protocols such as re-
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petitive sprints, incremental speed tests, etc. A better understanding of the influence of 

fatigue on biomechanical changes during running and functional testing involving 

lower extremity neuromuscular response may allow for better management of training 

load and injury risk. 

 

The current literature on the influence of fatigue on running gait parameters shows 

conflicting results. For example, one study showed a decrease in contact time after fa-

tigue (J. B. Morin, Samozino, et al., 2011), while another study found no change (J. B. 

Morin, Tomazin, et al., 2011); one study reported a decrease in peak knee flexion angle 

during stance phase (Chan-Roper et al., 2012), while another reported an increase (Jew-

ell et al., 2017). The tasks used to induce fatigue varied considerably, ranging from me-

dium-intensity high-volume activities such as ultra-marathons (J. B. Morin, Tomazin, et 

al., 2011) and 24-hr treadmill runs (J. B. Morin, Samozino, et al., 2011) to severe-

intensity intermittent activities like repeated sprints (M. Johnston et al., 2015) or soccer 

matches (Matthews et al., 2017). Previous reviews (Giandolini et al., 2016; S. Winter et 

al., 2017)  have attempted to examine these conflicting findings on the influence of fa-

tigue on running. However, the first of these papers included a small study sample, 

considered only distance running, and did not categorize the level of fatigue; the sec-

ond study was not a systematic review and focused more on graded running and its 

effects on physiological measures. Neither review presented summary trends nor 

commented on the sensor systems used for measurement. Therefore, this chapter ad-

dresses the primary research question, "How does exercise-induced acute fatigue affect 

the biomechanics of running and functional tests?" Secondary questions aimed to un-

derstand the dominant biomechanical metrics used in fatigue research while examin-

ing the consistency of their behavior across studies and the influence of fatigue proto-

cols. The scope of this review is limited to research examining lower extremity biome-

chanical response in healthy adults published between 1990 to 2021. Only studies in 

which running was used as the fatiguing activity and analyzed using non-invasive 

methods during the activity and/or immediately after the activity are included.  

2.2 METHODS 

2.2.1 Search strategy and sources 

The search strategy was based on the Population, Interest and Context (PICo) frame-

work, with the goal of locating studies, which explicitly report the experience of fatigue 

in healthy adults participating in sport activities (da Costa Santos et al., 2007). The 

search terms for each of these three categories were combined with a Boolean ‘AND’ 

(Table 2.1). 54 search items excluding irrelevant publication types were combined with 

a Boolean “AND NOT”. Scopus, Web of Science, Pubmed, and IEEE databases were 

searched for papers published from 1990 to 2021 in English language.  

 

Table 2.1 Details of the PiCO strategy used to conceptualize search terms. The following 

terms were used with a ‘AND NOT’ to exclude them: ''supplement''  OR  "supplementation"  

OR  "nutrition"  OR  ''diet''  OR  "therapy"  OR  ''doping''  OR  "pregnancy"  OR  "patients"  

OR  "junior"  OR  "adolescent"  OR  "ingestion"  OR  "accident"  OR  "compression garments"  

OR  "age"  OR  "animals"  OR  "immersion"  OR  "food"  OR  "disease"  OR  "epidemiology"  

OR  "fracture"  OR  "stimulation"  OR  "dogs"  OR  "horses"  OR  "rehabilitation"  OR  "treat-
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ment"  OR  "concussion"  OR  "kids"  OR  "teenagers"  OR  "military"  OR  "obese"  OR  "obe-

sity"  OR  "weight loss"  OR  "music"  OR “swimming” OR “basketball” OR “rowing” OR 

"handball"  OR  "softball"  OR  "volleyball"  OR  "badminton"  OR  "tennis"  OR  "ice hockey"  

OR “skiing” OR  "boxing"  OR  "cricket"  OR  "wrestling"  OR  "golf"  OR  "weightlifting"  OR  

"martial art"  OR  "climbing"  OR  "gymnastics"  OR  "kayaking"  OR  "fencing"  OR  "shoot-

ing"  OR  "diving"  OR  "diesel"  OR  "gas"  OR  "engine"  OR  "cycling"  OR   "foot-

ball"  OR  "soccer"  OR  "rugby" OR  "ultramarathon" 

Population Interest Context 

Healthy adults doing sports 

Elite/non-elite 

The experience of fatigue Sports activities: running  

 

“healthy" OR "athletes" OR 

"players" OR "sportperson" 

OR "runners" 

"fatigue" OR "exertion" OR 

"exhaustion" OR "pro-

longed" OR "marathon" OR 

"ultramarathon" OR “long 

distance” 

"run” OR  "running"   OR 

"endurance" OR "prolonged" 

OR  "long distance" AND 

("wearable" OR "sensors" 

OR "measure" OR "meas-

urements" OR "reporting" 

OR "assess" OR "evaluate" 

OR  "investigate"  OR  "colle

ct"  OR  "collected")  

 

2.2.2 Eligibility criteria 

Following the PRISMA method (Liberati et al., 2009), studies obtained from the afore-

mentioned databases were screened using the criteria mentioned below. If all the rele-

vant information to exclude an article was available in the abstract, it was excluded at 

this stage. If not, the full-text of the articles was screened for compliance. Parameter 

trends from individual studies were summarized based on significant results and thus 

wanted to include publication having a reasonable statistical power. However, there is 

no consensus on the exact number of participants, as the sample size should be esti-

mated based on the expected power and the effect size. Furthermore, a higher cut-off 

for the number of participants would lead to a larger number of studies being exclud-

ed. Thus, a cut-off of 10 participants was used as an appropriate compromise between 

statistical power of the reported trends and publication exclusion criteria. In addition, 

this study aimed to understand the evolution of fatigue measurement protocols over 

the recent decades, especially with regarding the use of wearable sensors and conduct-

ing in field measurements. Since the use of wearable sensors was limited before 1990, 

only studies conducted 1990 onwards were included. For detailed screening criteria, 

please refer to the Appendix A1. 
 

Inclusion criteria: 

• Investigation of acute fatigue induced by one of the sporting activities men-

tioned above (as primary or secondary outcome) using non-invasive methods.  
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• The studied sporting activity should involve primarily lower extremity exertion 

in which running is the dominant activity. 

• A study population of at least 10 healthy adults (between 18 and 65 years old) 

engaged in sports activities. 

• Original experiment-based research (systematic review/review/meta-analysis 

excluded).   

• Clear description of the nature of activity, measurement conditions, and sensors 

used for measurements. 

• Measurement of the effect of fatigue on biosignals during or before/after sport-

ing activity. 

• Measurement of the effect of fatigue on biosignals within 30 minutes after 

sporting activity and description of the measurement outcomes with respect to 

the last training or event 
 

Exclusion criteria:  

• Studies that investigate neither running biomechanics nor functional test pa-

rameters 

• Studies that focus only on physiological responses (brain electrical activity 

(EEG), electrocardiogram (ECG) or respiration) of fatiguing exercises.   

• Studies that only consider biochemical parameters such as lactate, creatine ki-

nase, cortisol, etc. or questionnaires to assess the effect of sport-related fatigue, 

without using any additional sensors 

• Focus was on the evaluation of psychological effects of sport on mental health  

• Sole investigation of recovery time or training program after fractures, concus-

sion or any other injuries related to sport.  

• Analysis of the effects of various therapies to reduce fatigue  

• Investigation of the influence of specific environmental conditions or perfor-

mance-enhancing substances on fatigue or for training   

• Fatigue protocols based on the use of specific exercises, such as repetitive 

movements or strength training, instead of sporting activities.  

2.2.3 Study classification and data extraction 

The methodological quality of the selected studies was appraised quantitatively using 

the validated “methodological index for non-randomized studies” (MINORS) scale 

(Slim et al., 2003a). The items (see Appendix A2) were scored zero (not reported), one 

(reported but inadequate), or two (reported and adequate). The total score was normal-

ized by the maximum possible score to obtain a final value between zero and one. The 

score of each study was used as a weight index for computing the general trends for 

each extracted parameter. Details of this method can be found in section 2.2.5 and Ap-

pendix A2. 

Each study was summarized by two authors to record information about the partici-

pant demographic, the study protocol, and the reference methods to assess fatigue. 

Following data about the study protocol were extracted:  

A. Exercise intensity: While the level of fatigue is difficult to quantify (Enoka & 

Duchateau, 2008), it is important to state the level of fatigue reached by the ath-

letes. Thus, the intensity of the fatiguing activity,  was graded into four catego-
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ries based on the critical power model (Morton, 2006): i) moderate - can be con-

tinued more than 1 hours, below aerobic threshold, typically in a range of 65-

75% of  the maximal oxygen uptake (VO2max) ii) heavy - can be performed up to 

1 hour, lactate increase, between aerobic and anaerobic thresholds, in a range of 

80-90% VO2max iii) severe - which is tolerable for up to 30 minutes, no steady 

state of VO2, muscle metabolic and blood acid-base responses, above anaerobic 

threshold iv) high-intensity intermittent - repetitive efforts such as repetitive 

sprints or interval runs. It is hereafter referred to as intermittent for the sake of 

brevity.    

B. Reference: Criteria used for ascertaining the exercise intensity and designing the 

fatigue protocol. Examples of these include the measurement of VO2max, blood 

lactate, heart rate reserve, and questionnaires. In absence of any information 

about these methods, nature of competitive activities such as marathons or soc-

cer matches was recorded. 

C. Environment: The measurement environment (laboratory or field). Regarding 

running biomechanics, treadmill and overground evaluations of fatigue were 

analysed separately, as the biomechanical response to treadmill running may 

differ from overground running (Van Hooren et al., 2020).  

D. Timing: The timing of the data collection to assess fatigue —continuously during 

protocol, intermittently, or at the endpoints i.e. the beginning/end or before/after 

the fatigue protocol;  

E. Measurement system: Specifications of the measurement systems, in terms of us-

ability, whether they are wearable or stationary;  

F. Parameters: The parameters used to assess the effects of the fatigue activity and 

their category (see 2.2.4 and 2.2.5). Trend for every parameter in response to acute 

fatigue or an insignificant change was noted. 

2.2.4 Parameter definition 

Parameters used to assess fatigue were extracted, followed by their respective qualita-

tive trends, whether they increase, decrease or do not change. These parameters were 

classified into five categories spatiotemporal, kinetic, kinematic, functional test, and 

muscle activity. The first three categories i.e. the spatiotemporal, kinetic and kinematic 

parameters are directly relevant to running biomechanics and thus, are extracted only 

from studies which investigated the influence of fatigue on running. The spatiotem-

poral (ST) parameters are derived from basic variables reflecting the spatiality and 

temporality of foot-based placements; they contain cadence, contact time, flight time, 

stride length, and step width.  The kinematic (KM) category refers to the positions, 

angles, velocities and accelerations of body segments and joints during run. The kinetic 

(KT) category describes the joint torques, forces, stiffness, and ground impact aspects 

of running mechanics. The muscle activity (MA) parameters included in this review 

comprise the electrical activity measured using electromyography (EMG). Finally, 

functional test (FT) refer to the set of metrics used to analyze jump tests, voluntary 

maximum contraction (MVC), balance and walking tests. These functional tests are 

generally used to understand the influence of sport-induced fatigue on neuromuscular 

function. Unlike the previous three categories, extraction of parameters linked to MA 

and FT categories was not limited to studies investigating running biomechanics. Since 
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most of the included parameters are well-known in the fields of sport science; defini-

tions of those parameters are not explained in this work. Description of EMG metrics 

and complex parameters, such as local dynamic stability (LDS) coefficients are availa-

ble in the Appendix A3. 

2.2.5 Data synthesis 

Four subgroups were created to consider the intensity of the fatiguing task (moderate, 

heavy, severe, or intermittent). For the running biomechanics, two subgroups were 

created to separate treadmill and overground environments. This led to eight sub-

groups for ST, KM and KT categories, and four subgroups for FT and MA.  A parame-

ter was included in data synthesis only if, at least, one of the subgroups had a total 

number of participants greater than 30, all studies merged. A threshold of 30 partici-

pants might correspond to three studies with at least 10 participants or one study in-

cluding more than 30 participants. This allowed computation of a meaningful median 

value even if two of those three studies had opposing trends and thus the obtained 

summary trends would also be meaningful. 

 

The first part of the data synthesis was to collate the number of studies pertaining to 

the general information from the protocol referring to information A to E in section 

2.2.3. The second part was the computation of summary trends for the list of parameters 

extracted to assess fatigue. Median (MED) and median absolute deviation (MAD) were 

utilized for this purpose (see Appendix A4), since these are a non-parametric and ro-

bust metrics. Parameters with MAD value greater than 0.5 were considered to have no 

trend, i.e. no consistency across studies. MAD lower than 0.1 indicated agreement 

across studies and was characterized as “clear decrease” if MED was negative, “non-

significant change” if MED equal to zero, and “clear increase” if MED was positive. For 

0.1<MAD<0.5 the trends were characterized as “partial decrease”, “non-significant 

change” or “partial increase” respectively. 

2.3 RESULTS 

2.3.1 Study selection 

The literature search produced 1640 records, which were screened using the process 

suggested in the PRISMA statement (Liberati et al., 2009) (Figure 2.1A). After removing 

20 duplicates, abstracts of the remaining 1620 papers were screened using the criteria 

described in section 2.2, resulting in 1237 records being excluded. The full-text of the 

remaining 383 records was assessed for eligibility and 68 studies were included for the 

final evidence synthesis. The relevant parameters were extracted and classified using 

the categories defined in section 2.4 (references for each are shown in Figure 2.1B). De-

tailed summary of the selected studies can be found in supplementary materials5. 

 

5 https://figshare.com/articles/dataset/Data_Sheet_1_Biomechanical_Response_of_the_Lower_Extremity_to

_Running-Induced_Acute_Fatigue_A_Systematic_Review_xlsx/16457868 
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Figure 2.1 Study selection and categorization process. A. PRISMA flow chart for study se-

lection. B. References for the included 101 studies (Abt et al., 2011; Alfuth & Rosenbaum, 

2011; Ammann & Wyss, 2015; Anbarian & Esmaeili, 2016; Anna et al., 2017; Avogadro et al., 

2003; J. P. Bailey, Dufek, et al., 2018; Bisiaux & Moretto, 2008; Borrani et al., 2003; Bovalino 

et al., 2020; Chan-Roper et al., 2012; Clansey et al., 2012, 2016; Derrick et al., 2002; Dierks et 

al., 2010; Dittrich et al., 2013; Dutto & Smith, 2002; Easthope et al., 2014; Garcia-Perez et al., 

2014; García-Pinillos et al., 2016; Gerlach et al., 2005; Girard et al., 2016, 2017a, 2017b; 

Gómez et al., 2002; Goodall et al., 2015; Hamacher et al., 2018; Hanley & Mohan, 2014; 

Hayes & Caplan, 2012; Hoenig et al., 2018; Jewell et al., 2017; M. Johnston et al., 2015; Ko-

blbauer et al., 2014; Maas et al., 2018; Mercer et al., 2003; Mizrahi, Verbitsky, & Isakov, 2000; 

Mizrahi, Verbitsky, Isakov, et al., 2000; Mo & Chow, 2018b; Möhler et al., 2021; Nagel et al., 

2008; Perrey et al., 2010; Rabita et al., 2013; Racinais et al., 2007; Radzak et al., 2017; Riazati 

et al., 2020; Ribeiro et al., 2018; Rosenbaum et al., 2016; Rosso et al., 2016; Rousanoglou et al., 

2016; Sánchez-Sánchez et al., 2018; SILER & MARTIN, 1991; Steib et al., 2013; Stirling et al., 

2012; Strang et al., 2008; Strohrmann, Harms, Kappeler-Setz, & Tröster, 2012; Timmins et al., 

2014; Verkerke et al., 1998; Voloshin et al., 1998; Weist et al., 2004; Willems et al., 2012; Will-

son & Kernozek, 1999; Wu et al., 2008; P. Yu et al., 2020, 2021), presented according to the 

fatigue intensity and the parameter category, where ST: spatiotemporal, KM: Kinematic, 

KT: Kinetic, FT: Functional test, and MA: Muscle activity parameters. Studies that utilized 

machine-learning approaches (Buckley, O’Reilly, Whelan, Vallely Farrell, et al., 2017; Esko-

fier et al., 2012; Op De Beeck et al., 2018) and considered only statistical features are not in-

cluded in the table as they do not fit into any of the five parameter categories 

2.3.2 Characteristics of selected literature 

2.3.2.1 Nature of activities 

Most of the selected studies involved between 11 and 20 participants (69.2%), with only 

11 studies testing more than 30 subjects (10.6%) and a median MINORS index of 0.75. 

Detailed score for all 68 studies is presented in supplementary material S1. The number 

of participants ranged from 10 to 459, with a median (MAD) of 20 (± 8) participants. 

Participants were a mixture of professional, semi-professional, and amateur athletes. 

While the exact definition of fatigue is not typically stated, six different methods 
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(Figure 2.2A) were commonly used to investigate the level of fatigue. Questionnaires 

like the RPE and VAS were the most used reference (31 studies), followed by custom-

designed protocols (VO2max attainment, exhaustion protocols) to justify fatigue (21 

studies), and blood lactate measurements (14 studies). The least used methods were 

based on heart rate and competitive racing events. 

 

The exercise intensity was predominantly severe (52 studies), with protocols such as 

running until exhaustion (Figure 2.2). Heavy protocols represented 27 studies, while 

endurance-running activities, classified as moderate, were less commonly included (10 

studies). Intermittent protocols such as repeated sprints and high-intensity interval 

running constituted 27 studies. Majority of the protocols studied spatiotemporal and 

kinetic parameters, with muscle activity being the least studied parameter group.  

Detailed information of the selected studies can be found in supplementary materials6. 

 

Figure 2.2 Number of studies according to the different aspects of a fatigue protocol. A. Ref-

erence methods used to ‘ascertain the fatigue intensity; B. Parameter categories studied by 

the included protocols; C. Exercise intensity investigated 

2.3.2.2 Nature of measurement environment  

Studies in each of the five parameter categories were classified based on both their 

measurement system (stationary vs. wearable), and measurement environment (lab vs. 

field). As shown in Figure 2.3, measurements in the studied literature were mainly per-

formed in-laboratory (77.9%) and typically with stationary measurement systems 

(76.5%) such as optical motion capture, instrumented treadmill, or force plates. Few 

studies used wearable sensors such as IMU, GNSS, pressure sensor-based insoles, heart 

rate telemetry, wireless EMG, or portable gas exchange systems allowing field meas-

urements, which agrees with the low percentage of in field protocols (22.1%). The 

number of studies analyzing sports-induced fatigue increased from 24 to 51 after 2010 

(Figure 2.4), with a similar increase (9 to 14) for studies using wearable sensors. How-

ever, the ratio between the number of studies with stationary and wearable systems 

hardly changed over time. An important aspect of the protocol is the timing employed 

to perform the measurements. A majority (54%) of the papers included used endpoint 

assessments by collecting data before and after the fatiguing exercise, followed by in-

termittent (30.4%) and continuous (15.6%) assessments.  

 

 

6 https://figshare.com/articles/dataset/Data_Sheet_1_Biomechanical_Response_of_the_Lower_Extremity_to

_Running-Induced_Acute_Fatigue_A_Systematic_Review_xlsx/16457868 
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Figure 2.3 Number of studies per parameters category grouped in terms of the timing of the 

measurement (continuous, intermittent, endpoint) sensors (wearable vs stationary) and lo-

cation (field vs laboratory).  A) Field & stationary B) Laboratory & stationary C) Field & 

wearable D) Laboratory & wearable. The four sub-figures do not have the same scale on the 

x-axis. ST: gait spatiotemporal, KM: kinematics, KT: kinetics, FT: functional test, and MA: 

muscle activity  

Most of the studies (71.3%) performed fatigue assessment in laboratory settings using 

stationary systems (Figure 2.3B). Furthermore, functional tests were usually conducted 

before/after the fatigue protocol (endpoint) in both laboratory and field environments 

(Figure 2.3A-B), typically with stationary measurement systems.  

 

 

Figure 2.4 Number of studies utilizing wearable and stationary measurement systems and 

conducting research in lab and in field. The number of studies has increased drastically af-

ter 2010, yet the number of field studies and those using wearable sensors has remained low 

Wearable sensors, despite their potential for field use, were mainly used in laboratory 

(Figure 2.3D) for assessing ST, KT or MA parameters continuously and intermittently. 

Out of the 68 studies, not more than three studies assessed ST, KM or KT parameters 

continuously or intermittently in field, using wearable sensors (Figure 2.3C).  
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2.3.3 Parameters for analysis 

The systematic extraction of parameters used by the studies to assess fatigue produced 

a list of 101 metrics. After removing parameters extracted on less than 30 participants 

(all studies merged), final list of 42 parameters was obtained, as shown in Table 2.3. 

Supplementary material7 contains the complete list of metrics. 

2.3.1 Parameter trends 

Of the five gait ST parameters considered, cadence was measured most often and step 

length the least. Apart from cadence, contact time and flight time, which presented 

reliable and consistent trends (increase) across all different conditions, the trends ob-

tained for stride length (Table 2.2) were dependent on the fatigue protocols and the 

running environments. Of the 12 parameters in the KT category, only maximum 

ground reaction force (Max GRF), vertical stiffness, and leg stiffness presented a con-

sistent trend (decrease) across the different exercise intensities and running environ-

ments. Max GRF was also the most used metric (12 studies), followed by vertical and 

leg stiffness (10 studies each). Peak tibial and head acceleration (PTA & PHA) are two 

parameters extracted from body-worn accelerometers; PHA showed different trends 

between overground and treadmill running environments. Within the 11 KM parame-

ters investigated, LDS was the least studied (1 study) and the peak knee flexion angle 

the most studied (7 studies). Peak knee flexion angle at initial contact (IC) and peak 

trunk flexion showed a clear increase for severe intensity during treadmill running, 

while ankle plantarflexion angle IC presented a clear decrease. Pelvic and thoracic LDS 

parameters are documented only for overground running with severe intensity and 

pelvis rotation range of motion (ROM) and anterior tilt for treadmill running with se-

vere intensity; all present a clear increase due to fatigue.  

 

Table 2.2 Parameter trends in response to acute fatigue, with M: moderate, H: heavy, S: se-

vere, and I: intermittent exercise intensities. For a parameter, S: number of studies with sig-

nificant results, T: Total number of studies measuring it. Arrows represent following trends, 

⭣⭣: clear decrease, ⭣: partial decrease, ⭡⭡: clear increase, ⭡: partial increase, ⭤ ⭤ : non-

significant change, ⮃: no trend, and I: insufficient participants (<30). GRF: ground reaction 

force, FTI: force-time integral, IC: initial contact, ROM: range of motion, f/e: flex-

ion/extension, LDS: local dynamic stability, CMJ: countermovement jump, SJ: squat jump, 

DJ: drop jump, CoP: centre of pressure, MVC: maximum voluntary contraction, iEMG: inte-

gration over the EMG signal, and MF: median frequency 

  Parameters 
Treadmill Overground  

M H S I M H S I S/T 

ST 

Cadence (steps/min) — ⭣⭣ ⭣ ⭣⭣ ⭣ I I — 14/22 

Contact time (ms) — ⭡⭡ ⭡ ⭡⭡ ⭡⭡ I ⭡⭡ ⭡⭡ 17/20 

Flight time (ms) — I ⭡⭡ ⭡ — — I ⭡ 7/9 

Stride length (m) — ⭡ ⮃ ⭤ ⭤ ⭣⭣ I I I 8/16 

 

7 https://figshare.com/articles/dataset/Data_Sheet_2_Biomechanical_Response_of_the_Lower_Extremity_to

_Running-Induced_Acute_Fatigue_A_Systematic_Review_xlsx/16457868 
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KT 

Max GRF (N) — I ⭣⭣ I I I ⭣⭣ — 7/10 

Loading rate (N/s) — — ⮃ I — I — — 4/5 

Peak pressure – metatarsal (Pa) — I  ⭡ — ⭡⭡ I ⮃ — 6/10 

FTI  – heel (N) — — ⭣ — ⭤ ⭤ I ⭤ ⭤ — 4/8 

FTI  – midfoot (N) — — ⭡⭡ — ⮃ — ⭡ — 4/6 

FTI  – metatarsal (N) — — ⭤ ⭤ — ⭡ — ⭡ — 5/11 

FTI  – toes (N) — — ⭡ — ⭣ — ⮃ — 4/7 

Peak tibial acceleration (PTA) — ⭡ ⭡ — — ⭡ — — 2/8 

Peak head acceleration (PHA) — I ⭤ ⭤ — — ⭡ — — 3/6 

Vertical stiffness (N/m) — ⭣⭣ — ⭣⭣ — I ⭣ — 8/9 

Leg stiffness (N/m) — — — ⭣ — — ⭣⭣ — 6/8 

Mechanical work (J) — — ⭤ ⭤ — — — — — 1/3 

KM 

Knee – max. flexion angle 

(swing) 
— ⭡⭡ ⭤ ⭤ — ⭣⭣ I — — 5/7 

Knee – flexion angle at IC  — — ⭡⭡ — — — — I 2/3 

Knee - ROM f/e angle (stance) — ⭤ ⭤ ⭡⭡ I — — — — 2/6 

Hip – ROM f/e angle (stance) — I ⭡ I — — — — 3/4 

Hip – max adduction angle — ⭡ ⭡ I — I — — 3/6 

Ankle – PF angle at IC — — ⭣ — — ⭣⭣ — I 3/5 

Trunk – max flexion angle — ⭡⭡ ⭡⭡ — — I — — 5/6 

Pelvis – anterior tilt — — ⭡⭡ — — — — — 2/2 

Pelvis – rotation ROM — — ⭡⭡ — — — — — 2/2 

Pelvis and thorax – LDS — — — — — — ⭡⭡ — 1/1 

  M H S I N 

FT  

CMJ height ⭣⭣ — I ⭣ 5/7 

SJ height — — — ⭣ 1/2 

DJ stabilization time — — ⭡⭡ — 1/1 

Balance - CoP velocity — — ⭡⭡ ⭡ 2/3 

MVC force (knee extension) — I ⭣ ⭣⭣ 6/7 

Sprint completion time — — — ⭡⭡ 3/3 

Walking - contact time ⭣⭣ — — — 1/1 

Walking - peak pressure toes ⭣⭣ — — — 1/1 

Walking - total foot contact area ⭣⭣ — — — 1/1 

Walking - forefoot loading imp.  ⭣⭣ — — — 1/1 

Gait LDS - dual task walking — — ⭡⭡ — 1/1 

M

A 

iEMG quadricep  — I ⮃ I 4/5 

iEMG hamstring — I ⭣ — 1/3 

iEMG calf — I ⭣ — 3/5 

iEMG shin  — I ⭤⭤ — 2/4 

MF Calf — — ⭤⭤ — 1/3 
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Functional tests were always performed before and after the fatiguing activity, to as-

sess the change in the neuromuscular function. Evaluation based on functional tests 

does not directly involve a running task and thus, distinction between evaluation on 

treadmill and overground is irrelevant for this parameter group. Countermovement 

jump (CMJ) height and isometric MVC knee force were the most frequently studied 

parameters, both being analyzed in 7 studies and showing a clear decrease due to acute 

fatigue. Moreover, CMJ height showed the same behavior for moderate and intermit-

tent fatigue, thus showing a consistent behavior across different fatigue protocols. DJ 

stabilization time was only studied for severe fatigue, and it presented a clear increase. 

The balance related parameter, center of pressure (CoP) velocity, presented a clear in-

crease due to intermittent and severe intensity protocols. 

 

Metrics from walking as a functional test were obtained from one study with 200 par-

ticipants and only for moderate fatigue. Contact time, peak pressure, total foot contact 

area and forefoot loading impulse, showed a clear decrease. Sprint completion time 

was measured by three studies and showed a clear increase, i.e. worse sprint perfor-

mance, after intermittent fatigue. The MA parameters were found to be assessed only 

in studies with severe and heavy intensity protocols. Of these, only iEMG (intergrated 

EMG signal) calf and iEMG hamstring presented a clear decrease. The other parame-

ters (iEMG and RMS) presented non-significant changes or non-consistent trends 

(Table 2.2).       

2.4 DISCUSSION 

2.4.1 Response to fatigue 

2.4.1.1 Influence of exercise intensity 

The exercise intensity can modulate the response of the neuromuscular system and 

running biomechanics to acute fatigue. Indeed, stride length, impact force-time inte-

gral, peak tibial acceleration, max knee flexion angle during swing, and knee flex-

ion/extension ROM during stance present different trends for different fatigue proto-

cols, when controlled for the running environment.  Aerobic metabolism mainly fulfills 

the energy requirement in the moderate and heavy protocols and a combination of 

aerobic and anaerobic metabolism in severe and intermittent protocols (Morton, 2006). 

It has been suggested that short-term high intensity activities mainly lead to peripheral 

fatigue (Perrey et al., 2010), whereas high volume activities, especially prolonged run-

ning, can lead to central fatigue (Millet & Lepers, 2004), in addition to structural and 

metabolic modifications. These mechanisms can potentially explain the differences in 

the neuromuscular response between different fatigue protocols (Brownstein et al., 

2020). While there is a wealth of research (Gibala et al., 2012; Laursen, 2010) on long-

term adaptation to various exercise intensities, further research to understand the 

mechanisms leading to the differences in the short-term responses is necessary. 

 

Some parameters, despite the differences between the running environment and the 

fatigue intensity, presented a consistent response to acute fatigue. Cadence, contact 

time, flight time, peak tibial acceleration, trunk flexion angle and knee flexion angle at 

IC increased due to fatigue, not necessarily by the same relative magnitude. Similarly, 
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max GRF, vertical and leg stiffness responded to acute fatigue by showing a decrease 

in magnitude. The trends for GRF, knee, and trunk kinematics are in line with a previ-

ous review (S. Winter et al., 2017) on the effect of fatigue due to prolonged running, 

albeit for a study sample of 12. Current work computed the trends not only for pro-

longed running (S. Winter et al., 2017), but also for shorter, more intense running and 

interval running. Therefore, it allows for the comparison of parameter trends across 

different protocols and exercise intensities, highlighting the differences and similarities 

between the responses to different conditions.  

2.4.1.2 Acute fatigue affects the impact load attenuation and leads to a sub-

optimal running technique 

Calf muscles play a crucial role in regulating the stiffness of the muscle–tendon units to 

tolerate and absorb high impact loads at the beginning of the ground contact and the 

braking phase (Kyröläinen et al., 2005; Rabita et al., 2013). Acute fatigue leads to a low-

ered pre-activation in calf muscles, as evidenced by the decreasing trend for iEMG 

(Table 2.2). This hampers the ability of musculoskeletal system to absorb the energy 

from impact, sustain the impact loads, and return the stored elastic energy in a coordi-

nated manner during push-off (Avela & Komi, 1998). Reduced absorption of the im-

pact forces is likely to explain (Sheerin et al., 2019) the observed clear increase in peak 

tibial acceleration during the initial phase of ground contact (Voloshin et al., 1998). The 

increase of knee flexion angle during initial contact, linked to a lowered vertical stiff-

ness (Table 2.2), might be an alternative attenuation strategy, an adaptation to over-

come neuromuscular deficits. Another possible adaptation might be the increase in the 

relative proportion of ground contact time, thus distributing the impact impulse over a 

longer duration and reducing peak impact forces (Strohrmann, Harms, Kappeler-Setz, 

& Tröster, 2012). Peak impact forces can be a risk factor for bone stress injury (I. S. Da-

vis et al., 2016; Hreljac, 2004; Warden et al., 2014), thus highlighting the importance of 

this result for injury prevention. 

 

Forward leaning, as well as the variability of trunk movements, increase with the fa-

tigue of the lower back muscles (Table 2.2). This might increase injury risk by increas-

ing the strain on the hamstrings and the back during running (Koblbauer et al., 2014; 

Maas et al., 2018). However, certain studies have also suggested that increased trunk 

flexion during running might be a compensatory strategy for shock attenuation (Saha 

et al., 2008). Further investigations should consider the relationship between running 

kinematics and core stability, their causality, and to what extent these relations affect 

performance and injury risk. 

 

The observation that acute fatigue leads to a decrease in vertical max GRF (Table 2.2), 

can be linked to a series of kinematics, kinetics, and muscular adaptations throughout 

fatiguing activities. The observed rise in contact time, in accordance with muscle fa-

tigue, indicates that runners are not able to lift their feet off the ground as fast as before. 

Consequently, the push-off force is distributed over a longer duration, with a decrease 

in the max GRF (S. Winter et al., 2017). This decrease in the maximal force production 

capacity of the lower limb muscles during the push-off phase is confirmed by the de-

crease in the generated force during knee extension movements within the MVC tests. 
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Increased knee and trunk flexion/extension angles, along with a reduction in vertical 

stiffness, point to an increased vertical motion of the center of mass (COM) due to 

acute fatigue. According to the spring-mass model, a decrease in vertical stiffness is 

consistent with the decrease in max GRF and an increase in the vertical displacement of 

the COM caused by the rise in maximum knee and hip flexion/extension angles and 

range of motion. These trends are confirmed by our results (Table 2.2) and they sup-

port the rationale for increased vertical motion of the COM due to acute fatigue.  

 

Energy efficiency during running is maintained partly by the elastic structures (ten-

dons and muscles) in lower limbs, through the storage and return of elastic potential 

energy generated from the impact with ground (Novacheck, 1998). The lowered calf 

muscle activity, increased peak tibial acceleration (PTA) and the vertical displacement 

of COM, indicate an increased transfer of the impact energy to the COM of the body 

and a reduction in the elastic potential energy absorbed from impact. Furthermore, a 

major source of energy loss (Bertram & Hasaneini, 2013) in running is the transition of 

the body motion from downward to upward direction in each gait cycle. An increase in 

this vertical motion of the COM, thus points towards a lowered energy efficiency in 

running gait and a suboptimal running technique. However, it is difficult to ascertain 

whether the changes in running biomechanics originate from a strategy to protect 

against injuries or represent a fatigue-induced loss of optimal performance capabilities, 

or a combination of both. 

2.4.2 Role of functional tests 

CMJ tests typically measure the capacity of the leg extensor muscles to generate me-

chanical power (Schmitz et al., 2014), whereas MVC tests (Peñailillo et al., 2013) meas-

ure the capacity of leg muscles to exert their maximum force against resistive appa-

ratus. Results (Table 2.2) show a decreased hamstring and calf muscles activation, also 

indicated by the decreased MVC force and increased sprint completion times. This can 

be explained by neuromuscular alterations, which provoke a slower rate of muscle 

force production possibly via slower recruitment of motor units.  

 

To date, most research on sport-induced fatigue has been focused on the acute physio-

logical and neuromuscular responses. As indicated in (Degache et al., 2014), postural 

control is a permanent re-establishment process of balance, which depends on the ori-

entation information derived from the somatosensory, vestibular, and visual inputs 

sensory sources. Based on relevant postural muscles, the central nervous system active-

ly controls balance. Our results (Table 2.2) show that acute fatigue affects balance, un-

derlined by the consistent increase in the balance parameters such as CoP velocity, 

LDS, and stabilization time in DJ. These results are consistent with the observation 

(Nardone et al., 1997) that participating in exhaustive physical activities can lead to a 

deterioration of the proprioceptive sensory information or its integration, thereby ad-

versely affect the efficiency of the neuromuscular system. 

2.4.3 Influence of protocols 

Treadmill running biomechanics may differ from overground running (Sinclair et al., 

2013; Van Hooren et al., 2020) during the foot strike, in terms of peak propulsive force 
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and sagittal plane joint kinematics like hip flexion/extension angles and range of mo-

tion (ROM), knee flexion angle and ROM, foot strike angle and COM vertical dis-

placement. While debated (Van Hooren et al., 2020), some studies also indicate differ-

ences in muscle activity, impact peak GRF, and tibial forces (Baur et al., 2018; Kluiten-

berg et al., 2012; Milgrom et al., 2003). To investigate if these differences modulate the 

influence of fatigue on running, summary trends for the treadmill and overground 

running studies were computed separately. For the same exercise intensity, the two 

running environments led to different trends (Table 2.2) for stride length, peak impact 

pressure, and impact force-time integral. Thus, there is a considerable interaction be-

tween fatigue and type of running ambulation (i.e. treadmill or overground) for pa-

rameters directly related to foot strike, in agreement with the results from (Garcia-

Perez et al., 2014; Strohrmann, Harms, Kappeler-Setz, & Tröster, 2012). 

 

Fatigue typically leads to a reduction in speed while running overground (Bertram & 

Hasaneini, 2013), indicated by increased sprint completion time in a fatigued state and 

a simultaneous decrease in cadence and stride length for moderate intensity acute fa-

tigue. While professional athletes tend to modulate their pace tactically while running 

overground in competitions (Dierks et al., 2010), studies in this review typically used 

constant speed exercises on treadmills to analyze the effects of fatigue. Running speed 

has a direct influence on spatiotemporal parameters (J. P. Bailey, Silvernail, et al., 2018) 

and forcing a specific treadmill speed prevents fatigued athletes from modulating their 

running mechanics naturally. Non-motorized treadmills can allow the athletes to run 

at self-selected speeds, however they can lead to an increased metabolic demand as  

compared to overground running at the same speed (Edwards et al., 2017); higher met-

abolic demands can accelerate the development of fatigue. Furthermore, compliance of 

the running surfaces can affect the ground contact time, step length, plantar loading, 

and metabolic cost of running (McMahon & Greene, 1979; Smith et al., 2016), thus high-

lighting the critical nature of the running surface while testing. 

2.4.4 Recommendations for an IMU-based wearable sensor setup 

As seen in earlier section, there is a difference between the results for treadmill and 

overground running in a fatigued state, especially due to the alternations in speed 

caused by fatigue while running overground. To improve the translatability of results, 

in field monitoring of the response of running mechanics to fatigue is essential. Fur-

thermore, continuous measurement of biomechanics during the run can enable an un-

derstanding of the temporal evolution of the running technique in response to acute 

fatigue. If the alterations in running technique are too drastic and occur during several 

consecutive sessions, it can be an indication of poor adaptation to training. Wearable 

sensors allow for a continuous measurement during overground and treadmill run-

ning and across different real-world contexts such as outdoor training and competitive 

races. Wearable sensors can also allow the rehabilitation of runners suffering from 

running-related injuries, based on real-time feedback of running biomechanics and by 

combining the movement data with the applied training load (Methods et al., 2015). 

Early detection of such alterations using wearable sensors can be helpful to prevent 

adverse training adaptations.  
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Considering the importance of field measurement, some recommendation about the 

usage of wearable sensors may be helpful. The first step towards the design of an IMU-

based wearable sensor setup is the selection of the parameters for measurement. Here, 

the parameters that showed consistent trends for the influence of acute fatigue (Table 

2.2) could be a starting point. Among these parameters, sagittal plane knee angles and 

vertical GRF can be estimated with one sensor on the shank and one on the sacrum 

(Lee, Mellifont, et al., 2010; Wouda et al., 2018); contact time, flight time, and vertical 

stiffness can be computed from either a sensor on the shank or the sacrum. However,  

foot-based IMUs and pressure insoles provide higher accuracy for the estimation of 

contact time and GRF (Falbriard et al., 2018) respectively. It is possible to estimate 

stride length as a combination of the running speed measured from a shank or an up-

per back sensor (Apte, Meyer, et al., 2020; Yang et al., 2011), and the cadence from a 

sacrum or foot sensor (Falbriard et al., 2018; Lee, Mellifont, et al., 2010). While previous 

research has shown the measurement of sagittal hip angles to be possible for fast 

movements (Fasel et al., 2018), the accuracy of this measurement is susceptible to soft 

tissue artefacts.  

 

Apart from these biomechanical parameters in running, a single IMU located on the 

lumbar spine (L1) has been used for the assessment of vertical jump height (Setuain et 

al., 2016) and postural control ability (Neville et al., 2015). Thus, a minimal sensor con-

figuration (Figure 2.5) based on only three or four sensors:  one unit on the shank, one 

on the sacrum, one on lumbar spine (L1), and optionally one IMU on the foot or pres-

sure insoles could enable the measurement of the evolution of biomechanical parame-

ters in response to acute fatigue. The sensors on shank and foot can be placed on both 

legs if the goal is also to investigate symmetry. Previous studies on this topic either 

focused on the biomechanics of the whole body (Op De Beeck et al., 2018; Strohrmann, 

Harms, Kappeler-Setz, & Tröster, 2012) or a specific body segment (Clansey et al., 2012; 

Derrick et al., 2002; Garcia-Perez et al., 2014; Mizrahi, Verbitsky, & Isakov, 2000; Vo-

loshin et al., 1998), thereby limiting the outcomes or being cumbersome to replicate. 

The suggested configuration offers a good balance between the number of sensors and 

the possibility to study a broad range of parameters that present a reliable response to 

acute fatigue. Algorithm development in the future might reduce the number of requi-

site sensors to only one IMU on the trunk (sacrum or L1).  

 

For the measurement using wearable sensors, a static period of few seconds at the start 

of the run is recommended to facilitate the calibration of the sensors. The sampling rate 

(SR) of the used sensors should be set according to the movement of interest. For ex-

ample, a SR of at least 500Hz is recommended for measuring impact acceleration at the 

heel and other kinetic parameters at the foot, while minimum SR of 333Hz is suggested 

for estimating step length and 200Hz for kinematic parameters, stride duration, and 

tibial acceleration (Mitschke et al., 2017). A SR of 1000Hz should suffice for almost all 

scenarios except sprinting, where a higher SR might be necessary for accurately esti-

mating the impact forces at the foot (Mitschke et al., 2017). A lower-than-appropriate 

SR leads to inaccuracy in estimation while an excessive sampling rate places a high 

demand on the battery and the storage.  For improved accuracy of measurements, it is 

essential to ensure correct fixation of the sensors to reduce undesired vibrations due to 

the impact of the foot on the ground. In case of repeated measurements, it is important 
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to recheck the sensor fixation to detect any loosening and avoid undesirable movement 

of the sensors. As the algorithms (Falbriard et al., 2018; Wouda et al., 2018) typically 

work as desired at different speeds, the protocol can involve either fixed speeds or self-

selected speeds. However, around 10 gait cycles at relatively stable speed will provide 

a more reliable estimate of the gait parameters for a given time (Falbriard et al., 2020). 

 

 

Figure 2.5 Parameters that show a consistent trend in response to acute fatigue and a poten-

tial wearable sensor setup to measure them in field. Stride length can be estimated by mul-

tiplying running speed and gait cycle time for each stride, while tibial acceleration can be 

measured directly from IMU#2. IMU refers to inertial measurement unit 

2.4.5 On study protocols 

The quality of the studies was scored based on the MINORS scale designed for non-

randomized studies. The two criteria with usually the lowest scores are the inclusion of 

consecutive participants and the prospective calculation of study size. Only 11 studies 

tested more than 30 subjects (10.6%), with males as the large majority (80%). Consider-

ing the high inter-subject variabilities in terms of morphology and running technics, a 

higher sample size could help improve interpretations of obtained parameter trends by 

making subgroups. Moreover, less than 30 studies compared amateur and professional 

athletes: male and female, or exercise intensities (intermittent versus continuous). A 

higher number of comparative studies would improve the specificity of the results. 

 

As seen in the results section, the most used protocol to induce fatigue was treadmill 

running until exhaustion, classified as severe. Even in this very specific fatiguing activ-

ity, there is no agreement in literature about which reference metric should be used for 
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measuring fatigue. Several studies used questionnaires (RPE), while others used speed 

thresholds, VO2max tests, heart rate zones or a combination of those metrics. This lack 

of agreement makes it difficult to compare different protocols and explains certain in-

consistencies across studies within the four subgroups for fatigue. Finally, this system-

atic review allows us to highlight the current gaps in literature regarding sport-

induced fatigue. One of the main findings is the lack of field studies with continuous 

measurements, conducted during the actual run. As seen in the results (section 

2.3.2.2), stationary measurement systems represent 76.5% of sensors used, significantly 

more than wearables; and the ratio between stationary versus wearable motion sensor 

has not changed over time (Figure 2.4). The main reason is that studies performed in-

laboratory allow for highly controlled environmental conditions and are generally eas-

ier to perform. However, the recent burgeoning market of wearables, the miniaturiza-

tion of sensors, and development of advanced algorithms (Camomilla et al., 2018) have 

given researchers the capability to collect and analyze continuous data during sporting 

activates with good accuracy and precision. 

2.4.6 Limitations 

The first limitation of this work is that studies involving different athlete groups with 

varying skill levels (elite athletes versus amateur) and physical capacity were analyzed 

together to create summary trends. Mixing different study populations might lead to 

confounding effects in the computation of trends. However, this was done to overcome 

the limited number of studies within each sub-group and ensure large enough sample 

size for computing meaningful summary trends. As a result, the trends produced from 

the analysis can be generalizable across a wide population.  

The parameters for analysis were selected based on the threshold of at least 30 partici-

pants within a fatigue category and/or running surface. This threshold was chosen 

with the aim of balancing the strength of evidence and the number of analyzed param-

eters. While a higher threshold would increase the strength of evidence per parameter, 

the number of analyzed parameters would have been drastically reduced since most 

studies had less than 20 participants. A small change in one of the parameters might be 

more pertinent to the biomechanical response than a large change in another parame-

ter, which makes it difficult to decide the importance of parameters a priori. To account 

for this, and for the lack of a single metric to characterize biomechanical response, a 

large number of parameters were included, despite the relative lack of research for 

some of these parameters. 

2.5 CONCLUSION 

The current review presents evidence that acute fatigue influences almost all the in-

cluded biomechanical parameters in running, with crucial influence from the exercise 

intensity and the testing environment. In response to acute fatigue, cadence, flight 

time, contact time, vertical stiffness, knee flexion angle at initial contact, trunk flexion 

angle, peak tibial acceleration, CoP velocity during balance test showed an increasing 

trend with fatigue and knee extension force during MVC, maximum vertical ground 

reaction forces, and CMJ height showed a decreasing trend across different fatigue pro-

tocols. Results reaffirm the observations that acute fatigue causes a reduction in the 

maximal force production of the muscles and adversely affects the postural control 
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ability, leading to a more compliant leg and a decreased attenuation of the impact force 

during each ground contact. The dominant metrics used for fatigue analysis were gait 

spatiotemporal parameters while stationary sensor systems, treadmill activities, and 

endpoint measurements were the dominant modalities. The metrics identified here 

could be used for athlete monitoring in field and the design of optimal training regi-

mens, leading to an enhanced performance improvement/injury risk prevention ratio. 

Results indicate an important research gap with the lack of field studies with continu-

ous measurement, conducted during actual sporting activities. Emerging technologies 

like wearable sensors could enable design of such protocols, thus leading to a deeper 

understanding of the influence of fatigue on the biomechanics of the lower extremities. 

One outcome of this review is set of recommendations for a wearable sensor configura-

tion based on three or four sensors, which will enable continuous in-field measurement 

of metrics that show a reliable response to acute fatigue. These recommendations were 

subsequently used in a wearable sensor-based protocol to simultaneously study the 

biomechanics of running and perceived fatigue during a half marathon. This study and 

its results will be discussed in detail in the following chapter. 

2.6 APPENDIX 

2.6.1 Eligibility criteria 

Below are some additional exclusion criteria that are not mentioned in section 2.2.2 for 

the sake of brevity. 

Exclusion criteria:  

● The study that focused only on biochemical parameters such as lactate, cre-

atine kinase, cortisol, etc. to assess the effect of sport-related fatigue.  

● The study which focused only on questionnaires (Borg, fatigue…) to assess 

fatigue, without additional sensors used.  

● The study which evaluated the effect of sport on mental health based on 

self-reported questionnaires (motivation, mood, depression, self-reported, 

burnout).  

● The study that focused on recovery time or training program after fractures 

or injuries related to sport. We also excluded the studies investigating sport-

related concussion.   

● The study that analyzed the effects of certain therapy to reduce fatigue such 

as phototherapy, cold water immersion therapy, diet, acupuncture, com-

pression garments, moxibustion, etc.  

● The study that focused on the effects of specific environmental conditions 

on fatigue or for training such as extreme conditions, altitude training, hy-

pobaric chamber, acclimatization, hypoxic condition, etc.  
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● The study that analyzed the effects of performance-enhancing substances 

such as ergogenic aids, Beta-alanine effects, doping, heat acclimation, met-

formin, ischemic preconditioning, β2-agonists, etc.   

● Studies that focus only on feedbacks to athletes 

● Studies that focus on chemical/brain stimulation and other invasive meth-

ods effects on fatigue.   

● Studies that focus on recovery time after fracture/injuries related to sport, 

including but limited to concussion.  

● Studies that involve a biopsy procedure 

● Studies aimed at validation of functional tests and not the evaluation of the 

influence of fatigue 

● Research that utilizes specific exercises to induce, but which are not sport 

activity. For example, repetitive shoulder movement or resistance training.  

● Studies that focus only on the biomechanics of sports other than running 

● Pregnancy-related guidelines on physical activity  

● Studies on animals  

● Research investigating the effects of age on fatigue, or based on adolescents 

(<18 years) or old (>65 years) participants 

● Studies that focus on biochemical parameters only 

2.6.2 Study appraisal 

The items mentioned below, based on the MINOR scale, were used to appraise the se-

lected studies. Example for one study is provided in Table 2.3; supplementary material 

S1 presents the same for all studies. 
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Table 2.3 Adapted MINOR scale (Slim et al., 2003b) used for scoring the studies, with score 

from 0 to 2 for each metric. Scores for one study  (Rousanoglou et al., 2016) are shown here 

 A 

clearly 

stated 

aim 

Inclusion of 

consecutive 

participants 

Clear descrip-

tion of meas-

urement 

system  

Endpoints 

appropriate 

to the aim 

of the study 

Unbiased 

assessment 

of the study 

endpoint 

Follow-up 

period 

appropriate 

to the aim 

of the study 

Loss to 

follow 

up less 

than 5% 

Prospective 

calculation 

of the study 

size: 

Total 

Rousanogl

u2016JSpo

rtSciMed  

2/2 1/2 2/2 2/2 0/2 2/2 2/2 1/2 12/16 

2.6.3 Parameter definition 

(1) local dynamic stability (LDS): LDS can be quantified by the determination of the larg-

est Lyapunov exponent λ and is interpreted as the ability to compensate small pertur-

bations to maintain functional locomotion [71]. A higher exponent indicates a lowered 

ability to maintain stability. (2) Peak force: it is the maximum force measured in differ-

ent regions of the foot (Alfuth & Rosenbaum, 2011; Anbarian & Esmaeili, 2016; Volosh-

in et al., 1998; Weist et al., 2004; Willson & Kernozek, 1999) using pressure insoles and 

as such, cannot be directly compared to the ground reaction forces as they represent 

the summation of forces in all foot regions. (4) iEMG: Area under the curve of the recti-

fied EMG signal i.e. the mathematical integral of the absolute value of the raw EMG 

signal (Avogadro et al., 2003; Dittrich et al., 2013; Weist et al., 2004) (5) MF: Median 

frequency of the EMG power spectrum  (Avogadro et al., 2003; Dittrich et al., 2013; 

Dutto & Smith, 2002; Sánchez-Sánchez et al., 2018; Weist et al., 2004) 

2.6.4 Data synthesis  

The flowchart for the computation of summary trends for the parameters is shown in 

Figure 2.6; a process followed for every parameter within each subgroup. For each 

study (Si), we extracted quality score (Qi) and a list of parameters used to assess fatigue 

with their respective trend (T{j,i}, j: #parameter, i: #study). The parameter trends (T{j,i}) 

were multiplied by the respective study quality score (Qi) and combined into a vector 

(Ai). Then, the median (MED) and the median absolute deviation (MAD) of Ai, which 

correspond to the median and M.A.D of the different trends obtained for this parame-

ter (Tj), were computed. If MAD(Ai) was greater than 0.5, we consider that there is no 

trend, i.e., no consistencies across studies. MAD(Ai) lower than 0.1, indicated agree-

ment across studies and was characterized as “clear decrease” if MED(Ai) was negative, 

“non-significant change” if MED(Ai) equal to zero, and “clear increase” if MED(Ai) was 

positive. For 0.1<MAD(Ai)<0.5 the trends were characterized as “partial decrease”, “non-

significant change” or “partial increase” respectively. 
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Figure 2.6 Flowchart for the extraction of the summary trends for different parameters, 

where S: study, T: trend, Q: study quality, and MAD: median absolute deviation. This pro-

cess is followed for every parameter within each fatigue category
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3 CONCURRENT EVOLUTION OF BIOME-

CHANICAL PARAMETERS WITH PERCEIVED 

FATIGUE 

This chapter presents the second part of the investigation into the biomechanical 

response to running-induced acute fatigue. It aimed to assess the evolution of the 

gait spatiotemporal parameters, symmetry and variability of gait, trunk motion, 

and perceived fatigue during a half-marathon. 13 recreational runners were 

equipped with one inertial measurement unit (IMU) on each foot, one combined 

global navigation satellite system-IMU-electrocardiogram sensor on the chest, 

and an Android smartphone equipped with an audio recording application. Spa-

tiotemporal parameters for the running gait, along with the symmetry of tem-

poral parameters, variability, and complexity of gait cycle time, were computed 

using validated algorithms. Additionally, smoothness and stability of trunk were 

assessed. Acute fatigue was assessed as the rating-of-fatigue (ROF) scale at eve-

ry 10 min of the race. The data was split into eight equal segments, correspond-

ing to at least one ROF value per segment, and only level running parts were re-

tained. During the race, contact time, duty factor, asymmetry of temporal pa-

rameters, and trunk anteroposterior acceleration increased, and the foot strike 

angle, vertical stiffness, and trunk stability and smoothness decreased signifi-

cantly. The biomechanical parameters showed a significant alteration even with 

a small change in perceived fatigue. This study highlights measurable influences 

of acute fatigue, which can be studied only through concurrent measurement of 

biomechanical and psychological facets of running in real-world conditions.  

The contents of this chapter have been adapted from these articles: 

Prigent, G.†, Apte, S.†, Paraschiv-Ionescu, A., Besson, C., Gremeaux, V., & Aminian, 

K. (2022). Concurrent Evolution of Biomechanical and Physiological Parameters 

with Running-Induced Acute Fatigue. Frontiers in Physiology, 74. 

Apte, S., Evian, V., Gremeaux, V., & Aminian, K. (2022). Concurrent Assessment Of 

Symmetry, Variability, And Complexity Of Stride During Prolonged Outdoor Run-

ning. ISBS Proceedings Archive, 40(1), 33. 

Apte, S., Laroche, N., Gremeaux, V., & Aminian, K. (2022). Trunk Motion During A 

Half-Marathon: The Impact Of Perceived Fatigue On Motion Stability And 

Smoothness. ISBS Proceedings Archive, 40(1), 29. 
†Equal first authorship 

Contributions: conceptualized the study design; conducted the data collection; con-

tributed to the analysis and interpretation of the data; drafted the manuscript; su-

pervised semester projects that partly led to the results of the two ISBS papers. 
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3.1 INTRODUCTION 

The tremendous increase in the popularity of running (Rothschild, 2012) as a sport has 

hastened the need to understand the risk factors for running related injuries (RRI) aris-

ing out of maladaptation to training .  While the direct relation of biomechanical risk 

factors and training load to the instances of lower extremity RRIs is debated (Ceyssens 

et al., 2019; Fredette et al., 2021), these factors are understood to be influenced by acute 

fatigue, especially resulting from endurance running (Verschueren et al., 2020). Acute 

fatigue in this context can be understood as the decline in performance caused by phys-

ical exertion during sports (Knicker et al., 2011), measured during or immediately after 

the sporting activity. Fatigue can be characterized as the inability to maintain the inten-

sity of a sub-maximal exercise, caused by the change in the underlying interdepend-

ence between the central drive from the motor cortex and the contractile function of the 

muscles (Enoka & Duchateau, 2016; Vargas & Marino, 2014). Since fatigue depends on 

the interactions between performance and perceived fatigability, direct measurement 

of fatigue is difficult (Enoka & Duchateau, 2016). It is often investigated by measuring 

its concomitant effects on cardiovascular, neuromuscular, and psychological states via 

sensor-based approaches and self-reported scores on questionnaires (Thorpe et al., 

2017). Other approaches include blood tests for lactate, cortisol, etc. and performance 

monitoring on functional tests like countermovement jump and maximum voluntary 

contraction (Bourdon et al., 2017). However, these two modalities are constrained to 

endpoint measurements and thus only useful for testing pre-to-post responses. 

 

Because biomechanical parameters of running such as contact time, flight time, trunk 

flexion angle, vertical stiffness, GRF, etc., change in response to acute fatigue (Apte et 

al., 2021), continuous monitoring of these parameters can help understand the effects of 

fatigue on neuromuscular function (Paquette et al., 2020). Acute fatigue leads to an 

increase in the asymmetry of kinetic and kinematic variables during running (Radzak 

et al., 2017; Tabor et al., 2021), but these results were limited to treadmill running and 

50-m sprints. A 10% increase in the asymmetry of contact time can lead to increase in 

metabolic costs of running of up to 7.8% (Beck et al., 2018). Along with the gait parame-

ters, cycle time variability and its long-range correlates (complexity) are an indicator of 

running technique and a potential predictor of RRIs (Gruber et al., 2021; Meardon et 

al., 2011), with trained runners exhibiting lower variability and higher complexity (Na-

kayama et al., 2010). The variability and complexity of stride time varied non-linearly 

in amateurs and experienced runners during a prolonged run on track (Meardon et al., 

2011) and treadmill (Mo & Chow, 2018a), due to acute fatigue. In addition to the mo-

tion of the lower extremities (Moore et al., 2019), trunk motion has important implica-

tions for the energy cost of running, with a decrease in the stability and smoothness of 

the trunk motion in the mediolateral axis leading to an increase in energy cost (Kiely et 

al., 2019; Schütte et al., 2018). In this context, smoothness and stability characterize the 

proficiency of coordinated movements during running. Current research indicates that 

stability (Schütte et al., 2018) and smoothness (Kiely et al., 2019) tend to decrease with 

increased duration of running, likely due to acute fatigue. Acute fatigue also affects 

trunk flexion during prolonged running (Apte et al., 2021), resulting in increased stress 

on the knee (Teng & Powers, 2015), which may lead to a higher risk of injury. 
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The number of studies on continuous and field monitoring of running-induced acute 

fatigue remains scarce, despite the recent proliferation of wearable measurement sys-

tems and movement analysis algorithms in sports science (Apte et al., 2021; Camomilla 

et al., 2018) . Within these, some studies focused on the classification of fatigued and 

non-fatigued states using machine learning techniques based on statistical features or 

composite indices (Buckley, O’Reilly, Whelan, Vallely Farrell, et al., 2017; Clermont, 

Benson, Edwards, et al., 2019; Eskofier et al., 2012; Tim Op De Beéck, Wannes Meert, 

2018), which precludes the investigation of interpretable biomechanical parameters. 

Studies examining the response of individual biomechanical parameters during long-

distance running (≥ 10km) have predominantly analyzed the parameter values at dif-

ferent distances (Alfuth & Rosenbaum, 2011; Meyer et al., 2021b; Ruder et al., 2019; 

Strohrmann, Harms, Kappeler-Setz, & Troster, 2012). Similarly, results from investiga-

tion of symmetry, variability, complexity, stability, and smoothness during running 

were considered in relation to the progression of the running activity.  

 

This approach has an implicit assumption that different participants develop similar 

levels of fatigue at similar distances during the run, which may not be true for a heter-

ogeneous participant group employing a variety of pacing strategies. Combined, these 

studies investigate the neuromuscular response to acute fatigue, but not the perceived 

fatigability and thus the psychological states during the run. Due to the complex nature 

of fatigue, perceived fatigability can provide a global overview from a complex system 

perspective rather than a single biomechanical or physiological parameter (Balagué et 

al., 2020; Venhorst et al., 2018). Thus, rating of perceived exertion (RPE) (Borg, 1982) or 

rating of fatigue (ROF) (Micklewright et al., 2017) can provide a more holistic idea of 

central regulation, especially during the context of an actual running race that involves 

pacing strategies, making their investigation pertinent (Millet, 2011; Pageaux & Lepers, 

2016). This chapter presents an investigation of the evolution of running biomechanics 

in response to perceived fatigability in recreational runners, using body-worn 

smartphones, IMU, GNSS and ECG sensors. It aims to complement existing research 

by providing a synchronous analysis of the stability and smoothness of trunk motion, 

as well as the symmetry, variability, and complexity of gait cycles and the evolution of 

perceived fatigue.  Hereafter, perceived fatigability will be alternately referred to as 

ROF and/or fatigue, as it is a reference for acute fatigue. 

3.2 Materials and equipment 

Measurements were conducted with 13 healthy participants, six (4 males, 2 females, 

age: 35.5 ± 9.3 y.o. during the Lausanne half-marathon (Switzerland, 27th Oct. 2019) and 

seven (7 males age: 35.6 ± 5.8 y.o.) during a 21.5 km race-simulation run in Rif (Salz-

burg, Austria, 25-29th Nov. 2020). The race-simulation in Rif was organized because of 

race cancellations in 2020 due to the pandemic situation. The half-marathon was cho-

sen to avoid the walking periods that inexperienced participants can have during a full 

marathon, as we observed during pilot studies. EPFL human research ethics committee 

(HREC 039-2018) approved the study and all participants provided written consent 

before the data collection. As shown in Figure 3.1, participants were equipped with a 

GNSS-IMU-ECG sensor (Fieldwiz, ASI, Switzerland) on the chest using a belt with elec-

trodes (Polar Pro Strap, Polar Electro Oy, Finland), an IMU sensor (Physilog 5, Gaitup SA, 
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Figure 3.1 Sensor configuration used for 

the measurement, where AP, SI and ML 

denote the anterior-posterior, the supe-

rior-inferior, and the medio-lateral axis 

Switzerland) on each foot, and an Android smartphone on the upper arm. Apart from 

the sensor setup, the participants dressed as they would for an endurance running 

race. Following their personal warm-up, the participants were equipped with the sen-

sor setup and were instructed to give their best during the run. 

 

The Fieldwiz and Physilog 5 wearable sensors 

were chosen because they have already been 

used successfully for analysis of outdoor 

running (Apte, Meyer, et al., 2020; Meyer et 

al., 2021b). Fieldwiz was used with a sam-

pling frequency of 200Hz for the IMU, 

250Hz for the ECG, and 10Hz for the GNSS 

receiver. The Physilog 5 IMU was sampled at 

512Hz, with a range of ±16g m/s2 for the 

accelerometer and ±2000 deg/s for the gyro-

scope. We installed a custom-built applica-

tion on the smartphone, which reminded 

the wearer to speak out their rating of fa-

tigue (ROF) on a scale of 1 to 10 (Mick-

lewright et al., 2017) and recorded this audio 

with a timestamp. We configured the appli-

cation to create a reminder every 10 minutes 

and subsequently record for a period of 30 

seconds. The audio files were manually 

transcribed to store the recorded ROF value.  

3.3 METHODS 

3.3.1 Preprocessing 

The pre-processing steps include synchronization of the sensors and slope detection 

(Figure 3.2). A shock movement, which consists of a fast up and down movement on 

the vertical axis while holding all sensors together, was performed before and after the 

race for synchronizing the Fieldwiz and Physilog 5 wearable sensors (Caruso et al., 

2019). As the same motion was recorded on the accelerometer of both sensors, we 

could compute the lag between the acceleration signal of both sensors using cross-

correlation; this lag was then used to adjust their timestamps. The analysis was re-

strained to bouts of level running to avoid any biomechanical changes biased by in-

clined running. Official mapping platform of the Swiss Confederation 

(map.geo.admin.ch) was used to detect slopes on the Lausanne marathon route and the 

distance was computed using the Haversine formula (Robusto, 1957), with the latitude 

and longitude information from the GNSS sensor. Slopes were defined as race seg-

ments having a gradient greater than 5% over 100 meters and corresponding race sec-

tions were excluded from the data. To avoid this procedure, a relatively flat course was 

selected for the run in Rif, with all gradients below the 5% level. 
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Figure 3.2 Flowchart for the overall procedure, showing three blocks for the pre-processing, 

feature extraction, and statistical analysis; ML motion: motion of trunk along mediolateral 

axis, LME: Linear mixed model 

3.3.2 Feature extraction 

3.3.2.1 Gait spatiotemporal parameters 

The accelerometer, gyroscope, and speed signals from the Fieldwiz sensor were pro-

cessed to remove outliers that were more than two standard deviations away from the 

mean value over a race segment window and replaced with linearly interpolated val-

ues. Using validated algorithms (Falbriard et al., 2018, 2020), the raw signals from the 

foot IMUs were initially used to divide the race into gait cycles based on mid-swings. 

Following this, we estimated the temporal parameters such as contact time (𝑡𝑐), flight 

time (𝑡𝑓), swing time (𝑡𝑠), and cycle time (𝑡𝑔), and kinematics parameters like peak 

swing velocity of the foot (𝜔𝑠), peak swing velocity (𝑝𝑠) foot strike angle in sagittal 

plane (FSA), and foot eversion angle (FEA) at initial contact. One value of each spatio-

temporal parameter per gait cycle was obtained for the right and the left foot, but only 

the information from the right foot was used for the subsequent analysis, with the first 

and last 10 steps of the race being removed to avoid any transient effects. To under-

stand the storage and return of elastic energy, vertical stiffness (𝑘𝑣𝑒𝑟𝑡) was computed 

using the spring mass model to characterize running (J.-B. Morin et al., 2005). To con-

sider the positive and negative work during running, the duty factor (𝑑𝑓) of the gait 

(Alexander, 1991) was investigated, defined as the ratio between contact and stride 

time. The computation of the above-mentioned parameters are explained in the publi-

cation from Meyer et al., 2021 (Meyer et al., 2021b). 

3.3.2.2 Secondary gait metrics 

The overall process for the extraction of secondary gait metrics is presented in Figure 

3.3. The dataset was based on single values of gait parameters per gait cycle, and thus 

discrete symmetry coefficients were used, though they are less sensitive than the con-

tinuous coefficients (Błażkiewicz et al., 2014; Tabor et al., 2021),. To quantify symmetry 

for spatiotemporal parameters, four metrics (Błażkiewicz et al., 2014) have been previ-

ously used: Ratio Index (RI), Symmetry Index (SI), Symmetry Angle (SA), and Gait 

Asymmetry Index (GAI). However, for RI, SA and GAI, the calculation considers the 

ratio between the right and left limb values, and thus remains susceptible to influence 

of the dominant leg. Furthermore, results from (Błażkiewicz et al., 2014) suggested a 

high similarity between RI and SI, and their advantage over SA. Based on these conclu-

sions, SI (5) was selected as the metric for assessing symmetry.   
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𝑆𝐼
|𝑋𝐿 𝑋𝑅|

(𝑋𝐿 𝑋𝑅)
 (3.1) 

where 𝑋𝑅 and 𝑋𝐿are parameters for the right and left limbs We thus used SI for four 

gait parameters– contact time (SItc), swing time (SIts), duty factor (SIdf) and peak swing 

velocity (SIps), based on their evolution with acute fatigue during running (Apte et al., 

2021; Prigent et al., 2022). SI was also computed for the gait cycle time to check its va-

lidity, as the cycle time should present a SI close to zero. 

 

 
Figure 3.3 Flowchart for the estimation of secondary gait metrics, with the steps for calculat-

ing the symmetry, variability, and complexity of the extracted gait parameters shown in 

green, blue, and red, respectively 

To characterize the variability and complexity of stride, gait cycle time was used as a 

parameter of interest. This choice allowed comparison with results from previous stud-

ies (Meardon et al., 2011; Mo & Chow, 2018a) on prolonged running. To assess the 

stride-to-stride variability and quality of strides over a given time, coefficient of varia-

tion (CV) is an efficient metric (Meardon et al., 2011). The race was therefore divided 

into 25 segments of equal duration and CV of gait cycle time was computed for each of 

these segments. However, two distinct signals can show the same variance in the form 

of CV and thus we need to study them further. In order to fully capture the nature of 

the evolution of the cycle time over the race, the complexity of the stride (Mo & Chow, 

2018a) was analyzed. Complexity can be defined as the amount of nonlinear infor-

mation that a time series conveys over time. A reliable metric to assess the complexity 

of gait is the α-DFA coefficient (Damouras et al., 2010), that can be computed with 

Detrended Fluctuation Analysis (DFA). The DFA analysis was performed over a slid-

ing window of size 500 strides, with an increment of 100 strides. A random DFA analy-

sis was also performed to validate the procedure by shuffling the input values and 

check that obtained vector showed no memory (α-DFA coefficient around 0.5). 

3.3.2.3 Characterization of trunk motion 

To investigate the orientation of the trunk and its evolution throughout the race, two 

metrics were computed –𝑎𝑣𝐴𝑃: the ratio of the acceleration along the anterior-posterior 

direction and the running speed (𝑣) and 𝑎𝑣𝑀𝐿: the ratio of the acceleration along the 

medio-lateral direction and the running speed. Normalization with speed was carried 

out to investigate the response to fatigue and not the secondary effects of the change in 

speed. The race was split into windows of 30 seconds and all the stability and smooth-

ness metrics were computed on each window. The acceleration along the mediolateral 



3.3 Methods 

61 
 

axis (𝑎𝑀𝐿) was selected for the computation of stability and smoothness metrics (Figure 

3.4), since the acceleration along this axis presents a clear and substantial change with 

fatigue (Apte et al., 2021; Provot et al., 2021). Furthermore, gait velocity (v) was extract-

ed from the GNNS for the estimation of smoothness.  

 

 
Figure 3.4 Flowchart of the trunk movement characterization process, with the steps for 

stability and smoothness computation indicated in blue and green respectively 

Out of the variety of metrics used to quantify stability present in literature (Bruijn et 

al., 2013), three different methods (Figure 3.4) were selected to quantify stability. First 

method was the computation of the root mean squared of the acceleration (RMSA) on a 

window of 1 stride (Schütte et al., 2015). Next, spectral entropy (SE) was used to quan-

tify the regularity of fluctuations within the acceleration profile (Schütte et al., 2015). 

Finally, the autocorrelation coefficient of the acceleration signal with a lag of one step 

(RP) and one stride (RD) was estimated. Autocorrelation quantifies the similarity of each 

step (or stride) compared to the others (Cushman, 2010). Loss of stability is indicated 

by an increase in RMSA and SE, and a decrease in that of RP and RD. Smoothness was 

also evaluated with three different metrics (Figure 1). First, jerk cost (JC), which quanti-

fies the change in the jerk profile and thus loss of smoothness due to rapid changes in 

acceleration (Kiely et al., 2019). Additionally, the spectral arc length (SPARC) (Bal-

asubramanian et al., 2015) on the velocity profile was computed, which is arc length of 

the Fourier magnitude spectrum within an adaptive frequency range. Smoother 

movements tend to have less intermittencies and thus a higher SPARC measure. Lastly, 

smoothness was quantified using the inversed number of peaks (IPV) (Brooks et al., 

1973) on the velocity profile, where smooth motion tends to have less peaks. 

3.3.3 Statistical analysis 

Four statistical analyses (Figure 3.5) were conducted 

to address the following questions:  

1. How do parameters evolve over the race? 

2. How do parameters evolve over progression of 

perceived fatigue based on ROF values? 

3. At which level of perceived fatigue (ΔROF), are 

the parameters significantly affected? 

4. Are there noticeable differences between fast and 

slow runners in terms of fatigue progression and the 

evolution of parameters? 

Details of each analysis are provided below, with 

the statistical significance set at p ≤ 0.05. All analyses 

Figure 3.5 Statistical analysis 

procedure where the biome-

chanical parameters and the 

ROF values are used as inputs 
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were performed with MATLAB R2020a (The MathWorks, USA).  

3.3.3.1 Feature computation 

Following the extraction of parameters, the entire race was segmented into eight peri-

ods, each period corresponding to 12.5% of the race. The eight segments were selected 

to ensure the presence of (at least) one ROF value per segment. For every segment, the 

median and interquartile range (IQR) were computed for each biomechanical and 

physiological parameter. As the metrics are highly subject-dependent, the values were 

normalized by dividing the median value of each segment by the median value of a 

reference segment. The race segment with the highest running speed was used as ref-

erence to normalize. 

3.3.3.2 Evolution with race and ROF values 

In order to investigate the effects of race progression on parameters, the Friedman test, 

a non-parametric test to compare three or more repeated measurements, was used to 

compare segments S1 (begin), S5 (middle), and S8 (end) (Eisinga et al., 2017). The effect 

size was computed as: 

𝑒𝑠𝐹
𝜒

𝑛 𝑘
(3.2)  

 

Where 𝑒𝑠𝐹 is the Kendall’s W test value, 𝜒2 is the Friedman test statistic value, n is the 

sample size, and k is the number of measurements per subject (Tomczak & Tomczak, 

2014). Kendall uses Cohen’s interpretation guidelines of 0.1 (small effect), 0.3 (moder-

ate effect), and above 0.5 as a strong effect (Abdi, 2007). In addition, pairwise compari-

sons (S1 vs. S5; S5 vs. S8 and S1 vs. S8) using the non-parametric Wilcoxon signed-rank 

test were computed. The effect size was defined as: 

 

𝑒𝑠𝑤
𝑍
𝑁

 (3.3) 

 

where Z is the standardized Z-score and N is the total number of observations on which 

Z is based. To estimate the effects of fatigue based on the perceived fatigability, seg-

ments with the lowest (L), medium (M), and highest (H) recorded ROF values were 

compared. These fatigue levels were considered individually for each participant and 

pooled into three different groups (L, M, H) to overcome inter-subject variability in 

fatigue perception. When the same ROF value was observed on several segments, me-

dian parameter value was used for those segments. The Friedman and the Wilcoxon 

signed-rank test (L vs. M; M vs. H and L vs. H) were utilized as previously explained. 

Bonferroni correction was not applied for any comparison, since a small number of 

tests were performed (Armstrong, 2014).  

3.3.3.3 Onset of change with ΔROF level 

The goal of this analysis was to investigate the onset of the biomechanical and physio-

logical changes in response to perceived fatigability, measured as ROF. To overcome 

inter-subject variability in ROF baseline values, the ROF differences between segments 

(ΔROF) was computed, by subtracting each ROF value by that at the first segment 

(baseline). Since participants did not typically report a linear increase of fatigue, a reso-

lution of ΔROF = 1 is inappropriate and would lead to multiple missing values. Conse-

quently, three states were assumed, by combining ΔROF 1 and 2, 3 and 4, and all val-
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ues ≥ 5.  When the same ΔROF values were obtained for several segments, the median 

parameter value over those segments was used. Finally, the Friedman and Wilcoxon 

signed-rank tests were used for comparison, where each ΔROF > 0 was compared with 

ΔROF = 0 (i.e., 0 vs. [1-2]; 0 vs. [3-4]; and 0 vs. ≥ 5).  

3.3.3.4 Differences in runners according to performance 

A linear mixed-effects (LME) model was applied to investigate the influence of per-

formances (i.e., fast vs. slow runners) on biomechanical and physiological metrics. The 

participants were divided into two groups based on their performance, ‘fast’ for five 

fastest runners (race time < 90 min) and ‘slow’ for the five slowest runners (race time > 

105 min). A 3-levels LME model was designed with the ΔROF, the performance, and 

the interaction between ΔROF and performance as the fixed effects (“ΔROF * perfor-

mance” in eq. 5). Then, a random effect (intercept and slope) on the subjects was de-

fined (“(ΔROF|subject)” in eq. 5). As the LME model is robust to missing values, the 

ΔROF was not grouped into three categories as done in previous section. The three 

levels correspond to the following models:  1: within-subject model; 2: within-group 

model (fast vs. slow); and 3: between-group model. We used the equation below as 

input to the ‘fitlme’ Matlab function, with the ‘responder’ corresponding to a parame-

ter, and the ‘performance’ corresponding to the fast and slow groups: 

 

 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟 𝛥𝑅𝑂𝐹 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝛥𝑅𝑂𝐹 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 (3.4) 

Estimates of the model, p-value, and 95% confidence interval (CI) values of the fixed 

effects (intercept and slope) for both fast and slow groups were used to understand 

significant effects. Statistical significance was accepted for p ≤ 0.05 and if the range of 

the 95% CI did not include 0. In addition, the coefficient of determination (conditional 

𝑅𝑐
2), was used to assess the total variance explained by both fixed and random effects.  

 

3.4 RESULTS 

All the thirteen participants (11 males, 2 females) were able to run until the end of the 

race (race time: 98.4 ± 12.3 min) without substantial walking bouts, and provided in-

formation about their ROF before race/after warm-up (3 ± 2) and after race (9 ± 1). 

3.4.1 Evolution with race and ROF values 

The influence of fatigue on parameters, based on both race progression and ROF val-

ues, is summarized in Figure 3.6, Figure 3.7, Figure 3.8 and Table 3.1. Actual values 

(median and IQR) of the parameters are reported in the supplementary material8. Run-

ning a half-marathon affected spatiotemporal metrics early in the race, mainly between 

segments 1 and 5. The 𝑡𝑐, 𝐷𝑓, and the 𝑎𝐴𝑃  values significantly increase during the race 

(p < 0.001, 𝑒𝑠𝐹 > 0.5). The FSA (p < 0.001, 𝑒𝑠𝐹 > 0.5) and the 𝑘𝑣𝑒𝑟𝑡 (p < 0.05, 𝑒𝑠𝐹 ∈ (0.1, 

0.3]) significantly decrease with high and low effect sizes respectively. Though the sta-

tistical tests reveal that the swing time and the peak swing vel. did not change signifi-

 

8 https://figshare.com/articles/dataset/Table_1_Concurrent_Evolution_of_Biomechanical_and_Physiologica

l_Parameters_With_Running-Induced_Acute_Fatigue_XLSX/19160477 
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cantly when comparing all three segments, significant differences are visible on the 

pairwise tests.  

 

 
Figure 3.6 Parameters with a significant change with the race segments (in blue) and/or rat-

ing of fatigue (in green) with * p ∈ [0.01,0.05), ** p ∈ [0.001,0.01), and *** p < 0.001. S1, S5, 

and S8 represent the race segments 1, 5, and 8, and L, M, and H the low, medium, and high 

ROF values 

The 𝑡𝑐, 𝜔𝑠, the 𝑘𝑣𝑒𝑟𝑡, the 𝐷𝑓, and the 𝑎𝐴𝑃  were altered at the beginning of the race as 

indicated by the S1|5 significant results (p ∈ [0.001, 0.01)). Only the FSA was altered 

during the second half of the race (p ∈ [0.001, 0.01)). Comparisons across ROF values 

showed similar trends for the spatiotemporal parameters as those based on race pro-

gression. Remarkably, we observed slightly higher effect sizes across race segments 

than across ROF values for all the parameters with significant changes.  

 

 

Figure 3.7 Evolution of the secondary gait parameters with race progression. A, B, and C 

show the actual change with race for SItc, CV, and α-DFA for cycle time 

The overall asymmetry increased for all participants along the race; Figure 3.7A shows 

the trend for SItc and similar trends were observed for SIts, SIdf, and SIps. Except for 

SIps, all SI metrics showed a significant increase at the end of the race and at high per-

ceived fatigue levels (Table 3.1). Unlike symmetry, the variability and complexity of 
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the gait changed non-linearly throughout the race after an initial reduction in CV and 

α-DFA (Figure 3.7B and C). However, the complexity did not show any significant 

change during the statistical analysis.  

 

 

Figure 3.8 Evolution of stability and smoothness with race progression. A and B show the 

actual change and linear change with race progression for RMSA, and C and D for JC (jerk 

cost) 

RMSA showed an increasing trend (Figure 3.8A and B) and a significant change (Table 

3.1) at the start of the race but did not change significantly as the race continued. Simi-

lar results were seen for RP, RD, and SE, with significant reduction in stability from low 

to medium ROF values. However, this reduction was not sustained further. Same 

trends were seen for the JC, with its magnitude increasing with the race progression 

and perceived fatigue (Figure 3.8C and D). This is also reflected in the statistical analy-

sis (Table 3.1), with significant differences between S1:S5 and S1:S8.  

3.4.2 Onset of change 

Table 3.1 also provides the evolution of the biomechanical and physiological parame-

ters across fatigue scores, where ΔROF values are pooled in four states (i.e., 0, [1,2], 

[3,4], and ≥5). Unsurprisingly, parameters showing significant alterations with race 

progression and ROF values, also present significant changes in ΔROF. However, these 

results provide a deeper understanding of the onset of change based on the perceived 

fatigability. The spatiotemporal biomechanical parameters, 𝑡𝑐 , 𝐷𝑓 , 𝑘𝑣𝑒𝑟𝑡  , and 𝑎𝑣𝐴𝑃 

show significant changes at all fatigue states including ΔROF 1 and 2. Then, a signifi-

cant decrease of 𝑝𝑠 appears at moderate fatigue states (ΔROF = [3-4]). Finally, FSA and 

𝑡𝑠 values became significantly lower only at high fatigue scores (ΔROF > 5). The in-

creasing trend for asymmetry was also observable for other parameters, with SIts in-

creasing significantly (Table 3.1) for all three ΔROF levels. Though CV did not show 

any significant changes with the race, it showed a significant change at low perceived 

fatigue, despite no significant change in speed. The α-DFA did not present any signifi-

cant differences with increasing ΔROF levels. RMSA increased significantly at low 

ΔROF values but not for ΔROF ≥ 5 (Table 3.1). RP, RD, and SE did show exhibit signifi-

cant changes at different ΔROF levels. All participants showed a positive slope for the 

relation between JC and ΔROF (Figure 3.12B) and significant differences at higher lev-

els of fatigue (Table 3.1). The increase in ROF and ΔROF scores throughout the race for 

all participants is presented in Figure 3.9 and shows an important inter-subject varia-

bility for the median ± IQR values at baseline (ROF(S1) = 4 ± 2). 
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Table 3.1 Effect size results for the statistical analysis A1, A2, and A3 using Friedman (F) 

test and pairwise Wilcoxon signed-rank (WSR) test. S1, S5, and S8 indicate race segments 1, 

5, and 8, whereas L, M, and H denote the low, median, and high ROF values. For significant 

results, effect size of (0.1,0.3] was considered low, (0.3,0.5] as medium, and >0.5 as high for 

both W for F test and r for WSR test. The significance was set at p<0.05, with * for p ∈ 

[0.01,0.05), ** for p ∈ [0.001,0.01), and *** for p < 0.001. Bold indicates the effect size (ES) for 

significant differences. 

 Across race segments Across ROF Across ΔROF 

 F test 

(𝑒𝑠𝐹) 

WSR test (𝑒𝑠𝑊) F test 

(𝑒𝑠𝐹) 

WSR test (𝑒𝑠𝑊) F test 

(𝑒𝑠𝐹) 

WSR test (𝑒𝑠𝑊) 

Parameter S1|5 S5|8 S1|8 L|M M|H L|H 0|[1,2] 0|[3,4] 0|≥5 

 𝒕𝒄 0.55*** 0.62** 0.02 0.58** 0.41** 0.56** 0.34 0.57** 0.61*** 0.58** 0.61** 0.61** 

 𝒕𝒇 0.17 0.34 0.16 0.28 0.06 0.20 0.17 0.28 0.10 0.31 0.32 0.32 

𝒕𝒔  0.18 0.31 0.45* 0.39* 0.17 0.10 0.45* 0.43* 0.10 0.31 0.28 0.43* 

𝒕𝒈 0.11 0.20 0.36 0.01 0.08 0.21 0.34 0.02 0.06 0.24 0.15 0.03 

Cad. 0.11 0.20 0.36 0.02 0.08 0.21 0.34 0.02 0.04 0.22 0.14 0.03 

FSA 0.57*** 0.27 0.62** 0.43* 0.42** 0.20 0.53** 0.49* 0.39** 0.29 0.51 0.47* 

FEA 0.02 0.28 0.12 0.21 0.00 0.06 0.17 0.20 0.03 0.17 0.25 0.19 

𝒑𝒔 0.17 0.43* 0.27 0.40* 0.25* 0.31 0.29 0.36 0.35** 0.35 0.57** 0.40* 

𝒌𝒗𝒆𝒓𝒕 0.26* 0.57** 0.08 0.43* 0.19 0.54* 0.09 0.43* 0.29* 0.58** 0.56** 0.47* 

𝑫𝒇  0.54*** 0.62** 0.13 0.58** 0.37** 0.55** 0.38 0.58** 0.69*** 0.60** 0.61** 0.60** 

v 0.08 0.25 0.32 0.21 0.03 0.08 0.05 0.10 0.06 0.10 0.16 0.10 

SItc 0,11 0,28 0,11 0,42* 0,32* 0,08 0,49* 0,46* 0,17 0,21 0,25 0,38* 

SIts 0,31*  0,17 0,46* 0,28* 0,23 0,40 0,49* 0,31* 0,51* 0,42* 0,47* 

SIdf 0,11 0,34 0,15 0,46* 0,17 0,12 0,45* 0,44* 0,11 0,30 0,25 0,38* 

SIps 0,03 0,36 0,13 0,30 0,08 0,46* 0,01 0,32 0,23 0,47* 0,47* 0,34 

CV 0,06 0,40 0,25 0,17 0,29* 0,45* 0,38 0,06 0,14 0,49* 0,28 0,04 

α-DFA 0,07 0,10 0,11 0,11 0,04 0,16 0,11 0,13 0,02 0,17 0,12 0,12 

avML 0.09 0.32 0.23 0.24 0.01 0.20 0.06 0.13 0.05 0.15 0.19 0.24 

avAP 0.79*** 0.62** 0.09 0.62** 0.50** 0.58** 0.01 0.61** 0.44*** 0.58** 0.61** 0.61** 

RP 0,11 0,42* 0,01 0,36 0,18 0,51* 0,08 0,35 0,05 0,34 0,39* 0,35 

RD 0,11 0,35 0,02 0,35 0,10 0,46* 0,06 0,34 0,05 0,35 0,32 0,36 

SE 0,08 0,37 0,12 0,24 0,10 0,38* 0,05 0,17 0,05 0,31 0,25 0,18 

RMSA 0,45** 0,56** 0,27 0,53** 0,20 0,46* 0,23 0,4* 0,32** 0,56** 0,56** 0,27 

JC 0,29* 0,42* 0,25 0,54** 0,36* 0,32 0,4* 0,54** 0,24* 0,25 0,44* 0,53** 

SPARC 0,01 0,01 0,12 0,03 0,01 0,11 0,09 0,03 0,01 0,02 0,10 0,02 

IPV 0,13 0,30 0,39 0,29 0,24 0,36 0,40 0,24 0,06 0,23 0,00 0,07 
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Figure 3.9 Change in perceived fatigability (ROF) with race progression 

3.4.3 Differences according to performance 

The results of the influence of performances (i.e., fast vs. slow runners) on biomechani-

cal and physiological metrics, based on the` LME model, are presented in Figure 3.10.  

 

 
Figure 3.10 Results of the LME models for the response of the gait parameters, based on the 

fast and slow groups 

Only a subset of metrics showing significant differences between groups on fixed-

effects, intercept, or slope, are presented. Interestingly, the spatiotemporal biomechani-

cal parameters showed significant differences in the intercept values between fast and 

slow runners, while the slopes were similar. Compared to fast runners, the slower 

group presented a higher 𝑡𝑐, 𝐷𝑓, and FSA, and lower 𝑘𝑣𝑒𝑟𝑡 (Figure 3.10) throughout the 

race. The estimate, p-values, 95% confidence interval (CI), and conditional 𝑅𝑐
2 of the 

fixed effects (intercept and slope) for both fast and slow groups are reported in the 

supplementary materials9. 

 

9 https://figshare.com/articles/dataset/Table_1_Concurrent_Evolution_of_Biomechanical_and_Physiologica

l_Parameters_With_Running-Induced_Acute_Fatigue_XLSX/19160477 
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The increase of asymmetry is higher for the fast runners halfway through the race and 

only they showed an increase in SItc for change in perceived fatigue (Figure 3.11A). 

Fast group showed a consistently lower CV than slow group (up to 20%) throughout 

the race and with ΔROF (Figure 3.7B and Figure 3.11B) but presented an increase in CV 

at the end of the race. α-DFA decreased for fast and slow groups till around 40% of the 

race (Figure 3.7C), followed by a sudden increase for slow group and a cyclic change 

for fast group. This is also reflected in the linear trend for ΔROF (Figure 3.11C), where 

α-DFA is increasing for slow runners, and decreasing for fast runners. However, the 

complexity did not show any significant change (Table 3.1) in the statistical analysis. 

 

 
Figure 3.11 Evolution of the secondary gait parameters with perceived fatigability. A, B, 

and C show the linear trends for SItc, CV, and α-DFA for cycle time 

RMSA presented a good ability to differentiate between experience and amateur run-

ners. For ΔROF (Figure 3.12A), it showed difference in slopes for the slow and fast 

groups, with fast runners showing a moderate increase and slow runners showing a 

decline. RP, RD, and SE did not differentiate well between fast and slow runners. JC 

presented a sudden increase around 40% of the race and continued to increase 

throughout race for the slow group (Figure 3.8C). However, for the fast group, it barely 

increased after halfway point of the race. The continued increase for slow runners is 

reflected in the ROF comparison (Table 3.1), with significant different for M:H and L:H 

groups. Slow group presented a considerably larger slope with ΔROF (Figure 3.12B) 

but a similar intercept as fast group for JC for the LME analysis.  

 

 
Figure 3.12 Evolution of stability and smoothness with perceived fatigability. A and B show 

the linear change for RMSA and JC, respectively 

  



3.5 Discussion 

69 
 

3.5 DISCUSSION 

The goal of the present study was to measure concurrently and continuously the re-

sponse of the biomechanical and psychological parameters to acute fatigue during a 

half-marathon run. The influence of fatigue on gait spatiotemporal parameters and 

secondary gait parameters and the differences between the fast and slow runners is 

discussed in section 3.5.1 and 3.5.2, respectively. The evolution of trunk motion with 

ROF and race progression, and the comparison between the fast and slow group is dis-

cussed in section 3.5.3. 

3.5.1 Gait spatiotemporal parameters and perceived fatigue 

Concerning the biomechanical parameters, our analysis confirms previous results 

(Apte et al., 2021; Meyer et al., 2021b), showing a stable gait cycle time, an increase in 

contact time and duty factor, as well as decreases in pitch angle, swing time and verti-

cal stiffness. The alteration in running biomechanics observed in the present study re-

sults from strategies to compensate for neuromuscular fatigue (Apte et al., 2021). Verti-

cal stiffness represents the global response of spring-mass model to acute fatigue, thus 

rendering it crucial to the understanding of biomechanical changes (J.-B. Morin et al., 

2005). Decreased vertical stiffness indicates an increase in the vertical motion of the 

COM and/or a decrease in the peak vertical GRF. The decrease in vertical stiffness is 

consistent with the observations in shorter time trials (800 m) but not for a longer 

mountainous ultramarathon race (330 km) distance (Degache et al., 2016).  However, 

these comparisons must remain anecdotal due to the difference in running conditions, 

intensities and in methods for stiffness estimation. Except the FSA, the above-

mentioned biomechanical alterations appeared during the first half of the race and 

maintained throughout the race (Table 3.1).  

 

Furthermore, our results demonstrate that the gait parameters are affected by a lower 

increase in fatigue (Table 3.1). Moreover, once the biomechanical parameters start 

changing, the participants find it difficult to recover the deteriorating running tech-

nique. Interestingly, some biomechanical parameters are affected from the first sensa-

tion of fatigue (ΔROF [1,2]), suggesting a correlation between perceived fatigue and 

neuromuscular impairments; these impairments are known as the underlying mecha-

nism responsible for running technique alteration. This observation is in line with oth-

er studies suggesting that peripheral muscle fatigue would be the constantly regulated 

variable (Calbet, 2006), with a continuous sensory feedback coming from working 

muscles to the central nervous system  (Esteve-Lanao et al., 2008). Neuromuscular fa-

tigue seems to be the dominant mechanism influencing perceived fatigue during the 

initial portion of the run. 

 

These findings are consistent with previous studies demonstrating that a large amount 

of muscle activation impairments is obtained early on a self-paced exercise (Azevedo et 

al., 2019). The widely recognized critical point associated to fatigue in marathon race, 

known as “hitting the wall”, and characterized by a late-race slowdown (Buman et al., 

2008), was not observed when performing group statistics in our study. The fact that 

most of our participants were not ‘hitting the wall’, shown by a reasonably stable run-

ning speed, might explain why we do not observe additional significant alterations 
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(Table 3.1) of the biomechanical parameters during the second part (between S5 and 

S8). We notice only few differences for parameter trends based on ROF (low, medium, 

high), compared to race progression. The main difference resides in smaller effect sizes 

for A2 statistical analysis, which might be explained by high inter-subject variability in 

perceived fatigue. This was caused by the pooling in A2 statistics, which led to the pa-

rameters at highest ROF of highly fatigued runners being pooled with the parameters 

at highest ROF of moderately fatigued runners. Thus, it seems relevant to compute 

ΔROF as a fatigue score for assessing acute fatigue. Furthermore, we did not necessari-

ly find a linear increase of ROF, in contrast to earlier findings during in-laboratory in-

cremental tests (Gronwald et al., 2018). This underlines the importance of measuring 

perceived fatigue during a running event that involves pacing strategies, as the differ-

ence in pacing strategies was clearly visible in fast and slow groups. 

3.5.2 Secondary gait parameters 

The overall asymmetry increased for all participants along the race. While the range of 

increase in overall asymmetry (~10%) is in accordance with the results from literature 

(Radzak et al., 2017), a full race profile for asymmetry has been presented here, which 

complements the existing pre-post results. The increase of asymmetry is higher for the 

fast runners halfway through the race; they typically have a lower tc and df, which can 

accentuate the dominant leg effect. Since velocity (v) (Table 3.1) did not show any sig-

nificant changes, we can conclude that acute fatigue led to the observed increase in 

asymmetry. The values and trends for variability (CV) were consistent with literature 

(Meardon et al., 2011), albeit in the context of a real outdoor competition. Faster run-

ners exhibited lower CV, which coincides with the observations from laboratory stud-

ies (Mo & Chow, 2018a). This is likely because fast runners are more experienced with 

managing the regularity of the gait and adjusting their pacing strategy accordingly. 

The obtained values for α-DFA are in the similar range as those previously observed in 

a lab protocol (Mo & Chow, 2018a), with the differences in profiles for fast and slow 

runners possibly arising out of the differences in respective pacing strategies adopted 

by them (Mo & Chow, 2018a). This is also reflected in the linear trend for ΔROF (Figure 

3.11C), where α-DFA is increasing for slow runners, and decreasing for fast runners. 

The decrease in CV and α-DFA at low ΔROF levels (beginning of the race) is consistent 

with the significant changes for spatiotemporal parameters at low ΔROF levels (Table 

3.1). The difference in results for secondary gait parameters with race progression and 

ΔROF highlights the relevance of the measurement of perceived fatigue during out-

door running protocols. 

3.5.3 Progression of the trunk motion 

In addition to lower body biomechanical changes, we observed a significant increase in 

the trunk anteroposterior acceleration, most likely linked with a fatigue of the lower 

back postural muscles. RMSA showed an increasing trend with race progression for 

both fast and slow groups (Figure 2A, B), which is consistent with the findings from 

Schütte et al. (Schütte et al., 2015). For ΔROF, it showed difference in slopes for the 

slow and fast groups, with fast runners showing a moderate increase and slow runners 

showing a decline. Participants in slow group likely have a lower experience in manag-

ing the level of fatigue compared to those in the fast group. Thus, they might adopt a 



3.5 Discussion 

71 
 

strategy of lowering their overall acceleration at higher ΔROF to manage their dynamic 

stability (Provot et al., 2021), leading to a decline in the RMSA. It also increased signifi-

cantly at low ΔROF values but not for ΔROF ≥ 5, which can also be attributed to the 

reduction in RMSA for the slow group. This change at the beginning of the race coin-

cides with results for primary gait parameters, where significant biomechanical chang-

es were observed soon after the beginning of the race. Differing trends were observed 

for stability based on the choice of metric, with RMSA presenting the most consistent 

trends. RMSA depends on the running velocity, with fast runners showing a higher 

RMSA than slow runners at the beginning of the race. However, any intra-participant 

significant changes in velocity (v) (Table 3.1) were not observed. Thus, RMSA provides 

a clear indication that stability of the trunk decreases with perceived fatigue, more so 

for amateur runners. 

 

All groups showed a positive slope for the relation between JC and ΔROF (Figure 2F), 

with slow group presenting a considerably larger slope but a similar intercept as fast 

group. The increase in JC points to a reduction in smoothness of movement and conse-

quently a higher energy cost of running (Kiely et al., 2019; Provot et al., 2021; Schütte et 

al., 2018). These results suggest that faster runners tend to better manage the energy 

costs of running and do not experience the cascading effect (Figure 3.8C) of increased 

energy costs on running smoothness and decreased running smoothness on increased 

energy costs. Moreover, unlike stability, slow runners seem unable to recover the 

smoothness of movement with reduced overall acceleration. Compared to JC, SPARC 

measures and IPV did not show any significant change and could not differentiate well 

between FG and SG. Whereas JC was computed on aML, these metrics were calculated 

using v, where the velocity profile did not change significantly throughout the race. 

Furthermore, SPARC value depends on the choice of cut-off frequency (Balasubrama-

nian et al., 2015), which might have affected the results. Thus, we observed that JC 

quantified well the quality of the continuality of movements and remained independ-

ent of amplitude of speed (Kiely et al., 2019). Apart from those specific observations, it 

can be observed, generally, that the variance (on all results) for slow runners is higher 

than for fast runners. 

3.5.4 Limitations 

The estimation of FSA can be rendered less accurate for participants with a forefoot 

strike (Falbriard et al., 2020), which was the case with one participant in the fast group. 

The sample size in the study is limited to 13 subjects and is too low to conclude any 

statistical results for between-group comparison of fast and slow runners. However, 

the clear trends for each group could be relevant for a future between-group study 

design. In addition to a bigger sample size, background data about the participants, 

such their VO2max values, sleep quality, stress, and emotional health can improve the 

interpretation of the results. Furthermore, improving the resolution of the collection of 

ROF samples can enable a finer analysis of the evolution of perceived fatigability and 

its influence on the biomechanical and physiological parameters. Finally, the perceived 

fatigability can be assessed more holistically by also including the measurement of the 

valence, arousal, flow state, and action crisis (Venhorst et al., 2018). While this addi-
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tional measurement was not feasible during the race, a pre/post assessment could pro-

vide a more complete understanding of the affective, sensory, and cognitive processes. 

3.6 CONCLUSION 

This work is one of the first to measure the evolution of running biomechanics concur-

rently and continuously in response to perceived acute fatigue during a half-marathon 

run. The biomechanical parameters presented a significant alteration even with a small 

change in perceived fatigue for all levels of runners. This study showed that fatigue 

leads to an increase in asymmetry of gait and influences variability and complexity of 

gait cycle time. Faster runners showed a lower variability than slower runners, but a 

higher increase in asymmetry with fatigue. A significant decrease for stability and 

smoothness of trunk movement was observed with progression in the race and per-

ceived fatigue. The metrics led to different trends, with jerk cost and RMS acceleration 

presenting reliable results for smoothness and stability, respectively. Assessment with 

respect to perceived fatigue provided different results than that with race progression 

for some metrics. Less experienced runners were able to slightly recover the stability of 

their trunk movement but not the smoothness.  These results indicate the ability of 

faster runners to better perceive their physiological limits and hint towards a higher 

sensitivity of perceived fatigue to changes in the running gait. Assessment with respect 

to perceived fatigue provided different results than that with race progression for gait 

variability This study highlights measurable influences of acute fatigue, which can be 

studied only through concurrent measurement of biomechanical and psychological 

facets of running in real-world conditions. It may serve as a springboard for the design 

of studies that measure the association of biomechanical and physiological parameters 

and its evolution with acute fatigue. Use of such wearable sensor setups may further 

allow a more personalized approach to fatigue analysis and help runners to optimize 

their pacing strategies by understanding their running technique better. 
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4 ESTIMATION OF RUNNING POWER WITH 

FOOT-WORN IMUS 

 

In addition to the evolution of running technique with acute fatigue, training as-

sessment can be augmented by the evaluation of running power, which indicates 

the intensity of the run. Feedback of ‘power’ during running is a promising tool 

for training and determining pacing strategies. However, current power estima-

tion methods show low validity and are not customized for running on different 

slopes. Towards this, three machine-learning models were developed to estimate 

peak mechanical power for flat, uphill, and downhill running using gait spatio-

temporal parameters, accelerometer and gyroscope signals extracted from foot-

worn IMU. The prediction was compared to reference power obtained during 

running on treadmill with an embedded force plate. For each model, an elastic 

net and a neural network was trained and validated with a dataset comprising of 

34 active adults, over a range of speeds and gradients. For the uphill and level 

running, the concentric phase of gait cycle was considered, and the neural net-

work model led to the lowest error (median ± interquartile range) of 1.7 ± 12.5 

% and 3.2 ± 13.4 %, respectively. The eccentric phase was considered relevant 

for downhill running, wherein, the elastic net model provided the lowest error of 

1.8 ± 14.1%. Results demonstrated a similar performance across a range of vari-

ous speed/slope running conditions. The findings highlighted the potential of us-

ing interpretable biomechanical features in machine learning models for estima-

tion of power. The simplicity of the models makes them suitable for implementa-

tion on embedded systems with limited processing and energy storage capacity. 

The proposed method meets requirements for applications needing accurate near 

real-time feedback and complements existing gait analysis algorithms based on 

foot worn IMUs.  

  

The contents of this chapter are under review as an original research article in the 

IEEE Journal of Biomedical and Health Informatics. 

Contributions: designed and implemented the estimation method; contributed to 

the analysis and interpretation of the data; drafted the manuscript. 
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4.1 INTRODUCTION 

Mechanical power generated during running is a measure of the intensity of the run. 

As an indicator of intensity, power can be used to augment external load monitoring 

for training programs and to develop pacing strategies for competitions (Aubry et al., 

2018). A reduction in running power for a constant running speed indicates a decrease 

in aerobic power and thus an improvement in running economy (Cerezuela-Espejo et 

al., 2018; Taboga et al., 2021). Internal factors such as fatigue, stress, hydration, etc., or 

environmental factors such as humidity, temperature, presence of competitors, etc., can 

influence the perception of internal load and heart rate response (Halson, 2014). Since 

these factors do not directly affect the running power, it can serve as a useful addition-

al metric for monitoring training load during exercise (Paquette et al., 2020). Unlike 

heart rate, which is affected by cardiac drift and has a higher response latency (Billat et 

al., 2020; Coyle & González-Alonso, 2001), power provides an immediate measure of 

running intensity and can thus potentially help optimize pacing strategies. Additional-

ly, measurement of power can help in detecting early decrease in running economy, 

indicating fatigue onset. In cycling, the widespread use of mechanical power as a tool 

for optimizing performance and training adaptation has been facilitated by the availa-

bility of reliable power meters (Erp et al., 2019; Foster et al., 2017). Since crankshaft 

force can be measured with a strain gage and speed with a wheel sensor, mechanical 

power can be measured directly with sensors integrated into the bicycle design (Pass-

field et al., 2017). However, such a direct measurement of force and speed during real-

world running is challenging.  

 

Mechanical power is defined as the time derivative of mechanical work or the rate at 

which work is performed. Thus, quantification of mechanical work during running 

provides a way for estimating the power. Different in-lab approaches have been pro-

posed to measure the total mechanical work produced by the body and derive the 

power for level running over a range of speeds (Cavagna et al., 1964; Cavagna & Ka-

neko, 1977; Rabita et al., 2015; van der Kruk et al., 2018; Williams & Cavanagh, 1987). 

Mechanical work is classified into two types: internal work, that is, the work done in 

moving the limbs with respect to the center of mass (CoM) of the body and external 

work, which results from the movement of CoM of the body with respect to the envi-

ronment (Cavagna & Kaneko, 1977). Limb motion is usually measured with marker-

based motion tracking systems, whereas CoM kinetics and ground reaction forces 

(GRF) additionally require the use of force plates. When comparing estimated mechan-

ical power at similar speeds, existing approaches based on these instrumentation re-

sulted in different findings and an universally accepted approach has not been estab-

lished (Arampatzis et al., 2000; van der Kruk et al., 2018; E. M. Winter et al., 2016). The 

inclusion of GRF and running speed in the estimation of work and power, though, im-

proved accuracy and matched the expected increase in power due to an increase in 

running speed (Arampatzis et al., 2000). The incline of the running surface may influ-

ence the speed and the GRF, and possibly the running power (Wickler et al., 2000). 

Therefore, the GRF, running speed, and incline of the running surface can be consid-

ered together as a reference system for the estimation. However, accurate measurement 

of GRF with force plates is impractical in real-world running conditions.  
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Wearable inertial measurement units (IMU) have been used to estimate vertical GRF 

and peak anteroposterior GRF (Neugebauer et al., 2014; Thiel et al., 2018; Wouda et al., 

2018). However, the complete anteroposterior GRF profile is essential for estimation of 

mechanical work (and power) involved in push-off and braking phases (Arellano & 

Kram, 2014). Furthermore, these estimations of GRF have been validated for level run-

ning and may not show similar performance for uphill and downhill conditions. Of the 

commercially available body-worn devices, studies recommend the foot-worn Stryd 

device due to its high repeatability of measurements and its concurrent validity (r ≥ 

0.911, SEE ≤ 7.3%) with respect to the VO2 values (Cerezuela-Espejo et al., 2018). One 

study reports the power estimated by the Stryd device for different treadmill speeds 

during level running to reflect (mean difference: −1.04 Wkg-1, Limits of agreement: -2.3 

to 0.18 Wkg-1) the reference power measured as a dot product of horizontal (in the di-

rection of running) and vertical forces and velocity respectively, obtained from a force 

plate (Taboga et al., 2021). Another study, however, reports an underestimation of 

power from the Stryd device (Imbach et al., 2020). Further, this system has not been 

validated for running on slopes, which is an important requirement for trail running or 

long-distance races. Finally, the estimated power output has shown inadequate chang-

es in response to intentional changes in running technique and temporal parameters 

(Baumgartner et al., 2021), such as step frequency (±10% change), contact time (~ -20 

ms), and arm swing (presence/absence). Other analytical models focus either on the 

characterization of the overall race performance (Mulligan et al., 2018) or only on the 

power requirement while running on flat terrain (Jenny & Jenny, 2020). An approach 

based on simulated wearable IMUs has shown promise (RMS error range 4.2 – 20.1%), 

but requires data from 15 body segments (Fohrmann et al., 2019). In this study, IMU 

data was simulated with the virtual acceleration and angular velocity values obtained 

from a full-body marker-based motion capture system. Neither of these power estima-

tion approaches are particularly suitable for accurate near real-time feedback. 

 

Given the potential of body-worn IMU and global navigation satellite system (GNSS) 

to estimate running speed (Apte, Meyer, et al., 2020; Falbriard et al., 2021), the relation-

ship between mechanical power and running speed (García-Pinillos et al., 2019) could 

be used to predict power. However, this relationship is affected by terrain slope and 

running technique. Terrain slope can be estimated using accelerometer signals (Herren 

et al., 1999) or barometer (Moncada-Torres et al., 2014) while running technique can be 

identified by spatiotemporal gait parameters . One parameter is the vertical stiffness of 

the spring-mass model used to simulate running, which explains the higher efficiency 

of running movement that exceeds analytic muscle efficiency. Although vertical stiff-

ness cannot be measured directly under real running conditions, it can be estimated 

indirectly using spatiotemporal parameters such as contact time, flight time, and run-

ning speed. Previous research has presented an accurate assessment of these parame-

ters (Falbriard et al., 2018, 2020) and their application in real-world conditions (Apte, 

Troxler, et al., 2022; Meyer et al., 2021b; Prigent et al., 2022), using foot-worn IMUs.  

 

Current study aims to extend this work by estimating running power during level and 

graded running at different running speeds. Here, power is defined as including only 

the components of force and velocity in the running direction (horizontal). This defini-

tion is suitable for the purpose of a feedback tool for training, which is our main appli-
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cation, even though it violates the definition of power as a scalar mechanical quantity, 

which is the dot product of force and velocity in a 3-D space (Vigotsky et al., 2019). 

With a single IMU on each foot, the aim is achieve a performance that is similar, if not 

better, to the one (RMS error range 4.2 – 20.1%) achieved using a simulated full-body 

IMU setup (Fohrmann et al., 2019). Achieving an acceptable accuracy that does not 

depend on the conditions will be an important technical hurdle that should be over-

come, thanks to a complete data acquisition protocol that covers the different situations 

and provides enough "ground truth" data to learn our models.  The different situations 

include a range of running speeds and inclines, the knowledge of which will serve as 

complementary information to the one obtained from IMU signals.  Moreover, the 

models proposed here are aimed to be computationally inexpensive, to enable their 

application to near real-time performance estimation with traditional embedded elec-

tronic devices. 

4.2 MATERIALS AND PROTOCOL 

Measurements were conducted with 34 healthy subjects (age: 35 ± 11 years; height: 174 

± 10 cm; weight: 69 ± 12 kg; max. aerobic speed: 16.89 ± 2.81 km/h) on motorized 

treadmill (T-170-FMT, Arsalis, Belgium). The treadmill was customized to enable an 

adjustable inclination. The treadmill incorporated a force plate with 3-D force record-

ing at a sampling frequency of 1000 Hz. The participants were equipped with IMUs 

(Physilog 5, GaitUp, Swizterland, 512 Hz, 16g, 2000 °/s) attached to the shoelaces using 

rubber clips, a heart rate monitoring belt on the chest (V800 watch with H10 belt, Polar, 

Finland, RR intervals), and wore a gas exchange mask connected to a O2/CO2 gas ana-

lyzer system (Quark CPET, Cosmed, Italy, breath-by-breath). Figure 4.1A illustrates 

this sensor setup.  

 

 
Figure 4.1 Measurement systems and data collection protocol. A) An IMU was attached to 

each foot, and force plate data were used as a reference. XT-YT-ZT represent the frame of ref-

erence attached to the treadmill. Gas exchange was used during the incremental speed test 

to determine endurance capacity, and the ECG monitor indicated the exertion, B) Number 

of recorded running trials for each treadmill speed for all three treadmill grades. This in-

formation was used for balancing the dataset 

The treadmill running protocol comprised of 4 sessions, separated enough to allow 

recovery in between, with multiple combinations of treadmill speed and gradient. The 

first session aimed to evaluate participants’ fitness, based ventilatory threshold and 

VO2max assessments, using an incremental speed test. These thresholds were used to 
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personalize the energy consumption of the different running conditions and avoid ex-

cessive fatigue of the participants in the subsequent sessions (McGawley, 2017; Morgan 

& Daniels, 1994). This helped the participants to avoid entering a state of advanced 

fatigue that could bias the measurements. In sessions 2, 3, and 4 the participants went 

through a series of 4 minutes running bouts at different running speed (i.e., 8, 10, 12, 

and 14 km/h) and slope gradient (i.e., 0%, ±5%, ±10%, +15%, and ±20%). Among all the 

participants, 100% (34) completed the first session, 88% (30) the second session, 79% 

(27) the third, and 71% (24) the fourth session.  The resulting dataset was imbalanced 

(Figure 4.1B) due to the sequential reduction in the participation because of increasing 

physical intensity of the protocol. The increasing intensity corresponded to an increas-

ing treadmill speed and grade. As an incentive, each participant received an evaluation 

of their running performance (ventilatory thresholds and VO2max) and running tech-

nique. Ethical approval for the study was obtained from the human research ethics 

committee (CER-VD 2015-00006) and prior written consent was obtained from all the 

participants. Monitoring of gas exchange and heart rate was included in this study for 

purpose of assessing the endurance capacity of the participants and their state of exer-

tion during the protocol, and their data were not used for the estimation of power.  

4.3 METHODS 

4.3.1 Reference power estimation 

The process for reference power estimation is presented in Figure 4.2A. Force plate 

signals along the sagittal plane, in the direction of running (𝐹𝑦) and perpendicular to it 

(𝐹𝑧) were checked for outliers and linear interpolation was used to replace them.  

 

 
Figure 4.2 Estimation of reference power (A) Processing force plate data. (B) Free body dia-

gram for stance phase during uphill running on treadmill, with the runner represented as a 

rigid body. (C) Similar free body diagram for downhill running 

The signals were subsequently filtered using a zero-phase lowpass Butterworth filter, 

of order 3 and cutoff frequency 25 Hz, based on the recommendation of using around 

20 Hz for matched lowpass filtering of kinematic and force plate data (Mai & Will-

wacher, 2019). A threshold of 20N on the 𝐹𝑧 signal was used to detect the stance phase 

(Zeni et al., 2008). First frames with 𝐹𝑧 higher and lower than 20 N for a length of at 

least 40 samples were ascertained as initial and terminal contact. A threshold of 300N 

was considered for the mid-stance to segment the signal into gait cycles. 
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Two main approaches have been considered in literature for the estimation of power 

(Arampatzis et al., 2000), first based on the GRF and the CoM motion, and second 

based on the estimation of the product of force-velocity or moment-angular velocity of 

all the individual limb segments (Cavagna et al., 1964; Cavagna & Kaneko, 1977). The 

latter method requires precise 3D motion tracking of each segment and is prone to 

more outliers. Furthermore, the first method shows a better correspondence with oxy-

gen uptake (Arampatzis et al., 2000). In this method (Rabita et al., 2015), the antero-

posterior (in the direction of the run) AP GRF is used to estimate the AP acceleration, 

velocity, and directional power of the CoM during the stance phase. This method was 

adapted for uphill running, as illustrated in Figure 4.2B, using the following equations: 

 

𝑎𝑦
𝐹𝑦 𝑚𝑔 𝜃

𝑚
  (4.1) 

𝑣𝑦 𝑣 𝑦 +  𝑎𝑦 𝑑𝑡
𝑡

  (4.2) 

𝑃𝑦 𝑣𝑦 𝐹𝑦  (4.3) 

𝑊𝑦 𝑊 𝑦 𝑃𝑦 𝑑𝑡
𝑡

  (4.4) 

where 𝑦 is the direction of running and 𝐹𝑦 is the force recorded by force plate along 𝑦, 

𝑎𝑦 is the instantaneous acceleration of the CoM, 𝑣𝑦 is the instantaneous velocity of the 

CoM, 𝑃𝑦 is the ‘power’, 𝑊𝑦 is the ‘work’, 𝑚 is the body mass, 𝑡 is the time elapsed since 

the beginning of the stance phase. 𝑣0𝑦 is the average velocity of the CoM during run-

ning, i.e., speed of the treadmill and the slope 𝜃 is assumed to be positive. For downhill 

running (Figure 4.2C), the direction of running (direction of 𝐹𝑦, 𝑎𝑦, 𝑣𝑦, 𝑣0𝑦) is reversed, 

leading to a different equation for 𝑎𝑦: 

 

𝑎𝑦
𝐹𝑦 𝑚𝑔 𝜃

𝑚
  (4.5) 

During the implementation of these equations, all the quantities are considered as sca-

lars since the direction (𝑦) is already considered. Therefore, 𝑃𝑦 is not a real power in a 

strict mechanical sense, as it represents only one component of a three-dimensional 

movement. In case of level and uphill running, the maximum power in the concentric 

phase was assumed as the reference power (𝑃) value for one step (Roberts & Belliveau, 

2005). For downhill running, the minimum power (negative peak) during the eccentric 

phase was considered as the reference value (𝑃) for one step. Peak values in both phas-

es are less susceptible to estimation errors as compared to average values, since the 

latter also depend on the accurate estimation of the duration of the individual phases. 

Assuming only the power produced during concentric phase and averaging it over the 

entire stance phase (Taboga et al., 2021) does not provide useful information during 

downhill running, since it mainly involves eccentric activation of the thigh muscles 

(Eston et al., 1995).  

4.3.2 IMU data processing 

The main steps for IMU data processing are presented in Figure 4.3. A 4th-order low-

pass Butterworth filter (Fc = 50 Hz) was first applied onto the raw acceleration (𝑎𝑠(t)) 
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and angular velocity (𝜔𝑠(t)) signals to reduce the noise of the sensors. The filtered IMU 

signals were aligned with the functional frame (𝑎𝑓(t), 𝜔𝑓(t)) of the foot using functional 

calibration. The calibration process included data from a 5-seconds static period before 

the run, followed by the initial steps of the run (Falbriard et al., 2018). Following this, 

each signal (𝑎𝑓(t), 𝜔𝑓(t)) was segmented into mid-swing to mid-swing cycles and tem-

poral events of the gait were detected within each cycle (Falbriard et al., 2018).  

 

 

Figure 4.3 Flowchart for the proposed power estimation method. The process is divided into 

four main parts – i) processing of the IMU signals, ii) extraction of features based on IMU sig-

nals, biomechanical and anthropomorphic parameters, treadmill speed, and slope, iii) selection 

of features based on reducing redundance and maximizing the relevance, and iv) Development 

and validation of the three models for level, uphill, and downhill running, respectively. P: refer-

ence power, Xd: development feature set, Pd: development set for response variable (power), Xt: 

test feature set, Pt: test set for response variable, M(x): developed model, εn: error 

As literature suggested association between the changes in the duration of the gait 

phases and the running speed (Apte et al., 2021), hence also the mechanical power, the 

ground contact time, the flight time, the swing time, and the step duration for each step 

were computed. These temporal parameters were used as inputs to the model pro-

posed by Morin et al. (J.-B. Morin et al., 2005) to estimate leg and vertical stiffness. Sub-

sequently, we computed the orientation of the foot in the global frame (XT-YT-ZT) and 

transformed the foot acceleration from the foot frame (FF) to the GF, after removing the 

gravitational acceleration. The resulting acceleration (in GF) was integrated using a 

trapezoidal rule to get a first estimate of the speed of the foot. Speed of the foot was 

considered to be zero during the stance phase and, therefore, estimated and removed 

the integration drift by linearly resetting the speed at each stance phase (Falbriard et 

al., 2021). Finally, we applied the inverse transformation to get the drift-corrected 

stride velocity of the foot segments (𝑣𝑓(t)) in the FF, that is subsequently to develop 

features for the models. It is important to note that 𝑣𝑓(t) is different from 𝑣0𝑦, which is 

the treadmill speed. 

4.3.3 Feature development 

4.3.3.1 Feature extraction 

The overall feature development process in presented in Figure 4.3. The gait spatio-

temporal and stiffness parameters extracted from the IMUs form the first feature set 
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(𝑋𝑔). To supplement this feature set, several statistical features were extracted from the 

𝑎𝑓(t), 𝜔𝑓(t), and 𝑣𝑓(t) signals. Since each of signals contains 3 channels (x, y, and z), the 

statistics for each channel were calculated separately. Also, the Euclidean norm was 

calculated for each signal, followed by the statistics for that norm. Note that the statis-

tical features (𝑋𝑠) were captured on the signals of a single stride. Compared to a step-

based segmentation, a stride-based segmentation is more likely to capture the complete 

period of a gait cycle. The features 𝑋𝑠  aimed to encapsulate information about the in-

tensity of the signal (e.g., mean, STD, RMS), the shape of its distribution (e.g., skew-

ness, kurtosis), and its shape in a compressed format (e.g., coefficient of the auto-

regressive model (Table 4.1). Since the temporal parameters already contain relevant 

periodic information, features in the frequency domain were not considered. 

 

Table 4.1 Statistical features (𝑋𝑠) extracted for each stride on the continuous acceleration 

𝑎𝑓(t), angular velocity 𝜔𝑓(t), speed 𝑣𝑓(t). Variables T and C correspond to the signal (a, ω, 

vf) and the channel (x, y, z, or n i.e., norm), respectively. AR: Auto-regressive model 

Type Feature Description 

Intensity µTC Mean value 

 σTC Standard deviation 

 medTC Median 

 iqrTC Interquartile range 

 maxTC Maximum 

 rmsTC Root-mean-square 

Shape kurtTC Kurtosis 

 skewTC Skewness 

Compression arm1TC 1st coeff. of 3rd order AR model 

 arm2TC 2nd coeff. of 3rd order AR model 

 arm3TC 3rd coeff. of 3rd order AR model 

 

In addition to the sensor-based features, the anthropomorphic information of the par-

ticipants was considered. The height, age, mass, and the leg length (measured from hip 

to the foot) of the participants were included as features (𝑋𝑎). Since the mass is used in 

the calculation of 𝑃𝑦 (equations 4.1 – 4.3), it was expected to be an important feature. 

Finally, information of the running conditions was used to complete the feature set. 

Running conditions were defined in terms of the slope (𝜃) and the treadmill speed 

(𝑣0𝑦). However, to simulate real-world conditions where 𝜃 and 𝑣0𝑦 will be estimated 

from IMU and barometer signals, noise was added to the known 𝜃 and 𝑣0𝑦 values. For 

𝑣0𝑦, the maximum standard deviation and bias of error for IMU-based estimation are 

0.16 m/s and 0.0 respectively (Falbriard et al., 2021). So, a white noise of range [-

0.16,0.16] was added to the treadmill 𝑣0𝑦 data before using it as a feature. Apart from 

this maximum noise condition (100%), two other conditions were also considered, a 

smaller noise (50%) of [-0.8,0.8] and no noise i.e., perfect estimation of 𝑣0𝑦. These three 

conditions allowed us to explore the performance of our methods under different per-

formances of speed estimation algorithm. The same process was repeated for 𝜃. As-

suming a 10 s window, the minimum distance estimated at the lowest treadmill speed 

(2.22 m/s or 8 km/h) would be (2.22 – 0.16) x 10 = 20.6 m. Assuming a relative height 

estimation error of ±1m using a barometer (Ye et al., 2018), the error in grade was com-
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puted to be ±4.86 %. So, a white noise of range [-4.86, 4.86] was added to the grade data 

before using it as a feature. The final feature set (𝑋𝑐 ) thus consisted of the noisy 

speed (𝑣0�̂�) and grade (𝜃) data. The overall feature set (X), with each feature as a vector 

of values with a resolution of one step, is shown below: 

 

𝑋 = [ 𝑋𝑔, 𝑋𝑠, 𝑋𝑎, 𝑋𝑐  ]   (4.6) 

4.3.3.2 Resampling and data balancing 

Because the feature set was based on segmentation of gait cycles, some inevitably mis-

identified gait cycles resulted in missing values. To address this problem, the data was 

resampled at a resolution of one value per second. Similarly, the reference power data 

were resampled at the same resolution and considered as the response variable (P). The 

resulting dataset was imbalanced (Figure 4.1B) due to the sequential reduction in the 

participation because of increasing physical intensity of the protocol. The increasing 

intensity mainly corresponded to an increasing treadmill speed and grade. By consid-

ering the speed as a class and dividing the grade into three conditions (level, uphill, 

downhill), the classes were balanced using random over sampling (ROS) of un-

derrepresented classes (Pes, 2020). Compared to random under sampling (RUS), ROS 

duplicates information rather than randomly removing samples of potentially rare 

conditions (e.g., high speed during uphill running). For ith class with ni samples, ROS 

was implemented as:  

 

�́�𝑖 = 𝑛𝑖 × (
𝑛𝑚𝑎𝑥

𝑛𝑖
)𝛼  (4.7) 

Where �́�𝑖 is modified sample size, 𝑛𝑚𝑎𝑥 is size of the largest class, and 𝛼 is a hyperpa-

rameter. After trying values from 0.5 to 0.95 in steps of 0.05, the 𝛼 was set to 0.8. Final-

ly, data from one-third of the participants (n = 11) were reserved as the test set (X𝑡, P𝑡), 

while the remaining data were used as the development and validation set (X𝑑, P𝑑) for 

the feature selection and model training phases. All data of a single participant were 

attributed to only one of the subsets; this removed the performance bias associated 

with the models trained and tested on measurements originating from the same 

subjects (Halilaj et al., 2018). To form the devleopment and test sets, the participants 

were selected randomly. 

4.3.4 Feature selection 

The feature set obtained as a result of feature extraction included a total of 171 features. 

To develop a simpler and more efficient model, we performed a feature selection pro-

cess (Figure 4.3) using filter methods to remove the redundant and irrelevant features 

(Li et al., 2017). To identify the redundant feature pairs, we calculated the correlation 

between all possible feature pairs. Kendall’s τ was used to quantify the correlation be-

tween features; it is more robust than Spearman’s correlation coefficient and less sensi-

tive to errors and discrepancies in the data (Newson, 2002). Whereas Pearson’s correla-

tion only considers the linear relationship between variables, Kendall’s τ relies on the 

number of concordant and discordant pairs in the variables and does not require a spe-

cific functional relationship between variables (de Siqueira Santos et al., 2014). For fea-

ture pairs 𝑋𝑑[𝑚]  and 𝑋𝑑[𝑛] with 𝑁  samples, τ is quantified as: 



Estimation of running power with foot-worn IMUs 

82 
 

𝜏
𝑁(𝑁 )

∑ 𝑠𝑔𝑛 𝑋𝑑 𝑚 𝑖 𝑋𝑑 𝑚 𝑗𝑖 𝑗 𝑠𝑔𝑛 𝑋𝑑 𝑛 𝑖 𝑋𝑑 𝑛 𝑗 (4.8) 

𝑠𝑔𝑛(𝑥) =  {
1 ∀ 𝑥 > 0
0 ∀ 𝑥 = 0

−1 ∀ 𝑥 < 0
 (4.9) 

Feature pairs with τ < 0.8 (selected based on trials with a range from 0.5 to 0.95) were 

selected for model development (see Figure 4.3), while others were further examined 

for their relevance to the response variable (yd) using the mutual information (𝐼) met-

ric, which quantifies the amount of information obtained about one variable, through 

the availability of another variable (Kraskov et al., 2004). If X𝑑[𝑚] is considered as 𝑋 

and P𝑑 as 𝑌, 𝐼 can be expressed as: 

 

𝐼 𝑋 𝑌 ∑ ∑ 𝑝 𝑋 𝑌 𝑥 𝑦 (
𝑝 𝑋 𝑌 𝑥 𝑦

𝑝𝑋 𝑥 𝑝𝑌 𝑦
)𝑥 𝑋𝑦 𝑌  (4.10) 

where 𝑝𝑋 and 𝑝𝑌 are the marginal probability density function for 𝑋 and 𝑌, and  𝑝(𝑋,𝑌) 

is the joint probability mass function of 𝑋 and 𝑌. For feature pairs with 𝜏(𝑋𝑑[𝑚], 𝑋𝑑[𝑛]) 

> 0.8, feature 𝑋𝑑[𝑚] was selected if 𝐼(𝑋𝑑[𝑚]; 𝑦𝑑) > 𝐼(𝑋𝑑[𝑛]; 𝑦𝑑) and vice-versa (Vergara 

& Estévez, 2014). The selected feature set contained 117, 125, and 120 features for level, 

uphill, and downhill running, with around 30% features being removed through the 

selected feature selection technique. 

4.3.5 Model development 

4.3.5.1 Model training 

The goal was to develop one model for each of the three running conditions. To ensure 

that features contributed equally to the model training and that coefficients were 

properly scaled, the features were rescaled using a z-score normalization method (Jain 

et al., 2005); hence, after normalization, the features mean was zero, and standard devi-

ation was one. Two approaches were pursued for model development – a linear model 

using Elastic net regularization (EN) and a nonlinear model using a neural network. 

Linear models enable computationally efficient implementation for near real-time 

analyses on commercial embedded devices. Furthermore, in case of similarly perform-

ing linear and nonlinear models, EN allows us to understand the feature importance. 

EN is a generalization of the lasso regression method, which that linearly combines the 

L1 penalty of the lasso regression method and the L2 penalty of the ridge regression 

method (Zou & Hastie, 2005). EN tends to maintain a similar feature sparsity as the 

lasso method while providing improved accuracy. Similarly, it overcomes the lasso 

limitation of retaining only one of a group of linearly correlated predictors and tends to 

include the entire group (Hastie et al., 2008a; Zou & Hastie, 2005).  The EN is imple-

mented as shown in (9), with 𝑃𝑑,𝑖 being the response at observation i, N the total num-

ber of observations, 𝑋𝑑,𝑖 the feature vector with k features at observation i, 𝜆 the posi-

tive regularization parameter corresponding to one value of Lambda, 𝛽 the coefficient, 

and 𝛽0 the intercept. 

𝛽 𝛽
𝑦𝑑 𝑖 𝛽 𝑥𝑑 𝑖

𝑇 𝛽 𝜆𝐾𝛾 𝛽𝑁
𝑖  (4.11) 

𝐾𝛾 𝛽 𝛾 𝛽𝑗 𝛾 𝛽𝑗
𝑘
𝑗  (4.12) 
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Where 𝛾 is the hyperparameter that sets the balance between the lasso and ridge re-

gression methods. It was set at 0.5 for the model development. To account for interac-

tions between biomechanical features and nonlinear relationships between biomechan-

ical parameters and ‘power’, a Neural network (NN) was also implemented with out-

put layer of 1 neuron and a hidden layer of 10 neurons (Hastie et al., 2008b). The de-

fault Matlab feedforward network was trained using the Levenburg-Marquadt back-

propagation algorithm (H. Yu & Wilamowski, 2011), with a tan-sigmoid and linear 

transfer functions for the hidden and output layers, respectively. Two configurations of 

the NN were trained, with differing distributions of the training dataset (𝑋𝑑, 𝑦𝑑): 

▪ NN15: 80% development, 15% validation, and 5% test  

▪ NN35: 60% development, 35% validation, and 5% test 

4.3.5.2 Model validation and testing 

The EN, NN15, and NN35 models were tested with the test set (𝑋𝑡 , 𝑃𝑡) to estimate 

‘power’ 𝑃�̂�. Following this, the 𝑃𝑡 and  𝑃�̂� were smoothed by averaging over a 10 s slid-

ing window with an overlap of 5 s. This provided a power estimation every 5 s, which 

is satisfactory for application as a feedback tool during running, while enabling the 

estimation of running speed (𝑣0�̂�) and terrain grade (𝜃) using the foot IMU and barom-

eter signals. The estimated power 𝑃�̂� was compared to the reference power 𝑃𝑡 using the 

percentage error (𝜀𝑛): 

𝜀𝑛
𝑃𝑡 𝑃𝑡

𝑃𝑡
 (%) (4.13) 

 

Median and interquartile range (IQR) of 𝜀𝑛 were calculated to determine the bias and 

precision of the power estimate. Median and IQR were also computed for each grade 

and treadmill speed to understand the performance of the algorithm under different 

running conditions. The mean absolute error (MAE) was also computed using 𝜖𝑛 to 

understand the overall error. In addition, the Bland-Altman approach (Bland & Alt-

man, 2003)  was used with 𝑃𝑡 and  𝑃�̂� to investigate the agreement between our algo-

rithm and the force plate-based power estimation. Finally, cumulative distribution 

plots of 𝜀𝑛  were constructed for the three noise assumptions (𝜖100, 𝜖50, 𝜖0) on speed and 

slope, for all running conditions. These plots can provide insight into the effects of the 

noise in the features on the error distribution. 

4.4 RESULTS 

Data was analyzed from 34 participants who ran on a treadmill at various speeds and 

inclines, including a total of 210.7 minutes of level, 74.6 minutes of uphill, and 112.4 

minutes of downhill running, used for training and testing the algorithm. The refer-

ence power estimated from the force plate data followed a nearly linearly increasing 

relationship with treadmill speed, with uphill running exhibiting a higher peak power 

during the concentric phase of stance than level running, at the same speed. Figure 4.4 

presents the magnitude of reference power (𝑃𝑡) for all treadmill speeds; reference pow-

er increased with speed and was higher when running uphill than when running on 

level treadmill.  
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Figure 4.4 Relationship between the reference power and the treadmill speed 

The cumulative distribution of the error for all running conditions and noise levels, is 

shown in Figure 4.5. At all conditions the error remains below 20% for 90% of the par-

ticipants, including any outliers. In contrast to level running, there is a larger influence 

of noisy running conditions (Xc) on the error distribution for running on inclines. 

 

 

Figure 4.5 Cumulative distribution of 𝜖100, 𝜖50, 𝜖0 (%) of the proposed method for level (A), 

uphill (B), and downhill (C) running, across all three noisy conditions. For example, in plot 

A, the * shows the error for level running is less than 19% for 90% of the population, when 

using 100% of noisy running condition (𝑋𝑐). 

Figure 4.6A and B show the best case and worst-case scenarios for the prediction of 

power for level running respectively. The increasing power (stair pattern) corresponds 

to different running trials, each with higher speed than earlier one. The former does 

not exhibit a substantial difference between the prediction for the zero-noise level (𝜖0).  

 

 
Figure 4.6 Illustration of reference and predicted power for level running for all three noise 

levels on features. A) participant with the best estimation of power, B) participant with the 

worst estimation C) Linear agreement between predicted and estimated values. 
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All three noise levels of running conditions resulted in excellent agreement (R2 > 0.9) 

between the predicted and reference values based on linear correlation (Figure 4.6C). 

An increase in noise levels resulted in a higher deviation between predicted and refer-

ence power at high magnitudes of power. The Bland-Altman analysis plot for power 

estimation with maximum noise (𝜖100) is presented in Figure 4.7, with samples from 

different participants represented by unique colors. It confirms low correlation be-

tween the error and estimated speed values (𝜏 = 0.08 for level, 𝜏 = -0.01 for uphill, and 𝜏 

= 0.09 for downhill running) and an increase in error values with an increase in mean 

(
𝑃𝑡+ 𝑃�̂�

2
) values. However, only 2 participants out of 11 show a high error at higher mean 

values for three running conditions. Downhill running (Figure 4.7C) indicates a possi-

ble non-linear relationship between the mean and difference of reference (𝑃𝑡) and esti-

mated power (𝑃�̂�) for power estimation.  

 

 
Figure 4.7 Bland–Altman analysis for power estimation with maximum noise (𝜖100) , sam-

ples from each participant in the test set are shown in different colors. 𝑃𝑡 and 𝑃�̂� are meas-

ured in terms of Watts (W), L.O.A. are the limits of agreement and M.D. is the mean differ-

ence. (A) Level running, (B) Uphill running, (C) Downhill running 

Figure 4.8A and B present the bias and precision for the power estimation error across 

all treadmill speeds and slopes. For each positive slope and the -10% and -20% slopes, 

the bias was largest at the highest speed reached (10.4% at 20% slope, 18.4% at -20% 

slope). In contrast to the bias and the precision at the lowest treadmill speed (8 kmh-1) 

was generally high (21 ± 5.9 %) at all slopes, including level running. At the 10 kmh-1 

and 12 kmh-1 conditions, the estimation error showed a better precision (10.7 ± 2.0 %).  

 

 
Figure 4.8 Estimation error (%) for all speeds and slopes. A) Median error, B) Error IQR 
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Linear correlation (R2) between 𝑃𝑡 and 𝑃�̂� and the bias (median), precision (IQR), and 

the MAE for the error (%) are presented in Table 4.2. Even with the assumption of max. 

noise (𝜖100), the median ± IQR for error were low (1.7 ± 12.5 % for level, 7.1 ± 13.4 % for 

uphill, and 2.0 ± 13.3 % for downhill) for all three conditions. Reduction in noise typi-

cally led to a reduction in the IQR of the error. Kendall’s test showed a high correlation 

(R2 = 0.95 for level, R2 = 0.91 for uphill, and R2 = 0.93 for downhill) between 𝑃𝑡 and 𝑃�̂�. 

Table 4.2 Bias (median), precision (IQR) and mean absolute error (MAE) of the power esti-

mation algorithm for the three running conditions, with different levels of noise on the fea-

tures of speed and grade 

Condition Noise Best model MAE (%) Bias (%) Precision (%) R2 

Level running 

ϵ100 NN35 6.5 1.7 12.5 0.95 

ϵ50 NN35 6.4 3.3 10.9 0.96 

ϵ0 NN35 5.2 2.1 9.6 0.97 

Uphill running 

ϵ100 NN15 7.1 3.2 13.4 0.91 

ϵ50 NN15 6.3 -0.2 13.1 0.91 

ϵ0 NN35 5.4 2.4 8.9 0.95 

Downhill running 

ϵ100 EN 6.8 2.0 13.3 0.93 

ϵ50 NN35 6.9 2.1 11.9 0.95 

ϵ0 NN35 4.6 -1.9 8.4 0.97 

 

For all three running conditions, the coefficients, and labels for the 15 most important 

features of the EN models are presented in Table 4.3. The most important features were 

usually the mass (m) and the treadmill speed (𝑣0�̂�), followed by the slope (𝜃).  

Table 4.3 Labels and coefficients for the 15 most important features of the EN models. Statis-

tical features are defined according to Table 4.1 and are indicated in bold, with the signal 

direction (or norm) indicated using a subscript. Other features are defined as kvert: vertical 

stiffness, fzmax: maximum vertical force, Δz: maximum vertical displacement of the CoM, 

strd: stride duration, and fsa: foot strike angle before initial contact. For downhill running, 

negative sign indicates a positive contribution to the power estimation model since the pre-

dicted power is negative. 

Level Uphill Downhill 

Label Coef. Label Coef. Label Coef. 

𝑣0�̂� 73.8 𝑚 48.9 𝑣0�̂� -139 

𝑚 60.0 iqray 34.0 𝑚 -97.9 

kvert 51.5 𝑣0�̂� 32.6 �̂� 93.8 

fzmax 42.8 σωy -32.4 arm1ωy 67.4 

skewvfn -39.2 µvfy 28.7 kurtωx -65.1 

µaz 37.4 iqrvfx 27.4 fzmax -59.8 

skeway -36.5 kurtaz -26.2 meday 59.1 

maxvfn 34.7 µay -25.6 σan -57.2 

µay -33.5 strd 19.9 fsa -54.8 

Δz 29.2 skewωx -19.9 maxaz 52.0 

rmsay 27.7 Δz 19.7 rmsan -51.9 

iqray 26.3 maxωx -19.3 µay -50.9 

arm1vfz 22.4 �̂� 18.5 iqrωy 50.5 

skewvfy -22.4 lenleg -18.1 arm3ωy 48.9 

σvfz 21.6 maxaz -17.0 skeway -47.6 
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4.5 DISCUSSION AND CONCLUSION 

This work presented a method for accurate estimation of power running with a foot-

worn IMUs under various simulated real-world conditions. Different inclines and run-

ning speeds were considered to test the method. Force plate data was used to estimate 

peak reference power by adapting the method proposed by Rabita et al. (Rabita et al., 

2015). 𝑃𝑟 showed a positive linear relationship with the treadmill velocity (𝑣0𝑦). At the 

same speed, uphill running exhibited a higher peak power during the concentric phase 

of stance than level running (Figure 4.4). These results are in agreement with the find-

ings of Arampatzis et al. (Arampatzis et al., 2000), who compared different methods of 

estimating power from kinematic and ground reaction force (GRF) data, and recom-

mended the use of GRF data-based methods. 

 

The proposed method was able to follow the reference peak power estimated from the 

force plates in a speed range from 8kmh-1 to 14 kmh-1 and at slopes from -20% to 20%. It 

achieved a MAE 6.5% to 7.1%, an IQR (precision) of 12.5% to 13.4%, and a R2 ≥ 0.91 

across all running conditions (Table 4.2). Though obtained using a single IMU on each 

foot, these error magnitudes lie within the range of RMSE values (4% to 20%) obtained 

using a simulated full-body IMU setup (Fohrmann et al., 2019). The bias (median error) 

was highest in the conditions with the highest speed and slope (Figure 4.8). Running at 

these intense conditions is highly demanding, which limited the availability of data for 

model training and likely biased the models toward lower or moderate intensity run-

ning conditions. The precision (IQR for the error) at the lowest treadmill speed (8 kmh-

1) was generally high (21 ± 5.9 %), The high IQR may also be the result of  from the 

running biomechanics associated with the low speed, as 8 kmh-1 is within the average 

range of the transition speeds (4.68 – 9.18 kmh-1) from walking to running for healthy 

participants (Thorstensson & Roberthson, 1987). In addition to biomechanics, the high-

er IQR may also be the result of noise added to the speed value. Because the amount of 

noise was fixed, the signal-to-noise ratio (SNR) was lowest at the lowest speed (8kmh-

1). Combined with the fact that speed is one of the most important features (Table 4.3) 

for the EN model, a low SNR can lead to a higher error. Compared to the 8 kmh-1 con-

dition, the 10 kmh-1 and 12 kmh-1 speed conditions resulted in a lower IQR of error 

(10.7 ± 2.0 %). These two conditions are within the range of average preferred running 

speeds in the field: 9.86 kmh-1 (95% CI: 9.54–10.15 kmh-1) for females and 11.7 kmh-1 

(95% CI: 11.45–12 kmh-1) for males. Furthermore, these conditions also correspond to 

the optimal treadmill speeds in the laboratory, which result in minimal net cost of 

transport for running. Thus, in the context of usage in real-life scenarios, we can expect 

the algorithm to perform adequately. Furthermore, it is important to note that these 

results are for the condition with the highest noise (ϵ100, Table 4.2). With a more accu-

rate estimation of speed and slope, we can only expect the error IQR to reduce, as is 

evident in the error distribution plot (Figure 4.5) and Table 4.2.  

 

The best models for level, uphill, and downhill running (Table 4.2) were the neural 

network with 35% validation set (NN35), the neural network with 15% validation set 

(NN15), and elastic net regularization (EN), respectively. Based on the magnitude of 

their coefficients, the EN model allows us to rank the features according to their im-

portance (Zou & Hastie, 2005). The list of the 15 most important features shows the 
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mass (m) and the treadmill speed (𝑣0�̂�), followed by the slope (𝜃). This is expected due 

to the use of 𝜃, 𝑣0𝑦, and 𝜃 in equations 4.1 – 4.4 for the estimating the reference power 

from force plate. The SNR for 𝜃 is much lower for lower values of the gradient (e.g. 

±4.86 % noise for a gradient value of 5%). Compared to downhill running, uphill run-

ning has less than half the data samples at higher gradients (15 or 20%) and thus likely 

shows relatively much lower feature importance (Table 4.3) for gradient. Biomechani-

cal parameters such as vertical stiffness (kvert), maximum vertical force (fzmax), max-

imum vertical displacement of the CoM (Δz), stride duration (strd), and foot strike an-

gle immediately before initial contact (fsa) were also among the important features. 

With an increase in speed, Δz decreases, fzmax increases, and so does the total contri-

bution of ay and Fy, leading to an increase in power (Cavagna et al., 2005; Farley & 

Ferris, 1998). While this implies that features are correlated, their strength of correla-

tion (τ) was likely below the selected threshold of 0.8. Kvert, fzmax, and Δz are directly 

related to the storage and return of elastic energy in the spring-mass model of running, 

and a decrease in kvert due to fatigue  has been associated with a decrease in perfor-

mance (J.-B. Morin et al., 2005, 2006; Prigent et al., 2022). Some of the important statisti-

cal features are associated with signals in the X direction, i.e., the axis perpendicular to 

the sagittal plane. This suggests that the 2-D model (Figure 4.2B and C) used to esti-

mate reference power can be extended to account for motion in all three dimensions. In 

addition, this model assumes that the athlete is a point mass driven by the GRF. Alt-

hough the model is mechanically in equilibrium (van der Kruk et al., 2018), it can be 

augmented to include the 3-D kinetics of the body segments to improve its accuracy. 

Body weight normalization of the estimated power could help to compensate for varia-

tions across individuals, although weight normalized errors would translate different 

to heavier and light individuals.  

 

Taboga et al. compared commercially available power meters with force-plate meas-

urements for level running only (Taboga et al., 2021) and found a good agreement 

(L.O.A -154.8 to 12.6 W, M.D. -70.8 W, assuming a reported average mass of 68.1 kg). 

While upper limit of the L.O.A is lower than our findings (L.O.A -179.8 to 216.3 W, 

M.D. 18.2 W), the M.D. is higher. However, L.O.A in our case have been extended 

mainly due to the samples from two participants, as shown in Figure 4.7A. We could 

not find existing validation studies for graded running for comparison. In case of 

commercially available devices vertical force and velocity is considered for estimation 

of power (Arampatzis et al., 2000; Taboga et al., 2021), hopping on the spot or increased 

vertical movement of the CoM during running may result in a higher power measure-

ment. If the goal of using power as a feedback tool is to understand the intensity of the 

run, ‘power’ in the direction of running is a more interesting metric as it relates to the 

propulsion produced by the athlete (Jaskólski et al., 1996). This is despite the fact that 

power is a scalar quantity and ‘directional power’ does not mechanically represent 

power (van der Kruk et al., 2018; Vigotsky et al., 2019). During the terminal stance 

phase, maximum mechanical power correlates with the push-off force generated by the 

concentric contraction of the thigh muscles, while maximum mechanical power ab-

sorbed during the initial contact indicates the energy absorbed by the eccentric contrac-

tion of the calf muscles (R. A. Mann & Hagy, 1980). The ability to run downhill at the 

same speed and gradient, but with a lower negative mechanical work i.e., lower mag-

nitude of ‘power’ in the eccentric contraction phase is beneficial, as exercise-induced 
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muscle damage during eccentric loading has a significant adverse effect on endurance 

performance (Marcora & Bosio, 2007). The reduction in impact forces can decrease the 

muscle fatigue accumulated during downhill running and possibly reduce injury risk 

over an entire training program for trail running. Commercial devices only consider 

the power produced during the concentric phase and average this power over the en-

tire stance phase duration, thus providing no insight over the ‘power’ during the mo-

tion cycle. If both phases are considered together, it can lead to the averaging of posi-

tive and negative power, leading to their negation.  

 

In this work, we accurately estimated peak eccentric and peak concentric power, which 

can potentially be used to define the volume of training for level and trail running. 

Athletes susceptible to or recovering from muscle injuries can use the eccentric power 

peak as a threshold for designing training programs with adequate mechanical load 

and assessing their readiness to return to running in various conditions. Furthermore, 

the ratio between the absolute power from concentric work and eccentric work could 

potentially be utilized as a metric of mechanical efficiency (Vernillo et al., 2017). To 

enable the application of our method in practice, algorithms like the one using accel-

erometer signals (Herren et al., 1999) or barometer (Moncada-Torres et al., 2014) can be 

devised to identify uphill, downhill, and level running. While our model has been test-

ed on young healthy adults running on treadmills, it can be extended further and per-

sonalized to account for different populations (Hoenig et al., 2020). Moreover, it could 

be validated on other populations such as older adults and Paralympic athletes, the 

latter using instrumented prosthetic feet (Lee et al., 2012). In addition to sensors worn 

on the foot, IMUs on other body segments, particularly the wrist and trunk, must be 

examined to estimate power. Wrist location offers ease of use and has been used for 

gait analysis (Kammoun et al., 2022), while the trunk provides a position close to the 

CoM of the body. Finally, power estimation can be complemented by estimating the 

vertical and anteroposterior GRF peaks. This can provide athletes and coaches with a 

more comprehensive understanding and feedback and support the personalization of 

training programs. 
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III. AUGMENTATION OF IN-FIELD  

FUNCTIONAL CAPACITY TESTING 
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5 SPRINT VELOCITY ESTIMATION USING 

GNSS-IMU SENSOR FUSION 

This chapter presents the method used to instrument the sprint functional test 

with a wearable sensor and its validation in the field. Power-Force-Velocity pro-

file obtained during a sprint test is crucial for designing personalized training 

and evaluating injury risks. Estimation of instantaneous velocity is requisite for 

developing these profiles and the predominant method for this estimation as-

sumes it to have a first order exponential behavior. While this method remains 

appropriate for maximal sprints, the sprint velocity profile may not always show 

a first-order exponential behavior. Alternately, velocity profile has been estimat-

ed using inertial sensors, with a speed radar, or a smartphone application. These 

methods either relied on the exponential behavior or timing gates for drift re-

moval or estimated only the mean velocity. The proposed method aims to esti-

mate the instantaneous velocity during sprinting using a sensor fusion approach, 

by combining the signals from a wearable GNSS-IMU system. For the data col-

lection, nine elite sprinters, equipped with a wearable GNSS-IMU sensor, ran two 

trials each of 60m and 30m/40m sprints. An algorithm was developed using a 

gradient descent-based orientation filter, which simplified the problem to a line-

ar one-dimensional model, thus allowing the use of a simple Kalman filter (KF) 

for velocity estimation. Two cascaded KFs were used to segment the sprint data 

and to estimate the velocity and the sprint duration, respectively. The median 

RMS error for the estimated velocity ranged from 6% to 8%, while that for the 

estimated sprint duration lied between 0.1% to -6.0%, when compared to speed 

radar and photocell data, respectively. The Bland-Altman plot showed close 

agreement between the estimated and the reference values of maximum velocity. 

Examination of fitting errors indicated a second order exponential behaviour for 

the sprint velocity profile, unlike the first order behaviour previously suggested 

in literature. The proposed sensor-fusion algorithm compensates for and im-

proves upon the accuracy of the individual IMU and GNSS velocities and enables 

the use of wearable sensors in the analysis of the sprint test. 

 

 

The contents of this chapter have been adapted from this article: 

Apte, S., Meyer, F., Gremeaux, V., Dadashi, F., & Aminian, K. (2020). A sensor fu-

sion approach to the estimation of instantaneous velocity using single wearable 

sensor during sprint. Frontiers in Bioengineering and Biotechnology, 8, 838. 

Contributions: conceptualized the study design; conducted the data collection; de-

signed and implemented the algorithm; contributed to the analysis and interpreta-

tion of the data; drafted the manuscript. 
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5.1 INTRODUCTION 

Sprinting not only represents the peak of human speed but also forms the basis of per-

formance in a variety of sports. The capacity to generate maximal force and power in 

the direction of running is a decisive factor behind an athlete’s performance in sports 

such as athletics, soccer, hockey, rugby, etc. (J. Cronin & Hansen, 2005). To ascertain 

this capacity, sprint tests with a distance varying from 20m to 60m are typically uti-

lized. Prior research into sprint mechanics (Buchheit et al., 2014; M. R. Cross et al., 2015; 

Haugen & Buchheit, 2016; J.-B. Morin et al., 2012; Rabita et al., 2015) has shown that 

parameters such as maximum power produced by the sprinter, maximum horizontal 

force, horizontal velocity at zero acceleration, maximum theoretical horizontal force 

(f0), maximum theoretical horizontal power (pmax), maximum theoretical horizontal 

velocity (v0) etc., along with the horizontal force-velocity (F-V) and horizontal power-

velocity (P-V) profiles can be crucial for designing personalized training programs, 

evaluating injury risks, and athlete readiness to resume high intensity training and 

return to competition after injury (J.-B. Morin 2016). These parameters and the force-

power-velocity profiles can be ascertained using the velocity profile during sprint. An 

accurate estimation of the in-field sprinting velocity can thus be immensely helpful to 

improve the performance of athletes in a multitude of sports. The prominent model of 

estimating instantaneous sprint velocity (𝑣𝑚𝑑𝑙(𝑡)) is based on the use of a Doppler ra-

dar to measure the maximum velocity in combination with the (7) (Furusawa et al., 

1927; Samozino et al., 2016): 

𝑣𝑚𝑑𝑙(𝑡) =  𝑣𝑚𝑎𝑥 (1 − 𝑒
{−

𝑡

𝜏
}
) (5.1) 

where 𝑣𝑚𝑎𝑥  is the maximum horizontal velocity during the sprint and 𝜏 is a constant, 

estimated using ensemble experimental data. The obtained velocity profile (𝑣𝑚𝑑𝑙(𝑡)) is 

differentiated to obtain horizontal acceleration, and subsequently the F-V and P-V pro-

files. While this method provides ease of use, it is only valid when the athletes can ap-

proach or attain 𝑣𝑚𝑎𝑥 . However, the sprinters may not achieve 𝑣𝑚𝑎𝑥  over short dis-

tances such as 30 m or they may not be able to maintain 𝑣𝑚𝑎𝑥  over longer distances 

such as 60 to 100 m, especially during training sessions, and thus the sprint velocity 

profile for all athletes may not necessarily show a first-order exponential behavior. 

Sprint velocity has also been estimated with a recently developed application (Stanton 

et al., 2016) for a smartphone; wherein the in-built camera tracks and records the mo-

tion. Based on the distance entered manually, the application calculates the total sprint 

time and subsequently the mean velocity. Thus, this application cannot estimate in-

stantaneous velocity and the measurable sprint distance might be limited by the field-

of-view of the camera.  

 

While wearable inertial sensors have shown promising results in the assessment of 

temporal gait parameters in running and sprinting (Bergamini et al., 2012; Falbriard et 

al., 2018; Leitch et al., 2011; Norris et al., 2014) their use for analysis of instantaneous 

sprint velocity and other sprint mechanics has been rather rare. Recently, a magnetic 

and inertial measurement unit (MIMU) based algorithm (Setuain et al., 2018) has been 

developed to assess sprint mechanics with various parameters such as maximal veloci-

ty, maximal horizontal force and power, velocity at zero horizontal force, etc., for 20m 

sprints. Though this work allows the measurement of sprint mechanics using a single 

MIMU mounted on the trunk, the algorithm relies on the use of split times from photo-
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cells at specific distances to remove the accumulated drift in the velocity. Other works 

on velocity estimation using a trunk-based MIMU (Gurchiek et al., 2018, 2019), utilized 

equation 5.1 for drift removal and used machine learning to estimate the parameters 

𝑣𝑚𝑎𝑥  and τ respectively. Nevertheless, as explained earlier, equation 5.1 may not hold 

true over different sprint distances and sub-maximal efforts. Finally, Global Navigation 

Satellite System (GNSS) with wearable receiver provides another avenue of running 

velocity measurement in field and has been used to assess training and match perfor-

mance in sports like soccer and rugby (Cummins et al., 2013). However, the ground 

velocity signal from GNSS is not responsive enough to measure the velocity during 

sprint (Nagahara et al., 2017) and can lead to an underestimation of the sprint velocity. 

This issue is even more exacerbated among elite athletes, who produce a high magni-

tude of horizontal acceleration and for whom, the timing difference can be critical (J.-B. 

Morin & Samozino, 2016). 

 

A Kalman filter-based sensor fusion approach to combine GNSS and MIMU signals 

can overcome their respective limitations of responsiveness and drift-induced errors, 

as demonstrated successfully in sports applications such as skiing (Brodie et al., 2008; 

Meyer et al., 2007; Zihajehzadeh et al., 2015) and running (Tan et al., 2008). However, 

the works on skiing utilized magnetometers and focused on estimating and validating 

the skier’s trajectory and not the velocity, whereas the running movement did not pre-

sent the challenge of high starting acceleration encountered in sprinting. Use of sprint-

ing as a functional capacity test also imposes an important constraint in terms of usa-

bility for in-field implementation, thus limiting the number of wearables that can be 

utilized. To address the problem of estimating instantaneous velocity in sprinting over 

a range of distances, this chapter introduces a new approach based on using a gradient 

descent algorithm as an orientation filter (Madgwick et al., 2011), in combination with 

cascaded simple Kalman filters used for precise data segmentation and velocity estima-

tion, respectively. The orientation filter utilizes the IMU data to convert the accelera-

tion signals from the sensor frame to the global frame, which is then given as input to 

the first Kalman filter for estimating the precise sprint duration. This duration is used 

to segment the sensor data, which is then provided to the second Kalman filter, which 

fuses the GNSS signal and IMU acceleration to estimate the instantaneous velocity. To 

test this approach, the instantaneous velocity obtained from a Doppler effect-based 

radar was used for validating the estimated velocity and sprint timings acquired from 

a photocell for comparing the sprint duration.  

5.2 MATERIALS AND EQUIPMENT 

Measurements were conducted with nine healthy elite-level sprinters, four (3 male, 1 

female, 60m sprint time 7.49 ± 0.35 s) at the Aix-les-Bains Athletics club and five (4 

male, 1 female, 60m sprint time 7.65 ± 0.67 s) from the Lausanne Athletics club respec-

tively. Ethical approval for the study was obtained from the university human research 

ethics committee (HREC 039-2018) and prior written consent was obtained from all the 

participants. The Aix-les-Bains cohort performed 2x40m and 2x60m sprints, while the 

Lausanne one performed 2x30m and 2x60m sprints. These distances are typically used 

in sprint tests and for training sprinters. For both measurements, participants were 

wearing a vest equipped with the GNSS-IMU sensor (Fieldwiz, ASI, CH,) on the upper 
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back (Figure 5.1). Apart from the vest, the sprinters dressed as they would for a regular 

training session.  

 

 

Figure 5.1 Sensor setup and measurement protocol, A) Snapshot of a sprinter wearing the 

Fieldwiz sensor with the speed radar in the foreground B) Specifications of the Fieldwiz 

sensor and the measurement protocol, wherein the sprinters ran two trials each of 60m and 

30m or 40m distances with the speed radar as the velocity reference. Photocells were posi-

tioned at the start/end to record the sprint duration. GF and SF represent the global and 

sensor frames 

This GNSS-IMU wearable sensor was chosen because it is already used in soccer train-

ing for performance and training monitoring (Clemente et al., 2018). This sensor, with a 

sampling frequency of 200Hz for the IMU and 10Hz for the GNSS unit, was used in the 

‘airborne < 4g’ configuration of the in-built u-blox GNSS module. A speed radar (ATS 

Pro II, Stalker Sport, USA) with a sampling frequency of 50Hz, selected based on rec-

ommendations from Haugen et al. (Haugen & Buchheit, 2016), was positioned directly 

behind the starting point (Figure 5.1A) of the sprinter. Data from the radar was used in 

the measurements as a reference value for velocity. Photocells (Witty, Microgate corp, 

Italy) from the respective athletics clubs were used at the start and the end to provide 

the reference value for the sprint duration. 

5.3 METHODS 

5.3.1 Velocity and duration estimation algorithm 

The flowchart for the algorithm is shown in Figure 5.2; the algorithm includes three 

phases: i) sprint segmentation ii) velocity estimation and iii) sprint duration estimation. 

Sprint segmentation aims to detect the period for each specific sprint. First, the data 

recorded on the GNSS-IMU sensor is segmented by manually selecting an approximate 

starting sample for the relevant sprint. Following this, the algorithm is designed to 

choose a precise starting time (𝑡𝑠  by selecting an appropriate threshold (0.3 m/s) on the 

velocity obtained from the GNSS sensor. A sensitivity analysis (Appendix) was con-

ducted to see the impact of this threshold on the velocity estimation error. Using gravi-

ty and the IMU data during the static period at the start of sprint, the initial orientation 

is estimated along X and Y direction, wherein the direction of sprinter progression is 
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assumed to be the global X-axis and Y is the vertical axis. The changes from this initial 

orientation are estimated using the gyroscope data and corrected with the accelerome-

ter data using a gradient-descent based optimization method (Madgwick et al., 2011). 

Thus, the X-axis here is not truly a global axis and it is defined anew for every sprint. 

The changes in orientation are represented by quaternions q, which are used to convert 

the acceleration signals from the segmented data from the sensor frame (SF) to the 

global frame (GF) X-Y-Z using equation below: 

 

𝑎𝐺𝐹 𝑞 𝑎𝑆𝐹 𝑞 (5.2)

where 𝑞 represents the quaternions transforming the sensor frame (SF) to the global 

frame (GF) and 𝑞∗ their transpose. These quaternions are estimated by fusing accel-

erometer and gyroscope data using a gradient descent algorithm (Madgwick et al., 

2011); 𝑎𝑆𝐹  is the acceleration in the sensor frame, and 𝑎𝐺𝐹  is the acceleration in the 

global frame X-Y-Z with positive X-axis representing the direction of sprinting. 

 

 
Figure 5.2  Flowchart for the sprint velocity estimation algorithm. The ‘coarse segmentation’ 

block is manual and creates a window to select the approximate starting point of the rele-

vant sprint, while remaining algorithm is automated. The ‘Sprint detection’ and ‘GNSS-

IMU fusion’ filters are simple Kalman filters. 𝑎𝐺𝐹𝑥  denotes the horizontal acceleration in the 

global frame, 𝒗𝑮𝑵𝑺𝑺 the ground velocity from the GNSS sensor, while  𝑣𝑒𝑠𝑡  and 𝑇𝑒𝑠𝑡  repre-

sent the estimated velocity and sprint duration respectively. 

The acceleration along the positive X-axis of the global frame (𝑎𝐺𝐹𝑥) is provided as an 

input to the Sprint detection filter (linear Kalman filter) in combination with the 

ground velocity (𝑣𝐺𝑁𝑆𝑆) from the GNSS sensor. The main assumption here is that the 

sprinters run along a straight line (within sagittal plane), thus the acceleration 𝑎𝐺𝐹𝑥 can 

be assumed to represent acceleration along the direction of running and the dynamical 

model of the system can be assumed to be constant. This assumption is also used for 

the measurements with a speed radar; in our case, it simplified the system to a linear 

model and allowed the use of a simple Kalman filter, which is the optimal estimator for 

a linear system (Burl, 1998). This filter has the following prediction and update steps: 

Prediction:  

𝑣𝑒𝑠𝑡 𝑛 𝑛 𝑣𝑒𝑠𝑡 𝑛 𝑡 𝑎𝐺𝐹𝑥 𝑛 𝜇 (5.3)

Update:  

𝑣𝑒𝑠𝑡 𝑛 𝑛 𝑣𝑒𝑠𝑡 𝑛 𝑛 𝐾 𝑛 𝑣𝐺𝑁𝑆𝑆 𝑛 𝑣𝑒𝑠𝑡 𝑛 𝑛 (5.4)

Kalman gain:  

𝐾(𝑛) 𝑝(𝑛|𝑛 ) 𝑝(𝑛|𝑛 ) 𝜂 (5.5)
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Where 𝑣𝑒𝑠𝑡  is the estimated horizontal velocity, 𝑎𝐺𝐹𝑥(𝑛) is the horizontal acceleration in 

global frame, ∆𝑡 is the sampling time,  𝜇 is the process (accelerometer) noise, 𝑣𝐺𝑁𝑆𝑆(𝑛) 

is the velocity measured by the GNSS sensor, 𝐾(𝑛) is the Kalman gain, 𝑝(𝑛) is the esti-

mation uncertainty, and  𝜂 is the measurement (GNSS) noise. Since 𝑎𝐺𝐹𝑥 has a sam-

pling frequency of 200 Hz, 𝑣𝐺𝑁𝑆𝑆 is sampled up from 10 Hz to 200 Hz by ‘zero pad-

ding’. If the velocity from 𝑣𝐺𝑁𝑆𝑆 is non-zero, the update sequence is initiated, otherwise 

the prediction model continues to run without update. The magnitudes of η and 𝜇 

were set to 0.01 and 0.4 respectively, obtained via manual tuning of the filter. To refine 

the magnitude of 𝜂 further, the rationale of the exponential behavior of sprint velocity 

(Samozino 2016) is utilized. By subtracting both sides of eqn. 5.1 from 𝑣𝑚𝑎𝑥 , we get: 

 

𝑣𝑚𝑎𝑥 𝑣𝐻 𝑡 𝑣𝑚𝑎𝑥 𝑒
𝑡
𝜏 (5.6)

Based on this equation, 𝑣𝐺𝑁𝑆𝑆 is subtracted from the maximum velocity and an expo-

nential curve was fitted to it and if fit is good (R2 > 0.91), the value of 𝜂𝑘 is unchanged 

from 0.01. In case of a bad fit, this value is increased by an order of magnitude to 0.1. 

The velocity (𝑣𝑒𝑠𝑡) obtained from this Kalman filter is integrated from the starting time 

(𝑡𝑠) to obtain the distance profile, which is subsequently compared to the actual sprint 

distance and used to estimate the ending time (𝑡𝑒) and segment sprint period (𝑡𝑑 = 𝑡𝑒 −

 𝑡𝑠) precisely. In the second phase, a more accurate exponential fitting is made using a 

more refined sprint period ( 𝑡𝑑)  obtained in the first phase. Precisely segmented 

𝑣𝐺𝑁𝑆𝑆 and 𝑎𝐺𝐹𝑥 are provided as inputs to the GNSS-IMU fusion filter, which is also a 

simple Kalman filter, with the same process and measurement models as the first filter. 

This filter is used to update the final sprint velocity (𝑣𝑒𝑠𝑡)  precisely by considering the 

sprint period and the fine-tuning of GNSS noise.  In the final step, 𝑣𝑒𝑠𝑡  is integrated to 

obtain the displacement-time profile and the timestamp at the relevant sprint distance 

is computed. The starting time (𝑡𝑠) of the sprint is then subtracted from the value of 

this timestamp to obtain the sprint duration (𝑇𝑒𝑠𝑡).  

5.3.2 Estimation of profiles – velocity, force, and power 

To estimate force-velocity and power-velocity profiles, the first step is to estimate the 

approximate velocity profile from 𝑣𝑒𝑠𝑡 using the exponential fit (Samozino et al., 2016) 

presented in (9). While the maximum velocity during the sprint (𝑣𝑚𝑎𝑥 ) and the velocity 

at the end (𝑣𝑒𝑛𝑑 ) are the same in case of an ideal exponential velocity profile, this may 

not be the case with real-world velocity profiles. As a result, 𝑣𝑚𝑎𝑥  and 𝑣𝑒𝑛𝑑   tend to 

deviate from each other. To investigate which velocity profile leads to a better fit, the 

two first-order velocity profiles, based on 𝑣𝑚𝑎𝑥  (𝑣𝑚𝑑𝑙_𝑚𝑎𝑥,1(𝑡)) and 𝑣𝑒𝑛𝑑  (𝑣𝑚𝑑𝑙_𝑒𝑛𝑑,1(𝑡)) 

respectively, were compared to a second-order velocity profile, defined as: 

 

𝑣𝑚𝑑𝑙 𝑡 𝑎 𝑒𝜏 𝑡 𝑎 𝑒𝜏 𝑡 (5.7)

Where 𝜏1, 𝜏2 and a were computed with the 'trust-region reflective' algorithm, using the 

‘lsqcurvefit’ function native to Matlab application. Approximate velocity profile ob-

tained from the best performing fitting method is differentiated to obtain the approxi-

mate horizontal acceleration 𝑎𝑚𝑑𝑙(𝑡), which in combination with the sprinter’s mass 

(𝑀), led to the force profile: 
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𝐹𝑚𝑑𝑙 𝑡 𝑀 𝑎𝑚𝑑𝑙 𝑡 (5.8)

Finally, the power profile was calculated as a product this force profile and the velocity 

profile, where only the magnitudes of the force and velocity are considered: 

 

𝑃𝑚𝑑𝑙 𝑡 𝐹𝑚𝑑𝑙 𝑡 𝑎𝑚𝑑𝑙 𝑡 (5.9)

5.3.3 Validation process 

The velocity measured at 50 Hz by the radar (𝑣𝑅(𝑡)) was used as reference for velocity 

validation. To match the sampling frequency of the reference signal, 𝑣𝑒𝑠𝑡 was sampled 

down from 200 Hz to 50 Hz by keeping the first sample and every fifth sample after the 

first, and 𝑣𝐺𝑁𝑆𝑆 was sampled up from 10 Hz to 50 Hz using linear interpolation. An 

error vector (equation 5.10) between 𝑣𝑒𝑠𝑡 and 𝑣𝑅 was then computed for each trial. Fol-

lowing this, the RMS, mean, and standard deviation (SD) for each error vector were 

calculated. Finally, pooled mean and standard deviation were computed for each 

sprint distance to investigate the bias and precision respectively. Similar procedure 

was applied to estimate error for 𝑣𝐺𝑁𝑆𝑆. 

 

𝜀𝑣 𝑡 𝑣𝑅 𝑡 𝑣𝑒𝑠𝑡 𝑡
𝑣𝑅 𝑡

(5.10)

In order to investigate the different fitting methods explained earlier, the error vectors 

were calculated (19) of the fitted curves 𝑣𝑚𝑑𝑙(𝑡) (i.e., 𝑣𝑚𝑑𝑙_𝑚𝑎𝑥,1(𝑡), 𝑣𝑚𝑑𝑙_𝑒𝑛𝑑,1(𝑡) and 

𝑣𝑚𝑑𝑙,2(𝑡)) with respect to 𝑣𝑅  , followed by calculating RMS and pooled mean and 

pooled SD. Further, the fitting performance was qualitatively investigated by observ-

ing the different fitted velocity profile curves. Similarly, the error for fitted curves with 

respect to 𝑣𝑒𝑠𝑡  was calculated. 

𝜀𝑓𝑖𝑡 𝑡 𝑣𝑅 𝑡 𝑣𝑓𝑖𝑡 𝑡 (5.11)

The time recorded in the photocells (𝑇𝑅𝑒𝑓) was used as reference for validation of the 

estimated sprint duration (𝑇𝑒𝑠𝑡). Percentage error for the sprint duration was calculated 

as: 

𝜀𝑡
𝑇𝑅𝑒𝑓 𝑇𝑒𝑠𝑡

𝑇𝑅𝑒𝑓
(5.12)

Similar process was carried out for the duration obtained from the radar (𝑇𝑟𝑎𝑑) to 

compare the performance of the algorithm with that of the radar. Subsequently, the 

RMS, mean, and standard deviation for these error values were calculated. Lastly, the 

maximum velocity is an important metric according to earlier research on sprint me-

chanics (J.-B. Morin et al., 2012) and thus, the value obtained from our method was 

compared with that from the radar. Another reason to focus on the maximal speed was 

that the RMS error did not capture this parameter properly. The Bland-Altman plot 

(Bland & Altman, 2003) was used for this purpose, along with the calculation of the 

Lin’s concordance correlation coefficient (ccc) at 95% confidence interval (Lin, 1989) as 

a measure of agreement between the proposed method and the radar. A correlation 

coefficient value greater than 0.7 was considered ‘strong’, according to the ranges sug-

gested for sports science research (Hopkins et al., 2009). Bland-Altman plots were also 

utilized to compare the theoretical maximum theoretical velocity v0 (m/s), maximum 



Sprint velocity estimation using GNSS-IMU sensor fusion 

100 
 

theoretical horizontal force per unit mass f0 (N/kg), and maximum theoretical horizon-

tal power pmax per unit mass (W/kg) values obtained from the 𝑣𝑒𝑠𝑡(𝑡) using the second-

order exponential fit to those computed from the 𝑣𝑅(𝑡). The pmax values were obtained 

from the apex values of the P-V profile.   

5.4 RESULTS 

Data for nine athletes (7 male, 2 female, 60m sprint time 7.39 ± 0.37 s) was utilized in 

this research. Four athletes performed 2x40m sprints and 2x60m sprints, while remain-

ing five athletes performed 2x30m sprint and 2x60m sprints. For one 60m sprint and 

three 30m sprints, a delay in triggering the reference radar system was noticed during 

data processing. Since the sprint start was not recorded for these sprints, their data was 

discarded from the final analysis. Thus, a total seven sprints were considered for 30m 

distance, eight for 40m, and 17 for 60m. Out of these, data for two 40m sprints was 

used for tuning the algorithm, while the data for all sprints was used for validation. 

5.4.1 Velocity estimation 

Figure 5.3 illustrates one example each of situations where 𝑣𝐺𝑁𝑆𝑆 severely underesti-

mated the actual 𝑣𝑅 (Figure 5.3A) and when the  𝑣𝐺𝑁𝑆𝑆 approximately matches 𝑣𝑅 (Fig-

ure 5.3B). In both cases, 𝑣𝑒𝑠𝑡 matched 𝑣𝑅 closely. Figure 5.3C, in turn, represents the 

intermediate ‘Evaluate exponential fit’ block of the algorithm (Figure 5.2), for adjusting 

the measurement noise parameter of the Kalman filter. For the case presented here, 

𝑣𝐺𝑁𝑆𝑆(𝑡) did not show an exponential behaviour (𝑅2=0.66) and so the measurement 

noise, (η=0.1) was set higher than scenario when 𝑣𝐺𝑁𝑆𝑆(𝑡) would have been exponential 

(R2 > 0.91) in nature. Apart from this one case of 30m, 𝑣𝐺𝑁𝑆𝑆(𝑡) did not show an expo-

nential behaviour in one of 40m sprints. 

 

 
Figure 5.3 Scenario illustrating the estimated velocity profile. A) Example of a specific case 

of 30m sprint when 𝑣𝐺𝑁𝑆𝑆(𝑡) was inaccurate while 𝑣𝑒𝑠𝑡(t) is accurate B) Example of a specific 

case of 40m sprint when 𝑣𝐺𝑁𝑆𝑆(𝑡) and 𝑣𝑒𝑠𝑡(t) were accurate C) Example of exponential fit 

(equation 5.6) used to adjust measurement (GNSS) noise for the Kalman filter. IMU veloci-

ty:  velocity obtained by strapdown integration of IMU signals, 𝑣𝐺𝑁𝑆𝑆(𝑡): GNSS velocity,  

𝑣𝑅(𝑡):  radar velocity,  𝑣𝑒𝑠𝑡(t): estimated velocity by GNSS-IMU fusion 

5.4.2 Validity of estimated velocity 

The error results for 𝑣𝑒𝑠𝑡 and 𝑣𝐺𝑁𝑆𝑆 are shown in Table 5.1 and Figure 5.4; 𝑣𝑒𝑠𝑡 presents 

a similar error magnitude as 𝑣𝐺𝑁𝑆𝑆 for 40m and 60m, while showing a lower error for 
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the 30m sprint. The median of RMS errors of the 𝑣𝑒𝑠𝑡 ranged from 6.2% to 8.1% (Figure 

5.4, Table 5.1) for the three sprint distances and was lower or like that of the 𝑣𝐺𝑁𝑆𝑆. Fur-

thermore, the IQR (Table 5.1) for the RMS errors for the 𝑣𝑒𝑠𝑡 was lower than that of the 

𝑣𝐺𝑁𝑆𝑆, especially for the 30 m and 60 m sprint distances.  

 

Table 5.1 Median (IQR) values of the RMS error for 𝑣𝐺𝑁𝑆𝑆, 𝑣𝑒𝑠𝑡 , 𝑇𝑟𝑎𝑑  and 𝑇𝑒𝑠𝑡  for all three 

sprint distances. RMS error was calculated based on equations 5.10 and 5.12. 

Distance (m) % error for 𝑣𝐺𝑁𝑆𝑆 % error for 𝑣𝑒𝑠𝑡  % error for 𝑇𝑟𝑎𝑑  % error for 𝑇𝑒𝑠𝑡   

30 5.6 (4.9 to 12.0) 6.2 (5.2 to 7.2) 3.3 (1.8 to 4.5) 0.1 (-1.7 to 1.9) 

40 10.2 (5.1 to 11.4) 8.1 (6.1 to 11.4) -0.8 (-2.0 to 0.2) -4.5 (-9.8 to 0.1) 

60 6.1 (4.7 to 8.5) 6.5 (5.4 to 7.9) -2.1 (-3.4 to -0.2) -6.3 (-12.8 to -2.4) 

 

The median error for 𝑇𝑒𝑠𝑡 ranged from 0.1% to -6.3% (Figure 5.4B), while that for 𝑇𝑒𝑠𝑡 

varied from 3.3% to -2.3%, thus both showed a similar range. The IQR (Table 5.1) for 

𝑇𝑟𝑎𝑑  were lower as compared to 𝑇𝑒𝑠𝑡 for 40m and 60m sprints. For 30m sprint, 𝑇𝑒𝑠𝑡 had 

a lower median error, but a higher IQR than 𝑇𝑟𝑎𝑑. For the maximum velocity (𝑣𝑚𝑎𝑥 ), 

the Bland-Altman plot showed close agreement between the estimated and the refer-

ence magnitudes, with all the values lying between the two standard deviations and 

the Lin’s concordance correlation coefficient being 0.76 (p < 0.05). The estimated values, 

however, showed a slight negative bias of -0.16 m/s, although this was miniscule as 

compared to actual maximum velocities, which are around 10 m/s.  

 

 

Figure 5.4 Validation of estimated velocity profile, A) RMS error of the estimated velocity 

and GNSS velocity w.r.t. the radar speed B) RMS error of the predicted sprint duration from 

the proposed algorithm and the radar speed with the photocell duration as reference C) 

Bland-Altman plot for the maximum estimated velocity with the maximum radar speed as 

reference. Here, L.O.A. are the limits of agreement and M.D. is the mean difference 

For the v0, f0, and pmax the Bland-Altman plot (Figure 5.5) showed close agreement be-

tween the estimated and reference values, with almost all values lying between the two 

standard deviations. v0 presented a bias of -0.17 m/s which is like that of 𝑣𝑚𝑎𝑥 , f0 

showed almost zero bias, and the bias for pmax was -0.31 W/kg, which is substantially 

smaller than the actual pmax values, which range from 16 to 28 W/kg.  

 



Sprint velocity estimation using GNSS-IMU sensor fusion 

102 
 

 

Figure 5.5 Bland-Altman plots for sprint parameters with the values calculated from radar 

speed as reference, where L.O.A. are the limits of agreement and M.D. is the mean differ-

ence. The values here are obtained using the second-order exponential fit, A) Maximum 

theoretical velocity v0 (m/s) B) Maximum theoretical horizontal force per unit mass f0 (N/kg) 

C) Maximum theoretical horizontal power pmax per unit mass (W/kg) 

5.4.3 Validity of exponential fitting  

A qualitative presentation of the different types of first order (𝑣𝑚𝑑𝑙_𝑚𝑎𝑥,1, 𝑣𝑚𝑑𝑙_𝑒𝑛𝑑,1) 

and second order (𝑣𝑚𝑑𝑙,2) exponential fits can be seen Figure 5.6A. For both 𝑣𝑒𝑠𝑡 and 𝑣𝑅, 

the second order fit has the lowest RMS error (Figure 5.6B and C) and lower mean and 

standard deviation than both first order fits (Table 5.2). 𝑣𝑚𝑑𝑙_𝑒𝑛𝑑,1 fit has similar mean 

error values as 𝑣𝑚𝑑𝑙_𝑚𝑎𝑥,1 fit for 30m and 40m sprints, while it has considerably higher 

mean value and standard deviation for the 60m sprint (Table 5.2).  

 

 

Figure 5.6 Modelling of the sprint velocity profile, A) Three methods for exponential fit B) 

RMS error for exponential fit(s) on radar speed (𝑣𝑅) C) RMS error for exponential fit(s) on 

estimated velocity (𝑣𝑒𝑠𝑡) 

Force-velocity (F-V) and power-velocity (P-V) obtained from the second order (order 2) 

exponential are shown in Figure 5.7 B and C, respectively. These profiles were created 

from the best trial of the nine selected athletes for the 60m sprint and sorted from the 

lowest to the highest finish times.   
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Table 5.2 RMS error for the modelled velocity profile. RMSE was calculated based on equa-

tion 5.11. The second order fit (𝒗𝒎𝒅𝒍,𝟐) presents the lowest median (IQR) for both 𝑣𝑒𝑠𝑡 and 𝑣𝑅 

Dist. 
𝑣𝑚𝑑𝑙_𝑚𝑎𝑥,1 𝑣𝑚𝑑𝑙_𝑒𝑛𝑑,1 𝑣𝑚𝑑𝑙,2 

Fit on 𝑣𝑅 Fit on 𝑣𝑒𝑠𝑡 Fit on 𝑣𝑅 Fit on 𝑣𝑒𝑠𝑡 Fit on 𝑣𝑅 Fit on 𝑣𝑒𝑠𝑡 

30 m 
0.53  

(0.47 to 0.65) 

0.49 

(0.36 to 0.74) 

0.51  

(0.41 to 0.64) 

0.61 

(0.48 to 0.68) 

0.34 

(0.33 to 0.36) 

0.34 

(0.30 to 0.46) 

40 m 
0.52 

(0.46 to 0.55) 

0.53 

(0.32 to 0.71) 

0.51 

(0.41 to 0.55) 

0.50 

(0.36 to 0.70) 

0.34 

(0.31 to 0.37) 

0.40 

(0.26 to 0.50) 

60 m 
0.64  

(0.54 to 0.72) 

0.51 

(0.43 to 0.69) 

1.16 

(0.55 to 1.52) 

0.47 

(0.40 to 0.87) 

0.33 

(0.31 to 0.38) 

0.35 

(0.27 to 0.44) 

 

5.5 DISCUSSION 

5.5.1 Validity of the proposed method 

The proposed sensor-fusion algorithm can compute an accurate velocity profile with 

respect to the radar; it can compensate for and improve upon the accuracy of the indi-

vidual IMU and GNSS velocities, as seen in Figure 5.3B. When vGNSS is relatively accu-

rate, the algorithm output (vest) closely resembles the vGNSS profile (Figure 5.3C). This is 

underlined by the percentage error for the velocity (Figure5.4A); the median RMS error 

values for the vest are only slightly lower than those for vGNSS, whereas the standard de-

viation is considerably less. Thus, the velocity estimation algorithm based on GNSS 

and IMU fusion is robust in terms of accuracy and precision, despite the inaccuracies in 

the GNSS velocity. None of the previous works on estimation of sprint mechanics 

(Gurchiek et al., 2018; Samozino et al., 2016; Setuain et al., 2018; Stanton et al., 2016) 

conducted a validation of the instantaneous velocity or the overall profile with respect 

to a speed radar. (Stanton et al., 2016) validated the mean velocity over an entire sprint, 

while (Gurchiek et al., 2018) validated the mean velocity over 10 m intervals. This 

method is the first one to provide validated instantaneous analysis of the sprint veloci-

ty profile over multiple distances using only one wearable sensor, and thus it is not 

possible to compare our results with the state-of-the-art.  

 

The mean error for sprint duration (𝑇𝑒𝑠𝑡) increased from 0.5% to -7.1% for 30 m to 60 m 

distances respectively, clearly showing an overestimation. This is a result of the minor 

underestimation of velocity caused by the residual drift in the IMU strapdown integra-

tion and the inaccuracies of the GNSS velocity. While the work by (Setuain et al., 2018) 

used photocells for drift estimation, only the research from (Stanton et al., 2016) con-

sidered a validation with respect to the photocell data. The mean error reported in the 

latter case (2.6%) for 10 m sprint was higher than the one presented here i.e., 0.5% ± 2.8 

(Table 1) for a 30 m sprint. Furthermore, it was validated solely for 10 m sprints, and 

the algorithm was focused only on the calculation of the mean velocity. The mean error 

and its SD for estimated sprint duration (Test) is higher than the one obtained from the 

speed radar (TR), except for 30 m sprint where the mean error is lower (Table 5.1). 

Thus, the algorithm is less robust than the radar. This might be the result of the as-

sumption of purely sagittal plane motion, which can be violated to different degrees by 

the different magnitude of mediolateral motion resulting from the varied running 

techniques of the sprinters. 
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Comparison of the estimated maximum velocity to that from the radar (Figure 5.4C) 

showed a bias of -0.12 m/s, which is in agreement with the slight underestimation of 

velocity discussed in the preceding paragraph and lower than the 0.20 m/s value re-

ported in (Gurchiek et al., 2018). Despite this bias, the estimated maximum velocity 

showed a ‘strong’ agreement with the measured one, indicated by the magnitude of 

the Lin’s concordance correlation coefficient (ccc) being 0.76 (p < 0.05). In comparison, 

(Setuain et al., 2018) compared the estimated maximum velocity with the measured 

one, obtaining a ccc value of 0.81 (p < 0.05). However, the maximum velocity in this 

work was estimated indirectly through a linear force-velocity relationship based on the 

first order exponential fit model (equation 5.1) for both, the IMU and the reference 

force plate data. For the vmax, the limits of agreement (L.O.A.) for the Bland-Altman plot 

range from -1.20 to 0.89 m/s, this range being smaller than one (-1.25, 1.64 m/s) present-

ed in (Gurchiek et al., 2018). L.O.A for the v0 parameter varied from -1.01 to 0.67 m/s, 

which is similar in extent to one (-0.7 to 1.3 m/s) showed in (Samozino et al., 2016). The 

f0 and pmax magnitudes were computed in terms of per unit mass and hence the L.O.A 

cannot be directly compared to the ones from (Samozino et al., 2016). 

5.5.2 Exponential fitting and athlete profiles 

Use of a first order exponential fit (Samozino et al., 2016; Setuain et al., 2018) is the 

dominant method of estimating the sprint velocity profile and subsequently the force 

(F)-power (P)-velocity (V) relationships. In this work, we compared the accuracy of this 

first order exponential and a second order exponential in approximating the velocity 

profile produced by our algorithms and by the reference radar system. Figure 5.6A 

showed the second order fit to better approximate the velocity profile, while the first 

order fits led to an underestimation of the velocity. For all sprint distances, the median 

RMS error for second order exponential was consistently less than that for the first or-

der exponentials; this was true for both fits based on vR or vest. The error values are dif-

ferent across athletes and different sprint distances, emphasizing the idea that the ve-

locity profile does not necessarily present first order exponential behavior. While the 

first order fit is suitable to represent a maximal effort during sprint competitions (Sam-

ozino et al., 2016), the athletes may not necessarily undertake a maximal effort during 

training sessions. Thus, a second order exponential can offer a truer representation of 

the sprinter’s velocity profile across different contexts. However, estimating the three 

variables (a, τ1, τ2) is an optimization problem, leading to a higher computational cost 

than solving the equation 5.1 for a single variable 𝜏. This added complexity could be 

detrimental in case of real-time processing. 

 

Use of a first order exponential leads to linear F-V and parabolic P-V profiles, which 

have been investigated previously (J.-B. Morin & Samozino, 2016) for their potential to 

predict risk of injury and to plan training goals. The second-order exponential leads to 

more accurate albeit non-linear F-V and non-parabolic P-V profiles, as seen in Figure 

5.7. As expected, the area under the curve for both profiles are higher for athletes with 

lower finish times and vice-versa. For the top two athletes (6.93 s and 7.05 s), the F-V 

profile (Figure 5.7B) shows an interesting contrast, one (6.93 s) of them starts with a 

higher acceleration, has a stronger reduction in the same, and yet the athlete continues 
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to accelerate throughout the 60 m. Whereas the second (7.05 s) athlete starts with a 

lower acceleration but has a slower reduction in its magnitude. Such differences, when 

observed over multiple trials, can help in identifying the strengths and the areas of 

improvement for athletes. Whether the increased accuracy resulting from the second 

order exponential improves the analysis of athletes is a potentially important practical 

research question for sports scientists.   

 

 

Figure 5.7 Force-velocity and power-velocity profiles, A) Horizontal force (per unit mass) -

Velocity profile for the respective best 60m performance of nine athletes C) Power (per unit 

mass) – Velocity profile, based on second order exponential fit, for the respective best 60m 

performance of nine athletes 

5.5.3 Limitations and future work 

The two main limitation of the proposed algorithm arise primarily out of the gradient 

descent (Madgwick et al., 2011) procedure used for converting the IMU acceleration 

from the sensor frame to the global frame. First, this procedure necessitates the use of 

magnetometer for reliable estimation of the acceleration in the lateral direction. We 

assume that the motion occurs purely in the sagittal plane, thus negating the necessity 

of using lateral acceleration and simplifying the process model in the Kalman filter to a 

one-dimensional linear model. This assumption holds because of the approximate 

straight-line motion of the sprinter; it also forms the basis of radar-based velocity 

measurement. Thus, the proposed algorithm is valid for straight-line sprints and not 

for curve sprinting or sprints with direction changes.  

 

Second, the gradient descent uses a static period to determine the orientation with re-

spect to gravity and thus the algorithm is sensitive to the selected starting point of the 

sprint. Thus, absence of a static period before the start of the sprint can lead to unrelia-

ble conversion of the acceleration to the global frame. To ensure the availability of this 

static period, we visualize the raw GNSS velocity plot and manually select the starting 

point for the segmentation of the sprint data. However, an automated segmentation 

procedure, possibly based on the GNSS velocity, can allow for a more robust and re-

peatable segmentation, and subsequently enable a more accurate estimation of sprint 
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velocity. Automated segmentation can also simplify the analysis when a battery of 

tests, such as the agility T-test (Pauole et al., 2000), the sprint test, and the bleep test 

(Iaia & Bangsbo, 2010), are performed together. This is typically the case for pre-season 

testing in team sports such as soccer, rugby, hockey, etc. The limited sample size of this 

study constitutes the last limitation. However, this study is aimed strictly towards the 

technical validation of the proposed algorithm, and we attempted to overcome this 

limitation by conducting multiple trials per participant. While this study was mainly 

focused on the algorithm development and validation, there is a potential for a follow-

up study with different groups of sprinters of varied skills to test the discriminatory 

power of the results from the algorithm. 

5.6 CONCLUSION 

The goal of this study was accurate estimation of the sprint velocity profile using a 

back-worn GNSS-IMU sensor and its validation with the reference system i.e. a Dop-

pler speed radar. To overcome the individual limitations of the GNSS and IMU sen-

sors, we utilized a sensor-fusion approach based on Kalman filter to fuse the GNSS 

velocity and the IMU acceleration signals. Velocity profile estimation was achieved 

with a median error ranging from 6.14% to 8.11% respect to the radar speed profile, for 

sprint distances varying from 30 m to 60 m. Additionally, an improved approximation 

of the velocity profile was presented using a second order exponential model, thus 

raising doubts over the dominant approach of using a first order exponential model. 

Further studies should investigate the advantage of utilizing second order exponential 

model in athlete training and monitoring. To extend this work in future, we may au-

tomate the segmentation procedure and use the IMU signals to analyse the gait tem-

poral parameters. By pursuing this path, we hope to augment the potential of sprint 

test used in training to assess injury risk of athlete and improve their performance.  

5.7 APPENDIX 

A sensitivity analysis was conducted to examine the change in the percentage RMS 

error with a corresponding change in the threshold (section 5.3.1) used to detect the 

start of the sprint. The algorithm was tested for a range of thresholds around the cho-

sen value of 0.3 m/s (Figure 5.8), increasing in steps of 0.05 m/s, from 0.2 m/s to 0.4 m/s. 

For the 30 m sprint, the algorithm showed around 1% change in RMS error at thresh-

olds lower than the chosen one but almost no change for threshold higher than 0.3 m/s. 

For 40 m and 60 m sprints, the RMS error resulting from the algorithm presented al-

most negligible sensitivity to the threshold. 
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Figure 5.8 Change in the percentage of RMS error from its value at the chosen threshold of 

0.3 m/s. The RMS error is slightly sensitive to the threshold for the 30m sprint, especially 

when the threshold is below 0.3 m/s. For other distances, the error is almost insensitive to 

the threshold. 
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6 DEVELOPMENT OF AN INSTRUMENTED 

CHANGE-OF-DIRECTION FIELD TEST 

This chapter presents the algorithms used to augment the Agility T-test, which is 

a functional test for measuring change of direction (COD) ability of athletes. It 

involves five sequential movements and the transition between these movements 

is characterized as COD. The test is traditionally scored based on the total com-

pletion time, with a lower timing indicates better performance. However, the test 

in its current form does not provide information about the performance based on 

the five individual movements and the respective CODs. Instrumenting the T-test 

with wearable sensors provides an avenue to measure detailed metrics in the 

field, which extend beyond the total time. During their pre-season testing, data 

from 25 professional soccer players was recorded using a GNSS-IMU sensor on 

upper back. Video data recorded with a GoPro camera was used for validation. 

The proposed method detects the start and end of the five sequential movements, 

based on the acceleration impulse estimated between peak values of the antero-

posterior acceleration signal enhanced through wavelet analysis. The detected 

start and end of each movement provide a mean error and standard deviation of 

−0.03±66 (ms) for COD detection. The relative mean error and standard devia-

tion for each COD duration and each sequential movement duration is less than 

3.5 ± 16 (%) and less than 7 ± 7[%], respectively. By reliably estimating the du-

ration of the five motion sequences and the transitions between them, the pro-

posed method can serve to be a valuable performance evaluation tool for coaches. 

For the five fastest/slowest athletes according total time, the obtained results 

differences between the duration of the total cutting time and the displacement 

phases. These results can be studied further to understand the sensitivity of the 

new metrics can be extracted using the proposed methods. Furthermore, asym-

metrical performance between displacement in the right and in the left direction 

and/or the COD between them can be highlighted using the presented algorithm. 

Athletes returning to sport after a knee anterior cruciate ligament (ACL) injury 

can be assessed using this asymmetry. By enabling a richer analysis in the field, 

this work can enable coaches to develop more personalized training and rehabili-

tation programs. 

  

The contents of this chapter are under review as an original research article in the 

Sports Medicine – Open journal. 

Contributions: conceptualized the study design; conducted the data collection; rec-

ommended the methodology for data labelling and algorithm development, con-

tributed to the analysis and interpretation of the data; drafted the manuscript; su-

pervised the master project that led to the results of this chapter. 
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6.1 INTRODUCTION 

Agility is an important ability for practitioners of sports like soccer, rugby, hockey, 

tennis, badminton, etc., as they are required to respond quickly to events on the field. 

In this context, the capacity to perform a "rapid whole-body movement with change of 

velocity or direction in response to a stimulus" (Sheppard & Young, 2006) is defined as 

agility. Agility is broadly based on two components: a reactive component involving 

cognitive factors as perception, reaction time, anticipation, etc., followed by an athletic 

component involving speed, acceleration, strength, coordination, technique etc., to exe-

cute the planned movement.  Agility, being multifactorial, is difficult to evaluate quan-

titatively during in-field training and testing. However, the second component of agili-

ty, i.e., the ability to rapidly execute a pre-planned movement, can be evaluated using 

change-of-direction (COD) tests in the field. Each COD speed test consists of various 

COD maneuvers, preceded, and followed by various displacement phases. The most 

important factors affecting the technical execution of direction changes are the ap-

proach speed and the COD angle, where the latter is defined as the angle between the 

approach direction before the COD and the exit direction after. While there is no “gold-

standard" COD test assessing the general performance of the athletes, a "T" shape of 

ten yards (Pauole et al., 2000) is commonly used in sports such as soccer (Sporis et al., 

2010), basketball (Chaouachi et al., 2009), football (Gleason et al., 2015), tennis (Sekulic 

et al., 2017), etc. It involves five sequential move-

ments (Figure 6.1) while facing in the same direc-

tion: i) Sprint forward (A to B) ii) Shuffle left (B to C) 

iii) Shuffle right (C to D) iv) iv) Shuffle left (D to B) 

v) Sprint backwards (B to A).  A is the starting point 

and B-C-D are the points where the cutting maneu-

ver (or cut) takes place and are marked by cones. 

Cutting maneuver is undertaken to change the di-

rection of movement. This test has been shown to be 

reliable, and effectively measure a COD ability 

(Pauole et al., 2000; Stewart et al., 2014). Further-

more, it is popular among coaches and athletes be-

cause of the ease of use – one trial is usually less 

than 15 s, only cones are needed to mark the path 

and a pair of photocells are required for timing, and 

the test needs limited space. Thus, the T-test is the 

focus of this of the work presented in this chapter. 

 

Performance on COD speed test is not biased by cognitive factors, as the trajectory is 

known and the athletes can plan their movement in advance. This makes the meas-

urements more homogeneous in an elite athlete population and eliminates the necessi-

ty to measure variable such as reaction time, cognitive load, etc., which are difficult to 

evaluate on the field. The big advantage of COD speed test is that they assess a mix of 

physical abilities in a single movement. The required qualities to perform at cutting 

maneuver are supposed to be a mix of: speed, balance, technique (anticipatory and 

proprioception skills), strength, power, plyometric capacity etc. (Sheppard & Young, 

2006). Therefore, COD speed tests are an effective way to assess multiple physical abili-

Figure 6.1 Conventional T-test 

for COD performance assess-

ment 
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ties at once in an environment closer to the field. Rapid performance of COD requires 

an extended knee position, greater knee abduction angles, and large ground reaction 

forces. As these factors are associated with knee joint strength and stability (Dos’ San-

tos et al., 2019), COD testing is also used as a tool for assessment of return to sport for 

athletes with anterior cruciate ligament (ACL) injuries. ACL injury presents a frequent 

prognosis in sports with an emphasis on COD skills, with the incidence of ACL injuries 

rises to 0.23 per thousand skier days, and up to 0.2 per thousand exposures in female 

soccer (0.09 for male) (Davey et al., 2019). Deterioration in the ability of athletes to rap-

idly decelerate before COD has been linked to neuro-muscular coordination loss, 

strength loss, unconscious speed reduction before COD due to fear of re-injury, re-

duced range of motion etc. and thus can be detected through detailed analysis of COD 

tests (Kim et al., 2020). 

 

The main metric for assessment during the COD test is the total competition time for 

the test. With the use of force plates or video analysis, advanced metrics such as 

ground contact time (total duration of ground contact of the feet) during COD can also 

be assessed (Sasaki et al., 2011). A lower magnitude for both metrics implies a better 

performance. Force plates may also be used to evaluate the magnitude of GRF, with a 

high reaction force, especially during the braking phase before COD, being correlated 

to a better performance (Shimokochi & Shultz, 2008). Complementing the force plates 

with a motion capture system can provide additional metrics such as speed be-

fore/after the cutting maneuver, movement of the center of mass (COM), range of mo-

tion (ROM) of trunk rotation along mediolateral axis, knee adduction moment (KAM), 

etc. (Welch et al., 2021). Furthermore, asymmetries of the range of motion of the shank 

between right and left side can be a way to measure knee stability (Kim et al., 2020) 

and the movement of COM and the magnitude of GRF can be used to ascertain vertical 

stiffness (Maloney et al., 2017) during COD. A high vertical stiffness, low COM vertical 

displacement, low trunk angle ROM, and a high KAM are typically related to a high 

performance on the test (Maloney et al., 2017; Sasaki et al., 2011; Welch et al., 2021). 

While this measurement setup can enable the analysis of a large variety of metrics 

(McBurnie et al., 2021), it is cumbersome and highly expensive to use during regular 

training and testing sessions on the field. In contrast, wearable sensor-based methods 

can provide an easier avenue for analysis in the field and have been previously used to 

augment functional capacity tests (Ahmadian et al., 2020; Apte, Troxler, et al., 2022; 

Picerno et al., 2011; Willy, 2018).  

 

Trunk-worn IMU has been used to detect different types of CODs (Meghji et al., 2019), 

based on the changes in the body rotation around the vertical axis. In the T-test, 

knowledge of COD type can help in the segmentation of different phases and assess-

ment of individual durations. However, this method assumes the athlete to look in the 

direction of running after COD, which is not applicable for the T-test. An IMU on sa-

crum was shown to approximate the GRF well, based on the use of the magnetometer 

for estimating heading angle and the assumption of the sacrum representing the loca-

tion of the COM (Gurchiek et al., 2017). However, magnetometer is highly sensitive to 

environmental magnetic field and the COM assumption may be violated because of the 

trunk rotation during COD. Another study used sacrum-worn IMU to distinguish be-

tween two different techniques used in a slalom run (McGinnis et al., 2017) using a K-
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means clustering analysis. However, the drift-reduction technique employed to assess 

the trunk orientation was not validated quantitatively. Machine learning approaches 

have also been employed to estimate running speed before/after turns using pelvis-

mounted IMU (Zago et al., 2019) and knee joint loading using an IMU each on the 

thigh and the shank (Stetter et al., 2019). However, the former work provided a associa-

tion of R2 < 0.7 and only considered 180 deg cuts, while the latter study utilized a sleeve 

to attach the IMUs to the leg, thus making the estimating susceptive to soft tissue arte-

facts, especially during highly dynamics movements of a COD test. None of these 

works considered the T-test in particular and only one study (Meghji et al., 2019) uti-

lized a wearable sensor that is commonly used by high level athletes in their daily 

training routine.  

 

A fast COD test implies not only strength in the legs or speed, but also coordination, 

technique, balance, or other physical capabilities that have yet to be defined (Young et 

al., 2015). A disadvantage of the non-specificity of the COD test is that it does not allow 

precise isolation of the athlete’s weaknesses. While the COD test can be used to show a 

drop in the athlete’s performance, but it is difficult to understand the cause. One rea-

son for this is that traditional performance evaluation is based only on the total time of 

the COD test. Therefore, a quantitative analysis of the duration of each phase would be 

a valuable tool for coaches to identify athletes’ weaknesses in a particular movement 

sequence or COD type. For example, an athlete might be particularly poor at running 

backward or slower at one of the 180° cuts due to a knee injury. Therefore, a method 

that allows automatic detection of the different phases of a T-test for COD can be a 

valuable tool. This chapter details the development and validation of such a method 

using a wearable GNSS-IMU sensor, which is commonly used for training and match 

analysis in soccer (Clemente et al., 2018). Furthermore, it presents the validation of the 

duration of the detected phases and an initial exploration of the different performance 

metrics that can be estimated using this method. 

6.2 MATERIALS AND EQUIPMENT 

Twenty-two male professional soccer players (height: 181.4 ± 5.4 cm, weight: 75 ± 5.6 

kg, age: 25.1 ± 4.3 years) from Swiss league football were enrolled in this study. Each 

athlete was asked to perform two trials of the standard T-test with an IMU-GNSS sen-

sor (AdMos from ASI sensors) placed on the upper back (Figure 6.2). This sensor setup 

was chosen as it is commonly used in soccer (Clemente et al., 2018) and it was previ-

ously used to instrument the sprint test (Apte, Meyer, et al., 2020). Since the sprint test 

is typically carried out together with the T-test during pre-season testing in soccer, in-

strumentation of both testing using the same sensor setup can be valuable. The AdMos 

sensor was configured to measure 3D acceleration and angular velocity with the sam-

pling frequency of 200 Hz as well as GNSS ground speed with the sampling frequency 

of 10 Hz. Video data of all tests was recorded with a camera (Gopro Hero 5, frame rate 

= 60 fps), placed facing the athlete. This data was used as reference for labelling the 

different phases of the test. The total completion time of the test is measured using a 

photocell (Witty, Microgate corp, Italy) placed at the start line. The photocell makes a 

sound when the athlete cross the start line at the start and the end of the test. During 
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the test, the athlete faced forward, touched each cone, and was not allowed to cross the 

feet when shuffling sideways.  

 

Each T-test is divided in 9 segments which consists of 4 change of directions (CODs) 

and 5 displacement phases (DPs). For each cutting maneuver, the athletes must touch 

the cones, indicated by points B, C, and D: 

▪ DP1: Forward sprint from A to B which begins with the photocell sound 

▪ COD1: 90° angle change of direction using side step, from forward sprint to 

sideways displacement in the left direction 

▪ DP2: First left shuffle which is sideway displacement from B to C 

▪ COD2: 180° angle change of direction using split-step, from left shuffle to side-

ways displacement in the right direction 

▪ DP3: Right shuffle which is sideway displacement from C to D 

▪ COD3: 180° angle change of direction using split-step, from right shuffle to 

sideway displacement in the left direction 

▪ DP4: Second left shuffle which is sideway displacement from D to B 

▪ COD4: 90° angle change of direction using side step, from left shuffle to back-

ward sprint 

▪ DP5: Backward sprint from B to A that ends with the second photocell sound 

6.3 METHODS 

6.3.1 Labelling of video data 

For validation of segmentation algorithms, it is important to label each of defined seg-

ments from the recorded videos. For each COD segments, we can define five distinc-

tive events: two heel strikes (right foot + left foot), two toe-offs (right foot + left foot) 

and one for touching the cone. The COD motion can be divided into two main phases: 

the eccentric phase (braking) and the concentric phase (pushing). The transition be-

tween the two phases occurs approximately when the athlete touches the cone. Just 

before the eccentric phase and just after the concentric phase (of both legs), the athlete 

Figure 6.2 Sensor setup and the nine phases of the Agility T-test. Instrumentation 

used for the protocol is presented in Italics 
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is no longer in contact with the ground. COD duration is the time the athlete is in con-

tact with ground, after the first heel strike of the last flight phase of the approach dis-

placement phase and the last toe-off of the first flight phase after the COD. Assigned 

events for each COD segment are depicted in Figure 6.3. 

 

 
Figure 6.3 Event labels for each COD segment to be used as reference data; COD 1 and COD 

4 involve 90 deg turn with a side step, COD 2 and COD 3 involve 180 deg turn with a split 

step, R in: right foot heel strike,  L in: left foot heel strike, Touch: cone touch, R off: right foot 

toe-off, L off: left foot toe off 

 

Time frames of each test were recorded using KinoveaTM and then imported into 

MATLAB. Each test data was manually cut in a 15-second window (the duration of the 

T- test is ∼ 10s) for subsequent algorithm development and validation. 

6.3.2 Algorithm development 

A macro-micro approach was followed to detect COD segments, following its success-

ful prior application in biomechanical assessment using wearable IMUs (Hamidi Rad 

et al., 2021). First, a macro-analysis of the signal is performed to identify the beginning 

and end of the test as well as the transient phases corresponding to each of COD seg-

ments. Then, micro-analysis methods are developed for a more accurate detection of 

step patterns in each COD segments. All algorithms were developed using the data 

from 6 out of the 23 athletes. 
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6.3.2.1 Macro-analysis 

The reference for the beginning 

of the test when the athlete 

crosses the start line and the 

corresponding sound the photo-

cell. Due to lack of synchroniza-

tion between photocell and IMU 

system, it is not possible to lo-

cate the exact timestamp of the 

beginning of the test on the IMU 

signal. Therefore, it was decided 

to synchronize the video and the 

signal based on the event of the 

first step. The sound of photo-

cell from the video is assumed 

to be reference starting point, 

while this first step is detected 

from the IMU signals as follows.  

 

Acceleration in the anterior-posterior (AP) direction is used to determine the beginning 

of the test. While the axes are defined in the sensor frame (Figure 6.2), they are as-

sumed to align with the body frame due to the location of the sensor within the vest 

and the tight fit of the vest. Thus, we can assume negligible movement of the sensor 

with respect to the trunk. This signal is filtered using a zero-phase 2nd order Butter-

worth low-pass filter with a cut—off frequency of 10 Hz. The first two local maxima 

above 4 ms-2 are detected from this signal using the peakfinder function in MATLAB 

2020b. The first peak likely originates from the straightening of the upper body as the 

athlete begins to push on the ground whereas the second peak likely comes from the 

impact during the first step of the test. Therefore, the local minimum before these two 

peaks is defined as the start of the movement and the first heel strike (first step). This 

procedure is shown in Figure 6.4 for 4 randomly selected subjects. The end of the test 

cannot be identified using only IMU signal, since the athlete doesn’t stop when they 

cross the finish line. Therefore, we consider the end of the test by adding total comple-

tion time (from photocell) to the detected timestamp for beginning of the test. The 10 

Hz sampling rate of the GNSS receiver is too low to capture the end of the test accu-

rately, even though the total distance each phase is known. 

 

Four transient phases corresponding to each of COD segments were visible with a 

simple visualization of the AP acceleration signal (Figure 6.5). It is well known that for 

transient signals, wavelet analysis allows reconstruction of the signal with little to no 

phase shift and with little loss of information. It is also known that wavelet decomposi-

tion preserves features such as a discontinuity better than spectral analysis [46]. Some 

studies have also shown that the magnitude of variables (such as vertical acceleration 

while running) strongly depends on the filter cut-off frequency [47]. Therefore, in this 

work, wavelet decomposition within a range of 0.5 – 15 Hz was used to approximate 

the shape of AP acceleration signal. The mean value of the AP acceleration (zero fre-

Figure 6.4 Start of motion (dashed green lines) and 

first step (black line) detection. Data shown for 4 

participants. 
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quency) was then added back to the wavelet-approximated signal to synchronize it 

with the original signal. Local minima below a specific threshold (𝑇𝑀𝐴 in equation 6.1), 

with prominence greater than 15 ms-2, were detected using the MATLAB peakfinder 

algorithm.  𝑇𝑀𝐴 was chosen as a function of the average peak value (resulting from the 

ground contact): 

 𝑇𝑀𝐴
𝑙𝑜𝑐𝑎𝑙 𝑚𝑎𝑥 𝑝𝑒𝑎𝑘 𝑣𝑎𝑙𝑢𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑐𝑎𝑙 𝑚𝑎𝑥 𝑝𝑒𝑎𝑘𝑠
(6.1)

 The AP acceleration between each detected local minima was then numerically inte-

grated using the cumtrapz function to approximate the change of velocity during a foot 

stance. This change in velocity during the COD motion is referred to as the acceleration 

impulse (AI). As we see in Figure 6.5, the acceleration impulses (in blue) are around 5 

to 7 ms-1 during COD and between 1 to 3 ms-1 during displacement phases. Four pairs 

of the detected minima with the maximum AI values were selected as the COD seg-

ments. Since the order the 90 deg and 180 deg COD segments and the timestamps of 

the four pairs of minima are known, the COD type was also classified. 

 

 

Figure 6.5 Segmentation of one test sample using reconstructed AP acceleration signal. 𝑇𝑀𝐴 

is indicated by dotted horizontal line. Blue horizontal line shows the acceleration impulse 

between each local minimum; blue triangles show all the local minimum; time line at the 

top comes from video reference with the blue crosses showing the instance of cone touch, 

the green and red vertical lines indicating heel strike and toe off, respectively. This timeline 

is shaded darker than the segments below, to highlight its role as reference from video 

6.3.2.1 Micro-analysis 

The COD detection algorithm presented in the macro-analysis section is used as a first 

approximation for the beginning and end of the COD events. The micro analysis algo-

rithm was subsequently used to allows more precise patterns to be detected from the 

signal and improve the detection of the start/end of the COD segments. The typical key 

event during each COD is defined using the last step before shifting to the new direc-

tion, called ‘final foot contact’ (FFC) (Dos’Santos et al., 2018), which is the indicated as 

second heel-strike (for example, Lin in COD 2) in Figure 6.3. However, research has also 

shown showed the importance of the step preceding the FFC, especially for sharp 

turns. This step is called ‘penultimate foot contact’ (PFC), indicated as the first heel 

strike (for example, Rin in COD 2) in Figure 6.3, and is used to brake prior to the COD 

(Dos’Santos et al., 2018; Nedergaard et al., 2014). For COD greater than 60 deg, it is 

recommended to brake strongly during the PFC, thus making it important (Dos’ Santos 

et al., 2019). For the micro-analysis, five candidate methods were developed based on 

the observation of the signals and the obtained error over 6 participants was used to 
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test these methods. M3 utilized the 2-norm of the acceleration signal, while others were 

based on the AP acceleration. 

 

▪ M0: The COD detection from macro analysis (Figure 6.5) was used. Start and 

end of the COD were the local minima between the largest AP AI. 

▪ M1: Within the selected local minima, a smaller wavelet range (0.5 to 5 Hz) was 

applied, and the resultant local minima were selected as start and end events. 

▪ M2 (only for 180 deg COD): If there was large peak just before the start detected 

from macro-analysis, this method brought forward the start of COD by a local 

minimum. The goal was to move the detected start from the second heel strike 

to the first one (Figure 6.3) i.e., the PFC. The end of COD detected from macro-

analysis was shifted forward by a local minimum if the detected minima (end) 

was less than 0. This was done to shift the endpoint to the second toe-off. 

▪ M3: First points on the acceleration norm signal with magnitude < g were found, 

which occur immediately near the approximate COD start/end found with the 

macro analysis. Acceleration norm < g indicates the flight phases, which occurs 

immediately before the first heel strike and after the second toe-off (Figure 6.3). 

▪ M4: For the first 90° COD (COD 1), the COD end detected from the macro-

analysis was pushed forward by one local minimum if the detected end was 

immediately followed by a peak. This peak indicates the second toe-off, which 

occurs at the end of the COD 1 (Figure 6.3). 

6.3.2.2 Validation 

For each of five proposed methods in micro-analysis, the error (𝜀𝑠 for start and 𝜀𝑒 for 

end) in ms between detected COD start (𝑇𝑒𝑠𝑡𝑠) and end (𝑇𝑒𝑠𝑡𝑒) timestamps with respect 

to the corresponding reference timestamps (𝑇𝑟𝑒𝑓𝑠 and 𝑇𝑟𝑒𝑓𝑒) obtained from the video 

labels:  

 

𝜀𝑠 𝑇𝑟𝑒𝑓𝑠 𝑇𝑒𝑠𝑡𝑠 (6.2) 

𝜀𝑒 𝑇𝑟𝑒𝑓𝑒 𝑇𝑒𝑠𝑡𝑒 (6.3)

Based on the start and end points, duration of each segments (4 CODs and 5 DPs) was 

also computed, as it is an important metric for analysis of the performance during the 

T-test (Welch et al., 2021). For the durations, the absolute error (𝜀𝑑𝑎) in ms and relative 

error (𝜀𝑑𝑟) in % were also computed from estimated (𝐷𝑒) and reference (𝐷𝑟) durations.  

The error on total completion time (𝜀𝑡) was also computed, based on the difference 

between the duration labelled with the video (𝐷𝑣𝑡  and that recorded by the photocell 

(𝐷𝑝𝑡). Finally, The Bland-Altman plot (Bland & Altman, 2003) was utilized to check 

whether errors are correlated with the detected events or not. 

 

𝜀𝑑𝑎 𝐷𝑟 𝐷𝑒 (6.4)

𝜀𝑑𝑟
𝐷𝑟 𝐷𝑒

𝐷𝑟
× (6.5) 

𝜀𝑡 𝐷𝑣𝑡 𝐷𝑝𝑡 (6.6)
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6.3.3 Metrics for performance in COD test 

While the proposed method for instrumenting the agility test can provide additional 

data during the COD, the performance metrics were defined using the literature (Dos’ 

Santos et al., 2019; McBurnie et al., 2021; Welch et al., 2021; Young et al., 2015). While a 

larger set of metrics can be estimated using a combination of force plate and motion 

capture systems, the metrics that can be estimated using the current sensor setup were 

selected for analysis and comparison of the athlete’s performance during the test. To 

investigate whether the metrics can differentiate between athletes with different per-

formances, five participants with lowest and highest total completion time on the test 

were selected as the ‘best’ and ‘worst’ groups. The ‘best’ and ‘worst’ performance was 

assessed with the total completion time, as this is the standard metric used to evaluate 

the T-test. These metrics can be divided into three categories: 

▪ Duration-based metrics: The total completion time of the test is the standard 

performance metric. This value came from the photocells and was used as the 

standard performance metric. The duration of each COD and displacement 

phases was used to gain insight into the potential weakness/strength for differ-

ent movements. Finally, the total cutting time, which is the sum of the approach 

phase (DP before COD) duration, the COD duration, and the exit phase (DP af-

ter COD) duration, was computed to assess the performance of a single COD. 

Pearson correlation (Benesty et al., 2009) between total cutting time for each 

COD and the total completion time was evaluated to investigate the relevance 

of total cutting time as a performance metrics. Additionally, the individual du-

rations of all nine segments, the total cutting time for each COD were visually 

compared for the five athletes with highest and lowest total completion times. 

This provides an insight into potential key factors in performance. 

▪ Velocity-based metrics: The approach and exit velocity for each COD indicate 

the ability to maintain and transfer momentum during the COD. Consequently, 

using the GNSS, the minimum velocity during the COD and the entry/exit ve-

locities were selected as performance metrics, with higher values implying a 

better transfer of momentum and possibly, a faster COD. GNSS velocity was 

processed to remove any outliers and replace them with linear interpolation. 

▪ Acceleration-based metrics: Acceleration evaluates the forces experienced and 

generated by athletes during the test. Acceleration impulse (AI) reflects the 

change in momentum of the athlete during the COD, generated from the decel-

eration and acceleration required to change direction. This metric was calculat-

ed by numerically integrating (using the trapezoidal method) the acceleration 

during the COD phases. The peak absolute acceleration is an indicator of the 

impact magnitude detected on the athlete’s upper back during the COD. These 

peak values are influenced by the intensity of the braking phase before the cut 

and by the COD preparatory movement performed to reduce the load on the 

lower limbs. All these acceleration metrics were computed on all three accelera-

tion axes (AP: anteroposterior, ML: mediolateral, and CC: craniocaudal) and 

their norm.  
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6.4 RESULTS 

6.4.1 Labelling of video data 

For each T-test, the results of video labelling consist of 27 frames corresponding to one 

event, with the most important events (test start, COD start/stop, etc.) are shown be-

low.  

Figure 6.6 Segmentation of the T-test based on video labelling for 8 of the 23 athletes. The 

total completion time of the T-test (based on video) are given on the right of split T-test 

The error for total completion time based 

on the video labelling is shown in Figure 

6.7. This error is the difference between 

the total test duration based on the videos 

and the duration based on the photocell 

sensors (equation 6.6). Despite video is 

used as ground truth, photocell was ex-

pected to be more precise. That’s why 

photocell time is used to define the end of 

the test in the algorithm. Median ± IQR 

for this error is 38 ± 121 ms, but the maxi-

mum value can reach 250 ms.  

 

6.4.2 Detection and duration of COD 

The proposed method was able to identify detect all the COD phases and differentiate 

between the 90 deg and 180 deg CODs. The mean total test completion time was 9.32 ± 

0.35 s. With the detected first step assumed as the start (t = 0 s), T-test timelines for four 

participants are illustrated in the Figure 6.8 below. 

 

Figure 6.7 Error between video-based du-

ration and photocell duration 
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Figure 6.8 Time of event from video and from algorithm for four T-tests. Both timelines are 

aligned using the first step and the end of the signal time line is the duration from the first 

step to the photocell end time. Results from the method M0 are shown here 

𝜀𝑠 and 𝜀𝑒 for each COD from the four micro-analysis methods are presented in Figure 

6.9. Based on the lowest error, M0 was the best method for detecting the start of COD 1 

and the start and stop for COD 4. For COD 2 and COD 3 (180 deg COD) M2 produced 

the lowest error for both, start and stop. Finally, for detecting the end of COD 1, M4 led 

to the best result. The errors resulting from the combination of the above-mentioned 

best methods are presented in Table 6.1. The maximum mean and standard deviation 

(S.D.) for relative errors were less than 7% and 15% for the estimation of phase and 

COD duration, respectively. 

 
Figure 6.9 Box plot of 𝜀𝑠 and 𝜀𝑒 for COD detection for each micro analysis method. The "f" 

boxplot shows the best method for each event detection, among the five methods. 

 

Table 6.1 Mean ± S.D. of estimation error and (%) for each displacement phase and COD 

DP duration DP 1 DP 2 DP 3 DP 4 DP 5 

𝜀𝑑𝑎 (ms)  -3 ± 53 -2 ± 42.2 -20 ± 68.2 19 ± 50.4 -135 ± 142.7 

𝜀𝑑𝑟 (%) -0.2 ± 3.13 -0.3 ± 5.16 -1.1 ± 3.65 2 ± 6.01 -6.7 ± 6.93 
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COD duration COD 1 COD 2 COD 3 COD 4  

𝜀𝑑𝑎 (ms)  -10 ± 51.4 25 ± 72.3 2 ± 69.8 5 ± 59.6  

𝜀𝑑𝑟 (%) -2.7 ± 14.08 3.5 ± 13.21 -0.2 ± 12.32 1.3 ± 14.47  

COD event COD 1 COD 2 COD 3 COD 4  

𝜀𝑠 (ms) -2.5 ± 53 -12.9 ± 55.3 -8.7 ± 73.7 11.4 ± 63.9  

𝜀𝑒 (ms) -12.7 ± 59.3 16.5 ± 77.9 -7.4 ± 75.4 16.5 ± 69.6  

 

Figure 6.10 shows the Bland-Altman plot for the estimation of the COD start/end 

events using the combination of best methods presented above. Signal time represents 

the timestamp of the detected event using the proposed method, while reference time 

represents the timestamp for the same event obtained using the video data. The 95% 

limit of agreement (LOA) of the proposed method is between -130 and 130 ms and the 

mean difference (± S.D) is 0.03 ± 0.66 ms. The Bland-Altman plot does not present a sys-

tematic bias for the estimation errors. 

 

6.4.3 Performance metrics 

The mean ± S.D. across all participants for the total cutting time (s), velocity in (ms-1), 

velocity out (ms-1), and minimum velocity (ms-1) are presented in Table 6.2. Similarly, 

Figure 6.10 Bland-Altman plot for detected COD start/end events. Results 

of the combination of best methods are presented here, LOA (ms): Limits 

of Agreement and CV (%): constant Coefficient of Variation 
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the minimum velocity (ms-1) during the 180 deg COD is substantially lower than for 

the 90 deg COD, as expected. 

Table 6.2 mean ± S.D. for performance metrics across all four COD segments 

Performance metric COD 1 COD 2 COD 3 COD 4 

Total cutting time (s) 3.18 ± 0.14 3.16 ± 0.18 3.28 ± 0.17 3.47 ± 0.25 

Approach velocity (ms-1) 4.4 ± 0.7 3.2 ± 0.4 3.9 ± 0.5 3.2 ± 0.4 

Exit velocity (ms-1) 3.0 ± 0.5 1.4 ± 0.7 1.6 ± 0.6 2.9 ± 0.4 

Minimum velocity (ms-1) 2.8 ± 0.6 0.9 ± 0.7 1.0 ± 0.5 2.8 ± 0.3 

Acceleration impulse (AI)     

AP (ms-1) 5.18 ± 1.22 7.68 ± 1.23 7.89 ± 0.88 6.47 ± 0.84 

ML (ms-1) -3.76 ± 1.14 3.93 ± 1.82 -4.12 ± 1.22 1.84 ± 1.57 

CC (ms-1) -0.5 ± 1.2 -0.44 ± 1.46 -0.34 ± 1.49 0.59 ± 1.83 

Norm (ms-2) 8.35 ± 1.41 10.95 ± 1.41 11.33 ± 1.09 8.34 ± 1.06 

Peak absolute value     

AP (ms-2) 25.01 ± 4.83 27.68 ± 3.21 29.14 ± 4.46 31.38 ± 6.21 

ML (ms-2) 27.4 ± 5.65 19.84 ± 6.88 22.61 ± 5.65 19.69 ± 5.51 

CC (ms-2) 17.91 ± 4.57 19.12 ± 9.32 19.43 ± 7.02 16.43 ± 5.49 

Norm (ms-2) 39.88 ± 6.30 39.6 ± 5.91 41.19 ± 5.89 40.59 ± 6.67 

 

The profile for mean ± S.D.  for the velocity (obtained using the GNSS receiver) is pre-

sented in the Figure 6.11. It can be observed that the magnitude of the velocity indeed 

reaches its lowest values during the 180 deg COD segments, while the velocity reaches 

its peak magnitude closer to the end of the first displacement phase that involves run-

ning forward. Furthermore, we can observe that participants did not accelerate as 

strongly in the last displacement phase as during the first one. 

 

 

Figure 6.11 Mean (solid line) and S.D. (dashed lines) for the velocity during the T-test. Col-

ored rectangles show phases based on mean event time found with the segmentation algo-

rithm, with standard deviation of these events omitted for the sake of clarity.  

It was observed that total cutting time of each COD was correlated to total completion 

time (Figure 6.12), thus indicating that this performance metric indeed reflects the gen-

eral T-test performance for elite athletes. The duration of COD did not correlate in any 

way with the duration of the test, with fastest five and slowest five athletes spending 

similar amount of time during COD (Figure 6.13).   
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Figure 6.12 Correlation between total cutting time for each COD and the total completion 

time of the T-test, correlation, p-value (calculated using Student T-test) and linear fit. 

The best and worst groups spent similar time in CODs (Figure 6.13), but that fast ath-

letes are generally faster during the displacement phases. The difference in perfor-

mance seems to arise more from the long shuffle to the right and the backward sprint 

than from other displacement phases. Furthermore, all four total cutting times, as seen 

with the correlation, can also differentiate well between the two performance groups. 

 

 

Figure 6.13 Comparison between the five best (red) and worst (blue) participants. Best and 

worst groups comprised of five participants each with lowest and highest total completion 

times on the test, respectively. 

6.5 DISCUSSION 

6.5.1 Validity of the proposed method 

The labelling accuracy of each event is around 3 frames, which corresponds to an error 

of approximately 50 ms for a camera with 60 Hz frame rate. Compared to this, the total 

completion time error was relatively high (38 ± 121 ms), mainly due to the human fac-
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tors of labeling. There was a delay in hearing the photocell (when the athlete crosses it) 

in the videos, the delay between the sound in the video and the moment the pause but-

ton was pressed at the beginning and the end of the test. The synchronization with the 

first step allows to have a median error close to zero for the many events of the test, 

which highlights the accuracy of using this method. However, the end of the test was 

not detectable reliably using either the GNSS or the IMU signals. Therefore, the error 

on the duration of the test will have the same order of magnitude as the error from 

labelling process (error on duration between photocell and video labelling). Further-

more, few athletes started from a position slightly away from the photocell, resulting in 

the first step happening before the photocell beep, further adding to the error. 

 

The S.D. of the error for detection of all COD events (Figure 6.10) was 66 ms, which is 

close to the expected range of 50 ms discussed previously. It is also in the similar range 

as other studies, which utilized IMU and video reference to segment motion phases 

during highly dynamic activities (Hamidi Rad et al., 2021). In Figure 6.9, we can see a 

minimal bias in the COD1 and COD4 (90° angle) events detection, whereas the 180° 

COD are relatively more biased. This is because the method M0, directly based on the 

macro-analysis, detects sometimes the second step in and the first step off the 180 deg 

COD. This doesn’t happen in 90° COD because almost all the braking motion happens 

during the first step in (only one step before cone touch). The 90° angle change is char-

acterized by one step before touch and 180° COD by two steps before touch. In method 

M2, if a large peak is detected just prior to the COD start reference from macro detec-

tion, the COD start point is moved before this peak. For the COD end, if the AP accel-

eration is bigger than 0, the end is pushed to the next local minimum smaller than 0. 

This method thus allows to get the first step in if the second heel strike is detected by 

the macro analysis and the second toe off if the first was previously detected by the 

macro analysis. Therefore, this method provides gives the best results (Figure 6.10) for 

the COD 2 and COD 3, with the 180° rotation. Method M4 improves the detection of 

the end of the first 90° COD (COD 1), by using the same principle as method M2 of 

shifting the detected end by one local minimum.  

 

While one cause behind the S.D. of COD event detection to range from 53 to 77.9 ms 

(Table 6.1) was the low frame rate of reference video, another important cause was the 

COD technique employed by the athletes. The athletes who "cheated" by crossing the 

legs during COD or the side shuffle were identified from video but not directly elimi-

nated, since this phenomenon is difficult to address during routine testing in the field 

(Marshall et al., 2014). Regarding technique, almost all athletes used the same step pat-

tern. The only exception is when the athlete places their first step too far from the cone. 

This forces the athlete to take a small extra step during the COD to be able to touch the 

cone. These extra steps are not considered in the labelled step pattern because they are 

not important, neither to brake nor to accelerate during the COD.  

 

As explained in (Dayakidis & Boudolos, 2006; Glaister et al., 2008; Nedergaard et al., 

2014; Welch et al., 2021), the COD motion implies an important antero-posterior (AP) 

and medio-lateral (ML) acceleration impulse on the ground and on the trunk to decel-

erate and then accelerate the body in the new direction. These impulses measure the 

change in momentum (or more precisely a change of velocity) during a COD, and that 
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this motion at high velocities will require a larger change of momentum than straight 

displacement. These AP and ML impulses were clearly observable in the IMU signal 

and were enclosed by the labeled step events defining the change of direction. The de-

tected AP acceleration impulse (Figure 6.5) was positive for each COD, even though 

COD angle and technique exhibit large differences on the video recordings. This is like-

ly because of the positive reaction force in AP direction created by the braking force on 

the foot of the athlete. For the same reason, local minimum before high peaks on the 

AP acceleration align with the impact of each step during every motion phase (Figure 

6.5), despite the different motion techniques (shuffle, sprint forward, sprint backward). 

Before each COD, the first contact with the ground is synchronized with the first foot 

(local minima) of AP acceleration impulse. The toe-off instants following the COD are 

exhibiting a negative AP acceleration following the AP impulse. The likely explanation 

of this behavior is the straightening up of the trunk during the pushing phase at the 

end of the COD. 

 

The error on phase duration has an absolute mean error smaller than 25 ms for all dis-

placement phases, except for the backward run phase, which has a mean error of -135 

ms. This larger error comes from both the error on the total duration of the test (be-

tween photocells time and video) and the choice to synchronize the signal and the vid-

eo with the first step. This synchronization brings a bias because the athletes don’t 

cross the starting line exactly at the same time. Some athlete crossed the starting line 

before their first step and others after. As the first step was considered as the beginning 

of the test in the IMU signal analysis, this creates an error on the end time of the test 

only. As seen in (Table 6.1), the mean relative error for motion phases is around 5%, 

but the standard deviation of the relative error for the COD duration is around 15%. 

This shows that the confidence in the computed COD duration using the algorithm can 

be improved. This likely because the COD duration is short (∼ 500 ms), compared to 

the precision of the general method (∼ 50 ms).  To have a better confidence interval on 

COD duration, a more precise way to measure the ground contact time could be used, 

such as a force plates, IMU on the feet, pressure insoles, etc.  

6.5.2 Performance metrics 

Throughout the T-test, the duration of CODs did not correlate in any way with the du-

ration of the test, with fast and slow athletes spending similar amount of time during 

COD (Figure 6.13), despite the time spent to change direction represents roughly 20% of 

the total T-test duration. Conversely, the duration of each displacement phase reflects 

better the performance of the T-test (total completion time). Therefore, it seems less 

useful to "rush" the COD movement to save time on the T-test, but better to focus on 

the speed during the displacement phases. However, this claim needs to be validated 

over a larger sample of athletes with varied skill levels. The COD duration can also be 

used as a measure of performance alone. For example, dribbling in football is a skill 

that requires rapid changes of direction, but where initial and run-up speeds need not 

be particularly high. While this skill cannot be accounted for in the traditional scoring 

method of the T-test, it can be assessed using the proposed algorithm. Another im-

portant outcome is the correlation between the total test completion and the total cut-

ting time for each COD (Table 6.2). In other word, each of the four cutting performance 
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reflects the general T-test performance for elite athletes. This observation confirms the 

fact that T-test assess a mix of functional capacity in each displacement phase and that 

the difference in performance in elite athletes comes from each part of the test (Dos’ 

Santos et al., 2019; Pauole et al., 2000; Young et al., 2015).   

 

Approach velocity is an important factor affecting COD biomechanical requirements 

(Dos’Santos et al., 2018), with higher velocities increases lower limb stress and risk of 

ACL injury. A study (P. A. Jones et al., 2017) showed that a better performance (in 

terms of total cut time) had a higher velocity reduction during PFC. In (Hader et al., 

2015), the researchers highlighted the fact that the ability to maintain a high velocity 

during COD may be critical to COD performance for 90° motion. Using the IMU data 

and the splitting algorithm described before, similar results were found for 180° COD. 

Fast approach velocity correlates with total cutting time for 180° cut (R=-0.45, p=0.01 for 

COD2 and R=0.57, p=0.002 for COD3). Interestingly, there is no correlation between 

approach speed and total cutting time for 90° tasks (COD1 and COD4). This shows that 

COD performance depends on the COD task. The main difference between 90° and 

180° COD tasks is that athletes are forced to stop during a 180° COD while they can 

keep momentum during the 90° task. This is clearly observable by looking at minimum 

velocities during COD in Table 6.2 where athlete’s velocities reach ∼ 3 ms-1 during 90° 

and less than ∼ 1 ms-1 during 180° COD. These observations show that angle and veloc-

ity influence the biomechanical demands of CODs and are critical factors for efficient 

execution of COD (Dos’Santos et al., 2018). A practical consequence of this is that using 

minimum velocity is a way to classify COD and to distinguish their angle (Slaughter & 

Adamczyk, 2020). 

 

A typical pattern was observed for fast and slow athletes (Figure 6.14); faster athletes 

show a higher velocity drop just before or during the COD’s. Also, a stronger accelera-

tion after 180° cuts can be observed. This suggests that the ability to accelerate during 

shuffle phases is a key parameter of T-test performance. Interestingly, the minimum 

speed during the first 90° cut on COD is lower in fast athletes. This suggests that the 

ability to decelerate quickly is more important than absolute speed during the COD. 

These observations highlight the fact that the ability to perform a COD speed test de-

pends not only on the COD itself, but also on the ability to accelerate and decelerate 

during the displacement phases. Consequently, data collection during these displace-

ment phases could help to better understand cutting performance. In the future, this 

data collection could be easily implemented using the dataset from IMU and the pro-

posed algorithm, and the findings about the velocity can be investigated further in a 

larger and more varied population. 

 

Acceleration impulse (AI) is a characteristic variable reflecting the change in momen-

tum during the COD. In this work, IMU is placed on the upper back. Therefore, accel-

eration impulse is linked to motion of the trunk too, which is known to be an important 

factor in the change-of-direction performance (Sasaki et al., 2011). The results (Table 

6.2)  show a larger AP acceleration impulse for the 180° cut than for the 90° cut. This 

result could be explained by the observation that athletes must perform a larger verti-

cal displacement to touch the cones in COD2 and 3 than in COD1 and 4. ML accelera-

tion impulse is negative for COD 1 and 3 and positive for COD 2 and 4, which makes 
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this metric reliable to assess the direction of COD for both 90° and 180° COD. The fact 

that the AI norm for the 180° cut is higher than for the 90° cut is probably related to the 

fact that the 180° cut forces the athlete to stop completely and thus experience a greater 

total change of momentum. The peak acceleration is an indicator of the impact on the 

athlete’s back. The large impact and distance between the foot and the center of the 

body during COD result in a large adduction (and abduction) moment in the knee, 

which is known to be a critical factor in knee injuries (Mornieux et al., 2014). Therefore, 

limiting impact during COD is an important goal in a clinician’s point of view.  

 

Though peak acceleration is similar (Table 6.2) for each COD (∼ 40[m/s2]), peak accel-

eration direction changes in depending on the COD type. The three COD (2,3,4) pre-

ceded by a shuffle displacement phase show greater impact in the AP direction than in 

the ML direction. Inversely, COD preceded by a straight sprint (COD 1) shows a bigger 

impact in the ML than in the AP direction. The athlete has the possibility to distribute 

the impact mainly in the approaching displacement phase direction, by distributing the 

deceleration phase between steps (Dos’ Santos et al., 2019). The approach direction for 

COD 1 is AP, while that of COD (2,3,4) is ML, which explains the observations for peak 

acceleration. Similarly, anticipatory movement of the trunk can improve the COD per-

formance by generating additional changes desired changes in momentum (Mornieux 

et al., 2014; Sasaki et al., 2011; Welch et al., 2021). For 90° motion (COD 1 and 4), the 

impact on the upper back is higher in the exit direction than in the approach direction. 

This shows that the athlete changes the direction of its momentum already during the 

first COD step. It could be interesting to see how this result varies if the COD direction 

is not pre-planned (less anticipation possible). Trunk-worn IMU data could thus bring 

enable a deeper quantitative analysis of anticipatory postural adjustments (APAs) dur-

ing COD tasks.   

6.5.3 Limitations and future work 

The synchronization between video and IMU was done using first step of T-test, which 

can be improved by, asking the athlete to do an easily detectable movement (eg. stand-

ing jump) before the test. A better way to synchronize the photocells and the IMU sig-

nals would be to use a simultaneously detectable electronic pulse or obtain the precise 

UNIX or GMT timestamp for both systems. Similarly, knowing the precise GMT time 

of the photocell when it is triggered would be valuable, specifically to get a precise 

timing for the end of the T-test. Adding IMU on the feet would allow to differentiate 

right and left leg ground contact time (or PFC from FFC) and thus have data which is 

comparable to existing research from force plates. This would also allow investigation 

into how the impact on the ground is transferred to the trunk. Adding an IMU on the 

sacrum could help to get data which are more related to the lower limb and independ-

ent of the compensatory movement of the trunk. This addition of COD would be inter-

esting if one want to precisely study the effect body position/loads on performance. 

However, to detect COD precisely, the single IMU on the back is sufficient. The single 

IMU on trunk worn in a vest, is commonly used in existing testing protocols and dur-

ing competitive games by soccer players. Therefore, using the same sensor may allow 

easier application of the proposed methods in practice. 
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The micro analysis algorithm uses many external inputs such as relative thresholds, 

frequency range of reconstruction, or time window around COD. Therefore, a sensitivi-

ty analysis to external input can be carried out to improve the robustness of the algo-

rithm. The maximum acceleration is taken on the 15Hz wavelet reconstructed to avoid 

nonrealistic peak acceleration values. The range of frequency of this reconstructed sig-

nal affects the maximum acceleration value (Wundersitz et al., 2013). Therefore, the 

exact correlation between maximum GRF and maximum IMU (in the upper back) re-

constructed acceleration should be clarified in the future.  The ML angular speed 

changes sign during COD because of the straightening of the chest after the athlete 

touches the cone. Because trunk motion correlates with COD cutting performance, ML 

angular velocity profile could provide a complementary method to detect COD. It may 

also provide a way to distinguish between the eccentric and concentric COD phases. 

 

For velocity measurements, the validity of the GNSS ground speed during COD 

should be checked using traditional methods because its sampling frequency (10Hz) is 

low compared to the COD duration (∼ 0.5s). This also makes it difficult to detecting the 

end of the T-test by integrating GNSS signal and measuring the time taken to cover the 

known distance of the backward run. However, this limitation can be addressed by 

fusing the IMU and GNSS information, wherein the IMU can provide the necessary 

sampling rate and the GNSS speed can be used to correct the drift in the IMU-based 

speed (Apte, Meyer, et al., 2020) important source of variability in movement mechan-

ics is the athlete population, with females demonstrating significantly less peak hip 

abduction than did males during COD maneuvers (Pollard et al., 2004). Thus, the pro-

posed methods should be at least validated separately for female soccer players.  

6.6 CONCLUSION 

The proposed method can be used to determine the duration of the five displacement 

and detection of the COD events using a trunk-worn GNSS-IMU unit during a T-test. It 

uses the large anteroposterior change in momentum caused by the braking and accel-

eration phases of the COD to detect them. The Bland-Altman analysis for all COD 

events detected in the T-test shows a mean error of −0.03 ± 66 ms and a 95% confidence 

interval of ±130 ms (3.9%), compared to reference data from video camera. Thus, the T-

test were successfully divided into 9 phases, allowing coaches to better understand the 

athletes’ technique and physical qualities during each displacement phase and COD 

types, and may prove to be a valuable performance evaluation tool for coaches. For 

example, the observation that total cutting time is correlated to the total completion or 

that the displacement phase duration could differentiate between the best/worst five 

performers, could be useful for identifying athletes’ strengths and weaknesses. Fur-

thermore, asymmetrical performance between displacement in the right and in the left 

detection can be highlighted, which can potentially provide information on the posi-

tion on the field where the player will perform the best. Right and left asymmetries 

during COD duration could be sign of fatigue in one of the knees and/or an asymmetry 

in the strength of the muscles used for braking (Maloney et al., 2017). This information 

about can help the coach and the strength and conditioning staff to develop a more 

personalized training and rehabilitation program. 
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6.7 APPENDIX 

 

Figure 6.14 Velocity profile during the T-test for two fastest and slowest athletes. Vertical 

lines show the key events during the T-test (start and end of the COD, end of the T-test). 

The velocity profiles are aligned using the first step 
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7 BIOMECHANICAL CONTRIBUTIONS TO 

PERFORMANCE IN A COOPER TEST 

Running mechanics are modifiable with training and adopting an economical 

running technique can improve running economy and hence performance. Run-

ning mechanics can be assessed accurately and conveniently using wearable 

IMUs. The proposed work extended this wearables-based approach to the Cooper 

test, by assessing the relative contribution of running biomechanics to the en-

durance performance. Furthermore, different methods of estimating the distance 

covered in the Cooper test using a wearable global navigation satellite system 

(GNSS) receiver were explored. Thirty-three runners (18 highly trained and 15 

recreational) performed an incremental laboratory treadmill test to measure 

their maximum aerobic speed (MAS) and speed at the 2nd ventilatory threshold 

(sVT2). They completed a 12-minute Cooper running test with foot-worm IMUs 

and a chest-worn GNSS-IMU on a running track 1-2 weeks later. Using the GNSS 

receiver, an accurate estimation of the 12-min distance was obtained (accuracy 

of 16.5m and precision of 1.1%). Using this distance, MAS and sVT2 (R2 > 0.9, 

RMSE ϵ [0.07, 0.25] km/h) were estimated reliably. Biomechanical metrics were 

extracted using validated algorithm and their association with endurance per-

formance was estimated. Additionally, the high/low performance runners were 

compared using pairwise statistical testing. All performance variables, MAS, 

sVT2 and average speed during Cooper test, were predicted with an acceptable 

error (R2 ≥ 0.65, RMSE ≤ 1.80 kmh-1) using only the biomechanical metrics. The 

most relevant metrics were used to develop a biomechanical profile representing 

the running technique and its temporal evolution with acute fatigue, identifying 

different profiles for runners with highest and lowest endurance performance. 

This profile could potentially be used in standardized functional capacity meas-

urements to improve personalization of training programs. 

The contents of this chapter have been adapted from this article: 

Apte, S., Troxler, S., Besson, C., Gremeaux, V., & Aminian, K. (2022). Augmented 

Cooper test: biomechanical contributions to endurance performance. Frontiers in 

Sports and Active Living, 337. 

The appendix briefly summarizes this article: 

Kammoun N., Apte, S., Karami, H., & Aminian, K. (2022). Estimation of temporal 

parameters during running with a wrist-worn inertial sensor: an in-field validation. 

Proceedings of 2022 44th Annual International Conference of the IEEE Engineering 

in Medicine Biology Society (EMBC) 

Contributions: conceptualized the study design; conducted the in-field data collec-

tion; designed and implemented the algorithms; contributed to the analysis and 

interpretation of the data; drafted the manuscript; supervised the semester project 

that led to the results of the EMBC paper. 
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7.1 INTRODUCTION 

Training prescription for runners is typically based on personal physiological capacity 

(Reilly et al., 2009), with training intensity determined by a certain fraction of variables 

such as maximal oxygen uptake (V̇O2max), maximal heart rate (HRmax), or others, usually 

assessed during exercise with increasing intensity (Nes et al., 2013). Both physiological 

variables are indicators of cardiorespiratory capacity (S. Seiler, 2011). However, given 

the difficulty in measuring these variables in field training sessions, other metrics may 

be more convenient to use. For example, the maximal aerobic speed (MAS), i.e., run-

ning speed when V̇O2max is reached, is commonly used to prescribe training intensity 

(Berthoin et al., 1994). Another approach for prescription of training intensity is to use 

zones near the ventilatory threshold (VT) and/or lactate threshold (LT) because they 

represent the submaximal response of the individual athletes and indicate their ability 

to sustain a high fraction of V̇O2max for an extended period of time (Bassett, 2000). Ath-

letes exhibit different levels of lactate accumulation for the same fraction of V̇O2max,so 

using thresholds instead of V̇O2max may produce less interindividual variation in meta-

bolic response and create a more homogeneous training stimulus (T. Mann et al., 2013). 

An important reason for using VT is polarized endurance training (PET), which is 

based on a training that is mostly below the first VT (VT1) and 10–20% being at/and 

above the second VT (VT2) (Muñoz et al., 2014). PET may increase positive adaptation 

to training stimuli and reduce the risk of overtraining, chronic fatigue, and injury 

(Muñoz et al., 2014; Wolpern et al., 2015). Evidence shows that  elite endurance athletes 

perform their training mainly below VT1/LT1 and/or clearly above the VT2/LT2, thus 

highlighting the importance of these thresholds in training (Haugen et al., 2022). 

 

The gold standard for measuring V̇O2max and VT2, and consequently the MAS and 

speed at VT2 (sVT2) is a treadmill test in the laboratory with gas exchange analysis 

(Bellenger et al., 2015). However, such a test requires highly trained personnel, is ex-

pensive, and only one person can be tested at a time. To overcome these constraints, it 

seems attractive to develop and conduct simple field tests that do not require extensive 

equipment, are inexpensive and can be integrated into athletes’ routines. In these tests, 

measurement accuracy is partially sacrificed in favor of ease of use and potential for 

repeatability throughout the season for multiple athletes simultaneously. An example 

is the Cooper field test (Cooper, 1968), which is used to estimate V̇O2max based on the 

total distance run. It is a simple test that involves 12 minutes of track running with self-

paced maximal effort,  and provides a good assessment of V̇O2max, MAS, and a reason-

able prediction of half marathon time (Alvero-Cruz et al., 2019). Although incremental 

treadmill testing has been used to predict VT using portable near-infrared spectrosco-

py (NIRS) (Rodrigo-Carranza et al., 2021) or portable heart rate monitor (Gronwald et 

al., 2020), to our knowledge there is currently no simple field test for predicting sVT2.  

 

The performance of long-distance runners depends not only on the V̇O2max and the abil-

ity to maintain a high fraction of V̇O2max during running, but also on running economy 

(RE) (Folland et al., 2017; Moore, 2016; Preece et al., 2019). RE is the metabolic energy 

expenditure for a given speed during submaximal running and can vary by up to 30% 

among runners with a similar V̇O2max (J. T. Daniels, 1985; Morgan et al., 1989). Running 

mechanics determine the mechanical power and propulsion produced for a given en-
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ergy expenditure, thus influencing RE. Running biomechanics during ground contact, 

particularly during the propulsive phase, show a strong correlation with RE during 

treadmill running (Beattie et al., 2014; Moore, 2016; Saunders et al., 2004). Measuring 

RE during field running requires the use of a portable gas analyzer, which is expensive 

and impractical, whereas field running biomechanics can be accurately and conven-

iently assessed using wearable inertial measurement units (IMUs) (Benson et al., 2018; 

Buckley, O’Reilly, Whelan, Farrell, et al., 2017; Strohrmann, Harms, Kappeler-Setz, & 

Troster, 2012). The use of an economical running technique can improve RE and thus 

performance (Moore, 2016; Saunders et al., 2004). Therefore, evaluating running bio-

mechanics during a field capacity test could greatly improve endurance performance 

information and help identify the biomechanical factors that contribute to endurance 

performance.  

 

Research in this direction has mainly focused on differentiating between highly experi-

enced and inexperienced runners based on their running technique. Clermont et al. 

and Carter et al. used data from IMU, collected using fixed-speed treadmill protocols 

(Carter et al., 2022; Clermont, Phinyomark, et al., 2019). Preece et al. extended this ap-

proach to running overground over a distance of 32 m at four different fixed speeds 

and analyzed the running kinetics and kinematics at three different steps during the 

run (Preece et al., 2019). While these studies showed promising results and highlighted 

important biomechanical characteristics of high-performance runners,  they did not 

account for the natural variability (Meardon et al., 2011; Mo & Chow, 2018a) and 

asymmetry (Beck et al., 2018; Radzak et al., 2017) that occur at self-selected speeds, nor 

did they consider the effects of fatigue when running longer distances (Prigent et al., 

2022), which are common in field tests of endurance capacity. The use of wearable IMU 

and global navigation satellite systems (GNSS) has shown promise in the improvement 

and augmentation of field testing for countermovement jump (Picerno et al., 2011), 

single-leg hop (Ahmadian et al., 2020), sprint (Apte, Meyer, et al., 2020), balance (W. 

Johnston et al., 2016), and so on. This chapter aimed to extend this wearables-based 

approach to the Cooper test by evaluating the relative contribution of running biome-

chanics to the endurance performance. In addition, it investigated whether the use of 

biomechanical parameters improves the prediction of MAS and sVT2 during the field 

test and explores different methods for estimating the distance covered in the Cooper 

test using a wearable GNSS. 

7.2 MATERIALS AND EQUIPMENT 

7.2.1 Participants and study design 

Measurements were conducted with 18 highly trained (18 males, age 27.7 ± 5.4 years; 

height 178.8 ± 4.8 cm; weight 69.6 ± 10.1 kg; personal best below 90 minutes for a half-

marathon) and 15 recreational runners (5 females, 10 males, age 31.5 ± 5.9 years; height 

173.7 ± 9.9 cm; weight 67.8 ± 14.7 kg), all runners having an age between 18 – 50 years. 

To recruit highly trained runners, if there was no time reference in this distance, we 

classified the participants based on their personal best on 10km or 5km with the Riegel 

Formula’s half marathon time estimation (23). The university human research ethics 

committee (HREC 039-2018) approved the study and all participants provided written 
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consent before the data collection. Participants performed an incremental laboratory 

treadmill test to measure MAS and sVT2. 1-2 weeks later, they completed a Cooper 

running test with wearable sensors on a running track. 

7.2.2 Laboratory test 

Prior to the lab test, participants were instructed to have no meals 2 hours before the 

test, and not have performed intense training 48 hours prior to the test. Height and 

weight of the participants were measured before they performed a maximal incremen-

tal running test on a treadmill (Pulsar, HP Cosmos, Nussdorf-Traunstein, Germany), 

while wearing a mask for Cortex Metalyzer 3B gas exchange analyzer (Cortex Bio-

physik GmbH, Leipzig, Germany) and a heart rate belt (H10, Polar Electro OY, Kempe-

le, Finland) on the chest. For the highly trained group (Figure 7.1A), the testing proto-

col involved 3 minutes of rest, a 5-minute warm-up at 9kmh-1, followed by an increase 

in the speed of 1kmh-1 every minute until 14 kmh-1, and finally an increment of 0.5 

kmh-1 every minute until volitional exhaustion. For the second group (Figure 7.1B), the 

protocol involved a 7 kmh-1 start, followed by increments of 0.5 kmh-1. Oxygen con-

sumption (V̇O2), carbon dioxide production (V̇CO2), ventilation (V̇E), and heart rate 

(HR) were measured continuously throughout the test. Participants were provided 

encouragement throughout the test to ensure attainment of maximal effort. 

 

 

Figure 7.1 Protocol and sensor setup for the 12-minute field test, (A) Incremental speed 

protocol till volitional exhaustion for highly experienced runners (B) Incremental speed 

protocol till volitional exhaustion for amateur runners (C) sensor configuration for field 

measurement; IMU, inertial measurement unit; GNSS, global navigation satellite system; 

acc: accelerometer; gyr: gyroscope 

Maximal effort was controlled according to the following criteria: plateauing of the 

V̇O2–speed relationship with V̇O2 increasing by <2 ml∙kg-1∙min-1 despite speed in-

crease, a peak respiratory exchange ratio (RER) >1.10, or peak HR within 10 beats min-1 

of the age-predicted maximum. Gas exchange variables were averaged on 20 sec. The 

speed value at which the V̇O2 plateau began was considered as MAS. Second ventila-

tory threshold (VT2) was determined according to 3 criteria (Beaver et al., 1986; Cere-

zuela-Espejo et al., 2018) by an experienced exercise physiologist: 1) increase in both 

respiratory equivalent (V̇E/V̇O2 and V̇E/V̇CO2), 2) a decrease in PETCO2, 3) a loss of 

linearity from V̇E/V̇CO2 plots. The speed attained at VT2 was considered as sVT2. 



7.3 Methods 

135 
 

7.2.3 Field test 

After 10 minutes of warm-up, participants were equipped with an IMU (Physilog 5, 

Gaitup SA, Switzerland) on each foot, right wrist, and a GNSS-IMU sensor (Fieldwiz, 

ASI, Switzerland) on the chest using a belt with electrodes (Polar Pro Strap, Polar Elec-

tro Oy, Finland). The wrist-worn IMU is not relevant here, but was used to investigate 

the possibility of estimating the temporal gait parameters using only wrist-worn IMU 

signals. A short overview of this study (Kammoun et al., 2022) is provided in the ap-

pendix of this chapter. Apart from the sensor setup (Figure 7.1C), the participants 

dressed as they would for an endurance running race. The Fieldwiz and Physilog 5 

wearable sensors were chosen because they have already been used successfully for 

continuous analysis of running in the field and do not hinder the running movement 

(Prigent et al., 2022). Fieldwiz was used with a sampling frequency of 200 Hz for the 

IMU, 250 Hz for the ECG, and 10 Hz for the GNSS receiver. The ECG was not utilized 

as the focus of this study was on biomechanical contributions to endurance perfor-

mance. The Physilog 5 IMU was sampled at 512 Hz, with a range of ± 16 g for the ac-

celerometer and ± 2,000 deg/s for the gyroscope. The participants ran on a 400m tartan 

track for 12 minutes and were instructed to cover highest distance possible. They were 

asked to rate their perceived fatigue from 1 to 10 before/after the run using the rating 

of fatigue (ROF) scale (Micklewright et al., 2017), which considers 1 as no fatigue and 

10 as maximal. The participants performed the test in groups of 2-4 to increase their 

motivation. Two instructors provided verbal encouragement, supervised the test, and 

calculated the total distance covered in 12 minutes by counting the number of 400m 

laps and the meters covered in the final lap. The distance (Dref) was measured by con-

sidering the closest scale on the track, which provides a resolution of 10m and are usu-

ally used to measure distance during training.  

7.3 METHODS 

7.3.1 Preprocessing and parameter estimation 

The pre-processing steps include synchronization of the sensors and segmentation of 

the Cooper test run (Figure 7.2) for each participant. To synchronize the Fieldwiz and 

Physilog 5 sensors, a shock movement was performed before and after the 12-minute 

run. This movement consists of a quick up and down movement on the vertical axis 

while holding all sensors together (Caruso et al., 2019). Since the same acceleration data 

was recorded on both sensors, we computed the lag between their acceleration signals 

with cross-correlation and used this lag to adjust their timestamps. Segmentation of 

data for each participant was done based on the magnitude of acceleration norm from 

the IMU on the right foot, the ground speed data from GNSS and the known duration 

of 12 minutes. Outliers that were more than two standard deviations away from the 

mean value over a 1-minute sliding window, were removed from the GNSS ground 

speed signal and replaced them with linearly interpolated values. The 12-minute run 

was segmented into individual gait cycles using the angular velocity values of the right 

foot at mid-swings, following a validated algorithm (Falbriard et al., 2018). For each 

gait cycle, the gait temporal parameters like contact time (CT), flight time (FT), swing 

time (ST), and gait cycle time (GT), and kinematics parameters such as peak swing ve-
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locity of the foot (PSV), foot strike angle in sagittal plane (FSA), and foot eversion angle 

(FEA) at initial contact (Falbriard et al., 2018, 2020), were estimated. 

 

 

Figure 7.2 Flowchart of the overall procedure for selection of metrics; LASSO: Least least 

absolute shrinkage and selection operator; CAS: Average speed during the test 

Duty factor (DF) is one of the main descriptors of running style, which we estimated as 

the percentage ratio of CT to GT (Alexander, 1991) for every gait cycle. Due its im-

portance for efficient storage and return of elastic energy (da Rosa et al., 2019), the ver-

tical stiffness (VS) was computed using the spring-mass model gait model (J.-B. Morin 

et al., 2005). Meyer et al.  have presented the computation of the above-mentioned pa-

rameters in detail (Meyer et al., 2021b). Fatigue influences asymmetry of gait spatio-

temporal parameters (Apte, Evian, et al., 2022) and thus, to understand its influence on 

endurance performance, the asymmetry was quantified using the symmetry index (SI): 

𝑆𝐼
|𝑋𝐿 𝑋𝑅|

(𝑋𝐿 𝑋𝑅)
  (7.1) 

where 𝑋𝑅 and 𝑋𝐿are parameters for the right and left limbs. The SI was first computed 

for the gait cycle time to check the validity of the SI, as the cycle time should present a 

SI close to zero. Following that, SI was used with four gait parameters – contact time 

(CTSI), flight time (FTSI), swing time (STSI),  and peak swing velocity (PSVSI), based on 

their evolution with acute fatigue during endurance running (Apte et al., 2021; Prigent 

et al., 2022). All the computations were done using MATLAB R2020b and the plots 

showing the evolution of biomechanical parameters and running speed during the 

Cooper test were created using the Gramm package (Morel, 2018) and smoothing (Ei-

lers, 2003) for averaging the trajectories. 

7.3.2 Extraction of metrics 

To address the influence of accelerating at the beginning of the test and strategy of ex-

erting higher near the end of the test, the first and last minute of the data was removed 

from subsequent analysis. Within those 10 minutes, for each biomechanical parameter, 

five different time segments (Table 7.1, Figure 7.1) were considered for extraction of met-

rics: 

- Total (t): all 10 minutes 

- Steady (sy): running at the middle (Minute 5th to 8th) of the test 

- Start (s): first minute of the remaining 10 minutes 

- End (e): last minute for the same 

- Delta (d): difference between the values for the start and end segments. 

https://www.frontiersin.org/articles/10.3389/fphys.2022.814172/full#B2
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For all time segments, three features were extracted – mean (µ): arithmetic mean of 

parameter values over one time segment, variability (σ): standard deviation of parame-

ter values over a window of 10 gait cycles and the arithmetic mean of these windows 

over a time segment, and slope (m): ratio of the difference between the last and the first 

parameter values of a time segment and the length of the time segment. Mean (µ) and 

slope (m) features were computed for all biomechanical parameters, whereas, variabil-

ity (σ) only for the first nine parameters and not asymmetry parameters. Following this 

method, we obtained a total of 175 metrics using 13 biomechanical parameters, five 

segments of time, and three features. For example, µVSt denotes “Mean feature (µ) of 

vertical stiffness (VS) for Total time segment (t)”.  For each parameter (except asym-

metry), one value per gait cycle for the left and right foot was computed, but only the 

information from the right foot was used for the extraction of metrics.  

 

Table 7.1 List of biomechanical parameters (units) extracted using the data from foot IMU 

sensors, the features computed on these parameters, and the time segments over which 

they are computed. An example notation for one metric is provided in the last row. 

Biomechanical 

parameters 

1. Contact time (CT) (ms), 2. Flight time (FT) (ms), 3. Swing time (ST) (ms), 4. 

Gait cycle time (GT) (ms), 5. Vertical stiffness (VS) (kNm-1), 6. Foot strike 

angle (FSA) (°), 7. Foot eversion angle (FEA) (°), 8. Peak swing velocity (PSV) 

(°s-1), 9. Duty factor (DF) (%) 10. CT asymmetry (CTSI) (%) 11. FT asymmetry 

(FTSI) (%) 12. ST asymmetry (STSI) (%) 13. PSV asymmetry (PSVSI) (%) 

Features 1. Mean (µ), 2. Variability (σ) – not for asymmetry parameters, 3. Slope (m) 

Time segments 1. Total (t): Minute 2nd to 11th, 2. Steady (sy): Minute 5th to 8th, 3. Start (s): 2nd 

minute, 4. End (e): 11th minute, 5. Delta (d): 11th minute – 2nd minute 

Metric example Mean feature of vertical stiffness for Total time segment: µVSt 

7.3.2.1 Categorization 

In addition to physiological aspects, performance during endurance running depends 

on the RE, the ability of runners to efficiently translate metabolic energy into mechani-

cal work, and the capacity to sustain an efficient running technique over a relatively 

long duration (Folland et al., 2017; Moore et al., 2019; Preece et al., 2019). Based on 

these findings, the above-mentioned 175 metrics were divided into five different cate-

gories, with the goal of understanding the relative contribution of each category to the 

endurance performance: 

▪ Technique: It is set of metrics that describe the running technique. Low vertical 

oscillation and thus, VS, has been linked to a better RE (Moore, 2016; Zhang et 

al., 2021), relative durations of CT and FT have been used to classify runners in-

to terrestrial/aerial (Gindre et al., 2015), FSA and FEA directly influence the di-

rection and magnitude of impact force on initial contact (Hoenig et al., 2020; 

Lieberman et al., 2010; Muniz-Pardos et al., 2018), and the DF is considered as 

an important independent descriptor of running style (van Oeveren et al., 

2021). Thus, only the mean feature (µ) for CT, FT, VS, FSA, FEA, DF for all time 

segments except Delta was considered in this category. 

▪ Regularity: It is category of metrics that quantify the variability of gait and in-

cludes only the variability feature (σ) for all parameters except asymmetry, 

across all time segments except Delta. Variability of stride has a functional pur-
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pose, considered to offer flexibility of adaption to task and environmental con-

straints (Hausdorff, 2007). Stride time variability has been previously studied to 

investigate differences in trained and non-trained runners (Nakayama et al., 

2010), and also to investigate the influence of acute fatigue (Gindre et al., 2015; 

Mo & Chow, 2018a). 

▪ Asymmetry: As the name implies, this set of metrics quantify the asymmetry of 

gait cycles, using only the mean feature (µ) for CTSI, FTSI, StSI, and PSVSI, across 

all time segments except Delta. A 10% increase in CTSI can lead to a 7.8% in-

crease in the metabolic cost of running (Beck et al., 2018) and increasing asym-

metry has been linked to overuse injuries due to increase kinetic demands 

(Radzak et al., 2017). 

▪ Fatigue: Acute fatigue has an adverse effect on technique during prolonged 

running, by increasing the CT, DF, reducing FSA, VS, and so on (Apte et al., 

2021; Meyer et al., 2021b; Prigent et al., 2022). The ability to maintain an efficient 

running technique for a longer duration can thus improve the endurance per-

formance. To quantify this ability, for all parameters, the µ, σ, and m features 

for Delta time segment and the slope feature (m) for other segments, were used. 

▪ Pace: The last category is comprised of metrics that quantify the rate of move-

ment and did not fit into the previous four categories. Though the gait cycle 

time (cadence) is not necessarily linked to efficiency of technique or fatigue re-

sistance, it is often used for performance evaluation and manipulation of run-

ning speed via different pacing strategies (Hausswirth & Brisswalter, 2008; 

Musgjerd et al., n.d.).  In addition to µ feature for GT, the µ feature for ST, and 

PSV for all time segments except Delta, were included in this group. 

7.3.3 Selection of metrics 

To select the metrics that contribute to endurance performance, three performance var-

iables were considered, the MAS and sVT2 obtained in the lab measurements, and the 

average speed during the Cooper test (CAS). Unlike the V̇O2max, it is convenient to pre-

scribe and measure training intensity in terms of MAS and sVT2 due to the ease of 

measuring speed in the field. Use of CAS instead of total distance allows the use of 

same units (kmh-1) and similar magnitude across the performance variables, thus ena-

bling a reasonable comparison for the errors in their prediction. To streamline the 

number of metrics, each metric was normalized using z-score normalization across 33 

participants and the normalized metrics were tested for their Pearson correlation with 

each other. Within metric pairs showing a correlation coefficient above 0.95, the metric 

computed over a larger time segment was retained. Using this multicollinearity prop-

erty (Mansfield & Helms, 1982), the number of metrics was reduced. To further reduce 

the metrics, their Pearson correlation coefficient (r) was computed in relation to MAS, 

sVT2, and CAS, and only the metrics with r ≥ 0.3 were retained for the final modelling 

step.  

 

To investigate the combined predictive power of the biomechanical metrics and Dref, 

the MAS and sVT2 were estimated using linear regression, once using Dref and once 

with the Dref and the biomechanical metrics selected in the previous steps. To under-

stand the relative contribution of biomechanical metrics to endurance performance, the 
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same process was repeated for MAS, sVT2, and Dref with only the biomechanical met-

rics, using the Least absolute shrinkage and selection operator (LASSO) method for 

metric selection (Hastie et al., 2001), This is a forward-looking selection for linear re-

gression, which enables interpretability of the model and can also enhance the predic-

tion accuracy. Using leave-one-out-cross-validation with the LASSO method (Shao, 

1993), the coefficients for each metric for prediction of the three performance variables 

were estimated. Within the results of the LASSO method, the coefficient vector with 

the least number of non-zero coefficients that led to an error of one standard deviation 

higher than that of the minimum mean square error (Hastie et al., 2001), was selected. 

This led to a minimal model with a reasonable level of accuracy in prediction and re-

duced the chance of overfitting (Loh, 2011). Among the metrics with non-zero coeffi-

cients, those with a relative weight of less than 5% of the total sum of weights were 

removed due to their minimal importance. Furthermore, the absolute weights of varia-

bles within the same category were summed to quantify the relative contribution of 

each category to the regression model. The prediction results of all the regression pro-

cesses are presented in terms of the cross-validated determination coefficient (R2) and 

the root mean square error (RMSE) in kmh-1. R2 determines the degree of association 

between predicted and actual performance variables, and the RMSE quantifies the dif-

ference between them. The overall process is illustrated in Figure 7.3. 

 

 

Figure 7.3 Procedure for selection of performance metrics for the biomechanical profile  

Non-linear shifts in gait parameters have been observed with the increase in speed, 

possibly related to a transition to a sprinting-like technique (Burns et al., 2021) at high 

speeds. To consider these non-linear transitions and complement the selection of met-

rics through linear methods, statistical analysis was conducted to investigate the differ-

ences between the 10 highest (HP) and 10 lowest (LP) performing participants accord-

ing to MAS, sVT2, and Dref. The reason for considering all three factors separately is 

that the participants comprising HP and LP may differ depending on the considered 

performance variable. The metrics selected using multicollinearity were compared us-

ing a pairwise Welch's t-test with the statistical significance set at p < 0.05. It was pre-

ferred over the Student’s t-test due to unequal variances for the fast and slow groups 

(Ruxton, 2006). The effect size was calculated using the same formulation as Cohen’s d 

(Gignac & Szodorai, 2016). For every performance variable, the metrics that were se-

lected through LASSO and those with statistically significant differences were com-

bined (union of sets). Following this, an intersection of these three (MAS, sVT2, and 

Dref) sets was used to select metrics that contribute mainly to the endurance perfor-

mance and a visual profile representing these metrics and their respective categories 
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was developed. To illustrate its utility, the five highest and five lowest performing par-

ticipants according to their MAS and sVT2 were represented on this profile.  

7.3.4 Distance estimation 

Cooper test uses the total distance Dref (in km) covered in 12 minutes to estimate the 

V̇O2max (ml.kg-1.min-1) and MAS as follows (Bandyopadhyay, 2015; L. Léger & Mercier, 

1984): 

𝑉𝑂 𝑚𝑎𝑥 𝐷   (7.2) 

𝑀𝐴𝑆
�̇�𝑂 𝑚𝑎𝑥

  (7.3) 

Since the MAS estimation is directly dependent on the distance, it is important to esti-

mate the distance accurately. The reference value for this distance (Dref) corresponds to 

the distance measured at the 10m markers on the track. Five different methods were 

used for estimating the distance (Figure 7.4) and compared them to the reference (Dref) 

using Bland-Altman analysis, Mean Absolute error (MAE), and percentage (Median ± 

IQR) error. We computed the percentage error for every method across all participants. 

Below is a brief description of each method: 

 

▪ Strapdown integration of the ground speed obtained from the GNSS receiver 

with outliers removed, and total distance at the end of 12 minutes was consid-

ered as total distance (DS).  

▪ Using the Haversine formula (Robusto, 1957) with the latitude and longitude 

coordinates from the GNSS sensor, and distance at the end of test was consid-

ered as total distance (DC). 

▪ The average distance (da) between the peaks on the latitude signal was assumed 

to be the time required to complete one lap. This was followed by estimating 

the number of laps by counting the number of peaks (np) and length of signal 

(ls) outside the peaks was computed. Since the length of one lap is 400m, the to-

tal distance was computed as:  

 

𝐷𝐿 𝑛𝑝
𝑙𝑠

𝑑𝑎
   (7.4) 

▪ Combination of the first and third method, by counting the number of laps us-

ing peak detection and using strapdown integration of ground speed on the 

signal outside the peaks. The total distance (DLS) is the sum of number of laps 

multiplied by 400 and the total distance on the strapdown integration before 

and after the first and last peaks, respectively. 

▪ Combination of the second and third method, by counting the number of laps 

using peak detection and using Haversine formula with the coordinates on the 

signal outside the peaks. The total distance (DLC) is the sum of number of laps 

multiplied by 400 and the distance obtained with the coordinates before and af-

ter the first and last peaks, respectively. 
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Figure 7.4 Methods for the estimation of distance covered over the 12-minute run 

7.4 RESULTS 

All 33 participants completed the 12 minutes of Cooper test with a maximal effort, re-

porting a ROF ≥ 8 at the end.  Representative trajectories are shown in Figure 7.5A for 

participants grouped according to Dref, with the latitude and longitudinal values align-

ing well with those of the track at the stadium. Participant’s running speed (Figure 

7.5B) generally decreased over 12 minutes of Cooper test, except for the first and last 

minute, which showed an increase. As expected, the HP (fast) group showed higher 

mean speed and a lower reduction in speed with time than the LP (slow) group. Figure 

7.5C shows the performance of participants for the MAS, sVT2, and CAS, with the 

range of speeds being 9 kmh-1 to 21.5 kmh-1 and an average difference of around 7 kmh-

1 between the top and bottom 10 participants for all three performance variables. How-

ever, the top 10 participants according to each variable different. The details on their 

performance can be found in supplementary material10 

 

Figure 7.5 Performance of participants grouped according to Dref and GNSS tracking. The 

smoothed mean of original profiles and the 95% confidence interval is shown for easier 

comprehension of their overall group trend and and plotted using the Gramm toolbox (Mo-

rel, 2018).  A) Representative trajectory of the run during the Cooper test B) Representative 

speed profile of the participants during the Cooper test C) Xoxplot showing the median and 

interquartile range of performance across three speed variables D) Median and IQR of error 

in the estimation of distance using five different methods, with C, L, and S corresponding to 

methods based on Haversine formula with the GNSS coordinates, lap counting, and 

strapdown integration of ground speed. LC and LS refer to a combination of lap counting 

with methods based on ground speed and coordinates respectively.  

 
 

10 https://www.frontiersin.org/articles/10.3389/fspor.2022.935272/abstract 
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7.4.1 Distance and speed estimation 

The distance estimated using all five methods showed a median error of -0.6 to -8.4% 

(Table 7.2), with the strapdown integration of speed presenting the highest MAE (250 

m) and the lap counting plus Haversine formula presenting the lowest (26.5 m) error. 

All three methods based on lap counting show a considerably lower IQR and CV for 

error, relative to the other two methods (Figure 7.5D). All the methods led to an under-

estimation of the distance compared to the measurement (Dref) with markings on the 

track. Results of the Bland-Altman analysis are provided in the supplementary materi-

al11. Estimation of the MAS and sVT2 using the Dref as predictor metric in linear regres-

sion led to R2 values of 0.93 and 0.93 respectively, and RMSE of 0.91 kmh-1and 0.88 

kmh-1 respectively. Following linear equations were obtained: 

 

 (7.5) 

 (7.6) 

where MAS and sVT2 are in kmh-1 and Dref in km. Bland-Altman analysis for the pre-

diction of sVT2 using this equation is presented in the supplementary material12. Add-

ing the biomechanical metrics to the Dref as additional predictor metrics marginally 

improved the prediction, with R2 values of 0.93 and 0.93, and RMSE of 0.88 kmh-1and 

0.81 kmh-1 respectively for MAS and sVT2. 

 

Table 7.2 Error rates for the five distance estimation methods. The mean absolute error 

(MAE) was obtained by subtracting each estimated distance from the reference value. The 

bias, coefficient of variation (CV), and the limits of agreement (LOA) were obtained through 

Bland-Altman plots. 

Method MAE (m) MAE (%)  Bias (m) CV (%) LOA 1 (m) LOA 2 (m) 

DS 250 8.9 -250 4.1 -30 -470 

DC 102.7 3.4 -83 3.7 120 -290 

DL 30.4 1.07 -17 1.2 49 -84 

DLS 43.5 1.6 -36 1.3 38 -110 

DLC 26.5 0.9 -16 1.1 44 -76 

 

7.4.2 Selection of metrics 

Using the method explained in 7.3.3 and Table 7.1, a total of 175 biomechanical metrics 

were obtained for the 13 biomechanical parameters. Apart from SI parameters, the evo-

lution of other parameters during the run in presented in Figure 7.6. The number of 

metrics reduced from the 175 to 110 using multicollinearity, which were then used for 

statistical analysis and tested for correlation with the MAS, sVT2, and CAS. The final 

number of metrics for each performance variable were 33, 35, and 28 respectively. The 

cross-validated values for the fit of LASSO regression model for each performance var-

iable are presented in Table 7.3. The model fits all variables with a R2 ≥ 0.65 and a 

 

11 https://www.frontiersin.org/articles/10.3389/fspor.2022.935272/abstract 
12 https://www.frontiersin.org/articles/10.3389/fspor.2022.935272/abstract 
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RMSE of ≤ 1.80 kmh-1. The highest R2 and lowest RMSE is for the MAS. The biomechan-

ical metrics selected through LASSO method for each performance variable are report-

ed in Table 7.3, with a positive coefficient value indicating a positive contribution to 

performance and vice-verse for negative values.  

 

 

Figure 7.6 Profile for the biomechanical parameters during the Cooper test with participants 

grouped according to Dref, The smoothed mean of original profiles and the 95% confidence 

interval is shown for easier comprehension of their overall group trend and and plotted 

using the Gramm toolbox (Morel, 2018). Compared to the high performance group, the low 

performance group typically showed a larger change in all the parameter values over 10 

minutes, except for swing time and foot eversion angle at initial contact. 
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Table 7.3 Biomechanical metrics selected through LASSO regression and statistical testing. 

Positive contribution denotes a positive coefficient obtained through the LASSO regression 

and vice-versa for negative contribution. Significant differences for pairwise statistical 

testing are indicated with *p ∈ (0.01, 0.05), **p ∈ (0.001, 0.01), and ***p ≤ 0.001 

Performance 

variables 

Fit quality LASSO metrics 

RMSE R2 Positive contribution Negative contribution 

MAS 1.62 

kmh-1 

0.75 µVSt, µPSVt, mSTt, 

mFSAt 

σCTd, µCTt, σCTt, σGTt, σGTs, 

µCTd, mFTe, mFEAe, σDFt, µGTs, 

µFEAt 

sVT2 1.78 

kmh-1 

0.65 µVSt, µPSVt, σFEAt, 

mVSe, mFSAt, mFTsy 

σGTs, σGTt, µDFt, µGTs, σCTt, 

µFEAt 

CAS 1.80 

kmh-1 

0.66 µVSt, µPSVt µGTs, σCTt, µCTt 

 Pairwise statistical testing metrics 

MAS µCTt***, µGTt**, µVSt***, µFEAt***, µPSVt**, µDFt**, σCTt**, σFTt**, σFEAt*, mFSAt*, 

mFTsy**, µGTs**, µFSAs*, σCTs**, σFTs*, σGTs**, σFEAs*, mPSVs*, σCTe*, σFTe***, 

mFEAe*, µCTd* 

sVT2 µCTt***, µGTt**, µVSt***, µFSAt**, µFEAt**, µPSVt**, µDFt**, σCTt**, σFTt**, σFEAt*, 

mFSAt**, µGTs**, µFSAs***, σCTs**, σFTs*, σGTs**, σFSAs*, σFEAs*, mFSAs*, µF-

SAe*, σCTe*, σFTe**, mVSe*, µFSAd*, µCTd* 

CAS µCTt***, µGTt***, µVSt***, µFEAt*, µPSVt***, µDFt**, σCTt**, σFTt**, mFSAt**, 

mFTsy**, µGTs***, σCTs**, σGTt*, mFSAs*, σCTe*, σFTe*, µCTd* 

 

The sum of coefficients for metrics belonging to the same category and their relative 

contribution is shown in Figure 7.7. All performance metrics present a different relative 

contribution for each category. MAS shows a similar contribution for fatigue (29.2%) 

and technique (31%) categories, but sVT2 (40.4%) and CAS (46.5%) show a dominant 

contribution of the technique category.  

 

 

Figure 7.7 Selected metrics and their categoriesRelative contribution of metric categories to 

each endurance performance variable B. Biomechanical profile for top 5 (high 

performance) participants according to their MAS C. Biomechanical profile for bottom 

5 (low performance) participants according to their MAS 
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Metrics showing a statistically significant (p < 0.05) difference between highest and 

lowest performing participants are also reported Table 7.3. The effect sizes can be 

found in the supplementary materials13. MAS, sVT2, and CAS led to the selection of 

different biomechanical metrics, with the highest number of metrics selected for MAS 

through LASSO regression and for sVT2 through statistical testing. The metrics com-

mon to each performance variable across both methods were selected and used to cre-

ate a biomechanical profile for the participants. The metrics included on the profile are 

– i) Technique: µCTt, µVSt, µDFt, µFEAt ii) Regularity: σCT, σFT, σGT iii) Asymmetry: 

none iv) Fatigue: µCTd, mFSAt, mFTsy v) Pace: µGTt, µPSVt. Figure 7.7B and C show 

the profiles for the top and bottom 5 participants ranked according to their MAS re-

spectively. 

 

7.5 DISCUSSION 

This work investigated the association between endurance performance quantified by 

three variables – MAS, sVT2, and CAS, and the biomechanical metrics measured dur-

ing the performance of a Cooper test protocol. The selected metrics and the rationale 

behind their selection are discussed in this section. This is preceded by a short delibera-

tion on the estimation accuracy of the distance ran during the test and the subsequent 

prediction of the three performance variables. 

7.5.1 Distance and speed estimation 

Estimating the distance using all three lap counting methods led to better precision 

than the methods using strapdown integration of speed and Haversine formula alone. 

The lack of precision or the higher IQR of the error is likely due to the bias and the 

noise in the GNSS ground speed and latitude/longitude signal. The integration of the 

data from these signals leads to signal drift, which can vary considerably across partic-

ipants, leading to a higher IQR of error. The GNSS ground speed is typically estimated 

using the phenomenon of Doppler shift while the Haversine formula relies on the ac-

tual co-ordinates recorded by the GNSS (Hofmann-Wellenhof et al., 2012), which could 

explain the differences between the errors for the two methods. The lap counting 

methods reduced the impact of drift by restricting the strapdown integration to signals 

recorded in partial laps.  

 

Compared to the MAE for state-of-the-art GNSS sport watches (Gilgen-Ammann et al., 

2020), the MAE for lap counting methods was similar or lower. However, the sport 

watches were tested for one participant, over a maximum distance of 4296.9 m. While 

the GNSS sport watches underestimated the distance in urban and forest areas, they 

overestimated it on a running track. The authors (Gilgen-Ammann et al., 2020) attrib-

ute to this overestimation in unobstructed conditions (Ranacher et al., 2016) to a possi-

ble correction algorithm used by the manufacturers to compensate the general under-

estimation in difficult areas. In our situation, a general underestimation of distance by 

all five algorithms was observed. One reason could be the lack of correction in the sen-

sors, since they were used in the ‘airborne <4g’ configuration of the uBlox GNSS chip. 
 

13 https://www.frontiersin.org/articles/10.3389/fspor.2022.935272/abstract 
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Another reason could be the assumption that all laps have a length of 400 m (equation 

7.4), which is lower than the actual distance for lane 2 (~407 m) and lane 3 (~415 m), 

which were used to compute the reference length during the Cooper test. The formula 

used in the lap counting algorithm can be updated to consider the lap length for a giv-

en lane (Aftalion & Martinon, 2019), thus reducing the underestimation of distance. 

 

MAS was estimated accurately (R2 0.91, RMSE 0.98 kmh-1) with the Cooper test dis-

tance (Dref) as a sole predictor (equation 7.5). This value of R2 is comparable to those in 

literature for the prediction of V̇O2max – 0.897 for the original study (Cooper, 1968), 0.87 

to 0.93 for young males (Bandyopadhyay, 2015; Grant et al., 1995; McNaughton et al., 

1998) and 0.72 to 0.83 in a systematic review (Mayorga-Vega et al., 2016) that deter-

mined the criterion validity of 12 min Cooper test to be moderate for predicting V̇O2max. 

Though the addition of biomechanical metrics only improved the prediction slightly 

(R2 0.93, RMSE 0.88 kmh-1), it could prove to be more influential in case of studies 

with a larger and diverse set of participants. Dref proved to be an accurate predictor of 

sVT2 (R2 0.92, RMSE 0. 84 kmh-1) and addition of biomechanical metrics did not im-

prove the prediction substantially (R2 0.93, RMSE 0.81 kmh-1). To our knowledge, this is 

the first study to estimate sVT2 using the 12-minute Cooper test. However, testing of 

this equation for a broader and larger set of participants is recommended. Estimation 

of sVT2 using a simple field test can enable its wider adoption for the design of thresh-

old-based training programs and as a metric to measure the endurance capacity of ath-

letes. Furthermore, estimation of sVT2 and MAS using field tests can facilitate studies 

which compare their predictive power for performance in endurance races and con-

trast their use in improving positive adaptation to training. 

7.5.2 Selection of metrics 

The biomechanical metrics selected via LASSO for MAS, sVT2, and CAS differ from 

each other (Table 7.3). Similarly, participants in the high/low performance groups se-

lected according to the highest and lowest MAS, sVT2, and CAS values differed, and 

consequently, the metrics showed statistically significant differences. These results 

highlight the dissimilarity of the nature of information obtained from these variables, 

although they all quantify the endurance performance. For the same fraction of V̇O2max 

arising out of training at a certain fraction of MAS, athletes may have different levels of 

lactate accumulation, and therefore training based on fraction sVT2 can lead to a more 

homogenous training stimulus (T. Mann et al., 2013). Both, MAS and sVT2 can be reli-

ably and accurately estimated using Dref (or CAS), as shown previously. However, Dref 

(or CAS) also contains information about the efficient conversion of endurance capacity 

on the track, which is determined by the running biomechanics and the running econ-

omy (RE). One study has shown that the high aerobic capacity of Kenyan runners is 

not reflected in treadmill running, due to their lack of familiarity with and the resulting 

negative influence on RE (Saltin et al., 1995). The results highlight the importance of 

running technique, with the running technique making the highest relative contribu-

tion to the estimation of CAS (Figure 7.7Figure 7.7 A).  

 

The metrics selected within ‘technique’ category are: µFEAt, µCTt, µVSt, and µDFt. 

Mean foot eversion angle (µFEAt) had a negative contribution to MAS and sVT2, as 
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indicated by the LASSO coefficients (β) ranging from -0.26 to -0.02, with the faster run-

ners having a higher inversion angle at initial contact. This result is consistent with 

previous studies that reported that an increase in running speed resulted in an increase 

in the ankle roll angle and thus the amount of external rotation (Muñoz-Jimenez et al., 

2015; Orendurff et al., 2018). Foot roll before contact is lower in athletes with heel-strike 

and increases with midfoot and frontfoot strike (Lieberman et al., 2010), leading to a 

higher inversion angle at contact. Midfoot strike loads the calf and shin muscles simi-

larly, thereby stabilizing the ankle; forefoot strike causes the outer part of the foot to 

strike the ground at contact, preloading the calf muscles and allowing for a quick push-

off with a minimal contact phase (Almeida et al., 2015). A higher CT and FSA was ob-

served in slower runners, thus indicating a tendency towards heel-strike. This tenden-

cy, in combination with the lower speed, may explain the lower inversion angles ob-

served in slower runners.  

 

All three performance variables were negatively related (β ϵ [-0.39, -0.08]) (Table 7.3) to 

mean contact time over 12 minutes (µCTt). The five fastest runners had a lower µCTt 

than the five slowest (Figure 7.7 ). µCTt and gait cycle time are negatively affected by 

the gait speed and thus a lower µCTt might be expected for faster runners, regardless 

of their technique. However, a lower mean duty factor over 12 minutes (µDFt) was also 

observed in the faster runners (Figure 7.7 ), and µDFt had a negative (β ϵ [-0.37, -0.24]) 

contribution (Table 7.3) to the performance variables. These findings highlight the fact 

that lower µCTt was due to running technique and not just the speed. Similar findings 

of lower µDFt and µCTt have been reported in treadmill running for the comparison 

between elite and highly-trained runners (Burns et al., 2021) for a speed range (10 – 24 

kmh-1) and a larger cohort of elite and well-trained runners at lower speeds 10 – 12 

kmh-1 (Folland et al., 2017). It has been reported that 10-km performance while running 

on an indoor track equipped with a force plate is moderately negatively correlated 

with CT (Williams & Cavanagh, 1987). Previous research has also linked a lower CT 

and DF to better performance in terms of RE (Folland et al., 2017; Moore et al., 2019; 

Mooses et al., 2021; Nummela et al., 2007).  

 

In contrast to CT and DF, mean vertical stiffness (µVSt) contributed positively to all 

three performance variables (β ϵ [0.90, 1.2]), and the fastest runners had a considerably 

higher µVSt than the slowest runners (Figure 7.7). Similar results have been reported 

for comparisons between elite runners, well-trained runners, and other (non-runner) 

athletes during treadmill running (Burns et al., 2021; da Rosa et al., 2019; Moore et al., 

2019). For a comparable propulsive force, a higher VS results in a lower vertical excur-

sion of the center of mass (COM) and a lower mechanical energy loss due to vertical 

oscillations. The relatively lower CT and higher VS indicate the ability of faster runners 

to better utilize the spring mass dynamics for efficient storage and release of elastic 

energy during the stance phase (Zhang et al., 2021). With a rise in speed, the contribu-

tion of the elastic energy to the running energy cost has been shown to increase (Alex-

ander, 1991), increasing the importance of efficient recycling of elastic energy. Ground 

reaction forces (GRF) have a strong positive influence on running speed (Weyand et al., 

2000), but likely increase the vertical oscillation of COM, which is negatively correlated 

with RE (Folland et al., 2017; Moore, 2016; Saunders et al., 2004). Higher vertical and 
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leg stiffness may reduce vertical oscillation while allowing for higher GRF, allowing 

higher speeds and better RE (Butler et al., 2003).  

 

Within the ‘pace’ category, two metrics were selected: µGTt and µPSVt. Mean gait cy-

cle time (µGTt) had a negative (β ϵ [-0.45, -0.14]) contribution to the three performance 

variables, whereas mean peak swing velocity (µPSVt) had a positive (β ϵ [0.35, 0.72]) 

contribution. Faster runners had much lower µGTt and higher µPSVt compared with 

slower runners (Figure 7.7). For a given stride length, a lower µGTt results in higher 

running speed and is associated with higher vertical stiffness, which is consistent with 

our results (Butler et al., 2003). Even a 10% increase in step rate results in a considera-

ble reduction in loading in the knee and hip joints, improvement in RE, and a reduc-

tion in vertical excursion of COM (Heiderscheit et al., 2011; Musgjerd et al., n.d.; Quinn 

et al., 2021). An increase step rate results in more upright posture during stance, reduc-

ing the muscle forces needed during the loading-response phase of the gait cycle (Len-

hart et al., 2014). Combining an increased step rate with a forefoot strike resulted in a 

greater reduction in joint impact loading than a midfoot or heel strike (Huang et al., 

2019). The transition to a forefoot strike at a higher step rate was also reported to be 

easier than midfoot and heel strike in that order, which is consistent with our observa-

tion that faster runners report a lower µGTt and a tendency toward a midfoot and fore-

foot strike pattern. The lower µGTt increases the loading in the hip flexors muscles 

during the early swing because the trailing leg must be brought forward more quickly 

(Lenhart et al., 2014), possibly leading to an increased µPSVt. However, to decelerate 

the leg and position it for ground contact, the hamstrings and hip extensor muscles 

apply higher forces during the late swing phase. This indicates a higher capacity for 

positive and negative mechanical work in the thigh muscles for the faster runners. 

 

The pace and technique categories primarily consider the mean values of the various 

biomechanical metrics. The acute fatigue developed during the Cooper test can affect 

the magnitude of the biomechanical parameters, so the fatigue category mainly consid-

ers the change in the mean values of the parameters. Within this category, three metrics 

were selected: µCTd, mFSAt, mFTsy. Slower runners showed a higher increase in 

mean contact time (µCTd) between the 2nd and 11th minute, indicating a limited ability 

to resist biomechanical changes due to fatigue. This is consistent with previous studies 

in which runners of different performance levels showed similar trends for the increase 

in CT with perceived acute fatigue (Prigent et al., 2022), but the magnitude of change in 

CT was higher in less trained runners. In the fatigue category, the FSA and flight time 

(FT) are reduced less in the faster runners than the slow runners (Figure 7.7), leading to 

a higher slope for the FSA (mFSAt) and FT (mFTsy) in faster runners. This is reflected 

in the positive (β ϵ [0.07, 0.25]) contribution of mFSAt and mFTsy (β = 0.13) to the esti-

mation of sVT2 and MAS. Acute fatigue may decrease calf muscle preactivation, result-

ing in a decreased ability to absorb and return energy generated during impact and 

produce a lower push-off force (Apte et al., 2021). Increased CT to distribute the impact 

impulse over a longer duration, a tendency of footstrike moving away from forefoot 

(reduced FSA), and the reduced FT indicate fatigue in the calf muscle, with less trained 

runners unable to adapt to these changes and recover their running technique. 

 



7.5 Discussion 

149 
 

The regularity category of metrics quantifies the variability of running and therefore 

the following metrics were selected within this category: σCT, σFT, and σGT. The vari-

ability of CT (σCT), FT (σFT), and GT (σGT) had a negative contribution (β ϵ [-0.47, -

0.14]) to the estimation of all three performance variables. The fast runners showed a 

lower variability (Figure 7.7) of temporal gait parameters over 10-step windows, alt-

hough they had lower mean values for these parameters. Gait variability has been pre-

viously studied with novice, well-trained, and elite runners on a treadmill (Burns et al., 

2021; Mo & Chow, 2018a; Nakayama et al., 2010), on a track (Meardon et al., 2011), and 

during a half-marathon (Apte, Evian, et al., 2022). Except for Meardon et al. who com-

pared recently-injured and healthy runners, all other studies found an inverse relation-

ship between gait variability and training level. An increase in temporal gait variability 

was associated with an increase in energy cost of running (Candau et al., 1998). In a 

longitudinal endurance training program, a reduction in stride rate variability and an 

improvement in RE were reported as outcomes, although participants' oxygen capacity 

changed only slightly (Slawinski et al., 2001). Thus, the lower values of σCT, σFT, and 

σGT during the Cooper test indicate a better RE for the faster runners. 

7.5.3 Limitations and recommendations 

The estimation of sVT2 in this study is based on a relatively small sample consisting 

predominantly of male subjects. The evaluation of the proposed equations (7.5 and 7.6) 

can be performed for a larger sample, with a better sex ratio, and possibly with nonlin-

ear methods. Similarly, the well-trained runners were composed exclusively of male 

subjects, while the less trained group was a mixture of male and female participants. 

The results of the comparison between the five fastest and the five slowest runners 

(Figure 7.7Figure 7.7 ) are therefore biased by the low sex ratio. Some differences in the 

regularity of running mechanics occurred when competitive and recreational runners 

were compared within male and female subjects (Clermont, Benson, Osis, et al., 2019). 

However, males and females with similar training levels have been reported to have 

similar values for RE (mlO2.km-1.kg-1) (J. Daniels & Daniels, 1992) and the energy cost 

of running  when running at a similar intensity (Bunc & Heller, 1989). In this study, the 

spring-mass model was used to estimate VS (J.-B. Morin et al., 2005), based on the es-

timated values of FT and CT. Since VS showed the highest positive contribution for all 

performance variables, a direct estimation of VS using force plate measurements and 

motion tracking from COM may be a valuable follow-up study.  

 

Reduction in the stability and smoothness of running movement, resulting from acute 

fatigue, has been linked to a surge in the energy cost of running (Kiely et al., 2019; 

Schütte et al., 2018). Using the IMU on the chest, it is possible to estimate the stability 

and smoothness of the trunk motion in real-world conditions (Apte, Laroche, et al., 

2022) and extend the proposed biomechanical profile. Together with the variability of 

gait temporal parameters, the long-range correlations (LRC) for stride time can be in-

vestigated, indicating the adaptability of gait. Highly trained runners and elite runners 

have shown a higher adaptability, and the LRC have been associated with injury histo-

ry (Meardon et al., 2011; Mo & Chow, 2018a). However, the interpretation of the LRC, 

stability, and smoothness is not obvious for the coaches and the athletes, these parame-

ters were not included. Finally, the pre/post measurement of the subjective fatigue 
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(ROF) was used to ensure the maximal intensity for the Cooper test. Although the ROF 

scale correlates well with the biomechanical and physiological influences of acute fa-

tigue (Prigent et al., 2022), it can be supplemented with a pre/post assessment of blood 

lactate.  

7.6 CONCLUSION 

In this study, we presented an accurate (MAE 16.5 m) and precise (error CV 1.1%) es-

timate of the 12-min distance with a chest-worn GNSS receiver, despite interindividual 

variations in track running trajectories. Using this distance, we showed a reliable esti-

mate (R2 > 0.9, RMSE ϵ [0.07, 0.25] kmh-1) of the MAS and sVT2, with reference values 

from the laboratory. Using the foot-worn IMU, we estimated several biomechanical 

metrics and assessed their contribution to the endurance performance. All performance 

variables were predicted with an acceptable error (R2 ≥ 0.65, RMSE ≤ 1.80 kmh-1) when 

only the biomechanical metrics were used with the LASSO method. The metrics select-

ed using LASSO and the statistical comparison were used to create a biomechanical 

profile representing the running technique and its temporal evolution. Within this pro-

file, the selected categories can be used to characterize runners and identify their key 

strengths and weaknesses. Based on this, a training program can be developed to tar-

get specific aspects of running technique and provide the resulting profile to runners as 

post-training feedback. This profile can be tracked over a season to understand the 

development of running technique and the adaptation of runners to training. Profiles 

at the beginning and the end of a long-distance training session reflect the impact of 

fatigue, providing complementary information to internal training load metrics. This 

profile can provide coaches and athletes a deeper insight into the running mechanics 

and allow evaluation of intraindividual changes following training programs and re-

habilitation after injury. Interindividual differences in the profile can be used to devel-

op a tailored training program and monitor the improvement in the resulting running 

mechanics. Use of such a wearable system in standardized capacity measurements may 

open a new perspective for personalization of training and rehabilitation. 

7.7 APPENDIX: RESULTS FOR ESTIMATION WITH WRIST-WORN IMU 

Wrist-worn location offers more convenience compared to foot-worn IMUs and the 

additional potential to be integrated into a smartwatch (Erdem et al., 2019). Therefore, 

this study aimed to extend the estimation of temporal parameters for real-world run-

ning using wrist-worn IMU. The data from the highly-trained group for the 12-minute 

was used for this estimation and compared to the parameter values estimated with the 

foot-worn IMU, computed using previously validated algorithm (Falbriard et al., 2018). 

Peak detection on the angular velocity signal was used to first estimate the cycle time, 

followed by the extracted of features on windows containing 40 gait cycles. These fea-

tures were used to train models based on convolutional neural networks, Gaussian 

Process regression, and Lasso regression. Lasso model performed the best, with the 

root mean square error for cycle time, swing time, flight time, and contact time being 

0.27 % ± 0.1 %, 2.6 % ± 1.7 %, 7.3 % ± 4.9 %, and 10.6 % ± 5.5 %, respectively. Details of 

the proposed method and its results can be accessed in the published conference pro-

ceedings (Kammoun et al., 2022). 
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8 CONCLUSION AND DISCUSSION 

8.1 CONTRIBUTIONS 

As discussed in Chapter 1, running technique is one of the critical factors explaining 

the differences in performance and economy between runners with comparable physi-

cal abilities. Training with proper running technique is essential to ensure positive ad-

aptation to the training stimuli and thus improve performance, and to reduce the risk 

of injury. Fatigue has been shown to cause changes in running technique, such as shift-

ing landing mechanics, increasing impact forces, decreasing knee flexion during land-

ing, altering contact and flight times, etc. (Verschueren et al., 2020). Neither internal 

nor external training load metrics can provide information on the influence of fatigue 

on technique, thus making biomechanical assessment a unique independent descriptor 

of training sessions (Paquette et al., 2020). Running power, the amount mechanical 

work performed by the runner per unit time, can provide information into the relative 

force applied by the athlete at a given pace. Since an increase in applied force requires 

additional metabolic energy, a higher power output at a lower heart rate may be an 

indicator of higher running efficiency when performed on the same surface. Thus, run-

ning power can complement the description of running technique to describe perfor-

mance during training sessions or races. Current conventional training framework 

does not consider all these factors and can therefore benefit from analysis of running 

biomechanics during training and functional capacity testing. In this context, perfor-

mance during a training session can represent the proportion of training in which op-

timal technique and prescribed intensity were maintained despite fatigue. 

 

The biomechanics of running can be altered through specific training, and an economi-

cal running technique can reduce the energy cost of running (per unit distance) 

(Moore, 2016).  For example, in a longitudinal endurance training program using feed-

back on the variability of gait cycle, reductions in stride rate variability and energy cost 

were reported as outcomes (Slawinski et al., 2001, p. 20), although participants' oxygen 

capacity changed only slightly. At a similar running speed, loading forces and mo-

ments are influenced by body mass index (BMI), stride length, foot angle at ground 

contact, running shoes, running surface, etc. However, there is not one perfect running 

technique, but different techniques that are more efficient and less likely to cause inju-

ry depending on the length of the race, physical fitness, anthropometric features, etc. 

Thus, the biomechanical assessment must be customized for each athlete, preferably 

during field activities to maintain the ecological validity. Therefore, the objectives of 

the first part of this work were to identify reliable trends related to the fatigue state or 

onset of fatigue during running, measure them with wearable sensors, and estimate 

running performance and power with the same or a simpler sensor setup. The second 

part dealt with the personalized measurement of capacity using functional tests in the 
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field and the study of biomechanical relationships with functional capacity. Together 

with the capacity measured during testing, the biomechanics studied can help coaches 

determine appropriate training loads, with a focus on developing technique during a 

training and/or return-to-sport program. 

8.1.1 Part I: Biomechanical assessment for performance and fatigue analysis 

To identify reliable trends that represent the influence of fatigue on running move-

ment, and the selection of meaningful metrics that encapsulate running technique, a 

two-pronged approach was considered in this thesis, i) A systematic review to investi-

gate and coalesce results from fatigue protocols involving running ii) Continuous in-

field measurements of the training for marathons and during the race, to reaffirm the 

trends obtained from the systematic review and to measure the changes in running 

technique due to fatigue. Chapter 2 documented a systematic review of literature and 

investigated the typical protocols used in research on biomechanical response to run-

ning-induced fatigue, the effect of sport-induced acute fatigue on the biomechanics of 

running and functional tests, and the consistency of analyzed parameter trends across 

different protocols. It presented evidence that acute fatigue influences almost all the 

included biomechanical parameters in running, with crucial influence from the exercise 

intensity and the testing environment. To the author’s knowledge, this was the first 

systematic review to categorize study protocols according to fatigue intensity and syn-

thesize trends for each category separately. Some parameters (step length, sagittal knee 

angle range of motion, max. knee flexion angle, etc.) presented different trends for dif-

ferent fatigue intensities, thus highlighting the importance of this categorization. 

 

From the 42 parameters identified in response to acute fatigue, flight time, contact 

time, knee flexion angle at initial contact, trunk flexion angle, peak tibial acceleration, 

CoP velocity during balance test showed an increasing behavior. Whereas, cadence, 

vertical stiffness, knee extension force during MVC, maximum vertical ground reaction 

forces, and CMJ height showed a decreasing trend across different fatigue protocols. 

The findings reaffirmed the observations that acute fatigue causes a reduction in the 

maximal force production of the muscles and adversely affects the postural control 

ability, leading to a more compliant leg and a decreased attenuation of the impact force 

during each ground contact. This may partly explain the decrease in running efficiency 

and the increased likelihood of injuries arising from running while fatigued. The dom-

inant metrics used for fatigue analysis were gait spatiotemporal parameters, while sta-

tionary sensor systems, treadmill activities, and endpoint measurements were the 

dominant modalities. The 68 included studies indicated an important gap in literature 

caused by the lack of field studies (only 22.1%) with continuous measurement (< 25%) 

during actual outdoor activities.  Emerging technologies like wearable sensors could 

enable the design of such protocols, thus leading to a deeper understanding of the in-

fluence of fatigue on the biomechanics of the lower extremities. An outcome of this 

review is the proposal of a wearable sensor configuration based on three or four sen-

sors, which will enable continuous in-field measurement of metrics that show a reliable 

response to acute fatigue. The potential of this sensor setup was successfully demon-

strated in Chapter 3, with the concurrent assessment of running biomechanics and per-

ceived fatigue during a half-marathon race. 
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Chapter 3 presented the assessment of the evolution of the biomechanical and psycho-

logical facets of running with acute fatigue during a half-marathon using a minimal 

wearable sensor setup. Spatiotemporal parameters for the running gait, along with the 

trunk stability, gait symmetry, variability and complexity were computed using vali-

dated algorithms and metrics chosen from literature. During the race, contact time, 

duty factor, and trunk anteroposterior acceleration increased, and the foot strike angle 

and vertical stiffness decreased significantly. Both stability and smoothness decreased 

significantly, shortly after the race onset. For stability and smoothness respectively, 

RMSA and JC showed a clear change with acute fatigue and differentiated well be-

tween the fast and slow groups. For future studies in this area, these metrics can be 

used to characterize the stability and uniformity of body segment motion during run-

ning. Less experienced runners were able to slightly recover the stability of their trunk 

movement but not the smoothness. Therefore, smoothness of running gait might be 

important parameter to understand the deterioration of running technique due to fa-

tigue during training. Gait asymmetry increased significantly toward the end of the 

race and at higher perceived fatigue; faster runners showed a greater increase in 

asymmetry. Variability increased significantly at the beginning of the race and then 

remained stable for all participants, but faster runners showed up to 20% less variabil-

ity, thus indicating a likely importance of variability to running performance. Assess-

ment with respect to perceived fatigue provided different results than that with race 

progression for some metrics. This difference in results highlights the relevance of the 

measurement of perceived fatigue during outdoor running protocols.  This work is one 

of the first to simultaneously and continuously measure the response of biomechanical 

and psychological parameters to acute fatigue during a half-marathon run. It con-

firmed the findings of the systematic review during a real-world competitive running 

environment. It may serve as a springboard for the design of studies that measure the 

association of biomechanical, psychological, and physiological parameters and its evo-

lution with acute fatigue.  

 

In chapter 4, methods were developed to enable the use of running power as a tool for 

feedback during training. Power is a promising tool for measuring training intensity 

and determining pacing strategies. However, to realize its potential as feedback tool, 

validated methods are required to reliably estimate power across different conditions. 

Furthermore, to enable their use in the field, these methods should be simple enough 

to be implemented on embedded systems with limited processing and energy storage 

capacity. This work proposed three minimal machine-learning models to estimate me-

chanical power (MP) for flat, uphill, and downhill running on treadmill. It was hy-

pothesized that supplementing typically used statistical features on the accelerometer 

and gyroscope signals with biomechanical features would improve the accuracy of the 

models. Furthermore, since the power likely depended on the running speed and ter-

rain slope, the accuracy of the models was tested in worst-case scenarios of estimated 

speed and slope. For uphill and level running, peak concentric phase power was esti-

mated with a median ± interquartile range error of 1.7 ± 12.5 % and 3.2 ± 13.4%, respec-

tively. While existing devices only consider the concentric phase power, the proposed 

methods can estimate the peak eccentric phase power absorbed during downhill run-

ning with an error of 1.8 ± 14.1%. Downhill running is an eccentric exercise and may 
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lead to muscle damage or tendon/joint overload at high running intensity. Thus, to 

reduce the likelihood of injuries, it is pertinent to get used to downhill running pro-

gressively. The proposed models can thus enable athletes to monitor their downhill 

running power and adjust their training to progressively increase this power. Results 

in this chapter, obtained for the worst-case scenarios, demonstrated a similar perfor-

mance across a range of running conditions. The proposed algorithm meets require-

ments for applications needing accurate near real-time feedback and complements ex-

isting gait analysis algorithms based on foot-worn IMUs. 

8.1.2 Part II: Augmentation of in-field functional capacity testing 

Chapter 5 proposed a new method for instantaneous measurement of sprinting veloci-

ty using a single wearable device. A sensor fusion approach was followed, by combin-

ing the signals from wearable GNSS and IMU devices and the estimated velocity and 

duration were validated with speed radar and photocell data as reference. The median 

RMS error for the estimated velocity ranged from 6 to 8%, while that for the estimated 

sprint duration lied between 0.1 and −6.0%. The Bland–Altman plot showed close 

agreement between the estimated and the reference values of maximum velocity. Ex-

amination of fitting errors motivated an improved approximation of the velocity pro-

file using a second order exponential model, thus raising doubts over the dominant 

approach of using a first order exponential model previously suggested in literature. 

The proposed sensor-fusion algorithm is valid to compute an accurate velocity profile 

with respect to the radar; it can compensate for and improve upon the accuracy of the 

individual IMU and GNSS velocities. The device used here is typically worn by ath-

letes during their testing, training, and competitions. Thus, the proposed methods can 

be adopted easily by the sporting staff without disturbing their established practices. 

Using the proposed algorithm with a wearable device instead of radar and photocells 

also allows testing a cohort of athletes simultaneously, which makes its utility even 

more evident. It can thus augment the sprint test to assess injury risk of the athletes, 

identify their strengths/weakness using an accurately estimated force-velocity profile, 

and enable the coaches to design a personalized training program.  

  

Chapter 6 a showed a method for instrumenting the agility T-test with wearable IMU 

and GNSS system, thus providing an avenue to measure detailed metrics like individ-

ual phases and change-of-direction (COD) durations. The algorithm developed in this 

work detected the start and end of the five COD using the peaks in the wavelet-

processed anteroposterior acceleration signal. The mean error and standard deviation 

(S.D.) for detecting all COD events was −0.03 ± 66 ms, with the relative mean and S.D. 

on each COD duration being less than 3.5 ± 16 %. This algorithm can be used to deter-

mine the duration of the five motion sequences and provides new metrics for provides 

new variables for a detailed analysis of performance during the T-test. Within these 

metrics, the total cutting time for all COD was highly correlated to the total completion 

time of the test, thus emphasizing its importance to the athletes. While the COD dura-

tion was surprisingly similar across the best/worst performing athletes, the duration of 

individual displacement phases was markedly different. This result highlights the im-

portance of the sprinting and shuffling movements undertaken during the displace-

ment phases. Furthermore, asymmetrical performance between displacement in the 
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right and in the left direction can be highlighted using the respective phase durations, 

and help to assess the condition of the dominant and/or healthy leg with respect to the 

recently injured and/or non-dominant leg. Thus, the proposed method can augment 

the existing COD to understand the athlete’s specific strengths/weaknesses on each 

COD and displacement phase and thus prove to be a valuable performance evaluation 

tool. Eventually, it can help the sporting staff to develop more individual training pro-

grams and help in the assessment for return to sport. 

 

Chapter 7 extended the wearables-based approach to the 12-minute Cooper test, by 

assessing the relative contribution of running biomechanics to the endurance perfor-

mance. Furthermore, different methods of estimating the distance covered using a 

wearable GNSS receiver were explored, with the estimation achieving an accuracy of 

16.5 m and precision of 1.1%. Using this distance, a reliable estimation (R2 > 0.9, RMSE 

ϵ [0.07, 0.25] km/h) of the MAS and sVT2 was presented. To the author's knowledge, 

this is the first work to present a field test of sVT2, which is the lower boundary for the 

definition of "high intensity" and therefore this work may be of great interest to the 

coaches for prescribing intensity. All performance variables, MAS, sVT2 and average 

speed during Cooper test, were predicted with an acceptable error (R2 ≥ 0.65, RMSE ≤ 

1.80 kmh-1) using only the biomechanical metrics extracted from foot-worm IMU. 

These metrics were categorized into five groups based on their relevance – fatigue, 

pace, pattern, regularity, and symmetry. Runners with the best endurance performance 

showed better maintenance of their running technique despite fatigue and had a higher 

regularity and pace of running. Furthermore, their running showed a higher vertical 

stiffness, lower contact time and duty factor than the worst performers. To enable their 

use in the field, these metrics were used to develop a biomechanical profile represent-

ing the running technique and its temporal evolution with acute fatigue, identifying 

different profiles for runners with highest and lowest endurance performance. The 

identification of these metrics and their visual representation can help the sporting 

staff target the weaknesses of runners with customized training. Additionally, data 

from the test was used to develop machine learning models to estimate the temporal 

gait parameters using a wrist-worn IMU during an outdoor run. While it is easier to 

compute running gait parameters using foot IMUs, a wrist IMU is more convenient 

and less obtrusive when it comes to data acquisition. The models were validated using 

a foot-worn IMU reference system, with the RMS error for cycle time, swing time, 

flight time, and contact time being 0.27 % ± 0.1 %, 2.6 % ± 1.7 %, 7.3 % ± 4.9 %, and 10.6 

% ± 5.5 %, respectively. This study can thus be a first step towards a detailed spatio-

temporal analysis of the running technique in the field using a simple wrist-worn IMU. 

8.1.3 Potential application to training 

In this thesis, methods were developed to extract and identify biomechanical metrics 

based on their contribution to endurance performance, characterization of running 

technique through stability, smoothness, symmetry, response to fatigue, etc., and run-

ning power. These methods were based on a minimal body-worn sensor setup with 

foot-worn IMUs and a single trunk-worn IMU-GNSS unit. These setup and methods 

have been used and validated in a variety of situations, such as pre-season testing of a 

professional soccer team, training sessions of elite sprinters, the Lausanne half-
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marathon race, etc., highlighting their potential for real-world application. As a first 

step to enable this application, these metrics can be used to create a biomechanical pro-

file (illustrated example in Figure 8.1) representing the running technique and its tem-

poral evolution.  Within this profile, the selected categories can be used to characterize 

runners and identify their key strengths and weaknesses. Based on this, a training pro-

gram can be developed to target specific aspects of running technique and provide the 

resulting profile to runners as post-training feedback. This profile can be tracked over a 

season to understand the development of running technique and the adaptation of 

runners to training.  

 

 
Figure 8.1 Profile for runners based on the biomechanical parameters. This profile can rep-

resent the individual running technique and can be used as feedback during training. The 

example shown here is illustrative, a profile based on measurements is shown in Figure 7.6. 

Profiles at the beginning and the end of a long-distance training session reflect the im-

pact of fatigue, providing complementary information to internal training load metrics. 

This profile can provide coaches and athletes a deeper insight into the running me-

chanics and allow evaluation of intraindividual changes following training programs 

and rehabilitation after injury. Additionally, athletes susceptible to or recovering from 

muscle injuries can use the eccentric power peak as a threshold for designing training 

programs with adequate mechanical load and assessing their readiness to return to 

running in various conditions. The ratio between the absolute power from concentric 

work and eccentric work could potentially be utilized as a metric of mechanical effi-

ciency, reflecting the athlete’s ability to store and re-use energy. Interindividual differ-

ences in the profile can be used to develop a tailored training program and monitor the 

improvement in the resulting running mechanics. Use of such a wearable system in 

standardized capacity measurements and training sessions may open a new perspec-

tive for personalization of training and rehabilitation. 
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8.2 LIMITATIONS 

8.2.1 Protocol 

Within the systematic review, that studies involving different athlete groups with vary-

ing skill levels (elite athletes vs. amateur) and physical capacity were analyzed together 

to create summary trends. Though mixing different study populations might lead to 

confounding effects, this was done to overcome the limited number of studies within 

each subgroup and ensure large enough sample size for computing meaningful sum-

mary trends. This also allowed the summary trends to be analysis can be generalizable 

across a wide population. The parameters for analysis were selected based on the 

threshold of at least 30 participants within a fatigue category and/or running surface. 

This threshold was chosen with the aim of balancing the strength of evidence and the 

number of analyzed parameters. While a higher threshold would increase the strength 

of evidence per parameter, the number of analyzed parameters would have been dras-

tically reduced since most studies had <20 participants. For the concurrent analysis of 

perceived fatigue and running biomechanics during prolonged running, the overall 

sample was limited to 13 subjects and the sample size of fast/slow groups was too low 

for a meaningful statistical comparison. In addition, the resolution of the collection of 

ROF samples (10 minutes/sample) was limited due to the consideration of the partici-

pant’s comfort.  

 

Similarly, the limited sample size for the sprint velocity estimation study constitutes an 

important limitation. However, this study was aimed strictly toward the technical val-

idation of the proposed algorithm, and this limitation was compensated by conducting 

multiple trials per participant. For the study on the Cooper test and power estimation, 

the sample size issue was addressed with larger sample of more than 30 participants. 

However, the sample inadvertently consisted predominantly of male subjects. Similar-

ly, the well-trained runners were composed exclusively of male subjects, while the less 

trained group was a mixture of male and female participants. The results of the com-

parison between the five fastest and the five slowest runners for the Cooper test are 

therefore biased by the low sex ratio. Some differences in the regularity of running me-

chanics occurred when competitive and recreational runners were compared within 

male and female subjects (Clermont, Benson, Osis, et al., 2019). However, males and 

females with similar training levels have been reported to have similar values for RE 

(mlO2.km-1.kg-1) (J. Daniels & Daniels, 1992) and the energy cost of running  when run-

ning at a similar intensity (Bunc & Heller, 1989).  

 

Background data about the participants, such their VO2max values, sleep quality, 

stress, and emotional health was not collected and could improve the interpretation of 

the results. Finally, the perceived fatigability could have been more holistically as-

sessed by also including the measurement of the valence, arousal, flow state, and ac-

tion crisis (Venhorst et al., 2018). While this additional measurement was not feasible 

for us during the half-marathon, a pre/post assessment could provide a more complete 

understanding of the affective, sensory, and cognitive processes. For the t-test, only one 

reference camera was present in the frontal plane, with a limited sampling rate of 60 

Hz. An additional reference video cameras in a sagittal plane, with both video cameras 
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having a higher sampling rate can improved the overall reliability of the proposed 

method. The power estimation method was validated only in the lab, with downhill 

running simulated using an uphill incline and operating the treadmill in the opposite 

direction of rotation. While this should not affect the biomechanics directly, an indirect 

psychological effect on the participants may be possible and affect the biomechanics 

indirectly. Furthermore, due to the intensity of the protocol, only athletic participants 

were considered in this project.  

 

In addition to the sprint, COD, and endurance tests, the functional test for hopping and 

the Y-balance test can be instrumented and augmented with wearable sensors in the 

future. Hop test is a battery of tests typically used to assess athlete readiness after inju-

ry rehabilitation (M. D. Ross et al., 2002). It consists of four tests: i) Single hop with the 

aim of achieving the maximum distance ii) 6m timed trial with the goal to finish as 

early as possible iii) Triple hop where the participant aims to jump as far as possible 

within three hops on a single leg iv) Crossover hop with the goal of achieving maxi-

mum distance through three crossover hops on a single leg. The goal of these tests is to 

achieve less than 10% difference in the performance with the healthy and injured leg. 

In addition to the symmetry, the quality of landing mechanics and knee joint kinemat-

ics is assessed qualitatively. This test can be augmented to quantify the landing me-

chanics and joint kinematics, thus improving the accuracy and personalization of as-

sessment. The Y-Balance test is a simplified version of the Star-Excursion balance test, 

used to measure postural control and strength (Shaffer et al., 2013). It is generally used 

to assess athlete readiness after injury rehabilitation. During the test, the athlete stands 

on one leg and tries to reach as far as possible along the three directions with the other 

leg. The test is evaluated as one-third of the ratio of the sum of the distances reached in 

three direction and the leg length. The goal here is to obtain less than 10% difference 

the relative reach distance for the healthy and injured leg. Additionally, the physio-

therapist assesses the stability of the trunk and the standing leg qualitatively. During 

rehabilitation for restoring locomotion capability, stability of motion has been high-

lighted as an important aspect (Cajigas et al., 2017; Plooij et al., 2021). The aim of in-

strumenting this test may be to quantify the dynamic stability of the standing leg and 

the trunk during each reaching movement. Furthermore, the kinematics of the reaching 

movement could also be measured quantitatively. 

8.2.2 Algorithm development and analysis 

In the marathon, power estimation, and Cooper test studies, the spring-mass model (J.-

B. Morin et al., 2005), was used to estimate the vertical stiffness (VS), based on the es-

timated values of the flight time and the contact time. Since VS showed the highest 

positive contribution for all performance variables, a direct estimation of VS using 

force plate measurements and motion tracking from COM may be a valuable follow-up 

study. While such a study is not possible during field measurements and competitions 

such as half-marathons, the model for estimating VS can be investigated further. For 

example, more complex models gait models (Aoi et al., 2019; Rajagopal et al., 2016) 

could be used to simulate the COM motion and VRGF and their VS values can be com-

pared. A similar model-based approach has been previously implemented to investi-

gate gait modalities in different environments for walking (Apte, Plooij, et al., 2020). 
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Furthermore, these studies did not consider the limb kinematics and joint moments, 

which can provide additional information about the running technique and effect of 

fatigue (Koblbauer et al., 2014). Though the sagittal foot kinematics was considered, 

estimation of the footstrike angle can be rendered less accurate for participants with a 

forefoot strike (Falbriard et al., 2020) which was the case with one participant in the fast 

group of the marathon. The statistical comparison was conducted by computing the 

summary values for each of the eight race segments and can be complemented by a 

non-linear analysis of the continuous race trends. For the power estimation, the refer-

ence power method considered the athlete as one rigid body and used a specific 

threshold and filtering process on the force plate. Sensitivity analysis with regards to 

the threshold and cut-off frequency, and the consideration of relative movements of the 

body segments can help in exploring the generalizability of the method.  

 

For the sprint study, the use of gradient descent procedure to convert IMU acceleration 

from sensor to global frame necessitated the assumption of motion in the sagittal plane. 

This assumption holds because of the approximate straight-line motion of the sprinter; 

it also forms the basis of radar-based velocity measurement. Thus, the proposed algo-

rithm is valid for straight-line sprints and not for curve sprinting or sprints with direc-

tion changes. Secondly, the gradient descent method uses a static period to determine 

the orientation with respect to gravity and thus the algorithm is sensitive to the select-

ed starting point of the sprint. Thus, absence of a static period before the start of the 

sprint can lead to unreliable conversion of the acceleration to the global frame. To en-

sure the availability of this static period, the raw GNSS velocity plot was visualized 

and manually select the starting point for the segmentation of the sprint data. Within 

the algorithm development for the t-test, the synchronization between video and IMU 

was done using first step of t-test. This step was assumed to synchronize with crossing 

of the first photocell, but this isn’t always the case. To improve synchronization be-

tween video and IMU, asking the athlete to do an easily detectable movement (i.e., 

standing jump) before the test could help. The perfect way to synchronize video and 

IMU signal would be to have the precise GMT time of the video recording start. Fur-

thermore, the algorithm uses many external inputs such as thresholds, frequency range 

of reconstruction or time window around COD, making the results sensitive to these 

inputs. Therefore, a sensitivity analysis to external inputs can help in investigating the 

generalizability of the method.  

8.3 FUTURE DEVELOPMENT 

8.3.1 A more inclusive study population 

All the studies can benefit with inclusion of a larger population, especially with a better 

balance of the sex ratio. For example, male and female runners with patellofemoral 

pain show differences in running mechanics, thereby indicating sex-specific therapies 

(Willy et al., 2012), Furthermore, a systematic review of lower limb running injuries in 

runners showed  the predominate injury in females was to the knee, while males 

showed a more even distribution of injury between the knee, shank and ankle-foot 

complex (Francis et al., 2019). Similarly, participants from different ethnic background 

and age ranges can be included, thereby extending the generalizability of the results 
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and/or finding differences in the various groups and addressing them in a more cus-

tomized manner. By including a larger sample size of different sexes, the biomechani-

cal profile (Figure 8.1) can be more personalized according to the sex, ethnicity, and 

age of the athlete, thereby improving the personalization of training. The studies fo-

cused on algorithm development for the sprint test and t-test mainly rely on a relative-

ly smaller group of highly trained athletes. While this study was mainly focused on the 

algorithm development and validation, there is potential for follow-up studies with 

different groups of athletes of varied skills to test the discriminatory power of the re-

sults from the algorithms. The fatigue analysis during half-marathon can be expanded 

to include a larger sample size of both, highly trained and novice runners. This would 

allow a statistically meaningful analysis of the difference in trends for the gait parame-

ters, stability, smoothness, symmetry, complexity etc. between the fast and slow 

groups. The power estimation our model has been tested on young healthy adults run-

ning on treadmills, it can be extended further and personalized to account for different 

running styles (Hoenig et al., 2020). Moreover, it could be validated on other popula-

tions such as older adults and Paralympic athletes, the latter using instrumented pros-

thetic feet (Lee et al., 2012).  

8.3.2 Methodological development 

The half-marathon analysis did not consider the knee kinematics and the ground reac-

tion forces, despite their response to acute fatigue (Apte et al., 2021), due to the limita-

tion in their estimation using foot-worn and/or chest-worn IMU. However, by using 

additional IMU on the shank and the sacrum, these parameters may be estimated in 

the field (Wouda et al., 2018) and can enrich the concurrent analysis of perceived fa-

tigability and running biomechanics. Though it would be difficult to conduct such an 

analysis during an actual road race, simulated prolonged running protocols can be 

implemented. This sensor setup can improve our understanding of the biomechanical 

contributions to endurance performance, since the work in chapter 7 only considered 

spatiotemporal parameters, indirectly estimated vertical stiffness, and footstrike an-

gles. Use of foot-worn IMUs during the sprint test and the t-test can aid in the detec-

tion of the foot contact. This will allow a better understanding of step-to-step variation 

in speed, cycle time, step length, etc. during sprinting and enable the coaches to further 

refine the training programs. In case of the t-test, detection of foot contact may enable 

the segmentation of COD into eccentric and concentric phases. Since these phases are 

directly impact by different muscles groups (Eston et al., 1995), time spent during each 

phase can provide valuable information about the physical condition of the muscles 

and the readiness of the athlete to maximally exert them after injury rehabilitation. 

Additionally, foot contact can enable comparison with traditional metrics for COD, 

derived from the use of force plates. 

 

The assumption of straight line sprinting in case of the velocity estimation algorithm 

can be addressed by fusing the IMU signals with magnetometer data, and obtaining 

the heading (yaw) angle of the body motion (Caruso et al., 2019). The magnetometer 

utilizes earth’s magnetic field as a constant reference frame of reference for correction 

of the orientation error. This can improve the generalizability of the algorithm to long-

er sprinting distances, which involve the curved sections of the running track. The 
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magnetometers, however, are sensitive to the ferromagnetic objects in the environment 

and changes in environment might necessitate recalibration of the magnetometer (Kok 

& Schön, 2016).  To further allow ease of use in the field, an automated segmentation 

procedure for the sprinting and running, possibly with thresholds on the GNSS ground 

speed, can allow for a more robust and repeatable segmentation.  Automated segmen-

tation can also simplify the analysis when a battery of tests, such as the agility T-test 

(Pauole et al., 2000), the sprint test, and the bleep test (Bangsbo and Krustrup, 2001), 

are performed together. This is typically the case for pre-season testing in team sports 

such as soccer, rugby, hockey, etc. The instantaneous velocity during sprinting can be 

complemented by other validated gait parameters to further enhance the utility of the 

sprint test.  

 

In addition to foot-worn sensors, IMUs on other body segments, particularly the wrist 

and trunk, can also be used to estimate power. Wrist location offers ease of use and has 

already been used for gait analysis (Kammoun et al., 2022), while the trunk provides a 

position close to the CoM of the body. A sensor fusion approach could also be utilized 

to combine the data from all these locations to further improve estimation accuracy. To 

enable the application of the proposed method in practice, a simple decision tree can be 

developed using the barometer to identify uphill, downhill, and level running. Fur-

thermore, the foot worn IMUs can be used to estimate the energy expenditure during 

running, complementing an existing IMU setup on the thigh and the shank that has 

achieved a relative error of 13.7% (Slade et al., 2021). By estimating the mechanical 

power and energy expenditure, a notion of running efficiency could be quantified us-

ing foot worn IMUs. This efficiency term can then be extracted across different datasets 

obtained in this thesis and its discriminatory power can be explored. Eventually, a reli-

ably estimated running efficiency term can prove to be an invaluable addition to the 

biomechanical profile and personalization of training. 

8.3.3 Augmenting training prescription 

Signal processing algorithms and models developed in this work enable the translation 

of recorded signals into easily interpretable and actionable information. One example 

of this is the biomechanical profile used for characterizing runners. Based on this in-

formation, coaches and physical therapists can develop customized training programs 

that target the relevant parameters. The proportion of the training session performed 

with an appropriate running technique, while maintaining the prescribed running 

power could be used to characterize the quality of a training session. Neither internal 

training load (iTL) nor external training load (eTL) metrics can provide this infor-

mation, thus making ‘quality’ the third unique descriptor of training sessions. In this 

context of an extended framework of training, as described in the introduction (Figure 

1.4, section 1.1.4), a model can be developed to predict the iTL and the quality of train-

ing resulting from a given eTL stimulus. A prior study quantified the relationship be-

tween RPE (iTL) and GPS-based eTL variables for Australian Rules Footballers using 

generalized estimating equations and artificial neural networks (Bartlett et al., 2017), 

but did not consider the quality of training. Similar approaches like linear models or 

machine learning methods can be followed to estimate the relationship between the 

training input (eTL) and outputs like heart rate and RPE-based iTL and quality. Corre-

https://www.frontiersin.org/articles/10.3389/fbioe.2020.00838/full#B25
https://www.frontiersin.org/articles/10.3389/fbioe.2020.00838/full#B2
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lation matrices can be utilized to estimate the relative influence of different eTL metrics 

on the output and determine their importance to the model. This may be followed by 

the development of a load estimation model for designing an optimal training pro-

gram. It could be considered as a constrained optimization problem, with (eTL) metrics 

as inputs to an objective function designed to maximize the positive adaptation to 

training stimulus, with the constraints of the internal training load (iTL) not exceeding 

a critical value of acute-chronic work ratio (ACWR) and the resulting quality of train-

ing not dropping below a specific threshold. Outcomes of the functional tests will form 

the basis for the values used to initialize the optimization; the objective function can 

based on existing fitness-fatigue models (Busso et al., 1994; Chiu & Bradford, 2003) and 

the competition schedule. A previous study approached load estimation as an optimi-

zation problem (Carey et al., 2018), however quality of training was not considered. 

The development and validation of these models could further contribute to the per-

sonalization of training and rehabilitation programs, thereby improving adaptation to 

training and reducing the incidence of injury in athletes. 
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Projects
Start-up training: Business Concept | Innosuisse Sept 2020 – Jan 2021
• Conducted market analysis to understand customer needs and created a value proposition canvas
• Undertook training in financial planning, funding instruments, and designed a business plan
• Created and presented an award-winning business pitch to independent investors and coaches from Innosuisse

Master’s thesis on neurorehabilitation | Advisor: Prof. Heike Vallery Jan – Nov 2017
• Undertook a systematic review andmeta-analysis of the experiments on walking using body weight support (BWS) systems
• Conducted dynamical modelling and simulation of human locomotion under unloading forces using Matlab/Simulink
• Bench-marked gait models for their use in BWS simulations and compared BWS strategies based on their influence on gait models

Bachelor’s thesis on electric vehicles| Advisor: Prof. C. S. Kumar 2013
• Development of electric vehicle for testing vehicle-control scheme
• Designed the wheel assembly with the aim of reducing wheel scrub radius and optimizing weight
• Designed and implemented a steering system for improving the neutral steer response

Formula Student racing team, IIT Kharagpur Dec. 2009 – Apr. 2013
• Designed and fabricated the throttle assembly and the entire brake system including a custom-made bias bar
• Designed a unique adjustable differential mounting system which compensated for the chain elongation, leading to a combined
weight reduction of 39% and a 10% higher factor of safety over previous design

• Identified the opportunities and proposed changes in the team structure, documentation, and information flow; following year, the
team was nominated among the final 6 (out of 105 participants) for the Airbus Teamwork Award at the Formula Student event

Volunteer positions
Formula Student racing team, IIT Kharagpur Aug 2010 – Apr 2013
• Design team head: Led a team of four students to strategize and develop the branding campaign for the 2012 Formula Student
Competition and public displays for the car. Conceptualized the website for the team.

• Transmission team lead: Led a team of five students for the design andmanufacturing of transmission system

Non-technical domains July 2012 – ongoing
• Fundraising and Communication, Humane Warriors: Raised more than 100k CHF through crowdfunding campaigns and grant
applications for providing access to education and Covid relief in India

• Treasurer, VOX Delft: VOX is a student organization that facilitates and promotes discussions about society, philosophy and culture
• Captain, Quiz Team, R.P. Hall of Residence: Led a team of 4 in the Technology General Championship from the year 2012 to 2014
which won an unprecedented 2 silver medals and 1 gold medal at the championships

Honours
• Winner, Innosuisse Business Concept course: As a member of the project Smart Helmet, now Bearmind
• EPFLinnovators fellowship: Among the 36 fellows to be selected from over 1800 applicants
• UC Berkeley - IIT Kharagpur fellowship: Among the 5 students selected from over 1000 applicants
• All India Rank 939 in IIT-JEE 2009: Achieved a 99.8 percentile among 500000 applicants
• Nationwide top 1%: Indian National Chemistry Olympiad, Indian National Astronomy Olympiad
• Scholarship recipient: National Talent Search Scholarship (NTSE)

https://www.science2market.ch/
https://www.tudelft.nl/3me/afdelingen/biomechanical-engineering/people/prof-dr-ing-h-heike-vallery/
http://www.facweb.iitkgp.ac.in/~cskumar/
https://www.teamkart.org/
https://teamkart.org/
https://www.humanewarriors.in/
http://voxdelft.com/
https://bf766665-09c5-4e84-968d-ffb6b0befb63.filesusr.com/ugd/a77155_63d6458afbcb4c9cba4a9ccabccdbf2d.pdf
https://www.linkedin.com/company/bearmindtech/
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